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ABSTRACT 

Visceral leishmaniasis (VL) in humans and in animal models is associated with, among other 

factors, parasite persistence in the bone marrow (BM) and significant changes in haematological 

function. However, the mechanisms underlying haematologic dysregulation are largely unknown.  

Using a panel of stem cell markers, we characterized murine haematopoietic stem and precursor 

cells in the BM over the course of L. donovani-infection in C57BL/6 (B6) mice. In steady-state, 

the majority of LT-HSCs (Long-term haematopoietic stem cells) (LSK CD150+ CD34- CD48- 

cells) were found in a quiescent state, representing cells with the highest degree of reconstitution 

potential. In contrast, during chronic infection, most LT-HSCs were found to have progressed to 

cell-cycle and this correlated with a reduced potential to engraft into syngeneic recipients. The loss 

of quiescent LT-HSCs was associated with expansion of cells displaying a phenotype attributed to 

early, and uncommitted progenitors. However this increase in uncommitted progenitors did not 

result in an increase in effective haematopoiesis, but rather chronically infected mice displayed 

signs of anaemia and thrombocytopenia.  

The loss of quiescent HSCs and other alterations in the haematopoietic compartment were absent 

in infected RAG2 KO mice, but adoptive transfer of CD4+ T cells restored this phenotype. In 

subsequent experiments, we transferred IFNγ-deficient CD4+ T cells into RAG KO recipients and 

established that this pro-inflammatory cytokines was pivotal for the depletion of the reservoir of 

LT-HSCs in quiescence, as well as for the establishment of anaemia and thrombocytopenia. 

Subsequently, using mixed BM chimeras, we established that IFNγ signalling and TNF signalling 

pathways converge to induce an expansion of BM T cells, suggesting that both cytokines are 

required to drive the development of CD4+ T cells with the potential to cause alterations in 

haematopoiesis and haematological dysfunction in the periphery. These data suggest new avenues 

for clinical research into the pathogenesis of VL and have relevance for the development of new 

therapeutic strategies and clinical follow-up. 
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“Afinal, a melhor maneira de viajar é sentir.  

Sentir tudo de todas as maneiras.  

Sentir tudo excessivamente,  

Porque todas as coisas são, em verdade, excessivas  

E toda a realidade é um excesso, uma violência,  

Uma alucinação extraordinariamente nítida  

Que vivemos todos em comum com a fúria das almas,  

O centro para onde tendem as estranhas forças centrífugas  

Que são as psiques humanas no seu acordo de sentidos. (…)”   

 

Álvaro de Campos  
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 HAEMATOPOIESIS IN BONE MARROW 

1.1.1 Overview of Haematopoiesis in the Adult  

The haematopoietic system, comprises blood leucocytes, erythrocytes, platelets and their 

precursors, therefore this system plays a vital role in immune surveillance, dissemination of 

essential nutrients, tissue repair and enabling clotting. Almost all organs are circunscribed by 

anatomical barriers and perform interconnected functions, while the haematopoietic system is 

poorly delimited and covers a variety of non-related functions (W. C. Aird, 2003). 

The haematopoietic system is complex and dynamic. The majority of blood cells are short-lived 

and it has been estimated that the turnover of cells of the haematopoietic system is 1 trillion cells 

per day in steady-state, including 400 billion platelets, 200 billion erythrocytes and 70 billion 

neutrophils (K. S. Fernandez and P. A. de Alarcon, 2013). 

The maintenance of the number cellular components of blood in steady-state (steady-state 

haematopoiesis), as well as in stress situations, such as an infection (demand-adapted 

haematopoiesis) relies on the continuous and dynamic replacement of haematopoietic cells in a 

process called haematopoiesis. Haematopoiesis is a strictly regulated process that depends on a 

very small pool of somatic stem cells, which have self-renewal capacity and potential to originate 

all mature cells during the lifespan of an individual, the so-called HSCs (M. Kondo et al., 2003a).  

As such, the homeostasis of the haematopoietic system depends on the capacity of HSCs to 

maintain a tight balance between differentiation and self-renewal. The majority of haematopoietic 

stem cells and progenitors cells reside in the bone marrow, where regulation of their self-renewal 

and differentiation relies on the intrinsic activation of transcription factors (TFs), in association 

with extrinsic cytokine signaling that depends not only on signals from their microenvironment 

(the “niche”), but also on remote signals from the periphery (H. Takizawa et al., 2012). 

All the terminally differentiated cells originate from HSCs that differentiate into immature 

progenitors that are related during development, which we will discuss in further detail later in this 

chapter. As such, classically based on functional and developmental differences, B cells, T cells 

and NK cells are referred to as lymphoid cells while, erythrocytes, thrombocytes, granulocytes and 

macrophages are classified as the myeloid or myeloerythroid cells  ((S. Doulatov et al., 2012). 
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1.1.2 Models for haematopoiesis in the adult 

The identification of intermediary haematopoietic progenitor cells is the result of a 

characterization based on cell surface markers and functional evaluation that has been ongoing for 

many decades. The process of development from pluripotent progenitors to lineage-committed 

progenitors and finally to terminally differentiated mature cells has been proposed as a stepwise 

linear model. Accordingly, in each step of development the progenitor cell becomes more 

committed and progressively looses the potential to become other cell type. However, some 

studies suggested that a certain degree of lineage plasticity might be present in late stages of 

haematopoietic development (M. Kondo et al., 2003b). 

