
Grid Domains for Analysing Software

by

Katy Louise Dobson

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds

School of Computing

August 2008

The candidate confirms that the work submitted is her own, except where work which has

formed part of jointly-authored publications has been included. The contribution of the

candidate and the other authors to this work has been explicitly indicated overleaf. The

candidate confirms that the appropriate credit has been given where reference has been

made to the work of others. This copy has been supplied on the understanding that it is

copyright material and that no quotation from the thesis maybe published without proper

acknowledgement.

Declarations

Some parts of the work presented in Chapters 3, 4 and 5 have been published in the following

article:

Bagnara, R. and Dobson, K. and Hill, P. M. and Mundell, M. and Zaffanella, E., “Grids:

A Domain for Analyzing the Distribution of Numerical Values”, Logic-based Program Synthesis

and Transformation, 16th International Symposium, Lecture Notes in Computer Science, Volume

4407 (2007)

The work of this publication was joint work by all authors andit is not possible to distinguish one

authors contribution from the next. A copy of this work is given in the appendix.

i

Acknowledgements

My supervisor Dr. Patricia M. Hill deserves a huge amount of praise for her unfaltering patience,

belief and encouragement throughout my research. Pat has taught me so much, she has been

instrumental in my research and without Pat I would not have been introduced to Prof. Roberto

Bagnara and Prof. Enea Zaffanella or the wonderful world of computer science. Roberto and

Enea have welcomed me into their team and allowed me to work onthis amazing project, their

help and knowledge has been immeasurable to me.

I would like to thank all of the people with whom I have been able to discuss my research

with and who have provided invaluable feedback, notably Dr.Javier Núñez-Fontarnau, Vajirapan

Panumong, Matthew Mundell, Prof. Fausto Spoto and Dr. Andy King. I would also like to

acknowledge Dr. Philippe Granger for providing me with a copy of his thesis. His work has

been an inspiration. I wish to thank The School of Computing,University of Leeds and the Frank

Parkinson Scholarship for funding my research.

Finally I would like to thank my family as this work would not have been possible without

them, they have made me all that I am. Without my grandmother Betty I would not have the

tenacity and courage to finish this work, without my brother Stuart I would not have the imagina-

tion and expertise to start this work and without my mother Susan I would not have the strength,

passion and integrity to do anything. My words can not express what you all mean to me, I dedi-

cate this work to you. I also dedicate this work to my father Tony and my grandfather Albert. You

were both taken too soon and I miss you both.... too much

iii

Abstract

Static analysis is the determination of correct though approximate information about the be-

haviour of a system, this approach is used to detect and locate programming errors or to certify

the absence of such bugs. Abstract interpretation is a static program analysis method that uses

abstract domainsto provide a convenient but approximate representation of the accumulated in-

formation during the evaluation of a program. The focus of this thesis is to investigate numerical

abstract domains that capture the distribution or patternsof values the program properties can

take. There has already been a considerable amount of research into numerical abstract domains

and a wide variety of such domains have been specified each providing a different degree of pre-

cision and efficiency. For instance the domain of convex polyhedra is precise but has exponential

complexity while the interval or box domain is much less precise but has linear complexity. Note

that these domains do not capture the distribution information which is the focus of this thesis.

In the first part of this thesis we introduce the domain ofgrids. This domain interprets the

patterns of distribution of the values that the program properties can take. The complete grid

domain can interpret the relationships which hold between variables or properties in a program.

There are two representations that form the two components of a double description method

similar to that provided for convex polyhedra. This thesis gives algorithms and methods for

computing canonical forms, conversion between the descriptions and the main abstract operations

needed for software analysis, such as comparison, intersection, join, difference, affine image and

pre-image. Also included is a widening operation and we showthat all of these operations have

polynomial complexity.

In the second part of this thesis we consider thepartially reduced productof two numerical

domains. The partially reduced product allows a choice of interaction between the component

domains ranging from “do nothing” required by the direct product to a total reduction required by

the reduced product. We consider the partially reduced product where the components are those

of the grid domain with either the convex polyhedra domain orone of its sub-domains, specifi-

cally the boxes, bounded difference shapes and octagon domains. The “weakly tight product” is

introduced, an operation that ensures each constraint of the polyhedral representation intersects

a point of the grid, and the “tight product”, which ensures each constraint of the polyhedral rep-

resentation intersects a point of the grid-polyhedron. We provide an algorithm to compute the

weakly tight product and show for what circumstances this algorithm achieves stronger results,

so that the resulting grid-polyhedron is either a tight or a reduced product. Methods for test-

ing if a grid-polyhedron is empty as well as several useful operations on grid-polyhedra are also

described.

v

Contents

1 The Introduction 1

1.1 The Grid Domain . 3

1.2 Product Domains .5

1.3 Plan of the Thesis .. 8

2 Preliminaries 9

2.1 Notation and Basic Concepts 9

2.1.1 Sets . 10

2.1.2 Vectors and Matrices .11

2.1.3 Congruences and Congruence Relations 12

2.1.4 Graph Theory . 13

2.2 Abstract Interpretation 15

2.3 Some Numerical Domains .. 16

2.3.1 The Polyhedron Domain . 16

2.3.2 The Interval Domain . 19

2.3.3 The Bounded Difference Shape Domain 20

2.3.4 The Octagon Domain . 20

3 The Grid Domain 23

3.1 Introduction .. 23

3.2 The Congruence Representation 23

3.3 The Generator Representation 26

3.4 Homogeneous Form .30

3.5 Reduction and Conversion Algorithms 31

3.6 Double Description .. . 42

3.7 Implementation .. 44

3.8 Related Work . 44

3.9 Conclusion . 46

4 The Grid Domain Operations 47

4.1 Introduction .. 47

vii

4.2 Comparison . 47

4.3 Intersection .. 52

4.4 Join . 53

4.5 Difference .54

4.6 Rectilinear Grids .. . 57

4.6.1 Covering Box . 58

4.7 Affine Image and Pre-image .. . 62

4.8 Implementation .. 65

4.9 Related Work . 65

4.10 Conclusion .66

5 Grid Widening and Weakly Relational Grids 69

5.1 Grid Widening . 69

5.2 Congruence Representation Widening 71

5.3 Generator Representation Widening 73

5.3.1 Enhancements . 77

5.4 Weakly Relational Grid Domains 77

5.5 Applications .. 80

5.6 Related Work . 82

5.7 Conclusion . 83

6 The Grid-Polyhedron Domain 85

6.1 Introduction .. 85

6.2 The Product Domain .85

6.3 The Partially Reduced Product 90

6.4 Tight and Weakly Tight Products 92

6.4.1 Weakly Tight Operations .. 94

6.4.2 Emptiness . 101

6.5 The Grid-Polyhedron Domain Operations 102

6.5.1 Comparison . 103

6.5.2 Intersection . 104

6.5.3 Join . 106

6.5.4 Difference . 110

6.5.5 Affine Image and Pre-image .113

6.5.6 Widening . 114

6.6 Discussion .115

6.6.1 Utilising Grid Congruences to Add Constraints 115

6.6.2 Traditional Integer Programming Methods 117

6.6.2.1 Branch and Bound . 118

6.6.2.2 Cutting Planes . 120

viii

6.7 Related Work . 122

6.7.1 Products . 123

6.7.1.1 Cartesian Product . 123

6.7.1.2 Direct Product . 123

6.7.1.3 Reduced Product . 124

6.7.1.4 Pseudo-reduced Product . 125

6.7.1.5 Open Product . 125

6.7.1.6 Granger’s Product . 125

6.7.2 Traditional Methods to Test for Emptiness 126

6.7.2.1 Ellipsoid Method . 126

6.7.2.2 The Linear Inequality Integer Feasibility Problem. 126

6.8 Conclusion . 127

7 Weakly Relational Grid-Polyhedron Domains 129

7.1 Introduction .. 129

7.2 Grid-Boxes . 129

7.3 Grid-BDS . 132

7.3.1 BDGS . 143

7.4 Grid-Octagons .. 144

7.4.1 Ogrid-Octagons . 149

7.5 Operations .150

7.6 Applications .. 150

7.7 Related Work . 151

7.8 Conclusion . 152

8 Conclusion and Future Work 155

8.1 Future Work . 156

Bibliography 157

A Declared Publication 165

ix

List of Figures

1.1 The abstract domain of signs represented as a lattice. 3

1.2 Grids inR2. 4

1.3 A grid-polyhedron inR2. 6

2.1 A simple graph. .14

2.2 Types of Polyhedron Domain. 17

2.3 A simple octagonal graph. 22

3.1 A grid inR2 represented by a congruence system. 24

3.2 A grid inR2 represented by a single congruence. 25

3.3 A grid inR2 represented by a generator system. 27

3.4 A recursive procedure. 28

3.5 A grid inR2 represented by systems in strong minimal form.38

4.1 Comparing two grids inR2. 48

4.2 The equality test with a missing condition. 49

4.3 Grid intersection. 52

4.4 The union of two grids. .. . 53

4.5 Grid join. 54

4.6 Grid difference. .. . 55

4.7 Types of2-dimensional box tilings. 59

4.8 Covering boxes for a grid. 62

4.9 An abstraction ofq. 63

4.10 A simple procedure. 64

5.1 Grid Widening. .72

5.2 Comparing the two grid widenings. 74

5.3 Grid Widening. .76

5.4 A bounded difference grid. 78

5.5 An octagonal grid. .. 79

5.6 Example 5.20. .82

6.1 Equivalent grid-polyhedra. 88

xi

6.2 Equivalent grid-polyhedra that are empty. 89

6.3 Examples where equalities could be shared. 91

6.4 Two Grid-Polyhedra. .. . 93

6.5 We can create a dnc for someL andv, but not all. 95

6.6 Moving constraints for a grid-polyhedron. 99

6.7 Algorithm 3 does not improve redundant constraints. 100

6.8 The emptiness test succeeds and fails. 102

6.9 The comparison and equality test returning the result “don’t know” for relational

grid-polyhedra. 103

6.10 Grid-Polyhedron intersection does not preserve the given reduction. 105

6.11 Grid-Polyhedron intersection. 106

6.12 Grid-Polyhedron join. 107

6.13 Grid-Polyhedron join does not respect tight products.. 107

6.14 Grid-Polyhedron join requires the grid-polyhedra pairs to be weakly tight products.108

6.15 Grid-Polyhedron join requires the grid-polyhedra pairs to be weakly tight products.109

6.16 Grid-Polyhedron difference. 110

6.17 Grid-Polyhedron difference requires the grid-polyhedra pairs to be weakly tight

products. 111

6.18 Grid-Polyhedron difference requires the grid-polyhedra pairs to be weakly tight

products. 112

6.19 Grid-Polyhedron Widening. 115

6.20 Grid Bounded Constraint System. 116

6.21 Adding constraints to a grid-polyhedron. 117

6.22 The complete branch and bound tree for Example 6.41. 120

7.1 Producing a reduced product grid-box. 131

7.2 Producing a weakly tight grid-bds. 132

7.3 Illustrations for Proposition 7.10. 134

7.4 Illustrations for the proof of Proposition 7.12. 137

7.5 Producing a tight product grid-bds. 138

7.6 Proposition 7.12 requires the condition thatCP is a closed constraint system. . . . 139

7.7 Producing a reduced product grid-bds. 142

7.8 Algorithm 3 does not always produce a reduced product bdgs. 143

7.9 Proposition 7.12 does not hold for grid-octagons. 144

7.10 Proposition 7.15 does not hold for grid-octagons. 145

7.11 Illustrations for the proof of Proposition 7.22. 146

7.12 Producing a reduced product grid-octagon. 148

7.13 Algorithm 3 does not always produce a reduced product ogrid-octagon. 149

xii

List of Tables

2.1 Constraint representations of some abstract domains. 16

7.1 Weakly tight polynomial algorithms and complexities. 152

7.2 Tight product polynomial algorithms and complexities.. 152

7.3 Reduced product polynomial algorithms and complexities. 153

xiii

Try not. Do or do not. There is no try.

Yoda

Star Wars: The Empire Strikes Back

All of your dreams can come true if you have the courage to pursue them.

Walt Disney

xv

Chapter 1

The Introduction

It is widely known that computers are everywhere, they are used in almost every aspect of every-

day life, from controlling power stations that produce our energy to controlling the bank accounts

that contain the world’s money. Therefore it has never been more important to know that the

software these computers run is safe and also efficient, however it would also be beneficial if

the method for testing the safety and efficiency were also accurate and efficient. The costs of

software errors are not only monetary, they can also have an impact on everyday life. In 1999

the Mars Climate Orbiter was lost on entering the Mars atmosphere at a cost of$328 million.

The failure investigation team found that “a lack of complete end-to-end verification of naviga-

tion software and related computer models” was a key factor in the failure, seehttp://mars.

jpl.nasa.gov/msp98/news/mco991110.html. Also in August 2003 an unknown soft-

ware flaw caused a blackout in parts of Canada and the northeastern United States. The flaw

in a widely-deployed General Electric energy management system contributed to the devastating

scope of the blackout. The bug in GE Energy’s XA/21 system wasdiscovered in an intensive

code audit conducted by GE. “It had never evidenced itself until that day,” said spokesman Ralph

DiNicola, “this fault was so deeply embedded, it took them weeks of poring through millions of

lines of code and data to find it,” seehttp://www.securityfocus.com/news/8016.

The cascading blackout eventually cut off electricity to 50million people in parts of Canada and

eight states of America.

We are interested in looking at program analysis of which there are two main ways to analyse

program properties, dynamically and statically. Dynamic analysis executes the program code and

uses large sets of data as inputs to see if any interesting behaviour occurs, unfortunately it is this

choice of input that can dramatically alter the output. Therefore we are concerned with static

analysis which doesn’t actually execute the program code, it instead approximates the behaviour.

1

Chapter 1 2 The Introduction

The most precise way to analyse a piece of code is to consider the exact (also called concrete)

semantics, however these are often very complicated. Therefore we have to decide between the

precision of the analysis and the computational complexity. This is why instead of considering

the exact semantics we consider an abstract semantics.

The abstract semantics are decided by the method of abstractinterpretation which was in-

troduced by Patrick and Radhia Cousot [27]. Abstract interpretation involves approximating the

computations of the program by new computations over an abstract domain which is known to

be simpler. Then when the abstract computations are performed it is hoped that the information

yielded from the abstract domain will shed light on the possible results the actual computations

would have provided. The soundness of this process is ensured by a pair of mappings between the

concrete and abstract semantics, these mappings show how the elements of one domain should be

interpreted in terms of the other.

Informally, consider the following example. Suppose a police force wish to search for a sus-

pect in a database of every convicted criminal in the UK. The exact (or concrete) way to find

the suspect is to look for a person with that name, date of birth, last known address and national

insurance number (if it is known). By considering all of these criteria and other possible distin-

guishing characteristics the police should be guaranteed to find the correct suspect. Alternatively,

an abstract approach would be to approximate the suspects criteria, for example we could just

look at all the people with the same name. Note that this wouldcreate a quicker search as less

deciding factors have to be met but this method will gather a possible set of results which would

contain the suspect but also possibly give extra people. These extra results are calledfalse alarms.

There are several well researched abstract domains, each tailored to the type of information

they wish to investigate and analyse. In this thesis we will be concerned with numerical abstract

domains which consider linear information. We can classifythe the types of numerical informa-

tion into two groups: thelimits or bounds within which the values can take and thedistribution

of the values to see if any pattern occurs. The study of both types of numerical information have

their applications. Applications which require the distribution of values to be observed include

data dependence analysis for arrays which are required for advanced optimizing compilers [70],

estimating the worst case execution time of a program [19], to aid in the construction of pro-

gram transformations for saving energy on low-power architectures and improving performance

on multimedia processors [47] or to gather information about non-linear operations within the

program [46]. Therefore the choice of abstract domain is important as it must consider the correct

type of numerical data for the problem at hand. One of the simplest domains is the “rule of signs”,

where the integer values are abstracted topos, neg or 0 depending on whether they are positive

integers, negative integers, or zero respectively [29]. The domain of signs can be represented by

a lattice and can be seen in Figure 1.1(a), the correspondingconcrete values over the set of inte-

gers can be seen in Figure 1.1(b). This domain can ascertain such properties as “is the variable

negative at a certain point in the program”, however the domain is not sophisticated enough to

establish “is the variable less than 10 at a certain point in the program”. Hence this domain was

Chapter 1 3 The Introduction

⊥

0

⊤

neg pos

(a) The signs domain.

∅

{0}

Z

{−1,−2,−3, . . .} {1, 2, 3, . . .}

(b) Concrete values overZ.

Figure 1.1: The abstract domain of signs represented as a lattice.

then generalised to the interval domain [26] which considers limit information by constructing in-

teger upper and lower bounds for each variable, nevertheless this domain could also be improved

to create more accurate information since it does not show any dependence between the variables.

Hence more complex domains are required.

Often the numerical information, whether it is limit or distribution, comes in arelational

form, that is, the values of one variable may be dependent on the values of one or more other

variables. One domain that captures the linear relational limit information is thepolyhedron

domain, this domain represents regions of somen-dimensional vector space bounded by a finite

set of hyperplanes [32]. There are also several different polyhedron sub-domains such as the

domain of convex polyhedra [6, 7, 9, 14], octagons [4, 15, 50,54], octahedrons [21], bounded

difference shapes (bds) [49, 51, 53], two variables per inequality (tvpi) [77] and intervals [26].

Each of these abstract domains can be described by differentclasses of constraint as seen in

Table 2.1 on Page 16 and each of these domains are illustratedby n-dimensional shapes, see

Figure 2.2 on Page 17, so it can be seen that they do not captureany distribution information.

Although the polyhedron domain and its sub-domains have been thoroughly researched and are

widely used, relational domains for representing the (linear) distribution of numerical values have

been less well researched.

1.1 The Grid Domain

This thesis considers two related topics. In the first topic of this thesis we will introduce a re-

lational domain called the grid domain. This domain encodesinformation about the distribu-

tion of numerical values. The grid domain is based on the domain of congruences described by

Granger [37–39, 41]. The grid domain can be used for any of theapplications mentioned above

and details are given in Chapter 5. In the1-dimensional case, where the grid will define a subset

of points along the line−∞ ≤ x ≤ ∞, the grid can be a single point, such as,x = 1, a discrete

Chapter 1 4 The Introduction

-4

-2

4

2

-2-4 642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) The gridL.

-4

-2

4

2

-2-4 642
rsr

(b) The gridL.

Figure 1.2: Grids inR2.

set of equally spaced points, for example the set of even integers, or all the points along the line.

Let us now consider the2-dimensional case. Then the grid can take many forms. The grid can be

a single point, such as,{x = 0, y = 1}, a set of equally spaced points along a line, for example,

the set{x = 0, y = 2k + 1|k ∈ Z}, a set of equally spaced points that cover a plane, for ex-

ample, see Figure 1.2(a), a set of lines, for example, see Figure 1.2(b), or the whole vectorspace

itself, for exampleR2. In Figure 1.2(a) the grid is given by the set of points illustrated by the

squares. It can be seen that the grid is non-relational as thepoints lie parallel to each of the axes.

In Figure 1.2(b) the grid is given by the all points along the diagonal lines. These are all the

points that satisfy the congruencex − y = 1 mod 3, so the grid is the set of points(x, y) such

that
{

x− y = a
∣

∣a ∈ {. . . ,−2, 1, 4, . . .}
}

. It can be seen that the grid is not non-relational as the

congruence that describes the grid involves bothx andy, visually this can be seen in Figure 1.2(b)

as the lines of the grid do not lie parallel to either of the axes.

Let us consider a simple example to show how the grid domain can be used to interpret a

small piece of code. Figure 1.2(b) illustrates two ways of describing a grid; either by means of

a finite set of congruence relations that all grid points mustsatisfy (given by dashed lines) or by

means of a finite set of generating vectors used for constructing the grid points and lines (given by

filled squares and thick lines). Consider first the followingprogram fragment for any value ofm:

for i := 1 to m

if ... then

x := y + 1

else

y := y + 3

endif

endfor

The dashed lines in Figure 1.2(b) illustrates the gridL and marks the vectors of values of the

Chapter 1 5 The Introduction

real variablesx andy after the assignmentsx := y + 1 andy := y + 3, assuming that

nothing is known about the value ofx or y. The setC = {x − y = 1 mod 3} is also called

a congruence system and describesL. Observe that the gridL consists of all points that can be

obtained asλℓ + µq + p, for anyλ ∈ R andµ ∈ Z, whereℓ = (1
1) ,q = (0

3) andp = (1
0) ; the

vectorℓ, called aline, defines a gradient, the vectorq, called aparameter, defines the distance to

the next line and the vectorp is a generating point marking a position for the line (illustrated in

Figure 1.2(b) by the thick diagonal and vertical line and thefilled square, respectively).

We will give details of how to interpret the domain and give a complete set of abstract op-

erationsall of which have efficiencies better than or equal to previous proposals [38, 61]. These

operations are abstract forms of the set-theoretic operations such as comparison, join, meet and

difference. The advantage of a domain like the grids is that,unlike the domain of convex polyhe-

dra, all the abstract operations will have a complexity thatis polynomially bounded by the number

of variables. As the domain of convex polyhedra can have operations which have unbounded or

exponential complexity, the cost of performing operationscan grow rapidly. Whereas, the grid

domain has operations that have bounded polynomial complexity like those for the interval do-

main, bounded difference shapes or octagon domain. The griddomain can also express relational

properties over more than two variables which the interval,bounded difference shape or octagon

domain can not. We will show that aspects of the grid domain parallel those of the domain of

convex polyhedra, in that, not only do both domains share thesame amount of expressivity, but

also both have two different representations that form a double description. In Chapter 4 we will

show that we can utilise this double description by designing the abstract operations to use the

representation which achieves the best complexity. As we have two descriptions we will introduce

a method of conversion between the two and a minimisation algorithm which puts the represen-

tation into a minimal form suitable for an easier conversion. We will show that our algorithms

for producing this minimal representation and conversion have complexities more efficient than

previous proposals [38,61]. We will also be the first to give acomplete set of abstract operations

as previous proposals have either not given an abstract operator, such as the difference opera-

tion [38,39], or not given one which returns a single elementof the domain, such as the join and

difference operations [71, 72]. To guarantee the termination of an analysis it is often useful to

have a widening operation. This operation approximates thefixpoint of a sequence. Another of

the contributions of this thesis will be to introduce a widening for each of the grid descriptions

as previous proposals have only considered a widening for use on the generator system [38, 41].

We will also introduce other approximations, that are not widenings, but can be used to accelerate

fixpoint convergence process.

1.2 Product Domains

Very little research has been done on the combination of domains which represent the limit and

distribution information, especially those which consider information which takes a relational or

Chapter 1 6 The Introduction

4

2

6

12108642
rs rs rs rs

rs rs rs rs rs

rs rs rs rs

rs rs rs rs

rs rs rs rs rs

rs rs rs rs

rs rs rs rs

Figure 1.3: A grid-polyhedron inR2.

weakly relational form. Thedirect product andreducedproduct were both introduced by Cousot

and Cousot [28] and take the elements of the product to be the intersection of the two components.

The direct product provides a “do nothing” approach, so thatthere is no interaction between the

components, whereas the reduced product provides a “total reduction” approach. The reduced

product provides a reduction operation that ensures every element of the product is in canonical

form with respect to each of the components. There are several issues we need to consider with a

product domain, one is that the representation of an intersection as a pair is not canonical. Also the

precision of the operations needed for an analysis is affected not only by the choice of component

domains but also the allowed interactions between them, both before and during an operation.

If there is no interaction then the precision gained may be very little, if any, however if there is

a large amount we may greatly improve the precision but lose efficiency. Therefore the second

topic we consider in this thesis is an extension of the work onthe grid domain and takes a product

of the grid domain with the domain of convex polyhedra or one of its simpler sub-domains. It

has been shown that the grid and the many polyhedra sub-domains are useful tools for program

analysis by themselves. We will introduce thepartially reduced product. This product will allow

an amount of interaction between the components, thus utilising the strengths of each domain and

potentially improving the precision of the information provided compared to the results obtained

by preforming the analysis separately. The partially reduced product of two numerical domains

combines the direct product with several different reduction operators which can be applied. Our

aim of the partially reduced product is that it allows the user to choose the level of interaction

between the component domains and therefore choose how efficient the analysis will be.

We are interested in a grid-polyhedron domain as this will beable to capture both the limit

and distribution information which can take a relational form. A grid-polyhedron can be seen in

Figure 1.3. The grid is illustrated by the square points and the polyhedron by the shaded area.

Therefore the grid-polyhedron is the set of grid points thatlie within the bounded shaded area.

The simple piece of code that the grid-polyhedron was generated from is given in Example 6.3 on

Chapter 1 7 The Introduction

Page 85.

For the grid-polyhedron domain we will show that we can specify six reduction operators

to use in the partially reduced product. These operators will then give us the direct, reduced,

smash, constraint, weakly tight and tight products. As boththe grid and polyhedron domains

have representations which encode equality information wewill introduce theconstraintproduct

which will share the equalities between the component domains. Thesmashproduct can be used

on any pair of abstract domains which have a “bottom” elementas it shares this between the

components, therefore for the case of grid-polyhedra we will pass from one domain to the other

the emptyset if either are represented by this. Finally we will introduce theweakly tightproduct

and tight product which can be thought of as “middle ground” reductions. The weakly tight

product ensures that each constraint of the polyhedron representation intersects some grid point

and the tight product ensures that each constraint of the polyhedron representation intersects some

grid-polyhedron point. We will use the weakly tight and tight product reductions as alternatives

to the traditional integer programming techniques of branch and bound and using cutting planes.

As both of these traditional methods rely on using the simplex method [67, 76, 81] they have

exponential complexity, whereas, we will show that we can produce an algorithm that can reduce

any grid-polyhedron so that it is a weakly tight product and that our reduction has a complexity

which is polynomial in the number of variables and constraints in the polyhedron representation.

As noted earlier, the intervals, bounded difference shapesand the octagon domain are all

sub-domains of the polyhedra but have operations with polynomial complexity similar to that

of the grid domain. Therefore we will also consider the product of a grid with each of these

polyhedron sub-domains. It has been stated before that these simpler product domains can be

used for applications such as checking if arrays are accessed out of bounds and if pointers or

variables are accessed without being initialised [18,33,79], checking if executables such as web-

plugins contain or perform harmful operations [16] and estimating the worst case execution time

of a program [19, 34]. Also they can be used for the same applications as the grid domain,

such as data dependence analysis or array reference analysis as noted in [63, 64] and [37]. We

will show that our algorithm for producing a weakly tight grid-polyhedron can be used on these

product sub-domains and that in certain circumstances it will produce either a tight product or a

reduced product. Also as the intervals, bounded differenceshapes and octagons have operations

to minimise the number of constraints in their representation, our weakly tight reduction will have

a complexity which is polynomial in the number of variables alone.

For each of the grid-polyhedron domains we will also consider the abstract operations. We

will provide a complete set of operations together with the algorithms for each and show which

operations preserve the given reduction. So, for example, we will investigate if we have a weakly

tight product before an operation is performed, whether or not after the operation is performed it

is still a weakly tight product. We will also investigate whether each of the reductions need to be

performed before an operation so that information is not lost.

Chapter 1 8 The Introduction

1.3 Plan of the Thesis

The rest of the thesis is structured as follows:

• Chapter 2 will introduce the terminology and notation used throughout the thesis.

• Chapter 3 will establish the domain of grids and present the two different descriptions that

are used to represent the grids, as well as provide the algorithms for their conversion and

reduction to a minimal or canonical representation.

• Chapter 4 presents several of the operations that the domaincan perform along with their

algorithms and complexities. The operations for the grid domain we have included are

comparison, testing the equality of two grids, intersection, join, difference, affine image

and pre-image and a covering box operation which computes the smallest non-relational

grid given a relational one.

• Chapter 5 introduces the operation of widening which is required when the calculation

of the fixed point fails to terminate due to the lattice not satisfying the ascending chain

condition which can occur for rational grids. We also detailthe weakly relational sub-

domains of the grids and illustrate some of the applicationsof the grid domain.

• Chapter 6 introduces the partially reduced product which allows different amounts of in-

teraction between the component domains, thus enabling different amounts of reduction.

We use this product to establish the partially reduced grid-polyhedron domain, a domain

which combines the grids with polyhedra. For this domain we define six different reduction

choices, namely the direct, reduced, constraint, smash, weakly tight and tight product. For

the weakly tight product we provide an algorithm that will move in the constraints of the

polyhedron representation so that they all intersect grid points. Also we will discuss and

specify several abstract operations the domain will require.

• Chapter 7 considers the partially reduced product of sub-domains of the grid-polyhedron

domain. Specifically the grid-box domain (which includes the grid-interval domain), the

grid-bds domain and the grid-octagon domain. For the grid-bds and grid-octagon domains

we also introduce a sub-domain for each, called the bounded difference grid shape domain

and the ogrid-octagon domain respectively, which require that the grid component has a

weakly relational form. We also suggests several applications that the domains can be

applied to.

• Finally Chapter 8 discusses the conclusions made and the hopes for the future of this work.

Chapter 2

Preliminaries

In this chapter we will introduce some of the definitions and notations from set theory, linear al-

gebra and graph theory assumed throughout the thesis. We will also give an overview of the main

concepts in abstract interpretation and the established domains, such as the polyhedral domain,

that will be used in Chapter 6 as part of the product describedthere. Some of the definitions are

based on those in mathematics textbooks [2,69,78].

2.1 Notation and Basic Concepts

The set of natural numbers is denoted byN, integers byZ, rationals byQ and reals byR. The

complexities we give for the different algorithms assume a unit cost for every arithmetic operation;

we take the computation of the greatest common divisor of a pair of numbersa, b ∈ Z to be a

single operation. Given setsX,Y and any relationR ⊆ X × Y , the imagefor R on a subset

A of X is
{

y ∈ Y
∣

∣ ∃x ∈ A . (x, y) ∈ R
}

, and thepre-imagefor R on a subsetB of Y is
{

x ∈ X
∣

∣ ∃y ∈ B . (x, y) ∈ R
}

.

If v, v′ ∈ Z, thengcd(v, v′) and lcm(v, v′) denote thegreatest common divisorand least

common multiplier, respectively, ofv, v′. We will assume thatgcd(0, 0) = 0. Suppose now

v, v′ ∈ Q, so that,v = a
b andv′ = a′

b′ for somea, b, a′, b′ ∈ Z. Then we also write

gcd(v, v′) :=
r

s
, wheres = lcm(b, b′) andr = gcd

(as

b
,
a′s

b′

)

.

Note that the gcd is well defined as it does not depend on the choices ofa, b, a′, b′. Let t, t′ ∈ Z

9

Chapter 2 10 Preliminaries

be relatively prime such thattv + t′v′ = gcd(v, v′). Then we write

gcdext(v, v′) :=
(

gcd(v, v′), (t, t′)
)

.

Let t, f ∈ R wheref > 0. Then

t mod f = t′, where 0 ≤ t′ < f if ∃µ ∈ Z, t = t′ + µf.

Let t, f ∈ R wheref = 0. Thent mod f = t.

2.1.1 Sets

The cardinality of a setS is denoted by#S. If S is a set, we denote the set of non-negative

elements inS by S+. We use the shorthand notationS[s′/s] for the set
(

S \ {s}
)

∪ {s′}. We

will denote theemptysetby ∅ and thepowersetof a setS by ℘(S). We now describe the type of

properties a relation may have on a set.

Definition 2.1 (Relation Properties.)Let� be a binary relation on the setS. Then the relation

� is said to bereflexive if ∀s ∈ S, s � s. The relation� is said to besymmetricif ∀s, t ∈ S,

such thats � t implies thatt � s. The relation� is said to beanti-symmetricif ∀s, t ∈ S, such

that s � t and s 6= t implies thatt � s. The relation� is said to betransitiveif ∀s, t, u ∈ S,

such thats � t andt � u implies thats � u. Also the relation� is said to be apartial orderif it

is reflexive, anti-symmetric and transitive.

A setS together with a partial order� is also said to be partially ordered, and written〈S,�〉. We

will refer to 〈S,�〉 as a poset.

Definition 2.2 (Total Order.) A binary relation� on a setS is said to be atotal orderif ∀s, t ∈ S

eithers � t or t � s.

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘≺’ such thatd ≺ +∞ for each

d ∈ Q.

Definition 2.3 (Least Upper Bound.)Let 〈S,�〉 be a partially ordered set and letT ⊆ S, T 6=

∅. Thens ∈ S is theleast upper bound(or lub) ofT if

1. t � s for all t ∈ T .

2. Whenu is such thatt � u for all t ∈ T , thens � u.

Thegreatest lower bound(or glb) is defined dually. Note that the lub is also called thesupremum

and the glb is also called the infimum.

Definition 2.4 (Lattice.) A partially ordered set〈S,�〉 is a lattice if every finite subset ofS has

a lub and glb. A lattice iscompleteif every non-empty subset ofS has a lub and glb inS.

Chapter 2 11 Preliminaries

Definition 2.5 (Minkowski’s sum.) If S, T ⊆ Rn, thenS + T denotes theMinkowski’s sum

defined by

S + T := { s + t ∈ Rn | s ∈ S, t ∈ T }.

Definition 2.6 (Ascending Chain Condition.) A partially ordered set S is said to satisfy the

Ascending Chain Condition(ACC) if all increasing chains,s1 � s2 � s3 � . . ., eventually

become constant. That is for somen, sn = sn+1 for all n ≥ 1.

2.1.2 Vectors and Matrices

For eachi ∈ {1, . . . , n}, vi denotes thei-th component of the (column) vectorv ∈ Rn. The

empty vector (inR0) is denoted byǫ. Any vectorv ∈ Rn is also a matrix inRn×1 so that it

can be manipulated with the usual matrix operations of addition and multiplication, both by a

scalar and by another matrix. On the other hand, it is often convenient to consider a matrixH =

(h1, . . . ,hm) ∈ Rn×m as a finite set of vectors{h1, . . . ,hm} ⊆ Rn. For eachi ∈ {1, . . . , n}

andj ∈ {1, . . . ,m}, theij-th component of a matrixH ∈ Rn×m is denoted byHij and thei-th

row byHi.

Definition 2.7 (Transpose.)Thetransposeof a matrixH, denoted byHT, is the matrix whose

ij-th component is theji-th component ofH.

Definition 2.8 (Triangular Form.) A matrixH ∈ Rn×m hasupper triangular formif n = m,

for all i = 1, . . . ,n, Hii 6= 0 and, for all j where1 ≤ j < i ≤ n, Hij = 0. SimilarlyH has

lower triangular formif n = m, for all i = 1, . . . ,n,Hii 6= 0 and, for allj where1 ≤ i < j ≤ n,

Hij = 0.

Definition 2.9 (Positive Definite.)Ann × n matrixD is positive definiteif xTDx > 0 for all

x ∈ Rn wherex 6= 0.

Definition 2.10 (Affinely Independent.)Vectorsv1, . . . ,vm ∈ Rn are said to beaffinely inde-

pendentif, for λ ∈ Rm, the set of equations
{
∑m

i=1 λivi = 0,
∑m

i=1 λi = 0
}

hasλ = 0 as the

only solution.

Definition 2.11 (Scalar Product.)Thescalar productof v,w ∈ Rn, denoted〈v,w〉, is the real

numbervTw =
∑n

i=1 viwi.

Definition 2.12 (Special Vectors.)A vector that has all its elements equal to zero is called azero

vectorand denoted by0. A vector with1 in the i-th position and zeroes in every other position

is called thei-th unit vectorand is denoted byei. A vectorv ∈ Rn is said to benon-relationalif

v = λ · ei for someλ ∈ R.

It follows that a set of vectors is said to be non-relational if each vector in the set is non-relational.

Let S = {v1, . . . ,vk} ⊆ Rn be a set ofk vectors. For all scalarsλ1, . . . , λk ∈ R, the vector

v =
∑k

j=1 λjvj is said to be alinear combination of the vectors inS. Such a combination is said

to be

Chapter 2 12 Preliminaries

• anaffinecombination, if
∑k

j=1 λj = 1;

• an integral combination, ifλ1, . . . , λk ∈ Z;

• an integral affinecombination, if it is both integral and affine;

• a positive (or conic)combination, if∀j ∈ {1, . . . , k} : λj ∈ R+;

• aconvexcombination, if it is both positive and affine.

We denote byaffine.hull(S) (resp.,int.hull(S), int.affine.hull(S), conic.hull(S), convex.hull(S))

the set of all the affine (resp., integer, integer affine, positive, convex) combinations of the vectors

in S. We now give some definitions which are new and needed for the work on the grid domain

described in Chapter 3.

Definition 2.13 (Pivot Element.)For v ∈ Rn, piv<(v) denotes the maximum indexi such that

vi 6= 0; if v = 0, we definepiv<(v) := 0. Similarly,piv>(v) denotes the minimum indexi such

that vi 6= 0; if v = 0, we definepiv>(v) := n+ 1.

Definition 2.14 (Pivot Equivalent Vectors.)We say two vectors arepivot equivalentif piv<(v) =

piv<(v′) = k andvk = v′k, or if piv>(v) = piv>(v′) = k andvk = v′k, written v ⇑ v′ and

v ⇓ v′, respectively.

2.1.3 Congruences and Congruence Relations

For anya, b ∈ R wherea 6= 0, we saya dividesb, denoted bya|b, if, for somem ∈ Z, am = b.

Definition 2.15 (Congruent.) For anya, b, f ∈ R, if a − b is integrally divisible byf thena is

said to becongruentto b, written a ≡f b. In the case thatf = 0, the congruence denotes the

equalitya = b.

Definition 2.16 (Linear Congruence Relation.)LetS be eitherQ or R. For each vectora ∈ Sn

and scalarsb, f ∈ S, the notation〈a,x〉 ≡f b stands for thelinear congruence relation inSn

defined by the set of vectors
{

v ∈ Rn
∣

∣ ∃µ ∈ Z . 〈a,v〉 = b + µf
}

. Also whenf = 0,

the congruence relation denotes the equality〈a,x〉 = b. Given the congruence relationβ =
(

〈a,x〉 ≡f b
)

we say thatf is thefrequencyandb is thebase valueand if b 6= 0, we sayb is the

inhomogeneous term. When the frequency of the congruence relation is non-zero it said to be a

propercongruence relation.

Provideda 6= 0, the congruence relation〈a,x〉 ≡f b defines the set of affine hyperplanes
{

(

〈a,x〉 = b + µf
)

∣

∣

∣
µ ∈ Z

}

. The congruence〈0,x〉 ≡f b defines the universeRn if

b ≡f 0, and the emptyset, otherwise. We will assume that in such a congruence (whena = 0)

we haveb 6= 0. Any vector that satisfies one of the equalities〈a,x〉 = b + µf for anyµ ∈ Z is

said tosatisfythe congruence relation〈a,x〉 ≡f b. We do not distinguish between syntactically

Chapter 2 13 Preliminaries

different congruences defining the same set of vectors inSn so that, e.g.,x ≡1 2 and2x ≡2 4 are

considered to be the same congruence. We can now extend the non-relational and pivot notation

to congruences, so that,

Definition 2.17 (Non-relational Congruence.)A congruenceβ =
(

〈a,x〉 ≡f b
)

in Sn is said

to benon-relationalif a = λ · ei for someλ ∈ S.

It follows that a set of congruences is said to be non-relational if each congruence in the set is

non-relational.

Definition 2.18 (Pivot Equivalent Congruences.) If β =
(

〈a,x〉 ≡f a0

)

then piv<(β) :=

piv<(a). Also ifγ =
(

〈c,x〉 ≡g c0
)

andga ⇑ fc, then we writeβ ⇑ γ and say thatβ andγ are

pivot equivalent congruences. Observe that this means thatβ andγ are either both equalities or

both proper congruences.

2.1.4 Graph Theory

We now introduce some of the notation and terminology that will be used to describe the graphs

that can encode the information of the weakly relational domains we will introduce later. This

information is based on [12].

LetN be a finite set ofnodes, then we will define what it is to be a rational-weighted directed

graph.

Definition 2.19 (Rational-weighted Directed Graph.)A rational-weighted directed graph(we

say graph, for short)W in N is a pair(N , w), wherew : N×N → Q∞ is the weight function for

W . LetW = (N , w) be a graph. A pair(ni, nj) ∈ N ×N is anarcofW if w(ni, nj) < +∞;

the arc isproper if ni 6= nj. A pathπ = n0 · · ·np in W is a non-empty and finite sequence of

nodes such that(ni−1, ni) is an arc ofW , for all i = 1, . . . ,p. The pathπ is simpleif each node

occurs at most once inπ. The pathπ is properif all the arcs in it are proper.

Let π = n0 · · ·np then, each nodeni, wherei = 0, . . . ,p, and each arc(ni−1, ni), wherei = 1,

. . . ,p, is said to bein the pathπ. Thelengthof the pathπ is the numberp of occurrences of arcs

in π and denoted by‖π‖; the weightof the pathπ is
∑p

i=1w(ni−1, ni) and denoted byw(π).

The pathπ is a proper cycleif it is a proper path,n0 = np andp ≥ 2. If π1 = n0 · · ·nh and

π2 = nh · · ·np are paths, where0 ≤ h ≤ p, then the path concatenationπ = n0 · · · nh · · ·np

of π1 andπ2 is denoted byπ1 :: π2; if π1 = n0n1 (so thath = 1), thenπ1 :: π2 will also be

denoted byn0 · π2. Note that path concatenation is not the same as sequence concatenation. A

graph(N , w) can be interpreted as the system ofpotential constraints

C :=
{

ni − nj ≤ w(ni, nj)
∣

∣ ni, nj ∈ N
}

,

where the nodes are interpreted as the variables of the constraint and the weight functionw(ni, nj)

is the constant.

Chapter 2 14 Preliminaries

i1 i2

i3i4

3

2

3

2

Figure 2.1: A simple graph.

Example 2.20 Consider the graph(N , w) whereN = {i1, i2, i3, i4}. The weights for the arcs

of the graph are as followsw(i1, i2) = 2, w(i2, i3) = 3, w(i3, i4) = 2, w(i4, i1) = 3. This gives

the set of constraints

C :=
{

i1 − i2 ≤ 2, i2 − i3 ≤ 3, i3 − i4 ≤ 2, i4 − i1 ≤ 3
}

.

The graph(N , w) is illustrated in Figure 2.1.

Definition 2.21 (Consistent Graph.)The graph(N , w) is consistentif and only if the system of

constraints it represents is satisfiable inQ, i.e., there exists a rational valuationρ : N → Q such

that, for each constraint(ni − nj ≤ d) ∈ C, the relationρ(ni) − ρ(nj) ≤ d holds.

It is well-known that a graph is consistent if and only if it has no negative weight cycle (see [24,

Section 25.5]). Note that, the set of consistent graphs inN is denoted byW, since the graphs will

encode information about elements of a weakly relational domain. This set is partially ordered by

the relation ‘E’ defined, for allW1 = (N , w1) andW2 = (N , w2), by

W1 EW2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

We writeW ⊳ W ′ whenW E W ′ andW 6= W ′. When augmented with a bottom element

⊥ representing inconsistency, this partially ordered set becomes a non-complete latticeW⊥ =
〈

W ∪ {⊥},E,⊓,⊔
〉

, where ‘⊓’ and ‘⊔’ denote the finitary greatest lower bound and least upper

bound operators, respectively.

Definition 2.22 (Closed graph.) A consistent graphW = (N , w) is closedif the following

Chapter 2 15 Preliminaries

properties hold:

∀i ∈ N : w(i, i) = 0; (2.1)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2.2)

The(shortest-path) closureof a consistent graphW in N is

closure(W) :=
⊔

{

W ′ ∈ W
∣

∣W ′
EW andW ′ is closed

}

.

Although the lattice of rational graphs is not complete, it will include the infinite least upper

bound defining the closure of a rational graphW . Informally, this must hold since the weights of

the least upper bound graph must be linear combinations of the rational weights ofW and hence

are also rational.

When trivially extended so as to behave as the identity function on the bottom element⊥,

shortest-path closure is a kernel operator (monotonic, idempotent and reductive) on the lattice

W⊥, therefore providing a canonical form.

The following lemma recalls a well-known result for closed graphs (for a proof, see Lemma 5

in [5]).

Lemma 2.23 LetW = (N , w) ∈ W be a closed graph. Then, for any pathπ = i · · · j in W , it

holds thatw(i, j) ≤ w(π).

2.2 Abstract Interpretation

As stated in Chapter 1, abstract interpretation was introduced in1977 by Cousot and Cousot [27].

It takes a set of possible properties of a program and approximates them by a set of intuitively

descriptive abstract properties.

Definition 2.24 (Galois Connection.)Let 〈C,�C〉, 〈A,�A〉 be two posets. Also letα : C → A

and γ : A → C. Then aGalois Connectionis a pair of mappingsα, γ such that∀a1, a2 ∈

A,∀c1, c2 ∈ C

c1 �C c2 =⇒ α(c1) �A α(c2)

a1 �A a2 =⇒ γ(a1) �C γ(a2)

α(c1) �A a1 ⇐⇒ c1 �C γ(a1).

The functionsα : C → A andγ : A→ C are called theabstractionandconcretisationfunctions

respectively and the setsA andC are called theabstract domainandconcrete domainrespectively.

Definition 2.25 (Galois Insertion.) Let 〈C,�C〉, 〈A,�A〉 be two posets. Also letα : C → A

and γ : A → C. Then aGalois Insertionis a pair of mappingsα, γ such that the pair are a

Chapter 2 16 Preliminaries

Abstract Domain Constraint Form

Interval b1 ≤ xi ≤ b2
Bounded Difference Shape aixi − ajxj ≤ b whereai, aj ∈ {−1, 0, 1} andai 6= aj

Two Variables Per Inequality aixi − ajxj ≤ b

Octagon aixi − ajxj ≤ b whereai, aj ∈ {−1, 0, 1}

Octahedron a1x1 + . . .+ anxn ≤ b whereai, aj ∈ {−1, 0, 1}
Polyhedron a1x1 + . . .+ anxn ≤ b

Table 2.1: Constraint representations of some abstract domains.

Galois connection and∀a1, a2 ∈ A

a1 �A a2 ⇐⇒ γ(a1) �C γ(a2).

Definition 2.26 (Soundness Relation.)The concrete and abstract domains are joined by the

soundness relationσ such thatσ ∈ C ×A.

This means that for the pair(c, a) ∈ C×A the soundness relation links the valid concrete property

c with a corresponding abstract propertya which has been concluded by the abstraction.

The lattice for the abstract domain of signs and its concretecounterpart can be seen in Fig-

ure 1.1 on Page 3.

2.3 Some Numerical Domains

In the following section we will introduce some of the established abstract domains that will be

considered in Chapter 6 for the grid product domains. Each ofthe domains considered will be a

sub-domain of the polyhedron domain. There are several different polyhedron sub-domains such

as the domain of convex polyhedra [6,7,9,14], octagons [4,15,50,54], octahedrons [21], bounded

difference shapes (bds) [49, 51, 53], two variables per inequality (tvpi) [77] and intervals [26].

Table 2.1 shows how each of these abstract domains can be represented by different classes of

constraint.

In [51], Miné introduces the termweakly relationalwhen discussing the bounded difference

shape domain. For the context of this thesis when we are discussing polyhedron domains we will

assume that the termweakly relational domainrefers to the bounded difference shape domain,

octagon domain and then-dimensional interval domain.

2.3.1 The Polyhedron Domain

We will now introduce some of the main features of the polyhedron domain; an illustration of

a polyhedron can be seen in Figure 2.2(d). The information ofthis section is taken from the

definitions and results of [7,11,14].

Chapter 2 17 Preliminaries

(a) A Box. (b) A Bounded Difference Shape.

(c) An Octagonal Shape. (d) A Polyhedron.

Figure 2.2: Types of Polyhedron Domain.

Definition 2.27 (Convex Polyhedra.)The setP ⊆ Rn is a not necessarily closed convex poly-

hedron(NNC polyhedron, for short) if and only if eitherP can be expressed as the intersection

of a finite number of (open or closed) affine half-spaces ofRn or n = 0 andP = ∅. The set of all

NNC polyhedra on the vector spaceRn is denotedPn. The setP ∈ Pn is a closed convex poly-

hedron(closed polyhedron, for short) if and only if eitherP can be expressed as the intersection

of a finite number of closed affine half-spaces ofRn or n = 0 andP = ∅. The set of all closed

polyhedra on the vector spaceRn is denotedCPn. In theoretical terms,Pn is a latticeunder set

inclusion andCPn is a sub-latticeof Pn. A polyhedron,P, is apolytopeif P is bounded.

NNC polyhedra can be specified by using two possible representations, the constraints (or im-

plicit) representation and the generators (or parametric)representation. For the scope of this work

we will only consider closed polyhedra, for a more detailed look at NNC polyhedra see [9,14].

Constraint Representation.

Each polyhedronP ∈ CPn can be represented by a finite set of linear equality and inequality

constraintsC called aconstraint system. We writeP = con(C). By using matrix notation, we

Chapter 2 18 Preliminaries

have

P := {x ∈ Rn | A1x = b1, A2x ≥ b2 },

where, for alli ∈ {1, 2}, Ai ∈ Rmi × Rn andbi ∈ Rmi , andm1,m2 ∈ N are the number

of equalities and the number of non-strict inequalities, respectively. The subsets of equality and

inequality constraints in systemC are denoted byeq(C) andineq(C), respectively.

Generator Representation.

LetP ∈ CPn be a polyhedron. Then

• a vectorp ∈ P is called apoint of P;

• a vectorr ∈ Rn, wherer 6= 0, is called aray (or direction of infinity) ofP if P 6= ∅ and

p + λr ∈ P, for all pointsp ∈ P and allλ ∈ R+;

• a vectorl ∈ Rn is called aline of P if both l and−l are rays ofP.

A point of a polyhedronP ∈ CPn is a vertexif and only if it cannot be expressed as a convex

combination of any other pair of distinct points inP. A ray r of a polyhedronP is anextreme

ray if and only if it cannot be expressed as a positive combination of any other pairr1 andr2 of

rays ofP, wherer 6= λr1, r 6= λr2 andr1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive

scalar factor are considered to be the same ray).

WhenP ∈ CPn is a closed polyhedron, then it can be represented by finite sets of linesL,

raysR and pointsP of P. In this case, the 3-tupleG = (L,R,P) is said to be agenerator system

for P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P),

where the symbol ’+’ denotes the Minkowski’s sum.

For anyP ∈ CPn and generator systemG = (L,R,P) for P, we haveP = ∅ if and only

if P = ∅. Note that, any set of generating pointsP must contain all the vertices ofP. Also

P can be non-empty and have no vertices, in this case, asP is necessarily non-empty, it must

contain points ofP that arenot vertices. For instance, the half-space ofR2 corresponding to

the single constrainty ≥ 0 can be represented by the generator systemG = (L,R,P) such that

L =
{

(1, 0)T
}

, R =
{

(0, 1)T
}

, andP =
{

(0, 0)T
}

. It is also worth noting that the only ray in

R is not an extreme ray ofP.

WhenP = con(C) 6= ∅, we say that the constraint systemC is in minimal formif # eq(C) =

n − dim(P) and there does not existC′ ⊂ C such thatcon(C′) = P. All the constraint systems

in minimal form describing a given polyhedron have the same cardinality. When the constraint

systemC is not in minimal form, a constraintγ ∈ C is said to beredundantin C if con
(

C \{γ}
)

=

con(C).

Chapter 2 19 Preliminaries

Similarly, a generator systemG = (L,R,P) for a polyhedronP ∈ CPn is said to be in

minimal form if there does not exist a generator systemG′ = (L′, R′, P ′) 6= G for P such that

L′ ⊆ L, R′ ⊆ R andP ′ ⊆ P .

Any polyhedronP ∈ CPn can be described by using a constraint systemC, a generator sys-

temG, or both by means of thedouble description pair (DD pair)(C,G). Thedouble description

method[57] is a collection of novel theoretical results showing that, given one kind of represen-

tation, there are algorithms for computing a representation of the other kind and for minimising

both representations by removing redundant constraints/generators.

A polyhedron is calledrational if it can be represented by a constraint system where all the

constraints have rational coefficients. It has been shown (via the double description method [57])

that a polyhedron is rational if and only if it can be represented by a generator system where all

the generators have rational coefficients.

