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Abstract

Static analysis is the determination of correct though exprate information about the be-
haviour of a system, this approach is used to detect andelgraggramming errors or to certify
the absence of such bugs. Abstract interpretation is a&gtatigram analysis method that uses
abstract domaingo provide a convenient but approximate representatiomeftcumulated in-
formation during the evaluation of a program. The focus & thesis is to investigate numerical
abstract domains that capture the distribution or pattefnglues the program properties can
take. There has already been a considerable amount of cese&r numerical abstract domains
and a wide variety of such domains have been specified eacllimg a different degree of pre-
cision and efficiency. For instance the domain of convex lpadlya is precise but has exponential
complexity while the interval or box domain is much less Bedut has linear complexity. Note
that these domains do not capture the distribution infoianathich is the focus of this thesis.

In the first part of this thesis we introduce the domairgdfls. This domain interprets the
patterns of distribution of the values that the program prtes can take. The complete grid
domain can interpret the relationships which hold betwesmmables or properties in a program.
There are two representations that form the two componehngs dpuble description method
similar to that provided for convex polyhedra. This thesigeg algorithms and methods for
computing canonical forms, conversion between the ddasmngpand the main abstract operations
needed for software analysis, such as comparison, int@segin, difference, affine image and
pre-image. Also included is a widening operation and we sti@aw all of these operations have
polynomial complexity.

In the second part of this thesis we consider platially reduced producbf two numerical
domains. The partially reduced product allows a choice tdraction between the component
domains ranging from “do nothing” required by the directgluot to a total reduction required by
the reduced product. We consider the partially reducedymiogthere the components are those
of the grid domain with either the convex polyhedra domaimioe of its sub-domains, specifi-
cally the boxes, bounded difference shapes and octagonideniche “weakly tight product” is
introduced, an operation that ensures each constraintegbalyhedral representation intersects
a point of the grid, and the “tight product”, which ensuresteaonstraint of the polyhedral rep-
resentation intersects a point of the grid-polyhedron. \Wevige an algorithm to compute the
weakly tight product and show for what circumstances thipidithm achieves stronger results,
so that the resulting grid-polyhedron is either a tight oreduced product. Methods for test-
ing if a grid-polyhedron is empty as well as several usefidragions on grid-polyhedra are also
described.
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Chapter 1

The Introduction

It is widely known that computers are everywhere, they asglus almost every aspect of every-
day life, from controlling power stations that produce onergy to controlling the bank accounts
that contain the world’s money. Therefore it has never beenenmportant to know that the
software these computers run is safe and also efficient, yemwewould also be beneficial if
the method for testing the safety and efficiency were alsoirate and efficient. The costs of
software errors are not only monetary, they can also havengadt on everyday life. In 1999
the Mars Climate Orbiter was lost on entering the Mars atrhesp at a cost 08328 million.
The failure investigation team found that “a lack of comelend-to-end verification of naviga-
tion software and related computer models” was a key faotthe failure, seét t p: / / mar s.

j pl . nasa. gov/ msp98/ news/ nt0991110. ht m . Also in August 2003 an unknown soft-
ware flaw caused a blackout in parts of Canada and the northeddnited States. The flaw
in a widely-deployed General Electric energy managemestesy contributed to the devastating
scope of the blackout. The bug in GE Energy’s XA/21 system giasovered in an intensive
code audit conducted by GE. “It had never evidenced itsdif that day,” said spokesman Ralph
DiNicola, “this fault was so deeply embedded, it took themelueof poring through millions of
lines of code and data to find it,” sdd t p: / / www. securityfocus. com news/ 8016.
The cascading blackout eventually cut off electricity tordillion people in parts of Canada and
eight states of America.

We are interested in looking at program analysis of whichdfae two main ways to analyse
program properties, dynamically and statically. Dynanmalgsis executes the program code and
uses large sets of data as inputs to see if any interestiraytmen occurs, unfortunately it is this
choice of input that can dramatically alter the output. Efi@re we are concerned with static
analysis which doesn't actually execute the program cadiestead approximates the behaviour.
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The most precise way to analyse a piece of code is to condidegxact (also called concrete)
semantics, however these are often very complicated. Tdverave have to decide between the
precision of the analysis and the computational complexityis is why instead of considering

the exact semantics we consider an abstract semantics.

The abstract semantics are decided by the method of absttagbretation which was in-
troduced by Patrick and Radhia Cousot [27]. Abstract imgiion involves approximating the
computations of the program by new computations over arratisiomain which is known to
be simpler. Then when the abstract computations are peefibitris hoped that the information
yielded from the abstract domain will shed light on the plolesresults the actual computations
would have provided. The soundness of this process is ethbyra pair of mappings between the
concrete and abstract semantics, these mappings show b@hethents of one domain should be
interpreted in terms of the other.

Informally, consider the following example. Suppose agmliorce wish to search for a sus-
pect in a database of every convicted criminal in the UK. Tkece (or concrete) way to find
the suspect is to look for a person with that name, date dfi,Hast known address and national
insurance number (if it is known). By considering all of thagiteria and other possible distin-
guishing characteristics the police should be guaranteéidd the correct suspect. Alternatively,
an abstract approach would be to approximate the suspétegagrfor example we could just
look at all the people with the same name. Note that this worgdte a quicker search as less
deciding factors have to be met but this method will gatheossible set of results which would
contain the suspect but also possibly give extra peoplesd egtra results are calléalse alarms

There are several well researched abstract domains, efmiedato the type of information
they wish to investigate and analyse. In this thesis we wilcbncerned with numerical abstract
domains which consider linear information. We can clastify the types of numerical informa-
tion into two groups: thdimits or bounds within which the values can take and disribution
of the values to see if any pattern occurs. The study of bgibstyf numerical information have
their applications. Applications which require the distriion of values to be observed include
data dependence analysis for arrays which are requireddf@meed optimizing compilers [70],
estimating the worst case execution time of a program [I9Ridl in the construction of pro-
gram transformations for saving energy on low-power aedttitres and improving performance
on multimedia processors [47] or to gather information dbman-linear operations within the
program [46]. Therefore the choice of abstract domain isartgmt as it must consider the correct
type of numerical data for the problem at hand. One of the Eistjplomains is the “rule of signs”,
where the integer values are abstractegde, neg or 0 depending on whether they are positive
integers, negative integers, or zero respectively [29] @omain of signs can be represented by
a lattice and can be seen in Figure 1.1(a), the correspordingrete values over the set of inte-
gers can be seen in Figure 1.1(b). This domain can ascedamoperties as “is the variable
negative at a certain point in the program”, however the dorisanot sophisticated enough to
establish “is the variable less than 10 at a certain poinhénpgrogram”. Hence this domain was
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T Z

neg 0 pos {(~1,-2,-3,..} {0} {1,2,3,...}

AN 7

1 16}

(a) The signs domain. (b) Concrete values ovéf.

Figure 1.1: The abstract domain of signs represented atcelat

then generalised to the interval domain [26] which congdiernit information by constructing in-
teger upper and lower bounds for each variable, neverthéfes domain could also be improved
to create more accurate information since it does not shgvdapendence between the variables.
Hence more complex domains are required.

Often the numerical information, whether it is limit or dibution, comes in aelational
form, that is, the values of one variable may be dependenhervalues of one or more other
variables. One domain that captures the linear relatianait information is thepolyhedron
domain this domain represents regions of somdimensional vector space bounded by a finite
set of hyperplanes [32]. There are also several differetthgalron sub-domains such as the
domain of convex polyhedra [6, 7,9, 14], octagons [4, 15540, octahedrons [21], bounded
difference shapes (bds) [49, 51, 53], two variables peruaéty (tvpi) [77] and intervals [26].
Each of these abstract domains can be described by diffetasgées of constraint as seen in
Table 2.1 on Page 16 and each of these domains are illustogteddimensional shapes, see
Figure 2.2 on Page 17, so it can be seen that they do not captyrdistribution information.
Although the polyhedron domain and its sub-domains have beaoughly researched and are
widely used, relational domains for representing the dimeistribution of numerical values have
been less well researched.

1.1 The Grid Domain

This thesis considers two related topics. In the first togithis thesis we will introduce a re-
lational domain called the grid domain. This domain encadésrmation about the distribu-
tion of numerical values. The grid domain is based on the domicongruences described by
Granger [37-39, 41]. The grid domain can be used for any ofpi@ications mentioned above
and details are given in Chapter 5. In thelimensional case, where the grid will define a subset
of points along the line-co < z < oo, the grid can be a single point, such as+ 1, a discrete
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Figure 1.2: Grids irR?.

set of equally spaced points, for example the set of evegente or all the points along the line.
Let us now consider thg-dimensional case. Then the grid can take many forms. Tliecgrn be
a single point, such agx = 0,y = 1}, a set of equally spaced points along a line, for example,
the set{x = 0,y = 2k + 1|k € Z}, a set of equally spaced points that cover a plane, for ex-
ample, see Figure 1.2(a), a set of lines, for example, sagd-ig2(b), or the whole vectorspace
itself, for exampleR?2. In Figure 1.2(a) the grid is given by the set of points iltagtd by the
squares. It can be seen that the grid is non-relational gsaings lie parallel to each of the axes.
In Figure 1.2(b) the grid is given by the all points along thagdnal lines. These are all the
points that satisfy the congruenge- y = 1 mod 3, so the grid is the set of points:, y) such
that{z —y =ala € {...,—2,1,4,...}}. It can be seen that the grid is not non-relational as the
congruence that describes the grid involves ho#mdy, visually this can be seen in Figure 1.2(b)
as the lines of the grid do not lie parallel to either of thesaxe

Let us consider a simple example to show how the grid domainbeaused to interpret a
small piece of code. Figure 1.2(b) illustrates two ways dfalibing a grid; either by means of
a finite set of congruence relations that all grid points nsasisfy (given by dashed lines) or by
means of a finite set of generating vectors used for congtguttte grid points and lines (given by
filled squares and thick lines). Consider first the followprggram fragment for any value aof

for i :=1tom
if ... then
X =y +1
el se
y .=y + 3
endi f
endf or

The dashed lines in Figure 1.2(b) illustrates the gfidind marks the vectors of values of the
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real variablesr andy after the assignments : = y + 1 andy : =y + 3, assuming that
nothing is known about the value afor y. The setC = {z — y = 1 mod 3} is also called
a congruence system and descrilfesObserve that the grid consists of all points that can be
obtained as\¢ + uq + p, forany\ € Randu € Z, where¢ = (1),q = ($) andp = (}) ; the
vector/, called dine, defines a gradient, the vecigy called aparameter defines the distance to
the next line and the vectgr is a generating point marking a position for the line (ilhased in
Figure 1.2(b) by the thick diagonal and vertical line andfitied square, respectively).

We will give details of how to interpret the domain and giveanplete set of abstract op-
erationsall of which have efficiencies better than or equal to previoupgpsals [38, 61]. These
operations are abstract forms of the set-theoretic omgratsuch as comparison, join, meet and
difference. The advantage of a domain like the grids is thaike the domain of convex polyhe-
dra, all the abstract operations will have a complexity thablynomially bounded by the number
of variables. As the domain of convex polyhedra can haveatigers which have unbounded or
exponential complexity, the cost of performing operatioas grow rapidly. Whereas, the grid
domain has operations that have bounded polynomial coritplike those for the interval do-
main, bounded difference shapes or octagon domain. Thelgnichin can also express relational
properties over more than two variables which the intedvalynded difference shape or octagon
domain can not. We will show that aspects of the grid domaialfgh those of the domain of
convex polyhedra, in that, not only do both domains shareséime amount of expressivity, but
also both have two different representations that form abodescription. In Chapter 4 we will
show that we can utilise this double description by desigrire abstract operations to use the
representation which achieves the best complexity. As we tvao descriptions we will introduce
a method of conversion between the two and a minimisatiooriéfign which puts the represen-
tation into a minimal form suitable for an easier conversite will show that our algorithms
for producing this minimal representation and conversiamehcomplexities more efficient than
previous proposals [38,61]. We will also be the first to giveoaplete set of abstract operations
as previous proposals have either not given an abstracaimpesuch as the difference opera-
tion [38, 39], or not given one which returns a single elenwrihe domain, such as the join and
difference operations [71, 72]. To guarantee the termomatif an analysis it is often useful to
have a widening operation. This operation approximatedixpeint of a sequence. Another of
the contributions of this thesis will be to introduce a wittenfor each of the grid descriptions
as previous proposals have only considered a widening tonghe generator system [38, 41].
We will also introduce other approximations, that are natewings, but can be used to accelerate
fixpoint convergence process.

1.2 Product Domains

Very little research has been done on the combination of dmnahich represent the limit and
distribution information, especially those which considgormation which takes a relational or
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Figure 1.3: A grid-polyhedron ifR?.

weakly relational form. Thelirect product andeducedproduct were both introduced by Cousot
and Cousot [28] and take the elements of the product to betbesection of the two components.
The direct product provides a “do nothing” approach, so thate is no interaction between the
components, whereas the reduced product provides a “&daiction” approach. The reduced
product provides a reduction operation that ensures evemgent of the product is in canonical
form with respect to each of the components. There are dagstes we need to consider with a
product domain, one is that the representation of an intéogeas a pair is not canonical. Also the
precision of the operations needed for an analysis is &ffieabt only by the choice of component
domains but also the allowed interactions between thent before and during an operation.
If there is no interaction then the precision gained may b little, if any, however if there is
a large amount we may greatly improve the precision but |d&eency. Therefore the second
topic we consider in this thesis is an extension of the workhergrid domain and takes a product
of the grid domain with the domain of convex polyhedra or oh&ssimpler sub-domains. It
has been shown that the grid and the many polyhedra sub-deraee useful tools for program
analysis by themselves. We will introduce thertially reduced productThis product will allow
an amount of interaction between the components, thusinglihe strengths of each domain and
potentially improving the precision of the information pided compared to the results obtained
by preforming the analysis separately. The partially reduproduct of two numerical domains
combines the direct product with several different reductperators which can be applied. Our
aim of the partially reduced product is that it allows therusechoose the level of interaction
between the component domains and therefore choose hoiemffice analysis will be.

We are interested in a grid-polyhedron domain as this wilabke to capture both the limit
and distribution information which can take a relationainfio A grid-polyhedron can be seen in
Figure 1.3. The grid is illustrated by the square points dragolyhedron by the shaded area.
Therefore the grid-polyhedron is the set of grid points fi@tvithin the bounded shaded area.
The simple piece of code that the grid-polyhedron was géeéifaom is given in Example 6.3 on
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Page 85.

For the grid-polyhedron domain we will show that we can sfyesix reduction operators
to use in the partially reduced product. These operatorktigéh give us the direct, reduced,
smash, constraint, weakly tight and tight products. As kbthgrid and polyhedron domains
have representations which encode equality informationvilléntroduce theconstraintproduct
which will share the equalities between the component dosndihesmashproduct can be used
on any pair of abstract domains which have a “bottom” elenaenit shares this between the
components, therefore for the case of grid-polyhedra wepais from one domain to the other
the emptyset if either are represented by this. Finally wieimtroduce theweakly tightproduct
and tight product which can be thought of as “middle ground” redudiormhe weakly tight
product ensures that each constraint of the polyhedroreseptation intersects some grid point
and the tight product ensures that each constraint of thdnpdfon representation intersects some
grid-polyhedron point. We will use the weakly tight and tigltoduct reductions as alternatives
to the traditional integer programming techniques of bhaard bound and using cutting planes.
As both of these traditional methods rely on using the simpiethod [67, 76, 81] they have
exponential complexity, whereas, we will show that we cardpce an algorithm that can reduce
any grid-polyhedron so that it is a weakly tight product ahdttour reduction has a complexity
which is polynomial in the number of variables and constgain the polyhedron representation.

As noted earlier, the intervals, bounded difference shapesthe octagon domain are all
sub-domains of the polyhedra but have operations with mwhyal complexity similar to that
of the grid domain. Therefore we will also consider the pretdof a grid with each of these
polyhedron sub-domains. It has been stated before thag giggpler product domains can be
used for applications such as checking if arrays are acdemseof bounds and if pointers or
variables are accessed without being initialised [18, 8B,Ghecking if executables such as web-
plugins contain or perform harmful operations [16] andrasting the worst case execution time
of a program [19, 34]. Also they can be used for the same agtjilits as the grid domain,
such as data dependence analysis or array reference anadyapbted in [63, 64] and [37]. We
will show that our algorithm for producing a weakly tight dfpolyhedron can be used on these
product sub-domains and that in certain circumstancedllipvaduce either a tight product or a
reduced product. Also as the intervals, bounded differaheames and octagons have operations
to minimise the number of constraints in their represeatatour weakly tight reduction will have
a complexity which is polynomial in the number of variablésne.

For each of the grid-polyhedron domains we will also consitie abstract operations. We
will provide a complete set of operations together with thgoathms for each and show which
operations preserve the given reduction. So, for exammeyill investigate if we have a weakly
tight product before an operation is performed, whetheratrafter the operation is performed it
is still a weakly tight product. We will also investigate wher each of the reductions need to be
performed before an operation so that information is nat los
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1.3 Plan of the Thesis

The rest of the thesis is structured as follows:
e Chapter 2 will introduce the terminology and notation usedughout the thesis.

e Chapter 3 will establish the domain of grids and presentwleedifferent descriptions that
are used to represent the grids, as well as provide the #igwifor their conversion and
reduction to a minimal or canonical representation.

e Chapter 4 presents several of the operations that the doraaiperform along with their
algorithms and complexities. The operations for the grichdim we have included are
comparison, testing the equality of two grids, intersattimin, difference, affine image
and pre-image and a covering box operation which computesitallest non-relational
grid given a relational one.

e Chapter 5 introduces the operation of widening which is meguwhen the calculation
of the fixed point fails to terminate due to the lattice notisfging the ascending chain
condition which can occur for rational grids. We also deth#é weakly relational sub-
domains of the grids and illustrate some of the applicatmfrthe grid domain.

e Chapter 6 introduces the partially reduced product whidbwad different amounts of in-
teraction between the component domains, thus enablifigratit amounts of reduction.
We use this product to establish the partially reduced galyhedron domain, a domain
which combines the grids with polyhedra. For this domain ek six different reduction
choices, namely the direct, reduced, constraint, smashklwéght and tight product. For
the weakly tight product we provide an algorithm that will wean the constraints of the
polyhedron representation so that they all intersect goithts. Also we will discuss and
specify several abstract operations the domain will requir

e Chapter 7 considers the partially reduced product of subados of the grid-polyhedron
domain. Specifically the grid-box domain (which includee tirid-interval domain), the
grid-bds domain and the grid-octagon domain. For the gdsl#nd grid-octagon domains
we also introduce a sub-domain for each, called the bouniffiedeshce grid shape domain
and the ogrid-octagon domain respectively, which requiag the grid component has a
weakly relational form. We also suggests several apptioatithat the domains can be
applied to.

¢ Finally Chapter 8 discusses the conclusions made and thesHopthe future of this work.



Chapter 2

Preliminaries

In this chapter we will introduce some of the definitions anthtions from set theory, linear al-
gebra and graph theory assumed throughout the thesis. \Masuilgive an overview of the main
concepts in abstract interpretation and the establishethits, such as the polyhedral domain,
that will be used in Chapter 6 as part of the product describhete. Some of the definitions are
based on those in mathematics textbooks [2, 69, 78].

2.1 Notation and Basic Concepts

The set of natural numbers is denotedNyintegers byZ, rationals byQ and reals byR. The
complexities we give for the different algorithms assumeiacost for every arithmetic operation;
we take the computation of the greatest common divisor ofiagbamumbersa,b € Z to be a
single operation. Given sef§, Y and any relationk C X x Y, theimagefor R on a subset
Aof Xis{yeY |3z e A. (z,y) € R}, and thepre-imagefor R on a subseB3 of Y is
{zeX|3dyeB.(x,y) €R}.

If v,o' € Z, thenged(v,v’) andlem(v,v’) denote thegreatest common divisaand least
common multiplier respectively, ofv, v’. We will assume thagcd(0,0) = 0. Suppose now
v,v" € Q, sothaty = ¢ andv’ = ‘g—,' for somea, b, a’, b’ € Z. Then we also write

as a’s)

ged(v,0') == L wheres = lem(b, b)) andr = gcd<?, 7 )

S

Note that the gcd is well defined as it does not depend on theashofa, b,a’,b’. Lett,t' € Z

9
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be relatively prime such that + t'v' = ged(v,v’). Then we write
gedext(v,v') := (ged(v,v'), (¢,1)).
Lett, f € Rwheref > 0. Then
tmod f =1, where 0<t < f if JucZ t=t+uf.
Lett, f € Rwheref = 0. Thent mod f = t.

2.1.1 Sets

The cardinality of a setS is denoted by# S. If S is a set, we denote the set of non-negative
elements inS by S;. We use the shorthand notatisiis’/s] for the set(S \ {s}) U {s'}. We
will denote theemptyseby @ and thepowersebf a setS by ©(.S). We now describe the type of
properties a relation may have on a set.

Definition 2.1 (Relation Properties.)Let < be a binary relation on the sét. Then the relation
=< is said to bereflexiveif Vs € S,s =< s. The relation= is said to besymmetricif Vs, ¢ € S,
such thats < ¢ implies thatt < s. The relation= is said to beanti-symmetridf Vs, ¢t € S, such
thats < t ands # t implies thatt ﬁ s. The relation= is said to betransitiveif Vs,t,u € S,
such thats < ¢t andt¢ < u implies thats < «. Also the relation= is said to be gartial orderif it
is reflexive, anti-symmetric and transitive.

A setS together with a partial order is also said to be partially ordered, and writtgf) <). We
will refer to (S, <) as a poset.

Definition 2.2 (Total Order.) A binary relation= on a setS is said to be dotal orderif Vs, t € S
eithers <tort < s.

Let Qx := Q U {+o0} be totally ordered by the extension of” such thatd < +oo for each
de Q.

Definition 2.3 (Least Upper Bound.)Let (S, <) be a partially ordered set and 1§t C S, T #
&. Thens € S is theleast upper boun¢br lub) of T if

1. t<sforalteT.
2. Whenu is such that <« for all t € T, thens < w.

Thegreatest lower bounor glb) is defined dually. Note that the lub is also calledghpremum
and the glb is also called the infimum.

Definition 2.4 (Lattice.) A partially ordered setS, <) is alatticeif every finite subset &f has
a lub and glb. A lattice isompleteif every non-empty subset §fhas a lub and glb ir5.
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Definition 2.5 (Minkowski's sum.) If S,T C R"™, thenS + T denotes théMinkowski's sum
defined by
S+T:={s+teR"|seSteT}.

Definition 2.6 (Ascending Chain Condition.) A partially ordered set S is said to satisfy the
Ascending Chain ConditiolACC) if all increasing chainssg; < sy < s3 =< ..., eventually
become constant. That is for somes,, = s,41 forall n > 1.

2.1.2 \Vectors and Matrices

For eachi € {1,...,n}, v; denotes the-th component of the (column) vecter € R™. The
empty vector (inR') is denoted by. Any vectorv € R” is also a matrix inR™*! so that it
can be manipulated with the usual matrix operations of addiand multiplication, both by a
scalar and by another matrix. On the other hand, it is oftewenient to consider a matrild =
(hy,...,h,) € R"™™ as a finite set of vectorh;,...,h,,} C R". Foreach € {1,...,n}
andj € {1,...,m}, theij-th component of a matrif € R™*" is denoted byH;; and thei-th
row by H;.

Definition 2.7 (Transpose.) Thetransposeof a matrix H, denoted byH T, is the matrix whose
ij-th component is thgi-th component off.

Definition 2.8 (Triangular Form.) A matrix H € R™*™ hasupper triangular fornif n = m,
foralli =1,...,n, H; # 0 and, for allj wherel < j < i < n, H;; = 0. Similarly H has
lower triangular formif n = m, foralli =1, ...,n, H; # 0 and, for all j wherel < i < j <mn,
Hij = 0.

Definition 2.9 (Positive Definite.)Ann x n matrix D is positive definitef xT Dx > 0 for all
x € R™ wherex # 0.

Definition 2.10 (Affinely Independent.)Vectorsvy,...,v,, € R" are said to beaffinely inde-
pendenif, for A € R™, the set of equation§} """ | A\;v; =0, 7" A\; = 0} hasA = 0 as the
only solution.

Definition 2.11 (Scalar Product.) Thescalar producof v, w € R", denoted(v, w), is the real
numberviw =31 vw;.

Definition 2.12 (Special Vectors.A vector that has all its elements equal to zero is calleé
vectorand denoted by. A vector withl in the i-th position and zeroes in every other position
is called thei-th unit vectorand is denoted bg;. A vectorv € R" is said to benon-relationalf

v = \-e¢; for somel\ € R.

It follows that a set of vectors is said to be non-relatiofiakich vector in the set is non-relational.

LetS = {vy,...,vi} C R" be a set ok vectors. For all scalarg,, ..., \; € R, the vector
V= Ele A;v; is said to be dinear combination of the vectors ifi. Such a combination is said
to be



Chapter 2 12 Preliminaries

anaffinecombination, ifzg?:1 Aj =1,

anintegral combination, ifA{, ..., \; € Z;

anintegral affinecombination, if it is both integral and affine;

a positive (or conicombination, ifvy € {1,...,k} : \; € Ry;
e aconvexcombination, if it is both positive and affine.

We denote byffine.hull(S) (resp. int.hull(S), int.affine.hull(,S), conic.hull(S), convex.hull(.S))
the set of all the affine (resp., integer, integer affine, fpeesiconvex) combinations of the vectors
in S. We now give some definitions which are new and needed for tit& wn the grid domain
described in Chapter 3.

Definition 2.13 (Pivot Element.)For v € R", piv_(v) denotes the maximum indésuch that
v; # 0;if v = 0, we defingiv_(v) := 0. Similarly, piv. (v) denotes the minimum indésuch
thatv; # 0; if v = 0, we defineiv, (v) :=n + 1.

Definition 2.14 (Pivot Equivalent Vectors.)We say two vectors apvot equivalenif piv_(v) =
piv_(v') = k andv, = v}, orif pivy (v) = piv. (V') = k andv, = v}, writtenv 1+ v/ and
v || v/, respectively.

2.1.3 Congruences and Congruence Relations

For anya, b € R wherea # 0, we saya dividesb, denoted by:|b, if, for somem € Z, am = b.

Definition 2.15 (Congruent.) For anya, b, f € R, if a — b is integrally divisible byf thena is
said to becongruentto b, writtena =, b. In the case thayf = 0, the congruence denotes the
equalitya = b.

Definition 2.16 (Linear Congruence Relation.)LetS be eitherQ or R. For each vectoa € S™

and scalarsh, f € S, the notation(a,x) =y b stands for thdinear congruence relation i§"

defined by the set of vectofsv € R™ | 3u € Z . (a,v) = b+ uf }. Also whenf = 0,

the congruence relation denotes the equallyx) = b. Given the congruence relation =

((a,x) =/ b) we say thatf is thefrequencyandb is thebase valuand ifb # 0, we sayb is the
inhomogeneous termWhen the frequency of the congruence relation is non-zesaid to be a
propercongruence relation.

Provideda # 0, the congruence relatiofa,x) =; b defines the set of affine hyperplanes
{((a, x) = b+ pf) ‘ JTS Z}. The congruence0,x) =; b defines the univers®” if
b =; 0, and the emptyset, otherwise. We will assume that in sucmgraence (whea = 0)
we haveb # 0. Any vector that satisfies one of the equalitiesx) = b + pf foranyu € Zis
said tosatisfythe congruence relatiofa, x) =, b. We do not distinguish between syntactically
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different congruences defining the same set of vectds$ iso that, e.g.x =; 2 and2z =, 4 are
considered to be the same congruence. We can now extendrifrelational and pivot notation
to congruences, so that,

Definition 2.17 (Non-relational Congruence.)A congruenced = ((a, X) =g b) in S™ is said
to benon-relationalf a = X - e; for some\ € S.

It follows that a set of congruences is said to be non-rafatiaf each congruence in the set is
non-relational.

Definition 2.18 (Pivot Equivalent Congruences.)If 3 = ({(a,x) = ag) thenpiv_(3) :=
piv_(a). Also ify = ({c,x) = ¢p) andga f} fc, then we write3 # v and say that3 and~y are
pivot equivalent congruence®bserve that this means thatand~ are either both equalities or
both proper congruences.

2.1.4 Graph Theory

We now introduce some of the notation and terminology thditbei used to describe the graphs
that can encode the information of the weakly relational dim® we will introduce later. This
information is based on [12].

Let AV be a finite set ohodes then we will define what it is to be a rational-weighted diegt
graph.

Definition 2.19 (Rational-weighted Directed Graph.) A rational-weighted directed gragive
say graph, for short)V in A/ is a pair (N, w), wherew: N'x N — Q« is the weight function for
W. LetW = (N, w) be a graph. A pai(n;,n;) € N x N is anarcof W if w(n;,n;) < +oo;
the arc isproperif n; # n;. Apathm = ng---n, in W is a non-empty and finite sequence of
nodes such that;_1,n;) is an arc of ¥, for all i = 1, ...,p. The pathr is simpleif each node
occurs at most once ifn. The pathr is properif all the arcs in it are proper.

Letm = ng - - - n, then, each node;, wherei = 0, ...,p, and each ar¢n;_1,n;), wherei = 1,

.., p, is said to ben the pathr. Thelengthof the pathr is the numbep of occurrences of arcs
in 7 and denoted by~ ||; the weightof the pathr is >~*_, w(n;_1,n;) and denoted byv(r).
The pathr is aproper cycleif it is a proper pathyg = n, andp > 2. If 7y = ng---ny and
Ty = ny---nyp are paths, wheré < h < p, then the path concatenatian= ny---np---n,
of m; andm, is denoted byr; :: mo; if M = ngny (so thath = 1), thenm; :: w5 will also be
denoted byn, - m. Note that path concatenation is not the same as sequencateoation. A
graph(V, w) can be interpreted as the systenpotential constraints

C:= {ni—nj < w(ni,nj) ‘ N, N GN},

where the nodes are interpreted as the variables of theraonsind the weight functiom(n;, ;)
is the constant.
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Figure 2.1: A simple graph.

Example 2.20 Consider the grapi\, w) where N = {i1,i9,43,44}. The weights for the arcs
of the graph are as follows (i1, i2) = 2, w(iz,i3) = 3, w(i3,i4) = 2, w(iq,i1) = 3. This gives
the set of constraints

Ci={i1 —ip < 2,ip — i3 < 3,03 —ig < 2,04 — i1 < 3 }.

The graph(N, w) is illustrated in Figure 2.1.

Definition 2.21 (Consistent Graph.)The graph(V, w) is consistentf and only if the system of
constraints it represents is satisfiable@ i.e., there exists a rational valuatign N/ — Q such
that, for each constraintn; — n; < d) € C, the relationp(n;) — p(n;) < d holds.

It is well-known that a graph is consistent if and only if itshao negative weight cycle (see [24,
Section 25.5] ). Note that, the set of consistent grapt¢ is denoted by, since the graphs will
encode information about elements of a weakly relationat@ia. This set is partially ordered by
the relation <’ defined, for alliW; = (N, w;) andWs = (N, ws), by

WIS]W2 — V’L,]GNU)1(’L,])S’LL}2(Z,])

We write W <« W/ whenW < W' and W # W’'. When augmented with a bottom element
L representing inconsistency, this partially ordered seblres a non-complete lattiédy | =
(WU {L},<,Mm,u), where T and ‘L’ denote the finitary greatest lower bound and least upper
bound operators, respectively.

Definition 2.22 (Closed graph.) A consistent grapiV = (N, w) is closedif the following
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properties hold:

Vie N :w(ii) =0; (2.1)
Vi, j,k € N :w(i,j) < w(i, k) + w(k,j). (2.2)

The(shortest-path) closurmef a consistent graphi” in \V is
closure(W) := I_l{ W' eW | W' <W andW'is closed}.

Although the lattice of rational graphs is not complete, il imclude the infinite least upper
bound defining the closure of a rational graph Informally, this must hold since the weights of
the least upper bound graph must be linear combinationseafational weights ot and hence
are also rational.

When trivially extended so as to behave as the identity fanabn the bottom element,
shortest-path closure is a kernel operator (monotonianmEent and reductive) on the lattice
W, therefore providing a canonical form.

The following lemma recalls a well-known result for closedghs (for a proof, see Lemma 5
in [5]).

Lemma 2.23 LetW = (N,w) € W be a closed graph. Then, for any path=i---j in W, it
holds thatw(i, j) < w(w).

2.2 Abstract Interpretation

As stated in Chapter 1, abstract interpretation was intedun1977 by Cousot and Cousot [27].
It takes a set of possible properties of a program and appiabeis them by a set of intuitively
descriptive abstract properties.

Definition 2.24 (Galois Connection.)Let (C, =<¢), (A, <4) be two posets. Also let: C' — A
andy : A — C. Then aGalois Connections a pair of mappingsy,y such thatva;,as €
A Ney,e0 € C

c1 3¢ 2 = afcr) =24 ale)
a; 24 a2 = 7y(a1) ¢ y(a2)

aler) 2a a1 <= c1 2¢v(ar).

The functionsy : C — A andy : A — C are called th@bstractionandconcretisatiorfunctions
respectively and the setsandC are called thebstract domaimndconcrete domainespectively.

Definition 2.25 (Galois Insertion.) Let (C, <¢), (A, <4) be two posets. Alsolet: C — A
andy : A — C. Then aGalois Insertionis a pair of mappingsy,~ such that the pair are a
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| Abstract Domain Constraint Form |
Interval b < x; < by

Bounded Difference Shape| a;x; — a;x; < bwherea;,a; € {—1,0,1} anda; # a;
Two Variables Per Inequality a;z; — ajz; <b

Octagon a;x; — ajz; < bwherea;,a; € {—1,0,1}
Octahedron a1z1 + ...+ apx, < bwherea;,a; € {—1,0,1}
Polyhedron 11+ ...+ anTy < b

Table 2.1: Constraint representations of some abstractuhsm

Galois connection andlay,as € A
a1 24 az <= 7(a1) 2c v(a2).

Definition 2.26 (Soundness Relation.)The concrete and abstract domains are joined by the
soundness relatiom such thato € C' x A.

This means that for the paje, a) € C x A the soundness relation links the valid concrete property
¢ with a corresponding abstract propetityvhich has been concluded by the abstraction.

The lattice for the abstract domain of signs and its conaretenterpart can be seen in Fig-
ure 1.1 on Page 3.

2.3 Some Numerical Domains

In the following section we will introduce some of the estsltséd abstract domains that will be
considered in Chapter 6 for the grid product domains. Eadheflomains considered will be a
sub-domain of the polyhedron domain. There are severardifit polyhedron sub-domains such
as the domain of convex polyhedra [6,7,9,14], octagonh|4[, 54], octahedrons [21], bounded
difference shapes (bds) [49, 51, 53], two variables peruaéty (tvpi) [77] and intervals [26].
Table 2.1 shows how each of these abstract domains can tesesped by different classes of
constraint.

In [51], Miné introduces the termeakly relationawhen discussing the bounded difference
shape domain. For the context of this thesis when we aresligay polyhedron domains we will
assume that the termeakly relational domaimefers to the bounded difference shape domain,
octagon domain and thedimensional interval domain.

2.3.1 The Polyhedron Domain

We will now introduce some of the main features of the polybaddomain; an illustration of
a polyhedron can be seen in Figure 2.2(d). The informatiothisf section is taken from the
definitions and results of [7,11, 14].
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(a) ABox. (b) A Bounded Difference Shape.

(c) An Octagonal Shape. (d) A Polyhedron.

Figure 2.2: Types of Polyhedron Domain.

Definition 2.27 (Convex Polyhedra.)The setP C R™ is anot necessarily closed convex poly-
hedron(NNC polyhedron for short) if and only if eithefP can be expressed as the intersection
of a finite number of (open or closed) affine half-spacék™obr n = 0 and’® = @. The set of all
NNC polyhedra on the vector spaié is denotedP,,. The setP € P, is aclosed convex poly-
hedron(closed polyhedrgnfor short) if and only if eithef® can be expressed as the intersection
of a finite number of closed affine half-space®R6for n = 0 and? = @. The set of all closed
polyhedra on the vector spad® is denotedCP,. In theoretical termsP,, is alattice under set
inclusion andCP,, is a sub-latticeof P,,. A polyhedronP, is apolytopeif P is bounded.

NNC polyhedra can be specified by using two possible reptaens, the constraints (or im-
plicit) representation and the generators (or parameatjaesentation. For the scope of this work
we will only consider closed polyhedra, for a more detaileokiat NNC polyhedra see [9, 14].

Constraint Representation.

Each polyhedror® € CP,, can be represented by a finite set of linear equality and edégu
constraintsC called aconstraint systemWe write? = con(C). By using matrix notation, we
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have
P = {XER” | A1X:b1,A2XZ bg},

where, for alli € {1,2}, A; € R™ x R™ andb; € R™, andmy,my € N are the number
of equalities and the number of non-strict inequalitiespestively. The subsets of equality and
inequality constraints in systethare denoted byq(C) andineq(C), respectively.

Generator Representation.

Let P € CP, be a polyhedron. Then
e avectorp € P is called apoint of P;

e avectorr € R", wherer # 0, is called aray (or direction of infinity) of P if P # @ and
p + Ar € P, for all pointsp € P and all\ € R,;

e avectorl € R" is called dine of P if both 1 and—1 are rays ofpP.

A point of a polyhedror? € CP,, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct points /™ A ray r of a polyhedronP is anextreme
ray if and only if it cannot be expressed as a positive combinatibany other pair, andr, of
rays of P, wherer # Ary, r # Are andr; # Ary forall A € R, (i.e., rays differing by a positive
scalar factor are considered to be the same ray).

WhenP € CP, is a closed polyhedron, then it can be represented by finiseafdines L,
rays R and pointsP of P. In this case, the 3-tuplé = (L, R, P) is said to be generator system
for P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P),

where the symbol+’ denotes the Minkowski’s sum.

For anyP € CP,, and generator systeth = (L, R, P) for P, we haveP = & if and only
if P = &. Note that, any set of generating poidtsmust contain all the vertices ?. Also
‘P can be non-empty and have no vertices, in this casé} msnecessarily hon-empty, it must
contain points ofP that arenot vertices. For instance, the half-spaceRof corresponding to
the single constraing > 0 can be represented by the generator sysfem (L, R, P) such that
L={1,0"}, r={0,1)T}, andP = {(0,0)"}. Itis also worth noting that the only ray in
R is notan extreme ray opP.

WhenP = con(C) # @, we say that the constraint systehis in minimal formif # eq(C) =
n — dim(P) and there does not exi§t C C such thaton(C’) = P. All the constraint systems
in minimal form describing a given polyhedron have the sam@ioality. When the constraint
systemC is not in minimal form, a constraint € C is said to beedundanin C if con(C\ {~}) =
con(C).
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Similarly, a generator systei = (L, R, P) for a polyhedronP € CP, is said to be in
minimal form if there does not exist a generator syst¢m= (L', R', P') # G for P such that
L'CL,RCRandP' CP.

Any polyhedronP € CP,, can be described by using a constraint systera generator sys-
temg, or both by means of théouble description pair (DD pair}C, G). Thedouble description
method[57] is a collection of novel theoretical results showingtthgiven one kind of represen-
tation, there are algorithms for computing a representatibthe other kind and for minimising
both representations by removing redundant constraemsfgtors.

A polyhedron is calledational if it can be represented by a constraint system where all the
constraints have rational coefficients. It has been shovertite double description method [57])
that a polyhedron is rational if and only if it can be reprdedrby a generator system where all
the generators have rational coefficients.

2.3.2 The Interval Domain

Interval arithmetic was introduced by Moore in [56]. It waeh later introduced as a domain for
use in abstract interpretation by Cousot and Cousot [26].

Definition 2.28 (Interval.) LetS € {Q,Z}. A closed interval is the set of valuesSrsuch that
[a,b] = {z € Sla < z < b}, where{a, b} is a pair of bounds We say that is thelower bound
andb is theupperbound of the intervala, b]. If both the bounds are if, the interval is said to
bebounded Anintegral intervalis a pair [a, b] € [Z U {oc}]? wherea < oo for all a € Z. Also a
rational intervalis a pair [a, b] € [Qs])? Wherea < oo for all a € Q.

LetS € {Q,Z}. Then the abstract domain mitervalsin S is given by:
Is :={L, T}U{[a,b] | a € SU{~o0},b € SU{oc},a < b} \ {[—00,00]}
where, for all[ay, b1], [az, b2] € Is,

[al,bl] C [CLQ,bQ] < a1 > aaNb < bg;

[a,b], if a =max(a,as), b=min(by,bs),a <b,
la1, b1] T [az, ba] = _

1, otherwise;
[a1,b1] U [ag, bo] := [a,b], wherea = min(aq,as), b = max(by,bs), a < b.

We can use the interval domain to create a domaiBa{esover a sefS in n dimensions, where
S € {Q,Z}. A non-emptyn-dimensionabox B is a sequencély, . .. .I,) of intervals over the

setS. A subset and non-relational form of the polyhedron domsithat of intervals and boxes.
An illustration of a2-dimensional box can be seen in Figure 2.2(a).
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2.3.3 The Bounded Difference Shape Domain

We now introduce the domain of bounded difference shapeshod how we will encode the
constraints of the domain as weighted graphs.

Definition 2.29 (Bounded Difference Constraints.)Leta € R™ andd € R, then for each
symbokbx<i€ {=, <}, the linear constrainta, v) < d is said to be ebounded difference constraint
if and only if there exists two indicésj € {1,...,n} such that

® a;,a; € {—1,0, 1} anda; # a;
e q, =0, forall k ¢ {i,5}.

Definition 2.30 (Bounded Difference Shape.A convex polyhedrof® € CP, is said to be a
bounded difference shape (BDi&and only if P can either be expressed as the intersection of a
finite number of bounded difference constraintsioe 0 andP = &.