According to the classical view of haematopoietic development in mice, the production of all 

mature haematopoietic cells starts with the long-term haematopoietic stem cells (LT-HSCs) that 

differentiate into the so-called short-term haematopoietic stem cells (ST-HSCs) still multipotent, 

but with limited self-renewal capacity. The ST-HSCs proceed to form the heterogeneous group of 

cells called multipotent progenitors (MPPs) that have lost self-renewal capacity, but conserve a 

range of multipotency. The MPPs will give rise to a succession of intermediary progenitors that 

become the common lymphoid progenitors (CLPs) that develop into lymphoid progeny and the 

common myeloid progenitors (CMPs) with erythromyeloid potential. Further on, CMPs may give 

rise to both granulocyte/macrophage progenitors (GMPs), which differentiate into the 

myelomonocytic lineage, and the megakaryocytic/erythrocyte progenitors (MEPs), the precursors 

of red blood cells and platelets (L. D. Wang and A. J. Wagers, 2011). The combination of 

haematopoietic stem cells and haematopoietic progenitors cells are commonly designated as 

HSPCs (haematopoietic stem and progenitor cells) (M. J. Pittet et al., 2014). 

The classic model for haematopoiesis was based on in vitro assays and on the study of the 

functions of different HSPCs upon transplantation into irradiated recipients to determine lineage 

potential and self-renewal properties, but both ex vivo culture systems and myeloablative 

conditions may not be ideal to fully understand HSCP function during homeostatic haematopoiesis 

(R. A. Nimmo et al., 2015). 

According to this model, lineage commitment would take place downstream of HSCs and 

culminate with the branching into lymphoid and myeloerythroid lineage commitment. 

Nonetheless, initial gene profiling of highly purified HSCs and ST-HSCs/MPPs demonstrated the 

promiscuous expression (albeit at low level) of non-haematopoietic, as well as multiple lineage-

restricted genes.  In contrast, CMPs and CLPs express more lineage-restricted genes. These studies 

suggested that HSCs maintain a permissive chromatin arrangement allowing a “primed-state” that 
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works as the foundation for later commitment/differentiation; a phenomenon referred to as 

multilineage priming (K. Akashi et al., 2003, R. A. Nimmo et al., 2015). 

The nature of cell fate decisions in HSPCs is still largely unknown, since studies into cell 

populations do not distinguish between a phenotypically homogeneous group of cells and a 

heterogeneous set of cells with a diverse degree of lineage bias and self-renewal potentials. 

Therefore, to elucidate the molecular basis of cell fate decisions techniques to assess gene 

expression in individual HSPCs are required (R. A. Nimmo et al., 2015). 

Studies coupling clonal functional assays and singe cell gene expression analysis have shown that 

within phenotypically defined HSCs and MPPs, there is a wide range of heterogeneity and confirm 

simultaneous lineage priming at the individual cell level. The differential potential of HSPCs 

cannot be fully predicted with currently known markers, albeit inheritable lineage predisposition is 

found within the so-far defined progenitor cell populations (R. A. Nimmo et al., 2015). 

In the light of more recent studies, the classical model of haematopoiesis has been questioned and 

the assumption that lineage restriction takes place downstream of HSCs in a linear progression 

coupled to increasing loss of self-renewal potential has been challenged. Two other models of 

haematopoietic development have been proposed: the “Revised Model” and the “Myeloid Bypass 

Model” (Figure 1.1) (R. A. Nimmo et al., 2015).  

The “Revised Model” for haematopoietic development suggests a very early bifurcation in 

ontogeny between Megakaryocytes/Erythrocytes (MegE) and lymphomyeloid differentiation 

capacity. This model was proposed following the description of lymphomyeloid-restricted 

progenitors in Flt3+ (FMS-like tyrosine kinase 3) MPPs, named lymphoid primed multipotent 

progenitors (LMPPs). LMPPs were found to be the first cells in ontogeny expressing common 

lymphoid genes, together with myeloid-associated genes, but no longer expressing MegE-

associated genes. In contrast, both are expressed at low level in HSCs. More, functional 

characterization of Flt3+ LMPPs showed no potential for producing MegE progeny (R. A. Nimmo 

et al., 2015).  

In support of the “Revised Model”, it was suggested that MegE progenitors separate first and the 

megakaryocyte lineage begins within the most primitive cells. Using a GFP reporter knocked into 

the von Willebrand factor (vWF) gene, it was found that vWF+ HSCs exhibited clear 

Megakaryocyte-bias and give rise to myeloid progeny, whereas vWF- HSCs were lymphoid-

biased. Both were capable of long-term reconstitution, but only vWF+ HSCs could originate vWF- 

HSCs (R. A. Nimmo et al., 2015). 
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It is becoming accepted that haematopoietic cell development relies on two distinct steps; (1) first, 

lineage priming takes place most likely in pluripotent progenitors that become competent to cell 

specification; (2) lineage priming is then followed by commitment that constrains the primed 

progenitor to a specific cell type (R. A. Nimmo et al., 2015). 

These processes are well represented in B cell differentiation, where it was determined that 

priming occurs in LMPPs, while commitment takes place in a subpopulation of CLPs. It was 

shown that Ebf1 (Early B cell factor 1) initiates B cells specification in lymphoid-primed cells, but 

the accomplishment of mature B cell differentiation requires the co-expression of the deterministic 

factor for commitment, PAX5 (M. Kondo et al., 2003a). 

 

Figure 1.1 - Models for proposed to explain the development of mature haematopoietic. 