2.3.2 The Interval Domain

Interval arithmetic was introduced by Moore in [56]. It was then later introduced as a domain for

use in abstract interpretation by Cousot and Cousot [26].

Definition 2.28 (Interval.) Let S ∈ {Q,Z}. A closed interval is the set of values inS such that

[a, b] = {x ∈ S|a ≤ x ≤ b}, where{a, b} is a pair of bounds. We say thata is thelower bound

andb is theupperbound of the interval[a, b]. If both the bounds are inS, the interval is said to

bebounded. An integral intervalis a pair [a, b] ∈ [Z∪ {∞}]2 wherea <∞ for all a ∈ Z. Also a

rational intervalis a pair [a, b] ∈ [Q∞]2 wherea <∞ for all a ∈ Q.

Let S ∈ {Q,Z}. Then the abstract domain ofintervalsin S is given by:

IS := {⊥,⊤} ∪
{

[a, b]
∣

∣ a ∈ S ∪ {−∞}, b ∈ S ∪ {∞}, a ≤ b
}

\ {[−∞,∞]}

where, for all[a1, b1], [a2, b2] ∈ IS,

[a1, b1] ⊑ [a2, b2] ⇐⇒ a1 ≥ a2 ∧ b1 ≤ b2;

[a1, b1] ⊓ [a2, b2] :=

[a, b], if a = max(a1, a2), b = min(b1, b2), a ≤ b,

⊥, otherwise;

[a1, b1] ⊔ [a2, b2] := [a, b], wherea = min(a1, a2), b = max(b1, b2), a ≤ b.

We can use the interval domain to create a domain ofBoxesover a setS in n dimensions, where

S ∈ {Q,Z}. A non-emptyn-dimensionalboxB is a sequence(I1,In) of intervals over the

setS. A subset and non-relational form of the polyhedron domain is that of intervals and boxes.

An illustration of a2-dimensional box can be seen in Figure 2.2(a).

Chapter 2 20 Preliminaries

2.3.3 The Bounded Difference Shape Domain

We now introduce the domain of bounded difference shapes andshow how we will encode the

constraints of the domain as weighted graphs.

Definition 2.29 (Bounded Difference Constraints.) Let a ∈ Rn and d ∈ R, then for each

symbol⊲⊳∈ {=,≤}, the linear constraint〈a,v〉 ⊲⊳ d is said to be abounded difference constraint

if and only if there exists two indicesi, j ∈ {1, . . . , n} such that

• ai, aj ∈ {−1, 0, 1} andai 6= aj

• ak = 0, for all k /∈ {i, j}.

Definition 2.30 (Bounded Difference Shape.)A convex polyhedronP ∈ CPn is said to be a

bounded difference shape (BDS)if and only ifP can either be expressed as the intersection of a

finite number of bounded difference constraints orn = 0 andP = ∅.

An illustration of a2-dimensional bounded difference shape can be seen in Figure2.2(b). The

bounded difference shapes form a weakly relational domain which extends the non-relational

interval domain but is still a subset of the polyhedron domain. A finite systemC of bounded

differences on variablesV = {v0, . . . , vn−1} can be represented by a weighted directed graph

W = (N0, w) where0 /∈ V is thespecial variable, N0 = {0} ∪ V, and the weight functionw is

defined, for eachvi, vj ∈ N0, by

w(vi, vj) :=

min
{

d ∈ Q
∣

∣ (vi − vj ≤ d) ∈ C
}

, if vi 6= 0 andvj 6= 0;

min
{

d ∈ Q
∣

∣ (vi ≤ d) ∈ C
}

, if vi 6= 0 andvj = 0;

min
{

d ∈ Q
∣

∣ (−vj ≤ d) ∈ C
}

, if vi = 0 andvj 6= 0;

0, if vi = vj = 0.

Notice that we assume thatmin ∅ = +∞; moreover, unary constraints are encoded by means of

the special variable, which is meant to always have value0. We will use the definitions and nota-

tion introduced earlier for weighted directed graphs. In particular, a graph encoding a consistent

system of bounded differences will be called abounded difference graph.

Let P = con(C) be a bounded difference shape. As we can represent a bds by a weighted

graph we can apply the closure algorithm to the weighted graph to produce a closed weighted

graph that represents the bds. From this we can then re-calculate the set of bounded difference

constraints and represent the bds by these. So from now on we will assume that a closed set of

constraints for a bds refers to the set derived from a closed weighted graph and denote this set of

bounded difference constraints byclosure(C).

2.3.4 The Octagon Domain

We now introduce the octagon domain and show how, like the bdsdomain, we can encode the

constraints of the domain as weighted graphs. The followinginformation is based on results

Chapter 2 21 Preliminaries

from [12]. For the following definition of octagonal constraints let us assume that there is a fixed

setV = {v0, . . . , vn−1} of n variables.

Definition 2.31 (Octagonal Constraints.)Leta ∈ Rn andd ∈ R, then for each symbol⊲⊳∈ {=

,≤}, the linear constraint〈a,v〉 ⊲⊳ d is said to be anoctagonal constraintif and only if there

exists two distinct indicesi, j ∈ {1, . . . , n} such thati < j and

• ai, aj ∈ {−1, 0, 1} andai 6= 0

• ak = 0, for all k /∈ {i, j}.

Definition 2.32 (Octagon.)A convex PolyhedronP ∈ CPn is said to be anoctagonif and only if

P can either be expressed as the intersection of a finite numberof octagonal constraints orn = 0

andP = ∅.

An illustration of a2-dimensional octagon can be seen in Figure 2.2(c). The octagon domain

forms a weakly relational domain which extends the weakly relational bounded difference shapes

but is still a subset of the polyhedron domain. Octagonal constraints can be encoded using po-

tential constraints by splitting each variablevi into two separate forms: a positive formv+
i ,

which we interpret as+vi; and a negative formv−i , which we interpret as−vi. Then we can

write any octagonal constraintaivi + ajvj ≤ d as a potential constraintv − v′ ≤ d0 where

v, v′ ∈ {v+
i , v

−
i , v

+
j , v

−
j } andd0 ∈ Q. Namely, an octagonal constraint such asvi + vj ≤ d

can be translated into the potential constraintv+
i − v−j ≤ d; alternatively, the same octagonal

constraint can be translated intov+
j − v−i ≤ d. Furthermore, unary (octagonal) constraints such

asvi ≤ d and−vi ≤ d can be encoded asv+
i − v−i ≤ 2d andv−i − v+

i ≤ 2d, respectively.

From now on, we can assume that the set of nodes isN± := {0, . . . , 2n − 1}. These nodes

will denote the positive and negative forms of the variablesin V: for all i ∈ N±, if i = 2k, theni

represents the positive formv+
k and, if i = 2k + 1, theni represents the negative formv−k of the

variablevk. To simplify the presentation, for eachi ∈ N±, we letı denotei+ 1, if i is even, and

i− 1, if i is odd, so that, for alli ∈ N±, we also haveı ∈ N± andı = i. Then we can rewrite a

potential constraintv− v′ ≤ d wherev ∈ {v+
k , v

−
k } andv′ ∈ {v+

l , v
−
l } as the potential constraint

i − j ≤ d in N± where, ifv = v+
k , i = 2k and if v = v−k , i = 2k + 1; similarly, if v′ = v+

l ,

j = 2l and ifv′ = v−l , j = 2l + 1.

Definition 2.33 (Octagonal graph.)A (rational) octagonal graphis any consistent graphW =

(N±, w) that satisfies the coherence assumption:

∀i, j ∈ N± : w(i, j) = w(, ı). (2.3)

The setO of all octagonal graphs together with the addition of the bottom element, representing

an unsatisfiable system of constraints, is a sub-lattice ofW⊥, sharing the same least upper bound

and greatest lower bound operators. As for the bounded difference shapes, as we can represent an

octagon by a weighted graph we can apply the closure algorithm to the weighted graph to produce

Chapter 2 22 Preliminaries

3

4

1

2

654321

(a) An OctagonP = con(C).

x+ = i y+ = j

y− = x− = ı

∞

3

6

3

∞

1

0

1

−17
7−1

(b) A graph(N±, w).

Figure 2.3: A simple octagonal graph.

a closed weighted graph that represents the octagon. From this we can then re-calculate the set of

octagonal constraints and represent the octagon by these. So from now on we will assume that a

closed set of constraints for an octagon refers to the set derived from a closed weighted graph.

Example 2.34 LetP = con(C) be the octagon given the set of constraints

C :=
{

0 ≤ y ≤ 3, −1 ≤ x− y ≤ 3, 1 ≤ x+ y ≤ 7
}

,

over the set of variablesV. ThenP can be seen in Figure 2.3(a). We can split each variable into

its positive and negative form to get an alternative set of constraints

C :=
{

y+−y− ≤ 6, y−−y+ ≤ 0, x+−y+ ≤ 3, x+−y− ≤ 7, x−−y+ ≤ −1, x−−y− ≤ 1
}

.

Then from this set of constraints we can consider the graph(N±, w) whereN± = {i, ı, j, }.

The weights for the arcs of the graph derived from the constraints are as follows

w(j,) = 6, w(, j) = 0, w(i, j) = 3, w(i,) = 7, w(ı, j) = −1, w(ı,) = 1

the weights for the arcs derived from the coherence assumption are

w(, ı) = 3, w(, i) = −1, w(j, ı) = 7, w(j, i) = 1

and for all other arcs the weight is∞. The graph(N±, w) can be seen in Figure 2.3(b), where

the arcs derived from the constraints are given by the solid lines and all others are given by the

dashed lines.

Chapter 3

The Grid Domain

3.1 Introduction

The purpose of this chapter is to introduce the domain of rational grids and their two repre-

sentations, together with an algorithm for converting between these two representations. The

grid domain will interpret information from programs as sets of equally spaced points. We will

demonstrate how we can infer information about the pattern of values a variable can take from

program fragments, see Examples 3.2, 3.11 and 3.12. We will then show how these two represen-

tations form the two components of a double description method for the grid domain very similar

to that for convex polyhedra [57].

The first representation we will introduce is that of the congruence system. This system

introduces relations of the form〈a,x〉 ≡f b which stands for the set of vectors

{

x ∈ Rn
∣

∣ ∃µ ∈ Z . 〈a,x〉 = b+ µf
}

.

3.2 The Congruence Representation

A congruence system inQn is a finite set of congruence relationsC in Qn. As we do not distin-

guish between syntactically different congruences defining the same set of vectors, we can assume

that all proper congruences inC have modulus1.

Definition 3.1 (Rational Grid.) Let C be a congruence system inQn. If L is the set of vectors

in Rn that satisfy all the congruences inC, we say thatL is a grid described bya congruence

systemC in Qn. We also say thatC is a congruence system forL and writeL = gcon(C). If

gcon(C) = ∅, then we say thatC is inconsistent.

23

Chapter 3 24 The Grid Domain

-4

-2

4

2

-2-4 642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

Figure 3.1: A grid inR2 represented by a congruence system.

We will now give some examples of grids. The first example shows how we can take part of a

program and infer from it the distribution information.

Example 3.2 Consider first the following program fragment (based on an example in [32]) for

any value ofm:

x := 2; y := 0;

for i := 1 to m

if ... then

x := x + 4

else

x := x + 2; y := y + 1

endif

endfor

if we consider the distribution of possible values of integer variablesx andy resulting from the

execution of the code, we obtain the following congruence relationsx ≡2 0 and−x+ 2y ≡4 2.

The grid is illustrated in Figure 3.1 by the square points andthe congruences that produce the

grid are shown by the dashed lines.

The Example 3.3 shows two different ways of representing an empty grid using the congruence

system.

Example 3.3 Consider the congruence systems
{

〈0,x〉 ≡0 1
}

and
{

〈a,x〉 ≡2 0, 〈a,x〉 ≡2 1
}

,

for anya ∈ Qn, both describe the empty grid inRn. In fact, the first congruence system requires

that0 = 1, while the second one requires that the value of an expression is both even and odd, so

that they are both inconsistent.

Definition 3.4 (Grid Domain.) Thegrid domainGn is the set of all grids inRn ordered by the

set inclusion relation, so that∅ andRn are the bottom and top elements ofGn respectively.

Chapter 3 25 The Grid Domain

-4

-2

4

2

-2-4 642

Figure 3.2: A grid inR2 represented by a single congruence.

Definition 3.5 (Universe Grid.) The vector spaceRn is called theuniversegrid.

In set theoretical terms,Gn is alatticeunder set inclusion. Thespace dimensionof a gridL ∈ Gn

is the dimensionn ∈ N of the corresponding vector spaceRn. If the maximum number of affinely

independent points inL is k + 1, thendim(L) = k denotes theaffine dimensionof L. The affine

dimension of an empty grid is defined to be 0. Thus we have0 ≤ dim(L) ≤ n.

Example 3.6 Consider the gridL ∈ G2, which can be seen in Figure 3.2, whereL = gcon(C)

and

C := {x ≡2 1}.

Thendim(L) = 2 even thoughL is only represented by one congruence.

Let C be a congruence system andL = gcon(C). Suppose also that the congruence relation

β =
(

〈a,x〉 ≡f b
)

is such thatLβ = gcon
(

{β}
)

. We say that

• L is disjoint from β if L ∩ Lβ = ∅; that is, addingβ to C gives us the empty grid.

• L strictly intersectsβ if L ∩ Lβ 6= ∅ andL ∩ Lβ ⊂ L; that is, addingβ to C gives us a

non-empty grid strictly smaller thanL.

• L is includedin β if L ⊆ Lβ; that is, addingβ to C leavesL unchanged.

Example 3.7 Consider again the grid from Example 3.2. Let

β1 = (x ≡2 1),

β2 = (x ≡4 2),

β3 = (x+ 2y ≡4 2).

ThenL is disjoint fromβ1, L strictly intersectsβ2 andL is included inβ3.

Chapter 3 26 The Grid Domain

As an alternative to the congruence system we now introduce adifferent way to represent the grid

domain, that is, by a set of generating vectors.

3.3 The Generator Representation

LetL be a grid inGn. Then

• a vectorp ∈ L is called apoint of L;

• a vectorq ∈ Rn \ {0} is called aparameterof L if L 6= ∅ andp + µq ∈ L, for all points

p ∈ L and allµ ∈ Z;

• a vectorℓ ∈ Rn \ {0} is called aline of L if L 6= ∅ andp + λℓ ∈ L, for all pointsp ∈ L

and allλ ∈ R.

If L,Q andP are finite sets of vectors inQn and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P),

thenL ∈ Gn is a grid (see [76, Section 4.4] and also Proposition 3.30). The 3-tupleG =

(L,Q,P), whereL, Q andP , all in Qn, denote sets of lines, parameters and points, respec-

tively, is said to be agenerator systemfor L and we writeL = ggen(G); also, for conve-

nience, we letggen(L,Q,P) denoteggen(G) (without the extra parentheses). Note that the

grid L = ggen(L,Q,P) = ∅ if and only if the set of pointsP = ∅. If P 6= ∅, then

L = ggen(L,∅, Qp ∪ P) where, for somep ∈ P , Qp = {p + q ∈ Qn | q ∈ Q }. As in-

dicated in [76, Section 4.4], both congruence and generatorsystems can be used to describe a

grid.

Proposition 3.8 LetL ⊆ Rn. ThenL = gcon(C), for some congruence systemC in Rn, if and

only ifL = ggen(G), for some generator systemG in Rn.

This also follows directly from Propositions 3.29 and 3.30 in Section 3.5 which provide algo-

rithms for converting between the two systems.

Definition 3.9 (Rectilinear Grid.) We say that a gridL is rectilinearif it can be represented by

a non-relational set of congruences or generators.

Example 3.10 LetL ∈ G2, whereL = gcon(C) = ggen(G), C := {x ≡2 0, y ≡3 0} and

G :=

(

∅,

(

2 0

0 3

)

,

(

0

0

))

.

ThenL is a rectilinear grid.

Chapter 3 27 The Grid Domain

-4

-2

4

2

-2-4 642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

r r

r

Figure 3.3: A grid inR2 represented by a generator system.

The following examples show how we can infer the generator descriptions for grids from frag-

ments of programs.

Example 3.11 Recall the simple code given in Example 3.2. The filled squaresin Figure 3.3

represent the points

p1 =

(

2

0

)

, p2 =

(

6

0

)

andp3 =

(

4

1

)

while all the squares (both filled and unfilled) in the diagrammark the position vectorsv =

π1p1 + π2p2 + π3p3, whereπ1, π2, π3 ∈ Z and π1 + π2 + π3 = 1. The set of pointsP =

{p1,p2,p3} will generatethe gridL = ggen(G1) = ggen(∅,∅, P). Some of these generating

points can be replaced by parameters that give the directionand spacing for the neighbouring

points. Specifically, by subtracting one of the points from each of the other two generating points

we can obtain the parameters thus, by subtracting the pointp1 from each of the pointsp2,p3, we

obtain

q2 =

(

4

0

)

andq3 =

(

2

1

)

which are marked by the thick lines between pointsp1 andp2 and pointsp1 andp3, respectively.

It follows that each pointv ∈ L can be written asv = p1 + π2q2 + π3q3 for someπ2, π3 ∈ Z;

the setQ = {q2,q3} is called aparameter setfor L = ggen(G2) = ggen(∅, Q, {p1}).

Example 3.12 Consider the procedure given in Figure 3.4 which is the running example of [61].

The effect of callingqwith the pair of variables(x,y) set to the pair of values(a, b) will be to bind

the vector(x,y)T to the vectors(a, b)T, (15a, 18a+b)T, (225a, 282a+b)T(3375a, 4224a+b)T

and so on. Computing q(a, b) the vectors are generated as follows:

Chapter 3 28 The Grid Domain

q(var x, var y)

if ... then

x := 3*x (P1)

y := x + y (P2)

q(x, y) (P3)

x := 5*x (P4)

y := x + y (P5)

endif

Figure 3.4: A recursive procedure.

• (iteration 1):

1. (iteration 1.1) the if condition on the first line of the code fails soq(a, b) = (a, b).

2. (iteration 1.2) the if condition with parameters(a, b) succeeds. Then linesP1-P5

must be executed:

(iteration 1.2) after(P1): (x, y) = (3a, b)

(iteration 1.2) after(P2): (x, y) = (3a, 3a + b)

(iteration 1.2) after(P3): the value ofq(3a, 3a + b).

So the computation continues withq(3a, 3a + b)

• (iteration 2):

1. (iteration 2.1) the if condition on the first line of the code fails andq(3a, 3a + b) =

(3a, 3a + b).

Now iteration 1.2 can be completed:

(iteration 1.2) after(P4): (x, y) = (15a, 3a + b)

(iteration 1.2) after(P5): (x, y) = (15a, 18a + b).

Soq(a, b) = (15a, 18a + b).

2. (iteration 2.2) the if condition with parameters(3a, 3a + b) succeeds. Then lines

P1-P5must be executed:

(iteration 2.2) after(P1): (x, y) = (9a, 3a + b)

(iteration 2.2) after(P2): (x, y) = (9a, 12a + b)

(iteration 2.2) after(P3): the value ofq(9a, 12a + b).

So the computation continues withq(9a, 12a + b)

• (iteration 3):

1. (iteration 3.1) the if condition on the first line of the code fails so thatq(9a, 12a+b) =

(9a, 12a + b).

Chapter 3 29 The Grid Domain

Now iteration 2.2 can be completed:

(iteration 2.2) after(P4): (x, y) = (45a, 12a + b)

(iteration 2.2) after(P5): (x, y) = (45a, 57a + b).

Now iteration 1.2 can be completed:

(iteration 1.2) after(P4): (x, y) = (225a, 57a + b)

(iteration 1.2) after(P5): (x, y) = (225a, 282a + b).

Soq(a, b) = (225a, 282a + b).

2. (iteration 3.2) the if condition on the first line of the code succeeds. Then linesP1-P5

must be executed:

(iteration 3.2) after(P1): (x, y) = (27a, 12a + b)

(iteration 3.2) after(P2): (x, y) = (27a, 39a + b)

(iteration 3.2) after(P3): the value ofq(27a, 39a + b).

So the computation continues withq(27a, 39a + b)

• (iteration 4):

1. (iteration 4.1) the if condition on the first line of the code fails so thatq(27a, 39a +

b) = (27a, 39a + b).

Now iteration 3.2 can be completed:

(iteration 3.2) after(P4): (x, y) = (135a, 39a + b)

(iteration 3.2) after(P5): (x, y) = (135a, 174a + b).

Now iteration 2.2 can be completed:

(iteration 2.2) after(P4): (x, y) = (675a, 174a + b)

(iteration 2.2) after(P5): (x, y) = (675a, 849a + b).

Now iteration 1.2 can be completed:

(iteration 1.2) after(P4): (x, y) = (3375a, 849a + b)

(iteration 1.2) after(P5): (x, y) = (3375a, 4224a + b).

Soq(a, b) = (3375a, 4224a + b).

and so on...

Note that using integral grids, without knowing the valuesa and b, we cannot perform any

of the grid operations, described in Chapter 4, since all thevalues are parametric on the pair

(a, b). We therefore need a grid where the values capture the effectof the procedure but do not

refer explicitly to the values(a, b). Since the effect of the procedure in the casea = 0 is trivial,

we assumea 6= 0. Consider a grid with variables(u, v,w) whereu = x
a , v = y

a − b
a andw = b

a .

Then(1, 0, b
a)T will be the initial vector for(u, v,w) in any call toq. This will result in a vector

of values represented as a point in a gridLi = ggen(L,∅, Pi), wherei is the number of iterations

through the body of the procedure; the singleton set of linesL =
{

(0, 0, 1)T
}

represents the fact

that there is no information about the initial valueba for w and, for the first four iterations, the

sets of points are given byP0 :=
{

(1, 0, 0)T}, P1 :=
{

(15, 18, 0)T}, P2 :=
{

(225, 282, 0)T}

Chapter 3 30 The Grid Domain

andP3 :=
{

(3375, 4224, 0)T}. LettingL := L0 ⊕ L1 ⊕ L2 ⊕ L3, where⊕ is the operation of

grid join described in Section 4.4, we haveL = ggen(L,∅, P) where

P =
{

(1, 0, 0)T, (15, 18, 0)T , (225, 282, 0)T(3375, 4224, 0)T
}

.

Converting this to the congruence representation, using methods described in Section 3.5, we

obtain

L = gcon
(

{u ≡14 1, v ≡6 0}
)

.

This gridL represents a fixpoint for the procedure; thus it includes allthe possible values for

the vector(x,y)T that might be obtained as a result of callingq. If the procedure is called with

x = a wherea 6= 0 andy = b, then all the possible values for the vector(x,y)T are represented

by the grid

gcon
(

{x ≡14a a,y ≡6a b}
)

.

3.4 Homogeneous Form

In this section, we describe an accessible and appropriate way to represent internally the con-

gruence and generator systems in terms of arrays (i.e., matrices) which will be required by our

conversion algorithm.

Definition 3.13 (Homogeneous.)A congruence systemC is homogeneousif, for all
(

〈a,x〉 ≡f

b
)

∈ C, we haveb = 0. Similarly, a generator system(L,Q,P) is homogeneousif 0 ∈ P .

For the conversion between the two systems (described in Section 3.5) and the implementation

within the PPL [13], it is convenient to work with a homogeneous system. Thus we will first

convert any congruence or generator system inQn to a homogeneous system inQn+1. The extra

dimension is denoted with a0 subscript so that the vector̂x is given by(x0, . . . , xn)T ande0

denotes the vector(1,0T)T.

Consider the congruence systemC = E ∪F in Qn, whereE is a set of equalities andF is a set

of proper congruences. Then thehomogeneous formfor C is the congruence system̂C = Ê ∪ F̂

in Qn+1 defined by:

Ê :=
{

〈

(−b,aT)T, x̂
〉

= 0
∣

∣

∣

(

〈a,x〉 = b
)

∈ E
}

, (3.1)

F̂ :=
{

〈

f−1(−b,aT)T, x̂
〉

≡1 0
∣

∣

∣

(

〈a,x〉 ≡f b
)

∈ F
}

∪
{

〈e0, x̂〉 ≡1 0
}

. (3.2)

The congruence〈e0, x̂〉 ≡1 0 expresses the fact that1 ≡1 0. By writing Ê = (ETx = 0) and

F̂ = (FTx ≡1 0), whereE,F ⊆ Qn+1, it can be seen that the pair(F,E), called thematrix

form of Ĉ, is sufficient to determineC.

Chapter 3 31 The Grid Domain

Consider next a generator systemG = (L,Q,P) in Qn. Then thehomogeneous formfor G is

the generator system̂G :=
(

L̂, Q̂ ∪ P̂ , {0}
)

in Qn+1 where

L̂ :=
{

(0, ℓT)T
∣

∣ ℓ ∈ L
}

, Q̂ :=
{

(0,qT)T
∣

∣ q ∈ Q
}

, P̂ :=
{

(1,pT)T
∣

∣ p ∈ P
}

. (3.3)

The original gridL = gcon(C) (resp.,L = ggen(G)) can be recovered from the grid̂L =

gcon(Ĉ) (resp.,L̂ = ggen(Ĝ)) sinceL =
{

v ∈ Rn
∣

∣ (1,vT)T ∈ L̂)
}

.

Example 3.14 Consider the gridL = ggen(G) where

G :=

(

∅,

(

2 0

0 3

)

,

(

1

0

))

.

Then the homogeneous form forG is Ĝ where

Ĝ :=

∅,

1 0 0

1 2 0

0 0 3

,

0

0

0

.

3.5 Reduction and Conversion Algorithms

Many of the algorithms given for the operations on grids discussed later will require that the con-

gruence systems not only have minimal cardinality but also that the coefficients of (a permutation

of) the matrix form for the congruences can form a triangularmatrix.

Definition 3.15 (Congruence System in Minimal Form.)SupposeC is a congruence system in

Qn. Then we say thatC is in minimal form if either C = {〈0,x〉 ≡0 1} or, for each congruence

β =
(

〈a,x〉 ≡f b
)

∈ C, the following hold:

1. if piv<(β) = k, thenk > 0 andak > 0;

2. for all β′ ∈ C \ {β}, piv<(β′) 6= piv<(β).

Lemma 3.16 If C 6= {〈0,x〉 ≡0 1} is a congruence system in minimal form, thenC is consistent.

Proof. SinceC is in minimal form, the set of equalitiesE =
{

〈v,x〉 = b
∣

∣ 〈v,x〉 ≡f b ∈ C
}

is linearly independent; and henceE has a solutionp. Moreover, since, for each congruence
(

〈v,x〉 ≡f b
)

∈ C there is a corresponding equality
(

〈v,x〉 = b
)

∈ E , gcon(E) ⊆ gcon(C).

Thusp ∈ gcon(C) and, hence,C is consistent. �

We will now show how to produce ann-dimensional grid in minimal form given that it is repre-

sented by a congruence system which consists ofm congruences.

Chapter 3 32 The Grid Domain

Proposition 3.17 There exists an algorithm that, for each congruence systemC in Qn, computes

a congruence systemC′ in minimal form such thatgcon(C) = gcon(C′). Lettingm := # C, the

algorithm has a worst-case complexity given byO
(

mnmin{m,n}
)

.

Proof. To prove the result, we first define the key transformation step in the algorithm and show

that the resulting congruence system describes the same grid. Suppose there exist distinct con-

gruences

β1 =
(

〈a1,x〉 ≡f1
b1
)

, β2 =
(

〈a2,x〉 ≡f2
b2
)

(3.4)

in C such thatpiv<(β1) = piv<(β2) = i > 0. We will define the congruences

β′′1 =
(

〈a′′
1 ,x〉 ≡f1

b′′1
)

, β′′2 =
(

〈a′′
2 ,x〉 ≡f2

b′′2
)

and a congruence systemC′′ such that eitherC′′ =
(

C \ {β1, β2}
)

∪ {β′′1 , β
′′
2} or C′′ =

(

C \

{β1, β2}
)

∪ {β′′1} and show thatgcon(C) = gcon(C′′). We show thatpiv<(a′′
1) = i and, ifβ′′2 is

defined, thenpiv<(a′′
2) < i. There are two cases.

1. At least one ofβ1, β2 is an equality; without loss of generality, we assume thatβ1 is an

equality so thatf1 = 0. Then we letβ′′1 = β1 and, using Gaussian elimination,

a′′
2 = a2 − (a2i/a1i)a1, b′′2 = b2 − (a2i/a1i)b1.

2. Bothβ1 andβ2 are proper congruences; so that we can assume thatf1 = f2 = 1. Let

gcdext(a1i, a2i) =
(

r, (s, t)
)

and

a′′
1 = sa1 + ta2, b′′1 = sb1 + tb2,

a′′
2 = (−a2i/r)a1 + (a1i/r)a2, b′′2 = (−a2i/r)b1 + (a1i/r)b2.

In both cases, let

C′′ =

(

C \ {β1, β2}
)

∪ {β′′1 , β
′′
2}, if a′′

2 6= 0 or b′′2 6= 0;
(

C \ {β1, β2}
)

∪ {β′′1}, otherwise.

Then gcon(C) = gcon(C′′). Note that these transformations require a computation foreach

coefficient of the considered congruences so that their complexity is O
(

n
)

.

The proof of the result is by induction oni; where0 ≤ i ≤ n is the maximum value for

which there exist distinct congruencesβ1 andβ2 ∈ C defined as in (3.4) such thatpiv<(β1) =

piv<(β2) = i.

The base case is wheni = 0 so thata1 = a2 = 0. In this case, if there exists
(

〈0,x〉 ≡f b
)

∈

C andb ≡f 0 is inconsistent, letC′ =
{

〈0,x〉 ≡0 1
}

; otherwise, letC′ =
{

β ∈ C
∣

∣ piv<(β) 6=

Chapter 3 33 The Grid Domain

0
}

.

For the step case, we keep applying the transformation (1) ifeitherf1 = 0 or f2 = 0, and (2)

otherwise until no more transformations are applicable forthis index; that is when we obtain a

congruence systemCj for which j < i is the maximum index such that there exist distinct con-

gruencesβ1 andβ2 ∈ Cj wherepiv<(β1) = piv<(β2) = j. We note that we will have to perform

these transformations at mostm times for each step, where# C = m, so that the complexity of

each step isO
(

nm
)

. By the inductive hypothesis, we can computeC′ in minimal form such that

gcon(C′) = gcon(Cj). Thereforegcon(C′) = gcon(C). As we iterate at mostmin{m,n} times

over the step case, it can be seen that the algorithm has complexity O
(

mnmin{m,n}
)

. �

Note that the algorithm mentioned in Proposition 3.17, is based on the Hermite normal form

algorithm [67,76].

As for congruence systems, for many operations and procedures in the implementation, it is

useful if the generator systems have a minimal number of elements and also that the coefficients

of (a permutation of) the generators can form a triangular matrix.

Definition 3.18 (Generator System in Minimal Form.) SupposeG = (L,Q,P) is a generator

system inQn. Then we say thatG is in minimal form if eitherL = Q = P = ∅ or #P = 1 and,

for each generatorv ∈ L ∪Q, the following hold:

1. if piv>(v) = k, thenvk > 0;

2. for all v′ ∈ (L ∪Q) \ {v}, piv>(v′) 6= piv>(v).

We will now show how to produce ann-dimensional grid in minimal form given that it is repre-

sented by a generator system which consists ofm generators.

Proposition 3.19 There exists an algorithm that, for each generator systemG in Qn, computes a

generator systemG′ in minimal form such thatggen(G′) = ggen(G). LettingG = (L,Q,P) and

m := #L+ #Q+ #P , the algorithm has worst-case complexityO
(

mnmin{m,n}
)

.

Proof. If P = ∅, thenggen(G) = ∅; in this case, letG′ = (∅,∅,∅). Suppose now that there

exists a pointp ∈ P . LetGp =
(

L,Qp, {p}
)

, where

Qp =
(

Q ∪
{

p′′ − p ∈ Qn
∣

∣ p′′ ∈ P \ {p}
}

)

\ L.

Sincem = #L+ #Q+ #P , we obtain#L+ #Qp < m. Thenggen(Gp) = ggen(G) since

linear.hull(L) + int.hull(Q) + int.affine.hull(P) =

linear.hull(L) + int.hull(Qp) + int.affine.hull
(

{p}
)

.

To prove the result, we first define the key transformation step in the algorithm and show that

the resulting generator system describes the same grid. Suppose there exist distinct generators

Chapter 3 34 The Grid Domain

v1,v2 ∈ L ∪ Qp such thatpiv>(v1) = piv>(v2) = i ≤ n. We will define a generator system

G′′ =
(

L′′, Q′′
p, {p}

)

in Qn whereL′′∪Q′′
p =

(

L∪Qp\{v1,v2}
)

∪
(

{v′′
1 ,v

′′
2}\{0}

)

, ggen(G′′) =

ggen(Gp), piv>(v′′
1) = i and, ifv′′

2 6= 0, piv>(v′′
2) > i. There are three cases.

1. Suppose that{v1,v2} ⊆ L. Then, using Gaussian elimination, let

v′′
1 = v1, v′′

2 = v2 − (v2i/v1i)v1;

L′′ =
(

L \ {v2}
)

∪
(

{v′′
2} \ {0}

)

, Q′′
p = Qp.

2. Suppose thatv1 ∈ L andv2 ∈ Qp or vice-versa; without loss of generality, we assume that

v1 ∈ L. Then, using Gaussian elimination, let

v′′
1 = v1, v′′

2 = v2 − (v2i/v1i)v1;

L′′ = L, Q′′
p =

(

Qp \ {v2}
)

∪
(

{v′′
2} \ {0}

)

.

3. Suppose that{v1,v2} ⊆ Qp. Let gcdext(v1i, v2i) =
(

r, (s, t)
)

,

v′′
1 = sv1 + tv2, v′′

2 = (−v2i/r)v1 + (v1i/r)v2;

L′′ = L, Q′′
p =

(

Qp \ {v1,v2}
)

∪
(

{v′′
1 ,v

′′
2} \ {0}

)

.

In all cases,ggen(G′′) = ggen(Gp). Note that these transformations require a computation for

each coefficient of the considered generators so that their complexity isO
(

n
)

.

The proof of the result is by induction onn+ 1 − i, where

i := min
(

{n+ 1} ∪
{

j ∈ N
∣

∣ ∃v1 6= v2 ∈ L ∪Qp . j = piv>(v1) = piv>(v2)
}

)

.

The base case is wheni = n+1, in which caseGp is already in minimal form, so letG′ = Gp.

For the step case, we apply the transformations (1), (2) and (3) until no more transformations are

applicable with indexi; that is when we obtain a generator systemGj =
(

Lj , Qj , {p}
)

for which

j > i is the least value such that, if there exists a pair of distinct generatorsv1,v2 ∈ Lj ∪ Qj,

thenj = piv>(v1) = piv>(v2); j = n + 1 if such a pair does not exist. We note that we will

have to perform these transformations at mostm− 1 times for each step, where#L+ #Qp =

m − 1, so that the complexity of each step isO
(

nm
)

. By the inductive hypothesis, we can

computeG′ in minimal form such thatggen(G′) = ggen(Gj). Thereforeggen(G′) = ggen(G).

As we can iterate at mostmin{m,n} times over the step case, the algorithm has complexity

O
(

mnmin{m,n}
)

. �

As for Proposition 3.17, the algorithm mentioned in Proposition 3.19 is based on the Hermite

normal form algorithm [67, 76]. Note also that, whenm < n, the complexity of this algorithm

is just O
(

m2n
)

. If the congruence systemC (or generator systemG) is for a rectilinear grid

then the complexity of computing the minimal form is at worstO
(

mmin{m,n}
)

. Note that the

Chapter 3 35 The Grid Domain

congruence systemC (resp., generator systemG) for a non-empty grid is in minimal form if and

only if the homogeneous form̂C for C (resp.,Ĝ for G) is in minimal form.

We will now show how we can produce a minimal form which can achieve a canonical form

for a congruence system by producing an algorithm which takes a system in minimal form and

returns an equivalent system which represents the same gridand whose coefficients are all as

small as possible in absolute value. We will first require thedefinition of pivot equivalence to be

extended to consider a set of congruences.

Definition 3.20 (Pivot Equivalent Congruence Systems.)Congruence systems in minimal form

C1 andC2 are said to bepivot equivalentif: for eachβ ∈ C1, there exists aγ ∈ C2 such thatβ ⇑ γ;

for eachγ ∈ C2, there exists aβ ∈ C1 such thatγ ⇑ β.

Definition 3.21 (Congruence System in Strong Minimal Form.)A congruence systemC in Qn

is in strong minimal formif C is in minimal form and, for each pair of distinct proper congruences

β =
(

〈a,x〉 ≡1 b
)

, γ =
(

〈c,x〉 ≡1 d
)

∈ C,

if piv<(γ) = k > 0, then−ck < 2ak ≤ ck.

A congruence system in minimal form can always be reduced to acongruence system in strong

minimal form that describes the same grid.

Proposition 3.22 Let C be a congruence system inQn in minimal form. Then there exists an

algorithm with complexityO
(

n3
)

for convertingC to a congruence systemC′ in strong minimal

form such thatC is pivot equivalent toC′ andgcon(C) = gcon(C′).

Proof. Suppose thatC is not in strong minimal form. Then, by Definition 3.21, thereexists a

proper congruenceβ =
(

〈a,x〉 ≡1 b
)

∈ C, such that the following holds:

1. there existsi > 0 and a proper congruenceγ =
(

〈c,x〉 ≡1 d
)

∈ C\{β} wherepiv<(γ) = i

and either2ai ≤ −ci or 2ai > ci.

Suppose that0 ≤ k ≤ n is the maximum value for the indexi such that condition (1) holds.

We show, by induction onk, that there exists a sequence of at mostn transformations, each

of which having complexityO
(

n
)

, from β to the congruenceβ′ =
(

〈a′,x〉 ≡1 b
′
)

, such that, if

C′ :=
(

C \ {β}
)

∪ {β′}, thengcon(C′) = gcon(C) and condition (1) (whenβ is replaced byβ′)

does not hold.

If k = 0, then condition (1) does not hold forβ. Therefore letβ′ = β.

Suppose now thatk > 0 so that condition (1) holds fori = k. As C is in minimal form,

k < piv<(a). Let

a′′ =

a −
⌈

ak

ck

⌉

c and b′′ = b−
⌈

ak

ck

⌉

d, if ak mod ck >
ak

2 ;

a −
⌊

ak

ck

⌋

c and b′′ = b−
⌊

ak

ck

⌋

d, if ak mod ck ≤ ak

2 .

Chapter 3 36 The Grid Domain

Then−ck < 2a′′k ≤ ck. Also, for k + 1 ≤ j ≤ n, we havecj = 0 so thataj = a′′j and

piv<(a′′) = piv<(a). Letting β′′ :=
(

〈a′′,x〉 ≡1 b
′′
)

andC′′ :=
(

C \ {β}
)

∪ {β′′}, we have

gcon(C′′) = gcon(C). Note that this transformation has a complexityO
(

n
)

. Ask′′, the maximum

index such that condition (1) holds forβ′′, is strictly less thank we can apply the inductive

hypothesis toC′′ andβ′′. Thus there is a sequence of at mostn − 1 transformations fromβ′′ to

β′ such that,gcon
(

(

C′′ \ {β′′}
)

∪ {β′}
)

= gcon(C′′) and condition (1) (whenβ is replaced by

β′) does not hold. Thus there is a sequence of at mostn transformations fromβ to β′ such that

gcon
(

(

C \ {β}
)

∪ {β′}
)

= gcon(C). As each of the individual steps has complexityO
(

n
)

, the

sequence of transformations has complexityO
(

n2
)

.

We repeat this sequence of transformations for each proper congruence inC to obtain a con-

gruence systemC′ such that, for each proper congruenceβ′ ∈ C′, condition (1) does not hold.

Thus, by Definition 3.21,C′ is in strong normal form. Thus, as there are at mostn proper con-

gruences inC since, by hypothesis,C is in minimal form, the complexity of computing the strong

minimal form isO
(

n3
)

. �

Note that if the congruence system is in homogeneous form them the strong minimal form algo-

rithm will also reduce all the former inhomogeneous terms tobe as small as possible, thus the set

of proper congruences will be in canonical form.

As for the congruence system we can also extend the notion of pivot equivalence to consider

generator systems.

Definition 3.23 (Pivot Equivalent Generator Systems.)We say that generator systemsG1 =
(

L,Q, {p}
)

andG2 =
(

L′, Q′, {p′}
)

in minimal form arepivot equivalentif: for eachq ∈ Q,

there existsq′ ∈ Q′ such thatq ⇓ q′, and, for eachℓ ∈ L, there existsℓ′ ∈ L′ such that

piv>(ℓ) = piv>(ℓ′); for eachq′ ∈ Q′, there existsq ∈ Q such thatq′ ⇓ q, and, for each

ℓ
′ ∈ L′, there existsℓ ∈ L such thatpiv>(ℓ′) = piv>(ℓ).

We can also define the notion of strong minimal form for a Generator system.

Definition 3.24 (Generator System in Strong Minimal Form.) A generator systemG in Qn,

whereG =
(

L,Q, {p}
)

is in strong minimal formif G is in minimal form and, for each pair of

distinct vectorsu,v ∈ Q, if piv>(v) = k ≤ n, then−vk < 2uk ≤ vk.

A generator system in minimal form can always be reduced to a generator system in strong mini-

mal form that describes the same grid.

Proposition 3.25 Let G be a generator system inQn in minimal form. Then there exists an

algorithm with complexityO
(

n3
)

for convertingG to a generator systemG′ in strong minimal

form such thatG is pivot equivalent toG′ andggen(G) = ggen(G′).

Proof. Suppose thatG =
(

L,Q, {p}
)

is not in strong minimal form. Then, by Definition 3.24,

then there exists a generatoru ∈ Q, such that the following holds:

Chapter 3 37 The Grid Domain

1. there exists1 ≤ i ≤ n and a generatorv ∈ Q \ {u} wherepiv>(v) = i and either

2ui ≤ −vi or 2ui > vi.

If condition (1) does not hold foru; let u′ = u.

Suppose now that condition (1) holds and thatk ∈ {1, . . . , n} is such thatn + 1 − k is the

minimum value for the indexi for which this condition holds.

We show, by induction onk, that there exists a sequence of at mostn transformations, each of

which having complexityO
(

n
)

, from u to the generatoru′, such that, ifG′ :=
(

G \ {u}
)

∪ {u′},

thenggen(G′) = ggen(G) and condition (1) (whenu is replaced byu′) does not hold.

As G is in minimal form,i > piv>(u). Let

u′′ =

u−
⌈

ui

vi

⌉

v, if ui mod vi >
vi

2 ;

u−
⌊

ui

vi

⌋

v, if ui mod vi ≤
vi

2 .

Then−vi < 2u′′i ≤ vi. Also, for 1 ≤ j ≤ i − 1, we havevj = 0 so thatuj = u′′j and

piv>(u′′) = piv>(u). LettingG′′ :=
(

G \ {u}
)

∪ {u′′}, we haveggen(G′′) = ggen(G). Note

that this transformation has a complexityO
(

n
)

. As n + 1 − k′′, the minimum index such that

condition (1) holds foru′′, is strictly greater thann + 1 − k, we have thatk′′ is strictly less than

k, therefore we can apply the inductive hypothesis toG′′ andu′′. Thus there is a sequence of at

mostn − 1 transformations fromu′′ to u′ such that,ggen
(

(

G′′ \ {u′′}
)

∪ {u′}
)

= ggen(G′′)

and condition (1) (whenu is replaced byu′) does not hold. Thus there is a sequence of at most

n transformations fromu to u′ such thatggen
(

(

G \ {u}
)

∪ {u′}
)

= ggen(G). As each of the

individual steps has complexityO
(

n
)

, the sequence of transformations has complexityO
(

n2
)

.

We repeat this sequence of transformations for each parameter in G to obtain a generator

systemG′ such that, for each parameteru′ ∈ G′, condition (1) does not hold. Thus, by Def-

inition 3.24,G′ is in strong normal form. Thus, as there are at mostn parameters inG since,

by hypothesis,G is in minimal form, the complexity of computing the strong minimal form is

O
(

n3
)

. �

Note that if a generator systemG =
(

L,Q,P
)

is in homogeneous form,̂G =
(

L̂, Q̂ ∪ P̂ , {0}
)

,

when the strong minimal form algorithm is applied,Ĝ will be reduced so that all the coefficients

of the former inhomogeneous termP will be as small as possible as well asQ, thus the set of

parameters and point will be in canonical form. If the congruence systemC (resp., generator

systemG) is for a rectilinear grid then the congruence systemC (resp., generator systemG) is

already is strong minimal form.

Example 3.26 Consider the gridL = gcon(C) = ggen(G) whereC := {x ≡1 0, x − y ≡3 1}

and

G :=

(

∅,

(

1 0

1 3

)

,

(

1

0

))

.

Chapter 3 38 The Grid Domain

4

5

6

2

1

3

654321

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) GridL = gcon(C).

3

4

5

1

-1

2

54321-1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) GridL = ggen(G).

Figure 3.5: A grid inR2 represented by systems in strong minimal form.

L = gcon(C) can be seen in Figure 3.5(a) andL = ggen(G) can be seen in Figure 3.5(b). Let

L̂ be the homogeneous form ofL. Then the matrix forms for̂C and Ĝ in strong minimal form are

given by

Ĉ :=

3 0 1

0 3 −1

0 0 1

,∅

and

Ĝ :=

∅,

1 0 0

0 1 0

−1 1 3

,

0

0

0

.

Now that we have defined the two descriptions for the grid we will now show that an algorithm

exists that can transfer a grid described by one representation to an equivalent grid described by

the other representation.

By considering the matrix forms of the representations which are in minimal homogeneous

forms, we can build the conversion algorithms using those for matrix inversion. Informally this

is appropriate since suppose that the generator systemĜ =
(

∅, Q̂, {0}
)

in Qn+1 is in minimal

homogeneous form and̂Q is a non-singular square matrix. LettinĝL = ggen(Ĝ) = { Q̂π ∈

Qn+1 | π ∈ Zn }, then we also havêL = { v̂ ∈ Qn+1 | Q̂−1v̂ ≡1 0 }. So(Q̂−1,∅) is the matrix

form of a congruence system in minimal homogeneous form thatrepresents the same grid̂L.

Similarly we can use matrix inversion to convert the matrix form of a homogeneous congruence

system in minimal form consisting ofn+1 proper congruences for a grid̂L to a generator system

in minimal homogeneous form for̂L. When the matrices to be inverted have less thann + 1

linearly independent columns, the algorithms we propose first add vectorŝei where1 ≤ i ≤ n,

as necessary, so as to make the matrices non-singular and hence invertible. For example, suppose

that the generator system̂G =
(

∅, Q̂, {0}
)

in Qn+1 is such that for allq ∈ Q̂, piv>(q) 6= i.

Chapter 3 39 The Grid Domain

Thenêi is added to the generator system.

Lemma 3.27 Let L̂, Q̂, M̂ , F̂ , Ê, N̂ be matrices inQn+1 such that:# N̂ = # L̂, # F̂ = # Q̂ >

0 and # Ê = # M̂ . Also let(L̂, Q̂, M̂) and (N̂ , F̂ , Ê) be square and non-singular matrices

where(N̂ , F̂ , Ê)T = (L̂, Q̂, M̂)−1. SupposêG =
(

L̂, Q̂, {0}
)

is a generator system in minimal

homogeneous form inQn+1 (resp.,(F̂ , Ê) is the matrix form of a congruence systemĈ in minimal

homogeneous form) and̂M (resp.,N̂) a matrix inZn+1 whose vectors are of the form̂ei. Then

(F̂ , Ê) is the matrix form of a congruence system̂C in minimal homogeneous form (resp.,Ĝ =
(

L̂, Q̂, {0}
)

is a generator system in minimal homogeneous form),N̂ (resp.,M̂) is a matrix in

Zn+1 whose vectors are of the form̂ei and

1. # Q̂ = # F̂ = n+ 1 − # L̂− # Ê > 0;

2. gcon(Ĉ) = ggen(Ĝ);

3. there existŝq ∈ Q̂ if and only if there existŝa ∈ F̂ , such that, for somek ∈ {1, . . . , n},

piv>(q̂) = piv<(â) = k andqkak = 1;

4. for all ℓ̂ ∈ L̂ and â ∈ Ê, piv>(ℓ̂) 6= piv<(â).

Proof. SupposeĜ =
(

L̂, Q̂, {0}
)

is a generator system in minimal homogeneous form inQn+1

andM̂ a matrix inZn+1 whose vectors are of the form̂ei. By the hypothesis on the cardinalities

of the matrices, (1) holds. By Definition 3.18,(L̂, Q̂, M̂) is a permutation of a matrix in lower

triangular form where the diagonal elements are all positive and there existŝp ∈ Q̂ such that

p0 = 1. Also, by hypothesis,

(N̂ , F̂ , Ê)T = (L̂, Q̂, M̂)−1 (3.5)

so that(N̂ , F̂ , Ê)T is a permutation of a matrix in upper triangular form where the diagonal

elements are all positive. Hence, by Definition 3.15,Ĉ is also in minimal form. Also, by the

hypothesis on the cardinalities of the matrices, (3) and (4)follow from (3.5).

Since(L̂, Q̂, M̂) is in lower triangular form and̂p ∈ Q̂ such thatp0 = 1, the first row of the

matrix (L̂, Q̂, M̂) is of the formêi wherei ∈ {0, . . . , n} is the index of̂p in (L̂, Q̂, M̂). Thus the

i-th vector in(N̂ , F̂ , Ê) must be inF̂ and have the form̂e0. It follows thatĈ is in homogeneous

form.

Finally, using (3.5) and letting# L̂ = ℓ and# Q̂ = q + 1, (2) holds since we have

x̂ ∈ ggen(Ĝ) ⇐⇒ x̂ = L̂λ+ Q̂π + M̂0, for λ ∈ Rℓ, π ∈ Zq+1

⇐⇒ x̂ = (L̂, Q̂, M̂)(λT, πT,0T)T, for λ ∈ Rℓ, π ∈ Zq+1

⇐⇒ (L̂, Q̂, M̂)−1x̂ = (λT, πT,0T)T, for λ ∈ Rℓ, π ∈ Zq+1

⇐⇒ (N̂ , F̂ , Ê)Tx̂ = (λT, πT,0T)T, for λ ∈ Rℓ, π ∈ Zq+1

⇐⇒ N̂Tx̂ = λ, F̂Tx̂ = π, ÊTx̂ = 0, for λ ∈ Rℓ, π ∈ Zq+1

⇐⇒ F̂Tx̂ ≡1 0, ÊTx̂ = 0

⇐⇒ x̂ ∈ gcon(Ĉ).

Chapter 3 40 The Grid Domain

The proof when it is assumed that(F̂ , Ê) is the matrix form of a congruence system̂C in

minimal homogeneous form is similar.�

Lemma 3.28 There exists a computable, invertible function that converts a generator system

G =
(

L,Q, {p}
)

in Qn in minimal form to a consistent congruence systemC = E ∪ F in Qn in

minimal form whereE are equalities andF are proper congruences and such that

5. #Q = #F = n− #L− # E ;

6. gcon(C) = ggen(G);

7. there existsq ∈ Q if and only if there existsβ =
(

〈a,x〉 ≡1 0
)

∈ F , such that, for some

k ∈ {1, . . . , n}, piv>(q) = piv<(a) = k andqkak = 1;

8. for all ℓ ∈ L andβ ∈ E , piv>(ℓ) 6= piv<(β).

Proof. Let #L = ℓ, #Q = q andĜ :=
(

L̂, Q̂, {0}
)

where

p̂ := (1,pT)T,

L̂ :=
{

(0, ℓT)T
∣

∣ ℓ ∈ L
}

,

Q̂ :=
{

(0,qT)T
∣

∣ q ∈ Q
}

∪ {p̂}.

(3.6)

Then Ĝ is the homogeneous form forG, # Q̂ > 0 and, asG is in minimal form, Ĝ is also in

minimal form. By Lemma 3.27, there exists a computable invertible function that will convert

Ĝ in Qn+1 to a congruence system̂C = F̂ ∪ Ê in Qn+1 in minimal homogeneous form where

F̂ are proper congruences and̂E are equalities and such that properties (1), (2), (3), and (4) in

Lemma 3.27 hold. It follows that̂C is the homogeneous form for a congruence systemC = F ∪E

in minimal form, where

E =
{

(

〈a,x〉 = b
)

∣

∣

∣

〈

(−b,aT)T, x̂
〉

= 0 ∈ Ê
}

,

F =
{

(

〈a,x〉 ≡1 b
)

∣

∣

∣

〈

(−b,aT)T, x̂
〉

≡1 0 ∈ F̂ \ {ê0}
}

and that properties (5), (6), (7) and (8) forC andG hold. �

The following proposition shows how to convert a congruencesystem into a generator system

which describes the same grid.

