
Using Genetic Programming to Learn

Predictive Models from Spatio-Temporal Data

by

Andrew David Bennett

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds

School of Computing

July 2010

The candidate confirms that the work submitted is his own and that the appropriate

credit has been given where reference has been made to the work of others. This

copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper

acknowledgement.

Abstract

This thesis describes a novel technique for learning predictive models from non-

deterministic spatio-temporal data. The prediction models are represented as a production

system, which requires two parts: a set of production rules,and a conflict resolver. The

production rules model different, typically independent,aspects of the spatio-temporal

data. The conflict resolver is used to decide which sub-set ofenabled production rules

should be fired to produce a prediction. The conflict resolverin this thesis can probabilis-

tically decide which set of production rules to fire, and allows the system to predict in

non-deterministic situations. The predictive models are learnt by a novel technique called

Spatio-Temporal Genetic Programming (STGP). STGP has beencompared against the

following methods: an Inductive Logic Programming system (Progol), Stochastic Logic

Programs, Neural Networks, Bayesian Networks and C4.5, on learning the rules of card

games, and predicting a person’s course through a network ofCCTV cameras.

This thesis also describes the incorporation of qualitative temporal relations within

these methods. Allen’s intervals [1], plus a set of four novel temporal state relations,

which relate temporal intervals to the current time are used. The methods are evaluated

on the card game Uno, and predicting a person’s course through a network of CCTV cam-

eras. This work is then extended to allow the methods to use qualitative spatial relations.

The methods are evaluated on predicting a person’s course through a network of CCTV

cameras, aircraft turnarounds, and the game of Tic Tac Toe.

Finally, an adaptive bloat control method is shown. This looks at adapting the amount

of bloat control used during a run of STGP, based on the ratio of the fitness of the current

best predictive model to the initial fitness of the best predictive model.

i

Acknowledgements

I would like to thank my supervisor Derek Magee, for his support and guidance over

the last 6 years. I would also like to thank Roger Boyle who spent many hours proof

reading this thesis and giving me lots of useful feedback. Next I would like to thank the

members of staff, and the postgrads in the School of Computing who have been great

friends over the years especially: Hannah Dee, Roberto Fraile, John Bryden, Matthew

Birtwistle, Patrick Ott, Sam Johnson, and Terry Herbert.

I would also like to thank the members of Leeds University Canoe Club, and Leeds

Canoe Club who got me interested in white water kayaking, kept me fit, and gave me

plenty of stories to tell my friends!

Finally I would especially like to thank Anna who stuck by me,helped to proofread

my thesis, and gave me a lot of support and guidance during my PhD.

ii

Declarations

Some parts of the work presented in this thesis have been published in the following

articles:

A. D. Bennett and D. R. Magee, “Using Genetic Programming to Learn Models Containing

Temporal Relations from Spatio-Temporal Data”, In:Proceedings of 1st International

Workshop on Combinations of Intelligent Methods and Applications, European Confer-

ence on Artificial Intelligence, Pages 7 - 12, Patras, Greece, 2008.

A. D. Bennett and D. R. Magee, “Learning Sets of Sub-Models for Spatio-Temporal Predic-

tion”, In: Proceedings of AI-2007, the Twenty-seventh SGAI International Conference on

Innovative Techniques and Applications of Artificial Intelligence, Pages 123 - 136, Cam-

bridge, UK, 2007. Springer.

iii

Contents

1 Introduction 1

1.1 The problem domain . 1

1.2 A system to model and learn object behaviour 2

1.2.1 Data generation and representation 2

1.2.2 Model learning and prediction 4

1.3 Thesis overview . 5

2 Background 7

2.1 Introduction . 7

2.2 Generating spatio-temporal data from video 9

2.2.1 Locating objects in video . 9

2.3 Representing spatio-temporal data 12

2.3.1 Qualitative spatial relations 13

2.3.2 Qualitative temporal relations 15

2.3.3 First order logic . 15

2.3.3.1 Spatio-temporal data 16

2.3.3.2 Predictive models . 17

2.3.3.3 Inference . 18

2.3.4 Frames . 19

2.4 Learning predictive models of spatio-temporal sequences 20

2.4.1 An overview of predictive model learning from spatio-temporal

sequences . 20

2.4.2 Previous techniques for learning predictive models 22

2.4.2.1 Learning predictive models from variable length data . 22

2.4.2.2 Learning models of non-deterministic data23

2.5 Production systems . 25

2.5.1 Learning first order logic production rules 26

iv

2.5.1.1 Supervised learning of a set of Horn clauses in a se-

quential manner . 27

2.5.1.2 Supervised learning of a set of Horn clauses concurrently 29

2.5.1.3 Unsupervised learning of sets of Horn clauses32

2.5.2 Conflict resolution strategies 33

2.5.3 Applying first order logic production rules to non-deterministic

spatio-temporal data . 36

2.5.3.1 Probability . 36

2.5.3.2 Bayesian Networks 37

2.5.3.3 Combining first order logic and probability 39

2.6 Evolutionary search . 42

2.6.1 Overview of evolutionary search42

2.6.2 Representation . 43

2.6.3 Fitness methods . 44

2.6.4 Population sampling methods 45

2.6.5 Genetic operators . 46

2.6.6 Reducing the complexity of evolving solutions in Genetic Pro-

gramming . 48

2.6.7 Bloat and diversity . 49

2.7 Complete systems for learning predictive models from video 50

2.8 Conclusions . 52

3 An Architecture for Representing, and Modelling Spatio-Temporal Data 54

3.1 Introduction . 54

3.2 History representation .. 55

3.2.1 Properties . 56

3.2.2 Entities . 57

3.2.2.1 Entity definition . 57

3.2.2.2 Entity instance . 58

3.2.3 Relations . 60

3.2.3.1 Relation definition . 60

3.2.3.2 Relation instance . 60

3.2.4 System implementation . 61

3.2.4.1 File format . 61

3.2.4.2 Memory representation 61

3.3 Predictive model representation 62

v

3.3.1 Production rules . 65

3.3.1.1 Condition section . 65

3.3.1.2 Action section . 67

3.4 Inference . 68

3.5 Discussion . 71

4 Learning Predictive Models of Spatio-Temporal Data 73

4.1 Introduction . 73

4.2 Learning predictive models .73

4.3 Spatio-Temporal Genetic Programming 74

4.4 Initialising the population of predictive models 76

4.4.1 Predictive model initialisation 76

4.4.2 Production rule initialisation 76

4.4.2.1 Condition section initialisation 76

4.4.2.2 Action section initialisation 79

4.5 Altering the predictive models .. . 79

4.5.1 Altering the set of production rules 80

4.5.2 Altering the composition of the individual production rules 81

4.5.2.1 Crossover . 81

4.5.2.2 Mutation . 82

4.6 Conflict resolver parameter learning 82

4.7 Fitness function for scoring predictive models 86

4.8 Controlling the size of the predictive models 87

4.9 Evaluation . 88

4.9.1 Overview of the datasets . 88

4.9.1.1 Uno and Uno2 . 88

4.9.1.2 Papers scissors stone 89

4.9.1.3 CCTV data of a path 90

4.9.1.4 Play your cards right 91

4.9.2 Spatio-temporal data acquisition 91

4.9.2.1 Uno, Uno2 and PSS 91

4.9.2.2 CCTV . 92

4.9.3 Representation . 92

4.9.3.1 Progol and Pe . 92

4.9.3.2 STGP . 94

4.9.3.3 Bayesian Networks, Neural Networks, and C4.5 96

vi

4.10 Results . 97

4.10.1 Evaluation criteria . 97

4.10.2 A comparison of STGP with current methods 97

4.10.3 Parameter experimentation with STGP 103

4.10.3.1 Population Size . 104

4.10.3.2 Tarpeian value . 104

4.10.3.3 Tournament selection 107

4.10.3.4 Roulette wheel . 112

4.10.3.5 Maximum number of generations 112

4.10.3.6 Operators . 112

4.10.4 Conflict resolver . 116

4.11 Conclusions . 118

5 Learning Predictive Models Using A Qualitative Representation of Time 121

5.1 Introduction . 121

5.2 Quantitative representation of time 122

5.3 Qualitative representation of time 124

5.4 Temporal state relations .125

5.5 Evaluation . 127

5.5.1 Overview of the datasets . 128

5.5.1.1 CCTV . 128

5.5.1.2 Uno . 128

5.5.2 Representation . 129

5.5.2.1 STGP . 129

5.5.2.2 Progol, and Pe . 132

5.5.2.3 C4.5, Neural Network, and Bayesian Network 132

5.6 Results . 133

5.6.1 Temporal noise robustness of STGP 133

5.6.2 A comparison of STGP with current methods134

5.6.3 Parameter experimentation with STGP137

5.6.3.1 Tarpeian value . 137

5.6.3.2 History length . 138

5.7 Conclusions . 138

6 Learning Predictive Models Using A Qualitative Representation of Space 142

6.1 Introduction . 142

6.2 Qualitative representation of space 143

vii

6.3 Evaluation . 144

6.3.1 Datasets . 144

6.3.1.1 CCTV using spatial relations 144

6.3.1.2 Aircraft turnarounds 144

6.3.1.3 Tic Tac Toe . 146

6.3.2 Representation . 146

6.3.2.1 STGP . 146

6.3.2.2 Progol, C4.5, Neural Networks, and Bayesian Networks 147

6.4 Results . 148

6.4.1 Spatial noise robustness of STGP 148

6.4.2 A comparison of STGP with current methods148

6.4.3 Parameter experimentation with STGP153

6.4.3.1 Tarpeian value . 154

6.4.3.2 History length . 155

6.5 Conclusions . 156

7 Automatic Bloat Control in Genetic Programming 158

7.1 Introduction . 158

7.2 Adaptive Tarpeian value . 159

7.3 Results . 160

7.4 Conclusions . 161

8 Conclusions 173

8.1 Summary of the work . 173

8.2 Contributions . 175

8.3 Discussion . 176

8.4 Future work . 178

Bibliography 181

viii

List of Figures

1.1 The left image shows a picture of a city centre environment, and the right

image shows a picture of a motorway. 2

1.2 A flow chart showing the main components of a system to model and

learn object behaviour. 3

2.1 A set of frames from a video of a person walking along a path. 7

2.2 The four stages required to firstly learn a predictive model from a set

of spatio-temporal data; and secondly to predict a future set of spatio-

temporal data, or recognise an event from a past set of spatio-temporal

data. 8

2.3 An example of applying the simple model of a human (on the right) to the

three frames of the video from Figure 2.1 (on the left). 10

2.4 Region tracking applied to the frames in Figure 2.1. 11

2.5 The RCC-8 relations from [105]. .. 14

2.6 An orientation relation where the primary object’s orientation is based on

the position of the reference object, and the orientation ofthe frame of

reference. 14

2.7 The three levels of orientation relations. 15

2.8 The thirteen Allen’s intervals [1]. 16

2.9 A class frame (on the left) and instance frame (on the right) for a Person. . 20

2.10 An example showing the language template and binary encoding used

in REGAL. Each box can contain a binary value, which indicates if the

literal, or constant should be used within the clause. The binary encoding

shown in the diagram represents the clausecolour(y,r), colour

(x,g). 30

2.11 A simple Bayesian Network involving four variables:X, A, B, andC. X

has three parent nodes it is directly influenced by:A, B, andC. 38

2.12 An evolutionary search flow chart. 42

ix

2.13 An example GP binary tree which is representing the function 1+x2. . . 43

2.14 Crossover performed on two trees. 47

2.15 Mutation performed on a tree. .. 47

2.16 A tree containing a result producing branch, and a set ofautomatically

defined functions. 48

3.1 An architecture to represent and model spatio-temporaldata. It has three

parts: a history; and a predictive model which is input the history; and

produces a prediction. The predictive model is broken down into two

parts: a set of production rules, and a conflict resolver. 55

3.2 Property and attribute examples. The top row shows the class frames

for the attributes:X,Y, ColourName. The bottom row shows the class

frames for the properties:Position andColour. 57

3.3 Two example entity class frames, which use the properties shown in Fig-

ure 3.2. The first class frame is for aCar, and the second is for aPerson. 58

3.4 Two entity instance frames, which are instances of the entity class frames

from Figure 3.3. Firstly the attribute, and property instance frames that

the entity instance frames use are shown, and then the entityinstance

frames are shown. 59

3.5 TheLeft Of relation definition. The relation represents that a car is to

the left of a person. 60

3.6 An instance of theLeft Of relation that was defined in Figure 3.5. It

shows that entityCar1 was to the left of entityPerson1 between time

values 4 to 9. 61

3.7 An example of thePerson1 entity instance from Figure 3.4 represented

in XML. 62

3.8 A hand defined set of production rules for Uno. 63

3.9 The combined production rules for Uno. 64

3.10 The condition section for the Colour production rule from Figure 3.8. . . 67

3.11 The action section for the Colour production rule. The text in a typewriter

font shows that the value of the slot is a link to another instance frame.

The Time slot is left blank, as it is filled in when the entity instance is

used for a prediction. 68

3.12 TheFindBestSubstitution algorithm. 70

3.13 An example game of Uno. 70

x

3.14 The Event entity instance, along with its property and attribute instances

produced by the action section of the Colour production rule. The text

in a typewriter font shows that the value of the slot is a link to another

instance frame. 71

4.1 A flow chart showing the different steps in a run of STGP. 75

4.2 Invalid condition sections. .. . 77

4.3 An example condition section produced using the Full method. 79

4.4 A flow chart showing the possible ways to alter the predictive models in

the current population to produce a new population. 80

4.5 The genetic operator Crossover being performed on two condition sections. 82

4.6 The genetic operator Mutation being performed on a condition section. . . 83

4.7 The pseudo code for the matching algorithm. 84

4.8 A path containing three sensors numbered 1, 2 and 3. 84

4.9 The predictive model for the Path example. 85

4.10 The pseudo code for theFindBestMatch algorithm. 87

4.11 Figure (a) shows a frame of the video with a person takinga decision at

the junction point. Figure (b) shows the possible location of the virtual

CCTV cameras in the image. 90

4.12 The four possible movement patterns in the CCTV scene. 90

4.13 Type declarations for Progol on the Uno dataset. 93

4.14 Examples of the Uno dataset which are used with Progol. 94

4.15 Mode declarations for Progol on the Uno dataset. 94

4.16 Properties, and entity definitions for STGP on the Uno dataset. 95

4.17 Terminals for STGP used to learn the Uno dataset. 95

4.18 Functions used to learn the Uno dataset 96

4.19 An example Uno dataset representation for Bayesian Networks, Neural

Networks, and C4.5. 96

4.20 The mean accuracy and coverage for Uno Clean (top) and Uno 10% noise

(bottom). The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 99

4.21 The mean accuracy and coverage for Uno2 Clean (top) and Uno2 10%

noise (bottom). The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 100

4.22 A result for Progol on the Uno dataset with the clauses inthe wrong order. 100

4.23 A result for Progol on the Uno dataset with the clauses inthe correct order. 100

xi

4.24 The estimated probabilities for the clauses in Figure 4.22 using Pe. 101

4.25 The mean accuracy and coverage for PSS Clean (top) and PSS 10% noise

(bottom). The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 101

4.26 The mean accuracy and coverage for PYCR Clean (top) and PYCR 20%

noise (bottom). The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 102

4.27 The mean accuracy and coverage for CCTV Clean (top) and CCTV 20%

noise (bottom). The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 103

4.28 The mean accuracy graphs for population size on the clean datasets. The

error bars show one standard deviation from the mean. All results were

produced by 10 fold cross validation. 105

4.29 The mean predictive model size for the CCTV (right) and Uno (left). . . . 106

4.30 The mean accuracy results for the clean datasets on different Tarpeian

values. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 107

4.31 The mean size results for the clean datasets on different Tarpeian values.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 108

4.32 The mean accuracy results for the clean datasets on different Tarpeian

values where Tarpeian bloat control starts after the first 10generations.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 109

4.33 The mean size results for the clean datasets on different Tarpeian values

where Tarpeian bloat control starts after the first 10 generations. The

error bars show one standard deviation from the mean. All results were

produced by 10 fold cross validation. 110

4.34 The mean accuracy results for the clean datasets on different Tournament

selection values. The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 111

4.35 The mean accuracy results for the clean datasets on comparing Roulette

wheel with Tournament selection. The error bars show one standard devi-

ation from the mean. All results were produced by 10 fold cross validation. 113

4.36 The best fitness score for the predictive models for the clean datasets using

Roulette wheel, and Tournament selection. 114

xii

4.37 The best fitness score for the predictive models for the clean datasets with

different values for the maximum number of generations. 115

4.38 The fitness score results for the best scoring predictive models for the

clean datasets where the number of generations performed onthe global

search is increased. 117

4.39 The mean accuracy and size results for the clean datasets on different

Tarpeian values where Tarpeian bloat control starts after the first 10 gen-

erations, and a simple conflict resolver is used in the predictive models.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 119

4.40 The mean accuracy and size results for the clean datasets on different

Tarpeian values where a simple conflict resolver is used in the predictive

models. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 120

5.1 This diagram shows a person walking along a crossroads and passing

through the circular regions numbered 1, 2 and 3. The movement in the

scene is represented as a continuous time graph. Temporal quantisation is

applied to the graph to produce a sequence of region detections. 123

5.2 This diagram shows a person walking along a crossroads and passing

through the circular regions numbered 1, 2 and 3, and region 4(shaded)

firing erroneously. 123

5.3 Two people walking through a crossroads and passing through the num-

bered circular regions. 124

5.4 The four temporal states, with respect to current time, an object can be

in: entering, existing, leaving, and left. The dotted linesrepresent that we

don’t know when the object will leave the scene. 126

5.5 This shows how the four temporal states could be represented as Allen’s

intervals. The diagonal lined filled box represents the current time, which

has a time range (currentTime,currentTime+ δ). The black filled box

represents the object, where its unknown end time has been replaced with

a constant. Temporal state Entering can be represented as Starts. Tempo-

ral state Existing can be represented as During. Temporal state Leaving

can be represented as Finishing. Temporal state Left can be represented

as Before. 127

5.6 A screenshot from the video of a path containing multiplepeople. 128

xiii

5.7 The property and entity definitions for the CCTV datasets. 129

5.8 The property and entity definitions for the Uno datasets.. 130

5.9 The functions used in the CCTV datasets. 131

5.10 The terminals used in the CCTV datasets. 131

5.11 The functions in the Uno dataset. 131

5.12 The terminals in the Uno dataset. 131

5.13 How the time used by the variables in condition section of the predictive

models affects their ability to deal with injection noise. The error bars

show one standard deviation from the mean. All results were produced

by 10 fold cross validation. 134

5.14 How the time used by the variables in the condition section of the pre-

dictive models affects their ability to predict the actionsof people from

a multi-person dataset. The error bars show one standard deviation from

the mean. All results were produced by 10 fold cross validation. 135

5.15 The mean coverage and accuracy results for the different methods on the

Uno Temporal datasets. The error bars show one standard deviation from

the mean. All results were produced by 10 fold cross validation. 136

5.16 An example set of clauses learnt by Progol on the Uno Temporal dataset. . 136

5.17 The mean coverage and accuracy results for the different methods on the

CCTV datasets. The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 137

5.18 The mean accuracy and size results for the datasets using different Tarpeian

values. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 139

5.19 The mean coverage and accuracy results for the datasetson different his-

tory length values. The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 140

6.1 This shows how movement in the scene affects detection labelling. 143

6.2 A still from one of the aircraft turnaround videos. 145

6.3 The zones labelled on the ground plane on the aircraft turnaround videos. 145

6.4 The four spatial relations used in the Tic Tac Toe dataset: above, right,

above right, and above left. 147

xiv

6.5 Accuracy and coverage results showing how the movement in the location

of the detectors in the CCTV dataset affects the predictive models using

and not using spatial relations. The error bars show one standard deviation

from the mean. All results were produced by 10 fold cross validation. . . 149

6.6 The accuracy and coverage results for the different methods on the CCTV

Spatial dataset. The error bars show one standard deviationfrom the

mean. All results were produced by 10 fold cross validation.. 150

6.7 An incorrect set of clauses learnt by Progol from the CCTVSpatial dataset.150

6.8 The accuracy and coverage results for the different methods on the aircraft

turnaround dataset. The error bars show one standard deviation from the

mean. All results were produced by 10 fold cross validation.. 151

6.9 The accuracy results for the different methods on the TicTac Toe dataset.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 154

6.10 The mean accuracy and size results for the datasets on different Tarpeian

values. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 155

6.11 The mean coverage and accuracy results for the CCTV Spatial, and air-

craft turnaround datasets on different history length values. The error bars

show one standard deviation from the mean. All results were produced by

10 fold cross validation. 156

7.1 The accuracy and size results for the Auto Tarpeian method on the PSS

dataset. The error bars show one standard deviation from themean. All

results were produced by 10 fold cross validation. 162

7.2 The accuracy and size results for the Auto Tarpeian method on the Uno

datasets. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 163

7.3 The accuracy and size results for the Auto Tarpeian method on the Uno2

datasets. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 164

7.4 The accuracy and size results for the Auto Tarpeian method on the CCTV

datasets. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 165

xv

7.5 The accuracy and size results for the Auto Tarpeian method on the PYCR

datasets. The error bars show one standard deviation from the mean. All

results were produced by 10 fold cross validation. 166

7.6 The accuracy and size results for the Auto Tarpeian method on the CCTV

dataset using temporal relations, and the CCTV dataset using spatial re-

lations. The error bars show one standard deviation from themean. All

results were produced by 10 fold cross validation. 167

7.7 The accuracy and size results for Auto Tarpeian method onthe Uno Tem-

poral datasets. The error bars show one standard deviation from the mean.

All results were produced by 10 fold cross validation. 168

7.8 The accuracy and size results for Auto Tarpeian method onthe CoFriend

and Tic Tac Toe datasets. The error bars show one standard deviation

from the mean. All results were produced by 10 fold cross validation. . . 169

7.9 The accuracy and size results for the Auto Tarpeian method on the PSS

dataset, where the predictive models are using a simple conflict resolver.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 170

7.10 The accuracy and size results for the Auto Tarpeian method on the Uno

datasets, where the predictive models are using a simple conflict resolver.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 171

7.11 The accuracy and size results for the Auto Tarpeian method on the Uno2

datasets, where the predictive models are using a simple conflict resolver.

The error bars show one standard deviation from the mean. Allresults

were produced by 10 fold cross validation. 172

xvi

List of Tables

2.1 The first order logical connectives. 17

3.1 The four time types: Point, Period, AllTime and Incomplete. They are

defined by temporal ranges. Variablets represents the start time of the

entity or relation instance, andte represents the end time of the entity or

relation. 58

3.2 The conditional probability distribution for the production rules in Figure

3.8 . 64

3.3 The probability distribution for the combined production rules in Figure

3.9. 65

4.1 The prediction results for the Path model on a set of history. The history at

each point in time represents the sensor numbers that have been detected.

There is only one detection at each point in time because the condition

sections of both of the production rules only use detectionsat the current

time. 85

4.2 The fitness results for the Path predictive model on a set of history data.

Variablesr1 and r2 represents that production rule 1 or 2 were enabled

or not enabled on the history. VariableW represents the set of predic-

tions, which each tuple is a prediction from a production rule containing

an output, and its probability. The tuples in bold representwhere the pre-

diction matches the detection at the next time step. The variablecompare

represents how well the prediction matched the actual history. 88

4.3 The result states for a game of Paper Scissors Stone between two players. 89

4.4 Initial settings for STGP. .. 104

6.1 The key for the event types used in the aircraft turnaround dataset. 152

6.2 The confusion matrix for STGP on the aircraft turnarounddataset. 152

6.3 The confusion matrix for Progol on the aircraft turnaround dataset. 152

xvii

6.4 The confusion matrix for Bayesian Networks on the aircraft turnaround

dataset. 153

6.5 The confusion matrix for C4.5 on the aircraft turnarounddataset. 153

xviii

Chapter 1

Introduction

1.1 The problem domain

This thesis investigates learning predictive models from non-deterministic spatio-temporal

data. Predictive models can be used to predict future spatio-temporal data; or to recognise

events or activities from past or current observations. Theresearch in this thesis fits into

the wider research area of behaviour modelling of multiple objects. Behaviour modelling

can be applied to a wide variety of domains including: city centres, airports, stations,

motorway networks, office buildings, homes, and hospitals.Figure 1.1 shows two of

these domains: a city centre and a motorway network. Typicalapplications of behaviour

modelling in a motorway network include: predicting trafficflow; recognising road ac-

cidents; and detecting traffic offences. Typical applications of behaviour modelling in a

city centre include: recognising fights, predicting the flowof people through the streets;

and recognising theft.

Behaviour modelling is a complex and only partially solved problem for a number

of reasons: Firstly, there are multiple interacting objects in the domains, which create

complex datasets to predict, and learn from. For example, inthe city centre domain

multiple people in the scene might affect the temporal orderof information referring to

each person (which may be difficult to identify as individuals over time), and a model

using this information needs to be able to cope with this variation. Secondly, the objects

behave in a non-deterministic manner. For example, in the motorway domain at a road

1

Chapter 1 Introduction

Figure 1.1: The left image shows a picture of a city centre environment, and the right
image shows a picture of a motorway.

junction there might be multiple routes a car could take, each with an associated likelihood

of being chosen. Finally, there are large areas to monitor which require a large number of

sensors, for example a network of CCTV cameras.

Advances in this research area will help to improve systems that automatically monitor

these domains. These systems could be improved in the following ways. Firstly, they

could predict or recognise the actions of multiple objects more accurately, for example

at a station where there are large numbers of interacting people. Secondly, they could

predict or recognise over an extended period of time, or recognise events; for example

the junction a car might take could be based on the route it took over the last 200 miles.

Finally, they could use more complex probabilistic models to more accurately recognise,

or predict from non-deterministic data. For example, in thelast example, the likelihood of

the car taking the junction would need to be computed based onthe likelihood of it taking

specific junctions at each point on its journey, which in practice is a complex conditional

probability distribution. The work in this thesis aims to contribute to these three areas.

1.2 A system to model and learn object behaviour

Figure 1.2 shows the four main components required for a system to learn and predict or

recognise the behaviour of objects: data generation; data representation; model learning;

and recognition or prediction.

1.2.1 Data generation and representation

To acquire data on objects requires identifying the locations of objects of interest over the

entire domain. There are two main approaches to identifyingthe locations of objects in

2

Chapter 1 Introduction

Figure 1.2: A flow chart showing the main components of a system to model and learn
object behaviour.

domains covering a wide area. One approach is to use a networkof cameras, where each

object is tracked individually over the cameras. Tracking algorithms come from the field

of Computer Vision [119]. They analyse the video produced bythe cameras frame by

frame to locate and track objects. There are many problems with this approach: cameras

can be expensive to buy and maintain; the tracking algorithms are not always reliable;

and it can be hard to place cameras to cover every part of the domain, due to ethical or

legal issues. An alternative approach is to use a network of sensors. Each sensor outputs

when it detects movement or some other factor has occurred along with the length of time

it has happened. There are a number of benefits of sensors overusing cameras: they are

cheap; they are reliable; and they can be placed in almost every part of the domain. The

downside is that, unlike using cameras combined with a tracking algorithm, the output is

just a set of movement states, and the system might not know which object has caused

them. This is known as the data association problem [32]. In the motorway network and

city centre domains it is expensive to place cameras over theentire space. Cameras are

also affected by the weather, and the tracking algorithms will fail to track people and cars

when they become occluded by other objects. Placing movement sensors under the road

or pavement can be cheaper; can be more reliable for trackingoccluded people and cars;

and are less affected by the weather.

Once a set of object data has been identified it needs to be described in an appropriate

representation. A representation needs to both describe the properties of each of the

objects, and relations (i.e. spatial or temporal) between the objects. The representation

chosen must represent the data accurately, and must be easy to learn a model from.

3

Chapter 1 Introduction

1.2.2 Model learning and prediction

A model contains a set of components which each perform a specific task to aid the

model when it is making a prediction, or recognising an event. A learning algorithm then

attempts to find the best representation for the components in the model and the values

for its parameters, such that it best predicts from, or recognises a set of data. Once the

model has been learnt it can then be used to predict, or recognise unseen data.

This thesis investigates how predictive models can be learnt from non-deterministic

spatio-temporal data, and what is the best representation for their components. This thesis

represents predictive models using a production system. This contains a set of production

rules represented in first order logic, and a conflict resolver to decide which production

rules to use when multiple production rules make a prediction. The production rules

contain a condition section that represents a pattern to findin the spatio-temporal data,

and the action section represents a prediction or event to recognise. In this context, this

thesis attempts to investigate the following questions:

1. Does representing the components of the predictive models using first order logic,

produce more accurate results on non-deterministic spatio-temporal data than using

standard machine learning representations?

2. Does using a probabilistic conflict resolver produce moreaccurate predictive mod-

els on non-deterministic spatio-temporal data than other conflict resolution approaches?

3. Does using evolutionary search techniques to learn production rules produce more

accurate results on non-deterministic spatio-temporal data than using a determinis-

tic (greedy) search?

4. Does learning the production rules and the parameters of the conflict resolver si-

multaneously produce more accurate results on non-deterministic spatio-temporal

data than learning them sequentially?

5. Does use of qualitative temporal relations within the components of the predic-

tive models make them robust to changes in the temporal structure of the non-

deterministic spatio-temporal data?

6. Does use of qualitative spatial relations within the components of the predictive

models make them robust to changes in the spatial structure of the non-deterministic

spatio-temporal data?

4

Chapter 1 Introduction

1.3 Thesis overview

The structure of this thesis is as follows:

• Chapter 2 is a literature review of the following subjects: spatio-temporal data ac-

quisition, and representation; and spatio-temporal predictive model learning.

• Chapter 3 firstly describes how spatio-temporal data is represented. Secondly, an

architecture of the novel spatio-temporal modelling scheme is described. Finally, a

method to evaluate predictive models on the spatio-temporal data is described.

• Chapter 4 describes how predictive models are learnt using anovel Genetic Pro-

gramming based technique called Spatio-Temporal Genetic Programming (STGP).

Techniques to build the initial population of predictive models, the fitness function,

and the genetic operators are described. The system is evaluated against standard

machine learning algorithms, and the Inductive Logic Programming system; Pro-

gol. Experiments are done using deterministic, and non-deterministic datasets with

varying amounts of noise. Finally, experimentation with the different parameters

for STGP is presented.

• Chapter 5 describes an approach for incorporating temporalrelations into predictive

models. A set of novel temporal relations to relate the time range of an object to the

current prediction time is described. This is tested on a handcrafted game of Uno,

and real-world CCTV datasets. A comparison with predictivemodels using, and

not using, the temporal relations is given. The system is then compared against the

alternative methods from the previous chapter. Finally, experimentation with some

of the parameters of STGP is presented.

• Chapter 6 describes an approach for incorporating spatial relations along with the

temporal relations from Chapter 5 into predictive models. This is evaluated using a

real-world CCTV dataset, the game of Tic Tac Toe, and recognising events from an

aircraft apron. A comparison is presented comparing predictive models containing,

and not containing spatial relations. Again, a comparison is performed with the

alternative methods from Chapter 4, along with experimentation with some of the

parameters for STGP.

• Chapter 7 describes a method to automatically vary the amount of bloat (downward

pressure on the size of the predictive models) using the Tarpeian method [22] dur-

ing a run of STGP. Experiments and results using the datasetsfrom the previous

chapters is given.

5

Chapter 1 Introduction

• Chapter 8 summarises the conclusions of the thesis, investigates how well the thesis

has answered the raised shown in the previous section of thischapter, and proposes

potentially fruitful further directions for this research.

6

Chapter 2

Background

2.1 Introduction

This thesis investigates the learning of predictive modelsfrom non-deterministic spatio-

temporal data. In this thesis the spatio-temporal data is typically generated from video.

Once a predictive model has been learnt it can then be used to predict future spatio-

temporal data, or recognise a particular event from past spatio-temporal data. An example

will now be introduced that will be used to explain in more detail how predictive models

are learnt, and how this relates to the rest of this chapter. The example will be used

throughout this chapter to explain the different techniques and methods. A video has

been taken of a set of people walking along a path. The path contains a junction where a

person can take either the right or left fork. Figure 2.1 shows a set of frames taken from

the video.

Figure 2.1: A set of frames from a video of a person walking along a path.

7

Chapter 2 Background

Figure 2.2: The four stages required to firstly learn a predictive model from a set of spatio-
temporal data; and secondly to predict a future set of spatio-temporal data, or recognise
an event from a past set of spatio-temporal data.

To learn a predictive model from this video requires four stages (Figure 2.2). Firstly,

a set of spatio-temporal data has to be generated from the video. This is performed by

identifying objects in the scene, in this case the people andthe path; and then extracting

properties on the objects for example their: speed; colour;and relationships between the

other objects. Secondly, the spatio-temporal data must be stored within the computer.

This requires an appropriate representation that should both: describe the spatio-temporal

data accurately; and be suitable for use with a predictive model. Thirdly, once a set of

spatio-temporal data has been generated it can be used to induce or learn a predictive

model. A predictive model contains a set of components [111]that aid the predictive

model when it is making a prediction or recognising an event,for example there might

be one component to predict the person will take the left fork, and another component

to predict the person will take the right fork. Each component is described by a sepa-

rate representation. To learn a predictive model involves finding best representation and

parameters for its components such that it best predicts or recognises from a set of spatio-

temporal data. Fourthly, once a predictive model has been learnt it may be applied to a

set of spatio-temporal data to predict future occurrences,or to recognise an event. In the

example the input data could be the location of a person alongthe path, and the prediction

could be how likely the person is to take the left or right fork.

The stages outlined in Figure 2.2 have been used to structurethe rest of this chapter.

Section 2.2 presents an overview of techniques for processing video to locate its objects

and produce a set of basic properties or features on each object for example: its colour;

speed; or position. Section 2.3 firstly describes the different spatial and temporal relations

8

Chapter 2 Background

that can be defined between objects, and the various representation schemes that can be

used to describe spatio-temporal data. Frames are explained which are used to represent

the spatio-temporal data in this thesis. First order logic is also explained which is used

to represent the production rules in this thesis. Section 2.4 describes methods for learn-

ing predictive models from spatio-temporal data, and reviews techniques that can firstly

deal with variable length spatio-temporal data, and secondly non-deterministic spatio-

temporal data. Section 2.5 describes production systems which are the architecture used

to represent the predictive models used in this thesis. Production systems contain a set

of production rules, and a conflict resolution strategy to decide how to apply the produc-

tion rules to predict in different contexts. Section 2.5.1 outlines different techniques to

learn production rules represented in first order logic froma set of spatio-temporal data.

Section 2.5.2 explores different conflict resolution strategies, and Section 2.5.3 present an

overview of techniques to allow production rules to deal with non-deterministic data. To

learn the production rules in this thesis an evolutionary search technique called Genetic

Programming is used. Section 2.6 describes this technique in more detail. Finally Section

2.7 describes some existing systems that learn predictive models, represented in first order

logic, from spatio-temporal data.

2.2 Generating spatio-temporal data from video

The first stage to produce a set of spatio-temporal data from video is to process the video

to find the objects in it. Once a set of objects have been located then the properties from

each of the objects and the relations between the objects canbe computed. There is a large

set of different properties that could be extracted from an object including: its average

colour; texture; speed; orientation; position; and the time range it appears in the video.

There are two main types of relations between objects. Firstly, how objects are related to

each other over time (ortemporal relations), and secondly how objects are related to each

other in the space they exist in (orspatial relations). These will be covered in more detail

in Section 2.3. The remainder of this section will look at thedifferent techniques to locate

objects in video.

2.2.1 Locating objects in video

There are three main approaches for locating objects in a video. The first uses a prior

model of the object to be found. A model is fitted (for example using edge information)

to the set of video frames to find the location of the object. There have been object

9

Chapter 2 Background

Figure 2.3: An example of applying the simple model of a human(on the right) to the
three frames of the video from Figure 2.1 (on the left).

models produced for tracking humans [7, 47], and vehicles [28, 56]. Figure 2.3 shows a

very simple model of a human based on four rectangles, and some example results of how

it might match the three frames shown in Figure 2.1.

The approach works well when there is a known object to be found and a prior model

of it can be produced in advance. This approach will fail firstly when the object to be

found has a large amount of variation in its appearance, preventing it from fitting to its

object model. Secondly, it will fail in situations where it is hard to decide a priori the

specific objects that will appear in the scene for example in an airport terminal. Here a

large number of different objects can appear: passengers, luggage and trolleys etc; and it

would be hard to find prior models for all the possible objects.

The second approach is to identify coherently moving regions that appear in the fore-

ground of the video. These regions are then assumed to be objects, (or parts of objects).

This approach does not require a detailed prior object model, and so can work in videos

where it is difficult to define the types of objects that might appear. This was the approach

used to produce some of the datasets used in this thesis, shown in Chapter 4, as it allowed

the method described in this thesis to be quickly applied to alarge variety of situations.

A background model is learnt over time. Any regions that are not modelled by it

are seen as foreground regions. A background model is learntin the following manner.

Firstly, the background is modelled at the pixel level by separately modelling the colour

distribution at each pixel over time. A new pixel value is seen as a foreground pixel if it is

assigned a low probability by its colour distribution. Foreground pixels are then typically

grouped into regions using connected component analysis [119]. These regions need to

be associated to a set of objects, and these objects need to betracked over time. One

approach is to use a Kalman filter [51]. This is a stochastic linear predictor where the

likelihood of an object’s location is a linear function of its previous location; and a noisy

observation based on the location of a region within the current frame. The Kalman filter

is used in three stages: prediction; data association; and correction. The prediction stage

10

Chapter 2 Background

Figure 2.4: Region tracking applied to the frames in Figure 2.1.

linearly predicts the location of the object in the next frame by using its previous location.

The location of the object is further refined by using the location of a region detected in

the current frame. The data association stage finds a region whose location is the most

likely match to the predicted location of an object. The correction phase then uses this

region to refine the location of the object. New objects are then created for any unmatched

regions. Typically, if an object does not find a matching region for a number of frames it

is removed.

This approach has been applied to tracking vehicles [68, 124], and people [124, 132],

and groups of people [42, 74]. Figure 2.4 shows the detected foreground regions (shown

in white) representing the person walking along the path. There are two main problems

with this approach. Firstly, it assumes the objects will move in a linear manner; if they

move in a non-linear manner, for example if a person changes direction sharply they may

be failed to be tracked. Secondly, objects can become fragmented if parts the object to be

tracked match the background model. The datasets used in Chapter 4 do not have these

problems as the objects are well segmented from the background, and they move in a

linear manner.

The final approach uses feature points extracted from the frames. Objects are located

by grouping up sets of points having similar properties (e.g. having similar motion). This

approach can deal with occluding objects, because some of the feature points on each of

the objects are still visible. Beymer [8] uses this approachto track cars along a motorway.

The cars are tracked from a user defined detection region at the bottom of the frame, to a

hand defined exit region at the top of the frame. In the detection region a corner detector is

applied to extract corner feature points. The position and velocity of these feature points

are then tracked over time by using a Kalman filter. To group upthe feature points a graph

based approach is used. The vertices are the tracks of the feature points, and the edges

group up feature points that move in the same manner. Initially a feature is connected

to all feature points within a specific radius. Over time these edges are removed if the

11

Chapter 2 Background

amount of relative motion between the tracks of two feature points is above a pre-defined

threshold. This approach assumes that the objects will movein a linear manner, and as

explained previously, if the object moves in a non-linear manner it might fail to be tracked

properly. Also it assumes that the object will not change itsshape, or appearance once it

leaves the detection region. A large number of objects e.g. people, can have variation in

their appearance, and so would not be tracked well by this approach.

2.3 Representing spatio-temporal data

The previous section discussed the techniques used for locating and extracting informa-

tion relating to objects in video, in order that a set of spatio-temporal data may be pro-

duced. The spatio-temporal data contains data on the individual objects, and data on

relations between objects over time. The spatio-temporal data needs to be described in

an appropriate representation. The representation is on two levels. The first level is how

to represent each of the object’s properties and relations between objects. The second

level is how to represent data on multiple objects. The appropriate representation chosen

depends on the task to be performed. The representation mustintegrate well with the

system that is using the data, in this case of this thesis a predictive model. It must also

accurately describe the data given the task the system is performing; in the case of this

thesis predicting or recognising events from spatio-temporal data.

There are two possible types of representations for describing properties of an object,

or relations between objects: quantitative representations, and qualitative representations.

Quantitative representations describe a property or relation based on a specific quantity

like seconds or metres; for example “Bob’s height is 2 metres.”, or “Andy is 2 metres

to the left of Colin”. Qualitative representations describe a property or relation using a

particular quality or categorisation like short, or long; for example “Bob is tall.”, or “Andy

is behind Colin”.

