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Abstract 

The focus of this investigation is to understand the micromechanical characteristics 

of the oil-bearing Niger Delta sandstone at different length scales.   Initially, the 

sandstone samples are experimentally characterised to understand their 

morphological, physical, chemical and mechanical properties at grain scale and bulk 

scale where applicable.  In spite of a significant level of scientific advancements 

made so far, sensing stress distribution characteristics of opaque and anisotropic 

materials such as sandstone rock remains as a stiff challenge in a wide range of 

science and engineering fields including geotechnical, geophysics, petroleum, 

mining, minerals, advanced materials and particulate science and engineering.  Here 

we present an original framework for simulating and quantifying the strength 

characteristics of real sandstone samples using combined measurements and 

modelling strategy.  Using photo-stress analysis methodology, first we sense elastic 

shear stress (or strain) distribution and its components along orthogonal directions 

on the surface of a V-notch sandstone sample under mechanical loading.  Using this 

and applying a classical grain-scale model, the stiffness ratio of the sandstone is 

evaluated.  This measure is also compared with using ultrasound sensors and a good 

level of agreement is obtained.  Thereafter, the grain-scale stiffness ratio which 

characterises the signature of material anisotropy is fed as an input in to the discrete 

element modelling (DEM) of cylindrical sandstone rock samples subjected to uni-

axial and tri-axial compression loading. Physical experiments are also conducted to 

evaluate their load-displacement characteristics and bulk fracture strength of 

sandstone sample under these loading conditions.  A good level of agreement is 

obtained between the results of simulations and experiments. Taking advantage of 

the validated DEM simulations, an extensive level of parametric studies are 

conducted to evaluate the influences of different grain-scale properties on the bulk 

strength and fracture characteristics of sandstone. Thus the current multi-scale 

framework can be applied in future to quantify the strength characteristics of such 

complex and anisotropic materials in a reliable manner.   
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1 INTRODUCTION 

1.1  Background of research  

Rock mechanics deals with the behaviour of rock and its response to the stress field 

around it. Rocks can either be stable or unstable when subjected to stress. Thus 

material failure must be prevented during mechanical handling by ensuring that 

operational stress of rock masses are below failure strength. Unconsolidated 

sandstone formation that bears crude oil fractures easily during mechanical handling. 

A major challenge in oil well drilling has to do with preventing well fractures because 

when accidental fractures occur, the well becomes unstable. 

1.1.1 Rock mechanics and challenges in oil industry:  

New technologies are being developed to help prevent problems such as undue well 

fractures in the oil industry. For example the Blowout preventer (Yenulis and Folsom, 

1993) takes effect after the well has fractured and kick has occurred. These 

technologies prevent loss of life but the wells and subsurface equipment are lost. 

Thus, one consequences of wellbore instability is the financial loss of a well. Such 

occurrence can increase drilling cost to as high as 30% (Santarelli et al., 1992). This 

is a challenge to the oil industry.  

 

Radial change in the stress field occurs during a drilling operation (Rendler and 

Vigness, 1966). The exposure of the wellbore to drilling fluids alters the physical 

environment of the rock formation. This leads to instability in the wellbore with 

enlarged hole, caused by potential subcritical crack growth. The consequence of this 

event is lost circulation, casing problem, poor cementing, sidewall core recovery 

difficulty, stuck pipe, side-tracks, logging and interpretation difficulties and even loss 

of the entire well.  

 

Breakage of the rock has frequently lead to complications such as  hole squeezing 

and server openings which are difficult to control (Resende et al., 2010). When 

targetted wells are drilled and the fractures are not avoided, the hole problems 

become more complicated resulting in a deformed hole. This causes poor 

cementation and undefined formation evaluation. Hole perforation becomes very 
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difficult  and the cost of drilling soar by several dollars. Also, unwanted fractures in 

oil well can lead to a loss circulation or uncontrollable fluid flow at extreme pressures 

resulting into a potential loss of life and machinery. 

 

1.1.2 The Friable nature of Niger delta sandstone to be addressed in this 

research 

The sandstone in Ughelli depobelt, located in the Niger delta basin (Figure 1.1) is a 

source rock from which crude oil is produced (Adedapo et al., 2014). This is one of 

the source rocks in the Agbada formation where crude oil is produced (Evamy et al., 

1978; Mouchet and Mitchell, 1989).  Besides the syn-sedimentary deformation that 

causes increasing instability in the formation (Evamy et al., 1978), some layers of the 

sandstone are unconsolidated which usually fracture due to mud weight exceeding 

the pore pressure in the layer. In the event that the sandstone is unconsolidated, well 

instability occurs as a result of accidental fracture in the rock. While drilling with an 

excessive mud weight, pore pressure may be predicted wrongly as reported for 

reservoirs in the Niger Delta Basin by (Fertl et al., 1994; Nwozor and Onuorah, 2014) 

 

Figure 1.1  Map showing oil field in Niger-delta Nigeria  

(https://www.google.co.uk/search?lnms&tbm=isch&sa=X&ved=0CAgQ_AUoA2oVC

hMI6c6VhoeYyQIVx0IUCh2vNQI3#tbm=isch&q) 
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During oil drilling, the Niger delta sandstone easily crumbles because of the friable 

nature of the sandstone (Lambert-Aikhionbare and Shaw, 1982). Sandstone layers 

occur in some strata down the well. Therefore, as the well is drilled at some several 

thousand meters of depth downward, sandstone layer is encountered (Lambert-

Aikhionbare and Shaw, 1982). However, not all the layers are sandstone. The others 

are shale and sand. The sandstone rock contains the oil and is stressed due to 

pressure load of drilling string. The rock which is made of grains of size distribution 

that ranges from fine to coarse crushes and the clay grades are dislodged into the 

reservoir. Consequently, the clay particles mix up with the crude oil. Because the 

sandstone is predominantly composed of detrital quartz content, the clay content is 

low (Lambert-Aikhionbare and Shaw, 1982). These properties are expected to be 

observed in the Ughelli sandstone considered in this work. The problem of crumbling 

of the sandstone layer is increasingly jeopardising the current drilling activities in the 

Niger delta which constitute a major challenge to the oil industry. Therefore it is 

important to identify the effect of petrology on the strength of the oil-bearing rock in 

this area. Hence, the high strength sandstone from Niger-delta is used in this 

research for the strength analysis of formation rock of Niger-delta region.  

 

1.1.3 Pressure in micro-mechanical investigations:  

Operational safety as well as effective and efficient services are important in drilling 

sandstone formation. This requires more effort to be put into research for preventing 

well fractures (York et al., 2009). Such research  has led to identifying the processes 

that leads to these accidents. Thus the mechanism of rock deformation has become 

a tool to predict  fractures (Eberhardt, et al.,1998). Fractures encountered in situ 

begin when compressive stresses are applied. The strain response of rock to 

stresses significantly contributes to the gradual loss of strength. The eventual failure 

of the rock occurs and the well becomes unstable to manage. Theoretical and 

analytical methods have been applied to solve the problem of wellbore instability due 

to rock failure. Linear elastic problems are complex if they are to be solved based on 

analytical solutions which may be difficult to obtain because the assumptions defining 

the applied load are restricted. Numerical solution has also been applied in the last 

decade where, finite element modelling and other modelling tools have applied three 

dimensional approaches to the problem defining stress field in rocks (Jing, 2003). 

These approach is only adequate for initial design because they can merely handle 

complex geometry during well design. If the applied load on numerical sample is 
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placed on estimated numerical sample, the solution cannot be a true component 

behaviour. They are therefore better accepted if they agree with experimental results. 

But discrepancies are still emerging in most reports that estimate rock properties with 

failure progression. The most recent advance in discrete models have provided a 

way of identifying the stages of rock deformation at the least scale based on  

micro/grain models (Cundall and Strack, 1979a). 

 

1.1.4 Knowledge in micro-mechanical damage:  

Micro-mechanical damage has been studied with amplitude frequency distribution of 

acoustic emission stresses. The stress applications induce micro strain on rock.   

Statistically, the detection of micro-strain focuses on the evolution of the amplitude 

due to strain (Holcomb et al., 1990; Locknet and Byerlee, 1995; Meredith et al., 1990; 

Main et al., 1989) this amplitude frequency has also been passed through synthetic 

sandstone using discrete model and seismic reflection to replicate the response of 

the rock. Among these several works is the research on intensity and velocity of 

stress application on discrete models where fractures were represented by contact 

model (Zhao and Cai, 2001). In addition, Discrete Element Modelling (DEM) has been 

adopted to study stress wave interaction with fractured location.  Muhlhaus and Oka 

(1996) simulated wave propagation through discrete model while, Cai (2001) showed 

the plane wave normal incident on fractures. His work employed a linear elastic 

stiffness, (at micro-scale), so that frequency was a function of transmitting wave and 

reflection ratio. The micro-mechanical properties were shear and normal stiffness 

parameter of the constituent grains that make up the rock. 

 

Kim et al. (2006) studied the effect of joint direction under dynamic applications to 

obtain fracture, fragmentation and its propagation caused by high dynamic stresses. 

It is very rare that surrounding stresses are studied and identified. With extensive 

survey, it was evident that; the elastic stress surrounding the region of fracture should 

be considered. The only attempt till date is the extensive work of Hazzard and Young 

(2004).  DEM was employed, to indicate anisotropy near damage zone by tri-axial 

deviator loading. In their work, the properties of propagating stress wave were 

provided. Apart from their work, in general, researchers did not indicate stress wave 

surrounding the location of fractures. Hence, attempt made to simulate rock 

deformability is still a stiff challenge. Although seismic reflection has produced 

indications of defective points in rock, the output has not been utilized to represent 
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the exact physical response of the rock to stress. This reveals the gap in knowledge 

between simulations and experiment where the actual microstructure of a physical 

material is still difficult to model. Therefore it is better to obtain rock parameters and 

incorporate them to simulate realistic rock behaviour. In the present work, rock 

parameters at single grain scale would be employed to replicate the actual response 

of the physical rock.  The current research is the result of a representation of real 

rock under mechanical loading. Thus an improvement on the simulation of rock 

deformability is targeted. 

 

The thrust of this further research is to enhance rock simulation. Although, the fact 

remains that; it might not be possible to fully verify and validate numerical model of 

natural process (Oreskes et al., 1994). Notwithstanding, this work have employed the 

technique of determining the realistic rock parameters to obtain elastic rock 

properties. This provides the link between experiment and simulation where 

hypotheses are corroborated, decision of modelling route was carried out, and 

sensitivity analysis was performed to obtain additional data. Further research, based 

on these future improvements, have been recommended. 

 

1.1.5 Motivation  

 Hoek and Martin (2014) stated that the process of rock deformation governs both in-

situ condition in its infinite mass and the small rock sample studied in the laboratory. 

The well-known brittle fracture theory (Griffith, 1921) was based on assumption that 

rock contains a randomly distributed uniform micro crack and that the original 

properties of the rock are constant throughout the crack initiation, propagation and 

deformation. It is motivating to investigate the mechanism of rock failure based on 

the hypothesis that; randomly distributed cracks were found within the grain 

assembly. Each of these bonded discrete grains (idealising a rock sample) has 

boundaries and the grains contact each other at their boundaries. To improve this 

hypothesis, assumptions were made during experimentation of rock behaviour. Mc 

Clintock and Walsh, (1962) and Hoek, (1966) modified the Griffith’s theory using 

compressive stress to predict rock fracture by the propagation of fracture from crack 

tip. Brace (1963) worked with hard rock and discovered that cracks are initiated at 

grain boundaries (Hoek and Martin, 2014). Simplified Griffith assumption provided 

the insight for the techniques of crack closures detections. This work was validated 

by Hoek and Martin, (2014). The gap to be filled in understanding fractures exist 
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because of the complexities in the behaviour of rock which are due to the complex 

mineral constituent. These constituent are inherent by nature perhaps their digenesis 

during formation. And much more complications are due to the fact that inherent 

natures are unique to every rock. This work seeks to factor in this complex behaviour 

which is not possible in analytical procedure. In actual fact, chemical composition and 

physical definitions of rock materials are not cumulative. This has hindered the total 

understanding of deformation of natural process. Therefore an investigation on the 

strength characteristic is essential to provide clues to resolve the complexities posed 

by the mineralogical contributions. This is because analysis by experiments is more 

effective. The authenticity of experiments carried out in this work under 

static/dynamic conditions has addressed problems of complex composition which are 

not catered for in previous research because the grain scale elastic properties were 

obtained from the natural rock (containing all its constituent mineral). The rock 

parameters obtained are based on the interactions of the mineral components. The 

results resolve analytical difficulties even in solutions requiring three-dimensional 

geometry. Therefore, a complex mineral of discrete assemblies of grains under load 

with undefined elastic behaviour were found to be malleable in experimental 

investigation. Figure 1.2 is a schematic of the search context. 

 

 

Figure 1.2 Schematics for the context of this research (a) intact bonded grain (b) 
grain contact gain momentum and (c) grain separation. 

 

1.2  Aim of the research 

To utilize experimentally characterized grain scale parameters of rock to simulate its 

macro deformability using discrete element modelling and to predict its bulk fracture 

strength. 

a 
c b 
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1.2.1 Research objectives  

In order to achieve the stated research aim, investigations were carried out to identify 

micro-mechanical analysis of bonded grains deformation. Below are the steps 

providing routes to achieving the aim of this project? 

 Experimental characterization of the Niger-delta sandstone rock samples to 

define the mineralogical composition and the grain shape properties to reveal 

grain boundary, grain contact distribution, and grain shape and grain size.  

 Development of a novel technique for sensing distribution on sandstone 

under mechanical loading using Photo-stress Analysis Tomography (PSAT) 

(Antony et al, 2015). Data collected were analysed to obtain stiffness 

parameters at a single grain level which serve as a building brick for bonded 

grains simulations using DEM. From this a model for representing the 

behaviour of grains in sandstone was developed. Next, behaviour of bonded 

grains was simulated to study the mechanical strength characteristics. 

 Integrate the image data obtained from the Photo Stress Analysis Technique 

(PSAT) so as to interpret and analyse damage parameters.. This way, the 

procedure of obtaining point data is established as data acquisition. 

Interpretation can be made easy for engineers with limited knowledge of 

photo-elasticity.  

 Analysis of micromechanical response of bonded grains under external 

loading using DEM, which involved inputs data from experiments.  

 Validation of the grain-scale stiffness data to be done independently using 

ultrasound technique and bulk strength properties using tri-axial compression 

experiments. A number of micro parameters have been evaluated 

comprehensively which formed an input to DEM simulations of sandstone. 

 

1.3 Project management 

The urgent need to predict subtle fractures from the onset is critical for safe 

operations and economics of drilling rock, hence addressing the problem of 

sandstone fractures of the Niger Delta region of Nigeria. Over the years, well 

instability has challenged the drilling of oil wells because of the presence of 
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unconsolidated sandstones which deforms by crumbling. This results into a distorted 

hole. The current project is funded by Nigerian Petroleum Technology Development 

Fund (PTDF, Nigeria). The sponsor requires that this work explores the use of 

Nigerian sandstone to predict accidental fractures which are not desirable during rock 

drilling for petroleum extraction. In order to obtain detailed minerology and complex 

composition of the rock, experts were involved for the detailed characterization of the 

rock materials. Hence, the X-Ray fluorescence (XRF), the X-Ray Diffraction (XRD) 

and the scanning electron microscope–electron dispersive spectrometry (SEM-EDS) 

were carried out by support of technicians who are experts in these fields.  

 

1.4 Framework of the thesis 

This thesis is structured into 9 chapters. The steps taken is presented in this section 

as illustrated in Figure 1.3. This work provides a concrete understanding of the 

behaviour of granular rocks under mechanical loading. Each Chapter relays all 

experimental stage in details with a survey of relevant literature. 
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Figure 1.3 Framework of research 
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1.4.1 Overview of chapters 

This work is based on the premise that by measuring stress and strain from an 

arbitrary point in a rock material, grain scale parameters can be estimated, and even 

more accurately with a synergetic input of elastic properties of the rock medium into 

the measurement route. These elastic properties are usually captured during grain 

contact resistance to stress in standard tri-axial test. 

The thesis has been structured into 9 Chapters. 

Chapter 1:  this first chapter highlights the steps taken to achieve the set aim of the 

research. The aim of this present research is to investigate the strength 

characteristics of sandstone media. 

Chapter 2: The literature survey on theoretical principle that leads to research 

hypothesis has been compiled in Chapter two.  The survey identifies the broad 

composition of rocks as cemented-granular assembly of mineral grain and particles. 

The challenges of the experimental work are highlighted and the contribution to 

improving experimental work is presented. Next a review of discrete element 

modelling (DEM) with reference to their limitations and formulations to the simulation 

of rocks is presented. Then, a brief history of experimental determination of grain 

scale micro-parameters from rock is discussed. The applications of these micro-

parameters to the physical modelling of rock deformability are presented to address 

the research gap. An understanding of the behaviour of cemented-granular rocks is 

provided. The experimental and simulation methodologies were supported by a 

survey of relevant literature in Chapter two.  

Chapter 3: Specific emphasis has been made on the methodology employed to 

obtain micro parameters at grain contact, composition of rocks and the micro-

mechanics of deformations. Finally the research methodology was outlined. The 

deductive spiral approach was explained in principles of brittle fractures provided by 

Griffith theory and stress concentrations around fracture tips 

Chapter 4: Chapter 4 presents the different experimental characterization 

methodologies involved in the characterization of Niger delta sandstone. The results 

are presented in the same chapter. This chapter also included information on using 

such experimentally measured micro parameters as input into DEM simulations.  
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Chapter 5 and 6: Detailed investigation for determining stiffness parameters of 

sandstone using ultrasound measurement technics was presented in Chapter 4. The 

results and statistical descriptions of the stiffness parameter are discussed in Chapter 

5. Stiffness was also estimated in Chapter 6 as contact model, using Photo Stress 

Analysis Tomography (PSAT) and its validation using ultrasound methodology is 

presented. Furthermore, the bond strength parameters were determined in Chapter 

6. 

 

Chapter 7: Implementation of the experimental-DEM hybrid was done. The 

experimentally measured grain-parameters are inputs for DEM to achieve modelling 

of the strength characteristics of sandstone. 

 

Chapter 8: The influence of grain shape on the micro-mechanical damage modelling 

of Niger-delta sandstone is presented in this Chapter. The results are compared with 

the frequently and comprehensively studied Berea sandstone.   

 

Chapter 9: The major conclusions of this entire study are highlighted and 

recommendation for future work has been provided. 
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2  LITERATURE REVIEW 

2.1 Introduction 

The strength characteristics and deformability of natural granular rocks is complex to 

understand (Aydin et al., 2006). It has not yet been fully understood because of the 

lack of information on the interplay between the grains and inter-granular cement 

properties (Howarth and Rowlands, 1987). Sedimentary rock has mineral 

composition, physical and mechanical properties which vary largely because of the 

geological origin or history behind its deposition (Terzaghi et al., 1996). To this end, 

discrete analysis of the grains and the cementing matrix are complex (Camborde et 

al., 2000); In fact it is not possible to study all the inherent heterogeneities and 

complex phenomenological properties exhaustively without bringing the study to a 

manageable level of linking the micro and macroscopic strength. The first section of 

the literature review discusses the sedimentary rocks, and associated challenges 

encountered during the determination of the rock’s mechanical response to stress in 

laboratory and field applications. Further, numerical methods and experimental 

modelling have shown to be a promising technique to understanding deformability. 

Test for natural rock at in-situ during mechanical application (in oil industry) are 

analysed for the purpose of understanding and investigating the strength 

characteristics of cracks in granular rocks. Discrete Element Medelling (DEM) 

capable of handling each discrete grain and simulates the behaviour of the rocks was 

discussed. Limitations encountered in modelling rock as cemented granular medium 

are presented. The novelty of following geometric figures to develop a physical 

contact model is presented to assist in understanding the deformation mechanics of 

natural rock. Knowledge gaps in this field are reviewed and summarized. The 

framework of the literature review is presented in Figure 2.1. Review of the 

importance and applicability of Acoustic Emission (AE) in indicating the crack number 

of rocks is also provided. 
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Figure 2.1 Structure and flow of the literature sections discussed in Chapter 2  

2.2 Granular rocks 

Generally, rock is a naturally-formed aggregate of mineral matter, constituting an 

essential and appreciable part of the earth's crust (Ramamurthy, 2004). Rocks are 

mainly divided into three main classes; igneous, sedimentary and metamorphic rocks 

depending on their mode of formation (Blatt et al., 2006). The texture of a rock is the 

major parameter that affects the mechanical behaviour and characteristics in a 

specific mode of deformation (Ramamurthy, 2004). Rocks are classified as either 

granular or non-granular rocks (Cross, 1902). Non-granular rocks refer to a rock class 

that have a glassy texture or consisting of very fine grains that is less than silt size, 

while granular rocks consist of crystals or grains joined together with some cementing 

materials. Irrespective of the geological origin and mineral composition, both granular 

and non-granular rocks belong to one of three basic types of rock (Huang, 1962). For 

instance, granular rocks can be sedimentary rocks such as sandstones, 

conglomerates etc., metamorphic rocks such as slates, phyllites quartzite etc. and 

igneous rocks such as granite, diorite etc. Similarly, non-granular rocks can be 

sedimentary rocks such as mudstones, limestone, shale, chert etc., metamorphic 

rock such as schists, marble etc. and igneous rock such as obsidian; basalts etc. 

(Huang, 1962). Non-granular rocks are treated as a single phase material consisting 

of homogeneous micro structure in laboratory testing, while granular rocks are 

normally considered as composite or two phase materials consisting of  
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Table 2.1Classification of Sedimentary Rocks based on Grain Size and Mineral 
Composition (Standard, 1993) 
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rock fragments or clasts and a cementing matrix (Bieniawski, 1967). The mechanical 

behavior of rocks is governed by the characteristics of both the clasts and cementing 

matrix. In mechanical testing, dilation of the materials basically draws a line between 

the granular and non-granular materials and provides a justification for this 

differentiation in natural rocks (Bieniawski, 1967). Granular rocks can further be 

classified based on their grain size and geologic origin (Picard, 1971)  

 

Granular rocks which are mainly of sedimentary origins are the primary focus for this 

research. Fine grained granular rocks also known as argillaceous rocks have a grain 

size less than 0.06mm (Waldschmidt, 1941). This grain size cannot be viewed with 

the naked eye. Table 2.1 shows the examples of argillaceous rocks which are shale, 

mudstone, siltstone and clay-stone. Medium to coarse grained granular rocks which 

are also called arenaceous rocks are classified in Table 2.1. The sand sized grains 

are between (0.06 and 2mm). Sandstone is an example of arenaceous rock. The 

process by which arenaceous rocks are formed is partly mechanical and involves the 

breaking and deformation of parent rocks into re-lithified sand sized grains (Pidwirny, 

2006). Rocks having a grain size greater than 2mm are classified as very coarse 

grained rocks, are also known as  rudaceous or pebbly rocks. They are made up of 

quartz having a size greater than 2mm up to a boulder size (>20mm) enclosed in a 

fine grained matrix with particle size less than 2mm.There has been a lot of studies 

on arenasceous and argillaceous rocks such as mudstones and sandstones, while 

little work has been done on rudaceous rocks. 

 

2.3 Sandstone formation 

Sandstone is one of the most common type of sedimentary rock which is formed from 

cemented sand-sized clasts. The cement that binds the clasts ranges from clay 

minerals to calcite, silica or iron oxide (Tucker, 2003). Sandstone contains sand-sized 

grains of rock fragments and individual minerals broken down from other older rocks. 

The original rock which is made up of small grains of mineral that weathered when 

they are broken down are known as the source rock (Selley, 2000). The pieces from 

a source rock are eroded, or carried away from the source area. The longer chunks 

from a source rock are carried by wind, water, or ice, are broken down into very small 

fragments. Certain minerals found within rocks are also more likely to survive 

significantly longer journeys. After a source rock is weathered and eroded, the 
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resulting sand grains might fill a bowl-shaped basin on land or underwater. This 

phenomenon is coupled with the pressure from more sediments landing above finer 

particles carried by the movement of water through the grains, the sand becomes 

sandstone. Finer grains of rock and new mineral growth fill the spaces between the 

grains thereby cementing the new rock (Krause and Nelson, 1984). The pore spaces 

are visualized by the scanning electron microscope (SEM).  

 

2.3.1 Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-

EDS) or micrograph of sandstone 

The grain and pores are made visible with the SEM-EDS micrograph. The near points 

of grain contacts are revealed. With the incorporation of the EDS, the mineral specific 

to major component are identified. These mineral include quartz, feldspar clay 

mineral and Mica. The technique is capable of revealing the pore content within the 

major grains (Welton, 1984). It has the capability of identifying even the smallest 

mineral within the pores. It works at a greater depth of view and resolutions. For rock 

analysis, the grain boundary is revealed at 10X to 20000X magnifications. 

 

Sandstone consists mostly of quartz, feldspar and lithic fragments (Shao et al., 2001). 

The locations of these minerals are made visible and identified by their elemental 

components. There are other minerals in the composition of sandstone depending 

on the mineralogical maturity of the sandstone, which are identified by the elemental 

matching of Energy Dispersive Spectroscopy (EDS) with the X-ray diffraction of 

sandstone.  

 

Results from SEM-EDs has shown that quartz is made up of more than 66% of the 

minerals found in sandstone (Blatt et al., 2006). This is due to the fact that quartz is 

the most common mineral in crystalline rocks. It is mechanically durable because of 

its high hardness and lack of cleavage. It occurs as both mono-crystalline and poly-

crystalline grains and they usually show un-dulatory extinction. Feldspar makes up 

of only 10 – 15% of all the minerals in sandstone and it is generally plagioclase and 

alkali feldspar (Stoffler and Hornemann, 1972). Lithic fragments are generally 

unstable in sedimentary environment, yet if present, they indicate a provenance (Blatt 

et al., 2006). 
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2.4 Composition of sandstone and the cracking process (cementation) 

The cracking process will occur in sandstone because the grains are cemented by 

various agents including quartz, calcite, clay minerals, and hematite, although other 

minerals such as pyrite, gypsum, and barite can also form cements under special 

geologic conditions (Keller, 1961). During the first deposition of sediment, there are 

many open spaces or pores that are later filled by the deposition of a matrix. The 

matrix can affect the amount of pore space that remains in a rock as it lithifies. 

Sandstones normally have significant voids and therefore, are usually good reservoir 

rocks for ground water, natural gas and petroleum (Akram et al., 2010). 

 

2.4.1 X-ray fluorescence (XRF) and cement content of sandstone  

X-ray fluorescence analysis of whole rock ranges from magnesium to uranium. It is 

capable of light element detection and trace metals.  While X-ray diffraction (XRD) 

gives the mineral, XRF is more efficient for elemental detection. Major elements are 

determined using fusion disc of sandstone particles which have been ground and 

mixed with lithium tetra-borate and lithium meta-borate. Quartz cement is very 

common in nearly pure quartz. Pressed powder pellets are used to obtain the trace 

element which is a semi-quantitative analytical procedure. The minerals are identified 

by the elements e. g. Si indicates quartz. Overgrowth on quartz is called quartz 

cement which is derived from the grains. This overgrowth grows as crystals which 

extend the original quartz grains (Bryant and Blunt, 1992). The overgrown cement 

grows outward from the original grain until it runs into cement growing outward from 

an adjacent grain usually visible with computed tomography scan coupled to X-ray 

fluorescence Thus, the rock is characterized by a texture of interlocking grains with 

cement particle within the interphase. If the grain has small amount of clay or other 

fine grained dirt forming an irregular coating on its surface, the overgrowth may be 

preserved and show the original outline of the grain (Blatt et al., 2006). 

  

Calcite cement is the most common cement/overgrowth in sandstone, although it 

does not tend to fill all pore spaces completely when present. They are identified by 

the patchy particles of overgrowth on quartz.  Cements in calcite cemented 

sandstones are slightly dissolved (Blatt, 1979) which results into secondary 

porosity.  Calcite is identified by the element calcium in the XRF data. Carbonate ion 
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also occurs in abundance in surface and groundwater, but is derived by dissolution 

of carbonate minerals (Blatt et al., 2006). Hematite is a cement present in some less 

common rocks. 

 

2.4.2 X-ray Diffraction (XRD) and the identification of kaolinite  

Kaolinites are phyllosilate minerals which are commonly found in sedimentary rocks 

including sandstone. Rocks with abundant kaolinite are kaolinite rock (Anderson, 

2013). The mineral is detected by XRD technique.  Chemically kaolinite are hydrated 

alumina-silicates (Al2Si2O5 (OH)4), a minor component which often cannot be seen 

with the SEM. Thus, they are usually identified by their distinctive peaks of the XRD. 

Kaolinite is identified in sandstone by distinctive peaks of about 7.15Â and may also 

be identified at about 3.58Â (Hillier, 2002).  In some cases, weaker peaks indicate 

the presence of kaolinite in the sandstone. This is equally useful especially when the 

peaks coincide with other minerals. Thus, the intensities of the mineral may also be 

used for its identification if they are coinciding with other minerals like chloride. 

 

2.4.3 Drilling, rock fractures and rock composition 

Rock is cemented grains and can be stressed by loading. Accidental or unexpected 

response of rock to stress is usually the cause of drilling difficulties, leading to 

increased drilling time, cost and even loss of the oil well. When cemented granular 

minerals in rock are disaggregated, the rock becomes unstable. Wellbore instability 

is a regular challenge (Awal et al., 2001) which results in annual cost-ineffectiveness 

to drilling operations in the petroleum industry (Bradley, 1978). Therefore, the utmost 

concern of drillers is to maintain the aggregation of the grains, thus preventing 

fragmentation of the rock (Ferla et al., 2009).  Major surveillance involves keeping 

track of the lost in drilling fluid and the mechanical procedure involved in the drilling 

operations aim to minimise these lost expenses. There is no well drilled without a 

unique challenge. The consequence of most drilling problems is wellbore instability 

which is still challenging (Willson et al., 1999).  Hence, the huge concern for drilling 

through the rocks is to eradicate fracture of the cemented quartz. 
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Mechanical operations have been employed to address these challenges such as re-

entering of some well drilled with horizontal techniques, higher pressure jet drilling, 

under-balance drilling, etc. (Tan et al., 2004). These techniques are good but they 

are still ‘medicine after event’ solutions which have not stopped drilling problems 

(Kristiansen, 2004). Therefore, achieving well stability is critical but it is still a big 

challenge (Martins et al., 1999). Schemes used  to mitigate the danger of well 

collapse may compromise some of the other elements in the overall design for 

example penetration rate, differential sticking or hole cleaning (Martins et al., 1999) 

Therefore, it might be necessary to employ predictions that can, perhaps help to 

mitigate the loss (Bowes and Procter, 1997).  These methods were targeted at mud 

chemistry, density and rheology optimization.  Sensitivity analysis had also been 

employed to assess if there are risk related to well inclination and trajectory (Moos 

and Barton, 2008). A Predictive model of well stability has been useful for well 

completion (Nygaard and Nævdal, 2006). This solves the problems associated with 

inflow complications where the hole collapse and sand production sets in (McLellan, 

1996). For instance, in wells characterized by high permeability of interconnected 

grains with weak granular consolidation, the predictive tools are usually employed for 

choice of linear-casing (perforated/slotted). In some cases, the hole is left opened  

(McLellan and Wang, 1994). The causes of well instability (Chen et al., 1998) have 

been adequately illustrated by  (Mohiuddin et al., 2001).  Few causes of well instability 

are illustrated in Figure 2.2. 
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Figure 2.2 Causes of wellbore instability (Pasic, et al., 2007) 

 

2.4.4 Cracking process in sandstone 

Cracking takes different forms (Pininska, 2000), depending on the mineral 

composition and structure of the rock medium (Cundall and Fairhurst, 1986). Strength 

experiments conducted in the laboratory reveal that the primary factors responsible 

for destabilization of the rock structure under compression are the size, geometry 
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and strength of the mineral components of the rock. These and many other properties 

of heterogeneous rock influence cracking (Pininska, 2000). Simulation of cracking 

process in media having varying structure was explained at microscopic scale Napier 

and Peirce (1995). It showed that the level of advancement of tensile and shearing 

process during cracking is a function of the rock and the dynamics of its deformation. 

The process of cracking has a discontinuous character and varying dynamics as a 

result of the heterogeneity of the rock structures. The cracking process can be 

increased or reduced depending on the local characteristics of the rock structure and 

the actual stage of stability (Pinińska, 2008). In order to analyse the mechanism of 

cracking and evaluate its dynamics and its acoustic emission path, it is necessary to 

study the features of the structure in relation to the observations of the shape at the 

centre of cracking. This require their initial orientation and its modification during their 

compositional development (Pinińska, 1997).  

 

2.4.5 Significance of strength characterization studies to field work 

Detection of rock failure threshold is important because drilling operations involve 

compression on rock mass, the induced stress on rock sometimes exceeds the rock 

strength and the rock failure leads to a catastrophic event. However, fracture 

predictions can be made by applying damage threshold criteria into compressional 

simulation of rock. 

 

Prediction of rock strength using drilling data and sonic log is feasible. This will 

require a correlation of UCS with crack initiation and crack damage stresses. By 

applying micro-damage analysis, generated with UCS we can measure rock strength 

from a drilling program. Sonic travel time is a property of rock used to evaluate source 

rock. The property is also used for mechanical analysis. A drilling process is coupled 

with log data which are recorded as sonic travel. This is usually received as lithology, 

porosity or fluid content. In some drilling process, neutron density log is coupled to 

drill string to receive strength data for rock. These drilling data is though useful to 

predict rock strength. This requires the use of drilling models (Amani and Shahbazi, 

2013; Palchik, 2010) the equation that correlates the petrographic and strength 

parameter of rock is limited to UCS. Thus the micro-damage thresholds obtained in 
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is correlated to porosity to obtain a constant. This constant is a controlling factor 

useful for fracture prediction. 

 

2.4.6 Factors influencing the mechanical behaviour of sandstone 

The factors affecting the mechanical behaviour of clastic rocks have been studied. 

Dhakal et al. 1993 found that the mineral composition and structural features affect 

the mechanical behaviour in argillaceous clastic rocks. The influence of grain or 

clasts size in sandstones (Hirth and Lothe, 1982) and crystalline rocks have been 

observed on peak strength in uniaxial testing (Meng and Pan, 2007). Lindquist (1994) 

has also observed that the mechanical behaviour of heterogeneous materials is 

substantially affected by the proportion of larger clasts. Similarly, other factors 

responsible for increasing the strength of clastic rocks include increase in the clast-

cement contact area (Ulusay et al., 1994), the strength of the cement, also known as 

the quartz content (Sabatakakis et al., 2008) and the clast packing density (Bell, 

1978). Andriani and Walsh (2002) also discovered that the mechanical and petro-

physical properties of clastic rocks are influenced by their size, shape and packing of 

grains, the cementing matrix and porosity. These are all controlled by the rock’s 

depositional history. Therefore, failure in such rocks is controlled by the collapse of 

cemented grains which provide the zones of stress concentration at the clast-matrix 

interface (Handy, 1990). This is due to the stiffness contrast with cracks generally 

initiating and propagating away from such zones (Pollard and Aydin, 1988).  
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Table 2.2: Summary of mechanical parameters of sandstone. 

Location Test Parameter Value References 

Green river 
Basin 

Wyoming, USA 

Triaxial 
compression 

test 

E,GPa 
V 

UCS,MPa 
C, MPa 
T, MPa 

13.37 
0.25 
61.7 
13.36 
6.9 

S.J Wilkins 
(2007) 

Lithgow 
Australia 

Not known UCS,MPa 
E,GPa 

V 
T, MPa 
C, MPa 

7 
7 

0.25 
1 

1.5 
550 

Haque, A 
Chan, K 

Christie, D 
(2003) 

Hawkesbury 
Sydney 
Australia 

Uniaxial 
Compression 

test 

UCS,MPa 23.8 Pells P.J 
(2004) 

Not known Uniaxial 
Compression 

test 

UCS,MPa 
E, GPa 

v 

44.56 
23.28 
0.161 

Peng S. 
Zhang J 
(2007) 

North Sea Triaxial 
Compression 

test 

E, GPa 
V 

UCS, MPa 

2.228 
0.07 
15 

E. 
Papanichas 

E.M 
Malmanger 

(1999) 

 

* UCS- Uniaxial Compressive Strength,  E- Young’s Modulus, v - Poisson’s ratio, 𝜎t 

– Tensile strength,  φ – Angle of Friction, c – Cohesion. 

 

2.4.7 Effect of grain arrangement 

Apart from the physical and mechanical properties of quartz grains, their 

arrangement, distribution and proportion in the matrix are also important factors that 

have been investigated to influence the mechanical response of sandstone (Hawkes 

and Mellor, 1970). For instance, Moon (1993) has shown the influence of the loading 

axis on the compressive and tensile strengths of rocks in relation to the orientation of 

the quartz present in the matrix (Moon, 1993). His results were confirmed by Ozbek 

(2009) who investigated sandstone with the Schmidt rebound hammer and found out 

that the hammer rebound values changed in relation to, the preferred orientation of 

the embedded quartz. The change is due to the variation of the quartz-covered area 

(Johansson, 1976)  and the random distribution or preferred orientation of the quartz 

and matrix ratio (Özbek, 2009).  
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Furthermore, laboratory testing on natural and synthetic sandstone rocks showed 

that the overall strength and deformation properties of composite heterogeneous rock 

such as sandstone can be estimated by the strength and deformation characteristics 

of the infill matrices and quartz (Cecconi et al., 1998). The strength of sandstone 

depends on the volumetric proportion of quartz  (Kobayashi, 1995). It is not 

practicable to completely disintegrate quartz for the estimation of the particle size 

distribution and volumetric proportion of quartz in well-cemented rock. This is a 

function of the scale used for testing (Bjørlykke, 2015). It implies that only a low value 

of coefficient of variation can be determined at any scale by putting a restriction on 

the maximum quartz size to the sample size ratio, as suggested by ISRM (1983). 

 

 Savanick and Johnson (1974) conducted an investigation on calumet conglomerates 

to uncover the tensile strength of interface boundaries between the quartz and infill 

matrix. Their findings show that the interface bond only occurs on a portion of the 

contact area and the strength of the adjacent materials. 

 

The literature referred to above indicates that the mechanical response of rock to 

stress is a result of a complex combination of composition and mechanical properties. 

Some of these properties are quartz and matrix, size distribution, arrangement of the 

quartz and the micro mechanisms occurring at the grain scale. Therefore, 

deformation of natural rock depends on specific parameters describing the 

microscopic behaviour of the rock. This implies that discrete examinations are 

justified because of the many contributing factors and parameters which are discrete 

mineral component. The cemented matrix may have properties which are directional. 

That is they could be anisotropic in their natural or stressed state. The stress loads 

on rock is crucial and need to be measured to obtain clues on their strength 

characteristic before mechanical handling. 

 

2.5 Anisotropy and challenges with stress measurement 

This section discusses the challenges in determining the microscopic geo-

mechanical characteristics of rock which serve as the research gap in this work. 
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2.5.1 Micro mechanical damage and micro measurement 

An undisturbed rock mass can be subjected to natural stress such as gravitational 

stress because of the overburden pressure. The disturbance are probably tectonic 

stress as a result of the straining of the earth’s crust or they may be caused by the 

resultant stress due to past tectonism (Amadei and Stephansson, 1997). Micro 

measurement stress field must be considered in any rock engineering design 

together with general rock mass properties such as strength, permeability, 

deformability and time dependent behaviour (Amadei, 2012). For instance, the choice 

of the best direction and shape for complex underground works can be controlled by 

the direction and magnitude of the micro stress field, if it is necessary to minimize 

stress concentration problems. The possible hazard of an earthquake may be 

evaluated by the long term variation of the micro measurement of parameters within 

the stress field (Amadei, 2012). Thus the gap in field or industry is to understand and 

explain the magnitude and direction of the stress field at a point within a rock mass. 

This will provide the early detection of pending rock fractures. However, there is no 

known technique for the accurate measurement of the state of stress at a point even 

when the currently existing measuring instrument is remotely located (Amadei, 2012). 

In the drilling industry this includes neutron logging, uniaxial compressive strength 

(UCS) log, porosity-log received by drillers when they employ the technique of 

logging-while-drilling. 

 

Generally, measurements are made on the internal surface of underground cavities 

and most of the measurements are done by deliberately disturbing the state of the 

stress in a rock. Then the resultant strains and displacements are measured. The 

measured strains and displacements are then compared with the stress having made 

some assumptions about the material behaviour (Baldi et al., 1988). A common 

method is to assume that the rock mass is linearly elastic, isotropic, continuous and 

homogeneous (Amadei, 2012). Apart from the error in measurement which can be 

reduced by taking proper care when taking the measurements, another major cause 

of error is the inadequacy of the analytical formulations that is used to convert data 

into rock stress (Amadei, 2012). The reliability of the micro stress determination can 

be improved by increasing the accuracy of the mechanical model used for the 

analytical formulation (Papanastasiou and Zervos, 2004). Typically, a rock is 

anisotropic and/or heterogeneous and/or discontinuous and deformation, even when 

elastic is somewhat non-linear in nature (Amadei, 2012).  A medium is anisotropic if 
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its properties changes with direction, it is heterogeneous if its properties changes 

from point to point, while it is discontinuous if there is a separation or gap in the stress 

field (Nemat-Nasser and Hori, 2013).  

 

A medium is said to be elastic if the deformation relating with its loading is fully 

recovered during unloading (Karner et al., 2005). In terms of load deformation or 

stress strain curve, there is a direct relationship between stress and strain. If the 

stress and strain are linearly related, the material is said to be linearly elastic. An 

important characteristic of the linear elastic theory is the principle of the superposition 

effect. Furthermore, the applicability of the theory of elasticity is dependent on the 

duration of loading. Elasticity assumes an immediate response upon application or 

removal of loads (Amadei, 2012). 

 

Anisotropy is the main characteristic of schist, slates, gneisses, phyllites and other 

metamorphic rocks consisting of parallel arrangement of flat or long minerals (Hakala 

et al., 2007). Bedded rocks such as sandstone consisting of interlayered mixtures of 

different components also display anisotropy. Also some isotropic rocks such as 

granite and limestone will behave anisotropically if they are cut by regular joint sets. 

A general classification of rock anisotropy was proposed by Barla (1974). It consist 

of classes A and B rocks. Class A rocks show anisotropic characteristics despite 

apparent isotropy. Some granite rocks fall within this category. While Class B rocks 

show clear evidence of anisotropy and display apparent direction of symmetry (Barla, 

1974). 

 

The purpose of this research is to utilize the anisotropic property of rock to measure 

micro-stress and strain/displacement from a single point location in a rock. It is 

thought that the rock can exhibit anisotropy based on observation of the stressed 

model under a polariscope.  

 

2.6 Exploration drilling of sandstone and suggested solution  

Exploration drilling suffers loss by sustaining significant financial loss and even 

human loss of lives because of the lack of the knowledge of the strength 
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characteristics of the rock with respect to its inherent petrography. The crumbling 

nature of the reservoir rock may be both advantageous and disadvantageous. It is 

advantageous in the sense that it enhances more crude oil flow at production. This 

is because the generation of the fines widens pore throat. But grain crumbling is 

disadvantageous because they are accidental occurrences which could cause a kick. 

If the exploration drilling is not drilled for a kick, then, a blow-out may occur (Mouchet 

and Mitchell, 1989). The quality of drilling is therefore dependent not only on the 

formation pressure (Mouchet and Mitchell, 1989). It is necessary to incorporate a 

flexible program including monitoring the petrographic strength characteristic of the 

rock, so that as the drilling progresses, there would be consistent and continuous 

evaluation of formation pressure. Thus, the strength characteristic that accompany 

the petrology of the rock layer encountered can be captured while drilling. An 

example of UCS logging has been presented by some driller (Mouchet and Mitchell, 

1989). 

 

This research primarily provided stress threshold of Niger delta sandstone to a 

drillers. It contributes to the prediction of cracking in the sandstone layers. It is 

relevant to petroleum engineers because it helps them to incorporate the 

phenomenon that leads to the formation of crumbing and disintegration to their rock. 

This is because the damage threshold that will be obtained can be correlated to UCS 

logging and the early indication of onset of rock damage is realistic. By utilizing the 

existing sonic and UCS log data, which is currently used to monitor the lithology in 

every depth as the drilling progresses, we can correlated damage parameters. 

Therefore, this work evaluates the crack initiation stress and crack damage stress 

which can be and serve as damage thresholds in a UCS log data. This is then used 

as indicators for crack predictions in the sandstone layer. It may further be utilized to 

predict cracks in other layers too. Figures 2.3 shows a schematics logging data plot 

of the oil bearing sandstone data in one of the oil well in the research area. 
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Figure 2.3 Schematic representation of the log through a hydrocarbon and water-
bearing sandstone of the Agbada formation after Lambert and Shaw, (1982). 

 

2.7 Strength characteristics of sandstone and log data  

The strength characteristics of rocks in-situ are determined by fluid pressure. The 

pore pressure in the formation may exceed the rock strength, the axial drill stress 

may also exceed the strength of the rock; either of these can cause rock failure. Sonic 

travel time is a physical property of rock used for mechanical study of rock. It indicates 

the fluid content, porosity and the lithological effect. Similarly, neutron density log is 

employed for conveying rock strength from logs. They have been used for rock 

property estimation during drilling operations as substitutes for rock sample. some 

correlations between rock properties and the strength have been discussed (Chang 

et al., 2006).  
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In recent practice, the general rock failure criteria have been reduced to a few 

parameters which rely on lithology and compressive strength. Lithology is routinely 

derived during logging by estimating porosity or sonic velocities using pre-determined 

compressive strength. In granular rocks, porosity will only influence strength, if and 

only if grain, mineralogy and texture, are constant. This implies that a low porosity 

means greater strength if other factors are constant. A degree of micro-deformation 

has been observed in several sandstones and has been correlated in terms of grain 

contact models. Many petro graphical properties such as quartz, clay content, or 

feldspar have significant influences on strength while drilling of rocks with varying 

mineral content. Therefore, this inclination of porosity from strength may not work. 

Hence relating the petrography to the lithology becomes very vital. 

 

Drilling operations require reliable estimates of formation pressures in order to use 

appropriate weight of drilling mud and design wells for project optimization. This is 

because if pressure data are wrong, well-instability is most likely to occur. Other side 

effects include stuck pipe, poor return of mud leading to kicks and influxes and 

eventually blowouts. Consequently, inappropriate pressure strength data could 

damage the formation and lead to the loss of the well (Nwozor and Onuorah, 2014). 

In the absence of accurate pore pressure prediction, the stress threshold of the 

formation rock can serve as a fracture indicator. 

 

This is important because product of weathering and mica are found in the shale 

layer; this has been said  to be deposited due to reactions of illite with oil in the 

formation  (Pevear, 1999). Illite is mostly found as clay in sandstone.  Its occurrence 

increases with depth and temperature in the Niger delta formations due to their 

geologic age (Eslinger and Pevear, 1988).  

 

An industrial application involves obtaining a correlation between crack damage 

stress and Uniaxial Compressive Strength (UCS) obtained from drilling log data. This 

is used to explain the micro-mechanical response of the sandstone layer from the 

drilling log data. Some authors have shown that the drilling log data from the wellbore 

can be employed to evaluate UCS along the borehole (Militzer and Stoll, 1973). Many 

equations have been developed to correlate the petro-physical properties of rocks to 
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their strength (Golubev and Rabinovich, 1976). What is evident in the equations is 

that lithological properties are diverse and each of these properties affects rock 

strength differently (Militzer and Stoll, 1973).  They are more complicated because 

the petrological properties that affect the strength also affect other physical properties 

of the rocks.  Although the equations predicted UCS, strength characteristics vary 

with every single physical property which is prune to affect drilling log data. This 

implies that existing equations can be improved by accompanying the equations with 

micro-mechanical strength data in order to improve the existing equations.  The 

experimental data on core sample is provided here. However, the correlations to 

micro-mechanical data can improve the log data because rocks of similar lithology 

may exhibit different strength characterization. This is due to the differences in 

depositional environments which invariably causes differences in composition. 

Therefore each empirical equation should be accompanied by micro-mechanical 

parameters for drilling though a borehole. Thus, different equations results for a 

specific region of rocks as a result of specific petrological properties. This culminates 

in the significance of local calibration for equations before they are initiated to predict 

UCS. Thus it is recommended that the addition of indicators like the damage 

threshold e.g. crack initiation stress, crack damage stress and the yield point to 

together with the UCS drilling data can help early crack detection. This is because 

they are micro-mechanical data that are sensitive to lithology and have lower values 

which are detected before the compressive failure point (Brace and Byerlee, 1966). 

The determination of this failure indicator will be done in chapter seven and eight. 

 

The investigation on the strength characteristics of rock will be carried out in Chapters 

3 to 8 by methodological identification of the different phases in the strain response 

of rock to compressional stress.  

 

2.7.1 Grain matrix and stages of rock failure in the field 

Sandstone is a rock of significant porosity that bears hydrocarbon fuels in them. 