An illustration of a2-dimensional bounded difference shape can be seen in Fj2fe). The
bounded difference shapes form a weakly relational domdiithwextends the non-relational
interval domain but is still a subset of the polyhedron damah finite systemC of bounded
differences on variable¥ = {vy,...,v,_1} can be represented by a weighted directed graph
W = (Np,w) where0 ¢ V is thespecial variable Ny = {0} UV, and the weight functiow is
defined, for eachy;, v; € Ny, by

min{de@“vi—ujgd)e(f}, if v; # 0 andv; # 0,
( ) min{de@“vigd)e(f}, if v; # 0 andv; = 0;
W \V;,V5) 1=
J min{dé@‘(_vjéd)ec}’ if’UZ':()and’Uj#O;
0’ if’UZ':Uj:O-

Notice that we assume thatin @ = +oo; moreover, unary constraints are encoded by means of
the special variable, which is meant to always have valu&e will use the definitions and nota-
tion introduced earlier for weighted directed graphs. Intipalar, a graph encoding a consistent
system of bounded differences will be called@inded difference graph

Let P = con(C) be a bounded difference shape. As we can represent a bds biglated
graph we can apply the closure algorithm to the weightedhgtapproduce a closed weighted
graph that represents the bds. From this we can then rela@dhe set of bounded difference
constraints and represent the bds by these. So from now onilwasaume that a closed set of
constraints for a bds refers to the set derived from a closeidhted graph and denote this set of
bounded difference constraints bpsure(C).

2.3.4 The Octagon Domain

We now introduce the octagon domain and show how, like thedodsain, we can encode the
constraints of the domain as weighted graphs. The follovitrigrmation is based on results
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from [12]. For the following definition of octagonal congtits let us assume that there is a fixed
setV = {wy,...,v,—1} Of n variables.

Definition 2.31 (Octagonal Constraints.)Leta € R™ andd € R, then for each symboke {=
, <}, the linear constraint(a, v) i d is said to be aroctagonal constrairif and only if there
exists two distinct indices j € {1,...,n} such that < j and

® a;,a; € {—1,0, 1} anda; 75 0
e ap =0, forall k ¢ {i,j}.

Definition 2.32 (Octagon.)A convex Polyhedro® € CP,, is said to be aroctagonf and only if
P can either be expressed as the intersection of a finite nuoflmatagonal constraints at = 0
andP = @.

An illustration of a2-dimensional octagon can be seen in Figure 2.2(c). The octdgmain
forms a weakly relational domain which extends the weaKigtienal bounded difference shapes
but is still a subset of the polyhedron domain. Octagonaktraints can be encoded using po-
tential constraints by splitting each variablg into two separate forms: a positive fomjf,
which we interpret astv;; and a negative formy;”, which we interpret as-v;. Then we can
write any octagonal constraint;v; + ajv; < d as a potential constraint — v" < dy where
v,v" € {vf v, j ) V; v; } anddy € Q. Namely, an octagonal constraint suchwast v; < d
can be translated into the potential constraxj‘it— vy < d; alternatively, the same octagonal
constraint can be translated ingﬁ —v; < d. Furthermore, unary (octagonal) constraints such
asv; < d and—v; < d can be encoded a$ —v; <2dandv; — v+ < 2d, respectively.

From now on, we can assume that the set of nodééfis:= {0,...,2n — 1}. These nodes
will denote the positive and negative forms of the varialiel: for all : € J\/ + if i = 2k, theni
represents the positive form)” and, ifi = 2k + 1, theni represents the negative forry of the
variablev,. To simplify the presentation, for eaéte N'*, we letz denote; + 1, if 4 is even, and
i — 1, if 7 is odd, so that, for all € N'*, we also haveé € N'* and7 = i. Then we can rewrite a
potential constraint — v’ < d wherev € {v;,v; } andv’ € {v;", v, } as the potential constraint
i—j < din N* where, ifv = v, i = 2k and ifv = v, i = 2k + 1; similarly, if o' = v;",
j=2landifv' =v;,j=20+1.

Definition 2.33 (Octagonal graph.)A (rational) octagonal graplis any consistent grapi’ =
(N, w) that satisfies the coherence assumption:

Vi,j € N& 1 w(i, j) = w(F,7). (2.3)

The setO of all octagonal graphs together with the addition of thedratelement, representing
an unsatisfiable system of constraints, is a sub-lattié& of sharing the same least upper bound
and greatest lower bound operators. As for the boundedréifte shapes, as we can represent an
octagon by a weighted graph we can apply the closure algotiththe weighted graph to produce
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(a) An OctagorP = con(C). (b) A graph(N*, w).

Figure 2.3: A simple octagonal graph.

a closed weighted graph that represents the octagon. Fiswéhcan then re-calculate the set of
octagonal constraints and represent the octagon by thesieor8 now on we will assume that a
closed set of constraints for an octagon refers to the satadkfrom a closed weighted graph.

Example 2.34 LetP = con(C) be the octagon given the set of constraints
C:={0<y<3, -1<z-y<3, 1<z+y<T},

over the set of variable®¥. ThenP can be seen in Figure 2.3(a). We can split each variable into
its positive and negative form to get an alternative set ost@ints

Co={y '~y <6,y —y <0, 27—y <3, 27—y <7, 2 —y" <12~y <1}

Then from this set of constraints we can consider the gragh, w) where Nt = {47, j,7}.
The weights for the arcs of the graph derived from the comBare as follows

w(j,7) =6, w(F,j) =0, w(i,j) =3, w(i,7) =7, wj) = -1, w(E]) =1
the weights for the arcs derived from the coherence assomptie
W(j,f) =3, w(j,z) =—1, w(jyi) =7, ’lU(j,Z) =1

and for all other arcs the weight iso. The graph(N*, w) can be seen in Figure 2.3(b), where
the arcs derived from the constraints are given by the satielsl and all others are given by the
dashed lines.
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The Grid Domain

3.1 Introduction

The purpose of this chapter is to introduce the domain obmafi grids and their two repre-
sentations, together with an algorithm for converting lestw these two representations. The
grid domain will interpret information from programs assef equally spaced points. We will
demonstrate how we can infer information about the pattéwalues a variable can take from
program fragments, see Examples 3.2, 3.11 and 3.12. Weheill$how how these two represen-
tations form the two components of a double description wukfor the grid domain very similar
to that for convex polyhedra [57].

The first representation we will introduce is that of the cmemce system. This system
introduces relations of the fora, x) =, b which stands for the set of vectors

{xGR”‘EI,uGZ.(a,x)zb%—,uf}.

3.2 The Congruence Representation

A congruence system {@" is a finite set of congruence relatioGsn Q™. As we do not distin-
guish between syntactically different congruences ddijittie same set of vectors, we can assume
that all proper congruences ¢hhave modulug.

Definition 3.1 (Rational Grid.) LetC be a congruence system@f*. If £ is the set of vectors
in R™ that satisfy all the congruences @h we say that is a grid described bya congruence
systenC in Q™. We also say thaf is a congruence system far and write £ = gcon(C). If
geon(C) = @, then we say that is inconsistent

23
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Figure 3.1: A grid inR? represented by a congruence system.

We will now give some examples of grids. The first example shbaw we can take part of a
program and infer from it the distribution information.

Example 3.2 Consider first the following program fragment (based on aanegle in [32]) for
any value ofn

X =2,y :=0;

for i :=1tom
if ... then
X =X +14
el se
X =X +2;,y .=y +1
endi f
endf or

if we consider the distribution of possible values of integariablesz and y resulting from the
execution of the code, we obtain the following congruentions z =, 0 and —x + 2y =4 2.

The grid is illustrated in Figure 3.1 by the square points ahd congruences that produce the
grid are shown by the dashed lines.

The Example 3.3 shows two different ways of representingrapte grid using the congruence
system.

Example 3.3 Consider the congruence systef(§,x) = 1} and {(a,x) =, 0, (a,x) = 1},

for anya € Q", both describe the empty grid &". In fact, the first congruence system requires
that0 = 1, while the second one requires that the value of an expmessiboth even and odd, so
that they are both inconsistent.

Definition 3.4 (Grid Domain.) Thegrid domainG,, is the set of all grids ifrR™ ordered by the
set inclusion relation, so that andRR™ are the bottom and top elements@f respectively.
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Figure 3.2: A grid inR? represented by a single congruence.

Definition 3.5 (Universe Grid.) The vector spac®” is called theuniversegrid.

In set theoretical termsy,, is alattice under set inclusion. Thepace dimensioafagridC € G,
is the dimensiom € N of the corresponding vector spaRé. If the maximum number of affinely
independent points ig is k + 1, thendim (L) = k denotes thaffine dimensiomf £. The affine
dimension of an empty grid is defined to be 0. Thus we liavedim(L£) < n.

Example 3.6 Consider the gridC € G, which can be seen in Figure 3.2, whefe= gcon(C)
and
C:={z =21}

Thendim(L£) = 2 even thouglL is only represented by one congruence.

Let C be a congruence system afid= gcon(C). Suppose also that the congruence relation
B = ((a,x) =y b) is such that’s = gcon({3}). We say that

e Lisdisjointfrom 3if LN Lz = @, that is, adding3 to C gives us the empty grid.

o L strictly intersectsg if LN Lg # @ andL N Lz C L, that is, addings to C gives us a
non-empty grid strictly smaller thag.

e Lisincludedin gif £ C Lg; that is, adding? to C leavesL unchanged.

Example 3.7 Consider again the grid from Example 3.2. Let

p1 = (x=21),
B = (x =4 2),
B3 = (z+2y=42).

Then/ is disjoint from;, L strictly intersectsd, and £ is included ings.
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As an alternative to the congruence system we now introdultiéezent way to represent the grid
domain, that is, by a set of generating vectors.

3.3 The Generator Representation
Let £ be a grid inG,,. Then
e avectorp € L is called apoint of £;

e avectorq € R™\ {0} is called gparameterof L if £ # @ andp + uq € L, for all points
p € Landally € Z;

e avectorl € R" \ {0} is called dine of L if £ # @ andp + A\ € L, for all pointsp € L
and all\ € R.

If L, @Q andP are finite sets of vectors i®" and
L := linear.hull(L) + int.hull(Q) + int.affine.hull(P),

thenL € G, is a grid (see [76, Section 4.4] and also Proposition 3.30he 3-tupleG =
(L,Q,P), whereL, @ and P, all in Q", denote sets of lines, parameters and points, respec-
tively, is said to be agenerator systenfor £ and we writeL = ggen(G); also, for conve-
nience, we letggen(L, Q, P) denoteggen(G) (without the extra parentheses). Note that the
grid £ = ggen(L,Q,P) = o if and only if the set of points? = @. If P # @, then

L = ggen(L,,Qp U P) where, forsome € P, Qp = {p+q€ Q" | qe Q}. Asin-
dicated in [76, Section 4.4], both congruence and geneststems can be used to describe a
grid.

Proposition 3.8 Let £ C R™. ThenL = gcon(C), for some congruence syst&hin R", if and
only if £ = ggen(G), for some generator systeghin R™.

This also follows directly from Propositions 3.29 and 3.809ection 3.5 which provide algo-
rithms for converting between the two systems.

Definition 3.9 (Rectilinear Grid.) We say that a grid is rectilinearif it can be represented by
a non-relational set of congruences or generators.

Example 3.10 Let £ € Go, whereL = gcon(C) = ggen(G),C := {x =2 0, y =3 0} and

(690)

Then/ is a rectilinear grid.
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Figure 3.3: A grid inR? represented by a generator system.

The following examples show how we can infer the generatscidetions for grids from frag-
ments of programs.

Example 3.11 Recall the simple code given in Example 3.2. The filled squar&sgure 3.3

represent the points
= 2 = and =
b1 0 y P2 0 P3 1

while all the squares (both filled and unfilled) in the diagranark the position vectors =
mPp1 + mp2 + 73ps3, Wherem, mo, w3 € Z andm + m + w3 = 1. The set of pointd® =
{P1, P2, p3} Will generatehe grid £ = ggen(G,) = ggen(, &, P). Some of these generating
points can be replaced by parameters that give the direciiot spacing for the neighbouring
points. Specifically, by subtracting one of the points frawheof the other two generating points
we can obtain the parameters thus, by subtracting the gwiritom each of the pointp, p3, we

which are marked by the thick lines between poptandp, and pointsp; andps, respectively.
It follows that each pointr € £ can be written asr = py + maqqo + m3q3 for somersy, w3 € Z;
the setQ = {q2, qs} is called aparameter sdor £ = ggen(Go) = ggen (2, Q, {p1}).

Example 3.12 Consider the procedure given in Figure 3.4 which is the ragréxample of [61].
The effect of calling) with the pair of variablegx, y) set to the pair of value&:, b) will be to bind
the vector(x,y)™ to the vectorga, b)*, (15a, 18a+b)T, (225a, 282a +b) T (3375a, 4224a +b) T
and so on. Computing g(a, b) the vectors are generated as/fsll
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g(var x, var y)

if ... then

X = 3xX (P1)
y i=x+y (P2)
a(x, y) (P3)
X = bxX (P4)
y i=x+y (P5)
endi f

Figure 3.4: A recursive procedure.

o (iteration 1):

1. (iteration 1.1) the if condition on the first line of the eofils sog(a, b) = (a, b).

2. (iteration 1.2) the if condition with paramete(s, b) succeeds. Then lind&l- P5
must be executed:
(iteration 1.2) after( P1) : (x,y) = (3a,b)
(iteration 1.2) after( P2) : (z,y) = (3a,3a +b)
(iteration 1.2) after( P3) : the value ofy(3a, 3a + b).

So the computation continues wit{8a, 3a + b)
e (iteration 2):

1. (iteration 2.1) the if condition on the first line of the eofails andq(3a,3a + b) =
(3a,3a + b).
Now iteration 1.2 can be completed:
(iteration 1.2) after( P4) : (z,y) = (15a,3a + b)
(iteration 1.2) after( P5) : (x,y) = (15a, 18a + b).
Soq(a,b) = (15a,18a + b).
2. (iteration 2.2) the if condition with paramete(8a, 3a + b) succeeds. Then lines
P1- P5 must be executed:
(iteration 2.2) after( P1) : (x,y) = (9a,3a + b)
(iteration 2.2) after( P2) : (z,y) = (9a,12a + b)
(iteration 2.2) after( P3) : the value ofy(9a, 12a + b).

So the computation continues wit{ba, 12a + b)
e (iteration 3):

1. (iteration 3.1) the if condition on the first line of the eofils so thaty(9a, 12a+b) =
(9a,12a + b).
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Now iteration 2.2 can be completed:

(iteration 2.2) after( P4) : (x,y) = (45a,12a + b)
(iteration 2.2) after( PS) : (x,y) = (45a,57a + b).
Now iteration 1.2 can be completed:

(iteration 1.2) after( P4) : (x,y) = (225a,57a + b)
(iteration 1.2) after( P5) : (x,y) = (225a, 282a + b).
Soq(a,b) = (225a,282a + b).

2. (iteration 3.2) the if condition on the first line of the eoslicceeds. Then linB4.- P5
must be executed:
(iteration 3.2) after( P1) : (x,y) = (27a,12a + b)
(iteration 3.2) after( P2) : (x,y) = (27a,39a + b)
(iteration 3.2) after( P3) : the value ofy(27a, 39a + b).

So the computation continues witf27a, 39a + b)
e (iteration 4):

1. (iteration 4.1) the if condition on the first line of the eofhils so thaty(27a, 39a +
b) = (27a,39a + b).
Now iteration 3.2 can be completed:
(iteration 3.2) after( P4) : (x,y) = (135a,39a + b)
(iteration 3.2) after( P5) : (z,y) = (135a, 174a + b).
Now iteration 2.2 can be completed:
(iteration 2.2) after( P4) : (z,y) = (675a, 174a + b)
(iteration 2.2) after( P5) : (x,y) = (675a,849a + b).
Now iteration 1.2 can be completed:
(iteration 1.2) after( P4) : (x,y) = (3375a,849a + b)
(iteration 1.2) after( PS) : (x,y) = (3375a,4224a + b).

Sog(a,b) = (3375a,4224a + b).

and so on...

Note that using integral grids, without knowing the valueand b, we cannot perform any
of the grid operations, described in Chapter 4, since all takues are parametric on the pair
(a,b). We therefore need a grid where the values capture the effebe procedure but do not
refer explicitly to the valuega, b). Since the effect of the procedure in the case 0 is trivial,
we assume # 0. Consider a grid with variablegu, v, w) whereu = £,v = ¥ — b andw = 2.
Then(1,0, S)T will be the initial vector for(u, v, w) in any call tog. This will result in a vector
of values represented as a point in a gfigd = ggen(L, &, P;), wherei is the number of iterations
through the body of the procedure; the singleton set of libes {(0, 0, 1)T} represents the fact
that there is no information about the initial vallgefor w and, for the first four iterations, the

sets of points are given b, := {(1,0,0)T}, P := {(15,18,0)T}, P, := {(225,282,0)T}
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and Py := {(3375,4224,0)T}. Letting £ := Lo ® £1 & L2 & L3, where is the operation of
grid join described in Section 4.4, we hage= ggen(L, &, P) where

P ={(1,0,0",(15,18,0)", (225,282,0)" (3375,4224,0)" }.

Converting this to the congruence representation, usinthats described in Section 3.5, we
obtain
L = geon({u =14 1,v =¢ 0}).

This grid £ represents a fixpoint for the procedure; thus it includestladl possible values for
the vector(x,y)™ that might be obtained as a result of calling If the procedure is called with
x = a wherea # 0 andy = b, then all the possible values for the vectar y)™ are represented
by the grid

gcon({x =140 @,Y =6a b})

3.4 Homogeneous Form

In this section, we describe an accessible and appropriajetarepresent internally the con-
gruence and generator systems in terms of arrays (i.e.jaasrwhich will be required by our
conversion algorithm.

Definition 3.13 (Homogeneous.A congruence systethis homogeneous, for all ((a, X) =y
b) € C, we haved = 0. Similarly, a generator syste(i, @, P) is homogeneou# 0 € P.

For the conversion between the two systems (described itioe2.5) and the implementation
within the PPL [13], it is convenient to work with a homogensasystem. Thus we will first
convert any congruence or generator systerf)into a homogeneous system@t+!. The extra
dimension is denoted with @ subscript so that the vecteris given by(zo,...,z,)" andeg
denotes the vectdd, 0T)™.

Consider the congruence syst€m= £ U F in Q", wheref is a set of equalities anfl is a set
of proper congruences. Then themogeneous fortior C is the congruence systeth= £ U F
in Q"*! defined by:

&= {{(=b,a"",%) =0 ‘ ((ax) =) e}, (3.1)
F = { <f_1(—b,aT)T,§c> =10 ((a,x) =;b) € .7:} U {(eo, %) =1 0}. (3.2)

The congruencéeg, x) =; 0 expresses the fact that=; 0. By writing £ = (ETx = 0) and
F = (FTx =, 0), whereE, F C Q"1 it can be seen that the pdiF, E), called thematrix
form of C, is sufficient to determiné.
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Consider next a generator systém-= (L, @, P) in Q™. Then thehomogeneous forfior G is
the generator syste:= (L,Q U P, {0}) in Q"' where

L:={0e)"[eecl}, Q:={0.a")" |[acQ}, P:={Lp")" [peP}. (33

The original gridC = gcon(C) (resp.,£ = ggen(G)) can be recovered from the grifl =
geon(C) (resp.,L = ggen(G)) sincel = {veRrn" ‘ (1,vHT e L) }.

Example 3.14 Consider the gridC = ggen(G) where

(690)

Then the homogeneous form fpis G where

100 0
G=1o,01 2 0o].]o0
00 3 0

3.5 Reduction and Conversion Algorithms

Many of the algorithms given for the operations on grids dssed later will require that the con-
gruence systems not only have minimal cardinality but disd the coefficients of (a permutation
of) the matrix form for the congruences can form a trianguheatrix.

Definition 3.15 (Congruence System in Minimal Form.)Suppos€ is a congruence system in
Q™. Then we say that is in minimal formif either C = {(0,x) =¢ 1} or, for each congruence
B = ((a,x) =y b) € C, the following hold:

1. ifpiv_(8) = k, thenk > 0 anday, > 0;

2. forall ' € C\ {8}, piv(8') # piv_(5).

Lemma 3.16 If C # {(0,x) = 1} is a congruence system in minimal form, tigeis consistent.

Proof. SinceC is in minimal form, the set of equalities = {(v,x) = b | (v,x) =; b € C}

is linearly independent; and henéehas a solutiorp. Moreover, since, for each congruence
({(v,x) =5 b) € C there is a corresponding equalifyv,x) = b) € &, gcon(€) C geon(C).
Thusp € geon(C) and, hence( is consistent. [J

We will now show how to produce am-dimensional grid in minimal form given that it is repre-
sented by a congruence system which consista obngruences.
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Proposition 3.17 There exists an algorithm that, for each congruence systam)", computes
a congruence systedi in minimal form such thagcon(C) = gcon(C’). Lettingm := #C, the
algorithm has a worst-case complexity given(]bynn min{m, n}).

Proof. To prove the result, we first define the key transformatiop stehe algorithm and show
that the resulting congruence system describes the saihe $uippose there exist distinct con-
gruences

B = ((ar,x) =y, br), Ba = ((az,x) =, bo) (3.4)

in C such thapiv_(81) = piv_(f2) =i > 0. We will define the congruences

8 = ((af,x) =, b)), B3 = ((a3,%) =, 3)

and a congruence syste@ such that eithe€” = (C \ {81, 52}) U {87,845} orC” = (C\
{B1,532}) U{B;} and show thagcon(C) = gcon(C"). We show thapiv_(a]) = i and, if 3} is
defined, themiv_(afj) < i. There are two cases.

1. At least one of3y, G- is an equality; without loss of generality, we assume fhais an
equality so thaif; = 0. Then we let3] = 3; and, using Gaussian elimination,

alz/ = as — (a%/ali)al, b/Q/ = b2 - (a2i/a1i)b1'

2. Both3; and 3, are proper congruences; so that we can assumefthat fo = 1. Let
gedext(ayg, ag;) = (r, (s,t)) and

al = sa; + tag, b = sby + thy,

ay = (—agi/r)ar + (a1i/r)a, by = (—azi/r)by + (a1i/7)bs.
In both cases, let

o J @\ BB U B itag £ 00rn £ 0
(C\ {81, B2}) U{BT}, otherwise.

Thengeon(C) = geon(C”). Note that these transformations require a computatioreémh
coefficient of the considered congruences so that their teitpis O (n).

The proof of the result is by induction aip where0 < ¢ < n is the maximum value for
which there exist distinct congruencgs and 3, € C defined as in (3.4) such thatv_(81) =
in<(ﬁ2) =1

The base case is whér= 0 so thata; = a, = 0. In this case, if there exis{§0,x) =; b) €
C andb =/ 0 is inconsistent, lef’ = {(0,x) = 1}; otherwise, leC’ = { 3 € C | piv_(83) #
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0}.

For the step case, we keep applying the transformation €idhér f; = 0 or fo = 0, and (2)
otherwise until no more transformations are applicabletligs index; that is when we obtain a
congruence systeid; for which j < i is the maximum index such that there exist distinct con-
gruencess; andg, € C; wherepiv_ (1) = piv_(f2) = j. We note that we will have to perform
these transformations at maosttimes for each step, whee C = m, so that the complexity of
each step i© (nm) By the inductive hypothesis, we can compdten minimal form such that
geon(C') = geon(C;). Thereforegcon(C’) = geon(C). As we iterate at moshin{m, n} times
over the step case, it can be seen that the algorithm has epitypD (mn min{m, n}). O

Note that the algorithm mentioned in Proposition 3.17, isdohon the Hermite normal form
algorithm [67, 76].

As for congruence systems, for many operations and proeedarthe implementation, it is
useful if the generator systems have a minimal number of egsnand also that the coefficients
of (a permutation of) the generators can form a triangulatrimna

Definition 3.18 (Generator System in Minimal Form.) Suppos&; = (L, Q, P) is a generator
system irQ™. Then we say thaf is in minimal formif either L = Q = P = @ or # P = 1 and,
for each generatoxr € L U @Q, the following hold:

1. ifpivy (v) = k, thenv, > 0;
2. forall v € (LUQ)\ {v}, pivs (V') # pivs (V).

We will now show how to produce am-dimensional grid in minimal form given that it is repre-
sented by a generator system which consists @gfenerators.

Proposition 3.19 There exists an algorithm that, for each generator sygfemQ”, computes a
generator syster@’ in minimal form such thaggen(G’) = ggen(G). Lettingg = (L, Q, P) and
m :=# L+ #Q + # P, the algorithm has worst-case complex@ymn min{m, n}).

Proof. If P = @, thenggen(G) = @; in this case, lety = (¥, 9, ). Suppose now that there
exists a poinp € P. LetG, = (L, Qp, {p}), where

Qp=(QU{p'-peq"|p"eP\{p}})\L
Sincem = # L + # Q + # P, we obtain# L + # QQp < m. Thenggen(Gp) = ggen(G) since

linear.hull(L) + int.hull(Q) + int.affine.hull(P) =
linear.hull(L) + int.hull(Qp) + int.affine.hull ({p}).

To prove the result, we first define the key transformatiop stehe algorithm and show that
the resulting generator system describes the same gridpdSaghere exist distinct generators
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vi,vy € LU Qp such thatpiv, (vi) = pivy (v2) = ¢ < n. We will define a generator system
¢" = (L",Qg, {p}) in Q" whereL"UQY = (LUQp\{v1,v2})U({v}, vi}\{0}), ggen(¢") =
ggen(Gp), pivs (Vi) =i and, ifvl # 0, pivy (v5) > i. There are three cases.

1. Suppose thaftvy,ve} C L. Then, using Gaussian elimination, let

V,1/ = v, v'2’ = vy — (v2;/v1i)V1;

L" = (L\{v2}) U ({v3} \ {0}), p = Qp-

2. Suppose that; € L andvy € Qp, or vice-versa; without loss of generality, we assume that
vi € L. Then, using Gaussian elimination, let

vl =v1, vy = Vo — (V24 /v15)V1;

=1L, Qp = (@p \ {v2}) U ({v3}\ {0}).
3. Suppose thatvy, vo} C Qp. Letgedext(vi;, vo;) = (r, (s,t)),

V] = svq + tva, vl = (—v9i /7)v1 + (v13/7)V2;

L'=1, b= (Qp \ {v1,va}) U ({¥],v5}\ {0}).

In all casesggen(G”) = ggen(Gp). Note that these transformations require a computation for
each coefficient of the considered generators so that theptexity isO(n).
The proof of the result is by induction on+ 1 — 4, where

i:= min({n—|— 1JU{jeN|3vi#vy € LUQp . j = pivy(vi) = pivy (v2) })

The base case is wheén= n+ 1, in which cas&j,, is already in minimal form, so l&§’ = G,;.
For the step case, we apply the transformations (1), (2) @ndntil no more transformations are
applicable with index; that is when we obtain a generator systém= (L;, Q;, {p}) for which
J > i is the least value such that, if there exists a pair of dis@emeratorsyi,ve € L; U Q;,
thenj = pivy (v1) = pivy(v2); j = n+ 1 if such a pair does not exist. We note that we will
have to perform these transformations at mast- 1 times for each step, whet L + # Qp, =
m — 1, so that the complexity of each step@§nm). By the inductive hypothesis, we can
computeg’ in minimal form such thaggen(G') = ggen(G;). Thereforeggen(G’') = ggen(G).
As we can iterate at moshin{m,n} times over the step case, the algorithm has complexity
O(mnmin{m,n}). O

As for Proposition 3.17, the algorithm mentioned in Proposi 3.19 is based on the Hermite
normal form algorithm [67, 76]. Note also that, when < n, the complexity of this algorithm
is just O(m?n). If the congruence systei (or generator systerg) is for a rectilinear grid
then the complexity of computing the minimal form is at th{tm min{m, n}). Note that the
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congruence systeid (resp., generator syste€f) for a non-empty grid is in minimal form if and
only if the homogeneous fori for C (resp.,G for G) is in minimal form.

We will now show how we can produce a minimal form which caniea a canonical form
for a congruence system by producing an algorithm whichgakeystem in minimal form and
returns an equivalent system which represents the sameagddvhose coefficients are all as
small as possible in absolute value. We will first requirediénition of pivot equivalence to be
extended to consider a set of congruences.

Definition 3.20 (Pivot Equivalent Congruence Systemsgongruence systems in minimal form
C1 andC, are said to bepivot equivalentf: for each s € Cy, there exists & € C such that3 1 v;
for eachy € C,, there exists & € C; such thaty 1} 3.

Definition 3.21 (Congruence System in Strong Minimal Form.)A congruence syste¢in Q™
is in strong minimal formif C is in minimal form and, for each pair of distinct proper congnces

5 = ((a,x> =1 b)a Y= (<C7X> =1 d) € C7
if piv_(y) =k > 0, then—c¢;, < 2a;, < ¢.

A congruence system in minimal form can always be reducedcmngruence system in strong
minimal form that describes the same grid.

Proposition 3.22 Let C be a congruence system @" in minimal form. Then there exists an
algorithm with complexityD (n?) for convertingC to a congruence syste@ in strong minimal
form such that is pivot equivalent t@” andgcon(C) = geon(C’).

Proof. Suppose thaf is not in strong minimal form. Then, by Definition 3.21, thexests a
proper congruencg = ((a, X) =1 b) € C, such that the following holds:

1. there exists > 0 and a proper congruenee= ((c,x) =; d) € C\{3} wherepiv_(y) =i
and eitheRa; < —¢; or 2a; > ¢;.

Suppose thal < k& < n is the maximum value for the indéxsuch that condition (1) holds.

We show, by induction oft, that there exists a sequence of at mostansformations, each
of which having complexityO (), from 5 to the congruencg’ = ((a’,x) = V), such that, if
C' == (C\ {B}) U{B'}, thengcon(C’) = geon(C) and condition (1) (wher is replaced by3')
does not hold.

If & = 0, then condition (1) does not hold f@r Therefore let?’ = 3.

Suppose now that > 0 so that condition (1) holds far = k. As C is in minimal form,
k < piv_(a). Let

" fa- P_ﬂ e oand b —b_ ﬁ_ﬂ d, if ar mod c, > %;
a =
a_\\CcL_I;JC and b”:b—\\z—:J d, ifakmodckg%k.
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Then —¢; < 2a} < ¢;. Also, fork +1 < j < n, we havec; = 0 so thata; = a;-’ and
piv_(a”) = piv_(a). Letting 8" := ((a”,x) = V) andC” := (C\ {B}) U {B"}, we have
geon(C”) = geon(C). Note that this transformation has a complexityn). Ask”, the maximum
index such that condition (1) holds fgt”’, is strictly less thark we can apply the inductive
hypothesis t&€” and3”. Thus there is a sequence of at mast 1 transformations fron” to
B such thatgcon<(c” \ {8"}) U {ﬁ’}) = gcon(C”) and condition (1) (whers is replaced by
3) does not hold. Thus there is a sequence of at mdsansformations fron to 3’ such that
gcon((C \ {6} U {5/}) = geon(C). As each of the individual steps has complexityn), the
sequence of transformations has complegitf?).

We repeat this sequence of transformations for each prapegraence irC to obtain a con-
gruence systerd’ such that, for each proper congrueng¢ec C’, condition (1) does not hold.
Thus, by Definition 3.21¢’ is in strong normal form. Thus, as there are at mogtroper con-
gruences irt since, by hypothesig; is in minimal form, the complexity of computing the strong
minimal form isO (r?). O

Note that if the congruence system is in homogeneous form the strong minimal form algo-
rithm will also reduce all the former inhomogeneous termbdas small as possible, thus the set
of proper congruences will be in canonical form.

As for the congruence system we can also extend the notioivaif gquivalence to consider
generator systems.

Definition 3.23 (Pivot Equivalent Generator Systems.)We say that generator systergis =
(L,Q,{p}) andG, = (L', Q’,{p'}) in minimal form arepivot equivalentf: for eachq € Q,
there existsqy’ € Q' such thatq |} q', and, for each¢ € L, there exist’ € L’ such that
pivs (€) = piv. (¢); for eachq' € @', there existyy € Q such thatq’ || q, and, for each
¢ € L/, there exists € L such thatpiv. (¢) = piv (£).

We can also define the notion of strong minimal form for a Gatwrsystem.

Definition 3.24 (Generator System in Strong Minimal Form.) A generator systerg in Q",
whereG = (L, Q, {p}) is in strong minimal formif G is in minimal form and, for each pair of
distinct vectoran, v € Q, if pivy (v) = k < n, then—uv;, < 2uy, < vy,

A generator system in minimal form can always be reduced ®n@i@ator system in strong mini-
mal form that describes the same grid.

Proposition 3.25 Let G be a generator system i@" in minimal form. Then there exists an
algorithm with complexit;O(n?’) for convertingg to a generator syster§’ in strong minimal
form such thatj is pivot equivalent t@/’ andggen(G) = ggen(G').

Proof. Suppose tha§ = (L, Q, {p}) is not in strong minimal form. Then, by Definition 3.24,
then there exists a generatorc (), such that the following holds:
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1. there existd < i < n and a generatoy € @ \ {u} wherepiv,(v) = 7 and either
2u; < —v; O 2u; > v;.

If condition (1) does not hold fon; letu’ = u.

Suppose now that condition (1) holds and that {1,...,n} is such that. + 1 — k is the
minimum value for the index for which this condition holds.

We show, by induction ok, that there exists a sequence of at mostinsformations, each of
which having complexityO (n), from u to the generaton’, such that, iiG’ := (G \ {u}) U {u'},
thenggen(G’) = ggen(G) and condition (1) (whem is replaced byn’) does not hold.

As G is in minimal form,i > piv. (u). Let
u-— H—Z—‘ v, if u; mod v; > 3;

1
u =

u-— H—ZJ v, if u; mod v; < 3.
Then—v; < 2u] < v;. Also, forl < j < i — 1, we havev; = 0 so thatu; = u;.’ and
pivy (u”) = pivy (u). LettingG” := (G \ {u}) U {u"}, we haveggen(G”) = ggen(G). Note
that this transformation has a complexify(n). Asn + 1 — k”, the minimum index such that
condition (1) holds fom”, is strictly greater tham + 1 — k, we have that” is strictly less than

k, therefore we can apply the inductive hypothesigfoandu”. Thus there is a sequence of at
mostn — 1 transformations fromu” to u’ such that,ggen((g” \ {u"}) U {u’}) = ggen(G")

and condition (1) (whem is replaced byu’) does not hold. Thus there is a sequence of at most
n transformations fromu to u’ such thatggen((g \ {u}) U {u’}) = ggen(G). As each of the
individual steps has complexity (n), the sequence of transformations has compleRify.?).

We repeat this sequence of transformations for each paearitet; to obtain a generator
system¢’ such that, for each parametat € G’, condition (1) does not hold. Thus, by Def-
inition 3.24, G’ is in strong normal form. Thus, as there are at mogtarameters irg since,
by hypothesisg is in minimal form, the complexity of computing the strongnimhal form is
O(n?’). O

Note that if a generator systeh= (L, Q, P) is in homogeneous forn§ = (L,Q U P, {0}),
when the strong minimal form algorithm is appligglwill be reduced so that all the coefficients
of the former inhomogeneous terf will be as small as possible as well & thus the set of
parameters and point will be in canonical form. If the comgree systent (resp., generator
systemg) is for a rectilinear grid then the congruence systér{resp., generator systeg) is
already is strong minimal form.

Example 3.26 Consider the gridC = gcon(C) = ggen(G) whereC := {x =, 0, x —y =3 1}

o (o9 ()
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(@) GridL = gcon(C). (b) Grid £ = ggen(G).

Figure 3.5: A grid inR? represented by systems in strong minimal form.

L = gcon(C) can be seen in Figure 3.5(a) antl = ggen(G) can be seen in Figure 3.5(b). Let
£ be the homogeneous form©f Then the matrix forms faf and ¢ in strong minimal form are
given by

1
C:= 1|,
1
and
1 0 0\ /0
G=|a,| 010],[0
-1 1 3/ \o

Now that we have defined the two descriptions for the grid wensiv show that an algorithm
exists that can transfer a grid described by one represemti an equivalent grid described by
the other representation.

By considering the matrix forms of the representations Whice in minimal homogeneous
forms, we can build the conversion algorithms using thoserfatrix inversion. Informally this
is appropriate since suppose that the generator syStem(2, @, {0}) in Q"+ is in minimal
homogeneous form an@ is a non-singular square matrix. Letting = ggen(G) = {Qn €
Q"t! |7 e Z"}, thenwe also havé = {v € Q"' | Q~'v =, 0}. So(Q~!, @) is the matrix
form of a congruence system in minimal homogeneous form réqatesents the same gritl
Similarly we can use matrix inversion to convert the matorii of a homogeneous congruence
system in minimal form consisting @f+ 1 proper congruences for a gritito a generator system
in minimal homogeneous form fof. When the matrices to be inverted have less than 1
linearly independent columns, the algorithms we propost didd vectorg; wherel < ¢ < n,
as necessary, so as to make the matrices non-singular aoel ineartible. For example, suppose
that the generator systeth = (2,Q,{0}) in Q"+ is such that for allq € Q, pivs(q) # i.
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Theng; is added to the generator system.

Lemma 3.27 Let L, Q, M, F, 2, N be matrices ifQ" ! suchthat# N = # L, # F = #Q >
0Oand# E = # M. Also let(L,Q, M) and (N, F', E) be square and non-singular matrices
where(N, F', E)T = (L,Q,M)~". Suppos& = (L,Q,{0}) is a generator system in minimal
homogeneous form ig"*! (resp.,(F, E) is the matrix form of a congruence systérm minimal
homogeneous form) and (resp.,N) a matrix in Z" ! whose vectors are of the for&. Then
(F', E) is the matrix form of a congruence systénn minimal homogeneous form (resg.,=
(L,Q,{0}) is a generator system in minimal homogeneous fork)sesp., M) is a matrix in
Z"+1 whose vectors are of the foré& and

1L #Q=#F=n+1—H#L—#E>0;

2. geon(C) = ggen(G);

3. there existsy € Q if and only if there existé € F, such that, for somé € {1,...,n},
piv. (q) = piv_(a) = k andgxay, = 1;

4. forall £ € L anda € F, piv.. (£) # piv_(a).

Proof. Suppose = (ﬁ, Q, {0}) is a generator system in minimal homogeneous forgri!
andM a matrix inZ"+! whose vectors are of the for&. By the hypothesis on the cardinalities
of the matrices, (1) holds. By Definition 3.18L, Q, M) is a permutation of a matrix in lower
triangular form where the diagonal elements are all pasitind there existp € Q such that
po = 1. Also, by hypothesis,

(N,F,E)T =(L,Q,M)~* (3.5)
so that(N, F, E)T is a permutation of a matrix in upper triangular form where thiagonal
elements are all positive. Hence, by Definition 3.E5s also in minimal form. Also, by the
hypothesis on the cardinalities of the matrices, (3) anddd)w from (3.5).

Since(L,Q, M) is in lower triangular form angb € Q such thap, = 1, the first row of the
matrix (L, Q, M) is of the formeé; wherei € {0, ..., n} is the index ofp in (L, Q, M). Thus the
i-th vector in(N, ', F') must be inF" and have the forng,. It follows thatC is in homogeneous
form.

Finally, using (3.5) and lettingt . = ¢ and# Q = ¢ + 1, (2) holds since we have

x = LA+ Qr + MO, for A € RY, € Z9+!
x=(L,Q,M)(\T, 7", 0™)T, for A € R, 7 € zat!
L,Q, M) 'x=(\"7T,0")T, for\eR’ 1ezit!
N, E E)Tx =T, 2T, 00T, for\ e R 7 ezt
NTx =\, FTx =7, ETx =0, for\eR’ rezit!

X e ggen(?)



Chapter 3 40 The Grid Domain

The proof when it is assumed thaF, F) is the matrix form of a congruence systefin
minimal homogeneous form is similarJ

Lemma 3.28 There exists a computable, invertible function that cotsver generator system
G = (L,Q,{p}) in Q" in minimal form to a consistent congruence systém £ U F in Q™ in
minimal form where are equalities andr are proper congruences and such that

5. #Q=#F=n—#L — #¢;
6. gcon(C) = ggen(G);

7. there existg € @ if and only if there exist® = ((a, X) =1 0) € F, such that, for some
ke {l,...,n},piv.(q) = piv_(a) = k andggay, = 1;

8. forall£ € Landg € &, piv (£) # piv_(f).
Proof. Let# L = ¢, #Q = qandG := (L,Q, {0}) where

p)’,

'U>

T |eeL}, (3.6)

= (1,
{(
{0,aN" |aeQ}u{p}

0,€
0,q

O
i

Theng is the homogeneous form f@f, # @ > 0 and, asG is in minimal form, G is also in
minimal form. By Lemma 3.27, there exists a computable itilvker function that will convert
G in Q™! to a congruence systeth= F U £ in Q"1 in minimal homogeneous form where
F are proper congruences afidare equalities and such that properties (1), (2), (3), ahdn(4
Lemma 3.27 hold. It follows that is the homogeneous form for a congruence systemF U £

in minimal form, where

{(@x) =) | ((-ba")"x)=0e e},
{(ax)=8) [ ((=ba")".x) =10 F)\ {eo} |

and that properties (5), (6), (7) and (8) foandg hold. [

&=
F

The following proposition shows how to convert a congruenagstem into a generator system
which describes the same grid.

Proposition 3.29 Let C be a congruence system @r* in minimal form for a non-empty grid;
(F', E) the matrix form of the homogeneous form €orN a matrix inZ"! whose vectors are
of the formé;, with i € {0,...,n}, and such that N, F', E) is square and non-singular; and
(L,Q,M) := ((N,F,E)‘l)T where# L = # N, #Q = # F and# M = # E. ThenG =
(L, Q,{0}) is the homogeneous form for a generator sysgem minimal form andsgen(G) =
geon(C).
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Proof. By the hypothesis and Lemma 3.27,= (L, Q, {0}) is a generator system in minimal
homogeneous form and, by property (2) of Lemma 3¢28n(C) = ggen(G). Thereforeg is the
homogeneous form fa#, a generator system in minimal forid js the homogeneous form f6t,

a congruence system in minimal form, agn (C) = ggen(G). O

The following proposition shows how to convert a generaimtem into a congruence system
which describes the same grid.

