Using Genetic Programming to Learn
Predictive Models from Spatio-Temporal Data

by

Andrew David Bennett

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

o
-

o

UNIVERSITY OF LEEDS

The University of Leeds
School of Computing

July 2010

The candidate confirms that the work submitted is his own and bhat the appropriate
credit has been given where reference has been made to the Wwaf others. This
copy has been supplied on the understanding that it is copygiht material
and that no quotation from the thesis may be published withotiproper
acknowledgement.

Abstract

This thesis describes a novel technique for learning ptigdienodels from non-
deterministic spatio-temporal data. The prediction medet represented as a production
system, which requires two parts: a set of production ruad,a conflict resolver. The
production rules model different, typically independesdpects of the spatio-temporal
data. The conflict resolver is used to decide which sub-senabled production rules
should be fired to produce a prediction. The conflict resdlvénis thesis can probabilis-
tically decide which set of production rules to fire, and @akothe system to predict in
non-deterministic situations. The predictive models aggrit by a novel technique called
Spatio-Temporal Genetic Programming (STGP). STGP has teepared against the
following methods: an Inductive Logic Programming systétrogol), Stochastic Logic
Programs, Neural Networks, Bayesian Networks and C4.5eaming the rules of card
games, and predicting a person’s course through a netw@kCd cameras.

This thesis also describes the incorporation of qualgatemporal relations within
these methods. Allen’s intervals [1], plus a set of four ndeenporal state relations,
which relate temporal intervals to the current time are ugdte methods are evaluated
on the card game Uno, and predicting a person’s course thrmuagtwork of CCTV cam-
eras. This work is then extended to allow the methods to uaktative spatial relations.
The methods are evaluated on predicting a person’s coursegih a network of CCTV
cameras, aircraft turnarounds, and the game of Tic Tac Toe.

Finally, an adaptive bloat control method is shown. Thikbkat adapting the amount
of bloat control used during a run of STGP, based on the rétioesfitness of the current
best predictive model to the initial fitness of the best prtagk model.

Acknowledgements

| would like to thank my supervisor Derek Magee, for his suppad guidance over
the last 6 years. | would also like to thank Roger Boyle whonspeany hours proof
reading this thesis and giving me lots of useful feedback«t Nesould like to thank the
members of staff, and the postgrads in the School of Computimo have been great
friends over the years especially: Hannah Dee, Robertdef-iZohn Bryden, Matthew
Birtwistle, Patrick Ott, Sam Johnson, and Terry Herbert.

| would also like to thank the members of Leeds University @ag€lub, and Leeds
Canoe Club who got me interested in white water kayakingt kep fit, and gave me
plenty of stories to tell my friends!

Finally |1 would especially like to thank Anna who stuck by nielped to proofread
my thesis, and gave me a lot of support and guidance duringhiby P

Declarations

Some parts of the work presented in this thesis have beespadlin the following
articles:

A. D. Bennett and D. R. Magee “Using Genetic Programming to Learn Models Containing
Temporal Relations from Spatio-Temporal Data”, lroceedings of 1st International
Workshop on Combinations of Intelligent Methods and Apgilbms, European Confer-
ence on Artificial IntelligencePages 7 - 12, Patras, Greece, 2008.

A. D. Bennett and D. R. Magee “Learning Sets of Sub-Models for Spatio-Temporal Predic-
tion”, In: Proceedings of Al-2007, the Twenty-seventh SGAI InteznatiConference on
Innovative Techniques and Applications of Artificial lfigggnce Pages 123 - 136, Cam-
bridge, UK, 2007. Springer.

Contents

1

Introduction 1
1.1 Theproblemdomain, 1
1.2 A systemto model and learn object behaviour 2
1.2.1 Data generation and representation. 2
1.2.2 Model learning and prediction 4
1.3 Thesisoverview 5
Background 7
21 Introduction. 7
2.2 Generating spatio-temporal datafromvideo 9
2.2.1 Locatingobjectsinvideo 9
2.3 Representing spatio-temporaldata 12
2.3.1 Qualitative spatial relations 13
2.3.2 Qualitative temporal relations 15
2.3.3 Firstorderlogic 15
2.3.3.1 Spatio-temporaldata. 16
2.3.3.2 Predictivemodels, 17
2333 Inference 18
234 Frames 19
2.4 Learning predictive models of spatio-temporal segeenc. 20
2.4.1 An overview of predictive model learning from spatoaporal
SEQUENCES . . .« v v o e e e e e e e e e 20
2.4.2 Previous techniques for learning predictive models. 22
2.4.2.1 Learning predictive models from variable lengttada 22
2.4.2.2 Learning models of non-deterministicdata 23
2.5 Productionsystems 25
2.5.1 Learning first order logic productionrules 26

2.5.1.1 Supervised learning of a set of Horn clauses in a se-

quentialmanner 27
2.5.1.2 Supervised learning of a set of Horn clauses coatlyr 29
2.5.1.3 Unsupervised learning of sets of Horn clauses . . . 32
2.5.2 Conflict resolution strategies 33
2.5.3 Applying first order logic production rules to non-@m@inistic
spatio-temporaldata 36
253.1 Probability oL 36
25.3.2 BayesianNetworks 37
2.5.3.3 Combining first order logic and probability 93
2.6 Evolutionarysearch 42
2.6.1 Overview of evolutionarysearch 42
2.6.2 Representation e 43
2.6.3 Fitnessmethods., 44
2.6.4 Population samplingmethods 45
2.6.5 Geneticoperators 46
2.6.6 Reducing the complexity of evolving solutions in Genéro-
gramming e e 48
2.6.7 Bloatanddiversity o 49
2.7 Complete systems for learning predictive models frode®i. 50
2.8 Conclusions 52

An Architecture for Representing, and Modelling Spatio-Temporal Data 54

3.1 Introduction 54
3.2 Historyrepresentation. 55
3.2.1 Properties e 56
3.22 Entities 57
3.2.2.1 Entitydefinition L. 57
3.2.2.2 Entityinstance oL 58
3.23 Relations 60
3.2.3.1 Relationdefinition 60
3.2.3.2 Relationinstance 60
3.2.4 Systemimplementation. 61
3.24.1 Fileformat. 61
3.2.4.2 Memory representation 61
3.3 Predictive modelrepresentation. 62

3.3.1 Productionrules

3.3.1.1 Conditionsection 65
3.3.1.2 Actionsection. L. 67
3.4 Inference 68
3.5 DISCUSSION e 71
Learning Predictive Models of Spatio-Temporal Data 73
4.1 Introduction 73
4.2 Learning predictivemodels o oo 73
4.3 Spatio-Temporal Genetic Programming 74
4.4 Initialising the population of predictive models 76
4.4.1 Predictive model initialisation 76
4.4.2 Productionrule initialisation 76
4.4.2.1 Condition section initialisation 67
4.4.2.2 Action section initialisation 79
4.5 Altering the predictive models 79
4.5.1 Altering the set of productionrules 80
4.5.2 Altering the composition of the individual productinules 81
4521 CroSsover e 81
4522 Mutation 82
4.6 Conflict resolver parameter learning C 82
4.7 Fitness function for scoring predictivemodels 86
4.8 Controlling the size of the predictive models 87
4.9 Evaluation 88
49.1 Overviewofthedatasets 88
49.11 UnoandUno2. 88
49.1.2 Papersscissorsstone. 89
49.1.3 CCTVdataofapath 90
49.1.4 Playyourcardsright. 91
4.9.2 Spatio-temporal data acquisition. 91
49.2.1 Uno,Uno2andPSS. 91
4922 CCTV e 92
49.3 Representationo e 92
4931 ProgolandPe, 92
4932 STGP 94
4.9.3.3 Bayesian Networks, Neural Networks,andC4.5 . . .6 9

Vi

410 Results e 97

4.10.1 Evaluationcriteria 97
4.10.2 A comparison of STGP with current methods 97
4.10.3 Parameter experimentation with STGP 103
4.10.3.1 PopulationSize 104
4.10.3.2 Tarpeianvalue. 104
4.10.3.3 Tournamentselection 107
4.10.3.4 Roulettewheel 112
4.10.3.5 Maximum number of generations 112
4.10.3.6 Operators e 112
4.10.4 Conflictresolver 116
411 Conclusions 118

Learning Predictive Models Using A Qualitative Represertion of Time 121

5.1 Introduction 121
5.2 Quantitative representation oftime 122
5.3 Qualitative representationoftime 124
5.4 Temporalstaterelations 125
55 Evaluation 127
5.5.1 Overviewofthedatasets 128
5511 CCTV e 128
5512 Uno 128
55,2 Representation 0 129
5521 STGP 129
55.2.2 Progol,andPe. 132
5.5.2.3 C4.5, Neural Network, and Bayesian Network 2 13
56 Results 133
5.6.1 Temporal noise robustnessof STGP 331
5.6.2 A comparison of STGP with current methods 134
5.6.3 Parameter experimentation with STGP 137
56.3.1 Tarpeianvalue 137
5.6.3.2 Historylength 138
5.7 Conclusions 138

Learning Predictive Models Using A Qualitative Represerdition of Space 142
6.1 Introduction 142
6.2 Qualitative representationofspace 143

Vil

6.3 Evaluation 144

6.3.1 Datasets 144
6.3.1.1 CCTV using spatialrelations 144
6.3.1.2 Aircraftturnarounds 144
6.3.1.3 TicTacToe, 146
6.3.2 Representation 0 146
6.3.2.1 STGP 146
6.3.2.2 Progol, C4.5, Neural Networks, and Bayesian Neksvdr47
6.4 Results 148
6.4.1 Spatial noise robustnessof STGP 48 1
6.4.2 A comparison of STGP with current methods 148
6.4.3 Parameter experimentation with STGP 153
6.4.3.1 Tarpeianvalue 154
6.4.3.2 Historylength 155
6.5 Conclusions 156
Automatic Bloat Control in Genetic Programming 158
7.1 Introduction 158
7.2 Adaptive Tarpeianvalue 891
7.3 Results. e 160
7.4 Conclusions e 161
Conclusions 173
8.1 Summaryofthework 173
8.2 Contributions 175
8.3 DISCUSSION e 176
8.4 Futurework. 178
Bibliography 181

viii

List of Figures

1.1 The left image shows a picture of a city centre envirortyraerd the right

image shows a picture ofamotorway. 2
1.2 A flow chart showing the main components of a system to iauole

learn object behaviour. L 3
2.1 A setof frames from a video of a person walking alonga.path 7

2.2 The four stages required to firstly learn a predictive ehdcbm a set
of spatio-temporal data; and secondly to predict a fututeotspatio-
temporal data, or recognise an event from a past set of sieaiporal

data. 8
2.3 Anexample of applying the simple model of a human (onigt&yto the

three frames of the video from Figure 2.1 (ontheleft). 10
2.4 Region tracking applied to the frames in Figure2.1. 11
25 TheRCC-8relationsfrom[105]. 14

2.6 An orientation relation where the primary object’s otation is based on
the position of the reference object, and the orientatiothefframe of

reference. 14
2.7 The three levels of orientationrelations. 15
2.8 Thethirteen Allen’sintervals[1]. 16

2.9 Aclass frame (on the left) and instance frame (on theyigha Person. . 20
2.10 An example showing the language template and binargdemg used
in REGAL. Each box can contain a binary value, which indisatéhe
literal, or constant should be used within the clause. Thargiencoding
shown in the diagram represents the claceeour (y, r), col our

(X, 9) . o e 30
2.11 A simple Bayesian Network involving four variables; A, B, andC. X

has three parent nodes it is directly influencedAyB, andC. 38
2.12 Anevolutionary search flowchart. 42

2.13
2.14
2.15
2.16

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9
3.10
3.11

3.12
3.13

An example GP binary tree which is representing thetfond +x2. . . 43

Crossover performedontwotrees. 47
Mutation performed onatree. 47

A tree containing a result producing branch, and a sautdmatically

defined functions. 48
An architecture to represent and model spatio-tempiatal. It has three

parts: a history; and a predictive model which is input thetdry; and
produces a prediction. The predictive model is broken dawta two
parts: a set of production rules, and a conflictresolver. 55
Property and attribute examples. The top row shows thesdrames

for the attributesX,Y, Col our Name. The bottom row shows the class
frames for the propertie®osi ti onandColour. 57
Two example entity class frames, which use the propestiewn in Fig-

ure 3.2. The first class frame is foiCar , and the second is forRer son. 58
Two entity instance frames, which are instances of thigyartass frames

from Figure 3.3. Firstly the attribute, and property instiframes that

the entity instance frames use are shown, and then the emsitynce

framesareshown. L 59
TheLeft O relation definition. The relation represents that a car is to
theleftofaperson. 60

An instance of theéeft O relation that was defined in Figure 3.5. It
shows that entityCar 1 was to the left of entityPer sonl between time

values4t09. 61
An example of th®er son1 entity instance from Figure 3.4 represented
INXML. . . . 62
A hand defined set of production rulesforUno. 63
The combined productionrulesforUno. 64
The condition section for the Colour production rutenirFigure 3.8. . . 67

The action section for the Colour production rule. Téhe in a typewriter
font shows that the value of the slot is a link to another ins¢aframe.
The Time slot is left blank, as it is filled in when the entitystance is

used foraprediction. 68
TheFi ndBest Substi tuti onalgorithm. 70
AnexamplegameofUno., 70

3.14 The Event entity instance, along with its property atidbaite instances
produced by the action section of the Colour production.rdibe text
in a typewriter font shows that the value of the slot is a linkahother
instance frame.

4.1 A flow chart showing the different stepsinarunof STGP.

4.2 Invalid conditionsections.

4.3 An example condition section produced using the Fulhoet

4.4 A flow chart showing the possible ways to alter the pradianodels in
the current population to produce a new population.

80

4.5 The genetic operator Crossover being performed on twditon sections. 82

4.6 The genetic operator Mutation being performed on a ¢ammdsection. . .
4.7 The pseudo code for the matching algorithm. C e e
4.8 A path containing three sensors numbered1,2and 3.
4.9 The predictive model for the Path example. e e
4.10 The pseudo code for tie ndBest Mat ch algorithm.
4.11 Figure (a) shows a frame of the video with a person ta&idgcision at
the junction point. Figure (b) shows the possible locatibthe virtual
CCTVcamerasintheimage.
4.12 The four possible movement patterns in the CCTV scene.
4.13 Type declarations for Progol on the Uno dataset.
4.14 Examples of the Uno dataset which are used with Progol.
4.15 Mode declarations for Progol on the Uno dataset.
4.16 Properties, and entity definitions for STGP on the Urtasid.
4.17 Terminals for STGP used to learn the Uno dataset.
4.18 Functions used to learnthe Unodataset
4.19 An example Uno dataset representation for Bayesiawddks, Neural

Networks,and C4.5.

4.20 The mean accuracy and coverage for Uno Clean (top) aad Q% noise
(bottom). The error bars show one standard deviation fremtban. All
results were produced by 10 fold cross validation.

4.21 The mean accuracy and coverage for Uno2 Clean (top) an@ W0%
noise (bottom). The error bars show one standard deviatmm the
mean. All results were produced by 10 fold cross validation..

4.22 Aresult for Progol on the Uno dataset with the clausdiseérwrong order.

83
84
84
85

87

95

99

100
100

4.23 Aresult for Progol on the Uno dataset with the clauséisercorrect order. 100

Xi

4.24 The estimated probabilities for the clauses in Figu2& dsing Pe. 101
4.25 The mean accuracy and coverage for PSS Clean (top) &85 noise

(bottom). The error bars show one standard deviation fremtaan. All

results were produced by 10 fold cross validation. 101
4.26 The mean accuracy and coverage for PYCR Clean (top) 4G&RR20%

noise (bottom). The error bars show one standard deviatmn the

mean. All results were produced by 10 fold cross validation. 102
4.27 The mean accuracy and coverage for CCTV Clean (top) &1d/Q0%

noise (bottom). The error bars show one standard deviatmmn the

mean. All results were produced by 10 fold cross validation. 103
4.28 The mean accuracy graphs for population size on tha datsets. The

error bars show one standard deviation from the mean. Allltesvere

produced by 10 fold cross validation. 105
4.29 The mean predictive model size for the CCTV (right) amd (eft). . . . 106
4.30 The mean accuracy results for the clean datasets @veiff Tarpeian

values. The error bars show one standard deviation from genmAll

results were produced by 10 fold cross validation. 107
4.31 The mean size results for the clean datasets on difféaepeian values.

The error bars show one standard deviation from the meanreailits

were produced by 10 fold cross validation.108
4.32 The mean accuracy results for the clean datasets @vetiff Tarpeian

values where Tarpeian bloat control starts after the firsgdierations.

The error bars show one standard deviation from the meanreailits

were produced by 10 fold cross validation.109
4.33 The mean size results for the clean datasets on dlff@&ﬁpelan values

where Tarpeian bloat control starts after the first 10 gamera The

error bars show one standard deviation from the mean. Allltesvere

produced by 10 fold cross validation. 110
4.34 The mean accuracy results for the clean datasets enaiffTournament

selection values. The error bars show one standard daviiben the

mean. All results were produced by 10 fold cross validation. 111
4.35 The mean accuracy results for the clean datasets onacmmgiRoulette

wheel with Tournament selection. The error bars show omelara devi-

ation from the mean. All results were produced by 10 fold sneadidation. 113
4.36 The bestfitness score for the predictive models forl#@nalatasets using

Roulette wheel, and Tournament selection. 114

Xii

4.37

4.38

4.39

4.40

5.1

5.2

5.3

5.4

5.5

5.6

The best fithess score for the predictive models forldanalatasets with
different values for the maximum number of generations.
The fitness score results for the best scoring predictiodels for the
clean datasets where the number of generations performétayiobal
searchisincreased.
The mean accuracy and size results for the clean datasdlifferent
Tarpeian values where Tarpeian bloat control starts dfefitst 10 gen-
erations, and a simple conflict resolver is used in the ptedienodels.
The error bars show one standard deviation from the meanreailits
were produced by 10 fold cross validation.
The mean accuracy and size results for the clean dataseadifferent
Tarpeian values where a simple conflict resolver is useddamptbdictive
models. The error bars show one standard deviation from genmAll
results were produced by 10 fold cross validation.

This diagram shows a person walking along a crossroadigassing
through the circular regions numbered 1, 2 and 3. The moveimehe

scene is represented as a continuous time graph. Tempawaisation is
applied to the graph to produce a sequence of region detectio
This diagram shows a person walking along a crossroadigassing
through the circular regions numbered 1, 2 and 3, and regishdded)

firingerroneously.

Two people walking through a crossroads and passingghrthe num-
bered circularregions.
The four temporal states, with respect to current timeglgect can be
in: entering, existing, leaving, and left. The dotted linegresent that we
don’t know when the object will leave thescene..
This shows how the four temporal states could be repredgeas Allen’s
intervals. The diagonal lined filled box represents theentrtime, which
has a time rangec(@rrentTimecurrentTimet). The black filled box
represents the object, where its unknown end time has bpktes with
a constant. Temporal state Entering can be representedrs. Sempo-
ral state Existing can be represented as During. Tempatd keaving
can be represented as Finishing. Temporal state Left caedresented

asBefore.

A screenshot from the video of a path containing multgaeple.

Xiii

115

119

120

123

126

5.7 The property and entity definitions for the CCTV datasets. 129

5.8 The property and entity definitions for the Uno datasets. 130
5.9 The functionsused inthe CCTV datasets. 131
5.10 The terminals used inthe CCTV datasets. 131
5.11 The functionsinthe Unodataset. 131
5.12 The terminalsintheUnodataset. 131

5.13 How the time used by the variables in condition secticth® predictive

models affects their ability to deal with injection noiseheTerror bars

show one standard deviation from the mean. All results weodyred

by 10 fold cross validation. 413
5.14 How the time used by the variables in the condition saatif the pre-

dictive models affects their ability to predict the actiarfspeople from

a multi-person dataset. The error bars show one standaratidevfrom

the mean. All results were produced by 10 fold cross valhati. 135
5.15 The mean coverage and accuracy results for the diffarethods on the

Uno Temporal datasets. The error bars show one standaratidevirom

the mean. All results were produced by 10 fold cross valhati 136
5.16 An example set of clauses learnt by Progol on the Uno Gemhpdataset. . 136
5.17 The mean coverage and accuracy results for the differetihods on the

CCTV datasets. The error bars show one standard deviatom fine

mean. All results were produced by 10 fold cross validation. 137
5.18 The mean accuracy and size results for the datasegsdiferent Tarpeian

values. The error bars show one standard deviation from genmAll

results were produced by 10 fold cross validation. 139
5.19 The mean coverage and accuracy results for the datesdifferent his-

tory length values. The error bars show one standard demiftom the

mean. All results were produced by 10 fold cross validation. 140
6.1 This shows how movement in the scene affects detectoatliileg. 143
6.2 A still from one of the aircraft turnaround videos. 145

6.3 The zones labelled on the ground plane on the aircrafatound videos. 145
6.4 The four spatial relations used in the Tic Tac Toe datassbve, right,
aboveright,and aboveleft. 714

XV

6.5 Accuracy and coverage results showing how the movemémilocation

of the detectors in the CCTV dataset affects the predictigdets using

and not using spatial relations. The error bars show ondatdmleviation

from the mean. All results were produced by 10 fold crosseion. . . 149
6.6 The accuracy and coverage results for the differentaakstbn the CCTV

Spatial dataset. The error bars show one standard deviton the

mean. All results were produced by 10 fold cross validation. 150
6.7 Anincorrect set of clauses learnt by Progol from the CCGpétial dataset. 150
6.8 The accuracy and coverage results for the differentoalstbn the aircraft

turnaround dataset. The error bars show one standard ideviedm the

mean. All results were produced by 10 fold cross validation. 151
6.9 The accuracy results for the different methods on thddacToe dataset.

The error bars show one standard deviation from the meanreailits

were produced by 10 fold cross validation. 154
6.10 The mean accuracy and size results for the datasetffereni Tarpelan

values. The error bars show one standard deviation from gsnmAll

results were produced by 10 fold cross validation. 155
6.11 The mean coverage and accuracy results for the CCT\a§@atd air-

craft turnaround datasets on different history lengtheslt he error bars

show one standard deviation from the mean. All results weydyred by

10fold crossvalidation., 615

7.1 The accuracy and size results for the Auto Tarpeian rdetihathe PSS
dataset. The error bars show one standard deviation fromméaa. All
results were produced by 10 fold cross validation. 162

7.2 The accuracy and size results for the Auto Tarpeian mdednahe Uno
datasets. The error bars show one standard deviation fremméan. All
results were produced by 10 fold cross validation. 163

7.3 The accuracy and size results for the Auto Tarpeian rdethdhe Uno2
datasets. The error bars show one standard deviation fremméan. All
results were produced by 10 fold cross validation. 164

7.4 The accuracy and size results for the Auto Tarpeian ndethdhe CCTV
datasets. The error bars show one standard deviation fremméan. All
results were produced by 10 fold cross validation. 165

XV

7.5 The accuracy and size results for the Auto Tarpeian rdethdhe PYCR
datasets. The error bars show one standard deviation fremméan. All
results were produced by 10 fold cross validation. 166

7.6 The accuracy and size results for the Auto Tarpeian ndethahe CCTV
dataset using temporal relations, and the CCTV dataseg spatial re-
lations. The error bars show one standard deviation fronmtéan. All
results were produced by 10 fold cross validation. 167

7.7 The accuracy and size results for Auto Tarpeian methdabebino Tem-
poral datasets. The error bars show one standard deviabiortiie mean.

All results were produced by 10 fold cross validation. 168

7.8 The accuracy and size results for Auto Tarpeian methadeg@oFriend
and Tic Tac Toe datasets. The error bars show one standaatidev
from the mean. All results were produced by 10 fold crosshadion. . . 169

7.9 The accuracy and size results for the Auto Tarpeian metihathe PSS
dataset, where the predictive models are using a simpleictorolver.

The error bars show one standard deviation from the meanreailits
were produced by 10 fold cross validation.170

7.10 The accuracy and size results for the Auto Tarpeian ededh the Uno
datasets, where the predictive models are using a simpfeatoasolver.

The error bars show one standard deviation from the meanreailits
were produced by 10 fold cross validation. 171

7.11 The accuracy and size results for the Auto Tarpeianedath the Uno2
datasets, where the predictive models are using a simpfeatoasolver.

The error bars show one standard deviation from the meanreaillts
were produced by 10 fold cross validation. 172

XVi

List of Tables

2.1

3.1

3.2

3.3

4.1

4.2

4.3
4.4

6.1
6.2
6.3

The first order logical connectives. 17

The four time types: Point, Period, AllTime and IncomeleThey are
defined by temporal ranges. Varialtlerepresents the start time of the
entity or relation instance, artdrepresents the end time of the entity or

relation. e 58
The conditional probability distribution for the pradion rules in Figure
3.8 e 64
The probability distribution for the combined prodoctirules in Figure
3.0, e e 65

The prediction results for the Path model on a set of hisithe history at
each point in time represents the sensor numbers that havedie¢ected.
There is only one detection at each point in time becausedhditton

sections of both of the production rules only use detectatrise current

The fitness results for the Path predictive model on afdastory data.
Variablesr; andr;, represents that production rule 1 or 2 were enabled
or not enabled on the history. Variabl¢ represents the set of predic-
tions, which each tuple is a prediction from a productior rdntaining

an output, and its probability. The tuples in bold represamtre the pre-
diction matches the detection at the next time step. Thabktompare

represents how well the prediction matched the actualtyista 88
The result states for a game of Paper Scissors Stonedyetwe players. 89
Initial settings for STGP. 104
The key for the event types used in the aircraft turnadlalataset. 152
The confusion matrix for STGP on the aircraft turnarodathset. 152
The confusion matrix for Progol on the aircraft turnardulataset. 152

XVii

6.4 The confusion matrix for Bayesian Networks on the aftdtanaround
dataset. 153

6.5 The confusion matrix for C4.5 on the aircraft turnarodathset

XViii

Chapter 1

Introduction

1.1 The problem domain

This thesis investigates learning predictive models from-deterministic spatio-temporal
data. Predictive models can be used to predict future spatiporal data; or to recognise
events or activities from past or current observations. rEsearch in this thesis fits into
the wider research area of behaviour modelling of multipects. Behaviour modelling
can be applied to a wide variety of domains including: citytoes, airports, stations,
motorway networks, office buildings, homes, and hospitégure 1.1 shows two of
these domains: a city centre and a motorway network. Typigplications of behaviour
modelling in a motorway network include: predicting traffiow; recognising road ac-
cidents; and detecting traffic offences. Typical applmadi of behaviour modelling in a
city centre include: recognising fights, predicting the flofapeople through the streets;
and recognising theft.

Behaviour modelling is a complex and only partially solvedigem for a number
of reasons: Firstly, there are multiple interacting olgaatthe domains, which create
complex datasets to predict, and learn from. For exampléhencity centre domain
multiple people in the scene might affect the temporal oadfenformation referring to
each person (which may be difficult to identify as individkialer time), and a model
using this information needs to be able to cope with thisatemn. Secondly, the objects
behave in a non-deterministic manner. For example, in themway domain at a road

Chapter 1 Introduction

Figure 1.1: The left image shows a picture of a city centrarenment, and the right
image shows a picture of a motorway.

junction there might be multiple routes a car could takehewth an associated likelihood
of being chosen. Finally, there are large areas to monitaclwiequire a large number of
sensors, for example a network of CCTV cameras.

Advances in this research area will help to improve systéaisstutomatically monitor
these domains. These systems could be improved in the faljpways. Firstly, they
could predict or recognise the actions of multiple objectweraccurately, for example
at a station where there are large numbers of interactinglped&econdly, they could
predict or recognise over an extended period of time, orgeise events; for example
the junction a car might take could be based on the route ik ¢oer the last 200 miles.
Finally, they could use more complex probabilistic modelabre accurately recognise,
or predict from non-deterministic data. For example, inlts¢ example, the likelihood of
the car taking the junction would need to be computed basédedikelinood of it taking
specific junctions at each point on its journey, which in pcacis a complex conditional
probability distribution. The work in this thesis aims tatobute to these three areas.

1.2 A system to model and learn object behaviour

Figure 1.2 shows the four main components required for a&sy$b learn and predict or
recognise the behaviour of objects: data generation; éat@sentation; model learning;
and recognition or prediction.

1.2.1 Data generation and representation

To acquire data on objects requires identifying the locetiof objects of interest over the
entire domain. There are two main approaches to identifihegocations of objects in

Chapter 1 Introduction

Data > Data —>| Model learning

generation representation

y

- Prediction or
Recognition

Figure 1.2: A flow chart showing the main components of a sgdtemodel and learn
object behaviour.

domains covering a wide area. One approach is to use a nebiogmeras, where each
object is tracked individually over the cameras. Trackilggpathms come from the field
of Computer Vision [119]. They analyse the video producedh®/cameras frame by
frame to locate and track objects. There are many problettistiais approach: cameras
can be expensive to buy and maintain; the tracking algostane not always reliable;
and it can be hard to place cameras to cover every part of timaitip due to ethical or
legal issues. An alternative approach is to use a networkrga's. Each sensor outputs
when it detects movement or some other factor has occuroaed &ith the length of time

it has happened. There are a number of benefits of sensorssimgrcameras: they are
cheap; they are reliable; and they can be placed in almosy pegt of the domain. The
downside is that, unlike using cameras combined with a ingc&lgorithm, the output is
just a set of movement states, and the system might not knaehwabject has caused
them. This is known as the data association problem [32]hémtotorway network and
city centre domains it is expensive to place cameras oveerthiee space. Cameras are
also affected by the weather, and the tracking algorithnlidailito track people and cars
when they become occluded by other objects. Placing moveseasors under the road
or pavement can be cheaper; can be more reliable for trackiclgded people and cars;
and are less affected by the weather.

Once a set of object data has been identified it needs to balkbsm an appropriate
representation. A representation needs to both describ@rtbperties of each of the
objects, and relations (i.e. spatial or temporal) betwéenobjects. The representation
chosen must represent the data accurately, and must beodaayrt a model from.

Chapter 1 Introduction

1.2.2 Model learning and prediction

A model contains a set of components which each perform aifgpé&ask to aid the
model when it is making a prediction, or recognising an evarlearning algorithm then
attempts to find the best representation for the componeriteeimodel and the values
for its parameters, such that it best predicts from, or reis@s a set of data. Once the
model has been learnt it can then be used to predict, or resmgnseen data.

This thesis investigates how predictive models can be idesm non-deterministic
spatio-temporal data, and what is the best representatiahdir components. This thesis
represents predictive models using a production systems.cbmtains a set of production
rules represented in first order logic, and a conflict resdlvalecide which production
rules to use when multiple production rules make a predicti®he production rules
contain a condition section that represents a pattern toiffinlde spatio-temporal data,
and the action section represents a prediction or eventctgnese. In this context, this
thesis attempts to investigate the following questions:

1. Does representing the components of the predictive macbehg first order logic,
produce more accurate results on non-deterministic spatnporal data than using
standard machine learning representations?

2. Does using a probabilistic conflict resolver produce nam@urate predictive mod-
els on non-deterministic spatio-temporal data than otbetflict resolution approaches?

3. Does using evolutionary search techniques to learn ptadurules produce more
accurate results on non-deterministic spatio-temporal thean using a determinis-
tic (greedy) search?

4. Does learning the production rules and the parameteiseofdnflict resolver si-
multaneously produce more accurate results on non-detestimispatio-temporal
data than learning them sequentially?

5. Does use of qualitative temporal relations within the ponents of the predic-
tive models make them robust to changes in the temporaltsteiof the non-
deterministic spatio-temporal data?

6. Does use of qualitative spatial relations within the comgnts of the predictive
models make them robust to changes in the spatial strudtthre non-deterministic
spatio-temporal data?

Chapter 1 Introduction

1.3 Thesis overview

The structure of this thesis is as follows:

e Chapter 2 is a literature review of the following subjectsatso-temporal data ac-
quisition, and representation; and spatio-temporal pte model learning.

e Chapter 3 firstly describes how spatio-temporal data isessted. Secondly, an
architecture of the novel spatio-temporal modelling sohé&rdescribed. Finally, a
method to evaluate predictive models on the spatio-tenhgata is described.

e Chapter 4 describes how predictive models are learnt usimgval Genetic Pro-
gramming based technique called Spatio-Temporal Gengggr&mming (STGP).
Techniques to build the initial population of predictive dets, the fithess function,
and the genetic operators are described. The system isagsdlagainst standard
machine learning algorithms, and the Inductive Logic Paogning system; Pro-
gol. Experiments are done using deterministic, and noardehistic datasets with
varying amounts of noise. Finally, experimentation witke thifferent parameters
for STGP is presented.

e Chapter 5 describes an approach for incorporating tempeledlons into predictive
models. A set of novel temporal relations to relate the tiamge of an object to the
current prediction time is described. This is tested on albaited game of Uno,
and real-world CCTV datasets. A comparison with predictivedels using, and
not using, the temporal relations is given. The system is toenpared against the
alternative methods from the previous chapter. Finallpegxnentation with some
of the parameters of STGP is presented.

e Chapter 6 describes an approach for incorporating spaieaions along with the
temporal relations from Chapter 5 into predictive modelsisTis evaluated using a
real-world CCTV dataset, the game of Tic Tac Toe, and recggievents from an
aircraft apron. A comparison is presented comparing ptiedionodels containing,
and not containing spatial relations. Again, a comparisoparformed with the
alternative methods from Chapter 4, along with experintemavith some of the
parameters for STGP.

e Chapter 7 describes a method to automatically vary the ahudioat (downward
pressure on the size of the predictive models) using theefampmethod [22] dur-
ing a run of STGP. Experiments and results using the dat&setsthe previous
chapters is given.

Chapter 1 Introduction

e Chapter 8 summarises the conclusions of the thesis, igetet how well the thesis
has answered the raised shown in the previous section aftthjster, and proposes
potentially fruitful further directions for this research

Chapter 2

Background

2.1 Introduction

This thesis investigates the learning of predictive moételsm non-deterministic spatio-
temporal data. In this thesis the spatio-temporal datape&fly generated from video.
Once a predictive model has been learnt it can then be usetktlicpfuture spatio-
temporal data, or recognise a particular event from pasicsEmporal data. An example
will now be introduced that will be used to explain in moreadlethow predictive models
are learnt, and how this relates to the rest of this chaptée dxample will be used
throughout this chapter to explain the different technggaad methods. A video has
been taken of a set of people walking along a path. The patfaicsra junction where a
person can take either the right or left fork. Figure 2.1 shavget of frames taken from
the video.

Figure 2.1: A set of frames from a video of a person walkingngla path.

Chapter 2

Background

Video

Extract spatio-
temporal data on
objects in the
scene and

>

Represent and
store the
spatio-temporal

Learn a
predictive model

relations data
between objects

'

Predict a future
set of spatio-
temporal data,

> or recognise an
event from a
past set of
spatio-temporal
data

Figure 2.2: The four stages required to firstly learn a ptedienodel from a set of spatio-
temporal data; and secondly to predict a future set of sppatigporal data, or recognise
an event from a past set of spatio-temporal data.

To learn a predictive model from this video requires fougsta(Figure 2.2). Firstly,
a set of spatio-temporal data has to be generated from tle®.vidhis is performed by
identifying objects in the scene, in this case the peoplethagath; and then extracting
properties on the objects for example their: speed; colnu;relationships between the
other objects. Secondly, the spatio-temporal data mustdredswithin the computer.
This requires an appropriate representation that should describe the spatio-temporal
data accurately; and be suitable for use with a predictivdehoThirdly, once a set of
spatio-temporal data has been generated it can be useduceimd learn a predictive
model. A predictive model contains a set of components [114{ aid the predictive
model when it is making a prediction or recognising an evimtexample there might
be one component to predict the person will take the left,farkd another component
to predict the person will take the right fork. Each compdnerdescribed by a sepa-
rate representation. To learn a predictive model involvedirig best representation and
parameters for its components such that it best predicescognises from a set of spatio-
temporal data. Fourthly, once a predictive model has besmtlégt may be applied to a
set of spatio-temporal data to predict future occurrenae®y recognise an event. In the
example the input data could be the location of a person dlegath, and the prediction
could be how likely the person is to take the left or right fork

The stages outlined in Figure 2.2 have been used to struttenest of this chapter.
Section 2.2 presents an overview of techniques for pracgssdeo to locate its objects
and produce a set of basic properties or features on eactt éjeexample: its colour;
speed; or position. Section 2.3 firstly describes the dfiespatial and temporal relations

Chapter 2 Background

that can be defined between objects, and the various repatiserschemes that can be
used to describe spatio-temporal data. Frames are exglaimeh are used to represent
the spatio-temporal data in this thesis. First order logialso explained which is used
to represent the production rules in this thesis. Sectidrd2scribes methods for learn-
ing predictive models from spatio-temporal data, and resieechniques that can firstly
deal with variable length spatio-temporal data, and selgomon-deterministic spatio-
temporal data. Section 2.5 describes production systenthwlne the architecture used
to represent the predictive models used in this thesis. Uetah systems contain a set
of production rules, and a conflict resolution strategy toidie how to apply the produc-
tion rules to predict in different contexts. Section 2.5utlioes different techniques to
learn production rules represented in first order logic fiepset of spatio-temporal data.
Section 2.5.2 explores different conflict resolution stgéés, and Section 2.5.3 present an
overview of techniques to allow production rules to deahwibn-deterministic data. To
learn the production rules in this thesis an evolutionagrae technique called Genetic
Programming is used. Section 2.6 describes this technigom@re detail. Finally Section
2.7 describes some existing systems that learn predictideig, represented in first order
logic, from spatio-temporal data.

2.2 Generating spatio-temporal data from video

The first stage to produce a set of spatio-temporal data fideous to process the video
to find the objects in it. Once a set of objects have been |lddaen the properties from
each of the objects and the relations between the objectsscemmputed. There is a large
set of different properties that could be extracted from pjea including: its average
colour; texture; speed; orientation; position; and theetrange it appears in the video.
There are two main types of relations between objects.|¥ifgtw objects are related to
each other over time (d¢emporal relation§ and secondly how objects are related to each
other in the space they exist in (gpatial relation. These will be covered in more detail
in Section 2.3. The remainder of this section will look at diféerent techniques to locate
objects in video.

2.2.1 Locating objects in video

There are three main approaches for locating objects in @ovid he first uses a prior
model of the object to be found. A model is fitted (for exampmeng edge information)
to the set of video frames to find the location of the object.eréhhave been object

Chapter 2 Background

Figure 2.3: An example of applying the simple model of a hurf@nthe right) to the
three frames of the video from Figure 2.1 (on the left).

models produced for tracking humans [7,47], and vehicl8s48]. Figure 2.3 shows a
very simple model of a human based on four rectangles, and saample results of how
it might match the three frames shown in Figure 2.1.

The approach works well when there is a known object to bed@unm a prior model
of it can be produced in advance. This approach will fail fgrsthen the object to be
found has a large amount of variation in its appearance eptey it from fitting to its
object model. Secondly, it will fail in situations where & Ihard to decide a priori the
specific objects that will appear in the scene for exampleniaigport terminal. Here a
large number of different objects can appear: passengggage and trolleys etc; and it
would be hard to find prior models for all the possible objects

The second approach is to identify coherently moving regtbat appear in the fore-
ground of the video. These regions are then assumed to betgljer parts of objects).
This approach does not require a detailed prior object maahel so can work in videos
where it is difficult to define the types of objects that mighpear. This was the approach
used to produce some of the datasets used in this thesispnsh@hapter 4, as it allowed
the method described in this thesis to be quickly appliedismge variety of situations.

A background model is learnt over time. Any regions that ave modelled by it
are seen as foreground regions. A background model is leathe following manner.
Firstly, the background is modelled at the pixel level byasapely modelling the colour
distribution at each pixel over time. A new pixel value isrs@s a foreground pixel if it is
assigned a low probability by its colour distribution. Fgm@und pixels are then typically
grouped into regions using connected component analy$#.[TThese regions need to
be associated to a set of objects, and these objects needttacked over time. One
approach is to use a Kalman filter [51]. This is a stochastiedr predictor where the
likelihood of an object’s location is a linear function of pprevious location; and a noisy
observation based on the location of a region within theesurirame. The Kalman filter
is used in three stages: prediction; data association; @mdation. The prediction stage

10

Chapter 2 Background

Figure 2.4: Region tracking applied to the frames in Figufe 2

linearly predicts the location of the object in the next feaby using its previous location.

The location of the object is further refined by using the tmraof a region detected in

the current frame. The data association stage finds a redioseMocation is the most

likely match to the predicted location of an object. The eotion phase then uses this
region to refine the location of the object. New objects aea ttreated for any unmatched
regions. Typically, if an object does not find a matching eegor a number of frames it

IS removed.

This approach has been applied to tracking vehicles [6g, 24l people [124,132],
and groups of people [42, 74]. Figure 2.4 shows the deteciegjfound regions (shown
in white) representing the person walking along the pather@fare two main problems
with this approach. Firstly, it assumes the objects will mav a linear manner; if they
move in a non-linear manner, for example if a person changestwn sharply they may
be failed to be tracked. Secondly, objects can become fratpuéf parts the object to be
tracked match the background model. The datasets used pte€Zl¥ado not have these
problems as the objects are well segmented from the backdr@nd they move in a
linear manner.

The final approach uses feature points extracted from tineefsa Objects are located
by grouping up sets of points having similar properties.(baying similar motion). This
approach can deal with occluding objects, because some déé#ture points on each of
the objects are still visible. Beymer [8] uses this apprdadhack cars along a motorway.
The cars are tracked from a user defined detection regiom &atiom of the frame, to a
hand defined exit region at the top of the frame. In the deircggion a corner detector is
applied to extract corner feature points. The position aldoity of these feature points
are then tracked over time by using a Kalman filter. To groufhegeature points a graph
based approach is used. The vertices are the tracks of thedqaoints, and the edges
group up feature points that move in the same manner. Iyigafeature is connected
to all feature points within a specific radius. Over time theslges are removed if the

11

Chapter 2 Background

amount of relative motion between the tracks of two featwiats is above a pre-defined
threshold. This approach assumes that the objects will mmoadinear manner, and as
explained previously, if the object moves in a non-lineanmex it might fail to be tracked
properly. Also it assumes that the object will not changsliitspe, or appearance once it
leaves the detection region. A large number of objects eegple, can have variation in
their appearance, and so would not be tracked well by thissagp.

2.3 Representing spatio-temporal data

The previous section discussed the techniques used fdiigand extracting informa-
tion relating to objects in video, in order that a set of spé#imporal data may be pro-
duced. The spatio-temporal data contains data on the chdiViobjects, and data on
relations between objects over time. The spatio-tempatd deeds to be described in
an appropriate representation. The representation is ofetvels. The first level is how
to represent each of the object’s properties and relatietsden objects. The second
level is how to represent data on multiple objects. The gmmte representation chosen
depends on the task to be performed. The representationimegtate well with the
system that is using the data, in this case of this thesisdigbree model. It must also
accurately describe the data given the task the systemfisrpeng; in the case of this
thesis predicting or recognising events from spatio-teraiptata.

There are two possible types of representations for desgrgoroperties of an object,
or relations between objects: quantitative represemstiand qualitative representations.
Quantitative representations describe a property oriogldtased on a specific quantity
like seconds or metres; for example “Bob’s height is 2 métres “Andy is 2 metres
to the left of Colin”. Qualitative representations deserd property or relation using a
particular quality or categorisation like short, or longr, €xample “Bob is tall.”, or “Andy
is behind Colin”.

There are two main approaches to representing data on adgects: a fixed length
representation, or a variable length representation. Alfigagth representation uses a
predefined number of attributes, where each attribute hasn@ and predetermined type
and set of values. This allows properties of an object to bg egpresented, but it is often
difficult to efficiently describe multiple objects, and theglations. For example, Galata
et al. [34] produced a system that can learn the interactions legtwars on a road for
example overtaking, and following. They use a fixed lengfutrvector, that is limited to
describing interactions between two cars. To extend thiesyt model the interactions
of more than two cars would require a different fixed lengtttoeto be produced that is

12

Chapter 2 Background

specialised to that number of cars. Many standard machareifeg algorithms require
a fixed length vector, but there are some solutions to allosalike length data to be
described as a fixed length vector. These are detailed ino8e2#4.2.1. A variable
length representation, however, does not require the nuailpossible objects and their
relations to be predefined, so it can be used in situationsendre unknown number of
objects might appear. There is also no redundancy in theseptation as only actual
relations between objects need to be stored. For exampézlHdenet al. [89] produced
a system that could learn the rules of basic card games. Ablariength representation
based on first order logic was used to describe the cards dichisot place any limits on
the number of cards that could be represented both in eadke,soeover the length of a
game.