Studies on the deformation mechanism have been done by researchers including 

Holyoke and Rushmer (2002) and Vyacheslav et al (2007). The mechanism of 

deformation involves initial closed fissures within the rock, next is the linear elastic 

deformation stage followed by the crack steady expansion process, and 

thereafter, unsteady expansion occurs. The first obvious step is the crack initiation 
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and is theoretically significant to understanding the stress state of the mass structure. 

It is a useful tool for in situ rock strength investigation which is very important while 

drilling through sandstone containing crude oil.  Oil well drilling deformation leads to 

well instability. Well instability simply means the strain in sandstone formation due to 

prevailing in-situ stress.  The fracture in the direction perpendicular to drilling string 

creates an aperture for stress gradient between the rock stress and the stress in the 

hole. This response is usually instantaneous at the time of drilling (Mohiuddin et al., 

2001).  An investigation into the strength show that the deformation process began 

with the grain expansion under crack closure.  

 

The grain arrangement changes through elastic expansion as the grain dilates to 

initiate crack which then propagates to form fractures. The investigation tool is the 

crack initiation stress, crack damage stress and peak stress of the sandstone which 

are indicators of possible factures that result into borehole instability.  The grain and 

bond properties are used to identify possible crack initiation stress, grain cohesion, 

internal friction angle and the elastic properties of the rock mass at large (Potyondy 

and Cundall, 2004). The grain properties are fundamentally significant data which 

explain the route to well instability, these properties can be useful tools for preventing 

the occurrence of the well instability (Cho et al., 2008). Therefore measurement of 

grain scale is important. 

 

The challenges with point measurement in rock will be tackled in this work by using 

discrete element modelling (DEM) as a tool. The micro-properties of point data will 

be compared with the data from micro-measurement techniques, using ultrasound 

measurements and Photo Stress Analysis Tomography (PSTA) which is discussed 

in the next section. The next section explains the role that (DEM) plays in order to 

tackle the challenges of obtaining micro-measurement at single point in rock. 

 

2.8 Discrete element modelling (DEM) and grain contact linkage  

The particle-based model was originally developed to simulate the micro-mechanical 

behaviour of non-cohesive media, such as soils and sands (Cundall and Strack, 

1979b). With this technique, the granular micro-structure of the material is modelled 
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as a statistically generated assembly of rigid circular particles of different diameters. 

The contacts between particles are typically assigned normal and shear stiffness as 

well as a friction coefficient. The commercially available code Particle Flow Code 

(PFC) represents an evolution of previous particle-based codes such as BALL and 

TRUBAL (Cundall and Strack, 1979b), which applies cohesive bonds between 

particles to simulate the behaviour of solid rocks. The resultant model is commonly 

referred to as the Bonded-Particle Model (BPM) for rock (Potyondy and Cundall, 

2004). In a BPM, crack nucleation is simulated through breaking of internal bonds 

while fracture propagation is obtained by coalescence of multiple bond breakages. 

Blocks of arbitrary shape can form as a result of the simulated fracturing process and 

can subsequently interact with each other (Lisjak and Grasselli, 2014). 

 

The two types of bonds normally used in PFC are contact bond and parallel bond. In 

contact bond model, an elastic spring with constant normal and shear stiffness, acts 

at the contact points between particles thereby allowing only forces to be transmitted. 

While in the parallel bond model, the moment induced by particle rotation is resisted 

by a set of elastic springs uniformly distributed over a finite-sized section lying on the 

contact plane and cantered at the contact point as shown in Figure 2.3. This type of 

bond model reproduces the physical behaviour of a cement-like substance gluing 

adjacent particles together (Lisjak and Grasselli, 2014). 

 

 

Figure 2.4 The parallel bond model implemented in PFC. (Cho, et al 2007) 
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From Figure 2.4, (a) represent normal and shear stiffness between particles. The 

contact stiffness, 𝑘𝑛 and 𝑘𝑠,  remain active even after the bonds break as long as 

particles stay in contact. The bond stiffness (per unit area), 𝑘𝑛 and 𝑘s, are suddenly 

removed. The bonds break regardless of whether particles stay intact or not.  (b) 

Represents constitutive behaviour in shear and tension(𝑖 = 𝑠, 𝑛).  

 

 However, one of the major disadvantage of this type of model is the unrealistic low 

ratio of the simulated unconfined compressive strength to the indirect tensile strength 

for synthetic rock specimens (Kazerani and Zhao, 2010); the straightforward adoption 

of circular (or spherical) particles cannot fully capture the behaviour of complex-

shaped and highly interlocked grain structures that are typical of hard rocks (Cho et 

al., 2007). Moreover, low emergent friction values are simulated in response to the 

application of confining pressure. To overcome these limitations, a number of 

enhancements to PFC were recommended. Potyondy and Cundall (2004) showed 

that by clustering particles together as illustrated in Figure 2.4a, more realistic 

macroscopic friction values can be obtained. Specifically, the intra-cluster bond 

strength is assigned a different strength value than the bond strength grain cluster 

boundary. Cho et al. (2007) showed that by applying clumped-particle geometry as 

illustrated in Figure 2.4b. A significant reduction of the aforementioned deficiencies 

can be obtained. Hence strength ratio and non-linear behaviour of strength envelopes 

and frictional coefficients can be reproduced. These values are comparable with 

laboratory values. Potyondy (2012) recently developed a new contact formulation 

known as the Flat-Joint Model (FJM), which is aimed at capturing the same effects 

of a clumped BPM having more computationally efficient method as illustrated in 

Figure 2.4c. The partial interface damage and continued moment-resisting ability of 

the Flat-Joint Model allow the user to correctly match both the direct tensile and the 

unconfined compressive strengths of rock. 
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Figure 2.5 Proposed enhancements to the original BPM to capture realistic values  

 

In the proposed enhancement to BPM of Figure 2.5 above, (a) represent Particle 

Clustering (Potyondy and Cundall 2004), (b) represent Clustered particles (Cho et al. 

2007) and (c) represent Flat-Joint Model contact (FJM) showing the effective 

interface geometry (Potyondy 2012). 

 

 Another issue emanating from the particle-based material representation of PFC is 

the inherent roughness of interface surfaces representing rock discontinuities is 

illustrated in Figure 2.5a.This roughness typically results in an artificial additional 

strength along frictional or bonded rock joints. The problem was solved by the 

development of the Smooth-Joint contact Model (SJM). This enables the user to 

simulate a smooth interface regardless of the local particle topology as illustrated in 

Figure 2.5b (Mas Ivars et al., 2008). The ability of the BPM to capture the behaviour 

of intact material with the SJM for joint network leads to the development of the 

numerical rock mass. This aims at numerically prediction of rock mass properties. 

The solution include scale effects, anisotropy and brittleness, which cannot be 

obtained using empirical methods (Ivars et al., 2011). 
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Figure 2.6 Representation of rock joints in PFC (Ivars et al., 2011) 

 

Figure 2.6 (a) represent Traditional representation with rough surface and (b) 

represent Smooth-joint contact model (Ivars et al., 2011). 

 

 The particle-based code Yade developed by (Kozicki and Donzé, 2008; Kozicki and 

Donzé, 2009; Šmilauer et al., 2010), was recently introduced as an alternative 

modelling platform to the commercial software. The primary aim of the Yade project 

is to provide enhanced flexibility in terms of adding new modelling capabilities. It 

promotes code improvement through open-source development and direct feedback 

from the scientific community (Lisjak and Grasselli, 2014). In its basic formulation, 

the contact laws implemented in Yade share the same principle as those available in 

PFC. Small deformation is captured by linear elastic interaction forces between 

contacting discs/spheres. Rock fracturing is captured by ruptured bonds, whose 

strength is characterized by a constant maximum acceptable force in tension and a 

cohesive-frictional maximum acceptable force in shear. The shear strength drops 

instantaneously to a purely frictional resistance after failure. Conversely, in tension, 

after the maximum force is attained, the stiffness can be varied by a softening factor 

(ζ), controlling the energy released due to bond breakage as illustrated in Figure. 

2.7a. Rock discontinuities can be treated in Yade by using a contact logic analogous 

to the SJM of PFC. Specifically, the interactions between bonds crossing a prescribed 

discontinuity plane are identified. It was re-oriented according to the joint surface. 

This ensures a frictional behaviour that is independent of the inherent roughness 
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induced by the particle topology. Applications of Yade to the investigation of the 

fundamentals of brittle rock failure have led to the implementation of an interaction 

range coefficient (γ). It can be used to join particles not directly in contact one with 

the other, yet closely located as illustrated in Figure 2.7b. By this, the degree of 

interlocking between particles can be effectively controlled.  Therefore modelling of 

high ratio of compressive to tensile strengths can be numerically done. This approach 

represents an alternative to the clumping logic and the Flat-Joint contact model of 

PFC. 

 

 

Figure 2.7 (a) represent the Interaction law between particle in tension and 
compression, (b) represent the effect of the interaction range coefficient on the 
simulated contact fabric (Scholtès and Donzé, 2013). 

 

The advantages of the particle-based modelling methodology include the simple 

mathematical treatment of the problem. The complex constitutive relationships are 

replaced by simple particle contact logic, and the natural susceptibility of the 

approach to account for material heterogeneity. Due to the high level of simplification 

introduced, extensive experimental validation is needed to verify that the method can 

capture the observed macroscopic behaviour of rock. Furthermore, an extensive 

calibration based on experimentally measured macro-scale properties is required to 
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determine the contact parameters that will predict the observed macro-scale 

response (Lisjak and Grasselli, 2014). 

 

2.8.1 Applications of DEM to rock mechanics 

PFC has been used within the rock mechanics community to numerically investigate 

the fundamental processes of brittle fracturing in rocks by means of laboratory-scale 

models (Lisjak and Grasselli, 2014). The first proposed  synthetic PFC model that 

could reproduce modulus, unconfined compressive stress, and crack initiation stress 

of the Lac du Bonnet Granite was developed by Potyondy et al. (1996) and Lisjak 

and Grasselli, (2014). Extended results were illustrated by Potyondy and Cundall 

(2004) with the simulation of the stress–strain behaviour during biaxial compression 

tests for different confining pressures. Several features of the rock behaviour 

emerged from the BPM, including elasticity, fracturing, damage accumulation 

producing material anisotropy, dilation, post-peak softening and strength increase 

with confinement.  PFC simulates quasi-static deformation by solving the equations 

of motion, elasto-dynamics effects, such as stress wave propagation and cracking-

induced AE, can be explicitly simulated. In this context, Hazzard and Young (2000) 

developed a technique to dynamically quantify AE in a PFC model. This technique 

was validated by simulating the seismic value of a confined test on granite. The 

technique was further improved by introducing moment tensor calculation based on 

change in contact forces upon particle contact breakage and was applied to the 

micro-seismic simulation of mining by experiment in a crystalline rock (Hazzard and 

Young, 2002) and of an excavation-induced fault slip event (Hazzard et al., 2002). 

Hazzard and Young (2004) proposed 3D simulations of acoustic activity using 

PFC3D. Diederichs (2003) used PFC simulation to analyse the aspect of grain-scale 

tensile damage accumulation under both macroscopically tensile and compressive 

conditions. A BPM was developed as numerical analogue to study the effects of 

tensile damage and the sensitivity to low confinement in controlling the failure of hard 

rock masses within the proximity of underground excavations. Analyses of failure and 

deformation mechanisms during direct shear loading of rock joints was carried out to 

obtain original insights into rock fracture shear behaviour and asperity degradation 

(Lisjak and Grasselli, 2014). Rasouli and Harrison (2010) investigated the 

relationship between the Riemannian roughness parameter and shear strength of 

profiles comprising symmetric triangular asperities sheared at different normal stress 

levels. Asadi et al. (2012) improved on the previous results by considering the shear 



 

39 

 

strength and asperity degradation processes of several synthetic profiles using 

triangular, sinusoidal and randomly generated profiles. Zhang and Wong (2012) 

numerically simulated the cracking process in rock-like material containing a single 

flaw under uniaxial compression, while Zhang and Wong (2013) investigated the 

coalescence behaviour for the case of two stepped and coplanar pre-existing open 

flaws. The effect of confinement on wing crack propagation was studied by 

Manouchehrian and Marji (2012). 

 

BPM has been successfully applied to the study of damaged zones around 

underground openings. The spalling phenomena noticed around the Atomic Energy 

of Canada Limited's (AECL) mining by experimental tunnel were first simulated by 

Potyondy and Cundall in 1998, (Martin et al., 1999). Further analysis of the notch 

formation process in terms of coalescence of ruptured bonds was developed by 

Potyondy and Cundall (2004) using a PFC2D model embedded in a continuum finite-

difference model as illustrated in Figure 2.7a. Hazzard and Young (2002) provided a 

micro-seismic simulation of the same excavation by comparing the actual seismicity 

recorded underground with the simulated spatial and temporal distribution of events. 

The effect of low stiffness spray-on line of fracture propagation based on in situ 

conditions of the above mentioned mine-by experiment was numerically studied by 

Tannant and Wang (2004). Similarly, Potyondy and Autio (2001) employed PFC2D 

to predict damage formation adjacent to a circular excavation in an anisotropic 

gneissic tonalite at the Olkiluoto deep geological repository. Furthermore, Fakhimi et 

al. (2002) showed that a BPM could match failure load, crack pattern, and spalling 

observed during a biaxial compression test on a sandstone specimen with a circular 

opening as illustrated in Figure 2.7b. Numerical study on thermally-induced fracturing 

around an opening in granite was carried out by Wanne and Young (2008) and 

Wanne (2009) for a laboratory-scale heater experiment. The AECL's Tunnel Sealing 

Experiment was carried out on the same rock.  
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Figure 2.8 Simulation of fracture development around underground excavation 
using PFC. (Potyondy and Cundall, 2004) 

 

Figure 2.8 (a) represent modeling of notch formation around the AECL’s mine by 

experiment tunnel (Potyondy and Cundall, 2004) and Figure 2.8 (b) represent 

Damaged notches around a hole under biaxial compression (Tarokh et al., 2012). 

Simulation studies using the open-source code Yade have focused on the role played 

by Discrete Fracture Networks (DFNs) (Scholtès et al., 2011), this was done by 

Scholtès and Donzé (2012). The grain interlocking behaviour controls the mechanical 

responses of 3D rock samples. 

 

2.8.2 Solutions to micro-data generation from alternative numerical methods 

In this section an overview of alternative techniques that are considered to have the 

potential for modelling the mechanics of granular rocks, such as sandstone is 

presented. Several numerical methods have been applied in rock and soil mechanics 

to solve the problems (Jing and Hudson, 2002). The two main alternative techniques 

are continuum mechanics and dis-continuum mechanics. The techniques which are 

based on continuum mechanics are Finite Difference Methods (FDM), Finite Element 

Methods (FEM) and Boundary Element Methods (BEM). Dis-continuum mechanics 

mainly consist of Discrete Element Methods (DEM) (Jing and Hudson, 2002). The 
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two main techniques have associated advantages and disadvantages and their 

applications primarily depend on the properties of the materials to be modelled. 

 

Unlike the continuum method, DEM is an approach to numerical simulation where 

statistical measures of the global behaviour of a phenomenon are computed from the 

individual motion and mutual iterations of a large population of elements. It is mainly 

used in situations where theoretical knowledge has not provided complete 

understanding and mathematical equations to model the physical system. This 

method has been implemented in various forms based on the geometry of discrete 

bodies and the mode of deformation representation. The most important advantage 

of DEM is to model granular media with particle shapes and rock mass incorporating 

discontinuities which was not effectively possible using FDM, FEM and FBM. The 

macro behaviour of a granular system based on the interaction and movement of the 

discrete particles can be modelled using DEM. It is relevant to utilize it for the studies 

of sedimentary rocks (Jing and Hudson, 2002).  

 

2.9 Overview of a bonded discrete assembly 

Rock mechanics is one of the disciplines from which DEM originated (Cundall, 1974). 

The formulation of the method is based on the solution of equations of motion of rigid 

and/or deformable bodies using implicit (FEM discretization) and explicit (FVM 

discretization) formulations (Jing, 2003). This method has been widely used in soil 

and rock mechanics and in other disciplines, like structural analysis, granular 

materials, material processing, fluid mechanics, multi-body systems, and robot 

simulation and computer animation since its origin (Jing and Hudson, 2002; Jing, 

2003). It is one of the most rapidly developing areas of computational mechanics and 

is still in the developmental phase. 

 

The primary objective of DEM is to circumvent the complexity of a large assembly by 

considering many sample elements, the behaviour of which can be simulated 

accurately (Ferrez, 2001). After the theory proposed by (Cundall, 1971), various 

theoretical formulations have been developed to simulate discontinuous media and 

these became known as discrete element methods. Cundall and Hart (1992) 

proposed a formal definition for discrete element methods: “the numerical schemes 
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which can allow finite displacement and rotation of discrete bodies including complete 

detachment and can recognize new contacts automatically as calculation 

progresses”. These two conditions must be fulfilled to qualify any computational 

scheme as discrete element methods (DEM) because these conditions produce the 

important mechanisms of the discontinuous medium for numerous discrete particles 

(Cundall and Hart, 1992). They also proposed three important aspects of DEM which 

can help in their classification, as described in the next three sub-sections. 

 

2.9.1 Representation of contact in discrete models 

The major difference between continuum and dis-continuum mechanics is the 

representation of a contact or interface between the discrete bodies that make up a 

system. This interface may be soft, allowing deformation along the interface/contact, 

or rigid, with no deformation along the contacts. The selection of contact type mainly 

depends on the physics of the system (Cundall and Hart, 1992). 

 

2.9.2 Representation of solid material 

The material of the discrete bodies in discrete element methods can be grouped into 

two main categories: rigid or non-deformable and deformable. In discontinuous 

systems where most of the deformation is along the discrete bodies/particle contacts, 

the assumption of rigid material can be used to model the system (Zhao, 2010). Early 

developments in discrete element methods were based on the use of rigid particles 

as building blocks. There are two approaches to obtain deformable particles. First, 

the direct sub-division of discrete body into elements of definite deformation zones 

(Cundall, 1980). The   second approach is used to obtain a complex deformation 

pattern by the superposition of several mode shapes for whole discrete body (Shi, 

1988). 
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Table 2.3: Attributes of the four classes of Discrete Element Methods and the Limit 
Equilibrium Method (Cundall and Hart 1992). 

Attributes Class-1 Class-2 Class-3 Class-4 Limit Equilibrium, 

Limit Analysis 

Contacts 

 

Rigid --- --- xxx xxx Xxx 

failure xxx xxx --- --- --- 

Bodies 

 

 

Rigid xxx xxx xxx xxx Xxx 

failure xxx xxx xxx --- 

 

--- 

displacement 

 

Small xxx xxx xxx --- Xxx 

Large xxx xxx xxx xxx --- 

Strain 

 

Small Xxx xxx xxx --- --- 

Large xxx xxx xxx   

Bodies 

 

Fewer xxx xxx xxx xxx Xxx 

Many xxx xxx x xxx X 

Material 

 

Linear xxx xxx xxx --- --- 

Non-

linear 

xxx x --- --- --- 

No Fracture  Xxx Xxx Xxx --- --- 

Fracture  x xxx --- --- --- 

Packing 

 

Loose 

 

Xxx 

xxx 

Xxx 

x 

--- 

xxx 

Xxx 

x 

--- 

Xxx 

Static  xxx xxx xxx x Xxx 

Dynamic  xxx xxx x xxx --- 

--- does not allow, or not applicable. X   can model it, but insufficient or not well suited. 

Xxx can model it well 

 

2.9.3 Detection and review of contact parameters 

There are two tasks to be performed before the start of calculations. First, identify all 

pairs of bodies that can interact, and second, determination of the type of interaction, 

(i.e the edges, vertices, face etc, of one particle that is touching the corresponding 
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entities of the other). Different schemes have been formulated to perform these tasks 

in two and three dimensions with different computational time (Cundall, 1980). The 

capability of each class of discrete element methods in response to various attributes 

is given in Table 2.3. 

 

Table 2.3 suggests that the distinct element methods can allow maximum modelling 

strength against the given attributes. This provides a more rigorous scheme to solve 

the problems in relation to a wide range of materials. An example of implicit DEM 

which can be obtained by upgrading FEM or FDM is Discontinuous Deformation 

Analysis (DDA). The Distinct Element Method is an example of explicit DEM which 

yield a macroscopic response of media based on the interaction of discrete bodies 

(Jing, 2003). The term “Distinct Element Methods” is normally used when DEM is 

applied in rock mechanics. Discrete Element Methods (DEM) is equally used in other 

areas (Jing, 2003). Therefore, the broader term “Discrete Element Methods” (DEM) 

will be used to denote all formulations of DEM that represent an explicit mode of 

deformation in “Distinct Elements Methods”. 

 

2.10 Previous developments reported using DEM in rock engineering 

Several researches have been conducted in the past in the formulations of DEM. 

These have led to the development of computer codes depending on particle 

geometry, contact detection schemes and inter particle cement.  

 

2.10.1 Formulations of grains with shapes 

Different formulations of DEM have been documented by Jing, (2003) and Bobet et 

al., (2009) based on particle geometry (i.e. polygonal blocks, circular discs or 

spheres, ovals and arbitrary shaped particles by overlapping particles to form clusters 

or clumping spherical particles. The choice of adopting a particular formulation for a 

given problem is influenced theoretical knowledge of the micro-mechanics of granular 

media, the nature of the application and the computational resources available (Jing, 

2003). However, theoretical understanding of DEM is based on the formulation and 

solution of equations of motion of rigid or deformable particles (Jing, 2003). In 

deformable particles, particles are further discretized into finite elements using FEM 

or FDM formulations which also give deformation (implicit) of particles in addition to 
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explicit deformation along the particles’ contacts. An example of this application is 

UDEC (Cundall, 1980). 

 

Table 2.4: Examples of DEM computer codes 

Authors Computer Code Dimension 

Lisjak and Grasselli, 2014 PFC and YADE 2D/3D 

Lin and NG, 2015 ELLIPSE3D 3D 

Alassi et al,.2006 PFC 2D/3D 

Cundall and Hart 1985 UDEC 2D/3D 

Marketos and Bolton, 2010 PFC 3D 

Potyondy and Cundall, 1996 PFC 2D 

. 

 A dynamic contact pattern is the primary constituent of DEM formulations that 

differentiate them from continuum methods. General formulations of DEM consist of 

the following requirements (Jing, 2003): 

 Distribution of particles within the defined domain (i.e. area in 2D or 

volume in 3D). 

 Assumptions about particle material, e.g. rigid or deformable. 

 Development of algorithms for contact detection scheme, e.g. Penalty 

function, Lagrange multiplier, or augmented Lagrange multiplier. 

 Development of constitutive equations for the particles/blocks/fracture 

system. 

 Solution of the integral equations of the motion of the particles. 

These requirements remain almost the same irrespective of particle shape or 

geometry. The formulations of DEM, based on particle geometry are discussed in the 

following sections. 
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2.10.2 Polygonal blocks and particle formulation 

In rock mechanics, DEM was developed using a two dimensional polygonal rock 

block system (Cundall, 1971) which was thereafter used for the development of 

computer code RBM (Cundall, 1974). The RBM then progressed to SDEM to model 

the deformation of a complex 2D geometry of blocks. A parallel version (CRACK) 

was developed incorporating the fracturing, cracking and splitting of intact blocks 

under loading, based on a tensile failure criterion (Jing, 2003). Furthermore, in 1980, 

UDEC (Cundall, 1980) was developed which had the capability to overcome the 

incompatibility caused in the SDEM when dealing with deformable blocks with 

complex geometries of blocks. UDEC was extended to 3D problems (Cundall, 1988) 

with the development of 3DEC(Hart et al., 1988)). In DEM with blocks, it is assumed 

that the medium is divided into a finite number of blocks by the intersection of the 

discontinuities. The technique of the explicit DEM for a block system is presented 

comprehensively in Cundall and Hart (1992). 

 

2.10.3 Circular discs, spherical particles and particle formation 

The potential of DEM to model natural structures was implemented on circular discs 

in the late 1970s with the development of the computer program “Ball” (Cundall and 

Strack, 1979b). Earlier works focused on granular assemblies of circular discs in 2D 

and spheres in 3D. The major motivation for circular discs and spheres was fast 

contact detection, which increases the number of particles that can be simulated in a 

reasonable time. 

 

This technique was applied to many problems across a range of scientific disciplines. 

Major relevant applications include the fundamental investigation and application in 

cohesive and frictional granular soils and powders; rock mechanics; the experimental 

validation of DEM; modelling methods; incorporating smooth joints to simulate 

discontinuities at laboratory and large scale, and industrial applications of DEM 

(Sallam et al., 2004). For DEM with circular or spherical particles, the medium can be 

represented by the assembly of circular discs (2D) or spheres (3D) with a set of micro 

mechanical properties that indicates the contact and bond conditions. The frictional 

materials can be simulated by grouping circular discs and spheres with micro 

mechanical parameters, that is, contact normal stiffness (Kn), contact shear stiffness 
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(Ks) and friction (𝜇) along the particle contacts. The macroscopic response of the 

granular assemblies is governed by the interaction of circular or spherical particles. 

 

The cohesive-frictional materials can be simulated by gluing the particles together 

with a definite set of normal and shear bond strengths ( ,b b  ) at particles contacts 

defined by contact stiffness (Kn and Ks) (GROUP, 2008) and inter particle friction 

(𝜇). Different fundamental laws have been proposed for the interaction between 

particles. The typical computer codes being increasingly applied to model circular 

discs in 2D and spheres in 3D are particle flow codes PFC2D and PFC3D (Manual, 

1995) and EDEM (Solutions, 2010). 

 

The concept of modelling geo-materials as a collection of discrete circular or 

spherical particles was initially introduced by Cundall and Strack (1979a). The 

concept was extended and implemented in PFC using a Bonded Particle Model 

(BPM) (Potyondy and Cundall, 2004). The main advantage of using circular or 

spherical particles in the modelling of geo-materials is that the computational speed 

and the efficiency of ordinary personal computers is as good as the contact detection 

scheme and is computationally straightforward (Brown, 2013). 

 

2.10.4 Elliptical or ellipsoidal particles and rock mass formulation 

As stated above, the use of circular or spherical particles allows excessive rotation 

of particles mainly due to the particle geometry and the point friction at their contacts. 

Therefore, the true peak strength and the angle of internal friction of the assembly 

cannot be achieved. In order to eliminate or reduce this rotation, elliptical and 

ellipsoidal particles are modelled in DEM formulations. Applying this principle, 

numerous studies were conducted using elliptical particles in two dimensional shape- 

base in effect (Rothenburg and Bathurst, 1991; Ting, 1991; Wei et al., 1991; Pradhan 

and Swada, 1992; Ng and Lin, 1995). Rock formulated with elliptical particles yield a 

model with little tendency for particle rotation. But as with discs or sphere, particle 

interlocking and angularity-induced dilation cannot be achieved using elliptical 

particles, which is a characteristic feature of natural granular materials with non-

spherical particles (Arkam, 2010). 
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2.10.5 Polygonal particles and rock formulation 

In order to obtain the interlocking of natural granular materials, polygonal shaped 

particle was studied to simulate the complexities of natural granular materials in both 

soils and rocks. Particles of arbitrary shapes were constructed joining circular or 

spherical particles (Ashmawy et al., 2003; Matsushima, 2004; Mouchet and Mitchell, 

1989; Nakata et al., 2004; Sallam et al., 2004). Mouchet and Mitchell (1989) 

simulated “Clump logic”, similar to overlapping clusters, which was proposed in PFC 

to model rocks or granular materials, in order to obtain true interlocking of the 

materials, high bulk friction of the assembly (Fu, 2005; Cho et al., 2007; Cho et al., 

2008) These studies revealed that macroscopic properties (i.e. peak strength and 

angle of friction) are greatly influenced by particle shape. The assemblies with 

polygonal or angular particles can simulate much higher strength and friction 

compared to assemblies with circular or spherical particles. However, polygonal or 

polyhedral particles  have complexities, such as the generation of angularity, complex 

contact detection schemes (along nodes and surfaces), and increased computational 

cost (Sallam et al., 2004). 

 

2.11 DEM simulation of granular materials 

An important application area of the DEM is the simulation of the mechanical 

behaviour of granular materials. From the early application of DEM to granular 

materials in the late 1970s such as Cundall and Strack (1979a) and Cundall and 

Strack (1979b), different studies have been conducted to simulate the behaviour of 

natural granular materials by using different shaped particles (that is circular, 

elliptical, irregular and polygonal). At first, the behaviour of frictional granular material 

was widely studied and thereafter DEM was extended to cohesive-frictional materials 

by incorporating inter particle bonds of specific strengths (Akram and Sharrock, 

2010). Consequently, DEM’S area of application is mainly comprised of two classes; 

first for “frictional materials” (i.e. granular assemblies with no inter particle bonds 

which comprise of natural materials like sands, gravels, assemblies of steel balls or 

glass beads). Second for “cohesive-frictional materials” which are simulated by gluing 

the particles with specific cementing materials so that the failure is always allowed to 

occur through the cementing material (i.e. along the contacts) and not through the 

particles, assuming the particles are rigid or deformable bodies. The class of 

cohesive-frictional granular materials is made up of natural materials such as 
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cohesive soils, granular rocks and concrete, artificially cemented assemblies 

(synthetic materials) of irregularly shaped particles, like sands, gravels etc., and 

uniformly shaped particles, such as glass, beads, steel balls, circular discs etc. 

Sandstones are rocks consisting of discrete clasts bonded together with a cement 

matrix, and hence are also categorized as cohesive-frictional materials (Donzé et al., 

2009). 

 

Apart from the cohesive-frictional materials, DEM’s application to simulate crystalline 

rocks/materials using a Bonded Particle Model (BPM) after Potyondy and Cundall 

(2004) or Clumped Particle Model (CPM) after Cho et al. (2007) is also a form of 

cohesive-frictional materials such as the inter particle bonds specify the strength of 

cementing material. 

 

2.11.1 Particle Flow Code (PFC) based on DEM methodology in rock 

mechanics 

PFC based on DEM methodology in rock mechanics (Konietzky, 2002) has been 

extensively used across different disciplines  (Shimizu et al., 2004). It is available in 

2D and 3D simulation. The method of formulation was explained by Cundall (1988) 

and Hart et al. (1988). PFC is based on the simplified implementation of DEM which 

allows finite displacements and rotations of discrete rigid bodies (Cundall and Hart, 

1992). It includes complete detachment and automatic detection of new contacts of 

the particles with the progress of calculations. 

 

In PFC, the interaction of the particles is considered as a dynamic process with states 

of equilibrium developing whenever the internal forces balance. The contact forces 

and displacements of the particle assembly are traced by the movement of the 

individual particles. Movement of the particle is a product of the propagation of 

disturbances which is as a result of the wall and particle motion caused by, externally 

applied forces and body forces (Potyondy and Cundall, 2004). This is a dynamic 

process in which the speed of propagation is dependent on the physical 

characteristics of the discrete particle system. Calculations in the PFC vary between 

the application of Newton’s second law (for the particles) and a force-displacement 

law (for the contacts). Newton’s second law determines the translational and 

rotational motion of each particle resulting from the contact forces acting on it, while 
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the force-displacement law updates the contact forces resulting from the relative 

motion at each contact. 

 

 

Figure 2.9 Calculation cycle in PFC3D (ITASCA, 2005) 

 

This dynamic behaviour is expressed numerically by a time-stepping algorithm in 

which the velocities and accelerations are assumed to be constant within each time 

step cycle (Figure 2.9). Each time step is so small that, during a single time step, 

disturbances cannot propagate from any particle further away than its adjoining 

particles. Subsequently, at all times, the forces acting on any particle are determined 

exclusively by its interaction with the particles with which it is in contact.  

 

2.11.2 Simulation of frictional granular materials 

In the simulation of the frictional materials, the contact properties of the particles are 

specified. These include normal and shear contact stiffness and inter-particle contact 

friction. The stiffness can be linear, assuming particles as either rigid bodies or as 

the Hertz-Mindlin (Mindlin and Deresiewica, 2014) treating the particles as elastic 

bodies. In the simulation of frictional assemblies, it is preferable to use Hertzian 

contact theory to define inter particle contacts (Itasca, 2008). Besides the linear and 

Hertz-Minlin contact theory, some user defined contact models can also be 

implemented in PFC. 
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2.11.3 Simulation of cohesive-frictional granular materials 

In the simulation of the cohesive-frictional materials, particles are cemented together 

with bonds at particle contacts. There are two types of bonding models; “contact 

bond” and the “parallel bond” (Bobet et al., 2009). The contact bond acts like a point 

of cementing material between two particles and is defined by normal and shear 

strength. While the other bonding model is the parallel bond model that is defined by 

normal and shear strengths and stiffness along with its extent (Cheung et al., 2013). 

The “parallel bond” acts like a cementing material between the two particles that can 

transmit forces and moments among the particles compared to contact bond model 

which can only transmit forces. The properties of the bonding models are specified 

in addition to the contact model’s properties so that after the breakage of the bonds, 

forces on the particles are specified by the contact models (Bobet et al., 2009). 

 

2.11.4 Calibration process and inverse modelling approach 

In PFC, for the simulation of granular frictional and cohesive-frictional materials, 

micro parameters are estimated to match the macroscopic behaviour with that of the 

actual physical materials. Therefore, for this purpose, numerical tests, including 

uniaxial, tri-axial and Brazilian tensile tests are conducted in PFC simulating the 

actual laboratory testing. During testing, the PFC’s input parameters are varied until 

the behavior of the numerical sample matches that of the physical sample. The 

corresponding parameters may then be used in a PFC2D or PFC3D simulation of a 

larger problem containing the same solid material as the sample. This approach has 

been named inverse modelling approach which include the following steps (Itasca 

2004; 2005). 

 

First, the matching of Young’s modulus is achieved by setting material strengths to a 

large value and varying the stiffness of the contacts and bonds. Then Poisson’s ratio 

is calibrated by varying the ratio of normal to shear contact and bond stiffness ratio. 

After obtaining the desired elastic response, peak strength in uniaxial testing is 

matched by varying the strengths (both normal and shear) of the bonds. Next, post-

peak behaviour is matched by varying the inter particle friction. Thus, a complete 

strength envelope is obtained by performing a set of tri-axial tests at different 

confinements and Brazilian tensile strength test. 
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A comprehensive description of the calibration process by the inverse modelling 

approach can be found elsewhere (Itasca, 2004; Potyondy and Cundall, 2004; Itasca, 

2005). This procedure is significantly based on a “hit-and-miss”, approach and 

includes test iterations to obtain a similar macroscopic response of the numerical 

assembly in terms of peak strength, Young’s modulus, tensile strength, cohesion and 

bulk friction. As soon as a reasonable calibration in the assembly response is 

achieved against a set of micro parameters, these parameters can be used for 

subsequent large scale modelling. Using inverse modelling approach, numerous 

studies have been conducted in the field of rock mechanics and geo-technical 

engineering (Konietzky, 2002; Shimizu et al., 2004). However, it has been observed 

that in both PFC2D and PFC3D (Potyondy and Cundall, 2004) a perfect calibration 

cannot be achieved using circular or spherical particles (Cho et al. 2007). 

 

2.12  DEM simulation for granular materials in the context of the current 

research 

Previous studies using DEM for the simulation of granular materials can be broadly 

classified into frictional materials, that is, unconsolidated materials and cohesive-

frictional materials, that is, assembly of cemented particles or granules. These 

studies are very relevant to the present research as sandstone is a granular rock 

clasts cemented with matrix.  

 

2.12.1 Cemented granular materials 

The research to be conducted involving DEM for frictional materials was mainly 

focused on two objectives: 

1.  To simulate and understand the behaviour of grain contact of 

cemented grains in the assemblies using DEM, and 

 

2. To validate the behaviour of the DEM simulation for contacting grains 

in the rock sample. 

 

The scope was expanded to various horizons such as the simulation of natural 

heterogeneous and discontinuous materials. This is natural rock medium. The 
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studies include the understanding of the micro-mechanics with assumptions based 

on observed natural materials and similitude. This area is still under development 

and continuing research is being conducted. The pioneering validation of DEM was 

conducted by Strack and Cundall (1979). They compared the stress-strain behaviour 

of DEM simulation with that of Physical experiments on frictional materials. Cundall 

and Strack (1979a) compared the stress-strain behaviour of a numerical simulation 

by using computer code “Ball” with the corresponding response of 400 metal 

cylinders. Both numerical and physical rock mass responses demonstrated a 

reasonable agreement but with some minor differences. These differences were 

considered to be as a result of errors in the estimation of assumed parameters 

including density, friction between particles and walls and contact stiffness, which 

were not known in physical tests at that time. 

 

Similarly, further attempts were made to validate DEM using a 16 disc static test and 

1000 disc test with varying diameters (Sitharam, 2003). The DEM simulations were 

compared with experimental work on uniform sand for stress-strain plots at various 

confining pressure of both models. Load carrying capacity increases with the 

compressibility of the assembly with confining pressure. Numerical biaxial and 

hydrostatic tests were conducted on an assembly of 1000 particles and the results 

were compared with the published results of sand (Hakuno and Tarumi, 1988). A 

good qualitative comparison was noted in DEM simulations and experimental 

investigation on sand. 

 

To explain the effect of particle shape in granular materials (O'Sullivan and Bray, 

2002), an assembly of chrome balls was tested physically in shear box and tri-axial 

testing (O’Sullivan et al., 2004). The DEM simulation for the tri-axial test was 

performed by using spherical particles and overlapping sphere clusters based on 

Fourier shape analysis techniques. DEM simulations were also conducted for a shear 

box test in comparison with physical shear box tests. Physical tests were undertaken 

on approximately 1.0 mm diameter steel balls under 54.5, 109 and 163.5KPa normal 

load. DEM simulations were performed using known elastic parameters and the 

known friction of the steel balls following the physical test conditions. The numerical 

test results showed differences in responses in correspondence to physical test. That 

is, a stiffer response, stress dependency, no compression prior to dilation and an 

underestimation of overall assembly friction. 
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An experimental validation of PFC2D was conducted in tracking translations and 

rotations of angular grains of Fraser river sand due to external disturbances in a 

simple test (Sallam et al., 2004). Wooden pieces were produced in the shapes of 

sand particles to scale up the model. In PFC2D, angular particles were created using 

Overlapping Rigid Clusters (ORC) to simulate the sand particles. The results of the 

numerical simulations were observed to fall within the validation range of the physical 

tests and hence were considered reasonably (Ashmawy et al., 2003). 

 

Recently, further work was carried out by Holt et al., (2005) who argued that 

numerical modelling can be used as a virtual laboratory that is basically identical to 

the physical laboratory. In order to implement this hypothesis, several tests were 

conducted on unconsolidated granular assemblies in a physical laboratory under 

controlled conditions and corresponding simulations were produced in PFC3D. The 

physical models consisted of glass beads to represent a frictional assembly. Stress 

dependent wave velocities were computed in the frictional assembly of glass beads 

in which particle contact stiffness was kept non-linear using the Hertzian contact 

model (Mindlin, 2014). PFC simulations reproduced the same response without the 

use of any fitting parameters. 

 

Fu (2005) conducted a study by undertaking shear and compressions test on rock 

crush and simulated the same in PFC3D by modelling the spherical and polygonal 

particles. The micro structures of the rock crush particles were acquired by x-ray 

tomography imaging technique and employed in the simulations. The results showed 

that polygonal particles induced higher friction and dilation angles, and similarly, 

higher shear and compressive strengths, comparable to experimental results, than 

with spherical particles. 

 

In summary, DEM simulations have been carried out to investigate and validate the 

response of frictional materials by using circular, spherical, elliptical, ellipsoidal and 

polygonal particles. These studies showed a reasonable achievement in 

understanding and modelling the mechanics of frictional materials. DEM simulation 

using circular or spherical particles showed less bulk friction owing to the excessive 

rotation of particles in the absence of interlocking, which is a characteristic feature of 
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natural frictional materials. The use of elliptical or ellipsoidal particles can produce a 

degree of interlocking and limit the rotation of particles; however, the bulk friction is 

less than that of physical materials. Polygonal particles require the complex contact 

detection scheme which results in a very high computation cost on a normal personal 

computer. In addition, to obtain the true angularity of natural grains is not possible as 

every grain is different in natural material and this affects the force chain or fibre. 

 

2.12.2 Behaviour of DEM versus cohesive materials 

In contrast to DEM’s application on frictional materials, less work has been reported 

in literature with DEM’s application and validation for cohesive-frictional materials. 

After the early DEM simulation for granular media (e.g. Cundall and Strack 1979a), 

researchers started looking into the cohesive-frictional materials using DEM. Like 

frictional materials, the initial objectives in the DEM’s simulation of cohesive-frictional 

materials were to understand, investigate and validate the behaviour of material with 

that of the numerical simulation. Later, this work was extended to cohesive solids, 

concrete and natural rocks, and across various disciplines. 

 

Deformation of elastic grains was used to investigate the particle assembly cemented 

at small areas (Digby, 1981). The work led the researchers towards the low and high 

strain deformations, including sliding along the grains. 

 

The work on the effect of the cementation on the elastic and inelastic behaviour of 

the granular solids has been done. For example, Bruno and Nelson (1991) used a 

discrete element formation in 2D to look into the rock failure in tension, uniaxial 

compression and biaxial loading. Contact stiffness was assumed to be a linear 

function of the Young’s and shear modulii of the cement, and the thickness and width 

of cementation bonds in the elastic domain.  

 

An experimental study was conducted using synthetic cemented granular materials 

(Ottawa sand with halite and silica glass cement) in tri-axial compression tests 

(Bernabé et al., 1992). It was observed that a small amount of cement can 

significantly increase the strength of granular material if it is precisely deposited at 

previously formed grain-to-grain contacts. 
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Numerically, the behaviour of cemented granular materials was studied under low 

and high-strain loads using circular particles cemented together with elastic bonds 

(Trent and Margolin, 1992; Mouchet and Mitchell, 1989; Trent, 1989). The results 

showed that the macroscopic properties of the granular solids are governed by the 

properties and distribution of individual inter-granular bonds or the cementing 

material. 

 

 

2.12.3 Behaviour of DEM versus behaviour of natural material 

Dvorkin et al., (1991) investigated the normal interaction of two spherical elastic 

grains and an elastic cementation layer between them, for 2D and 3D cases. The 

results showed that a thin cement layer subject to normal and shear load can be 

approximately treated as an elastic strip. By this approximation, the problem of grain 

cement deformation (where the grains are deformable) was reduced to an ordinary 

integral equation for the normal stresses at the cemented interface, assuming the 

deformable grains and the width of the cemented zone was smaller when compared 

to the grain radius.  They noted that the elastic response of the cemented system 

increased with the radius and stiffness of the cement layer. The contribution of the 

increase in the cement layer radius significantly increases the macroscopic stiffness 

of the bonded assembly. Furthermore, the response of a numerical model comprising 

of random identical spheres bonded with thin layers of cementing material, as in 

Dvorkin et al. (1991), was investigated for compressional-wave velocity 

measurements (Dvorkin et al., 1994).  

 

Holt (2001) carried out a study to focus on the major differences between laboratory 

measured and micro-measurement virgin compaction using synthetic sandstone 

modelling. Synthetic sandstone samples were produced under stress with an 

injection of CO2 in the solution of sand and sodium silicate contained in the tri-axial 

cell to replicate the micro measurement virgin compaction and to produce a stress 

released core by the removal of the sample from its container. The samples were 

then tested in uniaxial compression for micro measurement compaction and stress 

released core conditions. Acoustic emissions were monitored for numerical and 

synthetic sandstones. The numerical tests results reveal a good agreement in the 
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stress-strain response with that of physical tests, but with a deviation in micro-seismic 

activity. 

 

Kulatilake et al. (2001) produced joint blocks from a mixture of plaster, sand and 

water and investigated their response under uniaxial loading. Numerical simulations 

were conducted in PFC3D including joints in cylindrical samples. The intact material’s 

micro properties were adopted by the inverse modelling approach comparing the 

macroscopic responses of numerical and physical samples. The numerical 

simulations were found to be in agreement with the findings of laboratory testing in 

classifying the failure modes against same joint geometry configurations. 

 

Narayanasamy also conducted a calibration study using PFC3D by examining the 

wave propagation and distribution of stress around the hole in sand material 

representing the borehole in cohesive material (Narayanasamy, 2004). The medium 

was artificially glued (i.e. round grained) sand named “Hickory sand”. The micro 

mechanical characteristics were estimated by inverse modelling. The numerical 

simulation and experimental results showed almost identical particle displacements 

and rotations at small displacement, while large discrepancies were noted at high 

displacement. 

 

The summary of studies on the behaviour of cohesive-frictional materials has 

revealed DEM’s capability of replicating many features of granular solids and rocks. 

Therefore, no effort was made to model the behaviour of sandstone using DEM 

simulation. The simulation of quartz supported sandstone can be conducted in DEM 

by cementing the discrete particles with bonds such that DEM’s discrete particles 

represent the sandstone quartz, while inter-particle bonds represent the cement 

matrix. 

2.13 Micro to macro behaviour of cemented granular materials 

Several theoretical formulations have been developed in the micro to macro 

mechanics of cohesive-frictional materials to illustrate the macroscopic response of 

the granular solids based on the interaction of the properties of the particles and the 

inter-particle cement. Two methods have been used to derive the macroscopic 

response of granular solids or cohesive frictional materials (Akram and Sharrock, 

2010). First, there are homogenization theories in which strength and elastic 
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characteristics have been extensively studied within the frame work of composite 

mechanics. These theories were historically developed for a matrix-inclusion system 

and have been applied to porous media by considering voids as inclusions in a solid 

matrix. However, the application of homogenization theories has been found 

inadequate for a densely packed granular material (Chang et al., 1989).  

 

The second method based on micromechanics was used to derive the elastic 

response of granular materials based on the behaviuor of two particles in direct 

contact. In this area, work has been done by Digby (1981) for porous rock Chang et 

al. (1989) presented the link between grain contacts and stiffness. The modulii of 

granular media that consist of unbounded particles has been studied by Cambou et 

al. (1995). 

 

On a grain scale, several theories of the elastic inter-particle deformation such as 

Mindlin (2014) and Mindlin and Deresiewica (2014) or those considering particles as 

rigid bodies (distinct element methods) and the contact laws for frictional granular 

materials have been extended towards cohesive-frictional materials. In numerical 

simulation of the cohesive-frictional materials, most existing DEM formulations 

incorporate a piece of cementing material between the two particles which is called 

a bond or a bonding model. This bond cements together the particles and transfer 

forces and moments across the particles. In DEM, various bonding models have been 

carried out to obtain a representative cohesive-frictional material, such as rocks, 

concrete, granular solids, etc. 

 

The proposed relations for determining the elastic and shear moduli was determined 

for concrete made of aggregate and binder (Portland cement). The results showed a 

reasonable correlation of the moduli with that of the experimental experience. 

However, the interplay of inter-particle friction and the effect of interface 

characteristics were not determined. 

 

Jiang et al. (2006) studied the effect of bond rolling resistance by incorporating 

surface resistance in the bond model, in the inter-particle contacts as well as the 

surfaces. Using the developed DEM computer code (NS2D), a total of 86 (at constant 

stress ratio) biaxial compression tests were conducted on the bonded granular 

samples with different densities, bonding strengths and rolling resistances. The 

numerical test results showed, firstly, a larger internal friction angle, a larger yielding 
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stress, more brittle behaviour and a larger final broken contact ratio than the original 

bond model. Secondly, the yielding stress increases non-linearly by increasing the 

area of rolling resistance. Thirdly, the first yield curve (initiation of bond breakage), 

which defines a zone of no bond breakage and whose shape and size are affected 

by the material’s density, was amplified by the bond rolling resistance and is 

analogous to that predicted by the original bond model. 

 

2.13.1 Limitations encountered in developing macro behaviour from of micro 

behaviour  

The Discrete Element Methods (DEM) is an approach of numerical simulation where 

the macroscopic behaviour of a particle assembly is computed from the individual 

motions and mutual interactions of the particles. It has been used in situations where 

state-of-the-art theoretical knowledge has not provided complete understanding and 

mathematical equations to model the physical systems, such as the mechanics of 

natural granular materials and rock masses (Ferrez, 2001). 

 

Because our understanding about the complex and heterogeneous nature of these 

materials is incomplete, DEM is considered a very good aid to simulate, understand 

and investigate the factors and mechanisms controlling the mechanical behaviour of 

these materials including sandstones. However, DEM simulation is always based on 

assumptions that limit the accuracy of the model outputs. Among the various 

assumptions, are those commonly made with regards to the geometry and material 

type of the particles. 

 

DEM with circular or spherical particles is the most commonly used simulation 

technique for rocks or granular materials due to the attractive computational cost. In 

contrast, polygonal particles take much longer time to simulate, even in laboratory 

scale models with a limited number of particles. Such large-scale simulations are 

even more computationally demanding along with memory, online storage, pre and 

post-processing, etc. (Ferrez, 2001). 

 

The particle material is treated as rigid and deformation is allowed to occur at the 

inter-particle contacts. In crystalline and hard rocks, this assumption can produce 

similar behaviour if there are a reasonable amount of contacts, that is, if large number 

of particles is used in comparison to sample dimension (Potyondy and Cundall 2004). 
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In this case, deformation along the contacts can result in a reasonable behavioural 

similarity as per natural rock. This assumption is also tenable for the simulation of 

real granular materials with very weak cementing materials (compared to particle 

materials) in which deformation always occurs through the cement or cement-particle 

interface. 