There are two main approaches to representing data on a set ofobjects: a fixed length

representation, or a variable length representation. A fixed length representation uses a

predefined number of attributes, where each attribute has a name and predetermined type

and set of values. This allows properties of an object to be easy represented, but it is often

difficult to efficiently describe multiple objects, and their relations. For example, Galata

et al. [34] produced a system that can learn the interactions between cars on a road for

example overtaking, and following. They use a fixed length input vector, that is limited to

describing interactions between two cars. To extend the system to model the interactions

of more than two cars would require a different fixed length vector to be produced that is

12

Chapter 2 Background

specialised to that number of cars. Many standard machine learning algorithms require

a fixed length vector, but there are some solutions to allow variable length data to be

described as a fixed length vector. These are detailed in Section 2.4.2.1. A variable

length representation, however, does not require the number of possible objects and their

relations to be predefined, so it can be used in situations where an unknown number of

objects might appear. There is also no redundancy in the representation as only actual

relations between objects need to be stored. For example, Needhamet al. [89] produced

a system that could learn the rules of basic card games. A variable length representation

based on first order logic was used to describe the cards. Thisdid not place any limits on

the number of cards that could be represented both in each scene, or over the length of a

game.

The remainder of this section will firstly explain two types of qualitative object re-

lations: qualitative spatial relations, and qualitative temporal relations which are used in

Chapters 5 and 6. Subsequently, two approaches, used in thisthesis to represent variable

length spatio-temporal data: frames, and first order logic will be presented.

2.3.1 Qualitative spatial relations

Cohn and Hazarika [13] give an overview of work in qualitative spatial relations. There

are two main types of qualitative spatial relations: relations based on regions and relations

based on points.

The first approach uses a set of regions, and looks at how each of the regions relate

to one another. Region Connected Calculus (RCC-8) [105] is atopological spatial calcu-

lus to represent the possible spatial relations between tworegions. There are 8 possible

relations (Figure 2.5) which describe concepts like two spatial regions touching, or over-

lapping. Maillot et al. [69] uses RCC-8 as part of a system to build a visual concept

ontology.

The second approach assumes objects are points in space, andrelates the position of an

object to the position of a reference object. Orientation relations [45] relate the orientation

of a primary object based on a reference object and a frame of reference (Figure 2.6).

The line representing the frame of reference passes throughthe reference object, and the

primary object’s orientation is based on which side of the line it is located. The simplest

orientation relation is a level 1 orientation relation. It only uses one frame of reference,

and therefore is a binary relation based on which side of the line the object is located.

Figure 2.7 shows two level 1 orientation relations: one allowing an object to be east or

west of the line, and the other allows the object to be north orsouth of the line. To

13

Chapter 2 Background

DC(a,b) EC(a,b) TPP(a,b) TPP−1(a,b)

PO(a,b) EQ(a,b) NTPP(a,b) NTPP−1(a,b)

a

b

a

b
a b b a

a b b aa b

a

b

Figure 2.5: The RCC-8 relations from [105].

Primary object

Frame of reference

Reference object

Figure 2.6: An orientation relation where the primary object’s orientation is based on the
position of the reference object, and the orientation of theframe of reference.

allow more complex orientation relations the two previous level 1 orientation relations

are combined together and rotated by 45 degrees forming a level 2 orientation relation.

This then allows four different orientations: North2, South2, East2 and West2. Level

3 orientation relations can then be defined, to allow more finegrained orientations by

combining, and rotating the level 2 operation relations. The level 3 orientation relations

are: North3, South3, East3, West3, North-east3, North-west3, South-east3, South-west3.

Orientation relations are used in Chapter 6 to describe the orientation and location of

virtual movement sensors placed on a video of people walkingalong a path.

Other approaches include work by Fernyhoughet al.[27] who use a grid based spatial

relation to relate a reference object to an object close to it. This is used to automatically

learn event models from road scenes. Needhamet al. [88] uses a local cardinal system to

14

Chapter 2 Background

West East

Level 1

11

North

South

Level 1

1

1

North

South

EastWest
2 2

2

2

Level 2

3

3

3 3

3

3

3

3

Level 3

South

EastWest

North
East

South
East

North
West

North

South
West

Figure 2.7: The three levels of orientation relations.

describe the location of objects. Each object defines its owncardinal reference frame and

this is used to describe objects around it. Siskind [117] uses a force-dynamic model that

describes how objects are attached to each other over time. The output from the model

is combined with a set of event definitions which recognise the actual events that have

occurred for example picking up an object.

2.3.2 Qualitative temporal relations

There are two main ways to represent time: as a set of points, or as a set of intervals. Situ-

ational Calculus [70] and the work of McDermott [71], represent the world as a sequence

of states. Each state describes the world at an instantaneous point in time. Another ap-

proach is to represent time by periods or intervals. Allen’sInterval Calculus [1] describes

temporal interactions between two time periods as a set of thirteen temporal relations.

These relations are calculated on the start and end time of each of the time periods and

they are only valid when both time periods have a valid start and end time. Figure 2.8

shows Allen’s intervals which are: meets, met-by, starts, started-by, finishes, finished-by,

during, contains, before, after, overlaps, overlapped-by, and equals. Allen’s intervals are

used in Chapters 5 and 6. Chapter 5 also defines a novel set of temporal state relations

which can deal with time ranges that do not have an end time. Vilain [128] extends Allen’s

Interval Calculus by combining the point, and period time representations. This is done

by adding point-to-point, and point-to-interval temporalrelations to the calculus.

2.3.3 First order logic

This section gives an overview of first order logic which is used within the predictive

models described in Chapter 3. The first part of the section shows how the spatio-temporal

data, and predictive models can be represented in first orderlogic. The second part looks

at how inference is performed on spatio-temporal data usingthe predictive models to make

15

Chapter 2 Background

B after A
A before B

B

A

B starts A
A started−by B

A

B

B finishes A
A finished−by B

B

A

B during A
A contains B

B

A

B equals A
A equals BA

B

B overlapped−by A
A overlaps B

B

A

B met−by A
A meets B

B

A

Figure 2.8: The thirteen Allen’s intervals [1].

a prediction. The learning of first order logic production rules is explained in Section

2.5.1, and combining first order logic with probability is explained in Section 2.5.3. The

examples used in this section are based on the Path example shown in Section 2.1. This

section will only describe the first order logic required forthe work in this thesis, for a

fuller explanation please refer to Norviget al. [111].

2.3.3.1 Spatio-temporal data

Spatio-temporal data is based on a set of objects. In first-order logic objects are rep-

resented byconstantsfor example:Path, Andrew, or Anna. The objects have proper-

ties, and relations can exist between them. In first order logic predicates, and functions

are used to represent object properties and relations.Predicatesrepresent logical re-

lationship between one or more objects. Unary predicates (just containing one object)

are typically used to describe properties of an object for exampleRed(Andrew) repre-

sents thatAndrew is Red. Binary predicates (containing two objects) describe relations

between two objects for exampleLeftOf(Anna,Andrew) represents thatAnna is to the

left of Andrew. Some relations are better represented as functions.Functionsrepre-

sent a mapping from an object, or a tuple of objects to a specific object, for example

Position(Andrew) represents applying the objectAndrew to the functionPosition and

returning its location. Aterm is a logical expression that refers to an object; functional

expression (i.e. a function with a set of arguments), constants and variables (explained

in the next section) are all terms. Terms and predicates can be combined to form atomic

sentences. Anatomis a predicate followed by a parenthesized list of terms, forexample

LeftOf(PositionOf(Andrew),PositionOf(Anna)) represents that theAndrew’s posi-

tion is aboveAnna’s position.

16

Chapter 2 Background

2.3.3.2 Predictive models

The type of predictive models used in this thesis, describedin Section 2.5, use a set

of production rules. This section will explain how the production rules are represented

in first order logic. Firstly, the production rules need to represent more complex logi-

cal sentences than the ones described in the previous section. This is achieved by us-

ing the logical connectives (shown in Table 2.1) with the atomic sentences, for exam-

ple LeftOf(Anna,Andrew)∧LeftOf(Andrew,Bob) represents thatAnna is to the left of

Andrew andAndrew is the left ofBob.

Name Symbol Returns
And X∧Y if X = t andY = t thent elsef
Or X∨Y if X = f andY = f thenf elset
Not ¬X if X = t thenf elset

Implies X ⇒Y if X = t andY = f thenf elset
BiImplies (X ⇔Y) X ⇒Y∧Y ⇒ X

Table 2.1: The first order logical connectives.

Secondly, the production rules need to generalise from the spatio-temporal data. The

logical sentences in the previous section used constants which meant they could only

apply to specific objects. These constants can be replaced with variablesto produce gen-

eralised sentences, where the value of a variable ranges over the set of terms. To control

how a variable is used within a sentence two quantifiers are used. Universal quantification

(∀, “for all”) states that the sentence must be true for every possible value for the variable,

otherwise the sentence is false. Existential quantification (∃, “there exists”) states that

the sentence must be true for at least one value of the variable, otherwise it is false. The

previous example can be generalised as∀x((LeftOf(Anna,x) ⇒ LeftOf(x,Bob)) which

represents that for each object in the world ifAnna is to the left of it then the object must

be to the left ofBob.

A production rule has an action section, and a condition section. The condition section

matches a pattern in the spatio-temporal data, and the action section predicts the spatio-

temporal data to occur next. In first order logic this is represented by a clause. Aclauseis

a disjunction of literals, and aliteral is a atom, or negated atom. The production rules in

this thesis have a similar representation to a special type of clause: theHorn clausewhich

is a clause that only has at most one positive literal. All variables used in Horn clause

are universally quantified. Theheadof a Horn clause is the positive literal, and thebody

of a clause if the set of negative literals. The head represents the action section, and the

body represents the condition section. The spatio-temporal data described in the previous

17

Chapter 2 Background

section can be represented as afact which is a clause that has no body. Horn clauses are

restricted class of first order logic sentences, this makes them easier to learn and perform

inference on than full first order logic. The learning of Hornclauses will be explained in

Section 2.5.1. The production rules used in the predictive models, explained in Chapter

3, have a similar representation to Horn clauses. Horn clauses are typically written using

implication, where the negative literals imply the positive literal. Equation 2.1 shows a

Horn clause which states that if a person is at the junction onthe path at timet then they

will take the left hand fork. The head of this Horn clause isMovement(LeftFork, t)).

Person(x)∧Time(t)∧AtJunction(x, t) ⇒ Movement(LeftFork, t) (2.1)

To specialise a Horn clause a substitution can be used to change the variables to con-

stants. Asubstitution s= {v1/t1,v2/t2} contains a set of variablesv, and a set of terms

t that will replace the variables. When a substitution is applied to a logical sentence all

variables in the sentence that match one of the variables in the substitution are replaced by

its accompanying term. For example the substitutionθ = {x/Anna,y/Andrew} applied to

LeftOf(x,y) gives the following result:LeftOf(Anna,Andrew). A ground termis a term

that does not contain any variables, and aground atomis an atom that does not contain

any variables.Unification typically finds the most general substitution that makes two

logical sentences equal. Substitutions and unifications asshown in the next section are

used to perform inference. A sentenceS1 θ -subsumesa sentenceS2 (S1 �S2) if S1θ ⊆S2,

or every atom inS1 is in S2. This can then be used to give a specific to general ordering

for a set of sentences. This is used within the techniques to learn first order sentences

(described in Section 2.5.1) to decide how to search the space of possible sentences.

2.3.3.3 Inference

The previous sections have shown how to represent spatio-temporal data and predictive

models in first-order logic. This section will present how predictive models can be applied

to the spatio-temporal data to make a prediction. To do this acheck must be performed to

see if the spatio-temporal data logically matches orentailsthe condition section of each

production rule. A logical inference procedure is used to dothis. One approach is to

enumerate over all possible configurations of the world. If the spatio-temporal data, and

the condition section are true in the same world configurations then the spatio-temporal

data entails the condition section, and its action section can be used for the prediction.

To produce the world configurations the Herbrand universe and the Herbrand base

must be computed. TheHerbrand universeis the set of all ground terms created from

18

Chapter 2 Background

combining the function and constant symbols together and theHerbrand baseis the set of

all possible ground atoms. Each world configuration is described by aHerbrand interpre-

tationwhich assigns a true or false value to each possible ground atom. An interpretation

which makes a logical sentence true is called amodel. SentenceS1 entailsS2 (S1 |= S2) if

in every model thatS1 is true inS2 is also true.

The only problem with enumerating every world configurationis that when there is a

large number of constants and predicates it can be computationally expensive to perform.

An alternative approach is to use the resolution algorithm [109]. This is a proof based

technique that tries to match every literal in the conditionsection of the production rule

with some spatio-temporal data. To use the algorithm the spatio-temporal data, and the

condition section must be converted into conjunctive normal form (CNF), which is a con-

junction of clauses. Then they are both are standardised apart (so that variables do not

have the same names). Then one literal is unified to the complementary of the other. This

process repeats until the empty clause is found, or no more unifications can be done. If

the empty clause is found then the spatio-temporal data entails the condition section. A

simpler resolution algorithm, called forward chaining [111] can be used, if the production

rules are represented as Horn clauses. In forward chaining spatio-temporal facts are uni-

fied with literals in the Horn clause. Once all the literals inthe body of the Horn clause

are unified the head of the Horn clause is returned and can be used for a prediction.

2.3.4 Frames

Frames [78] can be used to represent the properties of objects, and temporal and spatial

relations between objects. There are two types of frames: a class frame, and an instance

frame. A class frame describes a specific type of object. It contains a number of slots

which describe different properties or attributes of the object. A slot can have a default

value, and a set of facets which constrain the possible values the slot can contain. Multiple

values can be assigned to a slot. A class frame can inherit slots and default values from

a parent frame creating a hierarchy amongst the class frames. Figure 2.9 shows a class

frame for a Person. It contains three slots: the name of the person, their speed and their

position. An instance frame uses a class frame to store information on a specific object,

by filling in the values of the slots. Figure 2.9 show an instance frame for a person. They

are called Bob, are at position (40,50), and are moving a medium speed. Frames are used

in Chapter 3 to represent the history of spatio-temporal object data.

The frame data in this thesis is stored using the Extensible Markup Language (XML)

[10], as explained in Chapter 3. This is a meta-language thatplaces a tag around data

19

Chapter 2 Background

Class Person Class Person
Name Name Bob
Speed Speed Medium
Position Position (40,50)

Figure 2.9: A class frame (on the left) and instance frame (onthe right) for a Person.

items. A tag has a name, and often a set of attributes, and is used to give a semantic

description of the data it encloses. An XML schema is used to formally define the tags

and their structure. XML is human readable, but it is quite verbose, and can often greatly

increase the size of the data it is representing. List and Fisher [64] use XML to represent

their Computer Vision Markup Language (CVML). This allows data from a vision system

to be represented in a common format that can be easily shared. Their approach can

describe features on objects like their position, boundingbox, and type; and can group

up sets of objects. There is, however, no way to describe spatial or temporal relations

between objects.

2.4 Learning predictive models of spatio-temporal se-

quences

This section will firstly give an overview of predictive model learning, and then will show

previous learning approaches.

2.4.1 An overview of predictive model learning from spatio-temporal

sequences

To produce a predictive model requires: a sequence of spatio-temporal data; a repre-

sentation to describe the predictive model, and its associated parameters; and a learning

algorithm. Each point in the sequence produces an example where the input is the past

spatio-temporal data, and the output is the future set of spatio-temporal data. There two

main ways to represent the spatio-temporal data with the main ones being fixed length

and variable length vectors, as described in Section 2.3. The predictive model is repre-

sented by a set of components. A component [111] performs a specific task which aids the

predictive model when it is making a prediction, for exampleit could use a set of object

information to predict that a particular event will happen,or recognise that a particular

event has occurred. There is a variety of representations used for the components includ-

20

Chapter 2 Background

ing: graphs, trees, linear functions, and logical statements. These will be explained in

more detail in the following sections. A learning algorithmthen attempts to find the best

representation for the components in the model and the values for its parameters, such

that it best predicts a set of examples. Structure learning is used to find the optimal rep-

resentation for the components, and parameter learning is used to find the optimal values

for the model parameters.

More formally an example(x, f (x)) is a set of input datax, and an outputf (x) pro-

duced by applying the input data to an unknown functionf . Given a set of examples

generated usingf inductionis performed to find a hypothesis or model that best approx-

imates f . A good model will generalise, or predict well from unseen examples. If the

unknown function has a continuous output then inducing a model of it is calledregres-

sion, and when the output is discrete it is calledclassification.

Model selection is the task of selecting the model, from the set of all possible models,

that best predicts the examples. The model has to satisfy twocriteria. Firstly it must

predict well from the examples, and secondly it must not be too complex. A complex

model is likely to specialise on, oroverfit the examples, and noise within the examples.

This makes it less likely to generalise or predict from the unseen examples.

A learning algorithm performs the task of model selection, by searching through the

space of possible models to find the model that best predicts the examples. Asearch tech-

niqueis used to explore the space of possible models. It is typically guided by an explicit

fitness functionthat provides feedback to the search technique, by computing a score,

based how on the current best model predicts the examples. Some search techniques

use an implicit fitness measure where the fitness is included within the search technique.

There are a wide variety of search techniques, and fitness functions which are described

in the following sections.

Minimum description length (MDL) [107] is one approach to prevent overfitting. It is

an information based fitness score (Equation 2.2). The fitness is calculated by computing

the amount of information to code the model (Imodel); the amount of information to

code the parameters of the model for a particular instance (Iparams); and the amount of

information to code the residual (Iresidual), which is the difference between the model

predictions and reality. The best model can be found by minimising this score.

Itotal= Imodel+ Iparams+ Iresidual (2.2)

Another approach is to usek fold cross validation. This divides a set of examples intok

sections. Each of thek sections are then used as a test set, and the remaining examples

21

Chapter 2 Background

as a training set. The training set is used to induce a model, and the test set is used to

see how well it predicts from unseen examples. Models that overfit the training examples,

will predict poorly from the test examples. In this thesis 10fold cross validation is used

as described in Chapter 4.

2.4.2 Previous techniques for learning predictive models

This thesis presents novel approaches for learning predictive models from non-deterministic

spatio-temporal data from visual scenes. The visual scenesthemselves can contain a vari-

able number of objects, and the events within them can last over a variable length of

time. This means the input data is a variable length vector which can vary in size, both

spatially and temporally. This section will cover techniques that can firstly learn models

from variable length data, and secondly learn models of non-deterministic data.

2.4.2.1 Learning predictive models from variable length data

Most standard model learning techniques like neural networks, decision trees [99] and

support vector machines (SVMs) [127] require a fixed length input vector. This vector

often needs to be defined by hand, and as explained in Section 2.3 can only describe a

set number of objects over a specific range of time. For example Xu and Hogg [133]

learn a neural network to predict the position and size of a person walking through a

scene. Neural networks produce a prediction by passing the input through a set of linear

classification functions called neurons which are connected together into a set of layers.

The approach uses a fixed length input vector, so assumes thatonly one person will be

walking through the scene, and only a fixed length history will be used for the prediction.

One approach to allow a variable length vector to be used within a fixed length vec-

tor is to produce a histogram on the number of types of elements in the variable length

vector. In natural language processing this approach is called bag of words [50], where

a histogram is produced on the number of different words appearing in a document. To

apply the bag of words approach to digital images and videos aset of visual [118] or

video [90] words needs to be produced. To produce a set of visual words, image patches

are extracted from a set of training images, and these patches are clustered based on their

similarity. The prototypes found, which represent the centre of the clusters, are then

used as the visual words. Video words are produced in a similar manner except that the

patches use data from the current, and previous frames. Thisapproach has been suc-

cessfully applied to learning the categories of natural scenes [24], objects [17, 118], and

human actions [90].

22

Chapter 2 Background

Similar approaches have been applied when producing kernels that can use variable

length input vectors. Kernels are used to map a set of data points into a high dimensional

space, and are used with linear classifiers like SVMs to allowthem to deal with non-

linearly separable datasets. Grauman and Darrell [39] use apyramid match kernel which

uses a set of histograms each using progressively larger binsizes. At each histogram

information from each example that occur in the same bin are matched together. Each

example can contain a different number of of data items. The weighted sum of differences

of the number of matches between each subsequent histogram level is then computed. The

downside with all these approaches is that spatial or temporal relations between the data

items are lost when the statistics are produced. If this is important then a poor model will

be produced.

An alternative technique to deal with variable length vectors in situations where the

number of objects is fixed, but the history for events is variable, is use a predefined func-

tion to compute the value of the object configuration over time, for example computing

its average value. Sumpter and Bulpit [125] use this approach when learning a neural net-

work to predict the position and shape of a virtual robot sheep dog and a set of animals.

The object information at each point in time is represented by a set of learnt clusters.

The values of the clusters are modelled over time by a set of leaky neurons, where each

cluster is modelled by a single neuron. The activation levelof each neuron is based on the

running average of its current level, and its cluster’s value.

2.4.2.2 Learning models of non-deterministic data

The methods in the previous section assumed that the data is deterministic and the model

needs to make a non-probabilistic prediction. The remainder of this section will explain

techniques to deal with non-deterministic data, and probabilistic predictions.

Bayesian Networks graphically represent the full joint probability distribution be-

tween a set of variables as explained in Section 2.5.3.1. They still rely on a fixed sized

input vector, but can describe the likelihood of a particular prediction, and can deal with

missing data. Bayesian Networks typically have a fixed number of random variables so

will work in situations where the number of objects that might occur is known a priori,

and the length of history that is required.

Dynamic Bayesian Networks (DBNs) are Bayesian Networks that can probabilisti-

cally model a set of observations over time, for example object configurations, and can

deal with variable length histories. Each point in time is represented by a slice containing

a set of evidence variables, that describe observations from the world; and a set of hidden

state variables that describe the current state of the world. Three probability distributions

23

Chapter 2 Background

are also used: the prior distribution over hidden states, the transition model that gives the

likelihood of the hidden state given a set of previous hiddenstates, and the sensor model

that represents the likelihood of the evidence given the current hidden state. Given a set

of observations a DBN is created by unrolling [111], where the slice is replicated until all

the observations are covered.

Once a DBN has been created there are four main inference tasks: filtering, prediction,

smoothing, and most likely explanation. Filtering computes the likelihood of the current

hidden state, given a set of observations. Prediction computes the likelihood of a set of

future states. Smoothing computes the likelihood of a previous hidden state using current

and previous observations. Most likely explanation finds the set of hidden states that best

describe a set of observations.

Hidden Markov models (HMMs) [102] are a popular DBN. Each slice is a simplified

DBN as it only contains one state variable, and one observation variable. It also uses a

simplified transition model based on a first-order Markov process where the likelihood of

the current hidden state is only based to the previous hiddenstate. These simplifications

are important as they allow for some efficient inference algorithms to be used. HMMs

have been used for producing high-level models of human tasks from video, where the

observations are image features extracted from the video frames, and the states are the

possible human actions. The key reason to use a HMM for this task is that often the

observations are noisy, so it can be hard to make a predictionjust using their values. The

HMM deals with the observation noise by probabilistically modelling the observations

over time to determine which set of hidden states best matches the observations. HMMs

have been successfully used for sign language recognition [123] and recognising human

movement [11].

There are three main issues with HMMs: the observation variable must use a fixed

number of dimensions; only one state variable can be used; and the likelihood of the

current hidden state is only based on the previous hidden state. The remainder of this

section explains solutions to these problems.

Firstly, the observation variable in a HMM must use a fixed number of dimensions,

so typically it can only describe a fixed number of objects. This will not allow the HMM

to deal with scenes where there is a varying number of objects. One approach to solve

this problem is to use the representations described in Section 2.4.2.1 to represent the

observation variable. Kettnaker and Brand [54] propose another solution by represent-

ing the observation model as a Gaussian mixture model (GMM) over the variable length

observation. A GMM approximates a probability distribution by using a set of weighted

Gaussian distributions. Each observation is applied to theGMM and the results are mul-

24

Chapter 2 Background

tiplied together. It was successfully applied to learn the behaviour of vehicles at a traffic

intersection. The downside of this approach is that it does not easily represent relations

between observations, as each of the Gaussian distributions used in the GMM requires a

fixed number of dimensions.

Secondly, HMMs can only use one hidden state variable, whichmakes it hard to de-

scribe interactions between multiple objects. Coupled Hidden Markov Models [92] are a

DBN which can represent two objects interacting. Each slicehas a hidden state and obser-

vation variable for each of the two objects. The likelihood of each hidden state is related

to each of the previous hidden states from the two objects, and so can model interactions

between the objects. This approach is limited to a maximum oftwo interacting objects,

as above this number there only exists approximate inference techniques.

Thirdly, HMMs only base the likelihood of the current hiddenstate on the previous

hidden state, so cannot explicitly model higher order temporal dependencies, although

the structure of the HMM does allow them to be implicitly modelled. Variable Length

Markov Models (VLMMs) [35] are an efficient way to describe the number of previous

states required to predict a new state. VLMMs use a sequence of states based on symbolic

observations, and use this to learn a model that can probabilistically predict the next sym-

bol. This is performed by finding the optimal number of previous symbols that is required

to predict each symbol. The observations at each point in time are represented by a fixed

length vector. To produce a symbolic sequence the observations must be converted to a

symbolic sequence. This can be performed by clustering the observations to produce a set

of prototypes. A symbolic stream is formed by replacing eachobservation by the name

of its closest prototype. VLMMs have been applied to modelling traffic interactions [34],

and human behaviour [35]. There are two main problems with VLMMs: firstly there is

no way to assign probabilities to the observations, so they cannot model uncertain data;

and secondly the model has limited ability to deal with noise.

2.5 Production systems

Production systems are the architecture used to represent the predictive models and the

spatio-temporal data used in this thesis. They require a setof production rules, a knowl-

edge base, and a conflict resolution algorithm [66].

Production rules are of the form: IFconditionTHEN action. Within the context of

predictive spatio-temporal models the condition section represents a pattern to find in

the spatio-temporal data, and the action section represents the set of spatio-temporal data

to occur next. The production rules in this thesis have a similar representation to Horn

25

Chapter 2 Background

clauses (explained in Section 3.3.1). Each production ruletypically models a different

aspect of the spatio-temporal data. An alternative approach to describe the production

rules is to use a stochastic context free grammar (SCFG). A SCFG contains a set of

production rules written in propositional logic, each labelled with a probability. Each

production rule contains a non-terminal symbol in the condition section, and a list of

terminal and non-terminal symbols in the action section. They have been successfully

used to model poker games [80], and activities within a car park [49]. The main problem

of using SCFGs over first order logic is that the production rules used in SCFGs use

propositional logic which cannot contain variables and therefore are unable to generalise.

Production rules represented in first order logic can use variables and are therefore able

to generalise.

The knowledge base represents the history of past spatio-temporal data. In this thesis

frames are used to represent this spatio-temporal data, as described in Section 2.3.4. To

evaluate the production rules on the knowledge base thecondition-act cycle[66] is used.

This applies all the condition sections of the production rules to the knowledge base.

A conflict-setis produced of all production rules that successfully matchthe knowledge

base. In a traditional production system a conflict resolution algorithm is then used to

select one of the production rules. Its action section is then fired, and the output is added

back into the knowledge base. In this thesis the conflict resolution algorithm is slightly

modified. As the spatio-temporal data used in this thesis is non-deterministic there might

be multiple possible predictions, so the conflict resolution algorithm might return more

than one production rule. The action sections of the selected production rules are fired,

producing a prediction. This prediction, however, is typically not added back into the

knowledge base because in this thesis the production rules only base their prediction on

the history of past spatio-temporal data (Section 3.4).

The following sections will firstly describe how first order logic production rules are

learnt from spatio-temporal data. Secondly, the differentconflict resolution strategies that

can be used to decide which production rules to use when making a prediction will be

described. Finally, techniques to allow production rules to deal with non-deterministic

data will be described.

2.5.1 Learning first order logic production rules

This section will review techniques for learning first orderlogic production rules repre-

sented by Horn clauses. In the methods described in this section the head of the Horn

clause represents the action section of the production rule, which describes the next set

26

Chapter 2 Background

of spatio-temporal data; and the body represents the condition section of production rule,

which contains a set of literals representing a particular pattern in the spatio-temporal

data. Firstly supervised learning techniques to learn Hornclauses will be described, sub-

sequently unsupervised learning techniques will be covered.

Inductive Logic Programing (ILP) [82, 100] is a supervised learning technique to in-

duce a set of Horn clauses. It requires a set of examples, and aset of background Horn

clauses. The background Horn clauses describe unlabelled data from the world. The set

of examples represents labelled data from the world that needs to be learnt. The set of

induced Horn clauses should be able to correctly predict theexamples using the back-

ground Horn clauses. For example a set of Horn clauses might be learnt to predict if a

person will go left or right at the fork in the path. The background Horn clauses represent

the spatio-temporal information of a person’s position on the path over time. The exam-

ples describe when a person took the left or right fork. The Horn clauses that are learnt

should accurately predict the fork the person took based on their previous positions along

the path. More formally there is a set of positiveE+ and possibly negative examplesE−,

along with a set of background clausesB. In this thesis only positive examples are used,

as the videos are from real-world domains where it is hard to generate negative examples.

The aim is to learn a hypothesisH containing a set of Horn clauses that entail the posi-

tive examples given the background, but does not entail the negative examples given the

background (Equation 2.3).

(B∧H |= E+)∧ (B∧H 6|= E−) (2.3)

There are two approaches to supervised learning of a set of Horn clauses: learn them

in a sequential manner or learn them concurrently. These will now be explained in more

detail.

2.5.1.1 Supervised learning of a set of Horn clauses in a sequential manner

To learn a set of Horn clauses sequentially a covering methodlike the AQ algorithm

[76] is used. The covering method works in the following manner. An example will be

chosen and a Horn clause that entails the example will be learnt. This is then added to

the hypothesis. Then all other examples that are entailed bythe Horn clause are removed,

and the process repeats until there are no more examples left.

FOIL [100] uses the AQ algorithm to learn a set of Horn clauses. It starts its search

for a Horn clause by creating one with an empty body. It then uses a greedy search to find

the best Horn clause. At each stage the current best Horn clause is specialised by either

27

Chapter 2 Background

adding a new literal, or adding an equality measure between two variables. A fitness

function using an information gain metric based on the number of positive and negative

examples matched by the Horn clause is used to find the best specialisation. The search

stops when a Horn clause is found that does not cover any of thenegative examples. FOIL

cannot learn just from positive examples, and must either have negative examples, or a

closed world assumption.

Progol [82,85] also uses the AQ algorithm, but can learn justfrom positive examples.

It is used in this thesis as a comparison method to the methodspresented in Chapters 4

to 6. To find a Horn clause the search space is bounded by the most specific Horn clause

which entails the example. All Horn clauses found must subsume the most specific Horn

clause. To learn the most specific Horn clause a positive example and a set of mode

declarations are used. There are two types of mode declarations: head, and body. Head

declarations limit the constants and variables used in the head of the Horn clause; and

body declarations to limit the literals that can be used in the body of the Horn clause. To

find the best scoring Horn clause an A* search [111] is used, which performs a general

to specific search over the lattice of subsumptions from the most specific Horn clause.

A* search is a best first search, which uses a heuristic function, in this case based on the

number of positive and negative examples the Horn clause hasentailed and how many

more literals are required to produce a solution. The searchstarts with an empty Horn

clause which is then refined by adding new literals to it such that it still subsumes the

most specific Horn clause. The search stops when a Horn clauseis found which has a

fitness score that cannot be improved by any refinements.

The two previous techniques use a greedy search methods to learn Horn clauses. Us-

ing a greedy search method to find clauses has the problem thatit might find locally

optimal solutions. An alternative technique is to use stochastic search methods which can

look at different areas of the search space concurrently making it less likely to find local

optima. One approach is to use random restart search. This starts by randomly generating

a Horn clause, and adding it to the current list of active Hornclauses. A Horn clause

is then selected from the active list either randomly, or by picking the best scoring Horn

clause. Refinements to the Horn clause are added to the activelist, and the process re-

peats. This will continue until a set number of Horn clauses have been evaluated, at which

point the search is restarted. This process will then continue until an overall number of

Horn clauses have been evaluated, when the search will stop.Železnýet al. [129] present

a large study of random restart methods compared with deterministic search techniques.

They conclude that random restart methods have a lower search cost than deterministic

search techniques. Muggleton and Tamaddoni-Nezhad [87] use random restart search

28

Chapter 2 Background

in their quick generalisation technique. This finds consistent Horn clauses in the search

space. These are Horn clauses which entail at least one of theexamples. It has been used

to provide Horn clauses in Progol’s A* search algorithm, andas a seed to a genetic algo-

rithm (GA) . Genetic algorithms are described in more detailin Section 2.6. When there

were few consistent Horn clauses in the search space it was found that QG seeded GA was

more efficient, both in runtime and Horn clauses evaluated, than the A* and unseeded GA

techniques.

Nezhad and Muggleton [126] use a GA [37] to search for a singleHorn clause. A

novel binary representation is used which represents the variable bindings (variables in

the head and body that are the same), in the most specific Horn clause. Through the use

of genetic operators specific variable bindings could be allowed or disallowed, creating a

more specific, or more general, Horn clause which still subsumes the most specific Horn

clause. The technique was implemented using a simple GA, andreplaced the A* search

used in Progol to find the best Horn clause. The results showedthat the GA based search

performed better than A*. The SIA01 algorithm [4] uses a GA binary representation

based on the selected example. The system then learns a Horn clause that generalises

from this example by using crossover and mutation operatorsthat generalise predicates,

change constants, and replace constants with variables. A fitness function based on the

consistency, completeness, and syntactic generality of the Horn clause is used. Individuals

are added to the new population if they have a better score than the worst individual in the

new population. When the score of the current population hasnot changed for a number

of generations the best individual is returned. Stochasticclause selection [122] randomly

selects a fixed number of Horn clauses from the search space that guarantee a Horn clause

will be found that is good enough for the solution. It was shown to give better results than

Progol, both on the time to find a Horn clause, and the accuracyof the Horn clause.

The methods reviewed in this section show that stochastic search techniques can find

good Horn clauses in a shorter time than greedy search techniques. This was one of the

reason a stochastic evolutionary search approach was chosen to learn the production rules

in this thesis (Chapter 4).

2.5.1.2 Supervised learning of a set of Horn clauses concurrently

The methods described in the previous section induce Horn clauses sequentially until all

the examples have been covered. There has also been work on learning the complete set

of Horn clauses concurrently. A comparison of the differentsystems is shown in [23].

One of the first systems to do this was REGAL [36]. It used a distributed GA system.

The system is divided into a set of nodes each running a separate GA. The nodes learn

29

Chapter 2 Background

a Horn clause that covers a specific set of the examples. Thesenodes are controlled

by a central supervisor node. The supervisor node decides which subset of examples to

send to each GA node, and forms the overall set of Horn clausesby combining together

the best Horn clauses from each of the GA nodes. A hand defined language template is

used to represent the possible terms and variables that could appear in the Horn clause.

Figure 2.10 shows an example language template and its associated binary encoding. The

position(y,[p1,p2,p3]) colour(y,[b,r,g]) colour(x,[b,r,g])

0 0 0 10 0010

Figure 2.10: An example showing the language template and binary encoding used in
REGAL. Each box can contain a binary value, which indicates if the literal, or constant
should be used within the clause. The binary encoding shown in the diagram represents
the clausecolour(y,r), colour (x,g).

template is converted into a binary string so that it can be used in the GA. To select

Horn clauses in each of the nodes universal suffrage selection is used. This firstly selects

an example, and then probabilistically (based on fitness) selects a Horn clause that best

covers the example. If there are no results then the node generates a Horn clause that

covers the example. If there is a Horn clause then a crossoveror mutation operator is

applied to it (Section 2.6.5). The node picks an operator based on the fitness of the two

Horn clauses. The GA nodes work in a co-evolutionary way, by sharing Horn clauses at

the end of each generation with other nodes that have examples the Horn clauses match.

To form the overall theory the supervisor node asks each nodefor its best Horn clause.

The Horn clauses are then scored for fitness on all examples, and sorted by fitness score.

Then best Horn clauses are then kept. G-NET [3] uses the same architecture as REGAL,

but uses a fitness function based on minimum description length (MDL). G-NET’s method

to produce the set of Horn clauses is different to REGAL. Instead of using the best set ofn

Horn clauses, clauses are removed from the best set until there is no change in its fitness.

G-NET showed better results than both Progol and FOIL. Santos et al. [113] describe

an approach to combine multiple hypotheses generated from multiple Progol runs into a

final generalised hypothesis. An intermediate answer set (IAS) is created by combining

all the hypotheses from the multiple Progol runs. Next, eachHorn clause is selected, and

a check is performed against all other clauses to see if thereis a clause that it subsumes or

30

Chapter 2 Background

subsumes it. If this is the case then most general Horn clauseof the two is then removed

from the IAS. If this check fails the Horn clause is removed from the IAS and added to

the final answer set. This repeats until there are no more Hornclauses left in the IAS.

The clauses in the final answer set are then ranked by the number of times each clause

subsumes (or is subsumed by) the rest of the clauses, and onlythe most specific clauses

are kept. When compared on how the Horn clauses (that should be learnt) were ranked,

the technique ranked them high than Progol did.

In both REGAL and G-NET the supervisor node must combine the Horn clauses learnt

from the nodes to form the overall set of Horn clauses. A better approach is to allow

the system to find the most optimal set of Horn clauses by evolutionary search, rather

than learning individual Horn clauses. DOGMA [46] again uses a GA, and learns a set

of Horn clauses on two levels. The first level is similar to REGAL and G-NET. The

Horn clauses are represented using the same fixed binary template as REGAL and the

same set of genetic operators are used to evolve the Horn clauses. On the second level

a set of families are used which group up the Horn clauses to form the overall set of

Horn clauses. A separate set of genetic operators are used tojoin, and break up families.

This approach was shown to be better than FOIL with low to medium noise levels in the

training examples.

To avoid the limitation of using a fixed length GA to representthe set of Horn clauses

a variable length structure for example a tree could be used.Genetic Logic Programming

System (GLPS) [131] represents the set of Horn clauses as a forest of AND-OR trees.

Each tree represents a set of Horn clauses that all have the same head. The leaves of the

tree contain literals, and the nodes can either represent AND, or OR. The forest of AND,

or OR trees can be accessed on 4 different levels. The first level is the entire forest, the

second level is an individual AND-OR tree, the third level isa sub-tree within an AND-

OR tree, and the fourth level is a leaf node within an AND-OR tree. The only operator

used to evolve the forests of AND-OR trees is a modified crossover operator. It selects

two forests of AND-OR trees, by fitness proportionate or tournament selection, then two

elements both on the same level are selected. These elementsare then swapped over and

both forests of AND-OR trees are added to the new population.The system was combined

with the output from FOIL and was found to be more noise robustthan just using FOIL

alone.

This section has presented evidence that inducing a set of Horn clauses at the same

time, produces better results than learning Horn clauses sequentially. This was one of the

reasons the production rules were learnt at the same time (Chapter 4).

31

Chapter 2 Background

2.5.1.3 Unsupervised learning of sets of Horn clauses

The previous sections used supervised learning to induce a set of Horn clauses. An al-

ternative set of approaches called rule discovery systems use an unsupervised learning

approach where the learner is not given any labeled examples, but finds interesting Horn

clauses that cover the unlabeled examples, where interesingness is based on some crite-

rion. This allows a wider range of clauses to be found becausethere is greater flexibility

on what is an optimal Horn clause is given a specific context. It is useful in situations

where it is hard to provide complete set of labeled examples.For example with the path

example, it might be hard to have an example of every action the humans perform in the

scene, so an unsupervised learning approach could be used tolearn novel actions in the

scene.

Rule discovery systems maintain a list of clauses. A clause is then selected from the

list by using a specific search technique. Then the clause is removed from the list, and

checked to see if it is valid on a specific set of unlabeled examples. If the clause is valid

it is added to the overall hypothesis. If the clause is not valid then a refinement operator

is applied to the clause, to produce a set of new clauses whichare added to the list. The

approach repeats until the list is empty.

CLAUDIEN [103] uses a language bias to limit the possible setof clauses, and the

possible refinements to a clause. The validity of a clause is based on whether the percent-

age of the unlabeled examples that it models is above a presetthreshold. A best first search

is used to select clauses, with a search heuristic based on the minimum description length

principal, using the number of positive and negative grounding substitutions a clause has,

along with the length of the clause. Tertius [29] again uses abest-first search to select the

clauses. The search heuristic applies a set of sampled grounding substitutions to a clause,

and records the number of times the head and body are satisfiedby each substitution. The

refinement operator can add a new literal to the body of the clause, unify two variables,

or change a variable into a constant. They are ordered to ensure a specific clause is only

generated once during the search.

HR [15] is a rule discovery system used to learn mathematicaltheories. It induces a

theory containing a set of classification rules representedas range-restricted predicates,

and a set of association rules represented as range-restricted clauses. The refinement

operator uses a set of unary, and binary production rules. A production rule takes a single

clause, or two clauses, and changes them; for example removing variables from the head

of the clause, or composing two clauses together. The success sets (the data the clauses

match) for the new clauses are then calculated. If the success set is empty then association

rules representing a non-existence hypothesis are derived. If there is an existing clause

32

Chapter 2 Background

with the same success set then association rules representing an equivalence hypothesis

are derived. If the success sets are unique then a new classification rule is derived, and

association rules are also derived. A application based comparison of HR with Progol is

made in [14] which found that HR is more likely to find clauses that cover concepts with

fewer positive examples than Progol. Santoset al. [112] presents a comparison of Progol

and HR on a cognitive vision task. They concluded that both methods performed well

with different noise levels in the data, but overall Progol performed slightly better than

HR. HR found a larger number of clauses, and took longer to finda solution than Progol.