(A) The classical model purposed that HSCs and non-committed multipotent progenitors 

differentiate in a stepwise process in lineage restricted myeloid or lymphoid progenitors that no 

longer display self-renewal capacity. In this model common myeloid progenitors (CMP) and 

common lymphoid progenitors (CLP) represent the initial step in the lineage commitment. (B) The 

revised model emerged following the observation that MPPs contain lymphomyeloid-restricted 

progenitors (LMPPs) that have no longer MegE potential. Additionaly, HSCs display MegE 

potential of differentiation and but no longer lymphoid potential, suggesting that MegE 

commitment nay take place in HSCs, representing a first lineage restriction point. According with 

the classical model and the revised model, self-renewal capacity and multipotentiality are 

attributes of HSCs. (C) The myeloid bypass model was proposed as a result of studies performing 
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multilineage clonal tracking of single HSCs. This model proposed that megakaryocyte- and 

myeloid-restricted progenitors are already generated in the HSCs compartment, and are capable of 

long-term self-renewal and reconstitution of restricted myeloid lineages. In contrast to previous 

models (A, B) this model purposes that self-renewal and multipotentiality can be uncoupled. 

Abbreviations: c-Kit, c-Kit proto-oncogene; Ery, erythroid;; G/M, granulocyte/monocyte; GMP, 

granulocyte/monocyte progenitor; HSC, haematopoietic stem cell;; Meg, megakaryocyte; MegE, 

megakaryocyte/erythroid; MEP, megakaryocyte/erythroid progenitor; MPP, multipotent 

progenitor; MyRP, myeloid-restricted progenitor; (Adapted from (R. A. Nimmo et al., 2015)). 

 

The alternate “Myeloid Bypass Model” emerged from studies based on single cell transplantation 

of LT-HSCs, defined as cKit+ Sca1+ Lineage- (LSK) CD150+ CD41- CD34- cells. In recipient 

mice, it was found that some phenotypic HSCs could be committed to the myeloid lineage, but not 

give rise to LMPPs, and these were termed myeloid-restricted progenitors (MyRPs). Among these 

MyRPs, there were progenitor cells with a spectrum of differentiation potential: either restricted to 

myeloid, megakaryocyte and erythroid lineages (common myeloid repopulating progenitors or 

megakaryocyte), or restricted to megakaryocytes and erythroid lineages (megakaryocyte-erythroid 

repopulating progenitors), or restricted to megakaryocyte lineages only (megakaryocyte 

repopulating progenitors). All these progenitors, although lineage restricted, displayed self-

renewal and long-term reconstitution potential (hallmarks of HSCs) in primary and secondary 

recipient mice (R. Yamamoto et al., 2013). 

Further, in studies where paired daughter cell assays were coupled to single cell adoptive transfers, 

it was shown that MyRP arose directly from HSCs and not from CMPs (R. Yamamoto et al., 

2013). In clear opposition to both the classical and the revised models, the myeloid bypass model 

therefore proposes that the loss of multipotency is not coupled to the loss of self-renewal potential 

(R. A. Nimmo et al., 2015). 

In the light of these findings, the contribution of the different non-restricted and lineage-biased 

progenitors (long-lived and classically defined) to homeostatic haematopoiesis is not clear. 

Moreover, when so much is yet to be defined regarding the mechanisms regulating 

haematopoiesis, the emergent demand to revise the models of blood development point to a far 

more complex regulation of haematopoiesis than could have been predicted (R. A. Nimmo et al., 

2015). 
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1.1.3 Regulation of haematopoiesis in the adult 

Haematopoiesis ensures the production of the required number of each mature cell type in a 

strictly regulated process that, most likely, results from the cumulative contributions of extrinsic 

signals and intrinsic/internal processes working in a concerted mode to instruct for lineage choice 

of HSPCs and subsequent stability of cell identity (M. Endele et al., 2014). 

The extrinsic factors comprise local signals provided by the BM niche and systemically produced 

cytokines. The intrinsic regulation includes different internal processes such as activation of 

transcription factors, epigenetic and post-translational regulation (M. Endele et al., 2014). 

The extent of the contribution of different factors for lineage commitment is technically difficult to 

demonstrate and therefore still elusive. From longstanding studies to assess the role of cytokines 

and internal processes in haematopoiesis two general models were proposed: the “Instructive 

Model” and the “Permissive/stochastic Model” (L. Robb, 2007). 

According to the “Instructive Model”, cytokines as well as other molecular signaling mediators 

can directly instruct lineage decisions in non-committed multipotent progenitors and are 

fundamental to cell type specification, whilst still recognizing the importance of transcription 

factors in haematopoiesis (M. Endele et al., 2014). 

Initial in vitro studies using culture systems showed that some cytokines could specifically favor 

the development of specific lineages, while others cytokines had a pleiotropic effect in 

haematopoietic development. Early data supporting the instructive model came from the 

demonstration that Granulocyte-Macrophage colony forming cells (GM-CFCs) in the presence of 

Macrophage colony stimulating factor (M-CSF) would differentiate in macrophages, but if the 

GM-CFCs were cultured in the presence of granulocyte colony stimulating factor (G-CSF), they 

would instead give rise to granulocytes (L. Robb, 2007). 

In support of the “Instructive Model”, a more recent study showed that in vitro M-CSF stimulation 

upregulated PU.1 transcription factor expression (master regulator for myelo-monocytic 

differentiation) in highly purified HSCs (N. Mossadegh-Keller et al., 2013). In this study from 

Mossadegh-Keller et al., in adoptive transfer experiments HSCs derived from mice treated with 

exogenous M-CSF  display to an increased myeloid to lymphoid cell ratio in peripheral blood after 

4 weeks when transferred to irradiated recipient mice, compared to HSCs derived from untreated 

controls (N. Mossadegh-Keller et al., 2013). This upregulation of PU.1 by M-CSF on HSCs was 

critically dependent on the expression of M-CSF receptor (N. Mossadegh-Keller et al., 2013), 

which is nonetheless most likely regulated by intrinsic processes. 
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The “Permissive/stochastic Model” suggests that the “decision-making” of a progenitor cell to 

generate a specific cell type arises from stochastic internal processes promoting the upregulation 

of cytokine receptors in progenitor cells, which in turn become responsive to cytokine signals (M. 

