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Abstract 

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a damaging 

disease of honey bees (Apis mellifera) with a global distribution. AFB infects the honey 

bee larvae through spore-contaminated larval food and once infected the larvae will die 

within twelve days. AFB infection leads to the eventual death of the honey bee colony. In 

many countries the best control method is thought to be the destruction of the colony, to 

destroy the hardy, infectious spores. Therefore infection nearly always leads to the death of 

the colony. In the UK cases of the disease have decreased in recent years due to statutory 

control methods, however sporadic outbreaks occur each year. Many advances have been 

made in our knowledge of the mechanisms of infection by P. larvae in recent years 

however, a high resolution, standardised method of strain typing is required to track 

disease spread and understand outbreak sources. This thesis describes the development of 

the first multilocus sequence typing (MLST) scheme for P. larvae. MLST is the gold 

standard for pathogenic bacteria typing. It is based on the sequencing of sections of 6-10 

housekeeping genes. MLST is standardised, as primer and allele sequences can be made 

available for other researchers. The new MLST scheme was used to describe previously 

undetectable patterns of distribution at a global level as well as at a national level. Humans 

and bees are implicated in the movement of the disease over different spatial scales. Using 

the MLST scheme a diverse group of isolates were selected for whole genome sequencing. 

For the first time multiple genomes were compared within and between genotypes. The 

ability of the MLST scheme to describe relationships amongst sequence types (STs) was 

tested by comparing phylogenies based on core genes and MLST sequences. I describe the 

discovery of seven plasmids in four STs previously unknown to harbour plasmids.  
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1 Introduction 

Honey bees of the genus Apis have been kept by humans for millennia. There is evidence 

of managed honey bee colonies from as far back as 2400 BC in Egypt (Crane 1999). As 

well as being kept for their products honey bees are the most economically valuable 

pollinators of crops worldwide (McGregor, 1976; Allsopp et al., 2008). They are widely 

managed and can be easily and conveniently moved to provide pollination services where 

native species will not visit agricultural fields (Klein et al., 2007). However, honey bees 

are threatened globally owing to a number of emerging diseases and parasites such as the 

small hive beetle (Neumann and Ellis, 2008), Nosema ceranae (Klee et al., 2007), and the 

mite Varroa destructor which acts as a host for viral diseases (Martin et al., 2012), as well 

as pesticide usage (McGregor, 1976; Blacquière et al., 2012; Di Prisco et al., 2013). In this 

thesis I discuss the epidemiology and global distribution of one particularly damaging 

disease of honey bees, American foulbrood, caused by the pathogen Paenibacillus larvae. 

Paenibacillus larvae is a gram-positive spore forming bacterium, belonging to the Phylum 

Firmicutes. Many Firmicutes, including P. larvae can produce desiccation resistant 

endospores that allow them to survive in a variety of environments. The genus 

Paenibacillus contains over 100 species, many of which are soil dwelling opportunists 

(Qin et al., 2006; Dsouza et al., 2014). Because of their phenotypic similarities, 

Paenibacilli were classed within the genus Bacillus until 1993 the name Paenibacillus 

means almost Bacilli (Ash et al., 1993). P. larvae is the causative agent of American 

foulbrood (AFB) of the honey bee (Apis mellifera) one of the most destructive and 

widespread diseases of honey bee. Left untreated, the disease will lead to the death of the 

colony. AFB is extremely contagious due to the large numbers of highly resistant spores 

that are produced.  

1.1.1 Pathogenesis of AFB 

AFB only affects the brood stage (larvae and pupae) of the domesticated honey bee (Apis 

mellifera). The Asian honeybee has been shown to be vulnerable to infection in laboratory 

conditions but the hygienic behaviour of this species has been shown to prevent infection 

at the colony level (Chen et al., 2000). Larvae become infected by ingestion of spore 

contaminated larval food (glandular secretions and processed honey) (Yue et al., 2008). P. 
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larvae spores infect the larvae in the broodcomb, usually before they are 24 hours old and, 

once infected they will not recover (Lindström et al., 2008a). Only the spores are infective 

as the vegetative stages are killed by the secretions of the hypopharyngeal glands of the 

nurse bees (de Graaf et al., 2001). Infection by P. larvae takes place in two stages (Yue et 

al., 2008). The first stage is non-invasive. Spores germinate in the infected larval midgut 

where the vegetative bacteria proliferate and live on the food ingested by the host larvae. 

During this stage P. larvae metabolises sugars and sugar derivatives (Neuendorf et al., 

2004; Genersch, 2010; Djukic et al., 2014). During the second stage the midgut epithelium 

is penetrated followed by the destruction of the larval remains (Yue et al., 2008; Genersch, 

2010). The bacteria sporulate in the decaying larvae and the remains become 

characteristically brown and mucilaginous (Lindström et al., 2008a). This stage is one of 

the diagnostic stages of AFB known as the rope because, when drawn out with a 

matchstick, the viscous larval remains form a ropy thread (Genersch et al., 2006). The 

decaying brood dries into hard scales, which tightly adhere to the walls of the brood cell. 

These scales consist of millions of bacterial spores, the infectious stage of the bacteria 

(Genersch et al., 2006).  

1.1.2 Spread of AFB 

AFB is usually spread horizontally but can also be spread vertically, when colonies swarm 

(Fries et al., 2006). Horizontal transmission of AFB can occur by several means, due to 

humans through the movement of contaminated honey (Lindström, et al., 2008b) or the 

movement of contaminated hives or equipment. AFB can also be spread horizontally by 

bees, either through the movement of adult bees between colonies (drifting) or the 

behaviour of foragers (robbing). Human movement can spread AFB over much larger 

distances than by bees (Lindström, et al., 2008b; Pentikäinen et al., 2008). The spores can 

retain their ability to germinate for many years in honey, old combs kept in store or in 

derelict hives (Hasemann, 1961, FERA, 2013). It is the robust nature of the spores as well 

as the production of extremely high numbers in infected colonies that makes control of 

AFB so difficult (Genersch, 2010).  

1.1.3 Control of AFB 

Many countries require honey bee colonies infected with P. larvae to be burnt to remove 

the infection risk posed by the highly resistant spores (Genersch, 2010). Some countries 
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including the USA, Canada, and Argentina allow the use of antibiotics such as 

Oxytetracycline to keep the disease under control. However antibiotics can only affect the 

vegetative bacteria, not the infective spores and so repeated treatments are required to keep 

the disease under control. Left untreated the disease will destroy the colony (Reybroeck et 

al., 2012). The use of tetracyclines in commercial beekeeping has resulted in the 

emergence of resistant strains of bacteria (Evans, 2003; Reybroeck et al., 2012). Plasmids 

containing tetracycline resistance genes have been identified in resistant strains of P. 

larvae from North America, Canada and Argentina (Murray et al., 2007; Alippi et al., 

2007, 2014) . Because of the fears of antibiotic resistance alternative treatments such as the 

breeding of hygienic bees to reduce disease (Spivak and Reuter, 2001) and the use of plant 

extracts and essential oils (Genersch, 2010; González and Marioli, 2010; Santos et al., 

2012) have been developed. However the most effective method of eradication in most 

countries is considered to be destruction of the infected colony (Genersch, 2010).  

1.1.4 AFB control in the UK 

In England and Wales AFB is under statutory control by the government-funded apiary 

inspection programme managed by the National Bee Unit (NBU; 

http://www.nationalbeeunit.com). The NBU does not allow treatment with antibiotics. 

Instead the colony is destroyed by burning, and beekeeping equipment is sterilised 

(Wilkins et al., 2007). Inspectors then maintain vigilance in the area for three years after 

the last case is reported (Mill et al., 2014). Since the introduction of the inspectorate in 

1942 incidence of AFB has decreased from several thousand a year to between 100-200 

cases a year (Wilkins et al., 2007). Inspectors look for clinical signs of AFB such as 

sunken brood cell caps, and pepper pot pattern. Disease is confirmed using the rapid 

diagnosis field detection kits introduced in 2006 (de Graaf et al., 2013). Prior to this all 

suspected cases were sent to the NBU lab for diagnosis, and this method is still used for 

cases that are difficult to identify (Wilkins et al., 2007).  

1.1.5 Classification of Paenibacillus larvae 

Foulbrood disease of honey bees has been known for centuries but it was not until 1906 

that Gilbert White isolated Bacillus larvae from infected bee brood that the disease was 

identified as two separate diseases, European and American foulbrood. The diseases are 

named after the continents in which they were first described although both are present 

http://www.nationalbeeunit.com/
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globally. It was not until much later that the etiological agent of EFB (Melissococcus 

plutonius) was identified. Phenotypic differences between strains of P. larvae originally 

lead to the bacteria being described as two separate species, Bacillus larvae and Bacillus 

pulvifaciens, thought to cause AFB and powdery scale disease respectively. In 1996 a 

taxonomic study found the high levels of similarity between the species did not support 

separate classification (Heyndrickx et al., 1996). However, differences in the phenotype 

and pathology led to the reclassification of the two Bacillus species as two subspecies of 

Paenibacillus larvae, P. larvae larvae and P. larvae pulvifaciens (Heyndrickx et al., 1996). 

In 2006, Genersch et al. again reclassified the bacteria as one species, Paenibacillus 

larvae, with no subspecies. 

1.1.6 ERIC typing of P. larvae 

Four genotypes of P. larvae have been identified using repetitive element polymerase 

chain reaction (rep-PCR) fingerprinting with repetitive intergenic consensus (ERIC) 

primers (Sharples and Lloyd, 1990; Hulton et al., 1991; Genersch and Otten, 2003). The 

strains previously known as P. l. larvae were grouped within ERIC types I and II and, the 

strains known as P. l. pulvifaciens were grouped within ERIC types III and IV (Genersch 

et al., 2006). The four ERIC types differ in phenotype including colony and spore 

morphology (Genersch et al., 2006), metabolic capacity (Neuendorf et al., 2004), 

sporulation (Saville, 2011) and virulence (Genersch et al., 2005, 2006; Rauch et al., 2009; 

Poppinga et al., 2012). AFB outbreaks caused by ERIC I and ERIC II isolates are found 

throughout the world, whereas ERIC III is considerably less common. ERIC IV has not 

been found in field isolates in recent years and only a few strains exist in culture 

collections (Genersch, 2010; Poppinga et al., 2012). Therefore, the two most practically 

important genotypes in terms of global apicultural losses are ERIC I and II.  

1.1.7 ERIC types I and II 

ERIC type II is considered to be more virulent than ERIC type I, as larvae infected with 

ERIC type II typically die within seven days compared to twelve days in ERIC type I 

infections (Genersch et al., 2005, 2006). ERIC II type infections are more likely to go 

undetected as there are fewer clinical symptoms due to bee behaviour (Ashiralieva and 

Genersch, 2006; Schäfer et al., 2014). Virulence at the level of the individual larvae is 

negatively correlated with virulence at the colony level (Rauch et al., 2009). Because ERIC 
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I infections cause the larvae to die more slowly, a greater proportion of ERIC I infected 

larvae die after cell capping which occurs between 4-11 days after the larvae emerges from 

the egg (Winston, 1987). They are therefore less likely to be detected and removed by 

hygienic behaviour of the nurse bees. ERIC II infected larvae are more likely to be 

detected and removed which reduces spore production by the bacteria, resulting in the 

disease spreading more slowly throughout the colony (Rauch et al., 2009). Recently a new 

method to quickly identify P. larvae and discriminate amongst ERIC types has been 

developed based on matrix- assisted laser desorption/ionization time of flight (MALDI-

TOF) mass spectrometry (MS) (Schäfer et al., 2014). This new method is rapid, reliable 

and cheap in comparison to the previous methods of diagnosis, which involved cultivation 

and subsequent rep-PCR fingerprinting to differentiate into the ERIC genotypes (Genersch 

et al., 2006). ERIC typing remains the standard method for differentiating amongst 

P.larvae strain types  

1.1.8 Strain typing methods for P. larvae and biogeography 

Knowledge of the distribution of strain types of the causative agent provides information 

on how the disease is spread as well as how control methods are working. Although the 

ERIC typing system displays real biological differences and has recently become faster, 

cheaper and more reliable with the new MALDI-TOF method it does not give enough 

resolution to be used as a tool for epidemiological studies. Several methods have been used 

to study the distribution and movement of P. larvae strain types in infected colonies but no 

standard, repeatable method that gives sufficient resolution has previously been developed. 

Genersch and Often (2003) used three primers (rep-PCR with BOX A1R and MOB REP1) 

to sub-type P. larvae from disease outbreaks across Germany. They identified four sub-

types and found that these sub-types were clustered geographically within disease 

outbreaks (Genersch and Otten, 2003), 2003). Di Pinto et al. (2011) used ERIC primers 

with non-standard PCR conditions to identify four P. larvae types causing disease within 

Southern Italy. Because the PCR conditions were different from those used by Genersch 

and Otten (2003) the results are not comparable to the standard ERIC types. This study 

also did not give any geographical information (Di Pinto et al., 2011). A further study in 

Italy (Bassi et al., 2015) using the standard ERIC PCR conditions identified that both 

ERIC I and II are present in Italy but suggested that further study with a scheme that has 

higher discriminatory power would be necessary for further epidemiological studies (Bassi 
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et al., 2015). In Finland NotI pulsed-field gel electrophoresis (PFGE) was used to detect 52 

macrorestriction profiles (MRP) and three biotypes. This study demonstrated movement of 

the disease across large distances by the beekeeper (Pentikäinen et al., 2008). The 

established BOX, ERIC and REP primers do not give enough resolution to be used in 

epidemiological studies and although NotI PFGE gave higher discrimination, the results 

would be difficult to replicate in different labs. A new typing scheme that gives higher 

resolution and can be standardised between labs is required for high-resolution study of the 

disease and its movement. In the UK and Jersey, AFB movement and spread have been 

studied without strain typing. A Jersey study demonstrated that the disease was spread 

around the small island by both bees and by keepers over different distances (Datta et al., 

2013). AFB has been shown to form disease clusters that reappear year after year in 

England and Wales. These clusters are eventually wiped out by the inspection regime. 

However, in some areas clusters can reappear. It has been suggested that this may be due 

to new sources of infection (Mill et al., 2014) but it is not, with current typing methods, 

possible to distinguish between these two hypotheses. It was suggested that the importation 

of honey bees and their products may result in a sporadic supply of AFB spores, which 

may account for these persistent areas of disease (Mill et al., 2014). A new high resolution, 

standardised scheme will enable us to type the disease occurring in the UK and understand 

more about its movement. Such a scheme has recently been published for EFB based on 

the DNA sequence of housekeeping genes (Haynes et al., 2013).  

1.1.9 MultiLocus Sequence Typing (MLST) 

In order for a typing scheme to be informative it must have high discrimination power, 

combined with good inter- and intra-laboratory reproducibility. It should also be easy to set 

up, use and interpret (Genersch and Otten, 2003). Multilocus Sequence Typing (MLST) 

meets all of these requirements as it uses unambiguous DNA sequence in order to 

differentiate between strains, and all that is required to reproduce an MLST scheme is the 

primer sequences, which can be made available online (Aanensen and Spratt, 2005). The 

benefit of MLST is that the use of several genes found throughout the genome gives a 

better overall picture of the rate of evolution between strains (Urwin and Maiden, 2003). 

MLST schemes have been successfully used to understand the epidemiology of human 

pathogens in previous studies (Maiden, 2006) including the Bacillus cerus group to which 

P. larvae is related (Tourasse et al., 2006). Generally, MLST schemes consist of short 
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regions of six or seven housekeeping genes (Maiden, 2006). This is because housekeeping 

genes are highly conserved, and show lower rates of sequence evolution, and at an even 

rate across strains. As they are involved in essential metabolic tasks any random mutation 

that has an effect on their function will be selected against (Maiden et al., 1998; Maiden, 

2006). Although these genes generally have low variation in comparison to other genes, 

used in combination with one another they retain the signatures of longer-term 

evolutionary relationships or clonal stability. Using several loci also prevents skewed 

results, which may occur with fewer loci (Margos et al., 2008). MLST is a method for 

globally standardising strain types of bacteria results can be made available on a publically 

accessed database e.g. PubMLST (Jolley and Maiden, 2010). 

1.1.10 M. plutonius MLST scheme 

An MLST scheme for M. plutonius, the causative agent of European foulbrood has 

recently been developed (Haynes et al., 2013). EFB is a less serious disease of bee brood 

than AFB. It is treatable using shook swarm or Oxytetracycline and is sometimes referred 

to as a stress disease (Wilkins et al., 2007). However, like AFB, it is globally widespread 

and is also under statutory control in the UK where it occurs much more frequently 

(Wilkins et al., 2007). Using this new scheme researchers have demonstrated cases where 

movement of the disease over long distances was facilitated by the bee keeper as well as 

showing local movement (Haynes et al., 2013; Budge et al., 2014). The MLST scheme 

allowed the authors to identify bacterial strains that were most pathogenic, meaning that 

treatment can be tailored to tackle strains most effectively (Budge et al., 2014). Using the 

M. plutonius MLST scheme, EFB has also been shown for the first time to have moved 

between honey bee species (Takamatsu et al., 2014). This thesis describes the creation of a 

new MLST scheme for P. larvae and its uses in furthering our understanding of the 

epidemiology of AFB.  

1.1.11 Bacterial genome sequencing 

The first bacterial genome was sequenced in 1995 using Sanger technology (Fleischmann 

et al., 1995), which took years of work and a six figure budget. Since then next-generation 

sequencing technologies have radically decreased the amount of time and the cost per base 

of sequencing. Sequencing a whole bacterial genome now takes hours rather than years 

(Loman et al., 2012). This development in technology means that bacterial genomes can 



Chapter 1 

 19  

now be relatively easily compared using sequencing and bioinformatics (Edwards and 

Holt, 2013) Comparative genomics helps us to understand the genetic differences among 

bacterial strains. Whole-bacterial genomes can add an extra dimension to epidemiological 

studies such as those on Methicillin-resistant Staphylococcus aureus (MRSA) (Köser et al., 

2012; Harris et al., 2013) and Escherichia coli (Mellmann et al., 2011). These studies use 

genome wide Single Nucleotide Polymorphisms (SNPs) and MLST schemes to determine 

the movement of bacterial strains causing disease in a short timescale. Whole genome 

sequence data gives added resolution to the standardised MLST strain type. For species 

with available MLST schemes whole genome sequence data can be easily and quickly 

typed using the Bacterial Isolate Genome sequence database (BIGSdb) on the pubmlst 

database (pubmlst.org; Jolley and Maiden, 2010).  

1.1.12 P. larvae genomics 

Two genomes of Paenibacillus larvae have recently been published on Genbank 

(Accession numbers: DFW00000000 and CP003355-CP003356) in 2014 (Djukic et al., 

2014). These genomes were of two different ERIC strains, ERIC I (DSM 25719), 

consisting of seven contigs, and the complete genome of an ERIC II strain (DSM 25430). 

The ERIC I genome is around 500,000 bases longer than the ERIC II (4,579,589 compared 

to 4,056,006bp) and contains nearly a thousand more protein coding genes (4,868 and 

3,928) (Djukic et al., 2014). Previously, Qin et al. (2006) uploaded P. larvae contigs from 

a shotgun sequencing project with low coverage (5-6X) (Qin et al., 2006). In 2011 Chan et 

al. published an updated genome, which decreased the number of contigs from 646 to 388 

and increased the coverage (Qin et al., 2006; Chan et al., 2011). However, this genome was 

incomplete and the authors hypothesised that the fragmentation may be due to areas of 

long sequence repeats that could not be bridged using shotgun sequencing (Chan et al., 

2011). The new genomes confirm the existence of these genomic regions containing 

repeats (Djukic et al., 2014).  

1.1.13 P. larvae comparative genomics 

P. larvae strains ERIC I and II have different levels of virulence. Although both sequenced 

strains cause AFB, Djukic et al. (2014) demonstrate that there are many differences 

between the strains at the genomic level, including length, number of transposases, 

insertion elements, predicted phage regions, and strain-specific island-like regions (Djukic 
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et al., 2014). DSM 25430 contains a higher copy number of mutator-type transposases than 

DSM 275719, however the large number of mobile elements in both strains suggest 

frequent genome rearrangements and high genome plasticity (Djukic et al., 2014). It is 

thought that the difference in virulence between ERIC I and II are due to different methods 

of host infection (Poppinga et al., 2012; Fünfhaus et al., 2013; Djukic et al., 2014). 

Although ERIC II has been shown to be more virulent at the larval level (Genersch et al., 

2005, 2006) DSM 25430 contains five non-functioning toxin genes that were functioning 

in DSM 25719 (Djukic et al., 2014). The toxins are similar to the family of AB toxin found 

in other gram-positive, spore forming bacteria such as Clostridia and Bacilli (Barth et al., 

2004; Fünfhaus et al., 2013; Djukic et al., 2014). The toxin loci were present in both of the 

sequenced strains but in the ERIC II strain DSM 25430, they were non-functional due to 

point mutations or transposases (Djukic et al., 2014). In contrast, Poppinga et al., (2012) 

identified a functional s-layer protein in ERIC II isolates that is not functional in ERIC I 

isolates. The splA gene, which codes for a surface layer protein is involved with adhesion 

to the host’s gut wall as well as having protective properties. While the gene is present in 

both ERIC I and ERIC II genomes, in the ERIC I strains tested, it is non-functional due to 

a single point mutation causing a frame-shift (Poppinga et al., 2012). Because ERIC I 

isolates do not express this gene it is likely that they has evolved a different method of 

infection. Previous genome comparison had only one example of each ERIC strain. In this 

thesis I compare a number of different strains within and between ERIC I, II and IV. 