 

However, for granular solids with almost the same strength and elastic characteristics 

of particles and cement, the net mechanical response of the system will be 

contributed by the properties of both particles and cement. Therefore the use of rigid 

particles with a linear contact model will result in the response of such materials being 

misleading. This problem can be addressed by implementing Hertziann contact 

models (Mindlin, 2014) where particle contacts are treated as elastic bodies and can 

only undergo elastic deformation. Nevertheless, simulation of particle breakage or its 

plastic deformation cannot be achieved using this contact model. 

 

Furthermore, in DEM even with circular or spherical particles, the selection of micro 

mechanical parameters, model dimensions for the calibration process and particle 

size as well as size distributions are the basic constraints for rigorous use of DEM in 

rock mechanics (Koyama and Jing, 2007). Recently, Koyama and Jing (2007) and 

Esmaieli et al., (2009) have carried out studies to overcome these problems 

especially by using a statistical approach to determine a set of mechanical 

parameters and a representative volume of the model with suitable particle size and 

size distribution. These studies, although helped in achieving a model representative 

of a rock or rock mass (by incorporating joints) based on representative elementary 

volume (REV) that estimates the relative effect of model dimensions, particle size 

and size distribution, the relation of DEM’s parameters with that of real life physical 

models still remains a challenge that limits DEM’s successful and rigorous use in 

predicting the response of natural materials whose mechanics is not well-understood 

such as sandstone. Therefore, DEM requires a careful calibration and validation with 

real experiments to better understand and overcome its limitations. 

 

2.13.2 Calibration and validation of micro and macro data 

Calibration and validation are two separate terms that are normally confused with 

each other in DEM’s field of applications. Validation refers to the macroscopic 

behaviour of simulation, which is similar to physical systems having a similar 
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microstructure, while calibration is purely a mechanical macroscopic response, which 

can be gained from a simulation, such as that of a physical system that may or may 

not have the same microstructure (Akram et al., 2010). 

 

In calibration, concrete, crystalline rocks or brittle materials can be modelled using 

DEM with the inverse modelling approach. The Bonded Particle Model (BPM) 

(Potyondy and Cundall, 2004) and Clumped Particle Model (CPM) (Cho et al., 2007) 

are typical examples. The resultant behaviour is the interaction of micro-mechanical 

parameters, which are normally assumed or estimated rather than measured. It has 

been observed that by using the inverse modelling approach, a similar mechanical 

response of a model can be gained with more than one combination of various micro 

parameters (Akram et al., 2010). For example, the calibration of peak strength and 

elastic modulus in uniaxial testing does not mean that the simulation is calibrated with 

that of the physical material. Over estimation of the tensile strength in the Brazilian 

test and underestimation of the angle of friction in uniaxial and tri-axial testing are 

inherent problems observed by many authors (Potyondy and Cundall, 2004; Cho et 

al., 2007). These problems cast doubt on the calibration process and the validity of 

the adopted micro parameters for subsequent problem-solving simulations. 

 

In contrast, validation refers to a discrete modelling approach that determines how 

much quantitatively realistic behaviour can be obtained using physical or laboratory 

measured parameters. Although DEM has been validated to yield many features of 

physical materials (Potyondy and Cundall, 2004), to what extent real behaviour can 

be achieved using DEM simulation, is still a question. 

 

Therefore, to obtain a test for successful validation, either the DEM simulations 

should be micro-structurally equivalent to the physical materials or the physical 

materials should be simpler so that an equivalent microstructure can be obtained in 

DEM simulations. The geological materials are naturally not very uniform and there 

are practical constraints that limit the amount of information that can be determined 

about the geology and the behavioural properties of the materials. Hence, simulating 

or validating the behaviour of such materials will pose difficulties in obtaining micro-

structural equivalence in simulations and determining micro mechanical parameters 

(Akram, 2010). 
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Alternatively, a physical system can be developed whose simulation can be obtained 

in the DEM simulation with an equivalent microstructure, physical properties and 

model dimensions. All the physical and mechanical properties of such a system, for 

example, particle and cement based parameters, should be measured and used in 

DEM simulations. The comparison of the macroscopic responses of both systems in 

equivalent loading would validate the DEM simulation against a real physical system 

(Akram, 2010). 

 

2.14 Preparation and testing of rock materials 

Preparation and testing of rock material is another useful option for understanding 

the essential mechanics of natural granular materials, such as sandstones. Natural 

materials are non-uniform, anisotropic and heterogeneous. In order to understand 

the behaviour of these materials experimentally, the results will be an interaction of 

various factors such as, particle shape, size distribution, packing, elastic properties, 

characteristics, composition and distribution of cementing materials and, most 

importantly the void ratio and natural heterogeneities (Akram, 2010). 

 

To get an understanding of the influence of a specific parameter on the overall results 

is very difficult. For example, two samples collected and tested from one location with 

different loading directions will differ in results and hence limit the accuracy of the 

results. Although the laboratory testing of the rock specimens under various loadings 

tends towards the basic understanding of the mechanics of the rocks, the net failure 

and peak strength seem to be governed by the aforementioned factors whose 

dependence cannot be investigated without keeping other parameters constant. In 

addition, practical considerations limit the amount of information that can be 

determined about the geology and behavioural properties of the materials (Wiles, 

2006). 

 

In order to overcome these limitations and obtain an understanding of the 

mechanisms occurring in the natural materials comprising rocks, an approach of 

physical modelling has been adopted in rock mechanics, which includes the 

characterization of rock to adequately describe the micro-structure of natural rocks. 

The two major advantages of this technique are the controlling of the heterogeneities 

that occur in natural materials and obtaining the reproducibility of the test results 
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(Wiles, 2006). This is very difficult in testing natural materials, such as rocks. 

However, this has been included in this research 

 

Furthermore, the texture and structure of the material, that is, the grain size, porosity 

and cementation, can be controlled (den Brok et al., 1997). This approach has led to 

the understanding of the various properties and mechanics of the rocks such as 

stress-strain behaviour, pre and post peak dilation, fracture propagation, role of 

cementing materials and dependence of the particle size. This approach was 

specifically considered in the laboratory investigation of sandstones, which are 

naturally very heterogeneous and anisotropic rocks. The laboratory study of 

sandstone is very difficult because of the practical problems associated with the 

sampling and testing of such rocks. Hence, it is more appropriate to understand and 

investigate such rocks using a physical modelling approach. However, an important 

factor in the physical modelling of sandstones is to obtain similitude in the prepared 

physical model with that of the sandstone both in behaviour and structure. Different 

modelling materials, both natural and artificial have been used in the past for 

understating and investigating the mechanics of rocks and soils. A detailed 

discussion on similitude and modelling materials is provided in the following sections 

(Akram, 2010). 

 

2.14.1 Application of studies to simulation similitude 

In rock mechanics, similitude refers to the physical or behavioural similarity of a rock 

system with that of another system which could be a physical (synthetic rock) or an 

analytical or numerical model. In other words, two systems that have the same 

physical characteristics (features, parameters) and have the same reaction in 

response to some action, for example, loading, are said to have similitude.  

The two basic conditions of similitude are: 

 

1. Geometric similitude: Which is geometric similarity between two 

systems; it could be on a macro scale, that is, dimensions of the model 

and scaling and micro structural equivalence. However, it should be noted 

that it is not the only necessary condition of similitude (Sziics, 1980). 

 

2. Phenomenon similitude: Two systems are similar if their corresponding 

properties are connected by bi-unique (one-tone) mapping 
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(representations). It mainly encompasses the responses of two models, 

that is, their strength and elastic characteristics (Akram, 2010). The 

similitude is based on mathematics. Hence, the sufficient and necessary 

condition of similitude between two systems is that the mathematical 

model of one is related by a bi-unique transformation of the other model 

(Akram, 2010). 

 

Similitude is measured in terms of its credibility, which is the degree of similarity 

(Sargent, 2004). The credibility of similitude defines the limit of the acceptance of a 

system showing simulation as that of the actual system. The similitude studies in rock 

mechanics can be divided into two main classes: similitude between synthetic rocks 

(physical models) and natural rocks, and similitude between numerical models and 

natural rocks (Figure 2.10). 

 

 

Figure 2.10 Diagram showing the main areas of the similitude studies in rock 
mechanics. (Akram, 2010). 

 

In the study of rock mechanics, physical modelling has been an essential approach 

to understand the dependency of various parameters that are nearly impossible to 

examine in natural rocks owing to their inherent heterogeneities. Several researches 

have been conducted to study and understand the mechanics of the natural materials 

involving the preparation and testing of synthetic rocks having similitude with natural 

rocks. In this work, the similitude credibility represents the level of acceptance of the 

similarity between the elements of the two systems (i.e., physical materials and the 

natural rocks). For example, similarity in behaviour (e.g., mechanical parameters), 

micro texture and/ or structure, model scaling and dimensions. 
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Numerical methods have been progressively applied in rock mechanics to 

understand and predict the behaviour of natural materials. In the application of the 

numerical methods, theoretical knowledge of the mechanics of the materials has 

been introduced to simulate the behaviour of the rocks (Akram, 2010). Both 

continuum and dis-continuum approaches have been employed in this respect in rock 

engineering. The dis-continuum approach, where rock can be simulated as the 

assemblage of discrete bodies (Cundall, 1971) has become increasingly popular with 

the advances in computer technology and computation speeds. It is a rigorous aid in 

understanding the mechanics of granular media where the macroscopic response of 

the system is derived from the movement and interaction of individual particles. 

However, numerical models are always based on theoretical formulations and 

simulate behaviour of material based on average input parameters and assumptions, 

which may or may not be true in natural materials. Therefore, to make numerical 

modelling an effective and rigorous tool, it must be calibrated and validated with the 

physical model for reasonable similitude credibility (Ferrez, 2001). Hence, similitude 

studies involving numerical modelling should focus firstly on obtaining sufficient 

similitude (in behaviour, structure, dimensions etc.) with that of simple physical 

models rather than with natural rocks. Afterwards, if numerical models and simple 

physical models obtain similarity in behaviour and structure, they can be used for 

natural rocks.  

 

2.14.2 Rock samples 

The characterization and extraction of micro-parameters from sandstone are required 

to simulate natural rock. In previous works on granular assembly, micro-parameters 

were estimated by building the rock material with artificial grain and cement 

(Stimpson, 1970). Employing the use of artificial grains did not directly provide the 

micro-structural data; rather dilation was used as a yardstick to obtain micro-

parameter (Brace et al., 1966). The disadvantage of using the artificial granular 

assembly is obvious in that dilation are not observed in none representative sample, 

therefore they are not exactly suitable for extracting the micro-parameters as it would 

have been from the real rocks. Therefore, this research seeks to identify the 

microstructure of rock and take the advantage of the characteristics behaviour to 

understand the deformation mechanics by extraction micro-parameters based on the 

structural behaviour. 

 



 

66 

 

In the modelling of sedimentary rocks, physical models were developed by using 

cement and gravels (Kobayashi and Yoshinaka, 1994). These micro-structures were 

tested for mechanical parameters in the context of foundation engineering and 

reasonable reproducibility of test results was obtained by controlling the properties of 

the cement matrix. But the elastic properties are not exact. 

 

In every modelling study, a key objective was to achieve the similitude between the 

micro-structure  and the rock, that is, the micro-structure should have similarities with 

the rock that could be at micro level (at laboratory scale) – the micro structure and 

the texture. It is very necessary to have a macroscopic mechanical response – 

strength and deformation characteristics. To satisfy all the conditions of similitude is 

practically impossible as the knowledge of mechanisms involved at the micro level of 

a particular rock can never be completed (Stimpson, 1970). Hence, the preference 

for the fulfilment of the conditions of similitude varied with the target objectives of the 

micro-structure. For instance, in some laboratory studies the microstructure gained 

similitude with natural rock while strength and other parameters were given 

secondary priority. In the modelling of an underground opening, microstructure was 

not given priority as the stress field and the rock strength and deformation 

characteristics were considered more important. 

 

A numerical sandstone comprised of spherical quartz (rather than natural gravels) 

with a controlled data of bond strength as a cement matrix is a good option to 

understand the mechanics of rock deformation. The equivalent micro-structure of 

such sandstones can also be developed using DEM simulations for further 

investigation and similitude. The use of spherical quartz in synthetic sandstone will 

rule out the effect of particle shape and will provide better understanding of the 

mechanics of natural rocks. The behavioural similitude of synthetic sandstone can be 

obtained by comparing its mechanical response with that of natural sandstones 

(Figure 2.11). 
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Figure 2.11 Conceptual illustration of the present research: a) macro structure of 
natural sandstone. b) Numerical simulation of particles and inter-particle 
cementing material representing the natural sandstone. 

 

2.15 Numerical solution to micro-parameter measurement from rock 

Series of experimental research have shown that the failure process in brittle rocks 

under compression is characterized by complicated micromechanical processes 

(Lockner et al., 1991), including coalescence of micro-cracks and the nucleation 

growth, which may result in strain localization in the form of macroscopic fracturing   

Fitts and Peters, 2013). The evolution of micro-cracking, generally associated with 

the emission of acoustic energy (AE), results in a distinctive non-linear stress–strain 

response, with macroscopic strain softening commonly observed under low-

confinement conditions (Bieniawski, 1967; Eberhardt et al., 1999). Unlike other 

materials such as metals, rocks exhibit a strong pressure-dependent mechanical 

behaviour (Cook, 1976). The change in failure mode, from axial splitting to shear 

band formation, is often examined for increasing confining pressures (Horii and 

Nemat-Nasser, 1986). This change in the failure behaviour is expressed in a non-

linear failure envelope (Kaiser and Kim, 2008) and a progression from brittle to ductile 

post-peak response (Wong et al., 2006). The failure process observed during 

laboratory-scale experiments is further complicated by the presence of 

discontinuities, such as joints, faults, shear zones, schistosity planes, and bedding 

planes, at rock mass level (Goodman, 1989). Specifically, the response of the intact 

rock is affected by discontinuities by reducing its strength and inducing non-linearities 

and anisotropy in the stress–strain response (Hoek et al., 2002). Discontinuities add 

kinematic constraints on the deformation and failure modes of structures in rocks 

(Hoek and Diederichs, 2006). 

 



 

68 

 

Apart from the peculiar difficulties associated with the determination of a reliable 

micro-measurement input parameters, the application of numerical modelling for the 

analysis of rock engineering problems are challenging due to the features earlier 

mentioned of the rock behaviour. In particular, the gradual degradation of material 

integrity during the deformation process, together with the influence of pre-existing 

discontinuities on the rock mass response, has represented a major drive for the 

development of new modelling techniques. In this context, the available numerical 

approaches are typically classified either as continuum- or discontinuum-based 

methods (Jing and Hudson, 2002). 

 

The handling of the computational domain as a single continuous body is the main 

assumption of continuum-based methods. Standard continuum mechanics 

formulations are based on theories such as plasticity and damage mechanics, which 

adopt internal variables to capture the influence of history on the development of 

stress and changes at the micro-structural level, respectively (De Borst et al., 2012). 

Generally, the implementation of continuum technique is based on numerical 

methods, such as non-linear Finite Element Method (FEM), Lagrangian Finite 

Difference Method (FDM), and Boundary Element Method (BEM), with the integration 

of plasticity-based material models. Standard strain-softening fundamental 

relationships cannot capture localization of failure because the lack of an internal 

length scale. This is due to an underlying mathematical problem (De Borst et al., 

1993). The main consequence of using a standard continuum to simulate strain 

localization is the fact that localization occurs in a region of zero thickness and 

consequently superior mesh sensitivity arises. To overcome this deficiency, the 

description of the continuum must account either for the viscosity of the material, by 

incorporating a deformation-rate dependency, or for the change in the material micro-

structure, by enhancing the mathematical formulation with additional terms (De Borst 

et al., 1993). The recent technique, known as regularization, includes non-local model 

developed by Bažant and Pijaudier-Cabot, (1988), gradient model developed by 

Mühlhaus and Aifantis, (1991), and Cosserat micro-polar model developed by 

Mühlhaus and Vardoulakis, (1987). Alternatively, Cohesive-crack Model under the 

assumption that damage can be represented by a dominant macro-fracture grouping 

all non-linearities into a discrete line was proposed by Hillerborg et al., (1976) and 

Bažant and Oh, (1983). A fictitious crack concept is employed to represent the effect 

of a Fracture Process Zone (FPZ) ahead of the crack tip, whereby phenomena such 



 

69 

 

as small-scale yielding, micro-cracking or void growth and coalescence are assumed 

to take place. In case of heterogeneous rocks, strain localization has been 

successfully simulated by damage models with statistically distributed defects. 

Several variations have been made to this approach for numerical schemes such as 

Finite Element Method (FEM) (Pande et al., 1990), Smooth Particle Hydrodynamics 

(SPH) (Benz and Asphaug, 1995), Cellular Automaton (Feng et al., 2006), and Lattice 

Models (Potyondy and Cundall, 2004). 

 

Two techniques are commonly used to account for the presence of rock mass 

discontinuities within continuum models  (Amadei, 1996). Homogenization technique 

is often adopted if the number of discontinuities is relatively large. The most widely 

used homogenization approach entails reducing, within a conventional elasto-plastic 

model (Hoek et al., 2002), the rock mass deformation modulus and strength 

parameters to account for the degrading effect induced by the local geological 

conditions (Hoek and Diederichs, 2006). More advanced models can also include 

transversely isotropic elastic response induced by preferably oriented joints (Amadei, 

1996).  Alternatively, if the problem is controlled by a relatively low number of discrete 

features, special interface (or joint) elements can be incorporated into the continuum 

formulation (Duncan and Goodman 1968; Pande and Sharma, 1979; Bfer, 1985). 

This approach is also known as the combined continuum-interface method (Bfer, 

1985).  

 

Discrete (or discontinuous) modelling techniques which is commonly referred to as 

the discrete element method (DEM), treat the material directly as an assembly of 

separate blocks or particles. Cundall and Hart (1992) defined, a DEM is any 

modelling technique that (a) allows finite displacements and rotations of discrete 

bodies, including complete detachment; and (b) recognizes new contacts 

automatically as the simulation progresses. DEM was originally developed to 

efficiently treat solids characterized by pre-existing discontinuities having spacing 

comparable to the scale of interest of the problem under analysis and for which the 

continuum approach described above may not provide the most appropriate 

computational framework. These problems include: compact rock masses, ice plates, 

masonry structures, and flow of granular materials. DEMs can be further classified 

according to several criteria such as, the type of contact between bodies, the 

representation of deformability of solid bodies, the technique for the detection and 
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revision of contacts, and the solution procedure for the equations of motion (Jing and 

Stephansson, 2007). DEM implementations are broadly divided into explicit and 

implicit methods, depending on the adopted solution algorithm. The term distinct 

element method refers to a particular class of DEMs that adopt an explicit time-

domain integration scheme to solve the equations of motion for rigid or deformable 

discrete bodies with deformable contacts (Cundall and Strack, 1979a). The most 

important implementation of these group are represented by the Universal distinct 

element code (UDEC) (Itasca, 2000) and the Particle Flow Code (PFC) (Itasca, 

2012b). Similarly, the best known implicit DEM is the discontinuous deformation 

analysis (DDA) method (Goodman and Shi, 1988). Despite the fact that DEMs were 

originally developed to model jointed structures and granular materials, their 

application was afterwards extended to the case of systems where the mechanical 

behaviour is controlled by discontinuities that emerge as natural outcome of the 

deformation process, such as fracturing of brittle materials. Specifically, the 

introduction of bonding between discrete elements allowed capturing the formation 

of new fractures and, thus, extended the application of DEMs to simulate also the 

transition from continuum to dis-continuum. 

 

According to Bićanić (2003), the original boundary between continuum and dis-

continuum techniques is less noticeable because several continuum techniques are 

capable of dealing with emergent discontinuities associated with the brittle fracture 

process. In particular, the hybrid approach known as the combined finite–discrete 

element method (FDEM) (Munjiza et al., 1995) effectively starts from a continuum 

representation of the domain by finite elements and allows a progressive transition 

from a continuum to a dis-continuum with insertion of new discontinuities. 

 

2.16 Kinetics of particles from Newton’s Law 

Particle acceleration is proportional to the magnitude of the resultant force, provided 

the resultant force is not zero and these particles move in the force direction (Jong 

and Rogers, 1990).Therefore, the resultant force or shear force is equal to (σ1 – σ3) 

in the photo image and is repeated in Newtons’ second law. F = Ma. Moreover, the 

ratio of the magnitudes of the resultant force and of the acceleration can be used to 

define the mass of the particle (Cundall and Strack, 1979b). It has been demonstrated 
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that Newton’s second law can be expressed in an alternative form relating the rate of 

change of the linear momentum with the resultant of the forces acting on that particle 

(Corben and Stehle, 1994). However, the resultant force is equal to the rate of change 

of the linear momentum while linear momentum is the product of mass and velocity. 

A single particle’s momentum is defined by the Newton’s second law which is the 

operation done to allow each particle of bonded particles to go into motion. By 

allowing the inter-particle force to move, the bond slip and stiffness can be used to 

investigate deformation mechanism (Cundall, 2004).  If the normal force component 

on the bond is Fn, the total acceleration at overlap is Un, and the contact normal 

stiffness is Kn, the stiffness normal direction is controlling force behaviour described 

by the relationship between these three parameters.  While behaviour in when it is in 

the contact tangential direction is that which relates the increment of both shear 

forces (ΔFn) and shear acceleration (ΔUn) (Cundall, 2004). 

The linear momentum is adapted to the contact to give a contact model independent 

of both shear and normal stiffness. The grain slipping is synonymous to the 

acceleration of particle given by equations of grain behaviour in Figure 2.13, the 

normal force reaches the maximum value before shear next contact force of known 

friction coefficient allow particle rotation.  

 

2.17 Bonded grains response and micro-parameters 

Sandstone is bonded quartz grains bonded together by clay which acts as cement. 

The grain – grain usually overlap and if the force and momentum in each contact 

bond is    F i  a n d  M n
,  the grain responds to stress. The force –displacement law 

defines the grain responds at bonded contact with six micro-parameters which are 

normal and shear stiffness Kn and Ks, frictional coefficient (µ) and the corresponding 

parameters in tangential direction.  
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Figure 2.12 Force-displacement behaviour of grain-cement system (Itasca, 2000).  

 

For the grain and bond respectively, these parameters are assigned to grain contact 

at the point of overlap 𝒙𝒊
(𝒄)

 along the line joining the grain centres. As represented in 

Figure 2.12, linear springs are assumed to be in the overlap, and act in series along 

the slider in the shear direction, therefore the contact force vector F i  which 

represents the action of grain A on B can be resolved into normal and shear 

components with respect to the contact plane   as expressed in equation 2.4 (Itasca, 

2000).  

 

Going by the theory of grain-cement system discussed in this section, the next 

section takes advantage of the fact that deformation occurs even at a grain scale. 

Hence scaling deformation process in sandstone is likely possible. This is because 

grain-cement interaction at any two grain contact can be studied using photo stress 

technique. Techniques capable of grabbing information at a single point in any solid 

structure can possibly exhibit birefringence. This point information is explored by an 

experimental calibration process on sandstone. 

2.18 Assumptions made in the experimental evaluation of micro parameters 

The assumptions made to obtain micro properties from the sandstone model are 

inherent based on Newton’s second law. These includes; (1) the contact bond is 

envisaged as two cement grains. Thus the grains interaction occurs solely at the 

cemented contact. (2) Each grain will slip from its position at bond if the forces at the 

contact exceed the maximum shear contact force. (3) The quartz grains are of finite 
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mass compared to the bulks sample. When the force applied on the sample strength 

exceed the bond strength of the weakest visible bond, the grain will move and distort 

the bond. (4) The photo elasticity techniques can measure micro strain in stressed 

points. And the strain measured will based on the contact interaction of the grains 

based on these stated assumption. A point measurement of diameter approximates 

to the diameter of quartz in sandstone provides the deviator stress data which defines 

the micro or single point strain information. (5) Sandstone sample is a bonded grain 

model in an isotropic state when it is not stressed. 

 

When sandstone is stressed by loading, the motion of quartz grains will occur in the 

direction of stress. This is the strain which can be transferred to the coating in the 

same direction resulting in optical anisotropic behaviour. Therefore calibration 

involves gradual application of load on the sandstone specimen. The incremental 

load is expressed as a sequence of light and dark fringes on the coated sandstone 

sample. At the maximum light appearance, a dark contour is noticed as a fringe order. 

The first dark that appears is the first fringe order and the subsequent dark lines are 

the consecutive fringe order which provide consistency in calibration stages.  

 

2.19 Grain stiffness detection by experimental technique 

Several experimental approaches have been employed in detection of micro defect 

in materials which can be employed in deformation studies in sandstone. The 

techniques could be the ultrasonic detection or acoustic. An additional technique is 

the photo stress employed in Chapter 3. 

 

2.19.1 Ultrasonic wave propagation through materials 

Ultrasonic wave can be defined as physical vibrations in matter which occur at 

frequencies above 20Hz, which is approximately within the limit of human hearing. 

The waves can only exist in a material medium, such as air, water, rock (Halliday et 

al., 2001). There are so many users of ultrasonic sounds in nature. For instance, Bats 

are known to use ultrasonic sounds as a means for nocturnal navigation, while the 

Dolphins also use ultrasonic sounds for navigation, basic communication and 

detection of food in the underwater environment (Hazzard, 1998). 



 

74 

 

 

Ultrasonic sounds have been used in different facets of human endeavours. For 

example, in medicine, it is widely used in echocardiography, in engineering; it is 

commonly used for rock fracture detection, while in the military; it is commonly used 

for submarine sonar ping (Hazzard, 1998). Recently, ultrasonic sound has been 

developed for use in seismology, where it is commonly known as acoustic emission. 

An acoustic emission can be defined as a transient elastic wave emitted from small-

scale cracks also known as micro-cracks, which are formed as a result of changes in 

stress (Hazzard, 1998). 

 

Ultrasonic waves normally travel in longitudinal and transverse modes. A longitudinal 

ultrasonic wave can be described as a pressure wave or P-wave. This type of wave 

is the fastest moving ultrasonic wave. It propagates along a straight line as a result 

of particles on the molecular level oscillating parallel to the direction of propagation. 

A transverse wave also known as a shear wave or S-wave on the other hand is a 

wave which propagates perpendicular to the direction of travel due to a shear 

oscillation on the molecular level. The S-wave is slower than the P-wave due to the 

mode of oscillation (Johnson, 2005). 

 

A horizontal variable represents transverse displacement of an element in the 

technique and time is significant. The amplitude is the magnitude of the displacement 

of the wave. The phase of the function is known as the angular motion with respect 

to a reference position. The phase changes linearly with time (Halliday, 2001). The 

repetitions of the pattern or shape of the function can be measured to determine the 

wavelength of the wave. A wavelength is the linear distance the wave travels in one 

cycle of the wave’s function (Halliday, 2001). The onset of the wave across a material 

marks the arrival time of the wave. Ultrasonic waves depend on the elastic properties 

of a material (Halliday, 2001).  

 

Ultrasonic waves can be propagated through any natural medium. The resonant 

frequency of a material is an important characteristic to note when attempting to pass 

ultrasonic waves through the material. This value is usually non-linear in rock. The 

resonant frequency of a rock can change with saturation or stress. Matching the 

resonant frequency of the rock to the transmitted ultrasonic signal will maximize the 
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amount of the wave’s energy that is passed through the rock. The resistance to the 

flow of sound wave through the rock is known as acoustic impedance (Johnson, 

2005).  

 

Another concern when propagating an ultrasonic signal through a rock is refraction. 

Refraction is the incomplete transmission of a wave through an interface. When there 

is interplay between a wave and two materials that are not the same (i.e. 

mineralization, faults, or bedding planes inside of a rock). The wave splits into two 

and is said to be refracted (Halliday et al., 2001; Hazzard, 1999). A part of this 

refracted wave is reflected and the other part is transmitted at a different angle. This 

angle of refraction is influenced by the angle of wave incidence. The common theory 

ascribe to this technique is known as the Snell’s Law (Halliday et al., 2001; Hazzard, 

1999). 

 

2.19.2 Mode conversion and application of wave measurement to this 

research 

When sound propagates in a solid material, wave energy is transformed from one 

form to another form. For instance, when a longitudinal wave hits an interface at an 

angle, a portion of the energy can cause particle movement in the transverse 

direction to start a shear wave. Mode conversion occurs when a wave encounters an 

interface between materials of different acoustic impedances and the incident angle 

is not normal to the interface. It is imperative to note that mode conversion occurs 

each time a wave encounters an interface at an angle. This mode conversion occurs 

for both the portion of the wave that travels through the interface and the portion that 

reflects off the interface (Cobbold, 2007). 

 

When sound waves pass through an interface between materials having different 

acoustic velocities, refraction takes place at the interface. The greater the difference 

in acoustic velocities between the two materials, the more the sound is refracted. 

However, the converted shear wave is not refracted as much as the longitudinal wave 

because shear waves travel slower than longitudinal waves. Therefore, the velocity 

difference between the incident longitudinal wave and the shear wave is not as great 

as it is between the incident and refracted longitudinal waves. Thus when a 

longitudinal wave is reflected inside the material, the reflected shear wave is reflected 

at a smaller angle. 



 

76 

 

 

2.19.3 Ultrasonic measurement of grain contact stiffness in normal and 

perpendicular direction 

Monitoring and analysis of ultrasonic wave is another way that researchers are using 

acoustic emissions to study rock mass failure with the hope of predicting it someday 

(Luong, 2001). A major research area, which has invested heavily in 

ultrasonic/acoustic monitoring, is the search for non-accidental rock fractures in 

drilling, safe repositories for spent nuclear fuel, etc. The research on the fracture 

prediction from the beginning of microstructural deformation covers the estimation of 

stiffness parameters from the rock’s microstructure which is one of the micro-

parameter of geological rock applicable to rock simulations, in which the parameter 

can become a constant and would be kept in discrete simulation, which will be applied 

later for experimental validation (Luong, 2001). The problem caused by allocating 

normal stiffness parameter to discrete modelling is one of the major areas addressed 

in this research. The modelling must proceed with stiffness of grains in vertical and 

shear direction to minimize error in micro-measurement from rock during simulation. 

The advantage of this precaution is to avoid false failure prediction in field application. 

A realistic approach to the problem of reproducing rock behaviour is to build the 

model with physical micro-parameters that guarantee physical representation of the 

rock system. Photo stress analysis was employed to validate that acoustic monitoring 

in this study. Thus, an experimental contribution to discrete modelling of rock 

deformability is enhanced  

 

2.19.4 Experimental challenges using ultrasonic wave technique for micro-

measurement of mineral micro-structure 

One of the aims of this research is to evaluate microstructural parameters of rock. 

Therefore, it is necessary to characterize the material.  Usually, microstructures of 

materials are characterised with elastic wave properties. This should be limited to 

uncertainty of less than 0.1% (Colombo et al., 2003) but these limitation threshold is 

difficult to achieve. The ultrasound characteristic velocities are widely used as means 

of micro-structural detection. But there are some challenges regarding their 

measurements. These challenges include: 
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The ultrasonic wave technique does not allow direct measurement of the grain 

contact parameter. So the contact parameters from ultrasound are not measured with 

ultrasonic technique, they are obtained by correlations of wave velocities with the 

micro-data. The stiffness obtained is obtained by the correlation of the wave velocity 

with the stiffness parameter (Zadler et al., 2004). In this research, photo-stress 

technique has been used to measure directly the contact parameters which are 

independent of the assumed correlations of wave velocity with rock grains. Another 

source of difficulty is that the Eigen-frequency identification comes from the physical 

coupling of the sample to the apparatus. Therefore slight differences in the 

positioning of the sample between the transducers along with the force applied by 

the transducers contribute to this uncertainty. This error can be estimated by 

completely mounting and un-mounting the same sample several times (Zadler et al., 

2004).  

 

On the other hand, ultrasonic wave have been found successful in geological 

investigations and application therefore it has been employed in this study for the 

measurement of micro-parameters because it is sensitive to both surface and 

subsurface discontinuities and thee depth of penetration. For flaw detection or 

measurement, it is superior to other methods, only single-sided access is needed 

when the pulse-echo technique is used, it is highly accurate in determining reflector 

position and estimating size and shape, minimal part preparation is required, it 

provides instantaneous results, detailed images can be produced with automated 

systems, it is non-hazardous to operators or nearby personnel and does not affect 

the material being tested and finally, its equipment can be highly portable or highly 

automated (Zadler et al., 2004).  The utilization of polarized light in tackling the 

present challenge of obtaining micro-measurement from rock is presented in the next 

section. 

 

2.19.5 Utilizing polarized lights in micro-measurement techniques 

Polarized light is an electromagnetic vibration employed to alleviate the challenges 

encountered in micro-measurement of rocks. The technique involves using an 

incandescent light source that emits radiant energy which moves in all directions and 

is made up of a wide spectrum of vibrations of different frequencies and wavelengths. 

A section of this spectrum which contain wavelength between 400 and 800 nm [15 
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and 30 x 10-6 in], is applicable within normal limit of human eyes. The direction of 

movement of the light is perpendicular to the vibration associated with the light. A 

train of waves is emitted by a light source which is made up of vibrations in all 

perpendicular planes. 

 

If a polarization filter is introduced, only the component of the vibration that is parallel 

to the privileges axis of the filter will be transmitted. The vibration contained in one 

plane in an organised beam is known as polarized light or “plane polarized”. A 

complete extinction of the beam can be achieved when the axis of the two filters are 

perpendicular to one another and another polarizing filter A is placed in the path. The 

movement of light in a vacuum or in air is at a speed C of 3 x 1010cm/sec, the speed 

(V) is lower in other transparent bodies and the ratio C/V is known as the index of 

refraction. This index is constant irrespective of the direction of movement or plane 

of vibration in a homogeneous body. However, the index depends on the direction of 

vibration with respect to index axis in crystals. Some materials such as plastics act 

isotopically when unstressed, but become optically anisotropic when stressed. The 

variation in the index of refraction is a function of the resulting strain, analogous to 

the resistance change in a strain gage. (Micro-Measurements, 2005; Mehta, 2008). 

 

2.19.6 Photoelasticity techniques applied to rock mechanics 

Many crystalline materials such as barium borate, beryl, silicate, quartz, etc. can 

exhibit uniaxial birefringent by nature because they exhibit double refraction. The 

frozen molecules in plastics allows plastics to possess birefringence property but 

polarizers are used to detect the stresses in plastics like polycarbonate, polystyrene, 

cellulose nitrate,  epoxy resins, polymethacrylate, etc. Material selection is driven by 

the aim of the experiment to be performed.  Birefringence occurs when rays of light 

travels from its source, incident on certain materials, split into two and transmitted 

through the material in different directions.  Materials which are isotropic can be made 

optically anisotropy by mere application of stress. David Brewter (1816), was first to 

observe polarised light producing inference bands called isochromatics or stress 

fringes (Theocaris and Gdoutos, 2013). The stress fringes are defined by the locus 

of point of same maximum shearing stress normal to the incident rays which is in the 

plane of the material under investigation. Dark to bright colours form an optical cycle 

when the isochromatic effect is filtered by monochromatic filter. Zero fringe order is 
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assigned to the dark fringe, the second fringe is assigned the first fringe order and 

the subsequent fringe follow consecutive numbers called fringe order. The bands of 

colours usually show contours across the model sample depending on the irregularity 

in the sample. High stresses points are seen as closely spaced bands and low 

stressed points are seen as broadly spaced bands. The objective of this section is to 

evaluate stress magnitude across the model sample and to ensure repeatability 

procedure for the evaluation.  

 

2.20 Calibration of sandstone and stress optic constant. 

The material’s stress optic coefficient is the measure of the susceptibility of the 

material to photoelasticity (Dally and Riley, 1991).  Its unit has dimensions reciprocal 

to that of stress (m2/N or 1/Pa). If a fixed value of wavelength is used for the 

calibration, then a constant can be maintained by relating the wavelength to the 

stress optical coefficient. Expressed in Equation (2.1) (Sampson, 1970). 

 

ʎ

𝑐
= 𝑓𝜎 = constant                        (2.1)  

 

Where ʎ is the wavelength, c is the stress optic coefficient, 𝑓𝜎 is the material fringe 

value in m / ( m2 / N ) = N / m.  

The material fringe value can also be expressed as a function of principal stress 

difference in Equation (2.2) (Dally and Riley, 1991) 

 

𝜎1 − 𝜎2 = (
𝑁𝑓𝜎

𝑡
)                 (2.2) 

 

Where t is the material thickness, N is the fringe order; the principal stress difference 

is 𝜎1 − 𝜎2 and 𝑓𝜎is the fringe value in N/m. This unit is the direct unit of stiffness of a 

material which is a similar to the definition as the elastic modulus of the materiel.  

 

During calibration, careful precaution can be followed such that strains are made 

constant throughout the thin coating. Sandstone can become anisotropic under 

stress, but isotropic at initial state. It obeys a linear elastic behaviour which can be 
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observed for many samples before coating. Then it is convenient to incorporate the 

expression in Equation (2.3) (Khan and Wang, 2001). The strain in the sandstone 

can be expressed on the coated surface therefore the strains can be equal (Caputo 

and Giudice, 1983, Khan and Wang, 2001)  

 

 𝜀1
𝑠 = 𝜀1

𝑐 =
1

𝐸𝑠
(𝜎1

𝑠 − 𝑣𝑠𝜎2
𝑠) =

1

𝐸𝑐
(𝜎1

𝑐 − 𝑣𝑐𝜎2
𝑐)                        (2.3) 

 

Where 𝜀1
𝑠𝑎𝑛𝑑𝜀1

𝑐   strain in the sandstone and coating are respectively E is the elastic 

modulus and 𝑣 is the Poisson’s ratio. Superscripts s and c are strain in sandstone 

and coatings respectively (Caputo and Giudice, 1983). Also to obtain the stress 

correlation of sandstone and coatings, Equation (2.3) becomes Equation (2.4) (Khan 

and Wang, 2001, Caputo and Giudice, 1983). 

 

𝜎1
𝑠 =

𝐸𝑠

𝐸𝑐(1−𝑣2)
[(1 − 𝑣𝑐𝑣𝑠)𝜎2

𝑐 − (𝑣𝑐 − 𝑣𝑠)𝜎1
𝑐]                           (2.4) 

 

Due to vertical and horizontal variation in stresses, the stress field in the sandstone 

is defined by Equation (2.4) and the difference in the sandstone stresses (𝜎1
𝑠 − 𝜎2

𝑠) 

is defined by Equation (2.5) where the difference between the principal stresses in 

the photoelastic coating (𝜎1
𝑐 − 𝜎2

𝑐) is utilized (Khan and Wang, 200; Caputo and 

Giudice, 1983). 

 

𝜎1
𝑐 − 𝜎2

𝑐 =
𝐸𝑐 (1+𝑣𝑠)

𝐸𝑠 (1+𝑣𝑐)
(𝜎1

𝑠 − 𝜎2
𝑠)     (2.5) 

 

Equation (2.5) is the relationship between stress differences of both sandstone model 

and photo elastic coating. Since the light transmits through the photo elastic coating 

twice then we have the stress optic law definition for coated model as stated by (Khan 

and Wang, 2001; Caputo and Giudice, 1983). 

 

𝜎1
𝑐 − 𝜎2

𝑐 =
𝑁𝑓𝜎

2𝑡𝑐       (2.6) 
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Where 𝑓𝜎the material fringe constant and the coating thickness is is 𝑡𝑐 Or Equation 

(2.7) (Khan and Wang, 2001) can be employed since the sandstone material 

properties are different from the photo elastic coating properties. A plain strain 

condition fitted properly into Equation (2.6) since the coating thickness was far less 

than the sandstone specimen (Caputo and Giudice, 1983). 

 

𝜀1
𝑠 − 𝜀2

𝑠 = 𝜀1
𝑐 − 𝜀2

𝑐 =
(1+𝑣𝑐)(𝜎1

𝑐+𝜎2
𝑐)

𝐸𝑐                         (2.7) 

 

The stress optic constant was determined as it was possible to calibrate the 

sandstone specimen using the photo stress equipment with the application of the 

elastic modulus of sandstone and the Poisson ratio of the sandstone such that data 

accuracy was maximized. The thrust of the particle kinetics of Newton’s second law 

and the possible calibration of sandstone with the elastic properties can provide 

reasonable means to make assumption. The following assumptions are inherent from 

particle kinetic which applies to a single grain of the sandstone specimen under photo 

elastic stress analysis. A consistency in the theory of deformation can be 

conveniently stated in six assumptions used for experimental measurement criteria. 

The intensity of light emerging in the case of plane polariscope will be in Equation 

(2.8) (Micro-Measurements, 2005) and. 

 

I = 𝑏2𝑠𝑖𝑛2 𝛿𝜋

𝜆
       (2.8) 

 

Here b is the amplitude, 𝛿  is the retardation,  𝜆 is the wavelength of the light, the light 

intensity (I) becomes zero when the crossed polarized analyser is parallel to the 

direction of principal strains. Therefore, a plane polariscope configuration is used to 

measure the principal strain directions. 

 

Circularly polarized light can be produced by adding optical filters known as quarter-

wave plates in the path of light propagation and the image observed is not influenced 

by the direction of principal strains. The intensity of the emerging light thus becomes 

(Micro-Measurements, 2005). The light intensity becomes zero in a circular 

polariscope when 𝛿 = 0, 𝛿 = 1𝜆, 𝛿 = 2𝜆 etc. or in general Equation (2.9) expresses 
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the retardation measurable as a function of the wavelength of the light used Equation 

(2.9)  (Lesniak et al., 1999). 

 

𝛿 = 𝑁𝜆       (2.9) 

 

Where N is 1, 2, 3, etc. The number N is also called fringe order and it indicates the 

size of 𝛿. The selected wavelength is commonly at a value of 22.7 x 10−6 𝑖𝑛 [575 𝑛𝑚]. 

The retardation or photoelastic signal is then simply describes by fringe order N. For 

example, If N is two, Retardation (𝛿) implies 2 fringes (Micro-Measurements, 2005) 

hence substituting 2 for N into Equation (2.15) we obtain Equation (2.10) with the 

retardation value of 45.4 𝑥 10−6 𝑖𝑛 [1150 𝑛𝑚] 

 

    𝛿 = 2𝜆               (2.10) 

Once 𝛿 = 𝑁𝜆 is known, the principal strain difference is derived using equation 2.11 

 

𝜀𝑥 − 𝜀𝑦 =  
𝛿

2𝑡𝑘
= 𝑁 

𝜆

2𝑡𝑘
= 𝑁𝑓𝜎     (2.11) 

 

Where 𝜀𝑥 − 𝜀𝑦 is the difference in strain between the horizontal and vertical direction 

respectively, t is thickness,  𝛿  is the retardation, 𝜆 is the wavelength of the light, the 

fringe value, 𝑓𝜎, is a constants, and N is the result of measurements. The next section 

explains the possibility of obtaining the birefringence in bonded grains of rock using 

reflective polarization and coating techniques. 

 

2.20.1 Application of grey field polariscope (GFP) to bonded grains 

deformation. 

Sub-fringe Photoelasticity has been obtained with low loads by (Lesniak, 2000). 

Strains were measured directly from the Grey Field Polaris cope (GFP). The strain in 

the area/ point of interest are completely sub-fringe with low loads.  The Red- Green 

– Blue (RGB) approach used in assessing multi-fringe data can be applied to obtain 

data elsewhere because the data obtained will be used to analyse the non-linear 

results of high strain seen at over ranged data (Lesniak, 2000). 
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2.20.2 Birefringence is obtainable in coated model of bonded grains using 

photo stress techniques.  

The application of the photo stress technique to determine strain in cemented 

granular sample was done by making the surface of the sample photoelastic. First, 

stress was induced on the bonded grains; it is thought that material property is 

different at some location where the stress causes a change in the arrangement of 

the bonded grains.  This stress in the material is transferred into the firm plastic 

coating on the bonded grain sample next birefringence occurrence is seen on the 

photoelastic coating. By implication, strain in the bonded grains is as a result of 

anisotropy (property measured at same point change with azimuth but not location) 

in the bonded grains. This occurrence of strain is transferred into plastic coating on 

the bonded grains of quartzite sandstone. Double refraction occurs on the coated 

surface of the sample. The light transmitted into the plastic coating on bonded grains 

model is reflected back as elliptically polarized light having its new major axis with 

orientation at π/4 off the direction of the initial principal strain (Figure 2.13) (Lesniak 

et al., 1999). 

 

 

Figure 2.13 Response of Sandstone Sample Model to Birefringence/double 
refraction (Lesniak et al., 1999)  
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The response of anisotropy to birefringence is illustrated in Figure 2.13. If the rotation 

of the analyser at an angular frequency is (w) and the analyser is parallel at time t = 

0, with a time input intensity is given by (I) in Equation (2.12) (Lesniak et al., 1999) 

 

𝐼 =
𝑎2

2
[1 + 𝑠𝑖𝑛2(𝑤𝑡 − 𝛽)𝑠𝑖𝑛∆]                                                    (2.12) 

 

Where I is light intensity, a is the amplitude, w is the angular frequency, t is time, 𝛽   

is the reference direction, ∆ is the angle made up to 90 degree from the reference 

direction. Since the Polariscope works using the equation above, if birefringence is 

zero (0) then a neutral grey colour is seen at the output also if birefringence occurs 

at the surface of the sample such as sandstone, due to the strain in the bonded 

grains, the signals’ amplitude oscillates about its neutral-grey-level with time. The 

analyser’s axis and the principal strain axis coincide when zero is read off at signals 

from oscillating portion. The reference (β) and principal directions are oriented. The 

oscillating light signal possesses both phase and amplitude which is a video lock- in 

algorithm of the Polariscope. In Figure 2.13, the angular direction shows results 

largely due to retardation angles because the grey produces perturbation which 

oscillates and normalized its light intensities or grey level.  The experimental 

methodology employed in this research took advantage of the fact that strain in the 

bonded grains can be transferred from inside the structure to the surface of the 

bonded grains which was coated with reflective aluminum spray and photo-sensitive 

plastic respectively. The aluminum reflective surface under the coating function to 

retain polarization given out high intensity in which stress measurements and stress 

field were visible images. The fringe order expressed as contours obtained are seen 

in the photo stress fields. This is explained in the next section. 

2.21 Analysis of photoelastic fringe patterns 

Photo-stress can be used for the following types of measurements and analysis: 

I. Qualitative measurements such as : 

a. The magnitude and sign of the tangential stress along free (unloaded) 

boundaries, and in all regions where the state of stress is uniaxial. 

b. The directions of principal strain and stress at all points on the photo 

elastic coating. 
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c. In a biaxial stress state, the magnitude and sign of the difference in 

principal strains and stresses at any selected point on the coated surface 

of the test object. 

 

II. Full-field Interpretation of fringe patterns, allowing overall assessment of 

nominal strain/stress magnitudes and gradients. 

 

2.22 Full-field interpretation of strain distribution 

Photo stress has the capacity for immediate recognition of nominal strain (and stress) 

magnitudes, strain gradients and overall strain distribution. This is in addition to the 

ability to obtain accurate strain measurements at pre-determined test points. This 

very important characteristic of photo stress is known as “full-field interpretation” and 

it is peculiar to photo elastic methods of stress analysis. Photo elastic methods 

depend on the recognition of fringe orders by colour and an understanding of the 

relationship between fringe order and strain magnitude for its successful application 

(Micro-Measurements, 2005). 

 

When a test object that is coated photoelastically is subjected to loads, the resulting 

stress causes strain to occur generally throughout the part and over its surface. The 

stress and strain on the surface is usually the largest and also the most important. 

Due to the fact that the photo elastic coating is uniformly and closely bonded to the 

surface of the part, the strain in the part is carefully transmitted to the coating. This 

strain produces a proportional optical effect which appears as isochromatic fringes 

when it is observed with a reflection polariscope (Micro-Measurements, 2005). 

 

The fringe pattern produced by the photo stress is full of information and insight for a 

design Engineer. For instance, if a part is being stress analysed as a result of field 

service failures, the overall fringe pattern will usually suggest ways of preventing the 

failures. This normally involves material removal and weight savings. When a full-

field picture of the stress distribution is generated, it shows that the overstressed 

zone responsible for the failures is surrounded by an area of near-zero stress. a small 

change in shape will redistribute the stress so as to eliminate stress concentration, 
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while forcing the under stressed material to carry its own share of the load (Micro-

Measurements, 2005). 

 

Similarly, in prototype stress analysis for developmental purposes, the pattern can 

point the way towards design modification to achieve the minimum weight, 

functionally adequate part, that is, the optimum design. Furthermore, full-filled 

observation of stress distribution clearly shows the effect of changing modes of 

loading, as well as the relative significance of individual loads and/or load directions. 

These examples shows the many ways by which full-field fringe patterns in photo 

stress coated test parts communicate with the knowledgeable stress analyst and 

provide a level of comprehension not attainable from “blind” strain measurements at 

a point (Micro-Measurements, 2005). 