Endele et al., 2014). This model is supported by studies showing that among phenotypically 

defined non-committed progenitor cells, individual cells show a high degree of variability in the 

promiscuous expression of lineage-specific genes (R. A. Nimmo et al., 2015). 

So far gene-targeting studies in vivo showed that mice lacking a single cytokine or its receptors are 

not completely defective in any mature cells, albeit reductions in lineage-specific cells have been 

observed. Overall these reports suggested that cytokines impact on lineage-primed HSPCs 

expansion, survival and maturation but are not required for lineage commitment (L. Robb, 2007). 

It also has to be taken in consideration that compensatory mechanisms can take place in vivo, 

suggesting caution in the interpretation of such loss of function studies (M. Endele et al., 2014). 

Most likely lineage priming in HSPCs will allow different receptors to be expressed among 

phenotypically defined population of progenitors with a variable range of responsiveness to the 

milieu of signals, preventing exhaustion and simultaneously assuring a degree of lineage plasticity 

(L. Robb, 2007, R. A. Nimmo et al., 2015). 

In the next sections, the internal and external regulatory processes involved in the differentiation 

of HSCs and lineage commitment of multipotent progenitors will be discussed. The regulation of 

HSCs quiescence and self-renewal will be discussed in more detail in Section 1.1.4.1. 

1.1.3.1 The Bone Marrow Microenvironment 

Haematopoiesis takes place in different anatomic sites during mammalian development, first in 

extra-embryonic tissues and then progressively in the aorta–gonad–mesonephros area, then in the 

fetal liver and spleen, and postnatally in BM, where most of homeostatic blood cell formation 

takes place throughout adult life (S. H. Orkin and L. I. Zon, 2008, F. E. Mercier et al., 2012).  

The BM is the major haematopoietic organ in adults, but haematopoiesis can also occur in 

extramedullary sites, such as the spleen and the liver. For example, in mice the spleen is a site of 

effective haematopoiesis, while in humans it is less defined although stress-induced 

extramedullary haematopoiesis has been reported (F. E. Mercier et al., 2012). 

The initiation and maintenance of haematopoiesis is a complex process that depends on the 

participation of support cells, which generate the microenvironmental conditions that maintain the 

size of the stem cell pool and regulate the differentiation of HSCs into the appropriate number of 

mature blood cells, both under steady-state and during homeostatic imbalance. Therefore, control 
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of the differentiation of HSPCs is a dynamic process depending on specific direct cell interactions, 

growth factors, cytokines and components of the extracellular matrix (F. E. Mercier et al., 2012). 

This supporting microenvironment is composed of mesenchymal stem and progenitor cells 

(MSPCs; also called skeletal stem cells), osteoprogenitors, osteoblasts, osteocytes, osteoclasts, 

fibroblasts and chondrocytes, together forming the so-called BM stroma (P. S. Frenette et al., 

2013, B. A. Anthony and D. C. Link, 2014). Other cell populations that reside in BM that may also 

participate in the regulation of haematopoiesis include neuronal cells, glial cells, leukocytes, 

macrophages and adipocytes (Figure 1.2) (K. Tokoyoda et al., 2009b, B. A. Anthony and D. C. 

Link, 2014). 

The BM stroma is organized into functional domains, forming specialized niches that regulate the 

development of HSCs and lineage restricted haematopoietic progenitor cells (F. E. Mercier et al., 

2012, B. A. Anthony and D. C. Link, 2014). At different stages of development HSPCs will 

require different cellular/molecular interactions, some of which were summarize in supplementary 

Table 1.1 (adapted from (F. E. Mercier et al., 2012)) and reviewed in excellent reviews (F. E. 

Mercier et al., 2012, L. D. Wang and A. J. Wagers, 2012, B. A. Anthony and D. C. Link, 2014). In 

this introduction, the focus is on examples of BM components that impact in early events in 

haematopoiesis. 

Within the BM stroma, HSCs localize in haematopoietic stem cells niches, which provide a 

specialized microenvironment that tightly regulates the balance between self-renewal and 

differentiation. The identification of cell markers expressed in HSCs allowed the examination of 

their localization in BM, that were predominantly localized in contact with sinusoidal endothelium 

and associated with endosteum (M. J. Kiel et al., 2005). These findings were followed by studies 

showing that most HSCs are found in close association with perivascular C-X-C motif chemokine 

12 (CXCL12)-abundant reticular (CAR) cells and nestin-GFP+ stromal cells (B. A. Anthony and 

D. C. Link, 2014).  

In the BM, the perivascular spaces are filled with MSPCs in close proximity to HSPCs. MSCPs 

are a heterogeneous population able to differentiate into osteoblasts, chondrocytes, adipocytes and 

fibroblasts and participate in BM stroma regeneration (F. E. Mercier et al., 2012, P. S. Frenette et 

al., 2013).  