1.1.14 Plasmids in P. larvae 

Djukic et al. (2014) identified plasmids in both genome-sequenced strains. Plasmids are 

extra chromosomal elements that are able to replicate independently. Plasmids can provide 

benefits to the host bacterium such as resistance against antibiotics, virulence and 

additional metabolic capacities. The plasmids; pPLA1_10 found in ERIC I strain 

DSM25719 and pPLa2_10 found in ERIC II strain DSM 25430 have not been well 

characterised. Both plasmids are 9.7k long and both contained a putative replication 

initiation factor (REP) only differing at 49 bases (Djukic et al., 2014). Plasmids of similar 

length have previously been identified but not characterised (Bodorová-Urgošíková et al., 

1992; Neuendorf et al., 2004). Djukic et al. (2014) screened 65 strains of ERIC I and did 

not identify any further example of the plasmid pPLA1_10, which they suggested was due 

to strain, but not genotype specificity (Djukic et al., 2014). Tetracycline resistant plasmids 
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have been discovered in P. larvae in areas where AFB is treated with antibiotics 

(Reybroeck et al., 2012). The plasmid pMA67 identified by Murray et al. (2007) is a short 

circular plasmid (5kb) that replicates using the rolling circle method. Tetracycline 

resistance is conferred by the tetL gene (Murray and Aronstein, 2006). Alippi et al. (2014) 

also identified three plasmids in North American strains of P.larvae, pPL373, pPL374 and 

pPL395. These plasmids are highly similar to pMA67 (99%) as well as to plasmids 

conferring tetracycline resistance in five genera of Gram-positive bacteria found in a 

variety of ecological niches. This suggests horizontal transfer of tetracycline resistance 

amongst environmental bacteria in water, soil and food as well as in pathogenic bacteria 

(Alippi et al., 2014). Alippi et al. (2014) also identified but did not sequence a larger 

plasmid (8kb) present in two of the three strains. This longer plasmid seemed to facilitate 

conjugation for the smaller mobilizable plasmids (Alippi et al., 2014). 

Much has been learnt about the methods of pathogenesis of P .larvae in recent years, and 

the publishing of P.larvae genomes will increased our knowledge of mechanisms in 

involved in infection by P. larvae. However, no standardised typing tool has been 

produced with sufficiently high resolution, to ascertain broader ecological questions such 

as the distribution of strain types. In this thesis I describe the development of such a tool 

and use it for biogeographical studies on both a global and more local scales. I use our new 

knowledge of sequence types to inform the selection of various diverse STs for whole-

genome sequencing and describe genome comparisons, including the discovery of several 

plasmids in our sequenced isolates. 

1.2 This thesis  

Chapter two details the creation of a new, high resolution MultiLocus Sequence Typing 

(MLST) scheme to determine strain types of Paenibacillus larvae. This new scheme 

enables the identification of strain types of P. larvae causing the disease around the world. 

The scheme was used to study the biogeography of P. larvae and describe patterns in its 

global distribution. 
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Chapter three describes the use of this new MLST scheme to look at the distribution of P. 

larvae strain types causing AFB around the UK. It had previously been determined that 

AFB outbreaks form clusters of disease, here the STs present in these clusters are 

compared to outbreaks not in clusters. STs in clusters near to possible risk points are typed 

and a possible source of P.larvae spores, imported honey is examined. 

Chapter four. Previous P. larvae genome comparisons could only be between ERIC types. 

However now that 24 MLST sequence types have been described further genome 

comparisons can be carried out within and between these types. Whole genome sequencing 

gives further resolution than MLST and describes much more genetic diversity. Here 21 

genomes from 14 STs have been sequenced and the results are described. The Phylogenies 

produced using MLST and WGS are compared to determine how well MLST describes the 

relationship amongst strains. 

Chapter five. For the first time plasmid DNA has been found in P. larvae samples from the 

UK. Of the 21 Global isolates sequenced using whole genome sequence technology, seven 

contained plasmids. These plasmids are similar to the pPLA1_10 and pPLA2_10 plasmids 

described in Djukic et al. (2014). None of the seven plasmids found contain the tet genes 

responsible for tetracycline resistance. Here we describe the seven plasmids and discuss 

their phylogenetic history.
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2 Biogeography of Paenibacillus larvae, the causative agent of 

American foulbrood, using a new MLST scheme 

2.1 Abstract 

American foulbrood is the most destructive brood disease of honey bees (Apis mellifera) 

globally. The absence of a repeatable, universal typing scheme for the causative bacterium 

Paenibacillus larvae has restricted our understanding of disease epidemiology. We have 

created the first MultiLocus Sequence-Typing scheme (MLST) for P. larvae, which largely 

confirms the previous ERIC-PCR based typing scheme’s divisions whilst providing added 

resolution and improved repeatability. We have used the new scheme to determine the 

distribution and biogeography of 294 samples of P. larvae from across 6 continents. We 

found that of the two most epidemiologically important ERIC types, ERIC I was more 

diverse than ERIC II. Analysis of the fixation index (FST) by distance suggested a 

significant relationship between genetic and geographic distance suggesting that 

population structure exists in populations of P. larvae. Interestingly, this effect was only 

observed within the native range of the host and was absent in areas where international 

trade has moved honey bees and their disease. Correspondence analysis demonstrated 

similar sequence type (ST) distributions between native and non-native countries and that 

ERIC I and II sequence types mainly have differing distributions. The new typing scheme 

facilitates epidemiological study of this costly disease of a key pollinator. 

2.2 Introduction 

Paenibacillus larvae, a gram-positive spore-forming bacterium, causes American 

foulbrood (AFB), which is the most destructive brood disease of the honey bee (Apis 

mellifera). AFB is contagious due to the large numbers of highly resistant spores that are 

produced and efficiently transmitted by contaminated adult bees within and between 

colonies (Lindström, et al., 2008a; 2008b). Only the spores are infective and are fed to bee 

brood by nurse bees in contaminated larval food (glandular secretions and processed 

honey) (Yue et al., 2008). Once infected larvae usually die within 3 to 12 days (Genersch 

et al., 2005; Rauch et al., 2009). P. larvae spores are able to remain infective for more than 

35 years in old hives and are resistant to extremes of temperature (Hasemann, 1961). This 

makes control of the disease difficult because human activity can spread the disease over 
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long distances and previously dormant strains may cause an outbreak several years after 

the original outbreak. 

2.2.1 AFB control 

Antibiotics only affect the vegetative stage of the bacterium, masking the symptoms of 

AFB, they have no effect on the infective spores (Genersch and Otten, 2003). In many 

countries burning infected colonies and hive materials is thought to be the most effective 

way of preventing the spread of AFB. Therefore, whether AFB is ignored or treated the 

colony will be killed which leads to considerable economic loss to global apiculture. 

2.2.2 P. larvae genotyping 

American foulbrood is found on every continent where honey bees are kept (Matheson, 

1993). The disease is spread by both humans and bees and it is spread predominantly via 

horizontal routes although it has been shown to spread vertically (Fries et al., 2006; 

Lindström, et al., 2008b). Horizontal transmission of AFB can occur by several means, due 

to humans through the movement of contaminated honey or the movement of 

contaminated hives or equipment (Genersch, 2010). AFB can also be spread horizontally 

by bees, either through the movement of adult bees between colonies (drifting) or the 

behaviour of foragers (robbing) (Lindström et al., 2008b). Using genetic markers to 

identify outbreaks caused by closely related strains can give important evidence to confirm 

the source and routes of disease transmission. The shortcomings of phenotypically based 

typing methods for P. larvae (Genersch et al., 2006) have led to the development of 

molecular typing methods based on the microbial DNA sequence (Alippi and Aguilar, 

1998; Genersch and Otten, 2003; Genersch et al., 2006; Antúnez et al., 2007; Pentikäinen 

et al., 2008). Four genotypes of P. larvae have been identified based on repetitive-element 

PCR (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers 

(Genersch et al., 2006). These four genotypes were shown to form two clusters using 

pulsed-field gel electrophoresis (PFGE) (Genersch et al., 2006). ERIC genotypes differ in 

phenotype including morphology (Genersch et al., 2006), metabolic capacity (Neuendorf et 

al., 2004) virulence (Genersch et al., 2005; Rauch et al., 2009) and virulence factors 

(Poppinga et al., 2012; Fünfhaus et al., 2013). The above typing schemes have been used 

to categorize crude patterns of P. larvae distribution in Europe (Genersch and Otten, 2003; 

Pentikäinen et al., 2008; Loncaric et al., 2009; Di Pinto et al., 2011), the Americas (Alippi 
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et al., 2004; Antúnez et al., 2007) and Australasia (Alippi et al., 2004). However, rep-PCR 

methods have the disadvantage that they are difficult to repeat or to standardize between 

laboratories and therefore comparisons between different studies is difficult (Rusenova et 

al., 2013). Most recently it was shown that the four ERIC-genotypes can also be 

discriminated via matrix-assisted laser desorption/ionisation time-of-flight mass 

spectrometry (MALDI-ToF) (Schäfer et al., 2014) providing a cost effective, reliable and 

highly reproducible alternative tool for P. larvae ERIC-typing. The advantage of the 

established ERIC-scheme for P. larvae (Genersch et al., 2006) is that it allows grouping 

into biologically relevant genotypes differing in practically important phenotypic features. 

However, it does not give enough resolution to be used effectively as an epidemiological 

tool to study disease spread. Therefore, a state-of-the-art method providing sufficient 

resolution to be informative to epidemiological studies is urgently needed in order to 

enhance differentiation beyond the four ERIC-genotypes  

2.2.3 MultiLocus Sequence Typing 

The utilization of sequence-based typing would allow a single, universal and unambiguous 

scheme that would help us to better understand the global spread of this damaging disease. 

Multilocus sequence typing (MLST) can provide a standardized set of strain types that can 

be used to study bacterial population structure and evolution at both a global and a more 

local scale. MLST is based on unambiguous DNA sequences and allelic profiles can be 

shared between laboratories using online databases such as PubMLST (Jolley and Maiden, 

2010). MLST schemes have become the gold standard for epidemiological studies, 

providing insight into the epidemiology of human pathogens such as the Bacillus cereus 

group (Helgason et al., 2004) to which P. larvae is related. Generally, MLST schemes 

consist of short regions of six or seven housekeeping genes, which evolve at a slow even 

pace across all strains (Maiden, 2006).  

Here we report the development of a novel seven gene MLST scheme to enhance 

differentiation within the species P. larvae and we use this scheme to identify global 

patterns in the population structure of P. larvae. 
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2.3 Methods 

2.3.1 MLST development. 

Whole genome comparisons were made between two genetically diverse strains of P. 

larvae (Genersch et al., 2006) p6678 and p6993; LMG 16241 and LMG 16247, ERIC I 

and ERIC IV respectively). Housekeeping genes used in a previous typing scheme for the 

related Bacillus cereus group (Helgason et al., 2004) were found to have no variation when 

compared between these two isolates, so novel regions with 80-90% similarity were 

identified. Pairwise comparisons were made using the online program doubleACT and the 

result visualised using ACT (Carver et al., 2005) and MEGA version 5 (Tamura et al., 

2011). Two further genomes were later compared (DSM25719 (ERIC I), NCBI acc. No. 

ADFW01000002; DSM25430 ( ERIC II), NCBI acc. No. NC_023134). This led to the 

discovery of additional suitable loci that were identified using the Bacillus cereus Group 

Typing Database (University of Oslo, 2012) and by targeting genes likely involved in 

observed phenotypic differences in sporulation frequency between ERIC types (Saville, 

2011).  

2.3.2 Primer design.  

Primers were designed to candidate loci using primer 3 (v0.4.0) (Rozen and Skaletsky, 

2000), and Oligocalc (Kibbe, 2007) with an optimum melting temperature of 55°C (±5°C). 

In total 31 primer pairs were tested including those for non-coding loci to give a scheme 

composed of seven coding loci. The primer sets were used to amplify a panel of P. larvae 

isolates of all four ERIC types. Any primer set that did not add extra resolution to the 

scheme was rejected (Appendix 1).  

The PCR reaction were carried out using 2µl template DNA, 12.5µl 2x Fermentas PCR 

mastermix, and 10 pmol of each primer with a total reaction volume of 25µl. Each reaction 

was run on an Applied Biosystems 2720 Thermal Cycler. Conditions were as follows: 

After the initial activation step (3 min, 95 °C), 35 cycles at 95 °C for 30 seconds, 52 °C for 

30 seconds, and 72 °C for 1 min were run followed by a final elongation step at 72 °C for 

10 min.  
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2.3.3 Global isolates.  

In total, 294 P. larvae isolates from existing national and international culture collections 

were recovered on either blood agar or brain heart infusion agar and PLA (de Graaf et al., 

2013). Briefly, spore containing honey was either heated at 90°C for 6 min prior to plating 

(Genersch and Otten, 2003) or plated directly without heat treatment (Forsgren et al., 

2008) because temperatures above 90°C or an incubation time of 10 min could have 

negatively affected germination of ERIC II strains (Forsgren et al., 2008). Isolates were 

collected from 38 countries from across six continents: Africa (N= 5), Australasia (N=26), 

Asia (N=27), Europe (n=199), North America (N= 16) and South America (N=4) as well 

as some of mixed origin and some from culture collections (N=17) (Appendix 2). DNA 

was extracted from P. larvae cultures using a simple Chelex method. Bacteria were 

transferred to 300 µl 6% Chelex ®100 and heated to 56°C for 20 minutes followed by 

boiling for 8 minutes. DNA extracts were stored at -20°C until required. ERIC typing was 

completed using the method described in Genersch et al. (2006). 

2.3.4 Sequencing.  

PCR products were purified using Qiagen® PCR purification and sequenced on the ABI 

3730xl 96-capillary DNA Analysers. Sequences were aligned using ClustalW in MEGA 

version 5 (Tamura et al., 2011) and allele types were counted and numbered in order of 

discovery as described by Aanensen and Spratt (2005). An allele was identified as a 

sequence or sequences with one or more genuine nucleotide difference from previously 

assigned sequences. The combination of allele numbers for each of the target genes gives 

the allelic profile or sequence type (ST) of an isolate. All putative loci were amplified from 

a panel of P. larvae isolates representing all four ERIC types. Loci that failed to add 

resolution to the scheme were rejected and all isolates were typed using the final MLST 

scheme. 

2.3.5  MLST Analysis.  

The ratio of non-synonymous and synonymous substitutions (dN/ds) of MLST gene 

fragments was determined using the modified Nei–Gojobori method (Nei and Gojobori, 

1986) in the program START2 (Jolley et al., 2001). Recombination was tested using the 

index of association with the program START2 (Jolley et al., 2001). 
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2.3.6 Population structure and biogeography.  

PHYLOViZ (Francisco et al., 2012) was used to analyse allelic profiles using the 

goeBURST algorithm (Francisco et al., 2009; Feil et al., 2004). The program was used to 

discover clonal complexes and infer founder clones (Francisco et al., 2009). The most 

parsimonious patterns of descent of all isolates in each clonal complex from the predicted 

founder(s) were calculated as previously described (Francisco et al., 2009, 2012). A 

phylogeny was also constructed from an alignment of 2948 sites representing the 

concatenated sequences of each ST. The sequences were aligned using ClustalW, as 

implemented in MEGA 5.2 (Tamura et al., 2011). The phylogenetic analysis was then 

carried out using the Neighbour-Joining method and the Maximum Composite Likelihood 

model as implemented in MEGA 5.2. (1000 replications).  

To test the population structure of P. larvae among different countries, pairwise FST was 

calculated using the haploDiv command in the R package diveRsity (Keenan et al., 2013) 

and bootstrapped 95% confidence intervals (500 repeats) were calculated. The 40 SNPs 

identified in the concatenated MLST gene sequences were used to derive pairwise FST 

between populations. Populations were taken as all samples from a single country 

(Appendix 2). Countries where there were samples from fewer than 5 isolates were 

discounted (Appendix 2) or grouped: Samples from Bangladesh, Japan, China, Singapore, 

and Mongolia became Asia. Geographic Distances were taken as the great circle distance 

between the centre point location for each country or group of countries. A Mantel test 

(Mantel, 1967) with 1000 replications was used to determine whether the correlation 

between physical distance and FST was significantly different from a random sample of the 

data. All results were visualised using R (version 2.15.2) (R Core Team, 2012). 

Correspondence analysis (CA) was also applied to the data. The CA takes into account the 

STs present in each country, to investigate associations between STs (which types were 

commonly found together) and patterns in their distribution (which countries are associated 

with the STs). Finally, rarefaction curves were constructed to compare the sampling efforts 

between different continents and between countries within Europe. R library vegan 

(Oksanen et al., 2013) was used to carry out these final two analyses.  
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2.4 Results 

2.4.1 Loci discovery and primer design.  

In total, 31 primer pairs, including for non-coding loci, were tested against P. larvae 

isolates representing all four ERIC types. The majority of loci were rejected due to low 

diversity between test isolates (Appendix 1). Of the remaining loci, seven offered the 

largest diversity within the 294 isolates of P. larvae tested: clpC (catabolite control protein 

A), ftsA (cell division protein), glpF (glycerol uptake facilitator protein), glpT (glycerol-3-

phosphate permease), Natrans (forward sodium dependant transporter), sigF (sporulation 

sigma factor F) and rpoB (RNA polymerase beta subunit) (Table 2.1.). Fragment length 

and G + C content for the seven selected loci ranged from 271 bp (glpF) to 541 bp (clpC) 

and 43.8% to 48.7% respectively (Table 2.2). The percentage of variable sites ranged from 

0.65 (ftsA) to 2.0 (Natrans) resulting in 4-6 alleles per locus (Table 2.2). The dN/dS values 

were all lower than 1 for all genes except, glpF which contained a deletion. The ratio of 

non-synonymous and synonymous 
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Table 2.1. MLST scheme primer sequences 

Gene Forward primer Reverse primer 

Annealing temp 

(°C) 

clpC 5'TTTGGAAGATTTACTGAACGA3' 5'ATCAGAACCGGGTTATTTTT3' 52 

ftsA 5'AAATCGGTGAGGAAGACATT3' 5'TGCCAATACGGTTTACTTTA3' 52 

glpF 5'GTCAGCGGGGCTCATTTA3' 5'TGCTTACGATGAGAAATCCT3' 52 

glpT 5'GGATTGAAAAACTTGAAACG3' 5'CATGCTGAGAGAAATCTTCC3' 52 

Natrans 5'GCTTCGGTAATGGTAACCTA3' 5'TTGAACCCATTGTAAATTCC3' 52 

rpoB 5'ATAACGCGAGACATTCCTAA3' 5'GAACGGCATATCTTCTTCAG3' 52 

sigF 5'GTCACTGAAGGAATTGGCTA3' 5'TATCTGGTTACGGATGGACT3' 52 
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Table 2.2 Feature summary of seven loci selected for P. larvae typing scheme 

Locus 

Sequence length 

(bp) 

No. of 

alleles 

Mean G+C 

content 

No. of 

polymorphic sites* 

No. of non-

synomymous 

substitutions 

dN/dS 

ratio 

clpC 541 5 48.7 4(0.74) 3 0.4183 

ftsA 464 4 46 3(0.65) 2 0.7756 

glpF 271 6 45.2 5(1.85) 4 1.4835 

glpT 502 4 47.4 9(1.8) 6 0.5569 

Natrans 490 6 46.8 10(2.0) 6 0.218 

rpoB 339 5 48.7 4(1.5) 2 0.4276 

sigF 345 4 43.8 4(1.2) 1 0.1607 
* percentage of polymorphic sites in parentheses  
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substitutions (dN/ds) measures the level of selection in a protein coding gene. To ensure 

consistency in an MLST it is preferable that each locus is under purifying selection. 

However genes that are under positive selection may give more resolution to the scheme 

(Maiden, 2006). The ratio of dN/dS indicates purifying selection (negative selection) if 

values are <1, positive selection if values are >1, and neutral evolution if values are close 

to 1. A value approaching 1 may also indicate a combination of positive and purifying 

selection. 

2.4.2 Index of association 

The index of association (IA) was significantly different from 0 when only one 

representative of each ST was included in the computation (1.16; P= 0.000), indicating 

limited recombination events and a clonal population structure in P. larvae. The IA 

measures the extent of linkage equilibrium within a population by quantifying the amount 

of recombination among a set of sequences and detecting association between alleles at 

different loci (Maynard Smith et al., 1993).  