The techniques described in this section have been used to provide the input to some

of the learning methods explained in the following sections. They have not been incor-

porated into the method described in this thesis, as this relies on a supervised learning

approach. It could be done as future work to try and broaden the range of production

rules the method could search over.

2.5.2 Conflict resolution strategies

There are many different strategies that are used to performconflict resolution in expert

systems. These include: using the first production rule thatappears in the conflict set,

applying priority values to the production rules, and usingmeta-rules which decide which

kinds of production rules are more important than others [66]. Similar approaches are

used when a set of Horn clauses is used to predict an unseen example. The Horn clauses

are ordered typically from most specific to most general. Then each Horn clause is applied

in order, until one is found which entails the example. It is often hard to learn a set of

Horn clauses where some of the clauses do not match some of thenegative examples.

This will then cause problems with predicting unseen examples as it might get the wrong

prediction. A more accurate approach is to use all clauses and to form a consensus when

making the prediction.

Pompe and Kononenko [97] use the ILP-R [96] method to induce aset of clauses

from a set of training data. These clauses are then used as features within a Naı̈ve Bayes

classifier. To predict the class of an unseen example the classifier uses how well each

clause covers the unseen example, and the conditional likelihood that the clause will pre-

dict a specific class. The conditional likelihood is estimated from a set of labelled training

examples. A comparison was done with a procedural approach (where the clauses were

applied to an unseen example in order, and the class of the first matching clause was used).

The results showed that the Naı̈ve Bayes approach will stillwork when the procedural ap-

proach fails to return the correct classification.

33

Chapter 2 Background

Flache and Lachiche’s 1BC [30] system takes a similar approach except that the in-

stead of using an ILP method to induce the clauses from data the rule discovery system

Tertius [29] is used. The system is asked to find clauses that only contain one literal that

relates to a property of an object, and the rest of the literals must be related to relations be-

tween objects. This ensures that all the clauses will be independent when used as features

within the Naı̈ve Bayes classifier.

Another technique for improving the accuracy of classification is to use boosting to

learn a set of clauses. Boosting [115] combines a set of weak classifiers to produce a

strong classifier. A weak classifier makes a classification which performs just better than

random guessing. A weak learner is used to produce the weak classifiers by repeatedly

training itself on a weighted training set. On each run a weakclassifier is generated. The

error of this weak classifier on the training set is then calculated. This is used to weight

the weak classifier when the final classifier is produced. The weights on the training set

are then updated based on how well the weak classifier predicted each data item, including

weights at poorly classified items. To produce the final classification a weighted majority

vote over all the weak classifiers is performed. Quinlan [101] applies boosting to the

FFOIL system, which is a variant on FOIL [100] designed to learn functional relations.

The standard boosting algorithm is changed in two ways. Firstly a weighted re-sampling

technique is used to generate the data set to learn each new clause. This is performed by

sampling the training set based on the weights on the data items. Secondly the weight

on each learnt clause is the same. The results showed that theboosting version of FFOIL

produced more accurate results than the non-boosted version.

Muggletonet al. [86] use a SVM to decide the class of an unseen example based on

a set of clauses which entail it. The Progol ILP system is usedinitially to find a large

number of clauses (typically around 1500 - 2000) which correctly cover a pre-defined

percentage of the training data. The clauses are then applied to each example in the

training set, and it is recorded if the clause can correctly entail the example. A kernel is

used that compares the similarity of two examples based on the set of clauses which entail

them. This kernel can then be used with a SVM to predict the class of an unseen example

based on the set of clauses which entail it. A comparison was done using a structured

toxicology dataset, and it was shown that this technique is more accurate than Progol, and

standard SVM methods.

The previous set of methods work in two stages: firstly the Horn clauses are learnt

using a standard ILP algorithm, and the parameters of a conflict resolver are learnt, which

compute its most likely class of an unseen example based on which clauses entail it. This

next set of methods presented here use a combined approach where both the Horn clauses

34

Chapter 2 Background

and parameters of the conflict resolver are learnt at the sametime. This then ensures that

more accurate predictive models can be learnt.

Daviset al. [19] use a greedy learning algorithm called Score As You Use (SAYU).

Firstly the Aleph ILP system [121] is given an example, and used to find a clause that

generalises the example. The clause is learnt in a greedy manner where a clause with the

highest m-estimate is used. This clause is then added as a binary feature to a Bayesian Net-

work. The structure and parameters of the Bayesian Network are then learnt. The score of

the Bayesian Network is then calculated by using the area under its precision-recall curve.

If the score is worse than the previous score the clause is removed. The algorithm was

tested on both a Naı̈ve Bayes classifier (described in the next Section 2.5.3.1), and with

a Tree Augmented Naı̈ve Bayes (TAN). A TAN is similar to a Naı̈ve Bayes classifier but

can allow a feature to be dependent on one other feature. The technique was only tested

on binary classification problems, and was found to use fewerclauses, and shorter clauses

than using a two-stage approach.

Landwehret al.[61] use similar ideas by integrating Naı̈ve Bayes into FOIL. The cov-

ers, and score functions in FOIL are re-written. The covers function determines whether

an example is predicted by a hypothesis given some background information. The score

function returns a score based on how well a hypothesis covers the set of examples given

some background information. The changed covers function used a Naı̈ve Bayes classifier

to return the probability of a hypothesis predicting an example given some background

information. The score function was changed to return the probability of a hypothesis pre-

dicting a set of examples given some background knowledge. The separate and conquer

approach to learn examples used in FOIL (where examples thatare covered by a learnt

clause are removed from the training data), is removed. The system uses a beam search

for clauses, which keeps a set of then best clauses found so far, and will stop learning

clauses when there is no change in the score between adding two separate clauses to the

hypothesis. The approach was shown to be more accurate than using standard ILP.

The novel approach to conflict resolution presented in this thesis is similar to the two

previous methods [19, 61]. A combined approach is used to learn the production rules,

and the probability distribution for the conflict resolver (Chapter 4). However unlike the

methods described in this section the conflict resolver returns a set of production rules

rather than a particular classification. To produce a prediction the action sections of these

production rules are fired creating a set of spatio-temporaldata. This is the same as how a

conflict resolver in an expert system works, and allows the predictive models to generalise

from a set of spatio-temporal data, as shown in Section 3.3. Afull Bayesian Network

(Section 3.3), is used to represent the conditional probability distribution used within the

35

Chapter 2 Background

conflict resolver as opposed to Naı̈ve Bayes or TAN used in themethods in this section.

This allows for better modelling of the dependencies between different production rules

when deciding which production rules to use to predict the next set of spatio-temporal

data.

2.5.3 Applying first order logic production rules to non-deterministic

spatio-temporal data

This section presents a review of methods for combining firstorder logic with proba-

bility. These methods allow the first order logic productionrules to be used with non-

deterministic spatio-temporal data, and allow the outcomeof a first order logic produc-

tion rule to be uncertain. Firstly probability will be defined, then Bayesian Networks and

finally techniques to combine first order logic and probability will be shown.

2.5.3.1 Probability

Probability may be used to represent/model how likely particular events are to occur in

the world. This section will give a brief overview of probability related to this thesis,

for a fuller explanation please refer to [111]. The world is made up of a set of random

variables that each describe particular parts of the world.Eachrandom variable Xcan

either be continuous or have a set of discrete statesxi . An eventdescribes if a particular

occurrence might occur in the world, and assigns a state to each of the random variables.

A probability value between 0 and 1 is then assigned to the event to describe how likely

it is to happen. The probabilities of all possible mutually exclusive events in the world

must sum to 1. Thefull joint probability distributionrepresents the probability for every

possible combination of states over the random variables.

The prior probability distribution(Equation 2.4) represents probability of a random

variableX being in statex1, ...,xn when there is no other information about the state of the

world. Theconditional probability distribution(Equation 2.5) is used when there is some

information on the state of the world that is relevant to determining some other state. It is

the probability of variableA being in stateai conditioned on the fact that variableB is in

stateb j .

P(X = xi) (2.4)

P(A = ai |B = b j) =
P(A = ai ,B = b j)

P(B = b j)
(2.5)

The product ruleshown in Equation 2.6 is a rearranged version of the conditional

probability distribution, but is a key equation used to build Bayesian Networks.Bayes

36

Chapter 2 Background

rule (Equation 2.7) is used to invert the conditional probability distribution in cases where

there is information on random variableY, but little information on random variableX.

P(A = ai,B = b j) = P(A = ai|B = b j)P(B = b j) (2.6)

P(Y|X) =
P(X|Y)P(Y)

P(X)
(2.7)

Equation 2.8 shows the condition that the random variableX is independentofY. Con-

ditional independence(Equation 2.9) states that given random variableZ the conditional

probability of random variablesX andY can be broken down into independent condi-

tional probability distributions where each random variable X andY are conditioned onZ.

Conditional independence is an important concept which is used within the Näive Bayes

classifier (shown in Equation 2.10) where the set of boolean featuresF = { f1, ..., fn} are

each assumed to be conditionally independent given the class variableC.

P(X|Y) = P(X) (2.8)

P(X,Y|Z) = P(X|Z)P(Y|Z) (2.9)

P(C,F) = P(C)∏
i

P(fi|C) (2.10)

2.5.3.2 Bayesian Networks

The simplest way to represent the full joint probability distribution for discrete variables

is to use a table. This can quickly require lots of memory as the number of variables is

increased, often requires a lot of data to estimate making ithard to compute, and is very

poor at generalising. Using the product rule and conditional independence assumptions

the full joint probability distribution can be broken down into a set of conditional prob-

ability distributions for each random variableXi based on a set of parent nodesPa it is

directly influenced by (Equation 2.11).

P(X1, ...,Xi) = ∏
i

P(Xi|Pa(Xi)) (2.11)

This can then be represented by a Bayesian Network (also called a Belief network)

[94] by using a directed acyclic graph (DAG). The random variables represent the nodes

of the graph, and the edges represent the links to each node’sparents. An example DAG

37

Chapter 2 Background

is shown in Figure 2.11. To perform exact inference over the Bayesian Network can

be intractable when it is a multiply connected (when there ismore than one undirected

path between any two nodes in the network). An alternative approach is to approximate

by sampling from the Bayesian Network. The Markov Chain Monte Carlo (MCMC)

algorithm [75] is a popular sampling technique, which uses atransition probability to

jump between variable states. If the algorithm is run long enough the time spent in each

of the variable states will approximate to the actual distribution.

X

A B C

Figure 2.11: A simple Bayesian Network involving four variables:X, A, B, andC. X has
three parent nodes it is directly influenced by:A, B, andC.

There are two key problems with learning Bayesian Networks:Parameter learning,

and structure learning. Parameter learning relates to estimating the conditional proba-

bility distribution for each random variable in the Bayesian Network. Structure learning

relates to computing the optimal set of edges between the random variables so that the un-

derlying full joint probability distribution is well modelled, or approximated. Acomplete

datasethas a value for each of the random variables in every example.An incomplete

datasethas examples where some of the random variables are not assigned a value. When

the structure is already predefined and there is a complete dataset the parameters of the

Bayesian Network can be estimated directly from the dataset. When there is a complete

dataset, but the structure and parameters are undefined there are a variety of approaches

including genetic algorithms [62] and greedy algorithms [16,44].

The structure of a Bayesian Network can often be simplified byintroducing extra ran-

dom variables into the network calledhidden nodes. When the structure of the network

containing these hidden nodes is fixed the problem is to estimate the parameters of the

network. In the previous case this problem was easy because the parameters could be

directly estimated from the dataset, as the network now contains hidden nodes an esti-

mation of what these parameters could be needs to be found from the dataset. The EM

(Expectation Maximization) algorithm [20] can be used to solve this problem. It uses an

incomplete dataset where the data for the hidden variables is unknown. The parameters

38

Chapter 2 Background

are computed in two steps. Firstly the expectation step usesthe current parameters and the

incomplete dataset to compute the possible distribution ofvalues for the hidden variables.

Secondly, in the maximisation step each the possible valuesfor the hidden variables are

used to create a complete dataset, which is used to update theparameter values.

2.5.3.3 Combining first order logic and probability

Section 2.5.2 looked at predicting, or classifying an example by using a set of first order

logic production rules. Here it was assumed that the examples were deterministic, and

there was no way to assign a probability to how likely the prediction or classification was.

This section will review methods for assigning probabilities to examples, and production

rules, so that the likelihood of a prediction, or classification can be computed.

Early techniques to solve this problem come from the area of expert systems. Here

the likelihood of a prediction or classification produced bya production rule is based on

the likelihood of the production rule, and the likelihood ofthe examples used in the rule.

Bayes rule [43] and certainty theory [116] have been used to represent this probability.

The probabilities are typically hand-defined, and the technique only allows the probability

of production rule to be based on a sub-set of examples it usesfrom the knowledge base.

An alternative approach comes from Probabilistic Logic Learning [104] which com-

bines probability, logic, and learning techniques. Probabilistic logic learning upgrades, or

generalises, standard probabilistic representation techniques to incorporate logical clauses.

The previous approaches only allowed the likelihood of a single production rule to be es-

timated based on a sub-set of examples it matches. Probabilistic logic learning however

allows the likelihood to be computed of a set of production rules based on how well they

match or predict a set of examples.

Haddawy [40] describes a Bayesian Network using first order logic sentences. A

knowledge base is used to store the structure of the network.Each sentence has its own

conditional probability table that relates its value to thevalues of its parent sentences.

Checks are performed to ensure that the sentences will builda valid Bayesian Network. To

perform inference over the knowledge base a set of examples in the form of ground logic

statements and a grounded query term are required. A networkgeneration algorithm uses

the knowledge base to backward chain from the query until a grounded Bayesian Network

is produced that includes the examples. Inference is then performed over the grounded

Bayesian Network to produce the probabilistic likelihood of the query. This approach uses

a hand defined set of logical sentences to describe the Bayesian Network. Kersting and De

Raedt [53] developed an approach called Bayesian Logic Programs (BLP), where both the

logical clauses, and their parameters can be learnt. Bayesian Logic Programs require a set

39

Chapter 2 Background

of Bayesian clauses, a set of conditional probability distributions, and a set of combining

rules. A Bayesian clause is the same as a range-restricted Horn clause except each of

the atoms and predicates have a finite domain, defined by the states of random variables.

Each Bayesian clause has an associated conditional probability distribution representing

the probability of the state of the head, given the state of the body. Combining rules are

used to combine the conditional probability distributionsof two Bayesian clauses that

have different bodies, but the same head. Structure learning is performed by applying

a greedy structure learning method to the initial results from the knowledge discovery

system CLAUDIEN [103]. This adds and deletes atoms from eachof the clauses and

keeps the one which keeps the network acyclic and has the bestresults. This repeats until

there is no change in the score.

Similar approaches have been used by Koller and Pfeffer to combine frame based

systems [57], and relational databases [33] with Bayesian Networks. In [57] each class

frame has a set of slots added to it which describe its values,its parent frames, and a

conditional probability distribution that computes the likelihood of its value based on the

values of its parents. A knowledge based model constructionmethod is then used to take

a set of frame instances and build a Bayesian Network. This work is extended in [33]

to relational databases where a probabilistic relational model (PRM) is used to represent

the probability distribution. A greedy search method is used to learn the structure and

parameters of the PRM.

Markov Logic Networks [106] generalise Markov networks. A Markov network (also

called a Markov random field) models the joint probability distribution of a set of random

variables. It uses an undirected graph and a set of potentialfunctions. Each variable is a

node in the graph, and each potential function scores the value for a specific clique (group

of neighbouring nodes) in the graph. The joint probability is computed by setting each

variable to a specific value, and then multiplying together the values for the cliques. This

value is then normalised by summing joint probability for every possible combination

of values for the variables. A Markov Logic Network uses a first order knowledge base

containing a set of constants, and a set of first order sentences where each sentence is

assigned a real number. This is used to produce a Markov network where each node

is a grounded predicate. The potential functions are replaced by using the exponential

sum of the number of true groundings for each first order sentence in a specific world

weighted by its real number. To compute the joint probability of the Markov network it is

assigned a specific world. Each world assigns a true or false value to each of the grounded

predicates. Then the probability of this world over all other worlds is computed. Markov

Logic Networks can be learnt by using a greedy beam search [55], but this can get trapped

40

Chapter 2 Background

in local optima. Bibaet al. [9] overcomes this problem by using an iterative local search

technique.

Stochastic Logic Programs [18, 83] are a generalisation of stochastic context-free

grammars and HMMs. Stochastic Logic Programs are used in this thesis (Chapters 4

to 6). A stochastic logic program (SLP) contains a set of firstorder range-restricted def-

inite clauses, where each clause has a value associated withit. Range-restricted means

that every variable that appears in the head of the clause must appear in the body. A pure

SLP is one where all the clauses have values, and an impure SLPis one where some of

the clauses have values. A normalised SLP is one where the values for clauses having

the same head sum to 1, and an un-normalised SLP is one where the values do not sum

to 1. The probability distribution over SLPs is defined usingthe set of derivations of a

particular query. From this three probability distributions can be produced. The proba-

bility distribution over the set of derivations, the probability distribution over the set of

refutations (these are successful derivations), and the probability distributions over atoms

(this is based on the outcome from the refutations). Muggleton [84] describes a two-phase

approach to learn SLPs. Firstly a set of Horn clauses are learnt using Progol, and then

parameters for each clause is computed by looking at the probability of each clause based

on to the frequency with which the clause is involved in the proofs of the positive ex-

amples. The failure-adjusted maximisation (FAM) [18], canalso be used to estimate the

parameters for normalised SLPs. FAM is based on the EM algorithm with an adjustment

made for failure derivations. Muggleton shows in [81] an analytical solution to learn the

parameters and structure of the SLP at the same time, howeverthere is no current im-

plementation of the approach. A comparison with BLPs is madein [98] where it was

shown that BLPs can encode the same information as SLPs, and by applying combining

functions to SLPs they can encode the same information as BLPs.

This section has showed techniques that combine logic and probability, so that the

likelihood of a set of production rules over a set of examplescan be computed. The

method described in Chapters 3 and 4 predicts the possible sets of spatio-temporal data

by using the first sub-set of the history the production rulesmatch, so only computes the

possible set of predictions based on a sub-set of examples rather than over all examples.

This makes it similar to approaches from expert systems explained at the start of this

section. The technique in this thesis could be expanded by finding all possible matches

for the production rules in the history, and then producing adistribution over all predicted

spatio-temporal data. This is not explored in this thesis, but could be investigated in future

work.

41

Chapter 2 Background

2.6 Evolutionary search

Evolutionary search is a based on Darwin’s theory of naturalselection and the survival of

the fittest. It works well in search spaces with a large numberof local minima, or maxima,

where local or greedy search techniques will often fail to find the correct solution. This

section will first give an overview of evolutionary search, then it will talk about two main

evolutionary searches: genetic algorithms and genetic programming. A variant on genetic

programming is used in this thesis to learn the predictive models (Chapter 4).

2.6.1 Overview of evolutionary search

Figure 2.12: An evolutionary search flow chart.

Evolutionary search works in the following manner, see Figure 2.12. Firstly, a pop-

ulation of randomly generated individuals is produced. Next a fitness function is used

to assign a fitness value to each individual of the population. Then individuals of the

population are selected based on their fitness and a set of genetic operators is used to

combine them, which creates a new population. The individuals are then scored again,

and a check is made to see if a specific number of generations have passed, or an individ-

ual of a specific fitness has been found. If this is the case thenthe fittest individual from

the population is returned, otherwise the process is repeated.

The next few sections will look at different techniques to represent individuals in the

population, different fitness and selection methods, different genetic operators, methods

42

Chapter 2 Background

to reduce the complexity of the final solution and finally methods to prevent bloat and

improve population diversity.

2.6.2 Representation

The two main techniques to represent the individuals in the population are binary strings,

or trees. Genetic Algorithms (GA) [37] use a binary string which is typically of a fixed

length and Genetic Programming (GP) [58] (with a good overview in [95]) uses a tree

based representation. Some other representations include[52] which uses a linear se-

quence of instructions, and [77] which uses an indexed graph.

In GAs the binary string encodes the possible solutions. To create the initial popu-

lation a random set of binary strings is generated. In GP trees are made up of terminals

and functions. Terminals can be constants, variables, or functions with no arguments, and

they appear in the leaf nodes of the tree. Functions are standard computer programming

functions for example+, AND, or SIN and they appear in the nodes of the tree. Aleaf

nodeis a node which does not have any child nodes. Aroot nodeis a node which does

not have any parent nodes. Thedepthof a node is defined as the number of edges that are

traversed from the root node to the node. Themaximum depthis defined as the depth of

the deepest leaf node. Figure 2.13 shows a GP program representing the equation 1+x2.

X

1

+

X

*
Max depth

Depth

Root node

Leaf node

Figure 2.13: An example GP binary tree which is representingthe function 1+x2.

The function nodes are∗ and+, and the terminal nodes are 1, andx. The root node is+,

and the depth to the 1 node is 1, and the maximum depth is 2. The trees evaluated in a

depth first manner.

In Koza’s original research work on GP [58] all the functionsused in the tree had to

exhibit a property called closure. This is the ability for a function to be able to handle

arguments of any datatype and any value. The key idea behind closure is that a tree can

still be evaluated using any arbitrary set of functions. This creates two main problems.

Firstly each function must be written to handle the output ofevery other function, which

43

Chapter 2 Background

can often make it hard to write. Secondly, there is a large setof possible ways to combine

the functions which produces a large set of possible trees some of which are nonsensical.

An alternative approach is to impose a typing to the tree; this only allows functions and

terminals to connect together if the function can handle thedata produced by the terminal

or function, reducing the size of the search space. StronglyTyped Genetic Programming

[79] assigns a hand defined type to each terminal, and to each function it assigns a hand

defined a type for each of its arguments, and the type of data itreturns. Checks are

performed when the tree is initially generated, or altered to ensure that for all functions

the type of its child nodes match the type of its arguments.

There are two techniques that can be used to produce the initial trees: the Full method,

and the Grow method. The Full method ensures the depth of the terminals in the tree are

all at the maximum depth. This is achieved by only using functions at all depths other

than the maximum depth. At the maximum depth only terminals can be used. In the

Grow method either a function or a terminal is used at every depth other than maximum

depth. Again, at the maximum depth a terminal is picked. To produce an initial population

containing a large range of tree depths and structures Ramped half and half [58] is used.

This generates trees from a hand defined minimum depth to a maximum depth using both

the Full and Grow methods in equal proportion.

2.6.3 Fitness methods

To assign a fitness to individuals in the population a fitness function is required. This

assigns a score to each individual in the population based onhow well it solves the task to

be completed. Koza [58] describes four fitness methods: raw fitness, standardised fitness,

adjusted fitness, and normalised fitness. Raw fitness is in terms of the problem to be

solved. It compares the individual against a number of fitness cases, or examples. For

example with the path example there will be a number of different situations of a person

walking along the path, and the raw fitness will be the number of times an individual in

the population correctly predicts which fork the person will take. Raw fitness is typically

based on error. This is produced by computing for each example the difference between

the example’s output and individual’s output; and then summing the results. Raw fitness is

used in this thesis, described in Section 4.7, scores how well the predictive models predict

from a set of history. To compute the fitness the predictive model is applied at each point

in the history to produce a prediction. This prediction is compared against the data at the

next time point in the history to produce a predictive match score. The fitness is produce

by computing the average predictive match score over the history.

44

Chapter 2 Background

Standardised fitness changes the raw fitness so that a lower value is better than a higher

value, where a value of 0 is best. This is shown in Equation 2.12 wherermax is the largest

possible raw fitness value, andr(i) is the raw fitness of individuali.

s(i) = rmax− r(i) (2.12)

Adjusted fitness (shown in Equation 2.13) emphasizes small changes in standardised

fitness, this allows greater separation of the fitness of individuals when the fitness starts

to converge in later generations.

a(i) =
1

1+s(i)
(2.13)

Normalised fitness is computed from the adjusted fitness (Equation 2.14). It is the

individual’s adjusted fitness, normalised by the total adjusted fitness for the population.

Normalised fitness assigns a larger value to individuals with higher fitness, and can be

used by fitness proportionate selection described in the next section.

n(i) =
a(i)

∑M
k=1a(k)

(2.14)

2.6.4 Population sampling methods

Population sampling methods, as described in Section 2.6.1, are used to select individuals

from the population based on its expected value. Theexpected valueof an individual is

the expected number of times the individual will be selectedto reproduce and is based

on the individual’s fitness. These individuals will then be given to the genetic operators

(described in the next section) to produce a new population.It is important that the popu-

lation sampling method does not sample excessively from thevery fit individuals, which

would create a new population dominated by these individuals. This will reduce diversity

(explained in Section 2.6.7) causing the population to prematurely converge. Conversely,

if the population sampling method does not sample enough from the fitter individuals of

the population it will take a long time to find an optimal solution.

In fitness proportionate selection [48] the “expected value” of an individual is based

on its fitness divided by the total fitness of all individuals in the population. Individuals

with higher fitness will have a higher expected value, and therefore will reproduce more.

There are two methods to implement fitness proportionate selection: roulette wheel sam-

pling, and stochastic universal sampling (SUS). Roulette wheel sampling is equivalent to

allocating space on a circular wheel based on the fitness of each individual. The wheel

45

Chapter 2 Background

is then virtually spun to select an individual. This repeatsuntil the number of individu-

als required for the new population are selected. In roulette wheel an individual can be

selected a large number of times more than its expected value. This could cause a very

unfit or very fit individual to dominate in the new population.Stochastic Universal Sam-

pling [6] is an approach to solve this problem. Instead of spinning the roulette wheeln

times based on the individuals required for the new population the wheel is spun once,

but hasn equally spaced pointers on it which are used to select the individuals. The main

problem both of these fitness proportionate selection methods is that they are biased to

pick fitter individuals in the population in early generations. These fitter individuals will

then dominate the population, reducing diversity and ultimately causing the evolutionary

search to prematurely converge.

There have been a number of methods to solve these problems, which scale the raw

fitness of an individual to an expected value. Sigma scaling [31] keeps the selection

pressure at a constant value for the entire run. The selection pressure is the how much of

the population is dominated by highly fit individuals. An individual’s expected value is

based on the its fitness, and the mean and standard deviation of the population. Boltzmann

selection [38] allows the selection pressure to vary duringthe run. A temperature is used

to control the selection pressure where a high temperature means a low selection pressure.

Over the run the temperature is lowered which increases the selection pressure, allowing

the population to focus on the fitter individuals.

Alternative techniques to using fitness proportionate selection are: tournament selec-

tion, and rank selection. Tournament selection [37] picksn individuals at random from

the population, and returns the one with the best fitness. Larger values forn cause the

method to sample more often from the fitter individuals in thepopulation. Rank selection

bases the expected value of an individual on its rank rather than its actual fitness. This is

performed by sorting the individuals by their fitness and assigning them a number from 1

to the size of the population. In this thesis tournament selection is used (Chapters 4 to 7).

Rank selection [5] prevents highly fit individuals from dominating the population, but it

can slow down the search.

2.6.5 Genetic operators

In a Canonical GA [130] the sampling method is firstly used to create an intermediate

population which is the same size as the current population.Subsequently two binary

strings are selected at random, without replacement, from the intermediate population.

One point crossover [37] is used to change the two binary strings. A cut point on the

46

Chapter 2 Background

binary string is selected, and each binary string has the contents past the cut point swapped

over with the contents from the other binary string. If crossover is not performed the

binary strings are left unchanged. Mutation is performed onthe two binary strings with

a small probability each bit in the binary string is randomlychanged. The two binary

strings are then added to the new population. This process repeats until the intermediate

population is empty.

GP uses similar genetic operators, but does not use an intermediate population, and

it does not combine the operators together. The crossover operator [58] selects two trees

from the population, and randomly picks a sub-tree on each program: these two trees are

swapped over and are added to the new population. Figure 4.5 shows crossover performed

on two trees. The mutation operator [58] selects one tree from the population, randomly

picks a sub-tree on it, and replaces it with a randomly generated sub-tree. Figure 2.15

shows mutation performed on a single tree. The reproductionoperator [58] selects a tree

from the population and adds it to the new population.

Crossover

Figure 2.14: Crossover performed on two trees.

Mutation

Figure 2.15: Mutation performed on a tree.

47

Chapter 2 Background

2.6.6 Reducing the complexity of evolving solutions in Genetic Pro-

gramming

Normally in GP the program is represented as one tree. However, to solve many problems

repeated use of the same code is required. To do this with one tree requires GP to evolve

the repeated pieces of code separately in the correct parts of the tree, which can often be

difficult for large problems. A better solution is to break upthe tree to that it has sub-

trees that represent the repeated pieces of code, and a result sub-tree that uses the code

sub-trees when it is evaluated. Kozaet al. [59] use this approach by replacing the tree

ADF3 ADF2 ADF1
Result
branch

Root node

Figure 2.16: A tree containing a result producing branch, and a set of automatically de-
fined functions.

with a result producing branch and a set of Automatically Defined Functions (ADFs).

The ADFs represent different pieces of repeated code, and the result producing branch is

used to call them (Figure 2.16). Different function and terminal sets can be given to each

of the ADFs, and the result producing branch which allows theADFs to evolve different

pieces of repeated code. The number of ADFs for each individual is fixed. A change

is made to the crossover operator to only allow sub-trees from the same ADF or result

producing branch to be swapped over. To allow GP to automatically learn how many

ADFs to use Koza [60] introduced architecture altering operations. These allowed ADFs

to be created, and deleted within an individual, but there was no method to copy ADFs

between individuals. Evolutionary pressure will then decide the optimal number of ADFs

to use. Chapter 4 shows similar approach to represent the predictive models used in this

thesis, where each ADF is a production rule, and the result producing branch is a conflict

resolver to decide how to use the production rules to predictin a specific context. This

chapter also introduces operators that can add and replace production rules from different

predictive models.

48

Chapter 2 Background

Instead of forcing the architecture of the trees to contain sub-trees representing the

repeated code another approach is to use one GP tree, but to freeze sub-trees within a tree

so they cannot be changed. Evolutionary Module Acquisition(EMA) [2] randomly picks

a GP tree and compresses a random sub-tree, replacing it witha function call. This allows

the code within the sub-tree to be preserved. EMA can also expand functions back to their

original sub-trees. Robertset al. [108] takes a different approach. They store information

on all the sub-trees in the population in a database. Initially the GP system is run multiple

times. The sub-tree database for the best run is analysed andthe set ofn best sub-trees

are added as terminals to the terminal set. Then GP is performed again using this changed

terminal set. Encapsulated Genetic Programming [65] introduces pointers into the GP

tree, which can point to any sub-tree within the tree. The pointers are preserved with

crossover. This allows code reuse and a graph like structureto evolve.

Instead of trying to find common code within the trees, another approach is to break

the population into groups of individuals that each solve a separate sub-problem. To pro-

duce a result the best individual in each group is run, and theresults combined to produce

an overall result. This has been successfully applied to classification problems. McIn-

tyre et al. [73] applies niching which has been successfully used in genetic algorithms,

and multi-objective optimisation [72] where individuals are ranked by their pareto-fitness.

Lichodzijewski [63] uses first and second price auctions, where individuals in the popu-

lation bid for classifying a class. In first price auctions the individual with the highest bid

is selected, and it must pay its bid to the system. If the individual correctly predicts the

class it receives a reward. In second price auctions the individual with the highest bid is

again selected. If it does not correctly predict the class its bid is paid to the system. If it

does predict correctly then it receives a reward, and must pay to the system the highest

bid from the individual that predicted incorrectly. This incorrectly predicting individual

must also pay its bid to the system. In experimentation second price auctions were found

to work the best.

2.6.7 Bloat and diversity

Bloat and diversity are key issues when using GP. Bloat happens when trees in the pop-

ulation contain sub-trees that do not contain any useful code, ie. if the sub-trees were

removed the tree would evaluate in the same way and get the same fitness score. Diver-

sity looks at the range of different individuals in the population. To control bloat the size

of the individuals in the population is restricted, but thiscan effect diversity. To allow

GP to find good solutions a population of high diversity is required, but this is also more

49

Chapter 2 Background

likely to provide solutions having bloat. By controlling bloat and diversity an optimal set

of individuals can be potentially found. A comparison of bloat control methods is given

in [67]. An analysis of diversity with fitness is given in [12].

Different techniques can be used to control bloat. The simplest is to use a parsimony

term on the fitness function. It can often be hard to set how much of the fitness should be

based on the score of the tree, and how much should be based on its size. Soule [120] de-

scribes when parsimony pressure can be successfully used tocontrol bloat. Rochat [110]

uses dynamic population sizes to control diversity and bloat. The best fitness of the cur-

rent individual is related to the initial best fitness to decide how many individuals should

be removed, or added to the population. The Tarpeian bloat control method [22] stochasti-

cally removes a percentage of the individuals at each generation that are above the average

size. This method is not as strict as parsimony pressure, andallows GP to still use larger

individuals in later generations. The Tarpeian method is used to control bloat in the our

learning technique, described in Chapter 4. The percentageof individuals removed from

the population is fixed for each run. Chapter 7 describes a technique to automatically vary

the percentage of individuals removed at each generation. An alternative bloat methods

is the waiting room [93] where individuals wait to be added tothe population based on

their size. To adaptively control diversity Ekart [21] usesa fitness sharing approach that

changed the niche size based on the change in population diversity, and fitness of the best

individual in the population. The diversity metric is basedon the weighted arithmetic

mean between individuals in the population.

2.7 Complete systems for learning predictive models from

video

Fern et al. [26] looked at learning event definitions from video of people picking up

and putting down a set of blocks. A raw video of a scene is converted into a polygon

representation by segmenting and tracking the blocks. The polygons are then applied

to a force-dynamic model which describes how the blocks in the scene are in contact

with each another. The scenes are temporally represented using And-Meets-And (AMA)

propositional logic. A specific-to-general learner is thenused to generalise from the AMA

formulas to learn the event definitions.

Fern and Givan [25] look at learning the force-dynamic relations from the same videos

as the previous paper. An object tracker is applied to videoswhich outputs low-level

information on the blocks for example the distance between them and their speed. These

50

Chapter 2 Background

are then stored as a sequence of observations. A sequence of states is also produced

representing the force-dynamic relations. The mapping between the observation sequence

and the state sequence is then learnt using CLAUDIEN [103]. Two types of rules are used

for the mapping: o-rules, and s-constraints. The o-rules map observations to a specific

state. The s-constraints are used as constraints on the set of states. To produce a set of

states from a sequence of observations, each of o-rules is applied to the sequence. The

resulting set of states is then has the s-constraints iteratively applied to it.

Most closely to the work in this thesis is the work of Needhamet al. [89] in which

Horn clauses to describe the protocols of basic card games are learnt from video. The

cards in the video are tracked using a blob tracker [68]. Whena card was stationary for a

number of frames it is assumed to be part of the game. Featuresfrom the card including

texture (calculated from Gabor wavelets, and Gaussians applied at various orientations

and scales), colour (calculated from a binned histogram of hue, and saturation), and posi-

tion were produced. Each colour, and texture feature was independently clustered using

agglomerative clustering. The clusters were then used to train a vector quantisation based

nearest neighbour classifier. One of the players had their voice recorded during the games.

The energy of the speech signal was analysed using a fixed length window. When the en-

ergy was over a fixed threshold spectral analysis was performed on the window, and the

result was histrogrammed. K-means clustering was then performed on the speech sam-

ples, to find clusters of similar speech sounds. A set of temporal facts representing the

cards, and the speech sounds spoken during the game was produced. Progol was used

to learn Horn clauses that could predict the speech sounds based on the properties of a

set of cards. The technique cannot deal with probabilistic datasets, and has a very simple

conflict resolution strategy that can cause it to predict thewrong outcome. In Chapter 4

the datasets and the technique from this paper are compared against the novel techniques

described in this thesis.

Santoset al. [112] apply the same video analysis technique from the previous paper

to videos of dice games. Temporal facts describing the properties of the dice were then

produced. These were input into Progol and HR to learn a set ofrules describing the

game. As explained in Section 2.5.1.3 both methods performed well with different noise

levels in the data, but overall Progol performed slightly better than HR. Again, like the

previous paper the technique does not deal with probabilistic datasets.

Santoset al. [114] learn a set of rules from video to decide where best to place a

camera in a scene to observe a visual task. Videos of colouredblocks being stacked in

various combinations were taken. The blocks in the video were tracked using the same

blob tracker from the previous papers [89]. The colour of theblocks was extracted from

51

Chapter 2 Background

the video, and a local cardinal system is used to represent their location. In a local cardinal

system each object defines its own cardinal reference frame which is used to represent the

location objects around it. The block data is then describedas a set of symbolic relations.

Progol was used to learn a set of Horn clauses from this data. The system assumes that

the data is deterministic and will not be able to learn or apply non-deterministic rules.

2.8 Conclusions

This chapter has reviewed current work on learning predictive models from non-deterministic

spatio-temporal data. The spatio-temporal data is generated from videos containing vari-

able numbers of objects. The predictive models are then usedto predict future spatio-

temporal data, or to recognise events.

It has been shown that to represent spatio-temporal data that contains variable numbers

of objects a variable length representation would be advisable. Chapter 3 shows the use

of Frames to represent the spatio-temporal data used in thisthesis. The spatio-temporal

data describes properties of the objects, and relations between objects. In this thesis

qualitative relations are used to describe object relations. Chapter 6 shows the use of both

region based, and point based qualitative spatial relations. It was explained that Allen’s

interval calculus can only be applied when both time intervals have a valid start and end

time. Chapter 5 introduces a novel temporal relation that can represent intervals that do

not have a valid end time.

The predictive models in this thesis are represented as a production system. A pro-

duction system contains a set of production rules, and a conflict resolver, which decides

which of the production rules to use for the prediction. Production rules in this thesis are

represented in first order logic. There are multiple approaches to learn first order pro-

duction rules with the best results from using stochastic search techniques, and inducing

multiple production rules concurrently. Both of these conclusions have been incorporated

in to the approach described in this thesis (Chapter 4).

Most approaches to learning the parameters of the conflict resolver, and the first order

logic production rules use a two stage approach where the first order logic production

rules are learnt, and then the parameters of the conflict resolver are estimated. Recent

techniques have improved on the results from the two-stage approach by learning both

the parameters of the conflict resolver and the production rules simultaneously. The same

idea has been used to learn the production rules, and the conflict resolver in this thesis

(Chapter 4). The probability distributions used within theconflict resolvers use simple

Bayesian Networks, the technique described in Chapter 4 uses a full Bayesian Network.

52

Chapter 2 Background

This allows for a better modelling of dependencies between the production rules.

A genetic programming based approach is used to learn the predictive models. A

similar idea to ADFs is used where the result producing branch represents the conflict

resolver and each ADF represents a production rule. However, unlike ADFs, production

rules may be swapped or added to different production rules.The Tarpeian bloat control

method is used in this thesis to control the size of the individuals in the population. The

Tarpeian bloat control method uses a fixed Tarpeian value forthe entire of the run. Chapter

7 investigates a technique to vary the amount of downward pressure on the size of the

predictive models in the population over the course of the run.

53

Chapter 3

An Architecture for Representing, and

Modelling Spatio-Temporal Data

3.1 Introduction

This chapter outlines an approach for representing and modelling spatio-temporal data.

Chapter 4 will then explain how a predictive model can be learnt from spatio-temporal

data based on this approach. Figure 3.1 shows the architecture that has been developed

within this work. It is broken down into two parts: a observation history data repre-

sentation (for the rest of this thesis it will be called history), and the predictive model

representation. Ahistory represents the previous and current set of spatio-temporaldata

relative to the current time. The history is input into apredictive model, which predicts

the most likely set of spatio-temporal data that will occur after the current time. The pre-

dictive model is based on a production system described in Section 2.5. The production

rules describe the different possible patterns in the history and their possible outcomes.

A conflict resolver then decides how to use the production rules to predict in different

contexts.

Section 3.2 explains in more detail how the history is represented. Section 3.3 ex-

plains how the predictive model is represented. Finally, Section 3.4 explains an inference

procedure to allow a predictive model to predict from a set ofhistory.

54

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

Conflict
resolver

Predictions
Overall

prediction

Production rule

Production rule

Production rule

History

Predictive model Prediction

Figure 3.1: An architecture to represent and model spatio-temporal data. It has three parts:
a history; and a predictive model which is input the history;and produces a prediction.
The predictive model is broken down into two parts: a set of production rules, and a
conflict resolver.

3.2 History representation

The history represents the set of previous and current spatio-temporal observation data.

The spatio-temporal data contains entities, and relations. Entitiesrepresent objects, groups

of objects, or parts of objects.Relationsrepresent any relations between entities for ex-

ample spatial or temporal. Section 2.3 described two main representation techniques for

spatio-temporal data: fixed length, and variable length. A fixed length representation

would not be appropriate here, because the datasets used in this thesis contain variable

numbers of objects and object relations that last for variable lengths of time. To solve

this problem Frames [78] (described in Section 2.3.4) are used to represent the history in

this thesis. Each of the entities and relations require adefinitionrepresented by a class

frame. Entities or relations that appear in the history areinstancesof these definitions

with constant properties, represented by an instance frame. Propertiesrepresent the phys-

55

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

ical properties of an entity or relation, for example its speed, height or colour. These

also require a definition, and instances are produced when the entities and relations using

the properties appear in the history. These concepts are described in more detail in the

following sections.