So far, it is not possible to phenotypically select for single mesenchymal stem cells (MSCs), but 

by methods to isolate MSCs-enriched cell populations it has been established in mice that ~4% of 

CD45– lineage– PDGFRa+ Sca+ cells have CFU (colony forming units)-F (fibroblast) activity and 

~1% of nestin-GFP+ stromal cells have CFU-F activity, while in humans CD146-expressing 
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stromal cells characterize a BM cell population enriched for MSCs. Other studies reported that 

platelet-derived growth factor receptor (PDGFR) and CD51 expression may also select for a cell 

population that is highly enriched for MSCs and can support HSPCs expansion in vitro, both in 

mice and in humans (B. A. Anthony and D. C. Link, 2014).  

 

 

Figure 1.2 - Haematopoietic stem cell (HSCs) functions are supported by various BM 

stromal cells, comprising the so-called HSCs niche. In BM HSCs are found in close proximity 

with BM stromal cells: endothelial cells, mesenchymal stem cells (MSCs), which are included in 

the chemokine CXC ligand (CXCL)12-expressing mesenchymal cells (CEMCs). CEMCs are 

perivascular stromal cells and express various factors that support HSCs, such as CXCL12, 

angiopoietin, and stem cell factor (SCF). CEMCs are composed by various cell-types including, 

CXCL12-abundant reticular (CAR) cells, leptin receptor+ stromal (Lepr+) cells, and Nestin-

GFP+ cells. Osteoblasts and spindle-shaped N-cadherin+ osteoblast (SNO cells) support HSCs 

throught the expression of thrombopoietin (TPO) and CXCL12. Sympathetic neurons modulate 

HSCs functions by the induction of CXCL12 expression by other stromal cells. Glial cells, 

produce transforming growth factor (TGF)-β, and it has been also suggested that might regulate 

HSCs functions (Adapted from (B. A. Anthony and D. C. Link, 2014)). 
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Table 1.1 - Soluble factors produced by BM cellular niches that participate in the regulation 

of haematopoiesis 

 

CXCL12-CXCR4 signaling is essential to the maintenance of the HSCs pool. In mice, the 

administration of CXCR4 antagonist induces increased frequency of HSPCs in circulation and the 

conditional deletion of CXCR4 was associated with vulnerability to myelosuppressive stress, 

related to a dramatic decrease in the HSCs pool. Within the BM, CXCL12 is expressed in 

osteoblasts lining the bone surface and in endothelial cells, but the cells that express the highest 

levels of this cytokine are chemokine CXC ligand (CXCL)12-expressing mesenchymal cells 

(CEMCs) present in the perivascular region. CEMCs, include CXCL12-abundant reticular (CAR) 

cells, leptin receptor+ stromal (Lepr+) cells, and Nestin-GFP+ cells (P. S. Frenette et al., 2013). The 

CAR cells are also a major source of stem cell factor (SCF) and their localization in close 

association with HSPCs suggested that CAR cells might be a key component of HSC niches (F. E. 

Soluble factor  Bone marrow source  Effects on HSCs or immune cells

Angiopoietin 1 
Osteoblastic cells, nestin-expressing 

MSCs Maintenance of long-term repopulating activity and quiescence

CXCL12
CAR cells, nestin-expressing MSCs, 
endothelial cells, osteoblastic cells, Homing and retention; maintenance of the HSC pool size

SCF 
Endothelial cells, osteoblastic cells, nestin-

expressing MSCs Maintenance of long-term repopulating activity

Notch ligands  Endothelial cells, osteoblastic cells
Increased expression on osteoblastic cells after parathyroid hormone stimulation 
is associated with increased HSC numbers in the bone marrow; however, loss of 

this signalling pathway does not impair HSC function in the steady state

Thrombopoietin  Osteoblastic cells Maintenance of long-term repopulating activity and quiescence

WNT ligands  Osteoblastic cells

Conflicting findings: enhanced self-renewal when used pharmacologically; 
however,loss of this signalling pathway does not impair HSC function in the 

steady state; inhibition by osteoblastic cell-specific expression of DKK1 
increased HSC cycling andreduced HSC serial transplant capability

APRIL 
Granylocytes, lymphocytes, dendritic 

cells, megakaryocytes Survival of plasma cell precursors

BAFF Granulocytes, lymphocytes, dendritic cells Survival of plasma cell precursors

CXCL12 
CAR cells, nestin-expressing MSCs, 
endothelial cells, osteoblastic cells

Retention of B lymphoid progenitors in the bone marrow; homing and retention 
of plasma cell precursors; homing and retention of HSCs

IL-6 
Endothelial cells, osteoblastic cells, 

megakaryocytes Survival of plasma cells; pleiotropic effects on HSCs and myeloid progenitors

IL-7  IL-7-secreting stromal cells Support of early B cell lymphopoiesis; survival of memory T cells

MIF Dendritic cells Survival of plasma cell precursors

APRIL, a proliferation-inducing ligand; BAFF, B cell activating factor; CAR, CXCL12-abundant reticular; CXCL12, CXC-chemokine ligand 
12; DKK1, dickkopf-related protein 1; HSC, haematopoietic stem cell; IL, interleukin; MIF, macrophage inhibitory factor; MSC, mesenchymal 
stromal cell; SCF, stem cell factor

Factors that affect HSCs

Factors that affect immune cells

Table 1.1: Soluble factors produced by bone marrow cellular niches that participate in the regulation of HSCs and other immune cells 
functions
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Mercier et al., 2012, P. S. Frenette et al., 2013). Furthermore, short-term ablation of CEMCs cells 

using a CXCL12-DTR-GFP mice showed a significant decrease in HSCs in the BM (T. Sugiyama 

et al., 2006).  