2.4.3 Sequence types 

Typed isolates included 173 ERIC type I, 92 ERIC type II, 3 ERIC type III and 7 ERIC 

type IV and 19 isolates where ERIC type was not determined due to a shortage of DNA 

(Appendix 2). At least one isolate of each ST was ERIC typed. The 7-gene MLST scheme 

resolved the 294 P. larvae isolates into 21 different STs (Figure 2.1; Appendix 2). The 

allele sequences have been submitted to the EMBL database under Accession numbers 

HG530076 to HG530109. The entire scheme is available at pubMLST.org/plarvae/ (Jolley 

and Maiden, 2010). ST designations represented a single ERIC grouping except for a 

single ERIC III isolate that grouped with ST8 (Figures 2.1 and 2.2). Isolates from ERIC I 

were separated into 16 STs, whereas ERIC II isolates were only separated into three 

separate STs. The Chao1 estimates suggest this difference in observed diversity was 

unlikely to be due to a biased sampling effort. After an initial increase, the mean Chao1 

estimate for all geographical regions became relativley level as sample size increased 

(Figure 2.3), therefore we compared the ST diversity estimates at the highest sample size 

for each ERIC type (Hughes et al., 2001). Total diversity of ERIC types is significantly 

different as estimated by Chao1 (Figure 2.3). Chao1 estimates that ERIC I has 18.49 STs 

(95% CIs 16.37 and 32.91), and ERIC II has 3 STs (CIs 3 and 4.49). The STs were roughly 
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split following the pattern of the ERIC typing scheme with different ERIC I and II types 

forming distinct groups with both the eBURST and phylogenetic analysis (Figures 2.1 and 

2.2; Appendix 2). ERIC III and IV isolates were less distinct with one isolate (P6266) 

LMG 16252) ERIC typed as ERIC III but sequence typing as ST8 and grouping with ERIC 

IV isolates (Figure 2.1, Appendix 2). All isolates within ERIC I and II are linked by single 

loci variants (SLV) whereas the ERIC III and ERIC IV STs differ from each other at two 

loci. ERIC I and ERIC II isolates differ from one another by at least four loci (link not 

shown in figure 2.1) and ERIC III isolates differ from ERIC I isolates by at least six loci 

(Figure 2.1.). The ERIC III ST 9 is made up of only two isolates found in Chile (Appendix 

2). 

2.4.4 Population structure and biogeography.  

The two most common and widespread types of ERIC I were ST 15 and 5 which were each 

found causing disease in multiple countries and across 5 continents (Appendix 2). 

Contrastingly of the two most common STs of ERIC II, ST10 was well distributed and ST 

11 was found only in Germany and countries to the East of Germany. In this study no 

ERIC II isolates were collected from countries to the West of Germany within the native 

honey bee range. 

The relationship between FST and geographic distance of the global populations of P.larvae 

were not significant (P= 0.996, r2 = 5.506 x 10 -7) suggesting no relationship between 

genetic and geographic distance when considering the sampled global population of P. 

larvae. However, when the analysis was restricted to isolates collected from within the 

native range of honey bees (Europe, Africa and Eastern Asia; 226 of 294 isolates (see 

Appendix 2)) a significant relationship between genetic and geographic distance was 

detected (P = 0.01, r2 = 0.122; Figure 2.4.).  
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Figure 2.1 eBURST diagram of P. larvae MLST scheme. Numbers represent ST of isolates. STs 

with variations at more than three loci are not connected. Size of circles represents the number of 

isolates of that type. Blue circles are typed as ERIC I, green as ERIC II, purple as ERIC III, brown 

ERIC IV 

P. larvae MLST scheme 
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Figure 2.2 Neighbour joining tree inferring the evolutionary history of P. larvae STs. The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 

(1000 replicates) are shown next to the branches. 
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Figure 2.3 Chao1 estimates of ERIC I and ERIC II ST richness as a function of sample size. Dotted 

lines are 95% CIs and were calculated with the variance formula derived by Chao (1987). The 

lower solid line represents ERIC II and the upper solid line represents ERIC I 
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2.4.5 Correspondence Analysis (CA).  

The ordination graph (Figure 2.5) describing the results of the CA shows a clear split in the 

distribution of ERIC I and ERIC II. In addition figure 2.5 shows no split in the distribution 

of countries, whether they were in the native range of honey bees or not. This suggests that 

most STs are found in both the native range and countries outside of the native range.  

The proportion of variance explained by the first two eigenvectors was 0.4026. In the 

ordination graph describing the results of the CA (Figure 2.5) STs that have similar 

distribution are represented by points closer together in space and the proximity of STs to 

countries indicate that those STs are associated with that country. The first axis highlights 

the difference in distribution between ERIC I STs and ERIC II STs. The ERIC II STs (ST 

10 and ST 11) cluster on the left (negative values) of CA1, and the ERIC I STs on the 

right, with the exception of ST17. ST10 groups with Arabia, Mount Athos, Kazakhstan, 

Russia, Sweden and Australia as well as mixed origin isolates from China, Singapore and 

Japan. 

ST11 is associated with Germany and Finland. Native range designation did not appear to 

influence the distribution of the points on the ordination plot i.e. countries where honey 

bees have been introduced grouped with countries where honey bees are native. 

2.4.6 Rarefaction. 

 Rarefaction curves comparing the sampling effort for each continent show steep curves for 

all except Europe. However, when only data from Europe were analysed at country level, it 

was clear that only Germany and the UK were sampled to adequately describe the resident 

ST populations. This suggests that further sampling in other countries would yield 

previously unidentified STs. 
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Figure 2.4 FST by distance. Figure 2.4A describes the FST by distance of P larvae populations 

within the native range of the host (P=0.01). Figure 2.4B describes the FST by distance of P. larvae 

populations both within (dark grey dots) and outside the host's native range (light grey dots) (P= 

0.996). 
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Figure 2.5 Correspondence analysis ordination graph. The CA ordination graph illustrates the 

association amongst countries of isolate origin and MLST STs. Filled circles represent countries 

(dark grey represents native host range, light grey represents introduced host range) Diamonds 

represent STs. 
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2.5 Discussion 

AFB is a serious disease of honeybee brood with near global distribution, however disease 

epidemiology is poorly understood, in part due to an absence of a repeatable, high-

resolution method to discriminate between strain types. We have developed the first MLST 

scheme, which ratifies and extends the established four group ERIC typing scheme. The 

new scheme describes 21 different P.larvae STs, therefore providing improved resolution 

when compared to ERIC typing. Whilst other typing schemes, such as PFGE (Pentikäinen 

et al., 2008) offer greater resolution, i.e. more types, than MLST, these methods are 

difficult to repeat, preventing comparisons between published studies. MLST is now the 

gold standard for epidemiological studies (Francisco et al., 2012) and results can be 

applied to derive epidemiological meaning both locally and internationally. 

2.5.1 P. larvae biogeography 

Our MLST scheme was able to identify a significant relationship between geographic 

distance and genetic distance amongst P. larvae populations within the native range of the 

honey bee (Figure 2.4A). This relationship is surprising given the history of human 

movement of bees within Europe in particular (De la Rúa et al., 2009). It might be 

expected that because of past honey bee movements, mixing of P.larvae STs might be 

equally distributed throughout the native range, however, this is not the case. A detectable 

link between physical and genetic distance remains despite these large-scale movements 

and endemic populations of P. larvae still appear to exist within the native range. Such a 

result could suggest that certain P. larvae strains are adapted to local honey bee 

populations. Honey bees are known to differ in their ability to resist pathogens (Jensen et 

al., 2009; Büchler et al., 2010), and AFB tolerant honey bees have been bred in Argentina 

(Spivak and Reuter, 2001). However, little is known more generally about the 

susceptibility of honey bee races to different strains of P. larvae. A more comprehensive 

understanding of inter-race susceptibility of A. mellifera is required to understand whether 

host factors are in part responsible for the significant pathogen population structure within 

the native range of A. mellifera.  

The commercial interest in honey bee hive products has lead to the spread of A. mellifera 

far beyond its native geographic range. This global industry has facilitated the spread of 
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honey bee pests and pathogens such as the ectoparastic mite Varroa destructor (Solignac et 

al., 2005), Nosema ceranae (Klee et al., 2007) and Israel acute paralysis virus (IAPV) 

(Palacios et al., 2008) and it is known that P.larvae spores can remain infective in honey 

(Morse, 1992; Govan et al., 1999; Hansen et al., 2003). Our data indicate that when AFB 

has been moved outside the native honey bee range, any evidence of significant pathogen 

population structure breaks down (Figure 2.4B). This finding suggests that the 

international trade in honey bees and their hive products may have moved P. larvae 

multiple times in a non-systematic manner to infect honey bees beyond the native range. 

Despite haphazard movements of host and pathogen, there remain some interesting links 

between historic honey bee movements and ordination graph observations linking STs to 

locations (Figure 2.5). Some historic honeybee movements are recorded in the literature, 

and it is possible to trace, for example, honeybee imports into USA and New Zealand back 

over 400 years to their origins in Europe (Donovan, 1980; Goulson, 2003). It is perhaps 

unsurprising that the CA (Figure 2.5) groups countries together from within and outwith 

the native host range group, given the traceable links and potential transmission routes 

between these countries.  

Novel types were sometimes identified only outside the native range of A. mellifera with 

ST3 only found in New Zealand and ST4, ST9, ST16 only identified in the Americas 

(Appendix 2). There are two plausible explanations for this observation. First, the presence 

of unique types outside the native range could suggest these types have evolved since 

becoming isolated from the founder pathogen population. Second and perhaps more likely, 

our sampling scheme was more intensive in some countries (such as the UK and Germany) 

and superficial in other countries within the native range (Appendix 2). Therefore it is 

likely that our sampling scheme was not sufficiently exhaustive to detect the full extent of 

ST diversity within the native range of A. mellifera.  

P. larvae isolates classed as ERIC I were more diverse than those classed as ERIC II, 

containing 16 unique STs compared to only 3 for ERIC II (Figure 2.1). The results of the 

Chao1 estimate (Figure 2.3) show that although the sampling was uneven with more ERIC 

I isolates typed than ERIC II, for these data the Chao1 estimator levels off (Figure 2.3) 

suggesting that the Chao1 estimate is relatively independent of sample size. ERIC I and II 

isolates differ phenotypically in many ways for example endospore resistance to 

temperature (Forsgren et al., 2008), rates of sporulation (Saville, 2011), time to host death 
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(Genersch et al., 2005, 2006; Rauch et al., 2009) and it was suggested that they employ 

different strategies for killing larvae (Poppinga et al., 2012; Fünfhaus et al., 2013; Djukic 

et al., 2014). Perhaps these differences account for the disparity in diversity, as some STs 

may be better able to spread to new areas.  

It had previously been assumed that ERIC II is confined to Europe and that it is not rare in 

Germany or Austria (Genersch, 2010). However, our data suggest that ERIC II STs are 

much more widely distributed than previously thought, being present in Asia, North 

America and Australasia as well as Europe although in this study no ERIC II isolates were 

found in Europe in countries West of Germany. However there is evidence that ERIC II is 

present in Germany in areas that border France and Belgium (Saarland, see Appendix 2), 

which might suggest its presence in these countries. This study has split ERIC II into three 

new STs (Figure 2.1) with ST10 and ST11 being common and ST12 being identified once. 

Considering the prevalence of ST10, it seems unusual that ST11 remains localised. These 

differences in prevalence and distribution between ERIC II STs could reflect a difference 

in phenotype, rather than an artefact of sampling bias, as there was no previous method to 

discern amongst ERIC II strains. Future work could include genomic and phenotypic 

comparisons between ERIC II STs, to identify reasons for the observed differences in 

distribution.  

Interestingly ERIC I and II have mainly different distributions as indicated in the 

ordination graph, ST17 is the only ERIC I isolate on the left side of the graph (Figure 2.5). 

No ERIC II STs (ST10, ST11) were found in Africa or in the West of Europe in the native 

range of A. mellifera (Appendix 2). The fact that they were not found in Africa and much 

of the West of Europe may be explained by poor sampling effort. However, the UK was 

more thoroughly sampled and still no instances of ERIC II STs were found. One 

suggestion for their differing distribution might be that ERIC II STs are host specific. 

There are around a dozen subspecies of Apis mellifera and they are split into four groups 

M, W, C and O (African, Western Europe, Eastern Europe and Western Asia respectively). 

It is thought that Apis mellifera originated in Africa and from there it is likely that there 

was one expansion into Western Europe and either one or two expansions into the East 

(Eastern Europe and Asia) (Whitfield et al., 2006). This means that there is a closer 

relationship between the Western European group of subspecies and African subspecies 

than between Eastern and Western European subspecies. This may explain the split in the 
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distribution of ERIC types with STs of ERIC II only being found in Germany and 

countries to the East within Europe and Asia. The C group subspecies A. m. carnica has 

almost completely replaced the W group A. m. mellifera in Central European countries 

such as Germany, whereas in Poland where no ERIC II was found the majority of bees are 

still A. m. mellifera (Meixner et al., 2007). The native range of A. m. mellifera is from the 

UK to Scandinavia and from France to Poland. However, Italian (C group) and Carnelian 

(carnica) bees have been transported around Europe in the A. m. mellifera range and 

hybridization has occurred, in fact it is thought that in Scandinavia and the UK that the 

bees are a mixture of all three sub species (Jensen et al., 2005; De La Rúa et al., 2001) and 

although both Scandinavia and the UK are thought to have a similar mix of sub species, 

ERIC II STs were found in Scandinavia. As we have no information on the host sub 

species in our data set it is impossible to determine whether different P.larvae STs affect 

A. mellifera subspecies differently. Future work could involve the testing this theory by 

infecting larvae of the honey bee subspecies with a range of STs of P. larvae. 

Although local epidemiological observations were not the primary purpose of this study, 

our data offers some evidence for the hitherto unknown origin of the 2010 AFB outbreak 

on Jersey, an island in the English Channel. Our scheme matched one Jersey isolate 

(Appendix 2) with a sequence type that was only found in France (ST6), Jersey’s closest 

neighbour, providing evidence of a potential transmission route and demonstrating the 

potential power of MLST to inform disease aetiology when coupled to more extensive 

local sampling efforts.  

In summary, we have developed an important new tool for describing the genetic structure 

of P. larvae, which raises unanswered questions about differential host susceptibilities to 

P. larvae STs. Future proofing in an age of rapid advancement in sequencing technologies 

is an important consideration, and MLST is compatible with methods which could 

potentially supersede, such as whole genome sequencing (Larsen et al., 2012). National 

laboratories responsible for the control of AFB can now use this scheme to gather 

comprehensive data on ST locations and expand the online database 

pubMLST.org/plarvae/ (Jolley and Maiden, 2010) to build a comprehensive multinational 

data set to better understand the distribution and transmission networks of AFB on a global 

scale. Our scheme therefore provides the first universal method for the description of 
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strains of P.larvae and will increase our understanding of the epidemiology of this 

damaging and costly disease at many spatial scales. 
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3 Patterns of distribution of the honey bee pathogen 

Paenibacillus larvae in the UK 

3.1 Abstract 

American foulbrood (AFB) is a globally distributed disease of honey bees (Apis mellifera) 

caused by the bacterium Paenibacillus larvae. It is the most damaging brood disease of 

honey bees in the UK and is under statutory control. AFB has been shown to appear as 

persistent, perennial disease clusters. We used a newly developed MLST scheme to type 

disease outbreaks from around the UK between 2006-2013. We typed isolates from disease 

outbreaks that occurred in clusters as well as those that were not in clusters, these were 

classed as background outbreaks. 109 honey bee colonies were tested and ten sequence 

types (STs) were discovered, including two that had not been previously identified. We 

found that the STs found in English clusters were significantly different from those in the 

background in Scotland and England and in the Welsh cluster. Clustered outbreaks that 

were close to risk points were caused by more STs than more isolated clusters. One 

possible explanation is that risk points represent a diverse infection source, causing 

repeated multiple infections in nearby clusters. We tested honey that had been imported to 

the UK for P. larvae DNA and found 39% of samples contained traces suggesting a 

possible source of infection.  

3.2 Introduction 

Honey bees are globally important economic pollinators of food crops. The annual value of 

the insect pollination, including honey bees, of these crops was estimated at €1.5 billion 

worldwide, and £500m in the UK (Fera, 2013). As well as economically important crops, 

domesticated honey bees (Apis mellifera) also pollinate many native plants and 

wildflowers. It has been widely reported that honey bees are under stress from a variety of 

pests and diseases (De la Rúa et al., 2009). In the UK two bacterial brood diseases of 

honey bees are under statutory control, American foulbrood (AFB) and European 

foulbrood (EFB). Both diseases cause considerable damage to the UK beekeeping industry. 

While EFB is more widespread than AFB, colonies infected with EFB can be treated with 

antibiotics or the shook swarm method (Wilkins et al., 2007). In the UK AFB is only 

controlled by the eradication of infected colonies, antibiotics are not used (Wilkins et al., 
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2007). AFB is therefore considered to be the most damaging brood disease of honey bees 

in the UK (Fera, 2013). AFB is caused by the bacterium Paenibacillus larvae and is an 

extremely damaging disease of the honey bee worldwide (Genersch, 2010).  

3.2.1 UK AFB control 

Incidence of this disease in the UK has decreased from several thousand cases a year in the 

1940s to between 200-100 cases a year (Wilkins et al., 2007). This decrease is due to the 

UK inspection regime which involves increased scrutiny in an area 3-10 km surrounding a 

known AFB outbreak or exotic risk point (ports, honey packing plants) and destroying all 

infected hives. AFB is subject to statutory control within the UK. Any beekeeper who 

suspects an outbreak of AFB in a colony is legally required to contact the Animal and 

Plant Health Agency's (APHA), National Bee Unit (NBU), in order to have the colony 

officially examined by a bee inspector (Wilkins et al., 2007). Bee inspectors check 

colonies by eye and use lateral flow devices (LFD; De Graaf et al., 2006) to confirm 

infection. In most countries, including the UK, infected colonies are burned to stop the 

spread of the disease as antibiotics are not effective against the resistant spores (Genersch 

and Otten, 2003) however, Oxytetracycline is used to treat the symptoms of AFB in some 

countries (Reybroeck et al., 2012).  

3.2.2 AFB spread 

AFB can be spread both by humans and by bees. Humans act as agents for disease spread 

through the movement of bees and their products or by the use of the same tools at 

different apiaries (Genersch, 2010). The most common method of disease spread by honey 

bees is horizontal transmission, although vertical transmission has been recorded (Fries et 

al., 2006). Horizontal transmission occurs, either through the movement of adult bees 

between colonies (drifting) or the behaviour of foragers (robbing) (Genersch, 2010). The 

distance over which bees can spread AFB is around 1-2km (Lindström et al., 2008b). 

However, studies have shown that apicultural practices can cause the spread of bee 

diseases over much larger distances (Pentikäinen et al., 2008; Haynes et al., 2013). A 

recent study in the UK has found that AFB outbreaks can occur in clusters. These clusters 

occur within areas of 10-30 km and may last from 1-5 years (Mill et al., 2014). AFB is not 

thought to be endemic in the UK and the sporadic nature of the outbreaks is unusual. Local 
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spread of diseased material within and between apiaries, whether by honey bees or humans 

may explain the spatial clustering of disease, but it does not explain the position or timing 

of the outbreaks (Mill et al., 2014). The majority of the disease clusters are eventually 

wiped out due to the inspection regime. However, some clusters reoccur and this may be 

due to repeated infection, either through exotic introductions or from a local source (Mill et 

al., 2014). P. larvae spores remain infective in honey and can survive for up to 35 years on 

old hives and equipment (Hasemann, 1961). Although there are around 40,000 beekeepers 

with over 200,000 honey bee colonies in the UK (Temple et al., 2001), the majority of 

honey used here is imported (BHIPA, 2011). The UK also imports many apiary products 

such as beeswax, queens and caged bees from European countries (Mill et al., 2014). 

Therefore, the trade in bees and their products represents a plausible route by which 

infections arise in the UK. 

3.2.3 MLST 

MultiLocus Sequence Typing (MLST) is a widely used method that definitively classifies 

strain types of bacteria (Maiden, 2006) and has been used to study disease outbreaks as 

well as trace sources of infection in many bacterial species. Here we use a recently 

developed MLST scheme (Morrissey et al., 2015; Chapter 2) to define and interpret 

patterns in the distribution of P. larvae sequence types (STs) causing disease in the UK. 

We describe the position and timing of P.larvae STs causing disease in the UK for the first 

time, giving us a clearer picture of the possible sources and movement of bacterial strains. 

We test whether ST is related to whether the outbreak is part of a cluster or not and 

whether proximity to risk points has an effect on the number of STs in a cluster. 

 

3.3 Methods 

Sampling. In total 109 isolates were sequenced for this study including 63 reported in a 

previous study (Morrissey et al., 2015; Chapter 2; Table 3.1). We included 72 isolates from 

8 clusters in England and Wales as well as 15 isolates from across Scotland and 22 isolates 

not associated with clusters (background outbreaks) from England and Wales (Table 3.1). 

Disease clusters identified in Mill et al (2013) were used, cluster E2 was not included in 
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the final draft of Mill et al due to its small size. Beebase, the National Bee Unit’s database 

of bee disease outbreaks was used to identify the affected colonies, colonies within a 15km 

radius of the centre of the cluster were included. The disease clusters are temporal as well 

as spatial and diseased colonies were included from 2006 to 2013 although not all clusters 

contained outbreaks from each year (Table 3.1). Precise geographic locations of clusters 

and outbreaks are withheld due to data protection. Bacteria were cultured from LFDs used 

by bee inspectors in the field between 2006 and 2013. Twenty negative LFDs were tested 

for the presence of P. larvae using the same methods. Disease clusters were assigned from 

Mill et al. (2014). Background samples were chosen to represent all areas of England and 

no two samples were taken from the same site/apiary. Clusters defined as close to risk 

factors were those where at least one outbreak was less than 10km from an exotic risk 

factor such as ports where honey and bee products were likely to be imported as well as 

honey packing plants and bee importers. This information was taken from Beebase. Honey 

samples had been imported into the UK from both EU and non-EU sources and we 

sampled sources in proportion to actual imports, where possible. 