Proposition 3.29 Let C be a congruence system inQn in minimal form for a non-empty grid;

(F̂ , Ê) the matrix form of the homogeneous form forC; N̂ a matrix inZn+1 whose vectors are

of the formêi, with i ∈ {0, . . . , n}, and such that(N̂ , F̂ , Ê) is square and non-singular; and

(L̂, Q̂, M̂) :=
(

(N̂ , F̂ , Ê)−1
)T

where# L̂ = # N̂ , # Q̂ = # F̂ and# M̂ = # Ê. ThenĜ =
(

L̂, Q̂, {0}
)

is the homogeneous form for a generator systemG in minimal form andggen(G) =

gcon(C).

Chapter 3 41 The Grid Domain

Proof. By the hypothesis and Lemma 3.27,Ĝ = (L̂, Q̂, {0}) is a generator system in minimal

homogeneous form and, by property (2) of Lemma 3.27,gcon(Ĉ) = ggen(Ĝ). Therefore,Ĝ is the

homogeneous form forG, a generator system in minimal form,Ĉ is the homogeneous form forC,

a congruence system in minimal form, andgcon(C) = ggen(G). �

The following proposition shows how to convert a generator system into a congruence system

which describes the same grid.

Proposition 3.30 Let G be a generator system inQn in minimal form for a non-empty grid;

Ĝ =
(

L̂, Q̂, {0}
)

the homogeneous form forG; M̂ a matrix in Zn+1 whose vectors are of

the form êi, with i ∈ {0, . . . , n}, and such that(L̂, Q̂, M̂) is square and non-singular; and

(N̂ , F̂ , Ê) :=
(

(L̂, Q̂, M̂)−1
)T

where# N̂ = # L̂, # F̂ = # Q̂ and# Ê = # M̂ . Then(F̂ , Ê)

is the matrix form of the homogeneous form for a congruence systemC in minimal form and

gcon(C) = ggen(G).

Proof. By the hypothesis and Lemma 3.27,(F̂ , Ê) is the matrix form of a congruence system

Ĉ in minimal homogeneous form and, by property (2) of Lemma 3.27, gcon(Ĉ) = ggen(Ĝ).

Therefore,Ĉ is the homogeneous form forC, a congruence system in minimal form,̂G is the

homogeneous form forG, a generator system in minimal form, andgcon(C) = ggen(G). �

Both of the algorithms described for conversion between thetwo systems just perform matrix

inversion; so their complexity depends on the inversion algorithm adopted in the implementation.

As far as we know, the current best theoretical worst-case complexity is O
(

n2.376
)

[23]. Note

that, in the current implementation in the PPL, the conversion algorithm is based on the Gaussian

elimination method, which has complexityO
(

n3
)

. If however the congruence systemC (or gen-

erator systemG) is for a rectilinear grid then the complexity of the conversion algorithm is just

O
(

n
)

.

The following example will show that the conversion algorithm does not respect strong mini-

mal form of the given system.

Example 3.31 Suppose we have the gridL which is in strong minimal form and homogeneous

form. LetL = ggen(∅, Q̂, {0}) where

Q̂ =

1 0 0 0

2 4 0 0

−1 2 4 0

2 −1 2 4

.

Chapter 3 42 The Grid Domain

Then after applying the conversion algorithm to the matrixQ̂, we get the matrix̂F such that

F̂ =

8 −4 4 −7

0 2 −1 1

0 0 2 −1

0 0 0 2

.

It can be seen that the homogeneous congruence system

Ĉ = {2x− 4x0 ≡8 0,−x+ 2y + 4x0 ≡8 0, x− y + 2z − 7x0 ≡8 0, 8x0 ≡8 0}

that corresponds to the matrix̂F is not in strong minimal form. This can be seen if we take

the congruence2x − 4x0 ≡8 0 which has pivot variablex and coefficient2. Then forĈ to be

in strong minimal form, for all other congruences, the coefficient for thex variable should be

greater than−1 and less than or equal to1, however this is not the case for the congruence

−x+ 2y + 4x0 ≡8 0.

Note that, we could also consider the congruence−x + 2y + 4x0 ≡8 0, which has pivot

variabley and coefficient2. Then forĈ to be in strong minimal form, for all other congruences

the coefficient for they variable should be greater than−1 and less than or equal to1, however

this is not the case for the congruencex−y+2z−7x0 ≡8 0. Also as the congruence8x0 ≡8 0 has

pivot variablex0 and coefficient8, for all other congruences the coefficient for thex0 variable

should be greater than−4 and less than or equal to4, however this is not the case for the

congruences2x− 4x0 ≡8 0 andx− y + 2z − 7x0 ≡8 0.

3.6 Double Description

We have shown that any gridL can be described by using a congruence systemC or generated by

a generator systemG. Therefore, just as for the double description method for convex polyhedra,

since we have shown we have the algorithms for converting a representation of one kind into a

representation of the other kind and for minimising both representations, we can represent the

grid L by thedouble description(C,G). Note that, if(C,G) is a double description for a grid and

Ĉ andĜ are homogeneous forms forC andG, then(Ĉ, Ĝ) is also a double description.

Suppose we have a double description
(

C,G
)

of a grid L ∈ Gn, where bothC andG are

in minimal form. Then, it follows from the definition of minimal form that# C ≤ n + 1 and

#L+ #Q ≤ n. In fact, we have a stronger result.

Proposition 3.32 Let (C,G) be a double description where bothC andG are in minimal form.

LettingC = E ∪ F , whereE andF are sets of equalities and proper congruences, respectively,

andG = (L,Q,P), then#F = #Q = n− #L− # E .

Example 3.33 Consider the gridL from Example 3.2 and Example 3.11 which can be seen in

Figure 3.1 and Figure 3.3. The congruence systemC and the generator systemG2 are in minimal

Chapter 3 43 The Grid Domain

form; however,G1 is not as it contains more than one point. Furthermore, fori = 1, 2, the pairs

(C,Gi) are double descriptions forL.

The proof of Proposition 3.32 depends on the following lemma. This shows that if one grid is

a subset of another then the pivot elements of the proper congruences of the larger grid must be

divisible by the corresponding pivot elements of the smaller grid.

Lemma 3.34 Let L1 = gcon(C1) and L2 = gcon(C2) be non-empty grids inGn such that

L1 ⊆ L2 and the congruence systemsC1 and C2 are in minimal form. Then, for eachγ =
(

〈c,x〉 ≡g d
)

∈ C2, there existsβ =
(

〈a,x〉 ≡f b
)

∈ C1 such thatpiv<(a) = piv<(c) = k and

eitherf = g = 0 or g 6= 0 andak | fck.

Proof. Supposeγ =
(

〈c,x〉 ≡g d
)

∈ C2 and piv<(c) = k. Then, asL1 ⊆ L2, L1 ⊆

gcon
(

{γ}
)

. Let G1 =
(

L1, Q1, {p}
)

be a generator system forL1 in minimal form constructed

as in Lemma 3.28 fromC1.

We first prove that there existsβ =
(

〈a,x〉 ≡f b
)

∈ C1 such thatpiv<(a) = k. To see this,

suppose instead that, for allβ =
(

〈a,x〉 ≡f b
)

∈ C1, piv<(a) 6= k. Then, by Lemma 3.28,

there must exist a lineℓ ∈ L1 such thatpiv>(ℓ) = k; hence〈c, ℓ〉 = ckℓk 6= 0. SinceL1 ⊆

gcon
(

{γ}
)

, this implies that

〈

c, (p + rℓ)
〉

= 〈c,p〉 + rckℓk ≡g d,

for all r ∈ R, which is a contradiction.

We next show that ifg = 0 thenf = 0. To see this, suppose instead thatg = 0 but f 6= 0.

Then, by Lemma 3.28, there existsq ∈ Q1 such thatpiv>(q) = k; hence〈c,q〉 = ckqk 6= 0.

SinceL1 ⊆ gcon
(

{γ}
)

, this implies that

〈

c, (p +mq)
〉

= 〈c,p〉 +mckqk ≡g d,

for all m ∈ Z, which is a contradiction.

We now assume thatg 6= 0 and show thatak | fck. This is trivial if f = 0; therefore,

supposef = 1. By Lemma 3.28, there exists a parameterq in Q1 such thatpiv>(q) = k (so that

qkck 6= 0) andqk = a−1
k . Thus, asL1 ⊆ gcon

(

{γ}
)

, 〈q, c〉 = qkck = m, for somem ∈ Z \ {0}.

Therefore we must haveak | fck. �

Proof [of Proposition 3.32] LetC′ be the congruence system obtained, as in Lemma 3.28, from

G. LetG = (L,Q,P) and letC = (F , E) andC′ = (F ′, E ′) whereE andE ′ are sets of equalities,

andF andF ′ are sets of proper congruences. Then, by Lemma 3.28,

#Q = #F ′ = n− #L− # E ′.

Chapter 3 44 The Grid Domain

By applying Lemma 3.34 twice withL1 = L2 = L, we obtain# E = # E ′ and#F = #F ′.

Therefore

#Q = #F = n− #L− # E .

�

3.7 Implementation

The domain of grids is fully supported and implemented within the Parma Polyhedra Library

(PPL) [11,13]. The PPL is aC++ library which can manipulate numerical information that can be

represented by vectors of ann-dimensional space. As well as the grid domain the PPL also sup-

ports the domain of convex polyhedra and bounded differenceshapes. Among the tests available

in the PPL are the examples in [3] and implementations of the running examples in [60,61]. The

PPL provides full support for lifting any domain to the powerset of that domain, so that a user of

the PPL can experiment with powersets of grids and the extra precision this provides.

3.8 Related Work

In [37], Granger introduces a simple integernon-relationalgrid domain, which he calls a con-

gruence analysis, that is a grid described by congruences ofthe formx = b (mod f) whereb

andf are integers. He shows in examples how a static analysis can infer congruence information

and show that this domain can obtain more precise information for applications such as automatic

vectorization. In the Master Thesis of Bygde [19] it is shownthat the domain of integer rectilinear

grids, based on that introduced in by Granger [37] and extended to include bit-level operators, can

be used to estimate the worst case execution time (WCET) of a program given a specific system.

Larsen et al. [47] have also developed a static analyzer overa non-relational grid domain specif-

ically designed to detect when dynamic memory addresses arecongruent with respect to a given

modulus; they show that this information helps in the construction of a comprehensive set of pro-

gram transformations for saving energy on low-power architectures and improving performance

on multimedia processors. We note that these applications should carry over to the more complex

domain considered here. In addition, Miné has shown how to construct, from the non-relational

congruence domain in [37], a zone-congruence domain. This domain only allowsweakly rela-

tional congruences, that is congruences that have the formx − y = b (mod f) whereb and

f are rationals [51, 53]. The set of congruences is then represented by a constraint matrix like

that for a bounded difference shape or octagon and the operations are then applied to this matrix.

In [51] Miné gives an algorithm for producing the closure ofa system of congruence constraints,

based on theFloyd-Warshall algorithm[24], with complexityO
(

n2
)

if one congruence constraint

is added. If however alln2 possible congruence constraints are added the complexity becomes

O
(

n4
)

.

With regard to thefully relational domains, note that the use of a domain of linearequality

Chapter 3 45 The Grid Domain

relations for program analysis had been studied by Karr [45]. In [39], Granger generalized this to

provide a domain of linearcongruencerelations on an integral domain, i.e., a domain generated

by integral vectors inn-dimensions only instead of rationals; and then, in [38, 41], Granger gen-

eralized the results to the full grid domain over the rationals. In [38,39,41], domain elements are

represented by both congruence and generator systems similar to the ones defined here. Standard

algorithms for solving linear equations are used in converting from generator to congruence sys-

tems; however, a more complexO
(

n4
)

algorithm is provided for converting from congruence to

generator systems. This is because the congruences are converted and added one at a time to the

new minimised generator system. Assuming the number of generators isn+ 1, the algorithm for

minimising the generator system has complexityO
(

n3 log2 n
)

.

The problem of how the grid domain can be applied in a program analyzer has been studied by

Müller-Olm and Seidl in [58,59,61] also building on the work of Karr [45]. Here, the prime focus

is for the design of aninterproceduralanalysis for programs containing assignment statements

and procedure calls. The algorithm has three stages: first, for each program point, a matrixM

containing a (minimised) set of generators (i.e., vectors of values that hold at that point) is found;

secondly, the determinantf of M is computed; thirdly, a congruence system with modulof that

satisfies all the vectors inM is determined. Stage one is similar to that proposed by Granger [39]

for minimising a set of generators. Stages two and three differ from the conversion in [39] in

that the modulusf is computed separately and used to reduce the sizes of the coordinates. Also

in [60, 62] they consider the specific case of congruence equations where the modulo is a power

of 2. Again this work is mainly performed over the set of generators and all algorithms have the

same complexities as those mentioned in [58, 59, 61]. It is noted that this paper overlooks the

work of Granger on rational congruence equations [38, 41]. Note that the framework described

in [62] subsumes previous works by the same authors. From this work on congruence equations

with modulo a power of two, King and Sondergaard [46] consider using a SAT solver to derive

these equations which contain information about non-linear operations within the program.

Following an independent stream of research, Ancourt [1] inher thesis considered the do-

main ofZ-polyhedra; that is a domain ofintegral latticesintersected with the domain of convex

polyhedra (see also [68, 71, 72]). As we are primarily interested here in the “integral lattices”

component which may be seen as a sub-domain of the domain of grids where the grid is full

dimensional, does not contain lines in the representation and all the grid points are integral vec-

tors. The representation of these integral lattices is a special case of our generator representation

where, forn dimensions, there must be exactly one point andn linearly independent parameters,

all of which must be integral. There is no support so far for a congruence representation. All the

operations onZ-polyhedra (and therefore the lattices) require canonicalrepresentations; hence

Quinton et al. [71, 72] define a canonical form for these lattices with a method for its computa-

tion. We note that the algorithm for computing the canonicalform has complexityO
(

n4
)

, where

n is the number of dimensions of the vector space.

As shown in Section 3.5 thehomogeneous formof a representation is required by the conver-

Chapter 3 46 The Grid Domain

sion algorithm. This homogeneous form is not new, in fact several researchers have observed this.

For instance, Granger [39] describes a map from a linear congruence system inn variables to a

homogeneous one inn+1 variables; Nookala and Risset [68] explain that the PolyLib[48] adds a

dimension to make the generator representation homogeneous; while Müller-Olm and Seidl [61]

considerextended stateswhere vectors have an extra0’th component.

The Hermite Normal Form algorithm [67, 76] for lattices is sufficient to ensure a representa-

tion is in strong minimal form, however as we wish to ensure that the coefficients are as small as

possible in absolute value we use a different requirement. That is, ifC is in minimal form and, for

each pair of distinct proper congruences

β =
(

〈a,x〉 ≡1 b
)

, γ =
(

〈c,x〉 ≡1 d
)

∈ C,

if piv<(γ) = k > 0, then−ck < 2ak ≤ ck. Where as for the Hermite Normal Form the

coefficientak is bounded by0 ≤ ak < ck. Similarly for the coefficients of the generator system.

3.9 Conclusion

In this chapter we have presented the domain of Grids. We haveshown that the domain may be

represented by either a set of congruences or a set of generators. We introduced 2 methods for

minimising the representation of a grid, the minimal form which has complexityO
(

n2m
)

, which

is better than previous proposals [39, 61, 62], and the strong minimal form which has complexity

O
(

n3
)

. We have shown how conversion can be implemented using any matrix inversion algo-

rithm, inheriting the corresponding worst-case complexity. For instance, the complexity isO
(

n3
)

when adopting the standard Gaussian elimination method. Previous proposals for congruence to

generator conversion have complexity no better thanO
(

n4
)

[41].

Chapter 4

The Grid Domain Operations

4.1 Introduction

In this chapter we introduce the main operations for the domain of grids. These abstract operations

will be based on some of the set-theoretic operations, such as containment, intersection, union and

difference. We will show that by taking set-theoretic operations we do not always produce a single

grid and therefore the abstract operations compute an approximation of them.

4.2 Comparison

In this section we show how to test if two grids are equal or if one grid is contained in another.

This is important since we need to be able to check if a fixpointhas been reached or to model an

inequality or equality test in a program.

For any pair of gridsL1 = ggen(L,Q,P), L2 = gcon(C) in Gn, we can decide whether

L1 ⊆ L2 by checking if every generator in(L,Q,P) satisfies every congruence inC. Note that a

pointp satisfiesa congruence〈a,x〉 ≡f b if 〈a,p〉 ≡f b and a parameter or linev satisfiesa con-

gruence〈a,x〉 ≡f b if 〈a,v〉 ≡f 0. LetG = (L,Q,P),m1 = #L+#Q+#P andm2 = # C.

Then assuming that the systemsG andC are already available, each of them1 generators must

be checked against them2 congruences. Hence there arem1m2 checks to be made and each

check requiresO
(

n
)

arithmetical operations. Therefore the worst-case complexity of comparing

two grids isO
(

m1m2n
)

. Note that, ifn ≤ min{m1,m2}, then it would be computationally

more efficient to compute the minimal forms forC andG before actually checking for compari-

son. This is because the complexity of the minimisations would beO
(

m1n
2
)

for the generator

system andO
(

m2n
2
)

for the congruence system, which are less than or equal toO
(

m1m2n
)

47

Chapter 4 48 The Grid Domain Operations

-4

-2

4

2

-2-4 642

L1 L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 4.1: Comparing two grids inR2.

for n ≤ min{m1,m2}. Hence obtaining the worst-case complexityO
(

n2 max{m1,m2}
)

if

n ≤ min{m1,m2}. Finally if the generator and congruence systems are already available in

minimal form the complexity of comparison isO
(

n3
)

.

Example 4.1 LetL1 = gcon(C1) = ggen(G1) andL2 = gcon(C2) = ggen(G2) in G2 where

C1 := {x ≡4 0, y ≡2 1} and C2 := {x ≡2 0,−x+ 2y ≡4 2}.

G1 :=

(

∅,

(

4 0

0 2

)

,

(

0

1

))

and G2 :=

(

∅,

(

2 0

1 2

)

,

(

0

1

))

.

Then it can be seen in Figure 4.1 thatL1 ⊆ L2 where gridL1 is illustrated in Figure 4.1 by the

filled circles and the gridL2 is illustrated in Figure 4.1 by the square points.

If it is known that one grid is a subset of another, then, assuming that the descriptions of both

grids are available in minimal form, there are more efficienttests for checking equality which are

shown in the following Propositions.

Proposition 4.2 LetL1 = gcon(C1) andL2 = gcon(C2) be non-empty grids inGn, where the

congruence systemsC1 andC2 are in minimal form. Suppose also thatL1 ⊆ L2, thenL1 = L2 if

and only ifC1 andC2 are pivot equivalent.

Proposition 4.3 LetL1 = ggen(G1) andL2 = ggen(G2) be non-empty grids inGn, where the

generator systemsG1 andG2 are in minimal form. Suppose also thatL1 ⊆ L2, thenL1 = L2 if

and only ifG1 andG2 are pivot equivalent.

We require the conditionL1 ⊆ L2 in Propositions 4.2 and 4.3 since suppose we have two grids

L1 = gcon(C1) = ggen(G1) andL2 = gcon(C2) = ggen(G2). Then if it is known thatC1 ⇑ C2

or G1 ⇓ G2 then we cannot deduce thatL1 = L2 unless we know thatL1 ⊆ L2. The following

example illustrates this.

Chapter 4 49 The Grid Domain Operations

-4

-2

4

2

-2-4-6 642

L1 L2

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

Figure 4.2: The equality test with a missing condition.

Example 4.4 Consider the gridsL1 = gcon(C1) = ggen(G1) andL2 = gcon(C2) = ggen(G2)

in Gn, where

C1 = {5x ≡25 0,−2x + 5y ≡25 0}, C2 = {5x ≡25 0,−3x + 5y ≡25 0}

G1 =

(

∅,

(

5 0

2 5

)

,

(

0

0

))

, G2 =

(

∅,

(

5 0

3 5

)

,

(

0

0

))

.

ThenC1 ⇑ C2 andG1 ⇓ G2. It can be seen in Figure 4.2 however thatL1 6= L2.

The next lemma, needed for the proof of Proposition 4.2 and Proposition 4.3, shows that if, two

grids, one a subset of the other are described by two congruence systems in strong minimal form

that are pivot equivalent, then, relative to the affine hull of the grids, pivot equivalent congruences

in these systems are the same.

Lemma 4.5 LetL1 = gcon(C1), L2 = gcon(C2) be non-empty grids inGn whereL1 ⊆ L2 and

the congruence systemsC1 andC2 are in strong minimal form. Suppose thatC1 is pivot equivalent

to C2. Then, for eachβ ∈ C1 andγ ∈ C2 such thatβ ⇑ γ,

gcon
(

{β}
)

∩ affine.hull(L1) = gcon
(

{γ}
)

∩ affine.hull(L1). (4.1)

Proof. Let β =
(

〈a,x〉 ≡f b
)

∈ C1. By the definition of pivot equivalence for congruence

systems in Section 3.5, asC1 ⇑ C2 there existsγ =
(

〈c,x〉 ≡g d
)

∈ C2 such thatβ ⇑ γ. We show

that equation (4.1) holds. By the definition of pivot equivalence for congruences in Section 2.1,

piv<(a) = piv<(c) = k andgak = fck. Thus asak, ck 6= 0, eitherf = g = 0 andβ, γ are both

equalities, or we havef, g 6= 0 so thatβ, γ are both proper congruences and we can assume that

f = g = 1.

Let E1 be the set of equalities inC1. By Gaussian elimination, the setE1 can be transformed to

the set of equalitiesE ′
1 such thatgcon(E ′

1) = gcon(E1) = affine.hull(L1) and has the following

Chapter 4 50 The Grid Domain Operations

property: letE ′
1 = {β1, . . . , βm} such that, for eachi ∈ {1, . . . ,m}, piv<(βi) = ki andβi =

(

〈ai,x〉 = bi
)

; then, for eachi, j ∈ {1, . . . ,m} wherei 6= j, we haveaikj
= 0. Let

a′′ = a − c −
m
∑

i=1

(aki
− cki

)

aki

ai, b′′ = b− d−
m
∑

i=1

(aki
− cki

)

aki

bi. (4.2)

Let β′′ :=
(

〈a′′,x〉 ≡1 b
′′
)

andℓ := piv<(a′′). ThenL1 ⊆ gcon
(

{β′′}
)

⊆ L2. Moreover, for

any equalityβi ∈ E ′
1, piv<(ai) 6= ℓ. Thus, ifβ, γ are equalities,a′′ = 0 and, asC1 is consistent,

b′′ = 0. Thereforegcon(E ′
1) ⊆ gcon

(

{β}
)

andgcon(E ′
1) ⊆ gcon

(

{γ}
)

. Hence equation (4.1)

holds.

Consider now the case whenβ, γ are proper congruences. We first show thata′′ = 0 and

b′′ ∈ Z. Without loss of generality we can assume thatf = g = 1. Note that, asak = ck we have

ℓ < k. We showℓ = 0; suppose, to the contrary thatℓ > 0. SinceL1 ⊆ L2, andγ ∈ C2, we

haveL1 ⊆ gcon
(

{γ}
)

; so we can apply Lemma 3.34 to the gridsL1 andgcon
(

{γ}
)

. Thus there

exists a proper congruenceβ′ =
(

〈a′,x〉 ≡1 b
′
)

∈ C1 wherepiv<(a′) = ℓ anda′ℓ | a′′ℓ . Note

that the number of proper congruencesp1 in C1 is equal to the number of proper congruencesp2

in C2; since by Lemma 3.34,p2 ≤ p1 and, by hypothesis,p1 ≤ p2. Therefore, by Lemma 3.34,

there must exist a proper congruenceγ′ =
(

〈c′,x〉 ≡1 d
′
)

∈ C2 wherepiv<(c′) = ℓ andc′ℓ = a′ℓ.

Now asC1 andC2 are in strong minimal form, by Definition 3.21,

−
a′ℓ
2
< aℓ ≤

a′ℓ
2

and −
c′ℓ
2
< cℓ ≤

c′ℓ
2
.

Therefore−a′ℓ < a′′ℓ < a′ℓ. It follows that, asa′ℓ|a
′′
ℓ , a′′ℓ = 0, contradicting the assumption that

piv<(a′′) = ℓ > 0. Thereforea′′ = 0 andβ′′ is the relationb′′ ≡1 0 for someb′′ ∈ Z.

It follows that, by (4.2),

a − c =

m
∑

i=1

(aki
− cki

)

aki

ai, b− d ≡1

m
∑

i=1

(aki
− cki

)

aki

bi.

Thus

gcon
(

{γ, β1, . . . , βm}
)

⊆ gcon
(

{β}
)

and gcon
(

{β, β1, . . . , βm}
)

⊆ gcon
(

{γ}
)

so that

gcon
(

{γ, β1, . . . , βm}
)

= gcon
(

{β, β1, . . . , βm}
)

.

Hence equation (4.1) holds.�

From this result we can now prove Propositions 4.2 and 4.3.

Proof [of Proposition 4.2] First we show that if the congruence systemsC1 andC2 are in minimal

Chapter 4 51 The Grid Domain Operations

form and pivot equivalent, thenL1 = L2. By Proposition 3.22, we can convertC1 andC2 to

strong minimal form,C′
1 andC′

2 respectively, so that, fori = 1, 2, Li = gcon(C′
i) andC′

i is pivot

equivalent toCi. By hypothesis,L1 ⊆ L2. Thus, by Lemma 4.5, for eachβ ∈ C′
1 andγ ∈ C′

2,

gcon
(

{β}
)

∩ affine.hull(L1) = gcon
(

{γ}
)

∩ affine.hull(L1).

ThusL1 = L2, as required.

We now assume thatL1 = L2. Suppose that the congruence systemsC1, C2 are in minimal

form; then we show thatC1 andC2 are pivot equivalent. Letβ =
(

〈a,x〉 ≡f b
)

∈ C1. Then as

L2 ⊆ L1, by Lemma 3.34, there existsγ =
(

〈c,x〉 ≡g d
)

∈ C2 such thatpiv<(a) = piv<(c) =

k and eitherf = g = 0 or f 6= 0 and ck | gak. Also, asL1 ⊆ L2, by Lemma 3.34, and

property (2) of Definition 3.15, ifg 6= 0, thenak | fck. Therefore iff 6= 0 andg 6= 0 we can

assume without loss of generality thatf = g = 1. By property (1) of Definition 3.15,ak, ck > 0

so that we haveak = ck. HenceC1 andC2 are pivot equivalent. �

Proof [of Proposition 4.3] First we show that if the generator systemsG1 andG2 are in minimal

form and pivot equivalent, thenL1 = L2. Let C′′
1 = (F ′′

1 , E
′′
1) andC′′

2 = (F ′′
2 , E

′′
2) be congruence

systems forL1 andL2 respectively, as constructed in Lemma 3.28 from the generator systemsG1

andG2, respectively. Then by properties (7) and (8) in Lemma 3.28,C′′
1 is pivot equivalent toC′′

2 .

Thus, by Proposition 4.2,L1 = L2, as required.

Finally, suppose that the generator systemsG1 = (L1, Q1, P1) andG2 = (L2, Q2, P2) are

in minimal form; then we show thatG1 andG2 are pivot equivalent. LetC′′
1 = (F ′′

1 , E
′′
1) and

C′′
2 = (F ′′

2 , E
′′
2) be congruence systems as constructed in Lemma 3.28 from the generator systems

G1 andG2, respectively. ThenC′′
1 , C

′′
2 are in minimal form and, by Proposition 4.2,C′′

1 andC′′
2

are pivot equivalent. Supposev ∈ Q1 ∪ P1 and thatpiv>(v) = k. Then, by property (7) of

Lemma 3.28, there existsβ =
(

〈a,x〉 ≡1 0
)

∈ F ′′
1 such thatpiv<(a) = k andvkak = 1. By

Definition 3.23, there existsγ =
(

〈c,x〉 ≡1 0
)

∈ F ′′
2 such thatpiv<(c) = k andak = ck. By

property (7) of Lemma 3.28, there existsw ∈ Q2 ∪ P2 such thatwkck = 1. Hencevk = wk.

Suppose nextv ∈ L1 and thatpiv>(v) = k. By Proposition 3.32,# C′′
1 = n − #L1 so that,

by Definition 3.18, for allβ ∈ C′′
1 , we havepiv<(β) 6= k. By Definition 3.23, for allγ ∈ C′′

2 ,

piv<(γ) 6= k. Also by Proposition 3.32,# C′′
2 = n − #L2 so that, by Definition 3.18, there

existsw ∈ L2 such thatpiv>(w) = k. HenceG1 andG2 are pivot equivalent. �

It follows from Proposition 4.2 and Proposition 4.3, that providedL1 ⊆ L2 andL1 andL2

have both their generator or congruence systems already in minimal form, then the complexity of

checking ifL1 = L2 is justO
(

n
)

. Note that, the computational cost is low due to the fact that,

for this quick check, each elementary operation is a comparison between two numbers. It also

follows from Proposition 4.2 and Proposition 4.3, that, if it is found that one pair of corresponding

pivot elements of the congruence or generator systems differ, then we can immediately deduce

that the grids they describe also differ.

Chapter 4 52 The Grid Domain Operations

4

5

6

2

1

3

654321
L1, L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) GridsL1 andL2.

4

5

6

2

1

3

654321
L1 ∩ L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) GridL1 ∩ L2.

Figure 4.3: Grid intersection.

4.3 Intersection

We will now introduce the operation of intersection, we require this operation in, for example,

data dependence analysis for arrays [70]. For two gridsL1,L2 ∈ Gn, the intersectionof L1 and

L2 is defined as the set intersectionL1 ∩ L2, which can also be thought of as the largest grid

included in bothL1 andL2. In theoretical terms, the intersection operation is the binary meet

operator on the latticeGn. If L1 = gcon(C1) andL2 = gcon(C2), then the intersection can be

computed byL1 ∩ L2 = gcon(C1 ∪ C2).

The cost of computing the grid intersection depends on a number of factors. If the congru-

ence systemsC1 andC2 for L1 andL2, respectively, are known, then the complexity of computing

L1 ∩L2 is linear in either# C1 or # C2 as the congruences of one system are mapped to the other

system of congruences. If, however, only the generator systemsG1 andG2 for L1 andL2, respec-

tively, are known and are not necessarily in minimal form, then the complexity of intersection

is that of minimising and converting the generator systems which is, at worst,O
(

n2m
)

, where

m = max(#G1,# G2, n). A computation of grid intersection is given in Example 4.6.

Example 4.6 Consider the gridsL1 = gcon(C1) andL2 = gcon(C2) in G2 where

C1 := {x ≡1 0, x+ y ≡2 0} and C2 := {x ≡3 0, y ≡2 0}.

The gridsL1 andL2 are illustrated by the filled circles and open squares, respectively, in Fig-

ure 4.3(a). Then the grid intersection isL1 ∩ L2 = gcon(C1 ∪ C2). The minimal form of the

congruence systemgcon(C1 ∪C2) is C = {x ≡6 0, y ≡2 0}, thusC is a minimal form ofL1∩L2.

Therefore, we have

L1 ∩ L2 = {x ≡6 0, y ≡2 0}.

The gridL1 ∩ L2 is illustrated by the filled squares in Figure 4.3(b).

Chapter 4 53 The Grid Domain Operations

8

10

12

4

2

6

12108642-2
L1, L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) GridsL1 andL2.

8

10

12

4

2

6

12108642-2
L′

1, L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

(b) The setL1 ∪ L2.

Figure 4.4: The union of two grids.

4.4 Join

We will now introduce the operation of join which will approximate a set-theoretic union, we

require this operation if, for example, we had a program fragment that split into two separate

threads. The reason we do not actually take a set-theoretic union is that the result would not

always be a single grid but often represented by a disjoint union of grids. Example 4.7 shows this.

Example 4.7 ConsiderL1 = ggen(G1) andL2 = ggen(G2) in G2, where

G1 :=

(

∅,

(

4 0

2 4

)

,

(

2

2

))

and G2 :=

(

∅,

(

4 0

0 4

)

,

(

2

0

))

.

The gridsL1 andL2 are illustrated by the filled circles and open squares, respectively, in Fig-

ure 4.4(a). Then there is no single grid that can representL1 ∪ L2 exactly. InsteadL1 ∪ L2 can

be represented by the union of two disjoint grids, namelyL′
1 = ggen(G′

1) andL2 = ggen(G2),

where

G′
1 :=

(

∅,

(

8 0

0 4

)

,

(

2

2

))

.

The gridsL′
1 andL2 are illustrated by the filled circles and open squares, respectively, in Fig-

ure 4.4(b).

For gridsL1,L2 ∈ Gn, thegrid join of L1 andL2, denoted byL1 ⊕ L2, is the smallest grid that

includes bothL1 andL2. The grid join operator is the binaryjoin operator on the latticeGn. If

L1 = ggen(G1) andL2 = ggen(G2), then the grid join is computed byL1 ⊕ L2 = ggen(G1∪G2).

The cost of computing the grid join depends on a number of factors. If the generator systems

G1 andG2 for L1 andL2, respectively, are known, then the complexity of computingL1 ⊕

L2 is linear in either#G1 or #G2 as one set of generators is mapped to the other generator

Chapter 4 54 The Grid Domain Operations

4

5

6

2

1

3

654321
L1, L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

(a) GridsL1 andL2.

4

5

6

2

1

3

654321
L1 ⊕ L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) GridL1 ⊕ L2.

Figure 4.5: Grid join.

system. If, however, only the congruence systemsC1 andC2 for L1 andL2, respectively, are

known and are not necessarily in minimal form, then the complexity is that of minimising and

converting the congruence systems which is, at worst,O
(

n2m
)

, wherem = max(# C1,# C2, n).

A computation of grid join is given in Example 4.8.

Example 4.8 ConsiderL1 = ggen(G1) andL2 = ggen(G2) in G2, where

G1 :=

(

∅,

(

3 0

2 4

)

,

(

0

0

))

and G2 :=

(

∅,

(

2 0

2 4

)

,

(

0

0

))

.

The gridsL1 andL2 are illustrated by the filled circles and open squares, respectively, in Fig-

ure 4.5(a). Then the grid joinL1 ⊕ L2 is generated by

G1 ⊕ G2 :=

(

∅,

(

3 0 2 0

2 4 2 4

)

,

(

0

0

))

;

thus, the generator system

G :=

(

∅,

(

1 0

0 2

)

,

(

0

0

))

is a minimal form ofG1 ⊕ G2 andL1 ⊕ L2 = ggen(G). The gridL1 ⊕ L2 is illustrated by the

filled squares in Figure 4.5(b). Note that hereL1 ⊕ L2 6= L1 ∪ L2.

4.5 Difference

For any pair of gridsL1,L2 ∈ Gn, the grid differenceof L1 andL2, denoted byL1 ⊖ L2, is

defined as the smallest grid containing the set-theoretic difference ofL1 andL2. A computation

of grid difference is given in Example 4.9.

Chapter 4 55 The Grid Domain Operations

4

5

6

2

1

3

654321
L1, L2, L1 ⊖ L2.

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

(a) GridL1 ⊖ L2.

4

5

6

2

1

3

654321
L1, L3, L1 ⊖ L3

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

(b) GridL1 ⊖ L3.

Figure 4.6: Grid difference.

Example 4.9 Consider the three grids

L1 := gcon
(

{x ≡1 0, y ≡1 0}
)

,

L2 := gcon
(

{x ≡1 0, x+ y ≡2 0}
)

,

L3 := gcon
(

{x ≡1 0, x+ y ≡4 0}
)

.

The gridsL1 andL2 are illustrated by all the circles (open and filled) and open squares, respec-

tively, in Figure 4.6(a). Then the grid difference

L1 ⊖ L2 = gcon
(

{x ≡1 0, x+ y ≡2 1}
)

is illustrated by the filled circles. The gridsL1 andL3 are illustrated by the filled circles and open

squares, respectively, in Figure 4.6(b). In this case, the grid difference isL1 ⊖ L3 = L1, which

is illustrated by the circles. Note that hereL1 ⊖ L2 6= L1 \ L2.

We now introduce the algorithm that produces the grid difference. As we have seen in Exam-

ple 4.9 the grid difference will only produce something other thatL1 or ∅ if L2 divides the points

of L1 exactly into two disjoint sets. Therefore informally the grid difference algorithm can be

thought of as trying to split the points of the grid into a partition, so that each alternate point is in

the other partition. This is only possible if the grid to be subtracted is equal to one of the partitions

as can be seen in Figure 4.6(a). IfL1 = L2 then∅ is returned otherwise, in all other cases,L1 is

returned.

Chapter 4 56 The Grid Domain Operations

Algorithm 1: The grid difference algorithm.
Input: Nonempty gridsL1 = gcon(C1) andL2 = gcon(C2) in Gn.

Output: A grid in Gn.

(1) L′ := ∅

(2) while ∃β = (e ≡f 0) ∈ C2

(3) C2 := C2 \ {β}

(4) if L1 * gcon
(

{β}
)

(5) if L1 ⊆ gcon
(

{2e ≡f 0}
)

(6) Lβ := gcon
(

C1 ∪ {2e − f ≡2f 0}
)

(7) L′ := L′ ⊕ Lβ

(8) else

(9) return L1

(10) return L′

Algorithm 1 provides an implementation for grid difference.

Proposition 4.10 LetL1,L2 ∈ Gn and suppose thatL is the grid returned byAlgorithm 1. Then

L = L1 ⊖ L2.

Proof. By the initial conditions,L1 6= ∅,L2 6= ∅. Let L′ be the empty grid inGn defined on

line (1). Then the algorithm executes lines (2-10). Notice that there are two lines in this range

that return a value forL; line (9) whenL = L1 and line (10) whenL = L′.

Consider first the case when line (9) is executed so thatL = L1. By definition of grid

difference,L ⊇ L1 ⊖ L2. Hence it remains to show thatL1 ⊆ L1 ⊖ L2. If p ∈ L1 \ L2, then,

by the definition of grid difference,p ∈ L1 ⊖ L2. Suppose now thatp ∈ L1 ∩ L2. As line (9)

is only executed by following the else branch of the conditional on line (5), for some congruence

β = (e ≡f 0) ∈ C2, there exists a pointq ∈ L1 that does not satisfy(2e ≡f 0) so thatq does

not satisfyβ and henceq /∈ L2. Consider the pointr = p + 2(q − p). Then, asr is an integral

affine combination of points inL1, r ∈ L1. Let e =
(

〈a,x〉 − b
)

. Then, asp ∈ L2 satisfiesβ,
(

〈a,p〉 − b ≡f 0
)

. If r also satisfiesβ, then
(

〈a, r〉 − b ≡f 0
)

and hence
(

〈a, 2q〉 − 2b ≡f 0
)

so thatq would satisfy(2e ≡f 0); a contradiction. Thusr /∈ L2. Thereforep = 2q − r is an

integral affine combination of points inL1 \ L2 and hencep ∈ L1 ⊖ L2. As p ∈ L1 = L was

arbitrary,L ⊆ L1 ⊖ L2.

Suppose now that line (9) is not executed. Then the loop iterates once for each congruence

in C2 before executing line (10). Suppose# C2 = c andβi = (ei ≡f 0) ∈ C2 is the congruence

selected at line (2) in thei-th iteration of the loop, for0 < i ≤ c. Let L′
0 = ∅ andL′

i denote

the gridL′ after thei-th iteration. Then we need to show thatL′
c = L1 ⊖ L2. We prove that

L′
c ⊆ L1 ⊖ L2 andL′

c ⊇ L1 ⊖ L2 separately.

We first show thatL′
c ⊇ L1 ⊖ L2. SinceL1 ⊖ L2 is the smallest grid containingL1 \L2, we

just need to show thatL′
c ⊇ L1 \ L2. To do this, letp ∈ L1 \ L2; then we prove thatp ∈ L′

c. As

p /∈ L2, for somej = 1, . . . ,c, p /∈ gcon
(

{βj}
)

. Consider thej-th iteration of the loop. Then

Chapter 4 57 The Grid Domain Operations

the test on line (4) will succeed and the execution continueswith the test on line (5). Moreover, as

we know that line (9) will not be executed, this test must succeed so thatp ∈ gcon
(

{2ej ≡f 0}
)

and lines (6-7) will be executed withβ = βj . Asgcon
(

{βj}
)

andgcon
(

{2ej ≡f f}
)

are disjoint

and their set union is the gridgcon
(

{2ej ≡f 0}
)

, p must satisfy the congruence
(

2ej −f ≡2f 0
)

.

Let Lβj
= gcon

(

C1 ∪ {2ej − f ≡2f 0}
)

as on line (6). Then, asp ∈ L1, we havep ∈ Lβj
;

hence, after line (7),p ∈ L′
j . For eachi = j + 1, . . . ,c, eitherL′

i = L′
i−1 or line (6) is executed,

in which caseL′
i ⊇ L′

i−1; hencep ∈ L′
i. In particular,p ∈ L′

c. As this holds for allp ∈ L1 \ L2,

L′
c ⊇ L1 \ L2.

Finally we prove, by induction oni, that, for eachi = 0, . . . ,c, L′
i ⊆ L1 ⊖ L2. Initially L′

0 =

∅ and the result holds. Suppose now thati > 0 and thatL′
i−1 ⊆ L1 ⊖ L2. If L1 ⊆ gcon

(

{βi}
)

,

thenL′
i = L′

i−1 is unchanged by the iteration. On the other hand, ifL1 6⊆ gcon
(

{βi}
)

, the test

on line (4) will succeed and the execution continues with thetest on line (5). Moreover, as we

know that line (9) will not be executed, this test must succeed so thatL1 ⊆ gcon
(

{2ei ≡f 0}
)

.

Let Lβi
= gcon

(

C1 ∪ {2ei − f ≡2f 0}
)

as defined on line (6); thenLβi
∩ L2 = ∅ so that

Lβi
⊆ L1 \ L2 ⊆ L1 ⊖ L2. Since, on line (7),L′

i is assignedL′
i−1 ⊕ Lβi

, by definition of grid

join and grid difference,L′
i ⊆ L1 ⊖ L2. Therefore, lettingi = c, we haveL′

c ⊆ L1 ⊖ L2. �

AssumingC1 andC2 are known and in minimal form forL1 andL2, respectively, it follows

from the complexities of minimisation, conversion and comparison operations that the grid dif-

ference algorithm, Algorithm 1, has worst-case complexityO
(

n4
)

.

4.6 Rectilinear Grids

Recall from Definition 3.9 that a rectilinear grid is a grid that can be represented by a non-

relational set of congruences or generators. In this section we will show how to compute, for

any gridL, the smallest rectilinear grid that containsL. We also show how such grids can provide

safe approximations for any rational grid. The following two propositions show that if we are

given a grid represented by a generator system we can producea rectilinear grid represented by

either a congruence or generator system.

Proposition 4.11 LetL = ggen(G) whereG =
(

L,Q, {p}
)

. Letq = #Q andQ = {q1, . . . ,qq}.

LetL′ = gcon(C′) such that:

C′ :=
{

(

〈ei,x〉 ≡|g| pi

)

∣

∣

∣1 ≤ i ≤ n,∀ℓ ∈ L : ℓi = 0, g = gcd
(

{q1i, . . . , qqi}
)

}

. (4.3)

ThenL′ is the smallest rectilinear grid containingL.

Proof. We first show thatL ⊆ L′. Suppose thatv ∈ L and that for somei ∈ {1, . . . , n} and

for all ℓ ∈ L, ℓi = 0. Let g = gcd
(

{q1i, . . . , qqi}
)

, β =
(

〈ei,x〉 ≡|g| pi

)

, l = #L and

L = {ℓ1, . . . , ℓl}. As v ∈ L we can assume that

v = a1 · ℓ1 + · · · + al · ℓl + b1 · q1 + · · · + bq · qq + p,

Chapter 4 58 The Grid Domain Operations

for a1, . . . , aℓ ∈ R andb1, . . . , bq ∈ Z. Thusvi = b1 · q1i + · · · + bq · qqi + p andvi ≡|g| pi.

Hence
(

〈ei,v〉 ≡|g| pi

)

, sov satisfiesβ. Hence for alli, where1 ≤ i ≤ n, v satisfies all the

congruences ofC′ and thereforev ∈ L′.

Now to see thatL′ is the smallest rectilinear grid containingL let us suppose that there is

another gridL′′ such thatL′′ is rectilinear andL ⊆ L′′ ⊆ L′. Let C′′ be a congruence system

such thatL′′ = gcon(C′′). Suppose that, for somei ∈ {1, . . . , n} and g′′ > 0 there isγ =
(

〈ei,x〉 ≡|g′′| pi

)

∈ C′′. SinceL ⊆ L′′, any lineℓ ∈ L is also a line for a generator system

that representsL′′. Thus, for alla ∈ R, 〈ei, a · ℓ〉 ≡|g′′| 0. Thusℓi = 0 and as this must hold

for all ℓ ∈ L, there existsβ =
(

〈ei,x〉 ≡|g| pi

)

∈ C′ whereg = gcd
(

{q1i, . . . , qqi}
)

. Then, as

L ⊆ L′′, for all 1 ≤ j ≤ q, qj is a parameter of a generator system that representsL′′ so that

〈ei,qj〉 ≡|g′′| 0. Hence, for allj ∈ {1, . . . , q}, g′′|qji, sog′′|g. HenceL′ ⊆ L′′, and asL′′ ⊆ L′,

that meansL′ = L′′. ThereforeL′ is the smallest rectilinear grid that containsL. �

Proposition 4.12 LetL = ggen(G) whereG =
(

L,Q, {p}
)

. Letq = #Q andQ = {q1, . . . ,qq}.

LetL′ = ggen(G′) whereG′ =
(

L′, Q′, {p}
)

, such that, for eachi ∈ {1, . . . , n}:

1. if, for someℓ ∈ L, ℓi 6= 0, then letℓ′

i
:= ei;

2. if, for all ℓ ∈ L, ℓi = 0, and for someqj ∈ Q, qji 6= 0 then letq′
i := |g| · ei where

g = gcd
(

{q1i, . . . , qqi}
)

.

ThenL′ is the smallest rectilinear grid containingL.

Proof. By Proposition 4.11 there is a gridL1 such thatL1 is the smallest rectilinear grid that

containsL. Also by Proposition 4.11 there is a gridL2 such thatL2 is the smallest rectilinear grid

that containsL′. Now by the definition ofL′ we have thatL′ is rectilinear thusL′ = L2. All that

remains is to show thatL′ = L1.

We will first show thatL′ ⊆ L1. That is every generator ofG′ satisfies every congruence

of C1. Suppose that for allℓ ∈ L there is somei ∈ {1, . . . , n} such thatℓi = 0 and for some

j ∈ {1, . . . , q}, qj ∈ Q andqji 6= 0. Then there isq′
i ∈ Q′ such thatq′

i = |g| · ei andβ ∈ C1

such thatβ =
(

〈ei,x〉 ≡|g| pi

)

, whereg = gcd
(

{q1i, . . . , qqi}
)

. Hence,
(

〈ei,q
′
i〉 ≡|g| 0

)

. So

q′
i satisfiesβ and thereforeq′

i satisfies all congruences ofC1. Hence all parameters ofQ′ satisfy

each congruence ofC1. SinceL ⊆ L1, any lineℓ ∈ L is also a line for a generator system that

representsL1. Thus, for alla ∈ R, 〈ei, a · ℓ〉 ≡|g| 0. So if there isℓ ∈ L such thatℓi 6= 0, then

there isℓ′

i
∈ L′ such thatℓ′

i
= ei and for alla ∈ R, 〈ei, a · ℓ

′

i
〉 ≡|g| 0. SoL′ ⊆ L1.

Now asL1 is the smallest rectilinear grid that containsL we must have thatL1 ⊆ L′, hence

L1 = L′. �

4.6.1 Covering Box

In this section we will show how we can reuse the standard interval domain, see [26] and Chap-

ter 2, to represent arectilinear grid. Recall from Section 2.3.2 that we can represent a non-empty

n-dimensionalrational boxB by a sequence(I1, . . . , In) of rational intervals.

Chapter 4 59 The Grid Domain Operations

6

4

2

642

(a) A tiling using a bounded box.

6

3

63

(b) A tiling using an unbounded box.

Figure 4.7: Types of2-dimensional box tilings.

An n-dimensional boxB could be used repetitively over ann-dimensional vector space to

“tile” and therefore “cover” the vector space. A tiling or tessellation of a vector space is a collec-

tion of objects that fill the vector space so that the objects do not overlap or leave gaps. Therefore

it follows that the boxB determines acoveringof the n-dimensional vector space, where the

given boxB provides the position for one of the tiles. By defining a grid to be the vertices of

the tiles in such a tiling, we obtain a rational rectilinear grid L and callB a covering box forL.

For this section we will assume that any unbounded interval has the form[µ,∞]. Example 4.13

shows informally how a box can tile a2-dimensional vector space.

Example 4.13 In Figure 4.7 two tilings are given, in Figure 4.7(a) both intervals are bounded

and the box is given byB =
(

[0, 2], [0, 2]
)

. It can be seen that the box will tile the wholeR2

vector space and the covering box will represent a rectilinear grid L such thatL = gcon
(

{x ≡2

0, y ≡2 0}
)

.

In Figure 4.7(b) only one interval is bounded and the box is given byB =
(

[1,∞], [0, 3]
)

. It

can be seen that the box will only tile the half-space{x ∈ R2|1 ≤ x}. This covering box will

represent the gridL such thatL = gcon
(

{x = 1, y ≡3 0}
)

. The equationx = 1 is approximated

by an unbounded interval[1,∞] to show that thex variable only takes one value, so the tile is

not repeated along the direction of the that variable.

If the box B = (I1, . . . , In) has an intervalIi which is the singleton[µ, µ] then if v ∈ L,

(v1, . . . , λ · vi, . . . , vn) ∈ L for all λ ∈ R. In other words, the generator representation forL

contains a line. Informally, the reason a line is represented by a singleton is that thevi variable

will take all valuesλ, for λ ∈ R. So a singleton is the smallest amount we can take before the

next tile would occur. So in the direction of the line the tiling would be repeated infinitely many

times, once for eachλ ∈ R.

Definition 4.14 (A Box RepresentsL = gcon(C).) LetB = (I1, . . . , In) be a non-empty box.

Chapter 4 60 The Grid Domain Operations

For eachi = 1, . . . ,n, let Ii = [µi, νi]; then, ifµi 6= νi, let

βi :=

(

〈ei,x〉 ≡νi−µi
µi

)

, if Ii is bounded;
(

〈ei,x〉 = µi

)

, if Ii is not bounded.

Then we say that the boxB representsthe gridL := gcon(C), where

C := {βi

∣

∣ 1 ≤ i ≤ n, µi 6= νi }. (4.4)

Note that the congruence systemC is in minimal form. Observe also that, whenµi = νi for some

1 ≤ i ≤ n, there is no corresponding congruence inC for [µi, νi]; this is because, in this case, the

tiling will cover every value in this dimension and hence there will be a lineei in the generator

representation ofL.

Definition 4.15 (A Box RepresentsL = ggen(G).) Alternatively letB = (I1, . . . , In) be a

non-empty box. For eachi = 1, . . . ,n, let Ii = [µi, νi]; then let

vi :=

ei, if µi = νi, sovi is a line;

|νi − µi| · ei, if µi 6= νi andIi is bounded, sovi is a parameter;

and

p := (µ1, . . . , µn).

Then we say that the boxB representsthe gridL := ggen(G), where

G := {vi

∣

∣ 1 ≤ i ≤ n } ∪ {p}. (4.5)

Note that the generator systemG is in minimal form. Observe also that, whenIi is unbounded for

some1 ≤ i ≤ n, there is a no generator inG for [µi, νi]; this is because, in this case, the tiling

will cover only one value in this dimension and hence there will be an equation〈ei,x〉 = µi in

the congruence representation ofL.

Definition 4.16 (Covering Box.)LetL be a non-empty rational grid. Acovering boxfor L is a

rational box representing the smallest rectilinear grid that containsL.