Proposition 3.30 Let G be a generator system i®™ in minimal form for a non-empty grid;
G = (L,Q,{0}) the homogeneous form fgf; M a matrix in Z"+! whose vectors are of
the formeé;, with i € {0,...,n}, and such tha{L,Q, M) is square and non-singular; and
(N,F,E) := ((ﬁ,Q,M)‘l)T where#t N = # L, # F = #Q and# E = # M. Then(F, E)
is the matrix form of the homogeneous form for a congruensees)yC in minimal form and
geon(C) = ggen(G).

Proof. By the hypothesis and Lemma 3.2%, F) is the matrix form of a congruence system
C in minimal homogeneous form and, by property (2) of Lemma73gon(C) = ggen(G).
Therefore,C is the homogeneous form fdt, a congruence system in minimal for, is the
homogeneous form fa¥, a generator system in minimal form, agebn(C) = ggen(G). O

Both of the algorithms described for conversion betweentiye systems just perform matrix
inversion; so their complexity depends on the inversiomiilgm adopted in the implementation.
As far as we know, the current best theoretical worst-caseptexity is O (n?37%) [23]. Note
that, in the current implementation in the PPL, the coneersilgorithm is based on the Gaussian
elimination method, which has complex@'(n3). If however the congruence systeh{or gen-
erator systengy) is for a rectilinear grid then the complexity of the conversalgorithm is just
O(n)

The following example will show that the conversion algomit does not respect strong mini-
mal form of the given system.

Example 3.31 Suppose we have the grifiwhich is in strong minimal form and homogeneous
form. LetL = ggen(2, Q, {0}) where

000

A 2 400
Q=

-1 2 40

2 -1 2 4
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Then after applying the conversion algorithm to the maf)ixwe get the matri¥’ such that

8§ —4 4 -7
. 2 -1 1
F= 0

0O 0 2 -1

0o 0 0 2

It can be seen that the homogeneous congruence system
C= {20 — 429 =5 0, —x + 2y + 4z =3 0,2 — y + 22 — Txy =3 0,8z9 =5 0}

that corresponds to the matrik' is not in strong minimal form. This can be seen if we take
the congruenc@z — 4z, =s 0 which has pivot variable: and coefficien. Then forC to be

in strong minimal form, for all other congruences, the cadffit for thex variable should be
greater than—1 and less than or equal td, however this is not the case for the congruence
-+ 2y + 4x9 =3 0.

Note that, we could also consider the congruerce + 2y + 4x¢y =g 0, which has pivot
variable y and coefficien2. Then forC to be in strong minimal form, for all other congruences
the coefficient for thg variable should be greater than1 and less than or equal tb, however
this is not the case for the congruence y+2z—"7xy =g 0. Also as the congruen@, =g 0 has
pivot variablez, and coefficiens, for all other congruences the coefficient for thg variable
should be greater than-4 and less than or equal td, however this is not the case for the
congruenceQr — 4xy =g 0 andx — y + 2z — 7xy =5 0.

3.6 Double Description

We have shown that any gri€l can be described by using a congruence systemgenerated by
a generator systeidi. Therefore, just as for the double description method fowea polyhedra,
since we have shown we have the algorithms for convertingpgesentation of one kind into a
representation of the other kind and for minimising bothresgntations, we can represent the
grid £ by thedouble descriptioriC, G). Note that, if(C, G) is a double description for a grid and
C andG are homogeneous forms férandg, then(C, G) is also a double description.

Suppose we have a double descriptighG) of a grid £ € G, where bothC and g are
in minimal form. Then, it follows from the definition of miniad form that#C < n + 1 and
# L+ # @Q < n. Infact, we have a stronger result.

Proposition 3.32 Let (C,G) be a double description where bothand G are in minimal form.
LettingC = £ U F, where€ and F are sets of equalities and proper congruences, respegtivel
andG = (L,Q,P),then# F =#Q =n—#L — #¢E.

Example 3.33 Consider the gridC from Example 3.2 and Example 3.11 which can be seen in
Figure 3.1 and Figure 3.3. The congruence systeand the generator systeg are in minimal
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form; howeverg, is not as it contains more than one point. Furthermore,ifef 1, 2, the pairs
(C, ;) are double descriptions fof.

The proof of Proposition 3.32 depends on the following lemnihis shows that if one grid is
a subset of another then the pivot elements of the propemragenges of the larger grid must be
divisible by the corresponding pivot elements of the smajhad.

Lemma3.34 Let £; = gcon(C;) and Lo = geon(Cy) be non-empty grids i, such that
L1 C L5 and the congruence syster@is and C, are in minimal form. Then, for each =
((c,x) =4 d) € Cy, there existsd = ((a,x) = b) € C; such thatpiv_(a) = piv_(c) = k and
eitherf =g=00rg # 0anday | fck.

Proof. Supposey = ((c,x) =, d) € C; andpiv_(c) = k. Then, asC; C Ly, L1 C
geon({7}). LetG, = (L1,Q1,{p}) be a generator system fd in minimal form constructed
as in Lemma 3.28 fromd; .

We first prove that there exists = ((a,x) =; b) € C; such thapiv_(a) = k. To see this,
suppose instead that, for afl = (<a, X) =g b) € Cy, piv_(a) # k. Then, by Lemma 3.28,
there must exist a liné € L; such thatpiv, (¢) = k; hence(c,£) = ¢l # 0. Sincel; C
geon ({~}), this implies that

(c,(p+7L)) = (c,p) + reply =4 d,

for all r € R, which is a contradiction.

We next show that ify = 0 then f = 0. To see this, suppose instead that 0 but f £ 0.
Then, by Lemma 3.28, there exisfse Q; such thatpiv. (q) = k; hence(c,q) = crqr # 0.
SinceL; C geon({v}), this implies that

{c,(p+mq)) = (c,p) + merqr =4 d,

for all m € Z, which is a contradiction.

We now assume that # 0 and show thaty, | fc,. This is trivial if f = 0; therefore,
supposef = 1. By Lemma 3.28, there exists a paramejen (); such thapiv. (q) = & (so that
arcr # 0) andgy = a;'. Thus, asC; C geon({7}), (a,c) = gyer, = m, for somem € Z\ {0}.
Therefore we must hawe; | fcp. O

Proof [ of Proposition 3.32] Let’ be the congruence system obtained, as in Lemma 3.28, from
G.Letg = (L,Q, P)andletC = (F,&) andC’ = (F', &) where€ and&’ are sets of equalities,
andF andF’ are sets of proper congruences. Then, by Lemma 3.28,

#Q=#F =n—#L-#E.
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By applying Lemma 3.34 twice witlf; = Lo = £, we obtain#£ £ = #& and# F = # F'.
Therefore

#Q=H#F=n—9L—-#E.

3.7 Implementation

The domain of grids is fully supported and implemented wittiie Parma Polyhedra Library
(PPL) [11,13]. The PPL is &+ library which can manipulate numerical information thai dee
represented by vectors of andimensional space. As well as the grid domain the PPL alpe su
ports the domain of convex polyhedra and bounded differshepes. Among the tests available
in the PPL are the examples in [3] and implementations ofuheing examples in [60, 61]. The
PPL provides full support for lifting any domain to the poset of that domain, so that a user of
the PPL can experiment with powersets of grids and the exéeigion this provides.

3.8 Related Work

In [37], Granger introduces a simple integesn-relationalgrid domain, which he calls a con-
gruence analysis, that is a grid described by congruencésedbrmz = b (mod f) whereb
and f are integers. He shows in examples how a static analysisié@nciongruence information
and show that this domain can obtain more precise informdtioapplications such as automatic
vectorization. In the Master Thesis of Bygde [19] it is shawat the domain of integer rectilinear
grids, based on that introduced in by Granger [37] and exéadl include bit-level operators, can
be used to estimate the worst case execution time (WCET) adgrgm given a specific system.
Larsen et al. [47] have also developed a static analyzerawen-relational grid domain specif-
ically designed to detect when dynamic memory addressesoaigruent with respect to a given
modulus; they show that this information helps in the caritton of a comprehensive set of pro-
gram transformations for saving energy on low-power aegttitres and improving performance
on multimedia processors. We note that these applicatiomsld carry over to the more complex
domain considered here. In addition, Miné has shown howtsttuct, from the non-relational
congruence domain in [37], a zone-congruence domain. Tdrisath only allowsweakly rela-
tional congruences, that is congruences that have the formy = b (mod f) whereb and
f are rationals [51, 53]. The set of congruences is then repted by a constraint matrix like
that for a bounded difference shape or octagon and the apesadre then applied to this matrix.
In [51] Miné gives an algorithm for producing the closureaofystem of congruence constraints,
based on th&loyd-Warshall algorithnj24], with complexityO (n?) if one congruence constraint
is added. If however ath? possible congruence constraints are added the complexitynbes
O(n4).

With regard to theully relational domains, note that the use of a domain of linequality
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relations for program analysis had been studied by Karr. [#b]39], Granger generalized this to
provide a domain of lineatongruenceelations on an integral domain, i.e., a domain generated
by integral vectors im-dimensions only instead of rationals; and then, in [38, &hnger gen-
eralized the results to the full grid domain over the ratlenén [38, 39, 41], domain elements are
represented by both congruence and generator systemarsioihe ones defined here. Standard
algorithms for solving linear equations are used in colingrirom generator to congruence sys-
tems; however, a more complé)((n4) algorithm is provided for converting from congruence to
generator systems. This is because the congruences amrteshand added one at a time to the
new minimised generator system. Assuming the number ofrgas isn + 1, the algorithm for
minimising the generator system has complexityn® log, n).

The problem of how the grid domain can be applied in a progmaatyaer has been studied by
Muller-Olm and Seidl in [58,59,61] also building on the \waf Karr [45]. Here, the prime focus
is for the design of alinterproceduralanalysis for programs containing assignment statements
and procedure calls. The algorithm has three stages: finsgdch program point, a matrik/
containing a (minimised) set of generators (i.e., vectbrmtues that hold at that point) is found,;
secondly, the determinarftof M is computed; thirdly, a congruence system with modakhat
satisfies all the vectors i is determined. Stage one is similar to that proposed by @3]
for minimising a set of generators. Stages two and threerdifbm the conversion in [39] in
that the modulug is computed separately and used to reduce the sizes of thdiates. Also
in [60, 62] they consider the specific case of congruencetemsawhere the modulo is a power
of 2. Again this work is mainly performed over the set of getters and all algorithms have the
same complexities as those mentioned in [58, 59, 61]. It techthat this paper overlooks the
work of Granger on rational congruence equations [38, 41dteNhat the framework described
in [62] subsumes previous works by the same authors. Frasnatbik on congruence equations
with modulo a power of two, King and Sondergaard [46] consigking a SAT solver to derive
these equations which contain information about non-timgerations within the program.

Following an independent stream of research, Ancourt [1fen thesis considered the do-
main of Z-polyhedra that is a domain ointegral latticesintersected with the domain of convex
polyhedra (see also [68, 71, 72]). As we are primarily irgezd here in the “integral lattices”
component which may be seen as a sub-domain of the domairidsf \where the grid is full
dimensional, does not contain lines in the representatishadl the grid points are integral vec-
tors. The representation of these integral lattices is aigpease of our generator representation
where, forn dimensions, there must be exactly one point adithearly independent parameters,
all of which must be integral. There is no support so far fooagruence representation. All the
operations or¥Z-polyhedra (and therefore the lattices) require canomieptesentations; hence
Quinton et al. [71, 72] define a canonical form for these datiwith a method for its computa-
tion. We note that the algorithm for computing the canonfoain has complexit)O(n‘*), where
n is the number of dimensions of the vector space.

As shown in Section 3.5 thHeomogeneous forof a representation is required by the conver-
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sion algorithm. This homogeneous form is not new, in facesgresearchers have observed this.
For instance, Granger [39] describes a map from a linearrcemge system im variables to a
homogeneous one i+ 1 variables; Nookala and Risset [68] explain that the Polyé8] adds a
dimension to make the generator representation homogsnetile Muller-Olm and Seidl [61]
considerextended stateshere vectors have an extidh component.

The Hermite Normal Form algorithm [67, 76] for lattices idfstient to ensure a representa-
tion is in strong minimal form, however as we wish to ensugd the coefficients are as small as
possible in absolute value we use a different requirememdt iB, ifC is in minimal form and, for
each pair of distinct proper congruences

B = ((a,x) = b), v = (<c,x> = d) eC,

if piv_(y) = k > 0, then—¢; < 2a, < ¢,. Where as for the Hermite Normal Form the
coefficientay, is bounded by < a; < ¢. Similarly for the coefficients of the generator system.

3.9 Conclusion

In this chapter we have presented the domain of Grids. We slamen that the domain may be
represented by either a set of congruences or a set of gererad/e introduced 2 methods for
minimising the representation of a grid, the minimal formigthhas complexityO (n?m), which

is better than previous proposals [39, 61, 62], and the gtmimimal form which has complexity
O(n®). We have shown how conversion can be implemented using atyxrirversion algo-
rithm, inheriting the corresponding worst-case compiexor instance, the complexity B(n?’)
when adopting the standard Gaussian elimination methalidrs proposals for congruence to
generator conversion have complexity no better tbgn*) [41].
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The Grid Domain Operations

4.1 Introduction

In this chapter we introduce the main operations for the domgrids. These abstract operations
will be based on some of the set-theoretic operations, ssichr#ainment, intersection, union and
difference. We will show that by taking set-theoretic opieras we do not always produce a single
grid and therefore the abstract operations compute an zippation of them.

4.2 Comparison

In this section we show how to test if two grids are equal omié@rid is contained in another.
This is important since we need to be able to check if a fixploir®t been reached or to model an
inequality or equality test in a program.

For any pair of gridsC; = ggen(L,Q, P), Lo = gcon(C) in G, we can decide whether
L1 C Ly by checking if every generator ifL, @, P) satisfies every congruence@n Note that a
pointp satisfiesa congruencéa, x) =¢ bif (a, p) = b and a parameter or line satisfiesa con-
gruence(a, x) =; bif (a,v) =7 0. LetG = (L,Q, P), m1 = # L+# Q+# P andmy = #C.
Then assuming that the systegisandC are already available, each of the, generators must
be checked against the, congruences. Hence there argm, checks to be made and each
check require@(n) arithmetical operations. Therefore the worst-case coxitplef comparing
two grids isO(mymon). Note that, ifn < min{ms,m2}, then it would be computationally
more efficient to compute the minimal forms f6érandG before actually checking for compari-
son. This is because the complexity of the minimisationsld/te O (mn?) for the generator
system and) (myn?) for the congruence system, which are less than or equél(ta;mon)

a7
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Figure 4.1: Comparing two grids iR2.

for n < min{m1,ms}. Hence obtaining the worst-case complex@yfn? max{m,mso}) if
n < min{my, mo}. Finally if the generator and congruence systems are giraadilable in
minimal form the complexity of comparison @&(n?).

Example 4.1 Let£; = geon(Cy) = ggen(G1) and Lo = geon(Ca) = ggen(Ga) in G2 where

Ci:={x=40,y=21} and Cy:={x=20,—x+ 2y =4 2}.

(69 0) 9 ()

Then it can be seen in Figure 4.1 thét C £, where grid£; is illustrated in Figure 4.1 by the
filled circles and the gridZs is illustrated in Figure 4.1 by the square points.

If it is known that one grid is a subset of another, then, agsgriat the descriptions of both
grids are available in minimal form, there are more efficiests for checking equality which are
shown in the following Propositions.

Proposition 4.2 Let £1 = gcon(Cy) and L2 = gecon(C2) be non-empty grids if,,, where the
congruence systends andC» are in minimal form. Suppose also théf C L, thenl; = Ly if
and only ifC; andCs are pivot equivalent.

Proposition 4.3 Let £1 = ggen(G;1) and L2 = ggen(G,) be non-empty grids ifs,,, where the
generator systemg; and G are in minimal form. Suppose also thét C Lo, thenl; = Lo if
and only ifG; and G, are pivot equivalent.

We require the conditiorf; C L5 in Propositions 4.2 and 4.3 since suppose we have two grids
L1 = geon(Cy) = ggen(Gy) andLy = geon(Ce) = ggen(Ge). Then if it is known thatC; 1} Co

or Gi | G- then we cannot deduce thdf = £, unless we know thaf; C L,. The following
example illustrates this.
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o>

Figure 4.2: The equality test with a missing condition.

Example 4.4 Consider the gridsC; = gcon(C;) = ggen(G;) and L2 = geon(Ca) = ggen(Ga)
in G,,, where

Ci = {51’ =95 0, —27 4 Yy =95 0}, Cy = {51’ =95 0, —3x + 5y =25 0}

5 0 0 5 0 0
gl =19, 5 3 g2 = | 9, ) .
2 5 0 35 0
ThenC; 1} C2 and Gy |} Go. It can be seen in Figure 4.2 however that £ L.

The next lemma, needed for the proof of Proposition 4.2 agdxition 4.3, shows that if, two

grids, one a subset of the other are described by two congeugystems in strong minimal form

that are pivot equivalent, then, relative to the affine hfithe grids, pivot equivalent congruences
in these systems are the same.

Lemma4.5 Let£; = geon(Cy), L2 = geon(Ca) be non-empty grids ift,, wherel; C L, and
the congruence systerisandC, are in strong minimal form. Suppose tltatis pivot equivalent
to Cy. Then, for eactt € C; and~ € C, such thats 1 v,

geon ({}) Naffine.hull(£;1) = geon({7}) N affine.hull(L;). 4.2)

Proof. Let 8 = ((a, x) =y b) € C;. By the definition of pivot equivalence for congruence
systems in Section 3.5, &s 1} C there existsy = ({(c,x) =, d) € Cy such tha3 1 . We show
that equation (4.1) holds. By the definition of pivot equérade for congruences in Section 2.1,
piv_(a) = piv_(c) = k andga, = fci. Thus asy, ¢ # 0, eitherf = g = 0 andj3, v are both
equalities, or we havé, g # 0 so that3, v are both proper congruences and we can assume that
f=9g=1.

Let &, be the set of equalities fy. By Gaussian elimination, the st can be transformed to
the set of equalitieg] such thagcon(&;) = geon(&1) = affine.hull(£;) and has the following
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property: letf] = {f1,...,0mn} such that, for each € {1,...,m}, piv_(3;) = k; and§; =
((as,x) = b;); then, for each, j € {1,...,m} wherei # j, we haven,;,, = 0. Let

"o S (aki_cki) "o % (aki_cki)
a —a—c—ZTa,-, b _b—d—;Tbi. 4.2)

Let 3" := ((a”,x) =1 V") and( := piv_(a”). ThenL; C geon({3"}) C L2. Moreover, for
any equality3; € &1, piv_(a;) # (. Thus, if 3,~ are equalitiesa” = 0 and, a<; is consistent,
" = 0. Thereforegcon(&]) C geon({f}) andgcon(€]) € geon({v}). Hence equation (4.1)
holds.

Consider now the case wheh~ are proper congruences. We first show that= 0 and
b" € Z. Without loss of generality we can assume tfiat ¢ = 1. Note that, ag; = ¢, we have
¢ < k. We show! = 0; suppose, to the contrary that> 0. SinceL; C L5, and~y € Co, We
havel; C geon({v}); so we can apply Lemma 3.34 to the griflsandgcon ({~}). Thus there
exists a proper congruen¢ = ((a’,x) =1 V') € C; wherepiv_(a’) = ¢ anda | a]. Note
that the number of proper congruengasin C; is equal to the number of proper congruenpes
in Co; since by Lemma 3.34, < p; and, by hypothesig;; < ps. Therefore, by Lemma 3.34,
there must exist a proper congruence= ((c/,x) =, d’) € C, wherepiv_(c’) = £ andd, = a}.
Now asC; andCs are in strong minimal form, by Definition 3.21,

! ! / /

a a C C
4 4 {4 4
gy < oand — L << L
9 ~M=7 9 ~ %=1

Therefore—a;, < aj < aj. It follows that, asa;|ay, aj = 0, contradicting the assumption that
piv_(a”) = £ > 0. Thereforea” = 0 and3” is the relation)” =, 0 for somed” € Z.
It follows that, by (4.2),

a—c:zi(aki _Cki)ai, b—dEl Zi(akl _Cki)bi.
a a

=1 ki =1 ki

Thus
geon({7. 1. ... fm}) C geon({B}) and geon({8.61.....0m}) C geon({7})
so that

gcon({%ﬁl, t aﬁm}) = gcon({ﬁvﬁlv s aﬁm})

Hence equation (4.1) holds.
From this result we can now prove Propositions 4.2 and 4.3.

Proof [ of Proposition 4.2] First we show that if the congruenceaysC; andC, are in minimal
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form and pivot equivalent, thed; = L£,. By Proposition 3.22, we can convett andCs to
strong minimal form andCj respectively, so that, far= 1, 2, £; = gcon(C}) and(! is pivot
equivalent taC;. By hypothesis£; C L. Thus, by Lemma 4.5, for eaghe C| andy € C),

geon ({4}) Naffine.hull(£;) = geon({7}) N affine.hull(£,).

ThusL, = Lo, as required.

We now assume thaf; = £,. Suppose that the congruence systemg, are in minimal
form; then we show thaf; andCs are pivot equivalent. Lef = ((a, X) =f b) € C1. Then as
Ly C L1, by Lemma 3.34, there exists= ({(c,x) =, d) € C» such thapiv_(a) = piv_(c) =
k and eitherf = g = 0 or f # 0 andc; | gag. Also, asL; C Lo, by Lemma 3.34, and
property (2) of Definition 3.15, ify # 0, thenay | fc,. Therefore iff # 0 andg # 0 we can
assume without loss of generality that= ¢ = 1. By property (1) of Definition 3.15¢, ¢, > 0
so that we have;, = ¢,. HenceC; andC, are pivot equivalent. [J

Proof [ of Proposition 4.3] First we show that if the generator syst§, andG, are in minimal
form and pivot equivalent, thefi; = L. LetC{ = (F/, &) andCy = (Fy, &) be congruence
systems forZ; and L, respectively, as constructed in Lemma 3.28 from the gemesgstemsy;
andg,, respectively. Then by properties (7) and (8) in Lemma 3(28s pivot equivalent te’.
Thus, by Proposition 4.2;; = L, as required.

Finally, suppose that the generator systafns= (Li,Q1,P;) andGs = (Lo, Q9, P,) are
in minimal form; then we show thaf; and G, are pivot equivalent. Lef! = (F7,&/) and
Cl = (FY, L) be congruence systems as constructed in Lemma 3.28 fronetieeagor systems
G1 and Gy, respectively. Thergy,C/ are in minimal form and, by Proposition 4.2 andC}
are pivot equivalent. Suppose € @Q; U P; and thatpiv. (v) = k. Then, by property (7) of
Lemma 3.28, there exist$ = ((a,x) =, 0) € F{ such thatpiv_(a) = k andv,a, = 1. By
Definition 3.23, there exists = ((c,x) =; 0) € F} such thapiv_(c) = k anda = ¢;. By
property (7) of Lemma 3.28, there exists € Q2 U P, such thatwgc, = 1. Hencevy = wy.
Suppose next € L; and thatpiv. (v) = k. By Proposition 3.32#C; = n — # L; so that,
by Definition 3.18, for allg € C, we havepiv_(5) # k. By Definition 3.23, for ally € C7,
piv_(y) # k. Also by Proposition 3.32# CJ = n — # Lo so that, by Definition 3.18, there
existsw € Ly such thapiv (w) = k. HenceG, andg, are pivot equivalent. (]

It follows from Proposition 4.2 and Proposition 4.3, thadyided £, C £, and£; and £,
have both their generator or congruence systems alreadinimad form, then the complexity of
checking if£; = Lo is justO(n). Note that, the computational cost is low due to the fact, that
for this quick check, each elementary operation is a corsparbetween two numbers. It also
follows from Proposition 4.2 and Proposition 4.3, thatt iifound that one pair of corresponding
pivot elements of the congruence or generator systemg,diffen we can immediately deduce
that the grids they describe also differ.
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Figure 4.3: Grid intersection.

4.3 Intersection

We will now introduce the operation of intersection, we rieguhis operation in, for example,
data dependence analysis for arrays [70]. For two gfidsC, € G, theintersectionof £, and

L, is defined as the set intersectidh N L2, which can also be thought of as the largest grid
included in bothZ; and £». In theoretical terms, the intersection operation is theabi meet
operator on the lattic&,,. If £; = gcon(C;) and Ly = gcon(Cs), then the intersection can be
computed by’ N Ly = geon(Cy U Cy).

The cost of computing the grid intersection depends on a eumbfactors. If the congru-
ence system§; andC, for £, andLs, respectively, are known, then the complexity of computing
L1 N Ly is linear in either# Cy or # C, as the congruences of one system are mapped to the other
system of congruences. If, however, only the generatoerysf; andg, for £, andL,, respec-
tively, are known and are not necessarily in minimal fornmgrththe complexity of intersection
is that of minimising and converting the generator systerhikwis, at worstO(n?m), where
m = max(# G1, # G2,n). A computation of grid intersection is given in Example 4.6.

Example 4.6 Consider the grid€; = gcon(Cy) and Ly = gecon(Cq) in G2 where
Ci:={r=10, z2+y=20} and Cy:={x =30, y=,0}.

The grids£, and £, are illustrated by the filled circles and open squares, resigely, in Fig-
ure 4.3(a). Then the grid intersection &5 N Lo = gcon(C; U C2). The minimal form of the
congruence systepgton(C; UCs) isC = {x =4 0, y =2 0}, thusC is a minimal form of£; N Ls.
Therefore, we have

LiNLy={x=60, y=20}.

The grid£; N Ly is illustrated by the filled squares in Figure 4.3(b).
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Figure 4.4: The union of two grids.

4.4 Join

We will now introduce the operation of join which will apprioxate a set-theoretic union, we
require this operation if, for example, we had a programrragt that split into two separate
threads. The reason we do not actually take a set-theoreiim us that the result would not
always be a single grid but often represented by a disjoiittruof grids. Example 4.7 shows this.

Example 4.7 ConsiderL; = ggen(G;) and Ly = ggen(Gs) in G, where

L6 0

The grids£, and £, are illustrated by the filled circles and open squares, resigely, in Fig-
ure 4.4(a). Then there is no single grid that can represents £, exactly. InsteadC; U L5 can
be represented by the union of two disjoint grids, nantly= ggen(G;) and Lo = ggen(G2),

where i = (Q* (i Z) | @)) |

The grids£} and £» are illustrated by the filled circles and open squares, resigely, in Fig-
ure 4.4(b).

For gridsLq, £s € G, thegrid join of £; andL,, denoted by, & L-, is the smallest grid that
includes bothZ; and£-. The grid join operator is the binajgin operator on the lattic&,,. If
L1 = ggen(Gy) andLs = ggen(Go), then the grid join is computed by, & Lo = ggen(G1UGo).
The cost of computing the grid join depends on a number obfactf the generator systems
G, and G, for £, and Lo, respectively, are known, then the complexity of computihg &
Lo is linear in either# G, or # G, as one set of generators is mapped to the other generator
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(a) GridsL; and L. (b) Grid L1 & Ls.

Figure 4.5: Grid join.

system. If, however, only the congruence systemand(C, for £, and Lo, respectively, are
known and are not necessarily in minimal form, then the cexipl is that of minimising and
converting the congruence systems which is, at wréh?m), wherem = max(# Cy, # Ca, n).
A computation of grid join is given in Example 4.8.

Example 4.8 Consider., = ggen(G;) and L2 = ggen(Gz) in G, where

LB ()

The grids£, and £, are illustrated by the filled circles and open squares, resigely, in Fig-
ure 4.5(a). Then the grid joit; @ L, is generated by

3020 0
gl © g2 = @, ) ;
2 4 2 4 0
thus, the generator system
G=|o 10 ’ 0
0 2 0

is a minimal form olG; @ Go andL; & Lo = ggen(G). The gridL; @& L, is illustrated by the
filled squares in Figure 4.5(b). Note that hefe & Lo # £1 U Ls.

45 Difference

For any pair of gridsC,, £, € G, thegrid differenceof £, and L,, denoted byL; © Lo, is
defined as the smallest grid containing the set-theoreffierdhce of£; and£,. A computation
of grid difference is given in Example 4.9.
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Figure 4.6: Grid difference.

Example 4.9 Consider the three grids

L= gcon({az =0,y = O}),
Ly :=geon({z =1 0,z +y =; 0}),
L3 := gcon({x =10,z +y=4 0})

The grids£, and Ls are illustrated by all the circles (open and filled) and opejuares, respec-
tively, in Figure 4.6(a). Then the grid difference

L16 Ly = gcon({a: =10,z +y =9 1})

isillustrated by the filled circles. The grids, and L3 are illustrated by the filled circles and open
squares, respectively, in Figure 4.6(b). In this case, the difference isC; © L3 = L1, which
is illustrated by the circles. Note that hefg © Lo # L1\ Lo.

We now introduce the algorithm that produces the grid diffee. As we have seen in Exam-
ple 4.9 the grid difference will only produce something ettt £ or @ if £, divides the points
of £, exactly into two disjoint sets. Therefore informally thedydifference algorithm can be
thought of as trying to split the points of the grid into a jtarh, so that each alternate point is in
the other partition. This is only possible if the grid to bésacted is equal to one of the partitions
as can be seen in Figure 4.6(a) Lif = L5 theno is returned otherwise, in all other casés,is
returned.
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Algorithm 1: The grid difference algorithm.

Input: Nonempty gridsC; = gcon(Cy) andLy = geon(Cq) in Gy,.
Output: A grid in G,,.

1) L =0

2 while 33 = (e =¢ 0) € Co

(3) Cy:=C2 \ {B}

4) if £1 ¢ geon({B})

(5) if £ C geon({2e = 0})

(6) Lg:= gcon(C1 U{2e — f =2 0})
(7) L=L & Ls

(8) else

9) return £

(10)  return £’

Algorithm 1 provides an implementation for grid difference

Proposition 4.10 Let £, £, € G,, and suppose that is the grid returned bylgorithm 1. Then
L=L © L.

Proof. By the initial conditions,., # @, L, # @. Let L' be the empty grid ir5,, defined on
line (1). Then the algorithm executes lines (2-10). Notluat there are two lines in this range
that return a value fo£; line (9) whenZ = £, and line (10) wherC = £’.

Consider first the case when line (9) is executed so that £,. By definition of grid
difference,L O £; © L. Hence it remains to show thdy C £, © Lo. If p € L1\ Lo, then,
by the definition of grid differencep € £ © L£5. Suppose now thah € £; N L. As line (9)
is only executed by following the else branch of the condaioon line (5), for some congruence
B = (e =¢ 0) € Cy, there exists a poinf € £; that does not satisf{2e =; 0) so thatq does
not satisfys and hencey ¢ £,. Consider the point = p + 2(q — p). Then, ag is an integral
affine combination of points i;, r € £;. Lete = ((a,x) — b). Then, ap € L, satisfiess,
((a,p) — b =y 0). If r also satisfieg}, then((a,r) — b =; 0) and hencg(a,2q) — 2b =; 0)
so thatq would satisfy(2e =¢ 0); a contradiction. Thus ¢ L,. Thereforep = 2q — r is an
integral affine combination of points ifi; \ £2 and hence € £, © L2. Asp € £; = L was
arbitrary, L C L1 © Ls.

Suppose now that line (9) is not executed. Then the looptéerance for each congruence
in Cy before executing line (10). SuppogeC, = c andg; = (e; =5 0) € Cy is the congruence
selected at line (2) in theth iteration of the loop, fob < ¢ < c. Let £, = @ and £, denote
the grid £ after thei-th iteration. Then we need to show th&t = £, © L£2. We prove that
L. C Ly 6 LyandL] D Ly & L, separately.

We first show that’!, O £ & Ls. Sincel; & L, is the smallest grid containing; \ £, we
just need to show that!, O £, \ Lo. To do this, letp € £; \ Ls; then we prove thap € L. As
p ¢ Lo, forsomej = 1,...,¢, p ¢ geon({B;}). Consider thej-th iteration of the loop. Then
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the test on line (4) will succeed and the execution continvtsthe test on line (5). Moreover, as
we know that line (9) will not be executed, this test must seccso thap € geon({2e; =; 0})
and lines (6-7) will be executed with= 3;. Asgcon ({3;}) andgcon ({2¢; = f}) are disjoint
and their set union is the grigton ({2¢; = 0}), p must satisfy the congruend@e; — f = 0).
Let Ls, = geon (Cy U {2e; — f =55 0}) as on line (6). Then, as € £, we havep € Ls;
hence, after line (7)p € E;. Foreach = j +1,...,c, eitherl, = £, , orline (6) is executed,
in which caseC; D £!_;; hencep € L;. In particular,p € L... As this holds foralp € £ \ Ls,
LD L1\ Lo

Finally we prove, by induction ofy that, for eachi = 0, ...,c, £, C L1 & Ls. Initially £j, =
@ and the result holds. Suppose now that 0 and thatl;_; C £, © L. If £ C geon({3;}),
then£] = £;_, is unchanged by the iteration. On the other hand},ifZ gcon({f;}), the test
on line (4) will succeed and the execution continues withtdst on line (5). Moreover, as we
know that line (9) will not be executed, this test must sudcs@that; C gcon({2¢; = 0}).
Let L, = gcon(C1 U {2e; — f =o 0}) as defined on line (6); thes, N Lo = @ so that
Ls, € L1\ Ly C L1 & Ly. Since, on line (7)L] is assigned”,_; & Lg,, by definition of grid
join and grid differencef C £1 © L,. Therefore, letting = ¢, we havel,, C £; & Lo, O

AssumingC; and(C, are known and in minimal form fof; and L5, respectively, it follows
from the complexities of minimisation, conversion and camgon operations that the grid dif-
ference algorithm, Algorithm 1, has worst-case complegify:*).

4.6 Rectilinear Grids

Recall from Definition 3.9 that a rectilinear grid is a gridathcan be represented by a non-
relational set of congruences or generators. In this seatie will show how to compute, for
any grid£, the smallest rectilinear grid that contaifis We also show how such grids can provide
safe approximations for any rational grid. The followingotwropositions show that if we are
given a grid represented by a generator system we can pradretilinear grid represented by
either a congruence or generator system.

Proposition 4.11 LetL = ggen(G) whereG = (L, Q, {p}). Letg = # QandQ = {qi, ..., qq}.
Let £’ = gcon(C’) such that:

¢ = {({es,%) =y )

1<i<n,V0eL:l;=0,g= gcd({qli,...,qqi})}. (4.3)

Then/’ is the smallest rectilinear grid containing.

Proof. We first show thatC C £’. Suppose that € £ and that for somé € {1,...,n} and
forall £ € L .¢; = 0. Letg = gcd({qli,...,qqi}), 8 = (<ei,x> =gl pi),l = # L and
L={¢t,...,4}. Asv € L we can assume that

v=a1- b+ ta L +bqrt+by .+ P,
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foray,...,ap € Randby,...,b, € Z. Thusv; = by - qu; + -+ + by - g4 + p @andv; =g p;.
Hence((e;,v) =, pi), sov satisfiesd. Hence for alli, wherel < i < n, v satisfies all the
congruences of’ and thereforer € L'

Now to see that’’ is the smallest rectilinear grid containing let us suppose that there is
another gridZ” such thatC” is rectilinear andC C £” C £'. LetC” be a congruence system
such thatl” = geon(C”). Suppose that, for somee {1,...,n} andg” > 0 there isy =
((ei,x) =47 pi) € C". SinceL C L”, any line£ € L is also a line for a generator system
that represent£”. Thus, for alla € R, (e;,a - £) =, 0. Thus/; = 0 and as this must hold
for all £ € L, there exists? = ((e;,x) =, pi) € C' whereg = ged ({qui, .- -, 4q}). Then, as
L C L' foralll < j < g, q; is a parameter of a generator system that repres€htso that
(ei,q;) =|g 0. Hence, forallj € {1,...,q}, g"|g;i, S0g"|g. HenceL' C L”, and asL” C L/,
that meang’ = L”. Therefore£’ is the smallest rectilinear grid that contaifis [J

Proposition 4.12 Let£ = ggen(G) whereG = (L, Q, {p}). Let¢ = # QandQ = {qi,...,qq}.
Let £’ = ggen(G’) whereG’ = (L',Q’,{p}), such that, for eachi € {1,...,n}:

1. if, for somef € L, ¢; # 0, then lete] := e;;

2. if, forall £ € L, ¢; = 0, and for somey; € Q, ¢;; # 0 then letq, := |g| - e; where
g = ng({q1i7 te >qu})-

Then/’ is the smallest rectilinear grid containing.

Proof. By Proposition 4.11 there is a grid; such thatZ, is the smallest rectilinear grid that
containsC. Also by Proposition 4.11 there is a guity such thatCs is the smallest rectilinear grid
that containC’. Now by the definition of£’ we have that’’ is rectilinear thusC’ = L,. All that
remains is to show that’ = £;.

We will first show thatZ” C £;. That is every generator @’ satisfies every congruence
of C;. Suppose that for a# € L there is someé € {1,...,n} such that’; = 0 and for some
je{l,...,q¢},q; € Qandgj; # 0. Then there iy, € Q' such thalg, = |g| - e; and§ € C;
such that3 = ((e;,x) =, pi), whereg = ged ({qu;, ..., qq}). Hence,((e;,q}) =, 0). So
q; satisfiess and thereforey; satisfies all congruences 6f. Hence all parameters 6}’ satisfy
each congruence @f;. Sincel C £4, any linef € L is also a line for a generator system that
representL;. Thus, for alla € R, (e;,a - £) =4 0. So if there is¢ € L such that/; # 0, then
there ist; € L' such that = e; and for alla € R, (e;,a - £;) =, 0. SOL C L;.

Now as/.; is the smallest rectilinear grid that contaiisve must have thaf; C £/, hence
L=/, O

4.6.1 Covering Box

In this section we will show how we can reuse the standaraviatelomain, see [26] and Chap-
ter 2, to represent gectilinear grid. Recall from Section 2.3.2 that we can represent a non-empty
n-dimensionarational boxB by a sequencé/y, .. ., I,,) of rational intervals.
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Figure 4.7: Types o?2-dimensional box tilings.

An n-dimensional box5 could be used repetitively over anrdimensional vector space to
“tile” and therefore “cover” the vector space. A tiling ostellation of a vector space is a collec-
tion of objects that fill the vector space so that the objeotaat overlap or leave gaps. Therefore
it follows that the boxB determines aovering of the n-dimensional vector space, where the
given boxB provides the position for one of the tiles. By defining a gdbe the vertices of
the tiles in such a tiling, we obtain a rational rectilineaidgl and call3 a covering box forL.
For this section we will assume that any unbounded interaalthe form[yu, oo]. Example 4.13
shows informally how a box can tilezadimensional vector space.

Example 4.13 In Figure 4.7 two tilings are given, in Figure 4.7(a) both éntals are bounded
and the box is given b = ([0,2],[0,2]). It can be seen that the box will tile the whdié
vector space and the covering box will represent a rectilingrid £ such thatC = gcon({m =
0,y =2 0}).

In Figure 4.7(b) only one interval is bounded and the box iegibyB = ([1,o0], [0, 3]). It
can be seen that the box will only tile the half-spdsec R?|1 < z}. This covering box will
represent the gridC such thatl = gcon({w =1,y =3 0}). The equation: = 1 is approximated
by an unbounded intervdl, co] to show that ther variable only takes one value, so the tile is
not repeated along the direction of the that variable.

If the box B = (I3,...,I,) has an intervall; which is the singletoriu, ] then if v € L,
(V1,..., A v, ...,uy) € Lforall A € R. In other words, the generator representationgor
contains a line. Informally, the reason a line is represtig a singleton is that the; variable

will take all values), for A € R. So a singleton is the smallest amount we can take before the
next tile would occur. So in the direction of the line thertijiwould be repeated infinitely many
times, once for each € R.

Definition 4.14 (A Box RepresentsL = gcon(C).) LetB = (I4,..., I,) be a non-empty box.
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Foreachi =1, ...,n, letI; = [u;, v;); then, if u; # vy, let

g i ((e;,x) =p,—pu; i), if I; is bounded;
((ei, x) = i), if I; is not bounded.

Then we say that the bdkrepresentshe grid £ := gcon(C), where
C={Bi|1<i<np#vi} (4.4)

Note that the congruence systéhis in minimal form. Observe also that, when = v; for some

1 <4 < n, there is no corresponding congruenc&ifor ., v;|; this is because, in this case, the
tiling will cover every value in this dimension and hencerthwill be a linee; in the generator
representation of.

Definition 4.15 (A Box RepresentsC = ggen(G).) Alternatively letB = (I1,...,1I,) be a
non-empty box. For each= 1, ...,n, let I; = [u;, v;]; then let

e;, if u; = v;, sov; is aline;

lvi — il - e, if p; # v; and; is bounded, sw; is a parameter;

and
P = (t1,- s n)-

Then we say that the bdXrepresentshe grid £ := ggen(G), where

G:={vi|1<i<n}u{p}. (4.5)

Note that the generator systejris in minimal form. Observe also that, whénis unbounded for
somel < i < n, there is a no generator @& for [u;, v;]; this is because, in this case, the tiling
will cover only one value in this dimension and hence thert lvé an equatione;, x) = y; in
the congruence representation/bf

Definition 4.16 (Covering Box.)Let £ be a non-empty rational grid. Aovering boxfor £ is a
rational box representing the smallest rectilinear gricititontainsc.

We now provide a procedure for computing the covering box gific.