The remainder of this section will firstly explain two typesqualitative object re-
lations: qualitative spatial relations, and qualitatiemporal relations which are used in
Chapters 5 and 6. Subsequently, two approaches, used theis to represent variable
length spatio-temporal data: frames, and first order logiidoe presented.

2.3.1 Qualitative spatial relations

Cohn and Hazarika [13] give an overview of work in qualitatapatial relations. There
are two main types of qualitative spatial relations: relasibased on regions and relations
based on points.

The first approach uses a set of regions, and looks at how éahbk cegions relate
to one another. Region Connected Calculus (RCC-8) [105{apalogical spatial calcu-
lus to represent the possible spatial relations betweendagions. There are 8 possible
relations (Figure 2.5) which describe concepts like twdigpeegions touching, or over-
lapping. Maillotet al. [69] uses RCC-8 as part of a system to build a visual concept
ontology.

The second approach assumes objects are points in spacelaad the position of an
object to the position of a reference object. Orientatidatiens [45] relate the orientation
of a primary object based on a reference object and a framefefence (Figure 2.6).
The line representing the frame of reference passes thibwegieference object, and the
primary object’s orientation is based on which side of the it is located. The simplest
orientation relation is a level 1 orientation relation. ilypuses one frame of reference,
and therefore is a binary relation based on which side ofitteethe object is located.
Figure 2.7 shows two level 1 orientation relations: onevealhg an object to be east or
west of the line, and the other allows the object to be nortsauth of the line. To

13

Chapter 2 Background

5 8 & &

DC(a,b) EC(a,b) TPP(a,b) TPP-1(a,b)
‘ ‘ ‘
PO(a,b) EQ(a,b) NTPP(a,b) NTPP-1(c

Figure 2.5: The RCC-8 relations from [105].

' Reference object

04— Primary object

Frame of reference

Figure 2.6: An orientation relation where the primary obgecrientation is based on the
position of the reference object, and the orientation ofthme of reference.

allow more complex orientation relations the two previoergel 1 orientation relations
are combined together and rotated by 45 degrees formingeh 2esrientation relation.
This then allows four different orientations: NogthSouth, Easy and Wesi. Level
3 orientation relations can then be defined, to allow more dira@ned orientations by
combining, and rotating the level 2 operation relationse Tvel 3 orientation relations
are: North, Southy, Easg, Wesg, North-east, North-wesg, South-east South-west
Orientation relations are used in Chapter 6 to describe tiemtation and location of
virtual movement sensors placed on a video of people wakiogg a path.

Other approaches include work by Fernyhoegial.[27] who use a grid based spatial
relation to relate a reference object to an object close tohts is used to automatically
learn event models from road scenes. Needbtal. [88] uses a local cardinal system to

14

Chapter 2 Background

North 1
West, @ East, °
Southl SOUch
Level 1 Level 1 Level 2 Level 3

Figure 2.7: The three levels of orientation relations.

describe the location of objects. Each object defines itscavdinal reference frame and
this is used to describe objects around it. Siskind [117% @storce-dynamic model that
describes how objects are attached to each other over tiime otitput from the model

is combined with a set of event definitions which recogniseabtual events that have
occurred for example picking up an object.

2.3.2 Qualitative temporal relations

There are two main ways to represent time: as a set of pomds, @set of intervals. Situ-
ational Calculus [70] and the work of McDermott [71], remesthe world as a sequence
of states. Each state describes the world at an instantamaot in time. Another ap-
proach is to represent time by periods or intervals. Allémtsrval Calculus [1] describes
temporal interactions between two time periods as a setidéd#m temporal relations.
These relations are calculated on the start and end timecbf @ahe time periods and
they are only valid when both time periods have a valid stadt @nd time. Figure 2.8
shows Allen’s intervals which are: meets, met-by, stattsted-by, finishes, finished-by,
during, contains, before, after, overlaps, overlappedzhy equals. Allen’s intervals are
used in Chapters 5 and 6. Chapter 5 also defines a novel sehpbtal state relations
which can deal with time ranges that do not have an end tinlain\JiL28] extends Allen’s
Interval Calculus by combining the point, and period timgresentations. This is done
by adding point-to-point, and point-to-interval tempaehtions to the calculus.

2.3.3 First order logic

This section gives an overview of first order logic which iedswithin the predictive

models described in Chapter 3. The first part of the sectiowslow the spatio-temporal
data, and predictive models can be represented in first toger The second part looks
at how inference is performed on spatio-temporal data ubmgredictive models to make

15

Chapter 2 Background
A
Aequals B A before B
B equals A B after A
A .
A contains B A started-by B
B B during A B starts A
A A finished—-by B A meets B
B finishes A B met-by A
A
A overlaps B
B Boverlapped-by A

Figure 2.8: The thirteen Allen’s intervals [1].

a prediction. The learning of first order logic productiorteslis explained in Section
2.5.1, and combining first order logic with probability ispéained in Section 2.5.3. The
examples used in this section are based on the Path exangwe g Section 2.1. This
section will only describe the first order logic required tbe work in this thesis, for a
fuller explanation please refer to Norveg al.[111].

2.3.3.1 Spatio-temporal data

Spatio-temporal data is based on a set of objects. In fid’rdogic objects are rep-
resented byconstantdor example:Path, Andrew, Or Anna. The objects have proper-
ties, and relations can exist between them. In first ordaclpgedicates, and functions
are used to represent object properties and relatidgiredicatesrepresent logical re-
lationship between one or more objects. Unary predicatest ontaining one object)
are typically used to describe properties of an object fangxeRed(Andrew) repre-
sents that\ndrew is Red. Binary predicates (containing two objects) describetiahs
between two objects for exampleft0f (Anna, Andrew) represents thatnna is to the
left of Andrew. Some relations are better represented as functiéGinsictionsrepre-
sent a mapping from an object, or a tuple of objects to a speaifject, for example
Position(Andrew) represents applying the objegidrew to the functiorPosition and
returning its location. Aermis a logical expression that refers to an object; functional
expression (i.e. a function with a set of arguments), conistand variables (explained
in the next section) are all terms. Terms and predicates eaoimbined to form atomic
sentences. Aatomis a predicate followed by a parenthesized list of termsekample
Left0f (PositionOf (Andrew),PositionOf (Anna)) represents that thendrew’s posi-
tion is aboveAnna’s position.

16

Chapter 2 Background

2.3.3.2 Predictive models

The type of predictive models used in this thesis, describe8ection 2.5, use a set
of production rules. This section will explain how the protan rules are represented
in first order logic. Firstly, the production rules need tpnesent more complex logi-
cal sentences than the ones described in the previousrsedlus is achieved by us-
ing the logical connectives (shown in Table 2.1) with thengtosentences, for exam-
ple Left0f (Anna, Andrew) A Left0f (Andrew, Bob) represents thainna is to the left of
Andrew andAndrew is the left ofBob.

| Name | Symbol | Returns |
And XAY | if X =tandY =tthent elsef
Or XVY | ifX =fandY =f thenf elset
Not =X if X = tthenf elset
Implies | X=Y | if X =tandY = f thenf elset
Bilmplies | (X < Y) X=YAY =X

Table 2.1: The first order logical connectives.

Secondly, the production rules need to generalise frompghecstemporal data. The
logical sentences in the previous section used constanthweant they could only
apply to specific objects. These constants can be repladbdaviablesto produce gen-
eralised sentences, where the value of a variable rangesh@vset of terms. To control
how a variable is used within a sentence two quantifiers ad.udniversal quantification
(v, “for all”) states that the sentence must be true for evesspie value for the variable,
otherwise the sentence is false. Existential quantifioaffy “there exists”) states that
the sentence must be true for at least one value of the variathlerwise it is false. The
previous example can be generalised/agLeft0f (Anna,X) = Left0f(X,Bob)) which
represents that for each object in the worldsita is to the left of it then the object must
be to the left oBob.

A production rule has an action section, and a condition@ectThe condition section
matches a pattern in the spatio-temporal data, and thenasiction predicts the spatio-
temporal data to occur next. In first order logic this is repréed by a clause. dauseis
a disjunction of literals, and laeral is a atom, or negated atom. The production rules in
this thesis have a similar representation to a special typkaose: théHorn clausewhich
is a clause that only has at most one positive literal. Allalaes used in Horn clause
are universally quantified. ThHeeadof a Horn clause is the positive literal, and thedy
of a clause if the set of negative literals. The head repteghe action section, and the
body represents the condition section. The spatio-tenhdata described in the previous

17

Chapter 2 Background

section can be represented daet which is a clause that has no body. Horn clauses are
restricted class of first order logic sentences, this mdkas teasier to learn and perform
inference on than full first order logic. The learning of Hatauses will be explained in
Section 2.5.1. The production rules used in the predictiedets, explained in Chapter
3, have a similar representation to Horn clauses. Horn efaaee typically written using
implication, where the negative literals imply the postiteral. Equation 2.1 shows a
Horn clause which states that if a person is at the junctiotherpath at timé then they

will take the left hand fork. The head of this Horn claus®dsement (LeftFork,t)).

Person(X) A Time(t) AAtJunction(X,t) = Movement(LeftFork,t) (2.1)

To specialise a Horn clause a substitution can be used taeltae variables to con-
stants. Asubstitution s= {v1/t1,v2/t2} contains a set of variables and a set of terms
t that will replace the variables. When a substitution is egapto a logical sentence all
variables in the sentence that match one of the variablégisubstitution are replaced by
its accompanying term. For example the substituéiea {x/Anna,y/Andrew} applied to
Left0f(X,Y) gives the following resultLeft0f (Anna, Andrew). A ground termis a term
that does not contain any variables, angraund atoms an atom that does not contain
any variables.Unification typically finds the most general substitution that makes two
logical sentences equal. Substitutions and unificatiorshas/n in the next section are
used to perform inference. A senter&ed-subsumes sentenc&,; (5 <) if 0 C S,
or every atom ir5; is in $. This can then be used to give a specific to general ordering
for a set of sentences. This is used within the techniquesamlfirst order sentences
(described in Section 2.5.1) to decide how to search theesplgeossible sentences.

2.3.3.3 Inference

The previous sections have shown how to represent spatipete@l data and predictive
models in first-order logic. This section will present howdgictive models can be applied
to the spatio-temporal data to make a prediction. To do thisegk must be performed to
see if the spatio-temporal data logically matchesmtailsthe condition section of each
production rule. A logical inference procedure is used talds. One approach is to
enumerate over all possible configurations of the worldhéf $patio-temporal data, and
the condition section are true in the same world configunatiben the spatio-temporal
data entails the condition section, and its action sectaonbe used for the prediction.

To produce the world configurations the Herbrand universkthe Herbrand base
must be computed. Thiderbrand universes the set of all ground terms created from

18

Chapter 2 Background

combining the function and constant symbols together amdHénbrand bases the set of
all possible ground atoms. Each world configuration is desdrby aHerbrand interpre-
tationwhich assigns a true or false value to each possible growmd. &n interpretation
which makes a logical sentence true is calledadel Sentenc&, entailsS; (S = S) if
in every model tha§; is true inS; is also true.

The only problem with enumerating every world configurai®that when there is a
large number of constants and predicates it can be compuigdlyr expensive to perform.
An alternative approach is to use the resolution algorith9]. This is a proof based
technique that tries to match every literal in the condisetion of the production rule
with some spatio-temporal data. To use the algorithm th&éspamporal data, and the
condition section must be converted into conjunctive ndfioran (CNF), which is a con-
junction of clauses. Then they are both are standardised ggmathat variables do not
have the same names). Then one literal is unified to the congpitary of the other. This
process repeats until the empty clause is found, or no mafieations can be done. If
the empty clause is found then the spatio-temporal datal®tita condition section. A
simpler resolution algorithm, called forward chaining I} tan be used, if the production
rules are represented as Horn clauses. In forward chaipeigpstemporal facts are uni-
fied with literals in the Horn clause. Once all the literalghe body of the Horn clause
are unified the head of the Horn clause is returned and candokfoisa prediction.

2.3.4 Frames

Frames [78] can be used to represent the properties of eppaad temporal and spatial
relations between objects. There are two types of framekasa rame, and an instance
frame. A class frame describes a specific type of object. rtains a number of slots
which describe different properties or attributes of thgeob A slot can have a default
value, and a set of facets which constrain the possible sadhgeslot can contain. Multiple
values can be assigned to a slot. A class frame can inhetstahal default values from
a parent frame creating a hierarchy amongst the class frargsre 2.9 shows a class
frame for a Person. It contains three slots: the name of treopetheir speed and their
position. An instance frame uses a class frame to storenr@bon on a specific object,
by filling in the values of the slots. Figure 2.9 show an instaframe for a person. They
are called Bob, are at position (40,50), and are moving aunedpeed. Frames are used
in Chapter 3 to represent the history of spatio-temporaalgata.
The frame data in this thesis is stored using the Extensilalkiyp Language (XML)

[10], as explained in Chapter 3. This is a meta-languageplaaes a tag around data

19

Chapter 2 Background

Class Person Class Person
Name Name | Bob
Speed Speed | Medium
Position Position| (40,50)

Figure 2.9: A class frame (on the left) and instance framélgemnright) for a Person.

items. A tag has a name, and often a set of attributes, ancet tosgive a semantic
description of the data it encloses. An XML schema is usedtmélly define the tags

and their structure. XML is human readable, but it is quitdese, and can often greatly
increase the size of the data it is representing. List aneFi$4] use XML to represent
their Computer Vision Markup Language (CVML). This allowatd from a vision system

to be represented in a common format that can be easily shareeir approach can

describe features on objects like their position, boundiog, and type; and can group
up sets of objects. There is, however, no way to describeasgattemporal relations

between objects.

2.4 Learning predictive models of spatio-temporal se-
guences

This section will firstly give an overview of predictive mddearning, and then will show
previous learning approaches.

2.4.1 Anoverview of predictive model learning from spatiotemporal
sequences

To produce a predictive model requires: a sequence of spatiporal data; a repre-
sentation to describe the predictive model, and its aswutjgarameters; and a learning
algorithm. Each point in the sequence produces an exampeawthe input is the past
spatio-temporal data, and the output is the future set dicspemporal data. There two
main ways to represent the spatio-temporal data with the miaes being fixed length
and variable length vectors, as described in Section 2.8. prédictive model is repre-
sented by a set of components. A component [111] performeafgptask which aids the
predictive model when it is making a prediction, for exampleould use a set of object
information to predict that a particular event will happen recognise that a particular
event has occurred. There is a variety of representatiat fos the components includ-

20

Chapter 2 Background

ing: graphs, trees, linear functions, and logical statémeihese will be explained in
more detail in the following sections. A learning algorithinen attempts to find the best
representation for the components in the model and the ydtrdts parameters, such
that it best predicts a set of examples. Structure learsinged to find the optimal rep-
resentation for the components, and parameter learningeis to find the optimal values
for the model parameters.

More formally an exampléx, f (X)) is a set of input data, and an outpuf (x) pro-
duced by applying the input data to an unknown functionGiven a set of examples
generated using inductionis performed to find a hypothesis or model that best approx-
imatesf. A good model will generalise, or predict well from unseem@mples. If the
unknown function has a continuous output then inducing aehoflit is calledregres-
sion and when the output is discrete it is callddssification

Model selection is the task of selecting the model, from #te§all possible models,
that best predicts the examples. The model has to satisfyctiteria. Firstly it must
predict well from the examples, and secondly it must not lmedomplex. A complex
model is likely to specialise on, amverfitthe examples, and noise within the examples.
This makes it less likely to generalise or predict from theaen examples.

A learning algorithm performs the task of model selectionsbarching through the
space of possible models to find the model that best pretlietstamples. Aearch tech-
niqueis used to explore the space of possible models. It is tylgigaided by an explicit
fitness functiorthat provides feedback to the search technique, by congpatiscore,
based how on the current best model predicts the examplesie Search techniques
use an implicit fitness measure where the fitness is includgdnihe search technique.
There are a wide variety of search techniques, and fitnessidms which are described
in the following sections.

Minimum description length (MDL) [107] is one approach t@eyent overfitting. It is
an information based fitness score (Equation 2.2). The &tisssalculated by computing
the amount of information to code the modgl,ggep; the amount of information to
code the parameters of the model for a particular instalpegdmg; and the amount of
information to code the residudi{gigual, Which is the difference between the model
predictions and reality. The best model can be found by mging this score.

ltotal = Imodelt Iparamstlresidual (2.2)

Another approach is to udefold cross validation. This divides a set of examples ito
sections. Each of thke sections are then used as a test set, and the remaining @sampl

21

Chapter 2 Background

as a training set. The training set is used to induce a moddltlee test set is used to
see how well it predicts from unseen examples. Models thatfibthe training examples,
will predict poorly from the test examples. In this thesisf@l@ cross validation is used
as described in Chapter 4.

2.4.2 Previous techniques for learning predictive models

This thesis presents novel approaches for learning preelittodels from non-deterministic
spatio-temporal data from visual scenes. The visual sdbeesselves can contain a vari-
able number of objects, and the events within them can last awariable length of
time. This means the input data is a variable length vectaclwban vary in size, both
spatially and temporally. This section will cover techreguhat can firstly learn models
from variable length data, and secondly learn models ofdeterministic data.

2.4.2.1 Learning predictive models from variable length déa

Most standard model learning techniques like neural nédsyattecision trees [99] and
support vector machines (SVMs) [127] require a fixed lengthut vector. This vector
often needs to be defined by hand, and as explained in Sec8are only describe a
set number of objects over a specific range of time. For exaXpland Hogg [133]
learn a neural network to predict the position and size of @gewalking through a
scene. Neural networks produce a prediction by passingthe through a set of linear
classification functions called neurons which are conmkttigether into a set of layers.
The approach uses a fixed length input vector, so assumesrilyabne person will be
walking through the scene, and only a fixed length historylélused for the prediction.

One approach to allow a variable length vector to be usedmattixed length vec-
tor is to produce a histogram on the number of types of elesnarntihe variable length
vector. In natural language processing this approach iscchhg of words [50], where
a histogram is produced on the number of different words appg in a document. To
apply the bag of words approach to digital images and videsst af visual [118] or
video [90] words needs to be produced. To produce a set odMigords, image patches
are extracted from a set of training images, and these patrleeclustered based on their
similarity. The prototypes found, which represent the eemf the clusters, are then
used as the visual words. Video words are produced in a siméaner except that the
patches use data from the current, and previous frames. appioach has been suc-
cessfully applied to learning the categories of naturahesg24], objects [17, 118], and
human actions [90].

22

Chapter 2 Background

Similar approaches have been applied when producing kethatl can use variable
length input vectors. Kernels are used to map a set of datdspioito a high dimensional
space, and are used with linear classifiers like SVMs to atloevn to deal with non-
linearly separable datasets. Grauman and Darrell [39] pyeaenid match kernel which
uses a set of histograms each using progressively largesibs. At each histogram
information from each example that occur in the same bin athed together. Each
example can contain a different number of of data items. Téighted sum of differences
of the number of matches between each subsequent histogwahslthen computed. The
downside with all these approaches is that spatial or teatpelations between the data
items are lost when the statistics are produced. If this pitant then a poor model will
be produced.

An alternative technique to deal with variable length vegia situations where the
number of objects is fixed, but the history for events is \@dais use a predefined func-
tion to compute the value of the object configuration oveetifior example computing
its average value. Sumpter and Bulpit [125] use this appredeen learning a neural net-
work to predict the position and shape of a virtual robot phd®g and a set of animals.
The object information at each point in time is representgd Iset of learnt clusters.
The values of the clusters are modelled over time by a setaéf/laeurons, where each
cluster is modelled by a single neuron. The activation le¥elach neuron is based on the
running average of its current level, and its cluster’s galu

2.4.2.2 Learning models of non-deterministic data

The methods in the previous section assumed that the datéeisydnistic and the model
needs to make a non-probabilistic prediction. The remainfiéhis section will explain
techniques to deal with non-deterministic data, and priis&b predictions.

Bayesian Networks graphically represent the full jointability distribution be-
tween a set of variables as explained in Section 2.5.3.1y $tikrely on a fixed sized
input vector, but can describe the likelihood of a particpliediction, and can deal with
missing data. Bayesian Networks typically have a fixed nunobeandom variables so
will work in situations where the number of objects that ntighcur is known a priori,
and the length of history that is required.

Dynamic Bayesian Networks (DBNs) are Bayesian Networks ¢ha probabilisti-
cally model a set of observations over time, for example @lgenfigurations, and can
deal with variable length histories. Each point in time sresented by a slice containing
a set of evidence variables, that describe observationstiie world; and a set of hidden
state variables that describe the current state of the wdhcee probability distributions

23

Chapter 2 Background

are also used: the prior distribution over hidden statestrémsition model that gives the
likelihood of the hidden state given a set of previous hidskates, and the sensor model
that represents the likelihood of the evidence given theeowihidden state. Given a set
of observations a DBN is created by unrolling [111], wherghce is replicated until all
the observations are covered.

Once a DBN has been created there are four main inference fdsiing, prediction,
smoothing, and most likely explanation. Filtering computge likelihood of the current
hidden state, given a set of observations. Prediction ctesphe likelihood of a set of
future states. Smoothing computes the likelihood of a prevhidden state using current
and previous observations. Most likely explanation finasgét of hidden states that best
describe a set of observations.

Hidden Markov models (HMMs) [102] are a popular DBN. Eacleeslis a simplified
DBN as it only contains one state variable, and one observatriable. It also uses a
simplified transition model based on a first-order Markowess where the likelihood of
the current hidden state is only based to the previous hidti#a. These simplifications
are important as they allow for some efficient inference aflgms to be used. HMMs
have been used for producing high-level models of humarstaskn video, where the
observations are image features extracted from the videods, and the states are the
possible human actions. The key reason to use a HMM for tkis ilathat often the
observations are noisy, so it can be hard to make a predicisbmising their values. The
HMM deals with the observation noise by probabilisticallpaelling the observations
over time to determine which set of hidden states best mattieobservations. HMMs
have been successfully used for sign language recognitij pnd recognising human
movement [11].

There are three main issues with HMMs: the observation blrieust use a fixed
number of dimensions; only one state variable can be usetitrenlikelihood of the
current hidden state is only based on the previous hiddde. sthe remainder of this
section explains solutions to these problems.

Firstly, the observation variable in a HMM must use a fixed banof dimensions,
so typically it can only describe a fixed number of objectsis™ill not allow the HMM
to deal with scenes where there is a varying number of obj&ate approach to solve
this problem is to use the representations described indde2t4.2.1 to represent the
observation variable. Kettnaker and Brand [54] proposeéleicsolution by represent-
ing the observation model as a Gaussian mixture model (GMMj the variable length
observation. A GMM approximates a probability distributioy using a set of weighted
Gaussian distributions. Each observation is applied t@&ié/ and the results are mul-

24

Chapter 2 Background

tiplied together. It was successfully applied to learn tebdviour of vehicles at a traffic
intersection. The downside of this approach is that it dagseasily represent relations
between observations, as each of the Gaussian distrisuiged in the GMM requires a
fixed number of dimensions.

Secondly, HMMs can only use one hidden state variable, wimakes it hard to de-
scribe interactions between multiple objects. CoupleddeidMarkov Models [92] are a
DBN which can represent two objects interacting. Each $lasea hidden state and obser-
vation variable for each of the two objects. The likelihod@ach hidden state is related
to each of the previous hidden states from the two objectssarcan model interactions
between the objects. This approach is limited to a maximutwofinteracting objects,
as above this number there only exists approximate infereaahniques.

Thirdly, HMMs only base the likelihood of the current hiddstate on the previous
hidden state, so cannot explicitly model higher order teralpdependencies, although
the structure of the HMM does allow them to be implicitly mbed. Variable Length
Markov Models (VLMMs) [35] are an efficient way to describeethumber of previous
states required to predict a new state. VLMMs use a sequdistates based on symbolic
observations, and use this to learn a model that can pradtadzlly predict the next sym-
bol. This is performed by finding the optimal number of presa@ymbols that is required
to predict each symbol. The observations at each point ia &ire represented by a fixed
length vector. To produce a symbolic sequence the obsensthust be converted to a
symbolic sequence. This can be performed by clusteringlibergations to produce a set
of prototypes. A symbolic stream is formed by replacing ealsbervation by the name
of its closest prototype. VLMMs have been applied to modagltraffic interactions [34],
and human behaviour [35]. There are two main problems witMWis: firstly there is
no way to assign probabilities to the observations, so tlaeyot model uncertain data;
and secondly the model has limited ability to deal with noise

2.5 Production systems

Production systems are the architecture used to repraseprédictive models and the
spatio-temporal data used in this thesis. They require afggbduction rules, a knowl-
edge base, and a conflict resolution algorithm [66].

Production rules are of the form: i€onditionTHEN action Within the context of
predictive spatio-temporal models the condition sectigpresents a pattern to find in
the spatio-temporal data, and the action section reprefiamtet of spatio-temporal data
to occur next. The production rules in this thesis have alamépresentation to Horn

25

Chapter 2 Background

clauses (explained in Section 3.3.1). Each productiontygeally models a different
aspect of the spatio-temporal data. An alternative appréacescribe the production
rules is to use a stochastic context free grammar (SCFG). RG5€ontains a set of
production rules written in propositional logic, each Ibde with a probability. Each
production rule contains a non-terminal symbol in the cbadisection, and a list of
terminal and non-terminal symbols in the action sectioneyrhave been successfully
used to model poker games [80], and activities within a cak pE]. The main problem
of using SCFGs over first order logic is that the productioleswsed in SCFGs use
propositional logic which cannot contain variables andefere are unable to generalise.
Production rules represented in first order logic can usibi®s and are therefore able
to generalise.

The knowledge base represents the history of past spatipetal data. In this thesis
frames are used to represent this spatio-temporal datasasiloed in Section 2.3.4. To
evaluate the production rules on the knowledge basedhdition-act cyclg66] is used.
This applies all the condition sections of the productiolesuo the knowledge base.
A conflict-setis produced of all production rules that successfully matehknowledge
base. In a traditional production system a conflict resotutilgorithm is then used to
select one of the production rules. Its action section ia fired, and the output is added
back into the knowledge base. In this thesis the conflictlvéism algorithm is slightly
modified. As the spatio-temporal data used in this thesismsdeterministic there might
be multiple possible predictions, so the conflict resolutidgorithm might return more
than one production rule. The action sections of the salguteduction rules are fired,
producing a prediction. This prediction, however, is tygtlie not added back into the
knowledge base because in this thesis the production ralgsase their prediction on
the history of past spatio-temporal data (Section 3.4).

The following sections will firstly describe how first ordegic production rules are
learnt from spatio-temporal data. Secondly, the diffecamiflict resolution strategies that
can be used to decide which production rules to use when makprediction will be
described. Finally, techniques to allow production rulesiéal with non-deterministic
data will be described.

2.5.1 Learning first order logic production rules

This section will review techniques for learning first ordiegic production rules repre-
sented by Horn clauses. In the methods described in thioedtie head of the Horn
clause represents the action section of the production wieh describes the next set

26

Chapter 2 Background

of spatio-temporal data; and the body represents the ¢ondiection of production rule,
which contains a set of literals representing a particukdtepn in the spatio-temporal
data. Firstly supervised learning techniques to learn Ktauses will be described, sub-
sequently unsupervised learning techniques will be cakere

Inductive Logic Programing (ILP) [82, 100] is a supervisedrhing technique to in-
duce a set of Horn clauses. It requires a set of examples, aatiad background Horn
clauses. The background Horn clauses describe unlabetadr@dm the world. The set
of examples represents labelled data from the world thadsheebe learnt. The set of
induced Horn clauses should be able to correctly predicexaenples using the back-
ground Horn clauses. For example a set of Horn clauses meglaannt to predict if a
person will go left or right at the fork in the path. The baakgnd Horn clauses represent
the spatio-temporal information of a person’s positiontos path over time. The exam-
ples describe when a person took the left or right fork. ThenHdauses that are learnt
should accurately predict the fork the person took baseti@nprevious positions along
the path. More formally there is a set of positlzé and possibly negative examples,
along with a set of background claudgsin this thesis only positive examples are used,
as the videos are from real-world domains where it is hareétegate negative examples.
The aim is to learn a hypothedit containing a set of Horn clauses that entail the posi-
tive examples given the background, but does not entail digative examples given the
background (Equation 2.3).

(BAHEET)A(BAH [£E) (2.3)

There are two approaches to supervised learning of a setrof ¢fauses: learn them
in a sequential manner or learn them concurrently. Thedenail be explained in more
detail.

2.5.1.1 Supervised learning of a set of Horn clauses in a segptial manner

To learn a set of Horn clauses sequentially a covering mellkedthe AQ algorithm
[76] is used. The covering method works in the following mammn example will be
chosen and a Horn clause that entails the example will batledihis is then added to
the hypothesis. Then all other examples that are entailédeorn clause are removed,
and the process repeats until there are no more examples left

FOIL [100] uses the AQ algorithm to learn a set of Horn claudestarts its search
for a Horn clause by creating one with an empty body. It thessasgreedy search to find
the best Horn clause. At each stage the current best Horeeclawspecialised by either

27

Chapter 2 Background

adding a new literal, or adding an equality measure betweenvariables. A fithess

function using an information gain metric based on the nunob@ositive and negative

examples matched by the Horn clause is used to find the bestbpation. The search

stops when a Horn clause is found that does not cover any oetative examples. FOIL
cannot learn just from positive examples, and must eithee Im@gative examples, or a
closed world assumption.

Progol [82,85] also uses the AQ algorithm, but can learnfjash positive examples.
It is used in this thesis as a comparison method to the methredented in Chapters 4
to 6. To find a Horn clause the search space is bounded by thespwsfic Horn clause
which entails the example. All Horn clauses found must soiesthe most specific Horn
clause. To learn the most specific Horn clause a positive pkaand a set of mode
declarations are used. There are two types of mode dediasathead, and body. Head
declarations limit the constants and variables used in #aal lof the Horn clause; and
body declarations to limit the literals that can be used elibdy of the Horn clause. To
find the best scoring Horn clause an A* search [111] is used;iwberforms a general
to specific search over the lattice of subsumptions from tbstrapecific Horn clause.
A* search is a best first search, which uses a heuristic fongcin this case based on the
number of positive and negative examples the Horn clauseeti@ied and how many
more literals are required to produce a solution. The sestafts with an empty Horn
clause which is then refined by adding new literals to it sunat tt still subsumes the
most specific Horn clause. The search stops when a Horn dadisend which has a
fitness score that cannot be improved by any refinements.

The two previous techniques use a greedy search methodstoHern clauses. Us-
ing a greedy search method to find clauses has the problenit timaght find locally
optimal solutions. An alternative technique is to use sastis search methods which can
look at different areas of the search space concurrentlyngakless likely to find local
optima. One approach is to use random restart search. ‘&his By randomly generating
a Horn clause, and adding it to the current list of active Hdauses. A Horn clause
is then selected from the active list either randomly, or lakipg the best scoring Horn
clause. Refinements to the Horn clause are added to the &stjvand the process re-
peats. This will continue until a set number of Horn clausesetbeen evaluated, at which
point the search is restarted. This process will then caetumtil an overall number of
Horn clauses have been evaluated, when the search willZetgznyet al.[129] present
a large study of random restart methods compared with detesto search techniques.
They conclude that random restart methods have a lowerlseast than deterministic
search techniques. Muggleton and Tamaddoni-Nezhad [& farsdom restart search

28

Chapter 2 Background

in their quick generalisation technique. This finds comsisHorn clauses in the search
space. These are Horn clauses which entail at least one ex#imples. It has been used
to provide Horn clauses in Progol's A* search algorithm, asd seed to a genetic algo-
rithm (GA) . Genetic algorithms are described in more detaBection 2.6. When there

were few consistent Horn clauses in the search space it wad that QG seeded GA was
more efficient, both in runtime and Horn clauses evaluateh the A* and unseeded GA
techniques.

Nezhad and Muggleton [126] use a GA [37] to search for a siklglen clause. A
novel binary representation is used which represents thabla bindings (variables in
the head and body that are the same), in the most specific Haarsec Through the use
of genetic operators specific variable bindings could beagdt or disallowed, creating a
more specific, or more general, Horn clause which still soesithe most specific Horn
clause. The technique was implemented using a simple GArepidced the A* search
used in Progol to find the best Horn clause. The results shtvatdhe GA based search
performed better than A*. The SIA01 algorithm [4] uses a GAaoy representation
based on the selected example. The system then learns a ldase ¢hat generalises
from this example by using crossover and mutation operdtatsgeneralise predicates,
change constants, and replace constants with variablegnésgi function based on the
consistency, completeness, and syntactic generalityedfithin clause is used. Individuals
are added to the new population if they have a better scongligavorst individual in the
new population. When the score of the current populatiomishshanged for a number
of generations the best individual is returned. Stochastigse selection [122] randomly
selects a fixed number of Horn clauses from the search spaigufirantee a Horn clause
will be found that is good enough for the solution. It was shaagive better results than
Progol, both on the time to find a Horn clause, and the accwéihe Horn clause.

The methods reviewed in this section show that stochastickdechniques can find
good Horn clauses in a shorter time than greedy search tpedsi This was one of the
reason a stochastic evolutionary search approach wasrctoksarn the production rules
in this thesis (Chapter 4).

2.5.1.2 Supervised learning of a set of Horn clauses concemtly

The methods described in the previous section induce Hausebk sequentially until all
the examples have been covered. There has also been woraromtethe complete set
of Horn clauses concurrently. A comparison of the differgygtems is shown in [23].
One of the first systems to do this was REGAL [36]. It used arithisted GA system.

The system is divided into a set of nodes each running a dep@va. The nodes learn

29

Chapter 2 Background

a Horn clause that covers a specific set of the examples. Tiwdes are controlled
by a central supervisor node. The supervisor node decidehwhbset of examples to
send to each GA node, and forms the overall set of Horn clamsesmbining together
the best Horn clauses from each of the GA nodes. A hand defamgpidge template is
used to represent the possible terms and variables that appkear in the Horn clause.
Figure 2.10 shows an example language template and itsiaksbbinary encoding. The

position(y,[p1,p2,p3]) colour(y,[b,r,g]) colour(x,[b,r,g])
0 0 0 0 1 0 0 0 1

Figure 2.10: An example showing the language template amarypiencoding used in

REGAL. Each box can contain a binary value, which indicateise literal, or constant

should be used within the clause. The binary encoding showime diagram represents
the clauseol our (y, r), colour (x,qQ).

template is converted into a binary string so that it can edue the GA. To select
Horn clauses in each of the nodes universal suffrage seteistused. This firstly selects
an example, and then probabilistically (based on fitnedsitsea Horn clause that best
covers the example. If there are no results then the nodeaesea Horn clause that
covers the example. If there is a Horn clause then a crossovautation operator is
applied to it (Section 2.6.5). The node picks an operatoethas the fitness of the two
Horn clauses. The GA nodes work in a co-evolutionary way,Hariag Horn clauses at
the end of each generation with other nodes that have exanieHorn clauses match.
To form the overall theory the supervisor node asks each fardés best Horn clause.
The Horn clauses are then scored for fitness on all exampldssa@ted by fithess score.
Then best Horn clauses are then kept. G-NET [3] uses the samdexthe as REGAL,
but uses a fitness function based on minimum descriptiorhgMPL). G-NET’s method
to produce the set of Horn clauses is different to REGAL .dadtof using the best setiof
Horn clauses, clauses are removed from the best set unglihao change in its fitness.
G-NET showed better results than both Progol and FOIL. Sagtt@l. [113] describe
an approach to combine multiple hypotheses generated frolmphe Progol runs into a
final generalised hypothesis. An intermediate answer 8&)(is created by combining
all the hypotheses from the multiple Progol runs. Next, ¢dam clause is selected, and
a check is performed against all other clauses to see if tharelause that it subsumes or

30

Chapter 2 Background

subsumes it. If this is the case then most general Horn clafube two is then removed
from the IAS. If this check fails the Horn clause is removezhirthe IAS and added to
the final answer set. This repeats until there are no more Elauses left in the IAS.

The clauses in the final answer set are then ranked by the mwhbees each clause
subsumes (or is subsumed by) the rest of the clauses, andhentgost specific clauses
are kept. When compared on how the Horn clauses (that sheukehint) were ranked,
the technique ranked them high than Progol did.

In both REGAL and G-NET the supervisor node must combine thldlauses learnt
from the nodes to form the overall set of Horn clauses. A betpproach is to allow
the system to find the most optimal set of Horn clauses by &oeolary search, rather
than learning individual Horn clauses. DOGMA [46] againsiseGA, and learns a set
of Horn clauses on two levels. The first level is similar to REGand G-NET. The
Horn clauses are represented using the same fixed binaryaiengs REGAL and the
same set of genetic operators are used to evolve the Horseda®n the second level
a set of families are used which group up the Horn clausesrta the overall set of
Horn clauses. A separate set of genetic operators are ugad,tand break up families.
This approach was shown to be better than FOIL with low to on@adnoise levels in the
training examples.

To avoid the limitation of using a fixed length GA to represtat set of Horn clauses
a variable length structure for example a tree could be USedetic Logic Programming
System (GLPS) [131] represents the set of Horn clauses asest fof AND-OR trees.
Each tree represents a set of Horn clauses that all havenielssad. The leaves of the
tree contain literals, and the nodes can either represe, ANOR. The forest of AND,
or OR trees can be accessed on 4 different levels. The fistiethe entire forest, the
second level is an individual AND-OR tree, the third levehisub-tree within an AND-
OR tree, and the fourth level is a leaf node within an AND-O&etrThe only operator
used to evolve the forests of AND-OR trees is a modified cnamsoperator. It selects
two forests of AND-OR trees, by fitness proportionate or namnent selection, then two
elements both on the same level are selected. These eleanenkten swapped over and
both forests of AND-OR trees are added to the new populaliba.system was combined
with the output from FOIL and was found to be more noise robush just using FOIL
alone.

This section has presented evidence that inducing a set of ¢lauses at the same
time, produces better results than learning Horn clauspsesgially. This was one of the
reasons the production rules were learnt at the same timep(€h4).

31

Chapter 2 Background

2.5.1.3 Unsupervised learning of sets of Horn clauses

The previous sections used supervised learning to indue¢ @f $lorn clauses. An al-
ternative set of approaches called rule discovery systesasan unsupervised learning
approach where the learner is not given any labeled exaniplesinds interesting Horn
clauses that cover the unlabeled examples, where intgresss is based on some crite-
rion. This allows a wider range of clauses to be found becthese is greater flexibility
on what is an optimal Horn clause is given a specific contexts tiseful in situations
where it is hard to provide complete set of labeled examgtes.example with the path
example, it might be hard to have an example of every actierhtimans perform in the
scene, so an unsupervised learning approach could be ussgianovel actions in the
scene.

Rule discovery systems maintain a list of clauses. A clasislean selected from the
list by using a specific search technique. Then the clausemeved from the list, and
checked to see if it is valid on a specific set of unlabeled gtas If the clause is valid
it is added to the overall hypothesis. If the clause is natvdlen a refinement operator
is applied to the clause, to produce a set of new clauses valnechdded to the list. The
approach repeats until the list is empty.

CLAUDIEN [103] uses a language bias to limit the possibledatlauses, and the
possible refinements to a clause. The validity of a clausassd on whether the percent-
age of the unlabeled examples that it models is above a gheeshold. A best first search
is used to select clauses, with a search heuristic base@onitiimum description length
principal, using the number of positive and negative granggubstitutions a clause has,
along with the length of the clause. Tertius [29] again usesst-first search to select the
clauses. The search heuristic applies a set of sampleddjrausubstitutions to a clause,
and records the number of times the head and body are sabgfesth substitution. The
refinement operator can add a new literal to the body of theselaunify two variables,
or change a variable into a constant. They are ordered toeasspecific clause is only
generated once during the search.

HR [15] is a rule discovery system used to learn mathematteadries. It induces a
theory containing a set of classification rules represeaserhnge-restricted predicates,
and a set of association rules represented as rangedestalauses. The refinement
operator uses a set of unary, and binary production rulesodyztion rule takes a single
clause, or two clauses, and changes them; for example rageariables from the head
of the clause, or composing two clauses together. The ssisets (the data the clauses
match) for the new clauses are then calculated. If the ssastss empty then association
rules representing a non-existence hypothesis are derlf¢ldere is an existing clause

32

Chapter 2 Background

with the same success set then association rules repragamntiequivalence hypothesis
are derived. If the success sets are unique then a new dassiii rule is derived, and
association rules are also derived. A application basegaason of HR with Progol is
made in [14] which found that HR is more likely to find clauskattcover concepts with
fewer positive examples than Progol. Sargbal.[112] presents a comparison of Progol
and HR on a cognitive vision task. They concluded that botthods performed well
with different noise levels in the data, but overall Progetfprmed slightly better than
HR. HR found a larger number of clauses, and took longer todiadlution than Progol.

The techniques described in this section have been usedvaprthe input to some
of the learning methods explained in the following sectionBey have not been incor-
porated into the method described in this thesis, as thissrelh a supervised learning
approach. It could be done as future work to try and broaderrdahge of production
rules the method could search over.

2.5.2 Conflict resolution strategies

There are many different strategies that are used to perdonfiict resolution in expert

systems. These include: using the first production rule dpaears in the conflict set,
applying priority values to the production rules, and usmgja-rules which decide which
kinds of production rules are more important than otherg. [@milar approaches are
used when a set of Horn clauses is used to predict an unseeplkexal he Horn clauses
are ordered typically from most specific to most general.niégech Horn clause is applied
in order, until one is found which entails the example. Itfieo hard to learn a set of
Horn clauses where some of the clauses do not match some oefative examples.

This will then cause problems with predicting unseen exasgk it might get the wrong
prediction. A more accurate approach is to use all clausg$aform a consensus when
making the prediction.

Pompe and Kononenko [97] use the ILP-R [96] method to indusetaof clauses
from a set of training data. These clauses are then usedtasegavithin a Naive Bayes
classifier. To predict the class of an unseen example thsittasuses how well each
clause covers the unseen example, and the conditionahliiael that the clause will pre-
dict a specific class. The conditional likelihood is estietdrom a set of labelled training
examples. A comparison was done with a procedural appragcéré the clauses were
applied to an unseen example in order, and the class of thenftshing clause was used).
The results showed that the Naive Bayes approach willgtitk when the procedural ap-
proach fails to return the correct classification.

33

Chapter 2 Background

Flache and Lachiche’s 1BC [30] system takes a similar agpreacept that the in-
stead of using an ILP method to induce the clauses from dateuth discovery system
Tertius [29] is used. The system is asked to find clauses tiatcontain one literal that
relates to a property of an object, and the rest of the I¢eralst be related to relations be-
tween objects. This ensures that all the clauses will bgo@deent when used as features
within the Naive Bayes classifier.

Another technique for improving the accuracy of classifarais to use boosting to
learn a set of clauses. Boosting [115] combines a set of wisasiiers to produce a
strong classifier. A weak classifier makes a classificatioichivperforms just better than
random guessing. A weak learner is used to produce the waskittérs by repeatedly
training itself on a weighted training set. On each run a watagsifier is generated. The
error of this weak classifier on the training set is then daled. This is used to weight
the weak classifier when the final classifier is produced. Téights on the training set
are then updated based on how well the weak classifier peeleeich data item, including
weights at poorly classified items. To produce the final diassion a weighted majority
vote over all the weak classifiers is performed. Quinlan [1&dplies boosting to the
FFOIL system, which is a variant on FOIL [100] designed tarefnctional relations.
The standard boosting algorithm is changed in two waystl¥fiasweighted re-sampling
technique is used to generate the data set to learn each aeseclThis is performed by
sampling the training set based on the weights on the datesit&econdly the weight
on each learnt clause is the same. The results showed tHawdlséng version of FFOIL
produced more accurate results than the non-boosted mersio

Muggletonet al. [86] use a SVM to decide the class of an unseen example based on
a set of clauses which entail it. The Progol ILP system is usi@lly to find a large
number of clauses (typically around 1500 - 2000) which czlyecover a pre-defined
percentage of the training data. The clauses are then dpplieach example in the
training set, and it is recorded if the clause can correcthaiethe example. A kernel is
used that compares the similarity of two examples basedeseatof clauses which entail
them. This kernel can then be used with a SVM to predict thesadhan unseen example
based on the set of clauses which entail it. A comparison wae dising a structured
toxicology dataset, and it was shown that this techniqueoiseraccurate than Progol, and
standard SVM methods.