3.2.1 Properties

Propertiesare used to describe physical properties of an entity, or relation. In this work

they are defined globally, and are not associated with a particular type of entity, or relation.

This allows the properties of different types of entities orrelations to be easily compared.

Properties consist of a set of attributes. Anattributestores data on a property, for example

the propertyposition might have two attributesx andy that store the actual position

of the object. Firstly attributes will be explained, and then properties will be explained.

An attribute must first be defined by using a class frame. All attribute class frames

contain the following slots:Name, Type, Value andProbability. TheName slot

contains the instance name of the attribute (which is used asan identifier), theType slot

contains the data type of the attribute, theValue slot contains the value of the attribute,

and theProbability slot contains the likelihood of this value. TheType slot can take

one of three values: symbolic, integer, and float. To controlwhich data theValue slot can

contain the facetValueRange is used. For the symbolic type this is a list of the symbols,

and for the float, and integer types it is a range of possible values. In each attribute class

frame, the value for the type slot is completed, along with theValueRange facet. The

remaining slots are left blank and are completed when an instance of the attribute class

frame is created.

Properties are defined in a similar manner. All properties are defined using their own

class frame. This class frame contains aName slot, which stores the instance name of the

property, and slots for each of the attributes the property uses. The attribute andName

slots are initially blank, and are completed when an instance of the property class frame

is produced. An example will now be introduced that will be used throughout the rest

of this section to explain the different concepts. The example extends the path example

given in Section 2.1 by allowing both people and cars to appear on the path. Information

on the x, y position of the cars and people is recorded, along with the colour of the people

and the cars. Figure 3.2 shows three attribute class frames:X, Y andColourName. The

X andY attributes are both of type integer, and the range of values they can take is from 0

to 255. TheColourName attribute is of type symbolic, and can only have values Green,

Red, or Blue. These attributes are used by two properties:Position andColour.

56

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

Class X Class Y Class ColourName
Name Name Name
DataType Int DataType Int DataType Symbolic
Value Value Value
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability Probability Probability

Class Position Class Colour
Name Name
X ColourName
Y

Figure 3.2: Property and attribute examples. The top row shows the class frames for the
attributes:X,Y, ColourName. The bottom row shows the class frames for the properties:
Position andColour.

ThePosition property’s class frame has slots theX andY attributes, and theColour

property’s class frame has a slot for theColourName attribute.

3.2.2 Entities

Entities describe objects, collections of objects, or collections of object parts . This section

will firstly cover how entities are defined by using entity class frames, and then it will

describe entity instances represented by instance frames.

3.2.2.1 Entity definition

All entity definitions are described by an entity class frame. All entity class frames have

the slots:Name andTime. They also have slots to store the properties that the entityuses.

An entity class frame may also inherit (in an object orientedsense) from other entity class

frames. TheName slot stores the name of the entity instance, and theTime slot is used

to describe the temporal scope of an entity instance over which its properties are constant.

Table 3.1 shows the four possible types of values the time slot can contain: Point, Period,

AllTime, and Incomplete. The Point time type is used to represent an entity existing for an

instantaneous period of time, which could represent a quantised time period. The Period

time type is used to represent an entity instance that existsfor a range of time. The range

is described by the start and end time of the entity or relation instance. The AllTime type

is used to represent an entity instance that always exists inthe history. It therefore exists

from the beginning of time (−∞) to the end of time (∞). Finally, the Incomplete time type

represents an entity instance that exists, but the end time is unknown. The end time is

57

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

represented byUnknown. This is used when an entity instance still exists at the current

time.

Time type Temporal range

Point [ts, ts+δ]
Period [ts, te]
AllTime [−∞,∞]
Incomplete [ts,Unknown]

Table 3.1: The four time types: Point, Period, AllTime and Incomplete. They are defined
by temporal ranges. Variablets represents the start time of the entity or relation instance,
andte represents the end time of the entity or relation.

Initially all slots are blank, and are completed when an instance of the entity class

frame is produced. Figure 3.3 shows two entity class frames one for aCar, and the other

for aPerson. They both use the same set of properties:Colour andPosition.

Class Car Class Person
Name Name
Time Time
Colour Colour
Position Position

Figure 3.3: Two example entity class frames, which use the properties shown in Figure
3.2. The first class frame is for aCar, and the second is for aPerson.

3.2.2.2 Entity instance

Entity instances are represented by entity instance frameswhich are instances of a specific

entity class frame. The values for theName andTime slots are completed along with

creating instance frames of the property, and attribute class frames that the entity uses.

The property slot values in the entity instance frame are then completed with the instance

name of the property instances. Figure 3.4 shows two entity instance frames, one for a

Person, and the other for aCar. TheCar entity instance frame is an instance of the

Car class frame. It existed between times 0 to 8. During this timeit was in position

(200,700) and had a colour of Green. ThePerson entity instance frame is an instance

of thePerson class frame. It existed between times 4 to 8. During this timeit was in

position (250,350) and had a colour of Blue.

58

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

Attribute instance frames

Class X Class Y Class ColourName
Name X1 Name Y1 Name ColourName1
DataType Int DataType Int DataType Symbolic
Value 200 Value 700 Value Green
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability 100% Probability 100% Probability 100%

Class X Class Y Class ColourName
Name X2 Name Y2 Name ColourName2
DataType Int DataType Int DataType Symbolic
Value 250 Value 350 Value Blue
ValueRange [0 - 255] ValueRange [0 - 255] ValueRange Green, Red, Blue
Probability 100% Probability 100% Probability 100%

Property instance frames

Class Position Class Colour
Name Position1 Name Colour1
X X1 ColourName ColourName1
Y Y1

Class Position Class Colour
Name Position2 Name Colour2
X X2 ColourName ColourName2
Y Y2

Entity instance frames

Class Car Class Person
Name Car1 Name Person1
Time Period (0,8) Time Period (4,8)
Colour Colour1 Colour Colour2
Position Position1 Position Position2

Figure 3.4: Two entity instance frames, which are instancesof the entity class frames
from Figure 3.3. Firstly the attribute, and property instance frames that the entity instance
frames use are shown, and then the entity instance frames areshown.

59

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

3.2.3 Relations

Relations describe relationships that exist between multiple entities for example spatial or

temporal relations. Firstly the relation definitions, represented by relation class frames,

will be described; and secondly the relation instances, represented by instance frames,

will be described.

3.2.3.1 Relation definition

Each relation definition requires its own class frame. All relation class frames have the

following slots:Name andTime. TheName slot stores the name of the relation instance,

and theTime slot stores the amount of time the relation instance existedfor. TheTime

slot is represented in the same way as for entity definitions and entity instances (described

in Section 3.2.2.1). Slots are also added to store the entityinstances the relation uses.

Facets are added to each entity slot to store which types of entities the relation can use.

Property slots can also be added to store information on the relation. Relation class frames

can also inherit from other relation class frames. Figure 3.5 shows the relation class frame

for relationLeft Of. It requires two slots to store the entity instances the relation uses,

and two facetsType1, andType2 which control the type of entities the relation can use,

in this caseCar andPerson.

Class Left Of
Name
Time
Type1 Car
Type2 Person
Entity1
Entity2

Figure 3.5: TheLeft Of relation definition. The relation represents that a car is tothe
left of a person.

3.2.3.2 Relation instance

A relation instance is an instance of a particular relation definition. It is stored in an

instance frame and created by using the relation class frameand filling in the values for

theName, Time andEntity slots. Figure 3.6 shows an example relation instance for

theLeft Of relation. It is an instance of theLeft Of relation class frame. It existed

between time values 4 to 9 and used entitiesCar1 andPerson1.

60

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

Class Left Of
Name LeftOf1
Time Period (4,9)
Type1 Car
Type2 Person
Entity1 Car1
Entity2 Person1

Figure 3.6: An instance of theLeft Of relation that was defined in Figure 3.5. It shows
that entityCar1 was to the left of entityPerson1 between time values 4 to 9.

3.2.4 System implementation

To implement the history representation within the computer requires two elements: a file

format, and a memory representation described in the sections below.

3.2.4.1 File format

XML [10] was chosen as the file format, because it is easy to parse, is human readable,

and there is a large body of tools for analysing and displaying data written in XML.

Figure 3.7 shows thePerson1 entity instance from Figure 3.4 represented in XML.

The probability and attribute instance frames are stored assub-frames within the entity

instance frame rather than describing them separately. This allows for a more compact

and easy to read representation.

3.2.4.2 Memory representation

To read the XML datafiles into the computer requires an XML parser and a memory

representation. There are two main memory representationsthat can be used. The first is

to use a fixed time unit like seconds, or hours. The state of thehistory at each time unit

is then stored. The problem with this representation is thatthe unit needs to be decided

a priori. If a large scale time unit (like days) is used it can lead to loss of data, and if

a small scale time unit (like milliseconds) is used data can be duplicated. The second

representation takes a different approach. Instead of representing the history at specific

time points it represents it by changes in its state. A state change is caused by adding,

removing or changing an entity or relationship instances inthe history. The possible

reasons an entity or relation instance will change its stateare: changing its properties, or

changing it time range. This is a more compact representation because duplicated data is

merged together, and data cannot be lost as every history state change is represented. This

61

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

<ENTITY TYPE="PERSON" NAME="PERSON1" ID="2">
<TIME TYPE="PERIOD" VALUE="[4.000000,8.000000]"/>
<PROPERTY-PROBABILITY NAME="POSITION">

<PROBABILITY VALUE="1.000000">
<PROPERTY-DATA NAME="POSITION">
<ATTRIBUTE-DATA NAME="X" VALUE="250"/>
<ATTRIBUTE-DATA NAME="Y" VALUE="350"/>

</PROPERTY-DATA>
</PROBABILITY>

</PROPERTY-PROBABILITY>
<PROPERTY-PROBABILITY NAME="COLOUR">

<PROBABILITY VALUE="1.000000">
<PROPERTY-DATA NAME="COLOUR">
<ATTRIBUTE-DATA NAME="TYPE" VALUE="BLUE"/>

</PROPERTY-DATA>
</PROBABILITY>

</PROPERTY-PROBABILITY>
</ENTITY>

Figure 3.7: An example of thePerson1 entity instance from Figure 3.4 represented in
XML.

representation was used in this thesis.

3.3 Predictive model representation

A predictive model uses a set of spatio-temporal history data to predict the most likely

set of spatio-temporal data to occur next. More formally it uses a set of history data

H1:T = {h1, ...,hT} where each history itemht = (Kt,Lt) is a tuple containing a set of

entitiesKt and a set of relationsLt that exist at timet; and computes the probability of a

set of spatio-temporal dataht+1 occurring at the next time step as shown in Equation 3.1.

P(ht+1|H1:T) (3.1)

In this thesis the predictive models are represented using aproduction system (as de-

scribed in Section 2.5). This requires two elements: a set ofproduction rules, and a

conflict resolver. Each production rule contains a condition section that matches a spe-

cific subset of the history, and an action section that represents a new entity or relation.

The production rules are explained in more detail in Section3.3.1. To make a predic-

tion the production rules are applied to the history. A conflict resolver is used to decide

62

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

which of the production rules matching the history to use forthe prediction. The con-

flict resolver used in this thesis uses a conditional probability distribution (Equation 3.2),

wherer i is a boolean random variable that represents if production rule pi is enabled

on the history (r i = enabled(H1:T , pi)), n is the number of production rules, andui is a

boolean random variable that represents if production rulei should be fired. The pro-

duction rules that should be fired are used to produce the prediction at the next time step

(ht+1 = f ire(u1, ...,un)). The probability distribution is represented by a Bayesian Net-

work, and can produce multiple sets of predictions each withan associated probability.

This allows the conflict resolver to predict from non-deterministic data.

P(ht+1|H1:T) = P(u1, ...,un|r1, ..., rn) (3.2)

To illustrate how this approach works lets introduce an example based on a simplified

version of the children’s card game Uno. This example will beused throughout the rest

of this chapter to illustrate the different concepts with the predictive models.

The game is played by two people each having a set of cards containing different

coloured pictures on them. In each round of the game each player puts down a card. If

the cards both have the same picture, and colour then “Same” should be shouted out. If

the cards have the same picture, but different colours then “Shape” should be shouted out.

If the cards have the same colour, but different pictures then “Colour” should be shouted

out. Finally if the two cards are different then “Nothing” issaid.

A set of production rules that represents the game of Uno is shown in Figure 3.8 and

the probability distribution for the conflict resolver is shown in Table 3.2. This only lists

the entries that have a probability greater than zero. All other entries have a probability

of zero, and therefore are not used to produce a prediction. Table 3.2 shows that, for

example, if the only production ruler1 matches the history than only its output (o1) with

probability 1.0 should be fired.

r1: IF SHAPE(C1)==SHAPE(C2) AND COLOUR(C2)==COLOUR(C2)
THEN SAME

r2: IF SHAPE(C1)==SHAPE(C2) AND COLOUR(C2)!=COLOUR(C2)
THEN SHAPE

r3: IF SHAPE(C1)!=SHAPE(C2) AND COLOUR(C2)==COLOUR(C2)
THEN COLOUR

r4: IF SHAPE(C1)!=SHAPE(C2) AND COLOUR(C2)!=COLOUR(C2)
THEN NOTHING

Figure 3.8: A hand defined set of production rules for Uno.

63

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

r1 r2 r3 r4 u1 u2 u3 u4 P(u1,u2,u3,u4|r1, r2, r3, r4)

T F F F T F F F 1
F T F F F T F F 1
F F T F F F T F 1
F F F T F F F T 1

Table 3.2: The conditional probability distribution for the production rules in Figure 3.8

This is a very simple example of how the conflict resolver works. In this case , only

one production rule will be enabled on the history, and this production rule will be fired

to produce a prediction. The conflict resolver, however, candeal with multiple production

rules being enabled at the same time. This, as shown in the following example can,

greatly simplify the complexity of the production rules required. It is used by the learning

method (Chapter 4) in this thesis to reduce the size of the search space when learning

predictive models, which makes it more likely an optimal solution will be found. In the

Uno example the condition sections of Same and Nothing production rules (r1 andr4) use

elements from the condition sections of the Shape and Colourproduction rules (r2 andr3),

as shown in Figure 3.8. To reduce this reuse, the Same and Nothing condition sections

can be represented using the Shape and Colour condition sections, shown in Figure 3.9,

using the probability distribution shown in Table 3.3. The Nothing production rule is

fired when the Shape, and Colour production rules are not enabled, and the Same and

Nothing production rules are enabled. The Same concept is produced by firing the Same

production rule, when all the production rules (Same, Shape, Colour and Nothing) are

enabled.

r5: IF TRUE THEN SAME
r6: IF SHAPE(C1)==SHAPE(C2) THEN SHAPE
r7: IF COLOUR(C2)==COLOUR(C2) THEN COLOUR
r8: IF TRUE THEN NOTHING

Figure 3.9: The combined production rules for Uno.

The rest of this section will show how the production rules are described, and how

inference is performed on the history using a predictive model to predict future spatio-

temporal data.

64

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

r5 r6 r7 r8 u5 u6 u7 u8 P(u5,u6,u7,u8|r5, r6, r7, r8)

T T T T T F F F 1
T T F T F T F F 1
T F T T F F T F 1
T F F T F F F T 1

Table 3.3: The probability distribution for the combined production rules in Figure 3.9.

3.3.1 Production rules

A production rule has a similar representation to a Horn clause. The condition section of

the production rule is like the body of a Horn clause, as it cancontain variables, statements

describing objects and relations, and logical functions. The action section is the same as

the head of the Horn clause. It can only contain one entity or relation, in the same way that

the head can only contain one literal. To evaluate the production rule on a set of history

the substitutionθ is applied to the variables in the condition section (bθ), which grounds

the variables to a subset of the history data. If the condition section entails this data it will

return back true, otherwise it will return false. Section 3.4 explains how to search for the

substitutionθT , that causes the condition section to entail a specific subset of the history.

If the condition section returns true then the action section of the Horn clause is evalu-

ated producing a new entity or relation instance. The evaluation is performed by ground-

ing the variables in the action section using the same substitution that caused the body to

evaluate true. The condition and action sections will now bemore formally defined.

3.3.1.1 Condition section

The condition sectionb = {F,Λ,C,X,E} is represented by a set of functionsF, a set

of node parametersΛ, a set of constantsC, a set of variablesX. These are formed into a

directed acyclic graph (DAG) where the nodes are constants,variables, and functions, and

the edgesE represent links from constants to functions, variables to functions, or links

between functions.

The DAG is arranged into three layers: an input layer; a processing layer; and a result

layer. The input layer uses the set of variables to extract a subset of the history data.

This data is presented to the processing layer containing the functions, and the constants

which check if they match this data. The result layer again contains functions and returns

a boolean result based on if this match was successful or not.

The variables and functions will now be more formally described. Variables are as-

signed an entity or relation at a specific point from the history. Each variable has a pre-

65

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

determined data type, and time range. They ensure that only entities or relations of the

correct type, and within the desired time range relative to the current time can be assigned

to the variable. This reduces the amount of history data thatneeds to be searched, and

only the most relevant parts of the history are used in the processing layer.

A function fi : (Vi ,λi) → vr is used to compute the resultvr using the set of result

values from its parent nodesV = {v1, ...,vn}, and node parametersλi. There are four kinds

of functions: data functions, comparison functions, logical functions, and user defined

functions as described below:

• Data functions these process the entities or relations returned from the variables.

There are two functions: theGetfunction, and theExistsfunction. TheGetfunction

returns the value of a specific attribute from an entity or relation. TheExistfunction

returns if the entity or relation instance is of a specific type.

• Comparison functions these produce a boolean result by performing a test on a

specific attribute from an entity or entities. The standard comparison functions

used are the numeric comparisons:equal, not equal, less than, greater than, less

than or equal to, andgreater than or equal to; and the symbolic comparison:equal

andnot equal.

• Logical functions these combine the results from the comparison functions to pro-

duce a boolean result. The standard logical functions defined in the system are:

And, Or andNot.

• User defined functionsthe user is also allowed to define their own processing

functions. This can be used to add background knowledge to the condition section.

The functions operate in the same way as the condition section. They are input a

set of arguments, these are then processed using the same functions, and constants

that can appear in the condition section, and then a result isreturned.

To explain these concepts lets use the example introduced inSection 3.3. The condi-

tion section for the Colour production rule (given in Figure3.8) is shown in Figure 3.10.

Equation 3.3 shows this written in first order logic.

NotEqual(GetTexture(x),GetTexture(y))∧Equal(GetColour(x),GetColour(y)) (3.3)

The input layer contains two variables (x andy). Each variable relates to a different card

in the history. The processing section makes use of four functions:And, Equal, Not Equal

andGet. TheGet function is used to get the colour, or the texture from the cards. The

66

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

History

Get
Texture

Get
Texture

Input layer

Processing layer

Result layer

And

Not
Equal Equal

ColourColour
Get Get

x y

section
Condition

Figure 3.10: The condition section for the Colour production rule from Figure 3.8.

Equalfunction is then used to check if the cards have the same colour, and theNot Equal

function is used to check if the two cards have different textures. Finally theAndfunction

uses the result from theEqualandNot Equalfunctions to checks if the cards both have

the different textures and the same colour.

3.3.1.2 Action section

The action section of the production rule generates a new entity or relation if the condition

section matches a subset of the history. To create a new entity or relation each of its prop-

erties and attributes has to be initialised. They can eitherbe initialised to a constant; or to

a variable from the condition section, along with a specific property. When the variable

is grounded the property from its assigned entity or relation will be used to initialise the

property in the new entity or relation. This then allows the action section to generalise

from the history. The number of production rules to be learntmay be reduced because of

this, which decreases the size of the search space, making anoptimal solution easier to

find.

In Figure 3.11 the action section for the Colour production rule is defined. It creates a

new Event entity which has the value of Colour for theSpeechattribute, and also has two

67

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

properties (Card1ShapeandCard2Shape) representing the shape of the two cards that

have been put down. The values for these properties will comefrom the history by using

the entities assigned to the variablesx andy. Equation 3.5 shows this written in first order

logic, wheren1 andn2 are the names of the name attributes,t1 andt2 are the textures,

andp1 andp2 is the likelihood of the name attributes.

Class Speech Class Say
Name Speech1 Name Say1
DataType Symbolic Speech Speech1
Value Colour
ValueRange Colour,Same,Nothing,Shape
Probability 100%

Class Event
Name Event1
Time
Say Say1
Card1 Shape x.Texture.Name
Card2 Shape y.Texture.Name

Figure 3.11: The action section for the Colour production rule. The text in a typewriter
font shows that the value of the slot is a link to another instance frame. The Time slot is
left blank, as it is filled in when the entity instance is used for a prediction.

Event(Event1,Say(Say1,Speech(Speech1,Colour,100)), (3.4)

Card1Shape(Texture(x,Name(n1, t1, p1)),

Card2Shape(Texture(y,Name(n2, t2, p2)))

3.4 Inference

Once a model has been produced an inference procedure is required so that it can be

applied to a set of data to produce a prediction. This sectiondescribes an inference proce-

dure for the predictive models on a set of history. More formally given a prediction model

M inference needs to performed using a set of historyH1:t to produce a set of possible

outputsW = {w1, . . . ,wn} occurring at timet + 1, wheren is the number of (mutually

exclusive) outputs,wi = (oi, pi), andoi is a possible output having a probabilitypi . The

predict functionpredict : (M,H) → W is used to perform this inference. The function

68

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

works in the following stages:

1. For the condition sectionb of each production rules∈ Ssearch for the substitution

θTs that causes the condition section to entail a subseth ∈ H of the historyH,

(bθTs |= h).

2. The enabled setr (describing how each of the production rules evaluated on the

history) can then be input to the conflict resolver producinga set of possible firing

setsU = {u1, ...,un}.

3. The set of possible outputsW can be computed by keeping every firing setui =

{ui1, ...,uiS} whereP(ui|r) > 0. Thenwi is computed for each remainingui by

setting:

• oi = {asθTs | if uis = true}

• pi = P(ui |r)

The possible outputoi is produced by taking a firing setui , and for every production

rule s that should be fired (i.e.uis = true) its action sectionas is grounded on the substi-

tution θTs that caused its condition section to entail a subset of the history (asθTs). The

likelihood of this outputP(ui|r) is found by looking it up in the probability distribution

for the conflict resolver.

To search forθT is a hard problem for two reasons. Firstly, it is a large search space

and this can quickly get large as the size of the history, and number of variables in the

production rule increases. Secondly, there are multiple possible values forθTand the one

needs to be chosen that will be best to predict the new output.

To solve these problems the exhaustive search forθT initially uses history data only

at the current time ie.Ht. If this is unsuccessful the history is extended to include the

previous history items ie.Ht−1:t. This process is repeated until a value forθT is found,

or the history size is above a predefined threshold. The pseudo-code for this algorithm is

shown in Figure 3.12.

To explain the predict function an example from the game Uno,shown in Figure 3.13

is be used. The history contains two cards at time 1: Card 1 hasa black triangle, and

Card 2 has a black circle. The first stage of the function uses the predictive model for the

Uno dataset, and computes which of the condition sections from the production rules will

entail the history. If we use the Uno production rules from Figure 3.9 it can be seen that the

production rules that apply to this history are the Colour, Same and Nothing production

rules. TheFindBestSubstitution algorithm is applied to the condition section of

69

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

Input: Condition section (b), History (H)
Output:The best substitution (θT) which is a list of tuples where each tuple

is a mapping from a variable inb to an object inH.

Function FindBestSubstitution

For s = 1 to max history size
Assignh to a subset ofH of sizes
Foreachvariablev in b

Find all objects inh that have the same type asv,
and occur within its time range.

End Foreach
Foreachsubstitutionθ in the set of possible variable to object assignments

If bθ =trueThen
Return θ

End If
End Foreach

End For

Figure 3.12: TheFindBestSubstitution algorithm.

?

Card 2 Card 1

1 2

Time

Figure 3.13: An example game of Uno.

these production rules to find where they match the history. For example by applying the

FindBestSubstitutionalgorithm to the condition section of the Colour production

rule (shown in Figure 3.10) the value forθT is {x/Card1,y/Card2}. This means thatx

refers to Card 1 andy refers to Card 2.

The second stage of the function uses the conflict set to decide which production rules

to use for the overall prediction. The production rules enabled on the history were the

Colour, Nothing, and Same production rules which produces the following enabled set:

r5 = T, r6 = F, r7 = T, r8 = T. By looking this up in the probability distribution given in

Table 3.2 it can be seen that there is only one possible firing set of production rules that

can be used to create the prediction:u5 = F, u6 = F , u7 = T, u8 = F. This means that the

70

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

only production rule to be used for the prediction will be theColour production rule. The

third stage of the function uses the set of production rules that should be fired to produce

the prediction. In this example there is only one productionrule, which comes from the

Colour production rule. To generate the output the action section of the Colour production

rule (shown in Figure 3.11) is fired by grounding it using the substitutionθT . This creates

a new Event entity shown in Figure 3.14. The prediction is that Colour should be said

next (at time 2) with a probability of 1.0.

Class Speech Class Say
Name Speech1 Name Say1
DataType Symbolic Speech Speech1
Value Colour
ValueRange Colour,Same,Nothing,Shape
Probability 100%

Class Event
Name Event1
Time Point (2,2)
Say Say1
Card1 Shape Triangle
Card2 Shape Circle

Figure 3.14: The Event entity instance, along with its property and attribute instances
produced by the action section of the Colour production rule. The text in a typewriter font
shows that the value of the slot is a link to another instance frame.

3.5 Discussion

This chapter has presented a method to represent and store the history data within the

system. It has also shown how the predictive models are represented and inference per-

formed on the history. A frame based representation is used to describe the history. The

predictive models are based on a production system, and contain a set of production rules,

and a conflict resolver.

Typing is used both within the history to describe differentclasses of entities and

relations, and within the production rules to only allow them to access specific subsets of

the history. This allows domain knowledge to be incorporated into the history, and the

predictive models. It also reduces the possible space of predictive models, and prevents

invalid predictive models from being produced. As the typesof the entities and relations

are defined by the user, it makes the history representation potentially applicable to a wide

71

Chapter 3 An Architecture for Representing, and Modelling Spatio-Temporal Data

range of spatio-temporal domains. The use of inheritance also allows the definition of the

entities and relations to be produced in a hierarchical manner.

The use of the conflict resolver firstly allows the predictivemodel to deal with mul-

tiple production rules entailing the history. The production rules can be combined to-

gether to make the prediction which simplifies the complexity of the predictive model.

Secondly, the conflict resolver can produce multiple outputs, allowing it to predict from

non-deterministic data. Finally, the condition section ofthe production rules can be ex-

tended by allowing users to add their own functions. The following chapter will look at

how these predictive models can be learnt from data.

72

Chapter 4

Learning Predictive Models of

Spatio-Temporal Data

4.1 Introduction

Chapter 3 described: a method for representing spatio-temporal data; an architecture

for representing predictive models; and an inference technique, to allow them to pre-

dict from spatio-temporal data. This chapter presents methods for automatically learning

predictive models from spatio-temporal data. The novel method described in this chapter,

called Spatio-Temporal Genetic Programming (STGP), is used to learn predictive mod-

els. Firstly, Section 4.2 explains why a stochastic search approach was used to learn the

predictive models. Then in Sections 4.3 to 4.8 a formal description of the STGP method

is given. Finally, in Sections 4.9 and 4.10 a comparison of STGP with Progol [82], Pe (an

implementation of the FAM algorithm [18] for SLPs), Neural Networks [111], Bayesian

Networks [94] and C4.5 [99] is performed, along with an experimentation with the pa-

rameters for STGP.

4.2 Learning predictive models

To learn a predictive model requires finding the set of production rulesSand the conflict

resolverc that best models the set of historyH, (i.e. find the predictive model that gets

73

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

the best accuracy when it predicts from the history) as shownin Equation 4.1.

argmaxS,c(P(S,c|H)) (4.1)

Predictive model learning in the context of this thesis can be broken down into two

parts: structure learning, and parameter learning [111]. Structure learning is on two lev-

els. Firstly, the optimal number of production rules needs to be found, and secondly the

optimal number of functions, variables, and constants, along with their connectivity needs

to be found for each production rule. Parameter learning involves computing a conditional

probability distribution for the conflict resolver (described in Section 3.3). This distribu-

tion does not contain any hidden variables, and the history data is complete, so there is a

closed form solution for calculating its parameters.

There are various approaches to perform structure and parameter learning. Section

2.5.1 reviewed different approaches to learning first orderlogic production rules, repre-

sented by Horn clauses. There were two main conclusions. Firstly, using stochastic or

evolutionary search finds good Horn clauses in a faster time than using greedy search

[4, 87, 122, 126, 129]. Secondly, learning a complete set of Horn clauses simultaneously

produces better results than sequentially learning a set ofHorn clauses [3,36,46,113,131].

These techniques have been incorporated into the approach described in this thesis: an

evolutionary search technique is used to learn the individual production rules and sets of

production rules simultaneously. Section 2.5.2 looked at techniques for learning the pa-

rameters of the conflict resolver. It was shown in [19,61] that learning both the production

rules, and the parameters together, rather than using a two stage process produced better

results. These ideas have again been introduced into the approach described in this the-

sis where both the production rules, and the parameters of the context chooser are learnt

simultaneously. The following section will give an overview of the approach.

4.3 Spatio-Temporal Genetic Programming

Figure 4.1 gives an overview of Spatio-Temporal Genetic Programming (STGP) the novel

method to learn the predictive models presented within thischapter. It is based on Ge-

netic Programming (GP), and uses the same set of steps that are used in GP, and Genetic

Algorithms (GA). The numbered set of steps below shows a run of STGP in more detail.

1. Initialise the structure of the predictive models: create a population of predictive

models which each contain a randomly generated number of production rules.

74

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Figure 4.1: A flow chart showing the different steps in a run ofSTGP.

2. Compute parameters for the predictive models:For each predictive model the

parameters for its conflict resolver need to be computed fromthe history.

3. Compute fitness value for each of the predictive model:Use a fitness function to

assign a fitness value to each of the predictive models.

4. Check stopping criteria: Check if the run has reached the maximum number of

generations allowed, or there is a predictive model in the population which has an

optimal fitness score. If so stop the run, and return the predictive model with the

best (maximal) fitness score.

5. Apply structure altering operations to the population of predictive models:

Apply structure altering operators to the population of predictive models to try and

improve their fitness.

6. Go back to step 2.

The following sections will explain these steps in more detail. Firstly, Section 4.4

describes the structure learning techniques including: initialisation techniques, and struc-

ture altering operators. Next, Section 4.6 shows the parameter learning technique. Finally,

Section 4.7 describes the fitness function.

75

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

4.4 Initialising the population of predictive models

To initialise STGP a population of randomly generated predictive models is produced.

The process of generating a predictive model involves randomly creating a new produc-

tion rule. To create a new production rule involves randomlygenerating its condition, and

action sections. It is important that the population of predictive models is as diverse as

possible, as explained in Section 2.6.7. A population with high diversity initially provides

STGP with a wide range predictive models, which makes it morelikely it will find the

correct solution, and less likely to converge on a sub-optimal solution. Population diver-

sity and how it is affected by the different STGP parameters is explored in Section 4.10.3.

Initialisation of both the production rules and predictivemodels will now be described in

more detail.

4.4.1 Predictive model initialisation

Predictive models consist of a set of one or more production rules. When a new predic-

tive model is created, it is initialised with one randomly generated production rule. The

Ramped half and half method [58] (Section 2.6.2) is used to generate the condition sec-

tions of the production rules. This ensures that the population of predictive models has

production rules with condition sections that contain a variety of structures and depths.

4.4.2 Production rule initialisation

To create a new production rule involves firstly randomly creating the condition section,

and then randomly creating the action section.

4.4.2.1 Condition section initialisation

Section 3.3.1.1 showed how the condition section is defined.It contains a set of functions,

a set of variables, and a set of constants arranged in a Directed Acyclic Graph (DAG).

Two things are required to create a new condition section: firstly a method to constrain

the structure of the DAG so that it is always valid; and secondly a technique which uses

the structural constraints to build a valid condition section.

Given a set of functions, constants and variables there is a large number of DAG

structures that can be formed. However, not all structures will be valid, and these cannot

be evaluated on a particular history. Figure 4.2 shows two invalid condition sections.

The first condition section is evaluating whether the symbolRed is less than the symbol

Green; and the second condition section is evaluating if thenumber 1 is equal to the

76

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

symbol Green. To solve this problem constraints are placed on the composition of the

DAG. This ensures that all DAG structures are evaluable, gives a good initial start point

to the structure learning algorithm, and reduces the searchspace of possible structures.

Strongly Typed Genetic Programming [79] is used to control the structure of the DAG.

It assigns a type to every function, constant, variable and function argument. A DAG is

only “valid” if for every function used in the DAG its argument types match the types of

its parent nodes. The possible types used in this thesis are:Int, Float, String, Boolean, or

Time.

Red

Less Than

Green 1 Green

Equal

Figure 4.2: Invalid condition sections.

The structural constraints described are used when generating a new condition section.

The user defines a maximum depth of the DAG. This allows the maximum complexity and

time to evaluate the condition section to be controlled. There are two possible ways to

build the condition section: the Full method, and the Grow method [58]. This thesis will

use the versions of the Full and Grow methods from [79], wherethe root node of the DAG

must have a Boolean type. Two changes are made to these methods so that they can be

used to produce production rules.

Firstly, if a function requires a variable as an argument STGP must use an existing

one, or generate a new one of the correct type. The entity or relation type of the variable

is defined in the sub-type of the argument. Firstly, STGP checks to see if there are any

variables matching the desired entity or relation type. If there is a set of variables, then

STGP can either decide to pick a random variable, or to generate a new variable. The

likelihood of picking an existing variableP(t) is shown in Equation 4.2. The equation

makes it increasingly hard to generate new variables as the number of them increases.

P(t) =
Nt

Nt +1
(4.2)

A new variable is generated when the maximum number of variables for a specific type

has not been exceeded. This limits the complexity of the condition section, and prevents

77

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

STGP from producing predictive models that are overly complex. To generate a new

variable requires completing its entity type, and time range. The time will be randomly

chosen from either AllTime, Period time, or Point time. For Point and Period time, a time

range is also randomly generated. Period time is not used in any of the runs in this thesis,

but a discussion is given about how it could be used at the end of Chapter 5.

Secondly, to prevent condition sections from being generated that always evaluate

true (or false) a restriction is added to the Grow, and Full methods. This occurs when

the condition section contains sub-trees that either just contain constant value terminals,

or variables which are the same. When nodes are assigned to a function’s arguments a

check is performed to make sure they are not all constant value symbols, or use the same

variable. If this is the case another assignment is found.

An example of the Full method will now be shown, based on the Uno example from

Section 3.3. The following functions will be used:And (having a Boolean type, and a

Boolean type for the its arguments),Get-Colour (having a String type, and an argu-

ment containing a variable of type Card),Equal (having a Boolean type, and a String

type for its arguments), andNot Equal (having a Boolean type, and a String type for

its arguments). The following terminals will be usedRed, Green, andYellow . All the

terminals have a String type. The variables will all be of type Card. The stages of the ex-

ample are shown in Figure 4.3. The maximum depth is set to 3. The Full method initially

picks a function with a Boolean type. There are three possible options:And, Equal,

andNot Equal; andAnd is chosen. The type forAnd’s arguments is Boolean, and as

the method is not at the maximum depth a function with a Boolean type is chosen; this

time it is Equal . The argument type forEqual is String, and as the method is now

at the maximum depth only terminals of type String can be chosen. Get-Colour and

Red are chosen.Get-Colour also requires a variable, in this case the variablex of type

Card is used. Next, the second argument for theAnd node is found, andNot Equal is

selected. Again the argument type for theNot Equal node is String and as the method

is at the maximum depth only terminals of type String can be picked.Get-Colour and

Yellow are selected. Again,Get-Colour requires a variable this time the variabley

of type Card is used.

The functions and terminals which can be used in the condition section must be de-

fined before STGP is run. These can be manually defined, or generated from the property,

entity, or relation definitions. Some of the functions and terminals (described in Section

3.3.1.1) need extra parameters when they are defined. The Getfunction needs to have the

entity type, property, and attribute it will use. The Existsfunction needs to have the entity

or relation type. The Symbol terminal needs the symbol it will use. The Numeric terminal

78

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Red

Equal

And

Colour
Get

x y

Equal
Not

Colour
Get

And

Not
EqualEqual

Get

x y

Colour Red Colour
Get

Yellow

And And

Equal

And

Equal

Red

And

x

Equal

Colour
Get

Red

Equal
Not

And

Red

Equal

x

Colour
Get

Figure 4.3: An example condition section produced using theFull method.

needs the number it will use.

4.4.2.2 Action section initialisation

To generate a new action section STGP selects a random entity, or relation definition, then

for each property selects either a random number; symbol; oran existing variable in the

condition section, and property to use.

4.5 Altering the predictive models

A set of structure altering operators is used to modify the current set of predictive models,

to create a new population of predictive models. A population sampling method is used to

select predictive models from the current population. In this thesis tournament selection

and roulette wheel are used, as described in Section 2.6.4. These predictive models are

then altered either by modifying which production rules areused in the predictive models,

or by modifying the structure of the individual production rules in the predictive models.

Then the predictive models are added to the new population. This is shown in Figure 4.4.

79

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Figure 4.4: A flow chart showing the possible ways to alter thepredictive models in the
current population to produce a new population.

The following sections will explain how the predictive models and the production rules

are altered in more detail.

4.5.1 Altering the set of production rules

There are four kinds of operators to change the set of production rules in the predictive

models. These are:reproduction, addingin a new production rule,replacingan existing

production rule, andremovinga production rule. A set of probabilities are used to control

how much each operator is used. Which operator is used is selected randomly based

on a probability distributionPo. The operators have been inspired by Koza’s work on

architecture altering operations [59], as described in Section 2.6.6. The operators will

now be described in more detail.

Reproduction copies the predictive models unchanged into the new population.

Adding in a production rule from another predictive model This requires two predic-

tive models. A production rule from the first picked predictive model is randomly

selected, and added to the second. This second predictive model is then included in

the new population.

Replacing a production rule This requires two predictive models. A production rule

from the first predictive model is replaced by a production rule randomly selected

80

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

from the second. The first predictive model is then included in the new population.

Removing a production rule A randomly selected production rule is removed from a

predictive model. The predictive model is then included in the new population.

4.5.2 Altering the composition of the individual production rules

Two operators are used to change the composition of individual production rules,crossover

andmutation[58].

4.5.2.1 Crossover

Crossover is used to swap over parts of two different production rules. Two kinds of

crossover are used with the production rules: condition section crossover, and action

section crossover.

Condition section crossover uses the condition sections oftwo production rules and

is based on the crossover technique used in [79]. To perform crossover a random node

in the first condition section is selected. The same probabilities as used in [58] are used

to select nodes in the DAG. With probability of 10% a terminalnode is picked, and with

probability of 90% a function node is picked. Nodes in the second condition section

which match the node’s type and sub-type are then found. If there are no matching nodes

then a new node in the first condition section is selected, andthe process repeats. When a

set of matching nodes in the second condition section has been found, a node in this set is

randomly selected. The node and its sub-tree in the first condition section is then swapped

with the selected node and its sub-tree in the second condition section. This can be seen

in Figure 4.5.

In action section crossover, if the action sections are bothentities or both relations

then entity or relation crossover can be performed. To perform entity crossover a random

property from the entity’s definition is selected, and then arandom attribute from the

property is selected. Then the values from each of these attributes in each entity are

swapped over. In relation crossover one of the entity types used in the relation’s definition

is chosen. Then the id value for this entity type within each relation is swapped over. If

one action section is a relation and the other is an entity then the action sections are just

swapped over.

81

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Crossover

Condition section 1 Condition section 2

Figure 4.5: The genetic operator Crossover being performedon two condition sections.

4.5.2.2 Mutation

There are two possible types of mutation used in this thesis:condition section mutation

and action section mutation. Condition section mutation, is based on the mutation op-

erator described in [79]. It selects a random node within thecondition section of the

production rule and replaces it and its children with a randomly generated DAG which

has a root node that matches the type of the randomly picked node. The Grow method is

used to produce the new DAG. The DAG’s depth is randomly chosen such that it does not

exceed the maximum depth of the DAG. Figure 4.6 shows a node (highlighted in black)

being selected, and a new DAG replacing it and its children. In action section mutation

a random property is selected from the entity and its value isreplaced with a randomly

generated value.

4.6 Conflict resolver parameter learning

Once a set of production rules have been produced the next stage is to compute the pa-

rameters for the conflict resolver. It is represented by a discrete conditional probability

distributionP(U |R), as described in Section 3.3. The distribution probabilistically decides

which set of enabled production rules should be fired to produce a prediction.