Endothelial cells were also shown to support the proliferation of HSPCs in vitro. For example, 

deletion of the endothelial specific adhesion molecule, E-selectin, resulted in increased HSCs 

quiescence, and the deletion of Kit ligand (SCF) from endothelial cells resulted in the loss of 

HSCs. Collectively, these findings suggested that endothelial cells are required for HSCs 

proliferation regulation and maintenance (B. A. Anthony and D. C. Link, 2014).  

Several studies have pointed out an inhibitory role for adipocytes in haematopoiesis. HSCs were 

decreased in BM areas rich in adipocytes and in mice pharmacological inhibition of adipogenesis 

was associated with an improved haematopoietic recovery following stem cell transplantation in 

myeloablated mice (B. A. Anthony and D. C. Link, 2014). 

In BM, autonomic nerves have been shown to be in close proximity to HSCs and, recently, several 

studies have been shown that neurological components may also regulate haematopoiesis. For 

example, it was reported that pharmacological ablation of adrenergic signaling inhibits G-CSF-

induced HSPCs mobilization. G-CSF has been long used in the clinic to mobilizes HSPCs from 

BM to the periphery through mechanisms that include the induction of proteolytic activity that 

cleaves CXCL12 (S. Mendez-Ferrer et al., 2008). 

In the endosteal niche, osteoblasts interact with HSCs at the interface between the bone and the 

marrow space. The genetic ablation of osteolineage cells was associated with a dramatic increase 

in extramedullary haematopoiesis (D. Visnjic et al., 2004) and in a study, where osteoblasts were 

expanded by enforced expression of parathyroid hormone receptor 1, HSCs were shown to 

increase in number (B. A. Anthony and D. C. Link, 2014). The BM osteolineage cells secrete 

cytokines such as M-CSF, GM-CSF, IL (Interleukin)-1, IL-6, IL-7, Thrombopoietin (TPO) and 

CXCL12, all soluble haematopoietic factors. Moreover, osteoblasts express adhesion molecules 

such as VCAM1, ICAM1, annexin II, N-cadherin, CD44 and CD164, that may be implicated in 

cell-cell interactions within the niche (F. E. Mercier et al., 2012).  

BM stromal macrophages (distinguished by CD169 expression) are also associated with the 

endosteal and the vascular niches and may also have a role in the regulation of haematopoietic 

stem cells niches, through the regulation of the expression of CXCL12 by BM stromal cells (F. E. 

Mercier et al., 2012, M. Casanova-Acebes et al., 2013). For example, the depletion of CD169+ BM 

macrophages in vivo resulted in a higher frequency of LSK cells in circulation. This increased 

mobilization was associated with a decrease in the levels of CXCL12 expression by Nestin+ 
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MSCs, following depletion of BM macrophages in vivo. These findings suggested that BM 

macrophages contributed to the retention of HSCs in the BM by acting on Nestin+ MSCs (A. 

Chow et al., 2011). 

T cells are not regarded as “BM stromal cells”, but are present in the BM and they are well known 

sources of haematopoietic growth factors, such as IL-3 and GM-CSF. Their role in homeostatic 

haematopoiesis, however, remains unclear (J. P. Monteiro and A. Bonomo, 2005). In athymic 

BALB/c nu/nu mice (which lack T cells), it was reported that the accumulation of immature myeloid 

cells and reduced numbers of granulocytes in peripheral blood could be rescued by the 

reconstitution with purified CD4+ T cells, but not purified CD8+ T cells (J. P. Monteiro et al., 

2005). T cells are sources of the pro-inflammatory cytokines IFNγ (Interferon-gamma) and TNFs 

and several reports suggested that both cytokines might impact on the modulation of 

haematopoiesis in BM (C. Selleri et al., 1995, M. T. Baldridge et al., 2010, C. J. H. Pronk et al., 

2011, F.-c. Lin et al., 2014). Collectively, these studies point to a regulatory role for T cells in both 

homeostatic and stress-induced haematopoiesis.  

1.1.3.2 Cytokine Receptors and Haematopoiesis 

Haematopoiesis relies on strictly regulated pathways that assure the continuous production of 

mature cells from HSCs (M. Kondo et al., 2003a). Theses processes are crucial to survival since 

the majority of mature haematopoietic cells are short lived and cytokines have been shown to be 

required to modulate not only steady-state haematopoiesis, but also events that require stress-

induced haematopoiesis, such as bleeding and infection (M. Kondo et al., 2003a, J. L. Zhao and D. 

Baltimore, 2015). 

The roles of various cytokines in haematopoiesis are still elusive, therefore in this section we 

aimed to give some examples of cytokines which role have been well established in lineage 

commitment, which alongside other relevant cytokines were summarize in Figure 1.3. 

c-Kit receptor tyrosine kinase for the stem cell factor (SCF) is expressed in HSCs, MPPs and in 

early lineage-committed progenitors. SCF seems to act at various levels of ontogeny cooperating 

with other growth factors in lymphopoiesis, erythropoiesis and megakaryopoiesis (S. D. Lyman 

and S. E. W. Jacobsen, 1998). For example, the null alleles for c-Kit cause embryonic lethality 

associated with severe anemia, but viable alleles with impaired c-Kit tyrosine kinase activity have 

allowed the study of SCF signaling in haematopoiesis. The defective SCF signaling in HSCs was 

associated to decreased number of HSCs in BM of adult mice and impaired long-term 

reconstitution potential that could not be rescued by the overexpression of the anti-apoptotic factor 

BCL2, suggesting that cKit signaling is required to preserve extensive self-renewing divisions and 

therefore crucial to HSCs function (L. A. Thoren et al., 2008). 
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Figure 1.3 - Summary of haematopoietic cytokines. Several cytokines modulate the 

differentiation of multipotential progenitors and their lineage-committed providing survival, 

proliferation or instructive signals. BCP, B-cell progenitor; CLP, common lymphoid progenitor; 

CMP, common myeloid progenitor; EP, erythroid progenitor; HSC, haematopoietic stem cell; 

GMP, granulocyte–macrophage progenitor; MEP, megakaryocyte erythroid progenitor; MkP, 

megakaryocyte progenitor; TNK, T-cell natural killer cell progenitor (Adpated from (L. Robb, 

2007)). 