The previous set of methods work in two stages: firstly therHdauses are learnt
using a standard ILP algorithm, and the parameters of a corébolver are learnt, which
compute its most likely class of an unseen example based mhwiauses entail it. This
next set of methods presented here use a combined approaoch bdth the Horn clauses

34

Chapter 2 Background

and parameters of the conflict resolver are learnt at the samee This then ensures that
more accurate predictive models can be learnt.

Daviset al.[19] use a greedy learning algorithm called Score As You $&&r).
Firstly the Aleph ILP system [121] is given an example, anddut find a clause that
generalises the example. The clause is learnt in a greedgenariere a clause with the
highest m-estimate is used. This clause is then added aary iéature to a Bayesian Net-
work. The structure and parameters of the Bayesian Netwerthan learnt. The score of
the Bayesian Network is then calculated by using the areanitgjprecision-recall curve.
If the score is worse than the previous score the clause ievedn The algorithm was
tested on both a Naive Bayes classifier (described in theSestion 2.5.3.1), and with
a Tree Augmented Naive Bayes (TAN). A TAN is similar to a WaBayes classifier but
can allow a feature to be dependent on one other feature.ethaijue was only tested
on binary classification problems, and was found to use felaeises, and shorter clauses
than using a two-stage approach.

Landwehret al.[61] use similar ideas by integrating Naive Bayes into F(lhe cov-
ers, and score functions in FOIL are re-written. The covenstion determines whether
an example is predicted by a hypothesis given some backdrofmrmation. The score
function returns a score based on how well a hypothesis salierset of examples given
some background information. The changed covers functed a Naive Bayes classifier
to return the probability of a hypothesis predicting an egkngiven some background
information. The score function was changed to return tbbaloility of a hypothesis pre-
dicting a set of examples given some background knowledfe.s€parate and conquer
approach to learn examples used in FOIL (where examplesthatovered by a learnt
clause are removed from the training data), is removed. ¥ss uses a beam search
for clauses, which keeps a set of théest clauses found so far, and will stop learning
clauses when there is no change in the score between addirggeparate clauses to the
hypothesis. The approach was shown to be more accurate simanatandard ILP.

The novel approach to conflict resolution presented in tiesis is similar to the two
previous methods [19, 61]. A combined approach is used to e production rules,
and the probability distribution for the conflict resolv@h@apter 4). However unlike the
methods described in this section the conflict resolvermsta set of production rules
rather than a particular classification. To produce a pteefiche action sections of these
production rules are fired creating a set of spatio-temptata. This is the same as how a
conflict resolver in an expert system works, and allows tleelistive models to generalise
from a set of spatio-temporal data, as shown in Section 3.3ullBayesian Network
(Section 3.3), is used to represent the conditional praibadistribution used within the

35

Chapter 2 Background

conflict resolver as opposed to Naive Bayes or TAN used imté#hods in this section.
This allows for better modelling of the dependencies betndifferent production rules
when deciding which production rules to use to predict the set of spatio-temporal
data.

2.5.3 Applying first order logic production rules to non-deterministic
spatio-temporal data

This section presents a review of methods for combining érder logic with proba-
bility. These methods allow the first order logic productroites to be used with non-
deterministic spatio-temporal data, and allow the outcoime first order logic produc-
tion rule to be uncertain. Firstly probability will be defothehen Bayesian Networks and
finally techniques to combine first order logic and prob&pivill be shown.

2.5.3.1 Probability

Probability may be used to represent/model how likely paléir events are to occur in
the world. This section will give a brief overview of probbtyi related to this thesis,
for a fuller explanation please refer to [111]. The world iade up of a set of random
variables that each describe particular parts of the wdglachrandom variable Xcan
either be continuous or have a set of discrete state&n eventdescribes if a particular
occurrence might occur in the world, and assigns a statecto @ahe random variables.
A probability value between 0 and 1 is then assigned to thatdweedescribe how likely
it is to happen. The probabilities of all possible mutuabglesive events in the world
must sum to 1. Théull joint probability distributionrepresents the probability for every
possible combination of states over the random variables.

The prior probability distribution(Equation 2.4) represents probability of a random
variableX being in stateq, ..., X, when there is no other information about the state of the
world. Theconditional probability distributior{Equation 2.5) is used when there is some
information on the state of the world that is relevant to detaing some other state. Itis
the probability of variablé\ being in statey; conditioned on the fact that variabBeis in
stateb;.

P(X =x) (2.4)
P(A=4a;,B=Dj)

P(B=Dbj)

The product ruleshown in Equation 2.6 is a rearranged version of the conwitio
probability distribution, but is a key equation used to dulayesian NetworksBayes

P(A=a|B=bj) = (2.5)

36

Chapter 2 Background

rule (Equation 2.7) is used to invert the conditional probapditstribution in cases where
there is information on random variabfe but little information on random variabl¢.

P(A=a,B=bj)=P(A=a|B=b)P[B=b)) (2.6)
P(Y|X) = % (2.7)

Equation 2.8 shows the condition that the random varigbtandependensfY. Con-
ditional independencéequation 2.9) states that given random variablée conditional
probability of random variableX andY can be broken down into independent condi-
tional probability distributions where each random vaeabandY are conditioned od.
Conditional independence is an important concept whiclséslwvithin the Naive Bayes
classifier (shown in Equation 2.10) where the set of booleatufed = {fy, ..., fy} are
each assumed to be conditionally independent given the eagbleC.

P(X|Y) = P(X) (2.8)
P(X,Y|Z) = P(X|2)P(Y|Z) (2.9
P(C,F)=P(C) |_| P(fi|C) (2.10)

2.5.3.2 Bayesian Networks

The simplest way to represent the full joint probabilitytdizution for discrete variables
is to use a table. This can quickly require lots of memory asniimber of variables is
increased, often requires a lot of data to estimate makihgrd to compute, and is very
poor at generalising. Using the product rule and conditiovdependence assumptions
the full joint probability distribution can be broken dowmo a set of conditional prob-
ability distributions for each random variab¥ based on a set of parent nodesit is
directly influenced by (Equation 2.11).

P(Xa, ... %) = [P(X[Pa(X) (2.11)

|
This can then be represented by a Bayesian Network (alsedcalBelief network)
[94] by using a directed acyclic graph (DAG). The random afalies represent the nodes
of the graph, and the edges represent the links to each noaleats. An example DAG

37

Chapter 2 Background

is shown in Figure 2.11. To perform exact inference over thgd3ian Network can
be intractable when it is a multiply connected (when themadse than one undirected
path between any two nodes in the network). An alternatiy@agzrh is to approximate
by sampling from the Bayesian Network. The Markov Chain Mo@arlo (MCMC)
algorithm [75] is a popular sampling technique, which usdésasition probability to
jump between variable states. If the algorithm is run longugih the time spent in each
of the variable states will approximate to the actual distiion.

(X
» () ©

Figure 2.11: A simple Bayesian Network involving four vénies: X, A, B, andC. X has
three parent nodes it is directly influenced By B, andC.

There are two key problems with learning Bayesian NetwoRa&tameter learning,
and structure learning. Parameter learning relates tmastig the conditional proba-
bility distribution for each random variable in the Bayesidetwork. Structure learning
relates to computing the optimal set of edges between tltwrawariables so that the un-
derlying full joint probability distribution is well mod&td, or approximated. Aomplete
datasethas a value for each of the random variables in every exanfaleincomplete
datasehas examples where some of the random variables are nohedsiyalue. When
the structure is already predefined and there is a compl¢éhsetahe parameters of the
Bayesian Network can be estimated directly from the datasfien there is a complete
dataset, but the structure and parameters are undefinedattesa variety of approaches
including genetic algorithms [62] and greedy algorithm&, [A4].

The structure of a Bayesian Network can often be simplifiechbbpducing extra ran-
dom variables into the network calléndden nodesWhen the structure of the network
containing these hidden nodes is fixed the problem is to estithe parameters of the
network. In the previous case this problem was easy bechesparameters could be
directly estimated from the dataset, as the network nowatosthidden nodes an esti-
mation of what these parameters could be needs to be foundthe dataset. The EM
(Expectation Maximization) algorithm [20] can be used ttvedhis problem. It uses an
incomplete dataset where the data for the hidden variablesknown. The parameters

38

Chapter 2 Background

are computed in two steps. Firstly the expectation stepthsasurrent parameters and the
incomplete dataset to compute the possible distributioralfes for the hidden variables.
Secondly, in the maximisation step each the possible vdtudbe hidden variables are
used to create a complete dataset, which is used to updatardumeter values.

2.5.3.3 Combining first order logic and probability

Section 2.5.2 looked at predicting, or classifying an exialy using a set of first order
logic production rules. Here it was assumed that the exanpkre deterministic, and
there was no way to assign a probability to how likely the mtgah or classification was.
This section will review methods for assigning probalektto examples, and production
rules, so that the likelihood of a prediction, or classiimatan be computed.

Early techniques to solve this problem come from the arexpé® systems. Here
the likelihood of a prediction or classification producedabgroduction rule is based on
the likelihood of the production rule, and the likelihoodtbé examples used in the rule.
Bayes rule [43] and certainty theory [116] have been use@poesent this probability.
The probabilities are typically hand-defined, and the tepmonly allows the probability
of production rule to be based on a sub-set of examples itftm®sthe knowledge base.

An alternative approach comes from Probabilistic Logicrbesg [104] which com-
bines probability, logic, and learning techniques. Prdisiz logic learning upgrades, or
generalises, standard probabilistic representatiomtguls to incorporate logical clauses.
The previous approaches only allowed the likelihood of glsiproduction rule to be es-
timated based on a sub-set of examples it matches. Pratimblitigic learning however
allows the likelihood to be computed of a set of productidesiased on how well they
match or predict a set of examples.

Haddawy [40] describes a Bayesian Network using first ordgrcl sentences. A
knowledge base is used to store the structure of the netvi&a&h sentence has its own
conditional probability table that relates its value to ttadues of its parent sentences.
Checks are performed to ensure that the sentences willduatid Bayesian Network. To
perform inference over the knowledge base a set of examplég iform of ground logic
statements and a grounded query term are required. A netyeorration algorithm uses
the knowledge base to backward chain from the query untibargted Bayesian Network
is produced that includes the examples. Inference is theorpged over the grounded
Bayesian Network to produce the probabilistic likelihodthe query. This approach uses
a hand defined set of logical sentences to describe the Baydstwork. Kersting and De
Raedt [53] developed an approach called Bayesian Logia&nug(BLP), where both the
logical clauses, and their parameters can be learnt. Bayésigic Programs require a set

39

Chapter 2 Background

of Bayesian clauses, a set of conditional probability dhstrons, and a set of combining
rules. A Bayesian clause is the same as a range-restrictad dluse except each of
the atoms and predicates have a finite domain, defined bydtessif random variables.
Each Bayesian clause has an associated conditional plibpdistribution representing

the probability of the state of the head, given the state etibdy. Combining rules are
used to combine the conditional probability distributimfswo Bayesian clauses that
have different bodies, but the same head. Structure lanisiperformed by applying

a greedy structure learning method to the initial resulbsnfithe knowledge discovery
system CLAUDIEN [103]. This adds and deletes atoms from eddhe clauses and

keeps the one which keeps the network acyclic and has thedsests. This repeats until
there is no change in the score.

Similar approaches have been used by Koller and Pfeffer nobaee frame based
systems [57], and relational databases [33] with Bayesiaiwbrks. In [57] each class
frame has a set of slots added to it which describe its vaitegarent frames, and a
conditional probability distribution that computes thielihood of its value based on the
values of its parents. A knowledge based model construatiethod is then used to take
a set of frame instances and build a Bayesian Network. Thr& vgoextended in [33]
to relational databases where a probabilistic relatioredeh(PRM) is used to represent
the probability distribution. A greedy search method isduselearn the structure and
parameters of the PRM.

Markov Logic Networks [106] generalise Markov networks. AaMov network (also
called a Markov random field) models the joint probabilitgtdbution of a set of random
variables. It uses an undirected graph and a set of potdémtiedions. Each variable is a
node in the graph, and each potential function scores the ¥al a specific clique (group
of neighbouring nodes) in the graph. The joint probabilgy}computed by setting each
variable to a specific value, and then multiplying togethentalues for the cliques. This
value is then normalised by summing joint probability foegv possible combination
of values for the variables. A Markov Logic Network uses at fingler knowledge base
containing a set of constants, and a set of first order seesenbere each sentence is
assigned a real number. This is used to produce a Markov rietwioere each node
is a grounded predicate. The potential functions are repldy using the exponential
sum of the number of true groundings for each first order seetén a specific world
weighted by its real number. To compute the joint probabditthe Markov network it is
assigned a specific world. Each world assigns a true or false Yo each of the grounded
predicates. Then the probability of this world over all atherlds is computed. Markov
Logic Networks can be learnt by using a greedy beam sear¢hd&his can get trapped

40

Chapter 2 Background

in local optima. Bibeet al.[9] overcomes this problem by using an iterative local dearc
technique.

Stochastic Logic Programs [18, 83] are a generalisationtafhsistic context-free
grammars and HMMs. Stochastic Logic Programs are used snthleisis (Chapters 4
to 6). A stochastic logic program (SLP) contains a set of &rder range-restricted def-
inite clauses, where each clause has a value associatedt.wRhnge-restricted means
that every variable that appears in the head of the clauseappsear in the body. A pure
SLP is one where all the clauses have values, and an impurésSirie where some of
the clauses have values. A normalised SLP is one where thes/ébr clauses having
the same head sum to 1, and an un-normalised SLP is one wieevaltles do not sum
to 1. The probability distribution over SLPs is defined usihg set of derivations of a
particular query. From this three probability distributsocan be produced. The proba-
bility distribution over the set of derivations, the probey distribution over the set of
refutations (these are successful derivations), and thiegility distributions over atoms
(this is based on the outcome from the refutations). Mugglé®4] describes a two-phase
approach to learn SLPs. Firstly a set of Horn clauses aratleaing Progol, and then
parameters for each clause is computed by looking at theapiiity of each clause based
on to the frequency with which the clause is involved in thegis of the positive ex-
amples. The failure-adjusted maximisation (FAM) [18], @so be used to estimate the
parameters for normalised SLPs. FAM is based on the EM dlgonvith an adjustment
made for failure derivations. Muggleton shows in [81] anlgi@al solution to learn the
parameters and structure of the SLP at the same time, howe#er is no current im-
plementation of the approach. A comparison with BLPs is mad&8] where it was
shown that BLPs can encode the same information as SLPs,yaaollying combining
functions to SLPs they can encode the same information as BLP

This section has showed techniques that combine logic amigbpility, so that the
likelihood of a set of production rules over a set of examuplas be computed. The
method described in Chapters 3 and 4 predicts the possitsi®kepatio-temporal data
by using the first sub-set of the history the production rakesch, so only computes the
possible set of predictions based on a sub-set of examplesy than over all examples.
This makes it similar to approaches from expert systemsagxpdl at the start of this
section. The technique in this thesis could be expanded dinfirall possible matches
for the production rules in the history, and then producinijsé&ibution over all predicted
spatio-temporal data. This is not explored in this thesiscbuld be investigated in future
work.

41

Chapter 2

Background

2.6 Evolutionary search

Evolutionary search is a based on Darwin’s theory of natghdction and the survival of
the fittest. It works well in search spaces with a large nurobkrcal minima, or maxima,
where local or greedy search techniques will often fail td fine correct solution. This
section will first give an overview of evolutionary seardien it will talk about two main
evolutionary searches: genetic algorithms and genetgrproming. A variant on genetic
programming is used in this thesis to learn the predictivde(Chapter 4).

2.6.1 Overview of evolutionary search

Initialise individuals
of the population

Return the fittest
individual

Compute the fitness

—p-| of each individual in |

the population

as the maximum
number of generations
passed or has an individual
of the desired fitness
been found?

Apply genetic
operators to them,
and add the results to
the new population

Select individuals
from the population

Figure 2.12: An evolutionary search flow chart.

Evolutionary search works in the following manner, see Feg112. Firstly, a pop-
ulation of randomly generated individuals is produced. tNefitness function is used
to assign a fitness value to each individual of the populatibhen individuals of the
population are selected based on their fithess and a set efig@perators is used to
combine them, which creates a new population. The indivgaee then scored again,
and a check is made to see if a specific number of generatioeglagsed, or an individ-
ual of a specific fitness has been found. If this is the casettieefittest individual from

the population is returned, otherwise the process is regdeat

The next few sections will look at different techniques tpresent individuals in the
population, different fithess and selection methods, dfiegenetic operators, methods

42

Chapter 2 Background

to reduce the complexity of the final solution and finally nueth to prevent bloat and
improve population diversity.

2.6.2 Representation

The two main techniques to represent the individuals in tpufation are binary strings,
or trees. Genetic Algorithms (GA) [37] use a binary stringeihis typically of a fixed
length and Genetic Programming (GP) [58] (with a good owsmin [95]) uses a tree
based representation. Some other representations in@agievhich uses a linear se-
qguence of instructions, and [77] which uses an indexed graph

In GAs the binary string encodes the possible solutions. réate the initial popu-
lation a random set of binary strings is generated. In G tage made up of terminals
and functions. Terminals can be constants, variables natifons with no arguments, and
they appear in the leaf nodes of the tree. Functions are atdiedmputer programming
functions for exampler-, AND, or SI N and they appear in the nodes of the treeleaAf
nodeis a node which does not have any child nodesoét nodeis a node which does
not have any parent nodes. Tthepthof a node is defined as the number of edges that are
traversed from the root node to the node. Tieximum deptis defined as the depth of
the deepest leaf node. Figure 2.13 shows a GP program rafirgsthe equation - x°.

Root node

Depth
Max depth

Leaf node

Figure 2.13: An example GP binary tree which is represertiagunction 1+ x2.

The function nodes areand+, and the terminal nodes are 1, andlhe root node ist,
and the depth to the 1 node is 1, and the maximum depth is 2. rébge évaluated in a
depth first manner.

In Koza’s original research work on GP [58] all the functiarsed in the tree had to
exhibit a property called closure. This is the ability forumétion to be able to handle
arguments of any datatype and any value. The key idea beldadre is that a tree can
still be evaluated using any arbitrary set of functions. sTéreates two main problems.
Firstly each function must be written to handle the outpu\ary other function, which

43

Chapter 2 Background

can often make it hard to write. Secondly, there is a largefgabssible ways to combine
the functions which produces a large set of possible tre@e s which are nonsensical.
An alternative approach is to impose a typing to the trees, ohniy allows functions and
terminals to connect together if the function can handledtita produced by the terminal
or function, reducing the size of the search space. Strohglged Genetic Programming
[79] assigns a hand defined type to each terminal, and to eachidn it assigns a hand
defined a type for each of its arguments, and the type of dattutns. Checks are
performed when the tree is initially generated, or alteedrtsure that for all functions
the type of its child nodes match the type of its arguments.

There are two techniques that can be used to produce thad tréies: the Full method,
and the Grow method. The Full method ensures the depth oéthertals in the tree are
all at the maximum depth. This is achieved by only using fiomg at all depths other
than the maximum depth. At the maximum depth only terminals loe used. In the
Grow method either a function or a terminal is used at evepghdether than maximum
depth. Again, at the maximum depth a terminal is picked. Balpce an initial population
containing a large range of tree depths and structures Rhhgdeand half [58] is used.
This generates trees from a hand defined minimum depth to amaxdepth using both
the Full and Grow methods in equal proportion.

2.6.3 Fitness methods

To assign a fitness to individuals in the population a fithesgtion is required. This
assigns a score to each individual in the population basédwrwell it solves the task to
be completed. Koza [58] describes four fithess methods: taes, standardised fitness,
adjusted fitness, and normalised fitness. Raw fitness is nmstef the problem to be
solved. It compares the individual against a number of férezses, or examples. For
example with the path example there will be a number of dffiésituations of a person
walking along the path, and the raw fitness will be the numlbéinges an individual in
the population correctly predicts which fork the person vake. Raw fitness is typically
based on error. This is produced by computing for each exathpl difference between
the example’s output and individual’s output; and then sumgrthe results. Raw fitness is
used in this thesis, described in Section 4.7, scores holtvegbredictive models predict
from a set of history. To compute the fitness the predictivel@hts applied at each point
in the history to produce a prediction. This prediction isnpared against the data at the
next time point in the history to produce a predictive matotrs. The fitness is produce
by computing the average predictive match score over therkis

44

Chapter 2 Background

Standardised fithess changes the raw fitness so that a lolwernsaetter than a higher
value, where a value of O is best. This is shown in Equatiof &Herer ., is the largest
possible raw fitness value, an@) is the raw fitness of individual

S(I) = rmax_r(i) (212)

Adjusted fitness (shown in Equation 2.13) emphasizes srafiges in standardised
fitness, this allows greater separation of the fitness oviddals when the fitness starts
to converge in later generations.

. 1
a0 =174
Normalised fitness is computed from the adjusted fithessgtmu2.14). It is the
individual’'s adjusted fitness, normalised by the total at§d fitness for the population.
Normalised fitness assigns a larger value to individualk Wigher fitness, and can be
used by fitness proportionate selection described in thesaexion.

(2.13)

. a(i)
n(l)_m (2.14)

2.6.4 Population sampling methods

Population sampling methods, as described in Section,aflised to select individuals
from the population based on its expected value. &mected valuef an individual is
the expected number of times the individual will be seled¢teceproduce and is based
on the individual’s fitness. These individuals will then beem to the genetic operators
(described in the next section) to produce a new populaliesiimportant that the popu-
lation sampling method does not sample excessively fromvénefit individuals, which
would create a new population dominated by these indivaluihis will reduce diversity
(explained in Section 2.6.7) causing the population to @tenely converge. Conversely,
if the population sampling method does not sample enough the fitter individuals of
the population it will take a long time to find an optimal sadut.

In fitness proportionate selection [48] the “expected Vabfean individual is based
on its fitness divided by the total fitness of all individualghe population. Individuals
with higher fitness will have a higher expected value, andefioee will reproduce more.
There are two methods to implement fithess proportionasesgeh: roulette wheel sam-
pling, and stochastic universal sampling (SUS). Rouletiealsampling is equivalent to
allocating space on a circular wheel based on the fitnesscbf iedividual. The wheel

45

Chapter 2 Background

is then virtually spun to select an individual. This repaatsil the number of individu-
als required for the new population are selected. In raaietieel an individual can be
selected a large number of times more than its expected.vahis could cause a very
unfit or very fit individual to dominate in the new populatiddtochastic Universal Sam-
pling [6] is an approach to solve this problem. Instead ohsjrig the roulette wheet
times based on the individuals required for the new poparatihe wheel is spun once,
but hasn equally spaced pointers on it which are used to select theichahls. The main
problem both of these fithess proportionate selection nusti®that they are biased to
pick fitter individuals in the population in early generaiso These fitter individuals will
then dominate the population, reducing diversity and wtety causing the evolutionary
search to prematurely converge.

There have been a number of methods to solve these probldnd) scale the raw
fitness of an individual to an expected value. Sigma scaldig keeps the selection
pressure at a constant value for the entire run. The sefegtessure is the how much of
the population is dominated by highly fit individuals. An imidual’s expected value is
based on the its fitness, and the mean and standard deviétienpopulation. Boltzmann
selection [38] allows the selection pressure to vary dutiregrun. A temperature is used
to control the selection pressure where a high temperateasmsma low selection pressure.
Over the run the temperature is lowered which increasesdlleetson pressure, allowing
the population to focus on the fitter individuals.

Alternative techniques to using fitness proportionatectiele are: tournament selec-
tion, and rank selection. Tournament selection [37] pichisdividuals at random from
the population, and returns the one with the best fitnessgdraralues fom cause the
method to sample more often from the fitter individuals ingbgulation. Rank selection
bases the expected value of an individual on its rank rattaar its actual fithess. This is
performed by sorting the individuals by their fithess andgassg them a number from 1
to the size of the population. In this thesis tournamentsele is used (Chapters 4 to 7).
Rank selection [5] prevents highly fit individuals from daeraiing the population, but it
can slow down the search.

2.6.5 Genetic operators

In a Canonical GA [130] the sampling method is firstly usedreate an intermediate
population which is the same size as the current populatiubsequently two binary
strings are selected at random, without replacement, flemritermediate population.
One point crossover [37] is used to change the two binarpgdri A cut point on the

46

Chapter 2 Background

binary string is selected, and each binary string has theeotspast the cut point swapped
over with the contents from the other binary string. If cm&s is not performed the
binary strings are left unchanged. Mutation is performedhentwo binary strings with
a small probability each bit in the binary string is randorohanged. The two binary
strings are then added to the new population. This proceesate until the intermediate
population is empty.

GP uses similar genetic operators, but does not use an medéate population, and
it does not combine the operators together. The crossoesatny [58] selects two trees
from the population, and randomly picks a sub-tree on eagrpm: these two trees are
swapped over and are added to the new population. Figuréddvwsscrossover performed
on two trees. The mutation operator [58] selects one trew fhe population, randomly
picks a sub-tree on it, and replaces it with a randomly ge¢edraub-tree. Figure 2.15
shows mutation performed on a single tree. The reproducipeanator [58] selects a tree
from the population and adds it to the new population.

Crossover

o]

Figure 2.14: Crossover performed on two trees.

Mutation

&b

Figure 2.15: Mutation performed on a tree.

a7

Chapter 2 Background

2.6.6 Reducing the complexity of evolving solutions in Getie Pro-
gramming

Normally in GP the program is represented as one tree. Howev&lve many problems
repeated use of the same code is required. To do this withreaedquires GP to evolve
the repeated pieces of code separately in the correct darte tree, which can often be
difficult for large problems. A better solution is to break the tree to that it has sub-
trees that represent the repeated pieces of code, and agselstifee that uses the code
sub-trees when it is evaluated. Koggal.[59] use this approach by replacing the tree

Root node

Result

ADF3 ADF2 ADF1 branch

N \

Figure 2.16: A tree containing a result producing brancll, asset of automatically de-
fined functions.

with a result producing branch and a set of Automatically Bedi Functions (ADFS).
The ADFs represent different pieces of repeated code, anckiult producing branch is
used to call them (Figure 2.16). Different function and ter@hsets can be given to each
of the ADFs, and the result producing branch which allowsABés to evolve different
pieces of repeated code. The number of ADFs for each indwidufixed. A change
is made to the crossover operator to only allow sub-trees tite same ADF or result
producing branch to be swapped over. To allow GP to autoaibtitearn how many
ADFs to use Koza [60] introduced architecture altering apens. These allowed ADFs
to be created, and deleted within an individual, but therse m@method to copy ADFs
between individuals. Evolutionary pressure will then dedhe optimal number of ADFs
to use. Chapter 4 shows similar approach to represent tlkcpve models used in this
thesis, where each ADF is a production rule, and the resodtyming branch is a conflict
resolver to decide how to use the production rules to prediatspecific context. This
chapter also introduces operators that can add and repladeqtion rules from different
predictive models.

48

Chapter 2 Background

Instead of forcing the architecture of the trees to containtsees representing the
repeated code another approach is to use one GP tree, begte fsub-trees within a tree
so they cannot be changed. Evolutionary Module AcquisiiieMA) [2] randomly picks
a GP tree and compresses a random sub-tree, replacing @ Wuticttion call. This allows
the code within the sub-tree to be preserved. EMA can alsarexfunctions back to their
original sub-trees. Roberéd al. [108] takes a different approach. They store information
on all the sub-trees in the population in a database. Ilyitilaé GP system is run multiple
times. The sub-tree database for the best run is analysethars#t ofn best sub-trees
are added as terminals to the terminal set. Then GP is peztbagain using this changed
terminal set. Encapsulated Genetic Programming [65] dchices pointers into the GP
tree, which can point to any sub-tree within the tree. Thentgos are preserved with
crossover. This allows code reuse and a graph like struttiteeolve.

Instead of trying to find common code within the trees, ano#pproach is to break
the population into groups of individuals that each solveasate sub-problem. To pro-
duce a result the best individual in each group is run, andesats combined to produce
an overall result. This has been successfully applied tesdlaation problems. Mcin-
tyre et al. [73] applies niching which has been successfully used iregiemlgorithms,
and multi-objective optimisation [72] where individualeaanked by their pareto-fitness.
Lichodzijewski [63] uses first and second price auctionsemghindividuals in the popu-
lation bid for classifying a class. In first price auctions thdividual with the highest bid
is selected, and it must pay its bid to the system. If the iddial correctly predicts the
class it receives a reward. In second price auctions theithdil with the highest bid is
again selected. If it does not correctly predict the clasbid is paid to the system. If it
does predict correctly then it receives a reward, and must@#he system the highest
bid from the individual that predicted incorrectly. Thisorrectly predicting individual
must also pay its bid to the system. In experimentation sgpoice auctions were found
to work the best.

2.6.7 Bloat and diversity

Bloat and diversity are key issues when using GP. Bloat happéen trees in the pop-
ulation contain sub-trees that do not contain any usefueca if the sub-trees were
removed the tree would evaluate in the same way and get the S®ss score. Diver-
sity looks at the range of different individuals in the pagdidn. To control bloat the size
of the individuals in the population is restricted, but them effect diversity. To allow
GP to find good solutions a population of high diversity isuieed, but this is also more

49

Chapter 2 Background

likely to provide solutions having bloat. By controllingdait and diversity an optimal set
of individuals can be potentially found. A comparison ofdicontrol methods is given
in [67]. An analysis of diversity with fitness is given in [12]

Different techniques can be used to control bloat. The sstp$ to use a parsimony
term on the fitness function. It can often be hard to set howmatfithe fitness should be
based on the score of the tree, and how much should be basedstrei Soule [120] de-
scribes when parsimony pressure can be successfully useatil| bloat. Rochat [110]
uses dynamic population sizes to control diversity andtbl®he best fitness of the cur-
rent individual is related to the initial best fitness to diechow many individuals should
be removed, or added to the population. The Tarpeian blodtaonethod [22] stochasti-
cally removes a percentage of the individuals at each geoetaat are above the average
size. This method is not as strict as parsimony pressurealéowis GP to still use larger
individuals in later generations. The Tarpeian method &lus control bloat in the our
learning technique, described in Chapter 4. The percembugelividuals removed from
the population is fixed for each run. Chapter 7 describesratqae to automatically vary
the percentage of individuals removed at each generationali#@rnative bloat methods
is the waiting room [93] where individuals wait to be addedfe population based on
their size. To adaptively control diversity Ekart [21] useBtness sharing approach that
changed the niche size based on the change in populatiasithyand fitness of the best
individual in the population. The diversity metric is basaa the weighted arithmetic
mean between individuals in the population.

2.7 Complete systems for learning predictive models from
video

Fernet al. [26] looked at learning event definitions from video of peopicking up
and putting down a set of blocks. A raw video of a scene is atesianto a polygon
representation by segmenting and tracking the blocks. TDiygpns are then applied
to a force-dynamic model which describes how the blocks endtene are in contact
with each another. The scenes are temporally representegl Aisd-Meets-And (AMA)
propositional logic. A specific-to-general learner is tised to generalise from the AMA
formulas to learn the event definitions.

Fern and Givan [25] look at learning the force-dynamic rele from the same videos
as the previous paper. An object tracker is applied to videlosh outputs low-level
information on the blocks for example the distance betwhemtand their speed. These

50

Chapter 2 Background

are then stored as a sequence of observations. A sequentsed is also produced

representing the force-dynamic relations. The mappingéen the observation sequence
and the state sequence is then learnt using CLAUDIEN [108p tfpes of rules are used

for the mapping: o-rules, and s-constraints. The o-rulep oleservations to a specific

state. The s-constraints are used as constraints on thé ftates. To produce a set of

states from a sequence of observations, each of o-rulepi®dpo the sequence. The

resulting set of states is then has the s-constraintsiitelatpplied to it.

Most closely to the work in this thesis is the work of Needhetnal. [89] in which
Horn clauses to describe the protocols of basic card ganeele@mt from video. The
cards in the video are tracked using a blob tracker [68]. Wheard was stationary for a
number of frames it is assumed to be part of the game. Fedtoraghe card including
texture (calculated from Gabor wavelets, and Gaussianisedpgt various orientations
and scales), colour (calculated from a binned histogranuef &nd saturation), and posi-
tion were produced. Each colour, and texture feature waspaadently clustered using
agglomerative clustering. The clusters were then usedaito &rvector quantisation based
nearest neighbour classifier. One of the players had theievecorded during the games.
The energy of the speech signal was analysed using a fixethlemgdow. When the en-
ergy was over a fixed threshold spectral analysis was peemn the window, and the
result was histrogrammed. K-means clustering was theropeed on the speech sam-
ples, to find clusters of similar speech sounds. A set of teadgacts representing the
cards, and the speech sounds spoken during the game wasg@dod@rogol was used
to learn Horn clauses that could predict the speech sours#silian the properties of a
set of cards. The technique cannot deal with probabilistteskets, and has a very simple
conflict resolution strategy that can cause it to predictwheng outcome. In Chapter 4
the datasets and the technique from this paper are compgaetsathe novel techniques
described in this thesis.

Santoset al. [112] apply the same video analysis technique from the presspaper
to videos of dice games. Temporal facts describing the ptigseof the dice were then
produced. These were input into Progol and HR to learn a saile$ describing the
game. As explained in Section 2.5.1.3 both methods perfdmed with different noise
levels in the data, but overall Progol performed slightlytéethan HR. Again, like the
previous paper the technique does not deal with probabitistasets.

Santoset al. [114] learn a set of rules from video to decide where best &zela
camera in a scene to observe a visual task. Videos of colduoe#ts being stacked in
various combinations were taken. The blocks in the videevirarcked using the same
blob tracker from the previous papers [89]. The colour ofliteeks was extracted from

51

Chapter 2 Background

the video, and a local cardinal system is used to represeintdication. In a local cardinal
system each object defines its own cardinal reference framehws used to represent the
location objects around it. The block data is then descrédsea set of symbolic relations.
Progol was used to learn a set of Horn clauses from this ddta.system assumes that
the data is deterministic and will not be able to learn or ymein-deterministic rules.

2.8 Conclusions

This chapter has reviewed current work on learning predaictiodels from non-deterministic
spatio-temporal data. The spatio-temporal data is gezebfedm videos containing vari-
able numbers of objects. The predictive models are then tospcedict future spatio-
temporal data, or to recognise events.

It has been shown that to represent spatio-temporal ddtedhtains variable numbers
of objects a variable length representation would be atlesaChapter 3 shows the use
of Frames to represent the spatio-temporal data used ithigss. The spatio-temporal
data describes properties of the objects, and relationseleet objects. In this thesis
qualitative relations are used to describe object relati@hapter 6 shows the use of both
region based, and point based qualitative spatial relstittinvas explained that Allen’s
interval calculus can only be applied when both time intisrtaave a valid start and end
time. Chapter 5 introduces a novel temporal relation thatregresent intervals that do
not have a valid end time.

The predictive models in this thesis are represented asdugtion system. A pro-
duction system contains a set of production rules, and aicbrékolver, which decides
which of the production rules to use for the prediction. Rigithn rules in this thesis are
represented in first order logic. There are multiple apgtieado learn first order pro-
duction rules with the best results from using stochast@eccdetechniques, and inducing
multiple production rules concurrently. Both of these dasimns have been incorporated
in to the approach described in this thesis (Chapter 4).

Most approaches to learning the parameters of the confiiotver, and the first order
logic production rules use a two stage approach where theofider logic production
rules are learnt, and then the parameters of the conflictversare estimated. Recent
techniques have improved on the results from the two-stpgeoach by learning both
the parameters of the conflict resolver and the productitas simultaneously. The same
idea has been used to learn the production rules, and thacteafolver in this thesis
(Chapter 4). The probability distributions used within ttanflict resolvers use simple
Bayesian Networks, the technique described in Chapter daifall Bayesian Network.

52

Chapter 2 Background

This allows for a better modelling of dependencies betwhemptoduction rules.

A genetic programming based approach is used to learn tlticpve models. A
similar idea to ADFs is used where the result producing brarepresents the conflict
resolver and each ADF represents a production rule. Hoywawéke ADFs, production
rules may be swapped or added to different production rdikee. Tarpeian bloat control
method is used in this thesis to control the size of the inldigls in the population. The
Tarpeian bloat control method uses a fixed Tarpeian valud&oentire of the run. Chapter
7 investigates a technique to vary the amount of downwardspre on the size of the
predictive models in the population over the course of time ru

53

Chapter 3

An Architecture for Representing, and
Modelling Spatio-Temporal Data

3.1 Introduction

This chapter outlines an approach for representing and Inoglepatio-temporal data.
Chapter 4 will then explain how a predictive model can beriefmrom spatio-temporal
data based on this approach. Figure 3.1 shows the archgdbtiat has been developed
within this work. It is broken down into two parts: a obsergathistory data repre-
sentation (for the rest of this thesis it will be called hrg)p and the predictive model
representation. Aistoryrepresents the previous and current set of spatio-temgatal
relative to the current time. The history is input intpredictive modelwhich predicts
the most likely set of spatio-temporal data that will occiieathe current time. The pre-
dictive model is based on a production system describedatid®e2.5. The production
rules describe the different possible patterns in the histad their possible outcomes.
A conflict resolver then decides how to use the productioasab predict in different
contexts.

Section 3.2 explains in more detail how the history is repmésd. Section 3.3 ex-
plains how the predictive model is represented. FinallgtiBa 3.4 explains an inference
procedure to allow a predictive model to predict from a sdtistory.

54

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

_—b Predictive model ———— Prediction

History p .

Production rule

Conflict | E
resolver— ™

-
B

Production rule

\m

Production rule

Overall
Predictions prediction

Figure 3.1: An architecture to represent and model spatigpbral data. It has three parts:
a history; and a predictive model which is input the histagg produces a prediction.
The predictive model is broken down into two parts: a set @dpction rules, and a

conflict resolver.

3.2 History representation

The history represents the set of previous and currentcsgetiporal observation data.
The spatio-temporal data contains entities, and relatiénstiesrepresent objects, groups
of objects, or parts of object®elationsrepresent any relations between entities for ex-
ample spatial or temporal. Section 2.3 described two mairesentation techniques for
spatio-temporal data: fixed length, and variable length. x&dilength representation
would not be appropriate here, because the datasets useid thesis contain variable
numbers of objects and object relations that last for végiédngths of time. To solve
this problem Frames [78] (described in Section 2.3.4) aeel i represent the history in
this thesis. Each of the entities and relations requidefanitionrepresented by a class
frame. Entities or relations that appear in the historyiastancesof these definitions
with constant properties, represented by an instance frRropertiesrepresent the phys-

55

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

ical properties of an entity or relation, for example its egheheight or colour. These
also require a definition, and instances are produced wigeerttities and relations using
the properties appear in the history. These concepts acgilged in more detail in the
following sections.

3.2.1 Properties

Propertiesare used to describe physical properties of an entity, atiosl. In this work
they are defined globally, and are not associated with acodatitype of entity, or relation.
This allows the properties of different types of entitieselations to be easily compared.
Properties consist of a set of attributes. &tributestores data on a property, for example
the propertyposi t i on might have two attributes andy that store the actual position
of the object. Firstly attributes will be explained, andrifproperties will be explained.

An attribute must first be defined by using a class frame. Atlatte class frames
contain the following slotsNane, Type, Val ue andPr obabi | i t y. TheNane slot
contains the instance name of the attribute (which is usedh adentifier), thel'ype slot
contains the data type of the attribute, ¥ed ue slot contains the value of the attribute,
and thePr obabi | i t y slot contains the likelihood of this value. Thgpe slot can take
one of three values: symbolic, integer, and float. To comtfoth data thé&/al ue slot can
contain the face¥al ueRange is used. For the symbolic type this is a list of the symbols,
and for the float, and integer types it is a range of possidlgega In each attribute class
frame, the value for the type slot is completed, along with\thl ueRange facet. The
remaining slots are left blank and are completed when aangstof the attribute class
frame is created.

Properties are defined in a similar manner. All propertiesd&fined using their own
class frame. This class frame contairideare slot, which stores the instance name of the
property, and slots for each of the attributes the propesgsu The attribute andane
slots are initially blank, and are completed when an ingtasfache property class frame
is produced. An example will now be introduced that will bedishroughout the rest
of this section to explain the different concepts. The exanmegtends the path example
given in Section 2.1 by allowing both people and cars to appedhe path. Information
on the x, y position of the cars and people is recorded, alatigtive colour of the people
and the cars. Figure 3.2 shows three attribute class fraxpé&sandCol our Nane. The
XandY attributes are both of type integer, and the range of vahmsdtan take is from 0
to 255. TheCol our Nane attribute is of type symbolic, and can only have values Green
Red, or Blue. These attributes are used by two properfesi t i on and Col our .

56

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

Class X Class Y Class ColourName
Name Name Name
DataType | Int DataType | Int DataType | Symbolic
Value Value Value
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability Probability Probability

Class | Position Class Colour

Name Name

X ColourName

Y

Figure 3.2: Property and attribute examples. The top rowvsttbe class frames for the
attributes:X,Y, Col our Nane. The bottom row shows the class frames for the properties:
Posi ti on andCol our .

ThePosi ti on property’s class frame has slots thandY attributes, and th€ol our
property’s class frame has a slot for Gel our Nane attribute.

3.2.2 Entities

Entities describe objects, collections of objects, oraxilbns of object parts . This section
will firstly cover how entities are defined by using entity sdarames, and then it will
describe entity instances represented by instance frames.

3.2.2.1 Entity definition

All entity definitions are described by an entity class frarA# entity class frames have
the slots:Nane andTi ne. They also have slots to store the properties that the argéy.
An entity class frame may also inherit (in an object oriergedse) from other entity class
frames. TheNane slot stores the name of the entity instance, andTlihee slot is used
to describe the temporal scope of an entity instance ovestwits properties are constant.
Table 3.1 shows the four possible types of values the tintecalocontain: Point, Period,
AllTime, and Incomplete. The Point time type is used to reprg an entity existing for an
instantaneous period of time, which could represent a ggethtime period. The Period
time type is used to represent an entity instance that egistsrange of time. The range
is described by the start and end time of the entity or ratahstance. The AllTime type
IS used to represent an entity instance that always existeihistory. It therefore exists
from the beginning of time-{) to the end of timec). Finally, the Incomplete time type
represents an entity instance that exists, but the end smmaknown. The end time is

57

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

represented by nknown This is used when an entity instance still exists at theegurr
time.

| Time type | Temporal rangg

Point [ts, ts+ O]
Period [ts, te]
AllTime [—00, 00]
Incomplete [ts,U nknown

Table 3.1: The four time types: Point, Period, AllTime anddmplete. They are defined
by temporal ranges. Variabterepresents the start time of the entity or relation instance
andte represents the end time of the entity or relation.

Initially all slots are blank, and are completed when ananse of the entity class
frame is produced. Figure 3.3 shows two entity class framedar aCar , and the other
for aPer son. They both use the same set of propert@st our andPosi ti on.

Class Car Class Person
Name Name

Time Time

Colour Colour

Position Position

Figure 3.3: Two example entity class frames, which use tbegrties shown in Figure
3.2. The first class frame is forGar , and the second is forRer son.

3.2.2.2 Entity instance

Entity instances are represented by entity instance fravhesh are instances of a specific
entity class frame. The values for thane andTi e slots are completed along with
creating instance frames of the property, and attributescteames that the entity uses.
The property slot values in the entity instance frame are tdoenpleted with the instance
name of the property instances. Figure 3.4 shows two emtgfance frames, one for a
Per son, and the other for &ar. TheCar entity instance frame is an instance of the
Car class frame. It existed between times O to 8. During this tinveas in position
(200,700) and had a colour of Green. TP& son entity instance frame is an instance
of the Per son class frame. It existed between times 4 to 8. During this iimes in
position (250,350) and had a colour of Blue.

58

Chapter 3

An Architecture for Representing, and Modellipgt#®-Temporal Data

Attribute instance frames

14

Figure 3.4: Two entity instance frames, which are instaradebe entity class frames
from Figure 3.3. Firstly the attribute, and property inggaframes that the entity instance

frames use are shown, and then the entity instance framstana.