 

2.22.1 Fringe generation 

Photo stress fringe pattern appears as a series of consecutive and adjoining different-

colour bands (isochromatics) when they are observed with a reflection polariscope. 

The different colour bands represent a different degree of birefringence 

corresponding to the underlying strain in the test part. When there is an 

understanding of the unchanging sequence in which the colours appear, the 

photoelastic fringe pattern can be read much like a topographical map to visualise 

the stress distribution over the surface of the coated test part (Micro-Measurements, 

2005). 

 

The test starts by applying load or loads to the unloaded test part. When these loads 

are applied incrementally, fringes will appear first at the most highly stressed points. 

Next fringes appear as the load is increased, while the previous fringes are pushed 

towards the areas of low stress. Additional fringes are generated in the highly 

stressed regions and move towards regions of low or zero stress until the maximum 

load is reached. The fringes are ordinary numbers (first, second, third, etc.) as they 

appear, and they will retain individual identities throughout the loading sequence. The 

fringes are not only ordered in the sense of serial numbering, they are also orderly, 

that is they are continuous and never cross or merge with one another as they always 

maintain their respective positions in the ordered sequence (Micro-Measurements, 

2005). 
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2.22.2 Fringe identification 

White light is generally used for full-field interpretation of fringe patterns in photo 

stress testing. It consists of all the wavelengths in the visual spectrum. Therefore, the 

relative retardation which normally causes the extinction of one wavelength (colour) 

does not generally extinguish others. When with increasing birefringence each colour 

in the spectrum is extinguished sequentially according to its wavelength (starting with 

violet, which has the shortest visible wavelength), the observer sees the 

complementary colours. The simultaneous extinction of colours makes the fringes 

with the higher order to become fainter than the first, which falls in the transition area 

between red and green (Micro-Measurements, 2005).  

2.23 Qualitative significance of fringe 

Photoelastic fringes have characteristic behaviours which are very suitable for fringe 

pattern interpretation. For example, the fringes are ordinarily unbroken bands forming 

either closed loops or curved lines.  The black zero-order fringes are usually isolated 

spots, lines, or areas surrounded by or adjacent to higher-order fringes. The fringes 

are ordered in such a way that they do not intercept one another so as not to lose 

their individual identities. Therefore, the fringe order and strain level are uniform at 

every point on a fringe and the fringes are always ordered in a continuous sequence 

both in number and colour. Consequently, if the first- and third-order fringes are 

identified, the second-order fringe must lie between them and the colour sequence in 

any direction must indicate whether the fringe order and strain level increase or 

decrease in that direction (Micro-Measurements, 2005). 

 

This implies that the characteristics of photoelastic fringes are the same as those of 

constant-level contours on a coloured topographic map. Therefore, any photoelastic 

pattern can be considered, and visualized, as a contour map of the difference (without 

regard to sign) between principal strains or stresses over the surface of the test part. 

In other words, the magnitudes of the strain levels, as indicated by the fringe orders, 

correspond directly to constant-altitude levels on a topographic map. And the fringe 

pattern represents peaks and valleys, plains and highland, with “sea level” 

represented by the zero-order fringes (Micro-Measurements, 2005). 
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The zero-order fringe in the field of view is normally indicated by black colour. The 

stress will always be zero if the coated test part has a free square corner or a pointed 

projection, and a zero-order fringe (spot) will exist in the corner, regardless of the 

load magnitude, but shrinking in size slightly as the load increases. When there is 

zero-order fringe, the first-order fringe is normally recognised by the bright colours 

adjacent to the purple tint of passage. Alternatively, the test object can be loaded 

incrementally from an initial stress-free state and the starting zero-order fringe which 

covers the entire coating can usually be followed throughout the loading process as 

it decreases towards unstressed points and regions where the difference in principal 

stress is zero (Micro-Measurements, 2005).  

 

Orders can be assigned to other fringes once one fringe has been identified, thereby 

making sure that the direction of the increasing fringe order corresponds with the 

correct colour sequence – that is, yellow, red, green, etc. The observer can quickly 

locate the highest fringe orders and the most highly strained regions by this process. 

The areas that have closely spaced fine fringes will usually attract the observer’s 

attention, since the regions of steep strain gradient ordinarily signify high strain as 

well. The observer should also note that any large areas where the pattern is almost 

uniformly black or grey usually signify an under stressed region (Micro-

Measurements, 2005). 

 

Generally, the process of locating the highest fringe order will lead the stress analyst 

to one or more critical points on a free boundary. When this occurs, the observer 

knows that the non-zero principal stress at such a point is tangent to the boundary, 

and its magnitude can be obtained directly by multiplying the fringe order by a 

constant. The sign of the stress, positive or negative for tension or compression can 

also be determined very easily on a free boundary with the reflection polariscope 

(Micro-Measurements, 2005).  

 

2.24 Measurement of principal strain directions  

The principal strain directions are always measured with reference to an established 

line, axis, or plane. Therefore, the selection of a convenient reference is the first step 

for the determination of the direction or principal strain (or stress) (Metha, 2008). The 
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reference direction is then suggested immediately in most cases, like an axis of 

symmetry of the test part or structure; while in other cases, a vertical or horizontal 

line will suffice (Micro-Measurements, 2005). 

 

When a plane-polarized beam of light travel across a photoelastic coating on a part 

subjected to stress, it divides into waves propagating at different speeds along the 

direction of the principal strains (Micro-Measurements, 2005). These two waves will 

be out of phase with one another after emerging from the plastic and will not 

recombine into a single vibration parallel to the one entering the plastic. However, at 

a point where the direction of the principal stress is parallel to the axis of the polarizing 

filter, the beam will not be affected and the emerging vibration will be parallel to the 

entering vibration (Mehta, 2008).  

 

2.25 Measurements at a point 

It has been established that in the first step of measurement, the stress analyst 

observes the whole area and assigns to each fringes its order (N= 1, 2, 3, etc.). If N 

is known at every point on a fringe, therefore a data of strain is obtainable by the 

correlations in Equation (2.13) for very incremental strain (Micro-Measurement, 

2005). 

 

𝜀𝑥 −  𝜀𝑦 = 𝑁𝑓        (2.13) 

 

Generally, the point of interest on the structure will fall between fringes and it will be 

necessary to establish the “fractional order” of fraction of a fringe. This method is 

called “compensation” (Micro-Measurements, 2005). 

 

2.25.1 Measurements using the null-balance compensation technique 

This technique operates on the principle of introducing into the light path of the 

polariscope a calibrated variable birefringence of opposite sign to that induced in the 

photoelastic coating by the strain field. When the opposite-sign variable birefringence 

is adjusted to precisely match the magnitude of the strain induced birefringence, 

complete cancellation will occur, and the net birefringence in the light path will be 

zero. The condition of zero net birefringence can easily be recognized because it 
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produces a black fringe in the isochromatic pattern where, before introducing the 

compensating birefringence, a coloured fringe existed (Micro-Measurements, 2005). 

 

2.26 Conclusions 

Physical models have provided a means to simplify and understand the complex 

mechanisms occurring in rocks on a micro to macro scale. But this comes with 

difficulties in accurate modelling, despite these challenges; physical modelling has 

been an important approach for investigating the behaviour of naturally occurring 

materials. Together with acoustic emission (AE), physical modelling can be turned 

into a very useful tool to study and predict the behaviour of sandstones which are 

very difficult, if not impossible to study in natural conditions even on a laboratory 

scale. 

 

Sandstones are sedimentary rocks which comprises of gravels, cobbles and boulders 

embedded in a fine matrix or cementing material and they have been rarely studied 

in laboratory testing because of their inherent heterogeneities and the practical 

difficulties in sampling and testing. Notwithstanding, these rocks can be studied using 

indirect approach such as physical and numerical modelling. 

 

Consequently, numerical modelling has been developed through a rigorous method 

for solving problems in rock mechanics. Continuum and dis-continuum approaches 

have been applied in rock and soil mechanics; however, discrete element methods 

seem to be more efficient and relevant for modelling the behaviour of granular 

materials because, in DEM, an overall assembly response is achieved by the 

interplay and relative movement of discrete particles.  

 

Although DEM has been effectively used to predict many characteristics of granular 

materials, its calibration and validation is needed against the physical system. 

Several modelling techniques, such as bonded particle model (BPM) and the 

clumped particle model (CPM) have been proposed which, to some extent, reproduce 

the features of natural granular materials using simple circular, spherical or polygonal 

particles. However, DEM’s validation and calibration remain a challenge for 

researchers and modelling professionals. In this area, work conducted both for 

frictional granular materials and cohesive-frictional granular materials (cemented 
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assemblies) were reviewed. The microstructural behaviour of sandstone may be 

viewed as that of a cohesive frictional material. The review of previous work on the 

DEM validation for cohesive frictional materials can be categorized as: 

 

1. Modelling the macroscopic behaviour of natural materials, such as rocks and soils, 

in different loading conditions without taking into account the microstructure of the 

materials. Natural heterogeneities, anisotropy and scaling make it more complex to 

develop an accurate correlation between DEM simulations and real materials. Efforts 

have been centred on the development of complex shaped particles to achieve a 

similarity of the macroscopic response of the numerical simulation and natural 

materials.  

 

2. Validations with synthetic materials were also aimed at comparing the macroscopic 

responses of the physical models and numerical simulations. Although synthetic 

materials controlled the material’s heterogeneity and yielded reproducibility of the test 

results, similitude was not obtained at the micro level. As a result, there is no 

correspondence between the micro parameters used in DEM simulations and the 

microstructure of the synthetic materials. Only macroscopic responses in simple 

loading were considered sufficient when it is clear that the material’s macro response 

is governed by the grain-cement interaction at micro level. 

 

The importance of the microstructure and associated micro parameters for DEM 

simulations becomes more obvious when modelling coarse-grained rocks, such as 

sandstones. In such materials, numerical and physical microstructures have a one-

to-one correspondence with each other and should produce similar macroscopic 

responses. 

 

3. If micro structural similarity has been achieved, micro parameters detailing the 

grain-cement interaction were either estimated or assumed by the inverse modelling 

approach rather than through measurements. Furthermore, very few studies have 

been done experimentally on the micro level interplay between particle-particle and 

particle-cement interactions. Yet the effect of particle size and size distribution, the 

effect of inter-particle cement and micro to assembly friction for simple particles are 

still unsolved questions which ought to be investigated in relation to physical 

materials. The simulation of rock masses involving discontinuities, heterogeneities 

and scaling are the next challenges in this area that they can only be adequately 
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addressed when DEM simulations are validated for simple laboratory models and 

comprehensively tested. 

 

The survey on sandstone shows that the rock can be made to exhibit plane stress. 

The property birefringent can be made possible by manipulation of the surface 

properties. Both discrete modelling and experimental modelling method are thought 

capable to obtain micro properties used to calibrate the resistance of a cemented 

quartz grain to displacement. In any deformation studies, when a single grain rotates, 

micro properties can be estimated in the physical structure. This concept can be 

employed to understand fractures in cemented granular assembly. 
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3 RESEARCH METHODOLOGY  

3.1 Introduction 

The deductive approach adopted for this research focuses on the development of 

advanced photo stress analysis techniques (PSAT) for the determination of micro 

properties of rock. This novel technique was carried out parallel to the well-known 

ultrasound measurement technique (Figure 3.1). Subsequently, the micro properties 

were used for the development of rock and the bulk strength characteristics. 

 

The Griffith theory and the phenomenon of deformations of brittle materials was 

explored and tested under photo stress analysis and tomography. This approach was 

followed closely by the path of logic where the initial concept started with this theory 

and some hypothesis was adopted. Next, by confronting this concept with some 

preliminary results, the hypothesis was confirmed adequate for the development of 

an advanced experimental technique suitable for the micro properties determination 

in rock materials. Measurements were extracted from the natural rock under the 

control of Griffith theory. 

 

For a perfect brittle material, the fracture strength of single quartz was reported by 

Griffith (1921). He proposed that a material contain many tiny flaws which cause 

localized stress concentration of significant magnitude at the flaw. Hence, the 

theoretical cohesive strength between discrete is obtained at points of stress 

localizations. This is at nominal stress which is well below the theoretical value. If any 

single crack propagates into a brittle fracture, the surface area in the sides of the 

crack increases. Therefore energy is needed to overcome the cohesive force of the 

discrete. The surface energy is increased by the elastic strain energy which is 

released as the crack propagates. Therefore Grifith (1921) clearly stated that, "a 

crack will propagate when the decrease in elastic strain energy is at least equal to 

the energy, to create the new crack surface” (Guest, 1967). This criterion was applied 

to determine the measure of the tensile stress which would just cause a crack of a 

certain size to grow into fracture (Was, 2007). 

 

Therefore, the hypothesis made is that: 1.) any arbitrary point in rock is a grain contact 

for two or more quartz grains and 2.) the dis-association of the grains from their 
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contact is the onset of cracking. Scanning Electron Microscope (SEM) experiment 

was carried out in this current study to reveal rock as a granular assembly of quartz 

grains. By identifying crack nucleation which is derived from Griffith theory, the least 

micro-crack in a rock medium will likely allow stress to concentrate at crack tip where 

the crack concentration is maximum. In other words, this approach is concerned with 

the concentration of crack-tip stresses with originations and progression of micro-

cracks. The deduction will begin with an expected pattern which will be first tested 

against the observed stress contours in sandstone coated with photo elastic material. 

In order to test the hypothesis, the following steps were taken. 

1.  Taking note of the fact that fracture will occur after critical material stiffness is 

reached (Liu, 2005) 

2. Expected pattern will be generated for consecutive stages of rock deformation 

to obtain models for grain contact which is a physical representation of the 

relationships between force and displacement in both longitudinal and transverse 

directions with respect to the point of examination. 

3. Localized stiffness in defected points will be determined by deliberate strain 

induction of physical and numerical model with the application of stress on notched 

chevron. 

4. Micro-parameters will be used to simulate the Macro-response of the rock 

material. A confined standard rock test will be employed to validate the outcome 

(point stiffness).  

 

In order to obtain accurate measurement of the micro properties of Niger delta 

sandstone from the novel experimental technique developed, the research is made 

to flow in a circle that depends on Griffith theory as presented in Figure 3.1. The 

development of the advanced experimental technique was successfully achieved by 

the hypotheses based on Griffith's theory. Initially, the material was characterised to 

reveal the internal structure using XRD, XRF and SEM. Micro properties (which 

includes normal stiffness and shear stiffness of grain contacts) were measured from 

ultrasound measurement techniques using the fundamental concept of double 

refraction. These stiffness parameters were used to test the hypotheses of the 

existence of grain contact at any arbitrary point in sandstone, and the assessment of 
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the micro properties showed that the data extracted from the sandstone supported 

the hypotheses. 

 

 

 

Figure 3.1 Deductive spiral methodology for dependence of micro-properties 
measured on Griffith theory 

 

Rock characterization revealed the foundation on which the hypothesis of grain-to-

grain interaction was conceived for this research. This first step provided the internal 

structure of the rock, thus micro-mechanical deformation in rock was determined from 

its micro-structure. While the ultrasound technique was used for micro parameter 

determination, the Photo Stress Analysis Tomography (PSAT) was employed for the 

extraction of micro-properties from rock under a single point examination. This 

arbitrary point was considered as the contact between two mineral grains. The 

resulting data was used to simulate the rock’s mechanical response.  

 

The standard method provided by International Society for Rock Mechanics (ISRM) 

was employed for the determination of macroscopic data (compressive strength, 

modulus, and Poisson ratio) of the rock. Subsequently, the micro-mechanical 

parameters from the rock were validated by comparing the elastic properties from 

DEM to those obtained by standard ISRM experiments. Information on the direct 
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relationship between crack-number obtained from DEM were employed to predict 

bulk strength characteristics of the material in Chapter 8. 

 

 

Figure 3.2 Framework of research method 
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An experimental and numerical approach was adopted which involved the details of 

the experimental-DEM hybrid carried out for the determination of micro-properties 

and simulation of rock as provided in three sequential stages; 

Stage (1) characterization of rock for discrete modelling 

Stage (2) determination of micro-mechanical properties from natural rock 

Stage (3) discrete element modelling of rock and deformability in rock 

 

3.2 Stage 1: Characterization of rock for discrete element modelling.  

This approach involved identification of the constituent mineral and internal 

morphological structure of constituent grains in rock using X-Ray Fluorescence (XRF), 

X-ray Diffraction (XRD) techniques and Scanning Electron Microscope - Electron 

Dispersive Spectroscopy (SEM-EDS). By using these techniques, quantification and 

identification of the elemental composition of the rock was carried out. These 

characterization technique   revealed the internal structure of sandstone. Thus 

visualising the grain-to-grain connection of the mineral composition of rock could be 

actualized.  

 

The strength characteristics of the rock were thought to be dependent on their 

constituting mineralogical structures. Hence, rock properties were extracted from 

natural rock which are typically characterized by the inherent mineral composition, 

structural appearance, grain morphology, degree of grain interlock, density of 

packing, grain size and grain contact. These are attributes of the rock’s constituent 

which comes with it from the oil field. It is thought that mineral composition of the 

grains should be identified for the purpose of relating mineralogy to deformation 

characteristics. However, theoretical facts have shown that rocks with quartz-particle 

cementation (Zorlu et al., 2008) are stronger than those with clay-particle 

cementations (Hardy, 1976).  

 

3.2.1 X-Ray Fluorescence (XRF) 

A non-destructive analytical technique was used for the determination of the 

constituent elements of sandstone. The chemistry of sandstone was determined by 

measuring the secondary (or fluorescent) X-ray emitted from a sample after it was 
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excited by a primary X-ray source (Figure 3.3) (De Viguerie et al., 2009). This 

procedure was followed to determine whether the sandstone contained mineral 

grains which controled its response to stress. A semi-quantitative analysis of Niger 

delta sandstone was determined for strength characterization purpose. The results 

are presented in Chapter 4 

 

 

 

Figure 3.3 Procedure for obtaining X-Ray Fluorescence data from natural 
sandstone  

 

3.2.2 X-Ray Fluorescence (XRF) 

X-ray Diffraction (XRD) was carried out to identify the mineral content of the 

sandstone. The mineral content were thought to be responsible for the strain 

exhibited by rock. The minerals were probably responsible for the stiffness properties 

exhibited by the sandstone because of the likelihood cause of resistance to force 

exhibited by the cemented contact in the material. It was required to establish the 

effect of each mineral on the micro-properties and strength of the materials, therefore 

the XRD analysis was carried out. This procedure produced X-ray diffraction peaks 

which were formed by a constructive interference of X-ray beam at specified angles 

from every set of lattice planes in the sandstone specimen. The peak intensities were 
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determined by the distributed atoms which were within the lattice of the sandstone. 

The procedure is presented in the Figure 3.4. 

 

 

 

Figure 3.4 Procedure for obtaining X-ray diffraction peak data from natural 
sandstone  

 

 

3.2.3 Scanning Electron Microscope – Electron Dispersive Spectrometry 

(SEM-DES) and Optical Microscope 

It is required to determine the stiffness parameters at the grain contact. The 

application of stress are necessary to displace quartz grain per unit displacement. 

Therefore the overall strength of the rock depends on the stiffness distribution 

throughout the grain assembly. Hence, the bond strength will likely contribute to the 

deformation process. This is because stressing the sample will induce strain in the 

cemented contacts. Details on the grain and the contacting boundary of the grain will 

further reveal the nature of the strain occurring within the grain as a granular 

assembly. The Scanning Electron Microscope – Electron Dispersive Spectrometry 

(SEM-DES) procedure was employed for obtaining this internal structure as 

discussed in the next section. It was intended to view the grain shape and interlocking 

arrangements which are particular characteristics of the rock.  In Figure 3.5 the 

mineral type and granular arrangements were determined by displacement of an 
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electron after an external excitation by another electron. The grains and the degree 

of roundness for each grain were identified corresponding to the mineral type. A 

quantitative contribution of the interlock effect was expected in the prediction of bulk 

strength characteristics of sandstone. The representation of the grains by a deviation 

from perfect spherical index has been reported (Zorlu at al., 2008; Bell and Lindsay, 

1999). The SEM images are presented in Chapter 4. 

 

 

Figure 3.5 Procedure for obtaining mineral type and grain interlocking view from 
natural sandstone  

 

The energy and number of the X-ray emissions from a sandstone specimen were 

measured by energy-dispersive spectrometer EDS. The energies of the radiations 

are characteristics of the differences in the energy between 2 shells and the atomic 

structure of the element emitted (Figure 3.5). The locations of minerals and the grains 

are obvious. The results are presented in Chapter 4. The clearer view of these 

boundaries were viewed by the optical microscope (Figure 3.6).   
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Figure 3.6 Procedure for obtaining grain contact interlocking view from natural 
sandstone  

 

The microscope view was required to establish that the material under investigation 

was an assembly of discrete grain with finite clay – cemented contacts. Hence, grain 

boundary images were required. The hypothesis included the existence of grain 

contacts at any point in the sandstone. This is evident in previous sections where 

microstructural information has been provided. Therefore, increased levels of 

stresses could lead to disarrangement caused by displacement of grains from their 

contact location. This displacement could translate into strain measureable at any 

arbitrary point in the rock. Recall also that at the surface of the rock, strain and 

displacement within the granular assembly is more significant. This is because the 

grains are displaced easily than they are displaced within the bulk assembly.  
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In the second stage of this work, it was required to obtain grain contact stiffness. This 

was carried out by sandstone calibration. Calibration here implies the extraction of 

geometric figure from the contacting grains in the rock sample. Micro strain data were 

extracted and the corresponding stress results in a quantitative measure of the strain 

segmentation that describes grain displacement per unit force applied to the sample.  

The experimental micro-measurement is provided broadly in the next section. 

 

3.3 Stage 2: Determination of micro-mechanical properties from natural 

rock:  

This involved the development of the grain-grain contact model (i.e the physical 

representation of the displacement behaviour of a grain relative to another grain). 

Here, quantitative/geometric figures of grain displacement were used to establish 

representative equation. Both photo stress tomography and ultrasound techniques 

were used to capture contact stiffness (micro-parameters). Simultaneously, macro 

properties (elastic modulus and Poisson’s ratio) were obtained using Standard 

method of test for elastic moduli of rock core specimens in uniaxial compression. 

Micro- parameters obtained from these experiments served as input parameters for 

discrete element modelling of rock. American Society for Testing and Materials 

(ASTM- Designation D 3148-72). 
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Figure 3.7 Set up of ultrasound measurement for determination of micro-properties 

 

3.4 Double refraction techniques and micro-measurement 

Rock deformation begins with internal structural damage which proceeds with 

continuous propagation of micro-cracks (Wibberley and Shimamoto, 2003; Koyama 

and Jing, 2007). Detection of these micro-cracks by experimental technique such as 

ultrasound measurement (Figure 3.7) and acoustic emission method (Momber, 2004) 

has been reported. The former produces amplitudes signal which are affected by the 

presence of micro-crack in the sample. Usually, this ultrasound generates electrical 

signal which is converted to mechanical energy by the micro-cracks. This energy 

spreads inside the rock medium in form of volatility (Tofel and Trcka, 2013). The 

micro crack in the sample changes the oscillation and returns it to the transducer to 

generate signal in the polarization direction. The resulting mechanical energy is 

reconverted to electrical signal. Hence the ultrasound travel time through the sample 

of height 50mm was recorded. Subsequently, the velocities were used to evaluate 

the micro stiffness at grain contacts. 

  

Ultrasound Pulse 

Generator 

Transducer 

Receiver 
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In order to determine micro-properties from rock sample, PSAT is an alternative 

technique which is a novel approach involving measuring retardation with light wave. 

By implementing this technique, point stiffness in sandstone was estimated. Instead 

of ultrasonic wave, the method was made to use light wave for obtaining information 

at the least point in the rock. Defected grain contact produced anisotropy which 

resulted into light orientations of different velocities caused by different stress 

properties at a point in the rock. Usually, the light rays are polarized similar to 

ultrasonic wave. This has been presented in the study of strain in rock with photo-

elastic coatings  founded by ASTM (D-06).  However, this principle was provided after 

Davis Brewster who discovered the first phenomenon of light which produce double 

refraction properties (Brewster, 1815).   Later Dally and Riley, (1991) studied the 

reflected polarized light in solid structure. It was identified that, these authors did not 

provide the strain response of rock as due to grain contact interaction, which is 

fundamentally the onset of brittle rock deformation. Therefore, in this work, it was 

thought that the strain response in rock was evaluated at grain contact deformation 

state. This measurement procedure was followed instead of measuring the 

mechanical energy versus frequency as in ultrasound.  Retardation of polarized light 

which was produced due to micro strain in the rock was measured. Subsequently the 

micro-parameter or grain contact was utilized to simulate the rock behaviour.  

 

By using the elastic properties of the rock as basic inputs in PSAT, the tensional and 

compressional behaviour of the grains within the rock was represented. This was 

achieved by a sandstone sample with the notch made to enhance the concentration 

of load-stress on some targeted grains. Micro-fracturing was then be explained by 

obtaining point data using PSAT. The grain to grain contact was therefore monitored 

sequentially to extract displacement data from a point location in the rock. 

 

Macro-parameters from ultrasound measurement technique were used to guide the 

point data extraction. The measurement for each step was simple with high prospect 

of reproducibility was adopted. (PSAT) technique can be used to image the 

progression of micro-fracturing process as controlled by the Griffith theory where 

expected pattern are to be obtained at points of micro-flaw in rock under the 

progression of force application on sandstone.  
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3.4.1 Theoretical view - refraction technique 

When light passes through a medium, it can be refracted.  This phenomenon is 

governed by Snell’s law similar to the ultrasound technique. The law is illustrated in 

Figure 3.8. When the medium of transmission changes, the light is refracted.  The 

refracted light is plane polarized. But when only a single ray of light passes through 

the medium, it is refracted. When sandstone sample was subjected to loading, the 

strain in the rock was transferred to the coated surface which exhibited an optical 

anisotropic property (called birefringence).  A single ray was refracted which produce 

two refracted rays. These are known as ordinary and extra-ordinary ray (Figure 3.8).  

 

 

Figure 3.8 Schematic of the refraction process on photoelastic coated-sandstone 
showing the light refraction in anisotropic/strain localized point 

 

Refracted ray is (r2). By comparing the ray with the ordinary ray (r1), it is clear that 

the rays passing through the anisotropic solid travels at different speed and direction 

(Figure 3.8). The optical axis was defined by a line drawn in the direction where no 

double refraction was seen. In this optical axis, a rotational symmetry in the camera 

was enabled so that the ordinary and extra ordinary rays are plane polarized where 

these planes are orthogonal to each other. (Usually if the material remains isotropic, 

both ordinary and extraordinary ray will travel same direction if the incident ray were 

parallel to the optical axis). But due to the occurrence of anisotropy, the optical axis 

and the incident ray are perpendicular. The extra-ordinary ray travels faster than the 

ordinary ray in the same direction.  Thus the application of refractive technique for 

detection of point retardation was achieved. In the end, the rays were polarized 

perpendicularly.  
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The resulting rays from the medium had a phase difference which exhibited itself as 

fringes. Thus double refraction was not observed in some point where stress was not 

localized.  For the full field view of strain localized points, it was observed that tensile 

and compressive fringes are significantly distributed throughout the stressed 

sandstone. It was thought that grains within the sandstone matrix can be compressed 

and enabled the coating exhibit compressive fringes whereas; the tensile fringes 

were exhibited due to tensed grains within the rock matrix (Figure 3.9). The schematic 

diagram of tension and compression of grains are illustrated in Figure 3.9. If the 

grains in sandstone are firmly bonded, then before compression, they resist the force 

load by the tension created at the grain contact. Both compression and tension are 

displayed by the fringes/contours. Since strain is not uniform in all direction, double 

refraction usually occurs.  

 

 

Figure 3.9 Schematic diagram of a granular arrangement of quartz and the cement 
bond under compression and tension 

 

Preliminary view indicated that both compressive fringes and tensile fringes were 

uniformly distributed at the tip of the notch. Compressive fringes dominated after the 

tensile behaviour was exhibited in the perpendicular direction to shear direction.  

These two directions contributed to phase difference in the light rays. The notched 

sample obviate the need for cracking through the chevron. 

 

3.4.2 Determination of normal and shear stresses  

On a surface examination, the amount of stress particles impose on another particle 

can be in any direction relative to the surface. The stress can be measured in the 

normal direction as normal stress (compression or tension) perpendicular to the 
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surface as illustrated in Figure 3.10. It can also be measured in the shear direction 

as stress that is parallel to the surface (Hauke and Moreau, 2008).  

 

 

Figure 3.10 Polarized light at a surface “i” is the incident light, “r” is the refracted 
light “σ” and “Ʈ” are normal and perpendicular directions 
respectively.(Heywood, 2013) 

 

Photo-elastic technique produced isochromatic fringes and isoclinic fringes which 

revealed stress location in structures. Isochromatic fringes were produced due to 

stressed points reflecting locus of points with constant principal stress difference. 

These isochromatic were identified by the light and dark fringes in monochromatic 

light source. If the light is an illumination of white light, they are identified by coloured 

fringes. The difference in principal stress is related to the birefringence or retardation 

with stress-optic law in Equation (2.14) and Equation (2.15). (Dally and Riley, 1991) 

(𝜎1 − 𝜎2) = 𝑘𝛿 = 𝑘𝑎𝑟𝑐𝑠𝑖𝑛 [
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
]                                      ( 2.14) 

 

Where (𝜎1 − 𝜎2) is the principal stress difference which was evaluated for normal 

and shear direction, k is the optical constant for the photo elastic coat (0.06 from the 

manufacturer) and 𝛿 is the retardation 𝐼𝑚𝑎𝑥 𝑎𝑛𝑑 𝐼𝑚𝑖𝑛  are maximum and minimum 

light intensities respectively. The material thickness may be incorporated to obtain 

the corresponding principal strain difference (𝜀1 − 𝜀2)  in Equation (2.15) 

(Vishay,2005). 

 

(𝜀1 − 𝜀2)𝑘 =
𝛿

2𝑡
= [(𝑛1 − 𝑛2)]                                        (2.15) 
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Where 𝜀1𝑎𝑛𝑑 𝜀2   the principal strains, t is the coating thickness and (𝑛1 𝑎𝑛𝑑 𝑛2) are 

the refractive index in the corresponding directions of stain measured. The direction 

at the point of measurement was determined from the rotation angle. A black point 

was used to observe light extinguished presented in Figure 5.14 

 

While the isochromatic are invariant even with model orientation, the isoclinic is 

identified by the changes in light intensity when the model is rotated. They are 

produced when the direction of any of the principal stress coincides with polarisation-

axis of the polariser. The direction of the principal stresses in the sample is observed 

using the isoclinic fringes. By correlating stress difference with the isoclinic, two-

dimensional stress analysis can be carried out (Ramesh, 2000). Isoclinic fringes are 

produced preferentially to reduce isochromatic fringes by placing small load per 

increment on the model under investigation. The isoclinic are also produced with the 

use of photo-elastic coating material of high material fringe constant (Ramesh, 2000). 

 

3.4.3 Data point during micro-measurement  

 The setup consists of a white light source and a Polaris cope whose principle 

involves two polarizers. In the periscope, the source-light transmits through a 

polarizer which changes the light to polarized light. The ray travels through the 

stressed model/sample and further into every point in the model in the direction of 

principal stress. Next the light is reflected back, passes through the second analyser 

and the fringe pattern is produced. A high material fringe value photo-elastic coating 

material was selected to distinguish isoclinic lines. 
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Figure3.11 

Figure 3.11 Principal stress directions revealed by rotation of  the 
polarizer/analyser axes (Micro-Measurements, 2005) 

 

In order to produce complete extinction of light at the test point, a plane polariscope 

set up was used. Then, an isoclinic is positioned over the point and the directions 

measured with respect to an established reference. Note, with the Model LF/Z-2 

Polariscope, a vertical axis was chosen and the principal strain directions were read 

from the calibrated dial. 

  

The anisotropy behaviour of the rock enhances stress measurement (Amadei, 2012). 

This property has been employed to explain linearity of the stress and strain 

relationship of brittle rock whose deformation was not linear with load force. Here by 

inducing strain into the rock, the anisotropy response was transferred to the photo-

elastic coating which allows retardation in both normal direction and shear direction 

to be captured (Figure 2.17).  

 

3.5 Single point data hypothesis in research method  

Single point stress information exists in rock (Amadie, 2012). But some authors say 

it is very difficult to measure. However, it is important for discrete modelling of rock. 

Therefore, an attempt is made in this current work to estimate a point parameter 

which is referred to micro-parameter.  
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Based on the findings in the previous procedures state in section one and two, 

experimental determination of micro-properties was carried out using Photo Stress 

Analysis Tomography (PSAT) and Ultrasound measurement technique. The micro-

parameters were compared. Subsequently, these parameters were used as inputs 

for rock simulation using DEM. Thus, deductive approach allowed the stress 

concentration and enabled stress measurements. It infers that stiffness property at a 

single point location in the sample can be estimated directly.  At each point in the 

sandstone, the grains are contacting one another. The plot of maximum shear stress 

versus corresponding fringe order was used to evaluate the material fringe value. 

The force acting between two contacting grains (Equation 3.6) was derived from the 

stress/pressure applied (P) to the pack of contacting grains. By correlating the 

incremental stress acting on the pack of quartz grains with the surface area of each 

grain, the number of contacting grains and porosity, the external force was evaluated. 

(Mavko et al., 2009; Bachrach and Mukerji, 2004). 

𝐹 =
𝐴𝑃

𝐶(1−𝜙)
      (3.6) 

Where the surface area A is given by 4𝜋𝑅2, P is the stress applied to the sandstone 

granular assembly, C is the number of contacting grains and 𝜙 is the porosity of the 

sandstone.  

Using Equation 3.6 both tensional force and compressional force were estimated 

data extracted from Photo Stress Analysis Tomography (PSAT) technique and the 

plot of the forces versus displacement was used to estimate contact stiffness. 

Grain displacement was estimated using the fringe (or wave) distance from the point 

where fringe originate in the sample. The displacement corresponds to strain in the 

granular pack. The magnitude of the distance was multiplied by the real length per 

length of the sample under investigation. The corresponding stress that produces 

each fringe was also recorded to estimate fringe constant. The vertical displacement 

and horizontal displacement at each point was estimated by measuring retardation 

in both directions respectively. The results are presented in Chapter 6. 
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3.6 Stage three: Discrete element modelling of rock and deformability in 

rock: hypothesis validation 

In order to carry out a validation of the stiffness data recorded from experiments, the 

data were entered as inputs data for numerical modelling. The macro-properties 

derived as response from the simulated rock was used for the validations of micro-

property estimations which were hypothesized in stages one and two. 

Observe that the sandstone examined in experiment was a brittle homogeneous rock 

of discrete grains (with a degree of spherical index). The experimental results 

discloses deformation trend as the quartz grains overlapped under mechanical load. 

Also, stress contours were generated due to grain displacement. It is thought that the 

quartz grain probably interacted probably at grain contacts having a measure of 

spherical inter-layer. 

During close observation of SEM, the grains were observed to be arranged in an 

overlapping manner. Each overlap was finite compared to the grain diameter hence 

contacts size was only a point captured by the micro-measurements. The clay was 

finite in the quantitative analysis of the sandstone. By recording force magnitude and 

the corresponding displacement at each point of examination, a contact mode was 

established as the stress contours were clear indications of the relative motion of the 

grains which were attributed to moment and force at the point of examination.  The 

contact of the discrete grains was stiff even when bonded with small contact. Hence, 

a significant amount of force was required to displace the grains. It means the bond 

will break down before the final large crack opens.  

The particle flow code (PFC) is a software package which was developed to 

numerically synthesize rock. Some assumptions that were found very satisfactory to 

fundamental experimental findings on rock deformability, (stage one and stage two) 

these assumptions include.  

1. Representation of grains with particles which were spherical hard 

object with a finite mass. 

2. Each particle’s motion does not depend on another’s and can change 

position and spin. 
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3. Interaction of these particles occurs only at their contacts; since these 

particles are round, only two particles touching points are considered 

as contact. 

4. The point of particle overlaps are called contact which are small 

compared to particle size hence contacts cover a small area. 

5. The rule governing force-displacement at each contact correlates 

relative particle motion to gain momentum and force at the contact 

with neighboring particle. 

6. Particle clusters are formed by the small contact bonds, carry load and 

can deform.   

7. Grains can be represented by gluing two or more spherical particles 

to form the desires grain spherical index. 

The PFC package was therefore employed to carry out discrete modelling in two 

different stages. 

The first stage involved the development of the synthetic model sandstone and the 

second stage was the numerical testing of the synthetic sandstone. The rock was 

built numerically using the normal and shear contact behaviour to incorporate particle 

contact model. Next the tri-axial compression test was carried out for the evaluation 

of the micro-parameters from the macro-elastic properties. Further, the tri-axil test 

allowed the detection of the crack number synonymous to the acoustic emission 

counts. The crack numbers are provided in Chapter 8. Acoustic events directly 

indicated damage localization. Hence, the overall research aim was achieved 

because subtle fracture in sandstone was successfully identified via replication of 

micro-mechanism of deformation in experiments by discrete models.  

The objectives to help in achieving the overall aim of prediction of bulk strength 

included; 

1. Measuring stress transmission through the cementitious rock materials. The 

stiffness parameter was incorporated first into simulated model. This is addressed 

exhaustively in Chapter 7. 

2. Sensing shear stress distribution and using its nub at micro-scale to simulate its 

bulk fracture strength. This is addressed in Chapter 6 and 7. 
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3. Influence of grain shape properties on the micro-mechanical damage was carried 

out. The crack number generated was used for the damage analysis. This is 

addressed in Chapter 8. 

 

3.6.1 Measuring stress transmission through cemented materials.  

Information on the measurement of stress transmission through cementitious 

materials is provided in Chapter 7, however, the summary of the procedure is 

provided in this section.  By incorporating the micro-scale data obtained from 

experiment, normal displacement and shear displacement was measured 

experimentally. By incorporating force chains between each contacting grain, force 

transmissions through granular matrix were simulated.  In previous reports, micro-

parameters (e.g. grain modulus and stiffness ratio) were obtained numerically by 

calculations that reproduce the macroscopic elastic properties (young modulus and 

Poisson’s ratio). This research seeks to improve simulation inputs by utilizing the 

detailed micro and macro properties of real sandstone. Hence, this provides the 

detailed normal and shear force localization using force chains. Simulation codes 

were applied with direct input techniques to improved replication of the real rock 

behaviour.  

 

DEM:  At this point, discrete model was developed based on the observed internal 

stress distribution of the sandstone under photo stress analysis. The numerical 

solution was top down simulations limited to pre-peak stress point. The assumptions 

of discrete modelling itemized above were incorporated in the modelling. In addition 

the following assumptions were included. 

 Two concrete observations have shown that the normal stiffness was 

experimentally validated to be right, (ultrasonic technique and the photo 

stress technique). The parameter of concern was the discrete particle shape. 

However, the SEM image and the optical microscope indicate spherical 

indices that could be approximated to be two to three spherical particle 

clumped-shapes. Therefore the clump particles were generated and the 

mixed clumps were varied until the desired property of the sandstone was 

obtained. Clumped particles were used to make adequate the effect of particle 

morphology on the mechanical behavior of the rock. 
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 Contact model were experimentally developed and fixed into simulations. In 

order to make adequate the rock behavior, the exact initial extensile internal 

response during initial stages of mechanical loading.  

 The degree of force transmission in the grain assembly depends on bond 

strength connecting grains. Sensitivity analysis was used to obtain the 

adequate bond strength. 

 Validation of models was easily carried out with normal displacement and 

shear displacement data from the numerical model. A point pressure was 

applied to a notched sample to target stress application to a point. Both 

experiment and modelling test were limited to a point application of stress 

concentration.  

 Corporate analysis with tested homogeneous sandstone sample (Berea 

sandstone) was used to make adequate uniform microstructural distribution. 

 

3.6.2 Crack nucleation and identification in discrete modelling of rock.  

In order to identify the onset of crack growth, crack nucleation process was monitored 

during initial loading stages in the discrete model. The bonds were installed between 

contacting grains. Force applications were directed on the bond until the load 

magnitude attained elastic limit of the bond so that crack nucleation was captured. 

Contact bond model obtained from experimental model were installed and the elastic 

spring between particles were drawn as force chains having both the normal and 

shear stiffness quantity. These springs acted at contacting points between grains and 

were used to reflect forces transmitted through the network of the grain matrix. Since 

the sandstone contained cementitious material gluing contact particles together, 

simultaneously, the parallel bond properties were specified to monitor the moment 

caused by grain rotation which could be resisted by the installed spring at the same 

finite contacts. Only the bond strength was varied until the rock properties were 

reproduced.  

 

From Figure 2.4 and 2.7 (a.) represent Normal and shear stiffness between particles. 

The contact stiffness, Kn and Ks remain active even after the bond breaks as long 

as particles stay in contact. The bond stiffness (force per unit area), Kn and Ks are 

suddenly removed when the bond breaks regardless of whether particles stay in 

contact or not. (b.) represent Constitutive behaviour in shear and tension (i=s,n).  
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3.6.3 Development of notched sample with point data from experiment 

These require the experimentation targeted at testing the hypothesis used to obtain 

the micro-properties. The contacting grains were cemented; they exhibited tension 

and compressional stiffness properties under stress. Therefore analysis of stress at 

any point below the loaded notch in the rock sample was thought of to provide grain 

displacement and strain dependence on stress level. Experimental and numerical 

data were compared. The significance of this procedure is its usefulness in solving 

the problem of stress analysis of the complicated geometrical composition of rock.  

 

The thrust of this procedure is to obtain inputs for the DEM with a block procedure. 

The force transmission was to be observed in synthetic sample which was notched 

by excavation so that the notch/crack tip is used to study bond deformation. The flow 

diagram shows the algorithm of procedure followed during the simulation of 

compression on the bond at the notched numerical sandstone (Chapter 7) 

 

By introducing the contact-model, the force distribution in natural rock was included 

into the sample. The chain network of force was composed of linked cylindrical 

symbol located at each contact in the sample with the centre of the cylinder located 

at the contact. The cylindrical symbol axis was aligned with the contact-model force 

vector (F). The radius of the cylinder which is proportional to the magnitude of vector 

magnitude (F) saved as history data.  

 The result of the force distribution is provided in Chapter 7. The tensional and 

compressive stress fields in the sample were presented. The code for this section is 

provided was written as a fish which was limited to identification of deformation 

nucleation at onset. The same effect of tension and compression caused by force 

chains in the real sandstone is significant. This is due to the fact that the outcome of 

the tension and compressive behaviour of grain contacts in discrete model could 

validate the success of the experimental point stiffness. This stiffness property was 

used to build and replicate behaviour of the rock. Next, synthetic model was made 

cylindrical for proper evaluation with standard test (ISRM test). 
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3.6.4 Development of cylindrical sample and using its nub at micro-scale to 

simulate its bulk fracture strength 

The development of cylindrical sample was achieved which aided the determination 

of the bulk strength of the rock. In the previous procedure, the contact and bond 

model of an experimental point were used to replicate the grain contact behaviour of 

the sandstone under elastic regime.  The procedure in this section involved 

calibration of the macro-scale models to obtain the micro-parameters of the rock in 

Chapter 7. The framework developed in view of the hypothesis that; any point data 

within the rock surface will estimate the grain contact behaviour. 

 

3.6.4.1 Stage one: input parameters for model development of numerical 

sandstone subjected to standard test 

During the development of the simulated sample of sandstone, the procedures 

utilized the direct modelling method which generated particles replaced with clumps. 

Individual clump was connected with parallel bond and the breakage of the bond was 

represented with contact bond damage.  

3.6.4.2 Specimen specification with grain generation using PFC  

Clumps were cemented together in a vessel with walls made to form an isotropic well-

connected system at 1MPa confinement pressure. Refinement level was connected 

with each region so that high refinement level lowers the grain size. Each sandstone 

region had a set of microscopic properties which were peculiar to the grains so that 

all grains and bonds locations mapped into the sandstone region. Micro properties 

were assigned to these locations in a sample of height 98mm by diameter 38mm. 

When a specified isotropic stress was installed, floating grains with less than three 

contacts were eliminated and the final group of grains were bonded together by 

installation of parallel bond. The vessels were then removed from the specimen ready 

for boundary- value simulation and specimen testing. 

 

3.6.4.3 Numerical tri-axial test and formulation of deformability parameter 

during DEM  

Using the Equations 3.12 to 3.17, the installed linear contact model were used to 

deform in-between particle contacts. After stress equilibrium was established, a 
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servo-mechanism was applied as in the laboratory experiment. At any contact for two 

discrete clumps A and B, which usually overlapped at contact in the discrete element 

model. The radii of these clumps could be denoted by rA and Rb, while xA and xB 

were used to denote their corresponding vectors in the global set of axes for 

positioning. The vector F of the forces interacting denoted the reaction between 

particle A and particle B. This was separated into normal Fn and shear vector Fs. 

These forces were automatically connected to relative displacements 𝑈𝑛, with normal 

stiffness Kn and shear stiffness Ks. Where 𝑈𝑛 is the relative normal displacement 

between two particles denoting normal contact vector with n, we can denote ΔUs with 

the incremental tangential displacement. The shear force Fs was obtained by 

summing the ΔFs increments. The normal and tangential stiffness were defined by 

Equation 3.12 and 3.13 (Potyondy and Cundall, 2004). 

 

𝐹𝑖
𝑛 = 𝐾𝑛𝑈𝑛         3.12 

 

𝛥𝐹𝑖
𝑠 = −𝐾𝑠𝛥𝑈𝑠                                                                                           3.13 

 

Where 𝐾𝑛and  𝐾𝑠  are the input values of normal and tangential stiffness for both 

contacting clumps (particles) A and B connected with a radius multiplier.  

 

To reproduce the behaviour of sandstone under deformation of contacts, the pure 

axial and pure shear loading were used. These correspond to the normal and shear 

behaviours which were uncoupled, and the contact normal and shear stiffness were 

used as expressed in Equation (3.14) (Potyondy and Cundall, 2004). 

 

𝐾𝑛=
𝐴𝐸𝑐

𝐿
                                                                                              3.14 

𝐾𝑠 =
12𝐼𝐸𝑐

𝐿3                                                                                         3.15 

Where, Ec is the contact Young's modulus, which is greater than the ensemble 

Young's modulus. Since the experimental model revealed a linear contact model, the 

contact stiffness,𝐾𝜉  were computed by assuming that the stiffnesses of the two 

contacting particle 𝐾𝐴
ζ
, and 𝐾𝐵

ζ
, were in series as stated in Equation 3.15 and 

3.17(Itasca, 2004)  (Potyondy and Cundall, 2004). 
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 𝐾𝜉 =
𝑘𝐴

𝜉
𝑘𝐵

𝜉

𝑘𝐴
𝜉

+𝑘𝐵
𝜉                                                                                      3.16 

Where 𝜉 = (normal, shear) 

  𝐾𝑛= 𝐾𝑛
𝐴  = 𝐾𝑠

𝐵                                                                                3.17 

Since the two particles were assigned the same normal and shear stiffness. It follows 

that the relationship between these stiffness and the modulus at a single contact bond 

was found by substituting Equation 3.16 into Equation 3.17 above to obtain Equation 

3.18 (Potyondy and Cundall, 2004). 

𝐾𝑛 = 𝐾𝑠 = 2𝐸𝑐{2Ṙ}      3.18 

In the scripts, based on Equation 3.18 the modulus at a single contact bond is directly 

proportional to particle stiffness, and inversely proportional to particle radius. 

The absence of Poisson's ratio in the link between particles in equation 3.18 implies 

that at microscopic scale, no relationship exist between Poisson's ratio and particle 

stiffness. However, a macroscopic Poisson's ratio was observed for the assembly of 

the arbitrarily packed particles. Usually the normal to shear stiffness ratio was 

correlated to macroscopic Poisson's ratio affected the amount of load carried in the 

shear and normal modes at contacting points, hence influenced the macroscopic 

failure mechanisms. The deformability micro-parameters were specified in order to 

achieve a consistent means of setting deformation: the two parameters specified 

were the Young's modulus at every particle-particle contact, Ec; as well as the 

stiffness, ratio Kn/Ks.  

Using Equation 3.18, the normal stiffness and shear stiffness could be evaluated   

since the scripts set a particle radius to be of equal magnitude with the mean radius. 

This simulation has been implemented in the particle flow code (PFC) (provided by 

Itasca consults). PFC employs a force-displacement approach with the Newton’s 

second law of motion to control the motion of each particle as the summation of forces 

applied on particle contact. The dynamic behaviour of the computation involved a 

time algorithm in which the velocities and the accelerations were constant at each 

time step.  
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During deformation by reduction in the magnitude of R, it mimicked the effect of 

reducing the strength of the cementation material at the grain contact in the 

sandstone.  