Calculation ofP(U |R) has a simple closed form solution and is computed in two

stages. Firstly evaluate each of the production rules at each point in the history. Secondly

fire the action sections of each enabled production rule. Then record which of the outputs

successfully matched the actual output at the next point in the history. The probability

82

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Mutation

Condition section

Figure 4.6: The genetic operator Mutation being performed on a condition section.

distribution can be computed as shown in Equation 4.3 by recording the number of times

(Nr) the set of production rules have been enabled, or not enabled r = (r1, ..., rN), r i ∈

{true, f alse} when applied to the history; and the number of times (Nur) when the action

sections of the enabled production rules were fired their outputs matched the actual output

at the next time stepu = (u1, ...,uN), ui = {true, f alse}, ui is true if there is a match and

false otherwise.

P(U = u|R= r) =
P(U = u,R= r)

P(R= r)
=

Nur

Nr
(4.3)

The probability distribution is computed over all occurring combinations of enabling/not

enabling the production rules, and output matches/mismatches. In theory this could be

large, but in practice the number of combinations is limited, so sparse storage solutions

can be used. The method used to compare the output from a production rule with the

actual outputH is described by Equation 4.4. It finds the entity or relationh from the

actual output that best matches the production rule output.The matching is done using

the Match function (shown in Figure 4.7) which computes the proportion of properties in

the entity or relation which have the same values to the output from the production rule.

MS(p,H) = maxh∈H(match(p,h)) (4.4)

The computation forP(U |R) can now be described more formally. At each pointt in

the historyH the set of production rulesSare evaluated and the resultsr are stored where

r i is true if the condition sectionbi of production rulei entails the subset of the training

83

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Input: Entity or relation (O) produced from the action section of a
production rule and an entity or relation (C) from the history to compare it to.
Output:The fraction of properties that match.

Function Match

If O andC have the same types
Foreachpropertyp in O

If O andC have the same value for propertyp
s= s+ 1

t = t + 1
Return s / t

Else
Return 0

Figure 4.7: The pseudo code for the matching algorithm.

datah (biθT |= h) whereh∈ H, and false otherwise. The algorithm described in Section

3.4 is used to find the substitution (θT) that causes the condition section of the production

rule to entail a subset of the history. Next, the firing setu is formed whereui = true if

biθT |= h andMS(aiθT) = 1; and false otherwise. Finally the number of times in the

historyNr a specificr occurs is computed, and the number of timesNur a specificr occurs

and specificu also occurs is computed, and used to computeP(U |R) (Equation 4.3).

1

32

Figure 4.8: A path containing three sensors numbered 1, 2 and3.

Parameter learning will be illustrated with an example. Figure 4.8 show a path which

has 3 sensors on it numbered 1, 2 and 3. People walk along the path passing over sensor

1, and then either take the left or right fork, passing over sensor 2 or 3 in the process. We

do not consider any other routes in this simplified example. Figure 4.9 shows a predictive

model for predicting which sensor the person will pass over next once they have passed

over sensor 1. Production rule 1 states that sensor 2 will detect next, and production rule

2 states that sensor 3 will detect next. The problem now is to learn the parameters of the

84

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

R1: IF DETECT(SENSOR1, T) THEN DETECT(SENSOR2, T+1)
R2: IF DETECT(SENSOR1, T) THEN DETECT(SENSOR3, T+1)

Figure 4.9: The predictive model for the Path example.

Time 1 2 3 4 5 6 7 8
Detection history {1} {2} {1} {3} {1} {2} {1} {2}

r1 T F T F T F T F
r2 T F T F T F T F
u1 T F F F T F T F
u2 F F T F F F F F

Table 4.1: The prediction results for the Path model on a set of history. The history at each
point in time represents the sensor numbers that have been detected. There is only one
detection at each point in time because the condition sections of both of the production
rules only use detections at the current time.

conflict resolver for this predictive model. Table 4.1 showshow the model evaluated on a

history representing a sequence of sensor detections: 1, 2,1, 3, 1, 2, 1, 2 (this represents

4 people walking along the path, and 3 people taking the left fork, and 1 person taking the

right fork).

There are three possible situations that have occurred in this history, and these will be

used to compute the probability distributionP(U |R):

1. Both production rules are enabled on the history, but onlythe output of production

rule 1 matches the next detection (i.e. sensor 2 next), so only its action section

should be fired. This occurs at time points: 1, 5, and 7.

P(u1 = t,u2 = f |r1 = t, r2 = t) =
Nu1=t,u2= f ,r1=t,r2=t

Nr1=t,r2=t
=

3
4

= 0.75 (4.5)

2. Both production rules are enabled on the history, but onlythe output of production

rule 2 matches the next detection (i.e. sensor 3 next), so only its action section

should be fired. This occurs at time point 3.

P(u1 = f ,u2 = t|r1 = t, r2 = t) =
Nu1= f ,u2=t,r1=t,r2=t

Nr1=t,r2=t
=

1
4

= 0.25 (4.6)

3. None of the production rules were enabled on the history, and no output is predicted,

so none of the action sections should be fired. This occurs at time points: 2, 4, 6

and 8.

85

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

P(u1 = f ,u2 = f |r1 = f , r2 = f) =
Nu1= f ,u2= f ,r1= f ,r2= f

Nr1= f ,r2= f
=

4
4

= 1 (4.7)

There are other possible combinations, but these do not occur and so are not com-

puted. This means out of a possible 16 combinations (4 enabled combinations * 4 fired

combinations), only 3 are actually computed and stored.

4.7 Fitness function for scoring predictive models

The fitness function is used to produce a fitness score which represents how well a predic-

tive model predicts a future set of history from a past set of history. To compute the fitness

score the predictive model is applied at each point in the history to produce a prediction.

This prediction is compared against the history at the next time point to produce a pre-

dictive match score. The fitness score is calculated by computing the average predictive

match score over the history.

More formally given a predictive modelM and a set of historyH the predictive model

predicts from the historyH1:t at each time pointt. This is performed by the prediction

function described in Section 3.4 producing a set of predicted outputsW. Each pre-

dicted outputwi is a tuple(oi, pi) containing the outputoi , and its likelihoodpi . Equa-

tion 4.9 shows how the set of predicted outputs is compared with history at the next

time stepHt+1. To perform this comparison eachoi is compared againstHt+1 using the

FindBestMatch function (described below) and the result multiplied bypi . The best

comparison score is then returned. This process repeats over the entire history, and the

average comparison score is computed as shown in Equation 4.8.

f (M,H) =
1
|H|

∗∑
t

compare(predict(M,H1:t),Ht+1) (4.8)

compare(W,D) = Maxi(l i ∗FindBestMatch(pi,D)) (4.9)

TheFindBestMatch function (shown in Figure 4.10) takes the actual history, and

the predicted output, and firstly pads each of them out with blank entities or relations so

that they are the same size. Then, for each item in the actual history, a unique match in

the predicted output is found. For each of the matches a comparison is done between the

two objects using the Match algorithm described in Section 4.6. An exhaustive search is

then performed over all the possible combination of matchesto find the best (maximal)

matching score.

86

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Input: A set of Entity or relations (P) predicted by the predictive model,
a set of entities or relations (H) describing history data at the next time point.
Output:The score on how well the prediction matches the history data.

Function FindBestMatch

Fill the setsP andH with empty entities or relations such that they are the same length.
best= 0
Foreachmappingm from objects inP to objects inH

s= 0
Foreachobjectp in P get its mapped objectm(p)

s= s + Match(p, m(p))
If s> best

best= s
Return best

Figure 4.10: The pseudo code for theFindBestMatch algorithm.

The fitness function will now be illustrated with an example.We will use the same

predictive model, and conflict resolver from the previous section. This time the predictive

model is applied to a different set of history as shown in Table 4.2. In theW row each

tuple is the predicted sensor number, followed by its probability for example(2,0.75) is

the prediction that Sensor 2 will detect next with the probability of 0.75. The underscore

for the sensor number represents that there was no output. The bold items show which

of the predicted outputs match the actual outputs. In thecomparerow the 1 in each

calculation is the result from the compare function and shows that the predicted output

exactly matched the actual output. The fitness score can thenbe computed as shown in

Equation 4.10.

f =
(1∗0.75)+0+(1∗0.25)+0+(1∗0.25)+0

6
= 0.208 (4.10)

4.8 Controlling the size of the predictive models

To prevent the predictive models from overfitting the history, and getting too large, some

form of size control is required. In GP this is called bloat and refers to excess code in the

program trees that are not used. The Tarpeian method [22] is one of the methods in GP

used to control bloat. It has been shown to perform well on standard GP datasets [67],

therefore will be used in STGP to control the size of the predictive models. This method is

described in Section 2.6.7. Section 4.10.3.2 shows resultson how changing the Tarpeian

value affects STGP.

87

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Time 1 2 3 4 5 6
Detection history {1} {2} {1} {3} {1} {3}

r1 t f t f t f
r2 t f t f t f
W {(2,0.75), {(,1)} {(2,0.75), {(,1)} {(2,0.75), {(,1)}

(3,0.25)} (3,0.25)} (3,0.25)}
compare 1*0.75 0 1*0.25 0 1*0.25 0

Table 4.2: The fitness results for the Path predictive model on a set of history data. Vari-
ablesr1 andr2 represents that production rule 1 or 2 were enabled or not enabled on the
history. VariableW represents the set of predictions, which each tuple is a prediction from
a production rule containing an output, and its probability. The tuples in bold represent
where the prediction matches the detection at the next time step. The variablecompare
represents how well the prediction matched the actual history.

4.9 Evaluation

A comparison was performed with STGP and five other methods: Progol [82], Pe (an

implementation of the FAM algorithm [18] for SLPs), Neural Networks [111], Bayesian

Networks [94] and C4.5 [99]. Five datasets were used for the comparison: Uno, Uno2,

Paper Scissors Stone (PSS), CCTV and Play Your Cards Right (PYCR). Three of the

datasets (Uno, Uno2, and PSS) were taken from the work of Needhamet al. [89]. The

other two datasets (CCTV and PYCR) are novel, and were produced for this thesis. Both

of these datasets are non-deterministic and test how the different methods deal with learn-

ing from non-deterministic data. PYCR was also set as a grandchallenge in the work

of [89].

Section 4.9.1 will describe these datasets in more detail. Some of the datasets have

training sets that are generated from video, Section 4.9.2 will describe how this was per-

formed. Finally, Section 4.9.3 describes the representation used for each of the methods.

4.9.1 Overview of the datasets

This section gives a brief overview of the datasets: Uno, Uno2, PSS, PYCR, and CCTV.

4.9.1.1 Uno and Uno2

The card game Uno involves two players. Firstly one player says “Play” to signify both

players should put down a card. Each player then puts down a card, and the first player

who correctly shouts out how the two cards match picks up all the cards that have been

88

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

put down. If the cards both have the same picture, and colour then “Same” should be

shouted out. If the cards have the same picture, but different colours then “Shape” should

be shouted out. If the cards have the same colour, but different pictures then “Colour”

should be shouted out. Finally, if the two cards are different then “Nothing” is said. This

process repeats until a player cannot put down a card.

The game Uno2 works in a very similar manner; the only difference is that instead of

one player saying “Play” and both players putting down a card, they just take it in turns to

put a card down. The similarity is then based on the current and previous cards that were

put down. The methods should learn predictive models from the Uno and Uno2 datasets

that given the cards put down by each of the players should predict the result that should

be said.

For both Uno and Uno2 six training sets were produced. One wasfrom real world

video, as described in Section 4.9.2.1. This contained 50 rounds of the game for both

Uno and Uno2. The rest were hand crafted with different levels of noise. The noise levels

were: 0% (clean), 5%, 10%, 20% and 30%. The noise was producedby changing or

removing the speech outputs, or removing cards. The datasets contained 130 rounds of

the game.

4.9.1.2 Papers scissors stone

Paper Scissors Stone is a card game again played by two people, each with three cards

representing paper, scissors and stone. One player will say“Play”, and a card is selected

by each player. Both cards are placed down face up at the same time. The game is played

from the view point of player 1. If player 1’s card beats player 2’s card then “Win” will

be heard. If player 1’s card is beaten by player 2’s card then “Lose” will be heard. If both

players have put down the same cards then it is declared a drawand “Draw” will be heard.

Scissors will beat paper; paper beats stone; and stone beatsscissors. Table 4.3 shows the

possible states.

(Player 1) Paper Scissors Stone

(Player 2) Paper Draw Loose Win
Scissors Win Draw Loose
Stone Loose Win Draw

Table 4.3: The result states for a game of Paper Scissors Stone between two players.

Again, the methods should learn predictive models that given the cards put down by

each of the players should predict the result that should be said. Six training datasets

were produced in a similar manner to Uno and Uno2. One datasetwas generated from

89

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

real-world video, and the rest were handcrafted with the same levels of noise as the Uno

and Uno2 datasets. The real world video training set contained 100 rounds of the game,

and the handcrafted training sets contained 130 rounds of the game.

4.9.1.3 CCTV data of a path

A static camera was used to film a scene containing a path with ajunction point in it. A

frame of the video is shown in Figure 4.11(a), and Figure 4.12shows the four possible

movement patterns in the scene. The video is used to mockup a set of CCTV cameras

over the image as shown in Figure 4.11(b).

Figure 4.11: Figure (a) shows a frame of the video with a person taking a decision at the
junction point. Figure (b) shows the possible location of the virtual CCTV cameras in the
image.

Figure 4.12: The four possible movement patterns in the CCTVscene.

The methods should learn a predictive model that can predictbased on the CCTV cam-

eras a person has been in previously which CCTV camera they will appear in next. The

CCTV dataset tests if the different methods can learn from, and model, non-deterministic

90

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

data. Six training sets were produced in the similar manner to the PSS, Uno and Uno2

datasets. One dataset was produced from real-world video, and the rest were handcrafted.

The same noise levels as previously described were used. Noise was added by removing

regions and changing their numbers. The real world dataset contained 50 detections, and

the handcrafted datasets contained around 120 detections.

4.9.1.4 Play your cards right

Play Your Cards Right (PYCR) is a card game played by a person and a dealer. The cards

are numbered from 1 to 5 with 1 being the lowest, and 5 being thehighest. Firstly the

dealer says “Play” and puts down a card face up. Then the person must say if they predict

the next card will be “Higher” or “Lower” than this card. The dealer will then put down

the next card. If the person guesses correctly then the dealer says “Win”, otherwise they

will say “Lose”.

The methods should learn a predictive model that should use the state of the cards

put down to predict the spoken outcomes from the person and the dealer. PYCR, like

the CCTV dataset tests if the different methods can learn from non-deterministic spatio-

temporal data. Five handcrafted training sets were produced, having the same noise levels

as the previous datasets. The noise was added by removing cards and speech outputs, and

changing the speech outputs. The datasets contained 130 rounds of the game.

4.9.2 Spatio-temporal data acquisition

Four out of the five datasets (Uno, Uno2, PSS and CCTV) have a training set that is

generated from video. Firstly, spatio-temporal data must be acquired from the videos,

and then it must be represented within the different methods. This section describes data

acquisition, and the next section describes data representation.

4.9.2.1 Uno, Uno2 and PSS

The Uno, Uno2 and PSS videos will be that used in [89]. The datafiles from this paper are

used for the experiments in this chapter, but the speech cluster labels are changed to be the

actual speech (word) labels. The remainder of this section will explain how the datafiles

were produced. The videos were taken of the game playing area, and objects moving in

the area were tracked using a generic blob tracker [68]. Whenan object was stationary

for a number of frames it is assumed to be part of the game. Features from the object

including texture (calculated from Gabor wavelets, and Gaussians applied at various ori-

entations and scales), colour (calculated from a binned histogram of hue, and saturation),

91

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

and position were produced. Each colour, and texture feature was independently clustered

using agglomerative clustering. A graph was produced with data items as the nodes, and

the feature clusters used to weight the edges. The graph was then partitioned to form

clusters of data items. These clusters were then used to train a vector quantisation based

nearest neighbour classifier. One of the players had their voice recorded during the games.

The energy of the speech signal was analysed using a fixed length window. When the en-

ergy was over a fixed threshold spectral analysis was performed on the window, and a

histogram of the result was produced. K-means clustering was then performed on the

speech samples, to find clusters of similar speech sounds. Inthis thesis the previous step

is changed by replacing the speech cluster labels by manually annotating them with the

actual speech (word) labels.

4.9.2.2 CCTV

A 10 minute video of people walking along a path containing a junction was filmed. This

was then used to mock up a network of CCTV cameras. Figure 4.11shows a frame from

the video. Virtual motion detectors, representing CCTV cameras, were hand placed over

the video (Figure 4.11 right). Using frame differencing, and morphological operations the

video was processed to determine the location of the motion.If the number of moved pix-

els in a region exceeded a fixed threshold then the virtual detector outputted that motion

had occurred at that location. To prevent false detections the motion detection is imple-

mented as a 2-state machine (where the states are motion/no motion). The state machine

required a number of frames (normally 10) of stability to change state.

4.9.3 Representation

This section will show how the spatio-temporal data is represented in the different meth-

ods.

4.9.3.1 Progol and Pe

In Progol a set of events occurring in a visual scene is represented as a sequence of states

in which each state describes: the current state of the objects in the scene; an action associ-

ated with this state; the time the state occurs at; and how thestate relates to previous state.

Progol requires four elements as its input: a set of types; some background knowledge;

some examples; and a set of mode declarations. The Uno dataset will be used to illustrate

these elements. The rest of the datasets use similar elements. The same representation

from [89] will be used for the Uno, Uno2 and PSS datasets.

92

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Firstly, Progol needs some type declarations. Figure 4.13 shows the type declarations

for the Uno dataset: texture, colour, position, and speech.No background information is

required for any of the datasets.

texture(f0). texture(f1). texture(f2).
colour(c0). colour(c1). colour(c2).
position(p0). position(p1).
speech(s_1). speech(s_2). speech(s_3).
speech(s_4). speech(s_5). speech(s_6).
speech(s_7). speech(s_8). speech(s_9). speech(s_10).

Figure 4.13: Type declarations for Progol on the Uno dataset.

Secondly, Progol requires a set of examples – Figure 4.14 shows some examples for

the Uno dataset. The first example shows two cards being placed in the scene, and an

appropriate response (action) being heard. The second example shows an empty scene,

and an appropriate action being heard. Both examples have a similar structure. Thetime

predicate represents the time the example occurred at. Thesuccessor predicate repre-

sents how this example temporally relates to a previous example. Thestate predicate

is used to represent the visual scene. It either represents an empty scene, as shown in Ex-

ample 2, represented by[], or it represents a set of objects in the scene. In Example 1 the

state of the world is:[f1,c0,p0],[f0,c0,p1] which represents two objects, one

with texturef1 and colourc0, at positionp0; and the other with texturef0 and colour

c0, at positionp1. Finally theaction predicate represents what spoken response has

been heard.

Finally, Progol requires some mode declarations. Figure 4.15 shows the mode decla-

rations for the Uno dataset. It shows that Progol needs to produce a clause which has an

action term its head, and its body can contain the termssuccessor andstate.

To convert the clauses learnt by Progol into a Stochastic Logic Program (Section

2.5.3.3) the likelihood of each clause needs to be calculated from data. Two approaches

are used in this thesis to do this. Firstly, Pe (which implements the failure-adjusted max-

imisation algorithm from [18]) is used. Secondly, the clauses learnt by Progol are con-

verted into a predictive model, and the parameters of its conflict resolver are estimated by

STGP. This is performed by converting each Horn clause into aproduction rule, where

the action section contains the appropriate entity or relation representing the head of the

Horn clause, and the condition section represents the body of the Horn clause. Then,

the algorithm described in Section 4.6 is used to estimate the parameters of the conflict

resolver.

93

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

%Example 1
time(t_0).
time(t_15).
successor(t_0,t_15).
state([[f1,c0,p0],[f0,c0,p1]],t_15).
action(s_10,t_15).

%Example 2
time(t_15).
time(t_20).
successor(t_15,t_20).
state([],t_20).
action(s_9,t_20).

Figure 4.14: Examples of the Uno dataset which are used with Progol.

modeh(1,action(#speech,+time))
modeb(*,state([[-texture,-colour,-position],

[-texture,-colour,-position]],+time))
modeb(*,state([],+time))
modeb(1, +any = #any)
modeb(*,successor(-time,+time))

Figure 4.15: Mode declarations for Progol on the Uno dataset.

4.9.3.2 STGP

STGP requires the following: a set of property, entity and relation definitions; a datafile;

and a set of terminals, and functions. These will now be explained by using the Uno

dataset as an example. The other datasets use similar settings.

The representation used in the datafile is described in Section 3.2. The properties and

entities used to learn the Uno dataset are shown in Figure 4.16. There are four property

definitions: colour, texture, position, and speech, and twoentity definitions: card (with

properties: texture, colour and position), and action (with property speech).

Figure 4.17 shows the terminals used to learn the Uno dataset. There are colour sym-

bolsc0, c1; texture symbolsf0, f1, f2; position symbolsp0, p1; and speech symbols

Same, Shape, Nothing, Play, Colour. Figure 4.18 shows the functions used to

learn the Uno dataset. There are functions to check the existence of a card, or a talker

entity in the worldExists(Card), Exists(Action). Also, there are functions

to get property information from the cards, and talker entitiesGet(Card:Colour),

94

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Get(Card:Position), Get(Card:Texture), Get(Action:Speech). Fi-

nally, there are functions to compare symbolic dataEqual, Not-Equal,and logical

functionsAnd, Or, Not.

<PROPERTY-DEFINITION NAME="COLOUR">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC" VALUES="c0,c1,c2"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="TEXTURE">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC" VALUES="f0,f1,f2"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="POSITION">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC" VALUES="p0,p1"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="SPEECH">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"

VALUES="Shape,Colour, Nothing,Same,Play"/>
</PROPERTY-DEFINITION>

<ENTITY-DEFINITION NAME="CARD">
<LEARNABLE VALUE="FALSE"/>
<PROPERTY NAME="COLOUR"/>
<PROPERTY NAME="POSITION"/>
<PROPERTY NAME="TEXTURE"/>

</ENTITY-DEFINITION>

<ENTITY-DEFINITION NAME="ACTION">
<LEARNABLE VALUE="TRUE"/>
<PROPERTY NAME="SPEECH"/>

</ENTITY-DEFINITION>

Figure 4.16: Properties, and entity definitions for STGP on the Uno dataset.

c0, c1
p0, p1
f0, f1, f2
Same, Shape, Nothing, Play, Colour

Figure 4.17: Terminals for STGP used to learn the Uno dataset.

95

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Exists(Card), Exists(Action),
Get(Card:Colour), Get(Card:Position)
Get(Card:Texture), Get(Action:Speech)
And, Or, Not-Equal, Equal, Not

Figure 4.18: Functions used to learn the Uno dataset

4.9.3.3 Bayesian Networks, Neural Networks, and C4.5

These methods were implemented using the WEKA machine learning system [41]. This

requires a fixed length representation to describe the datasets. The representation will de-

scribe the current state of the scene, along with an associated action that needs to be learnt.

Figure 4.19 shows an example representation for the Uno dataset. The first six attributes

(Colour1, Position1, Texture1, Colour2, Position2, andTexture2) de-

scribe the properties of the cards in the scene, withcN, pN, fN representing that no card

is present. The final attribute (Speech) represents the action associated with the scene.

The first line of data indicates that no cards are in the scene and that play (s_play) was

uttered. The second line of data represents that a card with colourc2, positionp0, and

texturef0, and a card with colourc2, positionp1, and texturef1 are in the scene and

that colour (s_colour) was said.

@RELATION Uno
@ATTRIBUTE Colour1 {c0,c1,c2,cN}
@ATTRIBUTE Position1 {p0,p1,pN}
@ATTRIBUTE Texture1 {f0,f1,f2,fN}
@ATTRIBUTE Colour2 {c0,c1,c2,cN}
@ATTRIBUTE Position2 {p0,p1,pN}
@ATTRIBUTE Texture2 {f0,f1,f2,fN}
@ATTRIBUTE Speech {s_shape,s_play,s_same,s_colour,

s_nothing,s_unknown}
@DATA
cN,pN,fN,cN,pN,fN,s_play
c2,p0,f0,c2,p1,f1,s_colour

Figure 4.19: An example Uno dataset representation for Bayesian Networks, Neural Net-
works, and C4.5.

96

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

4.10 Results

This section will firstly outline the evaluation criteria for the experiments. Then an analy-

sis of the results from the different methods, and experiments with the different parameters

for STGP will be presented.

4.10.1 Evaluation criteria

Two criteria were used to evaluate the predictive models produced by the different meth-

ods: coverage, and accuracy. Coverage (c) scores if the predictive model can correctly

predict the history (i.e. the probability of correct prediction is greater than 0) and is the

number of correct predictions (nc) divided by the history size (s) (Equation 4.11). Accu-

racy (a) scores with what probability the correct prediction is made. It is calculated by

taking the sum of the likelihoodsl = {l1, ..., lnc} for each correct prediction, and divid-

ing it by the history size, as shown in Equation 4.12. In non-deterministic scenarios this

cannot be 100%.

c =
nc

s
(4.11)

a =
∑ l i
s

(4.12)

4.10.2 A comparison of STGP with current methods

Figures 4.20 - 4.27 show graphs comparing the coverage and accuracy of STGP with

Bayesian Networks, C4.5, Neural Networks, and Progol on thefive different datasets ex-

plained in Section 4.9.1. The graphs also show the results for estimating the probabilities

of the clauses learnt by Progol using Pe, and STGP. Ten fold cross validation was used

in all the experiments. In STGP the training folds are used inthe following way: four

folds are used to estimate the parameters of the conflict resolver, and five folds are used

to score the predictive models. A windowed section (which moves at every generation)

of the parameter fold, and the scoring fold is used for the calculations. Overall the results

show that STGP had accuracy on all the datasets that was as good as, or better than the

other methods.

On both Uno and Uno2 the maximum achievable result for these datasets was 100%

accuracy, and 100% coverage (as they are deterministic). Itcan be seen in Figures 4.20

and 4.21 that STGP matches the expected result for the clean dataset, and keeps close

to this result with noisy data. Combining Progol with STGP onboth the Uno and Uno2

datasets produced more accurate results than all methods other than STGP. The Uno and

97

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

Uno2 datasets do not contain enough examples to describe every possible outcome that

can occur within the game. C4.5, Neural Networks, and Bayesian Networks cannot pro-

duce generalised rules from the examples, and effectively rely on storing common exam-

ples and their outcomes. They fail to get 100% accuracy and 100% coverage (Figures

4.20 and 4.21), as they will have not learnt enough examples to correctly predict from all

the test data. These methods are also affected by noise in theexamples, which can be seen

in the graphs. Progol and STGP which can learn generalised rules from the examples get

better results because the generalised rules can still correctly predict test examples which

have not occurred in the training data. Progol suffers from aclause evaluation problem

that affects its coverage and accuracy results. This is caused by an incorrect ordering of

the clauses it has learnt. As explained in Section 2.5.2 the clauses are applied in the order

they are learnt until one clause entails the unseen example.In this thesis the clauses were

applied in the order that Progol had learnt them. This often means that although Progol

had learnt the correct set of clauses their ordering caused Progol to predict incorrectly.

Figure 4.22 shows one of the results from the Uno Clean dataset. It can be shown that the

correct number of clauses has been learnt, but when they are applied to the test fold it got

93% coverage and 93% accuracy. If the clauses were in the correct order it would have

got 100% coverage and 100% accuracy. The problem is due to where the Same clause is

located. In Figure 4.22 the Colour and Shape clauses are applied before the Same clause

which means Progol will incorrectly predict a same event as acolour or shape event. By

placing the Same clause above the Colour and Shape clauses this problem is solved, as

shown in Figure 4.23.

Pe can be used to solve this clause ordering problem. It estimates the likelihood that

a clause is used in a prediction. All the clauses are applied to the unseen example, and

the likelihood of a prediction is based on the clauses that entail the unseen example. This

approach improves Progol’s coverage results, but does not improve its accuracy due to

some clauses clashing when they entail an unseen example. For example, the estimated

probabilities from Pe for the clauses in Figure 4.22 are shown in Figure 4.24.

Using these probabilities the likelihood of the Same clauseentailing an unseen exam-

ple is based on the Same clause likelihood along with the likelihood of the Colour, Shape,

and Nothing clauses because these also entail the unseen example. The probability of

predicting the next event will be same is then 0.05
0.1+0.1+0.05+0.23 = 0.1. However, if the

Shape, Colour and Nothing clauses were not included in the prediction, the prediction for

same would have the correct probability of 1.0. Pe must output all clauses that match the

data, unlike STGP which can prevent the action sections of some production rules from

being output. This can be seen in the results as combining theclauses learnt by Progol

98

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno - 10% Noise

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno - 10% Noise

Figure 4.20: The mean accuracy and coverage for Uno Clean (top) and Uno 10% noise
(bottom). The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

with STGP gets more accurate results than Progol, and Progolcombined with Pe.

On the PSS dataset the optimal obtainable result is again 100% coverage, and 100%

accuracy (as it is deterministic). STGP, as shown in Figure 4.25, gets the best accuracy

results, and matches the optimal result on the clean dataset, and keeps close to this for

the noisy datasets. C4.5 gets the same accuracy results as STGP on the clean dataset,

but its accuracy reduces on the noisy datasets. Neural networks get good results (average

accuracy 97%) on the clean datasets, but again this drops on the noisy datasets. Progol,

Progol combined with Pe, and Progol combined with STGP got worse results than C4.5

and Neural Networks. The PSS datasets, however, are different to Uno and Uno2 in that

no general rules are required to get good results on the training examples. The training

data contain all the possible combinations of the game, so all that is required is to memo-

rise these combinations. This explains why C4.5 and Neural Networks gets better results

on this dataset than on the Uno and Uno2 datasets. Progol again suffers from the clause

ordering problem described previously which affects its results. Pe solves the clause or-

dering problem, but the clashing clauses reduce the accuracy of the results. When the

clauses from Progol are combined with STGP there is not enough training data to cor-

99

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno2 - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno2 - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno2 - 10% Noise

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno2 - 10% Noise

Figure 4.21: The mean accuracy and coverage for Uno2 Clean (top) and Uno2 10% noise
(bottom). The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

action(s_play,A) :- state([],A).
action(s_colour,A) :- state([[B,C,D],[B,E,F]],A).
action(s_shape,A) :- state([[B,C,D],[E,F,D]],A).
action(s_same,A) :- state([[B,C,D],[B,E,D]],A).
action(s_nothing,A) :- state([[B,C,D],[E,F,G]],A).

Figure 4.22: A result for Progol on the Uno dataset with the clauses in the wrong order.

action(s_play,A) :- state([],A).
action(s_same,A) :- state([[B,C,D],[B,E,D]],A).
action(s_colour,A) :- state([[B,C,D],[B,E,F]],A).
action(s_shape,A) :- state([[B,C,D],[E,F,D]],A).
action(s_nothing,A) :- state([[B,C,D],[E,F,G]],A).

Figure 4.23: A result for Progol on the Uno dataset with the clauses in the correct order.

rectly estimate the parameters for the conflict resolver. This prevents it from correctly

predicting all of the test data, which reduces its accuracy.

On the PYCR dataset STGP gets the best accuracy and coverage as shown in Figure

100

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

0.50::action(s_play,A) :- state([],A).
0.10::action(s_colour,A) :- state([[B,C,D],[B,E,F]],A).
0.10::action(s_shape,A) :- state([[B,C,D],[E,F,D]],A).
0.05::action(s_same,A) :- state([[B,C,D],[B,E,D]],A).
0.23::action(s_nothing,A) :- state([[B,C,D],[E,F,G]],A).

Figure 4.24: The estimated probabilities for the clauses inFigure 4.22 using Pe.

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

PSS - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

PSS - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

PSS - 10% Noise

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

PSS - 10% Noise

Figure 4.25: The mean accuracy and coverage for PSS Clean (top) and PSS 10% noise
(bottom). The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

4.26. The optimal result for PYCR is 100% coverage, and 90% accuracy (as it has non-

deterministic outcomes). This is based on playing the game where each possible game

combination occurs in equal proportion. STGP is close to this for both the clean and noisy

datasets. It does fail to get 100% coverage due to not learning rules for infrequent events

in the training data. On the clean data, Bayesian Networks, C4.5 and Neural Networks

got more accurate results than Progol, and Progol combined with Pe. However, on the

noisy data the inverse is true, as can be seen in Figure 4.26.

Progol does not learn enough clauses to cover the possible cases in the game. When

Progol is combined with either Pe, or STGP the accuracy does not improve due to the lack

101

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

of correct clauses. Progol’s fitness function is based on howwell the clauses cover rather

than predict the data. It looks at the number of positive examples to negative examples

covered by a potential clause. The more negative examples a clause covers, the less likely

Progol will be to use it. This can make it hard to learn clausesfrom non-deterministic data,

where a particular state in the world can have multiple outcomes. If insufficient examples

are available Progol sees multiple outcomes as noise, whichcan prevent it finding a clause.

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

PYCR - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

PYCR - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

PYCR - 20% Noise

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

PYCR - 20% Noise

Figure 4.26: The mean accuracy and coverage for PYCR Clean (top) and PYCR 20%
noise (bottom). The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

The results for the CCTV dataset are shown in Figure 4.27. Theexpected results

for CCTV are 100% coverage and 83% accuracy (as it has non-deterministic outcomes).

This is based on the four actions from Figure 4.12 occurring in equal proportions in the

data. STGP got the best results, but does not get 100% coverage, because it fails to learn

infrequent changes between regions in the training data. InSTGP for a predictive model

to match a particular pattern in the training data the pattern must occur both within the

window used the estimate the parameters of the conflict resolver, and in the window to

score the predictive models. This is done to prevent STGP from learning from noise, and

to help it generalise. Infrequent region changes that only appear in one of the windows

will not be modelled, and are seen as noise. This is why some ofthe infrequent region

102

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

changes in the CCTV dataset were not modelled. This can be verified in the results as the

predictive models learnt from different folds modelled different actions. Neural Networks,

and Progol got results that were statistically the same on the clean dataset. Bayesian

Networks, C4.5 and Progol combined with Pe got the worst results on the clean dataset.

The methods get similar results with increasing levels of noise, except for STGP, and

Progol combined with STGP. Progol fails to get good results,because the CCTV dataset is

non-deterministic which affects its fitness function (explained previously). When Progol

is combined with Pe accuracy is not improved. This is due to problems with clashing

clauses, which effect Pe’s accuracy. By combining Progol with STGP its accuracy results

are improved, and they are shown to be statistically similarto STGP (p-value on clean

data is 0.03, with 5% noise is 0.0003, and with 10% noise is 0.01).

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

CCTV - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

CCTV - Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

CCTV - 20% Noise

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

CCTV - 20% Noise

Figure 4.27: The mean accuracy and coverage for CCTV Clean (top) and CCTV 20%
noise (bottom). The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

4.10.3 Parameter experimentation with STGP

This section presents results from experimenting with the different STGP parameters to

see how they affect its performance on different datasets. The initial values for the param-

103

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

eters are shown in Table 4.4, these were based on typical parameter values from the GP

literature. The rest of this section will show experiments varying each of the parameters

in turn. The best results from each experiment are used in subsequent experiments.

Parameter Value
Population Size 6000
Tarpeian value None

Maximum number of generations 100
Initialisation generations 10

Selection method Tournament selection using 6 individuals
Percentage of operators Reproduction (10%), Delete (10%),

in initialisation generations Adding (40%), Replace (40%)
Percentage of operators Reproduction (10%), Crossover (50%),
in normal generations Mutation (10%), Delete (10%),

Adding (10%), Replace (10%)
Conflict resolver type Probabilistic

Table 4.4: Initial settings for STGP.

4.10.3.1 Population Size

The following values were used for the population size parameter: 1000, 2000, 3000,

4000, 5000, and 6000. Figure 4.28 show the accuracy results on the clean versions of

the datasets. The graphs show that by increasing populationsize this is not a statistically

significant change in the average accuracy of the results. Similar results were seen on the

medium and high noise datasets. The PSS and Uno2 clean datasets have a large amount of

variance in the accuracy results for population size 1000, when compared with the other

population sizes. To increase population diversity, and provide STGP with a greater range

of predictive models when trying to find a solution it was decided to keep the population

size at 6000 for all the datasets in this chapter. This allowsSTGP to deal with noisy

datasets, and makes it more likely to converge to the correctsolution.

4.10.3.2 Tarpeian value

In the population size experiments there were no constraints on the possible size of the

predictive models. Figure 4.29 shows that the average size of the predictive models across

all datasets typically increased a constant rate to the number of generations STGP had

performed. This relationship is the same regardless of population size, and shows the

predictive models suffer from bloat. As explained in Section 2.6.7 bloat causes the pre-

dictive models to contain redundant elements which could make them less general, and

104

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 94

 95

 96

 97

 98

 99

 100

 101

 102

 0 1000 2000 3000 4000 5000 6000 7000

M
ea

n
A

cc
ur

ac
y

(%
)

Population Size

PSS - Clean

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 100.2

 100.4

 0 1000 2000 3000 4000 5000 6000 7000

M
ea

n
A

cc
ur

ac
y

(%
)

Population Size

Uno - Clean

 88

 90

 92

 94

 96

 98

 100

 102

 104

 0 1000 2000 3000 4000 5000 6000 7000

M
ea

n
A

cc
ur

ac
y

(%
)

Population Size

Uno2 - Clean

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000 6000 7000

M
ea

n
A

cc
ur

ac
y

(%
)

Population Size

CCTV - Clean

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 0 1000 2000 3000 4000 5000 6000 7000

M
ea

n
A

cc
ur

ac
y

(%
)

Population Size

PYCR - Clean

Figure 4.28: The mean accuracy graphs for population size onthe clean datasets. The
error bars show one standard deviation from the mean. All results were produced by 10
fold cross validation.

slow down STGP’s search for a solution. To control bloat the Tarpeian method [22] was

used. The amount of bloat control is based on the Tarpeian value that varies from 1 to

10. Two experiments were then performed. The first experiment applied Tarpeian bloat

control over the entire run using the Tarpeian values in the integer range of 1 to 10. The

second experiment delaying the Tarpeian bloat control until after the 10 initialisation gen-

erations had been performed, to see if the increased diversity in the initial generations of

the run would produce better results.

To find the best Tarpeian value for each dataset requires finding the lowest value which

105

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120

M
ea

n
S

iz
e

Generations

Uno - 0% Noise

1000
2000
3000
4000
5000
6000

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

M
ea

n
S

iz
e

Generations

Path - 0% Noise

1000
2000
3000
4000
5000
6000

Figure 4.29: The mean predictive model size for the CCTV (right) and Uno (left).

has an accuracy at least as good as the accuracy for the dataset with no Tarpeian control.

This means finding on the accuracy graph the point where the mean accuracy begins to

flatten out.

Figure 4.30 shows the accuracy values for the Tarpeian values on the clean datasets.

Figure 4.31 shows the average model size for the different Tarpeian values. It can be seen

that for CCTV and Uno2 a Tarpeian value of 3 will produce results with the same accu-

racy as without using bloat control, but the size of the predictive models is significantly

reduced. For Uno and PYCR this value is 4, and for PSS this value is 5. PSS requires a

more complex predictive model than the rest of the datasets which explains in its higher

Tarpeian value. For all datasets a Tarpeian value of 2 did notget good accuracy results

when compared to the accuracy results to not using bloat control. The medium noise

accuracy results for the datasets show a similar picture. The accuracy results on the high

noise datasets show they require slightly different Tarpeian values. PSS, Uno2, CCTV

and PYCR require a Tarpeian value of 4; and Uno requires a Tarpeian value of 6.

Figures 4.32 and 4.33 show the accuracy and size results on the clean datasets when

the Tarpeian bloat control is not performed for the initial 10 generations. It can be seen

that there is no significant difference in the results when compared with using Tarpeian

bloat control for the entire run. The same findings are found on the medium, and high

noise datasets. It was therefore decided to apply Tarpeian bloat control for the entire

length of the run.

The Tarpeian method controls the size of the population, which affects its diversity.

The results show that a very low Tarpeian value decreases thediversity of the population

too much, and prevents STGP from finding the correct solution. The datasets which

require simpler predictive models like Uno, and Uno2 require a slightly lower Tarpeian

values than the datasets which require more complex predictive models like PSS. Chapter

7 presents an adaptive Tarpeian method that varies the Tarpeian value during the run

106

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 88

 90

 92

 94

 96

 98

 100

 102

 104

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

PSS - Clean

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 100.2

 100.4

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno - Clean

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno2 - Clean

 74

 76

 78

 80

 82

 84

 86

 88

 90

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

CCTV - Clean

 82

 84

 86

 88

 90

 92

 94

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

PYCR - Clean

Figure 4.30: The mean accuracy results for the clean datasets on different Tarpeian values.
The error bars show one standard deviation from the mean. Allresults were produced by
10 fold cross validation.

of STGP. This stops the user from having to decide which Tarpeian value to use, and

optimises the Tarpeian value depending on the current stateof the population.