Class X Class Y Class ColourName
Name X1 Name Y1 Name ColourNamel
DataType | Int DataType | Int DataType | Symbolic
Value 200 Value 700 Value Green
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability | 100% Probability | 100% Probability | 100%
Class X Class Y Class ColourName
Name X2 Name Y2 Name ColourName?2
DataType | Int DataType | Int DataType | Symbolic
Value 250 Value 350 Value Blue
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability | 100% Probability | 100% Probability | 100%
Property instance frames

Class | Position Class Colour

Name| Positionl Name Colourl

X X1 ColourName| ColourNamell

Y Y1l

Class | Position Class Colour

Name| Position2 Name Colour2

X X2 ColourName| ColourName?2

Y Y2

Entity instance frames

Class Car Class Person

Name | Carl Name | Personl

Time Period (0,8) Time Period (4,8)

Colour | Colourl Colour | Colour2

Position| Position1 Position| Position2

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

3.2.3 Relations

Relations describe relationships that exist between plel@ntities for example spatial or
temporal relations. Firstly the relation definitions, reggnted by relation class frames,
will be described; and secondly the relation instancesesgmted by instance frames,
will be described.

3.2.3.1 Relation definition

Each relation definition requires its own class frame. Alatien class frames have the
following slots:Nane andTi nme. TheNane slot stores the name of the relation instance,
and theTi e slot stores the amount of time the relation instance exigtedrheTi me
slot is represented in the same way as for entity definitiodseatity instances (described
in Section 3.2.2.1). Slots are also added to store the enstances the relation uses.
Facets are added to each entity slot to store which typestibiesrthe relation can use.
Property slots can also be added to store information oreth@#on. Relation class frames
can also inherit from other relation class frames. FigusesBows the relation class frame
for relationLeft O . It requires two slots to store the entity instances thdiorlaises,
and two facet3ypel, andType2 which control the type of entities the relation can use,
in this caseCar andPer son.

Class | Left Of
Name
Time
Typel | Car

Type2 | Person
Entityl
Entity2

Figure 3.5: Thdeft O relation definition. The relation represents that a car ih¢o
left of a person.

3.2.3.2 Relation instance

A relation instance is an instance of a particular relatiefirgstion. It is stored in an
instance frame and created by using the relation class fearddilling in the values for
theName, Ti me andEnt i ty slots. Figure 3.6 shows an example relation instance for
theLeft O relation. Itis an instance of tHeeft O relation class frame. It existed
between time values 4 to 9 and used enti@as 1 andPer sonl.

60

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

Class | Left Of
Name | LeftOfl
Time Period (4,9)
Typel | Car

Type2 | Person
Entityl | Carl
Entity2 | Personl

Figure 3.6: Aninstance of theef t O relation that was defined in Figure 3.5. It shows
that entityCar 1 was to the left of entitfPer sonl between time values 4 to 9.

3.2.4 System implementation

To implement the history representation within the comprgquires two elements: afile
format, and a memory representation described in the sechielow.

3.2.4.1 File format

XML [10] was chosen as the file format, because it is easy tegpas human readable,
and there is a large body of tools for analysing and disptaylata written in XML.
Figure 3.7 shows th®er sonl entity instance from Figure 3.4 represented in XML.
The probability and attribute instance frames are storesblasframes within the entity
instance frame rather than describing them separatelys dlldws for a more compact
and easy to read representation.

3.2.4.2 Memory representation

To read the XML datafiles into the computer requires an XMLsparand a memory
representation. There are two main memory representati@bsan be used. The first is
to use a fixed time unit like seconds, or hours. The state ofiigtery at each time unit
is then stored. The problem with this representation is tthatunit needs to be decided
a priori. If a large scale time unit (like days) is used it caad to loss of data, and if
a small scale time unit (like milliseconds) is used data cardbplicated. The second
representation takes a different approach. Instead oésepting the history at specific
time points it represents it by changes in its state. A sthtage is caused by adding,
removing or changing an entity or relationship instancetha history. The possible
reasons an entity or relation instance will change its stede changing its properties, or
changing it time range. This is a more compact representagcause duplicated data is
merged together, and data cannot be lost as every histdeycstange is represented. This

61

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

<ENTI TY TYPE=" PERSON' NAME="PERSON1" | D="2">
<TI ME TYPE="PERI OD" VALUE="[4. 000000, 8. 000000] "/ >
<PROPERTY- PROBABI LI TY NAME="POSI TI ON' >
<PROBABI LI TY VALUE="1. 000000">
<PROPERTY- DATA NAME="PCOSI TI ON' >
<ATTRI BUTE- DATA NAME=" X" VALUE="250"/>
<ATTRI BUTE- DATA NAME="Y" VALUE="350"/>
</ PROPERTY- DATA>
</ PROBABI LI TY>
</ PROPERTY- PROBABI LI TY>
<PROPERTY- PROBABI LI TY NAME=" COLOUR' >
<PROBABI LI TY VALUE="1. 000000">
<PROPERTY- DATA NAME=" COLOUR' >
<ATTRI BUTE- DATA NAME="TYPE" VALUE="BLUE"/>
</ PROPERTY- DATA>
</ PROBABI LI TY>
</ PROPERTY- PROBABI LI TY>
</ ENTI TY>

Figure 3.7: An example of thBer sonl entity instance from Figure 3.4 represented in
XML.

representation was used in this thesis.

3.3 Predictive model representation

A predictive model uses a set of spatio-temporal histora datpredict the most likely
set of spatio-temporal data to occur next. More formallysesi a set of history data
Hit = {hy,...,ht} where each history iterhy = (K;,Lt) is a tuple containing a set of
entitiesK; and a set of relationls; that exist at time; and computes the probability of a
set of spatio-temporal dakg, 1 occurring at the next time step as shown in Equation 3.1.

P(hty1/Ha1) (3.1)

In this thesis the predictive models are represented usprgduction system (as de-
scribed in Section 2.5). This requires two elements: a segiroduction rules, and a
conflict resolver. Each production rule contains a condiiection that matches a spe-
cific subset of the history, and an action section that rgmtssa new entity or relation.
The production rules are explained in more detail in Secldhl. To make a predic-
tion the production rules are applied to the history. A cabfiesolver is used to decide

62

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

which of the production rules matching the history to usetha prediction. The con-
flict resolver used in this thesis uses a conditional prditglistribution (Equation 3.2),
wherer; is a boolean random variable that represents if productide p; is enabled
on the history j = enabledHs.1, pi)), n is the number of production rules, andis a
boolean random variable that represents if production irgleould be fired. The pro-
duction rules that should be fired are used to produce thegii@dat the next time step
(hey1 = fire(uy,...,un)). The probability distribution is represented by a Bayediket-
work, and can produce multiple sets of predictions each aitlassociated probability.
This allows the conflict resolver to predict from non-detenistic data.

P(hty1|H1T) = P(ug, ..., Un|rg, ...,) (3.2)

To illustrate how this approach works lets introduce an gdarbhased on a simplified
version of the children’s card game Uno. This example willised throughout the rest
of this chapter to illustrate the different concepts wita gredictive models.

The game is played by two people each having a set of cardainorg different
coloured pictures on them. In each round of the game eaclepfays down a card. If
the cards both have the same picture, and colour then “Sanoeildbe shouted out. If
the cards have the same picture, but different colours tBaage” should be shouted out.
If the cards have the same colour, but different pictures t®lour” should be shouted
out. Finally if the two cards are different then “Nothing”said.

A set of production rules that represents the game of Unoaw/shn Figure 3.8 and
the probability distribution for the conflict resolver isasin in Table 3.2. This only lists
the entries that have a probability greater than zero. Alépentries have a probability
of zero, and therefore are not used to produce a predictiableT3.2 shows that, for
example, if the only production rule matches the history than only its outpot) with
probability 1.0 should be fired.

r1: | F SHAPE(Cl) ==SHAPE(C2) AND COLOUR(C2) ==COLOUR(C2)

THEN SAME

r2: | F SHAPE(Cl) ==SHAPE(C2) AND COLOUR(C2) ! =COLOUR(C2)
THEN SHAPE

r3: | F SHAPE(CL)! =SHAPE(C2) AND COLOUR(C2) ==COLOUR(C2)
THEN COLOUR

r4: | F SHAPE(CL)! =SHAPE(C2) AND COLOUR(C2)!=COLOUR(C2)
THEN NOTHI NG

Figure 3.8: A hand defined set of production rules for Uno.

63

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

ri rp r3 ralur W Uz Ug| P(ug,Up, Uz, Uglra,ro,r3,ra) |
T F F F|T F F F 1
F TF F|F T F F 1
F FTFF F TF 1
F FFTFFF T 1

Table 3.2: The conditional probability distribution foretiproduction rules in Figure 3.8

This is a very simple example of how the conflict resolver vgora this case , only
one production rule will be enabled on the history, and tineglpction rule will be fired
to produce a prediction. The conflict resolver, however,dmad with multiple production
rules being enabled at the same time. This, as shown in thenvialy example can,
greatly simplify the complexity of the production rules vegd. It is used by the learning
method (Chapter 4) in this thesis to reduce the size of theelsesppace when learning
predictive models, which makes it more likely an optimalusian will be found. In the
Uno example the condition sections of Same and Nothing mtomturules (1 andr,) use
elements from the condition sections of the Shape and Cplodluction rulesr; andrs),
as shown in Figure 3.8. To reduce this reuse, the Same andniyatbndition sections
can be represented using the Shape and Colour conditianrsgcthown in Figure 3.9,
using the probability distribution shown in Table 3.3. ThetNng production rule is
fired when the Shape, and Colour production rules are notleshand the Same and
Nothing production rules are enabled. The Same concepbduped by firing the Same
production rule, when all the production rules (Same, Sh&uwour and Nothing) are
enabled.
r5: |F TRUE THEN SAME
ré6: | F SHAPE(Cl) ==SHAPE(C2) THEN SHAPE

r7: |F COLOUR(C2)==COLOUR(C2) THEN CCOLOUR
r8: I'F TRUE THEN NOTHI NG

Figure 3.9: The combined production rules for Uno.
The rest of this section will show how the production rules described, and how

inference is performed on the history using a predictive ehdal predict future spatio-
temporal data.

64

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

\rs re Iz TIsg \ Us Us U7 Ug \ P(U57U6,U7,U8\r5,f6,r7,f8)\

(e}

T T T T|T F F F 1
T TF T/ F T F F 1
T F T T F F T F 1
T FF TIF F F T 1

Table 3.3: The probability distribution for the combinedguction rules in Figure 3.9.

3.3.1 Production rules

A production rule has a similar representation to a Hornsga he condition section of
the production rule is like the body of a Horn clause, as itaartain variables, statements
describing objects and relations, and logical functiorise &ction section is the same as
the head of the Horn clause. It can only contain one entitglation, in the same way that
the head can only contain one literal. To evaluate the pitomlucule on a set of history
the substitutior® is applied to the variables in the condition sectibf@), which grounds
the variables to a subset of the history data. If the conalggction entails this data it will
return back true, otherwise it will return false. Sectios 8xplains how to search for the
substitutionfr, that causes the condition section to entail a specific swibslee history.

If the condition section returns true then the action seadicthe Horn clause is evalu-
ated producing a new entity or relation instance. The evalngs performed by ground-
ing the variables in the action section using the same gubeti that caused the body to
evaluate true. The condition and action sections will nownloee formally defined.

3.3.1.1 Condition section

The condition sectiot = {F,A\,C,X,E} is represented by a set of functioRs a set
of node parameterA, a set of constants, a set of variableX. These are formed into a
directed acyclic graph (DAG) where the nodes are consteatimbles, and functions, and
the edge< represent links from constants to functions, variablesutecfions, or links
between functions.

The DAG is arranged into three layers: an input layer; a gsicg layer; and a result
layer. The input layer uses the set of variables to extractbset of the history data.
This data is presented to the processing layer containmfutictions, and the constants
which check if they match this data. The result layer agamaios functions and returns
a boolean result based on if this match was successful or not.

The variables and functions will now be more formally ddsed. Variables are as-
signed an entity or relation at a specific point from the mst&ach variable has a pre-

65

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

determined data type, and time range. They ensure that otiljes or relations of the
correct type, and within the desired time range relativléodurrent time can be assigned
to the variable. This reduces the amount of history dataribatls to be searched, and
only the most relevant parts of the history are used in thegssing layer.

A function f; : (Vi,Aj) — v is used to compute the reswt using the set of result
values from its parent nod®s= {v, ..., vy}, and node parameteks There are four kinds
of functions: data functions, comparison functions, lagjicinctions, and user defined
functions as described below:

e Data functions these process the entities or relations returned from thablas.
There are two functions: tHgetfunction, and thé&xistsfunction. TheGetfunction
returns the value of a specific attribute from an entity aatieh. TheExistfunction
returns if the entity or relation instance is of a specificetyp

e Comparison functions these produce a boolean result by performing a test on a
specific attribute from an entity or entities. The standasthparison functions
used are the numeric comparisomsjual not equaj less than greater than less
than or equal tpandgreater than or equal toand the symbolic comparisorqual
andnot equal

e Logical functions these combine the results from the comparison functionsxo p
duce a boolean result. The standard logical functions dgfimehe system are:
And Or andNot

e User defined functionsthe user is also allowed to define their own processing
functions. This can be used to add background knowledgestodhdition section.
The functions operate in the same way as the condition seclibey are input a
set of arguments, these are then processed using the sactierisnand constants
that can appear in the condition section, and then a res@tusned.

To explain these concepts lets use the example introducgddtion 3.3. The condi-
tion section for the Colour production rule (given in Fig#.8) is shown in Figure 3.10.
Equation 3.3 shows this written in first order logic.

NotEqualGetTexturéx), GetTexturéy)) A Equal(GetColouKx), GetColoury)) (3.3)

The input layer contains two variablesgndy). Each variable relates to a different card
in the history. The processing section makes use of fouttimms: And Equal Not Equal
andGet The Getfunction is used to get the colour, or the texture from thelsafhe

66

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

Result layer

Processing layer Condition

section
@Input layer
B History

Figure 3.10: The condition section for the Colour productiole from Figure 3.8.

Equalfunction is then used to check if the cards have the same g@nod theNot Equal
function is used to check if the two cards have differentused. Finally theAndfunction
uses the result from thEequalandNot Equalfunctions to checks if the cards both have
the different textures and the same colour.

3.3.1.2 Action section

The action section of the production rule generates a nety entelation if the condition
section matches a subset of the history. To create a new entilation each of its prop-
erties and attributes has to be initialised. They can elikenitialised to a constant; or to
a variable from the condition section, along with a specifaperty. When the variable
is grounded the property from its assigned entity or retatudl be used to initialise the
property in the new entity or relation. This then allows tloéian section to generalise
from the history. The number of production rules to be learay be reduced because of
this, which decreases the size of the search space, makiogtiamal solution easier to
find.

In Figure 3.11 the action section for the Colour productude s defined. It creates a
new Event entity which has the value of Colour for 8geeclattribute, and also has two

67

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

properties Card1Shapend Card2Shapgrepresenting the shape of the two cards that
have been put down. The values for these properties will doome the history by using
the entities assigned to the variabkeandy. Equation 3.5 shows this written in first order
logic, wherenl andn2 are the names of the name attributdsandt2 are the textures,
andpl andp2 is the likelihood of the name attributes.

Class Speech Class | Say
Name Speechl Name | Sayl
DataType | Symbolic Speech| Speechl
Value Colour

ValueRange Colour,Same,Nothing,Shape

Probability | 100%

Class Event

Name Eventl

Time

Say Sayl

Cardl Shape x.Texture.Name
Card2 Shape y.Texture.Name

Figure 3.11: The action section for the Colour productide.rid he text in a typewriter
font shows that the value of the slot is a link to another ims¢aframe. The Time slot is
left blank, as it is filled in when the entity instance is usedd prediction.

Eveni{Eventl, Say Sayl, SpeecliSpeech, Colour, 100)), (3.4)
CardlShapéTexturéx, Naménl,t1, pl)),
Card2ShapéTexturdy, Namen2,t2, p2)))

3.4 Inference

Once a model has been produced an inference procedure iseckgo that it can be
applied to a set of data to produce a prediction. This sed@saribes an inference proce-
dure for the predictive models on a set of history. More fdlymgiven a prediction model
M inference needs to performed using a set of histdry to produce a set of possible
outputsW = {ws,...,wn} occurring at time + 1, wheren is the number of (mutually
exclusive) outputsw; = (0;, pi), ando; is a possible output having a probabiliy. The
predict functionpredict: (M,H) — W is used to perform this inference. The function

68

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

works in the following stages:

1. For the condition sectiomof each production rule € Ssearch for the substitution
Brs that causes the condition section to entail a subsetH of the historyH,

(bbrs=h).

2. The enabled set (describing how each of the production rules evaluated en th
history) can then be input to the conflict resolver produa@rsgt of possible firing
setsU = {uy,...,un}.

3. The set of possible output® can be computed by keeping every firing set
{Ui1,...,us} whereP(ujlr) > 0. Thenw; is computed for each remaining by
setting:

e 0 ={asbrs|if us=true}

e pi = P(uir)

The possible outpug; is produced by taking a firing sef, and for every production
rule s that should be fired (i.eujs = true) its action sections is grounded on the substi-
tution Brs that caused its condition section to entail a subset of thety @s6rs). The
likelihood of this outputP(ui|r) is found by looking it up in the probability distribution
for the conflict resolver.

To search foiBris a hard problem for two reasons. Firstly, it is a large deapace
and this can quickly get large as the size of the history, andber of variables in the
production rule increases. Secondly, there are multipssibpte values fo6rand the one
needs to be chosen that will be best to predict the new output.

To solve these problems the exhaustive searclgfaritially uses history data only
at the current time ieH;. If this is unsuccessful the history is extended to incluke t
previous history items ieH;_1¢. This process is repeated until a value &iis found,
or the history size is above a predefined threshold. The jpseaode for this algorithm is
shown in Figure 3.12.

To explain the predict function an example from the game Whown in Figure 3.13
is be used. The history contains two cards at time 1. Card Jahdack triangle, and
Card 2 has a black circle. The first stage of the function useptedictive model for the
Uno dataset, and computes which of the condition secti@ms the production rules will
entail the history. If we use the Uno production rules fromufe 3.9 it can be seen that the
production rules that apply to this history are the Coloam® and Nothing production
rules. TheFi ndBest Subst i t uti on algorithm is applied to the condition section of

69

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

Input: Condition sectionlf), History (H)

Output: The best substitutiorf) which is a list of tuples where each tuple
is a mapping from a variable imto an object irH.

\ Function FindBestSubstitution \

For s = 1 to max history size
Assignhto a subset oH of sizes
Foreachvariablevin b
Find all objects inh that have the same type as
and occur within its time range.
End Foreach
Foreachsubstitutiond in the set of possible variable to object assignments
If b6 =trueThen
Return 6
End If
End Foreach
End For

Figure 3.12: Thd-i ndBest Subst i t uti on algorithm.

® AL

Card2 Card1
1 2

Time

Figure 3.13: An example game of Uno.

these production rules to find where they match the histayyekample by applying the
Fi ndBest Subst i t uti on algorithm to the condition section of the Colour production
rule (shown in Figure 3.10) the value féfis {x/Cardl,y/Card2}. This means that
refers to Card 1 angrefers to Card 2.

The second stage of the function uses the conflict set to e@dith production rules
to use for the overall prediction. The production rules éedlon the history were the
Colour, Nothing, and Same production rules which produbedallowing enabled set:
rs=T,rg=F,r;=T,rg=T. By looking this up in the probability distribution given in
Table 3.2 it can be seen that there is only one possible fiehgfsproduction rules that
can be used to create the predictiog=F, us = F, u; =T, ug = F. This means that the

70

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

only production rule to be used for the prediction will be @&our production rule. The
third stage of the function uses the set of production rdiasshould be fired to produce
the prediction. In this example there is only one productide, which comes from the
Colour production rule. To generate the output the actictiae of the Colour production
rule (shown in Figure 3.11) is fired by grounding it using thb&itution&r. This creates
a new Event entity shown in Figure 3.14. The prediction ig @alour should be said
next (at time 2) with a probability of 1.0.

Class Speech Class | Say
Name Speechl Name | Sayl
DataType | Symbolic Speech| Speechl
Value Colour

ValueRange Colour,Same,Nothing,Shape

Probability | 100%

Class Event
Name Eventl
Time Point (2,2)
Say Sayl
Card1 Shape Triangle
Card2 Shape Circle

Figure 3.14: The Event entity instance, along with its propand attribute instances
produced by the action section of the Colour production riikee text in a typewriter font
shows that the value of the slot is a link to another instare@é.

3.5 Discussion

This chapter has presented a method to represent and stohestbry data within the

system. It has also shown how the predictive models are septed and inference per-
formed on the history. A frame based representation is useéddcribe the history. The
predictive models are based on a production system, andioanset of production rules,
and a conflict resolver.

Typing is used both within the history to describe differefdsses of entities and
relations, and within the production rules to only allowrthe access specific subsets of
the history. This allows domain knowledge to be incorpatatgo the history, and the
predictive models. It also reduces the possible space diginee models, and prevents
invalid predictive models from being produced. As the typEthe entities and relations
are defined by the user, it makes the history representadi@mally applicable to a wide

71

Chapter 3 An Architecture for Representing, and Modellipgt®-Temporal Data

range of spatio-temporal domains. The use of inheritarsealows the definition of the
entities and relations to be produced in a hierarchical rann

The use of the conflict resolver firstly allows the predictmedel to deal with mul-
tiple production rules entailing the history. The prodantrules can be combined to-
gether to make the prediction which simplifies the complegit the predictive model.
Secondly, the conflict resolver can produce multiple owgpakiowing it to predict from
non-deterministic data. Finally, the condition sectiorthed production rules can be ex-
tended by allowing users to add their own functions. Theofeilhg chapter will look at
how these predictive models can be learnt from data.

72

Chapter 4

Learning Predictive Models of
Spatio-Temporal Data

4.1 Introduction

Chapter 3 described: a method for representing spatiogeahplata; an architecture
for representing predictive models; and an inference tecien to allow them to pre-
dict from spatio-temporal data. This chapter presents oastifior automatically learning
predictive models from spatio-temporal data. The noveho@tlescribed in this chapter,
called Spatio-Temporal Genetic Programming (STGP), isl igdearn predictive mod-
els. Firstly, Section 4.2 explains why a stochastic seapghmaach was used to learn the
predictive models. Then in Sections 4.3 to 4.8 a formal dpson of the STGP method
is given. Finally, in Sections 4.9 and 4.10 a comparison dsBTwith Progol [82], Pe (an
implementation of the FAM algorithm [18] for SLPs), Neura¢torks [111], Bayesian
Networks [94] and C4.5 [99] is performed, along with an expentation with the pa-
rameters for STGP.

4.2 Learning predictive models

To learn a predictive model requires finding the set of prtidnaulesS and the conflict
resolverc that best models the set of histdry (i.e. find the predictive model that gets

73

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

the best accuracy when it predicts from the history) as shovaguation 4.1.

argmax(P(S c|H)) (4.2)

Predictive model learning in the context of this thesis carbtoken down into two
parts: structure learning, and parameter learning [11ttuicBire learning is on two lev-
els. Firstly, the optimal number of production rules needbd found, and secondly the
optimal number of functions, variables, and constantsiglith their connectivity needs
to be found for each production rule. Parameter learningly@s computing a conditional
probability distribution for the conflict resolver (dedwed in Section 3.3). This distribu-
tion does not contain any hidden variables, and the histaty & complete, so there is a
closed form solution for calculating its parameters.

There are various approaches to perform structure and péteamearning. Section
2.5.1 reviewed different approaches to learning first oloigic production rules, repre-
sented by Horn clauses. There were two main conclusionstiysiusing stochastic or
evolutionary search finds good Horn clauses in a faster timaa tising greedy search
[4,87,122,126,129]. Secondly, learning a complete setahHlauses simultaneously
produces better results than sequentially learning a $¢bwf clauses [3,36,46,113,131].
These techniques have been incorporated into the appreschilsed in this thesis: an
evolutionary search technique is used to learn the indaligtoduction rules and sets of
production rules simultaneously. Section 2.5.2 lookec@hniques for learning the pa-
rameters of the conflict resolver. It was shown in [19,61{ tearning both the production
rules, and the parameters together, rather than using at&ge process produced better
results. These ideas have again been introduced into thheaghpdescribed in this the-
sis where both the production rules, and the parametersafdhtext chooser are learnt
simultaneously. The following section will give an ovemvief the approach.

4.3 Spatio-Temporal Genetic Programming

Figure 4.1 gives an overview of Spatio-Temporal GenetigRnmming (STGP) the novel
method to learn the predictive models presented withindhapter. It is based on Ge-
netic Programming (GP), and uses the same set of steps ¢hased in GP, and Genetic
Algorithms (GA). The numbered set of steps below shows a fBTGP in more detail.

1. Initialise the structure of the predictive models: create a population of predictive
models which each contain a randomly generated number duption rules.

74

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Compute the
parameters for |«
the predictive

models

v

Initialise the
structure of the
predictive models

Y

Compute the
fitness for each
of the
predictive
models

Apply structure
altering
operators to the
predictive models

Return the
predictive model
with the best
fitness

Has the best (maximal) fitness
value been found, or has
the maximum number of
generations been passed?

Yes

Figure 4.1: A flow chart showing the different steps in a rusoi:GP.

2. Compute parameters for the predictive models:For each predictive model the
parameters for its conflict resolver need to be computed franhistory.

3. Compute fitness value for each of the predictive modelUse a fitness function to
assign a fitness value to each of the predictive models.

4. Check stopping criteria: Check if the run has reached the maximum number of
generations allowed, or there is a predictive model in theufadion which has an
optimal fitness score. If so stop the run, and return the ptigdimodel with the
best (maximal) fithess score.

5. Apply structure altering operations to the population of predictive models:
Apply structure altering operators to the population ofdicgve models to try and
improve their fitness.

6. Go back to step 2.

The following sections will explain these steps in more detgirstly, Section 4.4
describes the structure learning techniques includinigaiisation techniques, and struc-
ture altering operators. Next, Section 4.6 shows the paertearning technique. Finally,
Section 4.7 describes the fitness function.

75

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

4.4 Initialising the population of predictive models

To initialise STGP a population of randomly generated prcé models is produced.
The process of generating a predictive model involves rariglareating a new produc-
tion rule. To create a new production rule involves randogagerating its condition, and
action sections. It is important that the population of e models is as diverse as
possible, as explained in Section 2.6.7. A population wigih ldiversity initially provides
STGP with a wide range predictive models, which makes it nigedy it will find the
correct solution, and less likely to converge on a sub-ogitsolution. Population diver-
sity and how it is affected by the different STGP parameteexplored in Section 4.10.3.
Initialisation of both the production rules and predictimedels will now be described in
more detail.

4.4.1 Predictive model initialisation

Predictive models consist of a set of one or more productitesr When a new predic-
tive model is created, it is initialised with one randomlyhgeated production rule. The
Ramped half and half method [58] (Section 2.6.2) is used teigee the condition sec-
tions of the production rules. This ensures that the pojuiaif predictive models has
production rules with condition sections that contain aetgrof structures and depths.

4.4.2 Production rule initialisation

To create a new production rule involves firstly randomlyatireg the condition section,
and then randomly creating the action section.

4.4.2.1 Condition section initialisation

Section 3.3.1.1 showed how the condition section is defitetdntains a set of functions,
a set of variables, and a set of constants arranged in a Baréatyclic Graph (DAG).
Two things are required to create a new condition sectioatlffia method to constrain
the structure of the DAG so that it is always valid; and setpadechnique which uses
the structural constraints to build a valid condition s&tti

Given a set of functions, constants and variables there &ge Inumber of DAG
structures that can be formed. However, not all structui#desvalid, and these cannot
be evaluated on a particular history. Figure 4.2 shows twalith condition sections.
The first condition section is evaluating whether the synided is less than the symbol
Green; and the second condition section is evaluating ifntimaber 1 is equal to the

76

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

symbol Green. To solve this problem constraints are placethe composition of the
DAG. This ensures that all DAG structures are evaluableeggavgood initial start point
to the structure learning algorithm, and reduces the sespabe of possible structures.
Strongly Typed Genetic Programming [79] is used to contnel $tructure of the DAG.
It assigns a type to every function, constant, variable amdtfon argument. A DAG is
only “valid” if for every function used in the DAG its argumetypes match the types of
its parent nodes. The possible types used in this thesisray&loat, String, Boolean, or

Time.

Figure 4.2: Invalid condition sections.

The structural constraints described are used when géergeeahew condition section.
The user defines a maximum depth of the DAG. This allows thammax complexity and
time to evaluate the condition section to be controlled. réreee two possible ways to
build the condition section: the Full method, and the Growitrad [58]. This thesis will
use the versions of the Full and Grow methods from [79], whiegeoot node of the DAG
must have a Boolean type. Two changes are made to these mathdldat they can be
used to produce production rules.

Firstly, if a function requires a variable as an argument BT@ust use an existing
one, or generate a new one of the correct type. The entitylaiar type of the variable
is defined in the sub-type of the argument. Firstly, STGP kbi¢a see if there are any
variables matching the desired entity or relation typehdfre is a set of variables, then
STGP can either decide to pick a random variable, or to gemeraew variable. The
likelihood of picking an existing variablB(t) is shown in Equation 4.2. The equation
makes it increasingly hard to generate new variables asuimder of them increases.

N

e

(4.2)

A new variable is generated when the maximum number of vimsdior a specific type
has not been exceeded. This limits the complexity of the itimmdsection, and prevents

77

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

STGP from producing predictive models that are overly caxplTo generate a new
variable requires completing its entity type, and time enghe time will be randomly
chosen from either AllTime, Period time, or Point time. FoirR and Period time, a time
range is also randomly generated. Period time is not usegyiefahe runs in this thesis,
but a discussion is given about how it could be used at the EGtiapter 5.

Secondly, to prevent condition sections from being geedr#ihat always evaluate
true (or false) a restriction is added to the Grow, and Fulthmés. This occurs when
the condition section contains sub-trees that either joistasn constant value terminals,
or variables which are the same. When nodes are assignedutwigoh’s arguments a
check is performed to make sure they are not all constanewalmbols, or use the same
variable. If this is the case another assignment is found.

An example of the Full method will now be shown, based on the example from
Section 3.3. The following functions will be usednd (having a Boolean type, and a
Boolean type for the its argument€ket - Col our (having a String type, and an argu-
ment containing a variable of type Cardqual (having a Boolean type, and a String
type for its arguments), andot Equal (having a Boolean type, and a String type for
its arguments). The following terminals will be useeld, G een, andYel | ow. All the
terminals have a String type. The variables will all be ofetypard. The stages of the ex-
ample are shown in Figure 4.3. The maximum depth is set to 8. FUil method initially
picks a function with a Boolean type. There are three posspltions:And, Equal ,
andNot Equal ; andAnd is chosen. The type faknd’s arguments is Boolean, and as
the method is not at the maximum depth a function with a Bootgae is chosen; this
time it is Equal . The argument type fdequal is String, and as the method is now
at the maximum depth only terminals of type String can be eho&et - Col our and
Red are chosenCet - Col our also requires a variable, in this case the varialdétype
Card is used. Next, the second argument forAhd node is found, antot Equal is
selected. Again the argument type for ti@ Equal node is String and as the method
is at the maximum depth only terminals of type String can lo&gu.CGet - Col our and
Yel | oware selected. AgairGet - Col our requires a variable this time the varialyle
of type Card is used.

The functions and terminals which can be used in the comdgexrtion must be de-
fined before STGP is run. These can be manually defined, orgjeddrom the property,
entity, or relation definitions. Some of the functions anuni@als (described in Section
3.3.1.1) need extra parameters when they are defined. THet@tbn needs to have the
entity type, property, and attribute it will use. The Exifgtaction needs to have the entity
or relation type. The Symbol terminal needs the symbol ituge. The Numeric terminal

78

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Figure 4.3: An example condition section produced using-thiemethod.

needs the number it will use.

4.4.2.2 Action section initialisation

To generate a new action section STGP selects a random entigyation definition, then
for each property selects either a random number; symba@lna@xisting variable in the
condition section, and property to use.

4.5 Altering the predictive models

A set of structure altering operators is used to modify theezu set of predictive models,
to create a new population of predictive models. A poputesi@mpling method is used to
select predictive models from the current population. is thesis tournament selection
and roulette wheel are used, as described in Section 2.6&selpredictive models are
then altered either by modifying which production rulesased in the predictive models,
or by modifying the structure of the individual productianies in the predictive models.
Then the predictive models are added to the new populatiois.i3 shown in Figure 4.4.

79

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Alter the structure of
the production rules
using crossover or
mutation

Select a production
rule from each >
predictive model

Or

Select predictive Add the predictive
models from the models to the new
population population

Or

Alter the structure of
the predictive models
by adding, removing or
replacing a production
rule

Figure 4.4: A flow chart showing the possible ways to altergretlictive models in the
current population to produce a new population.

The following sections will explain how the predictive mésland the production rules
are altered in more detail.

4.5.1 Altering the set of production rules

There are four kinds of operators to change the set of praguatles in the predictive
models. These areeproduction addingin a new production ruleeplacingan existing
production rule, andemovinga production rule. A set of probabilities are used to control
how much each operator is used. Which operator is used istedleandomly based
on a probability distributiorP,. The operators have been inspired by Koza’s work on
architecture altering operations [59], as described inti&e@.6.6. The operators will
now be described in more detail.

Reproduction copies the predictive models unchanged into the new papualat

Adding in a production rule from another predictive model This requires two predic-
tive models. A production rule from the first picked predietmodel is randomly
selected, and added to the second. This second predictstel msdahen included in
the new population.

Replacing a production rule This requires two predictive models. A production rule
from the first predictive model is replaced by a productidle mrandomly selected

80

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

from the second. The first predictive model is then incluatetthe new population.

Removing a production rule A randomly selected production rule is removed from a
predictive model. The predictive model is then includech@ hew population.

4.5.2 Altering the composition of the individual production rules

Two operators are used to change the composition of indaglwduction rulessrossover
andmutation[58].

45.2.1 Crossover

Crossover is used to swap over parts of two different prodnatules. Two kinds of
crossover are used with the production rules: conditioni@ecrossover, and action
section crossover.

Condition section crossover uses the condition sectionwofproduction rules and
is based on the crossover technique used in [79]. To perfoossover a random node
in the first condition section is selected. The same probi@silas used in [58] are used
to select nodes in the DAG. With probability of 10% a terminatle is picked, and with
probability of 90% a function node is picked. Nodes in theoseccondition section
which match the node’s type and sub-type are then foundet&tare no matching nodes
then a new node in the first condition section is selected{l@g@rocess repeats. When a
set of matching nodes in the second condition section hasfoead, a node in this set is
randomly selected. The node and its sub-tree in the firstitondection is then swapped
with the selected node and its sub-tree in the second condigction. This can be seen
in Figure 4.5.

In action section crossover, if the action sections are katities or both relations
then entity or relation crossover can be performed. To perfentity crossover a random
property from the entity’s definition is selected, and theramdom attribute from the
property is selected. Then the values from each of thesbwdts in each entity are
swapped over. In relation crossover one of the entity tyges in the relation’s definition
is chosen. Then the id value for this entity type within eagation is swapped over. If
one action section is a relation and the other is an entity the action sections are just
swapped over.

81

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Condition section 1 Condition section

N y
oo Jod
oo

Crossover

@)

o
Joee

Figure 4.5: The genetic operator Crossover being perfoiondao condition sections.

45.2.2 Mutation

There are two possible types of mutation used in this thesisdition section mutation
and action section mutation. Condition section mutatisrhased on the mutation op-
erator described in [79]. It selects a random node withindbiedition section of the
production rule and replaces it and its children with a ramlyogenerated DAG which
has a root node that matches the type of the randomly pickee. niche Grow method is
used to produce the new DAG. The DAG's depth is randomly amgseh that it does not
exceed the maximum depth of the DAG. Figure 4.6 shows a nagglighted in black)
being selected, and a new DAG replacing it and its childrenadtion section mutation
a random property is selected from the entity and its valueptaced with a randomly
generated value.

4.6 Conflict resolver parameter learning

Once a set of production rules have been produced the ngd sdo0 compute the pa-
rameters for the conflict resolver. It is represented by ardis conditional probability
distributionP(U |R), as described in Section 3.3. The distribution probalkdiy decides
which set of enabled production rules should be fired to preduprediction.

Calculation of P(U|R) has a simple closed form solution and is computed in two
stages. Firstly evaluate each of the production rules dt painit in the history. Secondly
fire the action sections of each enabled production rulenTéeord which of the outputs
successfully matched the actual output at the next poirthenhistory. The probability

82

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Condition section

Mutation

/\
L N J
Figure 4.6: The genetic operator Mutation being performed condition section.

distribution can be computed as shown in Equation 4.3 byrd&eg the number of times
(Nr) the set of production rules have been enabled, or not ethable(ry,...,rn), ri €
{true, false} when applied to the history; and the number of timdg) when the action
sections of the enabled production rules were fired theputstmatched the actual output
at the next time step = (uy, ..., Un), Ui = {true, false}, u; is true if there is a match and
false otherwise.

PU=uR=r) Ny
P(R=r) Ny
The probability distribution is computed over all occugitombinations of enabling/not

enabling the production rules, and output matches/midmeatcin theory this could be

large, but in practice the number of combinations is limiteal sparse storage solutions
can be used. The method used to compare the output from agi@duule with the
actual outpuHH is described by Equation 4.4. It finds the entity or relatiofiom the
actual output that best matches the production rule oufpaeé matching is done using
the Match function (shown in Figure 4.7) which computes ttepprtion of properties in
the entity or relation which have the same values to the aditpo the production rule.

(4.3)

PU=uR=r)=

MS(p,H) = max,cy (matchp, h)) (4.4)

The computation foP(U |R) can now be described more formally. At each point
the historyH the set of production ruleSare evaluated and the resultare stored where
ri is true if the condition sectioh; of production rule entails the subset of the training

83

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Input: Entity or relation ©O) produced from the action section of a
production rule and an entity or relatio@)(from the history to compare it ta.
OutputThe fraction of properties that match.

| Function Match |

If O andC have the same types
Foreachpropertypin O
If O andC have the same value for propepy
s=s+1
t=t+1
Return s/t
Else
Return O

Figure 4.7: The pseudo code for the matching algorithm.

datah (b;6r = h) whereh € H, and false otherwise. The algorithm described in Section
3.4 is used to find the substitutiofy) that causes the condition section of the production
rule to entail a subset of the history. Next, the firing & formed wheray; = true if

bi6r = h andMS(a 6r) = 1; and false otherwise. Finally the number of times in the
historyN; a specifia occurs is computed, and the number of tifgsa specifia occurs
and specifia also occurs is computed, and used to compBt¢|R) (Equation 4.3).

Figure 4.8: A path containing three sensors numbered 1, 3and

Parameter learning will be illustrated with an example.uFég4.8 show a path which
has 3 sensors on it numbered 1, 2 and 3. People walk along tihv@g@ssing over sensor
1, and then either take the left or right fork, passing ovesee?2 or 3 in the process. We
do not consider any other routes in this simplified exampigurfe 4.9 shows a predictive
model for predicting which sensor the person will pass ot once they have passed
over sensor 1. Production rule 1 states that sensor 2 wékctleext, and production rule
2 states that sensor 3 will detect next. The problem now isamlthe parameters of the

84

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

R1:
R2:

| F DETECT(SENSCR1, T) THEN DETECT(SENSOR2, T+1)
| F DETECT(SENSCR1, T) THEN DETECT(SENSOR3, T+1)

Figure 4.9: The predictive model for the Path example.

Time 1 2 3 4 5 6 7 8
Detection history| {1} | {2} | {1} | {3} | {1} | {2} | {1} | {2}

r T|F|[T|F|T]|]F]|T]F

r T|F|T|F|T|F|T]|F

uy T|F|F|F|T|F|T]|F

Up F|F|T|F|F|F|F|F

Table 4.1: The prediction results for the Path model on afdastory. The history at each
point in time represents the sensor numbers that have beeciel® There is only one
detection at each point in time because the condition sectd both of the production
rules only use detections at the current time.

conflict resolver for this predictive model. Table 4.1 shdws the model evaluated on a
history representing a sequence of sensor detections:11321, 2, 1, 2 (this represents
4 people walking along the path, and 3 people taking thedelt, and 1 person taking the
right fork).

There are three possible situations that have occurredsimistory, and these will be

used to compute the probability distributiBfU |R):

1. Both production rules are enabled on the history, but tmyoutput of production

rule 1 matches the next detection (i.e. sensor 2 next), spitmhction section
should be fired. This occurs at time points: 1, 5, and 7.

Nug—t =t ri—try—t 3
Plur=t,up = flrp=t,rp=1) = =" t”l t”z t=7=075 (45)
ri=t,ro=

. Both production rules are enabled on the history, but tdmyoutput of production

rule 2 matches the next detection (i.e. sensor 3 next), spitmhction section
should be fired. This occurs at time point 3.

Nu,=f.up=tri=t =t 1
Pluu=f,u=tiri=trp=t)= h l:l’uz L=l :Z=0.25 (4.6)
F—t,rp—t

. None of the production rules were enabled on the histad/n@ output is predicted,

so none of the action sections should be fired. This occuisnatoints: 2, 4, 6
and 8.

85

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

NU]_:f,UZZf,r]_:f,I'ZZf o ﬂ'

P(U]_:f,U2=f|l'1=f,l'2=f)= Ne_ f 4
r1=r1,rp=

=1 4.7)

There are other possible combinations, but these do not @wliso are not com-
puted. This means out of a possible 16 combinations (4 edadmbinations * 4 fired
combinations), only 3 are actually computed and stored.

4.7 Fitness function for scoring predictive models

The fitness function is used to produce a fitness score whipechsents how well a predic-
tive model predicts a future set of history from a past seisibiny. To compute the fithess
score the predictive model is applied at each point in thihigo produce a prediction.
This prediction is compared against the history at the riex point to produce a pre-
dictive match score. The fitness score is calculated by ctimgpthe average predictive
match score over the history.

More formally given a predictive mod®&l and a set of historid the predictive model
predicts from the historyd1¢ at each time point. This is performed by the prediction
function described in Section 3.4 producing a set of predicutputsW. Each pre-
dicted outputw; is a tuple(o;, pi) containing the output;, and its likelihoodp;. Equa-
tion 4.9 shows how the set of predicted outputs is comparéid Wstory at the next
time stepH; 1. To perform this comparison eachis compared agains$t; . 1 using the
Fi ndBest Mat ch function (described below) and the result multipliedgy The best
comparison score is then returned. This process repeatshmentire history, and the
average comparison score is computed as shown in Equa8on 4.

f(M,H) = ﬁ * 3 comparépredict(M. Hya). Hi) (48)

comparéW, D) = Max (l; * FindBestMatclp;, D)) 4.9)

TheFi ndBest Mat ch function (shown in Figure 4.10) takes the actual historg an
the predicted output, and firstly pads each of them out wimlkentities or relations so
that they are the same size. Then, for each item in the acistakyy a unique match in
the predicted output is found. For each of the matches a cosgpas done between the
two objects using the Match algorithm described in Secti@n An exhaustive search is
then performed over all the possible combination of mat¢bdmd the best (maximal)
matching score.

86

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Input: A set of Entity or relationsK) predicted by the predictive model,
a set of entities or relation#l) describing history data at the next time point.
Output: The score on how well the prediction matches the history.data

\ Function FindBestMatch \

Fill the setd? andH with empty entities or relations such that they are the samgth.
best=0
Foreachmappingm from objects inP to objects inH
s=0
Foreachobjectp in P get its mapped objech(p)
s=s + Matchp, m(p)
If s> best
best=s
Return best

Figure 4.10: The pseudo code for thendBest Mat ch algorithm.

The fitness function will now be illustrated with an exampWe will use the same
predictive model, and conflict resolver from the previougtiea. This time the predictive
model is applied to a different set of history as shown in &ahP. In theN row each
tuple is the predicted sensor number, followed by its pratpfior example(2,0.75) is
the prediction that Sensor 2 will detect next with the prolitgof 0.75. The underscore
for the sensor number represents that there was no outpetbdld items show which
of the predicted outputs match the actual outputs. Incin@parerow the 1 in each
calculation is the result from the compare function and shtivat the predicted output
exactly matched the actual output. The fitness score canbi@omputed as shown in
Equation 4.10.

(1%0.75) + 0+ (1%0.25) + 0+ (1% 0.25) +0

f= 5

= 0.208 (4.10)

4.8 Controlling the size of the predictive models

To prevent the predictive models from overfitting the higtand getting too large, some
form of size control is required. In GP this is called bloatl aefers to excess code in the
program trees that are not used. The Tarpeian method [22lei©bthe methods in GP

used to control bloat. It has been shown to perform well onddied GP datasets [67],

therefore will be used in STGP to control the size of the pradd models. This method is

described in Section 2.6.7. Section 4.10.3.2 shows resnlt®w changing the Tarpeian
value affects STGP.