Proposition 4.17 LetL = ggen(G) whereG = (L, Q, {p}). Letg = # QandQ = {qi, ..., qq}.
LetB = (Iy,...,I,) such that, for eachh € {1,...,n}:

1. if, for somef € L, ¢; # 0, then letl; := [0, 0];

2. if,forall e L,¢; =0,andqy; = --- = g4 = 0, let I; := [p;, ool;
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3. otherwise, lef; := [p;,p; + |g|] whereg = gcd ({qui, - - ., qqgi})-
ThenB is a covering box foiC.
Proof. By Proposition 4.11 and Proposition 4.12 we can compute dhgrtience systei and
generator systerg’, respectively, such that’ = gcon(C’) = ggen(G’) and £’ is the smallest
rectilinear grid containingC. ThenC’ is the set given in Equation (4.3) agd = (L', Q', {p})
such that for eachh € {1,...,n} conditions (1) and (2) hold from Proposition 4.12. &t=
(I1,...,I,) be the box. The’ is equivalent to the system

G":={vi|1<i<n}u{p}
such that

{ei, if 11; = v;, sov; is aline;
V; =

|vi — il - €, if u; # v; andl; is bounded, sw; is a parameter;

and
P = (K1, Hn)

and(’ is equivalent to the system
C" =15 ‘ 1<i<n,u #v;}

such that
((ei,x> =v;—ui ,ui), if I; is bounded;

Bi = o
((ei, x) = i), if I, is not bounded.

Thengcon(C') = geon(C”) andggen(G’) = ggen(G”) and by Definitions 4.14 and 4.15, the box
B represents the grid’ = gcon(C’) = ggen(G’). HenceB is a covering box fol. [

The complexity of computing the covering box for a gfdd= ggen(G) using the procedure given
in Proposition 4.17, i@(nm), wherem = # G. If however only the congruence system fbis
known then the complexity of computing the covering box &t tbf minimisation and conversion,
namely,O (mn min{m, n}) wherem = # C. Two computations of the covering box are given
in Example 4.18.

Example 4.18 Consider grid£; = gcon(Cy) = ggen(Gy), whereC; := {x =3 0,y =2 1} and

o (=3 2).()

The grid£; is illustrated by all the squares in Figure 4.8(a) and it camseen that; is rectilin-
ear and and box3; = {[0,3],[1, 3]} is a covering box representing;. The box3; is illustrated
by the hatched area in Figure 4.8(a) and the covering is repnted by the dashed lines.
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Figure 4.8: Covering boxes for a grid.

Consider the gridCs = gcon(C2) = ggen(Gz), whereCy := {x =, 0,2 + y =3 2} and

o (= (1 2)()

The grid £, is illustrated by all the filled squares in Figure 4.8(b) aniccan be seen thaf, is
not rectilinear and that the bo, = {[1,2],[1,2]}, is a covering box foc,. ThusB, represents
the grid £}, = gcon({ac = 1,y = 1}) which is illustrated by all the squares (open and filled) in
Figure 4.8(b). The bo®; is illustrated by the hatched area in Figure 4.8(b) and thearing is
represented by the dashed lines.

Note that, in general, a grid € G,, does not have a unique covering box. For instance,
if B=(I,...,1;...,1,) is a covering box forC, and the intervall; = [u;, ;] is bounded,
then the box8’ = (Iy,...,I/,...,1I,) is also a covering box fot if, for somem € Z, I/ =
[,ui +m(v; — pi), v + m(v; — ,ul)] Example 4.19 illustrates this.

Example 4.19 Recall from Example 4.18 and Figure 4.8(b) the gfigwhereL, = gcon({w =
0,z +y =3 2}) and B, = {[1,2],[1,2]}. Then it can be seen that, = {[0,1],[0,1]} and
By = {[4,5],(2,3]} are also covering boxes fat;.

Although the covering box is not unique it could be enforcgadcbmputing it from a grid which
is represented by a homogeneous system in strong mininmal for

4.7 Affine Image and Pre-image

An affine transformation on the vector spake is a transformation which preserves collinearity
and ratios of distances. That is an affine transformatioagadoints along a line and maps them
to points along a line, maps a midpoint of a line segment todpoint and preserves intersection
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q*(L)

if ... then
L:=¢(L,u,3u)
L:=¢(L,v,u+v)
q*(L)
L= ¢(L,u,dbu)
L:=¢(L,v,u+v)

endi f

Figure 4.9: An abstraction af.

properties between lines. However, it does not preservatigges or lengths of lines. Affine
transformations can be represented by matricéR"in™ and it follows that the sef,, is closed
under the set of all affine transformations ®t. The affine image and affine pre-image operators
are provided by a ‘single update’. Given a gidd € G, a variablez; and linear expression

e = (a,x) + b with coefficients inQ, theaffine image operatop(L, zx, e) maps the grid_ to

T n
{(pla"'apk—17<a7p>+b7pk+1a"'7pn) ER peﬁ}

Conversely, thaffine pre-image operatas—! (L, 2, e) maps the grid_ to

n T
{pER ‘(p1,---,pk—1,<a,p>+b7pk+1,---7pn) 65}'

Observe that the affine imagg L, z,, ¢) and pre-images—' (L, 1, e) are invertible if and only
if the coefficienta;, in the vectora is non-zero.

Example 4.20 Consider again Example 3.12 and the recursive procedurdgnré 3.4. Taking
the initial grid to be Ly, thenx : = 3xXx, the first assignment ig, corresponds to the trans-
formation (Lo, u, 3u). This returnsC{ := ggen(L, @, Py) wherePj = {(3,0,0)T }. The next
assignment ingisy : = x + y. The corresponding affine transformation, appliedd¥ is
¢(Ly,v,v + u) and we obtain the grid’? := ggen(L, @, F) where P} = {(3,3,0)"}. Now
the assignment i isy : = 5+x. The corresponding affine transformation, applieddg is
¢(LE,v,5u) and we obtain the grid’} := ggen(L, @, P3) whereP§ = {(15,3,0)T}. Finally
the last assignment igisy : = x + y. The corresponding affine transformation, applied to
L£3,is (L3, v,v +u) and we obtain the grid’§ := ggen(L, @, P}) wherePy = {(15,18,0)" }.
Figure 4.9 contains an abstract versiayi of q where the the argument to the procedure is re-
placed by a grid and the assignment statements are replacételcorresponding affine transfor-
mations. Thus we can now compute the grgs= ggen(L, @, ;) for anyi wherei is the number
of iterations through the body of the procedure. In partisuP, = P; and we have computed
Py, P, P, and P3, as seen in Example 3.12. Henfe= Lo @ L1 ® Lo & L3 represents a
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p(var u, var V)
u:=3u+2v+1
while ...

u:=u+3
endwhi | e

Figure 4.10: A simple procedure.

fixpoint for the procedure, thus it includes all possibleues for the vectofx,y)™ that might be
obtained as a result of calling. Then if we call the procedure with the values= 2 andy = 0
as in [61], then all the possible values for the vectary)T are represented by the grid

gCOH({X =28 27y =12 O}) = ¢(¢(£7X72X)7y72y)'

We will now introduce the generalized affine image operafdris determines a set of con-
gruence relations that hold between the given grid and itgyan Clearly, since the relations are
congruences, the image is also a grid. Note though, thatdicise a hyperplane will be replaced
by a, possibly infinite, set of hyperplanes.

Thegeneralized affine imageesp.,generalized affine pre-imapis an extension of the affine
image (resp., affine pre-image) operator defined above.nGivgrid£ € G,,, linear expressions
¢’ = (¢, x) +d ande = (a,x) + b with coefficients inQ andf € Q, the generalized affine image
operatory = (L, € e, f) is defined as

Vv,weR": (v,w) €y < ((c,w)+d=; (a,v)—l—b)/\( /\ wizvi).

0<i<n

c; =0
Note that, wher’ = z; and f = 0, then the transformation is equivalent to the standardeaffin
transformation ornC with respect to the variable;, and the affine expressian that is

¢(£7 Tk, e, 0) = ¢(£7 T, 6).

However, where’ = z;, and f = 1, then the transformation maps the painto the set of points
{ (.1'1, ce axk—lvm;ka-i-lv s 7$n) | ':L';g =1 (a,x> +b }

The following example illustrates how the generalized affimage can be used to model the
effect of a procedure containing a while loop.

Example 4.21 Consider the program procedure in Figure 4.10. Suppose thesdure takes the
initial values (a,b). Then the procedurp will map u to 3a + 2b + 1 + 3: for some: € Z and
leavev = b unchanged. Now considering the general case, where thalinélues foru andv
are given by the points of the grid, then, after executing, the values ofi andv will be given
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by the points of the gridh (L, z, 3x + 2y + 1, 3). Let us now consider the specific initial condition
L = ggen(@, o, P) whereP = (J39). By considering one poinp := () we can see that
wheny is applied to the poinp we get the set

L0061

1 4 1
(L, z,3x + 2y +1,3) = ggen (Q,@, (0 0 3))

Hence,

4.8 Implementation

The intersection and grid join just take the union of the cargce or generator systems, respec-
tively, so that, from a theoretical perspective, these Iwmplexityo(n) as noted in Sections 4.3
and 4.4, respectively. However, in the implementation, ss&ime a common divisor for all the
coordinates or coefficients in the system. Hence, combitliegsystems requires changing the
denominators of both components to their least common phailtvith a consequential need to
scale all the numerators in the representation; giving astease complexity 00 (n?) if both
systems are in minimal form.

There are many operations that a practical domain of gridédgorovide for applications in
program analysis and verification. For instance, ¢bacatenatiorof two grids £; € G, and
Lo € Gy, (taken in this order) is the grid i&,,, ,,, defined as

('mlv"' al‘n)T € El

(y17"'aym)T S £2

(.1'1,... s Ly Y1y« - aym)T € Rn-ﬁ-m

Other operators that could be required are those which tdt @move, rename and map the
space dimensions, or expand and fold them along the line8Gjf [All of these operations
have been specified and implemented, within the Parma Riighébrary,ht t p: / / www. cs.

uni pr.it/ ppl/,where all the code and documentation is publicly available

4.9 Related Work

In [38,39] Granger considers operators for comparing gaitls computing the greatest lower and
least upper bounds, that is the intersection and join reisdc In particular in [39, Section 7] the
complexities of each of the operations is stated. The jogratipn has complexit) (n* log, n),
this is because the operation takes generators of one gtiddds them one at a time to the gen-
erators of the other grid and at each stage minimises thissgetem. Unfortunately, as Granger's
generator minimisation algorithm has complexiyn?log, n), it is this repeated minimisation
that causes the complexity of the join to be so high. If oud ggin operation where to be applied
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similarly to a set ofn generators we would have a complexity(c)(n‘*). The grid meet opera-
tion which also minimises the addition of one congruencetaha has complexity) (n*) as the

congruence minimisation has complexﬁh{rﬁ’) and it is performed at worst times. Finally the

comparison has a complexity 6f(n?).

The operations provided by Quinton et al. [71, 72] for thelgrart of theZ-polyhedra which
are similar to our operations are those grid intersectidimeimage and affine pre-image. The
operations of grid join and grid difference, where the res@ih single grid, are not considered.
Instead the join operator takes two grids and £, and returns the s€tC,, £2} unless one, say
L1, is contained in the other, in which case they return theelarg,. Similarly the difference
operation returns a set of lattices representing the skrelifceC; \ L£2. This is calculated by
computing a basis of parameters for each of the two lattisesguthe Smith Normal Form algo-
rithm [67]. So if£1 = ggen(2, Q1, {p1}) whereQ = (qi,...,q,) is the basis of parameters,
thenL, = ggen (@, Q2, {p2}) whereQ, = (a1qi, . .., a,qy). Then the set theoretic difference
is

Li\ Ly := (U ggen(@,Qg, {VZ})) \ L1N Ly
i=1

where the points/; for each of the distinct grids to be in the union are

n CLj—l

vi=pi+ Y kqj

j=1 k=0

for1 < i < m wherem := ]_[?:1 a;. Therefore the overall complexity of calculating the dif-
ference isO(n*m). As there is no congruence representation, the intersectidwo lattices
is computed directly from the generator representatiofisgtefined version of this method is
provided in [71] which we note that, as for computing the adadorm, has complexity) (n?).
Muller-Olm and Seidl [60—-62] consider analysing progranteege basic statements are either
affine assignments or non-deterministic assignments. ffime assignments are therefore affine
transformations on a single variable at a time, equivalenthat described here. The join is
computed by adding an extra generator to a system that iadgirim minimal form. Thus at
each stage the minimisation algorithm must be applied. ttnfately, like Granger, to join two
systems ofr generators requires applying their minimisation algarth times, thus giving the
join a complexity ofO (n*log, n).

4.10 Conclusion

We have shown in this chapter that we have operations foraheadh that approximate the set-
theoretic operations by producing a single grid. We intaatliintersection and join operations
with worst case complexit® (n3) for both, which improves on previous proposals. We desdribe
a grid difference operator which returns the smallest sirgyid that contains the set-theoretic
difference. We proposed a single update affine image anéhpage operators as well as new
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generalised affine image and pre-image operators which miagte points to sets of points.
Finally we have introduced the notion of a rectilinear gtleht is, a grid that can be represented
by a set of non-relational congruences. Then we have shatmiiacan reuse the interval domain
by creating a covering box for a grif, that is, a box that represents the smallest rectilinear gri
that contains’.






Chapter 5

Grid Widening and Weakly Relational
Grids

5.1 Grid Widening

It was observed by Granger [41] that, if the grid generataus loe in the rationals, then the grid
domain does not satisfy the ascending chain condition.

Example 5.1 Consider the grid<; = ggen(G;) for i € Z, where

e (=3 3).0)

Then for each, £; C £;,1. Hence we have an infinite increasing chain.

So to guarantee termination of the analysis, a wideningatjoer is required. A simple and
general characterization of a widening for enforcing anceerating convergence of an upward
iteration sequence is given in [26, 27,30, 31]. We assume aeninor variation of this classical
definition (see footnote 6 in [31, Page 275]).

Definition 5.2 (Widening.) Let(D,}, 0, @) be a join-semilattice. The partial operat& : D x
D — D is awideningif

1. foreachd,ds € D, dy F do implies thatd; V ds is defined andl, - dy V ds;
2. for each increasing chaidy + d; I ---, the increasing chain defined k¥ := d, and

di = d; V (d; ® diy1), fori € N, is not strictly increasing.

69
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Example 5.3 Let us consider the simple piece of code

X :=8 (P1)
for i :=1tom (P2)

X 1= x/[2 (P3)
endf or

Let E;i € G- denote the grid computed at thieh iteration executed by the poiRy;. Initially,
E? = @ = geon({l = 0}), for j = 1, ...,3. After the first iteration of the loop we have the
following grids:

L1 = geon({z = 8}),
L= geon ({z = 8}),
L= geon ({z = 4}).

Then after the second iteration of the loop we have the grids:

£3 = geon({z = 8}) @ geon ({z = 4})
= geon({z =4 0}),
£3 = geon({z =, 0}).

Then after the third iteration of the loop we have the grids:

L3 = geon({z =4 0}) @ geon({z =, 0})
= geon ({z =, 0}),
L= geon ({z =1 0}).

It can be seen that afteriterations we will have the grid = gcon({z =,/; 0}). In this case
the widening would be used an acceleration tool that can @axprate the grid we would have at
the end of thd or loop without having to calculate each iteration.

As well as formal requirements in Definition 5.2 given abowe, also believe it is important
to require that, as with all operations, we have a widenir bas an efficient implementation.
We will give two widenings, one for grids represented by agroence system and one for grids
represented by a generator system. Both of the widenindsassume that one of the grids is
represented by the congruence or generator system in stnamignal form. We will show that
these widenings are well defined and come with simple syintabecks which have an efficient
implementation.
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5.2 Congruence Representation Widening

We introduce below the widening that is performed on gridsclare represented by a congru-
ence system. The widening also assumes that one of the grejsresented in minimal form and
the other is represented in strong minimal form.

Definition 5.4 (Grid Widening for the Congruence System.)Let £; = gcon(C;) and Lo =
gecon(Cy) be two grids inG,, such thatC; C Lo, C; is in minimal form and’s is in strong minimal
form. Then thegrid wideningL, V, L is defined by

Lo, if L1 =@ ordim(L1) < dim(Ls),
LN Ly e 32 1 im(£1) < dim(£Lo)
geon(Cs), otherwise,

whereCs := {y €Cy | 3B€CL. B v}

The following proposition will show thatV,.’ satisfies the conditions of Definition 5.2 and there-
fore that it is a widening.

Proposition 5.5 The operator V' is a widening onG,,.

Proof. In order to show thatV,.’ is a widening operator, we prove that conditions (1) anditi2)
Definition 5.2 hold. LetC; = gcon(Cy), L2 = geon(Cs) € Gy, WwhereLy C Lo, Cy is in minimal
form andCs is in strong minimal form.

By Definition 5.4, if£; = @ ordim(£,) < dim(L2), thenL; V. L2 = L4. Therefore, in this
case, condition (1) holds. Clearly, the empty grid can ocruy as the first element of a strictly
increasing chain of grids; moreover,4fand £’ are any two successive and distinct grids in the
increasing chain of condition (2) in Definition 5.2, ther< dim(£) < dim(£’) < n. Hence, the
case wher; = @ ordim(£;) < dim(£Ls) hold can occur no more than a finite number of times
in such a chain.

Suppose now that; # @ anddim(£,;) = dim(L2), so that the second case of the widening
computation applies (note that, due to the inclusion hyggithdim(L£,) > dim(Ls) cannot
hold), and letCs be as given in Definition 5.4. Then, sin€g C C,, condition (1) holds. By
Proposition 4.2, ifCs = Co, we havel; = Lo; thus, if L1 # Lo, we have#Cs < #Cs. By
Lemma 3.34, a€; andC, are in minimal form, it follows that# Co < # C; so that, if£, # Lo,

# Cs < #C;. Therefore condition (2) of Definition 5.2 holds[]

Assuming thatC; = gcon(Cy), L2 = geon(C2) and we knowl; C L, this widening can be
implemented to have complexity(n?), this is since all that is required is the copying of at most
n congruences fronC, to £ V. Lo. If however the congruence systarn is not in minimal
form and the systerds is not in strong minimal form, then the complexity of widegiis that

of the minimisations, namel®) (mn min{m,n}), where#C; = my,#C, = my andm =
max{mq,mso}. In Definition 5.4, it is required thats is in strong minimal form. Example 5.6
shows that this is necessary for the operai@f to be well-defined.
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Figure 5.1: Grid Widening.

Example 5.6 Let £, := gcon(Cy), L2 := gcon(C2) and L3 := gcon(C3) where

Cl = {:E =2 07 Y =2 0}7
CQZ{$510,$+ZJ520},
Cs3={x =10, 3z +y =2 0};

then £, = L£3. The grid £, is illustrated in Figure 5.1(a) by the filled circles and theds
Lo, L3 are illustrated in Figure 5.1(a) by the open squares. No# timlyC; and(C, are in strong
minimal form. Therefore, assumiidg (resp.,Cs’) is defined as in Definition 5.4 usiriy andC,
(resp.,C; and(Cs), we have

Cs={r+y=20} and Cs = {3z +y =20}

The grid £y V: L2 = geon(Cs) is illustrated in Figure 5.1(b) by the dashed lines and thi gr
L1 V. L3 = geon(Cy') is illustrated in Figure 5.1(b) by the complete lines. ThixsV, Lo =
geon(Cs) # geon(Cs').

The following example shows that the result of applying théeming V. depends on the variable
ordering.

Example 5.7 To see that the widenings depend on the variable orderinggsider the gridsC; =
geon(Cy) = geon(Cy) and Ly = geon(Cq) = geon(Ch) in Go, where

Cri={bx+y=10, 222=,0}, Co:={bz+y=0, 44z = 0},
Ci:={9y+x=10, 22y =, 0}, Ch:={9% +z=,0, 44y =, 0}.

Assume fo€; andC, that the variables are ordered so thaprecedeg, as in the vectotz, y)T;
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then,C; and(C, are in strong minimal form and, according to Definition 5.4 wbtain
L1V Lo = gcon({5ac +y= 0})

On the other hand] andC}, are in strong minimal form when taking the variable order vehe
precedes:. In this case, by Definition 5.4,

L1V Lo = gcon({9y +x= 0})

5.3 Generator Representation Widening

We introduce below the widening that is performed on gridéciare represented by a generator
system. The widening also assumes that one of the gridsriesepted in minimal form and the
other is represented in strong minimal form.

Definition 5.8 (Grid Widening for the Generator System.) Let £; = ggen(G;) and L2 =
ggen(Gs) be two grids inG,, such thatl; C Lo, Gi = (L1,Q1, Py) is in minimal form and
Ga = (L2, Q2, P») is in strong minimal form. Then thgrid widening£, V; L. is defined by

Lo, if L1 =@ ordim(L;) < dim(L»);
IR 1 (L1) (L2)
ggen(Gs), otherwise,

whereGg := (L2 U (Q2\ QS),QS,PQ) andQs :={veQ@s|Juec@; . ulv}

The following proposition will show thatV,;’ satisfies the conditions of Definition 5.2 and there-
fore that it is a widening.

Proposition 5.9 The operator V' is a widening onG,,.

Proof. In order to show thatV}’ is a widening operator, we prove that conditions (1) and (2)
in Definition 5.2 hold. Letl; = ggen(G1), L2 = ggen(Ga) € Gy, wherel; C Ly, G1 isin
minimal form andg, is in strong minimal form.

By Definition 5.8, if£; = @ ordim(£,) < dim(L2), thenL; V; L2 = L. Therefore, in this
case, condition (1) holds. Clearly, the empty grid can ooy as the first element of a strictly
increasing chain of grids; moreover,4fand £’ are any two successive and distinct grids in the
increasing chain of condition (2) in Definition 5.2, ther< dim(£) < dim(£’) < n. Hence, the
case wher; = @ ordim(£;) < dim(£Ls) hold can occur no more than a finite number of times
in such a chain.

Suppose now that; # @ anddim(£;) = dim(L2), so that the second case of the widening
computation applies (note that, due to the inclusion hyggithdim(£;) > dim(Ls) cannot
hold), and leiGs = (Lg, Qs, Ps) where

Ps=P), Qs={veQ:|TueQi . ulv}, Ls=LU(Q2\Qs).
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Figure 5.2: Comparing the two grid widenings.

Then, ifggen(Gs) C ggen(Gs), we have thal.g C Lo, but by Definition 5.8y C L, therefore
L, = Ls. Hence we must have that for gl € )2, 3q; € Q1 such thaty; || g2, So condition (1)
holds. Now ag); is pivot equivalent taQs, then# Q1 = # Q». LetC; = (F1,&1) andCsy =
(F2, &) be congruence systems 65 and £, respectively, as constructed in Lemma 3.28. Then
by Lemma 3.34, we get that &, > # &, but sincedim(L£,) = dim (L) and Ly, Lo are both
in minimal form we must havet &, = # &, hence by Lemma 3.28+ Ly = # L,. Now as
L1 C L2 we must have that for all line& € L; such thapiv. (¢;) = k, there exist¥y € Lo
such thatpiv (¢2) = k. ThereforeG, || G,. Hence by Proposition 4.30; = L£,. Thus, if
L1 # Lo, we know# Ly < # Lo andggen(G2) C ggen(Gs) so condition (1) holds and we have
three cases to consider. The firstighi); < # Qao,then#t Ly > # Lo +# Qo —# Q1 > # L.
The second case is# Q1 = # @2, then there exista € @1 with piv, (u) = k such that for
all v e Qif pivy (v) = k, thenuy, # v, hencev € Lg, therefore# Ly > # L. Finally for
the last case suppose(@; > # ()2, then there exista € @ with pivy (u) = k such that for
all v e Qq, piv, (v) # k, hencev € Lg, therefore# Ls > # L;. Therefore condition (2) of
Definition 5.2 holds. O

Assuming that; = ggen(G), L2 = ggen(G2) and we knowl; C L» this widening can be
implemented to have complexit (n2) this is since all that is required is the copying of at
mostn generators fronmC, to £1 NV, Lo. If however the generator syste@ is not in minimal
form and the systerg, is not in strong minimal form, then the complexity of widegiis that

of the minimisations, namel) (mn min{m, n}), where# G, = m1,#G, = my andm =
max{mi, mo}. The following shows that the widenings for each repredemteare not always
equivalent.

Example 5.10 Consider gridsC; = gcon(C1) = ggen(Gi) and L2 = geon(Ca) = ggen(Ga)
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C1 ={x =20, y =50}, 91:<@, (3 g),(g)),
Co={r=10, x+y =20}, %:(@,G g),(g))

Then it can be seen th&, and G, are in strong minimal form.£; and £, are the same as in
Example 5.6 and can be seen in Figure 5.1(a) on Page 72. Th&3 L; = gcon({x +y = 0})
can be seen in Figure 5.2(a) and

awe-((1).(2) ()

can be seen in Figure 5.2(b). Now by applying conversiol£{dv;, Lo we getL; V, Lo =
gcon({x — Y =2 0}) . Hencel V; Lo 75 L4 VQ Lo.

where

Let us now consider a congruence widening for grids whiclésrtatural counterpart to the
standard widening for convex polyhedra as specified in the fesis of N. Halbwachs [43],
also described in [44]. It might be asked why we did not defimecmngruence widening in this
way. To see why, consider the following grid extrapolatigrerator %'. Let £; = gcon(C;) and
Ly = geon(Cy) € Gy, \ @ whereL; C L, andC; andC, are congruence systemsi¥ in strong
minimal form. Thenh (L4, L2) := geon(C] U C}) where

= {5 e ‘ Ly C geon({B}) } (5.1)
Ch = {7 € C ‘ 38 €€y . L1 = geon (Cr[v/B)) } (5.2)

Example 5.11 will show that to ensure the operatioris well-defined, both the congruence
systemg’; andCs need to be in strong minimal form.

Example 5.11 Let £, := gcon(C;) and Ly := gcon(C2) where

Clz{x5207 x+y520}7
Co={x=10, 3z +y =2 0}.

Note that£, and £ are not in strong minimal form and can be seen in Figure 5.3(&hen,
assuming definition (5.1) fat| and (5.2) forC}, we have?] = {x+y =5 0} andC}, = {3z+y =2
0} so that

h(L1,L2) = geon(C1 UCy) = geon({z +y =5 0,3z + y =, 0})
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Figure 5.3: Grid Widening.

although applying the strong minimal form algorithmdpu C/, we get the equivalent congruence
system

h(L1, L) = geon({z =1 0,z + y =5 0}).

The gridh(L4, £2) can be seen in Figure 5.3(b).

Note also that, as there is no finite set of proper congruesesmntically equivalent to a single
equality, the above definition has ignored any distinctietween equalities and proper congru-
ences. Observe that the computation of the congruencensy$tshould be carefully done as a
naive implementation will be expensive. A naive impleméota where it is assumed both grids
are in strong minimal form, would have complex(ﬂ,(rﬁ) as it would require testing for equality
between’; and each of the new grids where th@ossibley € C, replace each of the possible

B € Cy. Example 5.12 illustrates that ignoring tGk component (as can be done in implementa-
tions of the standard widening for convex polyhedra whergffiae hull is the universe) can lose
precision.

Example 5.12 Consider again the grids and congruence systems in Exam@lerbPage 72.
Then, assuming definition (5.1) f6f and (5.2) forC}, andC}, we havel] = &, C, = {z + y =
0} andCj = {3z +y =2 0} so that

h(L1, L2) = geon (C UCy) = geon({z + y =, 0})
and

h(L1, Ls) = geon(C] UCy) = geon ({3z +y =3 0}).

Therefore, ignoring th€, component foh (L1, £2) will result in the widening producing the set
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R? and ignoring the’}, component fok(L1, £3) will result in the widening producing the s&g.

5.3.1 Enhancements

Often in analysis or verification, the convergence guartttat comes with a widening operator
is not essential and in such cases, all that is requireexdrapolationoperators. These differ from
widenings in that their use along an upper iteration seqeielies not ensure convergence in a
finite number of steps. Therefore the widenin§g’‘and 'V’ can be used for developing more
refined widenings or extrapolations by following technigusich as the frameworks proposed
in [6,8] for convex polyhedra. The precision of a grid widegican also be improved by exploiting
the covering boxes, defined in Section 4.6.1. That is, we canbwxes to provide eovered
extrapolation operator that improves the approximatiothefwidening operator by ensuring that
the result cannot be worse than the covering box for the taxfjne two grids being widened.

One way to show that an extrapolation operator is, in factdeming is to provide the operator
with a finite convergence certificaf@]. In particular, for the grid domain and widenings,’
and V;', such a certificate is defined to be a trigl®, >, 1) where (O, ) is a well-founded
ordered set andi: G,, — O is such that, for all; C £y € Gy, u(Ly) = w(Ls3) where
L3 = L1V, Lo = L1 V; Lo. Thus, a finite convergence certificate for both the grid widgs can
be defined by takin@ equal to{0, ...,n} x {0,...,n}, > the lexicographic ordering of and,
forall £ € Gy, lettingu(L) := (# &, # C) whereL = gcon(C), C is in minimal form, and€ C C
is the set of equalities id. By Definitions 5.4 and 5.8 and Propositions 4.2 and 4.3, llib\ics
that L, # Lo impliesu(L£1) > u(L3); hence we have the same finite convergence certificate for
both the grid widenings. Observe that this implies that @esation using a mixed sequence of
congruence and generator grid widenings will converger affenite number of steps.

Itis shown in [8] that a widening for a powerset domain canlaimed from any widening on
its base-level domain that has a finite convergence cettfidahus, with the above certificate for
the grid widenings, we can instantiate the generic widenfiog powersets to one for powersets
of grids, using any combination of the grid wideningg and 'V’

5.4 Weakly Relational Grid Domains

In [51, 53], Miné introduces a set of conditions to constrmueakly relational domains. As noted
in Section 3.8 one of the domains created was the domain @&-zongruences which requires
that the congruences are defined equivalently to how thereams of a bounded difference shape
are defined. We now consider this domain and call it the baditifference grid domain. Also
we will specify a new weakly relational domain, called théagonal grid domain, which has
not been considered before and requires that the congrsi@nealefined equivalently to how the
constraints of an octagon are defined. Both of these domaéngestricted versions of the grid
domain that include the set of rectilinear grids.
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Figure 5.4: A bounded difference grid.

Definition 5.13 (Bounded Difference Congruenceslleta € R™ and f,b € Q, then the linear
constraint(a, v) = b is said to be ebounded difference congruenideand only if there exists
two indicesi, j € {1,...,n} such that

® a;,a; € {—1,0, 1} anda; 75 a;
o a;, =0, forall k ¢ {i,j}.

Definition 5.14 (Bounded Difference Grid.)A grid £ is abounded difference gri(BDG) if it
can bedescribed bya congruence systethin Q™, whereC is a finite set of bounded difference
congruences Q™. That isL is a bdg if every vector of satisfies all the congruences@h

Note that a bounded difference grid is equivalent to an el¢rofthe zone-congruence domain.
Recall form Definition 3.9 that a grid is rectilinear if it cdre represented by a non-relational
set of congruences therefore a bounded difference grid eardtilinear. Example 5.4 gives the
congruence and generator systems for a sirgalenensional bounded difference grid.

Example 5.15 Let £ = gcon(C) = ggen(G) where
C:={r=20, y=20, —z+y =50}

Then. is a bounded difference grid and is illustrated in Figure Bytthe points. The minimal
form ofC is C’ where
C'={r=20, —x+y=50}

and the generator system in minimal form is

(=6 0)0)
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Figure 5.5: An octagonal grid.

The congruences @fare illustrated by the dashed lines in Figure 5.4(a) and theameters ofj
are illustrated by the arrows in Figure 5.4(b).

Definition 5.16 (Octagonal Congruences.leta € R" and f,b € Q, then the linear constraint
(a,v) = bis said to be aroctagonal congruendé and only if there exists two indices; €
{1,...,n} such that

® a;,a; € {—1,0, 1} anda; 75 0

e ap =0, forall k ¢ {i,j}.

Definition 5.17 (Octagonal Grid.) A grid £ is aoctagonal gridogrid) if it can bedescribed by
a congruence systetin Q", whereC is a finite set of octagonal congruences(fi. That is£
is an ogrid if every vector of satisfies all the congruencesdn

The set of octagonal grids is a subset@®f that includes the set of rectilinear and bounded
difference grids. Recall from Definition 3.9 that a grid istiénear if it can be represented by
a non-relational set of congruences therefore an octagpithkcan be rectilinear. Example 5.5
gives the congruence and generator systems for a sizagiiemensional ogrid.

Example 5.18 Let £ = gcon(C) = ggen(G) where
C:={rx=20,y=20,2—y=40, z+y=40}.

Then/ is an octagonal grid and is illustrated in Figure 5.5 by thamts. The minimal form of
is C' where
C'={x=20, z+y=40}
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and the generator system in minimal form is

(= (0)0)

The congruences dfare illustrated by the dashed lines in Figure 5.5(a) and theameters off
are illustrated by the arrows in Figure 5.5(b).

Note that minimisation, conversion and the set of operatidefined in Chapter 4 can be per-
formed on the bounded difference and octagonal grids likg #re in the case of a general grid
that is not rectilinear.

5.5 Applications

In this section we discuss applications for the domain abrat grids. Many program proper-
ties are quantitative or depend on quantitative infornmatiad therefore have the potential to be
approximated by the grid domain. While such information ndapend directly on the values
of numerical data objects, it could instead reflect some migademeasures of the structure of
the program and its data. We first discuss applications wihergalues of numeric variables are
abstracted.

Example 5.19 shows how the grid domain can be used to find maaktrelational congru-
ence properties not found using the polyhedra domain [3@jstraint-based analysis [75] or
polynomial invariants [74].

Example 5.19 Consider again the program fragment from Example 3.2 on Rdgehich is now

annotated with program poin®8j, for j =1, ...,5:
X =2,y :=0; (P1)
for i :=1tom (P2)
if ... then
X =X +4 (P3)
el se
X=X +2;,y:=y +1 (P4)
endi f (P5)
endf or

Let Eé— € G- denote the grid computed at thieh iteration executed by the poiR;. Initially,
L) = @ = geon({1 = 0}), forj = 1, ...,5. After the first iteration of the loop we have the
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following grids:

E% = gcon({a: =2, y= 0}),

E% = gcon({a: =2, y= 0}),

Eé = gcon({a: =6, y= 0}),

Ei = gcon({a: =4, y= 1}),

L= gcon({a: =4, y= 1}) @ gcon( =6, y= 0})
= gcon({x +2y =06, T = 0})

Then after the second iteration of the loop we have

L3 = geon({z =2,y = 0}) @ geon({z + 2y = 6,2 =5 0})
= geon ({z + 2y =4 2,2 =5 0}).

Subsequent computation steps show that an invarianP2ohas already been computed since
L3 =1L, L2 =L}, L2 = Llsothatl3 = £3. Thus at the end of the program, the congruences
x4+ 2y =4 2 andx =5 0 hold. The grid described by these congruences is given r&ig.1 on
Page 24.

Observe that, using convex polyhedra, a similar analysiisfiwd instead that the inequalities
x — 2y >2andy > 0 hold [32].

Data dependence analysis for arrays —deciding if two elésneihan array can refer to the
same element and, if so, under what conditions— is requeddvanced optimizing compilers
as noted by Pugh in [70]. Granger showed in [37—-39] that theaido of grids can be used for
this analysis, the following example also shows this.

Example 5.20 Consider the following program (adapted from a simple examgprsen in [70]):

for i :=0to 100
for j :=2i to 100
Ali, 2) +1] := A, 2j]
endf or
endf or

Then, the program reads from array elemeftis0), (0, 2), ..., (0,200), (1,4), ...and writes to
array elementg0, 1), (0, 3), ...,(0,201), (1,5), .... The two sets of points generate, respectively,
the two gridsC, and £, in R*: £, = ggen{(0,0), (0,2), (1,4) } includes all the array elements
that are read from, whileC,, = ggen{(0,1),(0,3), (1,5)} includes all the array elements that
are written to. Figure 5.6 illustrates the grid$, and £,, where squares denote the points of the
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Figure 5.6: Example 5.20.

grid £, and circles denote the points of the gut},. Then it can be seen that the intersection
L, N L, is empty and that no location is both read and written.

As noted in Section 3.8 the domain of grids can also be usestinate the worst case execution
time of a program given a specific system [19], to aid in thestmettion of a comprehensive
set of program transformations for saving energy on low-@oarchitectures and improving per-
formance on multimedia processors [47] and to gather in&ion about non-linear operations
within the program [46].

5.6 Related Work

As Granger’s early work [39] and tH&-polyhedra papers [68,71,72] only consider integer gids,
widening is not required as integer grids satisfy the asicgnchain condition. In the Muller-Olm
and Seidl paper [61], although congruences over ratiomals@nsidered a widening is not given.
In [41, Proposition 10], Granger gives a widening for notatienal rational grids that returns a
line parallel to an axis whenever the modulus for that dirf@mshanges. It is then proposed that
a generalized form of this could be used as a widening foaébmnal grids; however, exactly how
this is to be done is not given in this paper. In Granger'sithi88, Page 159], it is proposed that
for all rational grids a parameter from the representatibore of the grids (or possibly some
other vector for example one parallel to an axis) is chosepetthe enlargement vecter! Let
L; = ggen(@,Q;, {p}) andQ; = {q;1,...,qin} for i = 1,2. Then without loss of generality
supposee = qo1. For each of the grids a valyeis then calculated such that

pi :=min{\ € QF|de = Aiqi1 + ... + Andin}-

Yfor a definition of this property see [38, Page 160]
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If 11 > po then
L1V Ly := ggen({e}, Q2 \ {e}, {p})-

Example 5.21 illustrates this.

Example 5.21 Let £ = ggen(G;) and L, = ggen (G2 ), where

Y O 3 6)

Then lettinge = (2, 1) in G}, we get thatu; = 2 and e = 1. This will produce the widening

cra-on(() ())

Although in Example 5.21 both grids are represented in mahiiorm it is not actually a require-
ment of the widening. Granger states that there are podsitityte different widenings depending
on the choice of the enlargement veatoiThe following example shows that Granger's proposed
widening is not actually a widening due to there being naiegin on the choice of the enlarge-
ment vector.

Example 5.22 Let £ = ggen(G;) and L, = ggen(Gs), where

6 O 3 6)

Then lettinge = (2,1) we get thatu; = 1 and u2 = 1. Hence the widening does not perform
any enlargement. It can also be seen from this example tedattt that the representations for
the grids are in minimal form makes no difference to the tesul

In [51, 53], Miné introduces a basis from which to constrwetakly relational domainsAs
noted in Section 3.8, the zone-congruence domain consid&gruences which have the form
x—y=>b (mod f)wherebandf are rationals and are represented by a constraint matriné Mi
gives operations for intersection and join which are edaivieto the ones described here and also
a widening which is equivalent to the one described by Gramgg 1].

5.7 Conclusion

We have defined two widenings, one that uses the congruepoesentation and one that uses
the generator representation. We have shown that the wigerdiome with simple syntactic
checks and have efficient implementations. The wideninge bamplexityO(n2) if the first
grid is known to have its representation in minimal form ahd second grid is known to have
its representation in strong minimal form, otherwise therst@ase complexity is that of the
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minimisation algorithms. Unfortunately as yet we have roatrfd an actual real life application
that will require the grid widening. We have also defined twealdy relational grid domains, the

bounded difference grid and the octagonal grid.



Chapter 6

The Grid-Polyhedron Domain

6.1 Introduction

In this chapter we consider the productsmeflimensional geometric domains and, in particular,
the product of a grid with a polyhedron domain. Section 6tfoituces the generic product of

domains represented by sets of pointsRifi and Section 6.3 introduces the partially reduced
product which allows a range of interaction between the camept domains. In Section 6.4 we

introduce the techniques for ensuring the bounding hypess of the polyhedron component
contain at least one point in the grid component and in Sedié we give the main abstract

operations and the methods for their computation.

6.2 The Product Domain

Definition 6.1 (Product Domain.) Let A;, Ay C p(p(R”)) be twon-dimensional geometric
domains. Then thproduct4; x A, (also denoted byA;, A5)) is the setd C p(p(R™)) where

A= {a1 N CL2|CL1 € Aj,a9 € AQ}

Definition 6.2 (Grid-Polyhedron.) LetP be a polyhedron iCP,, and £ a grid in G,,. Then we
say thatH = (£, P) := LN P is agrid-polyhedron Thegrid-polyhedron domaift:P,, is the set
of all grid-polyhedra inR™ ordered by the set inclusion relation, so thaandR" are the bottom
and top elements @P,, respectively.

Example 6.3 Let us consider a small example to show how the grid-poldredomain can be
used to interpret a simple piece of code. Figure 1.3 on Padri€triates the grid by the square

85
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points and the polyhedron by the shaded area. Thereforeridgpglyhedron is the set of grid
points that lie within the bounded shaded area. Considertfies following program fragment for
any value oin

X :=0; y:=1 (P1)
for i :=1tom (P2)
if ... then
X :=x + 3 (P3)
el se
X=X +2;,y:=y +1 (P4)
endi f (P5)
endf or

Let Eg- € G- denote the grid computed at thieh iteration executed by the poiR;. Initially,
L) = @ = geon({1 = 0}), forj = 1, ...,5. After the first iteration of the loop we have the
following grids:

L= gcon({x =0,y= 1})7

L= gcon({x =0,y= 1})7

Ezl), = gcon({x =3, y= 1})7

L} =geon({r =2, y=2}),

L =geon({z =3, y=1}) ® geon({z =2, y = 2})
=geon({z +y =4, z = 0}).

Then after the second iteration of the loop we have

L3 = gcon({m =0,y = 1}) @ gcon({:ﬂ +y=4,2= 0})
= gcon({x +y=3l,x= O})
Subsequent computation steps show that an invarianPfohas already been computed since

L£32=LL %= L), £2 = £i sothatl3 = £3. Thus at the end of the program, the grid is given
by £ = gcon(C) whereC, := {z =; 0,z + y =3 1}. Observe that the grid is also given by

the generator systedi: where
10 0
Gr=19, , .