The complete set of the micro-parameters  included  the stiffness ratio kn / ks , the 

Young's modulus at each particle-particle contact Ec, the Young's modulus of each 

parallel bond Ēc, the particle friction coefficient μ, the normal strengths,�̅�𝑐 , shear 

strengths �̅�𝑐,  of the cement-like material represented by a parallel bond. The radius 

multiplier which sets the radius using Equation 3.19: (Potyondy and Cundall, 2004) 

𝜒 =  
𝐸𝑐

𝐸𝑐+Ē𝑐
      3.19 

 

Where χ is modulus-damage index which is a local measure of the damage, in terms 

of modulus reduction, that occurred when a parallel bond broke. Ec is the Young's 

modulus at each particle-particle contact; Ēc is the Young's modulus of each parallel 

bond. The overall modulus at a parallel-bonded contact (at which the two bonded 

particles have a non-zero overlap) was calculated as the summation of Ec and Ēc, 

When a parallel bond broke, the overall modulus at the same contact is reduced by 

Ēc, Next, the relationship between macroscopic modulus and deformability’s micro-

parameters were estimated using Equation 3.20: (Potyondy and Cundall, 2004). 

                                                𝐸 =
𝐸𝑐

ζ
+

Ē𝑐

ζ̅
                                                                                         3.20 

Where E is the macroscopic modulus, ζ and bondζ̅ are the ratios of micro-modulus to 

macro-modulus contribution for the particle-particle contacts and the parallel bonds, 

respectively.  

 

3.6.4.4 Variation of particle shape and parameter matching: 

In order to compare the stiffness ratio and the micro-elastic modulus obtained from 

experiments with numerical modelling, grain shape was investigated. This was 

because, a wide range of grain sizes of 80-120µm was observed in SEM image. To 

achieve mixed particle representation, all the clumped shape were mixed at ratio as 

follows (1) 0.95:0.05 for 2-particle clump, (2)0.45:0.55 for 2-particle clump and 3-

particle clump mix respectively and (3)0.05:0.95 for the 3-particle clump to build the 
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synthetic. The grain density and bulk density were inputs that catered for the rock’s 

porosity.  

 

3.6.4.5 Effect of confined pressure on the rock:  

Overburden pressure is referred to the in-situ stress around rock.  It is one major 

factor that may limit the application of micro-structural estimation in understanding 

macro-response of rock’s deformation. Hence, the influence of the overburden 

pressure on the macro-properties will be presented in Chapter 6. The study included 

the application of confined pressure on rock. 

 

Parametric study was done under confined pressure on the sandstone. The macro 

Young modulus and Poisson’s ratio calculated from tri-axial experiment on real rock 

were determined. These values were compared to the simulated tri-axial test on 

synthetic rock of same geometry and dimension as in the natural rock. The particle 

contacts in the natural rock and simulated rock responded to load stress. By 

introducing similar load pattern, the force displacement data of both samples was 

determined. This data were captured due to strain localization induced by the loading. 

Therefore, the discrepancies between the elastic property of the natural and 

synthesized sandstone can be discussed.  

  

3.6.4.6 Utilizing micro-mechanical damage to predict bulk strength 

Influence of petrographic properties on micro-mechanical behaviour was studied in 

Chapter 8. The corporate samples (Berea sandstone and Doddington sandstone 

were used to represent sandstone of different minerology). This included the effect 

of mineral content on the mechanical strength of the rock. The crack number was 

generated numerically. It provided crack damage threshold data. In Chapter 8, the 

crack damage indicators were obtained experimentally as volumetric stiffness. The 

damage indicators were compared and they provided clues for preventive 

strengthening of sandstone. The same sample used to identify damage threshold 

(crack initiation and crack damage) for comparison fracture predictions purposes: 

crack number were used for the prediction of fracture. In summary the three stages 

identified above for the determination of micro properties of rocks and the numerical 

validations is illustrated in Figure 3.12 
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Figure 3.12 Stages of the research methodology 

 

3.7 Conclusion  

A coupled physico-mechanical characterization was used to visualize the 

composition and arrangement of quartz in sandstone, and the sandstone was found 

to be a granular system. In sandstone, the standardization, development and 

implementation of a new grain contact modelling were established.  The adopted 

mechanisms of deformation in the granular assembly constitute strain obtained due 

to stress-mediated cemented-quartz-grain compacted together, hence, grain-to grain 

contact model was obtained. By the inclusion of state-full grain to grain contact, the 

model was found applicable to numerical algorithm which simulates the exact grain 

assembly of the physical material suitable for valid numerical compression test. 

 

Actualization of envisaged three sequential methodologies (characterization, 

experimental modelling and numerical modelling) established a full understanding of 

contact modelling. Here, a rigorous calibration based on the conceptual idea of 

coupling elastic properties from the ultrasound technique with the imaging system of 

the photo elasticity was employed. This reveals the same mechanism of deformation 

for rock in the granular assembly. The grain displacement was directly related to 

Newton’s second law in the numerical modelling. 

 

Granular assembly with two and three particle clumps system was used to explore 

the role of grain morphology in discrete modelling. With the inclusion of the grain 
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density and bulk density, which results in a porosity of 22% for granular assembly 

under investigation, coupled with a grain size of 80 -100microns, porosity and packing 

density was catered for in numerical assembly. Hence, the physical sandstone was 

well represented numerically. The inclusion of the cementation due to the clay 

cementing particle observed in characterization was also involved.The observed 

value of elastic modulus and Poisson’s ratio confirmed the accuracy of the grain 

contact models established in this research. Although some factors such as loading 

rate affect models, however, the grain contact stiffness parameter derived from the 

experimental model is constantly stiffness parameter. This requires cementation of 

each contacting grain which exerted a significant influence on the bulk modulus of 

elasticity and Poison’s ratio. 

 

The achievement in this research is that numerical tri-axial test and unconfined test- 

experiments show the progression of rock deformation. Deformation mechanisms 

followed the changing mode of macroscopic elastic properties.The displacement of 

grain from contacts reduced the material strength under compression within the 

numerical granular assembly. Hence, macro-properties were in line with the applied 

stress, not awkward, but a right validation. 

 

 In the next section on results of findings, it is envisaged that the coupling of the real 

physical rock micro-properties results in a feedback of exact mechanical behaviour 

of the granular under compression. This makes numerical modelling of mechanical 

behaviour of rock less complicated. It ultimately depended on the strength 

characteristics of the grain contact and the cementation which had an impact on the 

establishment of elastic property. 

 

In the next chapter, particle clumps variation will be examined to establish the effect 

of grain morphology on the elastic properties of rock. Less complex shape particle 

represent the rock, while uniform clumps or mixed clump system represent the rock. 

The higher bond strength affected the rock and the degree of interlock affected the 

elastic behaviour during mechanical loading. The second Newton’s law was still 

assumed but the significance of incorporating the real grain contact model in this 

work was evident by the simulation time and the accuracy of elastic properties which 

has been a discrepancy in all rock modelling research. 
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Chapter 4 

Experimental Characterization of Niger Delta Sandstone 
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4 EXPERIMENTAL CHARACTERIZATION OF NIGER DELTA SANDSTONE 

4.1 Introduction  

This chapter focuses on the experimental characterisation of grain-scale properties 

(chemical and physical) and evaluating the bulk mechanical strength properties of 

Niger Delta sandstone. These experimental measures serve as input into DEM, as 

well as to compare the experimental bulk strength measures with corresponding DEM 

simulations where applicable in the chapter following later (Figure 3.1). It is important 

to provide a petrographic property (detailed description of rock) before carrying out 

any mechanical test on rock material. Under mechanical loading, the resistance 

exhibited by rock is determined by its inherent petrographic properties which are 

usually micro-scaled-parameters. These properties determine damage threshold 

which is of fundamental importance in describing the stages that leads to rock 

deformations. Here, the petrographic properties of Niger Delta sandstone were 

extensively determined using experiments. For this, X-ray fluorescence (XRF) was 

used to carry out a semi-quantitative elemental distribution analysis of the elements 

present in sandstone. X-ray diffraction (XRD) was used to determine the mineral 

content. Scanning Electron Microscope-Electron Dispersive Spectrometry   (SEM-

EDS) was used to identify the mineral content by mapping the minerals observed by 

X-ray. A view of the optical microscope was used to verify boundary contact in the 

rock. In order to obtain the cohesive strength and the internal frictional angle, multi 

stage tri-axial compression test were carried out on the same sandstone sample at 

four stages of confined pressure which are 5MPa, 10MPa, 15MPa and 20MPa. The 

elastic properties of the grain behaviour under compression were determined using 

the standard ISRM- compression test. During the determination of the elastic 

properties, the damage thresholds were identified on the stress-strain curve. 

Experimental determination of damage thresholds was also provided. For 

information, the mineralogical characteristics and damage threshold properties of 

Niger Delta sandstone were compared with that of other two commonly found 

sandstone, which were Berea sandstone and Doddington sandstone. 
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4.2 Characterization of rock for discrete modelling 

The characterization of natural rocks was carried out using X-ray fluorescence (XRF), 

X-ray diffraction (XRD) and Scanning Electron Microscope - Electron Dispersive 

Spectroscopy (SEM-EDS). These are standard characterization techniques 

employed to obtain internal structural view, elemental and mineral composition of the 

sandstone (Potter et al., 2011). The sandstone used in this research was taken from 

Niger-delta sandstone petroleum formation in Nigeria. The petro-graphical properties 

were determined to obtain classical view of the grain boundary morphology, micro-

parameters and the elastic properties of the natural rock (Figure 4.1). This helps to 

link the experimentally measured micro-scale parameters with discrete element 

modelling in the subsequent chapters.  

 

 

Figure 4.1 Block diagram for the determination of grain- scale parameters and their 
links to DEM simulation work.   
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The strength characteristics of the rock largely depends on the inherent mineral 

composition, grain morphology, degree of grain interlock, packing density, grain size 

and the grain contact characteristics of the matrix. The deductive approach adopted 

required that mineral composition of natural rock should be identified for the purpose 

of relating mineralogy to rocks deformation characteristics. Theoretical studies have 

shown that quartz particles binding grains together in sandstone (Zorlu et al., 2008) 

are stronger than clay bonded grained rocks (Hardy, 1976). Therefore, sandstone 

contains mineral grains which control its response to stress. Here, a semi quantitative 

analysis of the rock mineral was carried out with XRF analysis.  

 

4.3 X-ray Fluorescence (XRF) analysis of natural rock 

The procedure adopted for the XRF analysis of natural rock is similar to the method 

provided by Boyes (2009). A high energy source was used to excite each atom in a 

material under investigation. The excitation caused X-ray photons of a characteristic 

energy (defined by wavelength) to be emitted. By counting the number of photons of 

individual energy emitted from the material, the elements present were quantified. 

Elemental detection involved picking specific photons. The semi-quantitative analysis 

of Niger delta sandstone is presented in Table 4.1. They were sourced from the same 

oil field at Ughelli.  The XRF analysis presented in Table 4.1 shows that sandstone 

was silica based because of the significant composition of silicon. Clays were 

identified in the chemical composition of the rock with the presence of; Fe, K, Al and 

Ca. The other elements present in traces are depositional materials associated with 

the origination of the rock formation. A similar analysis carried out on Berea 

sandstone by Lai et al., (2015) showed that the quartz content was between 74.7% 

and 89.5%, the feldspar content was between 3.5% and 9.5%, the clay content was 

between 1.3% and 4.8% other component was between 0.4% and 16.6% with 

porosity variation from  9.8% to 16.2%. 

 

4.4 X-ray Diffraction (XRD) analysis and cementation between discrete 

grains in natural rock 

The technique adopted for X-ray diffraction involved bombarding the rock sample 

with finely oriented monochromatic rays. X-ray with reflected beams can be described 
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theoretically as spherical waves which produce a diffraction pattern of regular spaced 

spots (Phillips and Phillips, 1980). The reflected beam scatters and are usually 

arranged symmetrically with d-spacing.   

Table 4.1 Semi quantitative elemental analysis of Niger Delta sandstone using XRF 

Element Concentration % 

Sample A Sample B Sample C 

Si 73.1 51 62 

Fe 10.1 17.9 12.4 

K 5.48 8.18 9.19 

Al 4.33 7.66 9.85 

Ca 2.71 3.68 0.815 

Ti 1.55 3.81 2.36 

P 0.768 0.423 0.466 

Zr 0.684 5.51 1.11 

Cu 0.375 0.152 0.19 

S 0.197 0.159 684 

Mn 0.163 0.402 971 

Mg 0.157 0.2 327 

Rb 0.156 0.164 0.23 

Cr 0.112 0.671 0.102 

V 0.865 0.518 0.50 

Sr 647 0.125 0.243 

Ni 0.517 0.227 0.132 

Ba - 0.307 0.593 

Y - 0.132 - 

Nb - 610 - 

Cl - - 655 

 

When these reflections synchronize, they are directed such that Bragg’s law 

(Suryanarayana and Norton, 2013) defines their path length difference to be the 

same as a multiple of wavelength. This law relates the wavelength of electromagnetic 
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radiation to the angle of diffraction and the regular lattice spacing in the rock 

specimen. These are diffracted X-rays. A range of 2θ angles were used to scan the 

sample through diffraction directions of the lattice converted to d - spacing. Mineral 

content was identified by the set of d-spacing and were characterized based on the 

International Centre Diffraction Data (ICDD). 

 

4.4.1 Mineral content and strength analysis 

Mineral content was qualitatively determined using XRD and SEM-EDS. X-Ray 

Powder-diffraction was carried out with BRUKER machine set at 40mA and 40kV. Ni 

filter and the Cu, K-alpha radiation was used. This procedure ran from 2o2Ө to 70o -

2Ө at a scanning speed of 5o -2Ө/min. Figure 4.2 presents the XRD analysis of the 

Niger Delta sandstone. The sample showed significant peaks of quartz as the most 

significant component. Other component information was provided by the XRD 

analysis. Thus, a further analysis was done using the SEM-EDS. 

From the results, quartz (SiO2) content was identified as the most significant mineral 

in the XRD analysis (Figure 4.2). This agrees with the highest proportion of silicon 

elements observed in the XRF analysis (Table 4.1). Figure 4.2 shows characteristic 

peaks of quart and kaolinite present in Niger delta sandstone. Kaolinite is a cement-

like clay mineral. Hence, the presence of cementing mineral is thought to be a 

criterion which determined the sample strength. This was because the strength and 

stiffness of the cement bindings of one grain to another was distributed throughout 

the bulk sandstone. 

 

Figure 4.2 XRD analysis showing the quartz and kaolinite content. 
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Thus, the Niger delta sandstone was comparable to Berea sandstone because it 

contains distinctive peaks of quartz and kaolinite which are shown in Figure 4.2. 

Although quantification of clay and quartz was not obtained in this research, the 

peaks show the dominance of quartz content. A quantified data for Berea sandstone 

was carried out by Churcher et al. (1991). The data was compared with the analysis 

done by Daniel and Kaldi (2012). Their studies showed that Berea sandstone was 

predominantly quartzite with about 10% clay of kaolinite and illite, because the 

distinctive peaks of quartz and kaolinite were seen in them.  In order to obtain more 

information about the content of sandstone, a further analysis was done using SEM-

EDS method to characterize the Niger delta sample.  

 

4.5 Scanning Electron Microscope - Electron Dispersive Spectrometry 

(EDM/EDS) and optical image analysis  

The procedure adopted for SEM-EDS technique was similar to the method provided 

by Hafner (2006). A beam of electrons was directed at the rock specimen. Electrons 

in the inner shell of atoms were excited by external electron and were displaced. A 

hole was created in the space where the electron was displaced. The space created 

was occupied by another electron from the higher shell energy. The differences in 

the energies of the shells were released as X-ray (Hafner, 2006).  By matching E.D.S. 

data from the emitted x-rays, the elements present were identified by the atomic 

structure with characteristic energy levels.  

 

Figure 4.3 presents the SEM image of Niger Delta sandstone. It shows the 

arrangement of grains which are all of silicon-oxide components. This dominance of 

quartz grains agreed with the XRF and the XRD analysis. Other minor elements 

which were in between the quartz grains were in small traces. The clay particles in 

between grains are obvious in Figure 4.3. 
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Figure 4.3 Granular arrangement in Niger delta sandstone 

 

In order to verify the presence of basic elements in XRF and XRD analysis, the SEM 

result was mapped by X-ray characteristics data in Figure 3.4. Quartz grains were 

found to be dominant because both oxygen and silicon elements were observed in 

the mapped SEM image. By setting windows around peaks of all possible elements 

present in the scanned sandstone, the digital image was mapped out for each 

element. Here, dots were placed on the screen as the X-ray count of specific element 

was received. The black portions imply the absence of the element in those locations. 

 

The grain shape and interlocking arrangements are characteristics of the microscopic 

structural view (Figure 4.3). Thus, the degree of roundness could affect the 

quantitative strength characteristic of the sandstone. In the numerical simulations, 

the representation of sandstone grains involving deviation from perfect spherical 

index has been reported (Zorlu et al., 2008). The grain shape can be described with 

a degree of spherical  property (Bell and Lindsay, 1999). This is particularly due to 

the fact that the quartz grains are not perfect sphere (Figure 4.3 and Figure 4.4). 

 

The quartz or the visible grains are presented in Figure 4.3. It is clear that quartz to 

quartz are the grain to grain contact in sandstone. The clay bond may break inside 

the sandstone, so that bonded quartz grains could lose cementation effect. Due to 
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these possible occurrences, a stiffness property can be obtained for the rock. This is 

regarded as the resistance of the cemented contact to external force, necessary to 

displace a quartz grain per unit displacement (Stephenson et al., 1992). Therefore, 

the overall strength of the rock depends on the stiffness of quartz or the contacts 

which are distributed throughout the grain assembly. The bond strength between the 

grains will be involved in the deformation process. The strength of these basic 

minerals determines extent of strain in the cemented contacts for a rock under stress.  

 

In order to visualize the elemental points in the SEM image, the sandstone sample 

was gold coated and the thin sheet of sandstone was epoxy filled to reveal the grain 

boundary and interlock arrangement (Figure 4.5). In Chapter six the mapped out SEM 

image of Niger-Delta sandstone for elemental composition will be provided and 

discussed in details. The description of the micro-displacement within the grain 

assembly is also presented. 

 

4.6 Natural micro-cracks and crack propagation in sandstone 

The SEM-EDS results show that inherent micro-crack/vacancies exist in sandstone 

(Figure 4.4). In general under tri-axial compression, crack in orthogonal direction to 

compression closes under confined pressure. Some micro-cracks are not inherent 

but are newly formed by compression under load. Heterogeneous properties of strain 

localized points in rocks are concentrated around grains of different modulus value. 

Crack propagation can define the line of fracture. It is facilitated by pore spaces, 

grains with lost interlocked properties at the boundaries and intra-crystalline 

weakness. Observed average porosity for the Niger delta sandstone was 20.65% 

(Table 4.2), hence, the pore spaces were obvious in the samples. 

4.7 Effect of clay particles in pore space on strength characteristics  

Non-cementation may exist in some points. These are also clay contents which have 

significant effect on the strength of sandstone because they sustain the pores space 

and induce secondary mechanical properties. Clay content has been found to reduce 

the coefficient of friction (Corbett et al., 1987). The clay content affects frictional 

characteristics of grain assembly in rock (Dowla et al., 1990). Therefore, compressive 

strength increases with decrease in clay particles found within the pore space. The 

pore space in the sample can influence the compressive strength (Corbett et al., 
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1987). An inverse relationship between porosity and the compressive strength of rock 

has been reported by Dowla et al. (1990).  

.  

4.8 Effect of cementations and mineral composition on mechanical 

properties of rock 

Clay particles fuse up in some pores and form cementation between quartz grains 

(Fisher et al., 2009). This cementation was observed in Niger-delta sandstone under 

the SEM image. The resin impregnation of sandstone sample was to aid identification 

of grain boundary and void space. In order to obtain the constituent mineral, points 

were counted in each specimen. Each point was matched with the XRD and the 

mineral was identified. The locations of mineral point were then determined (Figure 

4.4) 

 

Figure 4.4 SEM-EDS Basic minerals in sandstone 

 

Note that in Figure 4.4, the black colour indicates absence of element or empty 

space. A semi-quantitative elemental analysis was carried out on Niger delta 

specimen. The elemental data revealed the presence of quartz, feldspar, clay and 

Mica which are the basic minerals in the sandstone sample. Kaolinite is an example 

of common clay mineral found in sedimentary rock (Gill et al., 1977). Quartz and 

kaolinite have been reported as basic minerals in sedimentary rock (Bevins, 1994).  

Basic minerals in Berea sandstone have also been provided by Lai et al. (2015) 

(Table 4.4 and 4.5). 
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4.8.1 Quartz  

Niger delta sample is a quartzite-sandstone which are identified by Si element, (Table 

4.1, Figure 4.1-4.5). Quartz in sandstone has been defined as  silicon oxide (Allaby 

and Park, 2013). Silicon elements are found in spectrum 11 in Figure 4.4. This 

indicates the presence of Quartz in Niger Delta sandstone. 

 

4.8.2 Feldspar  

Feldspar or plagioclases are groups of rock mineral-forming content.  The elemental 

combination could be KAlSi3O8 or NaAlSi3O8 or CaAl2Si2O8 (Deer et al., 1992). In 

Figure 4.4, Ca and K shows that Feldspar was observed in spectrum 12 for Niger – 

delta sandstone.  

 

4.8.3 Clay 

Clay is a binder found at quartz contacts which is in-between discrete quartz grains. 

The particles are hydrous aluminium phyllosilicate containing cations. Berea 

sandstone has its feldspar content associated with clay minerals because of the K 

and Ca elements (Huggett, 1986). A similar description of identifying mineral in 

sandstone with SEM-EDS is reported in literature (Huggett, 1986; Huggett, 1982; 

Huggett, 1984), following these authors’ observations. This research adopted similar 

method for rock analysis using Niger delta sandstone, the feldspar is (Figure 4.4) 

similar to Berea sandstone examined by Huggett, (1984). 

 

4.8.4 Mica 

Mica is the component that contains almost all the mineral that make up the rock. 

They are identified by the perfect cleavage of related mineral (Deer et al., 1992) in 

sandstones. Table 4.1 presents a list of the minerals presents in the Niger delta 

sandstone which describe the Mica peculiar to the sample examined. These entire 

elements affect the strength of the rock Table 4.2 and Table 4.3 present studies on 

the effect of mineral on the strength of sandstone.  
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Figure 4.5 Optical microscope of Niger delta sandstone 

4.9 Optical microscope image analysis of natural sandstone 

The optical microscope technique was adopted for the boundary imaging. This is 

similar to the technique provided by Kino and Corle (1996). The objective lens was 

brought as low as 2mm to the rock sample so that light from the sample is brought to 

a focus inside the microscope tube. Next, an enlarged image was formed. The 

inverted image was captured by the microscope by using the in-built post-processing 

control of the microscope. The optical image of the thin section epoxy filled specimen 

is shown in Figure 4.5 for the sandstone which ranged in grain sizes from coarse to 

fine grains, grain boundaries between grains within the sandstone revealed 

contacting boundaries. It shows clearly the arrangement of quartz grains and the 

existence of packing in the assembly.  Here resin was used to impregnate the 

sandstone on a Plexiglas sheet. The observed grain shape and sizes were not 

uniform. Therefore the grain varied in sizes between 80µm to 129µm which was 

classed as coarse to fine grains. 

 

The compressive strength is thought to depend on petrography (or grain shape). This 

was because interlocks exist between the grains. It can be observed that the grains 

are in firm contact (optical view in Figure 4.5). Hence, it is necessary to take into 

account grain-contact stiffness in this microscopic study. With the knowledge of the 

inherent properties of the sandstone, the grain to grain contact displacements are 

due to the interactions of the quartz constituents. The optical image shows clear 

contact between constituent grains. Hence if the grains are compressed, there should 
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be a behavioural trend controlling relative displacement of grains at contact. The 

grain property and the bond properties at grain contacts are expressed as point 

(grain) scale properties or micro-properties in this research. By subjecting these grain 

assemblies to mechanical loading, under birefringent experimental procedures, 

quantitative data can be estimated from the strain response as presented in the 

Chapters 6 and 7. The experimental technique applied for evaluating macro- strength 

measurement is presented in the next section. 

 

4.10 Standard methodology provided by International Society of Rock 

Mechanics (ISRM) for the strength, modulus and Poisson ratio 

Validation of macroscopic response of rock (strength, modulus, and Poisson ratio)   

to mechanical loading was carried out using ISRM. These macro-properties were 

determined with uniaxial and tri-axial tests (Koyama and Jing, 2007). These 

properties include Young modulus, Poisson’s ratio, and frictional coefficient of the 

rock. The essence of these tests was to compare macroscopic response of DEM and 

physical experiments which were the counterpart macroscopic data of natural 

sandstone. It was intended that similar experimental procedures will be replicated in 

numerical simulation to obtain mechanical responses of the sandstone. This is 

usually achieved by carrying out similar tests (uniaxial and tri-axial tests) on simulated 

sandstone. These macro-data served as validations for understanding the link 

between grain-scale properties (micro-parameters) and macro-strength 

characteristics. By using the same sandstone core of 96mm high and 38mm in 

diameter subjected to a strain rate of 0.6MN/m2/sec, in a multistage tri-axial test 

(Zhang et al, 2012), the experimental data for Young modulus (E), Poisson’s ratio (v), 

cohesion (c) and internal frictional angle (µ)  were obtained (Figure 4.5).  

 

 

4.10.1 Determination of bulk compressive strength, Young modulus, 

Poisson’s ratio: Uniaxial Compression Test (UCS). 

The Young modulus, compressive strength and Poisson’s ratio were determined by 

the ISMR procedure provided by Fairhurst and Hudson (1999a). The cylindrical 

specimen dimension was 90mm height by 38mm diameter (Figure 4.6).  
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The tangent modulus was determined at a stress level of 50% of the uniaxial 

compressive strength (Dyke and Dobereiner, 1991). The Poisson’s ratio was taken 

as the ratio of the diametric slope of the lateral-stress-strain to axial slope of the axial-

stress-strain curve. The compressive strength (78MPa) was observed at the 

maximum stress recorded (Table 4.2). Five samples of Niger delta sandstone were 

tested for the mechanical properties and observations were similar due to the similar 

composition and micro-structural properties of the rock.  

 

 

  

  

Figure 4.6 Experimental set up for uniaxial compressive test: rock engineering 
laboratory, University of Leeds 
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4.11 Determination of compressive strength, frictional coefficient, and elastic 

properties under confined pressures: tri-axial compression test 

A specimen of dimension of height, 90mm and diameter, 38mm diameter was used 

to carry out a tri-axial compression test following the ISRM technique. The sleeve tri-

axial kit was used to confine the specimen to a pressure of 5MPa, 10MPa, 15MPa, 

20MPa, 30MPa, 40MPa, 50MPa and 60MPa (Figures 4.7 and Figure 4.8).  

 

 

 

 

 

 

Figure 4.7 Experimental set up for confined pressure compressive test: rock 
engineering laboratory, University of Leeds 
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Figure 4.8 Cohesion (c =18MPa) and frictional angle (µ =22.0o) for Niger Delta 
sandstone at 5MPa, 10MPa, 15MPa and 20MPa confining pressure (Pc). 

 

The value of Young modulus increased linearly until the critical strength of sandstone 

was reached. The Niger delta sandstone was both siliceous and kaolinite cemented. 

A study conducted by Nemcok et al. (2009) illustrates the sensitivity of modulus to 

internal deformation of sandstone is dependent on mineral composition. For 

example, some mineral type characterize rock with crack density, this is because 

higher crack densities indicate lower Young modulus property of the rock. Therefore, 

cohesion and internal frictional angle are important to characterizing the strength of 

rock. The shear strength of sample is stress dependent. This is due to cohesive 

nature of contacting aggregates. Cohesion is said to be the property that results from 

the stress imparted to the aggregates which are electrostatically bonded as discrete 

grains. Hence, the shear strength of rock reveals the stress dependence in 

orthogonal directions. This is because the cohesive nature of the aggregate is 

controlled by cementation. Cementation determines the rheology of sandstone 

because the cementing minerals fills the pore space and thus raise the yield strength 

(Nemcok et al., 2009) and cohesion. Therefore, the movement of each grain is 

referred to as deformation. The cohesion of Niger delta sandstone was 18MPa with 

an internal frictional angle of 22degree (Figure 4.8 and Table 4.2). 

 

 

0 20 40 60 80 100 120

0

10

20

30

40

50

S
h

e
a

r 
s
tr

e
s
s
 (

M
P

a
)

Normal stress (MPa)

 Pc = 5MPa

 Pc = 10MPa

 Pc = 15MPa

 Pc = 20MPa

 

 
 

µ 

c



 

140 

 

Table 4.2 Macro-properties of Niger delta sandstone 

Macro properties Niger delta 

sandstone 

 

Modulus (GPa) 20.7 

Poisson’s ratio 0.29 

Cohesion (MPa) 18 

Internal frictional angle (o) 22 o 

Compressive strength (MPa) 78 

Porosity (%) 20.65 

Grain density(kg/m3) 2590 

Bulk density(kg/m3) 2055 

4.12 Mineral type and mechanical behaviour 

Niger delta sandstone consisted of a high quartz proportion, small amount of 

Feldapar, characterized by mica. This made the sample distinct from other sandstone 

sample. The uniaxial compressive strength and modulus were 78MPa and 20.7GPa 

respectively (Table 4.2). For the sample examined, the presence of mica and feldspar 

could affect the strength magnitude. These minerals could either lower or raise the 

compressive strength and Young modulus. Specifically, higher quartz content 

contributed to higher strength magnitude in rock, this observation was made by 

Makani and Vidal, (2013).  

 

On the basis of distinctive peaks of X-ray diffraction of the Berea sandstone and Niger 

delta sandstone, as presented in Figure 4.4 it was found that quartz is the major 

mineral type of the rock, followed by feldspar. Kaolinite clay mineral was observed. 

Other mineral types were present in small amount. These minerals were therefore 

the mineral supports that are responsible for the 78MPa yield stress and the 20.7GPa 

elastic modulus that characterized the material strength.  Coarse nature and granular 

orientation were characteristic properties of the sandstone as presented in the SEM 

and optical image (Figure 4.3 and 4.4). The mechanical behaviour was determined 

by these properties. The average grain size for Berea was reported as 0.15mm (Hiltl 

et al., 1999) whereas the average grain size for Niger Delta sandstone was 0.148mm. 
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Quartz and mica mineral are found in the Niger delta sample. The porosity is 20.65% 

(Table 4.2 and 4.5). The sample is porous (mineral support is at a strength of 78MPa), 

with very high pore space observed in the sample; the compressive strength is also 

dependent on the porosity of the sandstone. Young Modulus is 20.7GPa and the 

Poisson’s ratio is 0.29. The mineral type distinguishes the mechanical behaviour for 

Niger delta sample from other types of sandstone (Table 4.3). (Adeyanju and 

Oyekunle, 2010)  

 

4.13 Comparison of petrography and mineral support in sandstone 

For the purpose of comparison, the mineral-type in Doddington sandstone is 

presented in Figure 4.9. It differ from both Niger delta and Berea sandstones because 

Feldspar and clay mineral are not present. Doddington sample does not have similar 

mineral composition that could be compared with Berea and Niger-delta sandstone. 

Close examination shows that the sample is relatively weaker then both Niger delta 

and Berea sandstone. Therefore, the mineral composition in each sample serves as 

support for the external load on the sandstones because they form the building 

blocks.  Although all samples are quartz-dominant they differ in strength 

characteristics because of their different proportion of clay and mineral composition. 

The yield point of Niger delta sandstone was higher than the reported yield point of 

58MPa of Berea sandstone (Evans, 2012). It implies that the Niger delta sample 

contained higher quartz compared to Berea sandstone but it also contains less clay 

particle in its pores. The Berea sandstone contained more feldspar than Niger-delta 

sandstone. This may account for the lower yield strength in Berea sample when 

compared to Niger delta sandstone. The crack closure and damage stress is 

discussed in the later part of this chapter. For comparison purposes, Table 4.3 shows 

that mineral composition in sandstone would affect the mechanical strength of the 

material. 

 

During deformation test, Niger delta sandstone exhibited a significant brittle 

deformation. This high brittle behaviour could be due to the high mica content which 

allows a non-uniform distribution of load on the matrix. Although this contained high 

proportion of quartz, it contains low degree of cementation which makes it a well 

bonded granular pack. If the quartz content is high in a sample and contains very low 
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percentage of clay, then the sample has well sorted grains and it will exhibit a low 

strength magnitude compared to samples with less clay particles in the pores. 

 

Table 4.3 Basic component and mechanical properties of sandstones 

References Mineral composition Sample Uniaxial 
compressive 

strength(UCS) 

Kalimov, et al., 
1971 

% Carbonate = (dolomite, 
CaMg(CO3)2,  +calcite) 

22Sandstones, 
39siltstone 

 

Increase in 
carbonate 

increases UCS 

Kalimov, et al., 
1971, 

 

Clay = (Illite 
+beidelite+kaolinite) 

22  
Sandstone, 39 

siltstone 
 

Increase in clay 
decreases UCS 

Steiger and 
Leung, 1989 

Clay = smectite Sandstone Increase in clay 
decreases UCS 

This research Quartz Sandstone Increase in yield 
point 

This research Feldspar Sandstone Decrease yield 
point 

 

 

4.14 Mechanical behaviour of Niger Delta sandstone compared with Berea 

and Doddington sandstones. 

Niger delta sandstone was used to carry out the study of micro-mechanical damage. 

Berea sandstone was chosen for comparing the results obtained in Niger-delta 

sandstone. This is because Berea sandstone is recognized as a reference rock for 

strength analysis for oil-bearing rocks (Evans, 2012). Unconfined compression test 

was carried out on both Berea and Niger delta sandstone. For each test sample, axial 

and radial strains were recorded. The strain behaviour were not so different, therefore 

the two samples were compared. The unconfined compressive stress for the sample 

is found as 68MPa for Niger-delta sandstone and 52MPa for Berea sandstone (Table 

4.5). The comparable strength observed in Niger-delta and Berea is due to the 

cementation in both samples. In general, Niger-delta sandstone and Berea 

sandstone indicated very typical properties of sandstone, but Niger delta sandstone 

had a higher cohesive property peculiar to the grains. This property is indicates the 

higher strength and stiffness property of Niger Delta sample when compared to Berea 
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sandstone. Its degree of deformability was also higher. The cohesive behaviour 

exhibited by the grain to grain depended on grain shape and the degree of interlock 

within the grains. Berea sandstone was used as an analogue for reservoir rock  (Hart 

and Wang, 1995; Menéndez et al., 1996). The elements in Berea sandstone and 

Niger delta is provided in Table 4.4. The similarities in samples (Niger delta and 

Berea sandstone) was considered. Thus, the two samples were compared in on the 

basis of mechanical properties as provided in Table 4.5.  

 

Table 4.4 Comparison of elements present in Berea and Niger delta sandstone 

Sample Si  
(%) 

Al 
(%) 

K 
(%) 

Fe 
(%) 

Ca 
(%) 

Ti 
(%) 

Mg 
(%) 

 

Na 
(%) 

Author 

Berea 

sandstone 

84.88 5.33 3.49 2.49 2.11 1.11 0.36 0.23 Lai et al., 

2015. 

Berea 

sandstone 

81.84 5.04 3.57 3.88 4.16 1.03 0.61 0.22 Lai et al., 

2015. 

Berea 

sandstone 

62.00 9.85 9.19 12.40 0.82 2.36 0.33 0.13 This 

research 

Niger Delta 

sandstone 

73.10 4.33 5.48 10.10 2.71 1.55 0.16 0.52 This 

research 

 

 

Table 4.5 Macro properties of Niger delta sandstone and Berea sandstone 

Macro properties Niger delta 

sandstone 

 

Berea 

sandstone 

 

Modulus (GPa) 20.7 20.6 

Poisson’s ratio 0.29 0.32 

Cohesion (MPa) 18 24 

Internal frictional angle (o) 22  26  

Compressive strength (MPa) 68 52 

Porosity (%) 20.65 21.92 

Grain density(kg/m3) 2590 2631 

Bulk density(kg/m3) 2055 2077 
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4.15 Mineral content and strength analysis of Niger delta sandstone 

compared with other sandstone  

The XRD analysis of Niger Delta sandstone, Berea sandstone and Doddington 

sandstone is presented in Figure 4.9 a - c respectively. Each sample shows 

significant peaks of quartz which indicates the most significant component. The 

characteristic peaks show that Niger delta sandstone and Berea sandstone are closer 

in mineralogy compared to the third sample (Doddington sandstone). Observe that, 

clay mineral was probably in negligible quantity in Doddington sandstone. The peaks 

of mineral point are identified in Figure 4.9a-c. 

 

 
 

 

Figure 4.9 XRD analysis of ;(a)Niger Delta sandstone (b) Berea sandstone and 
(c)Doddington sandstone 
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Figure 4.10 EDS- Layered Image analysis of Niger Delta Sandstone (b) Berea 
sandstone and (c) Doddington sandstone 

 

4.16 Basic minerals in the sandstones 

Semi-quantitative analysis was carried out on three sandstone samples: (a) Niger 

Delta sandstone, (b) Berea sandstone, (c) Doddington sandstone. Quartz, feldspar, 

clay and Mica were the basic minerals in the sandstone samples. Generally, Kaolinite 

clay was found in sedimentary rock (Gill et al., 1977; Bevins, 1994). Quartz was the 

silicon elements which were found in spectrum 11, 14 and 7 (Figure 4.10 a-c). This 

indicates the presence of Quartz in Niger Delta sandstone, Berea sandstone and 

Doddington sandstone respectively. 

 

a. b. 

c. 
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In Figure 4.10 Ca and K indicate that feldspar was present in Niger delta sandstone 

but not as rich in alkali-elements as that found in Berea sandstone.  Berea sandstone 

contained quartz with subordinate feldspar which is identified with the presence of 

the Na, Ca and K, elements in Figure 4.10b.  Feldspar was observed in spectrum 12, 

15 and 5 for Niger Delta sandstone, Berea and Doddington sandstone respectively 

in Figure 4.10a-c respectively.  Berea sandstone specimen had the highest feldspar 

in its specimen.  

 

4.17 Petrography and mineral support in sandstone 

The result of Doddington sandstone is presented in Figure 4.10c. It differ from both 

Niger delta and Berea sandstones because Feldspar and clay mineral were not 

present in the sample examined. Doddington sample was different in mineral 

composition compared with Berea and Niger Delta. Close physical view shows that 

the sample is relatively weaker then both Niger Delta and Berea sandstone. The 

granular arrangement is sorted as presented in Figure 4.11c. Therefore, the mineral 

composition in each sample serves as support for the external load on the 

sandstones.  Although all samples are quartz-dominant they differ in strength 

characteristics because of their mineral composition. Niger delta sandstone 

contained higher quartz content compared to Berea sandstone but it contained less 

clay particle in its pores. This makes the yield point of Niger Delta sandstone higher 

than Berea sandstone (Figure 4.12a-c). Berea sandstone sample contained more 

feldspar than Niger Delta sandstone and this also accounted for the lower yield 

strength in Berea sample. The crack closure stress (20MPa) and the crack damage 

stress (140MPa) are higher in Niger Delta sandstone (Figure 4.12a) than Berea 

sandstone with 18MPa and 110MPa respectively (Figure 4.12b). Doddington 

sandstone is relatively weaker with sorted mineral support, its crack closure stress 

(8MPa) and the crack damage stress is not distinctive because it exhibits a significant 

brittle behaviour at yield point. This behaviour can be attributed to its no-clay content.  

 

4.18 Micro-cracks and crack propagation in sandstone 

The SEM results show that inherent micro-crack exist in sandstone, Figure 4.10a-c 

presents the link between the void space as the micro-cracks, Figure 4.11.a-c shows 
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the micro-cracks in between the grains. Under tri-axial compression, crack in 

orthogonal direction to compression closes under confined pressure. The initial crack 

closure implies that some micro-crack was not inherent but were formed by 

compression under load. Heterogeneous properties in rock stresses were 

concentrated around grains of different Young modulus. This value results due to the 

characteristic exhibited by the inherent micro-cracks peculiar to the sample. Crack 

propagation can define line of fracture. It is facilitated by pore spaces, grains that 

have lost its interlocking properties at the boundaries and intra-crystalline weakness. 

The average porosity of Niger delta sandstone was about 20.68% (Table 3.5). The 

pore spaces are obvious in the samples. 

 

4.18.1 Effect of clay particles in pore space on strength characteristics  

Pure un-cemented clay content (Figure 4.11 a-c) has a significant effect on the 

strength of sandstone because they sustain the pores space and induce secondary 

mechanical properties. Clay particles in the pore space has been found to reduce the 

coefficient of friction (Corbett et al., 1987; Dowla et al., 1990). Therefore, compressive 

strength increases with decrease in clay particles found within the pore space.  

 

The pore space in Berea sample is more than the observed pore space in Niger delta, 

indicating higher porosity. While Berea sandstone has an average porosity of 21.92%, 

the Niger delta sandstone is 20.68%. The most porous sample is Doddington 

sandstone with 23% this is followed by the Berea sandstone and then the Niger-delta 

sandstone. The compressive strength follows the same trend.  Therefore, an inverse 

relationship exists between porosity and the compressive strength of the samples 

with Niger-delta having 160MPa, followed by Berea sandstone with 152MPa and 

Doddington sample with 122MPa.  

 

4.18.2 Effect of cementation and mineral composition on elastic properties 

and strength 

The clay particles fuse up in some pores and form cementation between quartz. This 

cementation was observed in Berea sandstone and Niger Delta sandstone. But 
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negligible cementation was observed in Doddington (Figure 4.11a-c). Thus under 

loading surface, more grain contact exist in the other two samples than Doddington.  

  

 

Figure 4.11 Granular arrangements in (a)Niger Delta Sandstone (b) Berea 
sandstone and (c)Doddington sandstone 

 

By using the same sandstone core of 96mm high and 38mm in diameter subjected 

to a strain rate of 0.6MN/m2/sec, in a multistage tri-axial test, the experimental data 

for Young modulus, Poisson’s ratio, cohesion and internal frictional angle were 

obtained. The crack volumetric strain is provided by the DEM (Potyondy and Cundall, 

2004) in Equation (3.1). 

𝜀𝑐𝑣 = 𝜀𝑣 −
(1−2𝑣)(𝜎1−𝜎3)

𝐸
                                                 (3.1) 

 

a. b. 

c. 
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Where 𝜀𝑣   𝑎𝑛𝑑 𝜀𝑐𝑣   are volumetric strains and crack volumetric strain. E is the 

Modulus of elasticity and 𝑣 is the Poisson’s ratio, σ1 and σ3 are the axial and confining 

stresses respectively. At confined pressure of axial test was carried on numerical 

model later in Chapter 8. From the results obtained for a numerical model, the micro-

mechanical behaviour was identified with the crack initiation stress, crack damage 

stress and yield point. 

 
 

 

Key: σcc, σci, σcd and σUCS are stresses due to crack closure, crack initiation, crack 

damage and  uniaxial compression respectively. 

Figure 4.12 Experimental result for the stress-strain curves for Niger Delta 
Sandstone (b) Berea sandstone and (c) Doddington sandstone under tri-axial 
test at 15MPa confined pressure 

 

4.19 Conclusions 

Mineralogical compositions determine the strength characteristics exhibited by rock.  

For sandstone, the proportion of quartz and feldspar are major content which control 

-0.002 0.000 0.002 0.004 0.006 0.008

0

20

40

60

80

100

120

140

160

180

A
x
ia

l 
s
tr

e
s
s
 (

M
P

a
)

Strain

 Axial strain

 Volumetric strain

 Crack volumetric strain

 

 

 

 

 

 


cc


Ci


cd


UCS

 

 

-0.002 0.000 0.002 0.004 0.006 0.008

0

20

40

60

80

100

120

140

160

A
x
a

il
 s

tr
e

s
s
 (

M
P

a
)

Strain

 Axial strain

 Volumetric strain

 Crack volumetric strain

 
 

 

 

 

σcc 

σCi 

σcd 

σUCS 

 

 

-0.015 -0.010 -0.005 0.000 0.005 0.010

0

20

40

60

80

100

120

140

A
x
ia

l 
s
tr

e
s
s
 (

M
P

a
)

Strain

 Axial strain

 Volumetric strain

 Crack volumetric strain

 

 

 

 
 

 

σCi 

σcd 
σUCS 

 

 

b. 

c 

a. 



 

150 

 

the mechanical behaviour under compression. Each mineral type determines the 

strength characteristics of the rock. For the Niger delta sandstone, a high quartz 

content relative to low feldspar content was present with other proportion of mica and 

clay. These compositional properties distinguishes the mechanical properties of the 

rocks. 

 

The yield point exhibited by Niger delta sandstone is determined by the quartz 

content, mica content and the characteristic cementation properties. These minerals 

are elastic property determinants. Sandstone is composed of almost spherical-

shaped grains which characterized its porosity, grain contacts and the degree of 

interlock. The grain stiffness determine the compressive strength of Niger delta 

sandstone. The internal frictional angle and cohesion are also affected by these 

properties.  The characteristic smaller grain size, lower porosity, higher clay-content, 

higher stable mineral, higher quartz content, higher feldspar, all leads to higher 

compressive strength and a high value of elastic properties. 

 

The Niger delta sandstone is a granular system with characteristic internal frictional 

angle and cohesive properties. Thus, strain response under mechanical load 

characterizes the mechanism of deformation, which is due to the motion of quartz 

grain within the grain assembly. Such strain data can be utilized to obtain microscopic 

data which include normal stiffness, shear stiffness and bond strength at grain 

contacts.  

 

The displacement of grain from intact state reduces the material strength under 

compression. The observed value of elastic modulus depends on the cohesive 

property of the aggregate of quartz in the sandstone. Although some factors such as 

loading direction relative to crack direction affect the modulus. Grain contact possess 

non-homogeneous stiffness property. This is due to the variations in the cementation 

of each contacting grain which exerts a significant influence on the modulus of 

elasticity. 
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Chapter 5 

Experimental Evaluation of Micro-parameters of Niger delta Sandstone: 

Stiffness Ratio Using Ultrasound Tests 
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5 EXPERIMENTAL EVALUATION OF MICROPARAMETERS OF NIGER 

DELTA SANDSTONE: STIFFNESS RATIO USING ULTRASOUND TESTS 

5.1 Introduction 

Rock grains such as in the case of sandstone, have non-homogeneous mineralogical 

properties. This could result in variation in the stiffness measure, which is perhaps 

the most important microscopic variable in characterising the rock. The focus of this 

chapter is to evaluate the stiffness ratio (ratio of normal to tangential stiffness) of 

Niger Delta sandstone using ultrasound experiments. This would help later to feed 

as input parameters in the DEM simulations.   

 

Analytical explanation of micro-structural deformation of strongly bonded (rock-like) 

granular materials has been provided by Holt (2005) and Li (2011).  However the 

concept of accounting grain scale interactions within cementations structure such as 

rock is not sufficiently developed for formulating contact models for cementations 

materials.   This Chapter will provide a novel insight into the behaviour of grain-to-

grain contact of sandstone rock is presented in this Chapter. Grain contact stiffness 

(normal and tangential) was obtained by measuring P-wave and S-wave data using 

ultrasound probes. The corresponding elastic properties of the rock were 

subsequently used to determine bond strength.  

 

 

The material under investigation is an assembly of discrete grain with finite clay –

cemented contacts in Niger Delta sandstone. Grain contacts can exist at any point in 

sandstone. Deformation is said to be the displacement of grains from their contact 

location. These displacements translate into strain measureable at any arbitrary point 

in the rock. The rock exhibit maximum strain at the surface, because the grains move 

freely at the surface while the displacement is inhibited in the inner core of the bulk 

assembly.  
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5.2 Ultrasound measurement and natural rock 

Sound wave propagation depends on the vibration or oscillatory motion of a grain 

inside the rock (Wang et al, 2006).  Ultrasonic wave produces signal even when an 

infinite mass or a grain oscillates. The grains are connected to each other in the rock 

with an envisaged elastic springs (Cho et al, 2007). Each grain motion is relative to 

the contacting grain connected to it. As inertial and elastic force of restoration acts 

on each grain, only one resonant frequency will be associated to the grain of mass 

M on a spring. Normally, the relationship of the force on the grain (mass M) is 

controlled by the spring resistance called stiffness. The force of restoration of the 

elastic spring per unit length is regarded as the spring constant (Makse et al, 2004). 

We know from Hooke’s law that within the elastic limit of a material, the relationship 

between the particle displacement and the force of restoration of a grain to its 

equilibrium position is linear (Petroski, 1996; Herrmann, 1991). Hence, grain to grain 

contact stiffness was quantified based on the assumption that Hooke’s law holds as 

the quartz grain deforms. 

 

5.3 Micro-parameters and requirement for numerical computation 

DEM requirement involves setting material deformability by specifying elastic 

modulus and stiffness ratio at grain contact. If these two most important parameters 

are determinable, the simulation of the natural rock can be improved. This concept is 

better than iterative calibration of the macroscopic parameters in DEM in relation to 

a microscopic data which is complex (Wang and Tonon, 2010). Thus the benefit of 

extracting micro-parameters from natural rock is that, the complexities in DEM could 

be greatly simplified by using realistic experimental data as inputs. The next section 

explains how the ultrasound technique is adopted to obtain micro-parameters 

(stiffness ratio).  
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Figure 5.1Experimental set-up for determination of compressional and shear wave 
velocity using ultrasonic techniques 

 

5.4 Ultrasound measurement: wave velocity through Niger delta sandstone 

First of all the stress strain data were obtained using the strain gauge and the 

procedure provided in Chapter 3. By following the procedure in the standard test 

(Figure 5.1) of the International Society of Rock Mechanics (ISRM) (Ulusay and 

Hudson, 1974), the P-wave velocities and S-wave velocities were determined. 