4.10.3.3 Tournament selection

Tournament selection (Section 2.6.4) is one technique to select individuals in the popula-

tion, the next section will show another called Roulette wheel. It requires a value which

determines how many individuals in the population will takeplace in the tournament. A

low value will cause tournament selection to select more randomly from the population,

107

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

PSS - Clean

 10

 20

 30

 40

 50

 60

 70

 80

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno - Clean

 0

 20

 40

 60

 80

 100

 120

 140

 160

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno2 - Clean

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

CCTV - Clean

 0

 50

 100

 150

 200

 250

 300

 350

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

PYCR - Clean

Figure 4.31: The mean size results for the clean datasets on different Tarpeian values. The
error bars show one standard deviation from the mean. All results were produced by 10
fold cross validation.

and higher values will cause it to select more from the fitter individuals in the popula-

tion. To find the best value for the datasets an experiment wasperformed that tried out

the following tournament selection values: 2,5,10,20,40,60,80,100,120,140,160,180, and

200.

Figure 4.34 shows how the different tournament selection values performed on the

clean datasets. It can be seen that for the PYCR, Uno and PSS datasets an increased

tournament selection value reduces the mean accuracy of theresults (PSS p-value=0.004,

PYCR p-value=0.05, Uno p-value=0.03; calculations based on tournament values 5 and

108

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 94

 95

 96

 97

 98

 99

 100

 101

 102

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - Clean

 99

 99.5

 100

 100.5

 101

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - Clean

 88

 90

 92

 94

 96

 98

 100

 102

 104

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - Clean

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV - Clean

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PYCR - Clean

Figure 4.32: The mean accuracy results for the clean datasets on different Tarpeian values
where Tarpeian bloat control starts after the first 10 generations. The error bars show one
standard deviation from the mean. All results were producedby 10 fold cross validation.

200). For the Uno2 and CCTV datasets a increased tournament selection value had no

statistically significant change in the accuracy in the results (Uno2 p-value=0.35, CCTV

p-value=0.43; calculations based on tournament values 5 and 200). Across all datasets a

tournament selection value of 2 produced poor results. A similar pattern can be seen as

with the medium noise datasets as with the clean datasets, with the exception that STGP

gets worse accuracy results on the Path dataset with an increasing tournament selection

value, and the accuracy results on the Uno dataset do not havea statistically significant

(p-value 0.64) change as the tournament selection value is increased. On the datasets with

109

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

PSS - Clean

 10

 20

 30

 40

 50

 60

 70

 80

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

Uno - Clean

 0

 20

 40

 60

 80

 100

 120

 140

 160

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - Clean

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

CCTV - Clean

 0

 50

 100

 150

 200

 250

 300

 350

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

PYCR - Clean

Figure 4.33: The mean size results for the clean datasets on different Tarpeian values
where Tarpeian bloat control starts after the first 10 generations. The error bars show one
standard deviation from the mean. All results were producedby 10 fold cross validation.

high noise levels varying the tournament selection value has little change in the results

apart from for PYCR where it got worse accuracy with an increasing tournament selection

value. The variation in the results is due to population diversity. Larger tournament

selection values force STGP to sample more from the fitter individuals in the population,

which will reduce the population diversity. For some datasets like Uno, and Uno2 it has

been shown that solutions can still be found even with reduced population diversity, but

for the rest of the datasets this reduced diversity will not allow STGP to find the correct

solution. Small tournament selection values on the other hand increase the population

110

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 88

 90

 92

 94

 96

 98

 100

 102

 104

 50 100 150 200

M
ea

n
A

cc
ur

ac
y

(%
)

Tournament Selection Value

PSS - Clean

 80

 85

 90

 95

 100

 105

 50 100 150 200

M
ea

n
A

cc
ur

ac
y

(%
)

Tournament Selection Value

Uno - Clean

 80

 85

 90

 95

 100

 105

 50 100 150 200

M
ea

n
A

cc
ur

ac
y

(%
)

Tournament Selection Value

Uno2 - Clean

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

 50 100 150 200

M
ea

n
A

cc
ur

ac
y

(%
)

Tournament Selection Value

CCTV - Clean

 78

 80

 82

 84

 86

 88

 90

 92

 94

 50 100 150 200

M
ea

n
A

cc
ur

ac
y

(%
)

Tournament Selection Value

PYCR - Clean

Figure 4.34: The mean accuracy results for the clean datasets on different Tournament
selection values. The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

diversity, but force STGP to search randomly over the space of predictive models. This

random search will take longer time to find the correct solution, and often results in STGP

finding a locally optimal solution. A balance between using atournament selection value

which is too small, or too large needs to be found. It was decided to keep the tournament

selection value at 6 for all datasets in the remaining experiments, which is a reasonable

compromise based on the results shown.

111

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

4.10.3.4 Roulette wheel

Roulette wheel selection (Section 2.6.4) is analogous to allocating space on a circular

wheel depending on each individuals fitness. A pointer is then virtually spun to select

individuals. Figure 4.35 shows graphs showing the results of Roulette wheel and Tour-

nament selection on the clean datasets. It can be seen that Roulette wheel selection does

not produce very accurate results for all datasets. This canbe explained in more detail

by looking at the best value for the generations, as shown in Figure 4.36. These graphs

show that the best score for the individuals using Roulette wheel either stays constant or

increases (when it should go down). This shows that Roulettewheel selection is selecting

too randomly from the population, and is not focusing on the fitter individuals in the pop-

ulation affecting the accuracy results. The same results can be seen on the medium noise

datasets. On the high noise datasets there is not any statistically significant difference

between Roulette wheel and Tournament selection on PYCR, and Uno2. It was decided

to keep tournament selection as the selection method due to its the better accuracy results

over Roulette wheel selection.

4.10.3.5 Maximum number of generations

To find out if increasing the maximum number of generations STGP is run for would

increase the accuracy of the results an experiment was performed. STGP was run with

the following values for the maximum number of generations:150, 200 and 250. For all

datasets there was no change in the results for by increasingthe generation value from

100 generations. Figure 4.37 shows the average best value for each generation for the

clean datasets It can be seen that STGP converges on a solution by 100 generations for

all datasets, and that the average best value does not changeby increasing the amount of

generations. This explains why running STGP for more generations does not increase the

accuracy of the results. A generation value of 100 was therefore chosen, to be used for all

datasets.

4.10.3.6 Operators

The final parameter to investigate was the operators used to evolve the predictive models.

In Table 4.4 the percentage of the adding and replacement operators is increased for the

first 10 generations. Then the percentage of these operatorswas reduced, and the percent-

age of the crossover operator is increased. The idea behind this approach is to initially

perform a global search to try and find the best number of production rules in the predic-

tive models. Then a local search is performed to try and locally optimise the predictive

112

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 75

 80

 85

 90

 95

 100

Roulette WheelTournament Selection

M
ea

n
A

cc
ur

ac
y

(%
)

Selection Method

PSS - Clean

 70

 75

 80

 85

 90

 95

 100

Roulette WheelTournament Selection

M
ea

n
A

cc
ur

ac
y

(%
)

Selection Method

Uno - Clean

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

Roulette WheelTournament Selection

M
ea

n
A

cc
ur

ac
y

(%
)

Selection Method

Uno2 - Clean

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

Roulette WheelTournament Selection

M
ea

n
A

cc
ur

ac
y

(%
)

Selection Method

CCTV - Clean

 55

 60

 65

 70

 75

 80

 85

 90

Roulette WheelTournament Selection

M
ea

n
A

cc
ur

ac
y

(%
)

Selection Method

PYCR - Clean

Figure 4.35: The mean accuracy results for the clean datasets on comparing Roulette
wheel with Tournament selection. The error bars show one standard deviation from the
mean. All results were produced by 10 fold cross validation.

models. To see how this global search effects the results an experiment was performed. It

looked into varying the number of generations the global search was performed for. The

values were None, 10, 20, and 30.

Figure 4.38 shows the results on the clean datasets. STGP gotthe best score on Uno,

PYCR and PSS by using 10 generations of the global search phase. For Uno and PSS

STGP converged in half the number of generations by using 10 generations of the global

search phase than for any other value. STGP found the best solution on the Uno2 dataset

by using 20 generations of the global search phase. STGP converges on the solution for

113

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

Uno2 - Clean

Tournament selection
Roulette wheel

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

Uno - Clean

Tournament selection
Roulette wheel

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

CCTV - Clean

Tournament selection
Roulette wheel

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

PYCR - Clean

Tournament selection
Roulette wheel

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

PSS - Clean

Tournament selection
Roulette wheel

Figure 4.36: The best fitness score for the predictive modelsfor the clean datasets using
Roulette wheel, and Tournament selection.

114

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250

M
ea

n
B

es
t S

co
re

Generations

Uno2 - Clean

100
150
200
250

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250

M
ea

n
B

es
t S

co
re

Generations

Uno - Clean

100
150
200
250

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250

M
ea

n
B

es
t S

co
re

Generations

CCTV - Clean

100
150
200
250

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250

M
ea

n
B

es
t S

co
re

Generations

PYCR - Clean

100
150
200
250

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250

M
ea

n
B

es
t S

co
re

Generations

PSS - Clean

100
150
200
250

Figure 4.37: The best fitness score for the predictive modelsfor the clean datasets with
different values for the maximum number of generations.

115

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

the CCTV dataset so long as some form of global search phase isused. By not using the

global search phase it can be seen that it takes STGP longer toconverge to a solution,

and on the Uno2 and PYCR datasets it fails to converge on the correct solution. Similar

comments can be applied to the results for the datasets with medium noise, as for the

clean datasets. STGP, however, converges fastest on the Uno2 dataset with a global search

period of 10 generations, but gets slightly better results with a global search period of 30

generations. A similar story can be applied to the results from the datasets with high

noise, apart from the Uno2 dataset the best global search period is 10 generations. For the

Uno2 dataset the best results are found with 20 generations for the global search period.

The results show that a period of increased adding and replacing of production rules in

the predictive models reduces the convergence time, and also makes it more likely to find

the correct solution. Solutions for the CCTV dataset can be found by just using global

search, but for the rest of the datasets a combination of the global search, and local search

are required to find the correct solution. This shows that forthe CCTV dataset all the

production rules required for the solution are generated inthe initial generation, and all

that is required is to find the correct combination of these production rules. For the rest of

the datasets finding the best combination of the production rules generated in the initial

generation allows STGP to find the correct area of the search space to locate the correct

solution. Then the crossover and mutation operators can be used to locally optimise the

production rules to find the correct solution.

The number of generations that the global search is performed for effects the number

of generations it takes STGP to convergence on the correct solution, and its ability to

find the correct solution. The results show that performing the global search for a larger

number of generations (e.g. 30) causes the value of the best predictive model to converge

during the global search, this value only starts to reduce when local search is performed.

Converging during the global search is bad for two reasons: it reduces the diversity in the

population, which might mean STGP will not find the correct solution; and it increases the

number of generations required to find the correct solution.The value of 10 generations

for the global search was chosen for all datasets.

4.10.4 Conflict resolver

The previous experiments all used the probabilistic conflict resolver described in Section

4.6. An experiment was performed to see what would happen if avery simple conflict

resolver was used, where every production rule that was enabled was fired to produce a

prediction. This was only performed on the deterministic datasets (Uno, Uno2, and PSS)

116

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

Uno2 - Clean

1
10
20
30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

Uno - Clean

1
10
20
30

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

CCTV - Clean

1
10
20
30

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

PYCR - Clean

1
10
20
30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

M
ea

n
B

es
t S

co
re

Generations

PSS - Clean

1
10
20
30

Figure 4.38: The fitness score results for the best scoring predictive models for the clean
datasets where the number of generations performed on the global search is increased.

117

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

as the conflict resolver is unable to deal with non-deterministic data. The experiment was

the same as the Tarpeian value experiments from Section 4.10.3.2. Figures 4.39 and 4.40

show the results on the clean datasets. It can be seen that theaccuracy results on both:

using bloat control for the entire run, and delaying bloat control by 10 generations is sig-

nificantly worse than the accuracy results using a probabilistic conflict resolver (Section

4.10.3.2). These results showed that when a probabilistic conflict resolver was used the

accuracy was close to 100% on the clean datasets. Similar results were observed on the

medium and high noise datasets. For these reasons it was decided to use the probabilistic

conflict resolver for all the datasets in this chapter.

The reason why the predictive models using the simple conflict resolver performed

poorly (in terms of both coverage and accuracy) is down to onereason: a more complex

search space. The search space when using the simple conflictresolver is full of local

optima compared to one where a probabilistic conflict resolver is used. The search space

contains many predictive models where the only way to get into the fitter part of the search

space is to firstly find a less fit area of the search space. This is because to improve the

fitness of a predictive model it must go through two states. Firstly some of its production

rules must be enabled at the same time, but when fired they produce different predictions,

which causes a conflict. Then the predictive model has to evolve to resolve this conflict.

When the sub-models are conflicting the predictive model gets a lower fitness score than

it currently has. Once the conflict has been resolved the predictive model gets a higher

fitness score. STGP probabilistically selects fitter predictive models for use in the next

population. This can mean that the evolution can get stuck ina local optima where the

predictive models containing conflicting production rulesare never picked and the run

locally converges.

4.11 Conclusions

This chapter has described Spatio-Temporal Genetic Programming (STGP). This is used

to learn the predictive models as described in Chapter 3. It has been compared with Pro-

gol, Neural Networks, Bayesian Networks, and C4.5; on five different datasets. Three

were deterministic, and two were non-deterministic. STGP got the best results overall.

Progol suffered from a clause clashing problem that effected both its coverage and accu-

racy. When Progol was combined with Pe it managed to improve Progol’s coverage, but

due to clashing clauses it does not improve its accuracy. Combining Progol with STGP

improved both Progol’s coverage and accuracy on all datasets. Bayesian Networks and

C4.5 performed fairly well, but were limited due to their inability to learn generalised

118

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 78

 80

 82

 84

 86

 88

 90

 92

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - Clean

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

PSS - Clean

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - Clean

 0

 10

 20

 30

 40

 50

 60

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

Uno - Clean

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - Clean

-20

-10

 0

 10

 20

 30

 40

 50

 60

1098765432None

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - Clean

Figure 4.39: The mean accuracy and size results for the cleandatasets on different
Tarpeian values where Tarpeian bloat control starts after the first 10 generations, and a
simple conflict resolver is used in the predictive models. The error bars show one stan-
dard deviation from the mean. All results were produced by 10fold cross validation.

rules from data.

STGP produces the best results with: some form of size control on the predictive

models; the tournament selection sampling technique usinga tournament selection value

that favours the better scoring predictive models; and an increased amount of adding and

replacement of production rules in the initial 10 generations of the run. The results on the

maximum number of generations showed that STGP had converged on a solution by 100

generations. Work could be done to investigate diversity techniques (Section 2.6.7) to see

119

Chapter 4 Learning Predictive Models of Spatio-Temporal Data

 78

 80

 82

 84

 86

 88

 90

 92

 94

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

PSS - Clean

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

PSS - Clean

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno - Clean

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno - Clean

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno2 - Clean

-20

-10

 0

 10

 20

 30

 40

 50

 60

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno2 - Clean

Figure 4.40: The mean accuracy and size results for the cleandatasets on different
Tarpeian values where a simple conflict resolver is used in the predictive models. The
error bars show one standard deviation from the mean. All results were produced by 10
fold cross validation.

if maintaining diversity for a larger number of generationsimproves the results.

120

Chapter 5

Learning Predictive Models Using A

Qualitative Representation of Time

5.1 Introduction

In Chapter 4 the predictive models used a sequential approach for representing time. This

is not very robust to noise and the presence of multiple objects, for reasons which will

be discussed in Section 5.2. This chapter describes the use of qualitative relations to

represent time, which solves this problem. Four novel temporal state relations are de-

scribed, shown in Section 5.4. Section 5.6 firstly presents acomparison of STGP, with:

Progol [82], Neural Networks [111], Bayesian Networks [94]and C4.5 [99] on learn-

ing predictive models containing temporal relations from an Uno dataset, and a CCTV

dataset. Secondly, to see how the temporal relations allow apredictive model to deal with

noise, and multiple objects the STGP results on the CCTV dataset from this chapter, and

Chapter 4 are applied to two CCTV test sets one containing multiple people, and one

containing random injection noise. Thirdly, results with experimenting with some of the

parameters for STGP is presented.

121

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

5.2 Quantitative representation of time

Section 2.4.2.2 described Markovian approaches to temporal modelling include Variable

Length Markov Models (VLMMs) [35] and Markov Chains. Each observation represents

a state of the world at a specific time. The sequence of observation vectors are used to

predict the most likely subsequent observations. Our work in Chapter 4 followed this

principle: the variables in the condition section used a relative Point time representation

to reference entity and relationship instances in the history. There are two main issues

with this implicit representation of time. Firstly, when there is injection noise occurring

in the data (i.e. noise occurs as extra items between the dataitems), and secondly when

there are multiple objects in the scene. These both cause thesequence ordering to change.

Any predictive models that rely on an explicit observation sequence ordering will then

fail to recognise the observations, and will be unable to make a prediction.

To illustrate the problems with the sequential representation of time we take an ex-

ample inspired by the CCTV domain in Chapter 4. Figure 5.1 shows a crossroads. On

the crossroads are five circular regions numbered 1 to 5. Whenmotion is detected in a

region, the region will produce an output. An arrow represents a person walking through

the crossroads going through regions 1, 2 and then 3. The motion through the crossroads

can be represented using continuous time as shown in the graph in Figure 5.1. To be

able to use this data with a sequential representation of time it must be converted into an

observation sequence. This is normally done by temporal quantisation. There are two

possible approaches: sample from the data at a fixed rate, or compress each of the con-

stant property time ranges into a single sample, by samplingat one point per time range

(for example the end, or start time) illustrated in Figure 5.1. Fixed sampling produces a

far more detailed representation of the data, but often contains large amounts of repeated

data. Compressing the time ranges reduces the amount of information that is represented

(for example the length and absolute start and end times are lost), but it is a more compact

representation which can be easier to learn from due to its lower complexity.

Figure 5.2 shows how injection noise might affect a predictive model. The same

person is walking through the crossroads passing through regions 1, 2, and 3, but this

time region 4 outputs incorrectly (for example due to cameranoise). This can be seen

as injection noise occurring between region detections at locations 1 and 2 in both the

continuous time graph and in the observation sequence. Thismay cause problems if the

model relies on an observation sequence occurring in a fixed ordering.

Figure 5.3 shows the same crossroads, but now two people are walking through at the

same time. It will be used to show how multiple objects in the scene might affect the pre-

122

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

1

t − 2 t − 1 t

2 3

Continuous time

Quantised time

R
eg

io
n

Time

2

3

1

Time

M
ov

em
en

t

2

3

54

1

Figure 5.1: This diagram shows a person walking along a crossroads and passing through
the circular regions numbered 1, 2 and 3. The movement in the scene is represented
as a continuous time graph. Temporal quantisation is applied to the graph to produce a
sequence of region detections.

M
ov

em
en

t

Continuous time

Quantised time

R
eg

io
n

Time

1

Time

t − 2 t − 1 t

2 31

t − 3

3

2

4

4

2

3

54

1

Figure 5.2: This diagram shows a person walking along a crossroads and passing through
the circular regions numbered 1, 2 and 3, and region 4 (shaded) firing erroneously.

dictive model. The first person follows the same route as in the previous example, and the

second person walks through regions 4, 2 and finally 5. The motion in the crossroads is

shown in the continuous time graph. The graph shows that the movement of the two peo-

ple in the crossroads causes motion in different regions at the same time. The observation

sequence in the first example (1, 2, 3) now has extra regions occurring in the middle of it.

This will again cause problems if the predictive model relies on an observation sequence

123

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

occurring in a fixed ordering.

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

t

Continuous time

Quantised time

R
eg

io
n

Time

2

3

5

1

Time

Person 2

4

2

4 1 2 5 2 3

t − 4 t − 3 t − 2 t − 2 t − 1

P
er

so
n

1

4

3

5

1

2

Figure 5.3: Two people walking through a crossroads and passing through the numbered
circular regions.

Tracking objects using a separate model per object is one solution to modelling mul-

tiple objects. However, this is not always possible or reliable: for example a person might

get occluded by other people in the scene which would make it harder to constantly track

them. Hidden Markov Models [102] (Section 2.4.2.2) are one approach to deal with ran-

dom injection noise. These probabilistically map a set of observations to a set of states.

They, however, cannot model interactions between multipleobjects. Coupled Hidden

Markov Model [92], are an approach to solve this problem, butapproach is limited to a

maximum of two objects, as above this amount there only exists approximate inference

techniques.

5.3 Qualitative representation of time

The previous section showed that when a predictive model relies on a sequence of ob-

servations occurring in a fixed ordering it might fail to recognise the same observation

sequence when it contains injection noise, or multiple objects (distractor noise). The pre-

dictive models for STGP in Chapter 4 used Point time to represent the position of the

observations in the observation sequence. This is not robust to injection, or distraction

noise. An alternative approach is to use interval time (Section 2.3.2) to describe the time

of the observations, and to use a predictive model based on the qualitative relationships

between different time intervals. The benefit of this approach is that it can be more robust

124

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

to injection noise and multiple objects because a predictive model uses temporal relations,

rather than using explicit positions in the observation sequence. The point time approach

could work if it could be trained on every possible observation sequence ordering, but

using a qualitative approach is potentially better becauseit can generalise from fewer

example sequences.

Allen’s Interval Calculus [1] (Section 2.3.2), is a way to temporally represent the set

of possible relationships between two time intervals. It provides a representation of time

invariant to injection and distraction noise. The multi-person example from the previous

section can be solved by modelling each person’s movement bya different set of Allen’s

intervals. Clause 5.1 describes the first person’s movementthrough the crossroads. It

shows that if there has been motion in region 1, which is before motion in region 2, and

there has also been motion in region 2 before motion in region3 then this was generated

by Person 1.

Motion(Region1, t1)∧Motion(Region2, t2)∧Motion(Region3,t3)∧ (5.1)

Be f ore(t1, t2)∧Be f ore(t2,t3)→ Person1(t3)

Clause 5.2 shows the second person’s movement through the crossroads. It shows that if

there has been motion in region 4 before region 2, and there has been motion in region 2

before region 5 then it must have been caused by Person 2. Using these two clauses not

only deals with the problem of injection, or distractor noise, but also allows the separation

of the continuous time graph into each person’s movement.

Motion(Region4, t1)∧Motion(Region2, t2)∧Motion(Region5,t3)∧ (5.2)

Be f ore(t1, t2)∧Be f ore(t2,t3)→ Person2(t3)

5.4 Temporal state relations

Allen’s Interval Calculus assumes that both of the time intervals have a start and end time.

In this thesis when an object has been initially identified ina scene it will be given a time

interval having a start time, but an unknown end time. An object will only receive the end

time for its time interval when it cannot be identified in the scene anymore (for example

by leaving the scene).

An object goes through four temporal states during the time it is in a scene. These are

based on how the object’s start and end times relate to current time (Figure 5.4). Firstly,

the objectentersthe scene: its start time is the same as the current time, but its end time

125

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

is unknown. Next, the objectexistsin the scene: its start time is less than the current time,

but its end time is unknown. Next, the object isleaving the scene: its start time is less

than the current time, and its end time is equal to the currenttime. Finally, the object has

left the scene, where both its start and end times are less than thecurrent time.

Entering
Current_time = start

Existing
Current_time > start

Leaving
Current_time = end AND Current_time > start

Left
Current_time > end AND Current_time > start

Time

Current Time

Figure 5.4: The four temporal states, with respect to current time, an object can be in:
entering, existing, leaving, and left. The dotted lines represent that we don’t know when
the object will leave the scene.

One possible approach to implement this is to use Allen’s intervals, but some changes

have to be made. Firstly, a constant value (‘future’) must be assigned to the end time of

a time interval which is unknown. Secondly, the current timemust be transformed from

a point time to an interval by making it exist forδ time (< currentTime,currentTime+

δ >). This then collapses Allen’s intervals down from seven to four as shown in Figure

5.5. Temporal state Entering is then defined using Starts; Existing can be defined using

During; Leaving can be defined using Finishing; and Left can be defined using Before.

Solving this problem by using Allen’s intervals does not seem the most logical solu-

tion because two parameters are still require (the time of the object, and the current time),

increasing the size of the predictive models; and there is redundancy, as only four out of

the seven relations are actually required. An alternative approach is to define a new set of

temporal relations. Clauses 5.3 - 5.6 show the four temporalstate relations for an object

o by comparing its start timeos, and end timesoe to the unknown timetu, or the current

time tc. In STGP these are added as user defined functions to the condition section of the

production rules. The advantage of using these temporal state relations over Allen’s in-

tervals is they only require one parameter, rather than two.This reduces the search space,

and makes finding solutions easier.

126

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

Time

Left (Before)

Time

Leaving (Finishes)

Time

Existing (During)

Time

Entering (Starts)

Key

Current time

Object

Figure 5.5: This shows how the four temporal states could be represented as Allen’s
intervals. The diagonal lined filled box represents the current time, which has a time
range (currentTime,currentTime+δ). The black filled box represents the object, where
its unknown end time has been replaced with a constant. Temporal state Entering can be
represented as Starts. Temporal state Existing can be represented as During. Temporal
state Leaving can be represented as Finishing. Temporal state Left can be represented as
Before.

(os = tc)∧ (oe = tu) → Entering(o) (5.3)

(os < tc)∧ (oe = tu) → Existing(o) (5.4)

(os < tc)∧ (oe = tc) → Leaving(o) (5.5)

(os < tc)∧ (oe > tc) → Le f t(o) (5.6)

5.5 Evaluation

This section will present the datasets, and the representations used for STGP, Bayesian

Networks, Neural Networks, C4.5 and Progol in the evaluation of the ideas presented in

this chapter.

127

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

5.5.1 Overview of the datasets

5.5.1.1 CCTV

Two training dataset were produced: a real world dataset, and a clean dataset. The real

world dataset was generated from the real world CCTV video from Chapter 4 (Section

4.9.1.3). The scene analysis technique from this chapter (Section 4.9.2.2) was used to

produce the symbolic representation. It contained 80 region changing events. The clean

dataset was the same clean handcrafted dataset from Chapter4 (Section 4.9.1.3). To see

how the use of temporal relations allows STGP to deal with noise three additional test

sets were produced: a clean test set, a multi-person test set, and a noise injection test

set. The clean test set was handcrafted and produced in the same manner as the clean

training set. It contained 135 region motion events. The multi-person dataset was on the

same scene used for the single person real world CCTV video, but there were multiple

people in the scene at one time. Figure 5.6 shows a screenshotfrom the multi person

video. The dataset contained various forms of noise caused by the overlapping people,

and contained 88 region motion events. The injection noise dataset was produced by

taking a hand crafted CCTV dataset and adding random injection noise between each

CCTV event. It contained 250 region motion events (125 were actual changes, and 125

were noisy changes).

Figure 5.6: A screenshot from the video of a path containing multiple people.

5.5.1.2 Uno

The handcrafted Uno dataset has a similar sequence to the Unodataset from Chapter 4

(described in Section 4.9.1.1). The differences between the two datasets are the cards can

128

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

be in the scene for a range of time, and they leave the scene after, not before, the result is

heard. The dataset is handcrafted and will now be described in more detail.

The computer initially sees a blank scene. Then “Play” is heard. Next two cards, each

one having one of three possible coloured shapes on them, areplaced down either at the

same time, or one by one. If the two cards have the same coloured shape then “Same” is

heard; or if they the same colour then “Colour” is heard; or ifthey have the same shape,

“Shape” is heard; or if the cards are different then “Nothing” is heard. The cards are then

removed either together, or one by one.

Two handcrafted training datasets were created: a non-noisy training set and a noisy

training set. Each one contained around 50 rounds of Uno. Noisy data was prepared

by adding 10% of noisy data to the non-noisy training data. The noise took the form of

removing cards, removing the play state, and changing the output state.

5.5.2 Representation

5.5.2.1 STGP

The properties and entities used to learn the CCTV dataset are shown in Figure 5.7. There

is one property definitionRegion, and this is used with theObject entity definition.

The properties and entities used to learn the Uno dataset areshown in Figure 5.8. There

are four property definitions:Colour, Texture, Position, andSpeech, and two

entity definitions:Card (with properties:Texture, Colour andPosition), and

Speaker (with propertySpeech).

<PROPERTY-DEFINITION NAME="REGION">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"
VALUES="REGION-0,REGION-1,REGION-2,REGION-3"/>

</PROPERTY-DEFINITION>

<ENTITY-DEFINITION NAME="OBJECT">
<LEARNABLE VALUE="TRUE"/>
<PROPERTY NAME="REGION"/>

</ENTITY-DEFINITION>

Figure 5.7: The property and entity definitions for the CCTV datasets.

Figure 5.9 shows the functions used to learn the CCTV dataset. There are the Allen’s

intervals and the novel temporal state relations (Section 5.4). There are functions to check

the existence of an object in the worldExists(Object), and functions to get property

129

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

<PROPERTY-DEFINITION NAME="TEXTURE">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"
VALUES="f0,f1,f2"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="POSITION">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"
VALUES="p0,p1"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="COLOUR">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"
VALUES="c0,c1,c2"/>

</PROPERTY-DEFINITION>

<PROPERTY-DEFINITION NAME="SPEECH">
<ATTRIBUTE NAME="NAME" TYPE="SYMBOLIC"
VALUES="SAME,NOTHING,SHAPE,COLOUR,PLAY"/>

</PROPERTY-DEFINITION>

<ENTITY-DEFINITION NAME="CARD">
<LEARNABLE VALUE="FALSE"/>
<PROPERTY NAME="COLOUR"/>
<PROPERTY NAME="POSITION"/>
<PROPERTY NAME="TEXTURE"/>

</ENTITY-DEFINITION>

<ENTITY-DEFINITION NAME="SPEAKER">
<LEARNABLE VALUE="TRUE"/>
<PROPERTY NAME="SPEECH"/>

</ENTITY-DEFINITION>

Figure 5.8: The property and entity definitions for the Uno datasets.

information from the objects (Get(Object:Region). Finally, as there are functions

to compare symbolic data (Equal,Not-Equal), and logical functions (And,Or,Not).

Figure 5.10 shows the terminals used to learn the CCTV dataset, which are constants

representing the four regions.

Figure 5.11 shows the functions used to learn the Uno dataset. There are functions to

check the existence of aCard, or aSpeaker entity in the history (Exists(Card),

Exists(Speaker). Also, there are functions to get property information fromthe

Cards, andSpeaker entities (Get(Card:Colour), Get(Card:Position),

130

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

Exists(Object)
Get(Object:Region)
Get(Card:Texture), Get(Speaker:Speech)
And, Or, Not-Equal, Equal, Not
Enter, Leaving, Left, Existing
Before, Meets, Overlaps, Starts
During, Finishes, Time-Equal

Figure 5.9: The functions used in the CCTV datasets.

Region0, Region1, Region2, Region3

Figure 5.10: The terminals used in the CCTV datasets.

Get(Card:Texture),Get(Speaker:Speech). Next, there are functions to com-

pare symbolic data (Equal, Not-Equal), and logical functions (And, Or, Not). Fi-

nally there are temporal state intervals, and the Allen’s intervals. Figure 5.12 shows the

terminals used to learn the Uno dataset. There are colour symbols: c0, c1; texture

symbols:f0, f1, f2; position symbols:p0, p1; and speech symbols:Same, Shape,

Nothing, Play, Colour.

Exists(Card), Exists(Speaker),
Get(Card:Colour), Get(Card:Position)
Get(Card:Texture), Get(Speaker:Speech)
And, Or, Not-Equal, Equal, Not
Enter, Leaving, Left, Existing
Before, Meets, Overlaps, Starts
During, Finishes, Time-Equal

Figure 5.11: The functions in the Uno dataset.

c0, c1
p0, p1
f0, f1, f2
Same, Shape, Nothing, Play, Colour

Figure 5.12: The terminals in the Uno dataset.

Variables are used in the condition section of the production rules to reference entity

or relationship instances in the history. In Chapter 4 the variables used Point time to

constrain where in the history they could be assigned an entity or relationship instance.

131

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

Point time uses a single time value. This meant a variable wasonly able to be assigned

entity or relationship instances associated with a specificpoint in the history relative to

the current time. The production rules therefore could onlythen be evaluated at specific

points in the history relative to the current time. If the objects that make the condition

section of the production rule evaluate true move their location in the history (due to

distractor, or injection noise) the variables in the condition section would not be able to

be assigned to them, and the production rule would evaluate false. This would prevent the

production rule from producing a prediction.

To allow STGP to take advantage of the temporal relations, and to deal with distrac-

tors, or injection noise the time type AllTime is used in thischapter to constrain where

variables can be assigned entity or relationship instancesin the history. AllTime allows

the variables to be assigned entity or relationship instances anywhere in the history, within

a defined time range. Section 5.6.3.2 performs an experimentto show how changing the

length of this time range affects the coverage and accuracy of the predictive models. This

means the production rule will be evaluated over the entire history rather than at specific

points, which means that if the position of the entity or relationship instances (that causes

the condition section of the production rule to evaluate true) move the condition section

will still evaluate true.

5.5.2.2 Progol, and Pe

A similar representation to the one described in Section 4.9.3.1 was used for all the

datasets in this chapter. Thestate predicate is replaced by anobject_data pred-

icate that describes the properties of a specific object, andtemporal predicatesenter,

existing, leaving, andleft that describe its temporal state. To allow Progol to

learn clauses that are robust to noise thesuccessor predicate is replaced by a set of

clauses representing Allen’s intervals. The same approach(described in Section 4.9.3.1)

is used to convert the clauses learnt by Progol into a SLP.

5.5.2.3 C4.5, Neural Network, and Bayesian Network

The WEKA machine learning system [41] was used to perform theC4.5, Neural Network,

and Bayesian Network algorithms. WEKA requires the input data to be a fixed length

vector. A binary feature vector was used to record the state of the scene, along with

an associated event. Each binary feature represents if a specific temporal relationship is

held between a set of objects each having a specific type and set of attribute values, and

position in the history. The binary feature vector represents all possible permutations of

132

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

temporal relations with objects and their states. This is typically a large set of possible

features, with a large majority of them being redundant. To reduce the size of the feature

vector a simple feature selection method was performed. Features were removed if they

were always false, or always true, over the entire training set.

5.6 Results

This section will firstly show how the temporal relations introduced in this chapter make

STGP robust to noise. Secondly it will show how STGP compareswith Progol, Neural

Networks, Bayesian Networks, and C4.5 on the datasets previously described. It will

also show how estimating the likelihood of the clauses learnt by Progol by Pe and STGP

affects the results. Finally, it will show experiments on the different parameters for STGP.

Ten fold cross validation was used in all the runs, and the same evaluation criteria used in

Chapter 4 (described in Section 4.10.1) was used.

5.6.1 Temporal noise robustness of STGP

Two experiments were performed to see how robust to noise thepredictive models learnt

in this chapter were. The experiments took the predictive models from Chapter 4 that were

trained on the CCTV datasets, but did not use temporal relations; and compared them to

the predictive models from this chapter that were also trained on the CCTV datasets, but

used temporal relations. The first experiment compared themusing the CCTV injection

noise test set, and the second on the CCTV multi-person test set.

Figure 5.13 shows the coverage results for STGP on the clean test set, and the injec-

tion noise test set with, and without using temporal relations in the predictive models.

The results show that predictive models are affected by injection noise when they do not

use temporal relations, but if they use temporal relations they are unaffected by injection

noise. This is because in the predictive models that do not use temporal relations the con-

dition sections of their production rules assume that the entity and relationship instances

that allow the condition section to evaluate true willonlyoccur at specific positions in the

history. When the injection noise affects the position of these objects in the history the

condition section is unable to be assigned to them and it willevaluate false. Predictive

models that use temporal relations are unaffected by the injection noise, because the use

of temporal relations allows the condition sections of their production rules to be assigned

entity or relationship instances from the entire of the history, which means they can still

be assigned objects even if they have changed position in thehistory from the training set.

133

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

No temporal
relations

on
clean data

No temporal
relations

on
injection noise

Temporal
relations

on
clean data

Temporal
relations

on
injection noise

A
ve

ra
ge

 C
ov

er
ag

e
(%

)

Injection noise test set results (trained on a clean CCTV dataset)

 60

 65

 70

 75

 80

 85

 90

 95

 100

No temporal
relations

on
clean data

No temporal
relations

on
injection noise

Temporal
relations

on
clean data

Temporal
relations

on
injection noise

A
ve

ra
ge

 C
ov

er
ag

e
(%

)

Injection noise test set results (trained on a real world CCTV dataset)

Figure 5.13: How the time used by the variables in condition section of the predictive
models affects their ability to deal with injection noise. The error bars show one standard
deviation from the mean. All results were produced by 10 foldcross validation.

Figure 5.14 shows the accuracy results for STGP on the CCTV multi-person test set

when the predictive models using, and not using temporal relations. The graphs show

that using temporal relations is slightly more accurate than not using them when trained

on the real world data (p-value=0.01), but when a clean training set is used the results

for using and not using temporal relations are not statistically significantly different (p-

value=0.35). There is not such a large difference in the results between using and not

using temporal relations that was seen for the injection noise test set. This is due to two

reasons. Firstly, the history used for predictive models using temporal relations has a

fixed size, and sometimes it is not large enough to contain enough spatio-temporal data to

make the correct prediction. Secondly, the combination of movement of multiple people

can create ambiguous patterns in the history where it is unclear how many people are in

the scene, making it hard to produce the correct prediction.

5.6.2 A comparison of STGP with current methods

Figure 5.17 shows the coverage and accuracy results on the CCTV dataset, and Figure

5.15 show the coverage and accuracy graphs for the Uno dataset. Overall the graphs show

that STGP got accuracy results that were better than, or the same as the accuracy results

for the other methods. There were no results for Neural Networks on the real world

CCTV dataset, and the Uno Temporal datasets, because WEKA failed with a stack size

error when learning from the training data. This indicates the set of possible relations was

too large.

The optimal result for the Uno Temporal dataset is 100% coverage and 100% accuracy

134

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 40

 50

 60

 70

 80

 90

 100

No temporal relations Temporal relations

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Multi-person test set results (trained on a clean CCTV dataset)

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

No temporal relations Temporal relations

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Multi-person test set results (trained on a real world CCTV dataset)

Figure 5.14: How the time used by the variables in the condition section of the predictive
models affects their ability to predict the actions of people from a multi-person dataset.
The error bars show one standard deviation from the mean. Allresults were produced by
10 fold cross validation.

(as the dataset is deterministic). It can be shown from the graphs (Figure 5.15) that STGP

keeps close to this for both the clean and noisy data. The clauses learnt by Progol are

too general, as shown in Figure 5.16. Here the clauses only use the temporal state and

properties of one of the objects in the history. To predict most events in Uno requires the

comparison of the properties of two cards from the history. As the learnt clauses only use

one object the accuracy and coverage results for Progol are reduced. When the probability

of these clauses is estimated by Pe there is no improvement inthe accuracy because of the

poor quality of the initial clauses. There is a slight improvement when the likelihood of the

clauses are estimated by the conflict resolver in STGP. C4.5 and Bayesian Networks are

unable to generalise from data and rely on storing common examples and their outcomes

(Section 4.10.2). The results show that both of the methods were unable to learn enough

examples from the training data to correctly predict from the test data.

The optimal result for the CCTV dataset is 100% coverage, and83% accuracy. This is

based on the four possible actions on the path occurring in equal proportions. The graphs

show that STGP gets less than this on both accuracy and coverage for both datasets. This

is due to not learning infrequent region changes in the training data. The reasons for

this were explained in Section 4.10.2. Also the length of thehistory affects the results

which will be explained in more detail in Section 5.6.3.2. The CCTV dataset is non-

deterministic which is why Progol does not get good accuracyor coverage results. All the

clauses learnt by Progol only make use of the properties of one region in the history, and

they do not use Allen’s intervals to combine together to properties of different regions.

Pe should improve the accuracy results, but this is not the case, and it shows that it is

affected by Progol not learning the correct set of clauses from the training data. On the

135

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno Temporal

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno Temporal

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Uno Temporal with Noise

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Uno Temporal with Noise

Figure 5.15: The mean coverage and accuracy results for the different methods on the
Uno Temporal datasets. The error bars show one standard deviation from the mean. All
results were produced by 10 fold cross validation.

real world CCTV dataset the results are improved by estimating the likelihood of the

clauses by STGP which produces accuracy results that are as good as STGP. However,

on the clean dataset the accuracy results are worse than justusing Progol alone. C4.5,

Neural Networks, and Bayesian Networks are unable to generalise and suffer from the

same problems described for Uno Temporal, which affect their results.

action(s_play,A).
action(s_nothing,A) :- object_data(B,C,D,E), enter(B,A).
action(s_colour,A) :- left(B,A).
action(s_shape,A) :- left(B,A).
action(s_same,A) :- left(B,A), left(C,A), starts(B,C).
action(s_same,A) :- object_data(B,C,D,E), enter(B,A).

Figure 5.16: An example set of clauses learnt by Progol on theUno Temporal dataset.

136

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

CCTV Temporal Clean

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

CCTV Temporal Clean

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

CCTV Temporal

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

CCTV Temporal

Figure 5.17: The mean coverage and accuracy results for the different methods on the
CCTV datasets. The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

5.6.3 Parameter experimentation with STGP

Section 4.10.3 showed experimentally that the values for all STGP parameters other than

Tarpeian value either made little difference or were optimal over the datasets used in the

chapter. For this reason, it was decided to use the best values for the parameters for all the

STGP experiments in this chapter, and to experiment with theTarpeian value parameter,

and the history length parameter (which controls the lengthof history a variable of type

AllTime can look for entities or relations). This section will show the results of these

experiments.