87

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Time 1 2 3 4 5 6
Detection history] {1} {2} {1} {3} {1} {3}
ri t f t f t f
ro t f t f t f
W {(20.75) | {1} | {(2.0.75),| {1} | {(2.0.75),| {(-1)}
(3,0.25) (3,0.25} (3,0.25}
compare 1*0.75 0 1*0.25 0 1*0.25 0

Table 4.2: The fitness results for the Path predictive model set of history data. Vari-
ablesr1 andr; represents that production rule 1 or 2 were enabled or ndtled@n the
history. VariableN represents the set of predictions, which each tuple is aqiread from

a production rule containing an output, and its probabilitiie tuples in bold represent
where the prediction matches the detection at the next ttepe §he variableompare
represents how well the prediction matched the actualtyisto

4.9 Evaluation

A comparison was performed with STGP and five other methodsgd? [82], Pe (an
implementation of the FAM algorithm [18] for SLPs), Neura¢torks [111], Bayesian
Networks [94] and C4.5 [99]. Five datasets were used for dmeparison: Uno, Uno2,
Paper Scissors Stone (PSS), CCTV and Play Your Cards RiQ@RP. Three of the
datasets (Uno, Uno2, and PSS) were taken from the work of INeedt al. [89]. The
other two datasets (CCTV and PYCR) are novel, and were peatiiae this thesis. Both
of these datasets are non-deterministic and test how tteeetit methods deal with learn-
ing from non-deterministic data. PYCR was also set as a gchatlenge in the work
of [89].

Section 4.9.1 will describe these datasets in more detaineSof the datasets have
training sets that are generated from video, Section 4.9l 2l@scribe how this was per-
formed. Finally, Section 4.9.3 describes the represemtatsed for each of the methods.

4.9.1 Overview of the datasets

This section gives a brief overview of the datasets: Uno,2JRsS, PYCR, and CCTV.

49.1.1 UnoandUno2

The card game Uno involves two players. Firstly one playgs $Blay” to signify both
players should put down a card. Each player then puts downda @aad the first player
who correctly shouts out how the two cards match picks uphalldards that have been

88

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

put down. If the cards both have the same picture, and colam tSame” should be
shouted out. If the cards have the same picture, but diffexours then “Shape” should
be shouted out. If the cards have the same colour, but diffgretures then “Colour”

should be shouted out. Finally, if the two cards are diffetkan “Nothing” is said. This

process repeats until a player cannot put down a card.

The game Uno2 works in a very similar manner; the only diffieeeis that instead of
one player saying “Play” and both players putting down a cdwely just take it in turns to
put a card down. The similarity is then based on the curretifpaevious cards that were
put down. The methods should learn predictive models fraritho and Uno2 datasets
that given the cards put down by each of the players shoultigirhe result that should
be said.

For both Uno and Uno2 six training sets were produced. Onefwwas real world
video, as described in Section 4.9.2.1. This contained §@d® of the game for both
Uno and Uno2. The rest were hand crafted with different Eweéhoise. The noise levels
were: 0% (clean), 5%, 10%, 20% and 30%. The noise was produgethanging or
removing the speech outputs, or removing cards. The dataeatained 130 rounds of
the game.

4.9.1.2 Papers scissors stone

Paper Scissors Stone is a card game again played by two peagte with three cards
representing paper, scissors and stone. One player witFday”, and a card is selected
by each player. Both cards are placed down face up at the sameTthe game is played
from the view point of player 1. If player 1's card beats plagés card then “Win” will
be heard. If player 1's card is beaten by player 2's card thesé” will be heard. If both
players have put down the same cards then it is declared aagrdi\Draw” will be heard.
Scissors will beat paper; paper beats stone; and stonedmesdsrs. Table 4.3 shows the
possible states.

| | (Player 1) Papef Scissors| Stone]

(Player 2) Paper Draw Loose | Win
Scissors Win Draw | Loose
Stone Loose Win Draw

Table 4.3: The result states for a game of Paper Scissore S&iween two players.

Again, the methods should learn predictive models thatrgitie cards put down by
each of the players should predict the result that shouldaik sSix training datasets
were produced in a similar manner to Uno and Uno2. One datesegenerated from

89

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

real-world video, and the rest were handcrafted with theeskavels of noise as the Uno
and Uno2 datasets. The real world video training set coaetail®0 rounds of the game,
and the handcrafted training sets contained 130 roundeajdme.

4.9.1.3 CCTV data of a path

A static camera was used to film a scene containing a path withciion point in it. A
frame of the video is shown in Figure 4.11(a), and Figure 41i@ws the four possible
movement patterns in the scene. The video is used to mockepa €CTV cameras
over the image as shown in Figure 4.11(b).

(a) (b)

Figure 4.11: Figure (a) shows a frame of the video with a petaking a decision at the
junction point. Figure (b) shows the possible location efvtirtual CCTV cameras in the
image.

Figure 4.12: The four possible movement patterns in the C&€danhe.

The methods should learn a predictive model that can predsgd on the CCTV cam-
eras a person has been in previously which CCTV camera thegppear in next. The
CCTV dataset tests if the different methods can learn frord,raodel, non-deterministic

90

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

data. Six training sets were produced in the similar manméhe PSS, Uno and Uno2
datasets. One dataset was produced from real-world videldha rest were handcrafted.
The same noise levels as previously described were usede Mais added by removing
regions and changing their numbers. The real world datasgamed 50 detections, and
the handcrafted datasets contained around 120 detections.

4.9.1.4 Play your cards right

Play Your Cards Right (PYCR) is a card game played by a pensdmaaealer. The cards
are numbered from 1 to 5 with 1 being the lowest, and 5 beindnitjeest. Firstly the
dealer says “Play” and puts down a card face up. Then thepensst say if they predict
the next card will be “Higher” or “Lower” than this card. Theaer will then put down
the next card. If the person guesses correctly then therdemls “Win”, otherwise they
will say “Lose”.

The methods should learn a predictive model that should hesestite of the cards
put down to predict the spoken outcomes from the person andehler. PYCR, like
the CCTV dataset tests if the different methods can leamn fnon-deterministic spatio-
temporal data. Five handcrafted training sets were pratu@ing the same noise levels
as the previous datasets. The noise was added by removigarad speech outputs, and
changing the speech outputs. The datasets contained 13@srotithe game.

4.9.2 Spatio-temporal data acquisition

Four out of the five datasets (Uno, Uno2, PSS and CCTV) havaiirtg set that is
generated from video. Firstly, spatio-temporal data mesatquired from the videos,
and then it must be represented within the different meth®ts section describes data
acquisition, and the next section describes data repsamt

4921 Uno, Uno2 and PSS

The Uno, Uno2 and PSS videos will be that used in [89]. Thefitkegdrom this paper are
used for the experiments in this chapter, but the speecteclabels are changed to be the
actual speech (word) labels. The remainder of this sectibrexplain how the datafiles
were produced. The videos were taken of the game playing anelsobjects moving in
the area were tracked using a generic blob tracker [68]. Vémeobject was stationary
for a number of frames it is assumed to be part of the game.ufesatrom the object
including texture (calculated from Gabor wavelets, and$Sans applied at various ori-
entations and scales), colour (calculated from a binngddriam of hue, and saturation),

91

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

and position were produced. Each colour, and texture featas independently clustered
using agglomerative clustering. A graph was produced watia tems as the nodes, and
the feature clusters used to weight the edges. The graphhsaspartitioned to form
clusters of data items. These clusters were then used toanactor quantisation based
nearest neighbour classifier. One of the players had theievecorded during the games.
The energy of the speech signal was analysed using a fixethlemgdow. When the en-
ergy was over a fixed threshold spectral analysis was peefdrom the window, and a
histogram of the result was produced. K-means clustering tvan performed on the
speech samples, to find clusters of similar speech soundiislthesis the previous step
is changed by replacing the speech cluster labels by mgnaradiotating them with the
actual speech (word) labels.

49.22 CCTV

A 10 minute video of people walking along a path containingreciion was filmed. This
was then used to mock up a network of CCTV cameras. Figureshdds a frame from
the video. Virtual motion detectors, representing CCTV eeas, were hand placed over
the video (Figure 4.11 right). Using frame differencinggdanmorphological operations the
video was processed to determine the location of the maliéme number of moved pix-
els in a region exceeded a fixed threshold then the virtualctiet outputted that motion
had occurred at that location. To prevent false detectioasrtotion detection is imple-
mented as a 2-state machine (where the states are motiooffanin The state machine
required a number of frames (normally 10) of stability tofa state.

4.9.3 Representation

This section will show how the spatio-temporal data is repnéed in the different meth-
ods.

4.9.3.1 Progol and Pe

In Progol a set of events occurring in a visual scene is repted as a sequence of states
in which each state describes: the current state of the tshjethe scene; an action associ-
ated with this state; the time the state occurs at; and host#te relates to previous state.
Progol requires four elements as its input: a set of typasiesbackground knowledge;
some examples; and a set of mode declarations. The Uno tatfi$e used to illustrate
these elements. The rest of the datasets use similar elemBm¢ same representation
from [89] will be used for the Uno, Uno2 and PSS datasets.

92

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Firstly, Progol needs some type declarations. Figure hb@ss the type declarations
for the Uno dataset: texture, colour, position, and speBichbackground information is
required for any of the datasets.

texture(f0). texture(fl). texture(f2).

colour(c0O). colour(cl). colour(c2).

position(p0). position(pl).

speech(s_1). speech(s_2). speech(s_3).

speech(s_4). speech(s_5). speech(s_6).

speech(s_7). speech(s_8). speech(s_9). speech(s_10).

Figure 4.13: Type declarations for Progol on the Uno dataset

Secondly, Progol requires a set of examples — Figure 4.14sbBome examples for
the Uno dataset. The first example shows two cards beingglacthe scene, and an
appropriate response (action) being heard. The secondpéxamows an empty scene,
and an appropriate action being heard. Both examples hawelarstructure. Thé i ne
predicate represents the time the example occurred atsdbeessor predicate repre-
sents how this example temporally relates to a previous pkanThest at e predicate
Is used to represent the visual scene. It either represem@spty scene, as shown in Ex-
ample 2, represented Yy , or it represents a set of objects in the scene. In Example 1 th
state of the world is{ f 1, cO, pO], [f O, cO, p1l] which represents two objects, one
with texturef 1 and colourcO, at positionp0; and the other with textureO and colour
c0, at positionpl. Finally theact i on predicate represents what spoken response has
been heard.

Finally, Progol requires some mode declarations. Figuté g¢hows the mode decla-
rations for the Uno dataset. It shows that Progol needs tdym®a clause which has an
acti ontermits head, and its body can contain the tesmscessor andst at e.

To convert the clauses learnt by Progol into a Stochastiad_Bgogram (Section
2.5.3.3) the likelihood of each clause needs to be calalfaten data. Two approaches
are used in this thesis to do this. Firstly, Pe (which impleta¢he failure-adjusted max-
imisation algorithm from [18]) is used. Secondly, the clesigearnt by Progol are con-
verted into a predictive model, and the parameters of itflicoresolver are estimated by
STGP. This is performed by converting each Horn clause irgooduction rule, where
the action section contains the appropriate entity orimlaepresenting the head of the
Horn clause, and the condition section represents the bbtlyeoHorn clause. Then,
the algorithm described in Section 4.6 is used to estimatg#nameters of the conflict
resolver.

93

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Y%Exanple 1

time(t_0).

time(t_15).

successor(t_0,t_15).
state([[f1,c0,p0],[fO,cO,pl]],t_15).
action(s_10,t_15).

Yexanmpl e 2
time(t_15).
time(t_20).

successor (t_15,t_20).
state([],t_20).
action(s_9,t_20).

Figure 4.14: Examples of the Uno dataset which are used witd?.

nodeh(1, acti on(#speech, +tine))

nodeb(*, state([[-texture,-col our,-position],
[-texture,-colour,-position]], +tine))

nodeb(*, state([], +tine))

nodeb(1, +any = #any)

nodeb(*, successor (-tine, +ti ne))

Figure 4.15: Mode declarations for Progol on the Uno dataset

493.2 STGP

STGP requires the following: a set of property, entity arldtren definitions; a datafile;
and a set of terminals, and functions. These will now be émpthby using the Uno
dataset as an example. The other datasets use similagsettin

The representation used in the datafile is described in@e8tR. The properties and
entities used to learn the Uno dataset are shown in Figuf Zlere are four property
definitions: colour, texture, position, and speech, and éwtity definitions: card (with
properties: texture, colour and position), and actiontl{yitoperty speech).

Figure 4.17 shows the terminals used to learn the Uno dafBisete are colour sym-
bolscO, c1; texture symbol$ O, f 1, f 2; position symbol$0, p1; and speech symbols
Samne, Shape, Not hi ng, Pl ay, Col our. Figure 4.18 shows the functions used to
learn the Uno dataset. There are functions to check theeexistof a card, or a talker
entity in the worldExi st s(Card), Exi st s(Acti on). Also, there are functions
to get property information from the cards, and talker egiGet (Car d: Col our),

94

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Get (Card: Position), Get(Card: Texture), Get (Acti on: Speech). Fi-
nally, there are functions to compare symbolic dataual , Not - Equal , and logical
functionsAnd, Or , Not .

<PROPERTY- DEFI NI TI ON NAME=" COLOUR" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C' VALUES="cO, cl,c2"/>
</ PROPERTY- DEFI NI TI ON>

<PROPERTY- DEFI NI TI ON NAME=" TEXTURE" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C' VALUES="fO,f1,f2"/>
</ PROPERTY- DEFI NI TI ON>

<PROPERTY- DEFI NI TI ON NAME=" POSI TI ON" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C' VALUES="pO, pl1"/>
</ PROPERTY- DEFI NI TI O\N>

<PROPERTY- DEFI NI TI ON NAME=" SPEECH" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C"
VALUES=" Shape, Col our, Not hi ng, Sane, Pl ay"/ >
</ PROPERTY- DEFI NI TI ON>

<ENTI TY- DEFI NI TI ON NAME=" CARD" >
<LEARNABLE VALUE="FALSE"/ >
<PROPERTY NAME="COLOUR'/ >
<PROPERTY NAME="PGCSI TI ON'/ >
<PROPERTY NAME="TEXTURE"/ >

</ ENTI TY- DEFI NI TI ON>

<ENTI TY- DEFI NI TI ON NAME=" ACTI ON" >
<LEARNABLE VALUE="TRUE"/>
<PROPERTY NAME="SPEECH'/ >

</ ENTI TY- DEFI NI TI ON>

Figure 4.16: Properties, and entity definitions for STGPrenWno dataset.

cO0, ci1

p0, pl
fo, f1, f2
Sanme, Shape, Not hing, Play, Colour

Figure 4.17: Terminals for STGP used to learn the Uno dataset

95

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Exi sts(Card), Exists(Action),

Get (Card: Col our), Cet(Card: Position)
Get (Card: Texture), Get(Action: Speech)
And, O, Not-Equal, Equal, Not

Figure 4.18: Functions used to learn the Uno dataset

4.9.3.3 Bayesian Networks, Neural Networks, and C4.5

These methods were implemented using the WEKA machineitepsystem [41]. This
requires a fixed length representation to describe the elatabhe representation will de-
scribe the current state of the scene, along with an ased@ation that needs to be learnt.
Figure 4.19 shows an example representation for the Unaelat@ihe first six attributes
(Col our 1, Posi tionl, Texturel, Col our 2, Posi tion2, andText ur e2) de-
scribe the properties of the cards in the scene, eMhpN, f N representing that no card
is present. The final attribut&peech) represents the action associated with the scene.
The first line of data indicates that no cards are in the scedétat play § _pl ay) was
uttered. The second line of data represents that a card wldliicc 2, positionp0, and
texturef O, and a card with colouc 2, positionpl, and texturd 1 are in the scene and
that colour §_col our) was said.

@RELATI ON Uno

@ATTRI BUTE Col ourl1l {cO,c1,c2,cN

@\TTRI BUTE Positionl {p0, p1, pN}

@ATTRI BUTE Texturel {fO,f1,f2,fN}

@ATTRI BUTE Col our2 {c0, c1,c2,cN}

@ATTRI BUTE Posi tion2 {p0, pl, pN}

@ATTRI BUTE Texture2 {f0,f1,f2,fN}

@ATTRI BUTE Speech {s_shape, s _pl ay, s_sane,s_col our,
s_not hi ng, s_unknown}

@DATA

cN, pN, fN, cN, pN, fN, s_pl ay

c2,p0,f0,c2,pl,fl,s _col our

Figure 4.19: An example Uno dataset representation for 8ageNetworks, Neural Net-
works, and C4.5.

96

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

4.10 Results

This section will firstly outline the evaluation criteriarfthe experiments. Then an analy-
sis of the results from the different methods, and expertewith the different parameters
for STGP will be presented.

4.10.1 Evaluation criteria

Two criteria were used to evaluate the predictive modeldyed by the different meth-
ods: coverage, and accuracy. Coverages€ores if the predictive model can correctly
predict the history (i.e. the probability of correct prdwa is greater than 0) and is the
number of correct predictionsq) divided by the history sizes| (Equation 4.11). Accu-
racy @) scores with what probability the correct prediction is madt is calculated by
taking the sum of the likelihoods= {l,...,In.} for each correct prediction, and divid-
ing it by the history size, as shown in Equation 4.12. In netedministic scenarios this
cannot be 100%.

c= ”_SC (4.11)
a= %' (4.12)

4.10.2 A comparison of STGP with current methods

Figures 4.20 - 4.27 show graphs comparing the coverage anaamy of STGP with
Bayesian Networks, C4.5, Neural Networks, and Progol orfitleadifferent datasets ex-
plained in Section 4.9.1. The graphs also show the resultsstomating the probabilities
of the clauses learnt by Progol using Pe, and STGP. Ten folskoralidation was used
in all the experiments. In STGP the training folds are usethenfollowing way: four
folds are used to estimate the parameters of the conflicivezsand five folds are used
to score the predictive models. A windowed section (whiclvescat every generation)
of the parameter fold, and the scoring fold is used for thewations. Overall the results
show that STGP had accuracy on all the datasets that was dsagpor better than the
other methods.

On both Uno and Uno2 the maximum achievable result for thaszsdts was 100%
accuracy, and 100% coverage (as they are deterministicanlbe seen in Figures 4.20
and 4.21 that STGP matches the expected result for the cktased, and keeps close
to this result with noisy data. Combining Progol with STGPbarth the Uno and Uno2
datasets produced more accurate results than all methioeistbin STGP. The Uno and

97

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Uno2 datasets do not contain enough examples to describg gessible outcome that
can occur within the game. C4.5, Neural Networks, and BayeNietworks cannot pro-
duce generalised rules from the examples, and effectiegyon storing common exam-
ples and their outcomes. They fail to get 100% accuracy afdcl€overage (Figures
4.20 and 4.21), as they will have not learnt enough examplesrrectly predict from all
the test data. These methods are also affected by noiseexahneples, which can be seen
in the graphs. Progol and STGP which can learn generalidesl fnom the examples get
better results because the generalised rules can stiéatbyripredict test examples which
have not occurred in the training data. Progol suffers froolaase evaluation problem
that affects its coverage and accuracy results. This isechlg an incorrect ordering of
the clauses it has learnt. As explained in Section 2.5.2ltheses are applied in the order
they are learnt until one clause entails the unseen exanmptlleis thesis the clauses were
applied in the order that Progol had learnt them. This ofteams that although Progol
had learnt the correct set of clauses their ordering causagbPto predict incorrectly.
Figure 4.22 shows one of the results from the Uno Clean datésan be shown that the
correct number of clauses has been learnt, but when theypplie@to the test fold it got
93% coverage and 93% accuracy. If the clauses were in theatarder it would have
got 100% coverage and 100% accuracy. The problem is due teewine Same clause is
located. In Figure 4.22 the Colour and Shape clauses aredpygfore the Same clause
which means Progol will incorrectly predict a same event eslaur or shape event. By
placing the Same clause above the Colour and Shape claisgsdhlem is solved, as
shown in Figure 4.23.

Pe can be used to solve this clause ordering problem. It atshe likelihood that
a clause is used in a prediction. All the clauses are apphiede unseen example, and
the likelihood of a prediction is based on the clauses thiildhe unseen example. This
approach improves Progol's coverage results, but doesrmmtoive its accuracy due to
some clauses clashing when they entail an unseen examplex&mople, the estimated
probabilities from Pe for the clauses in Figure 4.22 are shiowFigure 4.24.

Using these probabilities the likelihood of the Same clamgailing an unseen exam-
ple is based on the Same clause likelihood along with théhiged of the Colour, Shape,
and Nothing clauses because these also entail the unsemplexalThe probability of
predicting the next event will be same is thgf 1203523 = 0.1. However, if the
Shape, Colour and Nothing clauses were not included in thdigtion, the prediction for
same would have the correct probability of 1.0. Pe must dwtlbelauses that match the
data, unlike STGP which can prevent the action sections mesoeroduction rules from
being output. This can be seen in the results as combiningléuses learnt by Progol

98

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Uno - Clean Uno - Clean

100 | { } + = + 1 100 |

80 {

60 |

80 I {
60 | :

40 40

Mean Coverage (%)
Mean Accuracy (%)

20 F 1 20 F

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

Uno - 10% Noise Uno - 10% Noise

J | |
60_{}J 60_{}{J¥

40 40

Mean Coverage (%)
Mean Accuracy (%)

20 F 1 20 F

Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method Pe +STGP Method Pe +STGP

Figure 4.20: The mean accuracy and coverage for Uno Clegih dtad Uno 10% noise
(bottom). The error bars show one standard deviation fraamtlean. All results were
produced by 10 fold cross validation.

with STGP gets more accurate results than Progol, and Pcogabined with Pe.

On the PSS dataset the optimal obtainable result is agai¥h a@erage, and 100%
accuracy (as it is deterministic). STGP, as shown in Figu?&,4gets the best accuracy
results, and matches the optimal result on the clean daesgtkeeps close to this for
the noisy datasets. C4.5 gets the same accuracy resultsG® &7 the clean dataset,
but its accuracy reduces on the noisy datasets. Neural nef\get good results (average
accuracy 97%) on the clean datasets, but again this drogseamoisy datasets. Progol,
Progol combined with Pe, and Progol combined with STGP gaseeesults than C4.5
and Neural Networks. The PSS datasets, however, are differédJno and Uno2 in that
no general rules are required to get good results on thdriga@xamples. The training
data contain all the possible combinations of the game,ldbatlis required is to memo-
rise these combinations. This explains why C4.5 and Neuealvbirks gets better results
on this dataset than on the Uno and Uno2 datasets. Progaol sgféers from the clause
ordering problem described previously which affects igites. Pe solves the clause or-
dering problem, but the clashing clauses reduce the agcuofaihe results. When the
clauses from Progol are combined with STGP there is not dntnagning data to cor-

99

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

Uno2 - Clean Uno2 - Clean
100 [I I 3 3z 100 : 3 E
g s8of s 8or
g 60} S eof {
=3 Q
o Qo
o <
5 5
S 40} } S 40} }
= =
20 4 20 {

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

Uno2 - 10% Noise Uno2 - 10% Noise

100 | 1 100 |

]

g s 8of {
g 60 g 60 }{
] <
g 5
& 40r § 40f
= =
20 4 20 {
Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method * Pe +STGP Method * Pe +STGP

Figure 4.21: The mean accuracy and coverage for Uno2 Clephdhd Uno2 10% noise
(bottom). The error bars show one standard deviation fraamtlean. All results were
produced by 10 fold cross validation.

action(s_play,A) :- state([],A).
action(s_colour,A) :- state([[B,CD],[B,EF]],A.
action(s_shape,A) :- state([[B,CD,[E F D],A.
action(s_sane,A) :- state([[B,C D ,[B,ED],A.
action(s_nothing,A :- state([[B,CD,[E F,QJ],A.

Figure 4.22: A result for Progol on the Uno dataset with tlaeises in the wrong order.

action(s_play,A) :- state([],A).

action(s_sanme,A) :- state([[B,C D ,[BED],A.
action(s_colour,A) :- state([[B,C D],[B,E F]],A).
action(s_shape,A) :- state([[B,C D],[E F, D],A.
action(s_nothing,A) :- state([[B,C D,[EF G],A.

Figure 4.23: A result for Progol on the Uno dataset with tlaises in the correct order.
rectly estimate the parameters for the conflict resolveris Phevents it from correctly
predicting all of the test data, which reduces its accuracy.

On the PYCR dataset STGP gets the best accuracy and coverageven in Figure

100

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

0.50::action(s_play,A) :- state([],A.
0.10::action(s_colour,A) :- state([[B, CD,[B,EF]],A.
0.10::action(s_shape,A) :- state([[B,C D],[E F, D],A.
0.05::action(s_sane,A) :- state([[B,C D],[B,E D],A).
0.23::action(s_nothing,A) :- state([[B,C,D],[EF,QJ],A.

Figure 4.24: The estimated probabilities for the clausdsguare 4.22 using Pe.

Mean Coverage (%)

Mean Coverage (%)

100 |

80 |

60

40F

20

100 |

80

60 |

40

20 F

PSS - Clean

Bayes Net.C4.5

NN Progol Progol Progol STGP
Method +Pe +STGP

PSS - 10% Noise

Bayes Net.C4.5

NN Progol Progol Progol STGP
Method +Pe +STGP

Mean Accuracy (%)

Mean Accuracy (%)

100 |

80 |

60 |

40F

20

100 |

80

60 |

40

20 F

PSS - Clean

Bayes Net.C4.5

NN Progol Progol Progol STGP
Method +Pe +STGP

PSS - 10% Noise

Bayes Net.C4.5

NN Progol Progol Progol STGP
Method +Pe +STGP

Figure 4.25: The mean accuracy and coverage for PSS Clganaitd PSS 10% noise
(bottom). The error bars show one standard deviation fraamtlean. All results were
produced by 10 fold cross validation.

4.26. The optimal result for PYCR is 100% coverage, and 90&aracy (as it has non-
deterministic outcomes). This is based on playing the gaimereveach possible game
combination occurs in equal proportion. STGP is close ®ftiriboth the clean and noisy
datasets. It does fail to get 100% coverage due to not lggraoies for infrequent events
in the training data. On the clean data, Bayesian Networks; @nd Neural Networks
got more accurate results than Progol, and Progol combirngdRe. However, on the
noisy data the inverse is true, as can be seen in Figure 4.26.

Progol does not learn enough clauses to cover the possixs aathe game. When
Progol is combined with either Pe, or STGP the accuracy dogsmrove due to the lack

101

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

of correct clauses. Progol’s fitness function is based onwelithe clauses cover rather
than predict the data. It looks at the number of positive godamto negative examples
covered by a potential clause. The more negative examplasiseccovers, the less likely
Progol will be to use it. This can make it hard to learn clads@s non-deterministic data,
where a particular state in the world can have multiple auees. If insufficient examples
are available Progol sees multiple outcomes as noise, whitprevent it finding a clause.

PYCR - Clean PYCR - Clean

100 | 1 100 |

o] 1] o1

60 60 {

S

20 1 20

Mean Coverage (%)

—_—
—
——

Mean Accuracy (%)

40F

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP

PYCR - 20% Noise PYCR - 20% Noise

100 1 100}
80| sol
60 | {
Jdoo

Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method Pe +STGP Method Pe +STGP

Mean Coverage (%)
Mean Accuracy (%)

T

20 F

Figure 4.26: The mean accuracy and coverage for PYCR Cleah &hd PYCR 20%
noise (bottom). The error bars show one standard deviatem the mean. All results
were produced by 10 fold cross validation.

The results for the CCTV dataset are shown in Figure 4.27. édpected results
for CCTV are 100% coverage and 83% accuracy (as it has namrdiiistic outcomes).
This is based on the four actions from Figure 4.12 occurnmegqual proportions in the
data. STGP got the best results, but does not get 100% cavdragause it fails to learn
infrequent changes between regions in the training dat&TI@P for a predictive model
to match a particular pattern in the training data the patteust occur both within the
window used the estimate the parameters of the conflictvesand in the window to
score the predictive models. This is done to prevent STGHR fearning from noise, and
to help it generalise. Infrequent region changes that oppear in one of the windows
will not be modelled, and are seen as noise. This is why sontieeoinfrequent region

102

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

changes in the CCTV dataset were not modelled. This can lfeedan the results as the
predictive models learnt from different folds modelledeliént actions. Neural Networks,
and Progol got results that were statistically the same enctban dataset. Bayesian
Networks, C4.5 and Progol combined with Pe got the worstlt®sn the clean dataset.
The methods get similar results with increasing levels aé@&oexcept for STGP, and
Progol combined with STGP. Progol fails to get good resbitsause the CCTV dataset is
non-deterministic which affects its fitness function (epéd previously). When Progol
is combined with Pe accuracy is not improved. This is due tblgms with clashing
clauses, which effect Pe’s accuracy. By combining Progth BTGP its accuracy results
are improved, and they are shown to be statistically simde®TGP (p-value on clean
data is 0.03, with 5% noise is 0.0003, and with 10% noise i$)0.0

CCTV - Clean CCTV - Clean

100 | } 1 100 |
s s} { { s s8of i
o =
g }] } : I }
] 60 5 60
3 g % I }
] <
g 5
& 40r S 40f
= =

20 4 20

Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method Pe +STGP Method Pe +STGP
CCTV - 20% Noise CCTV - 20% Noise

100 | R 100 |
g eor { 1 ! { = eof {
5 S
g 2 I
g 60 | } } 1 § 60 |
(@] <
]]
S 40} { S 40} { { { {
= =

20 1 20

L L L L L L L 0 L L L L L L L
Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP Method +Pe +STGP

Figure 4.27: The mean accuracy and coverage for CCTV Clegn) &nd CCTV 20%
noise (bottom). The error bars show one standard deviateon the mean. All results
were produced by 10 fold cross validation.

4.10.3 Parameter experimentation with STGP

This section presents results from experimenting with tfferént STGP parameters to
see how they affect its performance on different dataséts.ifitial values for the param-

103

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

eters are shown in Table 4.4, these were based on typicahpteavalues from the GP
literature. The rest of this section will show experimerasying each of the parameters
in turn. The best results from each experiment are used sesuent experiments.

| Parameter | Value |
Population Size 6000
Tarpeian value None
Maximum number of generations 100
Initialisation generations 10
Selection method Tournament selection using 6 individuals
Percentage of operators Reproduction (10%), Delete (10%),
in initialisation generations Adding (40%), Replace (40%)
Percentage of operators Reproduction (10%), Crossover (50%),
in normal generations Mutation (10%), Delete (10%),
Adding (10%), Replace (10%)
Conflict resolver type Probabilistic

Table 4.4: Initial settings for STGP.

4.10.3.1 Population Size

The following values were used for the population size patam 1000, 2000, 3000,
4000, 5000, and 6000. Figure 4.28 show the accuracy resultseoclean versions of
the datasets. The graphs show that by increasing popukstierthis is not a statistically
significant change in the average accuracy of the resultsileBiresults were seen on the
medium and high noise datasets. The PSS and Uno2 cleantddtage a large amount of
variance in the accuracy results for population size 100@&mcompared with the other
population sizes. To increase population diversity, amgigie STGP with a greater range
of predictive models when trying to find a solution it was died to keep the population
size at 6000 for all the datasets in this chapter. This allBW&P to deal with noisy

datasets, and makes it more likely to converge to the cosdation.

4.10.3.2 Tarpeian value

In the population size experiments there were no conssrantthe possible size of the
predictive models. Figure 4.29 shows that the average $ibe predictive models across
all datasets typically increased a constant rate to the pumibgenerations STGP had
performed. This relationship is the same regardless of latipn size, and shows the
predictive models suffer from bloat. As explained in Sect®6.7 bloat causes the pre-
dictive models to contain redundant elements which coullentaem less general, and

104

Chapter 4

Learning Predictive Models of Spatio-TemporabDa

102

101

100 |

Mean Accuracy (%)

96

95

94

104

102

100 |

Mean Accuracy (%)

92

90

88

99

98 |

97

98 |

96

9

PSS - Clean Uno - Clean
100.4 T T T T
1002} i i
1 1 100 b —
i .
: i g 998r
i H >
] 99.6 |
3
3 99.4
<
S 99.2
(5
= 99 |
98.8 |
98.6 [
L L L L L L 98.4 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Population Size Population Size
Uno2 - Clean CCTV - Clean
88
86
s el
= 1
g ;
£ 82f —
g — i
- 80
©
(5}
= 78}
76 |
L L L L L 74 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Population Size Population Size
PYCR - Clean

Mean Accuracy (%)

94

93
92
91t
90
89
88
87
86
85
84

83

1000 2000 3000 4000 5000 6000 7000
Population Size

Figure 4.28: The mean accuracy graphs for population sizéh@mlean datasets. The
error bars show one standard deviation from the mean. Allltes/ere produced by 10
fold cross validation.

slow down STGP’s search for a solution. To control bloat tag&ian method [22] was
used. The amount of bloat control is based on the Tarpeiarevhht varies from 1 to
10. Two experiments were then performed. The first experirapplied Tarpeian bloat

control over the entire run using the Tarpeian values intbeger range of 1 to 10. The
second experiment delaying the Tarpeian bloat control aftér the 10 initialisation gen-
erations had been performed, to see if the increased divarghe initial generations of
the run would produce better results.

To find the best Tarpeian value for each dataset requiresifiride lowest value which

105

Chapter 4

Learning Predictive Models of Spatio-TemporabDa

Mean Size

220

200}
180}
160}
140 |
120
100 |
80 |
60
40}t

Uno - 0% Noise

-

1000 ——

4000
..5000

76000 e

Mean Size

300

250

200

150 [

100 |

50 |

Path - 0% Noise

201/

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Generations Generations

Figure 4.29: The mean predictive model size for the CCTVhlignd Uno (left).

has an accuracy at least as good as the accuracy for thetdaitéiseo Tarpeian control.
This means finding on the accuracy graph the point where tl@nraecuracy begins to
flatten out.

Figure 4.30 shows the accuracy values for the Tarpeian salnghe clean datasets.
Figure 4.31 shows the average model size for the differempielan values. It can be seen
that for CCTV and Uno2 a Tarpeian value of 3 will produce resulith the same accu-
racy as without using bloat control, but the size of the prtgk models is significantly
reduced. For Uno and PYCR this value is 4, and for PSS thigvalb. PSS requires a
more complex predictive model than the rest of the dataskishwexplains in its higher
Tarpeian value. For all datasets a Tarpeian value of 2 didjebgood accuracy results
when compared to the accuracy results to not using bloataontThe medium noise
accuracy results for the datasets show a similar picture.atieuracy results on the high
noise datasets show they require slightly different Tanpedalues. PSS, Uno2, CCTV
and PYCR require a Tarpeian value of 4; and Uno requires aiaryalue of 6.

Figures 4.32 and 4.33 show the accuracy and size resulteaigan datasets when
the Tarpeian bloat control is not performed for the initi@ldenerations. It can be seen
that there is no significant difference in the results whemgared with using Tarpeian
bloat control for the entire run. The same findings are foundh@ medium, and high
noise datasets. It was therefore decided to apply Tarpdaat bontrol for the entire
length of the run.

The Tarpeian method controls the size of the populationclwvhifects its diversity.
The results show that a very low Tarpeian value decreasetiveisity of the population
too much, and prevents STGP from finding the correct solutibhe datasets which
require simpler predictive models like Uno, and Uno2 reguairslightly lower Tarpeian
values than the datasets which require more complex preglitiodels like PSS. Chapter
7 presents an adaptive Tarpeian method that varies theidarpalue during the run

106

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean

104 T T T T T T T T T T 100.4

102 + 1 1 100.2
—~ 100F —_ 100 —t——t———t
> >
Z 98} 3 998f
g g
3 3
3 96 | 3 99.6 | .
< <
c c
g 94f g 99.4 |
= =

92 99.2

%t 1 %}

88 L L L L L L L L L L 98.8 L H L L H L L L L L

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno2 - Clean CCTV - Clean
102 T T T T T T T T T 90

100 . . E 88 |

sl i
o6 | \
o4

92 F

86

84t

82

80 |
90

Mean Accuracy (%)
Mean Accuracy (%)

8s | 78

86 E 76

84

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full

PYCR - Clean
94

92

90

88

86

Mean Accuracy (%)

84

82

None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full

Figure 4.30: The mean accuracy results for the clean dataselifferent Tarpeian values.
The error bars show one standard deviation from the meaneslilts were produced by
10 fold cross validation.

of STGP. This stops the user from having to decide which Tarmpealue to use, and
optimises the Tarpeian value depending on the currentstéte population.

4.10.3.3 Tournament selection

Tournament selection (Section 2.6.4) is one techniqueléetsiadividuals in the popula-
tion, the next section will show another called Roulette @hé requires a value which
determines how many individuals in the population will tagdtace in the tournament. A
low value will cause tournament selection to select moreoarly from the population,

107

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean
110 - 80

100 F
o}
80
70}
60 |
50 |
4w}
30}
20}
10

70

60 |

50 |

Mean Size
Mean Size

a0t

30

20 F

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno2 - Clean CCTV - Clean
160 T T T T T T T T T T 220
! 200

140
180

120 F - 160 F
| 140
120}
100 |
80
60
a0
20 F

100 |

80

Mean Size
Mean Size

60 |

40

20 F

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full

PYCR - Clean

350

300 |

250

200 |

Mean Size

150 |

100 |

50 |

0 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full

Figure 4.31: The mean size results for the clean datasetéferedt Tarpeian values. The
error bars show one standard deviation from the mean. Allltes/ere produced by 10
fold cross validation.

and higher values will cause it to select more from the fitbeliviiduals in the popula-
tion. To find the best value for the datasets an experimentp@eermed that tried out
the following tournament selection values: 2,5,10,2%8(80,100,120,140,160,180, and
200.

Figure 4.34 shows how the different tournament selectidnegperformed on the
clean datasets. It can be seen that for the PYCR, Uno and R8Settaan increased
tournament selection value reduces the mean accuracy ésbks (PSS p-value=0.004,
PYCR p-value=0.05, Uno p-value=0.03; calculations basetbarnament values 5 and

108

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean
102 T T T T T T T T T 101
101
~ 100 1 —_ 100.5F
> >
5 oof 1 3
g g
3 3
3 98 I E 3 100
< <
c c
g o7t 3
= =
96 1 99.5
95
94 L i L L L L L L L L 99 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno2 - Clean CCTV - Clean
104 T T T T T T T T T T 90
102 F 1 88
. 100} B 1 _sef
S 1 3 i i 1 1 1 R S
= S 84y
g % g
5 5 82r
8 96 3
< < 80F
c c
IS 94 | IS
i} 3} L
s S 78
92 76 |
90 1 74}
88 L L L L L L L L L L 72 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10

Tarpeian Value Tarpeian Value

PYCR - Clean
93

92
91|
90
89
88

Mean Accuracy (%)

87

86

85

84

None 2 3 4 5 6 7 8 9 10
Tarpeian Value

Figure 4.32: The mean accuracy results for the clean datasdtifferent Tarpeian values
where Tarpeian bloat control starts after the first 10 geimera. The error bars show one
standard deviation from the mean. All results were produngetiO fold cross validation.

200). For the Uno2 and CCTV datasets a increased tournaraeketisn value had no
statistically significant change in the accuracy in the Iteglno2 p-value=0.35, CCTV
p-value=0.43; calculations based on tournament valuesl2@0). Across all datasets a
tournament selection value of 2 produced poor results. Alairpattern can be seen as
with the medium noise datasets as with the clean datasetstivei exception that STGP
gets worse accuracy results on the Path dataset with aragiogetournament selection
value, and the accuracy results on the Uno dataset do notehstagistically significant
(p-value 0.64) change as the tournament selection valnerisased. On the datasets with

109

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean
110 — 80

100 ol
%
60 [
80

70 50 |

60 | 40 F

Mean Size
Mean Size

50 |
30

40 F

30k 20 F

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

20

Uno2 - Clean CCTV - Clean
160 T T T T T T T T T T 220
! 200
i 180 F
120F 1 160
| 140
120
100 |
80 |
60 |
40 F
20

140

100 |

80

Mean Size
Mean Size

60 |

40

20 F

None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

PYCR - Clean
350

300 |

250

200 |

150 |

Mean Size

100 |

50 |

0

None 2 3 4 5 6 7 8 9 10
Tarpeian Value

Figure 4.33: The mean size results for the clean datasetsffenedt Tarpeian values
where Tarpeian bloat control starts after the first 10 geimera. The error bars show one
standard deviation from the mean. All results were produngetiO fold cross validation.

high noise levels varying the tournament selection valuelitide change in the results
apart from for PYCR where it got worse accuracy with an insiggitournament selection
value. The variation in the results is due to population kg Larger tournament
selection values force STGP to sample more from the fittavidals in the population,

which will reduce the population diversity. For some data$ige Uno, and Uno2 it has
been shown that solutions can still be found even with rediypapulation diversity, but

for the rest of the datasets this reduced diversity will llavaSTGP to find the correct
solution. Small tournament selection values on the othadhacrease the population

110

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean
104 T T T T 105
102 +
g g
> >
o o
g g
3 3
Q Q
o o
< <
c c
© ©
(5 (5
= =
90
88 L L L L 80 L L L L
50 100 150 200 50 100 150 200
Tournament Selection Value Tournament Selection Value
Uno2 - Clean CCTV - Clean
105 T T T T 90
3 i 5 ; T 88
100F | i . 861
< S gabil 3
3 o5 oy
IS IS
E 5 82
Q o H i
=} =} H
< < sop| |
§ 90 § P
s S 78
85 J 76
741
80 L L L L 72 L L = 2 L L
50 100 150 200 50 100 150 200
Tournament Selection Value Tournament Selection Value
PYCR - Clean
94
02}
~ 90Fi}
g
2 88}
s :
3 Y
g 86}’ !
<
s b
g 84
= li
82
80
78

50 100 150 200
Tournament Selection Value

Figure 4.34: The mean accuracy results for the clean datasetlifferent Tournament
selection values. The error bars show one standard davifoo the mean. All results
were produced by 10 fold cross validation.

diversity, but force STGP to search randomly over the spapeeadlictive models. This
random search will take longer time to find the correct solytand often results in STGP
finding a locally optimal solution. A balance between usirtignament selection value
which is too small, or too large needs to be found. It was d=tid keep the tournament
selection value at 6 for all datasets in the remaining erpants, which is a reasonable
compromise based on the results shown.

111

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

4.10.3.4 Roulette wheel

Roulette wheel selection (Section 2.6.4) is analogouslozaing space on a circular
wheel depending on each individuals fitness. A pointer is thgually spun to select
individuals. Figure 4.35 shows graphs showing the restl®oulette wheel and Tour-
nament selection on the clean datasets. It can be seen tulgtiRavheel selection does
not produce very accurate results for all datasets. Thieaexplained in more detail
by looking at the best value for the generations, as showngar€& 4.36. These graphs
show that the best score for the individuals using Rouletteekeither stays constant or
increases (when it should go down). This shows that Rouldieel selection is selecting
too randomly from the population, and is not focusing on ttierfindividuals in the pop-
ulation affecting the accuracy results. The same resuttbeaseen on the medium noise
datasets. On the high noise datasets there is not any istdlyssignificant difference
between Roulette wheel and Tournament selection on PYGRUaon2. It was decided
to keep tournament selection as the selection method dtgtteei better accuracy results
over Roulette wheel selection.

4.10.3.5 Maximum number of generations

To find out if increasing the maximum number of generation&BTis run for would
increase the accuracy of the results an experiment wasrpextb STGP was run with
the following values for the maximum number of generatidk&0, 200 and 250. For all
datasets there was no change in the results for by increétsingeneration value from
100 generations. Figure 4.37 shows the average best valwadh generation for the
clean datasets It can be seen that STGP converges on a 8diytidD0 generations for
all datasets, and that the average best value does not chamgereasing the amount of
generations. This explains why running STGP for more geimgrmdoes not increase the
accuracy of the results. A generation value of 100 was tbezefhosen, to be used for all
datasets.