Now consider the program fragment assuming that the valuemcf 4. Then IetPj- denote the
polyhedron computed in thieth iteration at pointP;. Initially P = con({z = 0,y = 1}), for
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j =1,...,5. Then after the first iteration of the for loop we have thedeihg polyhedra:

Pi = con({z =0,y =1}),

Py = con({z =0,y =1}),

P3 = con({z =3,y =1}),

Pi = con({z = 2,y = 2}),

Py =con({z =3,y =1}) ® con({z =2,y = 2})
:con({2 §:U§3,:E+y§4})

Then after the second iteration of the loop we have the pdighe

P;=con({z=0,y=1}) ®con({2 <z <3,z +y < 4})
=con({1<y,—2<z—2y,z+y<4}),
P2 =con({l<y,1<az—2yz+y<T}),
P2 =con({l<y,—2<z—-2yx+y<T}),
({1<y1<z—-2y,24+y<T7}) ®con({2<y,—-2<z—-2y,2+y<T}
({1<y,—2<z—-2y4<a+y<T}),

P2 = con

= Ccon
and after the third and fourth iterations of the loop we have polyhedra:

Pi=con({l<y,—2<z-2y2+y<4})@con({l<y,-2<z-2y4<a+y<T})
=con({1<y,—2<z-2y,z+y<T7},

Pg—con({1<y,1<:ﬂ—2y,m+y<10})

P = con({1<y,—2<z-2y,z+y<10}),

PP=con({l<y,1<z—2y,2+y<10}) @con({2<y,—2<z—2y,z+y<10})

:con(1§y—2§w—2y,4§w+y§10})

Py=con({l<y,—2<z—2y,2+y<T7}) @con({l<y, —2<z—2y4<z+y<10})

=con({l<y,—2<z-2y,z+y<10}),

P =con({l <y,1<z—2y,x+y<13}),

Pi=con({l <y,—2<z-2y,2+y<13}),

Pi=con({l<y,1<z—2yx+y<13}) @con({2<y,—2<z-2y,2+y<13})

con({l1<y,—2<az—-2y4<z+y<13}).
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(a) Grid-polyhedror{; = (L, P1). (b) Grid-polyhedrors = (L, P2).

Figure 6.1: Equivalent grid-polyhedra.
Therefore the final polyhedroR at the end of four iterations has a constraint system given by

Cp={1<y,2<2-2y2+y<10}®{1<y,—2<z-2y4<z+y<13}
={1<y,—2<z—2yx+y<13}.

The polyhedron can also be defined by the vertices givé§ by(8) and (1?). The polyhedron
P can be seen in Figure 1.3 on Page 6. The grid-polyhedron iss#teof points inside the
polyhedron given by$), (%), (3).($),(3).(4).(9).(5).(1). (). (), (). (). (D)
and($). It can be seen in Figure 1.3 that all the polyhedron constsaintersect grid-polyhedron
points and that the polyhedron is reduced with respect togttie points. Note that if we had
considered the polyhedron for the program fragment for aaler of mthe constraint system
would be given bgp’' = {1 <y, -2 < x — 2y}.

Although this section is considering the grid-polyhedranméin, many of the methods and al-
gorithms suggested will be applicable to the more restligtelyhedra domains such as the In-
tervals [56], BDS [49] and Octagons [52], which will be catesied in Chapter 7. We will also
discuss later how each operation is effected dependingetyge of domain we choose to put
with the grids. First we observe that as elements of the poighedron domain denote the inter-
section of their components, the elements of the domain thawe a canonical form.

Let H; = (L£1,P1) andHy = (L9, P2) be grid-polyhedra. Then &K is defined as the
intersection ofC; andP; andH; is defined as the intersection 65 andP; it is possible to have
H1 = Ho whereL; = Lo butP; # P,. Example 6.4 illustrates this.

Example 6.4 Consider the grid-polyhedréa(; = (£, P1) andHs = (£, P2) in GIP, where
L :=geon({z =10, —z+y=40}),

P ::con({1§x§6, —2§—w+y§1}) and P, ::con({1§x§4, 1<y <d4}).
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(a) Grid-polyhedrorit; = (L, P1). (b) Grid-polyhedror{s = (L, P2).

Figure 6.2: Equivalent grid-polyhedra that are empty.

The grid £ is illustrated by the filled squares and the polyhedfnis illustrated by the bounded
region in Figure 6.1(a). The grid is illustrated by the filled squares and the polyhedf@nis
illustrated by the bounded region in Figure 6.1(b). Thenahde seen from Figure 6.1 thaf;
andH, are equivalent.

Example 6.5 shows that the representation of an empty @giighpdron is not canonical and
that an empty grid-polyhedron can be defined using a nonyegrjat and polyhedron.

Example 6.5 Consider the grid-polyhedrat; = (£,P;) andHs = (£, P1) in GPy where
L :=geon({z =2 0, y =5 0}),

Py ::con({lgwﬁﬁ, —2§—x+y§1}) and P, ::con({1§x§4, 1§y§4}).

The grid L is illustrated by the filled squares and the polyhedfnis illustrated by the bounded
region in Figure 6.2(a). The grid is illustrated by the filled squares and the polyhedf@nis
illustrated by the bounded region in Figure 6.2(b). Thenahde seen from Figure 6.2 thaf;
andH, are equivalent and both are empty.

It follows that it is desirable that elements of the domainehhheir components minimised, which,
in the case of the grid-polyhedron domain, would make evéynent canonical. However the
full minimisation operation for a grid-polyhedron has atigomplexity cost (as it will involve

the simplex method [67, 76], see Section 6.6.2) and also Hepdtential to adversely affect
the widening operation and actually turns a widening on thmmonent into no more than an
extrapolation operation on the product with no fix-point igudeed (see Section 6.6). Thus to
provide a framework for a choice of interaction, we introdinere the Partially Reduced Product.
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6.3 The Partially Reduced Product

The patrtially reduced product is defined so as to allow a rafiggeraction between the compo-
nent domains. To achieve this, it is provided with additimeduction operations as parameters.

Definition 6.6 (Partially Reduced Product Domain.) Let 41,4, C p(p(R™)) be twon-
dimensional geometric domains and : A; x Ay — A; ando? : A; x Ay — Ay be two
operations on them such that

Jl(al,ag) Ca; and Jl(al,ag) Nas= ai N as,

02(a1,a2) Cay and ap N 02(a1,a2): a1 Nas.
Then the triple(A; x Ay, o', 0?) is apartially reduced product domain

lllustration 6.7 Consider the product domaia C p(p(R“)), whereA; x A; representsA, and
the operationsrl, and 0%, are defined so that} (a1, a2) = a1 ando?(a1,as) = as. Then the
triple (41 x Az, 0}, 0%) is a partially reduced product domain which we call ttiieect product
domain [28].

lllustration 6.8 Consider the product domai# C p(p(R™)), whereA; x A, representsA, and
the operationsr}, and 0% are defined so that},(a1,a2) = af, wherea| € A, is the minimal
element such that; Nay = @} Nag, ando% (a1, az) = af, whered), € A, is the minimal element
such thata; N ag = a3 N a). Then the triple(A; x Ag,a}%,aﬁ) is a partially reduced product
domain which we call theeducedoroduct domain [28].

lllustration 6.9 Consider the product domais C p(p(R™)), where4; x A, represents4, and
the operationsr, ando are defined so that)(ay,a2) = 0%(ay,a2) = @ if eithera; = @ or
as = @ andok(ar,az) = Ay andoZ (a1, as) = Az, otherwise. Then the tripled; x As, 0k, 0%)
is a partially reduced product domain which we call $mashproduct domain.

Let us now consider the partially reduced product where ttappnent domains are those of
the grids and polyhedra. Then we can specialise each of tefsgtions to the grid-polyhedron
domain.

lllustration 6.10 Consider the operations}, and o7, defined in Illustration 6.7 together with
the grid-polyhedron domaifGP,,. Then the triple(GP,, 0}, 0%) is a partially reduced grid-
polyhedron domain which we call tltirect product domain [28].

lllustration 6.11 Consider the operations}, and 0% defined in lllustration 6.8 together with
the grid-polyhedron domaifP,,. Then the triple(GP,,, ok, 0%) is a partially reduced grid-
polyhedron domain which we call theducedproduct domain [28]. IfH = (£, P) € GP,, and
oh(L,P) = Lando%(L,P) = P, then we say that the pailC, P) is areduced product
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(a) Grid-polyhedror{; = (L1, P1). (b) Grid-polyhedrorfs = (L2, P2).

Figure 6.3: Examples where equalities could be shared.

lllustration 6.12 Consider the operations}, and o2, defined in lllustration 6.9 together with
the grid-polyhedron domaifGP,,. Then the triple(GP,,, 0k, 0%) is a partially reduced grid-
polyhedron domain which we call th@mashproduct domain. IfH = (£,P) € GP, and
o5 (L,P) = Lando% (L, P) = P, then we say that the pajC, P) is asmash product

As the affine space of a grid-polyhedron is the intersectibthe affine spaces of the com-
ponent domains, any equalities in the constraint or congreigepresentation of one component
can be added to the representation of the other componeras@ayrid-polyhedroftl = (L, P),
whereL = gcon(C.) andP = con(Cp), is defined as the intersection 6fandP, each point in
‘H must satisfy all the congruencesdp and all the constraints ifip; moreover, equalities can be
represented both as congruences and as constraints. Tdrirsgsbquality information between
the components of the product is safe and can minimise th@aoemt domains possibly leading
to a detection of emptiness. Example 6.13 illustrates havaktyg information can be shared.

Example 6.13 Consider the grid-polyhedral, = (£1,P;) andHy = (L2, P2) in GP, where

L1 ::gcon({w =91, y=s 1}) and Lo := gcon({x =3, y=o 1})7
P1 ::con({x =3 1<y< 5}) and P, ::con({l <x<5,1<y< 5})

The grid-polyhedrorf; is illustrated by the filled squares on the line in Figure &3é&nd the
grid-polyhedron is illustrated by the filled squares in Figure 6.3(b). Therefit can be seen
from Figure 6.3(a) and Figure 6.3(b) that; = Hs = (£, P), where

L:=geon({zr=3,y=,1}) and P:=con({z=3,1<y<5}).

Therefore we can specialise the partially reduced prodyaingfor the grid-polyhedron domain.
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lllustration 6.14 Consider again the partially reduced product domai&P,,, o1, o2 ) where,
forall H = (L, P) € GP,,

affine.hull (oL (£, P)) = affine.hull (o2 (L, P)) = affine.hull(H).

Then the triple(GP,,, oL, 02) is a partially reduced grid-polyhedron domain which we dak
constraintproduct domain. If{ = (£,P) € GP, andol (L,P) = £ andc?(L,P) = P, then
we say that the paif£, P) is aconstraint product

Given any grid-polyhedroftt = (L, P), it is straightforward to compute a constraint product
(L',P") such that = (£,P) = (L',P’). To see this, suppose thdt= gcon(C.) and P =
con(Cp), whereC, andCp are in minimal form, then

L =olL,P)= gcon(Cg U {({v,x) = d ! (v,x) =d € Cp})
P =02 (L,P) = con(Cp U{(v,x) =d | (v,x) =0 d¢€ Cg}).

6.4 Tight and Weakly Tight Products

The partially reduced products defined so far only allow a \enited interaction between the
components. We discuss now how a domain such as the gritiguirign constraints product can
be further specialised by ensuring that the bounding hyaees of the polyhedron component
contain at least one point in the grid component or even a pbithe product itself. Let us now
specialise the partially reduced product again for the-golyhedron domain and define what it
is for a grid-polyhedron to be a tight or weakly tight product

Definition 6.15 (Weakly Tight Product.) Let the triple(GP,,, o}, 03,) be a partially reduced

grid-polyhedron domain where, for a € GP,, there exist’ € G,, andP’ € CP,, such that
El
P/

= oy (L, P) =cl(L,P),
= oty (L,
and for some constraint systetp’ for P/, for all ((v,x> < d) € Cp’, there exists a poiny € £/
such that(v,w) = d. Then(GP,, o}, 0%,) is aweakly tightproduct domain and we say that
Cp' is a weakly tight polyhedron constraint system¥or

If H = (£,P) € GP, andojy, (£, P) = L ando3, (£, P) = P, then we say that the pair
(L,P) is aweakly tight product

Definition 6.16 (Tight Product.) Let (GP,, 0}, 0%) be a partially reduced grid-polyhedron
domain where, for ali{ € GP,,, there existL’ € G,, andP’ € CP,, such that

L

P

I
)
1
Q

(L, P
F(L,

Il
Q
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(a) Grid-polyhedror{ = (L, P). (b) Grid-polyhedroriH = (£, P’).

Figure 6.4: Two Grid-Polyhedra.

and for some constraint systefp’ for 7', for all ((v,x) < d) € Cp’, there exists a poin € H
such that(v,w) = d. Then(GP,, o}, 02%) is atight product domain and we say thép' is a
tight polyhedron constraint system faf.

If H = (£,P) € GP, andok(L,P) = L andcZ(L,P) = P, then we say that the pair
(L,P) is atight product

Observe that in Definitions 6.15 and 6.16 we do not requirectimestraint systen@p’ to be in
minimal form. This is due to the fact that in Chapter 7 when wasider the combination of a
grid with a bounded difference shape or octagon we will warlbbk at all possible constraints
in a closed constraint system including those which may terrdant.

Example 6.17 Consider the gridC = gcon(C.) in Gy whereC, := {x =3 2, y =2 0} and the
polyhedronP = con(Cp) in CPPy where

Cp={2<10,3<y<9,6<z+y, —6<z—y<4}

LetH = (L£,P), which is shown in Figure 6.4(a). Then it can be seen thatis not a tight
polyhedron constraint system féf and also note thafp is not a weakly tight constraint system
for H as some of the constraints are not saturated by any poiut, dbr exampley < 9. Now
consider the gridC together with the polyhedroR’ = con(Cp’) in CPy where

Cpl={2<2<8,4<y<8}

LetH = (£, P’), which is shown in Figure 6.4(b). Then not only can it be sban@dy’ is a tight
polyhedron constraint system faf as every constraint is saturated by at least one grid-palyae
point, but also(£, P’) is a reduced product.
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We will show that there are two main ways to improve the potirba constraint system so that the
grid-polyhedron is a tight or weakly tight pair. One way istove in the bounding hyperplanes of
the polyhedron component so that they are closer to theggfghedron points, this is discussed
in Section 6.4.1. Another way is to add new constraints tgtiighedron representation, this will
be discussed in Section 6.6.

6.4.1 Weakly Tight Operations

An operation to produce a weakly tight grid-polyhedron waillow us to move in the bounding
hyperplanes of the polyhedron component so that they coatdeast one point in the grid com-
ponent. Therefore we could possibly improve the polyhedepmesentation without adding extra
constraints. Example 6.4 on Page 88 illustrated why an tipar¢ghat can shrink a polyhedron
with respect to a grid is an important operation as it can tealcanonical form.

To move in the existing polyhedron constraints we must trfirid congruences for the grid
which will be parallel to the constraint in the polyhedrompmesentation. The aim is that if we
have a constrainfv,x) < d we can take the directional vecterand produce a congruence
equation that will have solutions parallel to the constiainus we will have a measure of how
much we can move the constraint bound.

Definition 6.18 (Directed Non-Redundant Congruence.letL € G,,v € Q", f € Q, and
d € Q. Then we say that= ((v,x) =, d) is adirected non-redundant congruence (dfor)C
andv if £ C geon({c}) and, foralls € Z, if ¢, = ((v,x) =d+ s f), LN geon({cs}) # @.

Lemma 6.19 If C.; is a congruence system in minimal form anet ((v,x) = d) € Cr, thenc
is a dnc for the gridgcon(C.) andv.

Proof. Sincec € C, we havel C geon({c}). Lets € Z andc, = ((v,x) = d+s- f).
LetC,' = (Cc \ {c}) U {c}; then aC,; is in minimal form,C;’ is also in minimal form. By
Lemma 3.16(," is consistent so thajcon(C.') = £L N geon ({cs}) # @. O

Example 6.20 Consider the gridC = gcon(C.) € G,,, where
Cc={r =20, y =3 0}.

L is illustrated by the points in Figure 6.5(a), and the coasit x — y = 0, is illustrated by the
diagonal line in Figure 6.5(a). Then taking= (1, —1) we can see that the congruence

r—y=10

is adnc forl andv.
Now consider the grid’’ = gcon(C.’) € G,,, where

Co={r=y1}.
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(@) Grid£ = gcon(C.) and vectow. (b) Grid £ = gcon(C.') and vectomw.

Figure 6.5: We can create a dnc for sofandv, but not all.

L' is illustrated by the dashed lines in Figure 6.5(b), and thastraintx — y = 0, is illustrated
by the diagonal line in Figure 6.5(b). Then takisg= (1, —1) we can see that there is no dnc for
L' andv, since inL’ the variabley can take any value.

Algorithm 2: The directed non-redundant congruence algorithm.
Input: A congruence systeifl: in Q™ in minimal form and a vectov € Q™.

Output: A triple (bool, m,t) where boole {true, false}, m € Q, andt € Q.
D) t:=0,m:=0,w=0
(2) fori=ntol

3) if v; # w

(4) if 6= ((a,x)=5b) €Cr.piv_(8) =1
(5) u = v

(6) m = ged(m,u - f)

) t:=t4+u-b

(8) wWi=w-+u-a

9) else

(10) return (false 0,0)

(11) return (true,m,t)
Algorithm 2 provides a method for computing a dnc for a giveid @nd vector.

Proposition 6.21 Givenv € Q™ and a non-empty gridC = gcon(C.), whereC, is in minimal
form, supposdlgorithm 2 returns the triple(bool, m, t). If bool = true, thenc = ((v,x) =, t)
is an dnc for£ andv and if bool= false, then for alls € Q, £ N Con<{(v, X) = s}) £ @.

To prove this proposition, we first prove an invariant prapesf the loop on line (2) in Algo-
rithm 2.
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Lemma 6.22 Suppose that, given a non-empty gficc G,, and a vectow, Algorithm 2 executes
line (2) j times. Letmn; be the value ofn, t; the value oft and w; the value ofw at the end
of the j-th execution of line¢3) to (10). Let alsoc; = ((wj,x) =, t;). Then, if line (10) is
not executedg; is an dnc for andw; andw; = (wi,...,wy—j—1,Vn—j,...,vy), fOr some

Wiy wn, Wn—j—1 € Q.

Proof. Supposel = gcon(C.), whereC, is in minimal form. We prove the result holds by

induction onj. The base case is trivial since in this case 0 andwy = 0, ty = 0 andmg = 0.
Suppose now that > 0 and leti = n — 5. By the induction hypothesis, given any non-

empty gridZ, then, after theg;j — 1)-th execution of lines (3) to (10);;_; is an dnc for£ and

w1 = (w1,...,W;,Vit1,...,0), for somews,...,w; € Q. If the tests on line (3) fails, then
c; = cj—1 andw; = w;_;. Suppose now that the tests on line (3) succeeds. By lineagB),
piv_(8) = i, we also havev; = (wi, ..., wi—1,v;,...,v,), forsomews,...,w;_1 € Q.

Suppose € Z andv; := ((w;,x) = t;+s-m;), then, by Definition 6.18, we need to prove:

L C gcon({cj}); (6.1)
L Ngeon({v,}) # @. (6.2)

Note that, by lines (6), (7) and (8),
cj = ((wj_l +u-a,x) =p, tji+u- b)

andm; = ged(mj_1,u - f).

By Definition 6.18 and since;_; is a dnc forC andw,_;, £ C geon({c;_1}); also, by line
(4), B € Cr; thus property (6.1) holds. We now prove that property (B@js. By line (6), there
existp, g € Zsuch thap - m;_1 +¢q- (u- f) = m;. Let

B. = ((a,x> :b—i-s-q-f),
Ye = ({(Wj-1,%) =tj_1+5-p-mj1).

By Lemma 6.1943 is an dnc forC anda so that, by Definition 6.18;’ := £ N gcon({f.}) # @.
Consider the congruence systéll = (C. \ {8}) U {B.}; then, apiv_(3,) = piv_(8) = i
andC is in minimal form,C,’ is in minimal form. Moreover, sincgcon ({£.}) C gcon({3}),
L' = geon(C,"). Also, for both gridsC and £’, for the firstj — 1 iterations of the loop, line (4)
will select exactly the same congruences; and hence, anthefahe(;j — 1)-th iteration,m;_,
tj—1 andw;_; will be the values ofn, ¢t andw, respectively, when using,’ instead ofC.
Thus, by the inductive hypothesis;_; is also an dnc for’ andw;_;. By Definition 6.18,
£'Ngeon ({7.}) # @, sothat, sinc&’ = LNgeon ({B.}) C L, we haveLNgcon ({8, 7. }) # 2.
As ~; is the sum of equalities - 3. and~., we must also havé Ngcon({v;}) # @ and property
(6.2) holds. O
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Proof [ of Proposition 6.21.] Suppose that the algorithm executes I(6) to (8)k times so that
0 <k <n.For0 <j <k, letm; be the value ofn, t; the value oft andw; the value ofw at
the end ofj-th iteration.

Suppose first that boet true is returned by the algorithm. Then line (10) is not exeduso
that, by Lemma 6.22, letting = n, w,, = v and the result follows.

Suppose now that boet false is returned. This means thHat> 1 and, in thek-th iteration,
the test on line (3) succeeded so that ;, # v,_i; and the test on line (4) failed so that there is
no congruence € C such thapiv_(8) = n— k. By Lemma 6.22¢;_; := ((Wi_1,X) =py,_,
tk_l) isadncfor andwy_1 = (w1, ..., Wy—k, Vp—k+1,---,Vp), fOr somews, ..., w,—r € Q.
Since we havev,,_j, # v,_, piv_(wi_1 — v) = n — k. Suppose, by contraposition, that there
existss € Q such thaTCﬂeon({(v,x> = s}> =&;letC = CrU{(wy_1—Vv,x) =tp_1—s}
andL’ := gcon(C.'). Then, as there is no congruenges C such thapiv_(8) =n —k, C.'is
in minimal form and, by Lemma 3.16, the grtd is non-empty so that Lemma 6.22 can be applied
to £'. Moreover, starting witlC,’, for the firstk — 1 iterations of the loop, line (4) will select
exactly the same congruences as those selected whengtaittin.; and henceimy_+, tx_1 and
w1 Will also be the values ofn, t andw, respectively, at the end of tH& — 1)-th iteration
when usingC/’ instead o’z Thus, by Lemma 6.22, letting= k— 1, ((Wj_1,X) =p, , ti—1)
is also a dnc for’ andw_; so that, by Definition 6.18, we obtain

@+ LN gcon({(wk_l,x> = tk—l})
=LN g00n<{<wk—1>x> =t 1,(Wp1 — V,X) =tp_1 — 8})
=LN gcon({(wk_l,x> =tg_1,(V,x) = s})

cLn gcon({(v,x) = s})

Hencel N gcon({(v, X) = s}) # @ which is a contradiction. [J

As this algorithm assumes the congruence system for theZgisdn minimal form the com-
plexity of Algorithm 2 isO(n2) if £ is not rectilinear. If£ is rectilinear then the complexity of
Algorithm 2 is linear in the number of non-zero coefficiems/ii LetDNC : G,, x R - R x R
be the partial function such thBXNC(L, v) is the output of Algorithm 2 if book true. Given an
algorithm for generating directed non-redundant congeasnAlgorithm 3 shows how to move
each of the constraint bounds so that the constraint systefit a weakly tight forH = (£, P).
As any equality((v,x) = d) can be represented by the two inequalitigs,x) < d) and
((v, x) > d), Algorithm 3 and Proposition 6.23 will assume tldat is a set of inequalities.
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Algorithm 3: The weakly tight constraint system algorithm.
Input: P = con(Cp) andL.
Output: The constraint systeidp’.

Q) =0

2  whiler = ((v,x) <d) €Cp

(3) if DNC(E v) = (m,t)

4) d :=d— ((d—t) mod m)
(5) Cp' u{(vx <d/)}
(6) else

7) Cp' = Cp' U {v}

8  Cp:=Cp\{v}
9) return Cp’

As Algorithm 2 has complexityD (r?) and theDNC function, which uses Algorithm 2, is
performedy times, where# Cp = p, Algorithm 3 has complexity) (n?s).

Proposition 6.23 LetH = (£, P) € GP,, be a constraint product and I€t>’ be the constraint
system returned b&lgorithm 3. ThenH = (£, con(Cp’ )) is a weakly tight product.

Proof. Let H = (L£,P) € GP,, Cp be a constraint system with no equalities such fRat
con(Cp) andC, be a congruence system in minimal form such tBat gcon(C.). Since at
the end of each iteration of the while logp(Cp) is reduced by one, Algorithm 3 will terminate
and hence is an algorithm. L&, C. andd; denote the values computed f6p,Cp’ and d’,
respectively, at the end of thieh iteration of the while loop. Then we will show that

1. ‘H := (L, con(C; UC)));
2. 'H} := (L, con(C})) is a weakly tight product.

Initially (1) and (2) hold sinc&€p = Cy andCp’ = C, = @. We now assume that (1) and (2)
hold fori — 1 iterations of the while loop where> 1. On line (2) of Algorithm 3, the constraint
v = ({v,x) < d) € Cp is selected. There arecases to consider far, DNC(L,v) = (m,t)
wherem # 0, DNC(L,v) = (0,¢) andDNC(L, v) is undefined.

First let us suppose th&®INC(L,v) = (m,t) wherem # 0. On line (4),

d' =d— ((d—t) mod m),
so by the definition ofnod in Section 2.1,
d—m < d <dand0 < (d —t) mod m < m.

Hence, for some € Z,d =t +s-m. Let = ((v,x) < d') andv, = ((v,x) = d'). By
Proposition 6.2153 = ((v,x) =y, t) is a dnc for andv. By Definition 6.18,C C gcon ({3})
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(a) Grid-polyhedror{ = (L, P). (b) Grid-polyhedror{ = (L, con(Cp")).

Figure 6.6: Moving constraints for a grid-polyhedron.

andZngeon({r.}) # @. Therefore, sincé{;_, is weakly tight, we have that;, is weakly tight.
Also sinceH C geon({8}), H = (L,con(C; UC))).

Now supposedDNC(L,v) = (0,¢). Then by Proposition 6.213 = ((v,x) = t) is a dnc for
L andv. As'H is a constraint produet = ¢ and on line (4),

d' =d—((d—t)modm) =t.

Therefore, sincét]_, is weakly tight, we have that is weakly tight. Also sincét C gcon ({3}),
v=({v,x) <d)andv € C;i_1,H = (L,con(C; UC))).

Finally suppose thadbNC(L, v) is undefined. Then, by Proposition 6.21, we have that
con({(v,x) = s}) # @foralls € @, s0L Ncon({v}) # 2. Therefore, sincet,_, is weakly
tight, we have that{; is weakly tight. Also since’ € C;_1, H = (£, con(C; UCY)).

Therefore ifCp’ is the constraint system returned by Algorithm 3, th¢n= (E, con(Cp’))
is a weakly tight product. [

LetH = (£, P) € GP, be a constraint product. Then@' is the constraint system returned by
Algorithm 3,0}y, (£, P) = £ andod, (L, P) = con(Cp').

Example 6.24 Consider the grid-polyhedrot = £ N P, whereL = gcon(Cz) andC, :=
{z =20, y =2 0} andP is given by the constraint system

Cpr={3<z+y<13, -5<z—y <1}

H = (£, P) can be seen in Figure 6.6(a). FroAlgorithm 2 and Algorithm 3 described above
we can calculate the modulus and inhomogeneous terms taigedthe directed non-redundant
congruencest +y =2 0 andz — y =2 0 and we can compute the new constraint bounds.
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(a) Grid-polyhedror = (£, P). (b) Grid-polyhedror = (L, con(Cp")).

Figure 6.7: Algorithm 3 does not improve redundant constsai

Therefore we get the new constraint systgshwhere
Cpl={4<z+y<12, -4<z-—y<0}L

H = (L, con(Cp’)) can be seen in Figure 6.6(b). It shows that not only is the péircon(Cp’))
a tight product, but alsq £, con(Cs")) is a reduced product.

Example 6.25 shows that Algorithm 3 can move in the condti@ands but it does not improve
the constraint bounds so that they are moved in with respetietother constraint bounds. That
is, Algorithm 3 will not remove or improve redundant congtta.

Example 6.25 Consider the grid-polyhedrofi{ = (£,P), whereL = gcon(C,) andC, :=
{x =2 0, y =3 0} andP is given by the constraint system

Cp={1<z<4, 1<y<b, —-3<z-—y}

H = (L,P) can be seen in Figure 6.7(a). FroAlgorithm 2 and Algorithm 3 described above
we can calculate the modulus and inhomogeneous terms tagedtie directed non-redundant
congruences =, 0,y =3 0 andx — y =; 0, and we can compute the new constraint bounds.
Therefore we get the new constraint systégshwhere

Cpl={2<z2<4,y=3, -3<x—y}

H = (L, con(Cp")) can be seen in Figure 6.7(b). Now the péit, con(Cp’)) is reduced product,
but it can be seen in Figure 6.7(b) that the constrait® < x — y, illustrated by the dashed line,
is now redundant.
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6.4.2 Emptiness

To test if a grid-polyhedron is empty we need to test if theypetron contains any grid points.
To do this we first check that each component of the grid-pedybn is non-empty. Before we
introduce the test for emptiness we first give the definitiba paired constraint system. As any
equality ((v,x) = d) can be represented by the two inequaliti¢s, x) < d) and ((v,x) > d),
for Section 6.4.2 we will assume th@p is a set of inequalities.

Definition 6.26 (Paired Constraint System.)Let Cp be a consistent constraint systemRft
and let? = con(Cp) € P,. ThenCp is a paired constraint systerf, for each constraint
v=(({v,x) <d) €Cp:

1. there exists a point € P such that(v, p) = d;
2. if P is bounded in the direction-v, then there exists’ = ((—v,x) < d’) € Cp.

Given a constraint syste@fp, we can create a paired constraint systém such thaton(Cp) =
con(C<<) by applying the simplex algorithm [67, 76]. We will use therpd constraint system in
the test for emptiness. Given a giidandC<< we can apply Algorithm 3 t6{ = (£, con(PSS))
and get the constraint systefia </, which is weakly tight for{. Then if C<<’ is inconsistent
then we knowH = (£, con(Cp)) is empty sinceron(Cp) = con(C<<) = con(C<<’). If C<<is
consistent then we don’t know # = (£, con(Cp)) is empty.

Proposition 6.27 LetH = (£, P) whereP = con(Cp) is a paired constraint system aiigh’ is
the constraint system returned after applyilsigiorithm 3to H = (E, con(Cp)). Suppos&yp’ is
inconsistent. Thef{ = &.

Proof. The result follows from Proposition 6.23.0]

As Algorithm 3 has complexity) (n?1), where# Cp = p, if Cp is a paired constraint system then
the test for emptiness has complemjrﬂu). Otherwise the complexity is that of computing the
paired constraint system.

Example 6.28 shows this method succeeding. Unfortunatehe grid-polyhedroriH is not a
reduced product it is possible thitis empty but this method does not detect this. Example 6.28
also illustrates this.

Example 6.28 Consider the grid-polyhedroft{ = (£, P), whereL = gcon(C,) andC, :=
{z =50, y =4 0} andP is given by the constraint system

Cp={0<z, 0<y, 2<z+y<3}

It can be seen in Figure 6.8(a) thal, P) is a weakly tight product. In this case the paired
representationC<<, of Cp is given by

CSS::{OSwg?:,0§y§3,2§w+y§3}.
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(a) Grid-polyhedror{ = (L, P). (b) Grid-polyhedrori’ = (L', P").

Figure 6.8: The emptiness test succeeds and fails.

From Algorithm 2 described above we can calculate the modulus and inhomogsrterms to
produce the directed non-redundant congruence y =; 0. ApplyingAlgorithm 3to H =
(£,con(C<<)) we get the constraint system

C<<'={0<2<0,0<y<0,2<x+y<3}.

AsP = con(C<<") andC<<" is inconsistent, we know thét = &.

Now consider the grid-polyhedroR’ = (£',P’), whereL’ = gcon(C,) andC, = {x =5
1, y =3 0} andP’ is given by the constraint system

Cp =8<ax+y<7 —-1<z—y<3}

H' can be seen in Figure 6.8(b). In this ca8e’ = C<<'. From Algorithm 2 described above
we can calculate the modulus and inhomogeneous terms tagedtie directed non-redundant
congruencest +y =; 0,z —y = 0. Therefore(L,con(C<<)) is a weakly tight product,
H= (E, con(CSS)) and asC<< is consistent we do not know if the grid-polyhedron is empty.

6.5 The Grid-Polyhedron Domain Operations

We will now consider each of the abstract operations, sucth@se based on the set-theoretic
operations and also affine image, affine pre-image and wideni/e will consider each operation
for a partially reduced product and show if each operatiohpeserve the given reduction. For
example, if we have grid-polyhedra which are reduced prtsiwe will show if after the operation
is applied whether or not the resulting grid-polyhedronti & reduced product.
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Figure 6.9: The comparison and equality test returning #salt “don’t know” for relational
grid-polyhedra.

6.5.1 Comparison

For any pair of grid-polyhedré&t; = (£1,P1), He = (L2, P2) in GP,, we can decide whether
H1 C Hs by checking if£y C Lo andP; C P5. Also we can decide it{; = Hs by checking if
L1 = LoandP; = Ps.

Suppose that{; andH- are relational grid-polyhedra, the case wheéfe andH- are non-
relational grid-polyhedra is considered in Section 7.5w&sdo not have an efficient algorithm for
producing a reduced product grid-polyhedron, we will netals have the polyhedra represented
in their most reduced form with respect to the grid points tratefore it is possible that a result
of “don’t know” will have to be returned in the case where tlesult should b&<{; C H,, or
H1 = H,. Example 6.29 will highlight this.

Example 6.29 ConsiderH; = (L1, P1) andHs = (L2, P2) in GPs. Let

1 46 6 5
P1:=gen | &,0, ,
30356

Po ::con({lgy, 3<x+y, 0<2x—y <9, 2x4+y <15 —10§w—3y})

and
010
L1 =Ly = gcon({w =10,—z+y=3 O}) = ggen (Q’@’ (0 1 3)) .

Then we can see from Figure 6.9(a) thdt = H, and (£1,P;1) and (Ly, P) are weakly tight
products. Sinc€L,P;) and (L2, P2) are not reduced products the comparison and equality test
will return the result “don’t know”. Now considett| = (£}, P;) andH, = (L}, P}) in GPs.
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2 6 6 4 2
P|:=gen | 2,90, )
11 46 5

Py:=con({y <5, 2z+y <15, —1<2zx -y <9, 6 <z+2y})

Let

and £} = £}, = £, = L. Then we can see from Figure 6.9(b) thé&t = +/, and (£}, P;) and
(L5, Ph) are tight products. Unfortunately the comparison and eijydést will give the result
“don’t know”.

Let us now consider the complexities of both the comparisuh equality operations. Let
Ly = ggen(L,Q, P), Lo = gcon(Cr) wheremy = #L + #Q + # P andms = #Cr.
Let P; = gen(L, R, P), P, = con(Cp) Wherems = #L + # R + # P andmy = #Cp.
Assuming that the systends:, Gp,C andCp are already available, the worst-case complexity of
a comparison algorithm i® (n max{mims, mzm4}). Note that, ifn. < min{ms, ms}, then it
would be more efficient to compute the minimal formsdgrandg . before actually checking for
comparison, hence obtaining the worst-case compléi(w max{nmi, nms, m3m4}); clearly,
O(nmax{n? mgm4}) is obtained if the two grid descriptions were already awadan minimal
form. Given that it is known that one grid is a subset of anotned that one polyhedron is a
subset of another, there are quicker tests for checkingligguathe complexity of checking if
Hy = Ho isjustO(maX{nz,mg,mZ}).

6.5.2 Intersection

For grid-polyhedraH;, = (£1,P1) andHy = (L2, P2) € GP,, then theintersectionof H;
andH,, is defined as the paiC; N L2, P; N P,), which is the largest grid-polyhedron included
in both H; and H2. Then in theoretical terms, the intersection operationhes binary meet
operator on the lattic&P,,. It can easily be computed; #; = (gcon(Cz;),con(Cp;)) and
Hy = (geon(Cry), con(Cpa)), thenHy N'Hy = (geon(Crq U Cra), con(Cpy UCpy)). However
this operation of intersection does not preserve the gieection of the polyhedron constraint
systems.

Example 6.30 Consider the grid-polyhedrd{; = (£1,P1) and’Hy = (L2, P2) in GP, where
L1 = geon(Cry), Lo = geon(Cra), P1 = con(Cpy), P2 = con(Cpa),

Cri:={x =10, z+y =20} and Cro:={x =30, y =, 0},
Cp1:={1<2<4,0<y<5} and Cpy:={3<x<6,2<y<6}.

The grids£; and £, are illustrated by the filled squares in Figure 6.10(a). Thia grid inter-
section isC; N Lo = geon(Crq U Cry); thus, asCy = {z =¢ 0, y =2 0} is the minimal form of
Cr1UCro, we havel; N Ly = geon(Cr). The gridLy N Lo is illustrated by the filled squares in
Figure 6.10(b).
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Figure 6.10: Grid-Polyhedron intersection does not pres#re given reduction.

The polyhedron intersection 18, NPy = con(Cp; UCpy); thus,asCpr = {3 < x <4, 2 <
y < 5} is a minimised form afp; U Cp,, we haveP; N Py = con(Cp).
Therefore it can be seen from Figure 6.10(b) thgtN Ha = (gcon(Cy), con(Cp)), where

Cc:={x=60, y=20} and Cp:={3<z<4, 2<y<5}

is empty, hence this also shows why we require an operatidetict emptiness. Also note that
(£1,P1) and (Lo, P,) are tight products. We can see ttd§ N Hy = (gcon(Cr), con(Cp)) is
empty and’p is not even a weakly tight polyhedron constraint systentfpn H,. Note that
even if(£1, P1) were a reduced product, the resulting grid-polyhedron zdier the intersection
would also not have been at least weakly tight.

Example 6.31 shows that if we have two grid-polyhedra, = (L1, P1), Ha = (L2, P2) where
(L1,P1) and (L2, P2) are both reduced products, then after the intersection rionpeed, the
resulting grid-polyhedron i%{; N Hy = (£,P) and(L, P) is not a reduced product.

Example 6.31 ConsiderH; = (£1,P1) andHy = (L2, P2) in GPs. Let
P = con({l <r<4,1<y< 4}), Py = con({2 <r<52<y< 5})

and
L1=Ly= gcon({aj =1 0,—x+y=3 0})

The grid-polyhedraH; andH,, are illustrated in Figure 6.11(a). Then the grid-polyhedrimter-
sectionH; NHe = (L1 N L2, P1 N'P2) is given by

(gcon({x = 0,—x+y=3 0}),con({2 <x<4,2<y< 4})>

The grid-polyhedrori; N'H; is illustrated in Figure 6.11(b) and it can be seen that N Ly, P1N
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(a) Grid-polyhedraH; andH-. (b) Grid-polyhedrori; N Ho.

Figure 6.11: Grid-Polyhedron intersection.

P2) is not a reduced product.

The only partially reduced products the operation of irgeti®n will preserve are the smash and
constraint products.

6.5.3 Join

For grid-polyhedraH, = (L1, P1) andHy = (L2, P2) € GP,, thejoin of H; andHs, is defined

as the paifL, @ L2, P1 @ P2), which is the smallest grid-polyhedron containing bath and
‘Ho. Then in theoretical terms, the join operation is the birjaily operators on the latticEP,,.

It can easily be computed; #; = (ggen(Gc1), gen(Gp1)) andHs = (ggen(Gra), gen(Gps)),
then™; & Ha = (ggen(Gry U Gra), gen(Gp1 U Gpa)). Unlike the operation of intersection the
operation of join does respect if the grid-polyhedra areiced products. Lek{; = (£,,7P;) and

Ho = (L2, P2), then if (£1,P;) and (L2, P2) are reduced products then every generating point
of the polyhedra is also a grid point. Therefore after therafien of join is performed every
generating point will still be a grid point. Example 6.32 demstrates this point.

Example 6.32 ConsiderH; = (£1,P1) andHy = (L2, P2) in GP,. LetP; = gen(a, 3, Pp)
and Py = gen (g, &, Py) in CP,, where

11 4 4 2 2 5
P1 = s P2 = g
1 41 4 2 5 2 5

and £y = Lo = ggen(9, &, Fy) in Go, where

1
Py := 00 .
1 30

The grid-polyhedré{; andH- are illustrated in Figure 6.12(a). The grid-polyhedronndt; &
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(a) Grid-polyhedraH, andHa. (b) Grid-polyhedrori; & Ho.

Figure 6.12: Grid-Polyhedron join.
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Figure 6.13: Grid-Polyhedron join does not respect tiglodpicts.

Hy = (L1® La, P1 & P;) is given by(ggen(2, @, Py U Ry), gen(2, @, PL U P,)), sincel; & L,
takes the union of the grids generator systems Badp P» takes the union of the polyhedra
generator systems. Thus, the generator system of the glodyhis given by

1 1 4 2 5 5
@, a, .
( (1 4 1 5 5 2))

The grid-polyhedror{; @ H- is illustrated in Figure 6.12(b). It can be seen that the grid
polyhedron painL; & Lo, P1 & P>) is a reduced product as every vertexRf® P, is a point of
the grid L1 & L.

However the operation of join does not respect if the gritApedra are tight or weakly tight
products. Example 6.33 establishes this point.
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(a) Grid-polyhedraH; andH-. (b) Grid-polyhedroriH; & Ho.

Figure 6.14: Grid-Polyhedron join requires the grid-payha pairs to be weakly tight products.

Example 6.33 ConsiderH; = (£1,P1) andHy = (L2, P2) in GP,. LetP; = gen(2, o, Pp)
and Py = gen (g, &, Py) in CP,, where

11 4 4 2 2 5 5
Pl = 5 P2 =
1 41 4 2 5 25

and £y = Lo = ggen(9, &, By) in Gy, where

1
Py = 00 .
1 6 0

The grid-polyhedré{; andH- are illustrated in Figure 6.13(a). The grid-polyhedronndt; &
Hy = (L1 ® L2, P1 @ P2) is given by(ggen(, @, Py U Ry), gen(, @, P, U P,)); thus, the
generator system of the polyhedron is given by

1 14 2 5 5
o, a, .
1 4 1 5 5 2

The grid-polyhedror{; & H- is illustrated in Figure 6.13(b). It can be seen that the grid
polyhedron pair(L; @ Lo, P; @ P2) is not a tight or weakly tight product as the constraint
x — y < 3is not saturated by a grid point.