5.6.3.1 Tarpeian value

To control the bloat the Tarpeian method [22] was used. Figure 5.18 shows the results

from varying the amount of Tarpeian bloat control. For the real world CCTV dataset there

was little difference in the accuracy results for the different Tarpeian values: they all got

similar accuracy results to not using Tarpeian bloat control, and they all got significantly

smaller predictive models than the results for not using bloat control. The clean CCTV

137

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

dataset did not get very accurate results below a value of 4 when compared to not using

bloat control. The most accurate result was produced with a Tarpeian value of 6. The

clean Uno dataset performed poorly on Tarpeian values below6, when compared to not

using bloat control. For values 6 and above the accuracy, andsize of the results was the

same as not using Tarpeian bloat control (for example the p-value for the similarity in

mean size between a Tarpeian value of 6 and no bloat control is: 0.35, and the p-value for

the similarity in mean accuracy is 0.79). On the noisy Uno dataset STGP got poor results

for Tarpeian values below 6, and got the most accurate results for Tarpeian values 9 and

10, although these are very similar to the results for Tarpeian values 5 to 8. The size of

the predictive models produced by using Tarpeian bloat control was slightly smaller than

without using it (p-value=0.08).

The graphs show that for datasets that require predictive models containing simple

production rules, like CCTV, a small Tarpeian value can be used. This is because STGP

will typically find the correct solution in a small number of generations and will not be

affected by the population diversity issues associated a small Tarpeian value. For more

complex datasets like Uno a larger number of generations arerequired to find the correct

solution. Small Tarpeian values greatly reduce the diversity of the population early on in

the run, and cause STGP to converge on a sub-optimal solution. Larger Tarpeian values

do not affect the diversity of the population as much, allowing STGP to find the correct

solution, whilst keeping a control on its size. This is consistent with the findings from

Chapter 4 (Section 4.10.3.2). Chapter 7 shows results of an adaptive Tarpeian method

that varies the Tarpeian value during the run of STGP.

5.6.3.2 History length

To see how the size of the history affected STGP’s results on the Uno and CCTV datasets

an experiment was performed using the history values 2 to 10.Figure 5.19 shows the

results. For all datasets increasing the size of the historydecreased the mean accuracy

and coverage of the results. This is due to the fact that a longer history contains more

complex patterns. In turn this requires learning a more complex predictive model. This

increases the size of the search space, and makes finding predictive models harder.

5.7 Conclusions

This chapter has shown that using qualitative relations rather than sequence based ap-

proaches to model temporal history allows the predictive models to be robust to both

138

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 60

 65

 70

 75

 80

 85

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

CCTV Temporal (Clean)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

CCTV Temporal (Clean)

 55

 60

 65

 70

 75

 80

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

CCTV Temporal (Real World)

 0

 50

 100

 150

 200

 250

 300

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

CCTV Temporal (Real World)

 88

 90

 92

 94

 96

 98

 100

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno Temporal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno Temporal

 82

 84

 86

 88

 90

 92

 94

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

Uno Temporal with Noise

 0

 50

 100

 150

 200

 250

 300

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

Uno Temporal with Noise

Figure 5.18: The mean accuracy and size results for the datasets using different Tarpeian
values. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

139

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 2 4 6 8 10

M
ea

n
C

ov
er

ag
e

(%
)

History Length

CCTV Temporal (Clean)

 60

 65

 70

 75

 80

 85

 90

 2 4 6 8 10

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

CCTV Temporal (Clean)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 2 4 6 8 10

M
ea

n
C

ov
er

ag
e

(%
)

History Length

CCTV Temporal (Real World)

 55

 60

 65

 70

 75

 80

 85

 2 4 6 8 10

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

CCTV Temporal (Real World)

 94

 95

 96

 97

 98

 99

 100

 101

 2 4 6 8 10

M
ea

n
C

ov
er

ag
e

(%
)

History Length

Uno Temporal

 86

 88

 90

 92

 94

 96

 98

 100

 102

 2 4 6 8 10

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

Uno Temporal

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 2 4 6 8 10

M
ea

n
C

ov
er

ag
e

(%
)

History Length

Uno Temporal with Noise

 84

 86

 88

 90

 92

 94

 96

 2 4 6 8 10

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

Uno Temporal with Noise

Figure 5.19: The mean coverage and accuracy results for the datasets on different history
length values. The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

140

Chapter 5 Learning Predictive Models Using A Qualitative Representation of Time

distractor, and injection noise. Four new temporal state relations have been defined, and

have been successfully shown to be used on two datasets: CCTV, and Uno. STGP pro-

duced the most accurate predictive models for all datasets.Progol did not manage to

learn clauses complex enough to correctly predict from the training data. The inability

for Neural Networks, Bayesian Networks, and C4.5 to generalise from data affected the

accuracy of their results. It was shown that using the temporal relations, rather than using

a sequential approach allowed STGP to be robust to injectionnoise, and to be slightly

more accurate when predicting from scenes containing multiple people. Finally, it was

shown that the history size used by STGP affects the coverageand accuracy of the results.

A possible extension to the work presented here is rather than using a fixed history size

STGP could learn the best history size by using Period time inthe variables. Period time

takes a time range and would allow the data pointers to limit how much history, and where

within the history it looked for entity or relationship instances. The time range could be

learnt from the training data.

141

Chapter 6

Learning Predictive Models Using A

Qualitative Representation of Space

6.1 Introduction

In Chapters 4 and 5 the location of the objects in the scene wasdescribed by a quantitative

2D location. If the absolute location of the objects changed(for example due to camera

shift) then it is likely the predictive models would be unable to predict activities involving

these objects. This chapter incorporates qualitative spatial relations into the predictive

models. These look at the qualitative spatial difference between object locations. This

allows the predictive models to be robust to changes in the structure of the scene, because

the condition sections of the predictive models can look forpatterns in the history using

qualitative spatial relations between objects, rather than assuming that objects will appear

in specific scene locations. Section 6.2 firstly explains this in more detail, and shows the

reasons why using qualitative spatial relations to describe the location of the objects is

robust to spatial noise. Section 6.4.1 shows the results of an experiment to see if using

spatial relations makes STGP more robust to objects changing their spatial locations.

Section 6.4 presents a comparison of STGP with Progol [82], Neural Networks [111],

Bayesian Networks [94] and C4.5 [99] on three datasets: CCTV, aircraft turnarounds and

Tic Tac Toe. Finally, Section 6.4.3 presents an experiment is performed on some of the

parameters for STGP.

142

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

6.2 Qualitative representation of space

The positions of the objects in the datasets in Chapters 4 and5 were represented by a

quantitative 2D location. A predictive model trained on this data relies on the objects

always appearing (qualitatively) at the same absolute image locations. If this is not the

case then the predictive model may fail to predict correctly.

This can be explained by using an example from Section 5.2. Here there was an

explicit mapping between the detector’s location and its symbolic label. The label of each

detector is stored with the(x,y) location of its centroid. To label a new set of detections

their (x,y) locations are compared to the(x,y) locations of the stored detectors. If there is

a match then the new detection is labelled with the stored detector’s label. On Figure 6.1

the detections from the crossroads are initially assigned to one set of stored detections.

If the camera is moved (as is common with pan-tilt-zoom CCTV cameras) the detections

are then assigned to a different set of stored detections. Ifa predictive model relies on

a specific sequence of stored detections then it will fail to predict when there is image

movement.

2 3 41

5 6 7

9

8

10 12

2 3 41

5 6 7

9

8

10 12

Image movement

11 11

Figure 6.1: This shows how movement in the scene affects detection labelling.

An alternative approach is to describe the location of the detections by how they spa-

tially relate to each other. Section 2.3.1 presented an overview of qualitative spatial re-

lations. A predictive model using spatial relations is morerobust to noise because if the

detections move but stay in the same relative spatial orientation it will still be able to make

a prediction. The predictive model will often be more general and therefore be simpler

because it only has to learn the spatial relations between detections rather than every pos-

sible combination of detection locations. The next sectionwill show how spatial relations

are used on three different datasets: CCTV, aircraft turnaround, and Tic Tac Toe.

143

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

6.3 Evaluation

This section will firstly present three different datasets which use spatial relations, and

secondly the representations used for STGP, Bayesian Networks, Neural Networks, C4.5

and Progol.

6.3.1 Datasets

6.3.1.1 CCTV using spatial relations

The real-world single person CCTV video from Chapter 4 was used to produce the

datasets. A similar scene analysis method to the one used in Chapter 4 (Section 4.9.2.2)

was used to produce the symbolic representation. The methodin this chapter has one

difference: in Chapter 4 when a detector produced an output the scene analysis method

produced a detection containing its symbolic name. In this chapter, the scene analysis

method produces a detection containing its x,y location, and a relation describing how

this detection spatially relates to the previous detection. Compass based level 2 orienta-

tion relations (Section 2.3.1) are used to describe how the detections spatially relate to

each other. To calculate how the current detection relates to the previous detection the

angle between the (x,y) image location of the current detection and the previous detection

is calculated with respect to the direction of the y axis on the image. This angle is then

quantised into one of four spatial regions: North, South, East and West. The training

set contained 81 detections. To see how well STGP deals with detections changing their

locations two test sets were produced: a handcrafted clean test set (containing 116 detec-

tions), and a similar handcrafted test set (containing 126 detections) where the locations

of two of the detections were swapped over.

6.3.1.2 Aircraft turnarounds

The aircraft turnaround data was taken from the EU Co-FRIENDproject1. The airport

apron was filmed using eight static cameras, with each camerahaving a different view

of the scene. Figure 6.2 shows one of the camera views, where the different vehicles

and people operating on the aircraft can be seen. The objectsare tracked separately in

each camera and the tracks from the different cameras are fused together to produce 3D

data on each object. The tracking data is noisy due to the low quality of the videos,

bad weather and variable lighting conditions. This causes problems including: objects

not being tracked; objects being assigned different ids; orobjects being assigned the

1http://84.14.57.154/co-friend

144

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

Figure 6.2: A still from one of the aircraft turnaround videos.

Figure 6.3: The zones labelled on the ground plane on the aircraft turnaround videos.

wrong object type. The tracking data is then converted into arelational description by

using three of the RCC-8 relations (Section 2.3.1): surrounds, touches and disconnected.

These describe how the objects in the scene spatially relateto each other, and how they

also relate to static zones on the ground-plane (Figure 6.3), based on International Air

Transport Association (IATA) specifications. Allen’s intervals (Section 2.3.2) are used to

describe how the objects temporally relate to each other. A structured type hierarchy is

used to describe the different classes of objects in the apron. This is used by the methods

to produce more general predictive models from the trainingdata.

The spatio-temporal data is hand labelled by experts in IATAprotocols to describe

the type and duration of events that have occurred in the apron, for example: refueling,

baggage unloading, or loading the catering. To produce a setof training data the labelled

spatio-temporal data is temporally compressed. This is done in two stages. Firstly, only

145

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

spatio-temporal data labelled with an event is kept, and non-labelled spatio-temporal data

is removed. Secondly, for each labelled event only the spatio-temporal data occurring in a

fixed length temporal window placed the end of the event is kept. Section 6.4.3.2 performs

an experiment with STGP to see how the length of the window affects the results. Each

event has a large amount of variation due to the noise in the tracking data. The training

data set contains 70 events.

6.3.1.3 Tic Tac Toe

Tic Tac Toe is a game played by two people on a 3 by 3 grid. One person uses the symbol

nought (O) and the other person uses the symbol cross (X). Each person takes it in turn

to add one of their symbols to the grid. The first person to create a line of three of their

symbols either diagonally, vertically or horizontally wins the game. The Tic Tac Toe

data was obtained from the UCI Machine Learning Repository2. The data contained a

representation of the grid for every possible end game, along with the label describing if

the person using crosses won the game.

The original data was represented in a fixed length vector, with each element of the

vector describing the symbol used at a particular location in the grid. The data was con-

verted into a relational description. Instead of representing the state of every location in

the grid only the symbols used in the grid were described along with the spatial relations

between them. Figure 6.4 shows the four spatial relations that can exist between symbols

on the grid: above, above right, above left and right. The dataset contained 800 possible

end games, and was noise free.

6.3.2 Representation

6.3.2.1 STGP

A similar representation described in Section 5.5.2.1 is used for all datasets in this chapter.

The CCTV with spatial relations dataset used only one entitydefinition which describes

the detection. There are also relation definitions for the four orientation relations. The

aircraft turnaround dataset has entity definitions for the people, and each of the possible

vehicles that can appear on the apron. There are also relation definitions for the three

RCC-8 spatial relations. The Tic Tac Toe dataset has an entity definition for the symbols

used on the grid. This has a property which describes the typeof the symbol. It also has

relation definitions for the four spatial relations shown inFigure 6.4.

2http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

146

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

Right

AboveAbove left Above right

Figure 6.4: The four spatial relations used in the Tic Tac Toedataset: above, right, above
right, and above left.

All the datasets make use of theRelationExists function to allow the condition

section to access relations in the history; and the logical functions:And,Or andNot. The

aircraft turnaround and CCTV datasets have functions representing the Allen’s intervals,

and temporal state relations described in Chapter 5. Finally, the Tic Tac Toe dataset uses

theGet, Equal, andNot-Equal functions to allow the condition section to access and

compare the types of different symbols. The dataset also uses the terminals:Cross and

Nought.

In both Chapters 4 and 5 the action section of each productionrule used a static entity

instance, which did not use any variables from the conditionsection. In this chapter the

CCTV dataset requires that the location of the predicted detector is not at a fixed location,

but is spatially related to the location of a previous detection. The action section of the

production rules therefore needs to contain a relation rather than a static entity instance.

The relation contains a variable relating to the previous detector found in the condition

section. This illustrates the generalisation ability of the representation.

6.3.2.2 Progol, C4.5, Neural Networks, and Bayesian Networks

The same Progol representation used in Section 5.5.2.2 is used for all datasets in this

chapter. The only difference is to add the spatial relationsdescribed in Section 6.3.1 along

with the temporal relations. Again, the WEKA machine learning system and the same

representation described in Section 5.5.2.3 is used to perform the C4.5, Neural Networks,

and Bayesian Network learning algorithms. For the datasetsin this chapter the binary

feature vector not only represents every possible permutation of temporal relations, but

spatial relations as well. The approach from Chapter 4 (Section 4.9.3.1) is used to convert

147

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

the clauses learnt by Progol into a SLP.

6.4 Results

This section will firstly show the results of an experiment tosee how robust to spatial noise

STGP using spatial relations is. Secondly it will show how STGP compares with C4.5,

Bayesian Networks, Neural Networks, and Progol on the datasets described previously.

It will also explain if estimating the likelihood of the clauses learnt by Progol, using Pe

and STGP, improves the results. Finally, the results with experimenting with some of the

different parameters for STGP is given. All the experimentsused 10 fold cross validation,

and the same evaluation criteria from Chapter 4 were used (Section 4.10.1).

6.4.1 Spatial noise robustness of STGP

An experiment was performed to see if the predictive models using spatial relations were

robust to spatial noise. The predictive models learnt from the real world CCTV dataset

in this chapter, were compared against the predictive models learnt on the same dataset

from Chapter 4. Two test sets were used: a handcrafted clean data set, and the similar

handcrafted dataset where the locations of two of the detectors were swapped. Figure 6.5

shows the results of the experiment. It can be seen that the predictive models that relied

on the detectors occurring in the specific 2D locations were affected when the location

of these detectors was changed. The predictive models that used spatial relations were

unaffected by the change in detector locations. This is because the predictive models

that rely on the detectors being in the specific locations assume the detectors will always

occur in a specific sequence. When the location of the detectors is changed, the order of

the detectors in the sequence is also changed. This preventsthe predictive model from

matching the sequence and from making a prediction. The predictive models that use

spatial relations look at the spatial change between the location the current detection, and

the previous detection. This produces a sequence based on relative spatial change between

detectors, rather than the identifiers of the detectors themselves. This will be unaffected

by the changes in the actual location of the detectors, whichis why the predictive models

using spatial relations is still be able to correctly produce a prediction.

6.4.2 A comparison of STGP with current methods

The accuracy results for the different methods on the CCTV dataset is shown in Figure

6.6. The graph shows that STGP produces the most accurate results when compared with

148

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

No spatial
relations

before
movement

No spatial
relations

after
movement

Spatial
relations
before

movement

Spatial
relations

after
movement

A
ve

ra
ge

 C
ov

er
ag

e
(%

)

Detector movement test set results

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

No spatial
relations

before
movement

No spatial
relations

after
movement

Spatial
relations
before

movement

Spatial
relations

after
movement

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Detector movement test set results

Figure 6.5: Accuracy and coverage results showing how the movement in the location
of the detectors in the CCTV dataset affects the predictive models using and not using
spatial relations. The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

the other methods, and the difference in accuracy is statistically significant. The optimal

result for the CCTV dataset was 100% coverage and 83% accuracy. This is based on the

four possible actions on the path occurring in equal proportions. The results for STGP

show that it achieved less than this for both coverage and accuracy. The coverage was

reduced because STGP did not learn infrequent changes between detectors. The accuracy

was reduced because the condition sections of the production rules were not complex

enough. Most condition sections only looked at the relations between two previous detec-

tions which meant they did not predict well on the more complex patterns that involve the

relations between three or more detectors. This is because two or more production rules

would match the complex pattern and both produce a prediction reducing the overall ac-

curacy. If a production rule was learnt that could match the complex pattern only it would

produce a prediction and the accuracy would be increased.

Some of the clauses learnt by Progol were incorrect because they predict by using

data in the future. Figure 6.7 shows one of the clauses learntby Progol. It can be seen

that theeast_next, and thenorth_next clauses base their prediction on thefuture

east or north relations. There is no way to easily prevent Progol from using future

data when learning the clauses, which makes it an unsuitablemethod to learn predictive

models of temporal data. The rest of the clauses learnt were too general and made a

prediction based on whether a detection had just occurred. This can be seen in Figure 6.7

where thewest_next andsouth_next clauses just contain theenter literal. When

the likelihood of the clauses was estimated by Pe there was noimprovement in their

accuracy. This was because the over general clauses always produce a prediction, which

affects the accuracy of clauses that predict correctly. There was, however, an improvement

149

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

in the accuracy of the results when the conflict resolver in STGP was used to estimate the

likelihood of the clauses. This is because Pe must fire all enabled production rules, and the

likelihood of a prediction is based on the likelihood of the other predictions. Incorrectly

fired production rules will reduce the accuracy of the correct predictions. The conflict

resolver in STGP can probabilistically decide based on a setof enabled production rules,

which production rules to fire which is why it gets better accuracy results than Progol

and Pe. C4.5, Neural Networks, and Bayesian Networks did notachieve high accuracy.

This is because, as explained in Chapter 5, these methods cannot generalise, and rely on

memorising frequently occurring events. If there is not enough training data to learn the

possible events, then the methods will perform poorly on thetest data, which can be seen

in the results.

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

CCTV Spatial

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

CCTV Spatial

Figure 6.6: The accuracy and coverage results for the different methods on the CCTV
Spatial dataset. The error bars show one standard deviationfrom the mean. All results
were produced by 10 fold cross validation.

action(east_next,A,B) :- enter(A,B), east(C,A,D).
action(west_next,A,B) :- enter(A,B).
action(north_next,A,B) :- enter(A,B), north(C,A,D).
action(south_next,A,B) :- enter(A,B).

Figure 6.7: An incorrect set of clauses learnt by Progol fromthe CCTV Spatial dataset.

The accuracy and coverage results for the different methodson the aircraft turnaround

dataset is shown in Figure 6.8. The optimal result would be 100% accuracy and 100%

coverage, and random chance would on average receive an accuracy of 6% (as there are 16

possible events). The graph shows that the results from the different methods have similar

accuracy, and the accuracy for all methods is very low (beingbelow 40% for all methods).

Neural Networks did not produce a result as WEKA failed with aStack size error when

150

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

learning from the training data. This indicates the set of possible relations given to WEKA

was too large. The confusion matrices for STGP, Progol, Bayesian Networks and C4.5

are shown in Tables 6.2 to 6.5. Figure 6.1 provides a key to relate event numbers to

event labels. The graphs show that overall STGP achieved thelargest number of correct

predictions with a total of 14; C4.5 achieved 11 correct predictions; Bayesian Networks

achieved 6 correct predictions and Progol achieved 5.

Some of the events, like catering and loading/unloading from the plane, occur in-

frequently in the training data which explains why in all methods they are not learnt

correctly. STGP produces good coverage results when predicting aircraft arrival, but pre-

dicts less well for handler deposits chocks, and the loadingand unloading events on the

aircraft. Around a third of the time STGP is unable to producea prediction due to the

poor tracking data. Progol typically predicted Ground Power Unit (GPU) positioning for

all events, causing it to get poor results. This is due to Progol firstly not learning very

specific clauses for the events, and secondly the ordering ofthe clauses causes Progol to

always predict the same event. Bayesian Networks achieved some correct predictions for

the aircraft loading and unloading events, but gets confused between aircraft arrival and

aircraft departure. Finally, C4.5 achieved some correct predictions for Handler Deposits

Chocks and Passenger Boarding Bridge positioning, but failed to correctly predict aircraft

arrival and departure. It achieved some good results for aircraft loading events but often

confuses unloading events for loading events and vice versa.

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Co-FRIEND

 0

 20

 40

 60

 80

 100

Bayes Net. C4.5 Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Co-FRIEND

Figure 6.8: The accuracy and coverage results for the different methods on the aircraft
turnaround dataset. The error bars show one standard deviation from the mean. All results
were produced by 10 fold cross validation.

The coverage and accuracy results for the methods on the Tic Tac Toe dataset is shown

in Figure 6.9. The optimal obtainable result is 100% coverage, and 100% accuracy. The

results show that all methods except Bayesian Networks got good accuracy, and coverage

results that were close to the optimal result. STGP got mean accuracy results that were

151

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

0=Aircraft Arrival 1=Aircraft Departure
2=Catering 3=Handler Deposits Chocks
4=Passenger Boarding Bridge Positioning 5=Passenger Boarding Bridge Removing
6=Suitcase Loading 7=Suitcase Unloading
8=Ground Power Unit Positioning 9=Ground Power Unit Removing
10=Left Refuelling Operation 11=Push Back Positioning
12=Right Aft Container Loading Operation 13=Right Aft Container Unloading Operation
14=Right Forward Container Loading Operation 15=Right Forward Container Unloading
16=No Prediction Operation

Table 6.1: The key for the event types used in the aircraft turnaround dataset.

Actual Pred.
Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0 4 0 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 2 2 0 0 0 0 0 0 0 1 0 0 0 0 6
4 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
5 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 3
6 0 0 0 0 0 1 2 1 0 0 1 0 1 0 0 0 0 6
7 0 0 0 0 0 2 1 1 0 0 0 2 0 0 0 0 0 6
8 0 0 0 1 0 0 0 0 3 0 0 0 0 0 1 1 0 6
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 2 5 1 3 3 2 1 2 2 1 1 3 1 1 1 0 0 29

Actual 7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0
Total

Table 6.2: The confusion matrix for STGP on the aircraft turnaround dataset.

Actual Pred.
Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 1 1 0 2 1 1 0 0 0 0 0 0 0 0 7
6 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 7
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 5 5 2 5 5 4 4 5 5 1 2 4 0 0 1 1 0 49
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Actual 7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0
Total

Table 6.3: The confusion matrix for Progol on the aircraft turnaround dataset.

slightly worse than Progol, C4.5 and Neural Networks. This was because STGP learnt

production rules that in some cases are not specific enough tocover all the different types

of end games. Progol got good results on the dataset because this is the type of data that

Progol has been designed to learn from (non-deterministic,and containing structural rela-

tions). A large amount of training data was used (800 out of a possible 900 games), which

152

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

Actual Pred.
Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0 1 0 0 2 1 0 0 0 2 0 1 0 0 0 0 0 0 7
1 3 0 0 1 3 0 1 3 1 0 1 1 0 0 0 0 0 14
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 2 1 0 0 1 0 3 2 1 0 0 0 12
4 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 3
5 2 2 1 3 1 0 0 1 3 0 0 0 0 0 1 0 0 14
6 0 0 1 0 1 1 3 0 0 0 0 0 1 0 0 0 0 7
7 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 0 5
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 4
12 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 4
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Actual 7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0
Total

Table 6.4: The confusion matrix for Bayesian Networks on theaircraft turnaround dataset.

Actual Pred.
Pred. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2
1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 7
2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2
3 2 0 0 3 1 0 0 0 1 0 1 0 0 0 0 0 0 8
4 1 1 1 0 2 3 0 1 0 0 0 1 2 1 0 0 0 13
5 1 1 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 6
6 0 0 1 0 1 0 3 2 0 0 1 0 1 0 0 1 0 10
7 0 1 0 0 0 0 2 1 1 0 0 2 0 0 0 0 0 7
8 2 0 0 0 2 0 0 1 1 1 0 0 0 0 1 0 0 8
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2
11 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 3
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Actual 7 6 2 7 7 6 6 6 7 1 2 6 3 1 2 1 0
Total

Table 6.5: The confusion matrix for C4.5 on the aircraft turnaround dataset.

meant that Neural Networks, and C4.5 had enough training data to memorise common ex-

amples. This explains why it achieved such good accuracy, and coverage results on the

test fold. When the likelihood of the clauses were estimatedby using the conflict resolver

in STGP, and Pe there was no significant change in the accuracyor coverage results.

6.4.3 Parameter experimentation with STGP

In a similar manner to Chapter 5 the STGP experiments in this chapter used the best set-

tings from Section 4.10.3. STGP has an inefficient implementation of theFind Best

Substitution algorithm (Figure 3.12). To see if a production rule matchesa set

of history, all possible combinations of objects, and theirrelations from the history that

might match its condition section are evaluated until one isfound that causes the condition

section to evaluate true. In the Tic Tac Toe, and CoFriend datasets there can be a large

number of combinations to evaluate, which has a large impacton the run-time of STGP

(a run for example might take 7 days to complete). To make the runs complete in a more

153

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
C

ov
er

ag
e

(%
)

Method

Tic-Tac-Toe

 0

 20

 40

 60

 80

 100

Bayes Net.C4.5 NN Progol Progol
+ Pe

Progol
+ STGP

STGP

M
ea

n
A

cc
ur

ac
y

(%
)

Method

Tic-Tac-Toe

Figure 6.9: The accuracy results for the different methods on the Tic Tac Toe dataset. The
error bars show one standard deviation from the mean. All results were produced by 10
fold cross validation.

reasonable time a set of constraints were added to STGP. A limit on the number of com-

binations that could be searched over was added to theFind Best Substitution

algorithm. Any condition section that requires more than this number of combinations is

assumed to have evaluated false on the history. All the runs for the Tic Tac Toe dataset

also had a reduced population size of 3000, and the maximum number of generations was

reduced to 70. A potential solution to this problem is discussed in the Conclusion section

at the end of this chapter. The remainder of this section willshow experiments with two

STGP parameters: Tarpeian value, and History length to see how their values affect the

predictive models learnt by STGP.

6.4.3.1 Tarpeian value

An experiment was performed which varied the Tarpeian valuefor the Tarpeian bloat

control method [22] on the three training datasets from thischapter. The results are shown

in Figure 6.10. For the CCTV Spatial dataset there was littlechange in the accuracy

by increasing the Tarpeian value when compared to no bloat control. However for all

Tarpeian values the size of the predictive models is significantly reduced when compared

with the size of the predictive models produced with no bloatcontrol. A Tarpeian value of

4 was the optimal value. Similar results are found for the CoFriend dataset. Again there

is little change in the accuracy of the results when using bloat control when compared

to not using bloat control. For Tarpeian values below 7 thereis a statistical significant

reduction in the size of the predictive models when comparedto not using bloat control.

For the CoFriend dataset a Tarpeian value of 6 was the optimalvalue. Finally, for the Tic

Tac Toe dataset there is no statistical significant difference in both the size and accuracy

of the predictive models when using bloat control compared to not using bloat control.

154

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

This shows that the limit on the number of combinations affects the size of the production

rules produced, and explains why using Tarpeian value control does not reduce the size

of the predictive models any further.

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

CCTV Spatial

 0

 20

 40

 60

 80

 100

 120

 140

 160

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

CCTV Spatial

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

CoFriend

-100

-50

 0

 50

 100

 150

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

CoFriend

 65

 70

 75

 80

 85

 90

 95

1098765432None

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value Full

TicTacToe

 50

 100

 150

 200

 250

 300

 350

 400

1098765432None

M
ea

n
S

iz
e

Tarpeian Value Full

TicTacToe

Figure 6.10: The mean accuracy and size results for the datasets on different Tarpeian
values. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

6.4.3.2 History length

An experiment was performed to see how the length of the history used for the CoFriend,

and CCTV Spatial datasets affected the results. For the CCTVSpatial dataset history of

155

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

lengths 2 - 10 was used, and for the CoFriend dataset history lengths of: 5, 10, 15, 20,

25, and 30 was used. A longer history length is used for CoFriend, because the temporal

length of some of its events is much longer than the events in CCTV Spatial. Figure

6.11 shows the results from the experiments. The CCTV Spatial dataset had no change in

the accuracy of the results as the history length was increased. There was a statistically

significant decrease in the coverage of the results (p-valuebetween history length 3 to 9 is

0.002). This is because the longer history length produces more complex patterns to learn

from, which are harder for STGP to learn predictive models of. For the CoFriend dataset

there was no change in the accuracy or coverage of the resultsfor all history values.

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 2 4 6 8 10

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

CCTV Spatial

 70

 75

 80

 85

 90

 95

 100

 105

 2 4 6 8 10

M
ea

n
C

ov
er

ag
e

(%
)

History Length

CCTV Spatial

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

M
ea

n
A

cc
ur

ac
y

(%
)

History Length

CoFriend

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

M
ea

n
C

ov
er

ag
e

(%
)

History Length

CoFriend

Figure 6.11: The mean coverage and accuracy results for the CCTV Spatial, and aircraft
turnaround datasets on different history length values. The error bars show one standard
deviation from the mean. All results were produced by 10 foldcross validation.

6.5 Conclusions

This chapter has shown that the use of qualitative spatial relations allows the predictive

models to be robust to spatial noise. Section 6.4.1 verified this experimentally by show-

ing that the predictive models learnt from the CCTV data in Chapter 4 (which rely on the

156

Chapter 6 Learning Predictive Models Using A Qualitative Representation of Space

detectors occurring in a specific ordering) fail when the detectors are moved. The pre-

dictive models learnt in this chapter are robust to this noise, because they use qualitative

spatial relations that look at the spatial change between the location of detections, rather

than relying on the detectors occurring in absolute locations. The accuracy results for all

methods on the CoFriend dataset was very poor. STGP got the most accurate results on

the CCTV Spatial, but got worse accuracy results than Progol, C4.5 and Neural Networks

on the Tic Tac Toe dataset. Progol, C4.5 and Neural Networks did not get very accurate

results on the CCTV Spatial dataset, but got very accurate results on the Tic Tac Toe

dataset.

STGP has an inefficient method to evaluate the condition section of a production rule

on a history. It was shown to be an issue (Section 6.4.3) on theCoFriend, and Tic Tac Toe

datasets, as large combinations of entities and relations need to be checked. Techniques

from databases, or Prolog could be used to fix this problem. These would match parts of

the condition section to parts of the history, until an overall match is found. This makes

it a more efficient search process than looking over all possible combinations from the

history that might match the condition section.

Progol has no temporal constraints during its search to find the most general clause.

This can cause it to predict using relations or entities fromthe future, as was shown in

the results from the CCTV Spatial dataset. One way to preventthis from happening is to

only allow Progol to see previous spatio-temporal data whenit is generalising the most

specific clause. This would require changing how the most specific clause is generated,

to take into account temporal constraints from the data.

157

Chapter 7

Automatic Bloat Control in Genetic

Programming

7.1 Introduction

In Chapters 4 - 6 experiments were performed using STGP to seewhat was the best

Tarpeian value for different datasets. The experiments hadtwo main conclusions. Firstly,

there was no universal optimal Tarpeian value for all datasets. Datasets which require

a simpler predictive model typically have a lower optimal Tarpeian value, than datasets

which require more complex predictive models. Secondly, having a fixed Tarpeian value

may not produce the most accurate and smallest predictive models.

Ekárt and Németh [21] adapt the diversity of the population during the run. In the

initial stages of the run a high diversity is maintained, andin the later stages of the run a

lower diversity is allowed to force GP to converge on a solution. This chapter investigates

a similar technique to vary the Tarpeian value during the runof STGP. It is proposed that

during a run a high Tarpeian value (causing high population diversity) is typically required

at the start to help STGP find good solutions, and a lower Tarpeian value (causing lower

population diversity) is then required once STGP has converged on a solution to reduce

the size of the predictive models. This chapter investigates using an adaptive Tarpeian

method that varies the Tarpeian value during the run based onthe current and initial best

fitness values. Section 7.2 presents the method, and Section7.3 shows the results of the

158

Chapter 7 Automatic Bloat Control in Genetic Programming

method applied to the datasets from Chapters 4 - 6.

7.2 Adaptive Tarpeian value

The results from Chapters 4 - 6 showed that there was not a single Tarpeian value that

will guarantee both good coverage, and accuracy, and small sized predictive models for

all datasets. The problem is that some datasets like Uno and Uno2 require a low Tarpeian

value from the start to get a good solution. However, others like PSS, and Uno Temporal

need a higher Tarpeian value to get accurate predictive models, but it is not small enough

in the later stages of the run to produce very small predictive models.

The Tarpean bloat control method can be seen as controlling the size of the population.

Low Tarpeian values will greatly reduce the size of the population that is sampled from

by the genetic operators, and this creates a lower population diversity. Lower diversity

allows STGP to find small solutions once it has a correct solution, but can prevent STGP

from initially finding a correct solution. High Tarpeian values allow a larger population

size to be sampled from by the genetic operators, which leadsto a higher diversity. This is

good for allowing a more comprehensive initial search of thesearch space, but can make

it hard for STGP to focus on a small correct solution later on in the runs. This chapter

proposes (based on the work of [21]) that a high diversity is required at the start of the run

to allow a good set of predictive models to be evolved, and lowdiversity at the end of the

run to find compact predictive models.

There has been previous work (Section 2.6.7) in GP on adaptive diversity [21], and

adaptive population size [110]. Ekárt and Németh [21] usea gradient based technique

that looks at the ratio of the current and previous best fitness values to adapt their diversity

controls. Rochatet al. [110] use an absolute method that looks at the ratio of the current

best fitness and the initial best fitness to adapt the population size. The same approach has

been taken in this chapter to adapt the Tarpeian value. The approach assumes that how

close the current best fitness value is to the optimal fitness value (0), relates to how much

Tarpeian bloat control should be applied. When the current best fitness value is a long

way from the optimal fitness value a high Tarpeian value should be used to allow STGP

to investigate a range of possible solutions. However, whenthe current best fitness value

is close to the optimal value a low Tarpeian value can be used to force STGP to converge

on a small correct solution. Equation 7.1 shows the method toautomatically adapt the

Tarpeian value. The new Tarpeian valuet is defined as the ratio of the current best fitness

fb to the initial best fitnessfi multiplied by the initial Tarpeian valuetinitial . In all the

experiments the initial Tarpeian value is set to 10. To prevent the Tarpeian value from

159

Chapter 7 Automatic Bloat Control in Genetic Programming

going to 1 (which would cause all the predictive models that were above the average size

to be removed from the population) it is limited to a minimum value of 2. This method

was applied to the datasets from Chapters 4 - 6. The results are shown in the next section.

t = Max(
fc
fi
∗ tinitial ,2) (7.1)

7.3 Results

Figures 7.1 - 7.11 show the results for the adaptive Tarpeianmethod on the datasets from

Chapters 4 - 6. The results show that the adaptive Tarpeian method got accuracy results on

all the noisy datasets, and most of the clean datasets that were as good as the best results

using a fixed Tarpeian value. It also typically produced predictive models of a size equal

to or smaller than the most accurate predictive models usinga fixed Tarpeian value.

The results on the PSS datasets (Figure 7.1) show that the method does not get very

accurate results for the clean dataset. It is too aggressive, causing it to produce small sized

predictive models, with accuracy results that are worse than the most accurate results from

using a fixed Tarpeian value. The noise results on the Uno2 datasets (Figure 7.3) show that

as the level of noise is increased the method produces predictive models that are larger on

average than most accurate predictive models produced using a fixed Tarpeian value. The

results on the CCTV datasets (Figure 7.4) show that the accuracy of the method on the

clean dataset is lower than the best accuracy using the fixed Tarpeian value. The results

on the PYCR datasets (Figure 7.5) are similar to the ones for CCTV. On the clean, and

10% noise datasets it gets the smallest size results, but theaccuracy results are worse than

the best accuracy results using a fixed Tarpeian value. The CCTV dataset using spatial

relations (Figure 7.6) gets a similar accuracy result to using a fixed Tarpeian value, but

the average size of the predictive model is larger than the best results from using a fixed

Tarpeian value.

The results have highlighted two main issues with the method. Firstly, the method

assumes that a very small current best fitness (less than 0.10) means that STGP is very

close to finding the correct solution, and consequently a high level of bloat control can be

used to reduce the size of the predictive model. However, forthe clean PSS and PYCR

datasets a very low fitness value does not always mean that STGP is close to finding

the correct solution. When the adaptive Tarpeian method is applied to these datasets it

incorrectly decreases the Tarpeian value causing a decrease in the diversity of the popu-

lation causing STGP to prematurely converge on an incomplete solution. Secondly, on

the noisy datasets, the noise limits the minimum value for the current best fitness that a

160

Chapter 7 Automatic Bloat Control in Genetic Programming

predictive model can achieve. This affects the smallest possible Tarpeian value that the

adaptive Tarpeian method can produce. In the later stages ofthe runs the amount of bloat

control is reduced which prevents STGP from finding the smallest possible models. This

can be seen, for example, in the results for the Uno2 datasets, and the CCTV with spatial

relations dataset.

7.4 Conclusions

The previous chapters has shown that there is no universal fixed Tarpeian value that will

work well on all datasets. This chapter has shown an adaptiveTarpeian method which

computes the Tarpeian value based on the ratio of the currentbest fitness to the initial best

fitness. The results showed that the method got accuracy results that were as good as the

best results using a fixed Tarpeian method, for all the noisy datasets, and most of the clean

datasets. There are two main problems with the method. Firstly, it reduces the Tarpeian

value too quickly for some of the clean datasets, causing STGP to prematurely converge

on an incomplete solution. Secondly, the noise in the datasets affects the method making

it unable to produce low Tarpeian values. To solve these problems some form of scaling

could be used to convert the ratio between the current best fitness and the initial best

fitness into a Tarpeian value. An exponential scale could be used for the clean datasets to

allow high Tarpeian values to be still used when the current best fitness has a low value.

On the noisy datasets a constant noise value (based on the noise level) could be removed

from the ratio to allow it to produce low Tarpeian values.

161

Chapter 7 Automatic Bloat Control in Genetic Programming

 88

 90

 92

 94

 96

 98

 100

 102

 104

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - Clean

 10

 20

 30

 40

 50

 60

 70

 80

 90

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - Clean

 78

 80

 82

 84

 86

 88

 90

 92

 94

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - 10% Noise

 0

 50

 100

 150

 200

 250

 300

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - 10% Noise

 60

 62

 64

 66

 68

 70

 72

 74

 76

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - 30% Noise

 0

 50

 100

 150

 200

 250

 300

 350

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - 30% Noise

Figure 7.1: The accuracy and size results for the Auto Tarpeian method on the PSS dataset.
The error bars show one standard deviation from the mean. Allresults were produced by
10 fold cross validation.

162

Chapter 7 Automatic Bloat Control in Genetic Programming

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 100.2

 100.4

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - Clean

 15

 20

 25

 30

 35

 40

 45

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - Clean

 82

 84

 86

 88

 90

 92

 94

 96

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - 10% Noise

 0

 50

 100

 150

 200

 250

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - 10% Noise

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - 30% Noise

 0

 50

 100

 150

 200

 250

 300

 350

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - 30% Noise

Figure 7.2: The accuracy and size results for the Auto Tarpeian method on the Uno
datasets. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

163

Chapter 7 Automatic Bloat Control in Genetic Programming

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - Clean

 10

 15

 20

 25

 30

 35

 40

 45

 50

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - Clean

 60

 65

 70

 75

 80

 85

 90

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - 10% Noise

 0

 20

 40

 60

 80

 100

 120

 140

 160

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - 10% Noise

 40

 45

 50

 55

 60

 65

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - 30% Noise

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - 30% Noise

Figure 7.3: The accuracy and size results for the Auto Tarpeian method on the Uno2
datasets. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

164

Chapter 7 Automatic Bloat Control in Genetic Programming

 74

 76

 78

 80

 82

 84

 86

 88

 90

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV - Clean

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV - Clean

 68

 70

 72

 74

 76

 78

 80

 82

 84

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV - 10% Noise

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV - 10% Noise

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

 74

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV - 30% Noise

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV - 30% Noise

Figure 7.4: The accuracy and size results for the Auto Tarpeian method on the CCTV
datasets. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

165

Chapter 7 Automatic Bloat Control in Genetic Programming

 82

 84

 86

 88

 90

 92

 94

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PYCR - Clean

 0

 50

 100

 150

 200

 250

 300

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PYCR - Clean

 68

 70

 72

 74

 76

 78

 80

 82

 84

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PYCR - 10% Noise

 0

 50

 100

 150

 200

 250

 300

 350

 400

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PYCR - 10% Noise

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PYCR - 30% Noise

 0

 50

 100

 150

 200

 250

 300

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PYCR - 30% Noise

Figure 7.5: The accuracy and size results for the Auto Tarpeian method on the PYCR
datasets. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

166

Chapter 7 Automatic Bloat Control in Genetic Programming

 60

 65

 70

 75

 80

 85

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV Temporal (Clean)

 0

 20

 40

 60

 80

 100

 120

 140

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV Temporal (Clean)

 55

 60

 65

 70

 75

 80

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV Temporal (Real World)

 0

 20

 40

 60

 80

 100

 120

 140

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV Temporal (Real World)

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CCTV Spatial

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CCTV Spatial

Figure 7.6: The accuracy and size results for the Auto Tarpeian method on the CCTV
dataset using temporal relations, and the CCTV dataset using spatial relations. The error
bars show one standard deviation from the mean. All results were produced by 10 fold
cross validation.