4.10.3.6 Operators

The final parameter to investigate was the operators usaabeeethe predictive models.
In Table 4.4 the percentage of the adding and replacemenatope is increased for the
first 10 generations. Then the percentage of these operedsrszduced, and the percent-
age of the crossover operator is increased. The idea betimdgproach is to initially
perform a global search to try and find the best number of mtoolurules in the predic-
tive models. Then a local search is performed to try and lpagdtimise the predictive

112

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean Uno - Clean
100 + T 100
o5 | 95
g g
=~ =~ 90 -
oy oy
g 9°Or g
g 3 esft
< <
§ 81 5
Q Q L
= = 80
80| 75k
75 + + 70 + .
Tournament Selection Roulette Wheel Tournament Selection Roulette Wheel
Selection Method Selection Method
Uno2 - Clean CCTV - Clean
105 T T 86
100 E 84
95 | E 82
g g
= 90F = 80F
> >
3 3
E 85 5 78
3 3
< 80 | < 76
5 5
2 75t L 74t
= =
70 E 72t
65 1 E 70
60 + . 68 + +
Tournament Selection Roulette Wheel Tournament Selection Roulette Wheel
Selection Method Selection Method

PYCR - Clean
90

85
80
75 F
70
65

60 }

55

Mean Accuracy (%)

Tournament Selection Roulette Wheel
Selection Method

Figure 4.35: The mean accuracy results for the clean datasetomparing Roulette
wheel with Tournament selection. The error bars show onelata deviation from the
mean. All results were produced by 10 fold cross validation.

models. To see how this global search effects the results@arienent was performed. It
looked into varying the number of generations the globalteavas performed for. The
values were None, 10, 20, and 30.

Figure 4.38 shows the results on the clean datasets. STGRegbést score on Uno,
PYCR and PSS by using 10 generations of the global searcle plras Uno and PSS
STGP converged in half the number of generations by usingeh@mtions of the global
search phase than for any other value. STGP found the besiosobn the Uno2 dataset
by using 20 generations of the global search phase. STGRig®®/on the solution for

113

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

120

Uno2 - Clean Uno - Clean
0.45 0.3
Tournament selection—— Tournament selection——
04k Roulette wheel Roulette wheel
| 025
035 1 |
IS \ <4 |
g | g 0.2
a 03} \“ 1 1) \
g \ i \
& o025f| 1 & 015[\
= | c \
& o2} | - 3 \
s < = 01t
0.15 \\ E
0.05
01 I N\~)
N
0.05 L L R f R 0 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100
Generations Generations
CCTV - Clean PYCR - Clean
0.35 0.4
| Tournament selection—— Tournament selection——
i‘ Roulette wheel Roulefte.wheel
03l 1 0851
i |
3] | o \
5] | I} 0.3}
o | o |
@ 025}] 8 w‘
g | T ol
& w‘ & o025[
& ‘ & \
3 0.2 1 i} \
= = 0.2 |
015F 1 015} \\
AN MAAANNAMAANAAANA A ' TV
WM,MVW,¢J\W
01 L L L L L 01 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100
Generations Generations
PSS - Clean
03
Tournament selectionr——
Roulette wheel
0.25 1 1
\
® \
5] 0.2 | i
j53 1
@ |
g \
& o015} 1
[=4
5 \
2 N\
= 01f 1
0.05 R
0 L L L v L
0 20 40 60 80 100 120
Generations

120

Figure 4.36: The best fitness score for the predictive mddeldhe clean datasets using
Roulette wheel, and Tournament selection.

114

Chapter 4

Learning Predictive Models of Spatio-TemporabDa

Uno2 - Clean Uno - Clean
0.45 T T 0.3 T T
100 —— 100 ——
150 1 150
04 200 - 0.25 200 e
0.35 250 250
I I
5] 0.3 15} 0.2
O j=3
7} | @
'g 0.25 J‘a ,g \
g8, it @ 015
= -2 T c f
< i < &
2 it 2 |
015} = 01}
01} N L
. i\
\\ . 005F
0.05F “heo b ‘\
o 2 ‘ . . Y I
0 50 100 150 200 250 0 50 100 150 200 250
Generations Generations
CCTV - Clean PYCR - Clean
0.4 T T 0.35 T T
100 —— 100 ——
150 150
200 - 200 -
035 250 03 250
[[
é 0.3 é 0.25
»n »n |
7 7 |
& o025 & 0.2
c] S \
g 1 §
z o2f 2 ous))
o \M
L L L L L 0.05 L) L L L
0 50 100 150 200 250 0 50 100 150 200 250
Generations Generations
PSS - Clean
0.3 T T
100 —
150
0.25 200
Q
5] 0.2
j53
7}
g
& 015
[=4
[
(5}
= 01}
005} w\
0 \‘w\.\ L L L L
50 100 150 200 250
Generations

Figure 4.37: The best fithess score for the predictive mddelthe clean datasets with
different values for the maximum number of generations.

115

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

the CCTV dataset so long as some form of global search phaseds By not using the
global search phase it can be seen that it takes STGP longent@rge to a solution,
and on the Uno2 and PYCR datasets it fails to converge on tireatsolution. Similar
comments can be applied to the results for the datasets wathium noise, as for the
clean datasets. STGP, however, converges fastest on tf#ddtaset with a global search
period of 10 generations, but gets slightly better resuits a global search period of 30
generations. A similar story can be applied to the resutimfthe datasets with high
noise, apart from the Uno2 dataset the best global searadpsrl0 generations. For the
Uno2 dataset the best results are found with 20 generatwortisd global search period.

The results show that a period of increased adding and tieglatproduction rules in
the predictive models reduces the convergence time, andrad&es it more likely to find
the correct solution. Solutions for the CCTV dataset candomd by just using global
search, but for the rest of the datasets a combination oflti@bsearch, and local search
are required to find the correct solution. This shows thatlier CCTV dataset all the
production rules required for the solution are generatetiéninitial generation, and all
that is required is to find the correct combination of theselpction rules. For the rest of
the datasets finding the best combination of the productitesrgenerated in the initial
generation allows STGP to find the correct area of the seqatesto locate the correct
solution. Then the crossover and mutation operators carsée to locally optimise the
production rules to find the correct solution.

The number of generations that the global search is perfbforeeffects the number
of generations it takes STGP to convergence on the corrdaiceg and its ability to
find the correct solution. The results show that performhggdlobal search for a larger
number of generations (e.g. 30) causes the value of the teitpve model to converge
during the global search, this value only starts to reducenwbcal search is performed.
Converging during the global search is bad for two reasdmsduces the diversity in the
population, which might mean STGP will not find the corredtison; and itincreases the
number of generations required to find the correct solutidre value of 10 generations
for the global search was chosen for all datasets.

4.10.4 Conflict resolver

The previous experiments all used the probabilistic caniéisolver described in Section
4.6. An experiment was performed to see what would happervéia simple conflict

resolver was used, where every production rule that waslesaias fired to produce a
prediction. This was only performed on the deterministiadats (Uno, Uno2, and PSS)

116

Chapter 4

Learning Predictive Models of Spatio-TemporabDa

Mean Best Score

Mean Best Score

04
0.35
03
025} \
o2}
015t |
01}

005} °

02}

015} %

0.1

Uno2 - Clean Uno - Clean
T 0.3 T
11— 11—
10 10
20 20
\ 20 0.25 \, 30
\ o
\ 8 0.2 -1\\
\ 2 i~
\ g 4 \
| \\ & 015
] p 3
5 ;
5 .
= 01} 3 \
! -\ o\
™\ 0.05 - \
L e g, i - 0 PR h PR —_ L
20 40 60 80 100 120 0 20 40 60 80 100 120
Generations Generations
CCTV - Clean PYCR - Clean
. T T 0.35 T
11— \ 11—
' 10 \ 10
| 20 - il 20 -
3 i) 30 03 i\ 30
H © i
' I} 025} |
i o H
o a |
| 3 \\
1 & 024
g HEEAN
Q \ \
} = 015} - o
% \’\/\/v\’\/\/‘vx/_/\/\\\,\/\/\/f\——\/\/
) V\/\/\ i o1l 7 T
L L L L L 0.05 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Generations Generations
PSS - Clean
0.3 T
1 ——
10
20 -
0.25 30
) h
<] 0.2
S :
8 {
] L\
& o015}
= }
[3
(5] E \
= 01f "\
0.05
I e DS N,
0 L i L i A
0 20 40 60 80 100 120
Generations

Figure 4.38: The fitness score results for the best scoriadigtive models for the clean
datasets where the number of generations performed ondbalgearch is increased.

117

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

as the conflict resolver is unable to deal with non-deterstimdata. The experiment was
the same as the Tarpeian value experiments from SectiorBL21Figures 4.39 and 4.40
show the results on the clean datasets. It can be seen that¢beacy results on both:
using bloat control for the entire run, and delaying bloattoal by 10 generations is sig-
nificantly worse than the accuracy results using a prolstigilconflict resolver (Section

4.10.3.2). These results showed that when a probabilistiflict resolver was used the
accuracy was close to 100% on the clean datasets. Simildtsegere observed on the
medium and high noise datasets. For these reasons it wakeddoiuse the probabilistic
conflict resolver for all the datasets in this chapter.

The reason why the predictive models using the simple coméigolver performed
poorly (in terms of both coverage and accuracy) is down toreason: a more complex
search space. The search space when using the simple cozgtitter is full of local
optima compared to one where a probabilistic conflict remulyused. The search space
contains many predictive models where the only way to gettin fitter part of the search
space is to firstly find a less fit area of the search space. 3liedause to improve the
fitness of a predictive model it must go through two statestlyisome of its production
rules must be enabled at the same time, but when fired theypeatifferent predictions,
which causes a conflict. Then the predictive model has tovevol resolve this conflict.
When the sub-models are conflicting the predictive moded gébwer fithess score than
it currently has. Once the conflict has been resolved theigireel model gets a higher
fitness score. STGP probabilistically selects fitter ptadtanodels for use in the next
population. This can mean that the evolution can get stueklotal optima where the
predictive models containing conflicting production rubes never picked and the run
locally converges.

4.11 Conclusions

This chapter has described Spatio-Temporal Genetic Rrogiag (STGP). This is used
to learn the predictive models as described in Chapter Zadtadeen compared with Pro-
gol, Neural Networks, Bayesian Networks, and C4.5; on fifeedint datasets. Three
were deterministic, and two were non-deterministic. ST@Ptlge best results overall.
Progol suffered from a clause clashing problem that eftebteth its coverage and accu-
racy. When Progol was combined with Pe it managed to improwgd?s coverage, but
due to clashing clauses it does not improve its accuracy. l@ong Progol with STGP
improved both Progol’s coverage and accuracy on all deta®dyesian Networks and
C4.5 performed fairly well, but were limited due to their loility to learn generalised

118

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean PSS - Clean
92 T T T T T T T T T T 180
160
90 |
| 140 |
g sst b o 120
> T | | | | | ®
(5} -
g 86 % 100
o =1 80
Qo ©
i 841 g 60 F
g
= g} 40|
20
80 | 0
78 L L L L L L L L L L 20 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno - Clean Uno - Clean
93 T T T T T T T T T T 60
92
91| E S0
g 9of ;
< oo 40 b
|]
S et T
s} | : H L
< 87 T : | 1 o]
& g \'/ =
i} r | ! : 1 L
s : i | 20
85
84 10 F
83|
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno2 - Clean Uno2 - Clean
82 T T T T T T T T T T 60
80 | 50 |
78
—_ 40 |
L 16}
g 74} % 30r
g 72} < 20}
< 3
[=4 70 F
8 0r
= 68}
0 -
66 ;
64 |] 410 F
62 L L L L L L L L L L 20 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

Figure 4.39: The mean accuracy and size results for the datasets on different
Tarpeian values where Tarpeian bloat control starts dfiefitst 10 generations, and a
simple conflict resolver is used in the predictive modelse €hror bars show one stan-
dard deviation from the mean. All results were produced bfoldcross validation.

rules from data.

STGP produces the best results with: some form of size dooirghe predictive
models; the tournament selection sampling technique wstogrnament selection value
that favours the better scoring predictive models; and areased amount of adding and
replacement of production rules in the initial 10 generatiof the run. The results on the
maximum number of generations showed that STGP had cor/erga solution by 100
generations. Work could be done to investigate diversalieues (Section 2.6.7) to see

119

Chapter 4 Learning Predictive Models of Spatio-TemporabDa

PSS - Clean PSS - Clean
94 T T T T T T T T T T 90
ol i 80 |
70 |
—~ 90F
S 60 |
g 88 % 50|
g 86 < awof
(5}
g 84t = 30r
= 20}
82
10
80 | ol
78 L L L L L L L L L L 10 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno - Clean Uno - Clean
98 T T T T T T T T T T 100
% | 1 S0
i 80
9%+
g 92 or
3 o 60
IS N
5 90F 7] 50 F
é 88 § 40
& =l
2 s86f
20
84t 10
82 i 1 ol
80 L i L L L L L L L L 10 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno2 - Clean Uno2 - Clean
82 T T T T T T T T T 60
80 | 1 50 F
8 awf
g 76
o o 30F
S 7ap S
Q S 20f
< 2} g
g wof)
= 70 | 1
68 | i or :
66 | ! ! o 101
64 L L L L L L L L L L 20 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full

Figure 4.40: The mean accuracy and size results for the datasets on different
Tarpeian values where a simple conflict resolver is usederptiedictive models. The
error bars show one standard deviation from the mean. Allltes/ere produced by 10
fold cross validation.

if maintaining diversity for a larger number of generatiamproves the results.

120

Chapter 5

Learning Predictive Models Using A
Qualitative Representation of Time

5.1 Introduction

In Chapter 4 the predictive models used a sequential apipfoacepresenting time. This
IS not very robust to noise and the presence of multiple ¢djéor reasons which will

be discussed in Section 5.2. This chapter describes thefupagabtative relations to

represent time, which solves this problem. Four novel taapstate relations are de-
scribed, shown in Section 5.4. Section 5.6 firstly presemsnaparison of STGP, with:

Progol [82], Neural Networks [111], Bayesian Networks [24ld C4.5 [99] on learn-

ing predictive models containing temporal relations fromUno dataset, and a CCTV
dataset. Secondly, to see how the temporal relations aljmwdictive model to deal with
noise, and multiple objects the STGP results on the CCT\sdateom this chapter, and
Chapter 4 are applied to two CCTV test sets one containindiphellpeople, and one
containing random injection noise. Thirdly, results witperimenting with some of the
parameters for STGP is presented.

121

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

5.2 Quantitative representation of time

Section 2.4.2.2 described Markovian approaches to terhpadelling include Variable
Length Markov Models (VLMMs) [35] and Markov Chains. Eachsebvation represents
a state of the world at a specific time. The sequence of ols@nvweectors are used to
predict the most likely subsequent observations. Our worhapter 4 followed this
principle: the variables in the condition section used atiet Point time representation
to reference entity and relationship instances in the histbhere are two main issues
with this implicit representation of time. Firstly, wherette is injection noise occurring
in the data (i.e. noise occurs as extra items between thatdata), and secondly when
there are multiple objects in the scene. These both causetjuence ordering to change.
Any predictive models that rely on an explicit observati@g®sence ordering will then
fail to recognise the observations, and will be unable toerekrediction.

To illustrate the problems with the sequential represemtatf time we take an ex-
ample inspired by the CCTV domain in Chapter 4. Figure 5.\sha crossroads. On
the crossroads are five circular regions numbered 1 to 5. Wiaion is detected in a
region, the region will produce an output. An arrow représamperson walking through
the crossroads going through regions 1, 2 and then 3. Themititough the crossroads
can be represented using continuous time as shown in thé& grapigure 5.1. To be
able to use this data with a sequential representation &f timust be converted into an
observation sequence. This is normally done by temporahtegsion. There are two
possible approaches: sample from the data at a fixed ratengoress each of the con-
stant property time ranges into a single sample, by samplimge point per time range
(for example the end, or start time) illustrated in Figurgé. zixed sampling produces a
far more detailed representation of the data, but oftenatesitarge amounts of repeated
data. Compressing the time ranges reduces the amount aiafion that is represented
(for example the length and absolute start and end timegste but it is a more compact
representation which can be easier to learn from due towtsrilcomplexity.

Figure 5.2 shows how injection noise might affect a predectnodel. The same
person is walking through the crossroads passing througjbrre 1, 2, and 3, but this
time region 4 outputs incorrectly (for example due to cammeige). This can be seen
as injection noise occurring between region detectionsaitions 1 and 2 in both the
continuous time graph and in the observation sequence.nidyscause problems if the
model relies on an observation sequence occurring in a fircketiog.

Figure 5.3 shows the same crossroads, but now two peopleatkeng/through at the
same time. It will be used to show how multiple objects in tberge might affect the pre-

122

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

G Continuous time §
= - 3

o i

5

>
9 ao e

= .

Time
e L Quantised time

BN
t-2 t—-1 t
Time

Figure 5.1: This diagram shows a person walking along a mvads and passing through
the circular regions numbered 1, 2 and 3. The movement indbeesis represented
as a continuous time graph. Temporal quantisation is appdiehe graph to produce a
sequence of region detections.

G Continuous time S an
- 3
i
Time

e L Quantised time

1 2 | 3

t-3t-2 t-1 t

Time

Figure 5.2: This diagram shows a person walking along a mvads and passing through
the circular regions numbered 1, 2 and 3, and region 4 (shéidied erroneously.

dictive model. The first person follows the same route aserptievious example, and the
second person walks through regions 4, 2 and finally 5. Theomat the crossroads is
shown in the continuous time graph. The graph shows that theement of the two peo-
ple in the crossroads causes motion in different regiortseedéame time. The observation
sequence in the first example (1, 2, 3) now has extra regiangiweg in the middle of it.
This will again cause problems if the predictive model ielim an observation sequence

123

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

occurring in a fixed ordering.

— [5]
5
09 Continuous time A
5 .
o >

e 2l [2]

> .
Time
° i Quantised time
y

.

t-4 t-3 t-2 t-2 t-1 t

Time

Region

Figure 5.3: Two people walking through a crossroads andpgssrough the numbered
circular regions.

Tracking objects using a separate model per object is ongiaolto modelling mul-
tiple objects. However, this is not always possible or &afor example a person might
get occluded by other people in the scene which would makarddr to constantly track
them. Hidden Markov Models [102] (Section 2.4.2.2) are gmgraach to deal with ran-
dom injection noise. These probabilistically map a set cfesbations to a set of states.
They, however, cannot model interactions between mulblects. Coupled Hidden
Markov Model [92], are an approach to solve this problem,dpgroach is limited to a
maximum of two objects, as above this amount there only &gproximate inference
techniques.

5.3 Qualitative representation of time

The previous section showed that when a predictive modiglsrein a sequence of ob-
servations occurring in a fixed ordering it might fail to rgogse the same observation
sequence when it contains injection noise, or multiple aljéistractor noise). The pre-
dictive models for STGP in Chapter 4 used Point time to reprethe position of the
observations in the observation sequence. This is not tabusjection, or distraction
noise. An alternative approach is to use interval time (8er@.3.2) to describe the time
of the observations, and to use a predictive model basedeoqudlitative relationships
between different time intervals. The benefit of this apphoa that it can be more robust

124

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

to injection noise and multiple objects because a predictiodel uses temporal relations,
rather than using explicit positions in the observatiorugege. The point time approach
could work if it could be trained on every possible obsenmtsequence ordering, but
using a qualitative approach is potentially better becausan generalise from fewer

example sequences.

Allen’s Interval Calculus [1] (Section 2.3.2), is a way taorigorally represent the set
of possible relationships between two time intervals. tvates a representation of time
invariant to injection and distraction noise. The multrgmn example from the previous
section can be solved by modelling each person’s movemeatiijerent set of Allen’s
intervals. Clause 5.1 describes the first person’s movetheotigh the crossroads. It
shows that if there has been motion in region 1, which is lgefotion in region 2, and
there has also been motion in region 2 before motion in regitiren this was generated
by Person 1.

Motion(Regiori,t1) A Motion(Regior2,t2) A Motion(Regior8,t3) A (5.1)
Befordtl,t2) ABeforet2,t3) — Persori(t3)

Clause 5.2 shows the second person’s movement throughasg&reads. It shows that if

there has been motion in region 4 before region 2, and thexrédwn motion in region 2

before region 5 then it must have been caused by Person 2g t&ee two clauses not
only deals with the problem of injection, or distractor regibut also allows the separation
of the continuous time graph into each person’s movement.

Motion(Regior, t1) A Motion(Regior2,t2) A Motion(Regiorb,t3) A (5.2)
Befordtl,t2) ABeforet2,t3) — Persor2(t3)

5.4 Temporal state relations

Allen’s Interval Calculus assumes that both of the timerwdks have a start and end time.
In this thesis when an object has been initially identified stene it will be given a time
interval having a start time, but an unknown end time. An ctjell only receive the end
time for its time interval when it cannot be identified in treese anymore (for example
by leaving the scene).

An object goes through four temporal states during the tirisein a scene. These are
based on how the object’s start and end times relate to dumea (Figure 5.4). Firstly,
the objectentersthe scene: its start time is the same as the current timetsend time

125

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

is unknown. Next, the objeeixistsin the scene: its start time is less than the current time,
but its end time is unknown. Next, the objectiéavingthe scene: its start time is less
than the current time, and its end time is equal to the cutner@ Finally, the object has
left the scene, where both its start and end times are less thaorieat time.

' Current T|me\
Entering [---------
Current_time=start ~ WU_.......
Existng e
Current_time > start I:

Leaving ‘
Current_time = end AND Current_time > start I:

Left]
Current_time > end AND Current_time > stat

y

Time

Figure 5.4: The four temporal states, with respect to cirtiere, an object can be in:
entering, existing, leaving, and left. The dotted linesespnt that we don’t know when
the object will leave the scene.

One possible approach to implement this is to use Allen&rvats, but some changes
have to be made. Firstly, a constant valdiet(re’) must be assigned to the end time of
a time interval which is unknown. Secondly, the current timest be transformed from
a point time to an interval by making it exist fdrtime (< currentTimecurrentTimet
0 >). This then collapses Allen’s intervals down from sevendorfas shown in Figure
5.5. Temporal state Entering is then defined using Startistieg can be defined using
During; Leaving can be defined using Finishing; and Left canléfined using Before.

Solving this problem by using Allen’s intervals does notregbe most logical solu-
tion because two parameters are still require (the timeabtiect, and the current time),
increasing the size of the predictive models; and theredsnéancy, as only four out of
the seven relations are actually required. An alternajiy@@ach is to define a new set of
temporal relations. Clauses 5.3 - 5.6 show the four temstadd relations for an object
0 by comparing its start times, and end time®e to the unknown timey, or the current
timet.. In STGP these are added as user defined functions to theioorskction of the
production rules. The advantage of using these tempori@ sthations over Allen’s in-
tervals is they only require one parameter, rather than T reduces the search space,
and makes finding solutions easier.

126

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

7 . Key
I e (Sar)
‘ Current time
Time | Object
%

I i (Ouring

Time

_ Leaving (Finishes)

Time

4 Left (Before)

Time

Figure 5.5: This shows how the four temporal states couldelpeesented as Allen’s
intervals. The diagonal lined filled box represents the entrtime, which has a time
range ¢urrentTimecurrentTimet 8). The black filled box represents the object, where
its unknown end time has been replaced with a constant. Tehgtate Entering can be
represented as Starts. Temporal state Existing can besesyteel as During. Temporal
state Leaving can be represented as Finishing. Tempotallstét can be represented as
Before.

(0s =t¢) A (0e =ty) — Entering o) (5.3)
(0s < tc) A (0e =ty) — EXisting0) (5.4)
(0s < tc) A (0e =tc) — Leavingo) (5.5)

(0s < tc) A (0e > tc) — Left(o) (5.6)

5.5 Evaluation

This section will present the datasets, and the represemsatsed for STGP, Bayesian
Networks, Neural Networks, C4.5 and Progol in the evaluatibthe ideas presented in
this chapter.

127

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

5.5.1 Overview of the datasets
5.5.1.1 CCTV

Two training dataset were produced: a real world dataseltgariean dataset. The real
world dataset was generated from the real world CCTV videmfChapter 4 (Section
4.9.1.3). The scene analysis technique from this chapesti® 4.9.2.2) was used to
produce the symbolic representation. It contained 80 regimnging events. The clean
dataset was the same clean handcrafted dataset from CAg&ection 4.9.1.3). To see
how the use of temporal relations allows STGP to deal witlsedhree additional test
sets were produced: a clean test set, a multi-person tesdrsita noise injection test
set. The clean test set was handcrafted and produced in i is@anner as the clean
training set. It contained 135 region motion events. Thetinp@rson dataset was on the
same scene used for the single person real world CCTV vidgahkre were multiple
people in the scene at one time. Figure 5.6 shows a screefmshothe multi person
video. The dataset contained various forms of noise caugedeboverlapping people,
and contained 88 region motion events. The injection no&tasgt was produced by
taking a hand crafted CCTV dataset and adding random injectoise between each
CCTV event. It contained 250 region motion events (125 wetaa changes, and 125
were noisy changes).

Figure 5.6: A screenshot from the video of a path containingfipie people.

5.5.1.2 Uno

The handcrafted Uno dataset has a similar sequence to theldtaset from Chapter 4
(described in Section 4.9.1.1). The differences betweetvtb datasets are the cards can

128

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

be in the scene for a range of time, and they leave the scesreradt before, the result is
heard. The dataset is handcrafted and will now be describetre detail.

The computer initially sees a blank scene. Then “Play” isdheldext two cards, each
one having one of three possible coloured shapes on themlaaed down either at the
same time, or one by one. If the two cards have the same cdlshape then “Same” is
heard; or if they the same colour then “Colour” is heard; dhdy have the same shape,
“Shape” is heard; or if the cards are different then “Notfiiisgheard. The cards are then
removed either together, or one by one.

Two handcrafted training datasets were created: a nory-h@iging set and a noisy
training set. Each one contained around 50 rounds of UnosyNadata was prepared
by adding 10% of noisy data to the non-noisy training datee fibise took the form of
removing cards, removing the play state, and changing ttpubstate.

5.5.2 Representation
5.5.2.1 STGP

The properties and entities used to learn the CCTV datasst@wn in Figure 5.7. There
is one property definitioRegi on, and this is used with th€bj ect entity definition.
The properties and entities used to learn the Uno datassharen in Figure 5.8. There
are four property definitionsCol our, Text ur e, Posi ti on, andSpeech, and two
entity definitions: Car d (with properties: Text ur e, Col our andPosi ti on), and
Speaker (with propertySpeech).
<PROPERTY- DEFI NI TI ON NAME=" REG ON"' >
<ATTRI BUTE NAME=" NAME" TYPE="SYMBOLI C'

VALUES="REGQ ON- 0, REG ON- 1, REG ON- 2, REG ON-3"/ >
</ PROPERTY- DEFI NI TI ON>

<ENTI TY- DEFI NI TI ON NAME=" OBJECT" >
<LEARNABLE VALUE="TRUE"/ >
<PROPERTY NAME="REGQ ON'/ >

</ ENTI TY- DEFI NI TI ON>

Figure 5.7: The property and entity definitions for the CCTatatets.

Figure 5.9 shows the functions used to learn the CCTV databete are the Allen’s
intervals and the novel temporal state relations (Sectidh G here are functions to check
the existence of an object in the wolgai st s(Qbj ect), and functions to get property

129

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

<PROPERTY- DEFI NI TI ON NAME=" TEXTURE" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C'
VALUES="fO0, f1,f2"/>
</ PROPERTY- DEFI NI TI ON>

<PROPERTY- DEFI NI TI ON NAME=" PCSI TI ON' >
<ATTRI BUTE NAME="NAME' TYPE="SYMBOLI C'
VALUES="pO0, p1"/ >
</ PROPERTY- DEFI NI TI ON>

<PROPERTY- DEFI NI TI ON NAME=" COLOUR" >
<ATTRI BUTE NAME=" NAME" TYPE="SYMBOLI C'
VALUES="cO0, c1, c2"/>
</ PROPERTY- DEFI NI TI ON>

<PROPERTY- DEFI NI TI ON NAME=" SPEECH" >
<ATTRI BUTE NAME="NAME" TYPE="SYMBOLI C'
VALUES=" SAVME, NOTHI NG, SHAPE, COLOUR, PLAY" / >
</ PROPERTY- DEFI NI TI ON>

<ENTI TY- DEFI NI TI ON NAME=" CARD" >
<LEARNABLE VALUE="FALSE"/ >
<PROPERTY NAME="COLOUR'/ >
<PROPERTY NAME="PGCSI TI ON'/ >
<PROPERTY NAME="TEXTURE"/ >

</ ENTI TY- DEFI NI TI ON>

<ENTI TY- DEFI NI TI ON NAME=" SPEAKER" >
<LEARNABLE VALUE="TRUE"/ >
<PROPERTY NAME="SPEECH'/ >

</ ENTI TY- DEFI NI TI ON>

Figure 5.8: The property and entity definitions for the Untadats.

information from the objectsGet (Cbj ect : Regi on) . Finally, as there are functions
to compare symbolic dat&qual , Not - Equal), and logical functionsAnd, Or , Not).
Figure 5.10 shows the terminals used to learn the CCTV datagech are constants
representing the four regions.

Figure 5.11 shows the functions used to learn the Uno datékete are functions to
check the existence of@ar d, or aSpeaker entity in the history Exi st s(Car d) ,
Exi st s(Speaker) . Also, there are functions to get property information fréme
Car ds, andSpeaker entities Get (Car d: Col our) ,Get (Card: Position),

130

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

Exi st s(Obj ect)

Get (Obj ect : Regi on)

Get (Card: Texture), Get(Speaker: Speech)
And, O, Not-Equal, Equal, Not

Enter, Leaving, Left, Existing

Before, Meets, Overlaps, Starts
During, Finishes, Tine-Equal

Figure 5.9: The functions used in the CCTV datasets.
Regi on0, Regi onl, Regi on2, Region3

Figure 5.10: The terminals used in the CCTV datasets.

Get (Card: Text ure),Get (Speaker : Speech) . Next, there are functions to com-
pare symbolic dataHqual , Not - Equal), and logical functionsAnd, Or, Not). Fi-
nally there are temporal state intervals, and the Allertsrirals. Figure 5.12 shows the
terminals used to learn the Uno dataset. There are colouba@gmcO, cl; texture
symbols:f 0, f 1, f 2; position symbolsp0, p1; and speech symbol8ane, Shape,
Not hi ng, Pl ay, Col our.

Exi sts(Card), Exists(Speaker),

Get (Card: Col our), Get(Card: Position)
Get (Card: Texture), Get(Speaker: Speech)
And, O, Not-Equal, Equal, Not

Enter, Leaving, Left, Existing

Bef ore, Meets, Overlaps, Starts
During, Finishes, Tine-Equal

Figure 5.11: The functions in the Uno dataset.

cO0, ci1
po, pl
fo, f1, f2

Sanme, Shape, Not hing, Play, Colour

Figure 5.12: The terminals in the Uno dataset.

Variables are used in the condition section of the produaatites to reference entity
or relationship instances in the history. In Chapter 4 theabées used Point time to
constrain where in the history they could be assigned atyeamtirelationship instance.

131

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

Point time uses a single time value. This meant a variableonfsable to be assigned
entity or relationship instances associated with a spegdint in the history relative to
the current time. The production rules therefore could ¢ihgn be evaluated at specific
points in the history relative to the current time. If the etig that make the condition
section of the production rule evaluate true move theirtiocain the history (due to
distractor, or injection noise) the variables in the cooditsection would not be able to
be assigned to them, and the production rule would evalaite.fThis would prevent the
production rule from producing a prediction.

To allow STGP to take advantage of the temporal relationd tamleal with distrac-
tors, or injection noise the time type AllTime is used in thigpter to constrain where
variables can be assigned entity or relationship instaimcdee history. AllTime allows
the variables to be assigned entity or relationship ingsaocywhere in the history, within
a defined time range. Section 5.6.3.2 performs an experitaesftow how changing the
length of this time range affects the coverage and accurktye@redictive models. This
means the production rule will be evaluated over the ents®ty rather than at specific
points, which means that if the position of the entity or tielaship instances (that causes
the condition section of the production rule to evaluate)Xmove the condition section
will still evaluate true.

5.5.2.2 Progol, and Pe

A similar representation to the one described in Section34.9was used for all the
datasets in this chapter. Tls¢ at e predicate is replaced by abj ect _dat a pred-
icate that describes the properties of a specific objecttemgoral predicatesnt er ,

exi sting, | eavi ng, andl ef t that describe its temporal state. To allow Progol to
learn clauses that are robust to noise sliecessor predicate is replaced by a set of
clauses representing Allen’s intervals. The same appr(aegcribed in Section 4.9.3.1)
is used to convert the clauses learnt by Progol into a SLP.

5.5.2.3 CA4.5, Neural Network, and Bayesian Network

The WEKA machine learning system [41] was used to perfornCéh&, Neural Network,
and Bayesian Network algorithms. WEKA requires the inputida be a fixed length
vector. A binary feature vector was used to record the sthteeoscene, along with
an associated event. Each binary feature represents icdisgemporal relationship is
held between a set of objects each having a specific type amd aribute values, and
position in the history. The binary feature vector représeat possible permutations of

132

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

temporal relations with objects and their states. Thismscglly a large set of possible
features, with a large majority of them being redundant.€ebhice the size of the feature
vector a simple feature selection method was performediuFesawere removed if they
were always false, or always true, over the entire traingtg s

5.6 Results

This section will firstly show how the temporal relationsraduced in this chapter make
STGP robust to noise. Secondly it will show how STGP compuaiis Progol, Neural
Networks, Bayesian Networks, and C4.5 on the datasetsqu#lyi described. It will
also show how estimating the likelihood of the clauses IgayrProgol by Pe and STGP
affects the results. Finally, it will show experiments oa thfferent parameters for STGP.
Ten fold cross validation was used in all the runs, and theesaraluation criteria used in
Chapter 4 (described in Section 4.10.1) was used.

5.6.1 Temporal noise robustness of STGP

Two experiments were performed to see how robust to noisprédictive models learnt
in this chapter were. The experiments took the predictivdetsfrom Chapter 4 that were
trained on the CCTV datasets, but did not use temporal oglgitiand compared them to
the predictive models from this chapter that were also &@ion the CCTV datasets, but
used temporal relations. The first experiment compared thg@ng the CCTV injection
noise test set, and the second on the CCTV multi-persondest s

Figure 5.13 shows the coverage results for STGP on the obsasét, and the injec-
tion noise test set with, and without using temporal retaion the predictive models.
The results show that predictive models are affected byiige noise when they do not
use temporal relations, but if they use temporal relatibey aire unaffected by injection
noise. This is because in the predictive models that do reotaraporal relations the con-
dition sections of their production rules assume that th#yeand relationship instances
that allow the condition section to evaluate true willy occur at specific positions in the
history. When the injection noise affects the position @sh objects in the history the
condition section is unable to be assigned to them and itevdluate false. Predictive
models that use temporal relations are unaffected by tleetion noise, because the use
of temporal relations allows the condition sections ofttpeoduction rules to be assigned
entity or relationship instances from the entire of thedngtwhich means they can still
be assigned objects even if they have changed position mstery from the training set.

133

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

Injection noise test set results (trained on a clean CCTV dataset) Injection noise test set results (trained on a real world CCTV dataset)
100 { T T } 100 T T T T
95 { 1 95 | }
90 1

990

85|
80} 85|
N
70
65
60
551 1 651

50 60

80
5

Average Coverage (%)
Average Coverage (%)

70

No temporal No temporal Temporal ~ Temporal No temporal No temporal Temporal ~ Temporal

relations relations relations relations relations relations relations relations

on on on on on on on on
clean data injection noise clean data injection noise clean data injection noise clean data injection noise

Figure 5.13: How the time used by the variables in conditiection of the predictive
models affects their ability to deal with injection noisénelerror bars show one standard
deviation from the mean. All results were produced by 10 twlwks validation.

Figure 5.14 shows the accuracy results for STGP on the CCTM-prrson test set
when the predictive models using, and not using temporatiogls. The graphs show
that using temporal relations is slightly more accurate that using them when trained
on the real world data (p-value=0.01), but when a cleanitrgiset is used the results
for using and not using temporal relations are not stagilyicignificantly different (p-
value=0.35). There is not such a large difference in thelte®etween using and not
using temporal relations that was seen for the injectiosentest set. This is due to two
reasons. Firstly, the history used for predictive modelagisemporal relations has a
fixed size, and sometimes itis not large enough to containgimepatio-temporal data to
make the correct prediction. Secondly, the combination @ement of multiple people
can create ambiguous patterns in the history where it issan¢low many people are in
the scene, making it hard to produce the correct prediction.

5.6.2 A comparison of STGP with current methods

Figure 5.17 shows the coverage and accuracy results on th& @&taset, and Figure
5.15 show the coverage and accuracy graphs for the Uno tatassall the graphs show
that STGP got accuracy results that were better than, oratine s1s the accuracy results
for the other methods. There were no results for Neural Nedsvon the real world
CCTV dataset, and the Uno Temporal datasets, because WEA f@ith a stack size
error when learning from the training data. This indicalesget of possible relations was
too large.

The optimal result for the Uno Temporal dataset is 100% amyeand 100% accuracy

134

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

Multi-person test set results (trained on a clean CCTV dataset) Multi-person test set results (trained on a real world CCTV dataset)
100 T T 100

95
90
90
80 85
80
70
B

Average Accuracy (%)
Average Accuracy (%)

60 | 70

50 |
60 | }
40 55

L L
No temporal relations Temporal relations No temporal relations Temporal relations

Figure 5.14: How the time used by the variables in the comlgiection of the predictive
models affects their ability to predict the actions of peofpbm a multi-person dataset.
The error bars show one standard deviation from the meanesiilts were produced by
10 fold cross validation.

(as the dataset is deterministic). It can be shown from taptgg (Figure 5.15) that STGP
keeps close to this for both the clean and noisy data. Thesetalearnt by Progol are

too general, as shown in Figure 5.16. Here the clauses oelyhgstemporal state and
properties of one of the objects in the history. To predicsh@vents in Uno requires the
comparison of the properties of two cards from the histoyil#e learnt clauses only use
one object the accuracy and coverage results for Progoédueed. When the probability

of these clauses is estimated by Pe there is no improvemtd accuracy because of the
poor quality of the initial clauses. There is a slight impgment when the likelihood of the

clauses are estimated by the conflict resolver in STGP. GiBayesian Networks are

unable to generalise from data and rely on storing commompbes and their outcomes

(Section 4.10.2). The results show that both of the methaae wnable to learn enough
examples from the training data to correctly predict from tidsst data.

The optimal result for the CCTV dataset is 100% coverage 386l accuracy. This is
based on the four possible actions on the path occurringualgmoportions. The graphs
show that STGP gets less than this on both accuracy and gavinaboth datasets. This
is due to not learning infrequent region changes in the itiginlata. The reasons for
this were explained in Section 4.10.2. Also the length ofhiflstory affects the results
which will be explained in more detail in Section 5.6.3.2. eTBCTV dataset is non-
deterministic which is why Progol does not get good accutai@overage results. All the
clauses learnt by Progol only make use of the properties ®fregion in the history, and
they do not use Allen’s intervals to combine together to props of different regions.
Pe should improve the accuracy results, but this is not tee,c@nd it shows that it is
affected by Progol not learning the correct set of clausas fthe training data. On the

135

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

Uno Temporal Uno Temporal

100} { M 1 100} I
g sof s 8of
v =
g I 1 8 1
T 60 5 60]
> (5]
o Q
o E3 I < I
=4 c {
S 40 S 40
s s

E3
20 1 20
0 0

Bayes Net. C4.5 Progol Progol Progol STGP
P

+ Pe +STG

Bayes Net. C4.5 Progol Progol Progol STGP
Method P

Methodi Pe +STG

Uno Temporal with Noise Uno Temporal with Noise

100 | 1 100
80 80

60

Mean Coverage (%)
—
W
Mean Accuracy (%)
(2]
o
—
s
—
W

a0} a0}

20f - 20f ¥

Bayes Net. C4.5 Progol Progol Progol STGP
P

+ Pe +STG

Bayes Net. C4.5 Progol Progol Progol STGP
Method P

Methodi Pe +STG

Figure 5.15: The mean coverage and accuracy results foriffieeedt methods on the
Uno Temporal datasets. The error bars show one standaratidevirom the mean. All
results were produced by 10 fold cross validation.

real world CCTV dataset the results are improved by estmgatine likelihood of the
clauses by STGP which produces accuracy results that arecalsag STGP. However,
on the clean dataset the accuracy results are worse thauasjugt Progol alone. C4.5,
Neural Networks, and Bayesian Networks are unable to gkserand suffer from the
same problems described for Uno Temporal, which affect tiesults.

action(s_play, A.
action(s_nothing,A) :- object_data(B,C D E), enter(B,A).

action(s_colour,A) :- left(B,A).
action(s_shape,A) :- left(BA.
action(s_sane,A :- left(B A, left(C A, starts(B,C).

action(s_sane,A :- object _data(B,C D E), enter(B,A.

Figure 5.16: An example set of clauses learnt by Progol otJtie Temporal dataset.

136

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

CCTV Temporal Clean CCTV Temporal Clean

100 | 1 100 |

l | w11 |

a0} a0}

Mean Coverage (%)
Mean Accuracy (%)

20 1 20

I

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method *Pe *+ST!

Bayes Net.C4.5 NN Progol Progol Progol STGP
Method *Pe +STGP

CCTV Temporal CCTV Temporal

100 T E 100
80| 80|

= J
60 | 60 |

20 1 20

Mean Coverage (%)
Mean Accuracy (%)

Bayes Net. C4.5 Progol Progol Progol STGP Bayes Net. C4.5 Progol Progol Progol STGP
P P

Methodi Pe +STG Methodi Pe +STG

Figure 5.17: The mean coverage and accuracy results foriffieeedt methods on the
CCTV datasets. The error bars show one standard deviabamtiie mean. All results
were produced by 10 fold cross validation.

5.6.3 Parameter experimentation with STGP

Section 4.10.3 showed experimentally that the values I@EGP parameters other than
Tarpeian value either made little difference or were opliover the datasets used in the
chapter. For this reason, it was decided to use the bests/uthe parameters for all the
STGP experiments in this chapter, and to experiment witiTénpeian value parameter,
and the history length parameter (which controls the leofthistory a variable of type
AllTime can look for entities or relations). This sectionlivghow the results of these
experiments.

5.6.3.1 Tarpeian value

To control the bloat the Tarpeian method [22] was used. Eigui8 shows the results
from varying the amount of Tarpeian bloat control. For tred veorld CCTV dataset there
was little difference in the accuracy results for the déf@r Tarpeian values: they all got
similar accuracy results to not using Tarpeian bloat conairad they all got significantly
smaller predictive models than the results for not usingtmntrol. The clean CCTV

137

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

dataset did not get very accurate results below a value ofehwbmpared to not using
bloat control. The most accurate result was produced witarp€lan value of 6. The
clean Uno dataset performed poorly on Tarpeian values b&|awhen compared to not
using bloat control. For values 6 and above the accuracysiedof the results was the
same as not using Tarpeian bloat control (for example thalpevfor the similarity in
mean size between a Tarpeian value of 6 and no bloat cont@B3$s, and the p-value for
the similarity in mean accuracy is 0.79). On the noisy Unaslett STGP got poor results
for Tarpeian values below 6, and got the most accurate sskul{Tarpeian values 9 and
10, although these are very similar to the results for Tarpealues 5 to 8. The size of
the predictive models produced by using Tarpeian bloatrobwas slightly smaller than
without using it (p-value=0.08).

The graphs show that for datasets that require predictivéetsccontaining simple
production rules, like CCTV, a small Tarpeian value can bsdud his is because STGP
will typically find the correct solution in a small number oémgerations and will not be
affected by the population diversity issues associatedal Srarpeian value. For more
complex datasets like Uno a larger number of generationsegréred to find the correct
solution. Small Tarpeian values greatly reduce the ditseddithe population early on in
the run, and cause STGP to converge on a sub-optimal saolutarger Tarpeian values
do not affect the diversity of the population as much, alligySTGP to find the correct
solution, whilst keeping a control on its size. This is cetemt with the findings from
Chapter 4 (Section 4.10.3.2). Chapter 7 shows results oflapta&e Tarpeian method
that varies the Tarpeian value during the run of STGP.

5.6.3.2 History length

To see how the size of the history affected STGP’s resulttetyno and CCTV datasets
an experiment was performed using the history values 2 toFigure 5.19 shows the
results. For all datasets increasing the size of the histeryeased the mean accuracy
and coverage of the results. This is due to the fact that aelohigtory contains more
complex patterns. In turn this requires learning a more dernpredictive model. This
increases the size of the search space, and makes findingtpeschodels harder.