Subsequently, the grain contact stiffness was evaluated. Figure 5.1 shows the 

experimental set up which consist of a pulse generator that sent the ultrasound signal 

at specified frequencies through the sandstone. Transducers were placed on both 

ends of the sandstone. The procedure allows the sonic signal to travel through a 

sample size of 38mm diameter by 50mm in height. The velocities were measured by 

sending pulse ultrasound through the sandstone. The frequency of excitation was 

1000 kHz. The waveforms were transmitted at frequencies ranging from 300-400 kHz 

based on the stress applied with the corresponding compressive and tangential 

forces. 
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Grain-contact-stiffness was evaluated separately as normal stiffness and shear 

stiffness with the measured P-wave and S-wave velocities respectively. These 

normal and shear grain contacts stiffness (micro-parameters) were used to develop 

the contact law governing grain interaction as each grain contact deform under 

compression.  

 

 

a.)Snell’s refraction  (Bryant, 1958) b.)Longitudinal and shear waves  

Figure 5.2 Ultrasound measurement technique (Jiles, 2007).  

 

Note that:  VL1 is the longitudinal wave velocity in material 1, VL2 is the longitudinal 

wave, velocity in material 2, VS1 is the shear wave velocity in material 1. 

VS2 is the shear wave velocity in material 2. 

 

5.4.1 Deductions made from ultrasonic measurement by refraction 

A wave is refracted when ultrasound wave passes through an interface or micro-

defect in rock matrix (Bryant, 1958) (Figure 5.2). The same phenomenon occurs 

when light passes through an interface. Refraction occurs in rock because of the 

velocity difference between the gel medium and the rock medium (Jiles, 2007). The 

larger the difference in the acoustic properties of the two media, the greater the 

refraction produced. The angle of incidence at which the sound wave enters the rock 

and their velocities can be correlated. This correlation is called Snell’s law (Figure 

 

(a) (b) 
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5.2a). By this technique, both shear and longitudinal wave are refracted (Figure 

5.2b).The refractive beam for longitudinal and shear waves were shown in Figure 

5.2b. 
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Figure 5.3 Compressional wave signature for Niger delta sandstone at various 
confined pressure (Pc). 
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5.4.2 Measurement of longitudinal and shear wave velocities 

Grain displacements inside rock matrix were captured in both longitudinal and shears 

directions to obtain longitudinal and shear wave respectively (Figures 5.3 and 5.4). 

The refracted waves appeared as oscillating curves. Wave propagation could depend 

on the elastic properties of the rock. Thus, the waveform obtained on the data 

acquisition shows plots of acoustic amplitude versus time with distinctive peaks of 

longitudinal and shear characteristics. For the Niger delta sandstone, compressional 

wave arrivals were followed by the shear waves (Figures 5.3 – 5.5).  
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Figure 5.4  Shear wave signature for Niger delta sandstone at various confined 
pressure (Pc). 
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Figure 5.5 Wave signatures of compressional and shear wave in the acoustic 
waveform  

 

5.4.3 Acoustic wave and direction of grain displacement 

During sample compression at some confined pressures of 5MPa, 10MPa, 15MPa, 

20MPa, 30MPa, 40MPa, 50MPa, and 60MPa, ultrasound wave was made to pass 

through the rock sample of height, 80mm and diameter, 38mm. During this 

experiment, each grain vibrated round its mean central position. The acoustic 

characteristics showed that, the wave released by the pulse-system pass through the 

sample and produced a characteristic signature. The acoustic wave received was 

recorded as compressional (Vp) wave, which recorded the grain displacement in the 

direction parallel to the direction of wave propagated (Figure 5.3). Next, the shear-

wave (Vs) was recorded by virtue of the displacement of the grain when the wave 

travels in the transverse direction (Figure 5.4). The normal and shear wave properties 

in longitudinal and transverse direction due to grain displacement were determined. 

Figure 5.5 is the signature of the combination of the two waves received. 
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Figure 5.6  Averages for compressional velocities (Vp), shear velocity (Vs) used to 
obtain; normal stiffness (Kn), shear stiffness (Ks), Poisson’s ratio (v) and 
modulus (E) of Niger delta sandstone samples. 

 

Table 5.1Averages for compressional velocities (Vp), shear velocity (Vs), normal 
stiffness (Kn), shear stiffness (Ks), Poisson’s ratio (v) and Young modulus (E) 
of Niger delta sandstone sample at 5-60MPa of confined pressures (Pc).  

Pc (MPa) 

Vp 

(m/s) 

Vs 

(m/s) Vp/Vs 

Kn 

(MN/m) 

Ks 

(MN/m) 

Kn/Ks v 

E 

(GPa) 

5 3784 2437 1.55 5.92 2.15 2.77 0.146 27 

10 3809 2454 1.55 5.99 2.19 2.77 0.145 28 

15 3946 2561 1.54 6.31 2.52 2.52 0.136 30 

20 4007 2589 1.55 6.58 2.50 2.66 0.141 31 

30 4069 2648 1.54 6.66 2.76 2.42 0.133 33 

40 4132 2660 1.55 7.07 2.55 2.80 0.146 32 

50 4225 2713 1.56 7.43 2.60 2.88 0.149 34 

60 4238 2734 1.55 7.40 2.74 2.71 0.144 34 
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It has been established that acoustic waves are affected by rock mineralogy, fluid 

composition, porosity, texture, clay content, cementation, confined pressure, and 

temperature (Kassab and Weller, 2015). In this sample, the strain in the grain contact 

resist passage of signal during compressional test and the perturbation data was 

recorded as a grain contact data from the observed velocity in Figure 5.6. This yielded 

a mean velocity ratio (Vp/Vs) of 1.55 presented in Table 5.1 which was an average 

of 6 experiments for each confined pressure. In Figure 5.6 at confined pressure of 

30MPa, the velocity ratio was almost constant up to 60MPa. Hence, for this sample, 

the confined pressure necessary to obtain normal and shear contact behaviour was 

30MPa (Figure 5.6).  

 

5.4.4 Grain contact stiffness from compression and shear velocities 

 By using the Winkler correlations (Winkler, 1983), the normal stiffness and shear 

stiffness of the grain contact were evaluated using the compressional and shear 

velocities respectively. The elastic modulus and grain densities were evaluated and 

the value obtained was between 18-26GPa. The variation in the modulus value 

implies heterogeneity in the sample with a corresponding range of Poisson’s ratio 

from 0.133 to 0.302. The acoustic wave velocities were correlated with coordination 

number and grain density using Equations (5.1) – (5.3). The normal stiffness and 

shear stiffness served as a basic micro-parameter measured for the elastic 

characteristic data of the rock sample. The statistical analysis of the stiffness modulus 

and Poisson’s ratio for 54 sample tested are provided under statistical section at the 

end of this chapter. 
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Here, Kn ans Ks are normal and shear stiffness respectively, Vp and Vs are the P- 

and S- wave velocities respectively, R is grain radius and ɸ is the porosity and C 

coordination number. In Figure 5.6, the average velocities are plotted against 

confined pressure. Next the contact stiffness was calculated and plotted in Figure 

5.7. The average stiffness ratio turns out to be 2.68 with a standard deviation of 

0.3048, for normal stiffness and shear stiffness of 6.5373MN/m and 2.4564MN/m 

respectively. The standard deviation for the normal and shear stiffness is 

0.5595MN/m and 0.2632MN/m respectively.  

 

Velocity ratios (i.e., ratio compressional velocity to shear velocity) were plotted in 

Figure 5.8 to compare possible ratio for stiffness data in Figure 5.9. The average ratio 

of normal to shear stiffness was 2.68. In Figure 5.8, a reflection of the stiffness ratio 

(Figure 5.9) was observed for velocity ratio (Figure 5.8). This was a simple validation 

for consistency in the evaluation of the stiffness data. 

 

A near constant value of compressional and shear waves were maintained at about 

30MPa confined pressure up to 60MPa. Stiffness ratios were within the range of the 

stiffness ratio obtained from the Photo Stress Analysis Tomography (PSAT). The 

PSAT experiments will be presented in Chapter 6.  

 

Qualitative data extracted from the micro-structure of rock are normally obtained from 

measuring elastic wave velocities (Nur and Wang, 1989). These elastic waves are 

actively influenced by grain deformation, therefore, the characteristics of these wave 

velocities during grain distortion can be employed to evaluate contact parameter. 

Winkler’s evaluation of normal stiffness and shear stiffness is directly based on 

measured wave velocities. It is observed that this correlation is not based on any pre-

defined grain contact model.  



 

162 

 

 

Figure 5.7 Grain to grain normal stiffness (Kn) and shear stiffness (Ks) of the 
sandstone sample from ultrasound measurement technique. 

 

5.5 Micro-fracturing and micro-measurement  

Micro-fracturing of rock can be explained by interaction between the grain and 

cement components which constitute the material. The grain displacements that 

result in fracture can be very difficult to quantify as the grain interact relatively with 

each other. This quantification has been evaluated for dry grain assembly with force 

transmission through grain contacts (Shukla et al., 1988; Oda et al., 1982)  

 

Recent advances in numerical modelling of rock fracturing require the building of rock 

with its micro-mechanical properties which are derived from displacement allied 

quantities. These quantities are obtained by numerical calibration of the macro-scale 

elastic parameters. The micro-properties are important and should not be neglected 

because failures in rocks are peculiar to their micro-behaviour. Rocks may exhibit 

behaviours which include; the elastic non linearity, plasticity and complex features 

which characterized rock’s response to stress.  In order to compare micro-data from 

simulated rock behaviour, this work seeks to quantify the micro-mechanical 

properties by estimating the grain and cement data from an arbitrary point in natural 

rock.  
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It is understood that deformation begins at cemented contact (Dvorkin et al., 1991; 

Dvorkin et al., 1994). Under stress, the grains in contact are usually separated and 

possess a single point contact (Dvorkin, and Yin, 1995).  Recall that the sandstone 

has been characterized (Chapter 3) which shows discrete grain cemented at 

contacts. From these facts, we can assume that when; the cemented granular grains 

of rock are loaded the behaviour is elastic; the cementation at contact is finite 

therefore, grain data corresponds to cemented contact data; the grain remains intact 

but remain elastic until after a critical stress is reached.  With these three 

assumptions, we can identify the tensional region and the compressive behaviour of 

the grain contact behaviour as the grain move from its position under stress.  

 

5.6 Directional measurement 

Illustrations of the directional measurement at a point in the sample are illustrated in 

(Figure 5.8 and Figure 5.9). This was draw by Amadei, (2012). In Figure 5.8, the 

different inclination of the anisotropy is illustrated. Also the oblique incidence initiates 

the value of the principal strain. Thus, the corresponding stresses can be evaluated. 

Typically stress will induce strain in all directions. Figure 5.9 shows that with axial 

stress (Y) applied to the sample, strain (Ɛx, Ɛy, Ɛz) occurs in all directions 

corresponding to the anisotropy in rock. 
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Figure 5.8 Illustrations of the directional measurement from the sample showing 
strained localised points (Amadei, 2012) 

 

 

 

Figure 5.9 The two and three different inclination of the anisotropy is illustrated 
(Amadei, 2012) 



 

165 

 

 

5.6.1 Determination of stiffness of a single point 

Stiffness of a single point was evaluated. The ultrasound yielded velocities in the axial 

direction and perpendicular directions of loading. Due to the occurrence of double 

refraction, displacement in the normal and shear direction at that point was recorded.  

At the point location in the sample, applied forces were recorded and corresponding 

arrival time was measured. The point stiffness in both normal and shear direction was 

hence estimated.  

 

5.7 Statistical analysis of normal and shear stiffness data 

Linear regression was used to ascertain the validity of the micro-parameters 

measured. The statistical descriptions are also presented based on the experimental 

data Table A1 and A2. 54 samples were tested. Six assumptions were required for 

the data to be found valid for regression model.  The statistic package for social 

science (SPSS) was used to carry out the statistical evaluation. This was because 

the macro-parameter data was obtained simultaneously for all the stiffness data 

observed.  Hence, applying linear regression model is satisfactory. Also, the data 

fulfilled the entire requirement for linear regression validation.  

 

 

Figure 5.10 Plot of shear stiffness versus normal stiffness 
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Figure 5.11 Stiffness versus compressive strength of sandstone 

 

These requirements include: 

1. No significant outlier was found on the vertical or dependent axis. The outliers 

usually have large residuals which may have negative effect on the predicted 

model.  For example, it may affect the accuracy of the regression equation 

and hence affect the value of the predicted model.  However in there are few 

cases the criteria exist to cater for outlier detection and with case- wise 

diagnostics. 

2. The data show strong independence of observation which was checked with 

Durbin-Watson statistics (Azzalini and Bowman, 1993) to evaluate 

autocorrelation in regression models. 

3. The data shows homo-schedasticity. That is the variances along lines of best 

fittings are similar.  

4. The residual errors in the regression line were approximately normally 

distributed. This was achieved by using the superimposed normal curve on 

the histogram plot.  It should be noted that this test should be coherent in 

order of this list above.  

If all these assumptions are true then the model used for prediction is valid. This 

was tested with Poisson’s ratio and elastic modulus plots with stiffness data in 

Figure 5.12 and Figure 5.13. 
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Figure 5.12 Analysis of stiffness with elastic modulus 

 

Figure 5.13 Analysis of stiffness with Poisson’s ratio  

 

5.7.1 z-test for normal stiffness and shear stiffness 

The z-test was carried out in order to ensure that the measurement of normal stiffness 

and shear stiffness are consistent in yielding the same stiffness ratio (Table A1 and 

A2). This was done using the SPSS (Statistical Package for Social Sciences) 

software. It processed the experimental stiffness data and generated the expected 

value of normal stiffness against their actual value. In order to carry out the z-test 

(Table A3), it was confirmed that the parameters were normally distributed. The 

assumption of normal distribution was checked by plotting a Q-Q graph (Figure A1 - 

A3). The plot presents the experimental data lying within their diagonal lines. This is 

an indication that the stiffness measured is normally distributed. The significance 
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level is 0.05 (Doane and Seward, 2011) (i.e. α=0.05) . Under the ultrasound 

measurements, the normal stiffness, the Z-value-Skewness and the Z-value-Kurtosis 

are 1.698 and 0.055 respectively. For the shear stiffness measured, the Z-value-

Skewness and the Z-value-Kurtosis are 0.695 and 1.667 respectively (Table A3 and 

Table A4).  

 

Since the population variance are known for normal and shear stiffness measured 

(Table A4), then the stiffness are approximately the same for all points in the sample. 

This is due to the degree of cementation, pore spaces at grain contact and mineral 

type.  

 

Shapiro-Wilk's test (Shapiro and Wilk, 1965) shows that the p-value = 0.000001<0.05 

(Table A5), it means we reject the null hypothesis. At significance level of 0.05, there 

is enough evidence to conclude that the mean stiffness of 6.5373 MN/m and 2.4567 

MN/m have a ratio of 2.66 from all the experimental data. Therefore since we reject 

the null hypothesis for the confidence interval of 95% (Groeneveld and Meeden, 

1984). 

 

5.7.2 Statistical confidence of the stiffness ratio 

The standard deviation of the data set was employed to express the variability of the 

stiffness data, it is indicative of a confidence in statistical conclusions. The observed 

small standard deviation implies that the values of stiffness ratio data set are close 

and highly concentrated to the mean stiffness ratio.  The experiment was strictly 

controlled by Griffith theory because a small standard deviation was aimed. This is 

because, the stiffness ratio is restricted to the contact stiffness obtained from 

measured velocity. Many authors have derived the micro-structure (stiffness ratio) of 

sandstone (Dvorkin and Nur, 1996) by calibrating the experimental Poisson’s ratio 

and young modulus of rock samples (Potyondy, 2013). Their results shows that 

magnitude of stiffness ratio for sandstone is within the minimum and the maximum 

range obtained from the experimental work in this research. In specific terms, the 

magnitude of stiffness ratio has a standard deviations that provided insight for 

adequate experimental repeatability. Consequently, the deviation between data 

measured between 5 MPa and 60MPa fluid pressure is justified because of the large 

range in confined pressure did not produce large difference in stiffness ratio.  
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5.8  Conclusions 

Rock deformation starts when grains are displaced from their intact position. This 

implies that, crack localization and the onset of crack formation are due to grain 

motion. The data obtained at this localized points are grain-scale data. Although the 

grains are cemented, a cement contact is finite compared to the grain size, thus the 

contact stiffness is approximately equal to the grain stiffness. Therefore the statistical 

description of the grain contact stiffness is a description for micro-mechanical 

deformation.  

 

Velocity ratio of 1.5 to 1.7 has been reported for sandstone (Castagna et al., 1985; 

Shillington et al., 2008; Pickett, 1963).  A similar data was observed for Niger delta 

sandstone with a characteristic coordination number 9 and a porosity data of 20.65%. 

This velocity ratio serves as indicator for stiffness ratio because the velocity ratio is a 

reflection of the stiffness ratio. 

 

Previous attempts made for the determination of grain contact stiffness involve the 

use of artificial grains and cement to build rock  (Dvorkin and Yin, 1995; Holt et al., 

2005). This stiffness data from natural sample can be compared with parameter 

evaluated in DEM. The DEM uses contact model whereas the natural data reflect the 

natural contact behaviour. 

 

An average value of 2.5 was obtained by ultrasound method for the stiffness ratio of 

sandstone which was approximately the same as the value provided by Winkler 

(1983), hence the stiffness  ratio of 2.5 were validations for other measurement 

techniques.  

 

By using data extracted from natural sandstone, the complications of computation 

can be simplified in the numerical simulations. In this context, a scheme of procedure 

is suggested to include identification of fracture process zone (FPZ), determination 

of micro-parameter and the development of the granular assembly in Chapter 6.  
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Overall, the stiffness ratio of the sandstone was evaluated successfully. The tests 

also revealed experimental measure of Poisson’s ratio and inter-particle friction of 

sandstone grains. These parameters can form a reliable input to DEM modelling work 

in the subsequent chapters where applicable. 
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Chapter 6 

Sensing Stress Distribution on Opaque, Anisotropic Materials and 

Using its Nub in the Multi-scale Simulation of its Fracture Strength 
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6 SENSING STRESS DISTRIBUTION ON OPAQUE, ANISOTROPIC 

MATERIALS AND USING ITS NUB IN THE MULTISCALE SIMULATION OF 

ITS FRACTURE STRENGTH 

6.1 Introduction  

Fundamental level understanding on the strength and fracture properties of opaque 

and anisotropic materials require accounting for key multi-scale characteristics, from 

single-grains scale to bulk scale. This task remains as a stiff challenge in a wide 

range of science and engineering fields including geotechnical, petroleum, mining, 

minerals, advanced materials and particulate engineering. Here is the generic multi-

scale framework for simulating the strength characteristics of real sandstone samples 

using a combined measurements and modelling strategy.  Using photo-stress 

analysis methodology, first we sense the shear stress (or strain) distribution and its 

components along orthogonal directions on the surface of a V-notch sandstone 

sample under mechanical loading.  Using this and applying a classical grain-scale 

model, the stiffness ratio of the sandstone is evaluated at grain scale. This is also 

compared with using ultrasound sensors independently and a good level of 

agreement is obtained.  Thereafter, the grain-scale stiffness ratio which characterises 

the signature of material anisotropy is fed as an input in to the discrete element 

modelling of cylindrical sandstone rock samples subjected to axial compression. 

Physical experiments are also conducted to evaluate the load-displacement 

characteristics and bulk fracture strength of cylindrical sandstone sample.  A good 

level of agreement is obtained between the simulations and experiments.  Thus the 

current multi-scale framework can be applied in future to evaluate the mechanical 

properties of such complex and anisotropic materials in a reliable manner.  

        

6.2 Sandstone and inherent anisotropy characteristics 

Rocks have inherent granular arrangement and bonding at grain level (Burnley, 2013). 

A common feature of an anisotropic fractured rock is the discontinuity of fracture path 

within its structure induced by shear localisation (Burnley, 2013). Fracture path within 

sedimentary rock are identified by irregular interlocking pegs and sockets where 

insoluble minerals concentrate (de Andrade Ramos, 2000). Mineral sorting of rock 

samples have shown compositional differences at grain scale, identified by irregular 
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interlocking pegs and sockets where insoluble minerals concentrate (de Andrade 

Ramos, 2000). As a result, they display anisotropic material properties at bulk scale 

(Hudson and Harrison, 2000).  Fracture in rock occurs along weaker stress planes 

(Park, 2013). The grains are displaced in directions perpendicular to least principal 

stress under external loading (Secor, 1965; Vander Pluijm and Marshack, 2004; 

Singhal, and Gupta, 2010).    

 

A major challenge in characterising the mechanical response of anisotropic rock 

media and its links to mobilising bulk strength characteristics is the identification of 

stress (/strain) distribution in rocks especially when they are opaque. Existing 

strength measurements of rock media are done either at macro scale using bulk 

strength testing devices, or at micro scale using strain gauges though some whole 

field optical techniques such as speckle interferometry is  emerging (Razumovsky, 

2011).  However, for using conventional strain gauges, it is not always easy to pre-

locate the positions of weak strain (or stress) propagation paths in anisotropic rock 

samples (Lawn, 1993).  Ideally, one would like to track the distribution of stresses 

and strains inside three-dimensional rock samples under mechanical loading, but the 

scientific community is still far away from accomplishing this task more easily.  This 

could be responsible for the lack of accurate theories for defining the strength 

distribution in deformed complex materials.    Attempts to track the fracturing process 

by visualising whole-field strain or stress distribution patterns and linking the grain-

scale behaviour to bulk scale strength characteristics of anisotropic materials (Lawn, 

1993) are generally scarce in the literature.  The relative displacement of the grains 

in them culminates into crack propagation under mechanical loading and accounting 

for such micro effects in predicting their bulk strength is not yet well established.   If 

single-point measurements of grain stiffness could be measured even on the surface 

of suitable rock samples, grain stiffness at orthogonal directions can be estimated.  

Such realistic point scale inputs into a higher scale modelling could help to evaluate 

their multi-scale strength characteristics more reliably.  This forms the motivation of 

the current work. 
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6.3 Experiments and modelling 

In order to measure the stress/strain magnitudes at macro-scale, strain gauges are 

usually applied limited to bulk data (Fairhurst and Hudson, 1999b), for example the 

results are average measures over several grains within gauge length. Other 

methods such as photo-elastic stress analysis have been reported in the past using 

strongly bonded optically sensitive birefringent disks mimicking the sandstone (Zang 

and Stephansson, 2009)  and provided macro-parameters.  The residual strain field 

within sandstone grains was mimicked using birefringent material to represent 

naturally shaped quartz grains while epoxy was used to represent the bonding 

cement (Zang and Stephansson, 2009).  The quartz-cemented sandstone was 

simulated approximately so that nearly the same elastic modulus of the grains and 

cement of the experimental sample was the same as the real sandstone.  Other 

probing tools such as ultrasound tomography and X-ray computed tomography were 

useful to measure some mechanical (Appoloni et al., 2007) and internal micro 

structural properties (Winkler, 1983) of the grains respectively. Such properties could 

significantly influence on the macroscopic strength characteristics of rock samples 

(Holt et al., 2005). However, stress (strain) measurements on real sandstone material 

were required at grain-scale to evaluate realistic micromechanical features, which is 

the focus of the current work.   

 

On the computational front, a number of methods including finite element method 

(FEM) (Burnley, 2013) and discrete element method (DEM) (Cundall and Strack, 

1979a) have been used to understand the strength characteristics of rock samples.  

For evaluating both the internal and bulk strength properties of rock samples, using 

DEM is relatively more suitable. The method models the interactions between the 

neighbouring grains as a dynamic process and the time step is advanced using an 

explicit finite difference scheme. The interaction between contiguous particles is 

governed by a number of ways, for example using linear spring-dashpot models 

(Cundall and Strack, 1979a) and theories of contact mechanics (Dvorkin and Nur, 

1996, Hossain et al,. 2011).  Though large scale sample representation in DEM is 

computationally expensive, some DEM studies have been reported for small scale 

rock samples (Hunt et al., 2003).  However, DEM modelling fundamentally requires 

assigning initial value of micro parameters (e.g. stiffness parameters) of particle and 

inter-granular bond strength to build a rock sample.  Such micro parameters are 



 

175 

 

either guessed or obtained through a calibration processes in such a way that at first, 

the tuned parameters result bulk strength values of rock samples comparable with 

physical experiments using real samples (Yoon, 2007).  Thereafter, internal 

characteristics such as velocity and displacement patterns inside the samples at 

different stages of the loading can be probed in detail (Fakhimi and Villegas, 2007; 

Cundall and Strack, 1979a)).   Experimental design and optimisation strategy had 

been reported to build discrete model which was subsequently used to calculate 

micro-parameters of grains in order to reproduce macro-properties (compressive 

strength, young's modulus and Poisson's ratio) of the rock during compression test 

(Yoon, 2007).  Some discrete models employ the technique of calibrated circular 

particle interaction to obtain a suitable dimensionless parameter for building rock 

models (Fakhimi and Villegas, 2007) such that granular bond models produce the 

micro-properties (normal/shear stiffness, normal/shear bonds, and frictional 

coefficient) during the calibration procedure. Micro-properties were evaluated 

(Fakhimi and Villegas, 2004) using a slightly overlapped circular particle interaction 

(SOCPI) to work out ratio of unconfined compressive strength to tensile strength as 

well as the failure envelope.  However, the macroscopic strength was less in 

magnitude when compared to the real rock sample.  Fakhimi and Villegas (2007) 

improved on the overlap technique (Fakhimi and Villegas 2004,) using dimensional 

analysis to calibrate the particle assembly for Pennsylvania blue sandstone through 

deformation characteristics in stress paths.  In this, the micro-properties were found 

to underestimate the macro-properties of the real rock sample using theoretical 

contact models.  Though previous iterative approaches have provided new insights 

on the internal behaviour of rock samples under mechanical loading, multiple 

combination of parameters, for example most importantly stiffness ratio (i.e., ratio of 

stiffness along the orthogonal directions to a given grain contact plane) in 

combination with other model parameters could match the bulk strength in a given 

test.  Hence, it would be best to measure the stiffness ratio experimentally, especially 

in the case of anisotropic rock material such as sandstone to feed as a realistic input 

to DEM modelling for simulating its strength characteristics.  This fundamental 

challenge, though not yet tackled, has been addressed in the present work.     

 

The key steps of the present study are summarised progressively as follows: (i) 

Chemical and physical analysis of the sandstone sample (obtained from Niger Delta) 

was performed to get grain-scale chemo-physical properties (Figure 5.1)       
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(a) Grain-scale image of sandstone   

   

   

 

                             (b) Map of elemental composition in the SEM image of sandstone   

            Figure 6.1: Scanning Electron Microscope (SEM) Image of Niger Delta 
sandstone. 

 

 (ii) A Chevron sandstone sample (V-notched, Figure 6.2) was applied with a 

birefringent coating of uniform thickness 300±20 microns on its surface (iii) The V-

notched sample was subjected to axial loading in stages.  Using photo stress analysis 

tomography (PSAT, Figure 6.3) and considering that the material is elastic, the 
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whole-field shear strain (/stress) distribution profile (Antony, 2015) was tracked for 

different loading increments.   

 

 
 

Figure 6.2  (a) Schematic diagram of V-notch sample used to extract micro-
parameters and the simulated sample  

 

Note that the steps involved in extracting micro-parameter from sandstone is 

presented in Figure 6.2; (a) Schematic diagram of V-notch sample. All dimensions 

are in millimetres (b) Typical contours shows the significant regions of positive and 

negative stresses below the tip of the notch, referred to as fracture process zone FPZ 

(c) Enlarged view of FPZ and along the scan line, the variations of positive and 

negative stress (/strain) profiles are probed to get grain-scale parameters (d) 

schematic diagram of a cylindrical particulate assembly which uses grain-scale 

parameters as inputs to simulate its fracture strength. Stress analysis is performed 

to resolve the two orthogonal component i.e., elastic stress components acting at 45o 

to the horizontal and vertical planes (positive σ1 and negative σ2 respectively (Antony, 

2015) and henceforth referred to as positive and negative stresses(/strains)) and the 

point of their maximum value is tracked in the V-notch sample progressively for each 

loading increment (iv) Assuming that the contiguous grains experience these 

measured stress components along orthogonal planes, and using a well-known inter-

granular model, the incremental force and displacement components were tracked 

and their slope was obtained.  The ratio of this pertaining to the regions of positive 

and negative strain reflects the anisotropy (stiffness ratio) of the sandstone (v) 

conventional ultrasound testing was also done to obtain the stiffness ratio of 

sandstone (which is due to the ultrasound wave responses in them along orthogonal 
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directions) and a good level of agreement is obtained between the two approaches 

(vi)  The stiffness ratio obtained from step-iii, is fed as an input parameter (rather than 

commonly assuming as 1 pertaining to an isotropic and homogeneous material) and 

using clumped-spheres to reflect the shape and size of the grains of sandstone 

obtained from step (i), discrete element modelling (DEM) is performed to simulate the 

bulk stress-strain relation for a cylindrical sample subjected to axial compression. 

Evolution of some internal parameters such as the velocity distribution of grains is 

also done to get an idea of the discontinuities and the evolution of the fracture plane 

and (vii) finally physical experiments were also done for the sandstone cylindrical 

samples pertaining to the loading condition of the DEM simulations to get the bulk 

stress-strain relations and a good level of comparison is obtained between the 

experimental and simulation results to validate the present approach, which links 

experimentally measured point-scale information to bulk scale strength 

characteristics of complex material 

 

Figure 6.3  Basic optical elements of PSAT setup for sensing retardation of 

principal components of light and maximum shear stress distribution on the 
surface of sandstone under axial loading.  The contours show different orders 
of fringes.     
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6.4 Results and discussion 

Initially, the sandstone was experimentally characterised thoroughly as much as 

possible for understanding its grain-scale characteristics. Figure 1 shows the SEM 

image of the sandstone sample and X-ray mapping of its elemental composition.  This 

shows the granular nature and structure of the quartz grains which are cemented at 

their contacts in the sandstone.  The bond strength of clay cementitious material is 

relatively weaker than the strength of quartz (Waltham, 2001).  The coordination 

number of the quartz grains mostly varies between 8-12 (average coordination 

number 9) and the grain diameter between 60-100 microns. Furthermore, previous 

studies on the deformation of the grains in rock have not rigorously accounted for the 

structural characteristics of the rock (Holt et al., 2005).  However, considering that 

rock deformation is a multi-scale processes with potential links between material 

properties at different scales, using SEM and X-ray analysis of sandstone, we start 

with realistic information on the nature of strongly bonded grains in the sandstone.  

The SEM and X-ray analysis suggest that the examined sandstone is composed of 

well-sorted quartz grains with random sizes.  It is a clastic rock with low degree of 

heterogeneity (Figure 6.1).  This is consistent with sedimentary oil-bearing rocks such 

as Niger Delta sandstone with random distribution of grain bonding; the grain 

morphology is multiplex (Lambert-Aikhionbare and Shaw; 1982, Reimold et al,. 2014) 

with large pore space and low grain spherical index (Figure 6.2). Using the Saturation 

and Calliper Techniques (Ulusay and Hudson, 2007), the following properties of the 

sandstone were measured: porosity 22%, grain density 2120 kg/m3 and bulk density 

2135 kg/m3.  The friction coefficient of sandstone is obtained as 0.6 from the standard 

tri-axial test (Hoek and Franklin, 1967) under a confined pressure of 15MPa.  These 

experimentally characterised material parameters are used later for simulating the 

strength characteristics of sandstone using DEM by modelling the individual grains 

as bonded discrete spheres (Figure 6.4).   
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Figure 6.4 Illustration of progression of crack through two contiguous grains’ 

contact. 

 

The optical image and the illustrations of the progression of crack through two grains 

is presented in Figure 6.4. This is modelled in DEM using spheres (Ren, et al., 2012) 

with bond strength pertaining to the cementitious bond between the grains. The 

typical stages are as follows. Stage1: This corresponds to the initial stages of the 

loading where the load level is low.  Cementitious bond and spheres sustain tension. 

Stage 2: For further increase in the load at this intermediate stage, the overlapped-

grain tries to separate.  The grains are still bonded and retain a tensional force. 

Stage3: At the verge of grain separation. The two grains are out-lapped, but the 

contact retains critical tensional force leading to compressional force. The bond 

strength of sandstone grains is about 120-140MPa (Rong et al., 2013).   Standard tri-

axial confined compression test (Ulusay and Hudson, 2007) of sandstone was also 

conducted experimentally under a fluid pressure of 15MPa, which resulted into the 

values of the bulk compressive strength (failure strength), elastic modulus and 

Poisson’s ratio as 125MPa, 24.48GPa and 0.25 respectively.  The bulk compressive 

strength and deviator stress was also compared between the experiments and DEM 

simulation later.  Experimental unconfined compressive strength test (Ulusay and 

Hudson, 2007) of the sandstone was also conducted, which resulted the Young’s 

modulus of sandstone as 18.6GPa. This is within the range of other studies reported 

values of this, for example 16.5GPa obtained experimentally for the Berea sandstone 

(Halleck et al., 1988) and 20GPa used in the simulations for China sandstone (Rong 

et al., 2013).     

 

 

 

Grain 1 

Grain 2 
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Figure 6.5 depicts a deformation contour for the micro-cracking mechanism of a 

single point for the following retardation values: 63nm, 71nm, 78nm, and 93nm. 

These retardation values correspond to the following list of optical-forces: 1MPa, 

5MPa, 7.8MPa and 9MPa respectively.  

 

 

 

 

 

 

 
 

Figure 6.5 T(a)direction of load application (b) typical evolution of retardation map 

in the sample for an increase in external load levels (P1-P4), (P1<P2<P3<P4).   

 

In Figure 6.5, typical evolution of retardation map in the sample for an increase in 

external load levels (P1-P4) is presented.  Such maps are generated for a number of 

incremental loads and the outputs are analysed.  Retardation information are 

scanned along the section (passing through the highly stresses point in the map). 

The positive and negative values of the retardation correspond to the positive and 

negative stress acting in orthogonal planes at the point of interest.  The slopes of 

these two parts, as illustrated in the last image (P4) were tracked and their ratio 

 P1                 <          P2                <             P3             <       P4 

(a) 

(b) 
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computed for different load levels. The distribution of retardation of light between the 

major and minor optical axis on the V-notch sample (which is proportional to 

maximum shear stress (Dally and Riley, 1991) is visualised using PSAT (Figure 6.3, 

details in the methodology section) for different axial load levels.  This approach is 

most suitable to make point-scale measurements of retardation of light components 

along orthogonal directions. 

 

 

Figure 6.6  Experimental evaluation of stiffness (K) values (a) (K1) (b) K2 

 

The origin of this retardation is due to the difference in the principal strain 

(/displacement) along orthogonal directions at the point of interest in the sandstone. 

As we could expect, highly stressed regions are sensed beneath the tip of the notch 

and the colour coding is done in relation to the magnitude of retardation and 

maximum shear stress.  Suitable sections are chosen to analyse the nature of the 

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

 Experimental data

   -     fit line

F
o

rc
e

, 
P

n
 (

N
)

Optical retardation,  (nm)

 

 

 

 

K
1

 

P
n
 = 0.006 + 0.0289

R
2
 = 0.9977

 

 

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

 Experimental data

   -     fit line

F
o

rc
e

, 
P

s
 (

N
)

Optical retardation,  (nm)

K
2

 

 

 

P
s
 = 0.0024 + 0.00006

R
2
 = 0.9996

 

(a) 

(b) 



 

183 

 

optical retardation as explained in Figure 6.5.   The post-processing of the retardation 

data was done for locating the position of maximum positive and negative stresses 

and their evolution was tracked under different loading increments.  Using the point-

scale measurement of orthogonal stress components, assuming that the point is 

represented by contiguous spheres in contacts (Li and Fjær, 2012), Figure 6.3) and 

the approximation between stress-force at grain contact as used by Mavko et al. 

(2009), the grain force corresponding to the orthogonal components of measured 

stresses at the point of interest is obtained and plotted against the optical retardation 

in Figure 6.6.   In this, a linear fit is made to the data and the slope of the line 

corresponds to K1 and K2.  The ratio of these results the stiffness ratio K, equal to 2.5.  

The standard deviation in K was observed as 0.21 from a large number of repeated 

tests (about 50 tests). We also evaluated the stiffness ratio of the grains contact 

independently using the conventional ultrasound sensing methodology (Aydin, 2014) 

which resulted in a value of 2.68, which was comparable to the PSAT measure 

described above.  However, the slight discrepancies in this between the PSAT and 

ultrasound-based results could be attributed to the fact that, the K measured from the 

ultrasound method was based on the average response due to the contributions of 

all contacts in the experimental sample whereas the current PSAT measure is point 

based.  Furthermore, we also evaluated the value of K from the slopes of the initial 

optical responses as described in Figure 6.5 without the need to use the stress-grain 

force contact model*, and the result was fairly similar.   Henceforth, we used the K 

value derived from PSAT, which is more realistic, as an input parameter into DEM 

modelling of the bulk strength of cylindrical sandstone sample at the later stage.  

Furthermore, it is interesting to note that existing DEM modelling studies on the 

strength characteristics of sandstone used the input of K in the range of 1.8-2.9 (Ren 

et al,. 2012, Rong et al,. 2013)   However, unlike measuring K at microscale in the 

current research, most of the above mentioned DEM studies calibrated the value of 

K (trial and error) by matching the simulation response to the experimental bulk 

strength of sandstone.   Also the optical output presented in Figure 6.6 result the 

individual values of K1 and K2 as 6MN/m and 2.4MN/m.  This can be compared 

reasonably well with the values of normal and shear stiffness of sandstone reported 

earlier in the literature, for example 7.1MN/m and 2.9MN/m respectively for Berea 

sandstone tested using ultrasound sensor under a confining pressure of 17MPa 

(Winkler, 1983).  
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Using the experimentally evaluated grain-scale properties and packing density of the 

sandstone, DEM simulations using PFC3D software were performed to evaluate the 

variation of compressive strength and deviator stress.   The loading condition pertains 

to the standard experimental confined tri-axial test (Ulusay and Hudson, 2007) under 

different levels of confining pressure.    The input parameter to the simulations are 

summarised in Table 6.1.  

 

Table 6.1   Grain Contact Parameters for the Niger Delta Sandstone 

Parameter, unit Quantity 

Bond normal strength, mean (MPa) 120 

Bond normal strength, std. dev (MPa) 10 

Bond shear strength, mean (MPa) 120 

Bond shear strength, std. dev (MPa) 10 

Grain contact stiffness ratio, 𝑘𝑛/𝑘s 2.5 

Grain contact Young’s modulus (GPa) 18.6 

Bulk density kg/m3 2135 

Grain density kg/m3 2120 

Grain radius ratio, 𝑅max/𝑅min 1.66 

Friction coefficient 0.6 
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Figure 6.7 Variation of the compressive strength of sandstone obtained from the 
UCS test 

 

The simulations results were compared with corresponding experimental tests as 

discussed earlier and the results are presented here.  Figure 6.7 shows the variation 

of bulk compressive strength of sandstone under a typical confining pressure of 

15MPa.    

 

Figure 6.8 Variation of the macroscopic deviator stress during the tri-axial loading 
under different levels of confining pressure: (a) 5MPa (b) 10MPa (c) 15MPa 
and (d) 20 MPa.   
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1.028e-7m 4.217e-7m 

 

2.438e-5m 

 

9.043e-2m 

 

Figure 6.9 Variation of the (a) resultant velocity and (b) resultant displacement of 
the grains at different stages of loading (confining pressure 15MPa).  The 
thickness of the arrows is proportional to the magnitude of the respective 
measures (c) a typical visual image of the experimental sample at failure.       

 

In Figure 6.9, the pattern of the failure plan is similar to that of discontinuities in the 

simulation samples at the verge of failure (~45o) is presented.  A good level of 

agreement is obtained from the simulation and experimental results, especially on 

the ultimate compressive strength of sandstone (about 125MPa). Further the shear 

behaviour (Timoshenkgo and Goodier, 1970) of the sandstone was studied by 

plotting the variation of deviator stress (Timoshenkgo and Goodier, 1970; Towhata, 

2008) (this was the difference between the principal stresses) during the confined tri-

axial test and presented in Figure 6.8.  Again, by and large the more important 

ultimate deviator stress levels of the samples agree well between the experimental 

and simulations.  This shows the usefulness of the current multi-scale simulations in 

which measured grain-scale parameters, including the PSAT measurement of 

(a) Resultant velocity of the grains                                               (c) experimental sample 

(b) Resultant displacement of the grains (numbers show the maximum values) 

Initial state                          Intermediate states                     At the verge of failure 
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stiffness ratio were utilised.  However the variation of experimental bulk deviator 

stress showed some non-linearity in comparison with the experiments. Considering 

that the DEM simulations used a simple grain-scale constitutive behaviour, the shear 

behaviour predicted from the simulations, mostly linearly until failure, is a fairly good 

average representation of the corresponding experimental data.   

 

A detailed investigation on the DEM results of internal characteristics of sandstone 

under mechanical loading is outside the scope of the current investigations.  However, 

having validated the DEM simulations with experiments here, the variation of the 

resultant velocity of the grains obtained from the DEM simulations are presented in 

Figure 6.9.  In this, the visual image of the failed sandstone sample is also inserted 

for the comparison.  It is quite interesting to note that the failure plane of the 

experimental and simulation samples agree fairly well and this further confirms the 

validity of the simulations and experiments reported in this multi-scale research 

programme.    

 

Point stiffness parameter was estimated as inherent grain contact stiffness. Each 

data value depends largely on the load force applied on the sandstone sample which 

is assembly of grain.  

6.5 Statistical analysis of point stiffness (K1 and K2) in natural rock using 

Photo Stress Analysis Tomography (PSAT) 

Micro-parameters (stiffness) were determined by making the surface of the natural 

rock birefringence. Therefore it is important to provide statistical analysis of the test 

data obtained from the direct micro-measurement of the point response to load force 

in the natural rock. At resolutions of 70 micro-meters (data logger), the stiffness of 54 

tested data is plotted in Figure 6.10.  
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                                                           Force applied (MN) 

Figure 6.10 Stiffness and force data for Niger delta sandstone 

 

Figure 6.10 shows that the corresponding compressive force reported in literature is 

in agreement with compressive data gathered in this experiment for sandstone. 

Under standard ISMR test, the compressive strength of sandstone is between 50MPa 

to 100MPa. This strength characteristic produces the common range of modulus and 

Poisson’s ratio (Brahma and Sircar, 2014). At a unit area of load applied on 

sandstone, the force load on the sample that produces normal and shear stiffness is 

between 50MPa and 90Mpa Figure 6.10. 

 

6.5.1 Descriptive statistics of point stiffness data 

From Table B1, the point stiffness ratio of normal to shear direction is not a constant 

or fixed value, the average is 2.50, with a standard deviation of 0.30648. This analysis 

show that, the normal stiffness and shear stiffness is averaged 5.7001MN/m and 

2.2735MN/m respectively. The standard deviation for the normal and shear stiffness 

is 0.93904MN/m and 0.21938MN/m respectively. The stiffness ratio is at a standard 

deviation of 0.30648 which shows that at a dimensionless scale the deviation from 

mean is small (Table B1). 
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6.5.2 Symmetry of distribution (skewness) and Sharpness of distribution 

(Kurtosis) in measured stiffness data. 

The skewness and kurtosis are used to determine the z-value. This value has a span 

of -1.96 to +1.96. (Cramer and Howitt, 2004; Doane and Seward, 2011) it is obtained 

by dividing either the skewness or kurtosis by the standard error, r, (Table B1 – B3). 

Here K1 has a z-value- skewness of 1.5692 K2 has z-value- skewness as 1.0615. 

This shows that at the specified standard error in Table B2 and B3, the K1 and K2 

data are normally distributed. Hence the data can be subsequently subjected to 

simple linear regression. The simple linear regression between force applied on the 

sample and the stiffness is presented as normal distribution curve in Figure B1. If a 

data is normally distributed, the P-P plot supports that the perfect diagonal 

characterizes the regression standardization. This occurs when the data points 

surround the diagonal (Figure B2). 

 

Table B4 presents the mean of the data used to measure the normal and the shear 

stiffness of the rock material. Table B5 presents the normal stiffness measured, the 

Z-Value-skewness and the Z-Value-kurtosis are 2.37 and 0.285 respectively. For the 

shear stiffness, the Z-value-skewness and the Z-Value-kurtosis are 0.796 and 1.065 

respectively. The standard requirement is that these values are between -1.96 and 

+1.96 (Groeneveld and Meeden, 1984; Doane and Seward, 2011) therefore the data 

are approximately normally distributed. Table B6 presents the coefficients of the Beta 

indicating the lower and the upper bond of the Beta evaluated at 95% confidence 

interval. 

 

By using the z-test (Table B7), the Shapiro-Wilk's test was carried out to obtain the 

p-values Table B8). The p-values are indicated as “Sig” (Table B8) which are less 

than 5% (p>0.05) (Razali and Wah, 2011) the histograms for the force distribution 

used to measure the normal and shear stiffness is presented Figure B1. The 

corresponding normal P-P plots of the regression standardized residuals is presented 

in Figure B2. The normal distributions are indicators that the stiffness (shear) data 

were normally distributed. The normal stiffness also approximately normally 

distributed as indicated by the Z-value-skewness. The skewness of 0.771(Standard 

error = 0.325) and a kurtosis of 0.182 (Standard error =0.639) were obtained for 

normal stiffness. The skewness of 0.346(Standard Error is.325) and a kurtosis of 



 

190 

 

0.509 (Standard error of 0.639) for shear stiffness (Cramer and Howitt, 2004) .The p-

values are less than 0.05 therefore we reject the null hypothesis (Cramer, 1998). The 

data are approximately normally distributed. 

 

The mean force that produces a mean stiffness (K1 = 5.7001) is (70.6977MN) for 54 

test data carried out on Niger delta sandstone (Table B4). The regression at a 

confidence interval of 95% of the variance in force data is responsible for the stiffness 

observed.  The standard error associated with the model is 3.000 which is adequate 

for mean of the stiffness (Table B5). The adjusted regression squared is the 

percentage of the variance in the stiffness explained by the force applied on the 

sample. Therefore 1% variations existed in the stiffness data measured. This is 

depended on by the force applied to the sample.  

 

In Table B4 the coefficient of variance in the measured stiffness is presented. The   

coefficient of stiffness is 3.906 for 1% variances in the measured stiffness. This 

means the magnitude of force that will yield any stiffness is 51.272+ (3.906*5.7001) 

MN or 70.005MN. This data is significant up to 47.5% at a t- test value of 72.0%. This 

significance is based on setting 95% confidence interval at a range of constant 

between 22 and 112.394 (Table B6).  The range of stiffness is between -9.928MN/m 

and 2.117MN/m at a fixed confidence interval of 95%.  

 

The residuals statistics of force applied on the sandstone for which this stiffness 

analysis was carried out is presented in Table B7.Data from ultrasound measurement 

are presented in Appendix A. The stiffness ratio was within the small standard 

deviation. Similar to photo stress technique, the ratio did not deviate beyond 0.30485 

observed in the standard deviation obtained in the ultrasound experiment. This is 

expected because the photo stress technique uses input of elastic modulus and 

poison’s ratio obtained from the ultrasound macro-elastic data. The resultant stiffness 

ratio is further validated statistically in the statistic section. 

 

Although no current photo elastic data are available for comparison with the 

measured data from PSAT, ultrasound data were simultaneously obtained from same 
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sample used for photo stress analysis. The statistical analyses are presented in 

Chapter 4 (Table A1, Table A2, Table A3 and Table A4) for 54 measured acoustic 

emissions. The initial strain transfer is initially small. Thus statistical work done to 

clarify the fact that the strain transferred from the material to the coating might have 

results that decreases the magnitude of the actual strain. This value may be peculiar 

to the coating material. However the American Society of Testing and Materials 

(ASTM) has used the photo-elastic method to obtain strain in rock (Olsson and Peng, 

1976). A strong indication of the validity of this data is that the stiffness ratio in PSAT 

is in agreement with the stiffness ratio observed for acoustic amplitudes. This is also 

an indication of a reliable fringe-contour that was observed. 

 

6.6 Conclusion  

PSAT has been successfully used to capture the sequences of deformation in the 

cracking process of natural rock from Niger delta.  The stiffness properties of the rock 

have been included in the Formulation of numerical rock in DEM. Thus by defining 

stiffness property under numerical compressive test, the natural (stress-strain) 

behaviour of the rock was replicated numerically. This is improvement to the 

progressive research of modelling rock behaviour which is still a challenge. 