We now provide a procedure for computing the covering box of agrid.

Proposition 4.17 LetL = ggen(G) whereG =
(

L,Q, {p}
)

. Letq = #Q andQ = {q1, . . . ,qq}.

LetB = (I1, . . . , In) such that, for eachi ∈ {1, . . . , n}:

1. if, for someℓ ∈ L, ℓi 6= 0, then letIi := [0, 0];

2. if, for all ℓ ∈ L, ℓi = 0, andq1i = · · · = qqi = 0, let Ii := [pi,∞];

Chapter 4 61 The Grid Domain Operations

3. otherwise, letIi :=
[

pi, pi + |g|
]

whereg = gcd
(

{q1i, . . . , qqi}
)

.

ThenB is a covering box forL.

Proof. By Proposition 4.11 and Proposition 4.12 we can compute the congruence systemC′ and

generator systemG′, respectively, such thatL′ = gcon(C′) = ggen(G′) andL′ is the smallest

rectilinear grid containingL. ThenC′ is the set given in Equation (4.3) andG′ =
(

L′, Q′, {p}
)

such that for eachi ∈ {1, . . . , n} conditions (1) and (2) hold from Proposition 4.12. LetB =

(I1, . . . , In) be the box. ThenG′ is equivalent to the system

G′′ := {vi

∣

∣ 1 ≤ i ≤ n } ∪ {p}

such that

vi :=

ei, if µi = νi, sovi is a line;

|νi − µi| · ei, if µi 6= νi andIi is bounded, sovi is a parameter;

and

p := (µ1, . . . , µn)

andC′ is equivalent to the system

C′′ := {βi

∣

∣ 1 ≤ i ≤ n, µi 6= νi }

such that

βi :=

(

〈ei,x〉 ≡νi−µi
µi

)

, if Ii is bounded;
(

〈ei,x〉 = µi

)

, if Ii is not bounded.

Thengcon(C′) = gcon(C′′) andggen(G′) = ggen(G′′) and by Definitions 4.14 and 4.15, the box

B represents the gridL′ = gcon(C′) = ggen(G′). HenceB is a covering box forL. �

The complexity of computing the covering box for a gridL = ggen(G) using the procedure given

in Proposition 4.17, isO
(

nm
)

, wherem = #G. If however only the congruence system forL is

known then the complexity of computing the covering box is that of minimisation and conversion,

namely,O
(

mnmin{m,n}
)

wherem = # C. Two computations of the covering box are given

in Example 4.18.

Example 4.18 Consider gridL1 = gcon(C1) = ggen(G1), whereC1 := {x ≡3 0, y ≡2 1} and

G1 :=

(

∅,

(

3 0

0 2

)

,

(

0

1

))

.

The gridL1 is illustrated by all the squares in Figure 4.8(a) and it can be seen thatL1 is rectilin-

ear and and boxB1 =
{

[0, 3], [1, 3]
}

is a covering box representingL1. The boxB1 is illustrated

by the hatched area in Figure 4.8(a) and the covering is represented by the dashed lines.

Chapter 4 62 The Grid Domain Operations

4

5

6

2

1

3

654321
L1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) GridL1.

4

5

6

2

1

3

654321
L2, L′

2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) GridsL2 andL′
2.

Figure 4.8: Covering boxes for a grid.

Consider the gridL2 = gcon(C2) = ggen(G2), whereC2 := {x ≡1 0, x+ y ≡3 2} and

G2 :=

(

∅,

(

1 0

−1 3

)

,

(

1

1

))

.

The gridL2 is illustrated by all the filled squares in Figure 4.8(b) and it can be seen thatL2 is

not rectilinear and that the boxB2 =
{

[1, 2], [1, 2]
}

, is a covering box forL2. ThusB2 represents

the gridL′
2 = gcon

(

{x ≡1 1, y ≡1 1}
)

which is illustrated by all the squares (open and filled) in

Figure 4.8(b). The boxB2 is illustrated by the hatched area in Figure 4.8(b) and the covering is

represented by the dashed lines.

Note that, in general, a gridL ∈ Gn does not have a unique covering box. For instance,

if B = (I1, . . . , Ii, . . . , In) is a covering box forL, and the intervalIi = [µi, νi] is bounded,

then the boxB′ = (I1, . . . , I
′
i, . . . , In) is also a covering box forL if, for somem ∈ Z, I ′i =

[

µi +m(νi − µi), νi +m(νi − µi)
]

. Example 4.19 illustrates this.

Example 4.19 Recall from Example 4.18 and Figure 4.8(b) the gridL2 whereL2 = gcon
(

{x ≡1

0, x + y ≡3 2}
)

andB2 =
{

[1, 2], [1, 2]
}

. Then it can be seen thatB′
2 =

{

[0, 1], [0, 1]
}

and

B′′
2 =

{

[4, 5], [2, 3]
}

are also covering boxes forL2.

Although the covering box is not unique it could be enforced by computing it from a grid which

is represented by a homogeneous system in strong minimal form.

4.7 Affine Image and Pre-image

An affine transformation on the vector spaceRn is a transformation which preserves collinearity

and ratios of distances. That is an affine transformation takes points along a line and maps them

to points along a line, maps a midpoint of a line segment to a midpoint and preserves intersection

Chapter 4 63 The Grid Domain Operations

q♯(L)

if ... then

L := φ(L, u, 3u)

L := φ(L, v, u + v)

q♯(L)

L := φ(L, u, 5u)

L := φ(L, v, u + v)

endif

Figure 4.9: An abstraction ofq.

properties between lines. However, it does not preserve theangles or lengths of lines. Affine

transformations can be represented by matrices inRn×n and it follows that the setGn is closed

under the set of all affine transformations forRn. The affine image and affine pre-image operators

are provided by a ‘single update’. Given a gridL ∈ Gn, a variablexk and linear expression

e = 〈a,x〉 + b with coefficients inQ, theaffine image operatorφ(L, xk, e) maps the gridL to

{

(

p1, . . . , pk−1, 〈a,p〉 + b, pk+1, . . . , pn

)T
∈ Rn

∣

∣

∣p ∈ L
}

.

Conversely, theaffine pre-image operatorφ−1(L, xk, e) maps the gridL to

{

p ∈ Rn
∣

∣

∣

(

p1, . . . , pk−1, 〈a,p〉 + b, pk+1, . . . , pn

)T
∈ L

}

.

Observe that the affine imageφ(L, xk, e) and pre-imageφ−1(L, xk, e) are invertible if and only

if the coefficientak in the vectora is non-zero.

Example 4.20 Consider again Example 3.12 and the recursive procedure in Figure 3.4. Taking

the initial grid to beL0, thenx := 3*x, the first assignment inq, corresponds to the trans-

formationφ(L0, u, 3u). This returnsL1
0 := ggen(L,∅, P 1

0) whereP 1
0 =

{

(3, 0, 0)T
}

. The next

assignment inq is y := x + y. The corresponding affine transformation, applied toL1
0, is

φ(L1
0, v, v + u) and we obtain the gridL2

0 := ggen(L,∅, P 2
0) whereP 2

0 =
{

(3, 3, 0)T
}

. Now

the assignment inq is y := 5*x. The corresponding affine transformation, applied toL2
0, is

φ(L2
0, v, 5u) and we obtain the gridL3

0 := ggen(L,∅, P 3
0) whereP 3

0 =
{

(15, 3, 0)T
}

. Finally

the last assignment inq is y := x + y. The corresponding affine transformation, applied to

L3
0, isφ(L3

0, v, v+u) and we obtain the gridL4
0 := ggen(L,∅, P 4

0) whereP 4
0 =

{

(15, 18, 0)T
}

.

Figure 4.9 contains an abstract versionq♯ of q where the the argument to the procedure is re-

placed by a grid and the assignment statements are replaced by the corresponding affine transfor-

mations. Thus we can now compute the gridsLi = ggen(L,∅, Pi) for anyiwherei is the number

of iterations through the body of the procedure. In particular P1 = P 4
0 and we have computed

P0, P1, P2 andP3, as seen in Example 3.12. HenceL = L0 ⊕ L1 ⊕ L2 ⊕ L3 represents a

Chapter 4 64 The Grid Domain Operations

p(var u, var v)

u := 3u + 2v + 1

while ...

u := u + 3

endwhile

Figure 4.10: A simple procedure.

fixpoint for the procedure, thus it includes all possible values for the vector(x,y)T that might be

obtained as a result of callingq. Then if we call the procedure with the valuesx = 2 andy = 0

as in [61], then all the possible values for the vector(x,y)T are represented by the grid

gcon
(

{x ≡28 2,y ≡12 0}
)

= φ
(

φ(L,x, 2x),y, 2y
)

.

We will now introduce the generalized affine image operator.This determines a set of con-

gruence relations that hold between the given grid and its image. Clearly, since the relations are

congruences, the image is also a grid. Note though, that in this case a hyperplane will be replaced

by a, possibly infinite, set of hyperplanes.

Thegeneralized affine image(resp.,generalized affine pre-image) is an extension of the affine

image (resp., affine pre-image) operator defined above. Given a gridL ∈ Gn, linear expressions

e′ = 〈c,x〉+ d ande = 〈a,x〉+ b with coefficients inQ andf ∈ Q, the generalized affine image

operatorψ = ψ(L, e′, e, f) is defined as

∀v,w ∈ Rn : (v,w) ∈ ψ ⇐⇒
(

〈c,w〉 + d ≡f 〈a,v〉 + b
)

∧
(

∧

0≤i<n

ci=0

wi = vi

)

.

Note that, whene′ = xk andf = 0, then the transformation is equivalent to the standard affine

transformation onL with respect to the variablexk and the affine expressione; that is

ψ(L, xk, e, 0) = φ(L, xk, e).

However, whene′ = xk andf = 1, then the transformation maps the pointx to the set of points
{

(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)

∣

∣ x′k ≡1 〈a,x〉 + b
}

.

The following example illustrates how the generalized affine image can be used to model the

effect of a procedure containing a while loop.

Example 4.21 Consider the program procedure in Figure 4.10. Suppose the procedure takes the

initial values(a, b). Then the procedurep will map u to 3a + 2b + 1 + 3i for somei ∈ Z and

leavev = b unchanged. Now considering the general case, where the initial values foru andv

are given by the points of the gridL, then, after executingp, the values ofu andv will be given

Chapter 4 65 The Grid Domain Operations

by the points of the gridψ(L, x, 3x+2y+1, 3). Let us now consider the specific initial condition

L = ggen(∅,∅, P) whereP = (0 3 0
0 0 3). By considering one pointp := (0

0) we can see that

whenψ is applied to the pointp we get the set

{

. . . ,

(

−2

0

)

,

(

1

0

)

,

(

4

0

)

,

(

7

0

)

, . . .

}

.

Hence,

ψ(L, x, 3x + 2y + 1, 3) = ggen

(

∅,∅,

(

1 4 1

0 0 3

))

.

4.8 Implementation

The intersection and grid join just take the union of the congruence or generator systems, respec-

tively, so that, from a theoretical perspective, these havecomplexityO
(

n
)

as noted in Sections 4.3

and 4.4, respectively. However, in the implementation, we assume a common divisor for all the

coordinates or coefficients in the system. Hence, combiningthe systems requires changing the

denominators of both components to their least common multiple with a consequential need to

scale all the numerators in the representation; giving a worst-case complexity ofO
(

n2
)

if both

systems are in minimal form.

There are many operations that a practical domain of grids could provide for applications in

program analysis and verification. For instance, theconcatenationof two gridsL1 ∈ Gn and

L2 ∈ Gm (taken in this order) is the grid inGn+m defined as

(x1, . . . , xn, y1, . . . , ym)T ∈ Rn+m

∣

∣

∣

∣

∣

∣

(x1, . . . , xn)T ∈ L1

(y1, . . . , ym)T ∈ L2

.

Other operators that could be required are those which that add, remove, rename and map the

space dimensions, or expand and fold them along the lines of [36]. All of these operations

have been specified and implemented, within the Parma Polyhedra Library,http://www.cs.

unipr.it/ppl/, where all the code and documentation is publicly available.

4.9 Related Work

In [38,39] Granger considers operators for comparing gridsand computing the greatest lower and

least upper bounds, that is the intersection and join respectively. In particular in [39, Section 7] the

complexities of each of the operations is stated. The join operation has complexityO
(

n4 log2 n
)

,

this is because the operation takes generators of one grid and adds them one at a time to the gen-

erators of the other grid and at each stage minimises this newsystem. Unfortunately, as Granger’s

generator minimisation algorithm has complexityO
(

n3 log2 n
)

, it is this repeated minimisation

that causes the complexity of the join to be so high. If our grid join operation where to be applied

Chapter 4 66 The Grid Domain Operations

similarly to a set ofn generators we would have a complexity ofO
(

n4
)

. The grid meet opera-

tion which also minimises the addition of one congruence at atime has complexityO
(

n4
)

as the

congruence minimisation has complexityO
(

n3
)

and it is performed at worstn times. Finally the

comparison has a complexity ofO
(

n3
)

.

The operations provided by Quinton et al. [71,72] for the grid part of theZ-polyhedra which

are similar to our operations are those grid intersection, affine image and affine pre-image. The

operations of grid join and grid difference, where the result is a single grid, are not considered.

Instead the join operator takes two gridsL1 andL2 and returns the set{L1,L2} unless one, say

L1, is contained in the other, in which case they return the larger, L2. Similarly the difference

operation returns a set of lattices representing the set differenceL1 \ L2. This is calculated by

computing a basis of parameters for each of the two lattices using the Smith Normal Form algo-

rithm [67]. So ifL1 = ggen
(

∅, Q1, {p1}
)

whereQ1 = (q1, . . . ,qn) is the basis of parameters,

thenL2 = ggen
(

∅, Q2, {p2}
)

whereQ2 = (a1q1, . . . , anqn). Then the set theoretic difference

is

L1 \ L2 :=
(

m
⋃

i=1

ggen
(

∅, Q2, {vi}
)

)

\ L1 ∩ L2

where the pointsvi for each of the distinct grids to be in the union are

vi := p1 +
n
∑

j=1

aj−1
∑

k=0

kqj

for 1 ≤ i ≤ m wherem :=
∏n

j=1 aj. Therefore the overall complexity of calculating the dif-

ference isO
(

n2m
)

. As there is no congruence representation, the intersection of two lattices

is computed directly from the generator representations [1]; a refined version of this method is

provided in [71] which we note that, as for computing the canonic form, has complexityO
(

n4
)

.

Muller-Olm and Seidl [60–62] consider analysing programs whose basic statements are either

affine assignments or non-deterministic assignments. The affine assignments are therefore affine

transformations on a single variable at a time, equivalent to that described here. The join is

computed by adding an extra generator to a system that is already in minimal form. Thus at

each stage the minimisation algorithm must be applied. Unfortunately, like Granger, to join two

systems ofn generators requires applying their minimisation algorithm n times, thus giving the

join a complexity ofO
(

n4 log2 n
)

.

4.10 Conclusion

We have shown in this chapter that we have operations for the domain that approximate the set-

theoretic operations by producing a single grid. We introduced intersection and join operations

with worst case complexityO
(

n3
)

for both, which improves on previous proposals. We described

a grid difference operator which returns the smallest single grid that contains the set-theoretic

difference. We proposed a single update affine image and pre-image operators as well as new

Chapter 4 67 The Grid Domain Operations

generalised affine image and pre-image operators which mapssingle points to sets of points.

Finally we have introduced the notion of a rectilinear grid,that is, a grid that can be represented

by a set of non-relational congruences. Then we have shown that we can reuse the interval domain

by creating a covering box for a gridL, that is, a box that represents the smallest rectilinear grid

that containsL.

Chapter 5

Grid Widening and Weakly Relational

Grids

5.1 Grid Widening

It was observed by Granger [41] that, if the grid generators can be in the rationals, then the grid

domain does not satisfy the ascending chain condition.

Example 5.1 Consider the gridsLi = ggen(Gi) for i ∈ Z, where

Gi :=

(

∅,

(

1
2i 0

0 1
2i

)

,

(

0

0

))

.

Then for eachi, Li ⊆ Li+1. Hence we have an infinite increasing chain.

So to guarantee termination of the analysis, a widening operation is required. A simple and

general characterization of a widening for enforcing and accelerating convergence of an upward

iteration sequence is given in [26, 27, 30, 31]. We assume here a minor variation of this classical

definition (see footnote 6 in [31, Page 275]).

Definition 5.2 (Widening.) Let 〈D,⊢,0,⊕〉 be a join-semilattice. The partial operator∇ : D×

D D is awideningif

1. for eachd1, d2 ∈ D, d1 ⊢ d2 implies thatd1 ∇ d2 is defined andd2 ⊢ d1 ∇ d2;

2. for each increasing chaind0 ⊢ d1 ⊢ · · · , the increasing chain defined byd′0 := d0 and

d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

69

Chapter 5 70 Grid Widening and Weakly Relational Grids

Example 5.3 Let us consider the simple piece of code

x := 8 (P1)

for i := 1 to m (P2)

x := x/2 (P3)

endfor

Let Li
j ∈ G2 denote the grid computed at thei-th iteration executed by the pointPj. Initially,

L0
j = ∅ = gcon

(

{1 = 0}
)

, for j = 1, . . . ,3. After the first iteration of the loop we have the

following grids:

L1
1 = gcon

(

{x = 8}
)

,

L1
2 = gcon

(

{x = 8}
)

,

L1
3 = gcon

(

{x = 4}
)

.

Then after the second iteration of the loop we have the grids:

L2
2 = gcon

(

{x = 8}
)

⊕ gcon
(

{x = 4}
)

= gcon
(

{x ≡4 0}
)

,

L2
3 = gcon

(

{x ≡2 0}
)

.

Then after the third iteration of the loop we have the grids:

L3
2 = gcon

(

{x ≡4 0}
)

⊕ gcon
(

{x ≡2 0}
)

= gcon
(

{x ≡2 0}
)

,

L3
3 = gcon

(

{x ≡1 0}
)

.

It can be seen that afteri iterations we will have the gridLi
3 = gcon

(

{x ≡4/i 0}
)

. In this case

the widening would be used an acceleration tool that can approximate the grid we would have at

the end of thefor loop without having to calculate each iteration.

As well as formal requirements in Definition 5.2 given above,we also believe it is important

to require that, as with all operations, we have a widening that has an efficient implementation.

We will give two widenings, one for grids represented by a congruence system and one for grids

represented by a generator system. Both of the widenings will assume that one of the grids is

represented by the congruence or generator system in strongminimal form. We will show that

these widenings are well defined and come with simple syntactic checks which have an efficient

implementation.

Chapter 5 71 Grid Widening and Weakly Relational Grids

5.2 Congruence Representation Widening

We introduce below the widening that is performed on grids which are represented by a congru-

ence system. The widening also assumes that one of the grids is represented in minimal form and

the other is represented in strong minimal form.

Definition 5.4 (Grid Widening for the Congruence System.)Let L1 = gcon(C1) andL2 =

gcon(C2) be two grids inGn such thatL1 ⊆ L2, C1 is in minimal form andC2 is in strong minimal

form. Then thegrid wideningL1 ∇C L2 is defined by

L1 ∇C L2 :=

L2, if L1 = ∅ or dim(L1) < dim(L2),

gcon(CS), otherwise,

whereCS := { γ ∈ C2 | ∃β ∈ C1 . β ⇑ γ }.

The following proposition will show that ‘∇C ’ satisfies the conditions of Definition 5.2 and there-

fore that it is a widening.

Proposition 5.5 The operator ‘∇C ’ is a widening onGn.

Proof. In order to show that ‘∇C ’ is a widening operator, we prove that conditions (1) and (2)in

Definition 5.2 hold. LetL1 = gcon(C1), L2 = gcon(C2) ∈ Gn, whereL1 ⊆ L2, C1 is in minimal

form andC2 is in strong minimal form.

By Definition 5.4, ifL1 = ∅ or dim(L1) < dim(L2), thenL1 ∇C L2 = L2. Therefore, in this

case, condition (1) holds. Clearly, the empty grid can occuronly as the first element of a strictly

increasing chain of grids; moreover, ifL andL′ are any two successive and distinct grids in the

increasing chain of condition (2) in Definition 5.2, then0 ≤ dim(L) ≤ dim(L′) ≤ n. Hence, the

case whenL1 = ∅ or dim(L1) < dim(L2) hold can occur no more than a finite number of times

in such a chain.

Suppose now thatL1 6= ∅ anddim(L1) = dim(L2), so that the second case of the widening

computation applies (note that, due to the inclusion hypothesis,dim(L1) > dim(L2) cannot

hold), and letCS be as given in Definition 5.4. Then, sinceCS ⊆ C2, condition (1) holds. By

Proposition 4.2, ifCS = C2, we haveL1 = L2; thus, ifL1 6= L2, we have# CS < # C2. By

Lemma 3.34, asC1 andC2 are in minimal form, it follows that# C2 ≤ #C1 so that, ifL1 6= L2,

CS < # C1. Therefore condition (2) of Definition 5.2 holds.�

Assuming thatL1 = gcon(C1), L2 = gcon(C2) and we knowL1 ⊆ L2 this widening can be

implemented to have complexityO
(

n2
)

, this is since all that is required is the copying of at most

n congruences fromL2 to L1 ∇C L2. If however the congruence systemC1 is not in minimal

form and the systemC2 is not in strong minimal form, then the complexity of widening is that

of the minimisations, namelyO
(

mnmin{m,n}
)

, where# C1 = m1,# C2 = m2 andm =

max{m1,m2}. In Definition 5.4, it is required thatC2 is in strong minimal form. Example 5.6

shows that this is necessary for the operator ‘∇C ’ to be well-defined.

Chapter 5 72 Grid Widening and Weakly Relational Grids

4

5

6

2

1

3

654321
L1, L2 L3

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) GridsL1 andL2.

4

5

6

2

1

3

654321
L1 ∇C L2 L1 ∇C L3

(b) GridsL1 ∇C L2 andL1 ∇C L3.

Figure 5.1: Grid Widening.

Example 5.6 LetL1 := gcon(C1), L2 := gcon(C2) andL3 := gcon(C3) where

C1 = {x ≡2 0, y ≡2 0},

C2 = {x ≡1 0, x+ y ≡2 0},

C3 = {x ≡1 0, 3x+ y ≡2 0};

thenL2 = L3. The gridL1 is illustrated in Figure 5.1(a) by the filled circles and the grids

L2,L3 are illustrated in Figure 5.1(a) by the open squares. Note that onlyC1 andC2 are in strong

minimal form. Therefore, assumingCS (resp.,CS
′) is defined as in Definition 5.4 usingC1 andC2

(resp.,C1 andC3), we have

CS = {x+ y ≡2 0} and CS
′ = {3x+ y ≡2 0}.

The gridL1 ∇C L2 = gcon(CS) is illustrated in Figure 5.1(b) by the dashed lines and the grid

L1 ∇C L3 = gcon(CS
′) is illustrated in Figure 5.1(b) by the complete lines. ThusL1 ∇C L2 =

gcon(CS) 6= gcon(CS
′).

The following example shows that the result of applying the widening∇C depends on the variable

ordering.

Example 5.7 To see that the widenings depend on the variable ordering, consider the gridsL1 =

gcon(C1) = gcon(C′
1) andL2 = gcon(C2) = gcon(C′

2) in G2, where

C1 := {5x+ y ≡1 0, 22x ≡1 0}, C2 := {5x+ y ≡1 0, 44x ≡1 0},

C′
1 := {9y + x ≡1 0, 22y ≡1 0}, C′

2 := {9y + x ≡1 0, 44y ≡1 0}.

Assume forC1 andC2 that the variables are ordered so thatx precedesy, as in the vector(x, y)T;

Chapter 5 73 Grid Widening and Weakly Relational Grids

then,C1 andC2 are in strong minimal form and, according to Definition 5.4, we obtain

L1 ∇C L2 = gcon
(

{5x + y ≡1 0}
)

.

On the other hand,C′
1 andC′

2 are in strong minimal form when taking the variable order where y

precedesx. In this case, by Definition 5.4,

L1 ∇C L2 = gcon
(

{9y + x ≡1 0}
)

.

5.3 Generator Representation Widening

We introduce below the widening that is performed on grids which are represented by a generator

system. The widening also assumes that one of the grids is represented in minimal form and the

other is represented in strong minimal form.

Definition 5.8 (Grid Widening for the Generator System.) Let L1 = ggen(G1) and L2 =

ggen(G2) be two grids inGn such thatL1 ⊆ L2, G1 = (L1, Q1, P1) is in minimal form and

G2 = (L2, Q2, P2) is in strong minimal form. Then thegrid wideningL1 ∇G L2 is defined by

L1 ∇G L2 :=

L2, if L1 = ∅ or dim(L1) < dim(L2);

ggen(GS), otherwise,

whereGS :=
(

L2 ∪ (Q2 \QS), QS, P2

)

andQS := {v ∈ Q2 | ∃u ∈ Q1 . u ⇓ v }.

The following proposition will show that ‘∇G ’ satisfies the conditions of Definition 5.2 and there-

fore that it is a widening.

Proposition 5.9 The operator ‘∇G ’ is a widening onGn.

Proof. In order to show that ‘∇G ’ is a widening operator, we prove that conditions (1) and (2)

in Definition 5.2 hold. LetL1 = ggen(G1), L2 = ggen(G2) ∈ Gn, whereL1 ⊆ L2, G1 is in

minimal form andG2 is in strong minimal form.

By Definition 5.8, ifL1 = ∅ or dim(L1) < dim(L2), thenL1∇G L2 = L2. Therefore, in this

case, condition (1) holds. Clearly, the empty grid can occuronly as the first element of a strictly

increasing chain of grids; moreover, ifL andL′ are any two successive and distinct grids in the

increasing chain of condition (2) in Definition 5.2, then0 ≤ dim(L) ≤ dim(L′) ≤ n. Hence, the

case whenL1 = ∅ or dim(L1) < dim(L2) hold can occur no more than a finite number of times

in such a chain.

Suppose now thatL1 6= ∅ anddim(L1) = dim(L2), so that the second case of the widening

computation applies (note that, due to the inclusion hypothesis,dim(L1) > dim(L2) cannot

hold), and letGS = (LS, QS, PS) where

PS = P2, QS = {v ∈ Q2 | ∃u ∈ Q1 . u ⇓ v }, LS = L2 ∪ (Q2 \QS).

Chapter 5 74 Grid Widening and Weakly Relational Grids

4

5

6

2

1

3

654321

(a) GridL1 ∇C L2.

4

5

6

2

1

3

654321

(b) GridL1 ∇G L2.

Figure 5.2: Comparing the two grid widenings.

Then, ifggen(GS) ⊆ ggen(G2), we have thatLS ⊆ L2, but by Definition 5.8,L2 ⊆ LS, therefore

L2 = LS. Hence we must have that for allq2 ∈ Q2,∃q1 ∈ Q1 such thatq1 ⇓ q2, so condition (1)

holds. Now asQ1 is pivot equivalent toQ2, then#Q1 = #Q2. Let C1 = (F1, E1) andC2 =

(F2, E2) be congruence systems forL1 andL2 respectively, as constructed in Lemma 3.28. Then

by Lemma 3.34, we get that# E1 ≥ # E2, but sincedim(L1) = dim(L2) andL1,L2 are both

in minimal form we must have#E1 = # E2, hence by Lemma 3.28,#L1 = #L2. Now as

L1 ⊆ L2 we must have that for all linesℓ1 ∈ L1 such thatpiv>(ℓ1) = k, there existsℓ2 ∈ L2

such thatpiv>(ℓ2) = k. ThereforeG1 ⇓ G2. Hence by Proposition 4.3,L1 = L2. Thus, if

L1 6= L2, we know#L1 ≤ #L2 andggen(G2) ⊆ ggen(GS) so condition (1) holds and we have

three cases to consider. The first is if#Q1 < #Q2, then#LS ≥ #L2 +#Q2−#Q1 > #L1.

The second case is if#Q1 = #Q2, then there existsu ∈ Q1 with piv>(u) = k such that for

all v ∈ Q2 if piv>(v) = k, thenuk 6= vk, hencev ∈ LS, therefore#LS > #L1. Finally for

the last case suppose#Q1 > #Q2, then there existsu ∈ Q1 with piv>(u) = k such that for

all v ∈ Q2, piv>(v) 6= k, hencev ∈ LS, therefore#LS > #L1. Therefore condition (2) of

Definition 5.2 holds. �

Assuming thatL1 = ggen(G1), L2 = ggen(G2) and we knowL1 ⊆ L2 this widening can be

implemented to have complexityO
(

n2
)

, this is since all that is required is the copying of at

mostn generators fromL2 to L1 ∇G L2. If however the generator systemG1 is not in minimal

form and the systemG2 is not in strong minimal form, then the complexity of widening is that

of the minimisations, namelyO
(

mnmin{m,n}
)

, where#G1 = m1,#G2 = m2 andm =

max{m1,m2}. The following shows that the widenings for each representation are not always

equivalent.

Example 5.10 Consider gridsL1 = gcon(C1) = ggen(G1) andL2 = gcon(C2) = ggen(G2)

Chapter 5 75 Grid Widening and Weakly Relational Grids

where

C1 = {x ≡2 0, y ≡2 0}, G1 =

(

∅,

(

2 0

0 2

)

,

(

0

0

))

,

C2 = {x ≡1 0, x+ y ≡2 0}, G2 =

(

∅,

(

1 0

1 2

)

,

(

0

0

))

.

Then it can be seen thatC2 andG2 are in strong minimal form.L1 andL2 are the same as in

Example 5.6 and can be seen in Figure 5.1(a) on Page 72. ThenL1∇C L2 = gcon
(

{x+y ≡2 0}
)

can be seen in Figure 5.2(a) and

L1 ∇G L2 =

((

1

1

)

,

(

0

2

)

,

(

0

0

))

can be seen in Figure 5.2(b). Now by applying conversion toL1 ∇G L2 we getL1 ∇G L2 =

gcon
(

{x− y ≡2 0}
)

. HenceL1 ∇C L2 6= L1 ∇G L2.

Let us now consider a congruence widening for grids which is the natural counterpart to the

standard widening for convex polyhedra as specified in the PhD thesis of N. Halbwachs [43],

also described in [44]. It might be asked why we did not define our congruence widening in this

way. To see why, consider the following grid extrapolation operator ‘h’. Let L1 = gcon(C1) and

L2 = gcon(C2) ∈ Gn \ ∅ whereL1 ⊆ L2 andC1 andC2 are congruence systems inRn in strong

minimal form. Thenh(L1,L2) := gcon(C′
1 ∪ C′

2) where

C′
1 :=

{

β ∈ C1

∣

∣

∣ L2 ⊆ gcon
(

{β}
)

}

, (5.1)

C′
2 :=

{

γ ∈ C2

∣

∣

∣
∃β ∈ C1 . L1 = gcon

(

C1[γ/β]
)

}

. (5.2)

Example 5.11 will show that to ensure the operator ‘h’ is well-defined, both the congruence

systemsC1 andC2 need to be in strong minimal form.

Example 5.11 LetL1 := gcon(C1) andL2 := gcon(C2) where

C1 = {x ≡2 0, x+ y ≡2 0},

C2 = {x ≡1 0, 3x+ y ≡2 0}.

Note thatL1 andL2 are not in strong minimal form and can be seen in Figure 5.3(a). Then,

assuming definition (5.1) forC′
1 and (5.2) forC′

2, we haveC′
1 = {x+y ≡2 0} andC′

2 = {3x+y ≡2

0} so that

h(L1,L2) = gcon
(

C′
1 ∪ C′

2

)

= gcon
(

{x+ y ≡2 0, 3x+ y ≡2 0}
)

Chapter 5 76 Grid Widening and Weakly Relational Grids

4

5

6

2

1

3

654321
L1, L2

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(a) GridsL1 andL2.

4

5

6

2

1

3

654321
h(L1,L2)

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Gridh(L1,L2).

Figure 5.3: Grid Widening.

although applying the strong minimal form algorithm toC′
1∪C′

2 we get the equivalent congruence

system

h(L1,L2) = gcon
(

{x ≡1 0, x+ y ≡2 0}
)

.

The gridh(L1,L2) can be seen in Figure 5.3(b).

Note also that, as there is no finite set of proper congruencessemantically equivalent to a single

equality, the above definition has ignored any distinction between equalities and proper congru-

ences. Observe that the computation of the congruence system C′
2 should be carefully done as a

naive implementation will be expensive. A naive implementation, where it is assumed both grids

are in strong minimal form, would have complexityO
(

n5
)

as it would require testing for equality

betweenL1 and each of the new grids where then possibleγ ∈ C2 replace each of then possible

β ∈ C1. Example 5.12 illustrates that ignoring theC′
2 component (as can be done in implementa-

tions of the standard widening for convex polyhedra when theaffine hull is the universe) can lose

precision.

Example 5.12 Consider again the grids and congruence systems in Example 5.6 on Page 72.

Then, assuming definition (5.1) forC′
1 and (5.2) forC′

2 andC′
3, we haveC′

1 = ∅, C′
2 = {x+ y ≡2

0} andC′
3 = {3x+ y ≡2 0} so that

h(L1,L2) = gcon
(

C′
1 ∪ C′

2

)

= gcon
(

{x+ y ≡2 0}
)

and

h(L1,L3) = gcon
(

C′
1 ∪ C′

3

)

= gcon
(

{3x+ y ≡2 0}
)

.

Therefore, ignoring theC′
2 component forh(L1,L2) will result in the widening producing the set

Chapter 5 77 Grid Widening and Weakly Relational Grids

R2 and ignoring theC′
3 component forh(L1,L3) will result in the widening producing the setR2.

5.3.1 Enhancements

Often in analysis or verification, the convergence guarantee that comes with a widening operator

is not essential and in such cases, all that is required areextrapolationoperators. These differ from

widenings in that their use along an upper iteration sequence does not ensure convergence in a

finite number of steps. Therefore the widenings ‘∇C ’ and ‘∇G ’ can be used for developing more

refined widenings or extrapolations by following techniques such as the frameworks proposed

in [6,8] for convex polyhedra. The precision of a grid widening can also be improved by exploiting

the covering boxes, defined in Section 4.6.1. That is, we can use boxes to provide acovered

extrapolation operator that improves the approximation ofthe widening operator by ensuring that

the result cannot be worse than the covering box for the larger of the two grids being widened.

One way to show that an extrapolation operator is, in fact, a widening is to provide the operator

with a finite convergence certificate[8]. In particular, for the grid domain and widenings ‘∇C ’

and ‘∇G ’, such a certificate is defined to be a triple(O,≻, µ) where(O,≻) is a well-founded

ordered set andµ : Gn → O is such that, for allL1 ⊂ L2 ∈ Gn, µ(L1) ≻ µ(L3) where

L3 = L1∇C L2 = L1∇G L2. Thus, a finite convergence certificate for both the grid widenings can

be defined by takingO equal to{0, . . . , n}×{0, . . . , n}, ≻ the lexicographic ordering onO and,

for all L ∈ Gn, lettingµ(L) := (# E ,# C) whereL = gcon(C), C is in minimal form, andE ⊆ C

is the set of equalities inC. By Definitions 5.4 and 5.8 and Propositions 4.2 and 4.3, it follows

thatL1 6= L2 impliesµ(L1) ≻ µ(L3); hence we have the same finite convergence certificate for

both the grid widenings. Observe that this implies that any iteration using a mixed sequence of

congruence and generator grid widenings will converge after a finite number of steps.

It is shown in [8] that a widening for a powerset domain can be obtained from any widening on

its base-level domain that has a finite convergence certificate. Thus, with the above certificate for

the grid widenings, we can instantiate the generic widenings for powersets to one for powersets

of grids, using any combination of the grid widenings ‘∇C ’ and ‘∇G ’.

5.4 Weakly Relational Grid Domains

In [51,53], Miné introduces a set of conditions to construct weakly relational domains. As noted

in Section 3.8 one of the domains created was the domain of zone-congruences which requires

that the congruences are defined equivalently to how the constraints of a bounded difference shape

are defined. We now consider this domain and call it the bounded difference grid domain. Also

we will specify a new weakly relational domain, called the octagonal grid domain, which has

not been considered before and requires that the congruences are defined equivalently to how the

constraints of an octagon are defined. Both of these domains are restricted versions of the grid

domain that include the set of rectilinear grids.

Chapter 5 78 Grid Widening and Weakly Relational Grids

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

(a) GridL = gcon(C).

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

(b) GridL = ggen(G).

Figure 5.4: A bounded difference grid.

Definition 5.13 (Bounded Difference Congruences.)Leta ∈ Rn andf, b ∈ Q, then the linear

constraint〈a,v〉 ≡f b is said to be abounded difference congruenceif and only if there exists

two indicesi, j ∈ {1, . . . , n} such that

• ai, aj ∈ {−1, 0, 1} andai 6= aj

• ak = 0, for all k /∈ {i, j}.

Definition 5.14 (Bounded Difference Grid.)A grid L is a bounded difference grid(BDG) if it

can bedescribed bya congruence systemC in Qn, whereC is a finite set of bounded difference

congruences inQn. That isL is a bdg if every vector ofL satisfies all the congruences inC.

Note that a bounded difference grid is equivalent to an element of the zone-congruence domain.

Recall form Definition 3.9 that a grid is rectilinear if it canbe represented by a non-relational

set of congruences therefore a bounded difference grid can be rectilinear. Example 5.4 gives the

congruence and generator systems for a simple2-dimensional bounded difference grid.

Example 5.15 LetL = gcon(C) = ggen(G) where

C := {x ≡2 0, y ≡2 0, −x+ y ≡8 0}.

ThenL is a bounded difference grid and is illustrated in Figure 5.4by the points. The minimal

form ofC is C′ where

C′ := {x ≡2 0, −x+ y ≡8 0}

and the generator system in minimal form is

G :=

(

∅,

(

2 0

2 8

)

,

(

0

0

))

.

Chapter 5 79 Grid Widening and Weakly Relational Grids

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) GridL = gcon(C).

8

6

4

2

-2-4 2 4
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) GridL = ggen(G).

Figure 5.5: An octagonal grid.

The congruences ofC are illustrated by the dashed lines in Figure 5.4(a) and the parameters ofG

are illustrated by the arrows in Figure 5.4(b).

Definition 5.16 (Octagonal Congruences.)Leta ∈ Rn andf, b ∈ Q, then the linear constraint

〈a,v〉 ≡f b is said to be anoctagonal congruenceif and only if there exists two indicesi, j ∈

{1, . . . , n} such that

• ai, aj ∈ {−1, 0, 1} andai 6= 0

• ak = 0, for all k /∈ {i, j}.

Definition 5.17 (Octagonal Grid.) A grid L is aoctagonal grid(ogrid) if it can bedescribed by

a congruence systemC in Qn, whereC is a finite set of octagonal congruences inQn. That isL

is an ogrid if every vector ofL satisfies all the congruences inC.

The set of octagonal grids is a subset ofGn that includes the set of rectilinear and bounded

difference grids. Recall from Definition 3.9 that a grid is rectilinear if it can be represented by

a non-relational set of congruences therefore an octagonalgrid can be rectilinear. Example 5.5

gives the congruence and generator systems for a simple2-dimensional ogrid.

Example 5.18 LetL = gcon(C) = ggen(G) where

C := {x ≡2 0, y ≡2 0, x− y ≡4 0, x+ y ≡4 0}.

ThenL is an octagonal grid and is illustrated in Figure 5.5 by the points. The minimal form ofC

is C′ where

C′ := {x ≡2 0, x+ y ≡4 0}

Chapter 5 80 Grid Widening and Weakly Relational Grids

and the generator system in minimal form is

G :=

(

∅,

(

2 0

2 4

)

,

(

0

0

))

.

The congruences ofC are illustrated by the dashed lines in Figure 5.5(a) and the parameters ofG

are illustrated by the arrows in Figure 5.5(b).

Note that minimisation, conversion and the set of operations defined in Chapter 4 can be per-

formed on the bounded difference and octagonal grids like they are in the case of a general grid

that is not rectilinear.

5.5 Applications

In this section we discuss applications for the domain of rational grids. Many program proper-

ties are quantitative or depend on quantitative information and therefore have the potential to be

approximated by the grid domain. While such information maydepend directly on the values

of numerical data objects, it could instead reflect some numerical measures of the structure of

the program and its data. We first discuss applications wherethe values of numeric variables are

abstracted.

Example 5.19 shows how the grid domain can be used to find non-trivial relational congru-

ence properties not found using the polyhedra domain [32], constraint-based analysis [75] or

polynomial invariants [74].

Example 5.19 Consider again the program fragment from Example 3.2 on Page24 which is now

annotated with program pointsPj, for j = 1, . . . ,5:

x := 2; y := 0; (P1)

for i := 1 to m (P2)

if ... then

x := x + 4 (P3)

else

x := x + 2; y := y + 1 (P4)

endif (P5)

endfor

Let Li
j ∈ G2 denote the grid computed at thei-th iteration executed by the pointPj. Initially,

L0
j = ∅ = gcon

(

{1 = 0}
)

, for j = 1, . . . ,5. After the first iteration of the loop we have the

Chapter 5 81 Grid Widening and Weakly Relational Grids

following grids:

L1
1 = gcon

(

{x = 2, y = 0}
)

,

L1
2 = gcon

(

{x = 2, y = 0}
)

,

L1
3 = gcon

(

{x = 6, y = 0}
)

,

L1
4 = gcon

(

{x = 4, y = 1}
)

,

L1
5 = gcon

(

{x = 4, y = 1}
)

⊕ gcon
(

{x = 6, y = 0}
)

= gcon
(

{x+ 2y = 6, x ≡2 0}
)

.

Then after the second iteration of the loop we have

L2
2 = gcon

(

{x = 2, y = 0}
)

⊕ gcon
(

{x+ 2y = 6, x ≡2 0}
)

= gcon
(

{x+ 2y ≡4 2, x ≡2 0}
)

.

Subsequent computation steps show that an invariant forP2 has already been computed since

L2
3 = L1

3, L2
4 = L1

4, L2
5 = L1

5 so thatL3
2 = L2

2. Thus at the end of the program, the congruences

x+ 2y ≡4 2 andx ≡2 0 hold. The grid described by these congruences is given in Figure 3.1 on

Page 24.

Observe that, using convex polyhedra, a similar analysis will find instead that the inequalities

x− 2y ≥ 2 andy ≥ 0 hold [32].

Data dependence analysis for arrays —deciding if two elements of an array can refer to the

same element and, if so, under what conditions— is required for advanced optimizing compilers

as noted by Pugh in [70]. Granger showed in [37–39] that the domain of grids can be used for

this analysis, the following example also shows this.

Example 5.20 Consider the following program (adapted from a simple example given in [70]):

for i := 0 to 100

for j := 2i to 100

A[i, 2j + 1] := A[i, 2j]

endfor

endfor

Then, the program reads from array elements(0, 0), (0, 2), . . . ,(0, 200), (1, 4), . . . and writes to

array elements(0, 1), (0, 3), . . . ,(0, 201), (1, 5), The two sets of points generate, respectively,

the two gridsLr andLw in R2: Lr = ggen
{

(0, 0), (0, 2), (1, 4)
}

includes all the array elements

that are read from, whileLw = ggen
{

(0, 1), (0, 3), (1, 5)
}

includes all the array elements that

are written to. Figure 5.6 illustrates the gridsLr andLw where squares denote the points of the

Chapter 5 82 Grid Widening and Weakly Relational Grids

8

6

4

2

2 4 6 8 10

Lr Lw

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Figure 5.6: Example 5.20.

grid Lr and circles denote the points of the gridLw. Then it can be seen that the intersection

Lr ∩ Lw is empty and that no location is both read and written.

As noted in Section 3.8 the domain of grids can also be used to estimate the worst case execution

time of a program given a specific system [19], to aid in the construction of a comprehensive

set of program transformations for saving energy on low-power architectures and improving per-

formance on multimedia processors [47] and to gather information about non-linear operations

within the program [46].

5.6 Related Work

As Granger’s early work [39] and theZ-polyhedra papers [68,71,72] only consider integer grids,a

widening is not required as integer grids satisfy the ascending chain condition. In the Muller-Olm

and Seidl paper [61], although congruences over rationals are considered a widening is not given.

In [41, Proposition 10], Granger gives a widening for non-relational rational grids that returns a

line parallel to an axis whenever the modulus for that dimension changes. It is then proposed that

a generalized form of this could be used as a widening for all rational grids; however, exactly how

this is to be done is not given in this paper. In Granger’s thesis [38, Page 159], it is proposed that

for all rational grids a parameter from the representation of one of the grids (or possibly some

other vector for example one parallel to an axis) is chosen tobe the enlargement vectore.1 Let

Li = ggen
(

∅, Qi, {p}
)

andQi = {qi1, . . . ,qin} for i = 1, 2. Then without loss of generality

supposee = q21. For each of the grids a valueµ is then calculated such that

µi := min{λ ∈ Q+|λe = λ1qi1 + . . .+ λnqin}.

1for a definition of this property see [38, Page 160]

Chapter 5 83 Grid Widening and Weakly Relational Grids

If µ1 > µ2 then

L1 ∇L2 := ggen
(

{e}, Q2 \ {e}, {p}
)

.

Example 5.21 illustrates this.

Example 5.21 LetL1 = ggen(G1) andL2 = ggen(G2), where

G1 :=

(

∅,

(

4 0

2 3

)

,

(

2

0

))

andG2 :=

(

∅,

(

2 0

1 3

)

,

(

2

0

))

.

Then lettinge = (2, 1) in G′
2 we get thatµ1 = 2 andµ2 = 1. This will produce the widening

L1 ∇L2 := ggen

((

2

1

)

,

(

0

3

)

,

(

2

0

))

.

Although in Example 5.21 both grids are represented in minimal form it is not actually a require-

ment of the widening. Granger states that there are possiblyinfinite different widenings depending

on the choice of the enlargement vectore. The following example shows that Granger’s proposed

widening is not actually a widening due to there being no restriction on the choice of the enlarge-

ment vector.

Example 5.22 LetL1 = ggen(G1) andL2 = ggen(G2), where

G1 :=

(

∅,

(

2 0

1 6

)

,

(

2

0

))

andG2 :=

(

∅,

(

2 0

1 3

)

,

(

2

0

))

.

Then lettinge = (2, 1) we get thatµ1 = 1 andµ2 = 1. Hence the widening does not perform

any enlargement. It can also be seen from this example that the fact that the representations for

the grids are in minimal form makes no difference to the result.

In [51, 53], Miné introduces a basis from which to constructweakly relational domains. As

noted in Section 3.8, the zone-congruence domain considerscongruences which have the form

x− y = b (mod f) whereb andf are rationals and are represented by a constraint matrix. Miné

gives operations for intersection and join which are equivalent to the ones described here and also

a widening which is equivalent to the one described by Granger in [41].

5.7 Conclusion

We have defined two widenings, one that uses the congruence representation and one that uses

the generator representation. We have shown that the widenings come with simple syntactic

checks and have efficient implementations. The widenings have complexityO
(

n2
)

if the first

grid is known to have its representation in minimal form and the second grid is known to have

its representation in strong minimal form, otherwise the worst case complexity is that of the

Chapter 5 84 Grid Widening and Weakly Relational Grids

minimisation algorithms. Unfortunately as yet we have not found an actual real life application

that will require the grid widening. We have also defined two weakly relational grid domains, the

bounded difference grid and the octagonal grid.

Chapter 6

The Grid-Polyhedron Domain

6.1 Introduction

In this chapter we consider the products ofn-dimensional geometric domains and, in particular,

the product of a grid with a polyhedron domain. Section 6.2 introduces the generic product of

domains represented by sets of points inRn and Section 6.3 introduces the partially reduced

product which allows a range of interaction between the component domains. In Section 6.4 we

introduce the techniques for ensuring the bounding hyperplanes of the polyhedron component

contain at least one point in the grid component and in Section 6.5 we give the main abstract

operations and the methods for their computation.

6.2 The Product Domain

Definition 6.1 (Product Domain.) Let A1, A2 ⊆ ℘
(

℘(Rn)
)

be twon-dimensional geometric

domains. Then theproductA1 ×A2 (also denoted by(A1, A2)) is the setA ⊆ ℘
(

℘(Rn)
)

where

A := {a1 ∩ a2|a1 ∈ A1, a2 ∈ A2}.

Definition 6.2 (Grid-Polyhedron.) LetP be a polyhedron inCPn andL a grid in Gn. Then we

say thatH = (L,P) := L∩P is agrid-polyhedron. Thegrid-polyhedron domainGPn is the set

of all grid-polyhedra inRn ordered by the set inclusion relation, so that∅ andRn are the bottom

and top elements ofGPn respectively.

Example 6.3 Let us consider a small example to show how the grid-polyhedron domain can be

used to interpret a simple piece of code. Figure 1.3 on Page 6 illustrates the grid by the square

85

Chapter 6 86 The Grid-Polyhedron Domain

points and the polyhedron by the shaded area. Therefore the grid-polyhedron is the set of grid

points that lie within the bounded shaded area. Consider first the following program fragment for

any value ofm:

x := 0; y := 1 (P1)

for i := 1 to m (P2)

if ... then

x := x + 3 (P3)

else

x := x + 2; y := y + 1 (P4)

endif (P5)

endfor

Let Li
j ∈ G2 denote the grid computed at thei-th iteration executed by the pointPj. Initially,

L0
j = ∅ = gcon

(

{1 = 0}
)

, for j = 1, . . . ,5. After the first iteration of the loop we have the

following grids:

L1
1 = gcon

(

{x = 0, y = 1}
)

,

L1
2 = gcon

(

{x = 0, y = 1}
)

,

L1
3 = gcon

(

{x = 3, y = 1}
)

,

L1
4 = gcon

(

{x = 2, y = 2}
)

,

L1
5 = gcon

(

{x = 3, y = 1}
)

⊕ gcon
(

{x = 2, y = 2}
)

= gcon
(

{x+ y = 4, x ≡1 0}
)

.

Then after the second iteration of the loop we have

L2
2 = gcon

(

{x = 0, y = 1}
)

⊕ gcon
(

{x+ y = 4, x ≡1 0}
)

= gcon
(

{x+ y ≡3 1, x ≡1 0}
)

.

Subsequent computation steps show that an invariant forP2 has already been computed since

L2
3 = L1

3, L2
4 = L1

4, L2
5 = L1

5 so thatL3
2 = L2

2. Thus at the end of the program, the grid is given

byL = gcon(CL) whereCL := {x ≡1 0, x + y ≡3 1}. Observe that the gridL is also given by

the generator systemGL where

GL :=

(

∅,

(

1 0

−1 3

)

,

(

0

1

))

.

Now consider the program fragment assuming that the value ofm = 4. Then letPi
j denote the

polyhedron computed in thei-th iteration at pointPj. Initially P0
j = con

(

{x = 0, y = 1}
)

, for

Chapter 6 87 The Grid-Polyhedron Domain

j = 1, . . . , 5. Then after the first iteration of the for loop we have the following polyhedra:

P1
1 = con

(

{x = 0, y = 1}
)

,

P1
2 = con

(

{x = 0, y = 1}
)

,

P1
3 = con

(

{x = 3, y = 1}
)

,

P1
4 = con

(

{x = 2, y = 2}
)

,

P1
5 = con

(

{x = 3, y = 1}
)

⊕ con
(

{x = 2, y = 2}
)

= con
(

{2 ≤ x ≤ 3, x+ y ≤ 4}
)

.

Then after the second iteration of the loop we have the polyhedra:

P2
2 = con

(

{x = 0, y = 1}
)

⊕ con
(

{2 ≤ x ≤ 3, x+ y ≤ 4}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 4}
)

,

P2
3 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 7}
)

,

P2
4 = con

(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 7}
)

,

P2
5 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 7}
)

⊕ con
(

{2 ≤ y,−2 ≤ x− 2y, x+ y ≤ 7}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 7}
)

,

and after the third and fourth iterations of the loop we have the polyhedra:

P3
2 = con

(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 4}
)

⊕ con
(

{1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 7}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 7}
)

,

P3
3 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 10}
)

,

P3
4 = con

(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 10}
)

,

P3
5 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 10}
)

⊕ con
(

{2 ≤ y,−2 ≤ x− 2y, x+ y ≤ 10}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 10}
)

,

P4
2 = con

(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 7}
)

⊕ con
(

{1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 10}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 10}
)

,

P4
3 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 13}
)

,

P4
4 = con

(

{1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 13}
)

,

P4
5 = con

(

{1 ≤ y, 1 ≤ x− 2y, x+ y ≤ 13}
)

⊕ con
(

{2 ≤ y,−2 ≤ x− 2y, x+ y ≤ 13}
)

= con
(

{1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 13}
)

.