5.7 Conclusions

This chapter has shown that using qualitative relationserathan sequence based ap-
proaches to model temporal history allows the predictivelet® to be robust to both

138

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

CCTV Temporal (Clean) CCTV Temporal (Clean)
85 —_—— 180 T
w6of |
80 140t
S
= 120
g 751 8
§ g 100
< 8 sof
s T70F =
(5 -
2 ! 60
65 | - 401
20
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
CCTV Temporal (Real World) CCTV Temporal (Real World)
80 T T T T T T T T T 300 T T
- o 250
g .
= "/ﬁ 200
g 70t b 8
I | | (2]
3 ; S 150
<<)
S 65F =
(5} -
2 100
60 | s0l
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno Temporal Uno Temporal
100 T T T T T T T T T T 180
! 160 |
98 |
140
‘D\; 96 120 +
%) [
19 N
= » 100
g 9t H
< L
: g 80
(5} L -
= 92 60
40
90
20
88 L L L L L L L L L 0 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
Uno Temporal with Noise Uno Temporal with Noise
94 T T T T T T T T T T 300
2F | s 1 250
‘D\; 90 200
3 ssf < 150}
< o}
% =
(5} L -
= 86 100
84r 1 50 -
82 L L L L L L L L L L 0 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full

Figure 5.18: The mean accuracy and size results for theatatasing different Tarpeian
values. The error bars show one standard deviation from te&nm All results were
produced by 10 fold cross validation.

139

Chapter 5

Learning Predictive Models Using A Qualitativfesentation of Time

Mean Coverage (%) Mean Coverage (%) Mean Coverage (%)

Mean Coverage (%)

Figure 5.19: The mean coverage and accuracy results foratlhsets on different history
length values. The error bars show one standard deviatoom the mean. All results

96

CCTV Temporal (Clean)

ot
92}
0}
8|
86 |
84}
82}
80|
78}
76}

74

105

100
95
90
85
80
5
70
65

60

101

100 |

99

98

97 F

96

95

94

97

2 4 6 8
History Length

CCTV Temporal (Real World)

10

History Length

Uno Temporal

10

2 4 6 8
History Length

Uno Temporal with Noise

10

96 |
95 |
94
93
92
91t
90
89

88

2 4 6 8
History Length

10

Mean Accuracy (%) Mean Accuracy (%) Mean Accuracy (%)

Mean Accuracy (%)

were produced by 10 fold cross validation.

140

90

CCTV Temporal (Clean)

85

80

%

70F

65

60

85

History Length

CCTV Temporal (Real World)

80

s

70F

65

60 |

55

102

100 |

98 |

96

94

92 F

90

88 |

86

96

2 4 6 8 10
History Length

Uno Temporal

History Length

Uno Temporal with Noise

9

92

90

88

86

84

History Length

Chapter 5 Learning Predictive Models Using A QualitativpFRsentation of Time

distractor, and injection noise. Four new temporal stdtgioms have been defined, and
have been successfully shown to be used on two datasets: ,G@d@\Uno. STGP pro-
duced the most accurate predictive models for all datagetsgol did not manage to
learn clauses complex enough to correctly predict from thiminhg data. The inability
for Neural Networks, Bayesian Networks, and C4.5 to gersrdtom data affected the
accuracy of their results. It was shown that using the tealpefations, rather than using
a sequential approach allowed STGP to be robust to injectoase, and to be slightly
more accurate when predicting from scenes containing pielpeople. Finally, it was
shown that the history size used by STGP affects the covaradjaccuracy of the results.
A possible extension to the work presented here is ratherukang a fixed history size
STGP could learn the best history size by using Period tintkarvariables. Period time
takes a time range and would allow the data pointers to liowit much history, and where
within the history it looked for entity or relationship imstces. The time range could be
learnt from the training data.

141

Chapter 6

Learning Predictive Models Using A
Qualitative Representation of Space

6.1 Introduction

In Chapters 4 and 5 the location of the objects in the scenelesgibed by a quantitative
2D location. If the absolute location of the objects chanffedexample due to camera
shift) then it is likely the predictive models would be unabb predict activities involving
these objects. This chapter incorporates qualitativaapaiations into the predictive
models. These look at the qualitative spatial differendsveen object locations. This
allows the predictive models to be robust to changes in tinetstre of the scene, because
the condition sections of the predictive models can lookpfatterns in the history using
qualitative spatial relations between objects, ratham #ssuming that objects will appear
in specific scene locations. Section 6.2 firstly explains iimore detail, and shows the
reasons why using qualitative spatial relations to desdtfie location of the objects is
robust to spatial noise. Section 6.4.1 shows the results @xaeriment to see if using
spatial relations makes STGP more robust to objects chgryeir spatial locations.
Section 6.4 presents a comparison of STGP with Progol [82]yr&l Networks [111],
Bayesian Networks [94] and C4.5 [99] on three datasets: C@iFdfaft turnarounds and
Tic Tac Toe. Finally, Section 6.4.3 presents an experimeperformed on some of the
parameters for STGP.

142

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

6.2 Qualitative representation of space

The positions of the objects in the datasets in Chapters bandre represented by a
guantitative 2D location. A predictive model trained onstldiata relies on the objects
always appearing (qualitatively) at the same absolute @lagations. If this is not the
case then the predictive model may fail to predict correctly

This can be explained by using an example from Section 5.2re Heere was an
explicit mapping between the detector’s location and italsglic label. The label of each
detector is stored with the,y) location of its centroid. To label a new set of detections
their (x,y) locations are compared to tkre y) locations of the stored detectors. If there is
a match then the new detection is labelled with the storeectiats label. On Figure 6.1
the detections from the crossroads are initially assigneshe set of stored detections.
If the camera is moved (as is common with pan-tilt-zoom CCa¥heras) the detections
are then assigned to a different set of stored detectiona.ptedictive model relies on
a specific sequence of stored detections then it will failredct when there is image
movement.

‘ ‘ Image movement _ —

Figure 6.1: This shows how movement in the scene affectstietdabelling.

An alternative approach is to describe the location of thea®ns by how they spa-
tially relate to each other. Section 2.3.1 presented anvaxrof qualitative spatial re-
lations. A predictive model using spatial relations is maieust to noise because if the
detections move but stay in the same relative spatial @&tiemtit will still be able to make
a prediction. The predictive model will often be more geharal therefore be simpler
because it only has to learn the spatial relations betwetsttitens rather than every pos-
sible combination of detection locations. The next sectvdhshow how spatial relations
are used on three different datasets: CCTV, aircraft taurad, and Tic Tac Toe.

143

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

6.3 Evaluation

This section will firstly present three different datasetsch use spatial relations, and
secondly the representations used for STGP, Bayesian Netwdeural Networks, C4.5
and Progol.

6.3.1 Datasets
6.3.1.1 CCTV using spatial relations

The real-world single person CCTV video from Chapter 4 wasduw produce the
datasets. A similar scene analysis method to the one useldaptér 4 (Section 4.9.2.2)
was used to produce the symbolic representation. The methtidls chapter has one
difference: in Chapter 4 when a detector produced an outigust¢ene analysis method
produced a detection containing its symbolic name. In thapter, the scene analysis
method produces a detection containing its X,y locationl, @melation describing how
this detection spatially relates to the previous detect@ompass based level 2 orienta-
tion relations (Section 2.3.1) are used to describe how #tections spatially relate to
each other. To calculate how the current detection relatéset previous detection the
angle between the (x,y) image location of the current dieteend the previous detection
is calculated with respect to the direction of the y axis anithage. This angle is then
quantised into one of four spatial regions: North, SouthstEBad West. The training
set contained 81 detections. To see how well STGP deals witfttions changing their
locations two test sets were produced: a handcrafted obshiét (containing 116 detec-
tions), and a similar handcrafted test set (containing I6alions) where the locations
of two of the detections were swapped over.

6.3.1.2 Aircraft turnarounds

The aircraft turnaround data was taken from the EU Co-FRIEN#)ect!. The airport
apron was filmed using eight static cameras, with each cahsanag a different view
of the scene. Figure 6.2 shows one of the camera views, wherditferent vehicles
and people operating on the aircraft can be seen. The olgextsacked separately in
each camera and the tracks from the different cameras azd tagether to produce 3D
data on each object. The tracking data is noisy due to the loality of the videos,
bad weather and variable lighting conditions. This causeblpms including: objects
not being tracked; objects being assigned different idsplpects being assigned the

http://84.14.57.154/co-friend

144

Chapter 6 Learning Predictive Models Using A QualitativepFRsentation of Space

Figure 6.3: The zones labelled on the ground plane on theaftitarnaround videos.

wrong object type. The tracking data is then converted intelaional description by
using three of the RCC-8 relations (Section 2.3.1): surdsutouches and disconnected.
These describe how the objects in the scene spatially relagach other, and how they
also relate to static zones on the ground-plane (Figure B&&ed on International Air
Transport Association (IATA) specifications. Allen’s intals (Section 2.3.2) are used to
describe how the objects temporally relate to each othertruetsired type hierarchy is
used to describe the different classes of objects in thenaditais is used by the methods
to produce more general predictive models from the traidizig.

The spatio-temporal data is hand labelled by experts in |Afédtocols to describe
the type and duration of events that have occurred in thenapoo example: refueling,
baggage unloading, or loading the catering. To produce of $ettining data the labelled
spatio-temporal data is temporally compressed. This i€ dotwo stages. Firstly, only

145

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

spatio-temporal data labelled with an event is kept, andlaballed spatio-temporal data
is removed. Secondly, for each labelled event only the gggathporal data occurring in a
fixed length temporal window placed the end of the event is.Kégction 6.4.3.2 performs
an experiment with STGP to see how the length of the windoectsfthe results. Each
event has a large amount of variation due to the noise in #uokitrg data. The training

data set contains 70 events.

6.3.1.3 Tic Tac Toe

Tic Tac Toe is a game played by two people on a 3 by 3 grid. Orsopearses the symbol
nought (O) and the other person uses the symbol cross (Xh g&rson takes it in turn

to add one of their symbols to the grid. The first person toteradine of three of their

symbols either diagonally, vertically or horizontally withe game. The Tic Tac Toe
data was obtained from the UCI Machine Learning Reposiforyhe data contained a
representation of the grid for every possible end game gahath the label describing if

the person using crosses won the game.

The original data was represented in a fixed length vectdh gach element of the
vector describing the symbol used at a particular locatathé grid. The data was con-
verted into a relational description. Instead of reprasgrhe state of every location in
the grid only the symbols used in the grid were describedgataith the spatial relations
between them. Figure 6.4 shows the four spatial relatiostsctiin exist between symbols
on the grid: above, above right, above left and right. Thaskttcontained 800 possible
end games, and was noise free.

6.3.2 Representation
6.3.2.1 STGP

A similar representation described in Section 5.5.2.1¢éslder all datasets in this chapter.
The CCTV with spatial relations dataset used only one edgfynition which describes
the detection. There are also relation definitions for the farientation relations. The
aircraft turnaround dataset has entity definitions for teegbe, and each of the possible
vehicles that can appear on the apron. There are also reldifinitions for the three
RCC-8 spatial relations. The Tic Tac Toe dataset has aryatdfinition for the symbols
used on the grid. This has a property which describes thedlyfiee symbol. It also has
relation definitions for the four spatial relations showrfrigure 6.4.

2http://archive.ics.uci.edu/ml/datasets/Tic-Tac-TBrélgame

146

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

Above left Above Above right

Q——» Righ

Figure 6.4: The four spatial relations used in the Tic Tac dagset: above, right, above
right, and above left.

All the datasets make use of tRel at i onExi st s function to allow the condition
section to access relations in the history; and the logisadtions:And, Or andNot . The
aircraft turnaround and CCTV datasets have functions semténg the Allen’s intervals,
and temporal state relations described in Chapter 5. jribl Tic Tac Toe dataset uses
theGet , Equal , andNot - Equal functions to allow the condition section to access and
compare the types of different symbols. The dataset alsothsgerminalsCr oss and
Nought .

In both Chapters 4 and 5 the action section of each produatierused a static entity
instance, which did not use any variables from the condgiection. In this chapter the
CCTV dataset requires that the location of the predictedatet is not at a fixed location,
but is spatially related to the location of a previous detect The action section of the
production rules therefore needs to contain a relatioreratian a static entity instance.
The relation contains a variable relating to the previousater found in the condition
section. This illustrates the generalisation ability ¢f tepresentation.

6.3.2.2 Progol, C4.5, Neural Networks, and Bayesian Netwks

The same Progol representation used in Section 5.5.2.2 fos all datasets in this
chapter. The only difference is to add the spatial relatdescribed in Section 6.3.1 along
with the temporal relations. Again, the WEKA machine leagnsystem and the same
representation described in Section 5.5.2.3 is used toqmethe C4.5, Neural Networks,
and Bayesian Network learning algorithms. For the datasetisis chapter the binary
feature vector not only represents every possible permoataf temporal relations, but
spatial relations as well. The approach from Chapter 4 {@®4t9.3.1) is used to convert

147

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

the clauses learnt by Progol into a SLP.

6.4 Results

This section will firstly show the results of an experimendée how robust to spatial noise
STGP using spatial relations is. Secondly it will show howGFTcompares with C4.5,

Bayesian Networks, Neural Networks, and Progol on the d&tagescribed previously.

It will also explain if estimating the likelihood of the claes learnt by Progol, using Pe
and STGP, improves the results. Finally, the results wifireexnenting with some of the

different parameters for STGP is given. All the experimersisd 10 fold cross validation,

and the same evaluation criteria from Chapter 4 were usedi¢8et.10.1).

6.4.1 Spatial noise robustness of STGP

An experiment was performed to see if the predictive modsilsgispatial relations were
robust to spatial noise. The predictive models learnt fromreal world CCTV dataset
in this chapter, were compared against the predictive nsddalnt on the same dataset
from Chapter 4. Two test sets were used: a handcrafted clatansdt, and the similar
handcrafted dataset where the locations of two of the deteuwtere swapped. Figure 6.5
shows the results of the experiment. It can be seen that dtkgive models that relied
on the detectors occurring in the specific 2D locations wéexted when the location
of these detectors was changed. The predictive models seak spatial relations were
unaffected by the change in detector locations. This is umedhe predictive models
that rely on the detectors being in the specific locationaragssthe detectors will always
occur in a specific sequence. When the location of the deteis@hanged, the order of
the detectors in the sequence is also changed. This prevenpsedictive model from
matching the sequence and from making a prediction. Theqinesl models that use
spatial relations look at the spatial change between tragitmtthe current detection, and
the previous detection. This produces a sequence baseltwvespatial change between
detectors, rather than the identifiers of the detectors skéras. This will be unaffected
by the changes in the actual location of the detectors, wkialny the predictive models
using spatial relations is still be able to correctly proglagrediction.

6.4.2 A comparison of STGP with current methods

The accuracy results for the different methods on the CCTids#d is shown in Figure
6.6. The graph shows that STGP produces the most accuratesneben compared with

148

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

Detector movement test set results Detector movement test set results
100 T T T T 100
95 R 95
90 } 90
85| { J 85|
80 80 {
75 75 { }
70 70
65 65
60 R 60
55 { 55 {
50 50

Average Coverage (%)
Average Accuracy (%)

L L L L L L L L
No spatial No spatial Spatial Spatial No spatial No spatial Spatial Spatial
relations relations relations relations relations relations relations relations
before after before after before after before after
movement movement movement movement movement movement movement movement

Figure 6.5: Accuracy and coverage results showing how theement in the location
of the detectors in the CCTV dataset affects the predictieeets using and not using
spatial relations. The error bars show one standard demi&tbom the mean. All results
were produced by 10 fold cross validation.

the other methods, and the difference in accuracy is stailst significant. The optimal
result for the CCTV dataset was 100% coverage and 83% agcurhis is based on the
four possible actions on the path occurring in equal propost The results for STGP
show that it achieved less than this for both coverage andracg. The coverage was
reduced because STGP did not learn infrequent changesdrete¢ectors. The accuracy
was reduced because the condition sections of the produailes were not complex
enough. Most condition sections only looked at the relatioetween two previous detec-
tions which meant they did not predict well on the more complgtterns that involve the
relations between three or more detectors. This is becauwsertmore production rules
would match the complex pattern and both produce a predicéiducing the overall ac-
curacy. If a production rule was learnt that could match traglex pattern only it would
produce a prediction and the accuracy would be increased.

Some of the clauses learnt by Progol were incorrect becduesepredict by using
data in the future. Figure 6.7 shows one of the clauses I&griRrogol. It can be seen
that theeast _next , and thenor t h_next clauses base their prediction on flaéure
east ornort h relations. There is no way to easily prevent Progol from giuture
data when learning the clauses, which makes it an unsuita&lkeod to learn predictive
models of temporal data. The rest of the clauses learnt veergéneral and made a
prediction based on whether a detection had just occurr@g.chn be seen in Figure 6.7
where thenest _next andsout h_next clauses just contain thent er literal. When
the likelihood of the clauses was estimated by Pe there washpmvement in their
accuracy. This was because the over general clauses alwaiscp a prediction, which
affects the accuracy of clauses that predict correctlyrdtas, however, an improvement

149

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

in the accuracy of the results when the conflict resolver iGBTvas used to estimate the
likelihood of the clauses. This is because Pe must fire abledgroduction rules, and the
likelihood of a prediction is based on the likelihood of ther predictions. Incorrectly
fired production rules will reduce the accuracy of the cdrpgredictions. The conflict
resolver in STGP can probabilistically decide based on afsetabled production rules,
which production rules to fire which is why it gets better aexy results than Progol
and Pe. C4.5, Neural Networks, and Bayesian Networks diccioeve high accuracy.
This is because, as explained in Chapter 5, these method®tgeneralise, and rely on
memorising frequently occurring events. If there is notwggiotraining data to learn the
possible events, then the methods will perform poorly ortélsedata, which can be seen
in the results.

CCTV Spatial CCTV Spatial

100 |

}}%

ZﬁMH

20

100 |
80 |
60 | }

}H}

20| {

Mean Coverage (%)
Mean Accuracy (%)

L L L L L L L 0 L L L L L L L
Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method +Pe +STGP Method +Pe +STGP

Figure 6.6: The accuracy and coverage results for the diftemethods on the CCTV
Spatial dataset. The error bars show one standard deviationthe mean. All results
were produced by 10 fold cross validation.

action(east_next,A B) :- enter(A B), east(C A D).
action(west_next,A B) :- enter(A B).
action(north_next,A B) :- enter(A B), north(C A D).
action(south_next,A B) :- enter(A B).

Figure 6.7: An incorrect set of clauses learnt by Progol ftbenCCTV Spatial dataset.

The accuracy and coverage results for the different metbondse aircraft turnaround
dataset is shown in Figure 6.8. The optimal result would @24 @&ccuracy and 100%
coverage, and random chance would on average receive aiaegofi6% (as there are 16
possible events). The graph shows that the results fromiffieesstht methods have similar
accuracy, and the accuracy for all methods is very low (bb&igw 40% for all methods).
Neural Networks did not produce a result as WEKA failed witBtack size error when

150

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

learning from the training data. This indicates the set aitlde relations given to WEKA
was too large. The confusion matrices for STGP, Progol, BiayeNetworks and C4.5
are shown in Tables 6.2 to 6.5. Figure 6.1 provides a key teetvent numbers to
event labels. The graphs show that overall STGP achieveldthest number of correct
predictions with a total of 14; C4.5 achieved 11 correct mteahs; Bayesian Networks
achieved 6 correct predictions and Progol achieved 5.

Some of the events, like catering and loading/unloadingnftbe plane, occur in-
frequently in the training data which explains why in all imads they are not learnt
correctly. STGP produces good coverage results when pirggieircraft arrival, but pre-
dicts less well for handler deposits chocks, and the loadimjunloading events on the
aircraft. Around a third of the time STGP is unable to prodagerediction due to the
poor tracking data. Progol typically predicted Ground Polweit (GPU) positioning for
all events, causing it to get poor results. This is due to &réigstly not learning very
specific clauses for the events, and secondly the orderitigeaflauses causes Progol to
always predict the same event. Bayesian Networks achierad sorrect predictions for
the aircraft loading and unloading events, but gets conflisween aircraft arrival and
aircraft departure. Finally, C4.5 achieved some correetligtions for Handler Deposits
Chocks and Passenger Boarding Bridge positioning, betdfad correctly predict aircraft
arrival and departure. It achieved some good results foradirloading events but often
confuses unloading events for loading events and vice versa

Co-FRIEND Co-FRIEND

100 | 1 100 |

|

60 |

80

60 |

Mean Coverage (%)
Mean Accuracy (%)

40 40

%MH L

Bayes Net. C4.5 Progol Progol Progol STGP Bayes Net. C4.5 Progol Progol Progol STGP

Method P&+ STGP Method P€ +STGP

Figure 6.8: The accuracy and coverage results for the diffemethods on the aircraft
turnaround dataset. The error bars show one standard ideMiatm the mean. All results
were produced by 10 fold cross validation.

The coverage and accuracy results for the methods on the@i€de dataset is shown
in Figure 6.9. The optimal obtainable result is 100% coveramd 100% accuracy. The
results show that all methods except Bayesian Networksaud gccuracy, and coverage
results that were close to the optimal result. STGP got meanracy results that were

151

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

O=Aircraft Arrival 1=Aircraft Departure

2=Catering 3=Handler Deposits Chocks

4=Passenger Boarding Bridge Positioning 5=PassengedBgaBridge Removing
6=Suitcase Loading 7=Suitcase Unloading

8=Ground Power Unit Positioning 9=Ground Power Unit Remgvi

10=Left Refuelling Operation 11=Push Back Positioning

12=Right Aft Container Loading Operation 13=Right Aft Camer Unloading Operation
14=Right Forward Container Loading Operation 15=Righteod Container Unloading
16=No Prediction Operation

Table 6.1: The key for the event types used in the aircraftamaund dataset.

‘ ‘ T Actual | Pred. ‘

Pred. | 0O T T JT 277 3J 4[5 6] 78] 9] 0] 11 7] 127 18] 147 15] 16 | Total
0 4 0 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 2 2 0 0 0 0 0 0 0 1 0 0 0 0 6
4 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
5 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 3
6 0 0 0 0 0 1 2 1 0 0 1 0 1 0 0 0 0 6
7 0 0 0 0 0 2 1 1 0 0 0 2 0 0 0 0 0 6
8 0 0 0 1 0 0 0 0 3 0 0 0 0 0 1 1 0 6
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 2 5 1 3 3 2 1 2 2 1 1 3 1 1 1 0 0 29

7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0

Actual
Total

Table 6.2: The confusion matrix for STGP on the aircraft tmound dataset.

‘ ‘ T Actual [Pred.
Pred. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Total
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 1 1 0 2 1 1 0 0 0 0 0 0 0 0 7
6 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 7
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 5 5 2 5 5 4 4 5 5 1 2 4 0 0 1 1 0 49
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0

Actual
Total

Table 6.3: The confusion matrix for Progol on the aircrafharound dataset.

slightly worse than Progol, C4.5 and Neural Networks. Thaswecause STGP learnt
production rules that in some cases are not specific enougdver all the different types
of end games. Progol got good results on the dataset bedasise the type of data that
Progol has been designed to learn from (non-determingtit containing structural rela-
tions). A large amount of training data was used (800 out afssiible 900 games), which

152

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

‘ ‘ T Actual | Pred. ‘
Pred. | 0O T T T 277 3J 4[5 6] 78] 9] 0] 11 7] 127 18] 147 15] 16 | Total
0 1 0 0 2 1 0 0 0 2 0 1 0 0 0 0 0 0 7
1 3 0 0 1 3 0 1 3 1 0 1 1 0 0 0 0 0 14
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 2 1 0 0 1 0 3 2 1 0 0 0 12
4 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 3
5 2 2 1 3 1 0 0 1 3 0 0 0 0 0 1 0 0 14
6 0 0 1 0 1 1 3 0 0 0 0 0 1 0 0 0 0 7
7 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 0 5
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 4
12 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 4
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0

Actual
Total

Table 6.4: The confusion matrix for Bayesian Networks ordiheraft turnaround dataset.

‘ ‘| Actual [Pred.
Pred. [0 [T] 2] 3] 456 7 [8] 9 10 [1] 2] 13] 4] 5] 16| Total
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2
1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 7
2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
3 2 0 0 3 1 0 0 0 1 0 1 0 0 0 0 0 0 8
4 1 1 1 0 2 3 0 1 0 0 0 1 2 1 0 0 0 13
5 1 1 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 6
6 0 0 1 0 1 0 3 2 0 0 1 0 1 0 0 1 0 10
7 0 1 0 0 0 0 2 1 1 0 0 2 0 0 0 0 0 7
8 2 0 0 0 2 0 0 1 1 1 0 0 0 0 1 0 0 8
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2
11 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 3
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0

Actual
Total

Table 6.5: The confusion matrix for C4.5 on the aircraft aunund dataset.

meant that Neural Networks, and C4.5 had enough trainiregtdahemorise common ex-
amples. This explains why it achieved such good accuradycawerage results on the
test fold. When the likelihood of the clauses were estimatedsing the conflict resolver
in STGP, and Pe there was no significant change in the accaraoyerage results.

6.4.3 Parameter experimentation with STGP

In a similar manner to Chapter 5 the STGP experiments in thapter used the best set-
tings from Section 4.10.3. STGP has an inefficient impleietgon of theFi nd Best
Substi t uti on algorithm (Figure 3.12). To see if a production rule matcheset
of history, all possible combinations of objects, and thelations from the history that
might match its condition section are evaluated until orleusd that causes the condition
section to evaluate true. In the Tic Tac Toe, and CoFriendsg#s$ there can be a large
number of combinations to evaluate, which has a large impac¢he run-time of STGP
(a run for example might take 7 days to complete). To makeuhs complete in a more

153

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

Tic-Tac-Toe Tic-Tac-Toe

100 | 100 |

80 | {
60 | {

80

60 |

40 40

Mean Coverage (%)
Mean Accuracy (%)

20 F 1 20 F

Bayes Net.C4.5 NN Progol Progol Progol STGP Bayes Net.C4.5 NN Progol Progol Progol STGP
Method Pe +STGP Method Pe +STGP

Figure 6.9: The accuracy results for the different methadthe Tic Tac Toe dataset. The
error bars show one standard deviation from the mean. Aliltegere produced by 10
fold cross validation.

reasonable time a set of constraints were added to STGP.ioimthe number of com-
binations that could be searched over was added t&itinel Best Substitution
algorithm. Any condition section that requires more thaa ttumber of combinations is
assumed to have evaluated false on the history. All the rantghé Tic Tac Toe dataset
also had a reduced population size of 3000, and the maximumbe@uof generations was
reduced to 70. A potential solution to this problem is diseasin the Conclusion section
at the end of this chapter. The remainder of this sectionshitiw experiments with two
STGP parameters: Tarpeian value, and History length to eeelreir values affect the
predictive models learnt by STGP.

6.4.3.1 Tarpeian value

An experiment was performed which varied the Tarpeian vébudehe Tarpeian bloat
control method [22] on the three training datasets fromd¢hapter. The results are shown
in Figure 6.10. For the CCTV Spatial dataset there was ldtlange in the accuracy
by increasing the Tarpeian value when compared to no blaatao However for all
Tarpeian values the size of the predictive models is sigmfly reduced when compared
with the size of the predictive models produced with no bémattrol. A Tarpeian value of
4 was the optimal value. Similar results are found for the ii@ofel dataset. Again there
is little change in the accuracy of the results when usingtbéontrol when compared
to not using bloat control. For Tarpeian values below 7 ther statistical significant
reduction in the size of the predictive models when comp#retbt using bloat control.
For the CoFriend dataset a Tarpeian value of 6 was the optiahaé¢. Finally, for the Tic
Tac Toe dataset there is no statistical significant diffeeen both the size and accuracy
of the predictive models when using bloat control compaceddt using bloat control.

154

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

This shows that the limit on the number of combinations affélwe size of the production
rules produced, and explains why using Tarpeian value gbdtres not reduce the size
of the predictive models any further.

CCTV Spatial CCTV Spatial
82 160 7
80 | T 1 140 }
. r P 120+
S | :
S et L
g g 100
5 T4f | | 0
g — g oor
< 72 + | | 3]
c H i =
g P or
s Or | |
68 - | ‘ 40
66 F i : i 20 F
64 S S 0 R
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
CoFriend CoFriend
35 T T T T T T T T T T 150
30 |
25| ; !]] 100
g i |
X 20¢ :
1) : Q L
& | N 50
5 15} : (7]
g i g
< 10 T 3
< | = oFf
3 i
s 57
0F) -50
5} : *
10 L L L L L L L L L L 100 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full
TicTacToe TicTacToe
95 T T T T T T T T T T 400
ot | L] 350 |
S 300 |
= 85
) [
IS N L
£ » 250
g *r
p s 200f
3 it
= 150 |
0F 100 |
65 L L L L L L L L L L 50 L L L L L L L L L L
None 2 3 4 5 6 7 8 9 10 None 2 3 4 5 6 7 8 9 10
Tarpeian Value Full Tarpeian Value Full

Figure 6.10: The mean accuracy and size results for theatatas different Tarpeian
values. The error bars show one standard deviation from #@nm All results were
produced by 10 fold cross validation.

6.4.3.2 History length

An experiment was performed to see how the length of theryistged for the CoFriend,
and CCTV Spatial datasets affected the results. For the C&Jatial dataset history of

155

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

lengths 2 - 10 was used, and for the CoFriend dataset histagths of: 5, 10, 15, 20,
25, and 30 was used. A longer history length is used for CaHribecause the temporal
length of some of its events is much longer than the eventsGm\CSpatial. Figure
6.11 shows the results from the experiments. The CCTV Suittaset had no change in
the accuracy of the results as the history length was ineteaBhere was a statistically
significant decrease in the coverage of the results (p-\mtweeen history length 3to 9 is
0.002). This is because the longer history length produaas komplex patterns to learn
from, which are harder for STGP to learn predictive modeld-oi the CoFriend dataset
there was no change in the accuracy or coverage of the résu#th history values.

CCTV Spatial CCTV Spatial
82 T T T T T 105

80

1 100
78l | 1 \

76 | 95
74} ol
72t

0k 85

Mean Accuracy (%)
Mean Coverage (%)

68 I 80 |

66 |

751
64

o . . . i 20

History Length History Length

CoFriend CoFriend
40 T T T T T 40

35 1 35
30 1 | 1 30

25 25

20 \N 1
o}

0 5 10 15 20 25 30 0 5 10 15 20 25 30
History Length History Length

20 F
15
10

Mean Accuracy (%)
Mean Coverage (%)

Figure 6.11: The mean coverage and accuracy results for@i&/Gpatial, and aircraft
turnaround datasets on different history length value® &rnor bars show one standard
deviation from the mean. All results were produced by 10 twlwks validation.

6.5 Conclusions

This chapter has shown that the use of qualitative spatetioas allows the predictive
models to be robust to spatial noise. Section 6.4.1 verifiesdexperimentally by show-
ing that the predictive models learnt from the CCTV data imgter 4 (which rely on the

156

Chapter 6 Learning Predictive Models Using A QualitativpFRsentation of Space

detectors occurring in a specific ordering) fail when theeditrs are moved. The pre-
dictive models learnt in this chapter are robust to this@diecause they use qualitative
spatial relations that look at the spatial change betweetoitation of detections, rather
than relying on the detectors occurring in absolute locatid he accuracy results for all
methods on the CoFriend dataset was very poor. STGP got teeaocurate results on
the CCTV Spatial, but got worse accuracy results than Praybb and Neural Networks
on the Tic Tac Toe dataset. Progol, C4.5 and Neural Netwdtkaat get very accurate
results on the CCTV Spatial dataset, but got very accuralteeson the Tic Tac Toe
dataset.

STGP has an inefficient method to evaluate the conditionaeof a production rule
on a history. It was shown to be an issue (Section 6.4.3) o@t&iend, and Tic Tac Toe
datasets, as large combinations of entities and relatiead to be checked. Techniques
from databases, or Prolog could be used to fix this probleres@hkwould match parts of
the condition section to parts of the history, until an oltereatch is found. This makes
it a more efficient search process than looking over all pbssiombinations from the
history that might match the condition section.

Progol has no temporal constraints during its search to iirdniost general clause.
This can cause it to predict using relations or entities ftbmfuture, as was shown in
the results from the CCTV Spatial dataset. One way to preemtrom happening is to
only allow Progol to see previous spatio-temporal data whengeneralising the most
specific clause. This would require changing how the mostipelause is generated,
to take into account temporal constraints from the data.

157

Chapter 7

Automatic Bloat Control in Genetic
Programming

7.1 Introduction

In Chapters 4 - 6 experiments were performed using STGP tavhaé was the best
Tarpeian value for different datasets. The experimentdwadnain conclusions. Firstly,
there was no universal optimal Tarpeian value for all dasasPatasets which require
a simpler predictive model typically have a lower optimatpkan value, than datasets
which require more complex predictive models. Secondlyirftpa fixed Tarpeian value
may not produce the most accurate and smallest predictigdelso

Ekart and Németh [21] adapt the diversity of the poputatioiring the run. In the
initial stages of the run a high diversity is maintained, anthe later stages of the run a
lower diversity is allowed to force GP to converge on a solutiThis chapter investigates
a similar technique to vary the Tarpeian value during theaf TGP. It is proposed that
during a run a high Tarpeian value (causing high populatieerdity) is typically required
at the start to help STGP find good solutions, and a lower Tampelue (causing lower
population diversity) is then required once STGP has cgatpn a solution to reduce
the size of the predictive models. This chapter investgyagng an adaptive Tarpeian
method that varies the Tarpeian value during the run baseéldeocurrent and initial best
fitness values. Section 7.2 presents the method, and S&c8a@mhows the results of the

158

Chapter 7 Automatic Bloat Control in Genetic Programming

method applied to the datasets from Chapters 4 - 6.

7.2 Adaptive Tarpeian value

The results from Chapters 4 - 6 showed that there was not &esliagpeian value that
will guarantee both good coverage, and accuracy, and simadl predictive models for
all datasets. The problem is that some datasets like Uno an@ kéquire a low Tarpeian
value from the start to get a good solution. However, othkesPSS, and Uno Temporal
need a higher Tarpeian value to get accurate predictive Is\dulé it is not small enough
in the later stages of the run to produce very small predictiodels.

The Tarpean bloat control method can be seen as contrdtiégjze of the population.
Low Tarpeian values will greatly reduce the size of the papah that is sampled from
by the genetic operators, and this creates a lower popoldiiersity. Lower diversity
allows STGP to find small solutions once it has a correct gntybut can prevent STGP
from initially finding a correct solution. High Tarpeian uals allow a larger population
size to be sampled from by the genetic operators, which leealkigher diversity. This is
good for allowing a more comprehensive initial search of¢barch space, but can make
it hard for STGP to focus on a small correct solution latermthie runs. This chapter
proposes (based on the work of [21]) that a high diversitgdgired at the start of the run
to allow a good set of predictive models to be evolved, anddmersity at the end of the
run to find compact predictive models.

There has been previous work (Section 2.6.7) in GP on adagiersity [21], and
adaptive population size [110]. Ekart and Németh [21] aggadient based technique
that looks at the ratio of the current and previous best fitnakies to adapt their diversity
controls. Rochagt al.[110] use an absolute method that looks at the ratio of theentir
best fithess and the initial best fithess to adapt the populaize. The same approach has
been taken in this chapter to adapt the Tarpeian value. T®agh assumes that how
close the current best fitness value is to the optimal fitnelkse\(0), relates to how much
Tarpeian bloat control should be applied. When the currest btness value is a long
way from the optimal fitness value a high Tarpeian value shbelused to allow STGP
to investigate a range of possible solutions. However, witherturrent best fitness value
is close to the optimal value a low Tarpeian value can be uséatte STGP to converge
on a small correct solution. Equation 7.1 shows the methalitomatically adapt the
Tarpeian value. The new Tarpeian vatus defined as the ratio of the current best fitness
fp to the initial best fitnesd; multiplied by the initial Tarpeian valug,jsiz . In all the
experiments the initial Tarpeian value is set to 10. To pnevee Tarpeian value from

159

Chapter 7 Automatic Bloat Control in Genetic Programming

going to 1 (which would cause all the predictive models thaterabove the average size
to be removed from the population) it is limited to a minimuadue of 2. This method
was applied to the datasets from Chapters 4 - 6. The resalshakvn in the next section.

f
t= Max(T_C * tinitial ,2) (7.1)
[

7.3 Results

Figures 7.1 - 7.11 show the results for the adaptive Tarpaiethod on the datasets from
Chapters 4 - 6. The results show that the adaptive Tarpei#tmochgot accuracy results on
all the noisy datasets, and most of the clean datasets thatasegyood as the best results
using a fixed Tarpeian value. It also typically produced ptace models of a size equal
to or smaller than the most accurate predictive models wsingd Tarpeian value.

The results on the PSS datasets (Figure 7.1) show that theddbes not get very
accurate results for the clean dataset. Itis too aggressiusing it to produce small sized
predictive models, with accuracy results that are worse tia most accurate results from
using a fixed Tarpeian value. The noise results on the Un@adts (Figure 7.3) show that
as the level of noise is increased the method produces pixedisodels that are larger on
average than most accurate predictive models produced adired Tarpeian value. The
results on the CCTV datasets (Figure 7.4) show that the acgwf the method on the
clean dataset is lower than the best accuracy using the fixgukbitin value. The results
on the PYCR datasets (Figure 7.5) are similar to the ones @F\COn the clean, and
10% noise datasets it gets the smallest size results, battheacy results are worse than
the best accuracy results using a fixed Tarpeian value. The/Qfataset using spatial
relations (Figure 7.6) gets a similar accuracy result tagisi fixed Tarpeian value, but
the average size of the predictive model is larger than tlseresults from using a fixed
Tarpeian value.

The results have highlighted two main issues with the metHadstly, the method
assumes that a very small current best fitness (less thaprdddnhs that STGP is very
close to finding the correct solution, and consequently h legel of bloat control can be
used to reduce the size of the predictive model. Howeveth®iclean PSS and PYCR
datasets a very low fitness value does not always mean thaP 33 Glose to finding
the correct solution. When the adaptive Tarpeian methogppéied to these datasets it
incorrectly decreases the Tarpeian value causing a decre#se diversity of the popu-
lation causing STGP to prematurely converge on an incom@elution. Secondly, on
the noisy datasets, the noise limits the minimum value ferdinrent best fithess that a

160

Chapter 7 Automatic Bloat Control in Genetic Programming

predictive model can achieve. This affects the smallessiptesTarpeian value that the
adaptive Tarpeian method can produce. In the later stagbs ofins the amount of bloat
control is reduced which prevents STGP from finding the sesajpossible models. This
can be seen, for example, in the results for the Uno2 datasetshe CCTV with spatial

relations dataset.

7.4 Conclusions

The previous chapters has shown that there is no universal Tiarpeian value that will
work well on all datasets. This chapter has shown an adap#vyeeian method which
computes the Tarpeian value based on the ratio of the curesnfitness to the initial best
fitness. The results showed that the method got accuraclfgdsat were as good as the
best results using a fixed Tarpeian method, for all the naasgskts, and most of the clean
datasets. There are two main problems with the method.l\Fitsteduces the Tarpeian
value too quickly for some of the clean datasets, causingRSitGrematurely converge
on an incomplete solution. Secondly, the noise in the detagkects the method making
it unable to produce low Tarpeian values. To solve theselgnadsome form of scaling
could be used to convert the ratio between the current besisfitand the initial best
fitness into a Tarpeian value. An exponential scale couldsed tor the clean datasets to
allow high Tarpeian values to be still used when the currest btness has a low value.
On the noisy datasets a constant noise value (based on selaeel) could be removed
from the ratio to allow it to produce low Tarpeian values.

161

Chapter 7

Automatic Bloat Control in Genetic Programming

PSS - Clean

104

102

100 |

98 |

96

9

Mean Accuracy (%)

92

90

88

Mean Size

Tarpeian Value

PSS - 10% Noise
94

Auto 2 3 4 5 6 7

92

90

88

86

84

Mean Accuracy (%)

82

80

78

Mean Size

Auto 2 3 4 5 6 7
Tarpeian Value

PSS - 30% Noise

76

741

2F

70

68 I

66

Mean Accuracy (%)

64

62

60

Mean Size

Auto 2 3 4 5 6 7
Tarpeian Value

Figure 7.1: The accuracy and size results for the Auto Tarpeiethod on the PSS dataset.
The error bars show one standard deviation from the meaneslilts were produced by

10 fold cross validation.

162

90

PSS - Clean

80 |

70

60 |

50 |

40

30

20 F

10

300

250

200

150 |

100 |

50 |

350

300 |

250

200 |

150 |

100 |

50 |

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

PSS - 10% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

PSS - 30% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Chapter 7

Automatic Bloat Control in Genetic Programming

Uno - Clean
100.4

1002}
100 }

%8} /\
996} —t
99.4}
992}

99
98.8

Mean Accuracy (%)

98.6
98.4

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 10% Noise
96

9

92 F

90

88 |

Mean Accuracy (%)

86

sal

82

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 30% Noise
72

70
68
66
64
62
60 |

Mean Accuracy (%)

58 |

56 |

54

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Mean Size

Mean Size

Mean Size

45

Uno - Clean

a0t

35

30

25

20 F

15

250

200

150 |

100 |

50 |

350

300 |

250

200

150 |

100 |

50 |

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 10% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 30% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Figure 7.2: The accuracy and size results for the Auto Tarpenethod on the Uno
datasets. The error bars show one standard deviation frerm#éan. All results were

produced by 10 fold cross validation.

163

Chapter 7

Automatic Bloat Control in Genetic Programming

102

100
98 |

Mean Accuracy (%)

88
86

84

90

Uno2 - Clean

96
94+
92 F
90

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno2 - 10% Noise

85

Mean Accuracy (%)

65

60

80

S

70

Mean Size

65

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno2 - 30% Noise

60 |

55

50 |

Mean Accuracy (%)

45

40

Mean Size

Figure 7.3: The accuracy and size results for the Auto Tarpenethod on the Uno2
datasets. The error bars show one standard deviation frerm#éan. All results were

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

produced by 10 fold cross validation.

164

50

Uno2 - Clean

451

40 |

35

30

25|

20

15

10

160

140

120

100 |

80

60 |

40

20 F

220

200 |
180
160 |
140
120
100 |
80
60 |
40 F
20

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno2 - 10% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno2 - 30% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Chapter 7

Automatic Bloat Control in Genetic Programming

90

88

Mean Accuracy (%)

78

76 |

74

84

82

Mean Accuracy (%)

72

70

68

74

72
70

Mean Accuracy (%)

58 |
56 |

54

Figure 7.4: The accuracy and size results for the Auto Tarpeiethod on the CCTV
datasets. The error bars show one standard deviation frerm#éan. All results were

CCTV - Clean

86

84t

82

80 |

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

CCTV - 10% Noise

80

78

76 |

74}

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

CCTV - 30% Noise

68 I
66 |
64
62 |
60 |

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

produced by 10 fold cross validation.

165

200

180
160
140
120
100 |
80
60 |
40
20

200

180
160
140
120
100 |
80
60 |
40
20

180

160 [
140
120
100
80 |
60 |
40
20 |

CCTV - Clean

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

CCTV - 10% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

CCTV - 30% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Chapter 7 Automatic Bloat Control in Genetic Programming

PYCR - Clean PYCR - Clean
94 T T T T T T T T T T 300
2t P P 250 F
g - i 3
< oo} P L i . 200
3 esf s 150
<<)
g | | | | | | =
] | : | i i ; | : J |
2 8 L | | i 100
84 1 50 |
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
PYCR - 10% Noise PYCR - 10% Noise
84 T T T T T T T T T T 400
82| 1 1 350 |
_. 8o} P 1 300}
S 1 | :
g] . i % 250
=1 | | : |
Q - | 1 | | d L
8 76 | i i i \,\\ § 200
§ b | | | | | Z 150}
= i | |
I3 S I] 100
] - 50+
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
PYCR - 30% Noise PYCR - 30% Noise
70 T T T T T T T T T T 300
68
.t 250 F
S e}
= 200
5 [
IS 62 UE)
:(3 60 | < 150}
!] L
g s =
(5} -
< Ll 100
54 50 F
52
50 L L L L L L L L L L 0 L L L L L L L L L L
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

Figure 7.5: The accuracy and size results for the Auto Tarpeiethod on the PYCR
datasets. The error bars show one standard deviation frerméan. All results were
produced by 10 fold cross validation.