The partially reduced products the operation of join wikgerve are the smash, constraint and
reduced products.

Given two grid-polyhedréH, = (£1,P;) andHy = (L2, P2) in GPy, Example 6.34 shows
that if (£1,P;) and (L2, P2) are not weakly tight products then the resulting grid-pelgton,
after the operation of join is performed, can have more goiompared to the result (£, P;)
and(L, Ps) are weakly tight products.
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Figure 6.15: Grid-Polyhedron join requires the grid-pada pairs to be weakly tight products.

Example 6.34 ConsiderH; = (£1,P1) andHy = (L2, P2) in GP,. LetP; = gen(2, 2, Pp)

andP, = gen(2, @, P,) in CPs, where

05 05 45 45
0.5 45 05 45

andL; = Ly = ggen(2, &, Py) in Go, where

o

1.5 1.5 55 5.5
s fﬁ!z
) (1.5 55 1.5 5.5>

1 00
1 4 0/

The grid-polyhedraH, andH, are illustrated in Figure 6.14(a). The grid-polyhedronndt; ®
Hy = (L1 ® L, P1 & P2) is given by(ggen (2, @, Py U Fy), gen (2, @, P, U Py)); thus, the

generator system of the polyhedron is given by

05 05 45 1.5 55 5.5
05 45 05 55 55 15/ )

The grid-polyhedrori{; @ Hs is illustrated in Figure 6.14(b) and it can be seen thét © Hy

contains the point$1, 5)T and(5,1)T.

Now considerH; = (£1,P;) and Hy = (L2,P}) in GP. LetP] = gen(2,d, P]) and

P} = gen(@, @, Py) in CPy, where

The grid-polyhedra; and H, are also illustrated in Figure 6.15(a) and it can be seen that
(L1,P;) and Hy = (Lo, P5) are weakly tight. The grid-polyhedron joiH; @ Hy = (£1 @
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(a) Grid-polyhedraH; andH-. (b) Grid-polyhedroriH; & Ho.

Figure 6.16: Grid-Polyhedron difference.

Lo, P} @ Ph) is given by(ggen(a, @, Py U Py), gen(2, @, P{ U P})); thus, the generator system
of the polyhedron is given by

1 14 2 5 5
@, a, .
1 4 1 5 5 2

The grid-polyhedrori{; & H is illustrated in Figure 6.15(b) and it can be seen thét © H,
does not contains the points, 5)T and (5,1)".

6.5.4 Difference

Let us recall from Section 4.5 that the grid difference/af and Lo, denoted by, © Lo, is
defined as the smallest grid containing the set-theoreffierdnce of£, and.£,. Also the convex
polyhedral difference (or poly-difference) @f, andP,, denoted byP; © Ps, is defined as the
smallest convex polyhedron containing the set-theoratierdnce of P, andP,. Therefore for
any pair of grid-polyhedr&t,, H, € GP,,, thegrid-polyhedron differencef ; and*,, denoted
by H, © Ha, is defined as the smallest grid-polyhedron containing ététeoretic difference of
‘H; and’H>. The grid-polyhedron difference is computed by taking tifgecence of each of the
components of the product, specifically

H1 © Ha = (51 © L2, P1 © P2)'

Example 6.35 shows that if we have two grid-polyhedra, = (L1, P1), Ha = (L2, P2) where
(L1,P1) and (L2, P2) are both reduced products, then after the grid-polyhediéfarence is
performed the resulting grid-polyhedra pair is not necelysa reduced product.
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Figure 6.17. Grid-Polyhedron difference requires the gridiyhedra pairs to be weakly tight
products.

Example 6.35 ConsiderH; = (£1,P1) andHa = (L2, P2) in GPs. Let

P1 = con({l <r<4,1<y< 4}), Py = con({2 <r<52<y< 5})
and

Ly = geon({z =1 0,—z 4+ y =3 0}), Lo = geon({z =5 1,2+ 2y =¢ 3}).

The grid-polyhedraH, and H, are illustrated in Figure 6.16(a). Then the grid-polyheqdrdif-
ferenceH, © Hay = (L1 © L2, P1 © Ps) is given by

(gcon({w =20,z + 2y =g 0}),0011({1 <zr<4,1<y<4r+y< 6}))

The grid-polyhedror{; © Hs is illustrated in Figure 6.16(b) and it can be seen tha ©
L2,P1 © P2) is not a reduced product.

Like the grid-polyhedron intersection operation, the gumlyhedron difference operation does
not respect if the grid-polyhedra are tight or weakly tightgucts. So after the operation is per-
formed the resulting grid-polyhedron may no longer be attartweakly tight product. The only
partially reduced products the operation of differencd pigserve are the smash and constraint
products.

Given two grid-polyhedraé, = (£1,P;) andHy = (L2, P2) in GPy, Example 6.36 shows
that if (£1,P;) and (L2, P2) are not weakly tight products then the resulting grid-pelgton,
after the operation of difference is performed, can have pEsnts compared to the result when
(L1,P1) and(Ly, P2) are weakly tight products.
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Figure 6.18: Grid-Polyhedron difference requires the gridiyhedra pairs to be weakly tight
products.

Example 6.36 ConsiderH; = (£1,P1) andHy = (L2, P2) in GPs. Let
Py = con({0.5 <x<45,05<y< 4.5}), Py = con({l <x<551<y< 5.5})
and
L= gcon({ac =10,—z+y=4 O}), Lo = gcon({x =0,z +y=4 O})

The grid-polyhedraH, and H- are illustrated in Figure 6.17(a). Then the grid-polyhedrdif-
ferenceH, © Ho = (L1 © L2, P1 © Ps) is given by

(gcon({:n = 1,z+y=12}),con({0.5<z<4505<y<45z+y< 5.5})).

The grid-polyhedror{; © Hs is illustrated in Figure 6.17(b) and it can be seen thét © Ho
only contains the pointl, 1),
Now considefH; = (L1, P;) andHa = (L2, PS) in GP,. Let

Pri=con({l <z <4,1<y<4}), Py :=con({2 <z <5,2<y<5}).

The grid-polyhedral{; and H, are also illustrated in Figure 6.18(a) and it can be seen that
(L1,P;) andHy = (L2, PS) are weakly tight. Then the grid-polyhedron differertée & Hy =
(L1 © L2, P1 © P,) is given by

<gcon({w = Laz+y=42}),con({l <z <41 §y§4,w+y§6})).

The grid-polyhedror{; © Hs is illustrated in Figure 6.18(b) and it can be seen tét © Ho
also contains the point3, 3)7.
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6.5.5 Affine Image and Pre-image

Affine transformations for the vector spa® will map hyperplanes to hyperplanes, preserve
intersection properties between hyperplanes and presaties of distances between points along
a hyperplane; such transformations can be represented toigesanR™ ™. It follows that the set
GP, is closed under the set of all affine transformationsR8t Simple and useful linear affine
transformations for numerical domains, including the gralyhedra, are provided by the ‘single
update’ affine image and affine pre-image operators.

Given a grid-polyhedror{ = (£,P) € GP,, a variablex; and linear expression =
(a,x) + b with coefficients inQ, theaffine image operatot(H, xx, e) maps the grid-polyhedron
H to

(qS(E,xk,e),qS(P,wk,e)).

Conversely, thaffine pre-image operatas—! (H, z, ¢) maps the grid-polyhedrof to

((b_l(E? Lk 6)7 ¢_1(Pa Lk, 6)) :

Observe that the affine imagg?, x,, e) and pre-image—!(H, ;, e) are invertible if and only

if the coefficienta, in the vectora is non-zero. Note that as the affine image and pre-image
operations preserve intersection properties betweenrplgres and preserve ratios of distances
between points along a hyperplane we have that i= (£,P) and (L, P) is a reduced prod-
uct (resp. constraint, weakly tight or tight product), thafter the affine image (resp. pre-
image) operation is performed the resulting grid—polylmmnair(¢(£, x, e), o(P, xg, e)) (resp.

(¢~ (L, mp,€), o (P, x, €))) is also a reduced product (resp. constraint, weakly tighight
product).

Thegeneralized affine imageesp.,generalized affine pre-imapis an extension of the affine
image (resp., affine pre-image) operator defined above.nGivgrid-polyhedrori{ = (£, P) €
GP,, linear expressions’ = {(c,x) + d ande = (a,x) + b with coefficients inQ, f € Q and
<1 € {<,=,>}, the generalized affine image operator= )(H, €', e, f,x) is defined as

(T/J(ﬁa 6/, €, f)’ 1/}(7)7 6/, €, N)) :
wherey (L, e e, f) is defined as

Vv,w e R": (v,w) €Y < ((c,w)+d=; (a,v)+b)A (/\ wz—v,>

0<i<n
c;=0

and where)(P, €', e,1x) is defined as

Vv,weR": (v,w) € < ({c,w)+di(a,v)+b)A ( /\ w,—vl>

0<i<n
c;=0
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Note that, where’ = z, and f = 0, then the transformation is equivalent to the standardeaffin
transformation orcC with respect to the variable, and the affine expressian that is

¢(£7 Tk, €, 0) = ¢(£7 T, 6).

Also note that, wher’ = z;, and<t € {=}, then the transformation is equivalent to the standard
affine transformation o with respect to the variable, and the affine expressianthat is

7/1(737 T, €, :) = ¢(P7 Tk, 6).

6.5.6 Widening

Recall from Chapter 5 that we have described two wideningaipes for the grid domain and also
note that there are several possible widenings for the polsdn domain [4, 6,43, 44]. Therefore
let V. be a widening on the grid domain ang a widening for the polyhedron domain. Let
Hi1 = (L1,P1) andHse = (L2, P2), then

Hl \Y% HQ = (£1V££27P1VPP2).

As noted in Section 6.2 if we use the standard widening foylpedra, therlv defined as above
is a widening for the all partially reduced product domaiesired here except for the reduced
product domain. This is due to the fact that for a polyhedragewing to satisfy the ascending
chain condition, at each stage the constraint representatiist decrease by at least one element.
However if the reduction method for the grid-polyhedra werénclude the adding of constraints
to the representation, which could occur with the a reduageduct, this decrease will not be
achieved.

The widening function for grid-polyhedra will preserve then reduction. Example 6.37
shows this for the case where both grid-polyhedra pairsesdeaed products.

Example 6.37 ConsiderH; = (L1, P1) andHs = (L2, P2) in GP,. Let

Pri=con({0<z,0<y, —2<z—y<2 z+y<6}),
Pg::con({nggﬁ,0§y§6,x+y§8})

and
L= gcon({w =0, y = 0}), Lo = gcon({w =10, z+y = O})

The grid-polyhedraH, and H- are illustrated in Figure 6.19(a). Thefi;V.Ls := gcon({x +
y =2 0}) and
PV Py = con({O <z 0< y})

The grid-polyhedrort{; V H, is illustrated in Figure 6.19(b) and it can be seen that thagr
polyhedron pair,(£1V. L2, P1 VP2 ) is a reduced product.
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Figure 6.19: Grid-Polyhedron Widening.

6.6 Discussion

As noted in Section 6.4 one way to improve the polyhedron tcaimé bounds would be to add
new constraints to the polyhedron representation. Theoready this method was not chosen
for our reduction was that standard polyhedron widening ld@ot be guaranteed to terminate,
see Section 6.5.6. Although the method of adding polyhedmmstraints to minimise a grid-
polyhedron to a reduced product will not work with a standaidening we will discuss below
some of the methods that could be used if the widening is dersil as an extrapolation operation
instead.

6.6.1 Utilising Grid Congruences to Add Constraints

Consider the grid-polyhedrotl = (£, P), whereL := gcon(C,) andC, is in minimal form.
Now for each proper congruence in the grid representatiocamefind the maximal and minimal
values where the congruence would bound the polyhedron &toome and below respectively.

Definition 6.38 (Grid Bounded Constraint System.) Let H = (£, P) be a grid-polyhedron
and (£, P) be a weakly tight product, whef@ = con(P), L = gcon(C) andC, is in minimal
form. ThenCp is a grid bounded constraint systefor H if, for each proper congruencg =

((v,x) = b) €Cp:

1. if P is bounded in the directiom, then there exists = ((v,x) < d) € Cp.
2. there exists a poinp € P such that(v, p) = d;
3. if P is bounded in the directionv, then there exists’ = ((—v,x> < d’) € Cp.

4. there exists a point’ € P such that(—v,p’) = d’;
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Figure 6.20: Grid Bounded Constraint System.

Example 6.39 Consider the grid-polyhedrofi{ = (£,P), whereL = gcon(C,) andC, :=
{x =2 0, y =3 0}. Let’P be the polyhedron given by the constraint system

Cp:= {4§$+y§8,—2§y—m§2}.

Then™H is a weakly tight product and can be seen in Figure 6.20. Tie lgpunded constraint
system fofH is given by
C:con({1§x§5,1 §y§5}).

The constraints of are illustrated in Figure 6.20 by the dashed lines.

Now if necessary the classical approaches of branch anddbautine cutting plane method can
be applied to the larger set of constraints, see Sectio.6Mote also that for each grid we can
produce the smallest rectilinear grid that contath®y computing the covering box. Suppose
therefore that we have a rectilinear gid = gcon(C,’), such that the congruences are given by
Ce = {m; =/ b;}. Then we can also produce the rectilinear grid bounded cainsst

Let H = (£, P) be a grid-polyhedron whergC, P) is a weakly tight and constraint product.
Also let £ = gcon(C,) be arelational gridP = con(Cp) andCp’ be the set of rectilinear and re-
lational grid bounded constraints fdf which have been generated from the congruences systems
for £ and£’, where£' is the smallest rectilinear grid containin® Let Cpr” be the congruence
system returned by Algorithm 3 when appliedio= (£, con(Cp’)). Then(L,con(Cp U Cp"))
is a weakly tight product an#{ = (£, con(Cp UCp”)). Example 6.40 demonstrates this.

Example 6.40 Consider the grid-polyhedroft = (£, P), whereL = gcon(Cr), Cr := {x =2
0, —3x + 2y =12 0} andP is given by the constraint system

Cpi={x<6,y<9,4<z+y, y—z<8, 2r—3y <3}

H can be seen in Figure 6.21(a). Then a rectilinear grid fois £’ whereL’ = gcon(C.’) and
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(a) Grid-polyhedror{ = (L, P). (b) Grid-polyhedror{ = (L, con(Cp UCp")).

Figure 6.21: Adding constraints to a grid-polyhedron.

Cc = {x =20, y =3 0}. From £ and £’ we can calculate the relational and rectilinear grid
bounded constraints given by

Cpl ={-2<2<6,1<y<9, —12< -3z +2y <18}.

Now applyingAlgorithm 3to H = (£, con(Cp’)) we get the constraint systefip” and together
with the constrain» we get the new constraint systeom(Cp U Cp”) where

Cp'i={-2<2<6,3<y<9, —12< -3z +2y <12}

H = (L,con(Cp UCp")) can be seen in Figure 6.21(b). The constraint systemu C»" is
weakly tight for the grid-polyhedrofi.

For any grid-polyhedror{ = (£, P), whereL = gcon(C,) is relational and’ is in minimal
form, the complexity of creating th#n — 2 new relational and rectilinear grid bounded constraints
using then relational congruences and the- 1 extra rectilinear congruencesﬂ)s(un2), where
v is the number of vertices i®. This is because, for each possible grid bounded constraet
calculate the value of the constraint at each vertex themttak maximum and minimum of these
to be the bounds.

6.6.2 Traditional Integer Programming Methods

An alternative approach to minimising the polyhedron wéhpect to the grid points is to consider
the already well researched topic of integer programmings Well known that computing the
integer hull of a polyhedron is equivalent to solving an geprogramming (IP) problem, that is,
solvemax{cTx|Ax < b} whereA is anm x n matrix,b € R™, ¢ € R" andx € Z". In our case
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we do not necessarily have the integer dgkit] however we can find the affine transformation that
maps the original grid to the integer grid. When this affirengformation is then applied to the
original grid and polyhedron we will get a problem that is nawinteger programming problem
and hence can be solved using the techniques described. b@loge our integer programming
problem has been solved we can then apply the inverse offine afansformation to get the grid
and polyhedron systems we require.

6.6.2.1 Branch and Bound

The branch and bound method is based on the classical appobativide and conquer, the
algorithm proceeds by splitting the problem into smallelb-puoblems and solves their linear
programming relaxations to provide upper bounds on theatibge value. Although the outline
of the algorithm remains the same, the specific details of th@malgorithm is to be implemented
depends on the problem in hand. The differences include hamyrsub-problems to create at any
given point, which variable the emphasis of the sub-problgtifocus, and which sub-problem
to tackle first. At this point as we are only concerned withdauting a weakly tight polyhedron,
our choices for the algorithm should focus more on produdnigetter approximation quickly
rather than a more accurate solution. We will now discush eathese choices with our problem
in mind. For the following descriptions suppose we starthvitie following IP,max{c'x &
R"|Ax < b} whereA is anm x n matrix, b € R™, ¢ € R” andx € Z". Also suppose after
applying the simplex method to the LP-relaxation we havelatiso x = (x1,...,Xxn). Letus
first consider the number of sub-problems to create:

e Variable Dichotomy: Suppose the solution to the relaxatias some variable, say;,
which is fractional. Then the problem is split into two newbsaroblems, one with the
extra inequalityr; < | x;| and the other with the extra inequality > [x;].

e Bounded Variables: Suppose the solution to the relaxatéssbme value, say;, which is
fractional and we know that; € {s,...,t}. Then we can split the problem into- s + 1
sub-problems, each with the extra equality= j for j € {s,...,t}.

In our case, the bounds within which a variables values magdalld be large or it is possible
that we may not know what the bounds are for each variablesfibme we believe it would be best
to use the variable dichotomy method to choose the type epsoitilem. This now leads us to the
problem that it may be possible for more than one variableat@ha fractional value. Therefore
we need a method for choosing the variable the sub-probleithgain the extra inequality in.

e The Most Fractional Variable: Given a variahlg we say its fractional value isin{ f;, 1 —
fi}, wheref; = x;— | x:]. ThenifV is the set of variables which are fractional, the variable
we choose is the one whose fractional value is largestaie;cy min{ f;, 1 — f;}.

e |In order: Choose the first variable which is fractional.
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Finally let us consider the problem of deciding which subkpem to tackle first. It can be seen
that the algorithm produces a tree of problems where thialimitoblem is the root of the tree.

e Depth First with Backtracking: Descend as far down a brarfdhevtree as possible until
we can get no further then move onto the last sub-problemteantesand continue with that
branch.

e Breadth First: Starting at the left consider every sub-f@wbat the same level of the tree
before creating any more sub-problems.

e Best Bound: Choose the branch whose LP-relaxation has thebjective value, therefore
in the case of maximisation problems choose the largest.

e Most Fractional: Compute the fractional valuein{ f;, 1 — f;}, for each of the branches,
then choose the branch with the maximum fractional value.

At this time as we are only concerned with gaining a better@gmation rather than a precise
one, it would be best if any implementation we have limitslémgth of any branches we may cre-
ate. Therefore if the limit of the length of branches is smadlwould be best choosing a breadth
first search. As within such a small search any advantagefigieacy gained by choosing a
best bound or fractional approach will be lost in the extrmpatations these processes require.
If however the branch restriction length is larger (say3 ) we recommend applying the most
fractional approach.

Example 6.41 Consider the example given in [81]. Suppose the (IP) is gbsen

maxr 4x1 —xT9 = 2
subject to Tx1 — 2x9 < 14

To <3

201 — 219 < 3

x € 72.

Then the LP-relaxation has the solutisn= (20/7,3) and upper bound™* = 59/7. We now
divide the problem into two sub-problems using the variatithotomy method. As; ¢ Z
the first sub-problent; will have the extra inequalityy; < 2 and the second sub-problef
will gain the inequalityz; > 3. For this example we will restrict the length of branches to
two, therefore we will apply a breadth first search startingni the left. Consider th8, branch,
solving the new (LP) we get the solutien= (2, 1/2) and the upper bound™ = 15/2. Therefore
asx ¢ 72 we can split the problem again to get the sub-problesiais which has the extra
inequalityz, < 0 and S12 which has the extra inequality, > 1. As we are using a breadth first
search we now consider th problem. Solving the new (LP) we find that it is infeasiblethen
branchS; is pruned. Now consider th&; problem. The solution to the new (LP}s= (3/2,0)
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Figure 6.22: The complete branch and bound tree for Examgle 6

with upper bound:™ = 6, however as we are restricting the length of the branches ilVaot
split the problem again. Therefore consider the final prablg », we get the solutiox = (2, 1)
to the new (LP) which is integral and therefore the upper lbisn:™ = 7. The complete branch
and bound tree can be seen in Figure 6.22. NowHet (L, P) be the grid-polyhedron where
L =7?andP = con({4w1 — 29 < 7,721 — 2m9 < 14,29 < 3,221 — 229 < 3}) Then the
constraintdz, — xo < 7 is weakly tight forH.

6.6.2.2 Cutting Planes

The cutting plane method is based on the classical brute fapproach, the algorithm succes-
sively adds inequalities to the LP problem, called cuttitanps, and solves them to hopefully
give a better approximation. The classic approach to prindube cutting planes is the Chvatal-
Gomory (C-G) procedure and the inequalities produced dtedc&-G inequalities. This proce-
dure involves taking positive combinations or scalar npla of the inequalities of the LP and
performing integer rounding to generate the new ineqealito be added to the LP so that it can
be solved. For example, suppose the inequalities of the &Rigen byAx < b whereA is an

m x n matrix,b € R™ andx € Z". Then ifu € R"" we can produce new inequalities as follows:

1. Multiply the LP inequalities byi. Then

n
E uTaixi <u'b
i=1

is still a valid inequality.

2. Assuming we have a maximisation problem, we now round dinenHS of the inequali-
ties. Then

n

Z luta;|z; <u'b

i=1
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is still a valid inequality.

3. We now round down the RHS of the inequalities. Then

> [uTa;]z; < [uTh)

i=1

is still a valid inequality and is integer.

Note that it is shown in [67] that this procedure is sufficisnproduce all valid inequalities after
a finite number of iterations.

Another approach to producing cutting planes is Gomorgstional cutting plane algorithm.
This approach first solves the LP-relaxation to produceigie solution and from the rows of the
associated tight simplex tableau the fractional cuts dentaFor example, suppose the following
LP, max{c'x € R"|Ax < b} whereA is anm x n matrix, b € R™, ¢ € R" andx € R".
Also suppose after applying the simplex method to the LBxaion we have the tight tableau
represented by

n
yz-+26ijfuj =b fori=1,...,m
=1
wherey € Z'!" are the basic variables awdc Z" are the non-basic variables. Then the Gomory
fractional cutting planes are given by

yi+27ijvj =g, fori=1,...,m
=1
Wherefij = Q5 — LEUJ andg; = 52’ — I_EZJ
With both the C-G procedure and Gomory’s fractional cuts edicle it would be best for our
problem if a set of: cutting planes were added for the first iteration. After tvatrecommend
either stopping or applying the branch and bound technigiree if we were to add another
family of n inequalities the problem could become large ilvere large.

Example 6.42 Consider the example given in [55] which uses Gomory'’s fometl cuts. Suppose
we have the (IP)

maxr 2x1+To =2
subject to x1+ 219 <7
2%1 — I < 3

x € 72.

Then after applying the simplex algorithm to the LP-reléatve get the following tight simplex
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table.
T4 I3

x9 —1/5 2/5 11/5
x 2/5 1/5 13/5
—z 3/5 4/5 37/5

We can take the fractional parts of each of the rows to create mequalities. Taking the frac-
tional part of the first row we géi.4z3 + 0.8xz4 > 0.2 which is equivalent ta:; < 2.5. Similarly,
taking the fractional part of the second row we generate threstraint0.2z3 +0.6x4 > 0.6 which
is equivalent torz; — xo < 13.

6.7 Related Work

Recall form Section 3.8 that in her thesis Ancourt [1] (se®d68, 71, 72]) considered the do-
main of Z-polyhedra that is a domain ointegral latticesintersected with the domain of convex
integral polyhedra. Here the product is a direct product tiedefore there is no interaction be-
tween component domains. Also recall form Section 4.9 thatdperations which are similar

to our operations are those of grid-polyhedron intersectaffine image and affine pre-image.
The operations of grid-polyhedron join and grid-polyhadudifference (as defined here) are not
considered; instead the union operator takes two gridhmalya’{; and, and returns a set. The

Z-polyhedron domain was then extended in [42] so thafAifmolyhedra are considered to be the
affine images of integer polyhedra, where the affine imagbdstansformation represented by
the generator system of the integer lattice.

Example 6.43 Let £ = ggen(G) andP = con(Cp), where

e 90)

Cp:={x <1, y <3}

Then théZ-polyhedron is given by the set
{x e L]z <3, y<6}.

Therefore if we think of this interpretation for our grid{gbedron domain, with the restriction
that the generator description for the grids do not coniaigs|, we consider objects that are affine
images of integer polyhedra, where the affine image is thestoamation represented by the gen-
erator system of the rational grid. The main difference whik interpretation of th&-polyhedra

is how the operations such as intersection, union and diffa are now performed, whereas be-
fore the operations where applied to the separate componemt the desired operation must be
applied in stages. First the operation is applied to theekstto get the new affine transformation,
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then this transformation is applied to tiepolyhedra and finally the operation is applied to the
these two newZ-polyhedra.

6.7.1 Products

This section gives an overview of the different ways we cddde represented the combining of
two domains and considers the advantages and disadvamtgash method.

6.7.1.1 Cartesian Product

The Cartesian product is the most basic of combinationseapribduct is represented by the pair
and there is no interaction between the two domains. Suppesare given the two abstract
domainsA,, A with concretisation functions; : A1 — C and~, : A, — C, respectively.
Then the Cartesian product has the doméin= A; x A,. The concretisation function is given
byvy: Ay — C x C,where

v((a1,a2)) := (mi(a1),72(a2))

and the abstraction function is given by C x C' — A, where

alc,¢) = (ai(c), aa(c)).

6.7.1.2 Direct Product

The Direct product [28] is the most basic of combinations rehthe objects are considered to
be the intersection of the two components. Like the Canmepiaduct, for the direct product,
there is also no interaction between the two domains. Sepp@sare given the two abstract
domainsAy, A, with concretisation functions; : 41 — C and~y : Ay — C, respectively.
Then the direct product has the domain = A; x A,. The concretisation function is given by
v: Ay — C,where

v((a1,a2)) := mi(a1) Mrya(az)

and the abstraction function is given by C' — A, where
a(c) := (au(c), az(c)).

If the concrete operatio®O : C — C has the corresponding abstract operatiait®;, AO-
over the abstract domaing,; , A-, respectively, then the abstract operation over the dpeaduct
domain can be constructed as follows

AOX ((al, ag)) = (AOl(al), AOQ(CLQ)).
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The advantages of the direct product are that it is easy téeiimgnt as the direct product will
just pair together the existing implementations. Theretbis product produces the simplest way
to gain the extra information not yielded by a single domaialgsis. However the disadvantage
of the direct product is that since there is no interactiotwken the elements of each domain
an amount of precision can be lost. Also there may be a losHicieacy, for example, there is
no sharing of equalities between the two domain componehtshwcould lead to extra opera-
tions being performed unnecessarily. Another disadvantdghe direct product is that a Galois
insertion is not always formed, which again can lead to addgsecision.

6.7.1.3 Reduced Product

The Reduced product was introduced by Cousot and CousobR8]way to gain some of the
precision lost by the direct product. Suppose we are giveritio abstract domaind;, A, with
concretisation functions; : Ay — C and~, : Ay — C, respectively and the direct product
domainA, = A; x As. Then the concept of the reduced product is to add to thetdireduct

a function which maps all the elements with the same cormset@in into an equivalence class.
Then each class will have an element which represents tke wlhich will be used to improve
precision. The reduction functioR : A, — Ay is defined as

R((a1,a2)) :={(e1,e2) | v((e1,e2)) = v((a1,a2))}
Then the reduced product domain is the domain
AR = {R((al,ag)) | a; € Al,ag € AQ}

The concretisation operatoy,: A — C, and the abstraction operator,: C' — Ag, are given
as follows

’7((&1,&2)) = ’71(61) |_|’72(€2), where R((al,ag)) = (61,62),

a(ce) = R((al(c), oq(c))).

The corresponding abstract operation for the concreteatiparC'O : C — C'is as follows
AOg((a1,a2)) := R(a1(r),a2(r)) where r =CO (7((&1,@))).

The advantages of the reduced product is that it can yield mp@cise analysis results compared
to the direct product and that the reduced product forms @i§abnnection provided the two
original domains are Galois connections. The disadvant@gfee reduced product is that its im-
plementation would require all the abstract operationsetodvised with respect to the reduction
function. Which is not only a difficult process as it involvbe theoretical concretisation function
it goes against the fact that we are trying to use existingalosnand their abstract operators so
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that as little as possible new work needs to be done.

6.7.1.4 Pseudo-reduced Product

The product domain described in [22], called the Pseudaeed product by the authors of [25],
considers a refined version of the reduced product. The psediiced product has the domain
Ap = Apg and concretisation and abstraction functions follow frémosie of the reduced product
domain. However the abstract operations are defined as

AOp((a1,a2)) := R(AO:(a1), AOz(az)),

where AO; and AO, are the abstract operations over the abstract dom&jngls, respectively,

for the concrete operatioO : C — C. As the abstract operations are defined in terms of
the reduction function the disadvantages of the Pseudseezt product follow from those of
the reduced product except that the concretisation fumdéiono longer needed for the abstract
operations.

6.7.1.5 Open Product

The Open product is described in [25]. The open product hasltmaindp = A; x As. The
abstract operations are defined as

AOo ((a1,a2)) ==
(AOl (Ql(al, ag), v ,Qm(al, ag)) (al), A02 (Ql(al, ag), . ,Qm(al, ag))(a1)>,

where theQ? are queries, defined & (a;,az2) = Q% (a1) V Q4 (az), which are monotone func-
tions that map elements or the domain onto tests. The adyaotahis domain is that since the
abstract domain is that of the Cartesian product the onkaéxtplementation work would be that
of producing the query operators. The disadvantage of thisain is that it is not as efficient as
the reduced product domain.

6.7.1.6 Granger's Product

Granger introduced his idea of a product domain in [40]. Thecept was to have two new
operationso; : Ay x Ay, — A; andoy @ A1 x Ay — A which would refine each of the
components of the product thus allowing the two domainsterdict. Specificallyg, ando, are
such that

(01(6117@2)7@2)): v((a1,a2)),
(al, 0’2(&1, az)))z 7(((11, Gz)),

o1(a,a2) <ap and v

oa(ai,az) <ay and v

(
(
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respectively. The product is then defined as the fixpoint®tikcreasing iteration sequence given
by ((n,75)),,oy Which is defined as follows

(77?7 778) = (a17 ag),

(77?+17 773“) = (01(77?’ 773)7 02(77?’ 773))

The advantage of this domain is that since the abstract dostiat of the Direct product the only
extra implementation work would be that of producing theneffnent operators for each domain.
The disadvantage of this domain is that it is not as efficisriha reduced product domain.

6.7.2 Traditional Methods to Test for Emptiness

We now give a description of some alternative ways to test ihgegral grid-polyhedronZ™ NP,
is empty.

6.7.2.1 Ellipsoid Method

Khachiyan’s method [76, Section 13] and the more generigiseild method [67, 76, Section 14]
work by finding a series of ellipsoids of decreasing volumé tasting if their centres are points
within the polyhedron.

Definition 6.44 (Ellipsoid.) An ellipsoidwith centrey is the set
E={xeR"(x-y)'D (x—y) <1},

written asE(D,y), whereD is ann x n positive definite matrix angt € R".

The following outline is taken from [76, Section 13]. Lgt= 4n%y andR = 2%, wherey is the
number of constraints in the representatiorPofThen? C {x| ||x|| < R} = Ey. The method
consists of computing the sequence of ellipsdit§s £, F-, ... each having a smaller volume,
such thatP C F;, for all 7. So for each ellipsoid®; we have a centrg; and a positive definite
matrix D;. Now if the centrey;, of the ellipsoidE; does not lie ifP then it must have violated
a constraint of the representation, séy- x < c. ThenE;_; is the smallest ellipsoid containing
E;n{xjaT .- x <a® . y;}.

6.7.2.2 The Linear Inequality Integer Feasibility Problem

This process consists of checking to see if the unit hypereuilh fit inside a bounded polyhedron.
To check this property though the polytopes must be of aicefvam. The following definitions
are used to test for emptiness, taken from [67, Page 515].

Definition 6.45 (Sphere.)A spherewith centrey and radiusr is the set

S={xeR"x-y)(x—y) <r’},
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written asS(y, ), wherey € R™.

Definition 6.46 (Round.)A polytope,P € R", isroundif there exists a constamrtand rationals
y € R", r1,m9 € R4, such that

1. S(y,r1) CP C S(y,r);

2.2 <o,

Assuming we have a round full-dimensional polyhedron tls¢ te see ifZ" NP # @ has two
cases.

1.r > %n%
In this case the unit hypercube with cengrés contained irfP and hencé” must contain
an integer point.

2. < %n%
In this caseP can only contain at most one integer point hence the probkmbe solved
by total enumeration.

The problem occurs with this method if it is found that theypape is not round. If this happens
then an affine transformation must be applied to the polytopmeake it round and hence, as noted
in [67, Page 518], the problem then becomes equivalent taftiasting for emptiness when we
do not have the integral grid.

6.8 Conclusion

We have introduced the partially reduced product of two getim domains which allows for
a range of interaction between the two components. For tbdust we defined several new
reduction operations including the constraint productakiytight product and tight product. For
the grid-polyhedron domain we gave methods for creatingectid non-redundant congruence,
a weakly tight constraint system and a test for emptinesslatt two of which have complexity
O(n?w), wherey, is the cardinality of the original constraint system.






Chapter 7

Weakly Relational Grid-Polyhedron
Domains

7.1 Introduction

In this chapter we will introduce some weakly relationaldgpiolyhedron domains. These do-
mains are the product of a grid or a weakly relational gridnvabme of the weakly relational

sub-domains of the polyhedra. Namely we will specify thaldrox domain and introduce the
grid-bds, bounded difference grid shape, grid-octagonamidi-octagon domains which have not
been proposed before. For each of the different combinatddrdomain we will consider how

the result of the weakly tight algorithm, Algorithm 3, iseffted. Specifically, we will show, with

certain restrictions to the grid, we can achieve result s1sca tight or reduced product. We will
then consider the effect the restriction to these sub-doesnaf grid-polyhedra will have on the

other operations.

7.2 Grid-Boxes

Let us first consider the combination of a grid with a box.

Definition 7.1 (Grid-Box.) LetP = con(Cp) be a box inCP,, and £ = gcon(C) a grid in G,,.
Then we say thatl = (£,P) := LN P is agrid-box Thegrid-box domainis a subset o:P,,
and is the set of all grid-boxes R™ ordered by the set inclusion relation.

Note thate andR" are grid-boxes and therefore are the bottom and top elenoéiite subset
respectively.

129
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Definition 7.2 (Rectilinear Grid-Box.) We say a grid-box isectilinearif and only if the grid is
rectilinear.

Recall that as am-dimensionalbox B is a sequencély,....I,) of intervals over the seR, a
1-dimensional grid-box is a grid-interval. Therefore alétresults of this section will also hold
for the domain of grid-intervals.

Let H = (£,P). As the box domain is a non-relational domain when we creagedi-
rected non-redundant congruences from the constrairfisse will want to create non-relational
congruences. Therefore if we only haderepresented by a generator system we can do this us-
ing Proposition 4.11 from Section 4.6 as this will create sheallest rectilinear grid containing
L, otherwise we will use Algorithm 2. Before we introduce attes emptiness, we will first
discuss how the results of Algorithm 3 are improved when waig grid-boxes. Given a grid-
polyhedronH whereP = con(Cp) and L is rectilinear then Algorithm 3 will move in the box
bounds with respect to the grid so tr(a(t, con(Cp’ )) is a reduced product. If howevéris not
rectilinear then Algorithm 3 will produce a weakly tight bornstraint system fdk{ as shown by
Proposition 6.23.

Proposition 7.3 LetH = (£, P) € GP,, be a rectilinear grid-box wher¢L, P) is a constraint
and weakly tight product. Thei, P) is a reduced product.

Proof. LetH = (£, P) € GP, be arectilinear grid-box wheré = gcon(C.) andP = con(Cp).
As we can represent any equal(tiv, x) = d) by the two inequalitieg(v, x) < d) and((v,x) >
d) we can assume th&p only contains inequalities. Assume tifatis bounded. A< is the set
of vectors inR" that satisfy all the congruences@f we can writel as

{X S R”\xl =t;+s;- fi,Vs; € Z}

As Cp is a non-relational set of constraints there is: (vi-wi < d) € Cp, such thab; # 0. Then
as(L,P) is a weakly tight productl = ¢; + u; - f; for someu; € Z. Therefore the constraints of
Cp intersect at grid-box points. # is unbounded the result follows. Hencé 4, P) is a weakly
tight product ther(£, P) is a reduced product. ]

Corollary 7.4 LetH = (L, P) € GPP, be arectilinear grid-box wher® = con(Cp) and(L, P)

is a constraint product. Also lef»’ be the constraint system returned Aigorithm 3 when
applied to (£, con(Cp)). ThenH = (L,con(Cp')) and the pair(L,con(Cp’)) is a reduced
product.

Proof. From Proposition 6.23 = (£, con(Cp’)) and the pair(£, con(Cp")) is a weakly tight
product. Then, by Proposition 7.8£, con(Cp’)) is a reduced product. (]

LetH = (L, P) € GP,, be arectilinear grid-box wherg, P) is a constraint product. Thendf’
is the constraint system returned by Algorithm 3 when apipl@(L, con(Cp)), oh(L,P) = L
ando%(L,P) = con(Cp).
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(a) Grid-polyhedrori = (£, P). (b) Grid-polyhedror = (£, con(Cp")).

Figure 7.1: Producing a reduced product grid-box.

For any grid-boxH = (£, P), whereL = gcon(C,) andC. is in minimal form, the cost of
performing Algorithm 3, which improves the constraint bdendepends on a number of factors:
if the congruence syste@y represents a rectilinear grid, then the complexit§) (m); if, only the
generator system is known and does not represent a reatilgred, then the complexity is that
of producing the covering box, which is, at worét(rn?); if, however, the congruence systetn
does not represent a rectilinear grid, then the complezi€y (in®).

Example 7.5 shows that given a rectilinear grid-@x= (L, P), whereP = con(Cp) and
(L, P) is not a weakly tight product, Algorithm 3 will return a coraitt systenCp’ such that the
grid-box (£, con(Cp")) is a reduced product.

Example 7.5 Consider the grid£ = gcon(Cr) in Go, whereC, := {z =3 2, y =5 0} and the
box,P = con(Cp) in CPs, where

Cpr={1<2<10,3<y<9}.

H = (L, P) can be seen in Figure 7.1(a). It can be seen thats not a tight constraint system for
H and also note thafp is not a weakly tight constraint system fdras not all of the constraints
are saturated by a point of. Now after applyingAlgorithm 3 to Cp, we havecon(Cp’) in CPy
where

Cp' ={2<2<8,4<y<8}.

H = (£, con(Cp’)) is shown in Figure 7.1(b). Then, not only can it be seen ¢hditis a tight
constraint system fok as every constraint is saturated by at least one grid-boxtpdiut also
the pair (£, con(Cp')) is a reduced product.

For any grid-boxH = (£, P), whereL = gcon(C.) andC, is in minimal form, the cost of
performing the test for emptiness, depends on a number tdrfadf the congruence systeti
represents a rectilinear grid, then the complexity of testior emptiness is linear; if, only the
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(a) Grid-polyhedror = (£, P). (b) Grid-polyhedror = (L, con(Cp")).

Figure 7.2: Producing a weakly tight grid-bds.

generator system is known and does not represent a reatilgréd, then the complexity is that
of producing the covering box, which is, at WOI@(n2); if, however, the congruence systetn
does not represent a rectilinear grid, then the complegi€y(in®).

7.3 Grid-BDS

Let us now consider the grid-bds domain which is a subseteftid-polyhedron domain and
combines the domain of grids with the bounded differenc@sluimmain.

Definition 7.6 (Grid-BDS.) LetP? = con(Cp) be a bds inCP,, and £ = gcon(C,) a grid in G,,.
Then we say thatl = (£, P) := LN P is agrid-bds Thegrid-bds domairis a subset ofzP,,
and is the set of all grid-bds iR™ ordered by the set inclusion relation.

Note that@ and R™ are grid-bds and therefore are the bottom and top elemerttseafubset
respectively. Recall from Section 2.3.3 that we can repreaébounded difference shape by a
weighted graph and that a closed set of constraints for adidesrto the set derived from a closed
weighted graph. As Algorithm 3 will not produce a closed daaiat system for the product if
we apply the closure algorithm after Algorithm 3 has beerfquared, we will have a closed
constraint system but we will not necessarily have a weaght poroduct anymore. Example 7.7
illustrates this point.

Example 7.7 Consider the grid£ = gcon(C) in Go, whereC, := {z =4 0, y =3 0} and the
bds,P = con(Cp) in CPPy, where

Cp={2<2<12,1<y<8, -5<z—y<4}

H = (L, P) can be seen in Figure 7.2(a). It can be seen ifiatis not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a pointlpffor example
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2 < z. Now after applyingAlgorithm 3to Cp, we havecon(Cp’) in CP, where
Cpl ={4<2<12,3<y<6, -5<x—y<4}

H = (E,con(Cp’)) is shown in Figure 7.2(b). Also the constrainb < z — y andz < 12
are illustrated in Figure 7.2(b) by the dashed lines. It camdeen thatlgorithm 3 does not
improve these constraints as they are saturated by the gt 4, 10)™ and (12,0)T respec-
tively. However, if the closure algorithm were applied t@ tlveighted graph that represents
H = (L,con(Cp')), we would get the new closed set of constraiftsure(Cr') = Cp” which
are derived from this closed weighted graph, where

Cp' ={4<2<10,3<y<6, 2<x—y<4}.