   

DEM has been employed to simulate behaviour of sandstone as an assembly of 

particles interacting at their contact points. This was done to model crack as dilation 

of particle contact defined by complicated empirical law; this law can be replaced with 

simple contact law or stiffness parameter from natural rock. In this context, force-

displacement characteristics of arbitrary points are regarded as contact. Thus the 

micromechanical stiffness characterizes macroscopic behaviour of the numerical 

rock. 

 

The stiffness parameter is a quantification of the natural microscopic strength 

exhibited by the sample. In addition, the non-linear elastic deformation property is 

included into the stiffness parameter obtained from the natural sample. It is 

experimentally realistic that magnitude of the stiffness quantifies all complicated 

inherent physio-chemical support/strength of the material. Therefore, numerical 
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model using such a contact parameters reproduce the important feature of the 

mechanical behaviour of the material, including the strength characteristics and 

failure event.  

 

The strains exhibited by rock under mechanical loading were captured as anisotropy 

which was translated into birefringence. This phenomenon enabled the determination 

of stiffness property at a point location in rock. Thus via Photo Stress Analysis 

Tomography (PSAT), the sample with plane stress displayed the birefringence 

property to enable micro-structural examination used to calibrate the resistance of a 

quartz contact in the cemented granular assembly under compression. The practical 

application occurs when sharp crack tends to tri-tensile plane strain and the crack-tip 

act as a plastic region, which is small compared to crack size and specimen 

dimension in the constraint direction. The point data can be estimated as a single 

grain motion in the rock which can be used to build any size of model numerically. 

 

Stiffness measurement at point scale is reported here originally by PSAT. They 

compare well with the outputs from ultrasound methodology. Indirectly also, the 

stiffness ratio is validated by feeding them as input into DEM modelling to predict bulk 

strength characterization, which also agreed well with experimental bulk strength 

measured.  
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Chapter 7 

Analysis of the Effects of Contact Stiffness and Bond Strength 

Characteristics of Sandstone using DEM Simulations 
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7 ANALYSIS OF THE EFFECTS OF CONTACT STIFFNESS AND BOND 

STRENGTH CHARACTERISTICS OF SANDSTONE USING DEM 

SIMULATIONS 

7.1 Introduction  

The focus of this chapter is to evaluate the influences of grain-scale parameters on 

the mechanical properties of sandstone using 3 dimensional DEM simulations. The 

analysis helps to provide further insights that are not easily visualized in using 

experiments only. The simulation is centred on building rock sample from the scratch. 

This includes representing each rock grain with a particle in 3 dimensions, and to the 

specified grain density. The interaction of each particle with other contacting particles 

was controlled by particle contact stiffness parameter which was determined 

experimentally at a point scale in Chapter 6. The force transmissions within these 

particles were recorded as force-displacement data during compressive numerical 

experiment. V-notch sample is used for simulations in this Chapter. The dimensions 

of the notched sample used here is the same as the one used in the experiments 

(Chapter 5). Particles were bonded at these contacts using parallel bond. The bond 

depends on the particle size chosen and was specified in terms of normal and shear 

strength. These distributed bond strength, were used to represent the heterogeneity 

which is peculiar to the natural Niger delta sandstone. 

 

7.2 Approach to the study of particle contact deformation  

The simulations in this research employ the use of micro-parameters (normal 

stiffness, shear stiffness, bond strength and frictional coefficient) from sandstone 

evaluated experimentally in Chapters 4-6. In order to facilitate the simulation of rock 

using experimentally derived micro-structural parameters, contact stiffness has been 

experimentally verified with statistical description in Chapter 4 and 5. This is because 

the force linkages to all individual grain contact are conveyed by normal and shear 

stiffness properties. However, this simulation is limited to the onset of crack 

nucleation through the identification of tensile and compressive behaviour of the 

particle assembly. These two characteristics are peculiar to the onset of deformation 

where the progression of crack is identified by the compressive stress increment 

preceding final fracture at peak strength (Rong et al., 2013). 
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The characteristics tension/compression was significant and revealed the grain 

contacts behaviour in rock under load (Kazerani, 2013). Micro-structurally, the 

presence of cementing clay at grain contact suggests that the contact stiffness 

quantified from the ultrasound measurement technique quantifies the entire attribute 

at the grain contact exhaustively. Therefore two types of bond were basically 

incorporated these include the contact bond (which cater for the stiffness properties) 

and the parallel bond (which cater for the cement/glue between the grains) (Jiang, et 

al., 2014). Nonetheless the contacts are assigned the stiffness estimated from 

experiment. This was declared in the DEM program script as the contact bond plus 

an elastic spring with both normal stiffness and shear stiffness using PFC 3D program 

(Itasca, 1997). These values were assigned to particle contacts and hence serve as 

micro-parameter inputs. They influence on the force transmission characteristics of 

the linked contact chain in the opaque cementations rock materials. The parallel bond 

detected moment which the particles exhibit as they rotate (Itasca, 1997). Under 

loading, the rotations are resisted by the elastic spring on the finite connection at the 

contact plane. Bonds therefore function to reproduce the physical behaviour of the 

grain contacts in the real material (Potyondy and Cundall, 2004). 

 

7.3 Single points, stress localization and stiffness representation in DEM 

Compression and tension exhibited at the stress localized points occur 

simultaneously and orthogonally (Egger and Pellet, 1990; Shimizu et al., 2009; 

Pollard and Fletcher, 2005). By identifying the normal and perpendicular direction of 

grain contact displacement experimentally, the stiffness data was determined in the 

normal and perpendicular-to-normal directions. The direction of loading determines 

the tangential force. The micro- properties of grain contact which are normal stiffness 

and shear stiffness parameters were estimated from ultrasound as presented in 

section 5.7 (Chapter 4). These values serve as fixed input/micro-parameters in the 

code used to build the bonded particle model because the microscopic input 

parameter into will generate the macroscopic behaviour of the rock (Potyondy, 2010). 

 Bond strength was obtained by sensitivity analysis to produce the inter-granular 

characteristics of the rock. Thus, a compressive test was carried out with force 

targeted on the granular park at a notch (Figure 7.3). It is important to note that the 

simulation is limited to the initial response of the rock to compression.  Figure 7.1 

shows the study route. 
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Figure 7.1 Flow diagram used to study deformation of bonded granular assembly  

 

The assumptions made for modelling notch sample include; 

(1)Force chains are capable of exhibiting the exact initial extensile internal response 

during initial stages of mechanical loading.  

(2)Force transmission in the particle assembly depends on bond stiffness plus bond 

strength connecting the grains. For fixed stiffness property, sensitivity analysis on 

bond strength can yield adequate representation of bond strength in the model 

(3)A point pressure applied to a notched sample can induce stress application to a 

point which will cause stress localization to occur around the notch tip. 

(4)The connecting springs will acts at contacting points between particles and will be 

used to reflect force transmitted through the network of the grain matrix (Figure 7.2).  
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Figure 7.2  Bond and stiffness implemented in PFC 

 

Note that section I, the yellow asterisk marks the beginning of the contact bond 

breakage due to a tensile behaviour. Next, the grain contact breaks at critical shear 

force on the contact (the red asterisk - section II). In section III at the green asterisk, 

the grains are compressed at a force application which is beyond the critical shearing 

force. The tensile and shearing behaviour are simultaneous interactive response of 

the grain contacts when the material is subjected to compressive Force (Fn). 

Illustrations in Figure 7.2 was drawn following the observations from the experimental 

work carried out in this Chapter and the result was in compliance with the theory of 

grain deformation provided by Potyondy and Cundall (2004); and Cho et. al. (2007). 

Section I also represent Normal and shear stiffness between particles. The contact 

stiffness, Kn and Ks remain active even after the bond breaks as long as particles 

stay in contact. The bond stiffness (force per unit area), Kn and Ks are removed when 

the bond breaks regardless of whether particles stay in contact or not; section II 

represent constitutive behaviour in shear and tension ( green asterisk in section III 

represents granular compression due to shear property and normal property).  
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7.4 Development of notched sample with point data from experiment 

The flow diagram show the process for the simulation of compression on the bond at 

the notched numerical sandstone (Figure 7.3) 

 

Figure 7.3  Development of rock model and loading sequence 
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The sequence of model development and loading is presented in the block flow chart 

(Figure 7.4). Particle Flow Code (PFC 3D) simulation package was utilized with a fish 

code to excavate particles from notch the specifications were included in the model. 

The notched model is presented in Figure 7.5. The contact-model for force 

distribution was included into the particle contacts. The distance between particle 

centres is the size of the bond cylinder (Figure 7.5). These serves as (pathway of 

force transmission (or force chains) connecting particles in the matrix. A platen was 

created to contact this contact force chains at the notch so that as the particles are 

displaced from their contacts, the force-displacement data can be recorded. 

 

Figure 7.4 (a.) Platen in contact with the V-notch sample  

 

7.4.1 Geometry and dimension 

The dimensions of 180mm by 115mm by 20mm (LBH) were specified next, 60dgree 

notch was created for the purpose of contacting few particles at the notch with a 

compression platen. The specifications are presented in Figure 7.6. 
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Figure 7.5 Sample specification in both experiment and DEM (all dimensions are in 
mm) 

 

(Potyondy and Cundall, 2004). When less resolution was used, the particles at the 

notch were not visible for crack nucleation.  The distribution of the particles was 

incorporated by defining a radius ratio of 1.66 and minimum particle size of 2microns. 

Next the sample was made to maintain equilibrium with isotropic stress of the whole 

assembly. This enabled the replication of the interlock stress of the natural sample. 

To achieve this, the simulator mode in PFC was activated and thus particle number 

was chosen arbitrarily by the command Ba_rho equals 2200.0 (Kg/m3). Porosity was 

specified by the input values of bulk and grain density of the natural sandstone. Table 

7.1 presents the micro-parameter specifications. 
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Table 7.1 Micro-parameter input for notched model 

Micro-parameters Experimental 

Data 

Numerically 

calibrated data 

Normal stiffness of grain contact 5.7001MN/m 5.7001MN/m 

shear stiffness of grain contact 2.2735 MN/m 2.2735 MN/m 

Frictional coefficient  of Grain 0.6 0.6 

Stiffness ratio 2.5 2.5 

Parallel bond normal strength - 120MPa 

Parallel bond shear strength - 120MPa 

Micro-modulus of parallel bond strength - 18.6GPa 

 

 

7.4.2 Compression test and behaviour of rock under elastic Limit  

Force and displacement of loading platen on contact force chain were stored during 

numerical compressive test. The parameters in Table 7.1 were scaled with radius 

multiplier that spread round the sample volume. This radius multiplier works in the 

program environment to multiply or reduce the magnitude of the bond strength 

carrying the stiffness property.  

As presented in Figure 7.7, the network of force was composed of sphere linked 

between each contact with connecting lines to the centres of the neighbouring 

particles. The thickness of the line is proportional to the magnitude of the contact 

force (F) saved as history data. To differentiate compression and tension, the cylinder 

colour represents tension or compression.  (F • n ≥ 0 is compression, where n is the 

contact unit-normal vector). Thus, if F is negative it is tension.   
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a.)Force distribution in DEM-

simulated sandstone 

 b.)Countours of maximum 

shear stress in natural 

sandstone 

Figure 7.6 Compressional and tensile forces for the same computational notched 
model, same geometry and 5MN load on Niger delta sandstone a.)red tensed 
and black compressed force chains b.) PSAT experimental contours of shear 
stresses in tension (blue) and compression (red) 

 

In Figure 7.7 (a) Force chain in simulated sandstone shows tension as red force 

chain and compression as black force chain. The blue force chains are force chains 

installed during model development b.) Contours of maximum shear force in real 

sandstone shows tension in blue contours and compression in yellow through 

maroon contours. 

 

7.5 Platen movement, contact stiffness and the behaviour of force chain 

contact 

Platen (Figure 7.7) is made to displace the particle contact, the force on the contact 

is recorded for every displacement. The immediate particle contacts at the notch were 

compressed in the granular assembly and sample exhibit contact tension in red and 

compression contact force in thicker blue chains (Figure 7.7). The load platen is 

compressed downward at the notch. This was used to measure contact 

displacement. This data were recorded at a velocity of 0.005mm/sec.  

 

Tensed 

Compressed 



 

203 

 

7.6 Grain contact stiffness and cementation 

Single point stiffness was estimated earlier in Chapters 5 and 6. The single point is 

assumed a grain contact point of linkage between two grains.  This is because the 

microscopic image revealed the cemented grain contact overlap is distributed 

throughout the rock material (Figure 7.8). This contact is thought to be carrying a 

constant shear and normal stiffness 

 

 

Figure 7.7 a.)Typical numerical view of particles beneath the tip of the notch b.) 
Scanning electron microscope view of grain in Niger delta sandstone 

 

It is important to note that the particle contact displacement were restricted to very 

low load force application. This makes the contact exhibit tension and compression 

via particle frictional behaviour under elastic limit. The tensile and compressional 

displacement was based on the experimental input value of normal and shear 

stiffness data. With the platen force applied on the particle contact at the notch, the 

displacement was recorded (see appendix A). Thus compressive forces were 

supported by perpendicular tensile forces (Egger and Pellet, 1990).  The result of the 

displacement versus force (compressional and tensional) is shown in Figure 7.9 

where higher magnitude of force applications is shown with thicker blue force chains. 

The contacting grains were cemented; they exhibited tension and compressional 

stiffness properties under stress. Therefore analysis of stress at any point below the 

loaded notch in the rock sample was thought of to provide grain displacement and 

strain dependence in response to loading level. Figure 7.10 presents the 

characteristic tensional and compressive force distribution. 
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Figure 7.8Distribution of tensional (red contact force chain) and compressive force 
(black contact force chains) transmissions during compression a)few contact 
in tension at 8MPa stress application b.)more contact in tension at 10MPa 
stress application c.)few contact in compression 12MPa stress application d) 
more contact in both tension and compression at 15MPa stress application.  

 

Figure 7.9 a-d presents the initial force chain response occurring at the initial loading 

stages. That is, even if a sudden high magnitude of load is applied, the initial tension 

and compressive behaviour must first occur. Following this trend, the tensile and 

compressive forces at particle contact will be exhibited. At about 2MPa of pressure 

application, some force chains in the stressed pattern under the notch at the stress 

concentrated location, the particle contacts begin to compress and will eventually 

rupture. The next sequence of compression was observed in Figure 6.9b.  As the 

high stress on the overlying force increases, the normal stress and the shear stresses 

are distinguished as mentioned earlier in the experimental observation (Chapter 6). 

As the simulation progresses, the stress dominate and concentrate at the notch line. 

Hence increase in the force on the line along the chevron notch increases the shear 

concentration which results a high value of shear stiffness. The fourth stage (Figure 

7.9d) presents the concentrated stress under the notch. This is similarly to the stress 

localized points under the notch in the experimental findings in Figure 7.7b. The 

contours of the stressed points are compressive. Similarly the stressed point under 

the notch shows some compressive force chain under the notch. The similarity in the 

stressed points can be explained with the similarity in the load force concentrated to 

the notch. In both cases, force transmits down the notch point. This is expected for a 

notched sample undergoing a mode I fracture mechanism. 

 

7.6.1 Force transmission in sample 

The strains under the notch are caused by the rotation of each particle relative to 

connecting particles. Thus under mechanical loading, the shear force was 

a d c b 
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transmitted through the contact force chain as particles exhibits rotational 

displacement. The shear force transmission was visible by the rearrangement of the 

particles aiding displacement data.   

 

The force pattern for experimental visualization (PSAT) in Figure 7.7b is not exactly 

the same as the simulated counterpart. These minor variations in the force 

transmission through the particle contacts are due to the fact that PFC uses discrete 

particles which are actually distinct. But the natural sample is decorated with photo 

elastic coating (a continuum system) in that, the shear stress data captured by the 

experiments are not discrete, but the strained pattern are results of transferred strain 

from the cemented granular assembly to the surface photo elastic coating. The data 

generated afterwards in Figure 7.7 is from continuum digital quantitative 

experimentations. However the strain in the cemented granular assembly are due to 

the tensile and compressive behaviour of the grains that make up the rock material.  

Hence, it can be said that the normal characteristic of grain contact undergo tensile 

stretch. This continues to the point where the normal force becomes critical. The 

characteristics of grain behaviour undergo tensile stretch. The schematics in Figure 

7.2 present the contact behaviour in the tension and compression. As normal force 

increases it is elastic up to the 0.6mm displacement Figure 7.10. The bond breaks in 

tension at negative force of – 0.2N (Figure 7.11). Although these experimental 

observations are specific to the consolidated sandstone sample of Niger delta, the 

material behaviour conform to the phenomenon explained by the simulated work on 

rock by (Ghazvinian et al., 2012) and (Cho et al., 2007). 

 

On the other hand, the shear characteristics of the single point exhibits positive 

increase in magnitude as the retardation were measured. These characteristics were 

captured by the shear stresses until the shear strength of the contact becomes 

critical. At the critical force, the characteristic shearing property drops due to bond 

rupture illustrated in Figure 7.2 (Cho et al., 2007)., experiments are presented in 

Figure 7.11.  The shear force measured beyond this critical shear force is yielded 

data. That is the data/fringe signal fades out (Figure 7.2 and Figure 7.11) 
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7.7 Discussion on discrete contact behaviour 

The mechanism of bond deformation was explained by Potyondy and Cundall (2004) 

which forms the foundation for building discrete modelling of bonded particle model 

for rocks. The phenomenon of tension and compression of single point location in 

real sandstone has a direct numerical application. This is because the behaviour of 

particle within an assembly of particles in contact (called bonded-particle-model) has 

been used for several brittle rock simulations even when the micro-properties are not 

known (Rong et al., 2013).  In order to obtain the micro- parameters, calibrations of 

macro-parameter were carried out. This approach was successful by employing the 

concept of the tensile and compressive contact behaviour in the bonded particle 

model developed (Kozicki and Donzé, 2009; Fakhimi et al., 2002).  Bond breaks in 

tension at critical tensile stress whereas the bond breaks in compression at critical 

compressive stress  (Cho et al., 2007). 

The simulator is scripted to connect particles and diverse characteristic contact 

interaction (Potyondy and Cundall, 2004; Boutt and McPherson, 2002), This shows 

tension and compression response under compressive stress. 

 

7.7.1 Stress concentration, particle contact force and increasing negativity 

during tensile response  

The tensional and compressive behaviour of the few particles beneath the notch was 

recorded at an extended displacement of 5mm of platen. It was observed that the 

tensional force was negative. The negativity increases until tensile strength failed 

Figure 7.11. The red curve shows that the force data becomes increasingly negative 

until the highest possible negative force is reached. The highest point of negativity 

has been described to be the point of bond rupture in tension (Van Baars, 1996). It 

is also important to note that the tensile behaviour occurs at the initial loading stages. 

Thus the force load that corresponds to the tensile strength is about 2MPa. 
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Figure 7.9Contact force displacement of tension and compression (before bond 
rupture, displacement at 0.5mm)  

 

7.7.2 Stress concentration, particle contact force and increasing positivity 

during compressive response of sandstone.  

Force measurement during compression on force chain shows that the compressive 

data becomes increasingly positive until the bond fail under compression (Figure 

7.11). The force at 2.4N is the yield strength of a contact bond at which bond rupture. 

The compressive force increases positively until the contact strength fail at 2.4N 

(Figure 7.11). 

 

Discussion on contact deformation and crack nucleation 

The direct implication of contact deformation is that crack has begun to form. These 

are micro- crack which forms due to the rupture of contact bonds (the yellow asterisk). 

The micro-cracks develop due to coalescence of raptured bonds. This particle 

displacement in shear is captured as crack nucleation. It is seen in the peak tensile 

stress (the purple asterisk) of - 2.02MPa at a displacement of 12mm (Figure 7.11). 

The previous application of using the discrete modelling to simulate this process was 

discussed in Chapter 2.  
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Figure 7.10Stress-displacement behaviour at particle contact before 12mm 
Displacement bond breaks in tension (purple asterisk) bond breaks in 
compression (yellow asterisk) 

 

Compression exerted on the contact force chain that link particles reduce the bond 

strength at grain contact. Hence micro-fracture is formed and the crack nucleation 

occurs. In this test, grain contact bond breaks at 2.4MPa (Figure 7.11). During the 

crack propagation represented by the coalescence of multiple rupture of contact 

bond, particles rotate as a representation of final shearing away from the glued 

contact. In Figure 7.2, however, the moment resulting from two contacting particles 

rotation is opposed by the surrounding elastic spring connecting other neighbouring 

particles. This network of force chain is distorted and the materials become deformed. 

The shearing in not uniform (Figure 7.11). 

 

7.8 Discussion on cohesion at particle contact 

Unconfined compressive test has been carried out and the shear strength within the 

inter-granular arrangement was reported (Price, 2008). Similarly, cohesive strength 

of 0.3MPa was reported for sandstone (Derski et al., 2012). The parameter of 

cohesion for the numerical sample and the natural sample can be explained with the 
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presence of contact between particles that exhibit cohesion and internal friction 

(Figures 7.16). During compression, rock strength is determined by the minerals they 

are composed of. This is because the strength of a rock mass depends on the 

packing, shape and sizes (Bell, 2013).  It is important to note that material 

compositions are not uniform at every location in the sample examined. This is the 

reason for the variations in the value of stiffness and cohesion measured at a point 

location. Therefore a macroscopic examination is important (Derski et al., 2012). One 

significant observation is the cohesive property observed at 0.4909 MPa and 

0.5001MPa for natural and simulated rock respectively (Figure 7.12). 

 

 

 

Figure 7.11Shear stress behaviour in numerical and experimental sample 

 

Experimental data was captured at stress application beyond rupture strength. This 

is because the macroscopic material is still intact. The critical shear strength at which 

a contact rupture is 4.5MPa, thus the ruptured bonds may not show macroscopic 

visible fractures but are micro cracks which constitute the onset of fracturing process 

in rock. For instance in Figure 7.16 the peak shear at 4.5MPa is a bond-ruptured 

point due to shear. This mechanism is not different from the bulk behaviour in shear. 

However minimal the microscopic crack is at a point, it is a separation of a particle 
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from the neighbouring grain which was initially intact. This leads to random or 

definitive multiplication of discrete separations which may be non-planar. This 

phenomenon can be referred to as interface shear transmission (Potyondy, 2010). 

That is, ruptured bond transmit sufficient shear through aggregate interlock (Rait and 

Bowman, 2010). Therefore if a shear displacement is supported by a normal 

displacement due to the irregular asperities of grains and mortar tips shooting across 

the shear points, (Hazzard and Mair, 2003) shear transfer is generated and stress is 

transmitted through grain interlock (Davies et al., 2007) Further this transmission 

through the grain interlock is friction-damped with compressive forces supplied by 

characteristic reinforcement within the grain assembly. Hence the shear resistance 

which is measured as shear force at a point regarded as grain contact (Anthony and 

Marone, 2005) were measured because of three contributions. These are granular 

cohesion, frictional shear and dilation. The resistance due to frictional damping is 

proportional to dilation, it increases with normal force. It is easily represented by 

relating the normal and shear force in a plot which rise with increasing normal force. 

The phenomenon of this physical change is provided in Chapter 8 where the grain 

contact models in PFC are implemented.  

 

7.9 Effect of the bond strength on compressive strength 

Higher bond strength results in higher peak forces. This conforms to the simulation 

carried out on Jastrzebie sandstone (Konietzky, 2002). In the sensitivity analysis on 

bond strength carried out in this section, a trend was observed with the method of 

fixing experimental stiffness ratio 2.5. By fixing an input for grain density (2590kg/m3) 

and bulk density (2055kg/m3) obtained from standard experiment, the porosity of the 

natural rock was fed into the simulated model. For simplicity, the normal and shear 

bond strength were effectively assigned the same value to clarify their effect on 

material strength (Table 7.2). This procedure was carried out to identify the trend of 

relationship between bond strength and bulk strength of the rock. 

 

7.9.1 Standard compressive test (Experimental and DEM) 

For the experiments, the medium grained rock was cored from the Niger Delta. A 

cylindrical shape with 90mm height and 38mm diameter was prepared for the uniaxial 

compression test. The sandstone was loaded at a velocity of 0.005mm/s due to the 
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displacement of the piston of the servo controlled compression machine. The axial, 

lateral and volumetric strain data were recorded. The resulting stress-strain 

relationships were used to determine elastic properties which allows the generation 

of the volumetric strain curve. The elastic volumetric strain was calculated using 

elastic parameters. These constants were obtained from second region or the linear 

section of stress-strain curves in Figure 7.13. 

 

 

Figure 7.12Experimental strain response of Niger delta sandstone at a confined 
pressure of 15MPa  

 

Numerically, standard compression test was simulated and this uses the servo-

controlled platens to compress a numerically generated model of sandstone. The 

model is of equal dimension as that of the natural sandstone. The generated model 

contains 5600 particles each of which were bonded to connecting particles by parallel 

bond. The frictional coefficient was 0.6. Its bulk and grain densities were 2055kg/m3 

and 2590kg/m3 respectively.  The bond strength was studied by observing the strain 

response of simulated sample which was assigned a magnitude of 80MPa, 120MPa 

and 140MPa in bond strength. The results shown in Figure 7.14-7.16 are a plot of 

both experimental and numerical strain response of the rock models. These include 

the axial strain, lateral strain and volumetric strains. The complete parameter that is 

used for the simulation of rock is provided in Table 7.3.  
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Table 7.2 Micro-Parameters used for building numerical model with  fixed normal 
and shear stiffness  

Parameter, unit Quantity 

Particle (grain description) 

Normal/shear stiffness 

 

2.5 

Bulk density, kg/m3 2055 

Grain density, kg/m3 2590 

Young Modulus, GPa 18.6 

Frictional coefficient 0.6 

Bond (Cement description)  

Normal/shear stiffness 2.5 

Normal strength, MPa 120 

Shear strength, MPa 120 

Young Modulus, GPa 18.6 

 

 

7.9.2 Influence of bond strength on compressive strength 

The higher the bond strength, the more prolonged the detachment of the contacting 

grain at deformed location (Konietzky, 2002). The direction of maximum particle 

velocity is more pronounced. The parallel bond force distribution spreads out 

uniformly. At peak strength of 89MPa, 129MPa and 190MPa each sample loses bond 

strength at all bonded contacts. The nature of the failure of the natural sample was 

similar to the second sample simulated with 120MPa bond strength. The strain 

behaviour of the laboratory data is compared with DEM test in Figure 7.14-7.16. The 

strain responses exhibit a good level of agreement between them. 
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Figure 7.13Strain response of Niger delta sandstone  with 80MPa bond Strength. 
(Dotted marks are Laboratory result),  (solid line are numerical results) under 
compressive test at 15MPa confined pressure. 

 

 

Figure 7.14Strain response of Niger delta sandstone  with 120MPa bond Strength. 
(Dotted marks are Laboratory result),  (solid line are numerical results) under 
compressive test at 15MPa confined pressure. 
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Figure 7.15Strain response of Niger delta sandstone with 140MPa bond strength. 
(Dotted marks are Laboratory result), (solid line are numerical results) under 
compressive test at 15MPa confined pressure. 

 

The strain plot for 120MPa bond strength presented in Figure  7.19 shows that  slight 

difference were observed in the values of peak axial strain for laboratory (0.00766) 

and simulated (0.00798) data. But the lateral strain show relative a peak strain lateral 

with 0.00299 and 0.00598 for laboratory and simulated rock respectively therefore 

the volumetric strain becomes 0.00202 and 0.00129 respectively. The occurrence of 

strain difference in lateral direction is found in a similar material called Jastrzebie 

sandstone (Konietzky, 2002).  The simulated model for Berea sandstone results 

similar response (Holt et al., 2000).  

 

7.10 Comparison of the macro-mechanical parameters in DEM and natural 

rock 

By comparing the natural sandstone behaviour to the numerical model it was clear 

that; if the bond strength is lower than peak strength, the characteristic strain and 

peak strength are lower than the strength of the natural rock (Figure 7.14 and Table 

7.4). At a bond strength higher than the material strength, the material higher strain 

and peak strength was observed for the simulated model Figure 7.14. In Figure 7.16, 
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the strain and the peak value match the natural model when the bond strength of 

close value was used for the numeric model. Table 7.3 shows the average macro-

parameters describing the behaviour of both the simulated and natural sandstone. 

 

Table 7.3 Average macro-parameters observed for Niger delta sandstone 

Macro-parameter at peak strength 

Average Laboratory 

experiment 

DEM Experiment at 120MPa 

bond strength 

Axial strain 0.0060 0.0065 

Lateral strain 0.0020 0.0022 

Volumetric strain 0.0019 0.0018 

Uniaxial compressive strength 124MPa 129MPa 

Young modulus 24.10GPa 20.9GPa 

Poisson’s ratio 0.29 0.33 

 

While the strain is influenced by particle contact stiffness, the bond strength 

determines the compressive strength of the material. The mean bond strength is 

related to the mean particle size which controls the tensile strength of the rock. These 

findings are similar to inferences drawn on the simulation of rock by (Potyondy and 

Cundall, 2004).  

 

7.11 Statistical analysis of variance (ANOVA) with 2-way ANOVA analysis 

A statistical correlation was established between ratio of standard deviation to mean 

and the stiffness ratio for the purpose of determining the crack initiation stress. This 

correlation explains the contribution of each parameter and their significance to rock 

deformability. 

 

In Appendix C, ANOVA carried out here is a method of analysis that involves 

interacting two independent variable (Sokal and Rohlf, 1969).  The variables are 
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(1)ratio of normal stiffness to shear stiffness) and (2)  (ratio of standard deviation to 

mean bond strength) with a dependent variable (Peak stress). A high and low level 

of stiffness ratio was chosen for the ANOVA which are 2.6 and 2.2 respectively. 

These values were obtained from experimental data. 

 

The parametric study carried out shows that the bond strength of the sandstone 

sample is between 80MPa and 140MPa and within these values, the model 

behaviour matched the laboratory test. By specifying standard deviation of 20MPa 

for bond strength of 80MPa, 120MPa and 140MPa, it turns out that 0.14, 0.16 and 

0.25 respectively are ratio of standard deviation to mean bond strength used for 

ANOVA. The ratio controls the crack initiation in numerical modelling (Itasca, 1997). 

 

It should be noted that this research is aimed at predicting crack initiation stress using 

experimental-DEM hybrid. This is because it is not clear on how to obtain this value 

with numerical test of similar physical laboratory test. It has been stated that the crack 

initiation stress is underestimated if the value is obtained from the axial stress in the 

physical laboratory experiment.  This is because Martin  (Martin, 1993)  has shown 

that on the crack volumetric strain curve, the on-set of dilation is the crack initiation 

point. This is not applicable to the discrete model (Lajtai et al., 1991) because crack 

initiation was conceived based on a homogeneous material, while most rock are 

heterogeneous. This implies that crack initiation can occur severally before the peak 

stress is reached on a stress strain curve and both lateral and volumetric strain may 

curve at low stress value. Secondly at the grain boundaries, low stress fracture 

initiation may occur. Therefore crack initiation data is characterized by a wide range 

of data. This is not so far from the peak strength data.  

 

In numerical modelling, the choice of crack initiation point is different, the crack 

initiation stress is identified in the simulated model by specified fraction (pk_ci_fac) 

of the total number of cracks (Potyondy and Cundall, 2004). At specified fraction of 

crack initiation stress (pk_ci_fac), a bond can break. Therefore if the predicted crack 

initiation stress exceeds the peak strength, then fracture is predicted. This is because 

beyond the peak point, the crack is initiated; post peak behaviour set in and finally 

the sample fractures. 
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7.12 Determination of crack-initiation stress: prediction of bulk strength  

For the numerical test, crack initiation is controlled by the ratio of standard deviation 

to mean bond strength (ROSD).  54 experiments were carried out at 5MPa confined 

pressure test to obtain the peak axial stress at material failure. Further the data were 

subjected to ANOVA for the prediction of crack initiation stress from the estimated 

marginal means obtained from statistical variance. 

 

7.12.1 ANOVA for estimated marginal means of crack initiation stress  

Figure C1- C3 shows that crack initiation are at 40MPa, 50MPa and 57MPa, with 

corresponding peak fraction of 0.48, 0.56, and 0.67. The crack initiation stress is 

about 15% of the peak stress observed from the volumetric strain. This was achieved 

with stiffness ratio of 2.2 and 2.6 which are the minimum and maximum stiffness ratio 

respectively.  

 

7.12.2 Between subject and factors 

 In Table C1 and C2, the levels of ratio of standard deviations to mean (ROSD) were 

used for the analysis of variance. These levels were the ratio that simulated the 

behaviour of the materials with the yield point at 50MPa strength. The low and high 

levels for ROSD are presented in the Table C1.  

 

7.12.3 Levene test of equality or error 

A suitable test for 2-way ANOVA is presented in Table A.3 as the Levene test. Thus 

if the null hypothesis is violated, the 2-way ANOVA is best carried out to obtain a valid 

model and variance analysis. The “0.0000” shows that the hypothesis is rejected. The 

value is less than 0.5, which rejected the null hypothesis. For this analysis, the data 

violate the assumption of homogeneity of variance. Therefore error variance of 

dependent variable is not equal across group. This explains the application of the 2-

way ANOVA is good for this violation.  

 

7.12.4 Test between subject effect 

RODS is statistically significant because it is less than 5% (Table C4 and C5). The 

statistical significant difference is presented on dependent and independent partial 
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Eta square. 14.2% of Eta square of the variance of dependent variable is attributed 

to ROSD. Kn/Ks is not significant. Hence it contributes little or no difference to the 

dependent variable (peak stress). 

 

7.12.5 Pairwise interaction  

In Table C6- C10, the interaction of stiffness ratio and ratio of standard deviation to 

mean material strength (ROSD) are presented. Table C6 presents the intercept of 

98.5% at ROSD of 14.2%. Kn/Ks is 2.8%. the product of ROSD and stiffness ratio is 

3%. All all values of the adjusted R squared of 0.077. The first pairwise comparisons 

I (Table C8) and and second pairwise comparison II (Table C9) estimated are 

presented. These values are obtained for the univariate tests which yielded a p-value 

of 0.026 (Table C10) which is less than 0.05. 

 

7.12.6 Estimated marginal mean of peak stress and predicted crack initiation 

stress. 

In Table C6, at the stiffness ratio of 2.2, the ROSD, are close and the crack initiation 

stress obtained from the peak stress is equal. Therefore we can predict crack 

initiation to begin at 57MPa for the sample under 15MPa confined pressure test. In 

Table C11 - C15, the estimates of the stiffness ratio shows a strong statistical 

significance (Table C11). The pairwise comparison for the stiffness ratio I and II are 

presented in Tables C21 and Table C13. Table C14 –Table C16 presents the 

validations of the experimental significance of the relevant peak stress value. The 

final plots of the peak stresses are presented in Figure C1 –Figure C3 as the 

estimated marginal means of ROSD. These peak stress values are between 72MPa 

and 75MPa. 

 

7.13 Conclusion  

Overall, the studies indicate the effect of contact stiffness and bond strength on the 

force-displacement relationships of grain contacts in rock. Thus the evolution of both 

tensile and compressive behaviour of the grain contact when the samples are loaded 

in DEM reproduced the natural behaviour of the sandstone.  The axial and lateral 

strain components under compression at a confined pressure of 15MPa yielding a 
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bond strength of 120MPa for Niger delta sandstone, strengthen the fact that  the 

behaviour generated for simulations and experiments are similar when parameters 

from natural material are used in the DEM simulations as input data. For the Niger 

delta sandstone, the tensional curve are plots on lower force magnitude than the 

compression curve. These two properties are simultaneous characteristic behaviour 

of the grain contact during initial loading stages. 
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Chapter 8 

Parametric Analysis on the Influence of Grain Shape on Micro-

Mechanical Behaviour of Sandstone using DEM Simulations 
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8 PARAMETRIC ANALYSIS ON THE INFLUENCE OF GRAIN SHAPE ON 

MICRO-MECHANICAL BEHAVIOUR OF SANDSTONE USING DEM 

SIMULATIONS 

8.1 Introduction 

The DEM simulations reported in Chapter 6 is for particle cluster matching the 

average coordination number of the experimentally characterized Niger-delta 

sandstone. However, the present chapter critically evaluated the effects of grain 

shape on the mechanical properties of sandstone using DEM simulations. Here, the 

rheology of natural and simulated rock was examined during crack propagation under 

tri-axial compression. In order to study the effect of particle shape, three numerical 

samples were generated with different particle shapes. Brittle deformation was 

examined based on relative rotation and clay-resistive disposition of rigid mineral 

grains. The damage thresholds were determined for the purpose of detecting the 

specific strength characteristics of the rock. Particularly, the crack initiation threshold 

and the crack damage threshold were detected. The implications of these crack 

damage are explained. The yield criterion of peak strength versus confined pressures 

and the associated frictional parameters (cohesion and internal friction) were used to 

explain strength characteristics. For comparison purpose, experimental analysis has 

been provided for the description of the strength characteristics using the popular 

Berea sandstone where applicable.  

 

8.1.1 Background on the method of analysis, the micromechanical strength 

characteristics of rock 

The importance of micro-examination is due to the fact that the peak strength of some 

rocks are false (Eberhardt et al., 1998). This is because the mineral support would 

have been lost long before the applied load data can indicate the point of crushing. 

Therefore the crack initiation and crack damage stress are better indicators of the 

strength characteristics of the rock than the data generated by the applied load 

logger. The common indicators that are used for discussion in this present work are 

the crack closure stress (σcc), the crack initiation stress (σci), the crack damage stress 

(σcd). The crack closure is the stress level which causes the closure of pores or pre-

existing micro-cracks which are oriented at any angle to the applied load. This is the 

initial non-linear response observed in the axial strain. The extent of the non-linear 
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stretch is dependent on the pre-existing crack densities. This stage is followed by the 

linear elastic behaviour of the rock material on the axial strain (Eberhardt et al., 1998). 

Crack initiation stress is the stress sustained by the sample where micro-fracturing 

begins. It is the point of deviation from linearity observed on the lateral and volumetric 

strain. Crack propagates at stress level sustained by the material which is beyond 

the initiation point followed by the crack growth which may be stable, if the crack is 

unstable, it is indicated by the reversal point in the volumetric strain. At this point, 

critical energy is released and the material damages at the point called the crack 

damage stress (σcd) (Figure 8.1 and 8.2). However Martin (1993) and Bieniawski 

(1967) regarded the crack damage as the point that peaks the unstable crack 

propagation which occurs due to the undefined relationship between applied stress 

and crack length. Other occurrence in the material during crack propagation includes 

crack growth velocity. The unstable crack growth can also continue until a point is 

reached where micro- crack coalesced. This is the point where the rock loses all its 

mineral support.  

 

 

Figure 8.1 Schematic diagram of stress-strain typical curves of rocks. (Martin, and 
Chandler, 1994) 
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Figure 8.2 Illustration of dilation process from micro crack initiation and growth in 
brittle material subjected to compressive loading (Cho et al., 2007) 

 

8.2 Influence of particle shape on crack initiations, crack damage and crack 

openings in dilation process 

Micro-mechanical damage in the sandstone sample starts when the stress load 

reaches the crack initiation stresses and propagates to crack damage stresses 

(Figure 8.6 – 8.9). When the bond strength between the grains is stressed beyond 

crack closure boundary, the crack propagation is stable until when the stresses on 

the bond exceeds crack damage stress. Beyond the crack damage stress, dilation 

begins. The 3-particle clumped sample (model 3) is of more complex particle shape. 

This model can only support a high stress because of the high interlock in the 

structure but cracks were observed even at low force application. On the other hand, 

the appearance of crack in the highly spherical particle model is delayed because of 

the much inherent micro-cracks. Figure 8.6-8.9 presents the crack volumetric strains 

and the volumetric strains obtained for the 4 models. The Niger delta sandstone was 

reproduced with all parameters in the descriptive statistics but at different spherical 
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index of shapes. Further the crack damage point marked yellow asterisk starts at the 

reverse point of the volumetric strain. These values are due to the compression of 

particles in each sample. Next they move because the bonds are strained finally they 

begin to move gradually. The succeeding elastic expansion starts at the crack 

initiation stress. If the stress on the rock mass increases beyond the crack initiation 

stress threshold, then, the crack damage stress is reached and the particles fall away 

from their initial position where unstable crack begins to grow. During the simulations, 

the particles migrate from bonded positions. At the crack damage threshold, these 

particles lose their bond strength. This makes the cracks visible like lines (or dilation) 

within the particle assembly. Beyond this point of the peak strength of the rock mass, 

crack propagates and fractures sets in. 

 

Diederichs et al. (2004) and Eberhardt et al. (1999) provided a description  

deformation of granite rock using Acoustic emission (AE), stating that point crack 

initiation stress is the first point where a new AE rises above background.  AE point 

crack is the on-set of three successive crack damage stages where crack initiation 

stress is first determined. Also, the point where the stress volumetric strain deviates 

from the elastic trend is defined as the crack initiation stress. Another definition for 

crack initiation stress is the point where the crack volumetric strain deviates from the 

zero data (Martin, 1993). The crack volumetric strain is provided in the PFC text by 

Potyondy and Cundall (2004) in Equation 4.1 (Chapter 4). 

 

By using the elastic properties due to the micro-mechanical damage, the micro-

mechanical damage which has been explained above were similar to the findings of 

these authors. An additional parameter of interest that is obtainable in discrete 

modelling is the crack number produced. Cracks are formed when the bond 

connection between particles are broken due to crack damage stresses. These crack 

numbers are indicators of the crack damage stress.  Here, the point of deviation of 

the crack number from zero which corresponds to the crack initiation stress will be 

identified. The crack number also curves inward corresponding to the crack damage 

stress, at this point, the crack number curves transmit into another direction and 

increases suddenly due to the increasing crack propagation that follows the crack 

initiation stage. The volumetric strain deviates from zero at the crack damage stress 

and the curve is seen reversing at the crack damage stress.  

 



 

225 

 

8.3 Damage threshold and grain shape 

The shapes of mineral grains are crucial to simulate the damage thresholds of the 

bulk material. This is because particle shapes could affect the strength characters of 

geo-materials (Ting et.al., 1995; Ln, 1999).  Thus the approach adopted to analyse 

the damage threshold of Niger delta sandstone involve representation of the grain 

content with different shapes of clumps. Matching spheres particles together makes 

a clump. The higher the spherical index of the clump, the rougher the surface of the 

rock (Ghazvinian and Diederichs, 2010). Here, the effect of grain shape is studied by 

clumping of particles in PFC. This morphological property can significantly influence 

the frictional property of rock (Guo and Morgan, 2004). Here, the stiffness parameters 

are constant while clumps are created to check possible shape effects of the grain of 

Niger delta sandstone. The test procedure is provided in Figure 8.3. Each clump 

created is used to build a model sample. The sample was subjected to tri-axial test 

and the micro-crack number was recorded following the procedure in the standard 

tri-axial test provided by PFC (Itasca, 2004). The plot of the crack number versus 

strain is used to show damage indicators. Table 8.1 shows the micro-parameters 

used to build each model sample. These parameters are peculiar to Niger delta 

sandstone as discussed in Chapters 5 and 6. In both DEM and experiments for the 

tri-axial test, confining pressure of 15MPa was applied in this study. 
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Figure 8.3 Block flow of the study: Influence of petrography on strength 
characteristics  
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Table 8.1Descriptive statistics of grain contact parameter for the Niger delta 
sandstone 

Parameter, unit Quantity 

Bond normal strength, mean (MPa) 120 

Bond normal strength, std. dev (MPa) 20 

Bond shear strength, mean (MPa) 120 

Bond shear strength, std. dev (MPa) 20 

Grain contact stiffness ratio, 𝑘𝑛/𝑘s 2.5 

Grain contact Young’s modulus (GPa) 18.6 

Bulk density kg/m3 2120 

Grain density kg/m3 2135 

Grain radius ratio, 𝑅max/𝑅min 1.66 

Friction coefficient 0.6 

 

 

8.3.1 Effect of grain shape on the micro-mechanical behaviour of Niger delta 

sandstone 

In order to study the micro-mechanical behaviour of Niger delta sandstone, the 

influence of grain shape on the mechanical strength of simulated samples were 

examined. Four models of sandstone were generated with four different particle 

shapes. Model 1, model 2, Model 3 and model 4 were built with 2-clump particle 

shape, mixed shape and 3-clump particle shape respectively (Figure 8.4). Tri-axial 

test were performed numerically on each model and uniaxial confining strength, 

cohesion, and friction angle, φ were estimated for each model. These results were 

compared to the physical sandstone (Figure 8.5).  
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Model 1 

SI=100% 

Model 2 

SI=95.5% 

Model 3 

SI=92.4% 

Model 4 

SI=89.2% 

1 Particle  

 

2 Particles clump 

  

Mixed clump  

 

3 Particles clump  

 

    

Figure 8.4 Physical sample and simulated sample models 1- 4 were built with 1 
particle, 2 particles clump, mixed clump particles and 3-clump particles having 
spherical index (SI) of 100%, 95.9%,89.2%, and 92.4% respectively.  

 

Sandstone Model 3 

 
 

 

Figure 8.5 Natural sample and Model sample having same dimension 
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During the simulations, it was observed that under tri-axial compression, crack in 

orthogonal direction to compression closes under confined pressure. The micro-

mechanical responses of the physical samples are provided in Figures 8.1-8.2. The 

crack number generated due to breakage in grain to grain contact was used to 

indicate the points of micro-mechanical damage which includes the crack closure 

stress (σcc), crack initiation stress (σci), the region of stable crack growth and crack 

damage stress (σcd).  

 

This simulation was carried out at 15MPa confined pressure in DEM. The major 

features of micro-mechanical damage are provided in Figure 8.6-8.9. By model 

generated for the study is presented in 3, Figure 8.4 and Figure 8.5. The physical 

sample test also confirms the major points of micro-damage as presented in Chapter 

4. By comparing these three models, with the characteristic data in Chapter 4, the 

mixed clump model represents well the natural sandstone (Figure 8.5). This could be 

due to the irregular grain characteristics of the quartzite mineral that provides the 

mineral support. It could also be due to the different grain size distributions in the 

mineral composition of the sandstone. However further parameters were analysed to 

verify the usefulness of the mixed clump model below.  

 

 

Figure 8.6 The crack initiation stress and crack damage stress of model 1 sample  
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Figure 8.7 The crack initiation stress and crack damage stress of model 2 sample  

 

 

Figure 8.8 The crack initiation stress and crack damage stress of model 3 sample  
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Figure 8.9 The crack initiation stress and crack damage stress of model 4 sample  

 

 

8.3.2 Effect of grain shape on micro-mechanical characteristics of Niger 

delta sandstone 

Figure 8.6 - 8.9, show that model built with high spherical index property exhibit low 

micro-mechanical strength the 100% spherical index properties indicated a crack 

initiation stress level of 50MPa with a corresponding damage stress level of 102MPa. 

these values are lower than the observed in the representative mixed model which 

have 68MPa and 158MPa as the initial and damage stress levels respectively. This 

means, the closer the shape is to a perfect sphere, the lower the bulk strength. The 

crack initiation stress is a microscopic response to stress which is at 60MPa for model 

2 (Figure 8.7). The result show a similar trend to the simulation on quartz sandstone 

from Luojia Mountain   (Rong et al., 2013). The size and shape of the particle are 

related in that the more spherical grain behave like large sized grain and strength 

decreases as grain size increases (Plumb et al., 1992). Hence grains with high 

spherical index value make the grain matrix to possess larger Griffith flaw at grain 

contacts which makes them weak under compression. The crack initiation of model -

4 with lower spherical index is at a stress level of 80MPa which is higher than the 
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observed 40MPa (in model 1) and 60MPa (in model 2). These models 1 and 2 are of 

higher spherical index compared to model 4. 

 

The yield points for 2-particle clump model and 3-particle clump models are 119MPa 

and 193MPa respectively (Figure 8.7 and 8.9). The yield characteristics are even 

reflected in cohesion property held between the grains. This is because the reversal 

point of the volumetric strain for the 2-particle clumps drops sharply compared to the 

3-particle clump. This indicates that the cohesive properties in the 3-particle clump 

are held stronger than the cohesive property of the 2-particle clump. Thus larger 

numbers of grain contact are found in rocks with complex shaped grain of low 

spherical index. The volumetric strain curve reflects brittle crack in the sharp drop of 

the curve identified with the yellow asterisk in Figures 8.6-8.9. This phenomenon was 

explained by Eberhardt et al. (1998). 

 

8.4 Bulk porosity change on numerical models 

Models 1 to 4 were built by specifying the same initial state of porosity for the 

numerical samples. This procedure was done by incorporating the bulk density 

(2120kg/m3) and grain densities (2135kg/m3) in the script. A significant difference in 

the porosity changes were observed in models 1 to 4 (Figure 8.6 to 8.9). The values 

of the crack damage stress are indicators of these observed differences. By utilizing 

the spherical index (SI) 1.0000, 0.9555, 0.9240 and 0.8920 for models 1 - 4 

respectively, the observed Ccd stresses were 50MPa, 120MPa, 150MPa and 190MPa 

when each sample was subjected to tri-axial compression under 15MPa confined 

pressure. The significant differences in the damages stress data are caused by the 

different particle shapes which takes up some new coordination number during 

compression. The coordination number is porosity determinates. The porosity of 

every sample is not uniform at every point in the packed sample. Thus an obvious 

difficulty encountered during the simulated compression test is that the macroscopic 

response of each model are not the same when different particle shapes and same 

porosity are specified for generated rock model. The mixed model is in agreement 

with the damage stress (146MPa) for the experimental model. This observation can 

be supported by the theoretical analysis of the non-uniform porosity distribution in 

DEM model samples identified by Jing and Stephansson (2007). Therefore an initial 
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state of model porosity does not imply a uniform distribution of porosity throughout 

the generated model sample.  In addition, the change in porosity is particularly 

defined by the particle shape of discrete member (Figure 8.6 to 8.9). This is because 

porosity changes are directly affected by the changes in coordination number. As the 

compression test progresses new contact are formed between contacting particles. 