166

Chapter 7 Automatic Bloat Control in Genetic Programming

CCTV Temporal (Clean) CCTV Temporal (Clean)
85 —— 140
120 +
80
< 100 |
Fy o
S T75F N
© o= L
2 %
Q ©
: 7o} s 6o
©
(5
= awft
65
20 F
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
CCTV Temporal (Real World) CCTV Temporal (Real World)
80 T T T T T T T T T 140 T T
120+
75t i i
S 100 |
R S
g ot P & gl
Q ©
T) s 6o
©
(5
= awft
60 |
20 F
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
CCTV Spatial CCTV Spatial
82 T T T T T T T T T T 100
80 . 1 90
781 b 80 F
3\;‘ 76 F 70
g P N e0r
5 T4F : ! 2]
8 T S 50p
< 72F ' :]
§ ! | 40
= 70 | 30k
68 20}
66 | : J ! i 1 10 }
64 L L L L L L L L L) L L L L L L L L L L
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

Figure 7.6: The accuracy and size results for the Auto Tarpaiethod on the CCTV
dataset using temporal relations, and the CCTV dataseg gpiatial relations. The error
bars show one standard deviation from the mean. All resute wroduced by 10 fold
cross validation.

167

Chapter 7 Automatic Bloat Control in Genetic Programming

Uno Temporal Uno Temporal
100 T T T T T T T T T T 180
! 160 F
98 |
140
§ 96 120 +
= » 100
Q 94} c
Q ©
< L
: g 80
(5} L -
= 92 60
40
90
20
88 L 1 L L L L L L L L) L L L L L L L L L L
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno Temporal with Noise Uno Temporal with Noise
96 T T T T T T T T T T 300
%4r 250 |
SR 200
Fy o
£ 90f b
é § 150 |
< 88 =
L 100 |
= 86|
84 50
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

Figure 7.7: The accuracy and size results for Auto Tarpeietinad on the Uno Temporal
datasets. The error bars show one standard deviation frerm#an. All results were
produced by 10 fold cross validation.

168

Chapter 7

Automatic Bloat Control in Genetic Programming

95

TicTacToe

90 F

85

80 |

Mean Accuracy (%)

75

70

65

Mean Size

Auto 2 3

4

5 6 7 8 9 10
Tarpeian Value

CoFriendGraphs

Mean Accuracy (%)

Mean Size

Auto 2 3

Figure 7.8: The accuracy and size results for Auto Tarpeiathod on the CoFriend and
Tic Tac Toe datasets. The error bars show one standard idevieam the mean. All

4

5 6 7 8 9 10
Tarpeian Value

350

300 |

250 |

200

150 |

100 |

50

140

120

100 |

80

60 |

40 |

20 F

TicTacToe

Auto 2 3 4 5 6 7 8 9 10

Tarpeian Value
CoFriendGraphs
Auto 2 3 4 5 6 7 8 9 10

Tarpeian Value

results were produced by 10 fold cross validation.

169

Chapter 7 Automatic Bloat Control in Genetic Programming

PSS - Clean PSS - Clean
90 T T T T T T T T T T 50
i i 45+
88 20 F
g 86 =T
§ 9 30
3 e 2 ¢
- c
< g 20p
g = sl !
2 82t |
10 !
8of | 5t |
H ol
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
PSS - 10% Noise PSS - 10% Noise
86 T T T T T T T T T T 22
20
84 18k
< L
$ et 16
g % 14t
g 80} s 12 |
(5}
§ = 10}
= 8T 8|
76 er
4 -
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
PSS - 30% Noise PSS - 30% Noise
78 T T T T T T T T T T 80
76} 1)] ok
74
— 60 -
E\i 72 F
g0 g sor
g 68 | (g 20
< 66} é
[=4
é 64 30r
62| 20k
60 |
sl 10 F
56 L L L L L L L L L L 0 L L L L L L L L L L
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value

Figure 7.9: The accuracy and size results for the Auto Tarpmiethod on the PSS dataset,
where the predictive models are using a simple conflict vesollhe error bars show one
standard deviation from the mean. All results were produngetiO fold cross validation.

170

Chapter 7

Automatic Bloat Control in Genetic Programming

Uno - Clean
94

92

90

88

86

Mean Accuracy (%)

84

82

80

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 10% Noise
92

%0}
88t
86
84t
82t
80+
78t
76+
74t
72

Mean Accuracy (%)

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 30% Noise
80

5

70

65

Mean Accuracy (%)

60 |

55

50

Mean Size

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

-10

Uno - Clean

70

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 10% Noise

60 |

50 F

40F

30

20

10

100

0}
80|
70}
60 |
50 |
40t
30}
20}
0r

-10

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Uno - 30% Noise

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Figure 7.10: The accuracy and size results for the Auto Tanpmethod on the Uno
datasets, where the predictive models are using a simpféataasolver. The error bars
show one standard deviation from the mean. All results wesdyred by 10 fold cross

validation.

171

Chapter 7

Automatic Bloat Control in Genetic Programming

Uno2 - Clean Uno2 - Clean
82 60
80 50 F
B 4wt
g 76
2 o 30f
I N
S 74 7]
3 S 20t
< 72f g
c
8 wof .
2 70p |]
68 | or ’
66 101
64 20 L
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno2 - 10% Noise Uno2 - 10% Noise
72 100
701 80 |
~ 68
S 60 |
g 66r & ol
5 7]
g 64t e L <
<<) 20}k
g 62} =
s
0OF
60
58 20T
56 H R . . 40 R
Auto 2 3 4 5 6 7 8 9 10 Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value Tarpeian Value
Uno2 - 30% Noise Uno2 - 30% Noise
70 140
120
65 .
s Lo 100
S P
> | | o 80}
g i i 3
3 sst N S 60t
< ! g
g P 401
= 50 f
20
45 0
40 -20

Auto 2 3 4 5 6 7 8 9 10

Tarpeian Value

Auto 2 3 4 5 6 7 8 9 10
Tarpeian Value

Figure 7.11: The accuracy and size results for the Auto Tanpmethod on the Uno2
datasets, where the predictive models are using a simpféataasolver. The error bars
show one standard deviation from the mean. All results wesdyred by 10 fold cross
validation.

172

Chapter 8

Conclusions

8.1 Summary of the work

This thesis has shown a technique to learn predictive mdaetsspatio-temporal data.

In Chapter 3 a frame based [78] representation for the spatiporal history data
was described. The representation enables a set of grditiéselationships between the
entities to be described. Relations and entities can alge pperties which can also
be represented. Each different type of property, entityetation requires a definition,
which is represented by a class frame. This definition is tigenleate property, entity
or relation instances, which are represented by instameeefs. A predictive model is
represented by a production system, which contains a sebdtiption rules, and conflict
resolver. The production rules describe different posgualtterns in the history and their
possible future outcomes: Each production rule typicaltydeis different parts of the
activity being modelled. Production rules contain two gBx: a condition section that
matches a specific subset of the history; and an action sebt@b represents a new entity
or relation. The conflict resolver is a conditional probyidlistribution represented as a
Bayesian Network. It takes as its input a set of enabled mtomlurules, and computes the
likelihood that a subset of these production rules will bedito produce a prediction. The
chapter concluded by explaining an inference techniquehwiven a predictive model,
and a history will produce a prediction.

Chapter 4 described how a predictive model is learnt fronsgaio-temporal history

173

Chapter 8 Conclusions

data using Spatio-Temporal Genetic Programming (STGP). chapter described how
the predictive models were initially generated, the fitrfesstion, and the genetic oper-
ators used. It also explained how the parameters of the cobréiolver are computed.
A bloat control technique is used (the Tarpeian method [R2ontrol the size of the

predictive models. Five datasets were used to evaluateytiters. Four were based on
the card games: Uno, Papers Scissors Stone and Play yosrrigdrj and one based on
people walking along a path.

The method presented in this thesis (STGP) achieved theanostate results on all
the datasets in this chapter in comparison to a set of egistichine learning methods:
Progol, Neural Networks, Bayesian Networks, C4.5 and Pegé?managed to learn the
correct clauses for many of the datasets, but it was unaldepty them in the correct
order, which affected both its coverage and accuracy esthen Progol was combined
with Pe (a technique to estimate the probability of the ddaushen used as a stochastic
logic program) it managed to improve Progol’s coverage,dud to clashing clauses it
did not often improve its accuracy. Pe must fire all enablemtipction rules, and the
likelihood of a prediction is based on the likelihood of theer predictions. Sometimes
an enabled production rule will produce an incorrect prialicwhen it is fired, which
affects Pe’s accuracy. The conflict resolver used by STGPpoalmabilistically decide
which of the enabled production rules to fire. This preventbéed production rules that
produce incorrect predictions from being fired. It was shdwat when the clauses learnt
by Progol were estimated by the conflict resolver in STGP jrioned both their coverage,
and accuracy results. Bayesian Networks and C4.5 perfofamdygwell on the datasets
in this chapter, but were limited due to their inability t@fa generalised rules from the
data. It was shown that STGP produces the best results verie $orm of size control on
the predictive models; the tournament selection sampéofrtique using a tournament
selection value that favours the better scoring predictivelels; and an increased amount
of adding and replacement of production rules in the initbenerations of the run.

Chapter 5 showed the use of qualitative temporal relatiotisa predictive models. A
novel temporal state relation to relate the time range ohaityeor relation instance to the
current time was presented. Handcrafted Uno datasets;eahavorld and handcrafted
CCTV datasets were used for the experiments. Again, STG#upeal the most accurate
predictive models for all datasets. Progol did not manadgeta clauses complex enough
to correctly predict from the training data. Estimating lifkelihood of the clauses using
Pe did not improve the accuracy of the results. When theilikeld of the clauses were
estimated by STGP the coverage, and accuracy of the reseriésmproved except for the
noise free CCTV dataset. Again, the inability for Neural Wextks, Bayesian Networks,

174

Chapter 8 Conclusions

and C4.5 to generalise from data affected the accuracy af bsults. It was shown
experimentally that using temporal relations in the presdgcmodels when compared to
not using them allowed STGP to be robust to injection noisel, ta be slightly more
accurate when predicting from scenes containing multiptgpge. Finally, it was shown
that increasing history length used by the predictive modetiuced their coverage and
accuracy results.

Chapter 6 demonstrated the use of spatio-temporal retatndhe condition section of
the production rules, and the ability to use relations inatti®on section of the production
rules. The temporal relations were the same as the onesus€dthpter 5. The chapter
verified experimentally that predictive models that usediapeelations between objects
are robust to spatial noise when compared to predictive tadtat do not use spatial
relations. Three datasets were used for the experiment8VCrcraft turnarounds, and
Tic Tac Toe. STGP was shown to have an inefficient techniqevatuate the condition
section of the production rules on the history, which hadgdampact on its run-time on
the Tic Tac Toe and aircraft turnaround datasets. Sectie¥plains a possible solution
to this problem. Progol learnt overly general clauses oiCi&V datasets, and sometime
the clauses it learnt based their predictions on relatiacsioing in the future. There is
no easy way to prevent this from happening, which makes Progguitable for learning
from temporal data.

Chapter 7 firstly described an adaptive Tarpeian methodwdomputes the Tarpeian
value based on the ratio of the current best fitness to thalibist fithess. The method
was evaluated using all the datasets from the previous ergprhe results showed that
the method got accuracy results that were as good as theebaltsrusing a fixed Tarpeian
method, for all the noisy datasets, and most of the clearseitaThe results showed two
main problems with the method. Firstly, it reduces the Tampealue too quickly for some
of the clean datasets, causing STGP to prematurely conearge incomplete solution.
Secondly, the noise in the datasets affects the method ghakimable to produce low
Tarpeian values. Section 8.4 explains possible solutimtisgse problems.

8.2 Contributions

The main contributions from this thesis are:

1. A novel predictive model architecture represented asodymtion system. Each
production rule models a separate part of the spatio-temhpiata. The conflict
resolver (represented as a Bayesian Network) allows thetacture to model non-
deterministic data, and to use a set of production rules keragrediction.

175

Chapter 8 Conclusions

2. Anoveltemporal relation that relates the time range dratity or relation instance
in the history to the current prediction time.

3. Atechnique to learn predictive models by Genetic Prognarg.
4. The use of spatial relations within the condition sectibthe production rule.

5. Initial work on a technique to adapt the Tarpean bloatevdluring the run of STGP.

8.3 Discussion

Chapter 1 introduced six questions that this thesis hampteal to investigate. This
section will show to what extent this thesis has managedswanthem.

Question 1: Does representing the components of the prediege models using first or-
der logic, produce more accurate results on non-determinis spatio-temporal data
than using standard machine learning representations?

In Chapters 4 - 6 experiments were performed on two techsigamg first order logic:
STGP, and Progol; along with three techniques using stdndachine learning represen-
tations: Neural Networks, Bayesian Networks, and C4.5. rékalts showed that STGP,
and Progol produced more generalised results than Neutalxes, Bayesian Networks,
or C4.5. These can not generalise in many situations anctietéy rely on storing com-
mon examples and their outcomes. The accuracy results f&PSand Progol (when
combined with STGP) were shown to be as good as or better hlesacturacy results for
Neural Networks, Bayesian Networks and C4.5.

Question 2: Does using a probabilistic conflict resolver prduce more accurate pre-
dictive models on non-deterministic spatio-temporal datahan other conflict resolu-
tion approaches?

The results from the datasets in Chapters 4 - 6 showed tha&irti@e conflict resolver
used by Progol did not produce such good coverage and agaasadts as the probabilis-
tic conflict resolvers used by STGP, and Pe. The claused lleairogol are evaluated in
the default manner used in Prolog. This applies the clausesder until one entails the
unseen example. If the clauses are placed in the wrong ordgoPwill predict incor-
rectly and the accuracy of its results will be affected (Bect#.10.2). These results can
be improved by using Pe and STGP. On all datasets Pe imprbeatbverage results of

176

Chapter 8 Conclusions

Progol, but did not always improve its accuracy results.sThibecause Pe must fire all
enabled production rules, and the likelihood of a predicitobased on the likelihood of
the other predictions. Incorrectly fired production rulei veduce the accuracy of the
correct predictions. The probabilistic conflict resolvesgented in this thesis can decide,
based on a set of enabled production rules, which produaties to fire. This in some
cases, significantly improves the accuracy results wherpeosa against the accuracy
results from Progol and Pe.

Question 3: Does using evolutionary search techniques toden production rules
produce more accurate results on non-deterministic spatidemporal data than using
a deterministic (greedy) search?

STGP uses a genetic programming based approach to learnatthécpion rules. It was
shown that for all datasets (except Tic Tac Toe) that STGHEywed predictive models
which had an accuracy that was the same as, or better tharct¢heaay for all other
methods. Progol is an alternative technique to learn thelymtton rules. It uses a
greedy search, but did not get accuracy results (even wherbiced with the proba-
bilistic conflict resolver presented in this thesis) thateveetter than STGP. The results
on the datasets from Chapters 5 and 6 were often too genedat, shows that Progol did
not fully search for good clauses.

Question 4: Does learning the production rules and the paramaters of the conflict
resolver simultaneously produce more accurate results onan-deterministic spatio-
temporal data than learning them sequentially?

The results from Chapters 4 - 6 showed that (apart for Tic Te) $TGP was as accurate
or more accurate than all other methods. This shows thatiimdimed approach to learn-
ing the production rules and the conflict resolver paramsetised by STGP was more
accurate than the sequential approach of using Progol to tea production rules, and
then using Pe or STGP to estimate the parameters for theaoe8plver. The combined
approach allows the learner to use the properties of theicbrdkolver as part of the
predictive model learning process. This allows the leatoallow different production
rules to be enabled at the same time to produce simpler antesmadictive models as
shown in Section 3.3.

177

Chapter 8 Conclusions

Question 5: Does use of qualitative temporal relations witim the components of
the predictive models make them robust to changes in the tengpal structure of the
non-deterministic spatio-temporal data?

Section 5.6.1 presented the results of an experiment whedécfive models using tem-
poral relations and predictive models not using tempotations were tested on datasets
containing injection noise, and multiple people. Ovettadl predictive models using tem-
poral relations were not affected, by the injection noise] aere more accurate when
predicting from the dataset containing multiple peoplattiee predictive models not us-
ing temporal relations. This shows that using temporatiaa in the predictive models
makes them robust to some changes in the temporal strudttive spatio-temporal data.

Question 6: Does use of qualitative spatial relations witlm the components of the
predictive models make them robust to changes in the spatiatructure of the non-
deterministic spatio-temporal data?

Section 6.4.1 showed results of an experiment where preglistodels using, and not
using qualitative spatial orientation relations were ffiréésted on a clean dataset, and
secondly on a dataset where the location of some of the sbjexs changed. The pre-
dictive models that used spatial relations were unaffelsyeithe change in the location of
the objects, but the predictive models that did not use alpagiations were affected by
this change. This shows that spatial relations are robusbnee changes in the spatial
structure of the spatio-temporal data. Further work coeldibne using different spatial
relations, and different test datasets containing diffefi@ms of spatial noise. The spatial
noise could take the form of different types of camera movdrtilee horizontal, vertical,
or zooming. It could also take the form of occlusion wherdpaf the image are hidden.

8.4 Future work
This thesis has highlighted a variety of problems that atemi@l avenues of future work:

1. Methods could be investigated for improving the speedI@B in finding a solu-
tion and improving the accuracy of the solution. A simptistiethod is currently
used to vary the type, and probability of genetic operatsesiuluring the run. This
only allows the genetic operators that operate on the pireelimodel for the initial
n generations, and then uses genetic operators that operdietio the predictive
model and the production rules for the rest of the run. Anodipproach is to adapt

178

Chapter 8 Conclusions

the operator type, and probabilities during the run. Thesibdeen successfully ap-
plied in the context of GP [91]. Using these techniques withi GP would allow
it to use the optimal set of operators during the differeagss of the run. This
should allow STGP to find more accurate solutions in a redaceount of genera-
tions. This is an easy project and could be done as an unde@eadissertation.

2. Chapter 7 described a method to automatically adjust dineeian value based on
the ratio of the current best fitness to the initial best fisneShe results showed
that it did not work for all datasets. The method was affettgdoise in the data,
and can often reduce the Tarpeian value too quickly on clesasdts. To fix these
problems the ratio between the current best fithess and itied best fithess could
be applied to a scaling function to convert it into a Tarpeialue. Work could be
performed to see which scaling functions produced the l&sstlts on the clean,
and noisy datasets. This is an easy project and could be dome andergraduate
dissertation.

3. Currently the condition section of a production rule isated randomly. However,
Progol initialises its search for the most general clausgdnerating and using the
most specific clause. This is then used to bound the seartdwiAf the condition
section to be some variant on the most specific clause coditeghe search space,
and make finding a solution faster. This is a harder projedtcauld be done as a
masters thesis.

4. Itwas assumed in this thesis that all the predictions nbgdbe predictive models
were for the next time step. In noisy datasets it may not adwag/ the case that
the current prediction will happen at the next time step. &@mple with multiple
people in a scene the system might predict that a person ariibpn a particular
action, but before it happens a different person might héneady performed an
action. Techniques could be investigated that allow STGBRKe a series of predic-
tions from a predictive model and decide when each predicimuld be applied.
This could be used to more accurately predict when fututeraemight occur. This
is a hard project and could be done as a PhD thesis.

5. In all the datasets used in this thesis the entities,joalstind their properties have
a probability of 1. In the real world the probability of emti, relations and their
properties can be less than 1, representing uncertaintyfonnnation received the
world. For example, a tracking algorithm might use a proligdess than 1 for
the type of an object when it is unsure of the type it could lassified as. There

179

Chapter 8 Conclusions

has been previous work to learn models based on first orderwdtere the data is
uncertain, for example Markov Logic Networks [106], Stosti@Logic Programs
[18], and Bayesian Logic Programs [53]. The ideas from th&earch could be
incorporated into STGP to allow it to learn and predict froncertain data. This is
also a harder project and could be done as a masters thesis.

6. Chapter 6 showed how relations could be used in the aatictios of the produc-
tion rule. The relations could use variables from the coodisection to represent
entities. Section 3.3.1.2 showed in theory how the propidi entities from the
history could be used in the action section. This has not @@emented, or
experimented on in this thesis. Further work could be donefilement and ex-
periment with this. This would create more generalised pctdn rules, which
should help STGP to find a solution faster. It would also allbespredictive mod-
els to contain less production rules. This is a harder pt@ed could be done as a
masters thesis.

7. Work could be done to apply STGP to more complex domairtshiznee a larger
number of objects, and more complex behaviour patternsata I€This is an open
problem and might require a team of researchers to work on it.

8. Work could be done to investigate extra genetic operat@ascould be used in
STGP. This would allow it to find solutions faster, and to eeihvestigate the
search space. This is a harder project and could be done astargihesis.

9. Chapter 6 highlighted problems with the algorithm to $dbe condition section
of a production rule was enabled on some history. It was showoe inefficient
when there are large numbers of combinations of relatiod®atities in the history
to check against. Work could be done to investigate altematgorithms. One
potential approach could be to use a Prolog or databasenssgite approach where
instead of matching the whole tree against the history sessstare matched on the
history in turn until an overall match is found. This is anyepsoject and could be
done as an undergraduate dissertation.

180

Bibliography

[1] J. F. Allen. Maintaining knowledge about temporal ins. Communications of
the ACM 26:198-3, 1983.

[2] P. J. Angeline and J. Pollack. Evolutionary module asgjian. InProceedings
of the Second Annual Conference on Evolutionary Programgnpages 154-163.
MIT Press, 1993.

[3] C. Anglano, A. Giordana, G. Lo Bello, and L. Saitta. An exipnental evaluation of
coevolutive concept learning. Proceedings of the 15th International Conference
on Machine Learningpages 19-27, 1998.

[4] S. Augier, G. Venturini, and Y. Kodratoff. Learning firetder logic rules with a
genetic algorithm. IfProcedings of the 1st International Conference on Knowdedg
Discovery and Data Miningpages 21-26, 1995.

[5] J. E. Baker. Adaptive selection methods for genetic algms. InProceedings of
the First International Conference on Genetic Algorithnmsl& heir Applications
pages 101-111, 1985.

[6] J. E. Baker. Reducing bias and inefficiency in the sedectilgorithm. InProceed-
ings of the Second International Conference on Geneticrilgos pages 14-21,
1987.

[7] A. Baumberg and D. Hogg. An efficient method for contowacking using active
shape models. IRroceedings of the IEEE Workshop on Motion of Non-Rigid and
Articulated Objectspages 194-199, 1994.

[8] D.Beymer, P. McLauchlan, B. Coifman, and J. Malik. A réi@he computer vision
system for measuring traffic parameters. Proceedings of IEEE Conference on
Computer Vision and Pattern Recognitjgrages 495-501, 1997.

181

BIBLIOGRAPHY

[9] M. Biba, S. Ferilli, and F. Esposito. Structured leaghiof Markov logic networks
through iterated local search. Rroceedings of the European Conference on Artif-
ical Intelligence pages 361-366, 2008.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, &h®ergeau. eXtensi-
ble Markup Language (XML) 1.0 (Fourth Edition). W3C reconmmdation, W3C,
2006. http://www.w3.0rg/TR/2006/REC-xmI-20060816/.

[11] C. Bregler. Learning and recognising human dynamicgideo sequences. In
Proceedings of the IEEE Computer Society Conference on G@mpision and
Pattern Recognitionpages 568-574, 1997.

[12] E. K. Burke, S. Gustafson, and G. Kendall. Diversity angtic programming: An
analysis of measures and correlation with fitnéS&EE Transactions on Evolution-
ary Computation8:47-62, 2004.

[13] A. G. Cohn and S. M Hazarika. Qualitative spatial reprgation and reasoning:
An overview. Fundamenta Informaticae6(1-2):1-29, 2001.

[14] S. Colton. An application-based comparison of aut@daheory formation and
inductive logic programming.Electronic Transactions on Atrtificial Intelligence
4:97-117, 2000.

[15] S. Colton and S. Muggleton. Mathematical applicatiofhsnductive logic pro-
gramming.Machine Learning64:25-64, 2006.

[16] G. F. Cooper and E. Herskovits. A Bayesian method foritigeiction of proba-
bilistic networks from dataMachine Learning9:309-347, 1992.

[17] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Brdigual categorization
with bags of keypoints. IiProceedings of the Workshop on Statistical Learning
Computer Vision at European Conference on Computer Vjgiages 1-22, 2004.

n

[18] J. Cussens. Parameter estimation in stochastic loggrams.Machine Learning
44:245-271, 2001.

[19] J. Davis, E. Burnside, I. de Castro Dutra, D. Page, an8antos Costa. An in-
tergrated approach to learning Bayesian networks of rule®roceedings of the
Sixteenth European Conference on Machine Learnugdume 3720 ofLecture
Notes in Computer Scienggages 84-95. Springer-Verlag, 2005.

182

BIBLIOGRAPHY

[20] A. Dempster, N.M. Laird, and D.B.Rubin. Maximum likebod from incomplete
data via the EM algorithm.Journal of the Royal Statistical Society 89:1-39,
1977.

[21] A. Ekart and S. Z. Németh. Maintaining the diversitfygenetic programs. In
Proceedings of the European Conference on Genetic Progragawvolume 2278
of Lecture Notes in Computer Scienpages 162-171. Springer-Verlag, 2002.

[22] A.Ekéartand S. Z. Németh. A simple but theoreticaityptivated method to control
bloat in genetic programming. Iroceedings of the 6th European Conference on
Genetic Programmingsolume 2610 ot.ecture Notes in Computer Scienpages
211-223. Springer-Verlag, 2003.

[23] D. Federico. Evolutionary concept learning in first erdogic: An overview.Al
Communications19(1):13-33, 2006.

[24] L. Fei-Fei and P. Perona. A Bayesian hierarchical méatdearning natural scene
categories. IfProceedings of the IEEE Computer Society Conference on Gamp
Vision and Pattern Recognitippages 524-531, 2005.

[25] A. Fern and R. Givan. Sequential inference with rekatibservations: Learning to
construct force-dynamic modelArtificial Intelligence 170:1081-1100, 2006.

[26] A. P. Fern, R. L. Givan, and J. M. Siskind. Specific-taxgral learning for tem-
poral events with application to learning event definititnmesn video. Journal of
Artificial Intelligence Research (JAIR)7:379-449, 2002.

[27] J. Fernyhough, A. G. Cohn, and D. C. Hogg. Constructmgitptive event models
automatically from video inputimage and Vision Computing8:81-103, 2000.

[28] J. Ferryman, S. Maybank, and A. Worrall. Visual sunaite for moving vehicles.
International Journal of Computer VisioB7(2):187-197, 2000.

[29] P. Flach and N. Lachiche. Confirmation-guided discgwrfirst-order rules with
Tertius. Machine Learning42:61-95, 2001.

[30] P. Flach and N. Lachiche. Naive Bayesian classificatimtructured dataMlachine
Learning 57:233-269, 2004.

[31] S. Forrest. Scaling fitnesses in the genetic algorittmDocumentation for PRIS-
ONERS DILEMMA and NORMS Programs That Use the Genetic Algoni,
1985.

183

BIBLIOGRAPHY

[32] D. A. Forsyth and J. Ponc€omputer Vision: A Modern ApproacRrentice Hall,
2003.

[33] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learg probabilistic relational
models. InProceedings of the Sixteenth International Conference uificdal
Intelligence pages 1300-1309, 1999.

[34] A. Galata, A. G. Cohn, D. Magee, and D. Hogg. Modelingmttion using learnt
gualitative spatio-temporal relations and variable langarkov models. IrPro-
ceedings of the European Conference on Atrtificial Intefige pages 741-745,
2002.

[35] A. Galata, N. Johnson, and D. Hogg. Learning behavioadefs of human ac-
tivities. In Proceedings of the British Machine Vision Conferengages 12—-22,
1999.

[36] A. Giordana and F. Neri. Search-intensive conceptatida. Evolutionary Com-
putation 3(4):375-416, 1996.

[37] D. E. Goldberg.Genetic Algorithms in Search, Optimization and Machinerhea
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, NISA, 1989.

[38] D. E. Goldberg. A note on Boltzmann tournament selecfior genetic algo-
rithms and population-orientated simulated anneali@gmplex Systemg:445—
460, 1990.

[39] K. Grauman and T. Darrell. The pyramid match kernel:ddiminative classifica-
tion with sets of image features. Proceedings of the International Conference
on Computer Vision2005.

[40] P. Haddawy. Generating Bayesian networks from prditabogic knowledge
bases. InProceedings of the Tenth Conference on Uncertanity in Aidifiln-
telligence pages 262-269, 1994.

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemaand I. H. Witten. The
WEKA data mining software: An updat&IGKDD. E.plorations11(1), 2009.

[42] |. Haritaoglu, D. Harwood, and L. S. DavisV*: Real time survellance of people
and their activities.|IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22(8):809 — 830, 2000.

184

BIBLIOGRAPHY

[43] P. E. Hart, R. O. Dura, and M. T. Einaudi. PROSPECTOR; mmater-based
consultation system for mineral exploratiodathematical Geologyl0:589-610,
1978.

[44] D. Heckerman, D. Geiger, and D. M. Chickering. LearnBayesian networks:
The combination of knowledge and statistical dakachine Learning20:197—-
243, 1995.

[45] D. Hernandez. Qualitative Representation of Spatial KnowledgeSpringer-
Verlang, 1994.

[46] J. Hezanaho. DOGMA: A GA-based relational learnerPceedings of the 8th
International Conference on Inductive Logic Programmipgges 205-214, 1998.

[47] D. Hogg. Model-based vision: A program to see a walkimgspn. Image and
Vision Computing1:5-20, 1983.

[48] J.H. Holland.Adaption in Natural and Artificial System&/niversity of Michigan
Press, 1975.

[49] Y. Ivanov and A. Bobick. Recognition of visual actig8 and interactions by
stochastic parsinglEEE Transactions On Pattern Analysis And Machine Intel-
ligence 22(8):852-872, 2000.

[50] T. Joachims. Text categorization with support vecta@chines: Learning with
many relevant features. Rroceedings of the European Conference on Machine
Learning pages 137-142. Springer, 1998.

[51] R. Kalman. A new approach to linear filtering and preidictproblems.Journal of
Basic Engineering82:35-46, 1960.

[52] W. Kantschik and W. Banzhaf. Linear-tree GP and its cangon with other GP
structures. IrProceedings of the European Conference on Genetic Progragim
volume 2038 ofLecture Notes in Computer Sciengeges 302-312. Springer-
Verlag, 2001.

[53] K. Kersting and L. De Raedt. Towards combining indueti@gic programming
with Bayesian networks. IRroceedings of the 11th International Conference on
Inductive Logic Programmingvolume 2157 ofLecture Notes in Artifical Intelli-
gence pages 118-131. Springer-Verlag, 2001.

185

BIBLIOGRAPHY

[54] V. Kettnaker and M. Brand. Minimum-entropy models oése activity. InPro-
ceedings of the 1999 IEEE Computer Society Conference op@enision and
Pattern Recognitionpages 281-286, 1999.

[55] S. Kok and P. Domingos. Learning the structure of Markayic networks. In
Proceedings of the 22nd International Conference on Maehiearning pages
441-448. ACM Press, 2005.

[56] D. Koller, K. Daniilidis, and H. H. Nagel. Model basedjebt tracking in monoc-
ular image sequences of road traffic scenbgernational Journal of Computer
Vision 37(3):257-281, 1993.

[57] D. Koller and A. Pfeffer. Probabilisitic frame-basegstems. InProceedings of
the fifteenth national/tenth conference on Artificial iiggnce/Innovative appli-
cations of artificial intelligencgpages 580 — 587, 1998.

[58] J. Koza.Genetic ProgrammingMIT Press, 1992.
[59] J. Koza.Genetic Programming IIMIT Press, 1994.

[60] J. Koza, F. H Bennett Ill, D. Andre, and M. Kean&enetic Programming Il
Morgan Kaufmann, 1999.

[61] N. Landwehr, K. Kersting, and L. De Raedt. IntergratMgive Bayes and FOIL.
Machine Learning ResearcB:481-507, 2007.

[62] P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, an#//CH. Kuijpers. Struc-
ture learning of Bayesian networks by genetic algorithmgeformance analysis
of control parameterdEEE Transactions on Pattern Analysis and Machine Intel-
ligence 18(9):912-926, 1996.

[63] P. Lichodzijewski and M. Heywood. GP classifier probldecomposition using
first-price and second-price auctions. Rroceedings of the 10th European con-
ference on Genetic programmingplume 4445 ot ecture Notes in Computer Sci-
ence pages 137-147. Springer-Verlag, 2007.

[64] T. Listand R. Fisher. CVML - an XML-based computer visimarkup language.
In Proceedings of the 17th International Conference on PatBgcognitionpages
789-792, 2004.

186

BIBLIOGRAPHY

[65] E. G. Lépaz, R. Poli, and C. A. C. Coello. Reusing codgenetic programming.
In Proceedings of the 7th European Conference on Genetic Brogring volume
3003 ofLecture Notes in Computer Scienpages 359-368, 2004.

[66] G.F. Luger.Artificial Intelligence: Structures and Strategies for Qaex Problem
Solving Addison Wesley, 2004.

[67] S. Luke and L. Panait. A comparison of bloat control noelhfor genetic program-
ming. Evolutionary Computation 4(3):309-344, 2006.

[68] D. Magee. Tracking multiple vehicles using foregroubdckground and motion
models.Image and Vision Computing2:143-155, 2004.

[69] N. Maillot, M. Thonnat, and A. Boucher. Towards ontoyelgased cognitive vision.
Machine Vision and Applicationd6:33—-40, 2004.

[70] J. McCarthy and P. J. Hayes. Some philosophical problieom the standpoint of
artifical intelligence Machine Intelligence4:463-502, 1969.

[71] D. McDermott. A temporal logic for reasoning about peeses and plan€ogni-
tive Science6:101-155, 1982.

[72] A. Mcintyre and M. Heywood. MOGE: GP classification plain decomposition
using multi-objective optimization. IRroceedings of the 8th annual conference
on Genetic and evolutionary computatjggages 863—870, 2006.

[73] A. R. Mcintyre and M. I. Heywood. On multi-class class#tion by way of nich-
ing. In Proceedings of the Genetic and Evolutionary Computationf@ence
pages 581-592, 2004.

[74] S.J. McKenna, S. Jabri, Z. Duric, and H. Wechsler. Tragknteracting people. In
Proceedings of the Fourth IEEE International Conferencedotomatic Face and
Gesture Recognitigipages 348—-353, 2000.

[75] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Te]land E. Teller. Equations
of state calculations by fast computing machindsurnal of Chemical Physi¢cs
21:1087-1091, 1953.

[76] R. Michalski and J. Larson. Incremental generation afl\hypotheses: the un-
derlying methodology and the description of program AQHG I83-5, Computer
Science Department, Univ. of lllinois at Urbana-Champaif80.

187

BIBLIOGRAPHY

[77] J. Miller and P. Thomson. Cartesian genetic prograngmin Proceedings of the
European Conference on Genetic Programmigume 1802 of_ecture Notes in
Computer Scienggages 121-132. Springer-Verlag, 2000.

[78] M. Minsky. A framework for representing knowledg@he Psychology of Com-
puter Vision pages 211-277, 1975.

[79] D. J. Montana. Strongly typed genetic programmiggolutionary Computation
3:199-230, 1995.

[80] D. Moore and I. Essa. Recognizing multitasked acegfrom video using stochas-
tic context-free grammar. IRroceedings of the Eighteenth national conference on
Artificial intelligence pages 770-776, 2001.

[81] S. Muggleton. Learning structure and parameters af&tstic logic programs. In
Proceedings of the 12th international conference on Ingedbgic programming
volume 2583 of Lecture Notes In Atrtificial Intelligence, @sgl98—206, 2003.

[82] S. H. Muggleton. Inverse entailment and Progdlew Generation Computing
13:245-286, 1995.

[83] S. H. Muggleton. Stochastic logic programs. In L. de @Raeditor,Advances in
Inductive Logic Programmingpages 254-264. |OS Press, 1996.

[84] S. H. Muggleton. Learning stochastic logic prograr&gectronic Transactions in
Artificial Intelligence 4(41), 2000.

[85] S. H. Muggleton and J. Firth. CProgol4.4: a tutoriaraduction. In S. Dzeroski
and N. Lavrac, editorfkelational Data Miningpages 160-188. Springer-Verlang,
2001.

[86] S. H. Muggleton, H. Lodhi, A. Amini, and M. J. E. Sternger Support vector
inductive logic programming. IProceedings of the 8th International Conference
on Discovery Sciengevolume 3735 of Lecture Notes in Atrtificial Intelligence,
pages 163-175. Springer-Verlag, 2005.

[87] S. H. Muggleton and A. Tamaddoni-Nezhad. QG/GA: A stmtit search for
Progol. Machine Learning70(2-3):123-133, 2007.

188

BIBLIOGRAPHY

[88] C. Needham, D. Magee, P. Santos, and S. Rao. Inducinigths of attention by
observing patterns in space. Rroceedings of the Workshop on Modelling Oth-
ers from Observations at International Joint Conference#dificial Intelligence
pages 47-52, 2005.

[89] C. Needham, P. Santos, D. Magee, V. Devin, D. Hogg, an@ ACohn. Protocols
from perceptual observationAtrtificial Intelligence 167:103—-136, 2005.

[90] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised lgayof human action cate-
gories using spatial-temporal words. Pnoceedings of the British Machine Vision
Conferencevolume 3, pages 1249-1258, 2006.

[91] J. Niehaus and W. Banzhaf. Adaption of operator prdiigds in genetic program-
ming. InProceedings of the 4th European Conference on Genetic Bnogring
volume 2038 of Lecture Notes In Computer Science, pages 335;-2001.

[92] N. Oliver, B. Rosario, and A. Pentland. A Bayesian comepwision system for
modeling human interactiondE=EEE Transactions on Pattern Analysis and Machine
Intelligence 22(8):831-843, 2000.

[93] L. Panait and S. Luke. Alternative bloat control methodn Proceedings of the
Genetic and Evolutionary Computation Conferenagdume 3103 of_ecture Notes
in Computer Scien¢gages 630-641. Springer-Verlag, 2004.

[94] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Netwarks$’lausible
Inference Morgan Kaufmann, 1988.

[95] R. Poli, B. Langdon, and N. McPheé Field Guide To Genetic Programming
Lulu Enterprises, UK Ltd, 2008.

[96] U. Pompe and I. Kononenko. Linear space induction it éirder logic with relief.
In R. Kruse, R. Viertl and G. Della Riccia (Eds.), CISM Lectuntéas, Udine Italy
Springer Verlang, 1994.

[97] U. Pompe and I. Kononenko. Naive Bayesian classificatrghin ILP-R. InPro-
ceedings of the Fifth International Workshop on Inductivegic Programming
pages 417-436, 1995.

[98] A. Puech and S. H. Muggleton. A comparison of stochdstyc programs and
Bayesian logic programs. IRroceedings of the Workshop on Learning Statisti-
cal Models from Relational Data at International Joint Cerdnces on Artificial
Intelligence 2003.

189

BIBLIOGRAPHY

[99] J. Quinlan.C4.5: Programs for Machine Learningiorgan Kaufmann, 1993.

[100] J. R. Quinlan. Learning logical definitions from retets. Machine Learning
5:239-266, 1990.

[101] J. R. Quinlan. Boosting first-order learning. Pmoceedings of the 7th Interna-
tional Workshop on Algorithmic Learning Thepmolume 1160 of Lecture Notes
in Computer Science, pages 143-155, 1996.

[102] L. R. Rabiner. A tutorial on hidden Markov models andested applications in
speech recognitiorProceedings of the IEEE7(2), 1989.

[103] L. De Raedt and L. Dehaspe. Clausal discovéachine Learning26:99-146,
1997.

[104] L. De Raedt and K. Kersting. Probablistic logic leagni SIGKDD. E.plorations
2:1-17, 2003.

[105] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic kdson regions and
connection. InProceedings of the 3rd International Conference on Knogéed
Representation and Reasonjimgpges 165-176, San Mateo, 1992. Morgan Kauf-
mann.

[106] M. Richardson and P. Domingos. Markov logic networkdachine Learning
62:107-136, 2006.

[107] J. Rissanen. Universal coding, information, praditt and estimation. I[EEE
Transactions on Information Theqrif-30(4):629-636, 1984.

[108] S. Roberts, D. Howard, and J. Koza. Evolving modulegéanetic programming
by subtree encapsulation. Rroceedings of the European Conference on Genetic
Programming volume 2038 of_ecture Notes in Computer Sciengages 160—
175. Springer-Verlag, 2001.

[109] J. A. Robinson. A machine-oriented logic based on #selution principle Jour-
nal of the Assoication for Computing Machineiy:23—-41, 1965.

[110] D. Rochat, M. Tomassini, and L. Vanneschi. Dynamie giopulations in dis-
tributed genetic programming. IRroceedings of the European Conference on
Genetic Programmingsolume 3447 ot.ecture Notes in Computer Scienpages
50-61. Springer-Verlag, 2005.

190

BIBLIOGRAPHY

[111] S. Russell and P. NorvigArtificial Intelligence: A Modern ApproachPrentice
Hall, 2003.

[112] P. Santos, S. Colton, and D. Magee. Predictive andigise approaches to learn-
ing game rules from vision data. Rroceedings of the Ibero-American Artificial In-
telligence Conferencerolume 2709 otecture Notes in Computer Scienpages
349-359. Springer-Verlag, 2006.

[113] P. Santos, D. Magee, A. Cohn, and D. Hogg. Combiningtipial answers for
learning mathematical structures from visual observatibmProceedings of the
16th European Conference on Artificial Intelligenpages 544-548, 2004.

[114] P. Santos, C. Needham, and D. Magee. Inductive legspatial attentionRevista
Controle and Automaéip, 19(3), 2008.

[115] R. Schapire. The boosting approach to machine legrrdm overview. InPro-
ceedings of the MSRI Workshop on Nonlinear Estimation aadsification 2002.

[116] E. H. Shortliffe and B. G. Buchanan. A model of inexagasoning in medicine.
Mathematical Bioscience&3:351-379, 1975.

[117] J. M. Siskind. Grounding the lexical semantics of weirbvisual perception using
force dynamics and event logiévrtificial Intelligence Researgi5:31-90, 2000.

[118] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W.dfman. Discovering objects
and their location in images. IRroceedings of the International Conference on
Computer Visionpages 370-377, 2005.

[119] M. Sonka, V. Hlavac, and R.D. Boyldmage Processing, Analysis and Machine
Vision, 2nd editionBrooks Cole, 1998.

[120] T. Soule and J. Foster. Effects of code growth and pasy pressure on popula-
tions in genetic programmindevolutionary Computatiors(4):293-309, 1999.

[121] A. Srinivasan.The Aleph ManualUniversity of Oxford, 1999.

[122] A. Srinivasan. A study of two sampling methods for grzalg large datasets with
ILP. Data Mining and Knowledge Discover$(1):95-123, 1999.

[123] T. Starner and A. Pentland. Real-time american sigguage recognition from
video using hidden markov models.Pnoceedings of the International Symposium
on Computer Visionpages 265-270, 1995.

191

BIBLIOGRAPHY

[124] C. Stauffer and W Grimson. Adaptive background migtorodels for real-time
tracking. InProceedings of the IEEE Conference on Computer Vision anigiPa
Recognitionpages 246—252, 1999.

[125] N. Sumpter and A. Bulpitt. Learning spatio-temporattprns for predicting object
behaviour.image and Vision Computin8:697—-704, 2000.

[126] A. Tamaddoni-Nezhad and S. H. Muggleton. Using geregorithms for learn-
ing clauses in first-order logic. IRroceedings of the Genetic and Evolutionary
Computation Conferengpages 639-646. Morgan Kaufmann Publishers, 2001.

[127] V. Vapnik. The Nature of Statistical Learning Theotgpringer-Verlag, New York,
1995.

[128] M. Vilian. A system for reasoning about time. Rroceedings of the AAApages
197-201, 1982.

[129] F. Zelezny, A. Srinivasan, and C. D. Page Jr. Randomisedrtedtaearch in ILP.
Machine Learning64:183-208, 2006.

[130] D. Whitley. A genetic algorithm tutorial. TechnicaéBort CS-93-103, Department
of Computer Science, Colorado State University, 1993.

[131] M. L. Wong and K. S. Leung. Genetic logic programmingl applicationsIEEE
Expert 10(5):68-76, 1995.

[132] C. Wren, A. Azabayejani, T. Darrell, and A. Pentlandin@er: real-time tracking
of the human bodylEEE Transactions on Pattern Analysis and Machine Intelli-
gence 19(7):780-785, 1997.

[133] L. Q. Xu and D. C. Hogg. Neural networks in human motiacking - An exper-
imental studylmage and Vision Computing5:607-615, 1997.

192