 

The first haematopoietic growth factor identified was later called erythropoietin. The kidney 

produces the vast majority of erythropoietin, where juxta-tubular interstitial cells are capable of 

sensing the levels of tissue oxygenation. Erythropoietin blood levels are tuned by the level of 

oxygenation and according to homeostatic requirements modulate the expansion of erythroid 

progenitor cells, promoting progression in cell cycle and increased expression of the anti-apoptotic 

protein BCLXL (K. Kaushansky, 2006). 

The growth factors more commonly associated with myeloid lineage cells development were 

initially identified by their potential to support different myeloid cell colonies when added to 
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cultures of BM cells in a semisolid medium. These myeloid associated growth factors include the 

macrophage colony-stimulating factor (M-CSF), granulocyte/macrophage colony-stimulating 

factor (GM-CSF), the granulocyte colony-stimulating factor (G-CSF) and the multi colony-

stimulating factor known as interleukin-3 (multi-CSF or IL-3), and are produced in various organs 

by several cell types including endothelial cells, fibroblasts, and macrophages (D. R. Barreda et 

al., 2004).  

M-CSF promotes monocyte/macrophage development, while G-CSF has been more associated to 

granulocyte development and in vivo studies using knockout mice identified G-CSF as an essential 

growth factor for terminal normal maturation of neutrophil progenitors. IL-3 and GM-CSF 

promote the granulocytic, macrophage and granulocyte-macrophage colony formation and its 

believed that these growth factors exert their function in more immature myeloid progenitors. 

These factors show some level of functional redundancy since in vivo defect in one of these 

growth factors does not lead to a serious impact on homeostasis (D. R. Barreda et al., 2004). 

Thrombopoietin (TPO) was identified as the primary regulator of platelet production, supporting 

the proliferation and survival of megakaryocyte progenitors through the upregulation of the cell-

cycle regulator cyclin D and anti-apoptotic molecule BCLXL. In mice deficient for TPO or its 

receptor the production of megakaryocytes was reduced and platelets production severely 

impaired. TPO is mostly produced in the liver but kidney and skeletal muscles also produce TPO 

and the number of platelets in circulation and megakaryocytes in BM regulates its blood levels (K. 

Kaushansky, 2006).  TPO was also shown to be very important for the survival and expansion of 

HSCs. Donor HSCs from mice deficient for TPO or its receptor (c-mpl) showed impaired capacity 

to reconstitute recipient mice. Additionally, patient with c-mpl defects present thrombocytopenia 

and severe anemia due to BM exhaustion (K. Kaushansky, 2006). 

Flt3 (fms-like tyrosine kinase 3) receptor tyrosine kinase is expressed in MPPs and early myeloid 

and lymphoid lineage-committed progenitor cells and binds to FLt3 ligand (FL), which is 

expressed in various tissues (S. D. Lyman and S. E. W. Jacobsen, 1998). This tyrosine kinase 

seems to be important in the generation of CLPs since mice deficient in expression of FL showed 

primarily impairment of lymphopoiesis, although NK and dendritic cells were also reduced (E. 

Sitnicka et al., 2002). 

IL-7 production has been detected in several non-lymphoid cells in lymphoid organs, such as 

thymus, BM, spleen and kidney. Its importance became evident after the observation that mice 

deficient for IL-7 were highly lymphopenic. Today is well established that IL-7 is essential to 

lymphopoiesis both in early and later stages of lymphoid lineage specification, it plays both 

instructive and permissive functions in lymphoid development such as promotion of survival 



 30 

signals (e.g. BCL2 expression) and upregulation of lineage transcription factors (e.g. Ebf-1) (U. 

Vonfreedenjeffry et al., 1995, Q. Jiang et al., 2005, P. Tsapogas et al., 2011). 

1.1.3.3 Transcription Factors in Lineage Commitment 

The process of differentiation of multipotent cells towards different blood cell lineages depends on 

the initiation and the sustainment of lineage specific genetic programs. It has been shown that 

multiple different lineage-restricted genes are expressed in multipotent progenitors and it has been 

suggested that the processes of lineage commitment require not only the induction/reinforcement 

of lineage-specific genes but also the repression of genes associated with other lineages (M. A. 

Rieger and T. Schroeder, 2012). The establishment of stable gene programs depends on 

transcription networks sustained by transcription factors in association with cofactors, chromatin 

modifiers, and regulatory RNAs (M. A. Rieger and T. Schroeder, 2012). 

The intrinsic molecular networks for lineage differentiation are discussed in excellent reviews (S. 

I. Kim and E. H. Bresnick, 2007, S. H. Orkin and L. I. Zon, 2008, E. M. Mercer et al., 2011, G. 

Sashida and A. Iwama, 2012, R. A. Nimmo et al., 2015). In this section, we aimed to at some 

extent give examples that emphasize the role of transcriptions networks in haematopoiesis.  