3.3.1 DNA Extraction.  

DNA was extracted from LFDs (Vita Europe, Basingstoke, UK). A small piece of the 

sample pad was removed from an area to the right of the sample port using a sterile 

scalpel. This was then added to a P. larvae agar plate (PLA) (de Graaf et al., 2013) without 

heat treatment and incubated at 35°C for several days. Single colonies were then spread 

onto two plates, a brain heart infusion agar plate 
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Table 3.1 Data for UK P. larvae isolates typed in this chapter 

Isolate 

number ST SF Cluster year 

Colonies 

at apiary 

Infected 

colonies at 

apiary 

Apiary 

density 

Within 

10km 

Risk point 

within 5km First reported 

p8656 2 SF07/8626 Background 2007 1 1 204 airport Chapter 3 

p8672 2 SF09/9978 Background 2009 3 1 114 bee importer Chapter 3 

p8664 2 SF11/10604 Background 2011 5 4 13 port Chapter 3 

p8657 2 SF13/11703 Background 2013 32 3 45 zoo Chapter 3 

p8666 5 SF11/10724 Background 2011 1 1 87 No Chapter 3 

UK16/7 5 SF07/8872 Background 2007 4 1 78 port Chapter 3 

p8658 5 SF13/11685 Background 2013 7 2 191 

queen bee 

importer Chapter 3 

UK12/8 15 SF08/9389 Background 2008 3 2 103 airport Chapter 3 

p8660 15 SF12/11089 Background 2012 20 1 216 No Chapter 3 

p8663 15 SF12/10964 Background 2012 3 2 68 No Chapter 3 

P8606 15 SF11/10595 Background 2011 43 2 34 No Chapter 3 

P8607 15 SF11/10768 Background 2011 39 2 34 No Chapter 3 

p8659 17 SF10/10153 Background 2010 4 1 49 zoo Chapter 3 

UK19/8 18 SF08/9246 Background 2008 5 1 125 airport Chapter 3 

p8671 18 SF09/9602 Background 2009 4 2 101 bee importer Chapter 3 

UK8/10 18 SF10/10316 Background 2010 37 2 126 No 

Morrissey et al., 

2015 

UK9/10 18 S10/10060 Background 2010 8 1 125 No Chapter 3 

p8661 18 SF12/11131 Background 2012 9 1 196 No Chapter 3 

p8667 18 SF11/10828 Background 2011 9 2 123 No Chapter 3 

UK4/10 18 SF10/10321 Background 2010 1 1 126 No Chapter 3 

UK4/6 18 SF06/8271 Background 2006 10 4 52 port Chapter 3 

p8670 24 SF07/8772 Background 2007 16 1 144 No Chapter 3 
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UK7/9 5 SF09/9494 E1 2009 10 2 43 No 

Morrissey et al., 

2015 

UK5/9 5 SF09/9774 E1 2009 2 1 51 No 

Morrissey et al., 

2015 

UK38/9 5 SF09/9698 E1 2009 9 1 43 No 

Morrissey et al., 

2015 

UK35/9 5 SF09/9647 E1 2009 3 1 51 No 

Morrissey et al., 

2015 

UK27/9 5 SF09/9589 E1 2009 4 4 57 No 

Morrissey et al., 

2015 

UK26/9 5 SF09/9588 E1 2009 2 2 60 No 

Morrissey et al., 

2015 

UK22/9 5 SF09/9496 E1 2009 10 3 43 No 

Morrissey et al., 

2015 

UK22/10 5 SF10/10050 E1 2010 2 2 51 No 

Morrissey et al., 

2015 

UK21/10 5 SF10/10043 E1 2010 3 1 52 No 

Morrissey et al., 

2015 

UK17/9 5 SF09/9588 E1 2009 2 2 60 No 

Morrissey et al., 

2015 

UK17/10 5 Sf10/10164 E1 2010 3 1 52 No 

Morrissey et al., 

2015 

UK14/10 5 SF10/10050 E1 2010 2 2 51 No 

Morrissey et al., 

2015 

UK12/10 5 SF10/10042 E1 2010 1 1 35 No 

Morrissey et al., 

2015 

S2/1 5 SF12/10879 E1 2012 1 1 46 No 

Morrissey et al., 

2015 

S1/1 5 SF12/10880 E1 2012 3 1 51 No 

Morrissey et al., 

2015 

UK6/9 5 SF09/9511 E1 2009 1 1 41 No Chapter 3 

UK24/10 5 SF10/10073 E2 2010 17 5 103 No 

Morrissey et al., 

2015 

UK2/10 5 SF10/10073 E2 2010 17 10 103 No 

Morrissey et al., 

2015 
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UK11/6 5 SF06/8348 E2 2006 5 1 107 No 

Morrissey et al., 

2015 

UK33/9 5 SF09/9628 E3 2009 2 2 80 Port 

Morrissey et al., 

2015 

UK2/9 5 SF09/9915 E3 2009 2 1 80 Port 

Morrissey et al., 

2015 

P8610 5 SF12/11480 E3 2012 1 1 78 Port Chapter 3 

P8611 5 SF12/11406 E3 2012 3 2 78 Port Chapter 3 

P8604 5 SF12/11406 E3 2012 3 2 78 Port Chapter 3 

UK1/8 15 SF08/9122 E3 2008 20 3 193 Port 

Morrissey et al., 

2015 

P8597 15 SF12/10948 E3 2012 3 1 174 Port Chapter 3 

UK32/9 15 SF09/9594 E3 2009 8 1 185 Port Chapter 3 

UK36/9 15 SF09/9656 E3 2009 9 2 185 Port Chapter 3 

UK6/7 21 SF07/8903 E3 2007 8 1 150 Port 

Morrissey et al., 

2015 

UK25/7 21 SF07/8636 E3 2007 9 1 150 Port 

Morrissey et al., 

2015 

UK27/7 5 SF07/8656 E5 2007 12 2 44 Honey packer 

Morrissey et al., 

2015 

UK26/7 5 SF07/8655 E5 2007 19 1 52 Honey packer 

Morrissey et al., 

2015 

UK22/11 5 SF11/10359 E5 2011 5 1 112 Honey packer 

Morrissey et al., 

2015 

UK2/7 5 SF07/8656 E5 2007 12 2 44 Honey packer 

Morrissey et al., 

2015 

UK1/10 5 SF10/10195 E5 2010 1 1 123 Honey packer 

Morrissey et al., 

2015 

UK3/10 15 SF10/9999 E5 2010 3 1 107 Honey packer 

Morrissey et al., 

2015 

UK11/10 15 SF10/10081 E5 2010 2 1 123 Honey packer 

Morrissey et al., 

2015 

UK40/6 18 SF06/8422 E5 2006 19 3 81 Honey packer 

Morrissey et al., 

2015 
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UK27/6 18 SF06/8255 E5 2006 16 1 81 Honey packer 

Morrissey et al., 

2015 

UK16/6 18 SF06/8422 E5 2006 19 3 81 Honey packer 

Morrissey et al., 

2015 

UK14/6 18 SF06/8513 E5 2006 15 2 81 Honey packer Chapter 3 

UK6/10 2 SF10/10077 E6 2010 1 1 117 Honey packer 

Morrissey et al., 

2015 

UK7/10 5 SF10/10018 E6 2010 4 2 110 Honey packer 

Morrissey et al., 

2015 

UK6/8 5 SF08/9063 E6 2008 95 19 67 Honey packer 

Morrissey et al., 

2015 

UK3/8 5 SF08/9063 E6 2008 95 19 67 Honey packer 

Morrissey et al., 

2015 

UK21/8 5 SF08/9063 E6 2008 95 19 67 Honey packer 

Morrissey et al., 

2015 

UK10/8 5 SF08/9240 E6 2008 63 1 67 Honey packer Chapter 3 

UK23/9 15 SF09/9505 E6 2009 4 2 110 Honey packer 

Morrissey et al., 

2015 

UK20/10 5 SF10/10255 E7 2010 5 1 131 

honey bee 

supplier/queen 

bee importer 

Morrissey et al., 

2015 

UK16/8 5 SF08/9247 E7 2008 11 1 92 

honey bee 

supplier/queen 

bee importer 

Morrissey et al., 

2015 

UK15/10 5 SF10/10259 E7 2010 1 1 136 

honey bee 

supplier/queen 

bee importer 

Morrissey et al., 

2015 

UK13/9 15 SF09/9671 E7 2009 4 1 61 

honey bee 

supplier/queen 

bee importer 

Morrissey et al., 

2015 
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UK3/7 15 SF07/8948 E7 2007 4 2 117 

honey bee 

supplier/queen 

bee importer Chapter 3 

P8634 7 SF06/8338 E9 2006 3 2 44 No 

Morrissey et al., 

2015 

P8632 7 SF06/8158 E9 2006 6 3 64 No 

Morrissey et al., 

2015 

P8633 7 SF07/8563 E9 2007 5 5 143 No 

Morrissey et al., 

2015 

UK38/6 7 SF06/8400 E9 2006 6 1 39 No 

Morrissey et al., 

2015 

UK37/6 7 SF06/8399 E9 2006 12 1 44 No 

Morrissey et al., 

2015 

UK36/6 7 SF06/8398 E9 2006 5 1 53 No 

Morrissey et al., 

2015 

UK34/6 7 SF06/8349 E9 2006 5 1 64 No 

Morrissey et al., 

2015 

UK25/6 7 SF06/8249 E9 2006 12 3 44 No 

Morrissey et al., 

2015 

UK23/6 7 SF06/8158 E9 2006 6 3 64 No 

Morrissey et al., 

2015 

UK21/7 7 SF07/8563 E9 2007 5 5 143 No 

Morrissey et al., 

2015 

UK21/6 7 SF06/8157 E9 2006 3 3 48 No 

Morrissey et al., 

2015 

UK15/6 7 SF06/8398 E9 2006 5 1 53 No 

Morrissey et al., 

2015 

UK10/6 7 SF06/8157 E9 2006 3 3 48 No 

Morrissey et al., 

2015 

UK21/11 15 SF11/10334 E9 2011 8 5 52 No 

Morrissey et al., 

2015 

P8612 4 FS09/123 sco 2009 NA NA NA NA Chapter 3 

P8617  5 FS11/60 sco 2011 41 3 84 No Chapter 3 
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P8621  15 FS12/105 sco 2012 1 1 53 No Chapter 3 

P8622 15 FS13/42 sco 2013 12 1 7 No Chapter 3 

P8618 18 FS11/88 sco 2011 5 1 12 No Chapter 3 

P8619 18 FS12/55 sco 2012 4 1 34 No Chapter 3 

P8620  18 FS12/56 sco 2012 4 4 54 No Chapter 3 

P8635 18 FS13/98 sco 2013 2 1 24 No Chapter 3 

P8636 18 FS13/103 sco 2013 1 1 8 No Chapter 3 

P8637  18 FS13/104 sco 2013 3 1 10 No Chapter 3 

P8613 23 FS09/151 sco 2009 NA NA NA NA Chapter 3 

P8615 23 FS10/15 sco 2010 NA NA NA NA Chapter 3 

P8614  23 FS09/158 sco 2009 28 10 7 No Chapter 3 

P8616  23 FS10/01 sco 2010 5 1 7 No Chapter 3 

P8623 23 FS12/61 sco 2012 6 1 54 No Chapter 3 

UK1/9 15 SF09/9912 W3 2009 2 1 71 

disused barrel 

dump 

Morrissey et al., 

2015 

UK9/7 18 SF07/8791 W3 2007 4 1 87 

disused barrel 

dump 

Morrissey et al., 

2015 

UK5/8 18 SF08/9368 W3 2008 2 1 64 

disused barrel 

dump 

Morrissey et al., 

2015 

UK28/7 18 SF07/8767 W3 2007 2 1 59 

disused barrel 

dump 

Morrissey et al., 

2015 

UK14/7 18 SF07/8767 W3 2007 2 1 59 

disused barrel 

dump 

Morrissey et al., 

2015 
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(BHIA; (de Graaf et al., 2013) and a second PLA plate. DNA was extracted from clonal 

colonies growing on the BHIA plate after several days in the incubator at 35°C. DNA was 

extracted using a simple chelex method. Bacteria were transferred to 300 µl 6% Chelex 

®100 and heated to 56°C for 20 minutes followed by boiling for 8 minutes. DNA extracts 

were stored at -20°C until required. Honey samples were warmed to 65°C until liquid. 5ml 

of honey was removed and added to 5ml sterile distilled water and centrifuged at 12000g 

for 40 minutes. The pellet was retained and resuspended in 1ml SDW for DNA extraction. 

The PCR reaction were carried out using 2µl template DNA, 12.5µl 2x Fermentas PCR 

mastermix, and 10 pmol of each primer with a total reaction volume of 25µl. Each reaction 

was run on an Applied Biosystems 2720 Thermal Cycler. PCR conditions were as follows: 

After the initial activation step (3 min, 95 °C), 35 cycles at 95 °C for 30 seconds, 52 °C for 

30 seconds, and 72 °C for 1 min were run followed by a final elongation step at 72 °C for 

10 min. PCR products were purified using Qiagen® PCR purification and sequenced on a 

ABI 3730xl 96-capillary DNA Analyser. A published seven-gene MLST scheme was 

then used to generate sequence information for glpF, glpT, Natrans, sigF, rpoB, ftsA 

and clpC for all samples (Jolley and Maiden, 2010; Morrissey et al., 2015; 

pubmlst.org/plarvae ). Samples were verified as P. larvae using a species-specific real time 

PCR with Taqman® chemistry (forward: Pl_R24_468F TCC CCG AGC CTT ACC TTT 

GT, reverse: Pl_R24_583R ACC TAC GAA CTT GAC GCT GTC CT, probe: 

Pl_R24_489T TGC TCA TAC CCG GTC AGG GAT TCG A). Duplicate real-time PCR 

reactions were run for each sample on an ABI 7500 real-time PCR machine. Reactions 

were performed with AmpliTaq Gold ® (Applied Biosystems®), 5 μl of DNA was added 

to 2.5 μl Buffer A (Applied Biosystems ®) with 7.5 pmols of each primer, 5 pmols of 

probe, 275 pmols MgCl2, 0.125 μl AmpliTaq Gold ® (Applied Biosystems ®) and made 

up to a final volume of 25 μl. Generic reaction conditions were used (95 °C for 10 min and  

40 cycles of 60 °C for 1 min plus 95 °C for 15 s). P. larvae DNA positive controls were 

included in all qPCR assays, and were always detected. Samples with Ct scores lower than 

35 were considered to contain P. larvae DNA. 

3.3.2 Analyses  

Non-metric multidimensional scaling (NMDS; Kruskal, 1964a, 1964b) is a tool to visualise 

and interpret information from multiple dimensions (e.g. multiple clusters) in two 

dimensions. Here NMDS uses the rank orders of the Bray-Curtis dissimilarity index in 
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each cluster to display patterns of distribution of STs in clusters. The Bray-Curtis 

dissimilarity uses the proportion of STs found in each cluster to quantify how dissimilar 

they are. Using the result of the NMDS we classified outbreaks in two groups. The first 

group contained all isolates from clusters in England, the second group contained all 

isolates from Scotland, background and Wales. The Bray-Curtis dissimilarity index was 

used to compare the groups. The results were analysed with a Mantel test with 1000 

iterations to determine significance. To calculate the Sørensen dissimilarity index all 

samples from England, Wales and Scotland were pooled and presence/absence of STs was 

compared to Europe and then to the rest of the world excluding Europe. The data for 

Europe/rest of the world were taken from Morrissey et al. (2015). Sørensen’s index was 

used here because the sampling effort of these groups was different and it was more 

appropriate to use presence/absence of STs than proportions.  

A stepwise binomial generalised linear mixed-effect model (GLMM) was used to test 

whether any predictors had an effect on the likelihood of infection by ST5. The model with 

the lowest AIC score was chosen. The following predictors were included: distance from 

risk point, total number of colonies at apiary, number of infected colonies at apiary, the 

proportion of infected colonies at the apiary and apiary density within a 10km radius, 

cluster ID was included as a random effect. We removed three isolates from Scotland from 

the analysis as the required information was not available for them (Table 3.1.). All 

analyses were completed using R (2012) packages VEGAN and ECODIST (Goslee et al., 

2007; Oksanen et al., 2013). PHYLOVIZ (Francisco et al., 2009) was used to create the 

eBURST diagram. Data on AFB infection were taken from Beebase, the National Bee 

Unit’s database of honey bee disease.  
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Table 3.2 MLST allele numbers for UK P. larvae STs 

ST glpF sigF glpT Natrans rpoB ftsA clpC 

1 1 1 1 2 1 4 3 

2 1 1 1 2 4 3 2 

4 1 1 1 2 4 4 2 

5 1 1 1 2 4 4 3 

7 1 1 3 2 4 4 3 

15 3 1 1 2 4 4 2 

17 4 1 1 2 4 4 3 

18 3 1 1 6 4 4 2 

23 1 1 1 2 6 4 2 

24 7 1 1 2 4 4 2 
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Figure 3.1 eBURST diagram displaying 

origins of UK STs. Numbers in circles 

represent STs of isolates. Size of circles 

represents number of isolates with that ST. 

Clusters refer to those mapped in figure 3.2. 

Grey bubbles represent STs that were not 

found in the UK 
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3.4 Results 

Sequence types. 

From 109 isolates we identified ten different STs, all of them grouping within ERIC type I 

(Figure 3.1.; Genersch et al., 2006), two of these (ST23, ST24) have been identified for the 

first time in this study (see Table 3.2). ST23 is a single locus variant (SLV) of and ST4 and 

ST24 is an SLV of STs 15 and 18 (Figure 3.1; Table 3.2). These types have been uploaded 

to the P. larvae MLST database (pubmlst.org/plarvae). STs 5, 15 and 18 were found in 

multiple clusters. ST2 was found in one disease cluster but was also found in four 

background outbreaks. The remaining six STs were either found at a single site (ST4, ST7, 

ST17, ST21, ST24) or in only one cluster/ country, ST7 was found only in cluster (E9) and 

ST23 was found exclusively in Scotland (Figure 3.2). 

3.4.1 Clusters and risk points.  

Of eight clusters sampled in England and Wales five were classed as close to risk factors 

(honey packing plant, barrel sorting facility, port) (E3, E5, E6, E7, W3) and three were 

further than 10km from these risk factors (E1, E2, E9). Of the 14 samples from cluster E9, 

thirteen were caused by ST7 in 2006-2007. An outbreak in the same area, four years later, 

was caused by a different ST (ST15) (Figure 3.2, Table 3.1.).  

3.4.2 Clusters and background.  

NMDS revealed two groups of disease outbreaks, those in clusters in England (E1-E9) 

appeared to contain different STs from those in the background of England and Scotland 

and those in the Welsh cluster (Cluster W3) (Figure 3.3, Table 3.3.). These groups were 

found to be significantly different when tested with the Bray-Curtis dissimilarity index and 

Mantel test (p<0.05).The proximity to risk factors did not appear to have a strong effect on 

cluster composition. Using the Chi squared test of association it was found that of the three 

most common and widespread STs in the UK (STs 5, 15, 18), ST5 is significantly 
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Figure 3.2 Approximate location of AFB disease clusters with pie charts displaying ST 

composition
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Table 3.3 Bray-Curtis test of dissimilarity results 

Cluster E1 E2 E3 E5 E6 E7 E9 W3 Scotland 

E2 0.6842105 

        E3 0.6296296 0.5714286 

       E5 0.6296296 0.5714286 0.3636364 

      E6 0.5652174 0.4 0.3333333 0.3333333 

     E7 0.7142857 0.25 0.375 0.375 0.3333333 

    E9 1 1 0.92 0.92 0.9047619 0.8947368 

   W3 1 1 0.875 0.375 0.8333333 0.8 0.8947368 

  

Scotland 0.9354839 0.8888889 0.7692308 0.4615385 0.7272727 

0.7000000 

0 0.9310345 0.5 

 Background 0.8378378 0.75 0.5625 0.4375 0.6428571 0.6153846 0.9428571 0.6153846 0.4444444 
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more likely to be found in a cluster than in background outbreaks, this was true whether or 

not the large ST5 cluster (Cluster E1) was included (p<0.001). ST 18, by contrast was 

significantly more likely to be found in background outbreaks (p<0.05). ST15 was found in 

the same frequency in both clusters and background. The GLMM did not identify a 

predictor that had a significant effect on the likelihood of finding ST 5. The model with the 

lowest AIC contained only the total number of hives at the apiary and total number of 

infected hives as fixed effects with cluster as a random effect. Between-cluster variance 

was high (2=6.46) indicating that the likelihood of ST5 being present varied widely across 

clusters. 

3.4.3 Comparison to global STs 

The Sørensen dissimilarity index between the UK and EU is 0.5 and between the UK and 

the rest of the World excluding the EU is 0.57 on a scale of 0-1, 1 being completely 

dissimilar. This means that the STs found in the UK are slightly more similar to those 

found in the EU than to those found outside Europe.  

3.4.4 Honey samples.  

Of the 94 honey samples tested for P.larvae DNA 76 were of non-EU origin and 18 

originated in the EU (see Table 3.4). The majority of the non-EU honey samples originated 

in China (54/76). In total 33% (25/76) of the non-EU honey and 67% (12/18) of the EU 

honey contained detectable levels of P. larvae (CT <35; Table 3.4.). Further work will 

include MLST analysis of the honey samples.  