The output data of the progressive compression is the porosity change characteristic 

responses which are stored as volumetric strain based on relative interaction of new 

particle contacts formed at every stage of compression. Thus in order to obtain the 

characteristics behaviour of natural rock, the right choice of particle shape is 

essential. A mixed clump was appropriate for Niger delta sandstone (Figure 7.8 and 

Figure 4.12a). 

 

The cohesion and the internal frictional coefficient were calculated at some confined 

pressures of 5MPa to 20MPa (Figure 7.11). The mixed-clumped particle model was 

found to have exhibited a similar cohesive property and internal frictional 

characteristic behaviour similar to the natural sample. The reason for the adequate 

match in the natural and simulated rock sample can be attributed to the mixed clump 

particle packing technique which produced a bonded discrete assembly exhibiting 

porosity change characteristics similar to the natural sample. One single porosity 

value cannot provide the porosity of the sample model. This is because the porosity 

computation depends on the coordination number within the measurement sphere 

(Itasca, 2004). It turns out that, the addition of the experimental stiffness component 

to the contact model is a positive contribution to the model development. 

 

8.4.1 Particle packing technique for mixed-clump model sample 

In Chapter 3, the detail of the procedures adopted to generate the four model 

samples is provided. It is important to note that the contact stiffness (normal and 

shear) were obtained experimentally before the simulation was carried out. The value 

of the experimental stiffness was used to redefine the contact model. The PFC code, 

which uses the constructive method of particle insertion, was activated. During the 

development of the model, packing density was specified by scaling the clump sizes 

until the mixture reproducing the natural rock was obtained. Location of the 

measurement sphere were examined points where porosities were measured and 

stored. And one single porosity value cannot describe the sample porosity because 
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of the particle overlap and the limitation of the measurement sphere to a single 

location per calculation time in PFC (Itasca, 2000). The behaviour of the discrete 

assembly was simulated by associating the default linear contact with the value of 

the normal stiffness of 6MN/m and a shear stiffness of 2.4MN/n as a component 

which initiated a stiffness ratio of 2.5. This contact stiffness relates the contact force 

and relative displacement in the normal and shear directions using Equations 3.12 

(Chapter 3) repeatedly. 

 

The slip behaviour was defined by 0.66 frictional coefficient obtained experimentally. 

Contact model with each contact. The inclusion of a parallel bond and a dashpot to 

the contact model was implemented so that the entirety defines the contact force 

displacement behaviour of the natural rock. The input value a stiffness ratio of 2.5 

was fixed because the parameter was validated experimentally using ultrasound 

measurements and the PSAT technique. 

 

In the past the differences in the cohesion and frictional angle of the natural and 

simulated sample has been a challenge in DEM (Cho et al., 2007). The inclusion of 

the experimentally determined bulk and grain densities to the discrete assembly was 

a major step to combat the common discrepancies between cohesion and frictional 

angle of natural and simulated rock. Here, the application of this model script could 

resolve this problem because natural rock was simulated via clump modifications 

which enhance similar cohesion and frictional angle of simulated rock compared with 

the natural rock.  In addition, a respective micro mechanical damage data are 

provided for supporting this approach. 

 

8.5 Implementation of particle to particle cementation 

All contacts were assigned the linear model which depended on the properties of all 

contacting entities. The experimental linear model were included to enabled the 

contact-bond to influence contact behaves as the natural sample. Parallel-bond 

behaviour was implemented by including a parallel-bond component to each contact. 

This component acts in parallel with the linear model at all contacts their properties 

modifies the contact behaviour due to specification of the contact stiffness. Thus 

corresponding stiffness properties modification was distributed throughout the 
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assembly for all components in the model. The wall command was used to set wall. 

The command changes and initialized.     Clumped properties were set with the clump 

property command. The implementation of contact stiffness from experiments into 

the contact components between particle-particle contacts was enabled. Next the 

systematic particle packing technique has enhanced the simulation of the natural 

rock. Generally, micro-properties are defined in the development of DEM model  

(Boutt and McPherson, 2002). These properties are iterated until the model 

reproduces the natural. The problem encountered by this method is that the internal 

frictional coefficient exhibited by the numerical sample are usually too low compared 

to the natural sample (Thornton, 2000). 

 

8.6 Young modulus and Poisson’s ratio from micro-mechanical behaviour 

Lower magnitude of elastic modulus (21.8GPa) was observed for the model 

developed with 2-particle clump compared to the elastic modulus data (25.6GPa) 

obtained for mixed-shape models (Figure 8.10). 

 

Higher Poisson’s ratio (0.33 and 0.29 was observed in models 1 and 2,) was 

observed for the particle with 100% spherical index and the 95%, (2-particle clump 

shape) compared to the Poisson’s ratio (0.28) of the mixed-shape model and 0.27 of 

the 3-particle clump model. It was observed that these values were approximately 

equal to the nearest 0.1% in variations. Therefore, it is envisaged that the particle 

shape and bond held in cementations strength collapse towards the lateral direction 

which was not affected by the void space in the particle assembly. This may be due 

to the same confining pressures to which each samples are subjected too. That is 

the applied lateral stress is the same for all experiments. 
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Figure 8.10 Elastic modulus and Poisson’s ratio for Niger-delta sandstone and 
simulated models 

 

8.7 Influence of internal frictional angle and cohesion on strength 

characteristics 

By using the plots of peak stress versus confined pressure, the linear equations 

plotted in Figure 8.11 were obtained. The tri-axial test method has been adopted for 

micro-mechanical analysis by some authors e.g. (Singh and Rao, 2005) for the 

determination of  internal frictional angle and cohesion. The results of the tri-axial test 

on three models were compared with the applied experimental data. Both 

relationships were related to the equation of the curve in Figure 8.11. The gradient 

was defined as “a“ in Equation 8.1 which was used for the evaluation of frictional 

coefficient. In Equation 8.2 “b” is the intercept used for the evaluation of cohesion 

(Rong et al., 2013; Singh and Rao, 2005) in the vertical axis presented in Figure 8.11 

 

ɸ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑎−1
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)                                                         (8.1) 
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𝑐 =
𝑏(1−𝑠𝑖𝑛ɸ)

2𝑐𝑜𝑠ɸ
                                                                             (8.2) 

Where “a” is the gradient of the curve and b is the intercept (Figure 8.11),  ɸ  is 

frictional coefficient and c is the cohesion. 

 

Although a linear relationship exist between peak strength and confined pressure in 

all models, the mixed clumped particle model exhibit similar peak strength like the 

physical sample as shown in Figure 8.11. In Figure 8.12, this compliance of mixed 

shape model with the physical sandstone sample is reflected in the close value of the 

cohesion and internal frictional angle observed for both mixed shape model and the 

real sandstone sample in Figure 8.12 when the confining pressures were observed 

at 5MPa, 10MPa, 15MPa and 20MPa the sample behaviour was consistent for with 

the mixed particle model. 

 

 

Figure 8.11 Confining pressures versus peak axial stresses at 5MPa, 10Mpa, 
15MPa and 20MPa for experiments with Niger-delta sandstone and simulated 
models 1-4. 
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Figure 8.12 Internal frictional angle and cohesion for experiments with Niger-delta 
sandstone and simulated models 1-4. 

 

 From the tri-axial test carried out on 2 - particle clump model (sample 1) a low value 

of internal frictional angle and cohesion was observed. Also the results shows that 

the internal friction and cohesion was too high to reproduce the micro-mechanical 

behaviour of the Niger-delta sandstone. Therefore, the mixed shape model was 

appropriate to reproduce the frictional effect for the Niger-delta sandstone. A similar 

observation was found when sandstone was simulated by (Singh and Rao, 2005; 

Hajiabdolmajid, 2002).  Rong et al. (2013) discovered variations in internal friction 

coefficient with shape for rock simulations using discrete models. The values of 

frictional coefficient provided in these work shows that there exist larger void space 

between the particles in models of high spherical index. Hence it reduces frictional 

opposition as compared to small void space in complex particle shape of low 

spherical index. The complex grained sandstone model are consolidated and well 

packed (Garcia et al., 2009) In Figure 4.12 Chapter 4, the crack volumetric strain is 

the point of deviation from zero which marks the stress initiation point at 68MPa for 

the Niger-delta sandstone. Figure 8.13 is a collection of the crack initiation and crack 

damages stress data for the three models and the real sandstone sample. The 

physical sandstone data are closer to the mixed shape model. 
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Figure 8.13 Crack initiation stress and crack damage stress for Niger-delta 
sandstone and simulated models 

 

The 4 models show that the crack initiation and crack damage stresses are due to 

the particle compaction making up the sandstone. Apparently an inverse relationship 

holds for spherical index of constituent particle and stresses. Therefore the particle 

shapes are influential to rock deformation. 

 

Figure 8.14 Simulated result for the stress-strain curves of Niger delta sandstone 
under tri-axial test at a confined pressure of 15MPa  
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Figure 8.14 shows the crack initiation stresses and crack damage stresses for the 

mixed clump particle using corresponding DEM simulations. This plots included the 

crack number characteristics curve showing the damage indicators.  A schematic 

graph is provided in Figure 8.1. In Figure 8.14, the crack on sample surface is 

observed at 100PMa, 120MPa, 140MPa and 160MPa respectively. The 

corresponding images are presented in Figure 8.15 which presents the surface 

damaged images for 4 stages of axial stresses characterising the behaviour of the 

Niger delta sandstone.  

 

 

 

 

 

 

 

 

100MPa  120MPa  140MPa  160MPa 

Figure 8.15 First crack and gradual crack accumulation at axial stresses at 
100PMa, 120MPa, 140MPa and 160MPa done at 15MPa confined pressure. 
The damaged bond size is an average grain size indicated as red spots. 

8.8 Corporative analysis and validation of bulk strength of Niger delta 

sandstone 

Table 8.2 and 8.3 presents the crack initiation and the crack damage stresses of 

Niger delta sandstone and also compared with Berea sandstone results reported in 

existing literature and some evaluations from the present research. The micro-

properties used in Chapters 5 and 6 are validated by these mechanical properties. In 

Table 8.3 further validation of micro-measurement data was done with the data of 

cohesion. The cohesive descriptions of the grains that constitute the rock are 
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compared with the standard measurement of Berea sandstone (Evans, 1012). From 

the above results, it can be observed that the elastic parameters are descriptive 

properties which show that Niger delta sandstone and Berea samples are composed 

of similar material Chapter 4 shows the mineralogical properties. This is not surprising 

because the two sandstones (Niger delta sandstone and Berea sandstone) are 

petroleum source rocks. The rock formations are thought to be of similar digenesis.  

 

Table 8.2 Crack initiation and crack damaged of sandstone 

Sample 

E 

(GPa) 

V Ρ 
(Kg/m3) 

Ф σCI 
(MPa) 

σCD 
(MPa) 

Ref 

Berea 
Sandstone 

19.3 – 
27.5 

0.17-
0.34 

2100 0.19 41-58 71.3-74 Weinberger, et 
al., 1995 

Berea 
Sandstone 

20.2 0.27 2100 0.20 - - Busetti, and 
Reches, 2012 

Berea 
Sandstone 

18.5 0.4 2150 0.19 41 62-71.3 Eberhardt, 
1998, 

Berea 
Sandstone 

20.6 0.32 2100 0.20 48 65 This research 

Niger-Delta 

Sandstone 

20.6 0.32 2125 0.22 50 70 This research 

 

Table 8.3 Mechanical properties of sandstone 

Macro properties Niger delta 

sandstone 

(this 

research) 

Berea 

sandstone 

(this research) 

Berea sandstone 

(Evans, 2012) 

Modulus (GPa) 20.7 20.6 27.58 

Poisson’s ratio 0.29 0.32 0.33 

Cohesion (MPa) 18 14 13.04 

Internal frictional angle (o) 28 o 42 o 38.14o 
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8.8.1 Experimental validations of micro-mechanical behaviour of Niger-delta 

sandstone using volumetric stiffness 

The volumetric stiffness is rarely reported in the literature in this type of analysis, but 

it has been defined by Eberhardt (1998) as the ratio of volumetric strain data to the 

corresponding axial stress data. In other words, the slope of every two successive 

point in the curve presented in Figure 4.12a for Niger delta sandstone is obtained at 

different intervals  which are their volumetric stiffness at the successive points and 

presented in Figure 8.16 under a confining pressure of 15MPa. Micro contact 

stiffness is generated when the grain overlap due to axial loading hence volumetric 

strain measures the porosity change in the grains and produce strain due to the pore 

collapse between grains in contact. In this, the material exhibit micro-cracks which 

are indicated by the sharp drop in the volumetric stiffness value. They reveal Figure 

8.16 the micro-mechanical damage points. These values are plotted in Figure 8.16 

which presents microscopic progression of micro-cracks, the crack multiplies and 

increases to show σci (at 78MPa), σcd (at 86MPa) and σucs (at 160MPa) stresses. 

These values correspond to the simulated data obtained in Figure 8.8 for the mixed 

clump model used to develop the Niger delta sandstone. Observe that the stress 

strain curve during the initial stages of force application reflects linear changes. 

These are the pore collapse or granular compaction state. Volumetric strain are 

derived from the axial and lateral strain therefore, the volumetric stiffness indicates 

that both axial and lateral stiffness are measured up to 48MPa this value is indicative 

of the crack number plotted in Figure 8.10. Therefore, the crack closure of Niger delta 

sandstone examined in this research is about 30% of the compressive strength. This 

implies that the increase in any velocity measurement during crack closure at the 

grain boundary starts at about 48MPa for the sandstone. Therefore, axial stress must 

be maintained at this value to prevent fracture. If on the other hand, the axial stress 

exceeds the 30% of the compressive stresses, lost circulation pills should be injected 

to prevent micro-crack formations. Under 15MPa confined pressure in a tri-axial test, 

the systematic crack growth peaks at a stress of 160MPa in Figure 8.13 while the 

damage was initiated at 98Mpa. 
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Figure 8.16 Volumetric stiffness vs axial stress 

 

8.9 Conclusion  

An extensive level of Dem simulations for the shape effects reveals its influence on 

the mechanical properties of sandstone. The mixed particle clumped model which is 

the model 3 type shape descriptor in agreement with experimental result is 

appropriate to model the micro-mechanical behaviour of the Niger delta sandstone. 

 

The onset of micro fracturing is the crack initiation stress this was identified by 

deviation from linear strain response.  Dilation begins at the crack damage stress, 

the rock volumes begin to increase was also pointed out by (Palchik and Hatzor, 

2004). Next is the reversal point of total volumetric strain where the unstable crack 

begins its propagation. This point is still lower than the UCS. It was found that the 

crack damage stress of Niger delta sandstone is about 60% of the compressive 

strength under 15MPa confining pressure. Therefore, if it is difficult to distinguish the 

reversal point, the crack damage stress equals the compressive stress of the 

sandstone. (Hatzor and Palchik, 1997). 
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Chapter 9 

Conclusion and Recommendation for Future Work 
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9 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK 

9.1 Conclusions 

This work investigated the strength characteristics of Niger Delta sandstone using 

Photo Stress Tomography Technique (PSAT) for the first time, ultrasound 

measurement technique and Discrete Element Modelling (DEM).  The urgency to 

determine the bulk strength characteristics of the source rock in relation to grain-

scale properties has been the motivation of this research. This is because the friable 

nature of the rock constitutes a huge financial loss to the drilling industry. Current 

industrial approaches to fracture prevention in drilling source rock involve the use of 

“loss-circulation” pills which are used after the rock has fractured. It is an “after-loss” 

response which forms the motivation to carry out microscopic detection of the onset 

of fractures. Here, the statistical description of the grain contact stiffness and bond 

strength was utilized to simulate rock behaviour. Subsequently the micro-mechanical 

damage threshold were determined experimentally and numerically simulated to 

identify the onset of fractures in the rock. Furthermore, the direct relationships 

between petro-graphical properties and the micro-mechanical strength 

characteristics were established in this study. The findings are in line with the bulk 

strength dependence on grain aspect ratio (Yang et al., 2014; Hsieh et al., 2008; 

Azevedo and May, 2002). The key conclusions are summarised below: 

 

(1) The Niger delta sandstone can be described as a sedimentary rock composed 

of mineral (quartz, feldspar, mica and clay) grains and particles (Table 4.1) 

bonded together by a combined contribution of inter-granular forces and 

cementation that creates locked-in stresses in the geo-material (Figure 4.12). 

Thus the composition of Niger delta sandstone is typical for a petroleum 

source rock when compared to the mineralogy of sandstone estimated by 

Guéguen and Palciauskas (1994). The strength characteristics of Niger delta 

sandstone are dependent on its inherent petrographic properties. Quartz 

content, mica and other stable mineral like feldspar provide the structural 

support. These minerals constitute the elemental forming content 

(plagioclase) and the extent of cementation. The shape of the mineral grains 

is responsible for the characteristic porosity which determines the 

characteristic strength and the microscopic-mechanical damage (Figure 

4.12).  
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(2) The anisotropy of the sandstone at grain-level is measured using PSAT 

methodology in terms of its stiffness ratio as 2.5.  This agrees favorably with 

independent ultrasound-based measurements.  The obtained average normal 

stiffness is 5.7MN/m and average shear stiffness is 2.3MN/m for the Niger-

delta sandstone.  However, the PSAT enables to evaluate these at point-scale 

(/grain scale) and such an outcome is entirely novel in this research. For 

statistical accuracy, the experiments were repeated for 54 Niger delta 

sandstone samples and the above outcomes were analyzed consistently. 

This implies that contact points exhibit anisotropy in the aggregates of quartz 

(Table 5.1).  This observation is similar to the findings of Tilmann and Bennett 

(1973); Waterman and Teutonico (1957); Thill et al., (1969) (Waterman and 

Teutonico, 1957; Thill et al., 1969).    

(3) Using the above stated experimental measures as input into DEM modelling 

as grain-scale material parameters, the bulk mechanical properties have 

been simulated using DEM modelling. The numerical simulation of the rock 

behaviour included the addition of the contact parameter between particles. 

The contact is based on a linear model carrying the corresponding 

experimental stiffness data of the Niger delta sandstone.  Discrete model of 

Niger delta sandstone is based on the assumptions that finite size of cement 

binds the grains at their contact.  The bulk strength characteristics evaluated 

from the DEM modelling agreed well with bulk experiments under uni-axial 

and tri-axial compression loading conditions.   This supports the multi-scale 

approach employed in this research where grain-scale parameters link with 

the bulk strength characteristics using the combined experimental-numerical 

hybrid approach. 

  

(4) DEM simulations were used to evaluate the influence of grain-scale properties 

on the fracture characteristics of the Niger sandstone.  The damage threshold 

of the simulated model agrees with that of the natural sandstone 

characterised in Chapter 4. Thus the assumption in the DEM that the inter-

grains with the bond strength of the cement approximates the geometry of the 

simulation sample is further confirmed because the elastic properties of the 

rock did not violate characteristic properties of similar reservoir sandstones 

viz., Berea and Doddington sandstones (Chapter 4) (Evan, 2012).  Therefore, 

the realistic constitutive contact law driving the behaviour of grain within the 



 

247 

 

simulation assembly is significant and adequate to represent the Niger delta 

sandstone.  

 

(5) The strength characteristics of the Niger delta sandstone has been presented 

by the damage indicators (Eberhardt et al., 1998) for micro-mechanical 

properties because these indicators predict the macroscopic damage. At 

about 30% of the compressive strength of Niger delta sandstone, crack 

closure stress reaches its critical state and micro-cracks began to form (this 

is the crack initiation stress).  

 

9.2  Contributions to experimental survey (Chapter 2) 

The capabilities of the study of strain in rock using photo elasticity has been available 

since 1966 (Pincus, 1966). But the technique has been underutilized in this regard 

and has not been adopted for point-based stress analysis.  This current survey has 

established progressive principles for obtaining both normal and shear stress at a 

point location. Thus, while tracing the capability of the photo stress analysis (PSAT) 

with the principle of fracture initiation and stress concentrations at crack tips, an 

advanced experimental developmental methodology was idealized, which address 

the question of how micro-parameters can be estimated from rock/cemented granular 

materials. Although it is paramount that the surface of the material must be made to 

exhibit birefringence. The normal and shear data were supported by the extensive 

literature on ultrasound measurement techniques. Therefore calibration involves 

gradual application of load on the sandstone specimen. The incremental load is 

expressed as a sequence of light and dark fringes on the coated sandstone sample. 

At the maximum light appearance, dark colours appears as indicators of fringe orders. 

The first dark that appears is the first fringe order and the subsequent dark lines are 

the consecutive fringe order which provide consistency in calibration stages. 

Improvement of data quality depends on multi-fringe applications. The output results 

from this advanced technique is based on improved filtering of the colours for clear 

distinction in this particular research. Broader maroon colour can also be included to 

obtain an overall result range. The Red-Green-Blue (RGB) colour system can 

perform strain inspection in birefringence surface of bonded grains but the output can 

be affected by part of the more extreme values of stress in the sample. 
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9.3 Contributions to research method and assumptions made for DEM 

(Chapter 3)  

The research method employed in this work is significant for identifying fracture 

propagation. The method is of central importance to discrete element modelling 

where the micro-mechanical behaviour of sandstone is needed, because it relies on 

the on-set of fracture. The experimentation and identification of the existence of grain 

contact at any arbitrary point in the sandstone was a tested concept, where bulk 

strength predictions were made from that hypothesis, and advanced experiments 

was included to check whether these predictions were correct. The predicted bulk 

strength were validated by well-known standard experimental test (ISRM), then the 

concept of micro-parameter determinations from rock was confirmed. Statistical 

analysis showed that 95% of all observations are reliable. Therefore, using micro-

parameters as inputs to the simulations of rock offers a predictive power that shows 

quantitative and the qualitative bulk strength of the material. Overall this concept have 

a wide range of similar applications to other rock types, concrete and reinforced fibres 

which implies that, the method it is simple and coherent. 

 

The assumptions that finite size of cement binds the grains at their contact were 

observed with the characterization results presented in Chapter 4. Hence these 

assumptions are valid for sandstone because they do not violate previous 

characterization result from similar reservoir sandstone materials. Therefore the 

methodology of specifying experimental micro-parameters as inputs for discrete 

modelling is a valid suggestion for simulations of sandstone. 

  

9.4 Heterogeneity and anisotropy of rocks are significant to micro-

structural measurements (Chapter 4 and 5) 

Niger delta rock is anisotropy because of the stress properties at points in the medium 

are different with direction. The material is heterogeneous because the properties are 

different from point to point and discontinuous because there were spaces in the 

stress field in them. Sandstone exhibits this property intensely under stress. The 

anisotropy behaviour of this rock has been described to be continuous, linear and 

homogeneously elastic by the law that relates stress, strain and displacement in 

Hooke’s law. This law has been used to estimate elastic properties of rock in standard 
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compression test. Here, it enhanced determination of contact models by the 

measurement of contact parameters from the rock. The contact parameters have 

been referred to as micro-parameters which have advanced the development of 

numerical rock models or behaviour. This is because experimental estimates were 

verified using the micro-parameters estimated from numerical experiments. The 

experiments are safer and faster compared to x-rays which are prune to affect human 

health. 

  

9.5 Advanced experiments and experimental estimation of micro-

parameters (Chapter 6 and 7) 

The application of stress to a pack of cemented grains introduces strain into the 

residually stressed pack which relaxes the stresses surrounding any deformed 

location. Any force application perpendicular to any free surface (the deformed point, 

in this case) is considered a principal direction at which both shear and normal 

stresses were identified.  Deformation at a point changes the stress within the 

immediate surrounding region, which leads to the corresponding changes in the local 

strains within the assembly of grains. These findings served as the foundation for the 

behaviour of stressed material which starts at a single point defect. Further, a chain 

of strain is a consequence for additional stress applications on this deformed point. 

Therefore the importance of obtaining a micro-scale measurements at a deformed 

point surrounded by residual stress was necessary. Since the point deformation 

progression did not contradict existing practical understanding of stressed materials 

on a large scale, the micro-parameters are valid inputs for simulating the behaviour 

of the bulk material. This concept solves the complexity of the blind-hole geometry, 

where, no closed-form solutions can be carried out with theory of elasticity for 

evaluations of stress except by use of some empirical coefficients. Principally 

because the point scale is considered blind due to the fact that the deformed point is 

relatively small compared to the bulk material. 

  

 Point stresses at a deformed locations with its immediate surroundings 

characterized by regular residual stress distributions is an established condition at 

which micro-parameters were evaluated. Additionally, the theoretical basis for the 

residual stress measurement method for bulk deformations of such materials is 
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hereby first developed and established for a known geometry, and was subsequently 

extended to different practical bulk scale. But the micro – parameter evaluation uses 

the ray of light which enters the strained point along the directions of principal stress 

before splitting into two waves. These waves traverse the strained point with different 

velocities, thus emerging with a phase relationship (or relative retardation). Since the 

material surface was made to exhibit birefringence property during stress 

applications on the point, single point stiffness was quantified. This invention is the 

first attempt made to measure strain at a micro scale, for the estimation of micro-

parameter from rock. 

 

9.6 Translation of crack nucleation to stiffness parameters 

The deformation mechanism of brittle rock has been carried out by fixing 

microstructural natural parameter obtained from strain localized points in real 

sandstone. As the collective rock intrinsic features of fracture process growth are 

successfully translated into normal stiffness and shear stiffness parameter. This 

method of simulation contribute to solving the problem of complexity in 

microstructural representation of rock model numerically. The contact bond 

description using normal and shear stiffness data from experiment has enable the 

definition of fracture by bond breakage in tension and compression. Thus growth of 

fracture was captured experimentally solving the problem of fracture analysis in brittle 

material. 

 

By combining the fracture mechanism of experimental finding with numerical solution, 

real data are estimated by the identification of crack nucleation and fracture 

propagation process which is significant in the photo stress images. 

 

The porosity changes around crack nucleation zone and the response of the shear 

stress and shear displacement is a prolonged strength reduction which culminated 

into fracture. The behaviour of the simulated sample was controlled by the stiffness 

model of the natural sample. And this simplifies the simulations because the 

instruction script was imposed with specific model. The behaviour is displayed by the 

rearrangement of the grains which transmit micro-force with the stiffness data 

assigned to the simulated rock sample. 
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The development of constitutive contact law for grain assembly is very significant to 

the development of a numerical counterpart. Using a 3D discrete element model, the 

contact model has inculcated, the silent plastic deformability and non-linear elastic 

behaviour into the model by the use of experimental data as inputs. Hence using this 

as inputs to simulate tri-axial rock examination implies that, contact model retains the 

important features of the micro-mechanical behaviour of the natural rock. The 

material modulus increases with increased confined stress which is similar at in-situ 

conditions. Hence, the strength threshold can be identified for critical states in rock 

during mechanical handling. 

 

9.7 The dependence of bulk strength on petrographic property (Chapter 8) 

Sandstone was found to be the aggregate of mechanically cemented mineral grains. 

The pore space due to grain shape in the material, the mineral content and micro-

flaws are inherent properties. Hence micro-fracturing are due to a single grain 

defected contact which is an initiated stress levels related to macroscopic yield state. 

This marks the elastic limit of the aggregate structure. Exhibition of the crack 

progression can be detected from micro-seismicity in its structure. Similar to the 

finding from the Photoelasticity and the report provided by Fjaer et al., (1992) stress 

fringes were produced when microscopic cracks were created. That is, stress is 

concentrated at the tip and rapidly ease propagation of new cracks. This cracks are 

directed with respect to direction of principal stresses as described by Griffith’s theory. 

The strength of sandstone is dependent on its inherent petrographic properties. And 

as well as the  quartz content, mica and other stable mineral like feldspar, the mineral 

forming content (plagioclase) and extent of cementation within these mineral content. 

Theses compositions are shape and porosity builders which determines the 

microscopic-mechanical damage process. Therefore, during simulation of rock, grain 

shape selection (for representation of discrete constituent mineral) is significant to 

the crack initiation stress, crack damage stress and the stress at rock failure. 
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9.8 Contributions to discrete modelling 

Sandstone has been characterized as cemented-granular assembly and contact 

parameters are affected by the complex mineralogy (Chapter 4). The contact stiffness 

was estimated using velocity data from ultrasounds and photo stress analysis 

tomography (this methodology is adopted for the first time). The two experiments 

provided validations for each other. Thus grain contact stiffness ratio was adequate 

to develop the bulk material. The determination of the bond strength was enabled. 

Therefore it is possible to estimate micro-mechanical properties of natural rock. This 

is because the variation in the index of refraction is a function of the resulting strain. 

Thus, the light refracted and the fringe pattern is produced to give information on 

preferred grain orientation (due to residual or induced stress). Whereas the 

measurement of ultrasound wave velocity along various axis of symmetry in a 

specimen can provide information on preferred grain orientation (due to residual or 

induced stress). 

 

Simulation of natural rock with experimental stiffness ratio (or micro-mechanical 

properties) has resolved the discrepancies between experimental elastic properties 

and the behaviour of natural rock under compressive strength. This is a common 

challenge in discrete models reported for rocks.  The success of this approach has 

provided its applications to other anisotropic materials such as granite rock, fibre 

reinforced composites, concrete, etc. 

 

9.9 Extension of work for further research 

A further research can be built on this work based on the gap in knowledge which 

includes no existing experimental procedure to determine micro-parameters from 

natural rock. No micro-parameters are available for simulation of natural deformation 

process of rock. This implies that, there exist no experimental validations at micro 

scale and no adequate knowledge on certainty of material behaviour in the sub-

surface. Macro-fracturing process is not yet fully understood due to complex 

minerology composition of rock. Therefore the prediction of rock fracture in drilling 

and allied areas is a stiff challenge. 
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Since the numerical representation of natural materials is still a stiff challenge, this 

work has used experimental-numerical hybrid approach towards the development of 

natural rock. The grains that make up the granular assembly have been represented 

with clumped. This script is coupled with other contact model parameters. By using 

these parameters, the bulk behaviour of the simulated rock matches that of the 

natural. Thus two areas of criticism is suggested to improve the work. (1.) Simulation 

of random grain shape for adequate representation of natural particle shape and 

interlock properties. (2.) Porosity implementation in Particle Flow Code (PFC) 

probably requires the simulated porosity values which is currently not be the exact 

geo-frame compared directly to that of natural rocks. This is because the rock is 

composed of random grains shape that are interlocked better than spheres. The 

natural rocks are typical of having a nature of finite sized cementation. Thus using a 

natural effect was not taken into account in the porosity estimation. However, the 

grain density and the bulk density was used.  The numerical data provide a means 

of adopting general calculations of porosity changes and cementation. 

 

The average coordination numbers for the natural sandstone (as revealed by the 

SEM-experiments) range from 7.5 to 9.0 whereas simulated porosity may be of 

greater average or lesser coordination number. The incorporation of the average 

coordination numbers of the natural rock were not considered and thus no identical 

frame was achieved for the natural porosity. The incorporation of a range may be 

consequential for porosity representation of the natural sample. For example, the 

greatest coordination number is 9 for the 22% porosity obtained whereas in the 

simulated model all the grains were identical in shape. The mode of coordination 

numbers is 9 (which is the value of a particle introduced into the model), except in 

the 22% porosity model- 3 (Chapter 8) with mixed particle clump. Thus, the average 

coordination numbers decrease slightly. Thus the range of coordination numbers can 

significantly influence porosity. It is likely that a relationship between porosity and 

mechanical properties exist if the simulation is followed by the reduction in the 

number of contacts which may ties to any increase in porosity to gives result 

influencing tortuosity of the force chains. This procedure may reproduce Young’s 

modulus, Poisson’s ratio and bulk strength of the natural rock. 
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9.10 Beneficiaries of this research 

Oil Production Company (drilling engineers, production engineers): The Discrete 

Element Method (DEM) is yet to be perfected for simulation technique that allows 

practicable modelling of any mechanical interaction of granular materials. In the 

particular case of sandstones, clumped particles were used to represent quartz 

grains which are used to build the natural material by cementations of the inter-

granular contacts. This condition is directly represented in building a natural 

petroleum oil reservoir by adequate definition of the grain density and bulk density of 

the natural sandstone. This yielded porosity and permeability properties which are 

major properties that enhance reservoir simulations by the oil producing industry. In 

this study, an extensive characterization of the natural sandstone has yielded micro-

parameters necessary for an experimental-DEM-hybrid program which can be 

adopted to model the mechanical properties of the Niger Delta sandstone, an 

unconsolidated rock in the oil production producing state of Nigeria. 

 

Predictors of earth quakes (or geologist): the intrusions of sandstone rock into granite 

rock is catastrophic causing earthquake or flood. When earthquake occurs, sediment 

may liquefy, as in the case of the 6.0-magnitude earthquake of the Christchurch, New 

Zealand, in 2011. This could have resulted due to an earthquake that forced the 

sedimentary rock into the granite rock in Colorado. With the knowledge that every 

grain remains discrete being attached to neighbouring particles to form the natural 

rock, the mechanism of the natural fractures can be identified by geologist. 

9.11 Recommendation for future work 

(1) Here it was difficult to distinguish the grain contact location from the bond 

location since the cementing clay at the contact are finite and occupy 

negligible space.  This required assuming that the point-scale stiffness 

evaluated from PSAT is that of the inter-grains.  Further studies are required 

to distinguish the variation of the stiffness within the cements bonding the 

individual grains of sandstone.  

 

(2) As a follow up to this, it is recommended that the elasto-dynamic effects 

(stress wave propagation) are recorded and the Acoustic emission (AE) data 

are correlated to the crack number experimentally.  This could be used further 
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to compare with similar outcomes using DEM simulations. The result can 

support the identification of the damage threshold (Chapter 4 and Chapter 8) 

and micro-crack can be further explained based on characteristic minerals at 

the localized area of micro-cracks. 

 

(3) Quantitative assessment of rock deformations with the principles of fracture 

mechanics is important but it requires the knowledge of the Stress Intensity 

Factor (SIF).  SIF solutions can differ with geometry and stress field 

(Ingraffea, 1987).  The SIF for sandstone can be evaluated experimentally 

using PSAT, and its characteristics could provide further insights on the 

fracture properties of sandstone in future. 
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11 Appendix A - Statistics and z-test for normality (Chapter 5) 

Table A 1 Descriptive statistics for stiffness data from ultrasound 

 N Minimum Maximum Mean 

Std. 

Deviation Variance 

Normal stiffness _ 

Ultrasound (MN/m) 
54 5.54 7.82 6.5373 0.55951 0.313 

Shear stiffness _ 

Ultrasound (MN/m) 
54 1.82 2.88 2.4564 0.26327 0.069 

Stiffness ratio - 

Ultrasound 
54 2.24 3.44 2.6839 .30485 0.093 

 

Table A 2 Further descriptive statistics for stiffness data from ultrasound 

 

N Mean Skewness Kurtosis 

Statistic Statistic Statistic 

Std. 

Error Statistic 

Std. 

Error 

Normal stiffness _ 

Ultrasound (MN/m) 
54 6.5373 0.552 0.325 0.035 0.639 

Shear stiffness _ 

Ultrasound (MN/m) 
54 2.4564 -.0226 0.325 -1.065 0.639 

Stiffness ratio - 

Ultrasound 
54 2.6839 0.536 0.325 -0.550 0.639 
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Figure A 1Q-Q Plot for normal stiffness the unit is provided in MN/m 

 

 

Figure A 2Q-Q Plot for shear stiffness the unit is provided in MN/m 
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Figure A 3Q-Q plot for stiffness ratio 

 

Table A 3 z-test for normality of data for normal stiffness and shear stiffness 

z-test 

z-value 

z- value Calculated 

as ratio of statistics to standard error  

Normal 

Stiffness_ 

Kn 

Shear 

Stiffness 

_Ks 

statistics  Standard error 

Kn                               Ks                            Kn Ks 

 Skewness 1.698 0.695 0.552 0.226 0.326 0.325 

Kurtosis 0.055 1.667 0.325 1.065 0.639 0.639 
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Table A 4 Statistics for independent sample Z- test –Ultrasound  

 Kn_NormalStiffness Ks_ShearStiffness Statistic Std. Error 

KnKs Kn Mean 6.5373 .07614 

95% Confidence Interval for 
Mean 

Lower Bound 6.3846  
Upper Bound 6.6900  

5% Trimmed Mean 6.5216  
Median 6.5097  
Variance .313  
Std. Deviation .55951  
Minimum 5.54  
Maximum 7.82  
Range 2.28  
Interquartile Range 0.64  
Skewness 0.552 0.325 

Kurtosis 0.035 0.639 

Ks Mean 2.4564 0.03583 

95% Confidence Interval for 
Mean 

Lower Bound 2.3845  
Upper Bound 2.5282  

5% Trimmed Mean 2.4620  
Median 2.4679  
Variance 0.069  
Std. Deviation 0.26327  
Minimum 1.82  
Maximum 2.88  
Range 1.06  
Interquartile Range 0.51  
Skewness -.226 .325 

Kurtosis -1.065 .639 

 

Table A 5 Shapiro-Wilk value for statistical significance for normal and shear 
stiffness-ultrasound 

 Kn_NormalStiffness 

Ks_ShearStiffness 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic 

df 

 sig 

 Kn 0.153 54 0.003 0.950 54 0.025 

Ks 0.148 54 0.005 0.937 54 0.007 
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12 Apendix B – Statistics, ANOVA and z-test of normality (Chapter 6) 

Table B 1Descriptive statistics for stiffness data with valid N (listwise) from PSAT 

 N Minimum Maximum Mean 

Std. 

Deviation Variance 

Normalstiffness_K1-PSAT 54 4.00 8.00 5.7001 0.93902 0.882 

Shearstiffness_K2-PSAT 54 2.00 2.88 2.2735 0.21938 0.048 

Stiffnessratio_K1/K2-PSAT 54 1.76 2.99 2.5059 0.30648 0.094 

 

Table B 2 Further descriptive statistics for stiffness data with valid N (listwise) from 
PSAT 

 

N Mean Skewness Kurtosis 

Statistic Statistic Statistic Std. Error Statistic 

Std. 

Error 

Normalstiffness_K1-PSAT 54 5.7001 0.769 0.325 -0.181 0.639 

Shearstiffness_K2-PSAT 54 2.2735 0.345 0.325 -0.525 0.639 

Stiffnessratio_K1/K2-PSAT 54 2.5059 -0.260 0.325 -0.886 0.639 

 

Table B 3 Further descriptive statistics for stiffness data with valid N (listwise) from 
PSAT 

 

N Range Mean Skewness Kurtosis 

Stat. Stat. Stat. 

Std. 

Error Stat. 

Std. 

Error Stat. 

Std. 

Error 

Normal stiffness (K1) _ 

PSAT (MN/m) 
54 1.84 4.9702 0.05404 -0.510 0.325 0.759 0.639 

Shear stiffness (K2)_ 

PSAT (MN/m) 
54 0.88 2.2735 0.02985 0.345 0.325 -0.525 0.639 

Stiffness ratio _ PSAT 54 1.11 2.2038 0.03445 -0.388 0.325 -0.031 0.639 
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Figure B 1 Histogram of force distribution used for stiffness 

 

 

Figure B 2 P-P plot of regression standardized residuals 

 

Table B 4 Descriptive statistics force and stiffness 

 Mean Std. Deviation N 

Force_MN 70.6977 15.63009 54 
K1_MN_m 5.7001 0.93902 54 
K2_MN_m 2.2735 0.21938 54 
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Table B 5 z-test for normality of data for normal stiffness and shear stiffness-PSAT 

z-test 

z-value 

z- value Calculated 

as ratio of statistics to standard error  

Normal 

Stiffness_ 

Kn 

Shear 

Stiffness 

_Ks 

statistics  Standard error 

Kn                               Ks                            Kn Ks 

 Skewness 2.370 1.065 0.771 0.346 0.325 0.325 

Kurtosis 0.285 0.796 -0.182 0.509 0.639 0.639 

 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

Beta B Std. Error 

1 (Constant) 67.261 22.481  

K1_MN_m -3.906 3.000 -0.235 

K2_MN_m 11.304 12.840 0.159 

 

 

Table B 6 Coefficient value at 95%confidence interval for the B coefficient 

Coefficientsa 

Model 

95.0% Confidence Interval for B 

Lower Bound Upper Bound 

1 (Constant) 22.128 112.394 

K1_MN_m -9.928 2.117 

K2_MN_m -14.473 37.080 
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Table B 7 Statistics for independent sample Z- test – PSAT 

 K1NormalStiffness_K2ShearStiffness Statistic Std. Error 

K1K2 Kn Mean 5.7002 0.12791 

95% Confidence Interval for 
Mean 

Lower Bound 5.4436  
Upper Bound 5.9567  

5% Trimmed Mean 5.6587  
Median 5.3100  
Variance 0.883  
Std. Deviation 0.93991  
Minimum 4.00  
Maximum 8.00  
Range 4.00  
Interquartile Range 1.57  
Skewness 0.771 0.325 

Kurtosis -0.182 0.639 

Ks Mean 2.2733 0.02983 

95% Confidence Interval for 
Mean 

Lower Bound 2.2135  
Upper Bound 2.3332  

5% Trimmed Mean 2.2621  
Median 2.3150  
Variance 0.048  
Std. Deviation .21922  
Minimum 2.00  
Maximum 2.88  
Range 0.88  
Interquartile Range 0.35  
Skewness 0.346 0.325 

Kurtosis -0.509 0.639 

 

Table B 8 Shapiro-Wilk value for statistical significance for normal and shear 
stiffness-PSAT 

 

K1_NormalStiffness 

K2_ShearStiffness 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic 

df 

 Sig 

 Kn 0.205 54 0.000 0.895 54 0.000 

Ks 0.137 54 0.013 0.914 54 0.001 
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13 Appendix C - Statistics and ANOVA (Chapter 7) 

Statistical analyses of the mechanical parameters are provided below. Similar to the 

statistical analysis reported in the earlier chapters (section 4.11). Tables C1-C16 and 

Figures C1-C3 contain the statistical reliance of the micro-parameters used for the 

simulations of the bulk strength of Niger delta sandstone. 

Table C 1 Analysis of variance 

Output Created 19-SEP-2015 13:13:08 

Input Active 

Dataset 
DataSet0 

N of Rows 

in Working 

Data File 

54 

Definition of 

Missing 

User-defined missing values are treated as 

missing. 

Cases Used Statistics are based on all cases with valid data 

for all variables in the model. 

Missing Value Handling  
 

  

  

 

Table C 2 Between subjects factors 

 N 

Ratio of standard deviation 

to mean of bond strength 

0.14 18 

0.16 18 

0.25 18 

Stiffness ratio 2.20 27 

2.60 27 

 

 

 

 

 

Table C 3 Descriptive statistics 
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Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Ratio of standard deviation 

to mean of bond strength Stiffness ratio Mean Std. Deviation N 

0.14 2.20 75.9278 7.20113 9 

2.60 71.8789 10.53235 9 

Total 73.9033 8.99694 18 

0.16 2.20 76.5589 8.41777 9 

2.60 74.8444 10.03369 9 

Total 75.7017 9.02773 18 

0.25 2.20 68.9100 8.11772 9 

2.60 65.5856 11.85216 9 

Total 67.2478 10.00206 18 

Total 2.20 73.7989 8.39725 27 

2.60 70.7696 11.12692 27 

Total 72.2843 9.88257 54 

 

Table C 4Levene’s test of equality of error variancesa 

Dependent Variable:   Peak stress _ reversal point 

of volumetric strain   

F df1 df2 Sig. 

0.468 5 48 0.798 

 

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.a 

a. Design: Intercept + ROSD + Kn_ks + ROSD * Kn_ks 

Table C 5Tests of between-subjects effects 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 850.723a 5 170.145 1.888 0.114 

Intercept 282150.763 1 282150.763 3130.999 0.000 

ROSD 713.992 2 356.996 3.962 0.026 

Kn_ks 123.882 1 123.882 1.375 0.247 

ROSD * Kn_ks 12.850 2 6.425 0.071 0.931 

Error 4325.533 48 90.115   

Total 287327.019 54    

Corrected Total 5176.256 53    
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Table C 6Tests of between-subjects effects and marginal mean estimated 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Source Partial Eta Squared 

Corrected Model 0.164 

Intercept 0.985 

ROSD 0.142 

Kn_ks 0.028 

ROSD * Kn_ks 0.003 

Error  

Total  

Corrected Total  

 

a. R Squared = .164 (Adjusted R Squared = .077) 

 

 

1. Grand Mean  

Dependent Variable:   Peak stress _ reversal point of 

volumetric strain   

Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

72.284 1.292 69.687 74.882 

 

Table C 7 Ratio of standard deviation to mean of bond strength 

Estimates 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Ratio of standard 

deviation to mean of bond 

strength Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

0.14 73.903 2.237 69.405 78.402 

0.16 75.702 2.237 71.203 80.200 

0.25 67.248 2.237 62.749 71.747 
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Table C 8 Pairwise comparisons I 

 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

(I) Ratio of standard 

deviation to mean of 

bond strength 

(J) Ratio of standard 

deviation to mean of 

bond strength 

Mean 

Difference (I-

J) Std. Error Sig.b 

0.14 0.16 -1.798 3.164 1.000 

0.25 6.656 3.164 0.122 

0.16 0.14 1.798 3.164 1.000 

0.25 8.454* 3.164 0.031 

0.25 0.14 -6.656 3.164 0.122 

0.16 -8.454* 3.164 0.031 

 

 

Table C 9 Pairwise comparison II 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

(I) Ratio of standard 

deviation to mean of 

bond strength 

(J) Ratio of standard 

deviation to mean of 

bond strength 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

0.14 0.16 -9.648 6.052 

0.25 -1.194 14.506 

0.16 0.14 -6.052 9.648 

0.25 0.604 16.304 

0.25 0.14 -14.506 1.194 

0.16 -16.304 -0.604 

 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

Table C 10Univariate tests 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Contras

t 
713.992 2 356.996 3.962 0.026 0.142 

Error 4325.533 48 90.115    
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The F tests the effect of Ratio of standard deviation to mean of bond strength. This test is 

based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

Table C 11 Estimate (Stiffness ratio) 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Stiffness ratio Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

2.20 73.799 1.827 70.126 77.472 

2.60 70.770 1.827 67.096 74.443 

 

Table C 12Pairwise comparisons for stiffness ratio I 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

(I) Stiffness 

ratio 

(J) Stiffness 

ratio 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.a 

95% 

Confidence 

Interval for 

Differencea 

Lower 

Bound 

2.20 2.60 3.029 2.584 0.247 -2.166 

2.60 2.20 -3.029 2.584 0.247 -8.224 

 

 

Table C 13 Pairwise comparison for stiffness ratio II 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

(I) Stiffness ratio (J) Stiffness ratio 

95% Confidence Interval 

for Difference 

Upper Bound 

2.20 2.60 8.224 

2.60 2.20 2.166 

 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 
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Table C 14Univariate tests 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Contrast 123.882 1 123.882 1.375 0.247 0.028 

Error 4325.533 48 90.115    

 

The F tests the effect of Stiffness ratio. This test is based on the linearly independent 

pairwise comparisons among the estimated marginal means. 

 

Table C 15 Ratio of standard deviation to mean of bond strength*stiffness ratio 

Dependent Variable:   Peak stress _ reversal point of volumetric strain   

Ratio of standard 

deviation to mean of 

bond strength Stiffness ratio Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

0.14 2.20 75.928 3.164 69.566 82.290 

2.60 71.879 3.164 65.517 78.241 

0.16 2.20 76.559 3.164 70.197 82.921 

2.60 74.844 3.164 68.482 81.207 

0.25 2.20 68.910 3.164 62.548 75.272 

2.60 65.586 3.164 59.223 71.948 

 

Table C 16 Post Hoc tests: ratio of standard deviation to mean of bond strength 
homogeneous subsets 

Peak stress _ reversal point of volumetric strain 

Ryan-Einot-Gabriel-Welsch Rangea   

 

Ratio of standard deviation 

to mean of bond strength N 

Subset 

1 2 

0.25 18 67.2478  

0.14 18  73.9033 

0.16 18  75.7017 

Sig.  1.000 0.572 

 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 90.115. 

a. Alpha = 0.05. 
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Figure C 1 Profile plot: Estimated marginal means of peak stress reversal point of 
volumetric strain for ratio of standard deviation to mean of bond strength 
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Figure C 2 Profile plot: Estimated marginal means of peak stress reversal point of 
volumetric strain for stiffness ratio 

 

 
 

Figure C 3 Profile plot: Estimated marginal means of peak stress reversal point of 
volumetric strain for ratio of standard deviation to mean of bond strength 

 

 