So by applying the closure algorithit{ = (£, con(C»")) and the constraint-5 < = — y is
improved to—2 < z — y. However, now the constraiat < 12 is improved tar < 10 which is
not saturated by a grid point. S@C, con(Cp")) is not a weakly tight product.

As a bounded difference shape has at mdst n constraints, ifH = (£, P), then Algorithm 3
has complexityO (n2) if £ is rectilinear, otherwise if the grid is not rectilinear i complexity
O(n'). Also as a bounded difference shape constraint system vighiclosed is a paired con-
straint system and as the test for emptiness uses Algorithitnhds the same complexity. The
following is a corollary to Proposition 7.3.

Corollary 7.8 LetH = (£, P) € GP, be a grid-bds wher@ = con(Cp), (£, P) is a constraint
product and( is rectilinear. Also letCr’ be the bounded difference shape constraint system re-
turned byAlgorithm 3when applied tc(ﬁ, con(Cp)). If Cp’ is a constraint system that represents
a box then(Z, con(Cp')) is a reduced product.

Proof. By Proposition 6.23H = (£,con(Cp’)) and (£, con(Cp’)) is a weakly tight product.
Therefore, by Proposition 7.3§£, con(Cp’)) is a reduced product.

We will now introduce some results that will be needed to skmwertain circumstances a pair
representing a grid-bds can be made to be a tight or reducsii¢tr

Proposition 7.9 LetH = (£, P) € GP, be a grid-bds wher® = con(Cp) and £ = gcon(C,)
is rectilinear. Also letCp; ; C Cp be the set of bds constraints over the variablgsz;, for
i,j € {1,...,n}, and letC., ; C C. be the congruence system over the variablgs:;, for
i,7 € {1,...,n}. Then(L,P) is a tight or reduced product if and only if eve?ydimensional
subset(gcon(Cr; ;), con(Cp; ;) of (gcon(Cr),con(Cp)) is a tight or reduced product.

Proof. Let us first assume th&r, P) is a tight product. Then every constraintdp is saturated
by a grid-bds point. Therefore, any constraint iR-dimensional subset afp is saturated by
a grid-bds point. Hence, evetdimensional subset C(fgcon(C[;), con(Cp)) is a tight product.
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Figure 7.3: lllustrations for Proposition 7.10.

Now suppose thdt’, P) is a reduced product. Then every vertexois a grid-bds point. So each
face of P is a2-dimensional bds whose vertices are grid-bds points. Hewesy2-dimensional
subset of(gcon(Cr), con(Cp)) is a reduced product.

Suppose that eveirdimensional subset dfcon(C.), con(Cp)) is a tight product. So every
constraint in each subset is saturated by a grid-bds poiatv, the seCp is the union of these
subsets of constraints. Also, dsis rectilinear, the sef, is the union of these subsets of con-
gruences. Thug,C,P) is a tight product. Finally, suppose that evergimensional subset of
(gcon(Cr),con(Cp)) is a reduced product. So each subsetdstimensional bds whose vertices
are grid-bds points. Now, for any # i,k # j, we haveCp, ;, andCp; ;, are reduced products.
In n-dimensions we can think d@fp; ; as the bds where the values of each variahlare fixed,
for k # i,k # j. So, asC is rectilinear, (ﬁ,COH(Cpi’j)) is a reduced product if;, =y, by for
k #1,k # j. Hence(L, P) is a reduced product.

Proposition 7.10 LetH = (£, P) € GP, be a grid-bds wheré® = con(Cp), Cp is a closed
constraint system and = gcon(C,) is rectilinear. Suppose = (<v,x> < d) € Cp, where
v; #0,v; # 0andv; # vj, v; = (v;-z; < ¢1) € Cp,vj = (vj-2; < ) € Cp and
U; = (—v; - z; < c3) € Cp. Then, there are only three cases that can occur:

1. d=c + e,
2. d < 1+ cpand|d| # ¢y — cs,
3.d<ci+coand|d| =cy —cs.
Proof. By Proposition 7.9 we only need to consider thelimensional case. A version of the

2-dimensional scenario for Case (1) can be seen in Figura)7.8(version of th@-dimensional
scenario for Case (2) can be seen in Figure 7.3(b) and a weosithe 2-dimensional scenario
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for Case (3) can be seen in Figure 7.3(c). &sis closed, each constraint must intersect at
least one other constraint at a vertex®f Therefore,v must intersect; at a point such that
—c; < x < cg. Therefored = ¢; + co 0rd < ¢1 + co and|d| # co — ¢z or |d| = ¢ — ¢3. Let

7; = (—v; - z; < ca) € Cp. Thenv must intersect; at a point such thatc, < 2 < ¢o. This
can be shown using Cases (1), (2) and (3) wherectrendz; variables are swapped.]

Definition 7.11 (Common Frequency Grid.) Let £ = gcon(C.) be a rectilinear grid where
C, is in minimal form. Suppose that the congruenceg ofcan be ordered such that for all
v = (x; =y, b;) € Cr, fi| fi+1. Then we say thaf is a common frequency grid.

For Proposition 7.12 and Proposition 7.15, Rt= con(Cp), whereCp is a closed set of con-
straints forP, and let{Cp,Cp>} be a partition of’» whereCp, contains the non-relational con-
straints and’p, contains the constraints which are not non-relational pBsiions 7.12 and 7.15
will now show that with certain restrictions on the grid degtion Algorithm 3 will produce a
constraint system which is a tight and reduced productfeespectively.

Proposition 7.12 LetH = (£, P) € GP,, be a grid-bds wher¢L, P) is a constraint product,
P = con(Cp) WhereCp is a closed constraint system add= gcon(C,) is rectilinear and a
common frequency grid. Suppose that the following stepagpted:

1. Algorithm 3returns the constraint systef’ when it is applied tq £, con(Cp)),
2. closure(Cp') = Cp©,
3. Algorithm 3returns the constraint systet»” when it is applied tq £, con(Cp©)).

ThenH = (£, con(Cp")) and the pair(L, con(Cp")) is a tight product.

Proof. LetCp = Cp; U Cpy. As Algorithm 3 considers each constraint bound, one at a &nd
independently of the next, we can assume that Algorithm Bidied to the constraint systeé,

first and then applied t6p,. As £ is a common frequency grid, we can assume that, without loss
of generality, f;| f; for i < j. By Proposition 7.9, a$ is rectilinear, we only need to consider the
variablesz; andx;. Suppose first thaP is bounded. A€y is a closed constraint system, if

vi = (vi -1 < ¢1) € Cpy, vj = (vj-xj < c2) € Cpy,

U = (—v;-z; < c3) € Cpy,

wherev; # vj, then there is = ((v,x) < d) € Cpy, Wherev; # 0, v; # 0.

As Cp is a closed constraint system, we need to slidwcon(C»")) is a tight product by
considering the three cases from Proposition 7.10. We vl this by induction on the number
of constraints irCp,. Let

vi = (vi-2; < ¢4) € Cpi, v = (v; w5 < ch) € Cph,

v, = (—vi -2 < ) € Cpl, V' = ({v,x) <d') € Cphiq
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be the constraints;, v;, 7; andv, respectively, after Step (1) is applied, let

= (v; - m; < ) € Cp§, vi = (vj-z; < ¢5) € Cp§,

v = (—v; - 2; < &) € Cpi, V' = ((v,x) < d") € Cp%iy

(2

!
Vi

be the constraints;, v}, 7; andv’, respectively, after Step (2) is applied and let

" "

A mo_
v, = (v -x; < ¢ ;

) € CP/1/7 v, = (U] * L < 6/2//) € Cp/llv

;) € ol V' = ((v.3) < &) € Crfy

-/
i = (—vi -z <c3

14

be the constraints;’, v/, 7/ andv”, respectively, after Step (3) is applied.

If Cpo = @, then by Proposition 7.3, asis rectilinear, when Step (1) is applied, the grid-box
(£,con(Cp')) is a reduced product. So the pair of constraijtend v/} intersect at a grid-bds
point. Therefore after Step (2) is applied and ugf intersect at a grid-bds point. Therefore if
Step (3) returns the constraint systé€ then the pair( £, con(Cp7)) is a reduced product and
therefore is a tight product. Let us suppose that the residstfor the set of constraingg; UCps;
whereCpsy; C Cpy. We will now show the result holds for the set of constraifits U Cpo;q
whereCpy; 1 = Cpg; U {v}.

Suppose that we have Case (1) from Proposition 7.10/Ason(Cr{)) is a reduced product
we have thatl” = ¢} + ¢4. Hencev” saturates a grid-bds point. Hengg, con(Cp§ U {v"'})) is
a tight product. So if Step (3) returns the constraint systethU Cph; .o, thenv” = /" and the
pair (£, con(Cp5 UCph;. 1)) is atight product.

Suppose now that we have Case (2) from Proposition 7.10.&ehat Step (1) is applied to
CpiUCpaip. If d = ¢} + &), then after Step (2) is applied” = ¢/ + ¢;. Hence, from Case (1),
v, andv} intersect at a grid-bds point and saturates a grid-bds point. Hendg, con(Cp§ U
Cps;+1)) is a reduced product, and if Step (3) returns the constrgstesCp U Cph;.;, then
the pair (£, con(Cp! U CpY;,)) is a tight product. Therefore, suppose that< ¢} + ¢, and
d" < ¢f + ¢5. As the grid-box(L, con(Cp7)) is a reduced produat! andvy will be saturated
by grid-bds points. Therefore we must show that eitiéintersectsy/ at a grid-bds point or
v intersectsy; at a grid-bds point. Ag/|f;, we have thatn = ged(f;, f;) = fi. Also, as
(£, con(Cpy U Cph,q)) is a weakly tight product and” < ¢/ + 4, £ N con({v.}) # &,
wherev, = ((v,x) = d”). As (L,P) is a constraint product there afe; - z; =y, b;) € Cr.
and (v - x; =y, b;) € Cc. Sothereiss = ((v,x) =, t) € C;. Therefore, a$ = b; + b,
we have that!” = b; +b; + s - f;, wheres € Z. Now, asL N con({v.}) # @, we have that
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Figure 7.4 lllustrations for the proof of Proposition 7.12

LNcon({re}) =

={x€eL|ven(vi-x; =bi+s;- fi),Vs; € Z}
={xeL|(vi-wi+vj-zj=bi+bj+s-fi)N(vi-xi =b;+s;- f;),Vsi € L}
={xeL|(bi+si-fitvj-xj=bi+bj+s-[i)Vs; €L}
={x€eL|(vj-xj=b;+ (s—si)- fi),Vsi € L}.

Now, asH # @ andd” < ¢/+cj, we know there is a poinp € H such thav;-p; = b;+s.- f; for
sy € Z. So all that remains is to show thate {x € L|(vj-z; = b+ (s—s;)- fi),s; € Z}. That
is, (vj-pj = bj+s2-fj = bj+(s—s;)- fi). Now this is the same as showisg: f; = (s —s;) - f;
and asf;| f; there exists;; € Z such that this is true. Se’ intersects(v; - z; < ¢{) € Cp{ ata
grid-bds point. Hence” saturates a grid-bds point afd, con(Cp§UCp$; 1)) is a tight product.
So if Step (3) returns the constraint systég{ U Cp4;., 1, then the pail( L, con(Cp U Cph;, 1))
is a tight product.

Suppose now we have Case (3) from Proposition 7.10. A verdiar2-dimensional scenario
for this case can be seen in Figure 7.4(a) and Figure 7.4().&+ ¢} + ¢, ord” = ¢ + ¢ the
result follows from the proof for Case (1). M| = ¢, — ¢4 then the result follows from the proof
of Case (1). Otherwise we haj#| # ¢, — ¢5. Then after the Step (2) is applieddp’ UCpb, , 1,
d" = cy — c3. However, asf;|f;, vj does not saturate a grid point anymore. Let Step (3) return
the constraint systeidip} U Cpy;, 1. Then, by Proposition 7.3 and dg f;, v/ will intersect;’
at a grid-bds point. Also, by Case (2) andfasf;, v will intersect»” at a grid-bds point. So
the pair (£, con(Cp7 U CpY;,1)) is a tight product. Hence the result follows for all consitaiin
Cpo.

Now if P is unbounded then the result follows from Cases (1), (2) &dIf Steps (1), (2)
and (3) are applied t6p = Cp; U Cps thenH = (£, con(Cp")) and the pair( L, con(Cp")) is a
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Figure 7.5: Producing a tight product grid-bds.

tight product. O

Let H = (£,P) € GP, be the grid-bds wheréZ, P) is a constraint productP = con(Cp)

is a closed constraint systemi, = gcon(C.) is a rectilinear and common frequency grid and
C is in minimal form. LetCp’ be the bds constraint system returned by Algorithm 3 when
applied to(L, con(Cp)), closure(Cp’) = Cp¢, andCp" be the bds constraint system returned by
Algorithm 3 when applied tq £, con(Cp°)). Theno(£,P) = £ ando?(L,P) = con(Cp”).
Example 7.13 illustrates this when Case (2) from Propasifid0 occurs.

Example 7.13 Consider the grid£ = gcon(Cr) in G, whereC, := {x =2 0, y =4 0} and the
bounded difference shap®,= con(Cp) in CP, where

Cp={1<z<11,2<y<12, -5<z—y <9}

H = (£, P) can be seen in Figure 7.5(a). It can be seen ifiatis not a weakly tight or tight
constraint system fok as not all of the constraints are saturated by a pointlpffor example
1 < z is not saturated by a grid point. Now after applyiAdgorithm 3to Cp, we havecon(Cp’)
in CIPy where

Cp ={2<2<10,4<y<12, —4<x-—y<8}

Letclosure(Cp’) = Cp© where
Cr¢={2<2<10,4<y<12, -4<zx—y <6}

H = (E, COD(CPC)) is shown in Figure 7.5(b). Now after applyi#dgorithm 3to Cp¢, we have
con(Cp") in CP, where

Cpl={2<2<10,4<y<12, —4<z—y<6}.
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Figure 7.6: Proposition 7.12 requires the condition thais a closed constraint system.

Then it can be seen th&p© = Cp” is a tight constraint system fdt{ as every constraint is
saturated by at least one grid-bds point.

Example 7.14 shows that Proposition 7.12 is successful v@tese (3) from Proposition 7.10
occurs.

Example 7.14 Consider the grid£ = gcon(Cr) in Go, whereC, := {x =5 0, y =4 0} and the
bounded difference shap®,= con(Cp) in CPy, where

Cp={6<z<11,0<y<12, —7<z-—y <5}

H = (L, P) is shown in Figure 7.6(a). It can be seen tltgt is not a tight or weakly tight
constraint system fol as not all of the constraints are saturated by a pointpffor example
5 < x is not saturated by a grid point. Now after applyiAdgorithm 3to Cp, we havecon(Cp')
in CIP, where

Cpl={6<2<10,0<y<12, -6 <x—y<4}.

Letclosure(Cp’) = Cp© where
Cp¢={6<2<10,2<y<12, —6<z—y <4}
Now after applyingAlgorithm 3to Cp¢, we havecon(Cp”) in CPy where
Cp' ={6<2<10,4<y<12, —6<x—y<4}

H = (L, con(Cp®)) is shown in Figure 7.6(b). Then, it can be seen thalt is a a tight constraint
system fofH.
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Proposition 7.15 LetH = (£, P) € GP,, be a grid-bds wher¢L, P) is a constraint product,
P = con(Cp) whereCp is a closed constraint system add= gcon(C.) is a rectilinear grid
such that all proper congruences have the same modul&ippose thahlgorithm 3returns the
constraint systerdp’ when it is applied to £, con(Cp)), ThenH = (£, con(Cp')) and the pair
(£,con(Cp")) is a reduced product.

Proof. LetCp = Cpy U Cpy. As Algorithm 3 considers each constraint bound, one at a &and
independently of the next, we can assume that Algorithm Bdied to the constraint systet,
first and then applied t6p,. By Proposition 7.9, af is rectilinear, we only need to consider the
variablesz; andz ;. Suppose first thaP is bounded. A€ is a closed constraint system, if

v; = (Ui cx; < Cl) € Cpy and

Vvj = (Uj “ Xy < 62) € Cpq

wherev; # vj, then there is’ = ((v,x) < d) € Cpo, Wherev; # 0, v; # 0.

As Cp is a closed constraint system, we need to slidacon(Cp")) is a reduced product by
considering the three cases from Proposition 7.10. We wol@this by induction on the number
of constraints irCp,. If Cpy = @, then by Proposition 7.3, ais rectilinear, when Algorithm 3
is applied, the grid-boX L, con(Cp})) is a reduced product.

Let us suppose that the result holds for the set of conss@intuCpo; whereCpy; C Cpgy. We
will now show the result holds for the set of constraiéts UCps; 1 WhereCpg; 1 = Cpo; U{r'}.
Let

v = (v;-x; <)) € Cpl, v = (vj-xj < ¢3) € Cpy,

7, = (—vi-2; < &) € Cph, v = ((v.x) <d') € Cpbipy

be the constraints;, v;, 7; andv, respectively, after Algorithm 3 is applied (cﬁ, con(Cpy U
Cpait1)),

Suppose that we have Case (1) from Proposition 7.10. A vedsithe2-dimensional scenario
for this case can be seen in Figure 7.3(a). As all proper cemgres o have modulusf and
d =d—((d—t) mod f),d— f < d < d. Hence, a€p; U Cp, is a closed constraint
system,d’ > ¢} + ¢,. Therefore agL,con(Cp})) is a reduced product we have that the pair
(L, con(Cpy UCph;, 1)) is areduced product.

Now suppose that Case (2) from Proposition 7.10 holds. Aimersf the 2-dimensional
scenario for this case can be seen in Figure 7.3(b). SuppegeAtgorithm 3 is applied to
(L,con(Cpy UCpait1)). If d' = ¢} + b, then from Case (1), v; andv' intersect at a grid-bds
point. Hence(L, con(Cp} UCph;,)) is a reduced product. Therefore suppose that ¢} + c.
As the grid—box(ﬁ, con(Cp’l)) is a reduced product/ andug. will be saturated by grid-bds points.
Therefore we must show that intersects/; at a grid-bds point and’ intersects/; at a grid-bds
point. As(L, con(Cp|UCpY;,,)) is aweakly tight product and < ¢} +c,, LNcon({r.}) # @,
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wherev, = ((v,x) = d"). As (L, P) is a constraint product there afe; - z; = b;) € C. and
(vj-xj =5 bj) € C. Sothereig? = ((v,x) =/ t) € C.. Therefore, ag = b; +b;, we have that
d'=b;+bj+s- f,wheres € Z. Now asL N con({r.}) # @ we have thall N con({r.}) =

={xeLlven(vi-x; =bi+s;- f),Vs; € L}
:{Xéﬁ‘(vi'$i+vj'$j:bi—l—bj—l-s-f)ﬂ(’ui-l'i:bi—l-si'f),\V/SiEZ}
:{xGE‘(bi+si-f+vj-:Ej:bi+bj—|—s'f),Vsi6Z}
={xeL|(vj-zj=0b;j+ (s—s)- [),Vs; € L}.

Now there exists; € Z such that; - x; = b; + s2 - f = ¢5. S0, asd’ < ¢} + ¢, V' intersects
(vj -zj < &) € Cp) atagrid-bds point. Als N con ({ve}) =

={xeLlven(vj -x;=bj+s;-[),Vs; € Z}
={xeLl|(vj-zj+vi-zi=bi+bj+s-f)N(vj-x;=bj+s;-f),Vs; € L}
:{X€£|(bj+sj-f+vi-:ni:bi+bj+s-f),v.9jGZ}
:{X€£|(vi-mi:bi—l—(s—sj)'f),v.sjGZ}.

Now there exists; € Z such that; - z; = b; + s1 - f = ¢}. So, asd’ < d| + ,, V' intersects
(vi - x; <)) € Cp at a grid-bds point. So if Algorithm 3 returns the constragstemCp} U

Cpiiy1 When itis applied td £, con(Cpy U Cpa;y1)), then the paif £, con(Cpy U Cph;, 1)) isa
reduced product.

Now suppose that Case (3) from Proposition 7.10 holds. Aimersf the 2-dimensional
scenario for this case can be seen in Figure 7.3(c)! ¥ ¢} + ¢, or |d'| = ¢, — ¢ the result
follows from the proof for Case (1). Otherwise we haud # ¢, — ;. All that remains to
show is thaty intersectsv, at a grid-bds point. AL, P) is a constraint product there are
(—vi-xi =5 —b;) € Ccand(vj-z; =¢ b;) € Cz. Sothereisd = ((v,x) = t) € C.. Therefore
ast = b; + b;, we have thatl’ = b; + b; + s - f, wheres € Z. Now asL N con ({v.}) # & we
have thatC N con ({v.}) =

={xeLlven(vj -z;=b;+s;-f),Vs; € Z}
={xeL|(vj-zj+vi-zi=b+bj+s-f)N(vj-z;=bj+s;-f),Vs; €L}
={xeL|bj+sj - f+uvi-zi=b+bj+s-[)Vs; €L}
={xeL|(vi-zi=bi+(s—s;)- f),Vs; € L}

={x € L|(—vi-xi=—b;— (s —s;) - [),Vs; € Z}.

Now there exists; € Z such that-v;-x; = —b; —s1- f = 4. So, asl’ < c|+d,, V' intersecty/,

at a grid-bds point. The fact that will intersect some other constraint at a grid-bds pointofek
from either this case or Case (2). So the ffdlrcon(Cp} UCpY;,)) is areduced product. Hence
the result follows for all constraints i€ps.
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Figure 7.7: Producing a reduced product grid-bds.

Now if P is unbounded the result follows from Cases (1), (2) and (3)er&fore ifCp’ =
Cp U Cp is the bounded difference shape constraint system retloypédgorithm 3 thenH =
(£, con(Cp")) and the pair( L, con(Cp")) is a reduced product. O]

LetH = (£, P) € GP, be the grid-bds wherél, P) is a constraint produc® = con(Cp) is a
closed constraint system afid= gcon(C.) is a rectilinear grid such that all proper congruences
have the same modulys LetCp’ be the bds constraint system returned by Algorithm 3, then
oh(L,P) = L ando% (L, P) = con(Cp'). Example 7.16 demonstrates this.

Example 7.16 Consider the grid£ = gcon(Cr) in G, whereC, := {x =4 0, y =4 0} and the
bounded difference shap®,= con(Cp) in CPs, where

Cp={2<x<10,2<y<12, —2<z-—y <8}

H = (L,P) can be seen in Figure 7.7(a). It can be seen atis not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a poinCofor example the
constraint2 < x is not saturated by a grid point. Now after applyiAégorithm 3to Cp», we have
con(Cp') in CP, where

Cpl={4<2<8,4<y<12, 0<xz—y<8}L

H = (L,con(Cp’)) is shown in Figure 7.7(b). It can be seen that constraipts< 12 and
x —y < 8, illustrated by the dashed lines, are not saturated by a-tpdd point, but the pair
(£,con(Cp")) is a reduced product.
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(a) Grid-polyhedror = (L, P). (b) Grid-polyhedror = (£, con(Cp")).

Figure 7.8: Algorithm 3 does not always produce a reducedymbbdgs.

7.3.1 BDGS

Let us now consider the bounded difference grid shape domlaich is a subset of the grid-bds
domain which takes the product of a bounded difference giid astbounded difference shape.

Definition 7.17 (BDGS.)Let P = con(Cp) be a bounded difference shape@®,, and £ =
geon(Cr) a bounded difference grid i&,,. Then we say thatl = (£, P) := LN P is abounded
difference grid shape (BDGSJyhebdgs domains a subset ofsP,, and is the set of all bounded
difference grid shapes iR"™ ordered by the set inclusion relation.

Note that andR™ are bounded difference grid shapes and therefore are thanibaind top
elements of the subset respectively. The results of Caoyolle8, Proposition 7.12 and Proposi-
tion 7.15 hold for a bdg%t = (£, P) if £ has a rectilinear representation. Unlike the rectilinear
grid-box, if Algorithm 3 is applied to a bdg& = (£, con(Cp)) and return<C»’ then the pair
(E, con(Cp’)) is not always a reduced product. Example 7.18 illustratiss th

Example 7.18 Consider the bounded difference grifl= gcon(C,) in G, where
Ce:={x=40,y=20, x —y =60}
and the bounded difference shafe= con(Cp) in CPy, where
Cp={2<2<10,0<y<6, —2<z—y <6}

H = (L, P) can be seen in Figure 7.8(a). It can be seen thatis not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a pointofor example the
constraint2 < x is not saturated by a grid point. Now after applyiAdgorithm 3to C», we have
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(a) Grid-polyhedrort = (L, P). (b) Grid-polyhedror = (£,con(Cp")).

Figure 7.9: Proposition 7.12 does not hold for grid-octagon

con(Cp’) in CPy where
Cpl={4<2<8,0<y<6,0<z—y<6}.

H = (L,con(Cp’)) is shown in Figure 7.8(b) and it can be seen tif&} con(Cp’)) is not a
reduced product. Also the pa(lﬁ, con(Cp’)) is not even a tight product as the constrain& 6,
illustrated by the dashed line, is not saturated by a bdgstpoi

7.4 Grid-Octagons

Let us now consider the grid-octagon domain which is a sutisiste grid-polyhedron domain.

Definition 7.19 (Grid-Octagon.) LetP = con(Cp) be an octagon itCP,, and £ = gcon(C.) a
grid in G,,. Then we say thakl = (£, P) := L NP is agrid-octagon Thegrid-octagon domain
is a subset of;?,, and is the set of all grid-octagons IR™ ordered by the set inclusion relation.

Note thatz andR™ are grid-octagons, therefore they are the bottom and topezies of the sub-
set respectively. As an octagon has at n2egt constraints, it = (£, P), then Algorithm 3 has
complexityO (n?) if £ is rectilinear, otherwise it has complexiy(n*). Also as a closed octago-
nal constraint system is a paired constraint system ancedsshfor emptiness uses Algorithm 3,
it has the same complexity.

The result of Corollary 7.8 holds for a grid-octagbh= (£, P) if £ has arectilinear represen-
tation, however the results of Proposition 7.12 and Prdijoosy.15 do not hold for a grid-octagon
H = (L, P) if L has a rectilinear representation. Example 7.20 and Example respectively,
show this.
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(a) Grid-polyhedrori = (£, P). (b) Grid-polyhedror = (£, con(Cp")).

Figure 7.10: Proposition 7.15 does not hold for grid-octesyo

Example 7.20 Consider the grid£ = gcon(Cr) in G2, whereC, := {z =, 0, y =4 0} and the
octagon,P = con(Cp) in CPP, where

Cp:={1<2<11,2<y<12, -5<zr—y<9, 7T<z+y<19}

H = (L, P) can be seen in Figure 7.9(a). It can be seen thatis not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a pointofor example the
constraintl < z is not saturated by a grid point. Now after applyiA¢ggorithm 3to Cp, we have
con(Cp') in CP, where

Cpl={2<2<10,4<y<12, 4<x—-y<8 8<x+y<I18}.
Letclosure(Cp’) = Cp© where
Cr¢={2<2<10,4<y<1l, 4<z—-y<6,8<zx+y<18}

NowH = (£, con(Cp°)) and the pair(L, con(Cp®)) is not even a weakly tight product as the
constrainty < 11 is not saturated by a grid point. Finally l&t»” be the result of applying
Algorithm 3to H = (£, con(Cp®)), where

Cp' ={2<2<10,4<y<8, —4<z-y<6, 8<z+y<18}.

SoH = (L, con(Cp")) can be seen in Figure 7.9(b). Now the péi€, con(Cp")) is a weakly
tight product, but it can be seen in Figure 7.9(b) that therpsinot a tight product a® < z,
illustrated by the dashed line, is not saturated by a grithgon point.

Example 7.21 Consider the grid£ = gcon(Cr) in G2, whereC, := {z =4 0, y =4 0} and the
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(a) Grid-polyhedror{ = (£, con(Cp’)). (b) Grid-polyhedrori{ = (L, con(C»)).

Figure 7.11: lllustrations for the proof of Proposition Z.2

octagon,P = con(Cp) in CPs, where
Cp={0<2x<12,2<y<12, 6<z—y <10, 2 <z+y <18}

H = (L, P) can be seen in Figure 7.10(a). It can be seen thats not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a poinCofor example the
constraint2 < y is not saturated by a grid point. Now after applyiddgorithm 3to Cp, we have
con(Cp’) in CPy where

Cpl={0<2<12,4<y<12, 4<x—-y<8 4<x+y<16}.

H = (L,con(Cp’)) is shown in Figure 7.10(b) and it can be seen that the dircon(Cp’))

is not a reduced product or a tight product as the constraint 12, illustrated by the dashed

line, is not saturated by a grid-polyhedron point. If we wiarepply the closure algorithm to the

weighted graph for the octagon representeddy we would get a graph and from this get the
constraint system

Crf={0<2<12,4<y<10, 4<z—y<8 4<z+y<16}.

Now the pair (L, con(Cp°)) is not even a weakly tight product as the constrajnt 10 is not
saturated by a grid point.

Example 7.21 showed that Proposition 7.15 does not hold ridragtagons even if we apply
the closure algorithm. However if we apply Algorithm 316 = (E,con(CpC)) the resulting
grid-octagon is a reduced product.

Proposition 7.22 LetH = (£, P) € GP, be a non-empty grid-octagon wheté, P) is a con-
straint product,? = con(Cp) whereCp is a closed constraint system affid= gcon(C) is a
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grid such that all proper congruences @iz have modulug. Suppose that the following steps are
applied:

1. Algorithm 3returns the constraint syste»’ when it is applied t({ﬁ, con(Cp)),

2. closure(Cp') = Cp©,

3. Algorithm 3returns the constraint systefi” when it is applied tc(ﬁ, COH(CPC)).
ThenH = (£, con(Cp")) and the pair(L, con(Cp")) is a reduced product.

Proof. By Proposition 7.9, a< is rectilinear, we only need to consider the variahlgsand
zj. LetCp' be the constraint system returned after Step (1). Ther= (£, con(Cp')) and
(L£,con(Cp")) is a weakly tight product. If£,con(Cp’)) is also a reduced product then the
result follows. Therefore suppose tHdt= (£, con(Cp')) and (L, con(Cp")) is not a reduced
product.

Suppose thaP is bounded. Then there is some vertexfothat is not a grid-octagon point.
As L is rectilinear, by Proposition 7.15, all the bds constsiintersect at grid-octagon points.
Therefore there are constraints of the form

v=((v,x) <dy) €Cp V =({(v,x) <dp) €Cp

such thatr and’ do not intersect at a grid-octagon point. Without loss ofegality we can
assume that; = v;, v; # v} andv; = v;. Figure 7.11(a) illustrates 2-dimensional version
of this case. Then after Step (2) has been performed we wi# ha’ € Cp© and a constraint
v = (v;-x; < di) € Cp° such that; does not saturate a grid point asd= d+Td'. Figure 7.11(b)
illustrates this case. Therefore, after Step (3) is appledwill havev, v’ € Cp”, and, as;
did not saturate a grid poiny, = (v; - #; < d}) € Cp” such thatd, = d+d—2/‘f. As L is
rectilinear, by Proposition 7.15, all the bds constrairft§;s’ intersect at grid-octagon points. So
v/ andv] intersect at a grid-octagon point. Therefore all that rersas to show that and v/
intersect at a grid-octagon point. A£,P) is a constraint product an@ is bounded we have
(vi i =5 b;) € Cg, (vj -z =¢ bj) € Ccand ((v,x) =f t) € Cz. AsH = (L,con(Cp"))
and (£, con(Cp")) is a weakly tight product N con({r.}) # @, wherev, = ((v,x) = d).
Therefore, a$ = b;+b;, we have thatl = b;+b;+s- f, wheres € Z. Now, asCNcon ({v.}) # @,
we have that’ N con ({v.}) =

={xeLlven(vj -z;=0b;+s;-f),Vs; € Z}
={xeLl|(vi-mi+vj-xj=bi+bj+s-f)N(vj-x;=bj+s;-f),Vs; € L}
:{XGE!(vi'xi+bj—|—sj'f:bi+bj+s-f),v.9jGZ}
:{X€£|(vi-xi:bi—l—(s—sj)'f),v.sjGZ}.

Now there exists’ € Z such that; - z; = b; + ' - f = d}. Sov intersectv; - z; < d},) € Cp"
at a grid-octagon point.
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(a) Grid-polyhedrort = (L, P). (b) Grid-polyhedror = (£,con(Cp")).
Figure 7.12: Producing a reduced product grid-octagon.

If P is unbounded the result follows from above. Therefore,&p3tL), Step (2) and Step (3)
are applied, theftt = (£, con(Cp")) and the pail £, con(Cp")) is a reduced product. O]

LetH = (£, P) € GP,, be the grid-octagon whelg, P) is a constraint produc®? = con(Cp)

is a closed constraint system afd= gcon(C.) is a rectilinear grid such that all proper con-
gruences have the same modulfis Let Cp' be the octagonal constraint system returned by
Algorithm 3 when applied t¢{ = (£, con(Cp)), closure(Cp’) = Cp® andCp” is the constraint
system returned by Algorithm 3 when applied#o= (£, con(Cp°)). Thens (L, P) = £ and

0% (L, P) = con(Cp”). Example 7.23 demonstrates this.

Example 7.23 Consider the grid-octagon given in Example 7.21 on Page $4Bh thatl =
geon(Cr) in Gy, whereC := {z =4 0, y =4 0} and the octagonP = con(Cp) in CPPy, where
Cp={0<2<12,2<y<12 —6<z—y<10, 2<z+y < 18}.

H = (L£,P) can be seen in Figure 7.12(a). Recall thédsure(Cp') = Cp© where
Crf={0<2<12,4<y<10, 4<z—y<8 4<z+y<16}.

Now after applyingAlgorithm 3to H = (£, con(Cpc)), we get the constraint system
Cp' ={0<2<12,4<y<8, —4<zx—-y<8 4<z+y<16}.

H = (L, con(Cp")) is shown in Figure 7.12(b) and it can be seen that the &ircon(Cp")) is
a reduced product.
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(a) Grid-polyhedror = (L, P). (b) Grid-polyhedror = (£, con(Cp")).

Figure 7.13: Algorithm 3 does not always produce a reduceduymt ogrid-octagon.

7.4.1 Ogrid-Octagons

Let us now consider the ogrid-octagon domain which is a dutfdbe grid-octagon domain and
whose elements are the product of an octagonal grid and agatt

Definition 7.24 (Ogrid-Octagon.)Let? = con(Cp) be an octagon ifCP,, and £ = gcon(C,)

an octagonal grid inG,,. Then we say thatt = (£, P) := LNP is anogrid-octagon Theogrid-

octagon domaitis a subset ofsIP,, and is the set of all octagonal grid-octagonsRft ordered by
the set inclusion relation.

Note that and R™ are ogrid-octagons and therefore are the bottom and topeslisnof the
subset respectively. The result of Proposition 7.22 haddsih ogrid-octagorit = (£, P) if £ =
geon(Cr) is rectilinear and all proper congruencesdef have modulugf. Unlike the rectilinear
grid-box, if Algorithm 3 is applied to an ogrid-octag@ = (E, con(Cp)) and returng’y’, then,

H = (L, con(Cp’)) but the pair(L,con(Cp")) is not always a reduced product. Example 7.25
demonstrates this.

Example 7.25 Consider the octagonal grid; = gcon(Cr) in G2, where
Co={r=40,y=20,r-y=60, v+y =20}
and the octagonP = con(Cp) in CP2, where
Cp={2<2<10,0<y<6, 2<z—y<6,6<z+y<16}.

H = (£, P) can be seen in Figure 7.13(a). It can be seen thatis not a tight or weakly tight
constraint system fok as not all of the constraints are saturated by a pointofor example the
constraint2 < x is not saturated by a grid point. Now after applyiAdgorithm 3to C», we have
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con(Cp’) in CPy where
Cpl ={4<2<8,0<y<6,0<z—y<6, 6<x+y<16}.

H = (L£,con(Cp’)) is shown in Figure 7.13(b) and it can be seen that the fircon(Cp’))

is not a reduced product. The paﬁrﬁ,con(cp’)) is not even a tight product as it can be seen
in Figure 7.13(b) that the constraint < 6, illustrated by the dashed line, is not saturated by an
ogrid-octagon point.

7.5 Operations

If H, andH, are weakly relational grid-polyhedra then as shown in ®esti7.2 to 7.4, with
certain restrictions to the grid, we can produce grid-petifa pairs which are reduced products.
Therefore since we now have a minimal form for both the grid palyhedra components, if the
grid-polyhedra pairs are reduced products we can easityiftég; C Hy or H; = Ho. Also
if we have a tight or reduced product we will also know for eartif a weakly relational grid-
polyhedron is empty or not.

Finally if H,; andH- are any of the weakly relational grid-polyhedra describrethis chapter
then, as with the grid-polyhedron case, intersection affierdince do not preserve the the reduced
product reduction, but the join, affine image and affine pnede operations do.

7.6 Applications

In this section we discuss applications for the domain af-golyhedra and all the sub-domains
considered in this chapter.

In [18, 79] an analyser is introduced to detect errors in @@mms. They are concerned with
checking if arrays are accessed out of bounds and if poilatevariables are accessed without
being initialised. The C Global Surveyor (CGS) can eitheitcdwbetween the weakly relational
domain of bds and intervals or store the product. Itis natdd8] that future work should include
the use of more powerful domains such as the domain of conslh@dra as this would yield
more precise results. Also [33] consider using abstraetrjmetation to identify buffer overruns
in C programs. Here they do use the domain of convex polyhdeatablish the bounds within
which the pointer should remain. In [16], Balakrishnan amp&investigate whether executables
such as web-plugins contain or perform harmful operatidhdike [33], they consider combining
pointer analysis and numerical analysis to detect erroexétutable programs. They do this by
combining an integer interval with an integer rectilineaidgo get a single hybrid object called
areduced interval congruence (RIChhe RIC enables the alignment and stride information to
be gathered. The RIC is also considered in [17, 20]. Chowlaral. consider RICs in the
analysis of stack-based operations and in [17], Berstellazndnte use the RIC in the analysis
of programs for Business Rules Management Systems (BRM@kselsystems allow businesses
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to automate the decisions they make, thus as their marketglanges the rules system must
be updated effectively and error free to enable the busittesempete. Therefore the partially
reduced grid-polyhedron domain and its sub-domains woldd be applicable to all of these
problems mentioned.

Following on from [19], Ermedahl et al. [34] also estimate thorst case execution time of
a program given a specific system. In order to approximateNiE=T the upper bound on the
number of loop iterations must be known, this is achieved lloyng the program into subsets
using the dependency graph and then the values a variablakamre approximated by a rec-
tilinear integer grid-box. Although not yet studied, it isted in [34], that a domain such as the
grid-polyhedra or one of its weakly relational sub-domainsld be used to “allow the size of the
abstract states used for loop bound analysis to be minirhieedce more types of loop could be
studied.

Separately in [63,64] and [37] the authors show that integetilinear grid-intervals could be
used for the analysis of programs. They were concerned \aitallelising compilers, specifically
data dependence analysis or array reference analysisisThabe able to partition a program so
that its tasks are performed on separate processors it mugtidw which elements of an array
are referenced and check that two tasks do not try to accessathe variable. It was shown in
Section 5.5 that the domain of relational grids could be deethis type of analysis. Therefore
the domain of grid-polyhedra and its sub-domains could bésased in this way.

7.7 Related Work

In [37, Section 6], Granger considers the reduced produenahteger rectilinear grid-interval
and gives a reduction operator which is equivalent to our.d#&rmedabhl et al. [34] also consider
the product of an integer rectilinear grid with an integdemal and we assume that they also use
this reduction (although it is not stated) as this work arel/fmus [19] builds on that of the early
Granger work [37]. In [51], Miné considers the reduced pretcdomain and states that products
of weakly relational base domains could be considered gealihey satisfy the acceptable base
hypothesis. An example of the reduction operation is givarttie grid-interval case which is
equivalent to our own for grid-boxes however it is stated 3d][and shown in [53] that the
grid-interval domain does not satisfy the acceptable bgpethesis for intersection, that is, the
grid-interval domain does not satisfy the condition

n
ﬂ(ﬁwpz) =g =,j€ {1, - ,n}, (Ei,PZ‘) N (ﬁj,Pj) = .
=1
An alternative to considering a product of a rectilineadgnith an interval is to merge the
two into one hybrid domain which is considered in severalgpapIn [64] the authors consider
extending the interval domain ov& by assimilating it with a single non-relational congruence
the result is called thenodulo interval and written[a, bl,,,;) wherem is the modulus and is



Chapter 7 152 Weakly Relational Grid-Polyhedron Domains

Polyhedron Type

Any | Octagon | BDS | Box

Any Grid Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O(nz,u) O(n4) O(n4) O(ng)

Ogrid Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O(nz,u) O(n4) O(n4) O(ng)

BDG Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O(n2u) O(n4) O(n4) O(n3)

Rectilinear| Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23]
Grid O(n,u) O(nz) O(n2) O(n)

Table 7.1: Weakly tight polynomial algorithms and compliesd.

Polyhedron Type
Any | Octagon| BDS | Box
Rectilinear Proposition 7.12| Corollary 7.4
Grid O(n?) O(n)

Table 7.2: Tight product polynomial algorithms and comjiles.

the inhomogeneous term. The modulo interval extends theaanterval domain and includes
both set operations and arithmetic operations. Howeveirtigesection operation is only con-
sidered for two intervals with the same modulus. This was tingoroved on in [63] where the
intersection considers intervals with different modulitsis noted in both papers that a modulo
interval [a, b],,,(+) is normalised (a reduced product)df=,, ¢,b =, tand0 < ¢t < m al-
though exactly how to calculate the normalised modulo Vitieis not shown. Balakrishnan and
Reps [16] consider theeduced interval congruence (RI@hich is a fusion of integer intervals
and grids. An RIC is given by a tuplen, a, b, t) which stands for the setx =,,, t|z € [a, 0] }.
The RIC is assumed to be in minimal form but the descriptioma# to do this is not given.
Reps et al. [73] have also defined thit strided interval a triple m[a, b] which represents the
set{z € [-2%,2" — 1]|la < = < b,z =,, a}. A strided interval is said to be reducedit=,, a
and descriptions of how to compute the addition, subtractiitwise and, bitwise or and bitwise
negation of strided intervals are given.