3.5 Discussion 

American foulbrood is a damaging and costly disease in the UK and although statutory 

control and eradication has decreased its prevalence (Wilkins et al., 2007), new infections 

occur each year. It has been shown that some outbreaks of AFB occur in clusters that 

appear year after year (Mill et al., 2014). This is the first time these clusters have been 

sequence-typed to determine the strains causing them and assess whether they are caused 

by re-infection of an apparently 
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Table 3.4 P. larvae occurrence in UK imported honey samples 

 

Country 

No. of 

samples 

No. CT score 

<35 

Proportion 

infected 

China 54 20 0.37 

Mexico 11 2 0.18 

New 

Zealand 9 1 0.11 

Thailand 2 2 1.00 

England 1 0 0.00 

France 2 0 0.00 

Greece 2 1 0.50 

Hungary 1 1 1.00 

Romania 7 6 0.86 

Scotland 1 1 1.00 

Spain 4 3 0.75 

total 94 37 0.39 

EU 18 12 0.67 

Non EU 76 25 0.33 
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persistent ST or by repeated de novo infections of new sequence types. Ten STs were 

identified to be causing disease in the UK between 2006-2013, two of which are new types 

not previously described (ST23 and ST24). Three of the STs 5, 15 and 18 were found in 

multiple clusters as well as in background outbreaks. These types are known to be globally 

widespread: all three are found in Europe, the Americas and Australasia. ST 5 is also found 

in Asia and ST 15 is found in Africa (Morrissey et al., 2015). In a recent global study of 

AFB ST  distribution, these three types, STs 5, 15 and 18, make up 35%, 20% and 8% 

respectively of all ERIC I types identified (Morrissey et al., 2015).  

The STs found in clusters differed from those found in background (Table 3.3.). The 

background outbreaks of England and Scotland were composed of more STs than the 

clusters. Disease clusters are predicted to be dominated by types that then spread locally, 

either by bees or by keepers (Pentikäinen et al., 2008; Genersch, 2010; Datta et al., 2013). 

This is consistent with the lower numbers of STs in clusters found here, whereas the 

background outbreaks are assumed to be caused by unrelated STs. These results also ratify 

the statistical procedures for determining clusters used by Mill et al., (2014). The NMDS 

analysis split outbreaks into two groups (Figure 3.2.), those in clusters in England and 

those in background outbreaks in England and Scotland with the Welsh cluster. These 

groups are significantly different, most likely due to the difference in abundance of ST5 

and 18. ST5 was significantly more likely to be found in all clusters, whereas ST18 was 

significantly more likely to be found in background outbreaks. In the Welsh cluster four of 

the five samples are ST18, which explains why it groups with Scotland/English 

background. Because of the small sample size we are unable to say whether Welsh 

outbreaks are caused by different STs from English clusters. It is likely that they would be 

caused by similar STs as Wales is under the same statutory control as England. However, a 

recent study on the distribution of EFB STs discovered that ST diversity was significantly 

lower in Wales than England (Budge et al., 2014). ST5 is significantly more common in all 

clusters than in the background outbreaks. ST 5 was also the most commonly identified ST 

in a recent study on global P.larvae STs (Morrissey et al., 2015). ST5 appears to be a 

successful pathogen, perhaps due to differences in infection method. For example, it is 

well documented that different ERIC types of P.larvae vary in virulence at colony and 

individual larvae levels (Rauch et al., 2009) and it has also been shown that different ERIC 

types produce varying numbers of infectious spores (Saville, 2011). However, until 
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recently there was no higher resolution strain typing than ERIC type so no work has been 

done as yet to look into differential virulence amongst STs within ERIC groups. Further 

work could look into determining the biological reasons for ST5s prevalence, and 

specifically in clusters. A recent study of EFB STs in the UK identified some STs that are 

thought to be more virulent than others (Budge et al., 2014) which has ramifications for 

disease control as the treatment method can be tailored to individual STs or groups of STs. 

It has been suggested that the global trade in honey and bee products may have an effect on 

the strain types of P. larvae causing disease in the UK (Mill et al., 2014). In the UK over 

the last few decades there has been an increase in importation of hive products such as 

beeswax and honey as well as large numbers of caged bees and queens from European 

sources and it has been suggested that some clusters may persist due repeated infection 

from these sources (Mill et al., 2014). P.larvae produces extremely resistant spores that 

can remain infectious in honey as well as in apiary equipment. Five of the clusters included 

in this study (E3, E5 E6, E7, and W3) are near to likely exotic risk factors including ports, 

honey packing plants and bee importers. All five of these sites contained outbreaks caused 

by different STs sometimes within one year, demonstrating multiple infection incidences 

(see Table 3.1.). Of the three clusters not near a risk point (E1, E2, E9) two contained only 

isolates of ST5 suggesting fewer infection incidences and local spread of infection. 

However, cluster E2 has a sample size of only 3, which may mean some STs were missed. 

Cluster E9 contained thirteen isolates of ST7 from 2006-2007and one isolate of ST15 four 

years after the previous outbreak in the area. Our results suggest that those clusters nearer 

to risk points are subject to repeated infections of AFB in comparison to those clusters 

distant from risk points.  

The results showed low similarity between the composition of types in the UK and Europe 

(0.5 on a scale of 0-1, 0 being identical) and the rest of the world (0.57). However, The UK 

imports 90% of its honey (BHIPA, 2011) and the largest proportion of this comes from 

China, Argentina and Mexico (USAID, 2011). The only previous study to type P. larvae 

using the MLST scheme characterised few samples from these regions (Morrissey et al., 

2015). Therefore we cannot determine whether the types causing disease in clusters near to 

exotic risk point are similar to the types found in countries that export large amounts of 

honey to the UK. We identified P. larvae DNA in 39% of the imported honey samples 

tested. Interestingly a higher proportion of the EU samples we tested contained P. larvae 
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DNA than the non-EU. Previous studies have found that Non-EU sources were more likely 

to be infected than EU sources (Hansen, 1984; Ritter, 2003). Although trade of bees and 

their products between European countries is common we found low similarity between 

the STs found in Europe and those found in the UK. A recent study on another disease of 

bee-brood, European foulbrood (EFB) found similar results (Haynes et al., 2013). The P. 

larvae population in the UK differs from that of the rest of the world in that no evidence of 

the three ERIC II STs was found in the UK (Morrissey et al., 2015). The 46 new UK 

isolates typed for this study were also all ERIC I.  

Multiple infections and the persistent nature of outbreaks near risk points as identified by 

Mill et al. (2014) suggest that these risk points may have an effect on the types of P. larvae 

causing infections. Further work involving typing all AFB outbreaks and P. larvae DNA 

from imported honey could determine whether these outbreaks are related to importations 

of honey bees and their products. Our results are consistent with an epidemiology of 

transmission events that occur at different spatial scales due to a combination of the honey 

bee behaviour (local transmission) and human behaviour (local transmission and longer-

distance transmission) that has been demonstrated for EFB (Budge et al., 2014) We see 

evidence for local transmission in clusters E1 and E9 and long-distance transmission in 

cluster E3 where new infections appear to develop year after year. Both of these 

transmission routes have previously been demonstrated in AFB by Pentikäinen et al. 

(2008).  

The P. larvae MLST gives us evidence that the UK eradication process is successful and in 

the case of cluster E9 reoccurrence of disease was most likely due to human processes 

rather than from a disease reservoir in the landscape. The later infection in 2011 was a 

different ST (ST15) from the previous cluster in 2006-2007 (ST7) (Table 3.1.). Without 

the scheme it would not be possible to determine whether the more recent outbreak was 

related to the previous one. The National Bee Unit began to type all outbreaks of AFB in 

2014. Using the scheme all cases of ST18 in this year were linked to a single beekeeper 

(personal communication, Victoria Tomkies, February 5, 2015).  

 We demonstrate that disease clusters can be made up of multiple infections or single 

outbreaks that move locally and that AFB moves at different spatial scales in the UK. The 

new P. larvae MLST scheme allows us to study disease outbreaks in more detail than was 
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previously possible. We identify honey as a possible source of transmission and 

demonstrate that exotic risk points may increase the number of STs causing nearby disease 

outbreaks. The P. larvae MLST scheme is a useful tool to determine which strains are 

causing disease outbreaks. AFB is a less common disease than EFB in the UK but this may 

be an advantage for tracing sources of infection. Bee inspectors will be able to trace the 

sale of products once they determine the strain causing an outbreak. In the future a more 

systematic approach to outbreak typing will give a comprehensive picture of the disease 

landscape in the UK and this will enable researchers to pinpoint the source of infections 

and trace the transmission routes. 
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4 Comparison of Paenibacillus larvae population structure 

determined using multilocus sequence- typing and whole 

genome sequencing data 

4.1 Abstract 

Paenibacillus larvae is the causative agent of American foulbrood, a damaging and 

destructive disease of honey bees (Apis mellifera). Recently, a new MultiLocus Sequence 

Typing (MLST) scheme was published giving greater resolution of the diversity of P. 

larvae than was previously possible and identifying over 20 sequence types (STs). Here, I 

describe the whole genome sequencing (WGS) and assembly of 19 isolates of P. larvae 

belonging to 13 STs. STs were chosen to represent diversity within and between the 

standard ERIC genotypes. This is the first time the WGS of multiple STs of P. larvae 

belonging to the same genotype have been compared. The general features of each ST are 

presented and the discovery of seven plasmids in four STs is reported. I identified 679 core 

genes present in all strains and compared phylogenies based on these data and MLST data. 

In general the MLST data accurately describes the relationship between STs. However 

WGS gives added resolution and can detect relationships not revealed using MLST. In the 

future WGS will become a more cost efficient method of disease typing in conjunction 

with MLST to standardise studies. 

4.2 Introduction 

Since the first bacterial genome was sequenced in 1995 (Fleischman et al., 1995) whole 

genome sequencing (WGS) has become significantly faster and cheaper. Due to the 

increase in speed and decrease in cost of WGS (Loman et al., 2012) it has now become a 

tool available to researchers interested in a variety of topics related to bacterial genetics 

and evolution (Edwards and Holt, 2013). WGS has a number of applications for the study 

of pathogenic bacteria, for instance tracking disease outbreaks (Chin et al., 2011; Grad et 

al., 2012; Köser et al., 2012) and the spread of drug resistance (Holt et al., 2012). WGS 

gives greater resolution than typing methods such as MultiLocus sequence typing (MLST) 

but can be used in tandem. Knowledge of the sequence type (ST) is important for linking 

data to previous and future studies and MLST can be standardised across labs when made 

available on publically accessible databases, e.g. pubmlst.org (Jolley and Maiden, 2010). 
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MLST typically requires sequencing of 6-10 fragments of housekeeping genes per isolate 

(Maiden, 2006). However, the online database BIGSdb (Jolley and Maiden, 2010) and 

software such as BioNumerics (Applied Maths) allows researchers to use genome data to 

easily type isolates.  

4.2.1 The bacterial genome 

A genome refers to the complete set of chromosomes and genes in an individual organism. 

It was previously thought that the bacterial domain was defined by a single chromosome 

that was the primary source of all genetic material and was responsible for inheritance 

(Krawiec and Riley, 1990). However it has since been shown that bacteria can contain 

more than one replicon, and these can be of different types, plasmids and chromids. 

Plasmids are secondary replicons which may contain genes that are beneficial to the 

organism and can be transmitted by horizontal gene transfer (HGT), meaning that 

beneficial genetic material can be shared by a bacterial population (del Solar et al., 1998). 

Chromids are large secondary replicons, which may carry genes that are essential for 

growth of the organism (Harrison et al., 2010). Phages are viruses of bacteria that can also 

facilitate the movement of DNA within and between bacterial genomes by HGT (Frost et 

al., 2005). Lysogenic phages are able to incorporate themselves into the host’s genome or 

replicate independently in the cytosol. Phages are important drivers of genomic plasticity 

in prokaryotes. The genome refers to the complete set of chromosomes and genes in an 

individual organism including all secondary replicons.  

4.2.2 Pan-genome 

The term pan-genome was suggested by Tettelin et al., (2005) and comprises the core 

genome, genes which function as housekeeping genes, present in all strains of the bacterial 

species, as well as a “dispensable” or accessory genome containing genes that that are 

present in either a subset of strains or are strain specific (Medini et al., 2005; Tettelin et al., 

2008 ). These accessory genes contribute to the diversity and provides functions that are 

not necessary to its basic lifestyle but confer selective advantages such as the ability to 

colonise new hosts, antibiotic resistance and niche adaptation (Tettelin et al., 2008). Non-

essential genes are often located on plasmids or genomic islands. The sequence of a single 

genome does not reflect the true variation of a bacterial species and increased access to 

whole genome sequencing allows researchers to study the bacterial pan-genome. 
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4.2.3 Paenibacillus larvae 

Paenibacillus larvae is a spore-forming, pathogenic bacterium that causes American 

foulbrood (AFB) of the honey bee (Apis mellifera). AFB is a damaging disease to the 

global honey trade, if left untreated infected colonies will die. In many countries the best 

control method is thought to be the burning of infected hives (Genersch, 2010). Antibiotics 

only affect the vegetative stage of the bacteria, they do not affect the infective spores, 

therefore if treatment is stopped the disease will return (Reybroeck et al., 2012).  

Recently a new multilocus sequence-typing (MLST) scheme has been published and used 

to describe patterns of distribution of P. larvae (Morrissey et al., 2015; Chapter 2, 3). 

MLST is the gold standard tool for tracking disease outbreaks caused by pathogenic 

bacteria but a large amount of DNA sequence and gene diversity is not picked up using 

MLST. Therefore WGS is to needed to give higher resolution to be more effective in the 

characterisation of outbreak isolates and to strengthen surveillance of pathogens (Sabat et 

al., 2013). 

4.2.4 Genome Sequencing in P. larvae 

The first complete genome sequences of P. larvae were published in 2014; two strains 

belonging to different genotypes were added to Genbank (Accession numbers CP003355-

CP00336 and ADFW00000000; Djukic et al., 2014). Previous to 2014 two attempts at 

sequencing the P. larvae genome were made using shotgun sequencing (Qin et al., 2006; 

Chan et al., 2011). However, coverage of both was low and the genome was incomplete. 

The authors hypothesised that the fragmentation may be due to areas of long sequence 

repeats that could not be bridged using shotgun sequencing (Chan et al., 2011). The new 

genomes confirm the existence of these genomic regions containing repeats (Djukic et al., 

2014). 

4.2.5 Genomic comparison of P. larvae genotypes 

P. larvae can be classified as belonging to one of four ERIC (Enterobacterial Repetitive 

Intergenic Consensus sequence) types (Sharples and Lloyd, 1990; Hulton et al., 1991; 

Genersch et al., 2006). ERIC typing involves using a set of primers to amplify a repetitive 

region of the genome of varying length. The banding pattern when run out on a gel gives 
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the ERIC type. The four ERIC types differ in phenotype including colony and spore 

morphology (Genersch et al., 2006), metabolic capacity (Neuendorf et al., 2004), 

sporulation (Saville, 2011) and virulence (Genersch et al., 2005, 2006; Rauch et al., 2009, 

Poppinga et al., 2012). ERIC types I and II are commonly found in infected honey bee 

colonies whereas ERIC III and IV are rarer, only being discovered a handful of times 

(Alippi et al., 2004; Poppinga et al., 2012). Djukic et al. (2014) carried out a genome 

comparison using WGS of two P.larvae isolates belonging to ERIC I and II and identified 

a number of genomic differences that may account for some of the variation in virulence 

between these two types (Rauch et al., 2009; Genersch, 2010). The ERIC I isolate was 

shown to have five functional toxin genes involved in breaching the host’s epithelial wall 

that were present in the ERIC II isolate but non-functional. It has also been demonstrated 

that ERIC II has a functional s-layer protein involved with adhesion to the gut wall as well 

as providing protective properties that is not functional in ERIC I due to point mutations. 

The creation of a new MLST scheme for P. larvae that can differentiate amongst over 20 

Sequence types (STs) has been reported (Chapter 2; Morrissey et al., 2015; 

pubmlst.org/plarvae). Using this scheme a diverse group of isolates was selected to 

sequence using WGS technology. The aim of this Chapter is to sequence and assemble 21 

P. larvae isolates and report the general features of each. This is the first time multiple 

isolates belonging to the same ERIC type have been sequenced using WGS technology. 

Because WGS data gives more resolution than MLST alone, phylogenies made using both 

types of data will be compared to determine the effectiveness of MLST at describing the P. 

larvae population structure. 

4.3 Methods  

4.3.1 Bacterial culturing.  

Bacterial strains were chosen to represent as wide a diversity as was available in the 

storage at the National Bee Unit (Table 4.1). Bacteria were recovered from frozen cultures 

stored at -80C on Protect microorganism preservation system (ThermoFisher Scientific). 

Isolates were cultured on brain heart infusion (BHI) agar and incubated at 35°C for several 

days (de Graaf et al., 2013). DNA was extracted from P. larvae either by a simple chelex 

method or using the MoBio PowerSoil® DNA Isolation Kit. Briefly, the chelex method 
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was as follows: bacteria were transferred to 300μl 6% Chelex® 100 and heated to 56°C for 

20 min followed by boiling for 8 min. DNA extracts were stored at −20°C until required. 

4.3.2 Whole genome sequencing 

For samples sequenced with Illumina MiSeq technology, DNA was quantified using the 

Qubit® fluorometer. Samples were prepared for sequencing using the Illumina Nextera XT 

DNA Library Preparation Kit. Samples sequenced on Ion Torrent technology were 

quantified on a NanoDrop spectrometer and underwent standard sequencing preparation.  

4.3.3 Genome assembly 

Resulting reads were assembled into contigs using SPAdes 3.6.2 (Nurk et al., 2013). 

Contigs were ordered against reference genomes using Mauve (Darling et al., 2010). 

Isolates of Sequence Types (STs) that group within ERIC I were ordered against the draft 

genome sequence of P. larvae DSM 25719 downloaded from Genbank, accession numbers 

CP003355-CP00335. Isolates of STs that group within ERIC II were ordered against the 

complete genome sequence of 
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Table 4.1 P. larvae isolates selected for whole genome sequencing 

Isolate  

ERIC 

type ST Origin Platform 

1388 i 2 Italy MiSeq 

UK21_8 i 5 England MiSeq 

UK24-10 i 5 England MISeq 

p8625 (J3) i 6 Jersey MiSeq 

p8632 i 7 England MiSeq 

006 (p8634) i 7 England 

Ion 

Torrent 

007 (p8476) i 7 France 

Ion 

Torrent 

p6260 iv 8 

strain 

collection MiSeq 

p7371 ii 10 Sweden MiSeq 

p7854 ii 11 Germany MiSeq 

p7851 ii 11* Finland MiSeq 

p7862 i 13 New Zealand MiSeq 

p8624 (J1) i 14 Jersey MiSeq 

004 (J4) i 14 Jersey 

Ion 

Torrent 

005 (J5) i 14 Jersey 

Ion 

Torrent 

p7370 i 17 Sweden MiSeq 

p8619 i 18 Scotland MiSeq 

p7847 i 18* Austria MiSeq 

P8488 i 19 Poland MiSeq 

UK25-07 i 21 England MiSeq 

p8615 i 23 Scotland MiSeq 

STs marked with a * were originally mistyped, see appendix 2. 
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isolate DSM 25430, accession number ADFW00000000 (Djukic et al., 2014; Table 4.1). 

FastA files were visualised using MAUVE (Darling et al., 2010) and BRIG (Alikhan et al., 

2011). The RAST (Rapid Annotations using Subsytems Technology) server (Aziz et al., 

2008; Overbeek et al., 2014; Brettin et al., 2015) was used for automatic annotation of all 

assemblies. A custom BLAST (Basic Local Alignment Search Tool) library was created 

containing all plasmid sequences available at Genbank and all genomes were BLASTED 

against it to search for plasmid sequences. The Phage Search Tool (PHAST) was used to 

search assembled sequences for the presence of phage sequence (Zhou et al., 2011). The 

online tool, Resfinder (Zankari et al., 2012) was used to search the assembled genomes for 

acquired antimicrobial resistance genes. The Quality Assessment Tool for genome 

assemblies (QUAST; Gurevich et al., 2013) was used to evaluate the quality of  the 

genome assemblies. 

4.3.4 Core genes and accessory genes.  

The core genes were identified using an earlier alignment of each genome against either 

DSM25719 (ERIC I and IV isolates) or DSM25430 (ERIC II isolates) as a scaffold. All 

reads were aligned to the scaffold using the BWA-MEM algorithm in BWA (Burrows-

Wheeler aligner) (Li and Durbin, 2009). The complete coding sequence of the draft 

genome of ERIC I strain DSM 25719 was BLASTED against an ERIC II strain to identify 

genes that are present in both. The list of matches was then filtered to remove any with a 

sequence length less than 800bp or a percentage identity match lower than 90%. This 

reduced the list to 1181 genes, which were then blasted against the remaining 18-genome 

sequences to find only those present in all isolates. The list was then filtered to remove all 

those shorter than 900 bases and lower than 90% identity match, which resulted in 679 

genes present in all 20 strains including DSM25719. 

This list of 679 genes in DSM25719 was then BLASTED against each of the assembled 

genomes and genes that matched were taken to create an alignment. The concatenated core 

genes were aligned using MAUVE (Darling et al., 2010) and SplitsTree4 (Huson and 

Bryant, 2006) was used to create a network tree using the Neighbour-net algorithm. 

Networks trees attempt to provide a more ‘explicit’ representation of evolutionary history 

than traditional phylogenetic trees such as phylograms. They contain splits in the branches, 
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which represent ancestral species, the more splits in the branches the more recombination 

or horizontal gene transfer is likely to have taken place (Underwood et al., 2013). 

The program AGEnt (Ozer et al., 2014) was used to determine the number of accessory 

genes present in each genome. The 679 core genes sequences of DSM25719 were input, 

the minimum sequence size was set to 300 bases and the minimum overlap with accessory 

coordinates was set to 95%.  