Chapter 6 88 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH1 = (L,P1).

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH2 = (L,P2).

Figure 6.1: Equivalent grid-polyhedra.

Therefore the final polyhedronP at the end of four iterations has a constraint system given by

CP = {1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 10} ⊕ {1 ≤ y,−2 ≤ x− 2y, 4 ≤ x+ y ≤ 13}

= {1 ≤ y,−2 ≤ x− 2y, x+ y ≤ 13}.

The polyhedron can also be defined by the vertices given by(0
1) , (8

5) and (12
1) . The polyhedron

P can be seen in Figure 1.3 on Page 6. The grid-polyhedron is theset of points inside the

polyhedron given by(0
1) , (3

1) , (2
2) , (6

1) , (5
2) , (4

3) , (9
1) , (8

2) , (7
3) , (6

4) , (12
1) , (11

2) , (10
3) , (9

4)

and(8
5) . It can be seen in Figure 1.3 that all the polyhedron constraints intersect grid-polyhedron

points and that the polyhedron is reduced with respect to thegrid points. Note that if we had

considered the polyhedron for the program fragment for any value ofm the constraint system

would be given byCP′ = {1 ≤ y,−2 ≤ x− 2y}.

Although this section is considering the grid-polyhedron domain, many of the methods and al-

gorithms suggested will be applicable to the more restricted polyhedra domains such as the In-

tervals [56], BDS [49] and Octagons [52], which will be considered in Chapter 7. We will also

discuss later how each operation is effected depending on the type of domain we choose to put

with the grids. First we observe that as elements of the grid-polyhedron domain denote the inter-

section of their components, the elements of the domain do not have a canonical form.

Let H1 = (L1,P1) andH2 = (L2,P2) be grid-polyhedra. Then asH1 is defined as the

intersection ofL1 andP1 andH2 is defined as the intersection ofL2 andP2 it is possible to have

H1 = H2 whereL1 = L2 butP1 6= P2. Example 6.4 illustrates this.

Example 6.4 Consider the grid-polyhedraH1 = (L,P1) andH2 = (L,P2) in GP2 where

L := gcon
(

{x ≡1 0, −x+ y ≡4 0}
)

,

P1 := con
(

{1 ≤ x ≤ 6, −2 ≤ −x+ y ≤ 1}
)

and P2 := con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4}).

Chapter 6 89 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs rs rs rs

rs rs rs rs

(a) Grid-polyhedronH1 = (L,P1).

4

5

6

2

1

3

654321
rs rs rs rs

rs rs rs rs

(b) Grid-polyhedronH2 = (L,P2).

Figure 6.2: Equivalent grid-polyhedra that are empty.

The gridL is illustrated by the filled squares and the polyhedronP1 is illustrated by the bounded

region in Figure 6.1(a). The gridL is illustrated by the filled squares and the polyhedronP2 is

illustrated by the bounded region in Figure 6.1(b). Then it can be seen from Figure 6.1 thatH1

andH2 are equivalent.

Example 6.5 shows that the representation of an empty grid-polyhedron is not canonical and

that an empty grid-polyhedron can be defined using a non-empty grid and polyhedron.

Example 6.5 Consider the grid-polyhedraH1 = (L,P1) andH2 = (L,P1) in GP2 where

L := gcon
(

{x ≡2 0, y ≡5 0}
)

,

P1 := con
(

{1 ≤ x ≤ 6, −2 ≤ −x+ y ≤ 1}
)

and P2 := con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4}
)

.

The gridL is illustrated by the filled squares and the polyhedronP1 is illustrated by the bounded

region in Figure 6.2(a). The gridL is illustrated by the filled squares and the polyhedronP2 is

illustrated by the bounded region in Figure 6.2(b). Then it can be seen from Figure 6.2 thatH1

andH2 are equivalent and both are empty.

It follows that it is desirable that elements of the domain have their components minimised, which,

in the case of the grid-polyhedron domain, would make every element canonical. However the

full minimisation operation for a grid-polyhedron has a high complexity cost (as it will involve

the simplex method [67, 76], see Section 6.6.2) and also has the potential to adversely affect

the widening operation and actually turns a widening on the component into no more than an

extrapolation operation on the product with no fix-point guaranteed (see Section 6.6). Thus to

provide a framework for a choice of interaction, we introduce here the Partially Reduced Product.

Chapter 6 90 The Grid-Polyhedron Domain

6.3 The Partially Reduced Product

The partially reduced product is defined so as to allow a rangeof interaction between the compo-

nent domains. To achieve this, it is provided with additional reduction operations as parameters.

Definition 6.6 (Partially Reduced Product Domain.) Let A1, A2 ⊆ ℘
(

℘(Rn)
)

be twon-

dimensional geometric domains andσ1 : A1 × A2 → A1 and σ2 : A1 × A2 → A2 be two

operations on them such that

σ1(a1, a2) ⊆ a1 and σ1(a1, a2) ∩ a2= a1 ∩ a2,

σ2(a1, a2) ⊆ a2 and a1 ∩ σ
2(a1, a2)= a1 ∩ a2.

Then the triple(A1 ×A2, σ
1, σ2) is apartially reduced product domain.

Illustration 6.7 Consider the product domainA ⊆ ℘
(

℘(Rn)
)

, whereA1×A2 representsA, and

the operationsσ1
D andσ2

D are defined so thatσ1
D(a1, a2) = a1 andσ2

D(a1, a2) = a2. Then the

triple (A1 ×A2, σ
1
D, σ

2
D) is a partially reduced product domain which we call thedirectproduct

domain [28].

Illustration 6.8 Consider the product domainA ⊆ ℘
(

℘(Rn)
)

, whereA1×A2 representsA, and

the operationsσ1
R andσ2

R are defined so thatσ1
R(a1, a2) = a′1, wherea′1 ∈ A1 is the minimal

element such thata1∩a2 = a′1∩a2, andσ2
R(a1, a2) = a′2, wherea′2 ∈ A2 is the minimal element

such thata1 ∩ a2 = a1 ∩ a′2. Then the triple(A1 × A2, σ
1
R, σ

2
R) is a partially reduced product

domain which we call thereducedproduct domain [28].

Illustration 6.9 Consider the product domainA ⊆ ℘
(

℘(Rn)
)

, whereA1×A2 representsA, and

the operationsσ1
∅ andσ2

∅ are defined so thatσ1
∅(a1, a2) = σ2

∅(a1, a2) = ∅ if either a1 = ∅ or

a2 = ∅ andσ1
∅(a1, a2) = A1 andσ2

∅(a1, a2) = A2, otherwise. Then the triple(A1×A2, σ
1
∅, σ

2
∅)

is a partially reduced product domain which we call thesmashproduct domain.

Let us now consider the partially reduced product where the component domains are those of

the grids and polyhedra. Then we can specialise each of thesedefinitions to the grid-polyhedron

domain.

Illustration 6.10 Consider the operationsσ1
D and σ2

D defined in Illustration 6.7 together with

the grid-polyhedron domainGPn. Then the triple(GPn, σ
1
D, σ

2
D) is a partially reduced grid-

polyhedron domain which we call thedirectproduct domain [28].

Illustration 6.11 Consider the operationsσ1
R and σ2

R defined in Illustration 6.8 together with

the grid-polyhedron domainGPn. Then the triple(GPn, σ
1
R, σ

2
R) is a partially reduced grid-

polyhedron domain which we call thereducedproduct domain [28]. IfH = (L,P) ∈ GPn and

σ1
R(L,P) = L andσ2

R(L,P) = P, then we say that the pair(L,P) is a reduced product.

Chapter 6 91 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH1 = (L1,P1).

4

5

6

2

1

3

654321

rs

rs

rs

(b) Grid-polyhedronH2 = (L2,P2).

Figure 6.3: Examples where equalities could be shared.

Illustration 6.12 Consider the operationsσ1
∅ and σ2

∅ defined in Illustration 6.9 together with

the grid-polyhedron domainGPn. Then the triple(GPn, σ
1
∅, σ

2
∅) is a partially reduced grid-

polyhedron domain which we call thesmashproduct domain. IfH = (L,P) ∈ GPn and

σ1
∅(L,P) = L andσ2

∅(L,P) = P, then we say that the pair(L,P) is asmash product.

As the affine space of a grid-polyhedron is the intersection of the affine spaces of the com-

ponent domains, any equalities in the constraint or congruence representation of one component

can be added to the representation of the other component. So, as a grid-polyhedronH = (L,P),

whereL = gcon(CL) andP = con(CP), is defined as the intersection ofL andP, each point in

H must satisfy all the congruences inCL and all the constraints inCP ; moreover, equalities can be

represented both as congruences and as constraints. Thus sharing equality information between

the components of the product is safe and can minimise the component domains possibly leading

to a detection of emptiness. Example 6.13 illustrates how equality information can be shared.

Example 6.13 Consider the grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) in GP2 where

L1 := gcon
(

{x ≡2 1, y ≡2 1}
)

and L2 := gcon
(

{x = 3, y ≡2 1}
)

,

P1 := con
(

{x = 3, 1 ≤ y ≤ 5}
)

and P2 := con
(

{1 ≤ x ≤ 5, 1 ≤ y ≤ 5}
)

.

The grid-polyhedronH1 is illustrated by the filled squares on the line in Figure 6.3(a) and the

grid-polyhedronH2 is illustrated by the filled squares in Figure 6.3(b). Therefore it can be seen

from Figure 6.3(a) and Figure 6.3(b) thatH1 = H2 = (L,P), where

L := gcon
(

{x = 3, y ≡2 1}
)

and P := con
(

{x = 3, 1 ≤ y ≤ 5}
)

.

Therefore we can specialise the partially reduced product again for the grid-polyhedron domain.

Chapter 6 92 The Grid-Polyhedron Domain

Illustration 6.14 Consider again the partially reduced product domain(GPn, σ
1
=, σ

2
=) where,

for all H = (L,P) ∈ GPn,

affine.hull
(

σ1
=(L,P)

)

= affine.hull
(

σ2
=(L,P)

)

= affine.hull
(

H).

Then the triple(GPn, σ
1
=, σ

2
=) is a partially reduced grid-polyhedron domain which we callthe

constraintproduct domain. IfH = (L,P) ∈ GPn andσ1
=(L,P) = L andσ2

=(L,P) = P, then

we say that the pair(L,P) is aconstraint product.

Given any grid-polyhedronH = (L,P), it is straightforward to compute a constraint product

(L′,P ′) such thatH = (L,P) = (L′,P ′). To see this, suppose thatL = gcon(CL) andP =

con(CP), whereCL andCP are in minimal form, then

L′ := σ1
=(L,P) = gcon

(

CL ∪
{

〈v,x〉 ≡0 d
∣

∣ 〈v,x〉 = d ∈ CP
}

)

P ′ := σ2
=(L,P) = con

(

CP ∪
{

〈v,x〉 = d
∣

∣ 〈v,x〉 ≡0 d ∈ CL
}

)

.

6.4 Tight and Weakly Tight Products

The partially reduced products defined so far only allow a very limited interaction between the

components. We discuss now how a domain such as the grid-polyhedron constraints product can

be further specialised by ensuring that the bounding hyperplanes of the polyhedron component

contain at least one point in the grid component or even a point of the product itself. Let us now

specialise the partially reduced product again for the grid-polyhedron domain and define what it

is for a grid-polyhedron to be a tight or weakly tight product.

Definition 6.15 (Weakly Tight Product.) Let the triple(GPn, σ
1
W , σ2

W) be a partially reduced

grid-polyhedron domain where, for allH ∈ GPn, there existsL′ ∈ Gn andP ′ ∈ CPn such that

L′ := σ1
W (L,P) = σ1

=(L,P),

P ′ := σ2
W (L,P) = σ2

=(L,P)

and for some constraint systemCP′ for P ′, for all
(

〈v,x〉 ≤ d
)

∈ CP
′, there exists a pointw ∈ L′

such that〈v,w〉 = d. Then(GPn, σ
1
W , σ2

W) is a weakly tightproduct domain and we say that

CP
′ is a weakly tight polyhedron constraint system forH.

If H = (L,P) ∈ GPn andσ1
W (L,P) = L andσ2

W (L,P) = P, then we say that the pair

(L,P) is aweakly tight product.

Definition 6.16 (Tight Product.) Let (GPn, σ
1
T , σ

2
T) be a partially reduced grid-polyhedron

domain where, for allH ∈ GPn, there existsL′ ∈ Gn andP ′ ∈ CPn such that

L′ := σ1
T (L,P) = σ1

=(L,P),

P ′ := σ2
T (L,P) = σ2

=(L,P)

Chapter 6 93 The Grid-Polyhedron Domain

4

6

2

8

10

12108642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs rs rs

rs

rs

rs

rs

rs

rs rs rs rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12108642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs rs rs

rs

rs

rs

rs

rs

rs rs rs rs

(b) Grid-polyhedronH = (L,P ′).

Figure 6.4: Two Grid-Polyhedra.

and for some constraint systemCP′ for P ′, for all
(

〈v,x〉 ≤ d
)

∈ CP
′, there exists a pointw ∈ H

such that〈v,w〉 = d. Then(GPn, σ
1
T , σ

2
T) is a tight product domain and we say thatCP′ is a

tight polyhedron constraint system forH.

If H = (L,P) ∈ GPn andσ1
T (L,P) = L andσ2

T (L,P) = P, then we say that the pair

(L,P) is a tight product.

Observe that in Definitions 6.15 and 6.16 we do not require theconstraint systemCP′ to be in

minimal form. This is due to the fact that in Chapter 7 when we consider the combination of a

grid with a bounded difference shape or octagon we will want to look at all possible constraints

in a closed constraint system including those which may be redundant.

Example 6.17 Consider the gridL = gcon(CL) in G2 whereCL := {x ≡3 2, y ≡2 0} and the

polyhedronP = con(CP) in CP2 where

CP := {x ≤ 10, 3 ≤ y ≤ 9, 6 ≤ x+ y, −6 ≤ x− y ≤ 4}.

Let H = (L,P), which is shown in Figure 6.4(a). Then it can be seen thatCP is not a tight

polyhedron constraint system forH and also note thatCP is not a weakly tight constraint system

for H as some of the constraints are not saturated by any point ofL, for exampley ≤ 9. Now

consider the gridL together with the polyhedronP ′ = con(CP
′) in CP2 where

CP
′ := {2 ≤ x ≤ 8, 4 ≤ y ≤ 8}.

LetH = (L,P ′), which is shown in Figure 6.4(b). Then not only can it be seen thatCP′ is a tight

polyhedron constraint system forH as every constraint is saturated by at least one grid-polyhedra

point, but also(L,P ′) is a reduced product.

Chapter 6 94 The Grid-Polyhedron Domain

We will show that there are two main ways to improve the polyhedron constraint system so that the

grid-polyhedron is a tight or weakly tight pair. One way is tomove in the bounding hyperplanes of

the polyhedron component so that they are closer to the grid-polyhedron points, this is discussed

in Section 6.4.1. Another way is to add new constraints to thepolyhedron representation, this will

be discussed in Section 6.6.

6.4.1 Weakly Tight Operations

An operation to produce a weakly tight grid-polyhedron willallow us to move in the bounding

hyperplanes of the polyhedron component so that they contain at least one point in the grid com-

ponent. Therefore we could possibly improve the polyhedronrepresentation without adding extra

constraints. Example 6.4 on Page 88 illustrated why an operation that can shrink a polyhedron

with respect to a grid is an important operation as it can leadto a canonical form.

To move in the existing polyhedron constraints we must try tofind congruences for the grid

which will be parallel to the constraint in the polyhedron representation. The aim is that if we

have a constraint〈v,x〉 ≤ d we can take the directional vectorv and produce a congruence

equation that will have solutions parallel to the constraint, thus we will have a measure of how

much we can move the constraint bound.

Definition 6.18 (Directed Non-Redundant Congruence.)LetL ∈ Gn, v ∈ Qn, f ∈ Q+ and

d ∈ Q. Then we say thatc =
(

〈v,x〉 ≡f d
)

is a directed non-redundant congruence (dnc)for L

andv if L ⊆ gcon
(

{c}
)

and, for alls ∈ Z, if cs =
(

〈v,x〉 = d+ s · f
)

, L ∩ gcon
(

{cs}
)

6= ∅.

Lemma 6.19 If CL is a congruence system in minimal form andc =
(

〈v,x〉 ≡f d
)

∈ CL, thenc

is a dnc for the gridgcon(CL) andv.

Proof. Sincec ∈ CL, we haveL ⊆ gcon
(

{c}
)

. Let s ∈ Z andcs =
(

〈v,x〉 = d + s · f
)

.

Let CL′ =
(

CL \ {c}
)

∪ {cs}; then asCL is in minimal form,CL′ is also in minimal form. By

Lemma 3.16,CL′ is consistent so thatgcon(CL
′) = L ∩ gcon

(

{cs}
)

6= ∅. �

Example 6.20 Consider the gridL = gcon(CL) ∈ Gn, where

CL = {x ≡2 0, y ≡3 0}.

L is illustrated by the points in Figure 6.5(a), and the constraint x − y = 0, is illustrated by the

diagonal line in Figure 6.5(a). Then takingv = (1,−1) we can see that the congruence

x− y ≡1 0

is a dnc forL andv.

Now consider the gridL′ = gcon(CL
′) ∈ Gn, where

CL
′ = {x ≡2 1}.

Chapter 6 95 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) GridL = gcon(CL) and vectorv.

4

5

6

2

1

3

654321

(b) GridL′ = gcon(CL
′) and vectorv.

Figure 6.5: We can create a dnc for someL andv, but not all.

L′ is illustrated by the dashed lines in Figure 6.5(b), and the constraintx− y = 0, is illustrated

by the diagonal line in Figure 6.5(b). Then takingv = (1,−1) we can see that there is no dnc for

L′ andv, since inL′ the variabley can take any value.

Algorithm 2: The directed non-redundant congruence algorithm.
Input: A congruence systemCL in Qn in minimal form and a vectorv ∈ Qn.

Output: A triple (bool,m, t) where bool∈ {true, false},m ∈ Q+ andt ∈ Q.

(1) t := 0,m := 0, w = 0

(2) for i = n to 1

(3) if vi 6= wi

(4) if β =
(

〈a,x〉 ≡f b
)

∈ CL . piv<(β) = i

(5) u := vi−wi

ai

(6) m := gcd(m,u · f)

(7) t := t+ u · b

(8) w := w + u · a

(9) else

(10) return (false, 0, 0)

(11) return (true,m, t)

Algorithm 2 provides a method for computing a dnc for a given grid and vector.

Proposition 6.21 Givenv ∈ Qn and a non-empty gridL = gcon(CL), whereCL is in minimal

form, supposeAlgorithm 2 returns the triple(bool,m, t). If bool = true, thenc =
(

〈v,x〉 ≡m t
)

is an dnc forL andv and if bool= false, then for alls ∈ Q, L ∩ con
(

{

〈v,x〉 = s
}

)

6= ∅.

To prove this proposition, we first prove an invariant property of the loop on line (2) in Algo-

rithm 2.

Chapter 6 96 The Grid-Polyhedron Domain

Lemma 6.22 Suppose that, given a non-empty gridL ∈ Gn and a vectorv, Algorithm 2 executes

line (2) j times. Letmj be the value ofm, tj the value oft and wj the value ofw at the end

of thej-th execution of lines(3) to (10). Let alsocj =
(

〈wj,x〉 ≡mj
tj
)

. Then, if line (10) is

not executed,cj is an dnc forL and wj and wj = (w1, . . . , wn−j−1, vn−j , . . . , vn), for some

w1, . . . , wn−j−1 ∈ Q.

Proof. SupposeL = gcon(CL), whereCL is in minimal form. We prove the result holds by

induction onj. The base case is trivial since in this casej = 0 andw0 = 0, t0 = 0 andm0 = 0.

Suppose now thatj > 0 and leti = n − j. By the induction hypothesis, given any non-

empty gridL, then, after the(j − 1)-th execution of lines (3) to (10),cj−1 is an dnc forL and

wj−1 = (w1, . . . , wi, vi+1, . . . , vn), for somew1, . . . , wi ∈ Q. If the tests on line (3) fails, then

cj = cj−1 andwj = wj−1. Suppose now that the tests on line (3) succeeds. By line (8),as

piv<(β) = i, we also havewj = (w1, . . . , wi−1, vi, . . . , vn), for somew1, . . . , wi−1 ∈ Q.

Supposes ∈ Z andγj :=
(

〈wj ,x〉 = tj +s ·mj

)

, then, by Definition 6.18, we need to prove:

L ⊆ gcon
(

{cj}
)

; (6.1)

L ∩ gcon
(

{γj}
)

6= ∅. (6.2)

Note that, by lines (6), (7) and (8),

cj =
(

〈wj−1 + u · a,x〉 ≡mj
tj−1 + u · b

)

andmj = gcd(mj−1, u · f).

By Definition 6.18 and sincecj−1 is a dnc forL andwj−1, L ⊆ gcon
(

{cj−1}
)

; also, by line

(4), β ∈ CL; thus property (6.1) holds. We now prove that property (6.2)holds. By line (6), there

existp, q ∈ Z such thatp ·mj−1 + q · (u · f) = mj. Let

βe =
(

〈a,x〉 = b+ s · q · f
)

,

γe =
(

〈wj−1,x〉 = tj−1 + s · p ·mj−1

)

.

By Lemma 6.19,β is an dnc forL anda so that, by Definition 6.18,L′ := L∩ gcon
(

{βe}
)

6= ∅.

Consider the congruence systemCL′ =
(

CL \ {β}
)

∪ {βe}; then, aspiv<(βe) = piv<(β) = i

andCL is in minimal form,CL′ is in minimal form. Moreover, sincegcon
(

{βe}
)

⊆ gcon
(

{β}
)

,

L′ = gcon(CL
′). Also, for both gridsL andL′, for the firstj − 1 iterations of the loop, line (4)

will select exactly the same congruences; and hence, at the end of the(j − 1)-th iteration,mj−1,

tj−1 andwj−1 will be the values ofm, t andw, respectively, when usingCL′ instead ofCL.

Thus, by the inductive hypothesis,cj−1 is also an dnc forL′ andwj−1. By Definition 6.18,

L′∩gcon
(

{γe}
)

6= ∅, so that, sinceL′ = L∩gcon
(

{βe}
)

⊆ L, we haveL∩gcon
(

{βe, γe}
)

6= ∅.

As γj is the sum of equalitiesu ·βe andγe, we must also haveL∩ gcon
(

{γj}
)

6= ∅ and property

(6.2) holds. �

Chapter 6 97 The Grid-Polyhedron Domain

Proof [of Proposition 6.21.] Suppose that the algorithm executes lines (6) to (8)k times so that

0 ≤ k ≤ n. For0 ≤ j ≤ k, letmj be the value ofm, tj the value oft andwj the value ofw at

the end ofj-th iteration.

Suppose first that bool= true is returned by the algorithm. Then line (10) is not executed, so

that, by Lemma 6.22, lettingj = n, wn = v and the result follows.

Suppose now that bool= false is returned. This means thatk ≥ 1 and, in thek-th iteration,

the test on line (3) succeeded so thatwn−k 6= vn−k; and the test on line (4) failed so that there is

no congruenceβ ∈ CL such thatpiv<(β) = n− k. By Lemma 6.22,ck−1 :=
(

〈wk−1,x〉 ≡mk−1

tk−1

)

is a dnc forL andwk−1 = (w1, . . . , wn−k, vn−k+1, . . . , vn), for somew1, . . . , wn−k ∈ Q.

Since we havewn−k 6= vn−k, piv<(wk−1 − v) = n− k. Suppose, by contraposition, that there

existss ∈ Q such thatL∩con
(

{

〈v,x〉 = s
}

)

= ∅; let CL′ := CL∪
{

〈wk−1−v,x〉 = tk−1−s
}

andL′ := gcon(CL
′). Then, as there is no congruenceβ ∈ CL such thatpiv<(β) = n− k, CL′ is

in minimal form and, by Lemma 3.16, the gridL′ is non-empty so that Lemma 6.22 can be applied

to L′. Moreover, starting withCL′, for the firstk − 1 iterations of the loop, line (4) will select

exactly the same congruences as those selected when starting withL; and hence,mk−1, tk−1 and

wk−1 will also be the values ofm, t andw, respectively, at the end of the(k − 1)-th iteration

when usingCL′ instead ofCL. Thus, by Lemma 6.22, lettingj = k−1,
(

〈wk−1,x〉 ≡mk−1
tk−1

)

is also a dnc forL′ andwk−1 so that, by Definition 6.18, we obtain

∅ 6= L′ ∩ gcon
(

{

〈wk−1,x〉 = tk−1

}

)

= L ∩ gcon
(

{

〈wk−1,x〉 = tk−1, 〈wk−1 − v,x〉 = tk−1 − s
}

)

= L ∩ gcon
(

{

〈wk−1,x〉 = tk−1, 〈v,x〉 = s
}

)

⊆ L ∩ gcon
(

{

〈v,x〉 = s
}

)

.

HenceL ∩ gcon
(

{

〈v,x〉 = s
}

)

6= ∅ which is a contradiction. �

As this algorithm assumes the congruence system for the gridL is in minimal form the com-

plexity of Algorithm 2 isO
(

n2
)

if L is not rectilinear. IfL is rectilinear then the complexity of

Algorithm 2 is linear in the number of non-zero coefficients in v. Let DNC : Gn ×Rn → R×R

be the partial function such thatDNC(L,v) is the output of Algorithm 2 if bool= true. Given an

algorithm for generating directed non-redundant congruences, Algorithm 3 shows how to move

each of the constraint bounds so that the constraint system forP is a weakly tight forH = (L,P).

As any equality
(

〈v,x〉 = d
)

can be represented by the two inequalities
(

〈v,x〉 ≤ d
)

and
(

〈v,x〉 ≥ d
)

, Algorithm 3 and Proposition 6.23 will assume thatCP is a set of inequalities.

Chapter 6 98 The Grid-Polyhedron Domain

Algorithm 3: The weakly tight constraint system algorithm.
Input: P = con(CP) andL.

Output: The constraint systemCP′.

(1) CP
′ := ∅

(2) while ν =
(

〈v,x〉 ≤ d
)

∈ CP

(3) if DNC(L,v) = (m, t)

(4) d′ := d−
(

(d− t) mod m
)

(5) CP
′ := CP

′ ∪
{

(

〈v,x〉 ≤ d′
)

}

(6) else

(7) CP
′ := CP

′ ∪ {ν}

(8) CP := CP \ {ν}

(9) return CP
′

As Algorithm 2 has complexityO
(

n2
)

and theDNC function, which uses Algorithm 2, is

performedµ times, where#CP = µ, Algorithm 3 has complexityO
(

n2µ
)

.

Proposition 6.23 LetH = (L,P) ∈ GPn be a constraint product and letCP′ be the constraint

system returned byAlgorithm 3. ThenH =
(

L, con(CP
′)
)

is a weakly tight product.

Proof. Let H = (L,P) ∈ GPn, CP be a constraint system with no equalities such thatP =

con(CP) andCL be a congruence system in minimal form such thatL = gcon(CL). Since at

the end of each iteration of the while loop#(CP) is reduced by one, Algorithm 3 will terminate

and hence is an algorithm. LetCi, C
′
i and d′i denote the values computed forCP , CP′ and d′,

respectively, at the end of thei-th iteration of the while loop. Then we will show that

1. H :=
(

L, con(Ci ∪ C′
i)
)

;

2. H′
i :=

(

L, con(C′
i)
)

is a weakly tight product.

Initially (1) and (2) hold sinceCP = C0 andCP′ = C′
0 = ∅. We now assume that (1) and (2)

hold for i− 1 iterations of the while loop wherei ≥ 1. On line (2) of Algorithm 3, the constraint

ν =
(

〈v,x〉 ≤ d
)

∈ CP is selected. There are3 cases to consider forν, DNC(L,v) = (m, t)

wherem 6= 0, DNC(L,v) = (0, t) andDNC(L,v) is undefined.

First let us suppose thatDNC(L,v) = (m, t) wherem 6= 0. On line (4),

d′ = d−
(

(d− t) mod m
)

,

so by the definition ofmod in Section 2.1,

d−m < d′ ≤ d and0 ≤ (d− t) mod m < m.

Hence, for somes ∈ Z, d′ = t + s ·m. Let ν ′ =
(

〈v,x〉 ≤ d′
)

andν ′e =
(

〈v,x〉 = d′
)

. By

Proposition 6.21,β =
(

〈v,x〉 ≡m t
)

is a dnc forL andv. By Definition 6.18,L ⊆ gcon
(

{β}
)

Chapter 6 99 The Grid-Polyhedron Domain

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 6.6: Moving constraints for a grid-polyhedron.

andL∩gcon
(

{ν ′e}
)

6= ∅. Therefore, sinceH′
i−1 is weakly tight, we have thatH′

i is weakly tight.

Also sinceH ⊆ gcon
(

{β}
)

, H =
(

L, con(Ci ∪ C′
i)
)

.

Now supposeDNC(L,v) = (0, t). Then by Proposition 6.21,β =
(

〈v,x〉 = t
)

is a dnc for

L andv. AsH is a constraint productd = t and on line (4),

d′ = d−
(

(d− t) mod m
)

= t.

Therefore, sinceH′
i−1 is weakly tight, we have thatH′

i is weakly tight. Also sinceH ⊆ gcon
(

{β}
)

,

ν =
(

〈v,x〉 ≤ d′
)

andν ∈ Ci−1, H =
(

L, con(Ci ∪ C′
i)
)

.

Finally suppose thatDNC(L,v) is undefined. Then, by Proposition 6.21, we have thatL ∩

con
(

{

〈v,x〉 = s
}

)

6= ∅ for all s ∈ Q, soL ∩ con
(

{ν}
)

6= ∅. Therefore, sinceH′
i−1 is weakly

tight, we have thatH′
i is weakly tight. Also sinceν ∈ Ci−1, H =

(

L, con(Ci ∪ C′
i)
)

.

Therefore ifCP′ is the constraint system returned by Algorithm 3, thenH =
(

L, con(CP
′)
)

is a weakly tight product. �

LetH = (L,P) ∈ GPn be a constraint product. Then ifCP′ is the constraint system returned by

Algorithm 3,σ1
W (L,P) = L andσ2

W (L,P) = con(CP
′).

Example 6.24 Consider the grid-polyhedronH = L ∩ P, whereL = gcon(CL) and CL :=

{x ≡2 0, y ≡2 0} andP is given by the constraint system

CP := {3 ≤ x+ y ≤ 13, −5 ≤ x− y ≤ 1}.

H = (L,P) can be seen in Figure 6.6(a). FromAlgorithm 2 and Algorithm 3 described above

we can calculate the modulus and inhomogeneous terms to produce the directed non-redundant

congruencesx + y ≡2 0 and x − y ≡2 0 and we can compute the new constraint bounds.

Chapter 6 100 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 6.7: Algorithm 3 does not improve redundant constraints.

Therefore we get the new constraint systemCP
′ where

CP
′ := {4 ≤ x+ y ≤ 12, −4 ≤ x− y ≤ 0}.

H =
(

L, con(CP
′)
)

can be seen in Figure 6.6(b). It shows that not only is the pair
(

L, con(CP
′)
)

a tight product, but also
(

L, con(CP
′)
)

is a reduced product.

Example 6.25 shows that Algorithm 3 can move in the constraint bounds but it does not improve

the constraint bounds so that they are moved in with respect to the other constraint bounds. That

is, Algorithm 3 will not remove or improve redundant constraints.

Example 6.25 Consider the grid-polyhedronH = (L,P), whereL = gcon(CL) and CL :=

{x ≡2 0, y ≡3 0} andP is given by the constraint system

CP := {1 ≤ x ≤ 4, 1 ≤ y ≤ 5, −3 ≤ x− y}.

H = (L,P) can be seen in Figure 6.7(a). FromAlgorithm 2 and Algorithm 3 described above

we can calculate the modulus and inhomogeneous terms to produce the directed non-redundant

congruencesx ≡2 0, y ≡3 0 andx − y ≡1 0, and we can compute the new constraint bounds.

Therefore we get the new constraint systemCP
′ where

CP
′ := {2 ≤ x ≤ 4, y = 3, −3 ≤ x− y}.

H =
(

L, con(CP
′)
)

can be seen in Figure 6.7(b). Now the pair
(

L, con(CP
′)
)

is reduced product,

but it can be seen in Figure 6.7(b) that the constraint−3 ≤ x− y, illustrated by the dashed line,

is now redundant.

Chapter 6 101 The Grid-Polyhedron Domain

6.4.2 Emptiness

To test if a grid-polyhedron is empty we need to test if the polyhedron contains any grid points.

To do this we first check that each component of the grid-polyhedron is non-empty. Before we

introduce the test for emptiness we first give the definition of a paired constraint system. As any

equality
(

〈v,x〉 = d
)

can be represented by the two inequalities
(

〈v,x〉 ≤ d
)

and
(

〈v,x〉 ≥ d
)

,

for Section 6.4.2 we will assume thatCP is a set of inequalities.

Definition 6.26 (Paired Constraint System.) Let CP be a consistent constraint system inRn

and letP = con(CP) ∈ Pn. ThenCP is a paired constraint systemif, for each constraint

ν =
(

〈v,x〉 ≤ d
)

∈ CP :

1. there exists a pointp ∈ P such that〈v,p〉 = d;

2. if P is bounded in the direction−v, then there existsν ′ =
(

〈−v,x〉 ≤ d′
)

∈ CP .

Given a constraint systemCP , we can create a paired constraint systemC≤≤ such thatcon(CP) =

con(C≤≤) by applying the simplex algorithm [67,76]. We will use the paired constraint system in

the test for emptiness. Given a gridL andC≤≤ we can apply Algorithm 3 toH =
(

L, con(P≤≤)
)

and get the constraint systemC≤≤
′, which is weakly tight forH. Then if C≤≤

′ is inconsistent

then we knowH =
(

L, con(CP)
)

is empty sincecon(CP) = con(C≤≤) = con(C≤≤
′). If C≤≤

′ is

consistent then we don’t know ifH =
(

L, con(CP)
)

is empty.

Proposition 6.27 LetH = (L,P) whereP = con(CP) is a paired constraint system andCP′ is

the constraint system returned after applyingAlgorithm 3 to H =
(

L, con(CP)
)

. SupposeCP′ is

inconsistent. ThenH = ∅.

Proof. The result follows from Proposition 6.23.�

As Algorithm 3 has complexityO
(

n2µ
)

, where#CP = µ, if CP is a paired constraint system then

the test for emptiness has complexityO
(

n2µ
)

. Otherwise the complexity is that of computing the

paired constraint system.

Example 6.28 shows this method succeeding. Unfortunately,if the grid-polyhedronH is not a

reduced product it is possible thatH is empty but this method does not detect this. Example 6.28

also illustrates this.

Example 6.28 Consider the grid-polyhedronH = (L,P), whereL = gcon(CL) and CL :=

{x ≡5 0, y ≡4 0} andP is given by the constraint system

CP := {0 ≤ x, 0 ≤ y, 2 ≤ x+ y ≤ 3}.

It can be seen in Figure 6.8(a) that(L,P) is a weakly tight product. In this case the paired

representation,C≤≤, of CP is given by

C≤≤ := {0 ≤ x ≤ 3, 0 ≤ y ≤ 3, 2 ≤ x+ y ≤ 3}.

Chapter 6 102 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH′ = (L′,P ′).

Figure 6.8: The emptiness test succeeds and fails.

From Algorithm 2 described above we can calculate the modulus and inhomogeneous terms to

produce the directed non-redundant congruencex + y ≡1 0. ApplyingAlgorithm 3 to H =
(

L, con(C≤≤)
)

we get the constraint system

C≤≤
′ := {0 ≤ x ≤ 0, 0 ≤ y ≤ 0, 2 ≤ x+ y ≤ 3}.

AsP = con(C≤≤
′) andC≤≤

′ is inconsistent, we know thatH = ∅.

Now consider the grid-polyhedronH′ = (L′,P ′), whereL′ = gcon(CL) andCL := {x ≡5

1, y ≡3 0} andP ′ is given by the constraint system

CP
′ := {3 ≤ x+ y ≤ 7, −1 ≤ x− y ≤ 3}.

H′ can be seen in Figure 6.8(b). In this caseCP′ = C≤≤
′. From Algorithm 2 described above

we can calculate the modulus and inhomogeneous terms to produce the directed non-redundant

congruencesx + y ≡1 0, x − y ≡1 0. Therefore
(

L, con(C≤≤)
)

is a weakly tight product,

H =
(

L, con(C≤≤)
)

and asC≤≤ is consistent we do not know if the grid-polyhedron is empty.

6.5 The Grid-Polyhedron Domain Operations

We will now consider each of the abstract operations, such asthose based on the set-theoretic

operations and also affine image, affine pre-image and widening. We will consider each operation

for a partially reduced product and show if each operation will preserve the given reduction. For

example, if we have grid-polyhedra which are reduced products we will show if after the operation

is applied whether or not the resulting grid-polyhedron is still a reduced product.

Chapter 6 103 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedraH′
1 andH′

2.

Figure 6.9: The comparison and equality test returning the result “don’t know” for relational
grid-polyhedra.

6.5.1 Comparison

For any pair of grid-polyhedraH1 = (L1,P1), H2 = (L2,P2) in GPn, we can decide whether

H1 ⊆ H2 by checking ifL1 ⊆ L2 andP1 ⊆ P2. Also we can decide ifH1 = H2 by checking if

L1 = L2 andP1 = P2.

Suppose thatH1 andH2 are relational grid-polyhedra, the case whereH1 andH2 are non-

relational grid-polyhedra is considered in Section 7.5. Aswe do not have an efficient algorithm for

producing a reduced product grid-polyhedron, we will not always have the polyhedra represented

in their most reduced form with respect to the grid points andtherefore it is possible that a result

of “don’t know” will have to be returned in the case where the result should beH1 ⊆ H2, or

H1 = H2. Example 6.29 will highlight this.

Example 6.29 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. Let

P1 := gen

(

∅,∅,

(

1 4 6 6 5

3 0 3 5 6

))

,

P2 := con
(

{ 1 ≤ y, 3 ≤ x+ y, 0 ≤ 2x− y ≤ 9, 2x+ y ≤ 15 − 10 ≤ x− 3y}
)

and

L1 = L2 = gcon
(

{x ≡1 0,−x+ y ≡3 0}
)

= ggen

(

∅,∅,

(

0 1 0

0 1 3

))

.

Then we can see from Figure 6.9(a) thatH1 = H2 and (L1,P1) and (L2,P2) are weakly tight

products. Since(L1,P1) and(L2,P2) are not reduced products the comparison and equality test

will return the result “don’t know”. Now considerH′
1 = (L′

1,P
′
1) andH′

2 = (L′
2,P

′
2) in GP2.

Chapter 6 104 The Grid-Polyhedron Domain

Let

P ′
1 := gen

(

∅,∅,

(

2 6 6 4 2

1 1 4 6 5

))

,

P ′
2 := con

(

{y ≤ 5, 2x+ y ≤ 15, −1 ≤ 2x− y ≤ 9, 6 ≤ x+ 2y}
)

andL′
1 = L′

2 = L1 = L2. Then we can see from Figure 6.9(b) thatH′
1 = H′

2 and(L′
1,P

′
1) and

(L′
2,P

′
2) are tight products. Unfortunately the comparison and equality test will give the result

“don’t know”.

Let us now consider the complexities of both the comparison and equality operations. Let

L1 = ggen(L,Q,P), L2 = gcon(CL) wherem1 = #L + #Q + #P andm2 = # CL.

Let P1 = gen(L,R,P), P2 = con(CP) wherem3 = #L + #R + #P andm4 = #CP .

Assuming that the systemsGL,GP , CL andCP are already available, the worst-case complexity of

a comparison algorithm isO
(

nmax{m1m2,m3m4}
)

. Note that, ifn ≤ min{m1,m2}, then it

would be more efficient to compute the minimal forms forCL andGL before actually checking for

comparison, hence obtaining the worst-case complexityO
(

nmax{nm1, nm2,m3m4}
)

; clearly,

O
(

nmax{n2,m3m4}
)

is obtained if the two grid descriptions were already available in minimal

form. Given that it is known that one grid is a subset of another and that one polyhedron is a

subset of another, there are quicker tests for checking equality. The complexity of checking if

H1 = H2 is justO
(

max{n2,m2
3,m

2
4}
)

.

6.5.2 Intersection

For grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) ∈ GPn, then theintersectionof H1

andH2, is defined as the pair(L1 ∩ L2,P1 ∩ P2), which is the largest grid-polyhedron included

in both H1 andH2. Then in theoretical terms, the intersection operation is the binarymeet

operator on the latticeGPn. It can easily be computed; ifH1 =
(

gcon(CL1), con(CP1)
)

and

H2 =
(

gcon(CL2), con(CP2)
)

, thenH1 ∩H2 =
(

gcon(CL1 ∪ CL2), con(CP1 ∪ CP2)
)

. However

this operation of intersection does not preserve the given reduction of the polyhedron constraint

systems.

Example 6.30 Consider the grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) in GP2 where

L1 = gcon(CL1), L2 = gcon(CL2), P1 = con(CP 1), P2 = con(CP2),

CL1 :={x ≡1 0, x+ y ≡2 0} and CL2 :={x ≡3 0, y ≡2 0},

CP1 :={1 ≤ x ≤ 4, 0 ≤ y ≤ 5} and CP2 :={3 ≤ x ≤ 6, 2 ≤ y ≤ 6}.

The gridsL1 andL2 are illustrated by the filled squares in Figure 6.10(a). Thenthe grid inter-

section isL1 ∩ L2 = gcon(CL1 ∪ CL2); thus, asCL = {x ≡6 0, y ≡2 0} is the minimal form of

CL1 ∪ CL2, we haveL1 ∩L2 = gcon(CL). The gridL1 ∩L2 is illustrated by the filled squares in

Figure 6.10(b).

Chapter 6 105 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ∩H2.

Figure 6.10: Grid-Polyhedron intersection does not preserve the given reduction.

The polyhedron intersection isP1 ∩ P2 = con(CP1 ∪ CP2); thus, asCP = {3 ≤ x ≤ 4, 2 ≤

y ≤ 5} is a minimised form ofCP1 ∪ CP2, we haveP1 ∩ P2 = con(CP).

Therefore it can be seen from Figure 6.10(b) thatH1 ∩H2 =
(

gcon(CL), con(CP)
)

, where

CL := {x ≡6 0, y ≡2 0} and CP := {3 ≤ x ≤ 4, 2 ≤ y ≤ 5},

is empty, hence this also shows why we require an operation todetect emptiness. Also note that

(L1,P1) and (L2,P2) are tight products. We can see thatH1 ∩ H2 =
(

gcon(CL), con(CP)
)

is

empty andCP is not even a weakly tight polyhedron constraint system forH1 ∩ H2. Note that

even if(L1,P1) were a reduced product, the resulting grid-polyhedron pairafter the intersection

would also not have been at least weakly tight.

Example 6.31 shows that if we have two grid-polyhedra,H1 = (L1,P1),H2 = (L2,P2) where

(L1,P1) and (L2,P2) are both reduced products, then after the intersection is performed, the

resulting grid-polyhedron isH1 ∩H2 = (L,P) and(L,P) is not a reduced product.

Example 6.31 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. Let

P1 := con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4}
)

, P2 := con
(

{2 ≤ x ≤ 5, 2 ≤ y ≤ 5}
)

and

L1 = L2 = gcon
(

{x ≡1 0,−x+ y ≡3 0}
)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.11(a). Then the grid-polyhedron inter-

sectionH1 ∩H2 = (L1 ∩ L2,P1 ∩ P2) is given by

(

gcon
(

{x ≡1 0,−x+ y ≡3 0}
)

, con
(

{2 ≤ x ≤ 4, 2 ≤ y ≤ 4}
)

)

.

The grid-polyhedronH1∩H2 is illustrated in Figure 6.11(b) and it can be seen that(L1∩L2,P1∩

Chapter 6 106 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ∩ H2.

Figure 6.11: Grid-Polyhedron intersection.

P2) is not a reduced product.

The only partially reduced products the operation of intersection will preserve are the smash and

constraint products.

6.5.3 Join

For grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) ∈ GPn, thejoin of H1 andH2, is defined

as the pair(L1 ⊕ L2,P1 ⊕ P2), which is the smallest grid-polyhedron containing bothH1 and

H2. Then in theoretical terms, the join operation is the binaryjoin operators on the latticeGPn.

It can easily be computed; ifH1 =
(

ggen(GL1), gen(GP1)
)

andH2 =
(

ggen(GL2), gen(GP 2)
)

,

thenH1 ⊕H2 =
(

ggen(GL1 ∪ GL2), gen(GP1 ∪ GP2)
)

. Unlike the operation of intersection the

operation of join does respect if the grid-polyhedra are reduced products. LetH1 = (L1,P1) and

H2 = (L2,P2), then if (L1,P1) and(L2,P2) are reduced products then every generating point

of the polyhedra is also a grid point. Therefore after the operation of join is performed every

generating point will still be a grid point. Example 6.32 demonstrates this point.

Example 6.32 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. LetP1 = gen(∅,∅, P1)

andP2 = gen(∅,∅, P2) in CP2, where

P1 :=

(

1 1 4 4

1 4 1 4

)

, P2 :=

(

2 2 5 5

2 5 2 5

)

andL1 = L2 = ggen(∅,∅, P0) in G2, where

P0 :=

(

1 0 0

1 3 0

)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.12(a). The grid-polyhedron join H1 ⊕

Chapter 6 107 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊕H2.

Figure 6.12: Grid-Polyhedron join.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊕H2.

Figure 6.13: Grid-Polyhedron join does not respect tight products.

H2 = (L1 ⊕L2,P1 ⊕P2) is given by
(

ggen(∅,∅, P0 ∪P0), gen(∅,∅, P1 ∪P2)
)

, sinceL1⊕L2

takes the union of the grids generator systems andP1 ⊕ P2 takes the union of the polyhedra

generator systems. Thus, the generator system of the polyhedron is given by

(

∅,∅,

(

1 1 4 2 5 5

1 4 1 5 5 2

))

.

The grid-polyhedronH1 ⊕ H2 is illustrated in Figure 6.12(b). It can be seen that the grid-

polyhedron pair(L1 ⊕L2,P1 ⊕P2) is a reduced product as every vertex ofP1 ⊕P2 is a point of

the gridL1 ⊕ L2.

However the operation of join does not respect if the grid-polyhedra are tight or weakly tight

products. Example 6.33 establishes this point.

Chapter 6 108 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊕H2.

Figure 6.14: Grid-Polyhedron join requires the grid-polyhedra pairs to be weakly tight products.

Example 6.33 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. LetP1 = gen(∅,∅, P1)

andP2 = gen(∅,∅, P2) in CP2, where

P1 :=

(

1 1 4 4

1 4 1 4

)

, P2 :=

(

2 2 5 5

2 5 2 5

)

andL1 = L2 = ggen(∅,∅, P0) in G2, where

P0 :=

(

1 0 0

1 6 0

)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.13(a). The grid-polyhedron join H1 ⊕

H2 = (L1 ⊕ L2,P1 ⊕ P2) is given by
(

ggen(∅,∅, P0 ∪ P0), gen(∅,∅, P1 ∪ P2)
)

; thus, the

generator system of the polyhedron is given by

(

∅,∅,

(

1 1 4 2 5 5

1 4 1 5 5 2

))

.

The grid-polyhedronH1 ⊕ H2 is illustrated in Figure 6.13(b). It can be seen that the grid-

polyhedron pair(L1 ⊕ L2,P1 ⊕ P2) is not a tight or weakly tight product as the constraint

x− y ≤ 3 is not saturated by a grid point.

The partially reduced products the operation of join will preserve are the smash, constraint and

reduced products.

Given two grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) in GP2, Example 6.34 shows

that if (L1,P1) and(L2,P2) are not weakly tight products then the resulting grid-polyhedron,

after the operation of join is performed, can have more points compared to the result if(L1,P1)

and(L2,P2) are weakly tight products.

Chapter 6 109 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊕H2.

Figure 6.15: Grid-Polyhedron join requires the grid-polyhedra pairs to be weakly tight products.

Example 6.34 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. LetP1 = gen(∅,∅, P1)

andP2 = gen(∅,∅, P2) in CP2, where

P1 :=

(

0.5 0.5 4.5 4.5

0.5 4.5 0.5 4.5

)

, P2 :=

(

1.5 1.5 5.5 5.5

1.5 5.5 1.5 5.5

)

andL1 = L2 = ggen(∅,∅, P0) in G2, where

P0 :=

(

1 0 0

1 4 0

)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.14(a). The grid-polyhedron joinH1 ⊕

H2 = (L1 ⊕ L2,P1 ⊕ P2) is given by
(

ggen(∅,∅, P0 ∪ P0), gen(∅,∅, P1 ∪ P2)
)

; thus, the

generator system of the polyhedron is given by

(

∅,∅,

(

0.5 0.5 4.5 1.5 5.5 5.5

0.5 4.5 0.5 5.5 5.5 1.5

))

.

The grid-polyhedronH1 ⊕ H2 is illustrated in Figure 6.14(b) and it can be seen thatH1 ⊕ H2

contains the points(1, 5)T and(5, 1)T.

Now considerH1 = (L1,P
′
1) andH2 = (L2,P

′
2) in GP2. Let P ′

1 = gen(∅,∅, P ′
1) and

P ′
2 = gen(∅,∅, P ′

2) in CP2, where

P1 :=

(

1 1 4 4

1 4 1 4

)

, and P2 :=

(

2 2 5 5

2 5 2 5

)

.

The grid-polyhedraH1 and H2 are also illustrated in Figure 6.15(a) and it can be seen that

(L1,P
′
1) andH2 = (L2,P

′
2) are weakly tight. The grid-polyhedron joinH1 ⊕ H2 = (L1 ⊕

Chapter 6 110 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊖ H2.

Figure 6.16: Grid-Polyhedron difference.

L2,P
′
1 ⊕P ′

2) is given by
(

ggen(∅,∅, P0 ∪P0), gen(∅,∅, P ′
1 ∪P

′
2)
)

; thus, the generator system

of the polyhedron is given by

(

∅,∅,

(

1 1 4 2 5 5

1 4 1 5 5 2

))

.

The grid-polyhedronH1 ⊕ H2 is illustrated in Figure 6.15(b) and it can be seen thatH1 ⊕ H2

does not contains the points(1, 5)T and(5, 1)T.

6.5.4 Difference

Let us recall from Section 4.5 that the grid difference ofL1 andL2, denoted byL1 ⊖ L2, is

defined as the smallest grid containing the set-theoretic difference ofL1 andL2. Also the convex

polyhedral difference (or poly-difference) ofP1 andP2, denoted byP1 ⊖ P2, is defined as the

smallest convex polyhedron containing the set-theoretic difference ofP1 andP2. Therefore for

any pair of grid-polyhedraH1,H2 ∈ GPn, thegrid-polyhedron differenceof H1 andH2, denoted

byH1 ⊖ H2, is defined as the smallest grid-polyhedron containing the set-theoretic difference of

H1 andH2. The grid-polyhedron difference is computed by taking the difference of each of the

components of the product, specifically

H1 ⊖ H2 :=
(

L1 ⊖ L2,P1 ⊖ P2

)

.

Example 6.35 shows that if we have two grid-polyhedra,H1 = (L1,P1),H2 = (L2,P2) where

(L1,P1) and (L2,P2) are both reduced products, then after the grid-polyhedron difference is

performed the resulting grid-polyhedra pair is not necessarily a reduced product.

Chapter 6 111 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊖ H2.

Figure 6.17: Grid-Polyhedron difference requires the grid-polyhedra pairs to be weakly tight
products.

Example 6.35 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. Let

P1 := con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4}
)

, P2 := con
(

{2 ≤ x ≤ 5, 2 ≤ y ≤ 5}
)

and

L1 := gcon
(

{x ≡1 0,−x+ y ≡3 0}
)

, L2 := gcon
(

{x ≡2 1, x+ 2y ≡6 3}
)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.16(a). Then the grid-polyhedron dif-

ferenceH1 ⊖ H2 = (L1 ⊖ L2,P1 ⊖ P2) is given by

(

gcon
(

{x ≡2 0, x+ 2y ≡6 0}
)

, con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4, x+ y ≤ 6}
)

)

.