7.8 Conclusion

In this chapter we introduced the grid-box domain, grid-lbdsnain, bounded difference grid
shape domain, grid-octagon domain and the ogrid-octagomagto For each of these five do-
mains we showed that using procedures involving the weadght tlgorithm, Algorithm 3, and

the closure algorithm under what circumstances we couldiuyre a tight or reduced product
rather than weakly tight product. Specifically for the gbidx domain we showed that if the grid
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Polyhedron Type
Any | Octagon | BDS | Box
Rectilinear Proposition 7.22| Proposition 7.15 Corollary 7.4
Grid O (n2) O (nz) 0] (n)

Table 7.3: Reduced product polynomial algorithms and cemifiés.

is rectilinear we can produce a reduced product grid-bok wdimplexityO(n). For a grid-bds
or bdgs we showed in some circumstances we can produce tighteduced products with com-
plexity O (n?) and for a grid-octagon or ogrid-octagon we showed in sonuinistances we can
produce a reduced product with complexﬂ))(nz). Table 7.1 shows for which combinations of
grid and polyhedron we can produce a weakly tight produdb|ef&.2 shows for which combi-
nations of grid and polyhedron we can produce a tight prodnct Table 7.3 shows for which
combinations of grid and polyhedron we can produce a redpeceduct. All three tables also
show where the procedure to compute this product is givendrad the complexity would be to
compute it. Also from these reduced product cases we shdveedve now have an exact test for

emptiness and comparison.







Chapter 8

Conclusion and Future Work

In this thesis we have presented the domain of Grids. A domwdhiich interprets distribution
information about a program or system. We have shown thatdangay be represented by either
a set of congruences or a set of generators. For the grid don&have specified and provided
algorithms that minimise the representation of a grid (shgveither we can minimise the cardi-
nality of the set or we can create a strong minimal form), eshletween representations, create
a homogeneous form, perform comparison, test for equgdyform intersection, affine image
and pre-image, and widening for both representation. We ltso specified and provided algo-
rithms for performing join, difference and covering box whihave not been given in previous
works [38, 39, 71, 72]. Also for all of these operations we énahown that we achieve com-
plexities better than or equal to previous proposals [38639%62, 71, 72]. In Chapter 5 we have
defined two weakly relational grid domains. The boundeckdifice grid domain is based on the
zone-congruence domain by Miné [51, 53] and the octagondlig an extension of the zone-
congruence domain which encodes information in the wayttiebctagon domain does [54].

The second topic of the thesis investigates the Grid-Pdigmedomain and many of its sub-
domains. We introduced the partially reduced product ofg@ometric domains which allows for
a range of interaction between the two components. For thidyzt we specified six reduction
operators, namely the direct, reduced, smash, constragdkly tight and tight products. For
the grid-polyhedron domain we provided operations andralyus that produce a weakly tight
constraint system and test for emptiness, as well providiagmplete set of abstract operations.
We then introduced the domains grid-box, grid-bds, bdgsl-octagon and ogrid-octagon. For
each of these domains we showed under what circumstanceseidy tight algorithm will
produce tight or reduced products rather than weakly tightlpcts and that this algorithm has
a polynomial complexity, see Tables 7.1, 7.2 and 7.3. Spatlifj if the grid was rectilinear,
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we showed for the grid-box domain that we can produce a rebpoeduct. For a grid-bds or
bdgs we showed with restrictions to the grid congruenceasgmtation we can produce tight and
reduced products and for a grid-octagon or ogrid-octagoshesved with restrictions to the grid
congruence representation we can produce a reduced proélisct from these reduced product
cases we showed we now have an exact test for emptiness apaicsom.

8.1 Future Work

If we had more time we would like to further explore the gridsband grid-octagon domains as
these domains ensure that any operations can have polyinmomialexity. Also we would like to
consider other weakly relational grid-polyhedron domainch as a grid-tvpi domain as, in theory,
this domain would also ensure that any operations would palymomial complexity. We have
shown that under certain circumstances Algorithm 3, thekiyetight reduction, can produce
tight and even reduced products and we believe it is likedy there could be other circumstances
for which that is true. We would also like to investigate wiertor not it is possible to specify
a targeted reduction algorithm for each of the domains sowiacan achieve a tight or reduced
product in all circumstances.

Also if we had more time we would also like to investigate, éaich domain, whether Algo-
rithm 3 could be modified in any way to improve the test for émgss or more importantly find
a point within a grid-polyhedron.

Finally we are interested to know whether is is possible tdvdean algorithm for reduc-
tion which uses either the grid generator description orgblghedron generator description as
our current algorithm assumes that they must be represdmtdde congruence and constraint
representations respectively.
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Grids: A Domain for Analyzing the Distribution
of Numerical Values*
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Abstract. This paper explores the abstract domain of grids, a domain
that is able to represent sets of equally spaced points and hyperplanes
over an n-dimensional vector space. Such a domain is useful for the static
analysis of the patterns of distribution of the values program variables
can take. We present the domain, its representation and the basic oper-
ations on grids necessary to define the abstract semantics. We show how
the definition of the domain and its operations exploit well-known tech-
niques from linear algebra as well as a dual representation that allows,
among other things, for a concise and efficient implementation.

1 Introduction

We distinguish between two kinds of numerical information about the values
program variables can take: outer limits (or bounds within which the values must
lie) and the pattern of distribution of these values. Both kinds of information
have important applications: in the field of automatic program verification, limit
information is crucial to ensure that array accesses are within bounds, while
distribution information is what is required to ensure that external memory
accesses obey the alignment restriction imposed by the host architecture. In
the field of program optimization, limit information can be used to compile
out various kinds of run-time tests, whereas distribution information enables
several transformations for efficient parallel execution as well as optimizations
that enhance cache behavior.

Both limit and distribution information often come in a relational form; for
instance, the outer limits or the pattern of possible values of one variable may
depend on the values of one or more other variables. Domains that can capture re-
lational information are generally much more complex than domains that do not
have this capability; in exchange they usually offer significantly more precision,
often important for the overall performance of the client application. Relational

* This work has been partly supported by EPSRC project EP/C520726/1 “Numerical
Domains for Software Analysis,” by MIUR project “AIDA — Abstract Interpreta-
tion: Design and Applications,” and by a Royal Society (ESEP) award.
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Fig. 1. Congruence and generator systems representing two grids in R?

limit information can be captured, among other possibilities, by means of poly-
hedral domains, that is, domains that represent regions of some n-dimensional
vector space bounded by a finite set of hyperplanes [10]. Although polyhedral do-
mains such as the domain of convex polyhedra have been thoroughly researched
and are widely used, relational domains for representing the (linear) distribu-
tion of numerical values have been less well researched. Moreover, as far as we
know and at the time of writing, there is no available implementation providing
all the basic operations needed by a relational abstract domain for distribution
information. This is in spite of the fact that previous research has shown that a
knowledge about the (discrete) distribution of numerical information, especially
when combined with that of the limit information, can significantly improve the
quality of the analysis results [1].

This paper closes this gap by providing a complete account of the relational
domain of grids; a domain for capturing numerical distribution information. It
includes a detailed survey of previous work in this area; gives two representations
for the domain; outlines how these can be reduced and also how to convert
between them; and shows how this double description directly supports methods
for comparing, joining and intersecting elements of this domain. The paper also
outlines affine image and preimage operations and two new widenings for grids.

Grids in a Nutshell. Figure 1 illustrates two ways of describing a grid; either
by means of a finite set of congruence relations that all grid points must satisfy
(given by dashed lines) or by means of a finite set of generating vectors used for
constructing the grid points and lines (given by filled squares and thick lines).
The squares in Figure 1(a) illustrate a grid £ indicating possible values of
integer variables z and y resulting from executing the program fragment in
Figure 2 for any value of m. The congruence relations = 0 (mod 2) and = +
2y = 2 (mod 4) are represented by the vertical dashed lines and sloping lines,
respectively. The set of congruence relations C = {x =0 (mod 2),z + 2y = 2
(mod 4)}, called a congruence system, is said to describe L. The filled squares
mark the points p; = (2), p2 = (§) and p3 = () while all the squares (both
filled and unfilled) mark points v = w1p; + meps + w3p3, where 71,72, 73 € Z



and 71 + w9 + 3 = 1. The set of points P = {p1,p2,p3} is said to generate
L. Some of these generating points can be replaced by parameters that give the
gradient and distance between neighboring points. Specifically, by subtracting
the point p; from each of the other two generating points ps and ps, we obtain
the parameters g2 = (3) and g3 = (%) for £ that are marked by the thick lines
between points p; and ps and points p; and ps, respectively. It follows that each
point v € L can be written as v = p; + m2q2 + w3q3 for some o, T3 € Z.
The dashed line in Figure 1(b) illustrates

the grid £’ defining the line z = y + 1 and x :=2; y :=0; (P1)
marks the vectors of values of the real vari- for i := 1 tom (P2)

ables x and y after an assignment x := y + 1, if ... then
assuming that nothing is known about the x :=x+4 (P3)
value of y. As equalities are congruences mod- else

ulo 0, the set ¢’ = {x —y = 1} is also called a X 1= x + 2
congruence system and describes £’. Observe yi=y+1 (P4)
that the grid £’ consists of all points that can endif (P5)
be obtained as A + p’, for any A € R, where endfor

£ = (1) and p’ = (}); the vector £, called
a line, defines a gradient and the vector p’ is
a generating point marking a position for the
line (illustrated in Figure 1(b) by the thick
line and the filled square, respectively).

From what we have just seen, any grid can be represented both by a congru-
ence system and by a generator system. The latter may consist of three compo-
nents: a set of lines, a set of parameters and a set of points. For instance, the
triples G1 = (@, @, P) and G = (9,{qg2, g3}, {p1}) are both generator systems
for £ while the triple G’ = ({E}, a, {p'}) is a generator system for £’.

Fig. 2. Fragment based on an
example in [10]

Contributions. The paper provides an account of the relational domain of
grids, fully implemented within the Parma Polyhedra Library [2,4]. In this sec-
tion we provide the first comprehensive survey of the main research threads
concerning these and similar domains. The other contributions are given below.

Minimizing representations. Assuming the grid is represented by a congruence
and generator system in an n-dimensional vector space consisting of m congru-
ences or generators, then we outline algorithms for minimizing the representation
(based on the Hermite normal form algorithm [29]) that have worst-case com-
plexity O(nzm). Note that previous proposals for minimization such as those
in [14, 23] have worse complexity bounds (see below).

Conwverting representations. The congruence and generator representations de-
scribed informally above form the two components of a double description method
for the grid domain very similar to that for convex polyhedra [20]. For a double
description method, conversion algorithms between the two systems are needed;
we show how conversion can be implemented using any matrix inversion al-
gorithm, inheriting the corresponding worst-case complexity. For instance, the



complexity is O(n3) when adopting the standard Gaussian elimination method;
since matrix inversion has the same worst-case complexity as matrix multipli-
cation, better theoretical complexity bounds apply [5]. Previous proposals for
congruence to generator conversion have complexity no better than O(n4) [15].

Grid operations. For static analysis, it is useful to provide all the set-theoretic
lattice operations for grids (assuming the usual subset ordering) such as compar-
ison, join and meet. We show that these operations are straightforward given the
availability of the appropriate representation(s) in minimal form; and hence show
that some have complexities strictly better than that of previous proposals [14].
We also describe a grid difference operator which is new to this paper.

Affine transformation operators. Affine image and preimage operators can be
used to capture the effect of assignment statements in a program when the ex-
pression is linear although, as noted by Miiller-Olm and Seidl in [21], analyses
that use affine spaces for approximating the semantics of procedures are not suf-
ficiently precise to detect all valid affine relations for programs with procedures.
Here we specify, for the domain of grids, the affine image and preimage operators
for a single update where only one dimension is modified.

Widenings. It was observed by Granger [15], that, if the grid generators can
be in the rationals, then the grid domain does not satisfy the ascending chain
condition; so, to guarantee termination of the analysis, a widening operation
is required. In [15, Proposition 10], a widening is given for non-relational grids
that returns a line parallel to an axis whenever the modulus for that dimension
changes. It is then proposed that a generalized form of this could be used as a
widening for relational grids; however, exactly how this is to be done is unclear.
In this paper, we define two possible generalizations which come with simple
syntactic checks that have efficient implementations.

Related Work. In [12], Granger shows how a static analysis can usefully em-
ploy a simple non-relational grid domain (that is a grid described by congruences
of the form z = ¢ (mod f) where ¢ and f are integers) and that this domain
can obtain more precise information for applications such as automatic vector-
ization. Larsen et al. [17] also developed a static analyzer over a non-relational
grid domain specifically designed to detect when dynamic memory addresses are
congruent with respect to a given modulus; they show that, this information
helps in the construction of a comprehensive set of program transformations for
saving energy on low-power architectures and improving performance on multi-
media processors. We note that these applications should carry over to the more
complex domain considered here. In addition, Miné has shown how to construct,
from the non-relational congruence domain in [12], a zone-congruence domain
(that is, a domain that only allows weakly relational congruences that have the
form x —y = a (mod b) where a and b are rationals) [19].

Concerning fully relational domains, note that the use of a domain of linear
equality relations for program analysis had already been studied by Karr [16].



In [14], Granger generalized this to provide a domain of linear congruence re-
lations on an integral domain, i.e., a domain generated by integral vectors in
n-dimensions; and then, in [13,15], generalizes the results to the full grid do-
main. In [13-15], domain elements are represented by congruence and generator
systems similar to the ones defined here. Standard algorithms for solving linear
equations are used in converting from generator to congruence systems; however,
a more complex O(n4) algorithm is provided for converting from congruence to
generator systems. Assuming the number of generators is n + 1, the algorithm
for minimizing the generator system has complexity O(n3 log, n) Operators for
comparing grids and computing the greatest lower and least upper bounds are
also described. In particular, the join operation defined in [14] has complexity
O(n4 log, n), since the generators of one grid are added, one at a time, to the
generators of the other; after each addition the minimization algorithm is ap-
plied to compute a new linearly independent set. The grid meet operation which
also minimizes the addition of one congruence at a time has complexity O(n4).

The problem of how best to apply the grid domain in a program analyzer,
has been studied by Miiller-Olm and Seidl in [23] also building on the work of
Karr [16]. Here, the prime focus is for the design of an interprocedural analysis
for programs containing assignment statements and procedure calls. The algo-
rithm has three stages: first, for each program point, a matrix M containing a
(minimized) set of generators (i.e., vectors of values that hold at that point) is
found; secondly, the determinant f of M is computed; thirdly, a congruence sys-
tem with modulo f that satisfies all the vectors in M is determined. Stage one
is similar to that proposed by Granger [14] for minimizing a set of generators.
Stages two and three differ from the conversion in [14] in that the modulus f is
computed separately and used to reduce the sizes of the coordinates. Note that
the framework described in [23] subsumes previous works by the same authors.

Following an independent stream of research, Ancourt [1] considered the
domain of Z-polyhedra; that is a domain of integral lattices intersected with
the domain of convex polyhedra (see also [24-26]). We are primarily interested
here in the “integral lattices” component which may be seen as a subdomain of
the domain of grids where the grid is full dimensional and all the grid points
are integral vectors. The representation of these integral lattices is a special case
of our generator representation where, for n dimensions, there must be exactly
one point and n linearly independent parameters, all of which must be integral.
There is no support for a congruence representation.

All the operations on Z-polyhedra (and therefore the lattices) require canonic
representations; hence Quinton et al. [25,26] define a canonical form for these
lattices with a method for its computation. We note that the algorithm for
computing the canonic form has complexity O(n4), where n is the number of
dimensions of the vector space. Other operations provided are those of lattice
intersection, affine image and affine preimage. As there is no congruence repre-
sentation, the intersection of two lattices is computed directly from the generator
representations [1]; a refined version of this method is provided in [25] which we
note that, as for computing the canonic form, has complexity O (n4). The opera-



tions of grid join and grid difference (as defined here) are not considered; instead
the union operator takes two lattices £1 and L5 and returns the set {£;, L2} un-
less one (say L) is contained in the other, in which case they return the larger,
Lo. Similarly the difference operation returns a set of lattices representing the
set difference £ \ £2. The domain of integral lattices has been implemented in
PolyLib [18] following the approach in [25, 26]. This means that only the genera-
tor representation is supported and some operations return sets of lattices while
others manipulate and simplify these sets.

The homogeneous form of a representation given in Section 4, is required
by the conversion algorithm. This form is not new to this paper; in fact several
researchers have observed this. For instance, Granger [14] describes a map from a
linear congruence system in n variables to a homogeneous one in n+ 1 variables;
Nookala and Risset [24] explain that the PolyLib [18] adds a dimension to make
the (generator) representation homogeneous; while Miiller-Olm and Seidl [23]
consider extended states where vectors have an extra 0’th component.

Plan of the Paper. Preliminary concepts and notation are given in Section 2.
Section 3 introduces a grid together with its congruence and generator repre-
sentations while Section 4 provides the main algorithms needed to support the
double description. Section 5 introduces grid widening and the paper concludes
in Section 6. A long version of the paper containing all proofs is available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html.

2 Preliminaries

The cardinality of a set S is denoted by # S. The set of integers is denoted by
Z, rationals by Q and reals by R. The complexities will assume a unit cost for
every arithmetic operation.

Matrices and Vectors. If H is a matrix in R™*™, the transposition of H is
denoted by HT € R™*". A vector v = (vq,...,v,) € R" is also regarded as a
matrix in R"*!. The scalar product of vectors v and w € R"™, denoted by (v, w),
is the real number vTw = Z?:l v;w;. The vector e; € R™ has 1 in the i-th
position and 0 in every other position. We let

0 ifv=0

pive(v) := {max{i|1§i§n,vi7§0} ifv#0

n+1 ifo=0

piv (v) = {min{i| 1 <4< n,v; #0} if v #£0.

We write v f v/, if piv_(v) = piv_(v') = k and either k = 0 or vx = v}, and
v | v, if piv, (v) = pivy (v') = k and either k = n + 1 or v, = v}



Integer Combinations. The set S = {v1,..., v} C R"is affinely independent
if, for all A € R¥, XA = 0 is the only solution of {Zle v, =0, Zle A = 0}.
For all A € R¥, the vector v = Z?Zl A;jv; is said to be a linear combination
of S. This combination is affine, if Z?:l Aj = 1; and integral, if X € Z*. The
set of all linear (resp., affine, integral, integral and affine) combinations of S is
denoted by linear.hull (resp., affine.hull(.S), int.hull(S), int.affine.hull(S)).

Congruences and Congruence Relations. For any a,b,f € R, a =5 b
denotes the congruence 3u € Z . a —b = uf. Let S € {Q,R}. For each vector
a € S" and scalars b, f € S, the notation (a,z) =; b stands for the linear
congruence relation in S™ defined by the set {’v e R” | ez . {a,v)=b+uf };
when f # 0, the relation is said to be proper; (a,x) =¢ b denotes the equality
(a,x) = b. Thus, provided a # 0, the relation (a, ) =¢ b defines the set of affine
hyperplanes { ((a,a:) =b+ uf) | e }; when a = 0, we assume that b # 0;
if b= 0, (0,x) =¢ b defines the universe R” and the empty set, otherwise.

Any vector that satisfies (a,x) = b+ uf for some p € Z is said to satisfy
the relation (a,x) =y b. Congruence relations in S”, such as (a,x) =; b and
(2a, ) =2 2b, defining the same hyperplanes are considered equivalent.

The pivot notation for vectors is extended to congruences: if 3 = ((a, ) =5
ao) then piv_(8) := piv.(a); if v = ((c,a:) =, co) and ga | fe, then we write
B 1 v; so that 8 and -y are either both equalities or both proper congruences.

3 The Grid Domain

Here we introduce grids and their representation. Note that the use of the word
‘grid’ here is to avoid confusion with the meaning of ‘lattice’ (used previously
for elements similar to a grid) in its set-theoretic context (particularly relevant
when working in abstract interpretation).

Grids and the Congruence Representation. A congruence system in Q™
is a finite set of congruence relations C in Q™. As we do not distinguish be-
tween syntactically different congruences defining the same set of vectors, we
can assume that all proper congruences in C have modulus 1.

Definition 1. Let C be a congruence system in R™. If L is the set of vectors in
R™ that satisfy all the congruences in C, we say that L is a grid described by
a congruence system C in Q™. We also say that C is a congruence system for £
and write £ = gcon(C). If gcon(C) = &, then we say that C is inconsistent.

The grid domain G, is the set of all grids in R™ ordered by the set inclusion
relation, so that @ and R™ are the bottom and top elements of G,, respectively.

The vector space R™ is called the universe grid. In set theoretical terms, G,
is a lattice under set inclusion. Many algorithms given here will require the
congruence systems not only to have minimal cardinality but also such that the
coefficients of (a permutation of) the congruences can form a triangular matrix.



Definition 2. Suppose C is a congruence system in Q™. Then we say that C is
in minimal form if either C = {(0,z) =¢ 1} or C is consistent and, for each
congruence (3 = ((a, x) =y b) € C, the following hold:

1. if piv(8) =k, then k > 0 and a;, > 0;

2. for all B € C\ {B}, piv.(B') # piv.(B).

Proposition 1. Let C be a congruence system in Q™ and m = #C. Then there
exists an algorithm for finding a congruence system C' in minimal form with
worst-case complexity O(n*m) such that gcon(C) = geon(C').

Note that the algorithm mentioned in Proposition 1, is based on the Hermite
normal form algorithm; details about the actual algorithm are given in the proof.
Note also, that when m < n, the complexity of this algorithm is just O(an).

The Generator Representation. Let £ be a grid in G,,. Then

— a vector p € L is called a point of L;
— a vector ¢ € R™\ {0} is called a parameter of L if L # & and p+ pgq € L,

for all points p € £ and all y € Z;
— a vector £ € R™\ {0} is called a line of L if L # @ and p+ M € L, for all
points p € £ and all A € R.

If L, Q and P are finite sets of vecors in R™ and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ‘+’ denotes the Minkowski’s sum,® then £ € G,, is a grid
(see [29, Section 4.4] and also Proposition 7). The 3-tuple (L, Q, P), where L,
@ and P denote sets of lines, parameters and points, respectively, is said to
be a generator system in Q" for £ and we write £ = ggen((L,Q,P)). Note
that, for any grid £ in G, there is a generator system (L,Q, P) in Q™ for £
(see again [29, Section 4.4] and also Proposition 6). Note also that the grid
L= ggen((L7 Q, P)) = @ if and only if the set of points P = &. If P # &, then
L= ggen((L,@,QP UP)) where, for some pe P, Qp ={p+q€cR"|qecQ}.
As for congruence systems, for many procedures in the implementation, it is
useful if the generator systems have a minimal number of elements.
Definition 3. Suppose G = (L, Q, P) is a generator system in Q™. Then we say
that G is in minimal form if either L = Q = P = & or # P = 1 and, for each
generator v € LU Q, the following hold:
1. if pivy (v) = k, then v, > 0;
2. for allv' € (LUQ)\ {v}, pivy (V') # pivs (v).
Proposition 2. Let G = (L, Q, P) be a generator system in Q™ and m = # L+
# Q + # P. Then there exists an algorithm for finding a generator system G’ in
minimal form with worst-case complezity O(n*m) such that ggen(G') = ggen(G).
As for Proposition 1, the algorithm mentioned in Proposition 2 is based on the
Hermite normal form algorithm. Note also that, when m < n, the complexity of
this algorithm is again just O(an).

3 This is defined, for each S, T CR", by S+ T :={s+tcR"|sc S, tcT}.



Double Description. We have shown that any grid £ can be described by
using a congruence system C and also generated by a generator system G. For
the same reasons as for the polyhedral domain, it is useful to represent the grid
L by the double description (C,G). Just as for the double description method
for convex polyhedra, in order to maintain and exploit such a view of a grid, an
implementation must include algorithms for converting a representation of one
kind into a representation of the other kind and for minimizing both represen-
tations. Note that having easy access to both representations is assumed in the
implementation of many grid operators including those described here.

Suppose we have a double description (C , Q) of a grid £ € G, where both C
and G are in minimal form. Then, it follows from the definition of minimal form
that #C <n+ 1 and # L + # Q < n. In fact, we have a stronger result.

Proposition 3. Let (C,G) be a double description where both C and G are in
minimal form. Letting C = EUF, where £ and F are sets of equalities and proper
congruences, respectively, and G = (L, Q, P), then # F = #Q =n—# L —#E.

Ezample 1. Consider the grids £ and £’ in Figure 1. The congruence systems
C and C’ are in minimal form and the generator systems G, and G’ are also in
minimal form; however, G; is not in minimal form as it contains more than one
point. Furthermore, for ¢ = 1, 2, the pairs (C,G;) are double descriptions for £
while (C’,G’) is a double description for £'.

Comparing Grids. For any pair of grids £1 = ggen((L,Q, P)), L2 = gcon(C)
in G,,, we can decide whether £; C L5 by checking if every generator in (L, Q, P)
satisfies every congruence in C. Note that a parameter or line v satisfies a con-
gruence (a,x) =5 b if (a,v) =5 0. Therefore, assuming the systems C and G are
already in minimal form, the complexity of comparison is O(n?’).

Given that it is known that one grid is a subset of another, there are quicker
tests for checking equality - the following definition is used in their specification.

Definition 4. Let C1,Cy be congruence systems in minimal form. Then C1,Cs
are said to be pivot equivalent if, for each i,j € {1,2} where i # j, for each
B € C;, there exists v € C; such that 31 7.

Let G = (Ll,Ql,{pl}) and Gy = (Lg,Qg,{pg}) be generator systems in
minimal form. Then Gy, Gy are said to be pivot equivalent if, for each i,j € {1,2}
where © # j: for each q; € Q;, there exists q; € Q; such that q; || q;; and, for
each €; € L;, there exists £; € L; such that pivy (£;) = pivs (£;).

Proposition 4. Let £1 = geon(Cy) = ggen(G1) and Lo = geon(Cs) = ggen(Ga)
be non-empty grids in G,, such that L1 C Lo. If C; and Cy are pivot equivalent
congruence systems in minimal form or G1 and Gy are pivot equivalent generator
systems in minimal form, then L1 = Ls.

It follows from Proposition 4, that provided £; C L5 and £ and Lo have
both their generator or congruence systems already in minimal form, then the
complexity of checking if £; = L4 is just O(n) Moreover, if it is found that
one pair of corresponding pivot elements of the congruence or generator systems
differ, then we can immediately deduce that the grids they describe also differ.



Intersection and Grid Join. For grids £1, L2 € G,,, the intersection of £, and
Lo, defined as the set intersection £1 N Ly, is the largest grid included in both £
and Lo; similarly, the grid join of £1 and L5, denoted by L1 & Lo, is the smallest
grid that includes both £; and L£5. In theoretical terms, the intersection and grid
join operators are the binary meet and join operators on the lattice G,,. They can
easily be computed; if £1 = gcon(Cy) = ggen(G1) and L2 = geon(Cz) = ggen(Gz),
then £1 N Lo = geon(C; UCy) and L1 @ Lo = ggen(Gr U Go).

In practice, the cost of computing the grid intersection and join depends on a
number of factors: if generator systems G, and Gy for £1 and Ly are known, then
the complexity of computing £1 & Lo is linear in either # G; or # Go; if, however,
only congruence systems C; and Cy for £1 and Lo (not necessarily in minimal
form) are known, then the complexity is that of minimizing and converting
them which is, at worst, O(n2 max(# Cy, # Ca, n)) A similar argument applies
to the complexities of the meet operation. However, the above operations are
not directly comparable with the meet and join operations given in [14]. For
such a comparison, for instance for the join operation, we assume that generator
systems for £ and L5 in minimal form are available (i.e., each with at most
n+ 1 generators) and the operation returns a generator system in minimal form
for £L1 @ L5. Then the complexity is O(n?’), the complexity of minimizing a
generator system with at most 2n + 2 generators, which is strictly better than
O(n4 log, n), the complexity of the equivalent operation in [14].

Ezample 2. Consider the grids £; = gcon(Cy) and Lo = geon(Cs) in G where
Ci ={r =20, —z+y =30} and C3 := {x =4 0, —x + 2y =g 0}. Then the
grid intersection is £1 N Lo = geon(Cy UCs); thus, as C = {x =120, y =3 0} is a
reduced form of C; U Cy, we have £1 N Ly = geon(C).

Consider £; = ggen((@,@,Pl)) and Lo = ggen((@,@,Pg)) in G, where
Py :=(298) and P, := (399). Then the grid join £; @& Lo is generated by
(@, @, PLUP,); thus, the generator system G := (2, (29),(9)) is a minimal form
of (&,9, P, UP,) and L1 ® Lo = ggen(G). Note that here £ & Lo # L1 U Lo.

Grid Difference. For grids L1, Lo € G, the grid difference L1 © Lo of £, and
Lo is the smallest grid containing the set-theoretic difference of £, and L.

Proposition 5. The grid L1 © Lo is returned by the algorithm in Figure 3.

Assuming C; and Cy are available and in minimal form, it follows from the
complexities of minimization, conversion and comparison operations that the
grid difference algorithm in Figure 3 has worst-case complexity O(n4).

Affine Images and Preimages. Affine transformations for the vector space
R™ will map hyperplanes to hyperplanes and preserve intersection properties
between hyperplanes; such transformations can be represented by matrices in
R™>*™ It follows that the set G,, is closed under the set of all affine transfor-
mations for R”. Simple and useful linear affine transformations for numerical
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Input: Nonempty grids £, = gcon(C1) and L2 = gcon(Cz) in Gy,.
Output: A grid in G,.

(1) L =2

(2) while 306 = (6 =; 0) € Co

(3) C2:=C2 \ {B}

(4) if £1 ¢ geon({3})

(5) if £1 C geon({2e = 0})

(6) Ls = geon(Cr U {2e — f =5 0})
(7 L=L'&Lg

(8) else

9) return £;

(10) return £’

Fig. 3. The grid difference algorithm

domains, including the grids, are provided by the ‘single update’ affine image
and affine preimage operators.

Given a grid £ € G,,, a variable zj and linear expression e = (a, ) + b with
coefficients in Q, the affine image operator ¢(L,x, e) maps the grid L to

T n
{(p177pk—17<a’7p>+b7pk+la7p77) €R pec}

Conversely, the affine preimage operator ¢=1(L, xy, e) maps the grid £ to

" T
{p €R ’ (p1y- - pr—1,(@, D) + b, prs1, .- pn) €L }

Observe that the affine image ¢(L, xy, e) and preimage ¢~ (L, xy, e) are invert-
ible if and only if the coefficient a; in the vector a is non-zero.

Program Analysis Using Grids. We show how the grid domain can be used
to find properties of the program variables not found using the polyhedra do-
main [10], constraint-based analysis [28] or polynomial invariants [27].

Ezample 3. The program fragment in Figure 2 is annotated with program points
Pj,for j=1,...,5. Let £} € G denote the grid computed at the i-th iteration
executed by the point Pj. Initially, Lg- =g = gcon({l = O}), forj=1,...,5.
After one and two iterations of the loop we have:
L} =geon({z =2, y=0}), L;=geon({z=2, y=0}),
Li= geon({z =6, y =0}), L= geon({zx =4, y =1}),
Eé = gcon({x =4, y= 1}) @ gcon({z =6, y= 0})
= geon({z + 2y = 6, x =, 0}),
L5 = geon({z =2,y = 0}) ® geon({z + 2y = 6,z =, 0})
= geon({z + 2y =4 2,z =5 0}).
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Subsequent computation steps show that an invariant for P2 has already been
computed since £3 = L1, L3 = L}, L2 = L} so that £3 = £3. Thus at the end
of the program, the congruences = 4 2y =4 2 and = =5 0 hold.

Observe that, using convex polyhedra, a similar analysis will find instead
that the inequalities x — 2y > 2, z + 2y > 6 and y > 0 hold [10].

4 Implementation

In this section, we describe convenient internal representations of the congruence
and generator systems in terms of arrays (i.e., matrices) and show how matrix
inversion provides a basis for converting between these representations.

Homogeneous Representations. A congruence system C is homogeneous if,
for all ((a,z) = b) € C, we have b = 0. Similarly, a generator system (L, Q, P)
is homogeneous if 0 € P. For the implementation, it is convenient to work with a
homogeneous system. Thus we first convert any congruence or generator system
in Q™ to a homogeneous system in Q"t!. The extra dimension is denoted with
a 0 subscript; the vector & = (g, ..., 2,)T; and ey denotes the vector (1,0T)T.

Consider the congruence system C = EUF in Q™, where £ is a set of equalities
and F is a set of proper congruences. Then the homogeneous form for C is the
congruence system C = £ U F in Q" defined by:

g .= { {(=b,a™)T, &) =0 ‘ ((a, ) =b) € 5},

Fi={{F M =0,a")7,8) =1 0| ({a,2) =1 b) € F } U {{eq, &) =1 0}.

The congruence (eo, Z) 71 0 expresses the fact that 1 =, 0. By writing & =
(ETx = 0) and F = (FTa =, 0), where E, F C Q"t!, it can be seen that the
pair (F, E), called the matriz form of C, is sufficient to determine C.

Consider next a generator system G = (L,Q, P) in Q™. Then the homoge-
neous form for G is the generator system G := (L QuP, {0}) in Q"** where

L= {(O,ET)T ‘ Le L}, Q= {(O,qT)T ‘ qec Q}, P.= {(1,pT)T ’p € P}.

The original grid £ = geon(C) (resp., £ = ggen(G)) can be recovered from
the grid £ = geon(C) (resp., £ = ggen(G)) since £ = {'v eR" | (L,v")T e L) }.
Note that, if (C, G) is a double description for a grid and C and G are homogeneous
forms for C and G, then ((f , Q) is also a double description.

Converting Representations. By considering the matrix forms of the (homo-
geneous forms of the) representations, we can build the conversion algorithms on
top of those for matrix inversion. For an informal explanation why this is appro-
priate, suppose that the generator system G = (@, Q, {O}) in Q" is in minimal
form and @ is a non-singular square matrix. Letting £ = ggen(G) = {Qm |
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m € Z" }, then we also have £ = {v € R" | Q7'v =1 0}, so that (Q7!, @) is
the matrix form of a congruence system for the same grid £. Similarly we can
use matrix inversion to convert the matrix form of a homogeneous congruence
system in minimal form consisting of n proper congruences for a grid £ to a gen-
erator system for £. When the matrices to be inverted have less than n linearly
independent columns, the algorithms first add vectors e; where 1 < ¢ < n, as
necessary, so as to make the matrices non-singular and hence invertible.

Proposition 6. Let C be a congruence system in Q™ in minimal form; (F,E)
the matriz form of the homogeneous form for C; N a matriz in 7™ whose
vectors are of the form e;, i € {0,...,n}, and such that (N, F, F) is square and

nonsingular; and (L,Q, M) = ((N,F,E)_l)T where #L = # N, #Q = # F
and # M = # E. Then G = (i/, Q, {0}) is the homogeneous form for a generator
system G in minimal form and ggen(G) = gcon(C).

Proposition 7. Let G be a generator system in Q" in minimal form; G =
(L,Q,{O}) the homogeneous form for G; M a matriz in Z"T1 whose vectors

are of the form e;, i € {0,...,n}, and such that (l:,ClM) is square and non-
singular; and (N,F,E) = ((Ii,Q,M)’l)T where # N = # L, #F = #Q and
#E = # M. Then (F,E) s the matriz form of the homogeneous form for a
congruence system C in minimal form and gcon(C) = ggen(G).

Both algorithms just perform matrix inversion; so their complexity depends on
the inversion algorithm adopted in the implementation. As far as we know, the
current best theoretical worst-case complexity is O (n?37) [5]. Note that, in the
current implementation in the PPL, the conversion algorithm is based on the
Gaussian elimination method, which has complexity O(n3).

5 Grid Widening

A simple and general characterization of a widening for enforcing and acceler-
ating convergence of an upward iteration sequence is given in [6-9]. We assume
here a minor variation of this classical definition (see footnote 6 in [9, p. 275]).

Definition 5. (Widening.) Let (D,,0,®) be a join-semilattice. The partial
operator V: D x D — D is a widening if

1. for each di,ds € D, dy & dy implies that dy V ds is defined and ds & dy V ds;
2. for each increasing chain dog = dy &+ ---, the increasing chain defined by
dy :=do and di | = d; V (dj ® dit1), for i € N, is not strictly increasing.

In addition to the formal requirements in Definition 5, it is also important to have
a widening that has an efficient implementation, preferably, one that depends
on a simple syntactic mapping of the representations. At the same time, so that
the widening is well-defined, the result of this operation should be independent
of the actual representation used. For this reason, the two widenings we propose
assume specific minimal forms for the congruence and generator systems.
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Definition 6. A congruence system C is in strong minimal form if, for each pair
of distinct proper congruences, (a,x) =1 b and (c,x) =1 d in C, if piv_(c) =
k > 0, then —ci < 2ax < ci. A generator system G = ((L,Q,P)) mn Q" is
in strong minimal form if G is in minimal form and, for each pair of distinct
parameters w,v € Q, if pivy (v) = k < n, then —vy < 2uy < vg.

Proposition 8. There exists an algorithm with complexity O(n?’) for convert-
ing a congruence system C (resp., generator system G) in minimal form to a
congruence system C' (resp., generator system G') in strong minimal form such
that gecon(C) = geon(C’) (resp., ggen(G) = ggen(G’) ).

The widenings defined below use either the congruence or the generator systems.

Definition 7. Let £1 = geon(C1) and Lo = geon(Cq) be two grids in G,, such
that L1 C Lo, Cy is in minimal form and Cs is in strong minimal form. Then
the grid widening £, V. Lo is defined by

LQ, ’Lf L1 =9 or dlm(ﬁl) < dlm(ﬁg),

geon(Cy), otherwise,

,clvc@;{

where Cs :={y€Ce|30€C1 .01}

Definition 8. Let £1 = ggen(Gy) and Lo = ggen(Ga) be two grids in G, such
that L1 C Lo, G1 = (L1,Q1, P1) is in minimal form and Gy = (La, Q2, P3) is in
strong minimal form. Then the grid widening £q N, Lo is defined by

Lo, if L1 =@ or dim(Ly) < dim(Lsy);

L1V Ly =
e {ggen(gs), otherwise,

where Gg 1= (LQ U (Q2\ Qs),QS,Pg) and Qs :={veRx|Fue@; . ulv}.
Proposition 9. The operators V.’ and V,’ are both widenings on G,,.

In Definition 7, it is required that Cs is in strong minimal form. The following
example shows that this is necessary for the operator ‘V.’ to be well-defined.

Ezample 4. Let £y := geon(Cy), L2 := geon(Cy) and L, := geon(Ch) where
Ci={x=20,y=20},Co={2=10, 24+y=20},Cy ={r =10, 3z +y =2 0};
then £o = £). Note that only C; and Cs are in strong minimal form. Therefore,
assuming Cs (resp., Cs') is defined as in Definition 7 using C; and Co (resp.,
C; and Ch), we have Cs = {z +y =2 0} and Cs' = {3z + y =2 0}. Thus
L1 V. Lo = geon(Cs) # geon(Cy').

Ezample 5. To see that the widenings depend on the variable ordering, consider
the grids £; = geon(Cy) = geon(Cy) and Lo = geon(Csy) = geon(Ch) in Go, where

Cri={z+y=0, 220 =, 0}, Co:={5z+y=,0, ddx =, 0},
1 ={9% +2=10,22y=,0}, C,:={9y+x=,0, 44y = 0}.

14



Assume for C; and Cy that the variables are ordered so that x precedes y, as in
the vector (z,y)T; then, C; and Cy are in strong minimal form and, according
to Definition 7, we obtain £ V, Lo = gcon({Sx +y= 0}) On the other hand,
C{ and C} are in strong minimal form when taking the variable order where y
precedes x. In this case, by Definition 7, £1 V. Lo = gcon({Qy +x= O})

6 Conclusion

We have defined a domain of grids and shown that any element may be repre-
sented either by a congruence system which is a finite set of congruences (either
equalities or proper congruences); or a generator system which is a triple of fi-
nite sets of vectors (denoting sets of lines, parameters and points). Assuming
such a system in Q™ has m congruences or generators, then the minimization
algorithms have worst-case complexity O(an). It is shown that any matrix
inversion algorithms such as Gaussian elimination which has complexity O(n3),
can be used for converting between generator and congruence systems in mini-
mal form. Thus, the complexity of converting any system with m elements is no
worse than O(an) if m > n and O(n?’)7 otherwise.

The minimization and conversion algorithms, form the basis for a double de-
scription method for grids so that any generator or congruence systems, possibly
in minimal form, can be provided on demand; the complexity of such a provision
being as stated above. Assuming this method, we have shown that operations
for comparison, intersection and grid join are straightforward. The complexity of
comparing two grids is O(n3) but, for just checking equality when it is already
known that one of the grids is a subset of the other, we have described sim-
pler procedures with complexity O(n) The intersection and grid join just take
the union of the congruence or generator systems, respectively, so that, from
a theoretical perspective, these have complexity O(n) However, in the imple-
mentation, we assume a common divisor for all the coordinates or coefficients in
the system; hence, combining the systems requires changing the denominators
of both components to their least common multiple with a consequential need
to scale all the numerators in the representation; giving a worst-case complexity
of O(nQ). We have also described an algorithm for computing the grid difference
with complexity O(n4). Observe that this operator is useful in the specification
of the certificate-based widening for the grid powerset domain [3].

The grid domain is implemented in the PPL [2,4] following the approach
described in this paper. Among the tests available in the PPL are the examples
in this paper and implementations of the running examples in [22, 23]. The PPL
provides full support for lifting any domain to the powerset of that domain, so
that a user of the PPL can experiment with powersets of grids and the extra
precision this provides. An interesting line of research is the combination of the
grids domain with the polyhedral domains provided by the PPL: not only the
Z-polyhedra domain, but also many variations such as the grid-polyhedra, grid-
octagon, grid-bounded-difference, grid-interval domains and their powersets.
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