4.4 Results 

4.4.1 MLST typing mistakes.  

Two of the sequenced isolates had been typed incorrectly using the MLST scheme. When 

the whole genome sequence was entered at pubmlst.org/plarvae, isolate p7847 was found 

to be ST18 rather than ST15 and isolate p7851 was found to be ST11 rather than ST12. 

4.4.2 Genome features 

The general features of all genomes are presented in Table 4.2. ERIC I isolates ranged in 

length from 4223629-4515833bp ERIC II 3858379-3926568bp and ERIC IV 4342760bp. 

Two isolates were removed from further analysis, isolate p8615 was of poor quality and 

isolate p7862 was contaminated with Enterococcus spp. and Melissococcus plutonius. All 

isolates contained between 5 and 10 intact phage regions (Table 4.2). All isolates except 

p7851 contained a vancomycin resistance operon composed of two coding regions. 

Plasmids were identified in 7 of the 19 genomes tested. These plasmids are similar to 

pPLA1_10 and pPLA2_10 identified in Djukic et al. (2014). Six of the seven plasmids 

were identified in ERIC I isolates (Table 4.2).  The number of core and accessory open 

reading frames are presented in Table 4.3.  The number of core open reading frames differs 

from 691 to 797 and range in length from 2938539bp to 3595436bp. The ERIC II isolates 

have shorter accessory genomes than ERIC I isolates. 
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Table 4.2 General features of P. larvae genomes 

Isolate ST 

No. of 

reads 

No. of 

contigs 

N50 

contig 

size Size (bp) 

G+C 

content 

(%) 

No. of 

CDS 

Plasmid 

present 

Plasmid 

length 

No. of 

plasmid 

CDS 

No. of 

phage 

regions 

No. of 

intact 

phages 

Resistance 

genes 

1388 2 1.3m 298 48617 4335448 44.12 5113 No NA NA 19 6 VanE 

UK21_8 5 7.84m 351 60541 4448425 44.03 5441 No NA NA 15 5 VanE 

UK24_10 5 2.64m 342 39740 4369910 44.10 5140 No NA NA 17 8 VanE 

p8625 (J3) 6 877.82k 271 51901 4430755 44.04 5336 Yes 9390 19 18 9 VanE 

p8632 7 1.79m 268 47313 4420656 44.07 5282 Yes 8591 15 21 9 VanE 

006 

(p8634) 7 1.22m 338 39704 4323692 44.08 5598 Yes 8682 15 19 9 VanE 

007 

(p8476) 7 1.35m 373 40561 4413320 43.99 5621 No NA NA 18 9 VanE 

p6260 8 2.69m 270 57387 4342760 44.21 5018 No NA NA 18 10 VanE 

p7371 10 1.47m 359 24680 3926568 44.73 4505 Yes 9669 23 17 5 VanE 

p7854 11 2.66m 333 25559 3858379 44.68 4725 Partial NA NA 22 7 VanE 

p7851 11* 2.07m 355 25559 3905216 44.61 4785 No NA NA 19 5 none 

p7862 13 1.5m NA NA NA NA NA NA NA 

 

NA NA NA 

p8624 (J1) 14 846.14k 286 50232 4515833 44.02 5379 Yes 8516 23 17 8 VanE 

004 (J4) 14 909.47k 327 49651 4331474 44.03 5492 Yes 8666 21 18 8 VanE 

005 (J5) 14 2.28m 340 40650 4339667 44.04 5500 Yes 8682 20 17 7 VanE 

p7370 17 2.98m 235 54812 4263884 44.14 4952 No NA NA 16 5 VanE 

p8619 18 2.88m 141 85269 4264001 44.04 5022 No NA NA 13 6 VanE 

p7847 18* 3.6m 170 77498 4223629 44.13 4955 No NA NA 11 7 VanE 

P8488 19 1.28m 257 50059 4349350 44.06 5233 No NA NA 17 6 VanE 

UK25_07 21 3.6m 372 62102 4502918 44.08 5507 No NA NA 14 7 VanE 

p8615 23 93.11k NA NA NA NA NA NA NA NA NA NA NA 

Rows coloured light grey are ERIC II isolates, the row coloured dark grey is an ERIC IV isolate. 
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Table 4.3 Core and accessory genomes. 

Isolate ST 

Core 

ORFs 

Accessory 

ORFs 

Accessory 

length (bp) 

1388 2 698 4213 3402724 

UK21_8 5 706 4330 3491220 

UK24_10 5 701 4157 3425364 

p8625 (J3) 6 710 4391 3513067 

006 

(p8634) 7 797 4495 3375837 

007 

(p8476) 7 757 4475 3437094 

p8632 7 694 4357 3503053 

p6260 8 703 4089 3385325 

p7371 10 709 3673 2994674 

p7851 11 702 3767 2985293 

p7854 11 701 3710 2938539 

004 (J4) 14 787 4435 3393530 

005 (J5)_ 14 766 4425 3391494 

p8624 (J1) 14 697 4479 3595436 

p7370 17 692 4110 3335135 

p7847 18 698 4080 3296537 

p8619 18 691 4192 3346411 

p8488 19 712 4192 3397143 

UK25_7 21 715 4322 3515163 

ORF refers to open reading frames longer than 300bp. Rows coloured light grey are ERIC II 

isolates, the row coloured dark grey is an ERIC IV isolate. 
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Figure 4.1 Circle plots showing the genome sequences of ERIC I isolates compared to reference 

sequence DSM 25719.  
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Figure 4.2 Circle plots showing the genome sequences of ERIC II isolates compared to reference 

sequence DSM 25430.  
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Figure 4.3 Neighbour net tree using concatenated MLST allele sequence data. The tree shows the 

relationship between all 24 identified STs. 
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Figure 4.4 Neighbour net tree using core gene sequence data. The tree shows the relationship 

between the 19 genome-sequenced isolates. The labels contain the ST, Isolate name and number of 

non-core genes.
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4.4.3 Phylogenies. 

The 19 assembled genomes tested all contained the 679 core genes. The core gene 

neighbour network tree demonstrated the same pattern of distribution amongst the ERIC 

genotypes as the MLST neighbour network, with the ERIC types forming separate groups. 

Within ERIC I, although all STs are not present in the core gene analysis, the STs form the 

same groups as in the MLST network (Figures 4.2 and 4.3). ST18 groups with ST21, ST7 

groups with ST14 and ST5 groups with ST6. The exception to this is DSM 25719, which is 

typed as ST18 but groups with ST7 isolates. The core gene tree also gives further 

differentiation amongst strain types for example ST7 (007) groups with ST14s rather than 

with the other ST7s and ST6 branches off from one of the two ST5s. 

4.5 Discussion 

P. larvae is the causative agent of American foulbrood, a destructive disease of honey bees 

found globally. Due to the creation of the new P. larvae MLST scheme this is the first time 

WGS has been used to compare multiple STs belonging to the same genotype. The new 

MLST scheme is a useful tool to determine strain types and standardise different studies, 

however the decreasing cost of WGS means that this technology will soon be regularly 

used to describe disease outbreak. These results demonstrate that the MLST scheme 

accurately represents the broad diversity within and between genotypes of P. larvae but in 

finer detail between the STs there are some differences not picked up by the MLST scheme 

alone.  

The MLST typing mistakes in this chapter were due to human error. Typing involves 

sequencing each isolate seven times. Software is available to type MLST sequence data for 

example BioNumerics (Applied Maths) can automatically analyse trace sequence files 

avoiding human error and pubmlst.org/plarvae can also be used to type sequence data 

including WGS data.  

4.5.1 Phylogeny 

The core gene tree broadly gave the same pattern of distribution of sequence types to the 

MLST tree but within the ERIC I group there were some differences. Of the three ST18 

isolates included, two group together and form a clade with ST19 and 21 and the other 
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ST18 (DSM 25719) grouped with two ST7 isolates from England (Figure 4.2). The length 

of the branch between the two ST18 groups demonstrates that they are diverse. STs 7 and 

18 are triple locus variants using the MLST scheme (Morrissey et al., 2015; Chapter 2). 

The two ST7 isolates (006 and p8632) originate from a single disease cluster in England 

(Chapter 3; Table 3.1). Both of these isolates contain plasmids similar to the pPLA1_10 

plasmid described in DSM25719 (Djukic et al., 2014; Chapter 5). It is likely that these 

types have had some HGT in the past with DSM 25719. Djukic et al. (2014) propose that 

the large numbers of mobile genetic elements and prophages in ERIC I and II genomes 

suggest a high degree of genome plasticity and genome rearrangements (Djukic et al., 

2014). ST6 is shown to be close to ST5 in the MLST tree. The core gene tree may 

demonstrate a split in ST5, with ST6 branching off from one group. ST5 is the most 

common ST globally (Morrissey et al., 2015) therefore it may be useful in the future to 

split up the group with an added locus. The core gene tree may be a starting point to 

finding a split in the ST5 group.  

4.5.2 Accessory genes  

We have identified the number of genes that are non-core in each isolate (Figure 4.4, Table 

4.3) this includes the discovery of plasmids in seven isolates. The number of core genes 

differs from the 279 identified in DSM25719, this may be due to gene fragmentation. 

Although genome lengths are similar or shorter than those found in Djukic et al (2014) the 

total number of ORFs are slightly higher (~ 5000 in ERIC I compared to 4868 in Djukic 

and ~4000 compared to 3928 in Djukic; Table 4.2) suggesting some gene fragmentation. 

The number of core genes identified is low in comparison to studies in the closely related 

Bacillus cereus species complex (Tettelin et al., 2005; Fang et al., 2011). Djukic et al. 

(2014) predict a high number of core genes between ERIC I and II isolates and perhaps the 

strict method of discovery used in this study has underestimated the number of common 

genes. It is known that all P. larvae strains identified exploit the same niche, infecting 

honey bee larvae. However, it has been shown that ERIC I and II likely have different 

methods of infection (Poppinga et al., 2012; Djukic et al., 2014) and further analysis of the 

functional groups of the accessory genes may give further information on these 

differences. Djukic et al. (2014) discovered a number of regions which differed between 

ERIC I and II, these included putative transport proteins and genes that code for toxins that 

are unique to ERIC I as well as three ERIC II specific regions which included putative 
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proteins. It is known that some differences in method of infection are not associated with 

accessory genes but with core genes that have lost function, for example the genes coding 

for the S-layer protein are present in both ERIC I and ERIC II strains but are only 

functional in ERIC II due to a frame-shift mutation in ERIC I types (Poppinga et al., 2012). 

Further work could look into the differences between and among isolates of ERIC I and II 

to determine further regions that differ and to discover whether these have phenotypic 

effects.  

4.5.3 Phages 

The number of complete phages and their positions differed both within and between STs 

(Table 4.2). Phages are known to alter competition among bacterial strains, and maintain 

bacterial diversity. They are central to the ecology and evolution of microbial communities 

(Koskella and Brockhurst, 2014). Phages can also encode virulence factors in pathogenic 

bacteria, for example Vibrio cholera and Clostridium botulinum both require phage-

encoded toxins to infect hosts (Brüssow et al., 2004). The three ERIC II isolates contained 

between 5 and 7 intact phage regions, this is in contrast to Djukic et al. (2014). They found 

that the ERIC II isolate sequenced contained fewer phage regions than the ERIC I isolate, 

and they reported that there were no complete ERIC II phage regions. Djukic et al. (2014) 

reported that the ERIC II isolate sequenced contained more mobile genetic elements in 

total than ERIC I. Future work could compare the total number of mobile genetic elements 

in each ST. 

4.5.4 Plasmids  

Accessory genes can have large effects on the phenotype for example in the Bacillus 

cereus species complex B. cereus, B. thuringiensis and B. anthracis are closely related in 

terms of core genes however they are phenotypically different, with most of the genes 

responsible found on plasmids (Helgason et al., 2000; Rasko et al., 2005). The virulent 

strains of B. anthracis carry two plasmids coding for the anthrax virulence factors 

(Okinaka et al., 1999) and B. thuringiensis contains unique genes coding for insecticidal 

toxins, usually present on plasmids, if these plasmids are lost B. thuringiensis can no 

longer be distinguished from B. cereus (Helgason et al., 2000; Rasko et al., 2005). 

Plasmids were identified in seven of the 19 P. larvae isolates sequenced. Previously, 

several plasmids have been identified in P. larvae (Alippi et al., 2007, 2014; Djukic et al., 
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2014) including several that have been shown to confer resistance to antibiotics commonly 

used in some countries to treat AFB (Reybroeck et al., 2012). The plasmids identified here 

are similar to those identified by Djukic et al. (2014). Djukic et al. (2014) identified two 

plasmids pPLA1_10 in the ERIC I strain DSM25719 and pPLA2_10 in the ERIC II strain 

DSM25430. Six of the seven plasmids identified in this study are found in ERIC I strains. 

This contrasts with the results of Djukic et al. (2014). 65 ERIC I strains of P.larvae were 

tested for the presence for the plasmid and no other cases were found Djukic et al. (2014). 

The three ERIC I STs that were found to contain plasmids (ST6, ST7 and, ST14) are all 

rare STs (Morrissey et al., 2015) and are likely to share a common ancestor due to the 

geographically small regions in which they originated (South West England and Jersey in 

the Channel Isles).  

The whole genome sequencing of bacterial strains causing outbreaks is likely to be more 

common in the future. WGS gives more resolution than typing schemes such as MLST and 

can be used to track disease outbreaks over short timescales where only a few single 

nucleotide polymorphisms (SNPs) differ amongst strains (Harris et al., 2013). However 

MLST is a useful tool to use in conjunction with WGS as it enables studies to be 

standardised. Databases such as BIGSdb (Jolley and Maiden, 2010) make MLST 

identification within WGS data easy and accurate. This chapter has shown that the P. 

larvae MLST scheme predicts the broad patterns of relatedness amongst STs. WGS gives 

more resolution and can give further insight into differences between ST, e.g. the presence 

of plasmids. This is the first time multiple genomes from within genotypes have been 

compared and it has given further insight into the pan-genome of P. larvae with the 

discovery of intact phage regions in ERIC II and plasmids found in multiple ERIC I 

isolates. The next step is to link the genetic and phenotypic differences amongst strains to 

determine whether certain strains are more virulent than others, this could lead to improved 

control and management of this damaging disease. 
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5 Description and phylogeny of Paenibacillus larvae plasmids 

discovered in rare strains 

5.1 Abstract 

Paenibacillus larvae is the causative agent of American foulbrood, a damaging brood 

disease of the honey bee. Plasmids were identified in seven of 20 P. larvae genomes 

analysed. These plasmids are similar to the recently discovered P. larvae plasmids 

pPLA1_10 and pPLA2_10. Six of the plasmids are found in rare P. larvae sequence types 

from a relatively small geographic area. The plasmids all contain a replication initiation 

factor and a putative toxin. Maximum likelihood trees demonstrated that plasmids did not 

group by geographic location or by sequence type unlike the core genome, which grouped, 

by sequence type. This result suggests horizontal transfer of the plasmids. Plasmids can 

confer benefits to their host bacteria such as antimicrobial resistance and virulence factors 

and can move between strains and species via horizontal gene transfer therefore, 

knowledge and documenting of plasmids is important in epidemiology.  

5.2 Introduction 

Paenibacillus larvae is a gram-positive bacterium that is the causative agent of AFB, a 

deadly disease of honey bees found worldwide. The control method favoured by many 

European countries is the eradication of infected hives and it is therefore a costly and 

damaging disease. P.larvae can be categorised as belonging to one of four groups, known 

as ERIC types, based on phenotypic and genetic factors (Genersch, 2010). Only ERIC I 

and II are commonly found in diseased hives and are therefore the most economically 

important in terms of disease outbreaks (Poppinga et al., 2012). P. larvae is a Gram-

positive bacterium belonging to the phylum Firmicutes. Firmicutes contains a large 

number of bacteria pathogenic to animals and humans (Lanza et al., 2015). Plasmids are 

important drivers of evolution in Firmicutes and can transfer antimicrobial resistance and 

virulence factors between strain and species via horizontal gene transfer (HGT) (Lanza et 

al., 2015). I discuss the discovery of plasmids in seven of 20 analysed P. larvae genomes 

belonging to both ERIC I and II.  
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5.2.1 Plasmid functions 

Plasmids are extra-chromosomal elements able to replicate independently, and to move 

between bacterial strains via horizontal gene transfer (HGT) (Frost et al., 2005). Plasmids 

can be categorised in two broad classes, conjugative and non-conjugative. Conjugative 

plasmids contain genes that code for “sex” pili, which allows their transfer to a new host 

(Petersen, 2011). Non-conjugative and mobilizable plasmids often contain a minimal set of 

mobility (MOB) genes and require a helper conjugative plasmid to be present in order to 

transfer by conjugation. These are usually small (15kb) and have a high copy number. 

Conjugative, self transmissible plasmids tend to be large (30kb) and as well as the MOB 

region also contain a type four secretion system (T4SS) that allows the use of the mating 

channel (Garcillán-Barcia et al., 2009). Plasmids can provide benefits to the host bacterium 

such as resistance against antibiotics, virulence and additional metabolic capabilities.  

The Bacillus cereus complex contains several closely related species that are genetically 

similar but that occupy phenotypically different niches. Their diverse functions are thought 

to have arisen from a common ancestor subjected to HGT and the movement of genetic 

material due to mobile DNA elements (Auwera et al., 2005). For example Bacillus 

anthracis causes Anthrax due to the presence of two plasmids pX01 and pX02, which 

contain a number of genes essential for toxin production and survival (Mock and Fouet, 

2001). Another member of this group Bacillus thuringeinsis can infect a wide range of 

insects with a disease similar to AFB due to the presence of plasmid genes coding for 

acquired δ-endotoxin crystals genes (Auwera et al., 2005). It would be reasonable to 

predict that the closely related P. larvae obtained its ability to cause disease in honey bees 

from plasmids but, to date, plasmids have been detected in only a few strains of P. larvae.  

5.2.2 Plasmids in P. larvae 

Several plasmids conferring resistance against tetracycline have been identified in P. 

larvae (Murray and Aronstein, 2006; Murray et al., 2007; Alippi et al., 2014). 

Oxytetracycline (OTC) is an antibiotic widely used in North and South American countries 

to prevent and control American foulbrood (AFB). OTC resistance is uncorrelated to 

bacterial haplotype suggesting HGT of resistance plasmids (Evans, 2003). The plasmid 

pMA67 identified by Murray et al. (2007) is a short circular plasmid (5kb) that replicates 
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using the rolling circle method. Tetracycline resistance is conferred by the tetL gene 

(Murray and Aronstein, 2006). Alippi et al. (2014) have identified three new plasmids in 

three North American strains of P.larvae pPL373, pPL374 and pPL395. These new 

plasmids are highly similar to pMA67 (99%) as well as to plasmids conferring tetracycline 

resistance in five genera of gram-positive bacteria found in a variety of ecological niches 

(Alippi et al., 2014). Alippi et al. (2014) also identified but did not sequence two larger 

plasmids (~8kb) in strains PL373 and PL374, which did not seem to be present in PL395. 

The authors hypothesised that the larger plasmids, present in strains PL373 and PL374 

facilitated conjugation for the smaller mobilizable plasmids (Alippi et al., 2014). 

Recently two new circular plasmids of similar length (9kbp) have been identified in 

P.larvae, pPLA1_10 and pPLA2_10 (Djukic et al., 2014). They are respectively found in 

an ERIC I strain (DSM 25719) and an ERIC II strain (DSM 25430). These plasmids do not 

contain the tetL gene that confers resistance to tetracycline but do contain a putative 

replication factor (REP) gene. Djukic et al. (2014) screened an international collection of 

65 ERIC I strains and 30 ERIC II and found no other strains of ERIC I contained the 

pPLA1_10. It was hypothesised that the pPLA1_10 plasmid was strain specific but not 

genotype specific (Djukic et al., 2014). Previously plasmids of similar lengths have been 

identified in P. larvae but not characterised (Bodorová-Urgošíková et al., 1992; Neuendorf 

et al., 2004). 

21 isolates of P. larvae were sequenced using whole genome sequencing technology (Ion 

Torrent and MiSeq; Chapter 4, Table 4.1). The P. larvae MLST scheme (Morrissey et al., 

2015) was used to select a diverse group of Sequence Types (STs) from the culture 

collection at Fera, including several isolates from the UK. Of the 20 isolates successfully 

sequenced, seven contained plasmids. Of these, four were from an outbreak of AFB in 

Jersey, a small island in the English Channel and two more were identified in a related 

sequence type from an outbreak in the UK. In this chapter I discuss the functions of these 

plasmids as well as their phylogeny and possible routes of movement between these sites. 

5.3 Methods 

P. larvae isolates from the UK and Jersey were cultured from Lateral Flow Devices 

(LFDs) used by bee inspectors in the field (Table 4.2). Isolates were cultured on brain heart 
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infusion (BHI) agar and incubated at 35°C for several days (de Graaf et al., 2013). DNA 

was extracted from P.larvae either by a simple chelex method or using the MoBio 

PowerSoil® DNA Isolation Kit. Briefly, the chelex method was as follows: bacteria were 

transferred to 300μl 6% Chelex® 100 and heated to 56°C for 20 min followed by boiling 

for 8 min. DNA extracts were stored at −20°C until required.  

Isolates were sequenced using either Ion Torrent technology or MiSeq as in Chapter 4 

(Table 4.1). All reads were assembled de novo using SPAdes 3.6.2 (Nurk et al., 2013). 

Resulting contigs were ordered against reference genomes using Mauve (Darling et al., 

2010). Isolates of Sequence Types (STs) that group within ERIC I were ordered against the 

draft genome sequence of P. larvae DSM 25719 downloaded from Genbank, accession 

numbers CP003355-CP00335. Isolates of STs that group within ERIC II were ordered 

against the complete genome sequence of strain DSM 25430, accession number 

ADFW00000000 (Djukic et al., 2014; Table 4.1)..  