The grid-polyhedronH1 ⊖ H2 is illustrated in Figure 6.16(b) and it can be seen that(L1 ⊖

L2,P1 ⊖ P2) is not a reduced product.

Like the grid-polyhedron intersection operation, the grid-polyhedron difference operation does

not respect if the grid-polyhedra are tight or weakly tight products. So after the operation is per-

formed the resulting grid-polyhedron may no longer be a tight or weakly tight product. The only

partially reduced products the operation of difference will preserve are the smash and constraint

products.

Given two grid-polyhedraH1 = (L1,P1) andH2 = (L2,P2) in GP2, Example 6.36 shows

that if (L1,P1) and (L2,P2) are not weakly tight products then the resulting grid-polyhedron,

after the operation of difference is performed, can have less points compared to the result when

(L1,P1) and(L2,P2) are weakly tight products.

Chapter 6 112 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321

rs

rs

rs

rs

rs

(b) Grid-polyhedronH1 ⊕H2.

Figure 6.18: Grid-Polyhedron difference requires the grid-polyhedra pairs to be weakly tight
products.

Example 6.36 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. Let

P1 := con
(

{0.5 ≤ x ≤ 4.5, 0.5 ≤ y ≤ 4.5}
)

, P2 := con
(

{1 ≤ x ≤ 5.5, 1 ≤ y ≤ 5.5}
)

and

L1 := gcon
(

{x ≡1 0,−x+ y ≡4 0}
)

, L2 := gcon
(

{x ≡2 0, x+ y ≡4 0}
)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.17(a). Then the grid-polyhedron dif-

ferenceH1 ⊖ H2 = (L1 ⊖ L2,P1 ⊖ P2) is given by

(

gcon
(

{x ≡2 1, x+ y ≡4 2}
)

, con
(

{0.5 ≤ x ≤ 4.5, 0.5 ≤ y ≤ 4.5, x + y ≤ 5.5}
)

)

.

The grid-polyhedronH1 ⊖ H2 is illustrated in Figure 6.17(b) and it can be seen thatH1 ⊖ H2

only contains the point(1, 1)T.

Now considerH1 = (L1,P
′
1) andH2 = (L2,P

′
2) in GP2. Let

P1 := con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4}
)

, P2 := con
(

{2 ≤ x ≤ 5, 2 ≤ y ≤ 5}
)

.

The grid-polyhedraH1 and H2 are also illustrated in Figure 6.18(a) and it can be seen that

(L1,P
′
1) andH2 = (L2,P

′
2) are weakly tight. Then the grid-polyhedron differenceH1 ⊖ H2 =

(L1 ⊖ L2,P1 ⊖ P2) is given by

(

gcon
(

{x ≡2 1, x+ y ≡4 2}
)

, con
(

{1 ≤ x ≤ 4, 1 ≤ y ≤ 4, x+ y ≤ 6}
)

)

.

The grid-polyhedronH1 ⊖ H2 is illustrated in Figure 6.18(b) and it can be seen thatH1 ⊖ H2

also contains the point(3, 3)T.

Chapter 6 113 The Grid-Polyhedron Domain

6.5.5 Affine Image and Pre-image

Affine transformations for the vector spaceRn will map hyperplanes to hyperplanes, preserve

intersection properties between hyperplanes and preserveratios of distances between points along

a hyperplane; such transformations can be represented by matrices inRn×n. It follows that the set

GPn is closed under the set of all affine transformations forRn. Simple and useful linear affine

transformations for numerical domains, including the grid-polyhedra, are provided by the ‘single

update’ affine image and affine pre-image operators.

Given a grid-polyhedronH = (L,P) ∈ GPn, a variablexk and linear expressione =

〈a,x〉+ b with coefficients inQ, theaffine image operatorφ(H, xk, e) maps the grid-polyhedron

H to
(

φ(L, xk, e), φ(P, xk , e)
)

.

Conversely, theaffine pre-image operatorφ−1(H, xk, e) maps the grid-polyhedronH to

(

φ−1(L, xk, e), φ
−1(P, xk, e)

)

.

Observe that the affine imageφ(H, xk, e) and pre-imageφ−1(H, xk, e) are invertible if and only

if the coefficientak in the vectora is non-zero. Note that as the affine image and pre-image

operations preserve intersection properties between hyperplanes and preserve ratios of distances

between points along a hyperplane we have that ifH = (L,P) and(L,P) is a reduced prod-

uct (resp. constraint, weakly tight or tight product), thenafter the affine image (resp. pre-

image) operation is performed the resulting grid-polyhedron pair
(

φ(L, xk, e), φ(P, xk , e)
)

(resp.
(

φ−1(L, xk, e), φ
−1(P, xk, e)

)

) is also a reduced product (resp. constraint, weakly tight or tight

product).

Thegeneralized affine image(resp.,generalized affine pre-image) is an extension of the affine

image (resp., affine pre-image) operator defined above. Given a grid-polyhedronH = (L,P) ∈

GPn, linear expressionse′ = 〈c,x〉 + d ande = 〈a,x〉 + b with coefficients inQ, f ∈ Q and

⊲⊳ ∈ {≤,=,≥}, the generalized affine image operatorψ = ψ(H, e′, e, f, ⊲⊳) is defined as

(

ψ(L, e′, e, f), ψ(P, e′ , e, ⊲⊳)
)

.

whereψ(L, e′, e, f) is defined as

∀v,w ∈ Rn : (v,w) ∈ ψ ⇐⇒
(

〈c,w〉 + d ≡f 〈a,v〉 + b
)

∧
(

∧

0≤i<n
ci=0

wi = vi

)

and whereψ(P, e′, e, ⊲⊳) is defined as

∀v,w ∈ Rn : (v,w) ∈ ψ ⇐⇒
(

〈c,w〉 + d ⊲⊳ 〈a,v〉 + b
)

∧
(

∧

0≤i<n

ci=0

wi = vi

)

.

Chapter 6 114 The Grid-Polyhedron Domain

Note that, whene′ = xk andf = 0, then the transformation is equivalent to the standard affine

transformation onL with respect to the variablexk and the affine expressione; that is

ψ(L, xk, e, 0) = φ(L, xk, e).

Also note that, whene′ = xk and⊲⊳ ∈ {=}, then the transformation is equivalent to the standard

affine transformation onP with respect to the variablexk and the affine expressione; that is

ψ(P, xk , e,=) = φ(P, xk, e).

6.5.6 Widening

Recall from Chapter 5 that we have described two widening operators for the grid domain and also

note that there are several possible widenings for the polyhedron domain [4,6,43,44]. Therefore

let ∇L be a widening on the grid domain and∇P a widening for the polyhedron domain. Let

H1 = (L1,P1) andH2 = (L2,P2), then

H1 ∇H2 :=
(

L1∇LL2,P1∇PP2

)

.

As noted in Section 6.2 if we use the standard widening for polyhedra, then∇ defined as above

is a widening for the all partially reduced product domains defined here except for the reduced

product domain. This is due to the fact that for a polyhedron widening to satisfy the ascending

chain condition, at each stage the constraint representation must decrease by at least one element.

However if the reduction method for the grid-polyhedra wereto include the adding of constraints

to the representation, which could occur with the a reduced product, this decrease will not be

achieved.

The widening function for grid-polyhedra will preserve thegiven reduction. Example 6.37

shows this for the case where both grid-polyhedra pairs are reduced products.

Example 6.37 ConsiderH1 = (L1,P1) andH2 = (L2,P2) in GP2. Let

P1 := con
(

{0 ≤ x, 0 ≤ y, −2 ≤ x− y ≤ 2, x+ y ≤ 6}
)

,

P2 := con
(

{0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x+ y ≤ 8}
)

and

L1 := gcon
(

{x ≡2 0, y ≡2 0}
)

, L2 := gcon
(

{x ≡1 0, x+ y ≡2 0}
)

.

The grid-polyhedraH1 andH2 are illustrated in Figure 6.19(a). ThenL1∇LL2 := gcon
(

{x +

y ≡2 0}
)

and

P1∇PP2 := con
(

{0 ≤ x, 0 ≤ y}
)

.

The grid-polyhedronH1 ∇ H2 is illustrated in Figure 6.19(b) and it can be seen that the grid-

polyhedron pair,
(

L1∇LL2,P1∇PP2

)

is a reduced product.

Chapter 6 115 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedraH1 andH2.

4

5

6

2

1

3

654321

(b) Grid-polyhedronH1 ∇H2.

Figure 6.19: Grid-Polyhedron Widening.

6.6 Discussion

As noted in Section 6.4 one way to improve the polyhedron constraint bounds would be to add

new constraints to the polyhedron representation. The reason why this method was not chosen

for our reduction was that standard polyhedron widening would not be guaranteed to terminate,

see Section 6.5.6. Although the method of adding polyhedronconstraints to minimise a grid-

polyhedron to a reduced product will not work with a standardwidening we will discuss below

some of the methods that could be used if the widening is considered as an extrapolation operation

instead.

6.6.1 Utilising Grid Congruences to Add Constraints

Consider the grid-polyhedronH = (L,P), whereL := gcon(CL) andCL is in minimal form.

Now for each proper congruence in the grid representation wecan find the maximal and minimal

values where the congruence would bound the polyhedron fromabove and below respectively.

Definition 6.38 (Grid Bounded Constraint System.) Let H = (L,P) be a grid-polyhedron

and (L,P) be a weakly tight product, whereP = con(P), L = gcon(C) andCL is in minimal

form. ThenCP is a grid bounded constraint systemfor H if, for each proper congruenceβ =
(

〈v,x〉 ≡f b
)

∈ CL:

1. if P is bounded in the directionv, then there existsν =
(

〈v,x〉 ≤ d
)

∈ CP .

2. there exists a pointp ∈ P such that〈v,p〉 = d;

3. if P is bounded in the direction−v, then there existsν ′ =
(

〈−v,x〉 ≤ d′
)

∈ CP .

4. there exists a pointp′ ∈ P such that〈−v,p′〉 = d′;

Chapter 6 116 The Grid-Polyhedron Domain

4

5

6

2

1

3

654321
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

Figure 6.20: Grid Bounded Constraint System.

Example 6.39 Consider the grid-polyhedronH = (L,P), whereL = gcon(CL) and CL :=

{x ≡2 0, y ≡3 0}. LetP be the polyhedron given by the constraint system

CP :=
{

4 ≤ x+ y ≤ 8,−2 ≤ y − x ≤ 2
}

.

ThenH is a weakly tight product and can be seen in Figure 6.20. The grid bounded constraint

system forH is given by

C = con
(

{1 ≤ x ≤ 5, 1 ≤ y ≤ 5}
)

.

The constraints ofC are illustrated in Figure 6.20 by the dashed lines.

Now if necessary the classical approaches of branch and bound or the cutting plane method can

be applied to the larger set of constraints, see Section 6.6.2. Note also that for each grid we can

produce the smallest rectilinear grid that containsL by computing the covering box. Suppose

therefore that we have a rectilinear gridL′ = gcon(CL
′), such that the congruences are given by

CL
′ := {xi ≡f bi}. Then we can also produce the rectilinear grid bounded constraints.

LetH = (L,P) be a grid-polyhedron where(L,P) is a weakly tight and constraint product.

Also letL = gcon(CL) be a relational grid,P = con(CP) andCP′ be the set of rectilinear and re-

lational grid bounded constraints forH which have been generated from the congruences systems

for L andL′, whereL′ is the smallest rectilinear grid containingL. Let CP′′ be the congruence

system returned by Algorithm 3 when applied toH =
(

L, con(CP
′)
)

. Then
(

L, con(CP ∪ CP
′′)
)

is a weakly tight product andH =
(

L, con(CP ∪ CP
′′)
)

. Example 6.40 demonstrates this.

Example 6.40 Consider the grid-polyhedronH = (L,P), whereL = gcon(CL), CL := {x ≡2

0, −3x+ 2y ≡12 0} andP is given by the constraint system

CP := {x ≤ 6, y ≤ 9, 4 ≤ x+ y, y − x ≤ 8, 2x− 3y ≤ 3}.

H can be seen in Figure 6.21(a). Then a rectilinear grid forL is L′ whereL′ = gcon(CL
′) and

Chapter 6 117 The Grid-Polyhedron Domain

8

6

4

2

2 4 6 8

rs rs

rs rs

rs rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

8

6

4

2

2 4 6 8
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs rs

rs rs

(b) Grid-polyhedronH =
`

L, con(CP ∪ CP
′′)

´

.

Figure 6.21: Adding constraints to a grid-polyhedron.

CL
′ := {x ≡2 0, y ≡3 0}. FromL andL′ we can calculate the relational and rectilinear grid

bounded constraints given by

CP
′ := {−2 ≤ x ≤ 6, 1 ≤ y ≤ 9, −12 ≤ −3x+ 2y ≤ 18}.

Now applyingAlgorithm 3 toH =
(

L, con(CP
′)
)

we get the constraint systemCP′′ and together

with the constraintCP we get the new constraint systemcon(CP ∪ CP
′′) where

CP
′′ := {−2 ≤ x ≤ 6, 3 ≤ y ≤ 9, −12 ≤ −3x+ 2y ≤ 12}.

H =
(

L, con(CP ∪ CP
′′)
)

can be seen in Figure 6.21(b). The constraint systemCP ∪ CP
′′ is

weakly tight for the grid-polyhedronH.

For any grid-polyhedronH = (L,P), whereL = gcon(CL) is relational andCL is in minimal

form, the complexity of creating the2n−2 new relational and rectilinear grid bounded constraints

using then relational congruences and then− 1 extra rectilinear congruences isO
(

νn2
)

, where

ν is the number of vertices inP. This is because, for each possible grid bounded constraint, we

calculate the value of the constraint at each vertex then take the maximum and minimum of these

to be the bounds.

6.6.2 Traditional Integer Programming Methods

An alternative approach to minimising the polyhedron with respect to the grid points is to consider

the already well researched topic of integer programming. It is well known that computing the

integer hull of a polyhedron is equivalent to solving an integer programming (IP) problem, that is,

solvemax{cTx|Ax ≤ b} whereA is anm×nmatrix,b ∈ Rm, c ∈ Rn andx ∈ Zn. In our case

Chapter 6 118 The Grid-Polyhedron Domain

we do not necessarily have the integer gridZn, however we can find the affine transformation that

maps the original grid to the integer grid. When this affine transformation is then applied to the

original grid and polyhedron we will get a problem that is nowan integer programming problem

and hence can be solved using the techniques described below. Once our integer programming

problem has been solved we can then apply the inverse of the affine transformation to get the grid

and polyhedron systems we require.

6.6.2.1 Branch and Bound

The branch and bound method is based on the classical approach of divide and conquer, the

algorithm proceeds by splitting the problem into smaller sub-problems and solves their linear

programming relaxations to provide upper bounds on the objective value. Although the outline

of the algorithm remains the same, the specific details of howthe algorithm is to be implemented

depends on the problem in hand. The differences include how many sub-problems to create at any

given point, which variable the emphasis of the sub-problemwill focus, and which sub-problem

to tackle first. At this point as we are only concerned with producing a weakly tight polyhedron,

our choices for the algorithm should focus more on producinga better approximation quickly

rather than a more accurate solution. We will now discuss each of these choices with our problem

in mind. For the following descriptions suppose we start with the following IP,max{cTx ∈

Rn|Ax ≤ b} whereA is anm × n matrix, b ∈ Rm, c ∈ Rn andx ∈ Zn. Also suppose after

applying the simplex method to the LP-relaxation we have a solution x = (χ1, . . . , χn). Let us

first consider the number of sub-problems to create:

• Variable Dichotomy: Suppose the solution to the relaxationhas some variable, sayχi,

which is fractional. Then the problem is split into two new sub-problems, one with the

extra inequalityxi ≤ ⌊χi⌋ and the other with the extra inequalityxi ≥ ⌈χi⌉.

• Bounded Variables: Suppose the solution to the relaxation has some value, sayχi, which is

fractional and we know thatxi ∈ {s, . . . , t}. Then we can split the problem intot− s+ 1

sub-problems, each with the extra equalityxi = j for j ∈ {s, . . . , t}.

In our case, the bounds within which a variables values may lay could be large or it is possible

that we may not know what the bounds are for each variable, therefore we believe it would be best

to use the variable dichotomy method to choose the type of sub-problem. This now leads us to the

problem that it may be possible for more than one variable to have a fractional value. Therefore

we need a method for choosing the variable the sub-problems will gain the extra inequality in.

• The Most Fractional Variable: Given a variablexi, we say its fractional value ismin{fi, 1−

fi}, wherefi = χi−⌊χi⌋. Then ifV is the set of variables which are fractional, the variable

we choose is the one whose fractional value is largest, iemaxi∈V min{fi, 1 − fi}.

• In order: Choose the first variable which is fractional.

Chapter 6 119 The Grid-Polyhedron Domain

Finally let us consider the problem of deciding which sub-problem to tackle first. It can be seen

that the algorithm produces a tree of problems where the initial problem is the root of the tree.

• Depth First with Backtracking: Descend as far down a branch of the tree as possible until

we can get no further then move onto the last sub-problem created and continue with that

branch.

• Breadth First: Starting at the left consider every sub-problem at the same level of the tree

before creating any more sub-problems.

• Best Bound: Choose the branch whose LP-relaxation has the best objective value, therefore

in the case of maximisation problems choose the largest.

• Most Fractional: Compute the fractional value,min{fi, 1 − fi}, for each of the branches,

then choose the branch with the maximum fractional value.

At this time as we are only concerned with gaining a better approximation rather than a precise

one, it would be best if any implementation we have limits thelength of any branches we may cre-

ate. Therefore if the limit of the length of branches is smallwe would be best choosing a breadth

first search. As within such a small search any advantages in efficiency gained by choosing a

best bound or fractional approach will be lost in the extra computations these processes require.

If however the branch restriction length is larger (say≥ 3) we recommend applying the most

fractional approach.

Example 6.41 Consider the example given in [81]. Suppose the (IP) is givenby

max 4x1 − x2 = z

subject to 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2.

Then the LP-relaxation has the solutionx = (20/7, 3) and upper boundz+ = 59/7. We now

divide the problem into two sub-problems using the variabledichotomy method. Asx1 /∈ Z

the first sub-problemS1 will have the extra inequalityx1 ≤ 2 and the second sub-problemS2

will gain the inequalityx1 ≥ 3. For this example we will restrict the length of branches to

two, therefore we will apply a breadth first search starting from the left. Consider theS1 branch,

solving the new (LP) we get the solutionx = (2, 1/2) and the upper boundz+ = 15/2. Therefore

as x /∈ Z2 we can split the problem again to get the sub-problemsS11 which has the extra

inequalityx2 ≤ 0 andS12 which has the extra inequalityx2 ≥ 1. As we are using a breadth first

search we now consider theS2 problem. Solving the new (LP) we find that it is infeasible, sothe

branchS2 is pruned. Now consider theS11 problem. The solution to the new (LP) isx = (3/2, 0)

Chapter 6 120 The Grid-Polyhedron Domain

IP

S1 S2

S11 S12

59/7

−INF
x1 ≤ 2 x1 ≥ 3

15/2 −INF

x2 ≤ 0 x2 ≥ 1

6 7

7

Figure 6.22: The complete branch and bound tree for Example 6.41.

with upper boundz+ = 6, however as we are restricting the length of the branches we will not

split the problem again. Therefore consider the final problemS12, we get the solutionx = (2, 1)

to the new (LP) which is integral and therefore the upper bound is z+ = 7. The complete branch

and bound tree can be seen in Figure 6.22. Now letH = (L,P) be the grid-polyhedron where

L = Z2 andP = con
(

{4x1 − x2 ≤ 7, 7x1 − 2x2 ≤ 14, x2 ≤ 3, 2x1 − 2x2 ≤ 3}
)

. Then the

constraint4x1 − x2 ≤ 7 is weakly tight forH.

6.6.2.2 Cutting Planes

The cutting plane method is based on the classical brute force approach, the algorithm succes-

sively adds inequalities to the LP problem, called cutting planes, and solves them to hopefully

give a better approximation. The classic approach to producing the cutting planes is the Chvátal-

Gomory (C-G) procedure and the inequalities produced are called C-G inequalities. This proce-

dure involves taking positive combinations or scalar multiples of the inequalities of the LP and

performing integer rounding to generate the new inequalities to be added to the LP so that it can

be solved. For example, suppose the inequalities of the LP are given byAx ≤ b whereA is an

m×nmatrix,b ∈ Rm andx ∈ Zn. Then ifu ∈ Rm
+

we can produce new inequalities as follows:

1. Multiply the LP inequalities byu. Then

n
∑

i=1

uTaixi ≤ uTb

is still a valid inequality.

2. Assuming we have a maximisation problem, we now round downthe LHS of the inequali-

ties. Then
n
∑

i=1

⌊uTai⌋xi ≤ uTb

Chapter 6 121 The Grid-Polyhedron Domain

is still a valid inequality.

3. We now round down the RHS of the inequalities. Then

n
∑

i=1

⌊uTai⌋xi ≤ ⌊uTb⌋

is still a valid inequality and is integer.

Note that it is shown in [67] that this procedure is sufficientto produce all valid inequalities after

a finite number of iterations.

Another approach to producing cutting planes is Gomory’s fractional cutting plane algorithm.

This approach first solves the LP-relaxation to produce the tight solution and from the rows of the

associated tight simplex tableau the fractional cuts are taken. For example, suppose the following

LP, max{cTx ∈ Rn|Ax ≤ b} whereA is anm × n matrix, b ∈ Rm, c ∈ Rn andx ∈ Rn.

Also suppose after applying the simplex method to the LP-relaxation we have the tight tableau

represented by

yi +
n
∑

i=1

aijvj = bi for i = 1, . . . ,m

wherey ∈ Zm
+

are the basic variables andv ∈ Zn
+

are the non-basic variables. Then the Gomory

fractional cutting planes are given by

yi +

n
∑

i=1

f ijvj = gi for i = 1, . . . ,m

wherefij = aij − ⌊aij⌋ andgi = bi − ⌊bi⌋.

With both the C-G procedure and Gomory’s fractional cuts we believe it would be best for our

problem if a set ofn cutting planes were added for the first iteration. After thatwe recommend

either stopping or applying the branch and bound technique,since if we were to add another

family of n inequalities the problem could become large ifn were large.

Example 6.42 Consider the example given in [55] which uses Gomory’s fractional cuts. Suppose

we have the (IP)

max 2x1 + x2 = z

subject to x1 + 2x2 ≤ 7

2x1 − x2 ≤ 3

x ∈ Z2.

Then after applying the simplex algorithm to the LP-relaxation we get the following tight simplex

Chapter 6 122 The Grid-Polyhedron Domain

table.
x4 x3

x2 −1/5 2/5 11/5

x1 2/5 1/5 13/5

−z 3/5 4/5 37/5

We can take the fractional parts of each of the rows to create new inequalities. Taking the frac-

tional part of the first row we get0.4x3 + 0.8x4 ≥ 0.2 which is equivalent tox1 ≤ 2.5. Similarly,

taking the fractional part of the second row we generate the constraint0.2x3+0.6x4 ≥ 0.6 which

is equivalent to7x1 − x2 ≤ 13.

6.7 Related Work

Recall form Section 3.8 that in her thesis Ancourt [1] (see also [68, 71, 72]) considered the do-

main ofZ-polyhedra; that is a domain ofintegral latticesintersected with the domain of convex

integral polyhedra. Here the product is a direct product andtherefore there is no interaction be-

tween component domains. Also recall form Section 4.9 that the operations which are similar

to our operations are those of grid-polyhedron intersection, affine image and affine pre-image.

The operations of grid-polyhedron join and grid-polyhedron difference (as defined here) are not

considered; instead the union operator takes two grid-polyhedraH1 andH2 and returns a set. The

Z-polyhedron domain was then extended in [42] so that theZ-polyhedra are considered to be the

affine images of integer polyhedra, where the affine image is the transformation represented by

the generator system of the integer lattice.

Example 6.43 LetL = ggen(GL) andP = con(CP), where

GL :=

(

∅,

(

3 0

0 2

)

,

(

0

0

))

,

CP := {x ≤ 1, y ≤ 3}.

Then theZ-polyhedron is given by the set

{x ∈ L|x ≤ 3, y ≤ 6}.

Therefore if we think of this interpretation for our grid-polyhedron domain, with the restriction

that the generator description for the grids do not contain lines, we consider objects that are affine

images of integer polyhedra, where the affine image is the transformation represented by the gen-

erator system of the rational grid. The main difference withthis interpretation of theZ-polyhedra

is how the operations such as intersection, union and difference are now performed, whereas be-

fore the operations where applied to the separate components now the desired operation must be

applied in stages. First the operation is applied to the lattices to get the new affine transformation,

Chapter 6 123 The Grid-Polyhedron Domain

then this transformation is applied to theZ-polyhedra and finally the operation is applied to the

these two newZ-polyhedra.

6.7.1 Products

This section gives an overview of the different ways we couldhave represented the combining of

two domains and considers the advantages and disadvantagesof each method.

6.7.1.1 Cartesian Product

The Cartesian product is the most basic of combinations as the product is represented by the pair

and there is no interaction between the two domains. Supposewe are given the two abstract

domainsA1, A2 with concretisation functionsγ1 : A1 → C andγ2 : A2 → C, respectively.

Then the Cartesian product has the domainA× = A1 ×A2. The concretisation function is given

by γ : A× → C × C, where

γ
(

(a1, a2)
)

:=
(

γ1(a1), γ2(a2)
)

and the abstraction function is given byα : C × C → A×, where

α(c, c) :=
(

α1(c), α2(c)
)

.

6.7.1.2 Direct Product

The Direct product [28] is the most basic of combinations where the objects are considered to

be the intersection of the two components. Like the Cartesian product, for the direct product,

there is also no interaction between the two domains. Suppose we are given the two abstract

domainsA1, A2 with concretisation functionsγ1 : A1 → C andγ2 : A2 → C, respectively.

Then the direct product has the domainA× = A1 ×A2. The concretisation function is given by

γ : A× → C, where

γ
(

(a1, a2)
)

:= γ1(a1) ⊓ γ2(a2)

and the abstraction function is given byα : C → A×, where

α(c) :=
(

α1(c), α2(c)
)

.

If the concrete operationCO : C → C has the corresponding abstract operationsAO1, AO2

over the abstract domainsA1, A2, respectively, then the abstract operation over the directproduct

domain can be constructed as follows

AO×

(

(a1, a2)
)

:=
(

AO1(a1), AO2(a2)
)

.

Chapter 6 124 The Grid-Polyhedron Domain

The advantages of the direct product are that it is easy to implement as the direct product will

just pair together the existing implementations. Therefore this product produces the simplest way

to gain the extra information not yielded by a single domain analysis. However the disadvantage

of the direct product is that since there is no interaction between the elements of each domain

an amount of precision can be lost. Also there may be a loss of efficiency, for example, there is

no sharing of equalities between the two domain components which could lead to extra opera-

tions being performed unnecessarily. Another disadvantage of the direct product is that a Galois

insertion is not always formed, which again can lead to a lossof precision.

6.7.1.3 Reduced Product

The Reduced product was introduced by Cousot and Cousot [28]as a way to gain some of the

precision lost by the direct product. Suppose we are given the two abstract domainsA1, A2 with

concretisation functionsγ1 : A1 → C andγ2 : A2 → C, respectively and the direct product

domainA× = A1 × A2. Then the concept of the reduced product is to add to the direct product

a function which maps all the elements with the same concretisation into an equivalence class.

Then each class will have an element which represents the class which will be used to improve

precision. The reduction functionR : A× → A× is defined as

R
(

(a1, a2)
)

:= ⊓
{

(e1, e2) | γ
(

(e1, e2)
)

= γ
(

(a1, a2)
)}

.

Then the reduced product domain is the domain

AR =
{

R
(

(a1, a2)
)

| a1 ∈ A1, a2 ∈ A2

}

.

The concretisation operator,γ : AR → C, and the abstraction operator,α : C → AR, are given

as follows

γ
(

(a1, a2)
)

:= γ1(e1) ⊓ γ2(e2), where R
(

(a1, a2)
)

= (e1, e2),

α(c) := R
(

(

α1(c), α2(c)
)

)

.

The corresponding abstract operation for the concrete operationCO : C → C is as follows

AOR

(

(a1, a2)
)

:= R
(

α1(r), α2(r)
)

where r = CO
(

γ
(

(a1, a2)
)

)

.

The advantages of the reduced product is that it can yield more precise analysis results compared

to the direct product and that the reduced product forms a Galois connection provided the two

original domains are Galois connections. The disadvantageof the reduced product is that its im-

plementation would require all the abstract operations to be revised with respect to the reduction

function. Which is not only a difficult process as it involvesthe theoretical concretisation function

it goes against the fact that we are trying to use existing domains and their abstract operators so

Chapter 6 125 The Grid-Polyhedron Domain

that as little as possible new work needs to be done.

6.7.1.4 Pseudo-reduced Product

The product domain described in [22], called the Pseudo-reduced product by the authors of [25],

considers a refined version of the reduced product. The pseudo-reduced product has the domain

AP = AR and concretisation and abstraction functions follow from those of the reduced product

domain. However the abstract operations are defined as

AOP

(

(a1, a2)
)

:= R
(

AO1(a1), AO2(a2)
)

,

whereAO1 andAO2 are the abstract operations over the abstract domainsA1, A2, respectively,

for the concrete operationCO : C → C. As the abstract operations are defined in terms of

the reduction function the disadvantages of the Pseudo-reduced product follow from those of

the reduced product except that the concretisation function is no longer needed for the abstract

operations.

6.7.1.5 Open Product

The Open product is described in [25]. The open product has the domainAO = A1 × A2. The

abstract operations are defined as

AOO

(

(a1, a2)
)

:=
(

AO1

(

Q1(a1, a2), . . . , Q
m(a1, a2)

)

(a1), AO2

(

Q1(a1, a2), . . . , Q
m(a1, a2)

)

(a1)
)

,

where theQi are queries, defined asQi(a1, a2) = Qi
1(a1) ∨Q

i
2(a2), which are monotone func-

tions that map elements or the domain onto tests. The advantage of this domain is that since the

abstract domain is that of the Cartesian product the only extra implementation work would be that

of producing the query operators. The disadvantage of this domain is that it is not as efficient as

the reduced product domain.

6.7.1.6 Granger’s Product

Granger introduced his idea of a product domain in [40]. The concept was to have two new

operationsσ1 : A1 × A2 → A1 andσ2 : A1 × A2 → A2 which would refine each of the

components of the product thus allowing the two domains to interact. Specifically,σ1 andσ2 are

such that

σ1(a1, a2) ≤ a1 and γ
(

(

σ1(a1, a2), a2

)

)

= γ
(

(a1, a2)
)

,

σ2(a1, a2) ≤ a2 and γ
(

(

a1, σ2(a1, a2)
)

)

= γ
(

(a1, a2)
)

,

Chapter 6 126 The Grid-Polyhedron Domain

respectively. The product is then defined as the fixpoint of the decreasing iteration sequence given

by
(

(ηn
1 , η

n
2)
)

n∈N
which is defined as follows

(η0
1 , η

0
2) = (a1, a2),

(ηn+1
1 , ηn+1

2) =
(

σ1(η
n
1 , η

n
2), σ2(η

n
1 , η

n
2)
)

.

The advantage of this domain is that since the abstract domain is that of the Direct product the only

extra implementation work would be that of producing the refinement operators for each domain.

The disadvantage of this domain is that it is not as efficient as the reduced product domain.

6.7.2 Traditional Methods to Test for Emptiness

We now give a description of some alternative ways to test if an integral grid-polyhedron,Zn∩P,

is empty.

6.7.2.1 Ellipsoid Method

Khachiyan’s method [76, Section 13] and the more general ellipsoid method [67,76, Section 14]

work by finding a series of ellipsoids of decreasing volume and testing if their centres are points

within the polyhedron.

Definition 6.44 (Ellipsoid.) Anellipsoidwith centrey is the set

E = {x ∈ Rn|(x − y)TD−1(x − y) ≤ 1},

written asE(D,y), whereD is ann× n positive definite matrix andy ∈ Rn.

The following outline is taken from [76, Section 13]. Letφ = 4n2µ andR = 2φ, whereµ is the

number of constraints in the representation ofP. ThenP ⊆ {x| ‖x‖ ≤ R} = E0. The method

consists of computing the sequence of ellipsoidsE0, E1, E2, . . . each having a smaller volume,

such thatP ⊆ Ei, for all i. So for each ellipsoidEi we have a centreyi and a positive definite

matrixDi. Now if the centre,yi, of the ellipsoidEi does not lie inP then it must have violated

a constraint of the representation, sayaT · x ≤ c. ThenEi+1 is the smallest ellipsoid containing

Ei ∩ {x|aT · x ≤ aT · yi}.

6.7.2.2 The Linear Inequality Integer Feasibility Problem

This process consists of checking to see if the unit hypercube will fit inside a bounded polyhedron.

To check this property though the polytopes must be of a certain form. The following definitions

are used to test for emptiness, taken from [67, Page 515].

Definition 6.45 (Sphere.)A spherewith centrey and radiusr is the set

S = {x ∈ Rn|(x − y)T(x − y) ≤ r2},

Chapter 6 127 The Grid-Polyhedron Domain

written asS(y, r), wherey ∈ Rn.

Definition 6.46 (Round.)A polytope,P ∈ Rn, is roundif there exists a constantc and rationals

y ∈ Rn, r1, r2 ∈ R+, such that

1. S(y, r1) ⊆ P ⊆ S(y, r2);

2. r2

r1
≤ c.

Assuming we have a round full-dimensional polyhedron the test to see ifZn ∩ P 6= ∅ has two

cases.

1. r1 ≥ 1
2n

1

2 .

In this case the unit hypercube with centrey is contained inP and henceP must contain

an integer point.

2. r1 < 1
2n

1

2 .

In this caseP can only contain at most one integer point hence the problem can be solved

by total enumeration.

The problem occurs with this method if it is found that the polytope is not round. If this happens

then an affine transformation must be applied to the polytopeto make it round and hence, as noted

in [67, Page 518], the problem then becomes equivalent to that of testing for emptiness when we

do not have the integral grid.

6.8 Conclusion

We have introduced the partially reduced product of two geometric domains which allows for

a range of interaction between the two components. For the product we defined several new

reduction operations including the constraint product, weakly tight product and tight product. For

the grid-polyhedron domain we gave methods for creating a directed non-redundant congruence,

a weakly tight constraint system and a test for emptiness, the last two of which have complexity

O
(

n2µ
)

, whereµ is the cardinality of the original constraint system.

Chapter 7

Weakly Relational Grid-Polyhedron

Domains

7.1 Introduction

In this chapter we will introduce some weakly relational grid-polyhedron domains. These do-

mains are the product of a grid or a weakly relational grid with some of the weakly relational

sub-domains of the polyhedra. Namely we will specify the grid-box domain and introduce the

grid-bds, bounded difference grid shape, grid-octagon andogrid-octagon domains which have not

been proposed before. For each of the different combinations of domain we will consider how

the result of the weakly tight algorithm, Algorithm 3, is effected. Specifically, we will show, with

certain restrictions to the grid, we can achieve results such as a tight or reduced product. We will

then consider the effect the restriction to these sub-domains of grid-polyhedra will have on the

other operations.

7.2 Grid-Boxes

Let us first consider the combination of a grid with a box.

Definition 7.1 (Grid-Box.) LetP = con(CP) be a box inCPn andL = gcon(CL) a grid in Gn.

Then we say thatH = (L,P) := L ∩ P is a grid-box. Thegrid-box domainis a subset ofGPn

and is the set of all grid-boxes inRn ordered by the set inclusion relation.

Note that∅ andRn are grid-boxes and therefore are the bottom and top elementsof the subset

respectively.

129

Chapter 7 130Weakly Relational Grid-Polyhedron Domains

Definition 7.2 (Rectilinear Grid-Box.) We say a grid-box isrectilinearif and only if the grid is

rectilinear.

Recall that as ann-dimensionalboxB is a sequence(I1,In) of intervals over the setR, a

1-dimensional grid-box is a grid-interval. Therefore all the results of this section will also hold

for the domain of grid-intervals.

Let H = (L,P). As the box domain is a non-relational domain when we create the di-

rected non-redundant congruences from the constraints inP we will want to create non-relational

congruences. Therefore if we only haveL represented by a generator system we can do this us-

ing Proposition 4.11 from Section 4.6 as this will create thesmallest rectilinear grid containing

L, otherwise we will use Algorithm 2. Before we introduce a test for emptiness, we will first

discuss how the results of Algorithm 3 are improved when considering grid-boxes. Given a grid-

polyhedronH whereP = con(CP) andL is rectilinear then Algorithm 3 will move in the box

bounds with respect to the grid so that
(

L, con(CP
′)
)

is a reduced product. If howeverL is not

rectilinear then Algorithm 3 will produce a weakly tight boxconstraint system forH as shown by

Proposition 6.23.

Proposition 7.3 LetH = (L,P) ∈ GPn be a rectilinear grid-box where(L,P) is a constraint

and weakly tight product. Then(L,P) is a reduced product.

Proof. LetH = (L,P) ∈ GPn be a rectilinear grid-box whereL = gcon(CL) andP = con(CP).

As we can represent any equality
(

〈v,x〉 = d
)

by the two inequalities
(

〈v,x〉 ≤ d
)

and
(

〈v,x〉 ≥

d
)

we can assume thatCP only contains inequalities. Assume thatP is bounded. AsL is the set

of vectors inRn that satisfy all the congruences ofCL we can writeL as

{x ∈ Rn|xi = ti + si · fi,∀si ∈ Z}.

As CP is a non-relational set of constraints there isν =
(

vi ·xi ≤ d
)

∈ CP , such thatvi 6= 0. Then

as(L,P) is a weakly tight productd = ti + ui · fi for someui ∈ Z. Therefore the constraints of

CP intersect at grid-box points. IfP is unbounded the result follows. Hence if(L,P) is a weakly

tight product then(L,P) is a reduced product.�

Corollary 7.4 LetH = (L,P) ∈ GPn be a rectilinear grid-box whereP = con(CP) and(L,P)

is a constraint product. Also letCP′ be the constraint system returned byAlgorithm 3 when

applied to
(

L, con(CP)
)

. ThenH =
(

L, con(CP
′)
)

and the pair
(

L, con(CP
′)
)

is a reduced

product.

Proof. From Proposition 6.23,H =
(

L, con(CP
′)
)

and the pair
(

L, con(CP
′)
)

is a weakly tight

product. Then, by Proposition 7.3,
(

L, con(CP
′)
)

is a reduced product.�

LetH = (L,P) ∈ GPn be a rectilinear grid-box where(L,P) is a constraint product. Then ifCP′

is the constraint system returned by Algorithm 3 when applied to
(

L, con(CP)
)

, σ1
R(L,P) = L

andσ2
R(L,P) = con(CP

′).

Chapter 7 131Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12108642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs rs rs

rs

rs

rs

rs

rs

rs rs rs rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12108642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs rs rs

rs

rs

rs

rs

rs

rs rs rs rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.1: Producing a reduced product grid-box.

For any grid-boxH = (L,P), whereL = gcon(CL) andCL is in minimal form, the cost of

performing Algorithm 3, which improves the constraint bounds, depends on a number of factors:

if the congruence systemCL represents a rectilinear grid, then the complexity isO
(

n
)

; if, only the

generator system is known and does not represent a rectilinear grid, then the complexity is that

of producing the covering box, which is, at worst,O
(

n2
)

; if, however, the congruence systemCL
does not represent a rectilinear grid, then the complexity isO

(

n3
)

.

Example 7.5 shows that given a rectilinear grid-boxH = (L,P), whereP = con(CP) and

(L,P) is not a weakly tight product, Algorithm 3 will return a constraint systemCP′ such that the

grid-box
(

L, con(CP
′)
)

is a reduced product.

Example 7.5 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡3 2, y ≡2 0} and the

box,P = con(CP) in CP2, where

CP := {1 ≤ x ≤ 10, 3 ≤ y ≤ 9}.

H = (L,P) can be seen in Figure 7.1(a). It can be seen thatCP is not a tight constraint system for

H and also note thatCP is not a weakly tight constraint system forH as not all of the constraints

are saturated by a point ofL. Now after applyingAlgorithm 3 to CP , we havecon(CP
′) in CP2

where

CP
′ := {2 ≤ x ≤ 8, 4 ≤ y ≤ 8}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.1(b). Then, not only can it be seen thatCP
′ is a tight

constraint system forH as every constraint is saturated by at least one grid-box point, but also

the pair
(

L, con(CP
′)
)

is a reduced product.

For any grid-boxH = (L,P), whereL = gcon(CL) andCL is in minimal form, the cost of

performing the test for emptiness, depends on a number of factors: if the congruence systemCL
represents a rectilinear grid, then the complexity of testing for emptiness is linear; if, only the

Chapter 7 132Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.2: Producing a weakly tight grid-bds.

generator system is known and does not represent a rectilinear grid, then the complexity is that

of producing the covering box, which is, at worst,O
(

n2
)

; if, however, the congruence systemCL
does not represent a rectilinear grid, then the complexity isO

(

n3
)

.

7.3 Grid-BDS

Let us now consider the grid-bds domain which is a subset of the grid-polyhedron domain and

combines the domain of grids with the bounded difference shape domain.

Definition 7.6 (Grid-BDS.) LetP = con(CP) be a bds inCPn andL = gcon(CL) a grid in Gn.

Then we say thatH = (L,P) := L ∩ P is a grid-bds. Thegrid-bds domainis a subset ofGPn

and is the set of all grid-bds inRn ordered by the set inclusion relation.

Note that∅ and Rn are grid-bds and therefore are the bottom and top elements ofthe subset

respectively. Recall from Section 2.3.3 that we can represent a bounded difference shape by a

weighted graph and that a closed set of constraints for a bds refers to the set derived from a closed

weighted graph. As Algorithm 3 will not produce a closed constraint system for the product if

we apply the closure algorithm after Algorithm 3 has been performed, we will have a closed

constraint system but we will not necessarily have a weakly tight product anymore. Example 7.7

illustrates this point.

Example 7.7 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡4 0, y ≡3 0} and the

bds,P = con(CP) in CP2, where

CP := {2 ≤ x ≤ 12, 1 ≤ y ≤ 8, −5 ≤ x− y ≤ 4}.

H = (L,P) can be seen in Figure 7.2(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example

Chapter 7 133Weakly Relational Grid-Polyhedron Domains

2 ≤ x. Now after applyingAlgorithm 3 to CP , we havecon(CP
′) in CP2 where

CP
′ := {4 ≤ x ≤ 12, 3 ≤ y ≤ 6, −5 ≤ x− y ≤ 4}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.2(b). Also the constraint−5 ≤ x − y and x ≤ 12

are illustrated in Figure 7.2(b) by the dashed lines. It can be seen thatAlgorithm 3 does not

improve these constraints as they are saturated by the grid point (4, 10)T and (12, 0)T respec-

tively. However, if the closure algorithm were applied to the weighted graph that represents

H =
(

L, con(CP
′)
)

, we would get the new closed set of constraintsclosure(CP
′) = CP

′′ which

are derived from this closed weighted graph, where

CP
′′ := {4 ≤ x ≤ 10, 3 ≤ y ≤ 6, −2 ≤ x− y ≤ 4}.

So by applying the closure algorithm,H =
(

L, con(CP
′′)
)

and the constraint−5 ≤ x − y is

improved to−2 ≤ x − y. However, now the constraintx ≤ 12 is improved tox ≤ 10 which is

not saturated by a grid point. So
(

L, con(CP
′′)
)

is not a weakly tight product.

As a bounded difference shape has at mostn2 + n constraints, ifH = (L,P), then Algorithm 3

has complexityO
(

n2
)

if L is rectilinear, otherwise if the grid is not rectilinear it has complexity

O
(

n4
)

. Also as a bounded difference shape constraint system whichis closed is a paired con-

straint system and as the test for emptiness uses Algorithm 3, it has the same complexity. The

following is a corollary to Proposition 7.3.

Corollary 7.8 LetH = (L,P) ∈ GPn be a grid-bds whereP = con(CP), (L,P) is a constraint

product andL is rectilinear. Also letCP′ be the bounded difference shape constraint system re-

turned byAlgorithm 3when applied to
(

L, con(CP)
)

. If CP′ is a constraint system that represents

a box then
(

L, con(CP
′)
)

is a reduced product.

Proof. By Proposition 6.23,H =
(

L, con(CP
′)
)

and
(

L, con(CP
′)
)

is a weakly tight product.

Therefore, by Proposition 7.3,
(

L, con(CP
′)
)

is a reduced product.�

We will now introduce some results that will be needed to showin certain circumstances a pair

representing a grid-bds can be made to be a tight or reduced product.

Proposition 7.9 LetH = (L,P) ∈ GPn be a grid-bds whereP = con(CP) andL = gcon(CL)

is rectilinear. Also letCP i,j ⊆ CP be the set of bds constraints over the variablesxi, xj , for

i, j ∈ {1, . . . , n}, and letCLi,j ⊆ CL be the congruence system over the variablesxi, xj , for

i, j ∈ {1, . . . , n}. Then(L,P) is a tight or reduced product if and only if every2-dimensional

subset
(

gcon(CLi,j), con(CP i,j)
)

of
(

gcon(CL), con(CP)
)

is a tight or reduced product.

Proof. Let us first assume that(L,P) is a tight product. Then every constraint inCP is saturated

by a grid-bds point. Therefore, any constraint in a2-dimensional subset ofCP is saturated by

a grid-bds point. Hence, every2-dimensional subset of
(

gcon(CL), con(CP)
)

is a tight product.

Chapter 7 134Weakly Relational Grid-Polyhedron Domains

−c1

|d|

c2

c3

(a) d = c1 + c2

−c1

c2

c3

|d|

(b) d < c1 + c2, |d| 6= c2 − c3

−c1

c2

c3

|d|

(c) d < c1 + c2, |d| 6= c2 − c3

Figure 7.3: Illustrations for Proposition 7.10.

Now suppose that(L,P) is a reduced product. Then every vertex ofH is a grid-bds point. So each

face ofP is a2-dimensional bds whose vertices are grid-bds points. Hence, every2-dimensional

subset of
(

gcon(CL), con(CP)
)

is a reduced product.

Suppose that every2-dimensional subset of
(

gcon(CL), con(CP)
)

is a tight product. So every

constraint in each subset is saturated by a grid-bds point. Now, the setCP is the union of these

subsets of constraints. Also, asL is rectilinear, the setCL is the union of these subsets of con-

gruences. Thus,(L,P) is a tight product. Finally, suppose that every2-dimensional subset of
(

gcon(CL), con(CP)
)

is a reduced product. So each subset is a2-dimensional bds whose vertices

are grid-bds points. Now, for anyk 6= i, k 6= j, we haveCP i,k andCP j,k are reduced products.

In n-dimensions we can think ofCP i,j as the bds where the values of each variablexk are fixed,

for k 6= i, k 6= j. So, asL is rectilinear,
(

L, con(CP i,j)
)

is a reduced product ifxk ≡fk
bk for

k 6= i, k 6= j. Hence(L,P) is a reduced product.�

Proposition 7.10 Let H = (L,P) ∈ GP2 be a grid-bds whereP = con(CP), CP is a closed

constraint system andL = gcon(CL) is rectilinear. Supposeν =
(

〈v,x〉 ≤ d
)

∈ CP , where

vi 6= 0, vj 6= 0 and vi 6= vj , νi = (vi · xi ≤ c1) ∈ CP , νj = (vj · xj ≤ c2) ∈ CP and

νi = (−vi · xi ≤ c3) ∈ CP . Then, there are only three cases that can occur:

1. d = c1 + c2,

2. d < c1 + c2 and |d| 6= c2 − c3,

3. d < c1 + c2 and |d| = c2 − c3.

Proof. By Proposition 7.9 we only need to consider the2-dimensional case. A version of the

2-dimensional scenario for Case (1) can be seen in Figure 7.3(a), a version of the2-dimensional

scenario for Case (2) can be seen in Figure 7.3(b) and a version of the2-dimensional scenario

Chapter 7 135Weakly Relational Grid-Polyhedron Domains

for Case (3) can be seen in Figure 7.3(c). AsCP is closed, each constraint must intersect at

least one other constraint at a vertex ofP. Therefore,ν must intersectνj at a point such that

−c1 ≤ x ≤ c3. Therefored = c1 + c2 or d < c1 + c2 and|d| 6= c2 − c3 or |d| = c2 − c3. Let

νj = (−vj · xj ≤ c4) ∈ CP . Thenν must intersectνi at a point such that−c4 ≤ x ≤ c2. This

can be shown using Cases (1), (2) and (3) where thexj andxi variables are swapped.�

Definition 7.11 (Common Frequency Grid.) Let L = gcon(CL) be a rectilinear grid where

CL is in minimal form. Suppose that the congruences ofCL can be ordered such that for all

γi = (xi ≡fi
bi) ∈ CL, fi|fi+1. Then we say thatL is a common frequency grid.

For Proposition 7.12 and Proposition 7.15, letP = con(CP), whereCP is a closed set of con-

straints forP, and let{CP1, CP2} be a partition ofCP whereCP1 contains the non-relational con-

straints andCP2 contains the constraints which are not non-relational. Propositions 7.12 and 7.15

will now show that with certain restrictions on the grid description Algorithm 3 will produce a

constraint system which is a tight and reduced product forH respectively.

Proposition 7.12 LetH = (L,P) ∈ GPn be a grid-bds where(L,P) is a constraint product,

P = con(CP) whereCP is a closed constraint system andL = gcon(CL) is rectilinear and a

common frequency grid. Suppose that the following steps areapplied:

1. Algorithm 3 returns the constraint systemCP′ when it is applied to
(

L, con(CP)
)

,

2. closure(CP
′) = CP

c,

3. Algorithm 3 returns the constraint systemCP′′ when it is applied to
(

L, con(CP
c)
)

.

ThenH =
(

L, con(CP
′′)
)

and the pair
(

L, con(CP
′′)
)

is a tight product.

Proof. Let CP = CP1 ∪ CP2. As Algorithm 3 considers each constraint bound, one at a time and

independently of the next, we can assume that Algorithm 3 is applied to the constraint systemCP1

first and then applied toCP2. AsL is a common frequency grid, we can assume that, without loss

of generality,fi|fj for i < j. By Proposition 7.9, asL is rectilinear, we only need to consider the

variablesxi andxj . Suppose first thatP is bounded. AsCP is a closed constraint system, if

νi = (vi · xi ≤ c1) ∈ CP1, νj = (vj · xj ≤ c2) ∈ CP1,

νi = (−vi · xi ≤ c3) ∈ CP1,

wherevi 6= vj , then there isν =
(

〈v,x〉 ≤ d
)

∈ CP2, wherevi 6= 0, vj 6= 0.

As CP is a closed constraint system, we need to show
(

L, con(CP
′′)
)

is a tight product by

considering the three cases from Proposition 7.10. We will prove this by induction on the number

of constraints inCP2. Let

ν ′i = (vi · xi ≤ c′1) ∈ CP
′
1, ν ′j = (vj · xj ≤ c′2) ∈ CP

′
1,

ν′i = (−vi · xi ≤ c′3) ∈ CP
′
1, ν ′ =

(

〈v,x〉 ≤ d′
)

∈ CP
′
2i+1

Chapter 7 136Weakly Relational Grid-Polyhedron Domains

be the constraintsνi, νj, νi andν, respectively, after Step (1) is applied, let

ν ′′i = (vi · xi ≤ c′′1) ∈ CP
c
1, ν ′′j = (vj · xj ≤ c′′2) ∈ CP

c
1,

ν ′′i = (−vi · xi ≤ c′′3) ∈ CP
c
1, ν ′′ =

(

〈v,x〉 ≤ d′′
)

∈ CP
c
2i+1

be the constraintsν ′i, ν
′
j, ν

′
i andν ′, respectively, after Step (2) is applied and let

ν ′′′i = (vi · xi ≤ c′′′1) ∈ CP
′′
1, ν ′′′j = (vj · xj ≤ c′′′2) ∈ CP

′′
1 ,

ν′′′i = (−vi · xi ≤ c′′′3) ∈ CP
′′
1, ν ′′′ =

(

〈v,x〉 ≤ d′′′
)

∈ CP
′′
2i+1

be the constraintsν ′′i , ν ′′j , ν′′i andν ′′, respectively, after Step (3) is applied.