167

Chapter 7 Automatic Bloat Control in Genetic Programming

 88

 90

 92

 94

 96

 98

 100

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno Temporal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1098765432Auto
M

ea
n

S
iz

e
Tarpeian Value

Uno Temporal

 82

 84

 86

 88

 90

 92

 94

 96

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno Temporal with Noise

 0

 50

 100

 150

 200

 250

 300

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno Temporal with Noise

Figure 7.7: The accuracy and size results for Auto Tarpeian method on the Uno Temporal
datasets. The error bars show one standard deviation from the mean. All results were
produced by 10 fold cross validation.

168

Chapter 7 Automatic Bloat Control in Genetic Programming

 65

 70

 75

 80

 85

 90

 95

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

TicTacToe

 50

 100

 150

 200

 250

 300

 350

1098765432Auto
M

ea
n

S
iz

e
Tarpeian Value

TicTacToe

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

CoFriendGraphs

 0

 20

 40

 60

 80

 100

 120

 140

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

CoFriendGraphs

Figure 7.8: The accuracy and size results for Auto Tarpeian method on the CoFriend and
Tic Tac Toe datasets. The error bars show one standard deviation from the mean. All
results were produced by 10 fold cross validation.

169

Chapter 7 Automatic Bloat Control in Genetic Programming

 78

 80

 82

 84

 86

 88

 90

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - Clean

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - Clean

 74

 76

 78

 80

 82

 84

 86

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - 10% Noise

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - 10% Noise

 56

 58

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

PSS - 30% Noise

 0

 10

 20

 30

 40

 50

 60

 70

 80

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

PSS - 30% Noise

Figure 7.9: The accuracy and size results for the Auto Tarpeian method on the PSS dataset,
where the predictive models are using a simple conflict resolver. The error bars show one
standard deviation from the mean. All results were producedby 10 fold cross validation.

170

Chapter 7 Automatic Bloat Control in Genetic Programming

 80

 82

 84

 86

 88

 90

 92

 94

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - Clean

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - Clean

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - 10% Noise

-10

 0

 10

 20

 30

 40

 50

 60

 70

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - 10% Noise

 50

 55

 60

 65

 70

 75

 80

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno - 30% Noise

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno - 30% Noise

Figure 7.10: The accuracy and size results for the Auto Tarpeian method on the Uno
datasets, where the predictive models are using a simple conflict resolver. The error bars
show one standard deviation from the mean. All results were produced by 10 fold cross
validation.

171

Chapter 7 Automatic Bloat Control in Genetic Programming

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - Clean

-20

-10

 0

 10

 20

 30

 40

 50

 60

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - Clean

 56

 58

 60

 62

 64

 66

 68

 70

 72

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - 10% Noise

-40

-20

 0

 20

 40

 60

 80

 100

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - 10% Noise

 40

 45

 50

 55

 60

 65

 70

1098765432Auto

M
ea

n
A

cc
ur

ac
y

(%
)

Tarpeian Value

Uno2 - 30% Noise

-20

 0

 20

 40

 60

 80

 100

 120

 140

1098765432Auto

M
ea

n
S

iz
e

Tarpeian Value

Uno2 - 30% Noise

Figure 7.11: The accuracy and size results for the Auto Tarpeian method on the Uno2
datasets, where the predictive models are using a simple conflict resolver. The error bars
show one standard deviation from the mean. All results were produced by 10 fold cross
validation.

172

Chapter 8

Conclusions

8.1 Summary of the work

This thesis has shown a technique to learn predictive modelsfrom spatio-temporal data.

In Chapter 3 a frame based [78] representation for the spatio-temporal history data

was described. The representation enables a set of entities, and relationships between the

entities to be described. Relations and entities can also have properties which can also

be represented. Each different type of property, entity or relation requires a definition,

which is represented by a class frame. This definition is usedto create property, entity

or relation instances, which are represented by instance frames. A predictive model is

represented by a production system, which contains a set of production rules, and conflict

resolver. The production rules describe different possible patterns in the history and their

possible future outcomes: Each production rule typically models different parts of the

activity being modelled. Production rules contain two sections: a condition section that

matches a specific subset of the history; and an action section that represents a new entity

or relation. The conflict resolver is a conditional probability distribution represented as a

Bayesian Network. It takes as its input a set of enabled production rules, and computes the

likelihood that a subset of these production rules will be fired to produce a prediction. The

chapter concluded by explaining an inference technique which given a predictive model,

and a history will produce a prediction.

Chapter 4 described how a predictive model is learnt from thespatio-temporal history

173

Chapter 8 Conclusions

data using Spatio-Temporal Genetic Programming (STGP). The chapter described how

the predictive models were initially generated, the fitnessfunction, and the genetic oper-

ators used. It also explained how the parameters of the conflict resolver are computed.

A bloat control technique is used (the Tarpeian method [22])to control the size of the

predictive models. Five datasets were used to evaluate the system. Four were based on

the card games: Uno, Papers Scissors Stone and Play your cards right; and one based on

people walking along a path.

The method presented in this thesis (STGP) achieved the mostaccurate results on all

the datasets in this chapter in comparison to a set of existing machine learning methods:

Progol, Neural Networks, Bayesian Networks, C4.5 and Pe. Progol managed to learn the

correct clauses for many of the datasets, but it was unable toapply them in the correct

order, which affected both its coverage and accuracy results. When Progol was combined

with Pe (a technique to estimate the probability of the clauses when used as a stochastic

logic program) it managed to improve Progol’s coverage, butdue to clashing clauses it

did not often improve its accuracy. Pe must fire all enabled production rules, and the

likelihood of a prediction is based on the likelihood of the other predictions. Sometimes

an enabled production rule will produce an incorrect prediction when it is fired, which

affects Pe’s accuracy. The conflict resolver used by STGP canprobabilistically decide

which of the enabled production rules to fire. This prevents enabled production rules that

produce incorrect predictions from being fired. It was shownthat when the clauses learnt

by Progol were estimated by the conflict resolver in STGP it improved both their coverage,

and accuracy results. Bayesian Networks and C4.5 performedfairly well on the datasets

in this chapter, but were limited due to their inability to learn generalised rules from the

data. It was shown that STGP produces the best results with: some form of size control on

the predictive models; the tournament selection sampling technique using a tournament

selection value that favours the better scoring predictivemodels; and an increased amount

of adding and replacement of production rules in the initial10 generations of the run.

Chapter 5 showed the use of qualitative temporal relations in the predictive models. A

novel temporal state relation to relate the time range of an entity or relation instance to the

current time was presented. Handcrafted Uno datasets; and real-world and handcrafted

CCTV datasets were used for the experiments. Again, STGP produced the most accurate

predictive models for all datasets. Progol did not manage tolearn clauses complex enough

to correctly predict from the training data. Estimating thelikelihood of the clauses using

Pe did not improve the accuracy of the results. When the likelihood of the clauses were

estimated by STGP the coverage, and accuracy of the results were improved except for the

noise free CCTV dataset. Again, the inability for Neural Networks, Bayesian Networks,

174

Chapter 8 Conclusions

and C4.5 to generalise from data affected the accuracy of their results. It was shown

experimentally that using temporal relations in the predictive models when compared to

not using them allowed STGP to be robust to injection noise, and to be slightly more

accurate when predicting from scenes containing multiple people. Finally, it was shown

that increasing history length used by the predictive models reduced their coverage and

accuracy results.

Chapter 6 demonstrated the use of spatio-temporal relations in the condition section of

the production rules, and the ability to use relations in theaction section of the production

rules. The temporal relations were the same as the ones used in Chapter 5. The chapter

verified experimentally that predictive models that use spatial relations between objects

are robust to spatial noise when compared to predictive models that do not use spatial

relations. Three datasets were used for the experiments: CCTV, aircraft turnarounds, and

Tic Tac Toe. STGP was shown to have an inefficient technique toevaluate the condition

section of the production rules on the history, which had a large impact on its run-time on

the Tic Tac Toe and aircraft turnaround datasets. Section 8.4 explains a possible solution

to this problem. Progol learnt overly general clauses on theCCTV datasets, and sometime

the clauses it learnt based their predictions on relations occurring in the future. There is

no easy way to prevent this from happening, which makes Progol unsuitable for learning

from temporal data.

Chapter 7 firstly described an adaptive Tarpeian method which computes the Tarpeian

value based on the ratio of the current best fitness to the initial best fitness. The method

was evaluated using all the datasets from the previous chapters. The results showed that

the method got accuracy results that were as good as the best results using a fixed Tarpeian

method, for all the noisy datasets, and most of the clean datasets. The results showed two

main problems with the method. Firstly, it reduces the Tarpeian value too quickly for some

of the clean datasets, causing STGP to prematurely convergeon an incomplete solution.

Secondly, the noise in the datasets affects the method making it unable to produce low

Tarpeian values. Section 8.4 explains possible solutions to these problems.

8.2 Contributions

The main contributions from this thesis are:

1. A novel predictive model architecture represented as a production system. Each

production rule models a separate part of the spatio-temporal data. The conflict

resolver (represented as a Bayesian Network) allows the architecture to model non-

deterministic data, and to use a set of production rules to make a prediction.

175

Chapter 8 Conclusions

2. A novel temporal relation that relates the time range of anentity or relation instance

in the history to the current prediction time.

3. A technique to learn predictive models by Genetic Programming.

4. The use of spatial relations within the condition sectionof the production rule.

5. Initial work on a technique to adapt the Tarpean bloat value during the run of STGP.

8.3 Discussion

Chapter 1 introduced six questions that this thesis has attempted to investigate. This

section will show to what extent this thesis has managed to answer them.

Question 1: Does representing the components of the predictive models using first or-

der logic, produce more accurate results on non-deterministic spatio-temporal data

than using standard machine learning representations?

In Chapters 4 - 6 experiments were performed on two techniques using first order logic:

STGP, and Progol; along with three techniques using standard machine learning represen-

tations: Neural Networks, Bayesian Networks, and C4.5. Theresults showed that STGP,

and Progol produced more generalised results than Neural Networks, Bayesian Networks,

or C4.5. These can not generalise in many situations and effectively rely on storing com-

mon examples and their outcomes. The accuracy results for STGP and Progol (when

combined with STGP) were shown to be as good as or better than the accuracy results for

Neural Networks, Bayesian Networks and C4.5.

Question 2: Does using a probabilistic conflict resolver produce more accurate pre-

dictive models on non-deterministic spatio-temporal datathan other conflict resolu-

tion approaches?

The results from the datasets in Chapters 4 - 6 showed that thesimple conflict resolver

used by Progol did not produce such good coverage and accuracy results as the probabilis-

tic conflict resolvers used by STGP, and Pe. The clauses learnt by Progol are evaluated in

the default manner used in Prolog. This applies the clauses in order until one entails the

unseen example. If the clauses are placed in the wrong order Progol will predict incor-

rectly and the accuracy of its results will be affected (Section 4.10.2). These results can

be improved by using Pe and STGP. On all datasets Pe improved the coverage results of

176

Chapter 8 Conclusions

Progol, but did not always improve its accuracy results. This is because Pe must fire all

enabled production rules, and the likelihood of a prediction is based on the likelihood of

the other predictions. Incorrectly fired production rules will reduce the accuracy of the

correct predictions. The probabilistic conflict resolver presented in this thesis can decide,

based on a set of enabled production rules, which productionrules to fire. This in some

cases, significantly improves the accuracy results when compared against the accuracy

results from Progol and Pe.

Question 3: Does using evolutionary search techniques to learn production rules

produce more accurate results on non-deterministic spatio-temporal data than using

a deterministic (greedy) search?

STGP uses a genetic programming based approach to learn the production rules. It was

shown that for all datasets (except Tic Tac Toe) that STGP produced predictive models

which had an accuracy that was the same as, or better than the accuracy for all other

methods. Progol is an alternative technique to learn the production rules. It uses a

greedy search, but did not get accuracy results (even when combined with the proba-

bilistic conflict resolver presented in this thesis) that were better than STGP. The results

on the datasets from Chapters 5 and 6 were often too general, and it shows that Progol did

not fully search for good clauses.

Question 4: Does learning the production rules and the parameters of the conflict

resolver simultaneously produce more accurate results on non-deterministic spatio-

temporal data than learning them sequentially?

The results from Chapters 4 - 6 showed that (apart for Tic Tac Toe) STGP was as accurate

or more accurate than all other methods. This shows that the combined approach to learn-

ing the production rules and the conflict resolver parameters used by STGP was more

accurate than the sequential approach of using Progol to learn the production rules, and

then using Pe or STGP to estimate the parameters for the conflict resolver. The combined

approach allows the learner to use the properties of the conflict resolver as part of the

predictive model learning process. This allows the learnerto allow different production

rules to be enabled at the same time to produce simpler and smaller predictive models as

shown in Section 3.3.

177

Chapter 8 Conclusions

Question 5: Does use of qualitative temporal relations within the components of

the predictive models make them robust to changes in the temporal structure of the

non-deterministic spatio-temporal data?

Section 5.6.1 presented the results of an experiment where predictive models using tem-

poral relations and predictive models not using temporal relations were tested on datasets

containing injection noise, and multiple people. Overall the predictive models using tem-

poral relations were not affected, by the injection noise; and were more accurate when

predicting from the dataset containing multiple people than the predictive models not us-

ing temporal relations. This shows that using temporal relations in the predictive models

makes them robust to some changes in the temporal structure of the spatio-temporal data.

Question 6: Does use of qualitative spatial relations within the components of the

predictive models make them robust to changes in the spatialstructure of the non-

deterministic spatio-temporal data?

Section 6.4.1 showed results of an experiment where predictive models using, and not

using qualitative spatial orientation relations were firstly tested on a clean dataset, and

secondly on a dataset where the location of some of the objects was changed. The pre-

dictive models that used spatial relations were unaffectedby the change in the location of

the objects, but the predictive models that did not use spatial relations were affected by

this change. This shows that spatial relations are robust tosome changes in the spatial

structure of the spatio-temporal data. Further work could be done using different spatial

relations, and different test datasets containing different forms of spatial noise. The spatial

noise could take the form of different types of camera movement like horizontal, vertical,

or zooming. It could also take the form of occlusion where parts of the image are hidden.

8.4 Future work

This thesis has highlighted a variety of problems that are potential avenues of future work:

1. Methods could be investigated for improving the speed of STGP in finding a solu-

tion and improving the accuracy of the solution. A simplistic method is currently

used to vary the type, and probability of genetic operators used during the run. This

only allows the genetic operators that operate on the predictive model for the initial

n generations, and then uses genetic operators that operate on both the predictive

model and the production rules for the rest of the run. Another approach is to adapt

178

Chapter 8 Conclusions

the operator type, and probabilities during the run. This idea been successfully ap-

plied in the context of GP [91]. Using these techniques within STGP would allow

it to use the optimal set of operators during the different stages of the run. This

should allow STGP to find more accurate solutions in a reducedamount of genera-

tions. This is an easy project and could be done as an undergraduate dissertation.

2. Chapter 7 described a method to automatically adjust the Tarpeian value based on

the ratio of the current best fitness to the initial best fitness. The results showed

that it did not work for all datasets. The method was affectedby noise in the data,

and can often reduce the Tarpeian value too quickly on clean datasets. To fix these

problems the ratio between the current best fitness and the initial best fitness could

be applied to a scaling function to convert it into a Tarpeianvalue. Work could be

performed to see which scaling functions produced the best results on the clean,

and noisy datasets. This is an easy project and could be done as an undergraduate

dissertation.

3. Currently the condition section of a production rule is created randomly. However,

Progol initialises its search for the most general clause bygenerating and using the

most specific clause. This is then used to bound the search. Allowing the condition

section to be some variant on the most specific clause could reduce the search space,

and make finding a solution faster. This is a harder project and could be done as a

masters thesis.

4. It was assumed in this thesis that all the predictions madeby the predictive models

were for the next time step. In noisy datasets it may not always be the case that

the current prediction will happen at the next time step. Forexample with multiple

people in a scene the system might predict that a person will perform a particular

action, but before it happens a different person might have already performed an

action. Techniques could be investigated that allow STGP totake a series of predic-

tions from a predictive model and decide when each prediction should be applied.

This could be used to more accurately predict when future actions might occur. This

is a hard project and could be done as a PhD thesis.

5. In all the datasets used in this thesis the entities, relations and their properties have

a probability of 1. In the real world the probability of entities, relations and their

properties can be less than 1, representing uncertainty in information received the

world. For example, a tracking algorithm might use a probability less than 1 for

the type of an object when it is unsure of the type it could be classified as. There

179

Chapter 8 Conclusions

has been previous work to learn models based on first order logic where the data is

uncertain, for example Markov Logic Networks [106], Stochastic Logic Programs

[18], and Bayesian Logic Programs [53]. The ideas from this research could be

incorporated into STGP to allow it to learn and predict from uncertain data. This is

also a harder project and could be done as a masters thesis.

6. Chapter 6 showed how relations could be used in the action section of the produc-

tion rule. The relations could use variables from the condition section to represent

entities. Section 3.3.1.2 showed in theory how the properties of entities from the

history could be used in the action section. This has not beenimplemented, or

experimented on in this thesis. Further work could be done toimplement and ex-

periment with this. This would create more generalised production rules, which

should help STGP to find a solution faster. It would also allowthe predictive mod-

els to contain less production rules. This is a harder project and could be done as a

masters thesis.

7. Work could be done to apply STGP to more complex domains that have a larger

number of objects, and more complex behaviour patterns to learn. This is an open

problem and might require a team of researchers to work on it.

8. Work could be done to investigate extra genetic operatorsthat could be used in

STGP. This would allow it to find solutions faster, and to better investigate the

search space. This is a harder project and could be done as a masters thesis.

9. Chapter 6 highlighted problems with the algorithm to see if the condition section

of a production rule was enabled on some history. It was shownto be inefficient

when there are large numbers of combinations of relations and entities in the history

to check against. Work could be done to investigate alternative algorithms. One

potential approach could be to use a Prolog or database search style approach where

instead of matching the whole tree against the history sub-trees are matched on the

history in turn until an overall match is found. This is an easy project and could be

done as an undergraduate dissertation.

180

Bibliography

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26:198–3, 1983.

[2] P. J. Angeline and J. Pollack. Evolutionary module acquisition. In Proceedings

of the Second Annual Conference on Evolutionary Programming, pages 154–163.

MIT Press, 1993.

[3] C. Anglano, A. Giordana, G. Lo Bello, and L. Saitta. An experimental evaluation of

coevolutive concept learning. InProceedings of the 15th International Conference

on Machine Learning, pages 19–27, 1998.

[4] S. Augier, G. Venturini, and Y. Kodratoff. Learning firstorder logic rules with a

genetic algorithm. InProcedings of the 1st International Conference on Knowledge

Discovery and Data Mining, pages 21–26, 1995.

[5] J. E. Baker. Adaptive selection methods for genetic algorithms. InProceedings of

the First International Conference on Genetic Algorithms and Their Applications,

pages 101–111, 1985.

[6] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. InProceed-

ings of the Second International Conference on Genetic Algorithms, pages 14–21,

1987.

[7] A. Baumberg and D. Hogg. An efficient method for contour tracking using active

shape models. InProceedings of the IEEE Workshop on Motion of Non-Rigid and

Articulated Objects, pages 194–199, 1994.

[8] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. A real-time computer vision

system for measuring traffic parameters. InProceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pages 495–501, 1997.

181

BIBLIOGRAPHY

[9] M. Biba, S. Ferilli, and F. Esposito. Structured learning of Markov logic networks

through iterated local search. InProceedings of the European Conference on Artif-

ical Intelligence, pages 361–366, 2008.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, andF. Yergeau. eXtensi-

ble Markup Language (XML) 1.0 (Fourth Edition). W3C recommendation, W3C,

2006. http://www.w3.org/TR/2006/REC-xml-20060816/.

[11] C. Bregler. Learning and recognising human dynamics invideo sequences. In

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 568–574, 1997.

[12] E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming: An

analysis of measures and correlation with fitness.IEEE Transactions on Evolution-

ary Computation, 8:47–62, 2004.

[13] A. G. Cohn and S. M Hazarika. Qualitative spatial representation and reasoning:

An overview.Fundamenta Informaticae, 46(1-2):1–29, 2001.

[14] S. Colton. An application-based comparison of automated theory formation and

inductive logic programming.Electronic Transactions on Artificial Intelligence,

4:97–117, 2000.

[15] S. Colton and S. Muggleton. Mathematical applicationsof inductive logic pro-

gramming.Machine Learning, 64:25–64, 2006.

[16] G. F. Cooper and E. Herskovits. A Bayesian method for theinduction of proba-

bilistic networks from data.Machine Learning, 9:309–347, 1992.

[17] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.Visual categorization

with bags of keypoints. InProceedings of the Workshop on Statistical Learning in

Computer Vision at European Conference on Computer Vision, pages 1–22, 2004.

[18] J. Cussens. Parameter estimation in stochastic logic programs.Machine Learning,

44:245–271, 2001.

[19] J. Davis, E. Burnside, I. de Castro Dutra, D. Page, and V.Santos Costa. An in-

tergrated approach to learning Bayesian networks of rules.In Proceedings of the

Sixteenth European Conference on Machine Learning, volume 3720 ofLecture

Notes in Computer Science, pages 84–95. Springer-Verlag, 2005.

182

BIBLIOGRAPHY

[20] A. Dempster, N.M. Laird, and D.B.Rubin. Maximum likelihood from incomplete

data via the EM algorithm.Journal of the Royal Statistical Society B, 39:1–39,

1977.

[21] A. Ekárt and S. Z. Németh. Maintaining the diversity of genetic programs. In

Proceedings of the European Conference on Genetic Programming, volume 2278

of Lecture Notes in Computer Science, pages 162–171. Springer-Verlag, 2002.

[22] A. Ekárt and S. Z. Németh. A simple but theoretically-motivated method to control

bloat in genetic programming. InProceedings of the 6th European Conference on

Genetic Programming, volume 2610 ofLecture Notes in Computer Science, pages

211–223. Springer-Verlag, 2003.

[23] D. Federico. Evolutionary concept learning in first order logic: An overview.AI

Communications, 19(1):13–33, 2006.

[24] L. Fei-Fei and P. Perona. A Bayesian hierarchical modelfor learning natural scene

categories. InProceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 524–531, 2005.

[25] A. Fern and R. Givan. Sequential inference with reliable observations: Learning to

construct force-dynamic models.Artificial Intelligence, 170:1081–1100, 2006.

[26] A. P. Fern, R. L. Givan, and J. M. Siskind. Specific-to-general learning for tem-

poral events with application to learning event definitionsfrom video. Journal of

Artificial Intelligence Research (JAIR), 17:379–449, 2002.

[27] J. Fernyhough, A. G. Cohn, and D. C. Hogg. Constructing qualitative event models

automatically from video input.Image and Vision Computing, 18:81–103, 2000.

[28] J. Ferryman, S. Maybank, and A. Worrall. Visual surveillance for moving vehicles.

International Journal of Computer Vision, 37(2):187–197, 2000.

[29] P. Flach and N. Lachiche. Confirmation-guided discovery of first-order rules with

Tertius.Machine Learning, 42:61–95, 2001.

[30] P. Flach and N. Lachiche. Naive Bayesian classificationof structured data.Machine

Learning, 57:233–269, 2004.

[31] S. Forrest. Scaling fitnesses in the genetic algorithm.In Documentation for PRIS-

ONERS DILEMMA and NORMS Programs That Use the Genetic Algorithm,

1985.

183

BIBLIOGRAPHY

[32] D. A. Forsyth and J. Ponce.Computer Vision: A Modern Approach. Prentice Hall,

2003.

[33] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational

models. InProceedings of the Sixteenth International Conference on Artificial

Intelligence, pages 1300–1309, 1999.

[34] A. Galata, A. G. Cohn, D. Magee, and D. Hogg. Modeling interaction using learnt

qualitative spatio-temporal relations and variable length Markov models. InPro-

ceedings of the European Conference on Artificial Intelligence, pages 741–745,

2002.

[35] A. Galata, N. Johnson, and D. Hogg. Learning behaviour models of human ac-

tivities. In Proceedings of the British Machine Vision Conference, pages 12–22,

1999.

[36] A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Com-

putation, 3(4):375–416, 1996.

[37] D. E. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,USA, 1989.

[38] D. E. Goldberg. A note on Boltzmann tournament selection for genetic algo-

rithms and population-orientated simulated annealing.Complex Systems, 4:445–

460, 1990.

[39] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classifica-

tion with sets of image features. InProceedings of the International Conference

on Computer Vision, 2005.

[40] P. Haddawy. Generating Bayesian networks from probability logic knowledge

bases. InProceedings of the Tenth Conference on Uncertanity in Artificial In-

telligence, pages 262–269, 1994.

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: An update.SIGKDD. E.plorations, 11(1), 2009.

[42] I. Haritaoglu, D. Harwood, and L. S. Davis.W4: Real time survellance of people

and their activities.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 22(8):809 – 830, 2000.

184

BIBLIOGRAPHY

[43] P. E. Hart, R. O. Dura, and M. T. Einaudi. PROSPECTOR; a computer-based

consultation system for mineral exploration.Mathematical Geology, 10:589–610,

1978.

[44] D. Heckerman, D. Geiger, and D. M. Chickering. LearningBayesian networks:

The combination of knowledge and statistical data.Machine Learning, 20:197–

243, 1995.

[45] D. Hernández. Qualitative Representation of Spatial Knowledge. Springer-

Verlang, 1994.

[46] J. Hezanaho. DOGMA: A GA-based relational learner. InProceedings of the 8th

International Conference on Inductive Logic Programming, pages 205–214, 1998.

[47] D. Hogg. Model-based vision: A program to see a walking person. Image and

Vision Computing, 1:5–20, 1983.

[48] J.H. Holland.Adaption in Natural and Artificial Systems. University of Michigan

Press, 1975.

[49] Y. Ivanov and A. Bobick. Recognition of visual activities and interactions by

stochastic parsing.IEEE Transactions On Pattern Analysis And Machine Intel-

ligence, 22(8):852–872, 2000.

[50] T. Joachims. Text categorization with support vector machines: Learning with

many relevant features. InProceedings of the European Conference on Machine

Learning, pages 137–142. Springer, 1998.

[51] R. Kalman. A new approach to linear filtering and prediction problems.Journal of

Basic Engineering, 82:35–46, 1960.

[52] W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison with other GP

structures. InProceedings of the European Conference on Genetic Programming,

volume 2038 ofLecture Notes in Computer Science, pages 302–312. Springer-

Verlag, 2001.

[53] K. Kersting and L. De Raedt. Towards combining inductive logic programming

with Bayesian networks. InProceedings of the 11th International Conference on

Inductive Logic Programming, volume 2157 ofLecture Notes in Artifical Intelli-

gence, pages 118–131. Springer-Verlag, 2001.

185

BIBLIOGRAPHY

[54] V. Kettnaker and M. Brand. Minimum-entropy models of scene activity. InPro-

ceedings of the 1999 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 281–286, 1999.

[55] S. Kok and P. Domingos. Learning the structure of Markovlogic networks. In

Proceedings of the 22nd International Conference on Machine Learning, pages

441–448. ACM Press, 2005.

[56] D. Koller, K. Daniilidis, and H. H. Nagel. Model based object tracking in monoc-

ular image sequences of road traffic scenes.International Journal of Computer

Vision, 37(3):257–281, 1993.

[57] D. Koller and A. Pfeffer. Probabilisitic frame-based systems. InProceedings of

the fifteenth national/tenth conference on Artificial intelligence/Innovative appli-

cations of artificial intelligence, pages 580 – 587, 1998.

[58] J. Koza.Genetic Programming. MIT Press, 1992.

[59] J. Koza.Genetic Programming II. MIT Press, 1994.

[60] J. Koza, F. H Bennett III, D. Andre, and M. Keane.Genetic Programming III.

Morgan Kaufmann, 1999.

[61] N. Landwehr, K. Kersting, and L. De Raedt. IntergratingNaı̈ve Bayes and FOIL.

Machine Learning Research, 8:481–507, 2007.

[62] P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers. Struc-

ture learning of Bayesian networks by genetic algorithms: Aperformance analysis

of control parameters.IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 18(9):912–926, 1996.

[63] P. Lichodzijewski and M. Heywood. GP classifier problemdecomposition using

first-price and second-price auctions. InProceedings of the 10th European con-

ference on Genetic programming, volume 4445 ofLecture Notes in Computer Sci-

ence, pages 137–147. Springer-Verlag, 2007.

[64] T. List and R. Fisher. CVML - an XML-based computer vision markup language.

In Proceedings of the 17th International Conference on Pattern Recognition, pages

789–792, 2004.

186

BIBLIOGRAPHY

[65] E. G. Lópaz, R. Poli, and C. A. C. Coello. Reusing code ingenetic programming.

In Proceedings of the 7th European Conference on Genetic Programming, volume

3003 ofLecture Notes in Computer Science, pages 359–368, 2004.

[66] G.F. Luger.Artificial Intelligence: Structures and Strategies for Complex Problem

Solving. Addison Wesley, 2004.

[67] S. Luke and L. Panait. A comparison of bloat control methods for genetic program-

ming. Evolutionary Computation, 14(3):309–344, 2006.

[68] D. Magee. Tracking multiple vehicles using foreground, background and motion

models.Image and Vision Computing, 22:143–155, 2004.

[69] N. Maillot, M. Thonnat, and A. Boucher. Towards ontology-based cognitive vision.

Machine Vision and Applications, 16:33–40, 2004.

[70] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of

artifical intelligence.Machine Intelligence, 4:463–502, 1969.

[71] D. McDermott. A temporal logic for reasoning about processes and plans.Cogni-

tive Science, 6:101–155, 1982.

[72] A. Mcintyre and M. Heywood. MOGE: GP classification problem decomposition

using multi-objective optimization. InProceedings of the 8th annual conference

on Genetic and evolutionary computation, pages 863–870, 2006.

[73] A. R. McIntyre and M. I. Heywood. On multi-class classification by way of nich-

ing. In Proceedings of the Genetic and Evolutionary Computation Conference,

pages 581–592, 2004.

[74] S.J. McKenna, S. Jabri, Z. Duric, and H. Wechsler. Tracking interacting people. In

Proceedings of the Fourth IEEE International Conference onAutomatic Face and

Gesture Recognition, pages 348–353, 2000.

[75] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations

of state calculations by fast computing machines.Journal of Chemical Physics,

21:1087–1091, 1953.

[76] R. Michalski and J. Larson. Incremental generation of VL1 hypotheses: the un-

derlying methodology and the description of program AQ11. ISG 83-5, Computer

Science Department, Univ. of Illinois at Urbana-Champaign, 1980.

187

BIBLIOGRAPHY

[77] J. Miller and P. Thomson. Cartesian genetic programming. In Proceedings of the

European Conference on Genetic Programming, volume 1802 ofLecture Notes in

Computer Science, pages 121–132. Springer-Verlag, 2000.

[78] M. Minsky. A framework for representing knowledge.The Psychology of Com-

puter Vision, pages 211–277, 1975.

[79] D. J. Montana. Strongly typed genetic programming.Evolutionary Computation,

3:199–230, 1995.

[80] D. Moore and I. Essa. Recognizing multitasked activities from video using stochas-

tic context-free grammar. InProceedings of the Eighteenth national conference on

Artificial intelligence, pages 770–776, 2001.

[81] S. Muggleton. Learning structure and parameters of stochastic logic programs. In

Proceedings of the 12th international conference on Inductive logic programming,

volume 2583 of Lecture Notes In Artificial Intelligence, pages 198–206, 2003.

[82] S. H. Muggleton. Inverse entailment and Progol.New Generation Computing,

13:245–286, 1995.

[83] S. H. Muggleton. Stochastic logic programs. In L. de Raedt, editor,Advances in

Inductive Logic Programming, pages 254–264. IOS Press, 1996.

[84] S. H. Muggleton. Learning stochastic logic programs.Electronic Transactions in

Artificial Intelligence, 4(41), 2000.

[85] S. H. Muggleton and J. Firth. CProgol4.4: a tutorial introduction. In S. Dzeroski

and N. Lavrac, editors,Relational Data Mining, pages 160–188. Springer-Verlang,

2001.

[86] S. H. Muggleton, H. Lodhi, A. Amini, and M. J. E. Sternberg. Support vector

inductive logic programming. InProceedings of the 8th International Conference

on Discovery Science, volume 3735 of Lecture Notes in Artificial Intelligence,

pages 163–175. Springer-Verlag, 2005.

[87] S. H. Muggleton and A. Tamaddoni-Nezhad. QG/GA: A stochastic search for

Progol.Machine Learning, 70(2-3):123–133, 2007.

188

BIBLIOGRAPHY

[88] C. Needham, D. Magee, P. Santos, and S. Rao. Inducing thefocus of attention by

observing patterns in space. InProceedings of the Workshop on Modelling Oth-

ers from Observations at International Joint Conferences on Artificial Intelligence,

pages 47–52, 2005.

[89] C. Needham, P. Santos, D. Magee, V. Devin, D. Hogg, and A.G. Cohn. Protocols

from perceptual observations.Artificial Intelligence, 167:103–136, 2005.

[90] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action cate-

gories using spatial-temporal words. InProceedings of the British Machine Vision

Conference, volume 3, pages 1249–1258, 2006.

[91] J. Niehaus and W. Banzhaf. Adaption of operator probabilities in genetic program-

ming. In Proceedings of the 4th European Conference on Genetic Programming,

volume 2038 of Lecture Notes In Computer Science, pages 325 –336, 2001.

[92] N. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision system for

modeling human interactions.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):831–843, 2000.

[93] L. Panait and S. Luke. Alternative bloat control methods. In Proceedings of the

Genetic and Evolutionary Computation Conference, volume 3103 ofLecture Notes

in Computer Science, pages 630–641. Springer-Verlag, 2004.

[94] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networksof Plausible

Inference. Morgan Kaufmann, 1988.

[95] R. Poli, B. Langdon, and N. McPhee.A Field Guide To Genetic Programming.

Lulu Enterprises, UK Ltd, 2008.

[96] U. Pompe and I. Kononenko. Linear space induction in first order logic with relief.

In R. Kruse, R. Viertl and G. Della Riccia (Eds.), CISM Lecture notes, Udine Italy.

Springer Verlang, 1994.

[97] U. Pompe and I. Kononenko. Naive Bayesian classification within ILP-R. InPro-

ceedings of the Fifth International Workshop on Inductive Logic Programming,

pages 417–436, 1995.

[98] A. Puech and S. H. Muggleton. A comparison of stochasticlogic programs and

Bayesian logic programs. InProceedings of the Workshop on Learning Statisti-

cal Models from Relational Data at International Joint Conferences on Artificial

Intelligence, 2003.

189

BIBLIOGRAPHY

[99] J. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[100] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239–266, 1990.

[101] J. R. Quinlan. Boosting first-order learning. InProceedings of the 7th Interna-

tional Workshop on Algorithmic Learning Theory, volume 1160 of Lecture Notes

in Computer Science, pages 143–155, 1996.

[102] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition.Proceedings of the IEEE, 77(2), 1989.

[103] L. De Raedt and L. Dehaspe. Clausal discovery.Machine Learning, 26:99–146,

1997.

[104] L. De Raedt and K. Kersting. Probablistic logic learning. SIGKDD. E.plorations,

2:1–17, 2003.

[105] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and

connection. InProceedings of the 3rd International Conference on Knowledge

Representation and Reasoning, pages 165–176, San Mateo, 1992. Morgan Kauf-

mann.

[106] M. Richardson and P. Domingos. Markov logic networks.Machine Learning,

62:107–136, 2006.

[107] J. Rissanen. Universal coding, information, prediction, and estimation. IEEE

Transactions on Information Theory, IT-30(4):629–636, 1984.

[108] S. Roberts, D. Howard, and J. Koza. Evolving modules ingenetic programming

by subtree encapsulation. InProceedings of the European Conference on Genetic

Programming, volume 2038 ofLecture Notes in Computer Science, pages 160–

175. Springer-Verlag, 2001.

[109] J. A. Robinson. A machine-oriented logic based on the resolution principle.Jour-

nal of the Assoication for Computing Machinery, 12:23–41, 1965.

[110] D. Rochat, M. Tomassini, and L. Vanneschi. Dynamic size populations in dis-

tributed genetic programming. InProceedings of the European Conference on

Genetic Programming, volume 3447 ofLecture Notes in Computer Science, pages

50–61. Springer-Verlag, 2005.

190

BIBLIOGRAPHY

[111] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice

Hall, 2003.

[112] P. Santos, S. Colton, and D. Magee. Predictive and descriptive approaches to learn-

ing game rules from vision data. InProceedings of the Ibero-American Artificial In-

telligence Conference, volume 2709 ofLecture Notes in Computer Science, pages

349–359. Springer-Verlag, 2006.

[113] P. Santos, D. Magee, A. Cohn, and D. Hogg. Combining multiple answers for

learning mathematical structures from visual observation. In Proceedings of the

16th European Conference on Artificial Intelligence, pages 544–548, 2004.

[114] P. Santos, C. Needham, and D. Magee. Inductive learning spatial attention.Revista

Controle and Automaç̃ao, 19(3), 2008.

[115] R. Schapire. The boosting approach to machine learning: An overview. InPro-

ceedings of the MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[116] E. H. Shortliffe and B. G. Buchanan. A model of inexact reasoning in medicine.

Mathematical Biosciences, 23:351–379, 1975.

[117] J. M. Siskind. Grounding the lexical semantics of verbs in visual perception using

force dynamics and event logic.Artificial Intelligence Research, 15:31–90, 2000.

[118] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering objects

and their location in images. InProceedings of the International Conference on

Computer Vision, pages 370–377, 2005.

[119] M. Sonka, V. Hlavac, and R.D. Boyle.Image Processing, Analysis and Machine

Vision, 2nd edition. Brooks Cole, 1998.

[120] T. Soule and J. Foster. Effects of code growth and parsimony pressure on popula-

tions in genetic programming.Evolutionary Computation, 6(4):293–309, 1999.

[121] A. Srinivasan.The Aleph Manual. University of Oxford, 1999.

[122] A. Srinivasan. A study of two sampling methods for analyzing large datasets with

ILP. Data Mining and Knowledge Discovery, 3(1):95–123, 1999.

[123] T. Starner and A. Pentland. Real-time american sign language recognition from

video using hidden markov models. InProceedings of the International Symposium

on Computer Vision, pages 265–270, 1995.

191

BIBLIOGRAPHY

[124] C. Stauffer and W Grimson. Adaptive background mixture models for real-time

tracking. InProceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 246–252, 1999.

[125] N. Sumpter and A. Bulpitt. Learning spatio-temporal patterns for predicting object

behaviour.Image and Vision Computing, 18:697–704, 2000.

[126] A. Tamaddoni-Nezhad and S. H. Muggleton. Using genetic algorithms for learn-

ing clauses in first-order logic. InProceedings of the Genetic and Evolutionary

Computation Conference, pages 639–646. Morgan Kaufmann Publishers, 2001.

[127] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York,

1995.

[128] M. Vilian. A system for reasoning about time. InProceedings of the AAAI, pages

197–201, 1982.

[129] F. Železný, A. Srinivasan, and C. D. Page Jr. Randomised restarted search in ILP.

Machine Learning, 64:183–208, 2006.

[130] D. Whitley. A genetic algorithm tutorial. Technical Report CS-93-103, Department

of Computer Science, Colorado State University, 1993.

[131] M. L. Wong and K. S. Leung. Genetic logic programming and applications.IEEE

Expert, 10(5):68–76, 1995.

[132] C. Wren, A. Azabayejani, T. Darrell, and A. Pentland. Pfinder: real-time tracking

of the human body.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 19(7):780–785, 1997.

[133] L. Q. Xu and D. C. Hogg. Neural networks in human motion tracking - An exper-

imental study.Image and Vision Computing, 15:607–615, 1997.

192