The open source tool SAMtools (Li et al., 2009) was then used to sort and index the reads 

and convert them from SAM to BAM format so that they could be visualised. BAM files 

were visualised using Tablet (Milne et al., 2013). STs of assembled genomes were checked 

using the pubMLST P. larvae database 
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Table 5.1 General features of sequenced plasmids 

 

Isolate 

ERIC 

type ST Origin 

Year 

(field) Technology 

No. of 

reads (k) 

Length 

(bp) 

GC 

content 

No. of 

features 

pPLA1_10 % 

Identity, 

Coverage 

pPLA2_10 % 

Identity, 

Coverage 

J3 (p8625) i 6 Jersey 2010 MiSeq 6.84 9390 36.86 19 90, 94 88, 89 

006 

(p8634) i 7 England 2006 Ion Torrent 16.11 8682 37.5 15 91, 89 90, 85 

p8632 i 7 England 2006 MiSeq 65.3 8591 37.51 15 91, 88 87, 84 

p7371 ii 10 Sweden unknown MiSeq 43.92 9669 37.49 23 89, 93 99, 100 

005 i 14 Jersey 2010 Ion Torrent 11.82 8682 37.52 20 91, 89 90, 85 

004 i 14 Jersey 2010 Ion Torrent 6.11 8666 37.5 21 91, 89 90, 84  

J1 (P8624) i 14 Jersey 2010 MiSeq 4.66 8516 37.52 23 90, 87 87, 83 
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(pubmlst.org/plarvae). Whole genome sequences were submitted in fastA format. All 

assembled sequences were blasted against the Pathosystems resource integration centre 

PATRIC (Wattam et al., 2013) database of bacterial plasmid DNA to test whether plasmids 

were present. The genomes that contained plasmids were then reassembled using only 

either plasmid pPLA1_10 (ERIC I) or pPLA2_10 (ERIC II) as scaffolds using SAMtools 

(Li et al., 2009). Any read that did not align to the scaffolds were filtered out and removed. 

All reads that matched the plasmid sequences were then assembled de novo using Newbler 

2.5 (Roche). This resulted in the complete plasmid sequence available in each sample. The 

plasmid sequences were then submitted to the RAST (Rapid Annotations using Subsytems 

Technology) server (Aziz et al., 2008; Overbeek et al., 2014; Brettin et al., 2015) for 

automatic annotation. The coding sequences were then further analysed using InterProScan 

(Mitchell et al., 2015) to identify the protein families present. BRIG was used to visualise 

the plasmid sequences (Alikhan et al., 2011). Core genomes were identified using the 

method in Chapter 4. Maximum likelihood trees were created using MEGA 6.06 (Tamura 

et al., 2013) with 1000 bootstrap repetitions. 

5.4 Results 

Plasmids were identified in seven of the 20 genome sequences analysed using the PATRIC 

BLAST tool (Wattam et al., 2013). Six plasmids were identified in ERIC I isolates and one 

was identified in an ERIC II isolate (Table 5.1). The ERIC II plasmid is 99% similar to the 

previously identified pPLA2_10 (Djukic et al., 2014). The remaining six plasmids are most 

similar to pPLA1_10 (Table 5.1) although pPLA1_10 and pPLA2_10 are highly similar 

(Djukic et al., 2014). Interestingly, the P.larvae isolate DSM 25719, in which pPLA1_10 

was discovered in ST18 but the ST18 isolates included in this study (p7847 and p8619; 

Chapter 4) do not contain plasmids. The ERIC I isolates containing plasmids belong to 

three rare STs (6, 7 and 14; Morrissey et al., 2015). The six ERIC I plasmids vary in length 

between 8516bp and 9390bp (Table 5.1; figure 5.1) whereas the ERIC II plasmid is 

9669bp in length, equal to pPLA2_10.
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Figure 5.1 Circle diagram of plasmids. ERIC I plasmids above, ERIC II plasmids below. Regions 

with coverage more than one standard deviation from the mean coverage are coloured blue regions, 

regions with coverage less than one standard deviation from the mean are coloured red. 
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5.4.1 Annotation 

The RAST server (Aziz et al., 2008) identified several coding regions (CDS) in each 

plasmid the majority of which were hypothetical proteins. InterProScan (Mitchell et al., 

2015) identified family or domain level results for only three CDS for each plasmid. A 

replication initiation factor was identified in each of the plasmids. This had been 

previously identified in pPLA1_10 and pPLA2_10 (Djukic et al., 2014). Further CDS were 

classified as belonging to the Fibronectin type 3 domain and, a Zona occludens Toxin 

(ZOT). Fibronectin type 3 domain proteins are involved with cell adhesion, cell 

morphology, thrombosis, cell migration, and embryonic differentiation and is also found in 

the Bacillus cereus group. ZOTs are toxins found in pathogenic bacteria and allow 

movement through the host’s gut wall. There are also closely related proteins present in 

members of the Bacillus cereus complex and it is present in both pPLA1_10 and 

pPLA2_10 as well as in the genome of P. larvae (Marchler-Bauer et al., 2014).  

5.4.2 Comparison  

All of the new ERIC I plasmids except J3 (ST6) contain a two short deletions 131bp and 

246 bp in length, relative to pPLA1_10. Both regions occur in coding sequence. Based on 

protein BLASTs of aligned pPLA1_10 sequence the shorter is part of a sequence coding 

for a predicted cell-wall anchored protein and the longer is a section of sequence coding 

for a major facility transporter (Marchler-Bauer et al., 2014). Plasmids J1, J3 and p8632 

(ST14, ST6 and ST7) all contain a 146bp deletion in the sequence coding for the ZOT type 

protein.  

5.4.3 Phylogeny 

The maximum likelihood (ML) tree using only plasmid sequences indicated that the ERIC 

I plasmids discovered in this study are more closely related to one another than to 

pPLA1_10. They did not cluster together based on ST or by geographic location. The 

ERIC II plasmid (p7371) formed a separate clade in the
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Figure 5.2 Maximum Likelihood tree of plasmid sequences. The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next 

to the branches. 

 



Chapter 5 

   96 

 

Figure 5.3 Maximum Likelihood tree of isolates containing plasmids using core gene sequences. 

The percentage of replicate trees in which the associated taxa clustered together in the bootstrap 

test (1000 replicates) are shown next to the branches. 
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tree with pPLA2_10 whereas pPLA1_10 grouped with the ERIC I plasmids but was basal 

to them.  

Isolates group by ST in the core gene ML tree, with the exception of DSM 25719 (ST18). 

This isolate groups with isolates belonging to ST7 (Chapter 4), which is not congruent with 

the plasmid tree (Figures 5.2 and 5.3). 

5.5 Discussion  

We have discovered plasmids in seven out of 20 P. larvae isolates that were genome 

sequenced, including for the first time, in isolates from the UK. Of these plasmids, one, is 

extremely similar to the previously reported pPLA2_10 and the remaining six were found 

in STs previously unknown to harbour plasmids. This further contradicts the previous 

assumption that plasmids are specific to ERIC II (Neuendorf et al., 2004; Djukic et al., 

2014). 

Our ERIC II plasmid is highly similar to pPLA2_10 and is found in a ST10 isolate. DSM 

25430 in which the plasmid was first identified is ST11 (Djukic et al., 2014). We did not 

find plasmids in the other sequenced ERIC II isolates of different STs. However a plasmid 

of similar length (pPLL9.4) has previously been identified in ERIC II isolates that are of 

both ST10 and ST11 (Neuendorf et al., 2004; Djukic et al., 2014; Morrissey et al., 2015) 

this suggests it is not strain specific. 

The six ERIC I plasmids identified in this study are similar to pPLA1_10 and pPLA2_10. 

All seven contain a replication gene, toxin and Fibronectin genes similar to those identified 

previously in Bacillus species (Marchler-Bauer et al., 2014). BLAST results demonstrated 

that these plasmids do not appear to be closely related to others in Bacillus. This contrasts 

with the P. larvae plasmids conferring tetracycline resistance, which are highly similar to 

those occurring in several genera of gram-positive bacteria (Alippi et al., 2014) and confer 

an advantage to their hosts. The tetracycline resistance plasmids identified in P. larvae 

have been shown to replicate by the rolling circle method (Alippi et al., 2014). The 

plasmids discovered in this study contain a replication initiation factor (REP gene) but 

none of the other genes required for rolling circle method. It is unsurprising that we did not 

discover plasmids similar to those identified by Murray and Aronstein (2006) that confer 
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tetracycline resistance in any of our sequenced European isolates. Oxytetracycline is not 

commonly used to treat AFB in Europe in contrast to North and South America where 

these resistance plasmids have been found (Murray and Aronstein, 2006; Murray et al., 

2007b; Reybroeck et al., 2012; Alippi et al., 2014).  

Breaching the epithelial wall is a crucial step in pathogenesis by P. larvae and it has been 

suggested that this may be accomplished using toxins (Yue et al., 2008; Djukic et al., 

2014). We identified a protein sequence associated with the Zona occludens toxin, a toxin 

associated with helping pathogenic bacteria pass through the host’s gut wall (Fasano et al., 

1991). Protein BLASTs demonstrated that similar sequences are also found in the genome 

of P. larvae. It is clear that these pPLA-type plasmids are not essential for host gut 

invasion as it has not been identified in all strains. However possessing multiple copies of 

toxin producing genes could confer a benefit as in E. coli where two copies of a toxin gene 

allow antigenic heterogeneity of a particular pathogenic strain (Schmitt et al., 1991). It is 

unclear whether the plasmids discovered in this study provide any benefit or cost to P. 

larvae. Further work is required to determine the costs and benefits for the bacteria of 

harbouring these plasmids. 

5.5.1 Movement and Phylogeny 

pPLA type plasmids similar to the ones discovered in this study are not regularly found in 

ERIC I isolates. Djukic et al. (2014) screened an international collection of 65 ERIC I 

strains for evidence of the pPLA1_10 plasmid but found no other examples. We identified 

the ERIC I plasmid in six isolates that are of three rare ST from a relatively small 

geographic area. Two are from a single disease cluster in the South of England (Chapter 3) 

and the remaining four are from an outbreak on a small island (14km by 8km) in the 

English Channel. STs 7 and 14 are known to be closely related to one another (Morrissey 

et al., 2015; Chapter 4), which suggests that these plasmids have a common ancestor. The 

ML trees demonstrate that, although STs group together when the bacterial core genes are 

analysed, the plasmid sequences do not cluster by sequence type or by geographic location. 

This demonstrates that the plasmid has moved independently of the host bacterium via 

HGT.  
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The Jersey samples were collected from an outbreak that occurred on the island in 2010 

There is, however there is no previous data on infection in Jersey so it is not known 

whether these samples were from infections prior to 2010. Although the UK isolate is from 

an outbreak in 2006, the Jersey isolate ST6 appears to be basal in the ML tree, suggesting 

the plasmids migrated out from Jersey. All four isolates sequenced from Jersey contained 

plasmid sequences, suggesting plasmids may be common on the island. Further testing will 

demonstrate whether this is true.  

Plasmids move between host bacterial cells due to horizontal gene transfer (HGT). The gut 

microbiota of adult honey bees have been shown to be advantageous locations for HGT, 

for example it has been demonstrated that a single bee can harbour a diverse set of tet 

genes, involved in tetracycline resistance (Tian et al., 2012; Alippi et al., 2014). It is likely 

that plasmid transfer could occur in the guts of bees in a colony that is then moved by 

humans to a new location. The import and export of bees to the island of Jersey is likely to 

have aided in the spread of the plasmid, however it may also be possible for a honey bee 

colony to fly from France to the island (Datta et al., 2013). 

In 2007 the Cornish AFB disease cluster (E9), including at least two plasmid-carrying 

outbreaks was eradicated (Chapter 3) by UK statutory control methods. These methods 

involve burning infected hives and increasing inspection in the surrounding area (Wilkins 

et al., 2007). The MLST scheme demonstrates the effectiveness of the eradication protocol 

in the UK, which eliminated the possible emerging threat from a new plasmid. After 2007 

the next outbreak occurred in 2011 and was of a different ST.  

Because of the rarity of plasmids in ERIC I, the rarity of the STs containing the plasmids 

and the small geographic area in which they were discovered, the six ERIC I plasmids are 

assumed to have a common ancestor. The plasmids are not MLST ST specific unlike the 

bacterial core genes. Horizontal gene transfer can occur in bee guts or the environment and 

the movement of honey bee colonies could have facilitated spread of these plasmids. 

Plasmids can harbour genes that give resistance to antibiotics, or virulence factors can give 

bacteria advantages, therefore knowledge and recording of plasmids is important for 

epidemiology. 
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6 General Discussion 

6.1 Background  

American foulbrood is the most destructive brood disease of honey bees (Apis mellifera) 

worldwide and is caused by the Gram-positive, spore-forming bacterium Paenibacillus 

larvae. P. larvae infection will lead to the death of the colony, once infected larvae usually 

die within 3 to 12 days (Genersch et al., 2005; Rauch et al., 2009). P. larvae spores are 

able to remain infective for more than 35 years in old hives and are resistant to extremes of 

temperature (Hasemann, 1961). Although antibiotics are used to treat the disease in some 

countries, treatment must be continuous as it only affects the vegetative bacteria, not the 

infective spores. In many countries the only effective control measure is to burn the 

infected colony (Genersch, 2010) therefore, AFB infection nearly always leads to the death 

of the colony. 

In recent years our knowledge of P. larvae has hugely increased. In 2006 P. larvae was 

reclassified as a single species after previously being described as two, separate sub 

species (P. larvae larvae and P. larvae pulvifaciens) (Genersch et al., 2006). Repetitive-

element PCR using enterobacterial repetitive intergenic consensus (ERIC) primers 

describes four genotypes (Ashiralieva and Genersch, 2006) that differ in phenotype 

including morphology (Genersch et al., 2006), metabolic capacity (Neuendorf et al., 2004), 

sporulation (Saville, 2011), virulence (Genersch et al., 2005; Rauch et al., 2009) and, 

virulence factors (Poppinga et al., 2012; Fünfhaus et al., 2013; Djukic et al., 2014). Only 

ERIC I and II isolates are regularly found in diseased hives, and are therefore the most 

economically important genotypes. In 2014 two P. larvae genomes belonging to ERIC 

types I and II were published and a comparison was carried out between them (Djukic et 

al., 2014). Djukic et al. (2014) demonstrated that there are many differences between these 

types at the genomic level, including length, number of transposases, insertion elements, 

predicted phage regions, and strain-specific island-like regions (Djukic et al., 2014).  

AFB is a serious disease of honeybee brood with near global distribution and although 

recent research has improved our understanding of the causative agent and its methods of 

pathogenesis, disease epidemiology is poorly understood. In part this is due to an absence 

of a repeatable, high-resolution method to discriminate between strain types. Several 
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methods have been used to study the distribution and movement of P. larvae strain types in 

infected colonies (Genersch and Otten, 2003; Pentikäinen et al., 2008; Di Pinto et al., 

2011; Bassi et al., 2015) but no standard, repeatable method that gives sufficient resolution 

has previously been developed. In this thesis I discuss the development of a new sequence-

based typing scheme for P. larvae and its uses in studying the epidemiology of this 

damaging disease. I use the new scheme as a basis to examine aspect of P. larvae from the 

genomic level to the population level.  

6.2 Main findings of thesis  

MultiLocus Sequence Typing (MLST) has become a gold-standard for bacterial 

epidemiology. Chapter 2 describes the creation of the first standardised, sequence-based 

typing scheme for P. larvae. The P. larvae MLST scheme has been used to identify 24 

global sequence types (STs) to date, and it is hoped that in the future other researchers will 

add to the pubmlst database (Jolley and Maiden, 2010; pubmlst.org/plarvae). Over 300 P. 

larvae isolates from disease outbreaks around the world have been typed using the scheme. 

This information was used to determine the global pattern of distribution of P. larvae STs. 

ERIC I was found to be more diverse than ERIC II, containing 19 ST compared to 3 in 

ERIC II. ERIC I and II STs have differing distributions, no ERIC II isolate was found in 

the West of Europe, including the UK. However, ERIC II is more widespread than was 

previously thought (Genersch, 2010). There is a significant relationship between 

geographic distance and genetic distance of P. larvae populations within the native range 

of the honey bee (Europe, Africa, and Western Asia). This relationship was shown to break 

down when tested outside the native range of honey bees. 

Chapter 3 describes the analysis of AFB outbreaks in the UK for the first time using the 

new MLST scheme. AFB is not thought to be endemic in the UK and the sporadic nature 

of outbreaks is unusual. Mill et al., (2014) identified that AFB outbreaks in the UK can 

occur in clusters. Usually these were eradicated after a few years but some clusters remain 

persistent. In this chapter the MLST scheme was used to determine the P. larvae STs 

causing these clusters and determine whether they were caused by single STs or by 

multiple infections from different STs. STs found in English clusters were significantly 

different from those not in clusters in England and Scotland and in the Welsh cluster. 

Outbreaks that occurred in clusters near to risk factors were composed of more STs than 
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those that were not near risk points. This suggests that risk points represent a diverse 

infection source, causing repeated multiple infections in nearby clusters. Of 94 honey 

samples imported from both EU and non-EU sources, 39% contained traces of P. larvae, 

suggesting that honey importation is a possible source of AFB infection in the UK. 

Chapter 4 describes the whole genome sequencing (WGS) of 21 isolates of P. larvae and 

genome comparisons. Seventeen ERIC I isolates and one ERIC IV isolate were assembled 

using DSM 25719 as a scaffold (Djukic et al., 2014; accession numbers: P003355-

CP003356). Three ERIC II isolated were assembled using DSM 25430 as a scaffold 

(Djukic et al., 2014; accession number: ADFW00000000 ). The core genes present in all 

isolates were used to create a phylogeny. This core gene tree was compared to the tree 

produced using MLST sequences to confirm that the MLST accurately describes the 

relationship amongst STs. The core gene tree confirmed the main pattern of distribution 

amongst ERIC genotypes. However within the ERIC I group there were some differences. 

DSM 25719 (ST18) grouped with ST7 rather than other ST18s. DSM 25719 contained a 

plasmid similar to that found in ST7 isolates which suggests HGT. ERIC genotypes were 

shown to contain differing numbers of phages. All ERIC I isolates contained multiple 

complete phages, but none of the three ERIC II isolates did. Seven of the 20 isolates 

analysed contained plasmids similar to those identified in Djukic et al. (2014), including 

six ERIC I isolates.  

Chapter 5 describes the discovery of seven plasmids in the 20 P. larvae genome sequences 

analysed. These plasmids are similar to the pPLA1_10 and pPLA2_10 plasmids described 

in Djukic et al. (2014). These plasmids contain a replication initiation factor, and a toxin 

gene. Djukic et al. tested 65 ERIC I isolates and did not identify any further examples of 

plasmid pPLA1_10. Therefore it is unusual that six were identified in ERIC I isolates in 

this study. The ERIC I plasmids were all identified in rare STs that are related, in a small 

geographic area and therefore, it is likely that they share a common ancestor. Maximum 

likelihood (ML) trees demonstrated that although the core genomes grouped by ST, the 

plasmids did not group either by ST or by geographic origin, suggesting horizontal gene 

transfer and movement out of Jersey. 
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6.3 Direction of future work  

Standardised classification of bacterial strains causing disease is fundamental for 

epidemiological study. MLST schemes have been used to track and study the population 

structure and evolution of a number of bacterial pathogens of humans and animals 

(Helgason et al., 2004; Robinson and Enright, 2004; Maiden, 2006; Jolley and Maiden, 

2010). Recently, an MLST scheme has been developed for another brood pathogen of 

honey bees, Melissococcus plutonius, the causative agent of European foulbrood (EFB; 

Haynes et al., 2013). This scheme was used to reveal disease transmission events between 

beekeepers in the UK (Haynes et al., 2013). The M. plutonius scheme along with the P. 

larvae scheme will be used by the National Bee Unit to type all outbreaks of disease in the 

UK, which will give insight into disease transmission that would be impossible without 

these methods. For example the M. plutonius scheme has been used to determine which 

STs are more virulent than others and this will inform the control methods in the UK 

(Budge et al., 2014). Future work on P. larvae using the MLST scheme may compare 

known P. larvae distribution and disease severity with genomic data to determine the 

virulence of STs and use this information to inform control measures.  

It has been shown that a balanced gut microbiome is important for honey bee health (Koch 

and Schmid-Hempel, 2011). Further research could investigate the effects that disease and 

diet can have on honey bee gut microbiota, and how this may affect susceptibility to 

certain STs of P. larvae. This knowledge could lead to new treatments for honey bee 

diseases for example, preventative probiotics (Hamdi et al., 2011). 