If CP2 = ∅, then by Proposition 7.3, asL is rectilinear, when Step (1) is applied, the grid-box
(

L, con(CP
′
1)
)

is a reduced product. So the pair of constraintsν ′i andν ′j intersect at a grid-bds

point. Therefore after Step (2) is appliedν ′′i andν ′′j intersect at a grid-bds point. Therefore if

Step (3) returns the constraint systemCP′′
1 then the pair

(

L, con(CP
′′
1)
)

is a reduced product and

therefore is a tight product. Let us suppose that the result holds for the set of constraintsCP1∪CP2i

whereCP2i ⊆ CP2. We will now show the result holds for the set of constraintsCP1 ∪ CP2i+1

whereCP2i+1 = CP2i ∪ {ν}.

Suppose that we have Case (1) from Proposition 7.10. As
(

L, con(CP
c
1)
)

is a reduced product

we have thatd′′ = c′′1 + c′′2 . Henceν ′′ saturates a grid-bds point. Hence
(

L, con(CP
c
1 ∪ {ν ′′})

)

is

a tight product. So if Step (3) returns the constraint systemCP
′′
1 ∪ CP

′′
2i+2, thenν ′′ = ν ′′′ and the

pair
(

L, con(CP
′′
2 ∪ CP

′′
2i+1)

)

is a tight product.

Suppose now that we have Case (2) from Proposition 7.10. Suppose that Step (1) is applied to

CP1 ∪CP2i+1. If d′ = c′1 + c′2, then after Step (2) is applied,d′′ = c′′1 + c′′2. Hence, from Case (1),

ν ′′i andν ′′j intersect at a grid-bds point andν ′′ saturates a grid-bds point. Hence,
(

L, con(CP
c
1 ∪

CP
c
2i+1)

)

is a reduced product, and if Step (3) returns the constraint systemCP
′′
1 ∪ CP

′′
2i+1, then

the pair
(

L, con(CP
′′
1 ∪ CP

′′
2i+1)

)

is a tight product. Therefore, suppose thatd′ < c′1 + c′2 and

d′′ < c′′1 + c′′2. As the grid-box
(

L, con(CP
′
1)
)

is a reduced productν ′′i andν ′′j will be saturated

by grid-bds points. Therefore we must show that eitherν ′′ intersectsν ′′i at a grid-bds point or

ν ′′ intersectsν ′′j at a grid-bds point. Asfi|fj, we have thatm = gcd(fi, fj) = fi. Also, as
(

L, con(CP
′
1 ∪ CP

′
2i+1)

)

is a weakly tight product andd′′ < c′′1 + c′′2 , L ∩ con
(

{νe}
)

6= ∅,

whereνe =
(

〈v,x〉 = d′′
)

. As (L,P) is a constraint product there are(vi · xi ≡fi
bi) ∈ CL

and(vj · xj ≡fj
bj) ∈ CL. So there isβ =

(

〈v,x〉 ≡m t
)

∈ CL. Therefore, ast = bi + bj,

we have thatd′′ = bi + bj + s · fi, wheres ∈ Z. Now, asL ∩ con
(

{νe}
)

6= ∅, we have that

Chapter 7 137Weakly Relational Grid-Polyhedron Domains

c3

c2

|d|

−c1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) H =
`

L, con(CP1 ∪ CP2i+1)
´

.

c′3

c′2

|d′|

−c′1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) H =
`

L, con(CP
′ ∪ CP

′
2i+1)

´

.

Figure 7.4: Illustrations for the proof of Proposition 7.12.

L ∩ con
(

{νe}
)

=

=
{

x ∈ L
∣

∣νe ∩ (vi · xi = bi + si · fi),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi + vj · xj = bi + bj + s · fi) ∩ (vi · xi = bi + si · fi),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(bi + si · fi + vj · xj = bi + bj + s · fi),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(vj · xj = bj + (s− si) · fi),∀si ∈ Z
}

.

Now, asH 6= ∅ andd′′ < c′′1+c′′2, we know there is a point,p ∈ H such thatvj ·pj = bj+s2·fj for

s2 ∈ Z. So all that remains is to show thatp ∈ {x ∈ L|(vj ·xj = bj +(s−si) ·fi), si ∈ Z}. That

is, (vj ·pj = bj +s2 ·fj = bj +(s−si) ·fi). Now this is the same as showings2 ·fj = (s−si) ·fi

and asfi|fj there existssj ∈ Z such that this is true. Soν ′′ intersects(vj · xj ≤ c′′1) ∈ CP
c
1 at a

grid-bds point. Henceν ′′ saturates a grid-bds point and
(

L, con(CP
c
1∪CP

c
2i+1)

)

is a tight product.

So if Step (3) returns the constraint systemCP′′
1 ∪ CP

′′
2i+1, then the pair

(

L, con(CP
′′
1 ∪ CP

′′
2i+1)

)

is a tight product.

Suppose now we have Case (3) from Proposition 7.10. A versionof a2-dimensional scenario

for this case can be seen in Figure 7.4(a) and Figure 7.4(b). If d′ = c′1 + c′2 or d′′ = c′′1 + c′′2 the

result follows from the proof for Case (1). If|d′| = c′2 − c′3 then the result follows from the proof

of Case (1). Otherwise we have|d′| 6= c′2− c
′
3. Then after the Step (2) is applied toCP′

1∪CP
′
2i+1,

d′′ = c′′2 − c′′3 . However, asfi|fj, ν ′′j does not saturate a grid point anymore. Let Step (3) return

the constraint systemCP′′
1 ∪ CP

′′
2i+1. Then, by Proposition 7.3 and asfi|fj, ν ′′′j will intersectν ′′′i

at a grid-bds point. Also, by Case (2) and asfi|fj , ν ′′′j will intersectν ′′′ at a grid-bds point. So

the pair
(

L, con(CP
′′
1 ∪ CP

′′
2i+1)

)

is a tight product. Hence the result follows for all constraints in

CP2.

Now if P is unbounded then the result follows from Cases (1), (2) and (3). If Steps (1), (2)

and (3) are applied toCP = CP1 ∪ CP2 thenH =
(

L, con(CP
′′)
)

and the pair
(

L, con(CP
′′)
)

is a

Chapter 7 138Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
c)

´

.

Figure 7.5: Producing a tight product grid-bds.

tight product. �

Let H = (L,P) ∈ GPn be the grid-bds where(L,P) is a constraint product,P = con(CP)

is a closed constraint system,L = gcon(CL) is a rectilinear and common frequency grid and

CL is in minimal form. LetCP′ be the bds constraint system returned by Algorithm 3 when

applied to
(

L, con(CP)
)

, closure(CP
′) = CP

c, andCP′′ be the bds constraint system returned by

Algorithm 3 when applied to
(

L, con(CP
c)
)

. Thenσ1
T (L,P) = L andσ2

T (L,P) = con(CP
′′).

Example 7.13 illustrates this when Case (2) from Proposition 7.10 occurs.

Example 7.13 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡2 0, y ≡4 0} and the

bounded difference shape,P = con(CP) in CP2, where

CP := {1 ≤ x ≤ 11, 2 ≤ y ≤ 12, −5 ≤ x− y ≤ 9}.

H = (L,P) can be seen in Figure 7.5(a). It can be seen thatCP is not a weakly tight or tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example

1 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we havecon(CP
′)

in CP2 where

CP
′ := {2 ≤ x ≤ 10, 4 ≤ y ≤ 12, −4 ≤ x− y ≤ 8}.

Let closure(CP
′) = CP

c where

CP
c := {2 ≤ x ≤ 10, 4 ≤ y ≤ 12, −4 ≤ x− y ≤ 6}.

H =
(

L, con(CP
c)
)

is shown in Figure 7.5(b). Now after applyingAlgorithm 3 to CP
c, we have

con(CP
′′) in CP2 where

CP
′′ := {2 ≤ x ≤ 10, 4 ≤ y ≤ 12, −4 ≤ x− y ≤ 6}.

Chapter 7 139Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′′)

´

.

Figure 7.6: Proposition 7.12 requires the condition thatCP is a closed constraint system.

Then it can be seen thatCP c = CP
′′ is a tight constraint system forH as every constraint is

saturated by at least one grid-bds point.

Example 7.14 shows that Proposition 7.12 is successful whenCase (3) from Proposition 7.10

occurs.

Example 7.14 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡2 0, y ≡4 0} and the

bounded difference shape,P = con(CP) in CP2, where

CP := {5 ≤ x ≤ 11, 0 ≤ y ≤ 12, −7 ≤ x− y ≤ 5}.

H = (L,P) is shown in Figure 7.6(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example

5 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we havecon(CP
′)

in CP2 where

CP
′ := {6 ≤ x ≤ 10, 0 ≤ y ≤ 12, −6 ≤ x− y ≤ 4}.

Let closure(CP
′) = CP

c where

CP
c := {6 ≤ x ≤ 10, 2 ≤ y ≤ 12, −6 ≤ x− y ≤ 4}.

Now after applyingAlgorithm 3 to CP
c, we havecon(CP

′′) in CP2 where

CP
′′ := {6 ≤ x ≤ 10, 4 ≤ y ≤ 12, −6 ≤ x− y ≤ 4}.

H =
(

L, con(CP
c)
)

is shown in Figure 7.6(b). Then, it can be seen thatCP
′′ is a a tight constraint

system forH.

Chapter 7 140Weakly Relational Grid-Polyhedron Domains

Proposition 7.15 LetH = (L,P) ∈ GPn be a grid-bds where(L,P) is a constraint product,

P = con(CP) whereCP is a closed constraint system andL = gcon(CL) is a rectilinear grid

such that all proper congruences have the same modulusf . Suppose thatAlgorithm 3 returns the

constraint systemCP′ when it is applied to
(

L, con(CP)
)

, ThenH =
(

L, con(CP
′)
)

and the pair
(

L, con(CP
′)
)

is a reduced product.

Proof. Let CP = CP1 ∪ CP2. As Algorithm 3 considers each constraint bound, one at a time and

independently of the next, we can assume that Algorithm 3 is applied to the constraint systemCP1

first and then applied toCP2. By Proposition 7.9, asL is rectilinear, we only need to consider the

variablesxi andxj. Suppose first thatP is bounded. AsCP is a closed constraint system, if

νi = (vi · xi ≤ c1) ∈ CP1 and

νj = (vj · xj ≤ c2) ∈ CP1

wherevi 6= vj, then there isν =
(

〈v,x〉 ≤ d
)

∈ CP2, wherevi 6= 0, vj 6= 0.

As CP is a closed constraint system, we need to show
(

L, con(CP
′)
)

is a reduced product by

considering the three cases from Proposition 7.10. We will prove this by induction on the number

of constraints inCP2. If CP2 = ∅, then by Proposition 7.3, asL is rectilinear, when Algorithm 3

is applied, the grid-box
(

L, con(CP
′
1)
)

is a reduced product.

Let us suppose that the result holds for the set of constraintsCP1∪CP2i whereCP2i ⊆ CP2. We

will now show the result holds for the set of constraintsCP1∪CP2i+1 whereCP2i+1 = CP2i∪{ν}.

Let

ν ′i = (vi · xi ≤ c′1) ∈ CP
′
1, ν ′j = (vj · xj ≤ c′2) ∈ CP

′
1,

ν ′i = (−vi · xi ≤ c′3) ∈ CP
′
1, ν ′ =

(

〈v,x〉 ≤ d′
)

∈ CP
′
2i+1

be the constraintsνi, νj, νi andν, respectively, after Algorithm 3 is applied to
(

L, con(CP 1 ∪

CP2i+1)
)

,

Suppose that we have Case (1) from Proposition 7.10. A version of the2-dimensional scenario

for this case can be seen in Figure 7.3(a). As all proper congruences ofCL have modulusf and

d′ = d −
(

(d − t) mod f
)

, d − f < d′ ≤ d. Hence, asCP1 ∪ CP2 is a closed constraint

system,d′ ≥ c′1 + c′2. Therefore as
(

L, con(CP
′
1)
)

is a reduced product we have that the pair
(

L, con(CP
′
1 ∪ CP

′
2i+1)

)

is a reduced product.

Now suppose that Case (2) from Proposition 7.10 holds. A version of the 2-dimensional

scenario for this case can be seen in Figure 7.3(b). Suppose that Algorithm 3 is applied to
(

L, con(CP1 ∪ CP2i+1)
)

. If d′ = c′1 + c′2, then from Case (1),ν ′i, ν
′
j andν ′ intersect at a grid-bds

point. Hence
(

L, con(CP
′
1 ∪ CP

′
2i+1)

)

is a reduced product. Therefore suppose thatd′ < c′1 + c′2.

As the grid-box
(

L, con(CP
′
1)
)

is a reduced productν ′i andν ′j will be saturated by grid-bds points.

Therefore we must show thatν ′ intersectsν ′i at a grid-bds point andν ′ intersectsν ′j at a grid-bds

point. As
(

L, con(CP
′
1∪CP

′
2i+1)

)

is a weakly tight product andd′ < c′1+c′2,L∩con
(

{νe}
)

6= ∅,

Chapter 7 141Weakly Relational Grid-Polyhedron Domains

whereνe =
(

〈v,x〉 = d′′
)

. As (L,P) is a constraint product there are(vi · xi ≡f bi) ∈ CL and

(vj ·xj ≡f bj) ∈ CL. So there isβ =
(

〈v,x〉 ≡f t
)

∈ CL. Therefore, ast = bi +bj, we have that

d′ = bi + bj + s · f , wheres ∈ Z. Now asL ∩ con
(

{νe}
)

6= ∅ we have thatL ∩ con
(

{νe}
)

=

=
{

x ∈ L
∣

∣νe ∩ (vi · xi = bi + si · f),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi + vj · xj = bi + bj + s · f) ∩ (vi · xi = bi + si · f),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(bi + si · f + vj · xj = bi + bj + s · f),∀si ∈ Z
}

=
{

x ∈ L
∣

∣(vj · xj = bj + (s− si) · f),∀si ∈ Z
}

.

Now there existss2 ∈ Z such thatvj · xj = bj + s2 · f = c′2. So, asd′ < c′1 + c′2, ν ′ intersects

(vj · xj ≤ c′2) ∈ CP
′
1 at a grid-bds point. AlsoL ∩ con

(

{νe}
)

=

=
{

x ∈ L
∣

∣νe ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vj · xj + vi · xi = bi + bj + s · f) ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(bj + sj · f + vi · xi = bi + bj + s · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi = bi + (s− sj) · f),∀sj ∈ Z
}

.

Now there existss1 ∈ Z such thatvi · xi = bi + s1 · f = c′1. So, asd′ < c′1 + c′2, ν ′ intersects

(vi · xi ≤ c′1) ∈ CP
′
1 at a grid-bds point. So if Algorithm 3 returns the constraintsystemCP

′
1 ∪

CP
′
2i+1 when it is applied to

(

L, con(CP1 ∪ CP2i+1)
)

, then the pair
(

L, con(CP
′
1 ∪ CP

′
2i+1)

)

is a

reduced product.

Now suppose that Case (3) from Proposition 7.10 holds. A version of the 2-dimensional

scenario for this case can be seen in Figure 7.3(c). Ifd′ = c′1 + c′2 or |d′| = c′2 − c′3 the result

follows from the proof for Case (1). Otherwise we have|d′| 6= c′2 − c′3. All that remains to

show is thatν ′ intersectsν′i at a grid-bds point. As(L,P) is a constraint product there are

(−vi ·xi ≡f −bi) ∈ CL and(vj ·xj ≡f bj) ∈ CL. So there isβ =
(

〈v,x〉 ≡f t
)

∈ CL. Therefore

ast = bi + bj, we have thatd′ = bi + bj + s · f , wheres ∈ Z. Now asL ∩ con
(

{νe}
)

6= ∅ we

have thatL ∩ con
(

{νe}
)

=

=
{

x ∈ L
∣

∣νe ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vj · xj + vi · xi = bi + bj + s · f) ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(bj + sj · f + vi · xi = bi + bj + s · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi = bi + (s− sj) · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(−vi · xi = −bi − (s− sj) · f),∀sj ∈ Z
}

.

Now there existss1 ∈ Z such that−vi ·xi = −bi−s1 ·f = c′3. So, asd′ < c′1+c′2, ν ′ intersectsν′i
at a grid-bds point. The fact thatν ′ will intersect some other constraint at a grid-bds point follows

from either this case or Case (2). So the pair
(

L, con(CP
′
1∪CP

′
2i+1)

)

is a reduced product. Hence

the result follows for all constraints inCP2.

Chapter 7 142Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.7: Producing a reduced product grid-bds.

Now if P is unbounded the result follows from Cases (1), (2) and (3). Therefore ifCP′ =

CP
′
1 ∪ CP

′
2 is the bounded difference shape constraint system returnedby Algorithm 3 thenH =

(

L, con(CP
′)
)

and the pair
(

L, con(CP
′)
)

is a reduced product.�

Let H = (L,P) ∈ GPn be the grid-bds where(L,P) is a constraint product,P = con(CP) is a

closed constraint system andL = gcon(CL) is a rectilinear grid such that all proper congruences

have the same modulusf . Let CP′ be the bds constraint system returned by Algorithm 3, then

σ1
R(L,P) = L andσ2

R(L,P) = con(CP
′). Example 7.16 demonstrates this.

Example 7.16 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡4 0, y ≡4 0} and the

bounded difference shape,P = con(CP) in CP2, where

CP := {2 ≤ x ≤ 10, 2 ≤ y ≤ 12, −2 ≤ x− y ≤ 8}.

H = (L,P) can be seen in Figure 7.7(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example the

constraint2 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we have

con(CP
′) in CP2 where

CP
′ := {4 ≤ x ≤ 8, 4 ≤ y ≤ 12, 0 ≤ x− y ≤ 8}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.7(b). It can be seen that constraintsy ≤ 12 and

x − y ≤ 8, illustrated by the dashed lines, are not saturated by a grid-bds point, but the pair
(

L, con(CP
′)
)

is a reduced product.

Chapter 7 143Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.8: Algorithm 3 does not always produce a reduced product bdgs.

7.3.1 BDGS

Let us now consider the bounded difference grid shape domainwhich is a subset of the grid-bds

domain which takes the product of a bounded difference grid with a bounded difference shape.

Definition 7.17 (BDGS.)Let P = con(CP) be a bounded difference shape inCPn andL =

gcon(CL) a bounded difference grid inGn. Then we say thatH = (L,P) := L∩P is abounded

difference grid shape (BDGS). Thebdgs domainis a subset ofGPn and is the set of all bounded

difference grid shapes inRn ordered by the set inclusion relation.

Note that∅ andRn are bounded difference grid shapes and therefore are the bottom and top

elements of the subset respectively. The results of Corollary 7.8, Proposition 7.12 and Proposi-

tion 7.15 hold for a bdgsH = (L,P) if L has a rectilinear representation. Unlike the rectilinear

grid-box, if Algorithm 3 is applied to a bdgsH =
(

L, con(CP)
)

and returnsCP′ then the pair
(

L, con(CP
′)
)

is not always a reduced product. Example 7.18 illustrates this.

Example 7.18 Consider the bounded difference grid,L = gcon(CL) in G2, where

CL := {x ≡4 0, y ≡2 0, x− y ≡6 0}

and the bounded difference shape,P = con(CP) in CP2, where

CP := {2 ≤ x ≤ 10, 0 ≤ y ≤ 6, −2 ≤ x− y ≤ 6}.

H = (L,P) can be seen in Figure 7.8(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example the

constraint2 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we have

Chapter 7 144Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′′)

´

.

Figure 7.9: Proposition 7.12 does not hold for grid-octagons.

con(CP
′) in CP2 where

CP
′ := {4 ≤ x ≤ 8, 0 ≤ y ≤ 6, 0 ≤ x− y ≤ 6}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.8(b) and it can be seen that
(

L, con(CP
′)
)

is not a

reduced product. Also the pair
(

L, con(CP
′)
)

is not even a tight product as the constrainty ≤ 6,

illustrated by the dashed line, is not saturated by a bdgs point.

7.4 Grid-Octagons

Let us now consider the grid-octagon domain which is a subsetof the grid-polyhedron domain.

Definition 7.19 (Grid-Octagon.) LetP = con(CP) be an octagon inCPn andL = gcon(CL) a

grid in Gn. Then we say thatH = (L,P) := L ∩ P is a grid-octagon. Thegrid-octagon domain

is a subset ofGPn and is the set of all grid-octagons inRn ordered by the set inclusion relation.

Note that∅ andRn are grid-octagons, therefore they are the bottom and top elements of the sub-

set respectively. As an octagon has at most2n2 constraints, ifH = (L,P), then Algorithm 3 has

complexityO
(

n2
)

if L is rectilinear, otherwise it has complexityO
(

n4
)

. Also as a closed octago-

nal constraint system is a paired constraint system and as the test for emptiness uses Algorithm 3,

it has the same complexity.

The result of Corollary 7.8 holds for a grid-octagonH = (L,P) if L has a rectilinear represen-

tation, however the results of Proposition 7.12 and Proposition 7.15 do not hold for a grid-octagon

H = (L,P) if L has a rectilinear representation. Example 7.20 and Example7.21, respectively,

show this.

Chapter 7 145Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.10: Proposition 7.15 does not hold for grid-octagons.

Example 7.20 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡2 0, y ≡4 0} and the

octagon,P = con(CP) in CP2, where

CP := {1 ≤ x ≤ 11, 2 ≤ y ≤ 12, −5 ≤ x− y ≤ 9, 7 ≤ x+ y ≤ 19}.

H = (L,P) can be seen in Figure 7.9(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example the

constraint1 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we have

con(CP
′) in CP2 where

CP
′ := {2 ≤ x ≤ 10, 4 ≤ y ≤ 12, −4 ≤ x− y ≤ 8, 8 ≤ x+ y ≤ 18}.

Let closure(CP
′) = CP

c where

CP
c := {2 ≤ x ≤ 10, 4 ≤ y ≤ 11, −4 ≤ x− y ≤ 6, 8 ≤ x+ y ≤ 18}.

NowH =
(

L, con(CP
c)
)

and the pair
(

L, con(CP
c)
)

is not even a weakly tight product as the

constrainty ≤ 11 is not saturated by a grid point. Finally letCP′′ be the result of applying

Algorithm 3 toH =
(

L, con(CP
c)
)

, where

CP
′′ := {2 ≤ x ≤ 10, 4 ≤ y ≤ 8, −4 ≤ x− y ≤ 6, 8 ≤ x+ y ≤ 18}.

SoH =
(

L, con(CP
′′)
)

can be seen in Figure 7.9(b). Now the pair
(

L, con(CP
′′)
)

is a weakly

tight product, but it can be seen in Figure 7.9(b) that the pair is not a tight product as2 ≤ x,

illustrated by the dashed line, is not saturated by a grid-octagon point.

Example 7.21 Consider the grid,L = gcon(CL) in G2, whereCL := {x ≡4 0, y ≡4 0} and the

Chapter 7 146Weakly Relational Grid-Polyhedron Domains

d+d′

2

ν ′νi

ν

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH =
`

L, con(CP
′)

´

.

d+d′

2

ν ′νi

ν

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
c)

´

.

Figure 7.11: Illustrations for the proof of Proposition 7.22.

octagon,P = con(CP) in CP2, where

CP := {0 ≤ x ≤ 12, 2 ≤ y ≤ 12, −6 ≤ x− y ≤ 10, 2 ≤ x+ y ≤ 18}.

H = (L,P) can be seen in Figure 7.10(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example the

constraint2 ≤ y is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we have

con(CP
′) in CP2 where

CP
′ := {0 ≤ x ≤ 12, 4 ≤ y ≤ 12, −4 ≤ x− y ≤ 8, 4 ≤ x+ y ≤ 16}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.10(b) and it can be seen that the pair
(

L, con(CP
′)
)

is not a reduced product or a tight product as the constrainty ≤ 12, illustrated by the dashed

line, is not saturated by a grid-polyhedron point. If we wereto apply the closure algorithm to the

weighted graph for the octagon represented byCP
′ we would get a graph and from this get the

constraint system

CP
c := {0 ≤ x ≤ 12, 4 ≤ y ≤ 10, −4 ≤ x− y ≤ 8, 4 ≤ x+ y ≤ 16}.

Now the pair
(

L, con(CP
c)
)

is not even a weakly tight product as the constrainty ≤ 10 is not

saturated by a grid point.

Example 7.21 showed that Proposition 7.15 does not hold for grid-octagons even if we apply

the closure algorithm. However if we apply Algorithm 3 toH =
(

L, con(CP
c)
)

the resulting

grid-octagon is a reduced product.

Proposition 7.22 LetH = (L,P) ∈ GPn be a non-empty grid-octagon where(L,P) is a con-

straint product,P = con(CP) whereCP is a closed constraint system andL = gcon(CL) is a

Chapter 7 147Weakly Relational Grid-Polyhedron Domains

grid such that all proper congruences inCL have modulusf . Suppose that the following steps are

applied:

1. Algorithm 3 returns the constraint systemCP′ when it is applied to
(

L, con(CP)
)

,

2. closure(CP
′) = CP

c,

3. Algorithm 3 returns the constraint systemCP′′ when it is applied to
(

L, con(CP
c)
)

.

ThenH =
(

L, con(CP
′′)
)

and the pair
(

L, con(CP
′′)
)

is a reduced product.

Proof. By Proposition 7.9, asL is rectilinear, we only need to consider the variablesxi and

xj. Let CP′ be the constraint system returned after Step (1). ThenH =
(

L, con(CP
′)
)

and
(

L, con(CP
′)
)

is a weakly tight product. If
(

L, con(CP
′)
)

is also a reduced product then the

result follows. Therefore suppose thatH =
(

L, con(CP
′)
)

and
(

L, con(CP
′)
)

is not a reduced

product.

Suppose thatP is bounded. Then there is some vertex ofP that is not a grid-octagon point.

As L is rectilinear, by Proposition 7.15, all the bds constraints intersect at grid-octagon points.

Therefore there are constraints of the form

ν =
(

〈v,x〉 ≤ d1

)

∈ CP
′ ν ′ =

(

〈v′,x〉 ≤ d2

)

∈ CP
′

such thatν andν ′ do not intersect at a grid-octagon point. Without loss of generality we can

assume thatvi = v′i, vj 6= v′j andvi = vj . Figure 7.11(a) illustrates a2-dimensional version

of this case. Then after Step (2) has been performed we will have ν, ν ′ ∈ CP
c and a constraint

νi = (vi ·xi ≤ di

)

∈ CP
c such thatνi does not saturate a grid point anddi = d+d′

2 . Figure 7.11(b)

illustrates this case. Therefore, after Step (3) is appliedwe will haveν, ν ′ ∈ CP
′′, and, asνi

did not saturate a grid point,ν ′i = (vi · xi ≤ d′i
)

∈ CP
′′ such thatd′i = d+d′−f

2 . As L is

rectilinear, by Proposition 7.15, all the bds constraints of CP′′ intersect at grid-octagon points. So

ν ′ andν ′i intersect at a grid-octagon point. Therefore all that remains is to show thatν andν ′i
intersect at a grid-octagon point. As(L,P) is a constraint product andP is bounded we have

(vi · xi ≡f bi) ∈ CL, (vj · xj ≡f bj) ∈ CL and
(

〈v,x〉 ≡f t
)

∈ CL. As H =
(

L, con(CP
′′)
)

and
(

L, con(CP
′′)
)

is a weakly tight productL ∩ con
(

{νe}
)

6= ∅, whereνe =
(

〈v,x〉 = d
)

.

Therefore, ast = bi+bj , we have thatd = bi+bj+s·f , wheres ∈ Z. Now, asL∩con
(

{νe}
)

6= ∅,

we have thatL ∩ con
(

{νe}
)

=

=
{

x ∈ L
∣

∣νe ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi + vj · xj = bi + bj + s · f) ∩ (vj · xj = bj + sj · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi + bj + sj · f = bi + bj + s · f),∀sj ∈ Z
}

=
{

x ∈ L
∣

∣(vi · xi = bi + (s− sj) · f),∀sj ∈ Z
}

.

Now there existss′ ∈ Z such thatvi · xi = bi + s′ · f = d′i. Soν intersects(vi · xi ≤ d′i) ∈ CP
′′

at a grid-octagon point.

Chapter 7 148Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′′)

´

.

Figure 7.12: Producing a reduced product grid-octagon.

If P is unbounded the result follows from above. Therefore, if Step (1), Step (2) and Step (3)

are applied, thenH =
(

L, con(CP
′′)
)

and the pair
(

L, con(CP
′′)
)

is a reduced product.�

Let H = (L,P) ∈ GPn be the grid-octagon where(L,P) is a constraint product,P = con(CP)

is a closed constraint system andL = gcon(CL) is a rectilinear grid such that all proper con-

gruences have the same modulusf . Let CP′ be the octagonal constraint system returned by

Algorithm 3 when applied toH =
(

L, con(CP)
)

, closure(CP
′) = CP

c andCP′′ is the constraint

system returned by Algorithm 3 when applied toH =
(

L, con(CP
c)
)

. Thenσ1
R(L,P) = L and

σ2
R(L,P) = con(CP

′′). Example 7.23 demonstrates this.

Example 7.23 Consider the grid-octagon given in Example 7.21 on Page 145,such thatL =

gcon(CL) in G2, whereCL := {x ≡4 0, y ≡4 0} and the octagon,P = con(CP) in CP2, where

CP := {0 ≤ x ≤ 12, 2 ≤ y ≤ 12, −6 ≤ x− y ≤ 10, 2 ≤ x+ y ≤ 18}.

H = (L,P) can be seen in Figure 7.12(a). Recall thatclosure(CP
′) = CP

c where

CP
c := {0 ≤ x ≤ 12, 4 ≤ y ≤ 10, −4 ≤ x− y ≤ 8, 4 ≤ x+ y ≤ 16}.

Now after applyingAlgorithm 3 toH =
(

L, con(CP
c)
)

, we get the constraint system

CP
′′ := {0 ≤ x ≤ 12, 4 ≤ y ≤ 8, −4 ≤ x− y ≤ 8, 4 ≤ x+ y ≤ 16}.

H =
(

L, con(CP
′′)
)

is shown in Figure 7.12(b) and it can be seen that the pair
(

L, con(CP
′′)
)

is

a reduced product.

Chapter 7 149Weakly Relational Grid-Polyhedron Domains

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(a) Grid-polyhedronH = (L,P).

4

6

2

8

10

12

12108642
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

(b) Grid-polyhedronH =
`

L, con(CP
′)

´

.

Figure 7.13: Algorithm 3 does not always produce a reduced product ogrid-octagon.

7.4.1 Ogrid-Octagons

Let us now consider the ogrid-octagon domain which is a subset of the grid-octagon domain and

whose elements are the product of an octagonal grid and an octagon.

Definition 7.24 (Ogrid-Octagon.) LetP = con(CP) be an octagon inCPn andL = gcon(CL)

an octagonal grid inGn. Then we say thatH = (L,P) := L∩P is anogrid-octagon. Theogrid-

octagon domainis a subset ofGPn and is the set of all octagonal grid-octagons inRn ordered by

the set inclusion relation.

Note that∅ and Rn are ogrid-octagons and therefore are the bottom and top elements of the

subset respectively. The result of Proposition 7.22 holds for an ogrid-octagonH = (L,P) if L =

gcon(CL) is rectilinear and all proper congruences ofCL have modulusf . Unlike the rectilinear

grid-box, if Algorithm 3 is applied to an ogrid-octagonH =
(

L, con(CP)
)

and returnsCP′, then,

H =
(

L, con(CP
′)
)

but the pair
(

L, con(CP
′)
)

is not always a reduced product. Example 7.25

demonstrates this.

Example 7.25 Consider the octagonal grid,L = gcon(CL) in G2, where

CL := {x ≡4 0, y ≡2 0, x− y ≡6 0, x+ y ≡2 0}

and the octagon,P = con(CP) in CP2, where

CP := {2 ≤ x ≤ 10, 0 ≤ y ≤ 6, −2 ≤ x− y ≤ 6, 6 ≤ x+ y ≤ 16}.

H = (L,P) can be seen in Figure 7.13(a). It can be seen thatCP is not a tight or weakly tight

constraint system forH as not all of the constraints are saturated by a point ofL, for example the

constraint2 ≤ x is not saturated by a grid point. Now after applyingAlgorithm 3 to CP , we have

Chapter 7 150Weakly Relational Grid-Polyhedron Domains

con(CP
′) in CP2 where

CP
′ := {4 ≤ x ≤ 8, 0 ≤ y ≤ 6, 0 ≤ x− y ≤ 6, 6 ≤ x+ y ≤ 16}.

H =
(

L, con(CP
′)
)

is shown in Figure 7.13(b) and it can be seen that the pair
(

L, con(CP
′)
)

is not a reduced product. The pair
(

L, con(CP
′)
)

is not even a tight product as it can be seen

in Figure 7.13(b) that the constrainty ≤ 6, illustrated by the dashed line, is not saturated by an

ogrid-octagon point.

7.5 Operations

If H1 andH2 are weakly relational grid-polyhedra then as shown in Sections 7.2 to 7.4, with

certain restrictions to the grid, we can produce grid-polyhedra pairs which are reduced products.

Therefore since we now have a minimal form for both the grid and polyhedra components, if the

grid-polyhedra pairs are reduced products we can easily test if H1 ⊆ H2 or H1 = H2. Also

if we have a tight or reduced product we will also know for certain if a weakly relational grid-

polyhedron is empty or not.

Finally if H1 andH2 are any of the weakly relational grid-polyhedra described in this chapter

then, as with the grid-polyhedron case, intersection and difference do not preserve the the reduced

product reduction, but the join, affine image and affine pre-image operations do.

7.6 Applications

In this section we discuss applications for the domain of grid-polyhedra and all the sub-domains

considered in this chapter.

In [18,79] an analyser is introduced to detect errors in C programs. They are concerned with

checking if arrays are accessed out of bounds and if pointersor variables are accessed without

being initialised. The C Global Surveyor (CGS) can either switch between the weakly relational

domain of bds and intervals or store the product. It is noted in [18] that future work should include

the use of more powerful domains such as the domain of convex polyhedra as this would yield

more precise results. Also [33] consider using abstract interpretation to identify buffer overruns

in C programs. Here they do use the domain of convex polyhedrato establish the bounds within

which the pointer should remain. In [16], Balakrishnan and Reps investigate whether executables

such as web-plugins contain or perform harmful operations.Unlike [33], they consider combining

pointer analysis and numerical analysis to detect errors inexecutable programs. They do this by

combining an integer interval with an integer rectilinear grid to get a single hybrid object called

a reduced interval congruence (RIC). The RIC enables the alignment and stride information to

be gathered. The RIC is also considered in [17, 20]. Chouchane et al. consider RICs in the

analysis of stack-based operations and in [17], Berstel andLeconte use the RIC in the analysis

of programs for Business Rules Management Systems (BRMS). These systems allow businesses

Chapter 7 151Weakly Relational Grid-Polyhedron Domains

to automate the decisions they make, thus as their marketplace changes the rules system must

be updated effectively and error free to enable the businessto compete. Therefore the partially

reduced grid-polyhedron domain and its sub-domains would also be applicable to all of these

problems mentioned.

Following on from [19], Ermedahl et al. [34] also estimate the worst case execution time of

a program given a specific system. In order to approximate theWCET the upper bound on the

number of loop iterations must be known, this is achieved by slicing the program into subsets

using the dependency graph and then the values a variable cantake are approximated by a rec-

tilinear integer grid-box. Although not yet studied, it is noted in [34], that a domain such as the

grid-polyhedra or one of its weakly relational sub-domainscould be used to “allow the size of the

abstract states used for loop bound analysis to be minimised”, hence more types of loop could be

studied.

Separately in [63,64] and [37] the authors show that integerrectilinear grid-intervals could be

used for the analysis of programs. They were concerned with parallelising compilers, specifically

data dependence analysis or array reference analysis. Thatis, to be able to partition a program so

that its tasks are performed on separate processors it must be know which elements of an array

are referenced and check that two tasks do not try to access the same variable. It was shown in

Section 5.5 that the domain of relational grids could be usedfor this type of analysis. Therefore

the domain of grid-polyhedra and its sub-domains could alsobe used in this way.

7.7 Related Work

In [37, Section 6], Granger considers the reduced product ofan integer rectilinear grid-interval

and gives a reduction operator which is equivalent to our own. Ermedahl et al. [34] also consider

the product of an integer rectilinear grid with an integer interval and we assume that they also use

this reduction (although it is not stated) as this work and previous [19] builds on that of the early

Granger work [37]. In [51], Miné considers the reduced product domain and states that products

of weakly relational base domains could be considered provided they satisfy the acceptable base

hypothesis. An example of the reduction operation is given for the grid-interval case which is

equivalent to our own for grid-boxes however it is stated in [51] and shown in [53] that the

grid-interval domain does not satisfy the acceptable base hypothesis for intersection, that is, the

grid-interval domain does not satisfy the condition

n
⋂

i=1

(Li,Pi) = ∅ ⇒ ∃i, j ∈ {1, . . . , n}, (Li,Pi) ∩ (Lj ,Pj) = ∅.

An alternative to considering a product of a rectilinear grid with an interval is to merge the

two into one hybrid domain which is considered in several papers. In [64] the authors consider

extending the interval domain overR by assimilating it with a single non-relational congruence,

the result is called themodulo interval, and written[a, b]m(t) wherem is the modulus andt is

Chapter 7 152Weakly Relational Grid-Polyhedron Domains

Polyhedron Type
Any Octagon BDS Box

Any Grid Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O
(

n2µ
)

O
(

n4
)

O
(

n4
)

O
(

n3
)

Ogrid Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O
(

n2µ
)

O
(

n4
)

O
(

n4
)

O
(

n3
)

BDG Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
O
(

n2µ
)

O
(

n4
)

O
(

n4
)

O
(

n3
)

Rectilinear Proposition 6.23 Proposition 6.23 Proposition 6.23 Proposition 6.23
Grid O

(

nµ
)

O
(

n2
)

O
(

n2
)

O
(

n
)

Table 7.1: Weakly tight polynomial algorithms and complexities.

Polyhedron Type
Any Octagon BDS Box

Rectilinear Proposition 7.12 Corollary 7.4
Grid O

(

n2
)

O
(

n
)

Table 7.2: Tight product polynomial algorithms and complexities.

the inhomogeneous term. The modulo interval extends the normal interval domain and includes

both set operations and arithmetic operations. However theintersection operation is only con-

sidered for two intervals with the same modulus. This was then improved on in [63] where the

intersection considers intervals with different modulus.It is noted in both papers that a modulo

interval [a, b]m(t) is normalised (a reduced product) ifa ≡m t, b ≡m t and 0 ≤ t < m al-

though exactly how to calculate the normalised modulo interval is not shown. Balakrishnan and

Reps [16] consider thereduced interval congruence (RIC)which is a fusion of integer intervals

and grids. An RIC is given by a tuple(m,a, b, t) which stands for the set
{

x ≡m t|x ∈ [a, b]
}

.

The RIC is assumed to be in minimal form but the description ofhow to do this is not given.

Reps et al. [73] have also defined thek-bit strided interval, a triplem[a, b] which represents the

set
{

x ∈ [−2k, 2k − 1]|a ≤ x ≤ b, x ≡m a
}

. A strided interval is said to be reduced ifb ≡m a

and descriptions of how to compute the addition, subtraction, bitwise and, bitwise or and bitwise

negation of strided intervals are given.

7.8 Conclusion

In this chapter we introduced the grid-box domain, grid-bdsdomain, bounded difference grid

shape domain, grid-octagon domain and the ogrid-octagon domain. For each of these five do-

mains we showed that using procedures involving the weakly tight algorithm, Algorithm 3, and

the closure algorithm under what circumstances we could produce a tight or reduced product

rather than weakly tight product. Specifically for the grid-box domain we showed that if the grid

Chapter 7 153Weakly Relational Grid-Polyhedron Domains

Polyhedron Type
Any Octagon BDS Box

Rectilinear Proposition 7.22 Proposition 7.15 Corollary 7.4
Grid O

(

n2
)

O
(

n2
)

O
(

n
)

Table 7.3: Reduced product polynomial algorithms and complexities.

is rectilinear we can produce a reduced product grid-box with complexityO
(

n
)

. For a grid-bds

or bdgs we showed in some circumstances we can produce tight and reduced products with com-

plexity O
(

n2
)

and for a grid-octagon or ogrid-octagon we showed in some circumstances we can

produce a reduced product with complexityO
(

n2
)

. Table 7.1 shows for which combinations of

grid and polyhedron we can produce a weakly tight product, Table 7.2 shows for which combi-

nations of grid and polyhedron we can produce a tight productand Table 7.3 shows for which

combinations of grid and polyhedron we can produce a reducedproduct. All three tables also

show where the procedure to compute this product is given andwhat the complexity would be to

compute it. Also from these reduced product cases we showed that we now have an exact test for

emptiness and comparison.

Chapter 8

Conclusion and Future Work

In this thesis we have presented the domain of Grids. A domainwhich interprets distribution

information about a program or system. We have shown that a grid may be represented by either

a set of congruences or a set of generators. For the grid domain we have specified and provided

algorithms that minimise the representation of a grid (showing either we can minimise the cardi-

nality of the set or we can create a strong minimal form), convert between representations, create

a homogeneous form, perform comparison, test for equality,perform intersection, affine image

and pre-image, and widening for both representation. We have also specified and provided algo-

rithms for performing join, difference and covering box which have not been given in previous

works [38, 39, 71, 72]. Also for all of these operations we have shown that we achieve com-

plexities better than or equal to previous proposals [38, 39, 61, 62, 71, 72]. In Chapter 5 we have

defined two weakly relational grid domains. The bounded difference grid domain is based on the

zone-congruence domain by Miné [51, 53] and the octagonal grid is an extension of the zone-

congruence domain which encodes information in the way thatthe octagon domain does [54].

The second topic of the thesis investigates the Grid-Polyhedron domain and many of its sub-

domains. We introduced the partially reduced product of twogeometric domains which allows for

a range of interaction between the two components. For this product we specified six reduction

operators, namely the direct, reduced, smash, constraint,weakly tight and tight products. For

the grid-polyhedron domain we provided operations and algorithms that produce a weakly tight

constraint system and test for emptiness, as well providinga complete set of abstract operations.

We then introduced the domains grid-box, grid-bds, bdgs, grid-octagon and ogrid-octagon. For

each of these domains we showed under what circumstances theweakly tight algorithm will

produce tight or reduced products rather than weakly tight products and that this algorithm has

a polynomial complexity, see Tables 7.1, 7.2 and 7.3. Specifically, if the grid was rectilinear,

155

Chapter 8 156 Conclusion and Future Work

we showed for the grid-box domain that we can produce a reduced product. For a grid-bds or

bdgs we showed with restrictions to the grid congruence representation we can produce tight and

reduced products and for a grid-octagon or ogrid-octagon weshowed with restrictions to the grid

congruence representation we can produce a reduced product. Also from these reduced product

cases we showed we now have an exact test for emptiness and comparison.

8.1 Future Work

If we had more time we would like to further explore the grid-bds and grid-octagon domains as

these domains ensure that any operations can have polynomial complexity. Also we would like to

consider other weakly relational grid-polyhedron domainssuch as a grid-tvpi domain as, in theory,

this domain would also ensure that any operations would havepolynomial complexity. We have

shown that under certain circumstances Algorithm 3, the weakly tight reduction, can produce

tight and even reduced products and we believe it is likely that there could be other circumstances

for which that is true. We would also like to investigate whether or not it is possible to specify

a targeted reduction algorithm for each of the domains so that we can achieve a tight or reduced

product in all circumstances.

Also if we had more time we would also like to investigate, foreach domain, whether Algo-

rithm 3 could be modified in any way to improve the test for emptiness or more importantly find

a point within a grid-polyhedron.

Finally we are interested to know whether is is possible to derive an algorithm for reduc-

tion which uses either the grid generator description or thepolyhedron generator description as

our current algorithm assumes that they must be representedby the congruence and constraint

representations respectively.

Bibliography

[1] C. Ancourt. Géńeration Automatique de Codes de Transfert pour Multiprocesseurs à

Mémoires Locales. PhD thesis, Université de Paris VI, March 1991.

[2] James A. Anderson.Discrete Mathematics with Combinatorics. Prentice Hall, 2001.

[3] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A domain for ana-

lyzing the distribution of numerical values. In G. Puebla, editor, Logic-based Program Syn-

thesis and Transformation, 16th International Symposium, volume 4407 ofLecture Notes in

Computer Science, pages 219–235, Venice, Italy, 2007. Springer-Verlag, Berlin.

[4] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-

relational numeric abstractions. In C. Hankin and I. Silveroni, editors,Static Analysis:

Proceedings of the 12th International Symposium, volume 3672 ofLecture Notes in Com-

puter Science, pages 3–18, London, UK, 2005. Springer-Verlag, Berlin.

[5] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-

relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Università

di Parma, Italy, 2005. Available athttp://www.cs.unipr.it/Publications/.

[6] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex

polyhedra. In R. Cousot, editor,Static Analysis: Proceedings of the 10th International

Symposium, volume 2694 ofLecture Notes in Computer Science, pages 337–354, San Diego,

California, USA, 2003. Springer-Verlag, Berlin.

[7] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex

polyhedra.Science of Computer Programming, 58(1–2):28–56, 2005.

[8] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In

B. Steffen and G. Levi, editors,Verification, Model Checking and Abstract Interpretation:

Proceedings of the 5th International Conference (VMCAI 2004), volume 2937 ofLecture

Notes in Computer Science, pages 135–148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[9] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra and the

double description method.Formal Aspects of Computing, 17(2):222–257, 2005.

157

Chapter 8 158 BIBLIOGRAPHY

[10] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a com-

plete set of numerical abstractions for the analysis and verification of hardware and soft-

ware systems. Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy,

2006. Available athttp://www.cs.unipr.it/Publications/. Also published

asarXiv:cs.MS/0612085, available fromhttp://arxiv.org/.

[11] R. Bagnara, P. M. Hill, and E. Zaffanella.The Parma Polyhedra Library User’s Manual.

Department of Mathematics, University of Parma, Parma, Italy, release 0.9 edition, March

2006. Available athttp://www.cs.unipr.it/ppl/.

[12] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for integer

octagonal constraints. Quaderno 467, Dipartimento di Matematica, Università di Parma,

Italy, 2007. Available athttp://www.cs.unipr.it/Publications/. Also pub-

lished asarXiv:0705.4618v2 [cs.DS], available fromhttp://arxiv.org/.

[13] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a com-

plete set of numerical abstractions for the analysis and verification of hardware and software

systems.Science of Computer Programming, 2008. To appear. Journal version of [10].

[14] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra

and the Parma Polyhedra Library. In M. V. Hermenegildo and G.Puebla, editors,Static

Analysis: Proceedings of the 9th International Symposium, volume 2477 ofLecture Notes

in Computer Science, pages 213–229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[15] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. An improved tight closure algorithm

for integer octagonal constraints. In Francesco Logozzo, Doron Peled, and Lenore D. Zuck,

editors,VMCAI, volume 4905 ofLecture Notes in Computer Science, pages 8–21. Springer,

2008.

[16] G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executables. InCC,

volume 2985 ofLecture Notes in Computer Science, pages 5–23. Springer-Verlag Berlin

Heidelberg, 2004.

[17] B. Berstel and M. Leconte. Extending a CP solver with congruences as domains for program

verification. InWorkshop on Constraints in Software Testing, Verification and Analysis,

2006.

[18] G. Brat and A. Venet. Precise and scalable static program analysis of NASA flight software.

In Proceedings of IEEE Aerospace Conference, pages 1–10, Big Sky, MT, USA, 2005.

[19] S. Bygde. Abstract interpretation and abstract domains. Master’s thesis, Mälardalen Uni-

versity, 2006.

[20] M. R. Chouchane, Md. E. Karim, A. Lakhotia, and M. Venable. Analyzing memory accesses

in obfuscated x86 executables. InConference on Detection of Intrusions and Malware and

Chapter 8 159 BIBLIOGRAPHY

Vulnerability Assessment (DIMVA), volume 3548 ofLecture Notes in Computer Science,

pages 1–18. Springer-Verlag Berlin Heidelberg, 2005.

[21] Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In Giacobazzi [35],

pages 312–327.

[22] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcı̀a de la Banda, and M. Hermenegildo.

Improving abstract interpretations by combining domains.In Proceedings of the ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,

pages 194–205, Copenhagen, Denmark, 1993. ACM Press. Also available as Technical

Report CW 162, Department of Computer Science, K.U. Leuven,December 1992.

[23] D. Coppersmith and S. Winograd. Matrix multiplicationvia arithmetic progressions.Jour-

nal of Symbolic Computation, 9(3):251–280, 1990.

[24] T. H. Cormen, T. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT Press,

Cambridge, MA, 1990.

[25] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains for

logic programming: Open product and generic pattern construction. Science of Computer

Programming, 38(1–3):27–71, 2000.

[26] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In

B. Robinet, editor,Proceedings of the Second International Symposium on Programming,

pages 106–130, Paris, France, 1976. Dunod, Paris, France.

[27] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proceedings of the Fourth

Annual ACM Symposium on Principles of Programming Languages, pages 238–252, New

York, 1977. ACM Press.

[28] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProceed-

ings of the Sixth Annual ACM Symposium on Principles of Programming Languages, pages

269–282, New York, 1979. ACM Press.

[29] P. Cousot and R. Cousot. Abstract interpretation and applications to logic programs.Journal

of Logic Programming, 13(2&3):103–179, 1992.

[30] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-

tation, 2(4):511–547, 1992.

[31] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-

proaches to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors,Proceedings

of the 4th International Symposium on Programming LanguageImplementation and Logic

Chapter 8 160 BIBLIOGRAPHY

Programming, volume 631 ofLecture Notes in Computer Science, pages 269–295, Leuven,

Belgium, 1992. Springer-Verlag, Berlin.

[32] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of

a program. InConference Record of the Fifth Annual ACM Symposium on Principles of

Programming Languages, pages 84–96, Tucson, Arizona, 1978. ACM Press.

[33] N. Dor, M. Rodeh, and S. Sagiv. CSSV: Towards a realistictool for statically detecting

all buffer overflows in C. InProceedings of the ACM SIGPLAN 2003 Conference on Pro-

gramming Language Design and Implementation (PLDI’03), pages 155–167. ACM Press,

2003.

[34] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis

based on a combination of program slicing, abstract interpretation, and invariant analysis.

In Seventh International Workshop on Worst-Case Execution Time Analysis, (WCET’2007),

Pisa, Italy, July 2007.

[35] R. Giacobazzi, editor.Static Analysis: Proceedings of the 11th International Symposium,

volume 3148 ofLecture Notes in Computer Science, Verona, Italy, 2004. Springer-Verlag,

Berlin.

[36] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized di-

mensions. In K. Jensen and A. Podelski, editors,Tools and Algorithms for the Construction

and Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 ofLec-

ture Notes in Computer Science, pages 512–529, Barcelona, Spain, 2004. Springer-Verlag,

Berlin.

[37] P. Granger. Static analysis of arithmetical congruences. International Journal of Computer

Mathematics, 30:165–190, 1989.

[38] P. Granger.Analyses Śemantiques de Congruence. PhD thesis,́Ecole Polytechnique, 921128

Palaiseau, France, July 1991.

[39] P. Granger. Static analysis of linear congruence equalities among variables of a program. In

S. Abramsky and T. S. E. Maibaum, editors,TAPSOFT’91: Proceedings of the International

Joint Conference on Theory and Practice of Software Development, Volume 1: Colloquium

on Trees in Algebra and Programming (CAAP’91), volume 493 ofLecture Notes in Com-

puter Science, pages 169–192, Brighton, UK, 1991. Springer-Verlag, Berlin.

[40] P. Granger. Improving the results of static analyses programs by local decreasing iteration. In

R. K. Shyamasundar, editor,Proceedings of the 12th Conference on Foundations of Software

Technology and Theoretical Computer Science, volume 652 ofLecture Notes in Computer

Science, pages 68–79, New Delhi, India, 1992. Springer-Verlag, Berlin.

Chapter 8 161 BIBLIOGRAPHY

[41] P. Granger. Static analyses of congruence properties on rational numbers (extended abstract).