A more holistic use of the P. larvae MLST scheme will give a clearer picture of the AFB 

landscape in the UK, and the scheme has already provided valuable insights after one year, 

for example in 2014 the P. larvae scheme was used to type all AFB outbreaks in England 

and Wales and it was discovered that all ST18 outbreaks could be traced to a single owner 

(personal communication, Victoria Tomkies,). Typing of the infected imported honey 

samples included in Chapter 3 will demonstrate whether the P. larvae STs involved are 

similar to those causing outbreaks clustered near to risk factors. This will clarify whether 

honey importation is a risk for AFB spread in the UK. 
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The cost and time required for whole genome sequencing has decreased rapidly in recent 

years (Loman et al., 2012) and is likely to continue to become more accessible. It may 

soon be possible to generate WGS data for bacteria more cheaply than MLST data. WGS 

data gives much more information and finer resolution than MLST data but MLST is still 

an important tool in standardising strains between studies. WGS data can be easily and 

accurately typed using online databases such as BIGSdb (Jolley and Maiden, 2010) or 

software such as BioNumerics (Applied Maths). WGS has been used along with MLST 

data to give finer resolution in studies, which involve a short-time span and only a few 

single nucleotide polymorphisms (SNPs) differ between strains for example in MRSA 

outbreaks in hospitals (Köser et al., 2012; Harris et al., 2013) and to track the source of a 

Europe-wide E coli outbreak (Grad et al., 2012). WGS could be similarly used in studying 

the spread of P. larvae within and between apiaries, this would give insight into short-term 

spread of AFB that would not be possible with MLST alone. In the near future real-time 

surveillance and quick detection of outbreaks will become possible (Larsen et al., 2012). 

6.3.1 ERIC I and II virulence 

P. larvae STs belonging to ERIC I and II are known to have different methods of infection 

and some of the mechanisms behind this have been discovered (Genersch, 2010; Poppinga 

et al., 2012; Fünfhaus et al., 2013; Djukic et al., 2014). With the P. larvae scheme and 

WGS data of STs it is possible to compare differences not just between ERIC types but 

among and within different STs. Plasmids have been shown to have important roles in 

many bacterial species providing antimicrobial resistance genes e.g. in P. larvae (Alippi et 

al., 2007) and virulence e.g. in Bacillus (Helgason et al., 2000). This thesis describes the 

discovery of plasmids similar to pPLA1_10 in ERIC I isolates. In this thesis three isolates 

of ST7 were sequences, two with the plasmid and one without. To test the effect of the 

plasmids on their host, experimental infection could be carried out to compare ST7 isolates 

with and without the plasmids and the effect of the plasmid on phenotype cost of carrying 

the plasmid can be investigated (Harrison and Brockhurst, 2012).  

Phages can encode virulence factors in pathogenic bacteria (Brüssow et al., 2004). Phage-

encoded toxins are required by bacteria such as Vibrio cholera and Clostridium botulinum 

in order to infect hosts. Phages can also increase a bacteria’s virulence incrementally, a 

higher number of phage-encoded virulence or fitness factor can increase the fitness of the 
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pathogen (Brüssow et al., 2004). Phages can also contribute to the diversification of 

bacterial genomes and can act as anchor points for genome inversions (Brüssow et al., 

2004). It has been demonstrated in this thesis (Chapter 4) that the sequenced ERIC I STs 

all contained multiple complete phages, whereas none of the three ERIC II isolates 

sequenced did. It is possible that the phages present in ERIC I isolates may increase the 

fitness of these STs in comparison to ERIC II. ERIC II STs are less widespread and less 

diverse than ERIC I STs (Morrissey et al., 2015). Future work could look into the 

functions of the phages identified in the ERIC I isolates to determine their function and 

whether they have an effect on virulence or fitness on their hosts. 

Sporulation rates have been shown differ between ERIC types, with ERIC IV isolates 

producing many times more spores than ERIC I (Saville, 2011) and this is hypothesised to 

explain some of the difference in virulence between these strains. ERIC II is known to be 

more virulent on the individual larval level than ERIC I (Rauch et al., 2009), and it is 

possible that differences in sporulation may account for some of this variation. Saville 

(2011) described genetic differences in a number of genes involved in sporulation between 

ERIC I and IV. However, no comparison between sporulation rates of ERIC I and II or 

amongst ERIC types have been carried out. Knowledge of the sporulation rates of STs may 

also impact on future control methods.  

6.4 Conclusion 

In this thesis I have studied aspects of P. larvae from a genomic to biogeographical scale 

and created a useful tool for further study of this disease causing bacterium The creation of 

the new P. larvae MLST scheme has allowed research into aspects of P. larvae that were 

not previously well characterised. Typing of global strains has allowed the study of the 

global distribution of P. larvae in detail not previously possible. It has also been possible 

to look in detail at the spread and distribution of strain types at a national level. Whole-

genome sequencing and assembly of multiple STs of P.larvae opens up many avenues of 

future research that may lead to better control methods for this damaging disease.  
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7 Appendices 

7.1 Appendix 1 MLST primer sequences tested and rejected 

 

Table S1. Genes for which primers were designed and then rejected !

Gene Forward primer Reverse primer
Annealing 

temp (°C)

5’ATTGTTCCATCAGACGAATC3’

5’CTGATGGAACAATATGATTACG3’

5’GATGAACTGTCTGGCTGAAG3’ 5’CCCTGTTCATTATGTGGATTAT3’ 57

5’AAGGCGGCATCATAAAAGTC3’ 5’AATTCTTCTTCGGATATTTGC3’ 56

5’TCTCTCCCCAATGAAATATG3’ 5’TTAAAGATGCACAGCAAGTG3’ 55

5’CTTTATCCGGCTGAACAATA3’ 5’GGAATTAAAAACGGGACATA3’ 55

adk 5’ATGCCTACCTTGCCTAACAT3’ 5’ATGCTTCTCCGTTTCGTG3’ 56

ccpA 5’GTTTCTCGGGTTGTGAATAA3’ 5’CCGTCTACCTGTTTTTCAAG3’ 55

chiA 5’GCGGATGAACTCTAGTGAAC3’ 5’ACGATTAAAACGAGCGAAC3’ 55

gdh 5’TATCATTACAGGGGGTTCC3’ 5’CATAGCTAATACGCCTGCTT3’ 55

tpi 5’ATATATTCGCGCACGTTTC3’ 5’ACGTTCAAGGGAACCTCTAT3’ 55

gmk 5’AAAGACAATGGAAAGAGAAAGA3’ 55

ilvD

panC

sigK 5’GGAGAAGACCTGGAAGATTT3’ 5’TTTTGTAAAATTCATGATAAAGC3’ 54
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7.2 Appendix 2 Origins of isolates typed in the development of the MLST scheme 

Isolate  Country of origin Region Continent 

ERIC 

type 

Sequence 

Type 

12-8090 Cuba 

 

North 

America I 1 

11-8014 New Zealand 

 

Australasia I 1 

12-8293 Egypt, Ethiopia 
 

Africa I 2 

12-8296 Egypt, Ethiopia 
 

Africa I 2 

12-8299 Egypt, Ethiopia 
 

Africa I 2 

12-8302 Egypt, Ethiopia 
 

Africa I 2 

12-8338 France 

 

Europe I 2 

12-8343 France 

 

Europe I 2 

p8580 (p143 

2012.02.LO) France 

 

Europe 

 

2 

12-8384 Georgia, Croatia 

 

Europe I 2 

12-8387 Georgia, Croatia 

 

Europe I 2 

12-8382 Georgia, Croatia 

 

Europe I 2 

03-159 Germany Saxony-Anhalt Europe I 2 

01-391 Germany 

 

Europe I 2 

12-8314 Greece Crete Europe I 2 

12-8109 (4) Israel, Malta 

 

mixed I 2 

1403/1 (P8467) Italy 

 

Europe 

 

2 

1267/1 (P8468) Italy 

 

Europe 

 

2 

1388/1 (P8465) Italy 

 

Europe 

 

2 

UK6/10 UK England Europe I 2 

11-8020 New Zealand 

 

Australasia I 3 

11-8032 

Mexico, Nicaragua, Argentina, 

Chile 

 

mixed I 4 

p6678 (LMG 16241) - 

  

I 5 
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12-8320 Bangladesh 

 

Asia I 5 

12-8273 
Canada 

 

North 

America I 5 

12-8277 
Canada 

 

North 

America I 5 

12-8278 
Canada 

 

North 

America I 5 

12-8281 
Canada 

 

North 

America I 5 

12-8091 (2) Cuba 

 

North 

America I 5 

12-8348 France 

 

Europe I 5 

12-8352 France 

 

Europe I 5 

p8581 (p106 

2012.06.LO) France 

 

Europe 

 

5 

P7839 (Thur 99) Germany Thuringia Europe I 5 

p7840 (Thur101) Germany Thuringia Europe I 5 

11-152 Germany Saxony-Anhalt Europe I 5 

09-331 Germany Saxony-Anhalt Europe I 5 

02-360 Germany 

 

Europe I 5 

03-019 Germany 

 

Europe I 5 

12-367 Germany Berlin Europe I 5 

12-8265 Greece 

 

Europe I 5 

12-8268 Greece 
 

Europe I 5 

12-8391 Hungary 

 

Europe I 5 

11-8021 New Zealand 

 

Australasia I 5 

11-8022 New Zealand 

 

Australasia I 5 

11-8023 New Zealand 

 

Australasia I 5 

11-8024 New Zealand 

 

Australasia I 5 

11-8026 New Zealand 

 

Australasia I 5 

11-8027 New Zealand 

 

Australasia I 5 
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11-8028 New Zealand 

 

Australasia I 5 

11-8029  New Zealand 

 

Australasia I 5 

11-8010 New Zealand 

 

Australasia I 5 

11-8011 New Zealand 

 

Australasia I 5 

11-8012 New Zealand 

 

Australasia I 5 

AFB7 Spain 

 

Europe 

 

5 

12-8242 Switzerland 

 

Europe I 5 

12-8245 Switzerland 

 

Europe I 5 

12-8248 Switzerland 

 

Europe I 5 

12-8251 Switzerland 

 

Europe I 5 

UK1/10 UK England Europe I 5 

UK11/6 UK England Europe I 5 

UK15/10 UK England Europe I 5 

UK16/8 UK England Europe I 5 

UK17/10 UK England Europe I 5 

UK17/9 UK England Europe I 5 

UK3/8 UK England Europe I 5 

UK6/8 UK England Europe I 5 

UK7/10 UK England Europe I 5 

UK12/10 UK England Europe I 5 

UK14/10 UK England Europe I 5 

UK2/10 UK England Europe I 5 

UK2/7 UK England Europe I 5 

UK2/9 UK England Europe I 5 

UK20/10 UK England Europe I 5 

UK5/9 UK England Europe I 5 

UK7/9 UK England Europe I 5 

UK33/9 UK England Europe I 5 

UK38/9 UK England Europe I 5 
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UK21/8 UK England Europe I 5 

UK22/10 UK England Europe I 5 

UK26/7 UK England Europe I 5 

UK24/10 UK England Europe I 5 

UK26/9 UK England Europe I 5 

UK27/7 UK England Europe I 5 

UK27/9 UK England Europe I 5 

UK35/9 UK England Europe I 5 

UK22/11 UK England Europe I 5 

UK21/10 UK England Europe I 5 

UK22/9 UK England Europe I 5 

S1/1 UK England Europe I 5 

S2/1 UK England Europe I 5 

p8582 France 

 

Europe 

 

6 

J3/1 Jersey 

 

Europe I 6 

P8476 France 

 

Europe 

 

7 

12-8378 Mongolia 

 

Asia I 7 

12-8380 Mongolia 

 

Asia I 7 

UK15/6 UK England Europe I 7 

UK20/6 UK England Europe I 7 

UK3/6 UK England Europe I 7 

UK10/6 UK England Europe I 7 

UK10/7 UK England Europe I 7 

UK21/6 UK England Europe I 7 

UK21/7 UK England Europe I 7 

UK23/6 UK England Europe I 7 

UK25/6 UK England Europe I 7 

UK34/6 UK England Europe I 7 

UK36/6 UK England Europe I 7 
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UK37/6 UK England Europe I 7 

UK38/6 UK England Europe I 7 

(P6266) LMG 16252 - 

  

III 8 

ATCC49483 - 

  

IV 8 

DSM 3615 - 

  

IV 8 

(P6264) LMG 16247 - 

  

IV 8 

LMG6911 - 

  

IV 8 

P6993 (LMG 14427) - 

  

IV 8 

P6260 (LMG 16250) - 

  

IV 8 

P6265 (LMG 16249) - 

  

IV 8 

11-8050 Chile 

 

South 

America III 9 

11-8051 Chile 

 

South 

America III 9 

12-8120 Arabian Peninsula 

 

Asia II 10 

12-8121 Arabian Peninsula 

 

Asia II 10 

12-8122 Arabian Peninsula 

 

Asia II 10 

12-8123 Arabian Peninsula 

 

Asia II 10 

12-8124 Arabian Peninsula 

 

Asia II 10 

12-8125 Arabian Peninsula 

 

Asia II 10 

12-8126 Arabian Peninsula 

 

Asia II 10 

12-8127 Arabian Peninsula 

 

Asia II 10 

12-8128 Arabian Peninsula 

 

Asia II 10 

12-8119 Arabian Peninsula 

 

Asia II 10 

12-8230 Arabian Peninsula 

 

Asia II 10 

12-8231 Arabian Peninsula 

 

Asia II 10 

12-8232 Arabian Peninsula 

 

Asia II 10 

12-8130 Australia 

 

Australasia II 10 

12-8131 Australia 

 

Australasia II 10 

12-8132 Australia 

 

Australasia II 10 
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12-8135 Australia 

 

Australasia II 10 

12-8136 Australia 

 

Australasia II 10 

12-8137 Australia 

 

Australasia II 10 

12-8138 Australia 

 

Australasia II 10 

12-8139 Australia 

 

Australasia II 10 

P7846 Austria 

 

Europe II 10 

12-8272 
Canada 

 

North 

America II 10 

01-649 Germany 

 

Europe II 10 

00-1163 Germany 

 

Europe II 10 

00-0869 Germany 

 

Europe II 10 

12-109 Germany Veitshöchheim Europe II 10 

12-510 Germany Veitshöchheim Europe II 10 

p7842 (Thur 258) Germany Thuringia Europe II 10 

02-009 Germany SH / Bad Schwartau Europe II 10 

03-522 Germany Brandenburg, Kleinmachnow Europe II 10 

03-525 Germany Brandenburg, Kleinmachnow Europe II 10 

00-897 Germany 

 

Europe II 10 

11-8080 Greece Mount Athos Europe II 10 

11-8081 Greece Mount Athos Europe II 10 

12-8170 Japan, Singapore, China 

 

Asia II 10 

12-8172 Japan, Singapore, China 

 

Asia II 10 

12-8175 Japan, Singapore, China 

 

Asia II 10 

12-8177 Japan, Singapore, China 

 

Asia II 10 

12-8179 Japan, Singapore, China 

 

Asia II 10 

12-8220 Kazakhstan 

 

Asia II 10 

12-8221 Kazakhstan 

 

Asia II 10 

12-8222 Kazakhstan 

 

Asia II 10 

P7860 (11-8013) New Zealand 

 

Australasia II 10 

12-8371 Russia 

 

Europe II 10 
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12-8369 Russia 

 

Europe II 10 

12-8373 Russia 

 

Europe II 10 

12-8375 Russia 

 

Europe II 10 

26-02 Sweden 

 

Europe II 10 

P7371 Sweden 

 

Europe II 10 

p8583 (AP1141 nr 2) Austria 

 

Europe 

 

11 

P7844 (452|03) Czech Republic 

 

Europe II 11 

8514-03  Finland 

 

Europe II 11 

8533-03 Finland 

 

Europe II 11 

P7850 (7774|03) Finland 

 

Europe II 11 

p7852 (8527/03) Finland 

 

Europe II 11 

01-1714 Germany 

 

Europe II 11 

10-228 Germany Veitshöchheim Europe II 11 

10-232 Germany Veitshöchheim Europe II 11 

10-654 Germany Veitshöchheim Europe II 11 

10-658 Germany Veitshöchheim Europe II 11 

10-662 Germany Veitshöchheim Europe II 11 

10-678 Germany Veitshöchheim Europe II 11 

11-365 Germany Veitshöchheim Europe II 11 

11-370 Germany Veitshöchheim Europe II 11 

11-381 Germany Veitshöchheim Europe II 11 

11-577 Germany Veitshöchheim Europe II 11 

11-593 Germany Veitshöchheim Europe II 11 

11-599 Germany Veitshöchheim Europe II 11 

11-627 Germany Veitshöchheim Europe II 11 

12-116 Germany Veitshöchheim Europe II 11 

12-128 Germany Veitshöchheim Europe II 11 

12-134 Germany Veitshöchheim Europe II 11 

12-147 Germany Veitshöchheim Europe II 11 
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12-490 Germany Veitshöchheim Europe II 11 

12-498 Germany Veitshöchheim Europe II 11 

12-520 Germany Veitshöchheim Europe II 11 

03-098 Germany Schleswig-Holstein Europe II 11 

p7853 (646D2920/03) Germany Detmold Europe II 11 

P7854 (647D2920|03) Germany Detmold Europe II 11 

02-334 Germany Berlin Europe II 11 

03-194 Germany Berlin Europe II 11 

03-200 Germany Berlin Europe II 11 

04-309 Germany Berlin Europe II 11 

05-085 Germany Berlin Europe II 11 

00-0775 Germany 

 

Europe II 11 

11-403 Germany Veitshöchheim Europe II 11 

Uni_Saarl.909 Germany Saarland Europe II 11 

Uni_Saarl.913 Germany Saarland Europe II 11 

Uni_Saarl.914 Germany Saarland Europe II 11 

Uni_Saarl.916 Germany Saarland Europe II 11 

Uni_Saarl.918 Germany Saarland Europe II 11 

P7851 (8501|03) Finland 

 

Europe II 12 

12-8262 Greece 
 

Europe I 13 

P7862 (11-8025) New Zealand 

 

Australasia I 13 

AFB2 Spain 

 

Europe 

 

13 

J1/1 Jersey 

 

Europe I 14 

B-3650 - 

   

15 

11-8061 Argentina 

 

South 

America I 15 

P7864 (11-8062) Argentina 

 

South 

America I 15 

12-8133 Australia 

 

Australasia I 15 

12-8134 Australia 

 

Australasia I 15 
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P7847 Austria 

 

Europe I 15 

P7848 Austria 

 

Europe I 15 

P7843 (308|03) Czech Republic 

 

Europe I 15 

p7841(Thu 170) Germany Thuringia Europe I 15 

01-445 Germany 

 

Europe I 15 

01-358 Germany 

 

Europe I 15 

03-384 Germany 

 

Europe I 15 

01-440 Germany Saxony-Anhalt Europe I 15 

782/1  Italy 

 

Europe 

 

15 

679/1 (P8466) Italy 

 

Europe 

 

15 

J20/1 Jersey 

 

Europe I 15 

J47/1 Jersey 

 

Europe I 15 

11-8070 Mexico 

 

North 

America I 15 

11-8030 

Mexico, Nicaragua, Argentina, 

Chile 

 

mixed I 15 

12-8356 Poland 

 

Europe I 15 

12-8361 Poland 

 

Europe I 15 

L1/1 South Africa 

 

Africa I 15 

12-8282 Tenerife 

 

Europe I 15 

12-8285 Tenerife 

 

Europe I 15 

12-8288 Tenerife 

 

Europe I 15 

12-8291 Tenerife 

 

Europe I 15 

UK1/9 UK Wales Europe I 15 

UK1/8 UK England Europe I 15 

UK11/10 UK England Europe I 15 

UK13/9 UK England Europe I 15 

UK3/10 UK England Europe I 15 

UK23/9 UK England Europe I 15 

UK21/11 UK England Europe I 15 
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P7858 (UK 1991) UK 

 

Europe I 15 

12-8304 
USA 

 

North 

America I 15 

12-8306 
USA 

 

North 

America I 15 

12-8308 
USA 

 

North 

America I 15 

12-8310 
USA 

 

North 

America I 15 

USA-21 USA 

 

North 

America I 15 

11-8031 

Mexico, Nicaragua, Argentina, 

Chile 

 

mixed I 16 

ATCC9545 - 

  

I 17 

02-129 Germany 

 

Europe I 17 

02-130 Germany 

 

Europe I 17 

12-8366 Poland 

 

Europe I 17 

P7370 Sweden 

 

Europe I 17 

P7857 (UK 1961) UK 

 

Europe I 17 

P6254 - 

  

I 18 

1487/1  Italy 

 

Europe 

 

18 

2358/1  Italy 

 

Europe 

 

18 

11-8040 New Zealand 

 

Australasia I 18 

UK14/7 UK Wales Europe I 18 

UK5/8 UK Wales Europe I 18 

UK9/7 UK Wales Europe I 18 

UK16/6 UK England Europe I 18 

UK8/10 UK England Europe I 18 

UK28/7 UK Wales Europe I 18 

UK27/6 UK England Europe I 18 

UK40/6 UK England Europe I 18 
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P7856 (UK 1957) UK 

 

Europe I 18 

08-100 USA 

 

North 

America I 18 

USA-148 USA 

 

North 

America I 18 

USA-38 USA 

 

North 

America I 18 

12-8322 Bangladesh 

 

Asia I 19 

12-8324 Bangladesh 

 

Asia I 19 

12-8326 Bangladesh 

 

Asia I 19 

p7845 (778/03) Czech Republic 

 

Europe I 19 

00-087 Germany 

 

Europe I 19 

03-125 Germany 

 

Europe I 19 

12-8312 Greece Crete Europe I 19 

12-8271 Greece 
 

Europe I 19 

12-8355 Hungary 

 

Europe I 19 

12-8100 Israel, Malta 

 

mixed I 19 

P8477 Poland Sieradz Europe 

 

19 

p8494 Poland Radomsko Europe 

 

19 

p8488 Poland Kutno Europe 

 

19 

P8480 Poland 

 

Europe 

 

19 

03-189 Germany Saxony-Anhalt Europe I 20 

UK6/7 UK England Europe I 21 

UK25/7 UK England Europe I 21 
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