In P. Van Hentenryck, editor,Static Analysis: Proceedings of the 4th International Sympo-

sium, volume 1302 ofLecture Notes in Computer Science, pages 278–292, Paris, France,

1997. Springer-Verlag, Berlin.

[42] Gautam Gupta and Sanjay V. Rajopadhye. The z-polyhedral model. In Katherine A. Yelick

and John M. Mellor-Crummey, editors,Proceedings of the 12th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPOPP 2007, San Jose, California,

USA, pages 237–248. ACM, 2007.

[43] N. Halbwachs.Détermination Automatique de Relations Linéaires V́erifiées par les Vari-

ables d’un Programme. Thèse de 3̀eme cycle d’informatique, Université scientifique et

médicale de Grenoble, Grenoble, France, March 1979.

[44] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear

relation analysis.Formal Methods in System Design, 11(2):157–185, 1997.

[45] M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133–151,

1976.

[46] Andy King and Harald Sondergaard. Inferring Congruence Equations using SAT. In Aarti

Gupta and Sharad Malik, editors,Twentieth International Conference on Computer-Aided

Verification, Lecture Notes in Computer Science. Springer-Verlag, July2008.

[47] S. Larsen, E. Witchel, and S. P. Amarasinghe. Increasing and detecting memory address con-

gruence. InProceedings of the 2002 International Conference on Parallel Architectures and

Compilation Techniques (PACT’02), pages 18–29, Charlottesville, VA, USA, 2002. IEEE

Computer Society Press.

[48] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at

http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares it-

self to be a continuation of [80].

[49] A. Miné. A new numerical abstract domain based on difference-bound matrices. In

O. Danvy and A. Filinski, editors,Proceedings of the 2nd Symposium on Programs as Data

Objects (PADO 2001), volume 2053 ofLecture Notes in Computer Science, pages 155–172,

Aarhus, Denmark, 2001. Springer-Verlag, Berlin.

[50] A. Miné. The octagon abstract domain. InProceedings of the Eighth Working Confer-

ence on Reverse Engineering (WCRE’01), pages 310–319, Stuttgart, Germany, 2001. IEEE

Computer Society Press.

[51] A. Miné. A few graph-based relational numerical abstract domains. In M. V. Hermenegildo

and G. Puebla, editors,Static Analysis: Proceedings of the 9th International Symposium,

Chapter 8 162 BIBLIOGRAPHY

volume 2477 ofLecture Notes in Computer Science, pages 117–132, Madrid, Spain, 2002.

Springer-Verlag, Berlin.

[52] A. Miné. The Octagon Abstract Domain Library. Semantics and Abstract Interpretation

Computer Science Lab.,́Ecole Normale Supérieure, Paris, France, release 0.9.6 edition,

October 2002. Available athttp://www.di.ens.fr/∼mine/oct/.

[53] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,́Ecole Polytechnique,

Paris, France, March 2005.

[54] Antoine Miné. The octagon abstract domain.Higher-Order and Symbolic Computation,

19:31–100, 2006.

[55] John E. Mitchell. Cutting plane algorithms for integerprogramming. InEncyclopedia of

Optimization, pages 525–533. Kluwer Academic Publishers, 2001.

[56] R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[57] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.

In H. W. Kuhn and A. W. Tucker, editors,Contributions to the Theory of Games – Volume

II , number 28 in Annals of Mathematics Studies, pages 51–73. Princeton University Press,

Princeton, New Jersey, 1953.

[58] M. Müller-Olm and H. Seidl. A note on Karr’s algorithm.In J. Diaz, J. Karhumäki, and A.

Lepistö et al., editors,Automata, Languages and Programming: Proceedings of the 31st In-

ternational Colloquium (ICALP 2004), volume 3142 ofLecture Notes in Computer Science,

pages 1016–1028, Turku, Finland, 2004. Springer-Verlag, Berlin.

[59] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In

N. D. Jones and X. Leroy, editors,Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POPL 2004), pages 330–341, Venice, Italy,

2004. ACM Press.

[60] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In M. Sagiv, editor,Program-

ming Languages and Systems, Proceedings of the 14th European Symposium on Program-

ming, volume 3444 ofLecture Notes in Computer Science, pages 46–60, Edinburgh, UK,

2005. Springer-Verlag, Berlin.

[61] M. Müller-Olm and H. Seidl. A generic framework for interprocedural analysis of numerical

properties. In C. Hankin and I. Siveroni, editors,Static Analysis: Proceedings of the 12th

International Symposium, volume 3672 ofLecture Notes in Computer Science, pages 235–

250, London, UK, 2005. Springer-Verlag, Berlin.

[62] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. ACM Trans. Program. Lang.

Syst., 29(5), 2007.

Chapter 8 163 BIBLIOGRAPHY

[63] Tsuneo Nakanishi and Akira Fukuda. Modulo interval arithmetic and its application to

program analysis.Information Processing Society of Japan, 42(4):829–837, 2001.

[64] Tsuneo Nakanishi, Kazuki Joe, Constantine D. Polychronopoulos, and Akira Fukuda. The

modulo interval: A simple and practical representation forprogram analysis. InIEEE PACT,

pages 91–96, 1999.

[65] G. Nelson and D. C. Oppen. Fast decision algorithms based on Union and Find. InProceed-

ings of the 18th Annual Symposium on Foundations of ComputerScience (FOCS’77), pages

114–119, Providence, RI, USA, 1977. IEEE Computer Society Press. The journal version

of this paper is [66].

[66] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.Journal

of the ACM, 27(2):356–364, 1980. An earlier version of this paper is [65].

[67] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. Wiley Inter-

science Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[68] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations.Publication interne

1330, IRISA, Campus de Beaulieu, Rennes, France, 2000.

[69] M. D. Potter.Sets: An Introduction. Oxford University Press, 1990.

[70] W. Pugh. A practical algorithm for exact array dependence analysis.Communications of

the ACM, 35(8):102–114, 1992.

[71] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical Report

1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

[72] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a canonic

representation.Parallel Processing Letters, 7(2):181–194, 1997.

[73] Thomas W. Reps, Gogul Balakrishnan, and Junghee Lim. Intermediate-representation re-

covery from low-level code. In John Hatcliff and Frank Tip, editors,PEPM, pages 100–111.

ACM, 2006.

[74] E. Rodrı́guez-Carbonell and D. Kapur. An abstract interpretation approach for automatic

generation of polynomial invariants. In Giacobazzi [35], pages 280–295.

[75] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations analysis.

In Giacobazzi [35], pages 53–68.

[76] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in

Discrete Mathematics and Optimization. John Wiley & Sons, 1999.

Chapter 164 BIBLIOGRAPHY

[77] Axel Simon, Andy King, and Jacob M. Howe. Two variables per linear inequality as an ab-

stract domain. In M. Leuschel, editor,LOPSTR, volume 2664 ofLecture Notes in Computer

Science, pages 71–89, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[78] J. Truss.Discrete Mathematics for Computer Scientists. Addison-Wesley Longman Limited,

1999.

[79] A. Venet and G. Brat. Precise and efficient static array bound checking for large embed-

ded C programs. InProceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI’04), pages 231–242, Washington, DC, USA,

2004. ACM Press.

[80] D. K. Wilde. A library for doing polyhedral operations.Master’s thesis, Oregon State

University, Corvallis, Oregon, December 1993. Also published as IRISAPublication interne

785, Rennes, France, 1993.

[81] L. A. Wolsey. Integer Programming. Wiley Interscience Series in Discrete Mathematics and

Optimization. John Wiley & Sons, 1998.

Appendix A

Declared Publication

A copy of [3] is now given.

165

Grids: A Domain for Analyzing the Distribution

of Numerical Values⋆

Roberto Bagnara1, Katy Dobson2, Patricia M. Hill2, Matthew Mundell2, and
Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy,
{bagnara,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK,
{katyd,hill,mattm}@comp.leeds.ac.uk

Abstract. This paper explores the abstract domain of grids, a domain
that is able to represent sets of equally spaced points and hyperplanes
over an n-dimensional vector space. Such a domain is useful for the static
analysis of the patterns of distribution of the values program variables
can take. We present the domain, its representation and the basic oper-
ations on grids necessary to define the abstract semantics. We show how
the definition of the domain and its operations exploit well-known tech-
niques from linear algebra as well as a dual representation that allows,
among other things, for a concise and efficient implementation.

1 Introduction

We distinguish between two kinds of numerical information about the values
program variables can take: outer limits (or bounds within which the values must
lie) and the pattern of distribution of these values. Both kinds of information
have important applications: in the field of automatic program verification, limit
information is crucial to ensure that array accesses are within bounds, while
distribution information is what is required to ensure that external memory
accesses obey the alignment restriction imposed by the host architecture. In
the field of program optimization, limit information can be used to compile
out various kinds of run-time tests, whereas distribution information enables
several transformations for efficient parallel execution as well as optimizations
that enhance cache behavior.

Both limit and distribution information often come in a relational form; for
instance, the outer limits or the pattern of possible values of one variable may
depend on the values of one or more other variables. Domains that can capture re-
lational information are generally much more complex than domains that do not
have this capability; in exchange they usually offer significantly more precision,
often important for the overall performance of the client application. Relational

⋆ This work has been partly supported by EPSRC project EP/C520726/1 “Numerical
Domains for Software Analysis,” by MIUR project “AIDA — Abstract Interpreta-
tion: Design and Applications,” and by a Royal Society (ESEP) award.

-4

-2

4

2

-2-4 642

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

r r

r

(a) The grid L

-4

-2

4

2

-2-4 642
rsr

(b) The grid L′

Fig. 1. Congruence and generator systems representing two grids in R2

limit information can be captured, among other possibilities, by means of poly-
hedral domains, that is, domains that represent regions of some n-dimensional
vector space bounded by a finite set of hyperplanes [10]. Although polyhedral do-
mains such as the domain of convex polyhedra have been thoroughly researched
and are widely used, relational domains for representing the (linear) distribu-
tion of numerical values have been less well researched. Moreover, as far as we
know and at the time of writing, there is no available implementation providing
all the basic operations needed by a relational abstract domain for distribution
information. This is in spite of the fact that previous research has shown that a
knowledge about the (discrete) distribution of numerical information, especially
when combined with that of the limit information, can significantly improve the
quality of the analysis results [1].

This paper closes this gap by providing a complete account of the relational
domain of grids ; a domain for capturing numerical distribution information. It
includes a detailed survey of previous work in this area; gives two representations
for the domain; outlines how these can be reduced and also how to convert
between them; and shows how this double description directly supports methods
for comparing, joining and intersecting elements of this domain. The paper also
outlines affine image and preimage operations and two new widenings for grids.

Grids in a Nutshell. Figure 1 illustrates two ways of describing a grid; either
by means of a finite set of congruence relations that all grid points must satisfy
(given by dashed lines) or by means of a finite set of generating vectors used for
constructing the grid points and lines (given by filled squares and thick lines).

The squares in Figure 1(a) illustrate a grid L indicating possible values of
integer variables x and y resulting from executing the program fragment in
Figure 2 for any value of m. The congruence relations x = 0 (mod 2) and x +
2y = 2 (mod 4) are represented by the vertical dashed lines and sloping lines,
respectively. The set of congruence relations C =

{

x = 0 (mod 2), x + 2y = 2

(mod 4)
}

, called a congruence system, is said to describe L. The filled squares
mark the points p1 = (2

0) , p2 = (6
0) and p3 = (4

1) while all the squares (both
filled and unfilled) mark points v = π1p1 + π2p2 + π3p3, where π1, π2, π3 ∈ Z

2

and π1 + π2 + π3 = 1. The set of points P = {p1, p2, p3} is said to generate
L. Some of these generating points can be replaced by parameters that give the
gradient and distance between neighboring points. Specifically, by subtracting
the point p1 from each of the other two generating points p2 and p3, we obtain
the parameters q2 = (4

0) and q3 = (2
1) for L that are marked by the thick lines

between points p1 and p2 and points p1 and p3, respectively. It follows that each
point v ∈ L can be written as v = p1 + π2q2 + π3q3 for some π2, π3 ∈ Z.

The dashed line in Figure 1(b) illustrates

x := 2; y := 0; (P1)

for i := 1 to m (P2)

if ... then

x := x + 4 (P3)

else

x := x + 2;

y := y + 1 (P4)

endif (P5)

endfor

Fig. 2. Fragment based on an
example in [10]

the grid L′ defining the line x = y + 1 and
marks the vectors of values of the real vari-
ables x and y after an assignment x := y + 1,
assuming that nothing is known about the
value of y. As equalities are congruences mod-
ulo 0, the set C′ = {x−y = 1} is also called a
congruence system and describes L′. Observe
that the grid L′ consists of all points that can
be obtained as λℓ + p′, for any λ ∈ R, where
ℓ = (1

1) and p′ = (1
0) ; the vector ℓ, called

a line, defines a gradient and the vector p′ is
a generating point marking a position for the
line (illustrated in Figure 1(b) by the thick
line and the filled square, respectively).

From what we have just seen, any grid can be represented both by a congru-
ence system and by a generator system. The latter may consist of three compo-
nents: a set of lines, a set of parameters and a set of points. For instance, the
triples G1 =

(

∅, ∅, P
)

and G2 =
(

∅, {q2, q3}, {p1}
)

are both generator systems

for L while the triple G′ =
(

{ℓ}, ∅, {p′}
)

is a generator system for L′.

Contributions. The paper provides an account of the relational domain of
grids, fully implemented within the Parma Polyhedra Library [2, 4]. In this sec-
tion we provide the first comprehensive survey of the main research threads
concerning these and similar domains. The other contributions are given below.

Minimizing representations. Assuming the grid is represented by a congruence
and generator system in an n-dimensional vector space consisting of m congru-
ences or generators, then we outline algorithms for minimizing the representation
(based on the Hermite normal form algorithm [29]) that have worst-case com-
plexity O

(

n2m
)

. Note that previous proposals for minimization such as those
in [14, 23] have worse complexity bounds (see below).

Converting representations. The congruence and generator representations de-
scribed informally above form the two components of a double description method
for the grid domain very similar to that for convex polyhedra [20]. For a double
description method, conversion algorithms between the two systems are needed;
we show how conversion can be implemented using any matrix inversion al-
gorithm, inheriting the corresponding worst-case complexity. For instance, the

3

complexity is O
(

n3
)

when adopting the standard Gaussian elimination method;
since matrix inversion has the same worst-case complexity as matrix multipli-
cation, better theoretical complexity bounds apply [5]. Previous proposals for
congruence to generator conversion have complexity no better than O

(

n4
)

[15].

Grid operations. For static analysis, it is useful to provide all the set-theoretic
lattice operations for grids (assuming the usual subset ordering) such as compar-
ison, join and meet. We show that these operations are straightforward given the
availability of the appropriate representation(s) in minimal form; and hence show
that some have complexities strictly better than that of previous proposals [14].
We also describe a grid difference operator which is new to this paper.

Affine transformation operators. Affine image and preimage operators can be
used to capture the effect of assignment statements in a program when the ex-
pression is linear although, as noted by Müller-Olm and Seidl in [21], analyses
that use affine spaces for approximating the semantics of procedures are not suf-
ficiently precise to detect all valid affine relations for programs with procedures.
Here we specify, for the domain of grids, the affine image and preimage operators
for a single update where only one dimension is modified.

Widenings. It was observed by Granger [15], that, if the grid generators can
be in the rationals, then the grid domain does not satisfy the ascending chain
condition; so, to guarantee termination of the analysis, a widening operation
is required. In [15, Proposition 10], a widening is given for non-relational grids
that returns a line parallel to an axis whenever the modulus for that dimension
changes. It is then proposed that a generalized form of this could be used as a
widening for relational grids; however, exactly how this is to be done is unclear.
In this paper, we define two possible generalizations which come with simple
syntactic checks that have efficient implementations.

Related Work. In [12], Granger shows how a static analysis can usefully em-
ploy a simple non-relational grid domain (that is a grid described by congruences
of the form x = c (mod f) where c and f are integers) and that this domain
can obtain more precise information for applications such as automatic vector-
ization. Larsen et al. [17] also developed a static analyzer over a non-relational
grid domain specifically designed to detect when dynamic memory addresses are
congruent with respect to a given modulus; they show that, this information
helps in the construction of a comprehensive set of program transformations for
saving energy on low-power architectures and improving performance on multi-
media processors. We note that these applications should carry over to the more
complex domain considered here. In addition, Miné has shown how to construct,
from the non-relational congruence domain in [12], a zone-congruence domain
(that is, a domain that only allows weakly relational congruences that have the
form x − y = a (mod b) where a and b are rationals) [19].

Concerning fully relational domains, note that the use of a domain of linear
equality relations for program analysis had already been studied by Karr [16].

4

In [14], Granger generalized this to provide a domain of linear congruence re-
lations on an integral domain, i.e., a domain generated by integral vectors in
n-dimensions; and then, in [13, 15], generalizes the results to the full grid do-
main. In [13–15], domain elements are represented by congruence and generator
systems similar to the ones defined here. Standard algorithms for solving linear
equations are used in converting from generator to congruence systems; however,
a more complex O

(

n4
)

algorithm is provided for converting from congruence to
generator systems. Assuming the number of generators is n + 1, the algorithm
for minimizing the generator system has complexity O

(

n3 log2 n
)

. Operators for
comparing grids and computing the greatest lower and least upper bounds are
also described. In particular, the join operation defined in [14] has complexity
O

(

n4 log2 n
)

, since the generators of one grid are added, one at a time, to the
generators of the other; after each addition the minimization algorithm is ap-
plied to compute a new linearly independent set. The grid meet operation which
also minimizes the addition of one congruence at a time has complexity O

(

n4
)

.

The problem of how best to apply the grid domain in a program analyzer,
has been studied by Müller-Olm and Seidl in [23] also building on the work of
Karr [16]. Here, the prime focus is for the design of an interprocedural analysis
for programs containing assignment statements and procedure calls. The algo-
rithm has three stages: first, for each program point, a matrix M containing a
(minimized) set of generators (i.e., vectors of values that hold at that point) is
found; secondly, the determinant f of M is computed; thirdly, a congruence sys-
tem with modulo f that satisfies all the vectors in M is determined. Stage one
is similar to that proposed by Granger [14] for minimizing a set of generators.
Stages two and three differ from the conversion in [14] in that the modulus f is
computed separately and used to reduce the sizes of the coordinates. Note that
the framework described in [23] subsumes previous works by the same authors.

Following an independent stream of research, Ancourt [1] considered the
domain of Z-polyhedra; that is a domain of integral lattices intersected with
the domain of convex polyhedra (see also [24–26]). We are primarily interested
here in the “integral lattices” component which may be seen as a subdomain of
the domain of grids where the grid is full dimensional and all the grid points
are integral vectors. The representation of these integral lattices is a special case
of our generator representation where, for n dimensions, there must be exactly
one point and n linearly independent parameters, all of which must be integral.
There is no support for a congruence representation.

All the operations on Z-polyhedra (and therefore the lattices) require canonic
representations; hence Quinton et al. [25, 26] define a canonical form for these
lattices with a method for its computation. We note that the algorithm for
computing the canonic form has complexity O

(

n4
)

, where n is the number of
dimensions of the vector space. Other operations provided are those of lattice
intersection, affine image and affine preimage. As there is no congruence repre-
sentation, the intersection of two lattices is computed directly from the generator
representations [1]; a refined version of this method is provided in [25] which we
note that, as for computing the canonic form, has complexity O

(

n4
)

. The opera-

5

tions of grid join and grid difference (as defined here) are not considered; instead
the union operator takes two lattices L1 and L2 and returns the set {L1,L2} un-
less one (say L1) is contained in the other, in which case they return the larger,
L2. Similarly the difference operation returns a set of lattices representing the
set difference L1 \ L2. The domain of integral lattices has been implemented in
PolyLib [18] following the approach in [25, 26]. This means that only the genera-
tor representation is supported and some operations return sets of lattices while
others manipulate and simplify these sets.

The homogeneous form of a representation given in Section 4, is required
by the conversion algorithm. This form is not new to this paper; in fact several
researchers have observed this. For instance, Granger [14] describes a map from a
linear congruence system in n variables to a homogeneous one in n+1 variables;
Nookala and Risset [24] explain that the PolyLib [18] adds a dimension to make
the (generator) representation homogeneous; while Müller-Olm and Seidl [23]
consider extended states where vectors have an extra 0’th component.

Plan of the Paper. Preliminary concepts and notation are given in Section 2.
Section 3 introduces a grid together with its congruence and generator repre-
sentations while Section 4 provides the main algorithms needed to support the
double description. Section 5 introduces grid widening and the paper concludes
in Section 6. A long version of the paper containing all proofs is available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html.

2 Preliminaries

The cardinality of a set S is denoted by #S. The set of integers is denoted by
Z, rationals by Q and reals by R. The complexities will assume a unit cost for
every arithmetic operation.

Matrices and Vectors. If H is a matrix in Rn×m, the transposition of H is
denoted by HT ∈ Rm×n. A vector v = (v1, . . . , vn) ∈ Rn is also regarded as a
matrix in Rn×1. The scalar product of vectors v and w ∈ Rn, denoted by 〈v, w〉,
is the real number vTw =

∑n

i=1
viwi. The vector ei ∈ Rn has 1 in the i-th

position and 0 in every other position. We let

piv<(v) :=

{

0 if v = 0

max{i | 1 ≤ i ≤ n, vi 6= 0} if v 6= 0

piv>(v) :=

{

n + 1 if v = 0

min{i | 1 ≤ i ≤ n, vi 6= 0} if v 6= 0.

We write v ⇑ v′, if piv<(v) = piv<(v′) = k and either k = 0 or vk = v′k and
v ⇓ v′, if piv>(v) = piv>(v′) = k and either k = n + 1 or vk = v′k.

6

Integer Combinations. The set S = {v1, . . . ,vk} ⊆ Rn is affinely independent

if, for all λ ∈ Rk, λ = 0 is the only solution of
{
∑k

i=1
λivi = 0,

∑k

i=1
λi = 0

}

.

For all λ ∈ Rk, the vector v =
∑k

j=1
λjvj is said to be a linear combination

of S. This combination is affine, if
∑k

j=1
λj = 1; and integral, if λ ∈ Zk. The

set of all linear (resp., affine, integral, integral and affine) combinations of S is
denoted by linear.hull (resp., affine.hull(S), int.hull(S), int.affine.hull(S)).

Congruences and Congruence Relations. For any a, b, f ∈ R, a ≡f b

denotes the congruence ∃µ ∈ Z . a − b = µf . Let S ∈ {Q, R}. For each vector
a ∈ Sn and scalars b, f ∈ S, the notation 〈a, x〉 ≡f b stands for the linear
congruence relation in Sn defined by the set

{

v ∈ Rn
∣

∣ ∃µ ∈ Z . 〈a, v〉 = b+µf
}

;
when f 6= 0, the relation is said to be proper ; 〈a, x〉 ≡0 b denotes the equality
〈a, x〉 = b. Thus, provided a 6= 0, the relation 〈a, x〉 ≡f b defines the set of affine
hyperplanes

{ (

〈a, x〉 = b + µf
)

∣

∣ µ ∈ Z
}

; when a = 0, we assume that b 6= 0;
if b ≡f 0, 〈0, x〉 ≡f b defines the universe Rn and the empty set, otherwise.

Any vector that satisfies 〈a, x〉 = b + µf for some µ ∈ Z is said to satisfy
the relation 〈a, x〉 ≡f b. Congruence relations in Sn, such as 〈a, x〉 ≡1 b and
〈2a, x〉 ≡2 2b, defining the same hyperplanes are considered equivalent.

The pivot notation for vectors is extended to congruences: if β =
(

〈a, x〉 ≡f

a0

)

then piv<(β) := piv<(a); if γ =
(

〈c, x〉 ≡g c0

)

and ga ⇑ fc, then we write
β ⇑ γ; so that β and γ are either both equalities or both proper congruences.

3 The Grid Domain

Here we introduce grids and their representation. Note that the use of the word
‘grid’ here is to avoid confusion with the meaning of ‘lattice’ (used previously
for elements similar to a grid) in its set-theoretic context (particularly relevant
when working in abstract interpretation).

Grids and the Congruence Representation. A congruence system in Qn

is a finite set of congruence relations C in Qn. As we do not distinguish be-
tween syntactically different congruences defining the same set of vectors, we
can assume that all proper congruences in C have modulus 1.

Definition 1. Let C be a congruence system in Rn. If L is the set of vectors in
Rn that satisfy all the congruences in C, we say that L is a grid described by
a congruence system C in Qn. We also say that C is a congruence system for L
and write L = gcon(C). If gcon(C) = ∅, then we say that C is inconsistent.

The grid domain Gn is the set of all grids in Rn ordered by the set inclusion
relation, so that ∅ and Rn are the bottom and top elements of Gn respectively.

The vector space Rn is called the universe grid. In set theoretical terms, Gn

is a lattice under set inclusion. Many algorithms given here will require the
congruence systems not only to have minimal cardinality but also such that the
coefficients of (a permutation of) the congruences can form a triangular matrix.

7

Definition 2. Suppose C is a congruence system in Qn. Then we say that C is
in minimal form if either C = {〈0, x〉 ≡0 1} or C is consistent and, for each
congruence β =

(

〈a, x〉 ≡f b
)

∈ C, the following hold:

1. if piv<(β) = k, then k > 0 and ak > 0;
2. for all β′ ∈ C \ {β}, piv<(β′) 6= piv<(β).

Proposition 1. Let C be a congruence system in Qn and m = # C. Then there
exists an algorithm for finding a congruence system C′ in minimal form with
worst-case complexity O

(

n2m
)

such that gcon(C) = gcon(C′).

Note that the algorithm mentioned in Proposition 1, is based on the Hermite
normal form algorithm; details about the actual algorithm are given in the proof.
Note also, that when m < n, the complexity of this algorithm is just O

(

m2n
)

.

The Generator Representation. Let L be a grid in Gn. Then

– a vector p ∈ L is called a point of L;
– a vector q ∈ Rn \ {0} is called a parameter of L if L 6= ∅ and p + µq ∈ L,

for all points p ∈ L and all µ ∈ Z;
– a vector ℓ ∈ Rn \ {0} is called a line of L if L 6= ∅ and p + λℓ ∈ L, for all

points p ∈ L and all λ ∈ R.

If L, Q and P are finite sets of vecors in Rn and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ‘+’ denotes the Minkowski’s sum,3 then L ∈ Gn is a grid
(see [29, Section 4.4] and also Proposition 7). The 3-tuple (L, Q, P), where L,
Q and P denote sets of lines, parameters and points, respectively, is said to
be a generator system in Qn for L and we write L = ggen

(

(L, Q, P)
)

. Note
that, for any grid L in Gn, there is a generator system (L, Q, P) in Qn for L
(see again [29, Section 4.4] and also Proposition 6). Note also that the grid
L = ggen

(

(L, Q, P)
)

= ∅ if and only if the set of points P = ∅. If P 6= ∅, then

L = ggen
(

(L, ∅, Qp ∪ P)
)

where, for some p ∈ P , Qp = {p + q ∈ Rn | q ∈ Q }.
As for congruence systems, for many procedures in the implementation, it is

useful if the generator systems have a minimal number of elements.

Definition 3. Suppose G = (L, Q, P) is a generator system in Qn. Then we say
that G is in minimal form if either L = Q = P = ∅ or # P = 1 and, for each
generator v ∈ L ∪ Q, the following hold:

1. if piv>(v) = k, then vk > 0;
2. for all v′ ∈ (L ∪ Q) \ {v}, piv>(v′) 6= piv>(v).

Proposition 2. Let G = (L, Q, P) be a generator system in Qn and m = #L+
Q + #P . Then there exists an algorithm for finding a generator system G′ in
minimal form with worst-case complexity O

(

n2m
)

such that ggen(G′) = ggen(G).

As for Proposition 1, the algorithm mentioned in Proposition 2 is based on the
Hermite normal form algorithm. Note also that, when m < n, the complexity of
this algorithm is again just O

(

m2n
)

.

3 This is defined, for each S, T ⊆ Rn, by S + T := { s + t ∈ Rn | s ∈ S, t ∈ T }.

8

Double Description. We have shown that any grid L can be described by
using a congruence system C and also generated by a generator system G. For
the same reasons as for the polyhedral domain, it is useful to represent the grid
L by the double description (C,G). Just as for the double description method
for convex polyhedra, in order to maintain and exploit such a view of a grid, an
implementation must include algorithms for converting a representation of one
kind into a representation of the other kind and for minimizing both represen-
tations. Note that having easy access to both representations is assumed in the
implementation of many grid operators including those described here.

Suppose we have a double description
(

C,G
)

of a grid L ∈ Gn, where both C
and G are in minimal form. Then, it follows from the definition of minimal form
that # C ≤ n + 1 and #L + #Q ≤ n. In fact, we have a stronger result.

Proposition 3. Let (C,G) be a double description where both C and G are in
minimal form. Letting C = E∪F , where E and F are sets of equalities and proper
congruences, respectively, and G = (L, Q, P), then #F = #Q = n−# L−# E .

Example 1. Consider the grids L and L′ in Figure 1. The congruence systems
C and C′ are in minimal form and the generator systems G2 and G′ are also in
minimal form; however, G1 is not in minimal form as it contains more than one
point. Furthermore, for i = 1, 2, the pairs (C,Gi) are double descriptions for L
while (C′,G′) is a double description for L′.

Comparing Grids. For any pair of grids L1 = ggen
(

(L, Q, P)
)

, L2 = gcon(C)
in Gn, we can decide whether L1 ⊆ L2 by checking if every generator in (L, Q, P)
satisfies every congruence in C. Note that a parameter or line v satisfies a con-
gruence 〈a, x〉 ≡f b if 〈a, v〉 ≡f 0. Therefore, assuming the systems C and G are
already in minimal form, the complexity of comparison is O

(

n3
)

.
Given that it is known that one grid is a subset of another, there are quicker

tests for checking equality - the following definition is used in their specification.

Definition 4. Let C1, C2 be congruence systems in minimal form. Then C1, C2

are said to be pivot equivalent if, for each i, j ∈ {1, 2} where i 6= j, for each
β ∈ Ci, there exists γ ∈ Cj such that β ⇑ γ.

Let G1 =
(

L1, Q1, {p1}
)

and G2 =
(

L2, Q2, {p2}
)

be generator systems in
minimal form. Then G1,G2 are said to be pivot equivalent if, for each i, j ∈ {1, 2}
where i 6= j: for each qi ∈ Qi, there exists qj ∈ Qj such that qi ⇓ qj; and, for
each ℓi ∈ Li, there exists ℓj ∈ Lj such that piv>(ℓi) = piv>(ℓj).

Proposition 4. Let L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2)
be non-empty grids in Gn such that L1 ⊆ L2. If C1 and C2 are pivot equivalent
congruence systems in minimal form or G1 and G2 are pivot equivalent generator
systems in minimal form, then L1 = L2.

It follows from Proposition 4, that provided L1 ⊆ L2 and L1 and L2 have
both their generator or congruence systems already in minimal form, then the
complexity of checking if L1 = L2 is just O

(

n
)

. Moreover, if it is found that
one pair of corresponding pivot elements of the congruence or generator systems
differ, then we can immediately deduce that the grids they describe also differ.

9

Intersection and Grid Join. For grids L1,L2 ∈ Gn, the intersection of L1 and
L2, defined as the set intersection L1∩L2, is the largest grid included in both L1

and L2; similarly, the grid join of L1 and L2, denoted by L1 ⊕ L2, is the smallest
grid that includes both L1 and L2. In theoretical terms, the intersection and grid
join operators are the binary meet and join operators on the lattice Gn. They can
easily be computed; if L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2),
then L1 ∩ L2 = gcon(C1 ∪ C2) and L1 ⊕ L2 = ggen(G1 ∪ G2).

In practice, the cost of computing the grid intersection and join depends on a
number of factors: if generator systems G1 and G2 for L1 and L2 are known, then
the complexity of computing L1 ⊕ L2 is linear in either #G1 or #G2; if, however,
only congruence systems C1 and C2 for L1 and L2 (not necessarily in minimal
form) are known, then the complexity is that of minimizing and converting
them which is, at worst, O

(

n2 max(# C1, # C2, n)
)

. A similar argument applies
to the complexities of the meet operation. However, the above operations are
not directly comparable with the meet and join operations given in [14]. For
such a comparison, for instance for the join operation, we assume that generator
systems for L1 and L2 in minimal form are available (i.e., each with at most
n+1 generators) and the operation returns a generator system in minimal form
for L1 ⊕ L2. Then the complexity is O

(

n3
)

, the complexity of minimizing a
generator system with at most 2n + 2 generators, which is strictly better than
O

(

n4 log2 n
)

, the complexity of the equivalent operation in [14].

Example 2. Consider the grids L1 = gcon(C1) and L2 = gcon(C2) in G2 where
C1 := {x ≡2 0, −x + y ≡3 0} and C2 := {x ≡4 0, −x + 2y ≡6 0}. Then the
grid intersection is L1 ∩ L2 = gcon(C1 ∪ C2); thus, as C = {x ≡12 0, y ≡3 0} is a
reduced form of C1 ∪ C2, we have L1 ∩ L2 = gcon(C).

Consider L1 = ggen
(

(∅, ∅, P1)
)

and L2 = ggen
(

(∅, ∅, P2)
)

in G2, where
P1 := (2 0 0

2 3 0) and P2 := (4 0 0
2 3 0) . Then the grid join L1 ⊕ L2 is generated by

(∅, ∅, P1∪P2); thus, the generator system G :=
(

∅, (2 0
0 1) , (0

0)
)

is a minimal form
of (∅, ∅, P1 ∪ P2) and L1 ⊕ L2 = ggen(G). Note that here L1 ⊕ L2 6= L1 ∪ L2.

Grid Difference. For grids L1,L2 ∈ Gn, the grid difference L1 ⊖ L2 of L1 and
L2 is the smallest grid containing the set-theoretic difference of L1 and L2.

Proposition 5. The grid L1 ⊖ L2 is returned by the algorithm in Figure 3.

Assuming C1 and C2 are available and in minimal form, it follows from the
complexities of minimization, conversion and comparison operations that the
grid difference algorithm in Figure 3 has worst-case complexity O

(

n4
)

.

Affine Images and Preimages. Affine transformations for the vector space
Rn will map hyperplanes to hyperplanes and preserve intersection properties
between hyperplanes; such transformations can be represented by matrices in
Rn×n. It follows that the set Gn is closed under the set of all affine transfor-
mations for Rn. Simple and useful linear affine transformations for numerical

10

Input: Nonempty grids L1 = gcon(C1) and L2 = gcon(C2) in Gn.
Output: A grid in Gn.
(1) L′ := ∅
(2) while ∃β = (e ≡f 0) ∈ C2

(3) C2 := C2 \ {β}
(4) if L1 * gcon

`

{β}
´

(5) if L1 ⊆ gcon
`

{2e ≡f 0}
´

(6) Lβ := gcon
`

C1 ∪ {2e − f ≡2f 0}
´

(7) L′ := L′ ⊕ Lβ

(8) else

(9) return L1

(10) return L′

Fig. 3. The grid difference algorithm

domains, including the grids, are provided by the ‘single update’ affine image
and affine preimage operators.

Given a grid L ∈ Gn, a variable xk and linear expression e = 〈a, x〉+ b with
coefficients in Q, the affine image operator φ(L, xk, e) maps the grid L to

{

(

p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T
∈ Rn

∣

∣

∣ p ∈ L
}

.

Conversely, the affine preimage operator φ−1(L, xk, e) maps the grid L to

{

p ∈ Rn
∣

∣

∣

(

p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T
∈ L

}

.

Observe that the affine image φ(L, xk, e) and preimage φ−1(L, xk, e) are invert-
ible if and only if the coefficient ak in the vector a is non-zero.

Program Analysis Using Grids. We show how the grid domain can be used
to find properties of the program variables not found using the polyhedra do-
main [10], constraint-based analysis [28] or polynomial invariants [27].

Example 3. The program fragment in Figure 2 is annotated with program points
Pj, for j = 1, . . . , 5. Let Li

j ∈ G2 denote the grid computed at the i-th iteration

executed by the point Pj. Initially, L0
j = ∅ = gcon

(

{1 = 0}
)

, for j = 1, . . . , 5.
After one and two iterations of the loop we have:

L1
1 = gcon

(

{x = 2, y = 0}
)

, L1
2 = gcon

(

{x = 2, y = 0}
)

,

L1
3 = gcon

(

{x = 6, y = 0}
)

, L1
4 = gcon

(

{x = 4, y = 1}
)

,

L1
5 = gcon

(

{x = 4, y = 1}
)

⊕ gcon
(

{x = 6, y = 0}
)

= gcon
(

{x + 2y = 6, x ≡2 0}
)

,

L2
2 = gcon

(

{x = 2, y = 0}
)

⊕ gcon
(

{x + 2y = 6, x ≡2 0}
)

= gcon
(

{x + 2y ≡4 2, x ≡2 0}
)

.

11

Subsequent computation steps show that an invariant for P2 has already been
computed since L2

3 = L1
3, L

2
4 = L1

4, L
2
5 = L1

5 so that L3
2 = L2

2. Thus at the end
of the program, the congruences x + 2y ≡4 2 and x ≡2 0 hold.

Observe that, using convex polyhedra, a similar analysis will find instead
that the inequalities x − 2y ≥ 2, x + 2y ≥ 6 and y ≥ 0 hold [10].

4 Implementation

In this section, we describe convenient internal representations of the congruence
and generator systems in terms of arrays (i.e., matrices) and show how matrix
inversion provides a basis for converting between these representations.

Homogeneous Representations. A congruence system C is homogeneous if,
for all

(

〈a, x〉 ≡f b
)

∈ C, we have b = 0. Similarly, a generator system (L, Q, P)
is homogeneous if 0 ∈ P . For the implementation, it is convenient to work with a
homogeneous system. Thus we first convert any congruence or generator system
in Qn to a homogeneous system in Qn+1. The extra dimension is denoted with
a 0 subscript; the vector x̂ = (x0, . . . , xn)T; and e0 denotes the vector (1,0T)T.

Consider the congruence system C = E∪F in Qn, where E is a set of equalities
and F is a set of proper congruences. Then the homogeneous form for C is the
congruence system Ĉ = Ê ∪ F̂ in Qn+1 defined by:

Ê :=
{

〈

(−b, aT)T, x̂
〉

= 0
∣

∣

∣

(

〈a, x〉 = b
)

∈ E
}

,

F̂ :=
{

〈

f−1(−b, aT)T, x̂
〉

≡1 0
∣

∣

∣

(

〈a, x〉 ≡f b
)

∈ F
}

∪
{

〈e0, x̂〉 ≡1 0
}

.

The congruence 〈e0, x̂〉 ≡1 0 expresses the fact that 1 ≡1 0. By writing Ê =
(ETx = 0) and F̂ = (FTx ≡1 0), where E, F ⊆ Qn+1, it can be seen that the
pair (F, E), called the matrix form of Ĉ, is sufficient to determine C.

Consider next a generator system G = (L, Q, P) in Qn. Then the homoge-
neous form for G is the generator system Ĝ :=

(

L̂, Q̂ ∪ P̂ , {0}
)

in Qn+1 where

L̂ :=
{

(0, ℓT)T
∣

∣ ℓ ∈ L
}

, Q̂ :=
{

(0, qT)T
∣

∣ q ∈ Q
}

, P̂ :=
{

(1, pT)T
∣

∣ p ∈ P
}

.

The original grid L = gcon(C) (resp., L = ggen(G)) can be recovered from
the grid L̂ = gcon(Ĉ) (resp., L̂ = ggen(Ĝ)) since L =

{

v ∈ Rn
∣

∣ (1, vT)T ∈ L̂)
}

.

Note that, if (C,G) is a double description for a grid and Ĉ and Ĝ are homogeneous
forms for C and G, then (Ĉ, Ĝ) is also a double description.

Converting Representations. By considering the matrix forms of the (homo-
geneous forms of the) representations, we can build the conversion algorithms on
top of those for matrix inversion. For an informal explanation why this is appro-
priate, suppose that the generator system G =

(

∅, Q, {0}
)

in Qn is in minimal
form and Q is a non-singular square matrix. Letting L = ggen(G) = {Qπ |

12

π ∈ Zn }, then we also have L = {v ∈ Rn | Q−1v ≡1 0 }, so that (Q−1, ∅) is
the matrix form of a congruence system for the same grid L. Similarly we can
use matrix inversion to convert the matrix form of a homogeneous congruence
system in minimal form consisting of n proper congruences for a grid L to a gen-
erator system for L. When the matrices to be inverted have less than n linearly
independent columns, the algorithms first add vectors ei where 1 ≤ i ≤ n, as
necessary, so as to make the matrices non-singular and hence invertible.

Proposition 6. Let C be a congruence system in Qn in minimal form; (F, E)
the matrix form of the homogeneous form for C; N a matrix in Zn+1 whose
vectors are of the form ei, i ∈ {0, . . . , n}, and such that (N, F̂ , Ê) is square and

nonsingular; and (L̂, Q̂, M) :=
(

(N, F̂ , Ê)−1
)T

where # L̂ = #N , # Q̂ = # F̂

and # M = # Ê. Then Ĝ =
(

L̂, Q̂, {0}
)

is the homogeneous form for a generator
system G in minimal form and ggen(G) = gcon(C).

Proposition 7. Let G be a generator system in Qn in minimal form; Ĝ =
(

L̂, Q̂, {0}
)

the homogeneous form for G; M a matrix in Zn+1 whose vectors

are of the form ei, i ∈ {0, . . . , n}, and such that (L̂, Q̂, M) is square and non-

singular; and (N, F̂ , Ê) :=
(

(L̂, Q̂, M)−1
)T

where # N = # L̂, # F̂ = # Q̂ and

Ê = #M . Then (F̂ , Ê) is the matrix form of the homogeneous form for a
congruence system C in minimal form and gcon(C) = ggen(G).

Both algorithms just perform matrix inversion; so their complexity depends on
the inversion algorithm adopted in the implementation. As far as we know, the
current best theoretical worst-case complexity is O

(

n2.376
)

[5]. Note that, in the
current implementation in the PPL, the conversion algorithm is based on the
Gaussian elimination method, which has complexity O

(

n3
)

.

5 Grid Widening

A simple and general characterization of a widening for enforcing and acceler-
ating convergence of an upward iteration sequence is given in [6–9]. We assume
here a minor variation of this classical definition (see footnote 6 in [9, p. 275]).

Definition 5. (Widening.) Let 〈D,⊢,0,⊕〉 be a join-semilattice. The partial
operator ∇ : D × D D is a widening if

1. for each d1, d2 ∈ D, d1 ⊢ d2 implies that d1 ∇ d2 is defined and d2 ⊢ d1 ∇ d2;
2. for each increasing chain d0 ⊢ d1 ⊢ · · · , the increasing chain defined by

d′0 := d0 and d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

In addition to the formal requirements in Definition 5, it is also important to have
a widening that has an efficient implementation, preferably, one that depends
on a simple syntactic mapping of the representations. At the same time, so that
the widening is well-defined, the result of this operation should be independent
of the actual representation used. For this reason, the two widenings we propose
assume specific minimal forms for the congruence and generator systems.

13

Definition 6. A congruence system C is in strong minimal form if, for each pair
of distinct proper congruences, 〈a, x〉 ≡1 b and 〈c, x〉 ≡1 d in C, if piv<(c) =
k > 0, then −ck < 2ak ≤ ck. A generator system G =

(

(L, Q, P)
)

in Qn is
in strong minimal form if G is in minimal form and, for each pair of distinct
parameters u, v ∈ Q, if piv>(v) = k ≤ n, then −vk < 2uk ≤ vk.

Proposition 8. There exists an algorithm with complexity O
(

n3
)

for convert-
ing a congruence system C (resp., generator system G) in minimal form to a
congruence system C′ (resp., generator system G′) in strong minimal form such
that gcon(C) = gcon(C′) (resp., ggen(G) = ggen(G′)).

The widenings defined below use either the congruence or the generator systems.

Definition 7. Let L1 = gcon(C1) and L2 = gcon(C2) be two grids in Gn such
that L1 ⊆ L2, C1 is in minimal form and C2 is in strong minimal form. Then
the grid widening L1 ∇C L2 is defined by

L1 ∇C L2 :=

{

L2, if L1 = ∅ or dim(L1) < dim(L2),

gcon(CS), otherwise,

where CS := { γ ∈ C2 | ∃β ∈ C1 . β ⇑ γ }.

Definition 8. Let L1 = ggen(G1) and L2 = ggen(G2) be two grids in Gn such
that L1 ⊆ L2, G1 = (L1, Q1, P1) is in minimal form and G2 = (L2, Q2, P2) is in
strong minimal form. Then the grid widening L1 ∇G L2 is defined by

L1 ∇G L2 :=

{

L2, if L1 = ∅ or dim(L1) < dim(L2);

ggen(GS), otherwise,

where GS :=
(

L2 ∪ (Q2 \ QS), QS, P2

)

and QS := {v ∈ Q2 | ∃u ∈ Q1 . u ⇓ v }.

Proposition 9. The operators ‘∇C’ and ‘∇G’ are both widenings on Gn.

In Definition 7, it is required that C2 is in strong minimal form. The following
example shows that this is necessary for the operator ‘∇C’ to be well-defined.

Example 4. Let L1 := gcon(C1), L2 := gcon(C2) and L′

2 := gcon(C′

2) where
C1 = {x ≡2 0, y ≡2 0}, C2 = {x ≡1 0, x + y ≡2 0}, C′

2 = {x ≡1 0, 3x + y ≡2 0};
then L2 = L′

2. Note that only C1 and C2 are in strong minimal form. Therefore,
assuming CS (resp., CS

′) is defined as in Definition 7 using C1 and C2 (resp.,
C1 and C′

2), we have CS = {x + y ≡2 0} and CS

′ = {3x + y ≡2 0}. Thus
L1 ∇C L2 = gcon(CS) 6= gcon(CS

′).

Example 5. To see that the widenings depend on the variable ordering, consider
the grids L1 = gcon(C1) = gcon(C′

1) and L2 = gcon(C2) = gcon(C′

2) in G2, where

C1 := {5x + y ≡1 0, 22x ≡1 0}, C2 := {5x + y ≡1 0, 44x ≡1 0},

C′

1 := {9y + x ≡1 0, 22y ≡1 0}, C′

2 := {9y + x ≡1 0, 44y ≡1 0}.

14

Assume for C1 and C2 that the variables are ordered so that x precedes y, as in
the vector (x, y)T; then, C1 and C2 are in strong minimal form and, according
to Definition 7, we obtain L1 ∇C L2 = gcon

(

{5x + y ≡1 0}
)

. On the other hand,
C′

1 and C′

2 are in strong minimal form when taking the variable order where y

precedes x. In this case, by Definition 7, L1 ∇C L2 = gcon
(

{9y + x ≡1 0}
)

.

6 Conclusion

We have defined a domain of grids and shown that any element may be repre-
sented either by a congruence system which is a finite set of congruences (either
equalities or proper congruences); or a generator system which is a triple of fi-
nite sets of vectors (denoting sets of lines, parameters and points). Assuming
such a system in Qn has m congruences or generators, then the minimization
algorithms have worst-case complexity O

(

n2m
)

. It is shown that any matrix

inversion algorithms such as Gaussian elimination which has complexity O
(

n3
)

,
can be used for converting between generator and congruence systems in mini-
mal form. Thus, the complexity of converting any system with m elements is no
worse than O

(

n2m
)

if m > n and O
(

n3
)

, otherwise.

The minimization and conversion algorithms, form the basis for a double de-
scription method for grids so that any generator or congruence systems, possibly
in minimal form, can be provided on demand; the complexity of such a provision
being as stated above. Assuming this method, we have shown that operations
for comparison, intersection and grid join are straightforward. The complexity of
comparing two grids is O

(

n3
)

but, for just checking equality when it is already
known that one of the grids is a subset of the other, we have described sim-
pler procedures with complexity O

(

n
)

. The intersection and grid join just take
the union of the congruence or generator systems, respectively, so that, from
a theoretical perspective, these have complexity O

(

n
)

. However, in the imple-
mentation, we assume a common divisor for all the coordinates or coefficients in
the system; hence, combining the systems requires changing the denominators
of both components to their least common multiple with a consequential need
to scale all the numerators in the representation; giving a worst-case complexity
of O

(

n2
)

. We have also described an algorithm for computing the grid difference

with complexity O
(

n4
)

. Observe that this operator is useful in the specification
of the certificate-based widening for the grid powerset domain [3].

The grid domain is implemented in the PPL [2, 4] following the approach
described in this paper. Among the tests available in the PPL are the examples
in this paper and implementations of the running examples in [22, 23]. The PPL
provides full support for lifting any domain to the powerset of that domain, so
that a user of the PPL can experiment with powersets of grids and the extra
precision this provides. An interesting line of research is the combination of the
grids domain with the polyhedral domains provided by the PPL: not only the
Z-polyhedra domain, but also many variations such as the grid-polyhedra, grid-
octagon, grid-bounded-difference, grid-interval domains and their powersets.

15

References

1. C. Ancourt. Génération Automatique de Codes de Transfert pour Multiprocesseurs
à Mémoires Locales. PhD thesis, Université de Paris VI, March 1991.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, Parma, Italy, release
0.9 edition, March 2006. Available at http://www.cs.unipr.it/ppl/.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. Software Tools for Technology Transfer, 8(4/5):449–466, 2006.

4. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251–280, 1990.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106–130, Paris, France, 1976. Dunod, Paris, France.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

8. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

9. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

11. R. Giacobazzi, editor. Static Analysis: Proceedings of the 11th International Sym-
posium, volume 3148 of Lecture Notes in Computer Science, Verona, Italy, 2004.
Springer-Verlag, Berlin.

12. P. Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 30:165–190, 1989.

13. P. Granger. Analyses Sémantiques de Congruence. PhD thesis, École Polytech-
nique, 921128 Palaiseau, France, July 1991.

14. P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91:
Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development, Volume 1: Colloquium on Trees in Algebra and Programming
(CAAP’91), volume 493 of Lecture Notes in Computer Science, pages 169–192,
Brighton, UK, 1991. Springer-Verlag, Berlin.

15. P. Granger. Static analyses of congruence properties on rational numbers (ex-
tended abstract). In P. Van Hentenryck, editor, Static Analysis: Proceedings of the

16

4th International Symposium, volume 1302 of Lecture Notes in Computer Science,
pages 278–292, Paris, France, 1997. Springer-Verlag, Berlin.

16. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

17. S. Larsen, E. Witchel, and S. P. Amarasinghe. Increasing and detecting mem-
ory address congruence. In Proceedings of the 2002 International Conference on
Parallel Architectures and Compilation Techniques (PACT’02), pages 18–29, Char-
lottesville, VA, USA, 2002. IEEE Computer Society Press.

18. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Avail-
able at http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares
itself to be a continuation of [30].

19. A. Miné. A few graph-based relational numerical abstract domains. In M. V.
Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th In-
ternational Symposium, volume 2477 of Lecture Notes in Computer Science, pages
117–132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

20. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double de-
scription method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games – Volume II, number 28 in Annals of Mathematics Studies,
pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

21. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear
algebra. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2004), pages 330–341, Venice, Italy, 2004. ACM Press.

22. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In M. Sagiv, editor,
Programming Languages and Systems, Proceedings of the 14th European Sympo-
sium on Programming, volume 3444 of Lecture Notes in Computer Science, pages
46–60, Edinburgh, UK, 2005. Springer-Verlag, Berlin.

23. M. Müller-Olm and H. Seidl. A generic framework for interprocedural analysis
of numerical properties. In C. Hankin and I. Siveroni, editors, Static Analysis:
Proceedings of the 12th International Symposium, volume 3672 of Lecture Notes in
Computer Science, pages 235–250, London, UK, 2005. Springer-Verlag, Berlin.

24. S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication
interne 1330, IRISA, Campus de Beaulieu, Rennes, France, 2000.

25. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical
Report 1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

26. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a
canonic representation. Parallel Processing Letters, 7(2):181–194, 1997.

27. E. Rodŕıguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In Giacobazzi [11], pages 280–295.

28. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations
analysis. In Giacobazzi [11], pages 53–68.

29. A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, 1999.

30. D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon
State University, Corvallis, Oregon, December 1993. Also published as IRISA
Publication interne 785, Rennes, France, 1993.

17