The requirements for TFs have been temporally defined and vary in different stages of 

development (S. H. Orkin and L. I. Zon, 2008). For example SCL/tal1 is essential for the 

formation of haematopoietic system during embryogenesis. Nonetheless the study of this TF in 

adult mice using conditional mutants and competitive BM chimeras showed that SCL/tal1 is not 

required for HSCs survival and functions (self-renewal and multilineage repopulation of the 

haematopoietic system) but essential for the terminal differentiation of erythroid and 

megakaryocytic precursors (H. K. A. Mikkola et al., 2003). 

TFs determine lineage specification and commitment, in a context-depend process, (H. Iwasaki et 

al., 2006, S. H. Orkin and L. I. Zon, 2008) with PU.1 and GATA-1 serving as prototypical 

examples in haematopoiesis. The co-upregulation of PU.1 and GATA-1 may be one of the earliest 

steps in lineage commitment of HSCs to CMPs but later in development their expression is 

segregated. The predominance of GATA1 has been associated to myeloerythroid bias and the 

predominance of PU.1 to myelolymphoid lineage bias in HSCs (J. Zhu and S. G. Emerson, 2002). 

GATA-1 is essential for terminal differentiation of erythroid precursors since it promotes the 

expression of several erythroid genes. GATA-1 is not appreciably expressed in myeloid cells and 

induced expression of GATA-1 in the myeloid progenitor line 416B blocked myeloid 

differentiation and induced erythroid, megakaryocytic, and eosinophilic characteristics in cultured 

cells (S. H. Orkin, 2000). On the other hand, PU.1 is expressed in myeloid and lymphoid 
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progenitor cells and in mice deficient for PU.1 gene the development of both lineages was 

impaired. It was found that this TF is necessary for the transcription regulation of other factors 

required for lymphoid and myeloid lineage differentiation, such as IL-7 receptor and M-CSF 

receptor, respectively. It was showed that PU.1 induced expression alone could commit 

multipotent haematopoietic progenitors to monocytic/granulocytic lineages direction (J. Zhu and 

S. G. Emerson, 2002).  

The potential for inhibitory interactions between transcription factors was implied by the 

observations that overexpression of GATA-1 or PU.1 blocks myeloid or erythroid differentiation, 

respectively. It has been proposed that these factors physically interact and antagonize each other’s 

actions, and an extended body of literature supports the proposition that GATA-1 and PU.1 are 

expressed at low level in undifferentiated stable progenitor that differentiates into to one of the 

main lineage branches when one of the proteins is expressed at higher levels (S. H. Orkin and L. I. 

Zon, 2008). 

Despite these roles in early commitment of myeloerythroid/myelolymphoid lineages both GATA-1 

and PU.1 interact (synergistic or antagonizing interactions) with other TFs across haematopoietic 

development, emphasizing how fine tuned and complex is the genetic regulation from HSCs to 

mature blood cells. For examples: GATA-1 and Friend of GATA-1 (FOG-1) are required for in 

erythroid differentiation; PU.1 and Gfi1 in monocytes and neuthrophil cells development, 

respectively; and in T cell development repression of PU.1 by notch signaling (S. H. Orkin and L. 

I. Zon, 2008). 

One example of the relevance of the order of TFs expression came from Iwasaki H. studies in vitro 

showing that eosinophils and basophils development from purified GMPs requires the both the 

expression of GATA-2 and CCAAT enhancer-binding protein α (C/EBPα). Importantly it was 

showed that the differentiation of these two mature cell types critically depended on the order of 

expression of these two TFs to specifically promote the genetic program for each of these lineages 

(H. Iwasaki et al., 2006). 

The classic representation of haematopoiesis in hierarchic diagrams offer an over simplistic view 

that although useful does not include the more updated view of the processes of ontogeny. In the 

light of new findings, haematopoietic populations are best understood as group of cells with 

different developmental potentials with outcomes that depend on the dynamic crosstalk between 

intrinsic factors (such as TFs and epigenetic regulation) and signals from their niches. The 

“lineage priming” phenomenon equipped the HSPCs with flexibility to face the need of blood cells 

replenishment in homeostasis and injury, but in order to preserve integrity of haematopoietic 

system the regulation as to be very tight. In this context the further study of TFs is extremely 
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relevant to determine a clearer picture of haematopoiesis, in the development of cellular therapies 

and in the study of haematopoietic malignancies where many genes for TFs have been found 

mutated or translocated (S. H. Orkin and L. I. Zon, 2008, R. A. Nimmo et al., 2015). 

1.1.4 Haematopoietic Stem Cells in Adult Mammalians 

The exposure to radiation during the World War II showed for the first time how ionizing radiation 

damaged the haematopoietic system (J. Domen et al., 2006). These effects were replicated in mice 

and it was found that a lethal outcome could be prevented if a bone or the spleen were protected 

from irradiation, as well as by transplantation of BM cell suspensions (J. Domen et al., 2006). 

Seminal experiments from Till and McCulloch found that in mice subjected to heavy doses of 

radiation, if limiting BM cell suspensions (sub-radioprotective) were transferred between day 

seven and ten, macroscopic clusters of haematopoietic cells would appear in the spleen. These 

clusters were composed of dividing haematopoietic cells that could differentiate in erythroid, 

myeloid and megakaryoid lineages. Furthermore, when a very low number of BM cells displaying 

an abnormal karyotype (due to exposure to ionizing radiation) were transferred to lethally 

irradiated mice, it was observed that each cluster in the spleen arose from a single clone; since the 

daughter cells in each colony presented the same unique alterations in their chromossomes. As 

such, it was demonstrated that in the BM, cells with the unique ability to perform multilineage 

haematopoietic reconstitution are present, the so called HSCs (A. J. Becker et al., 1963). 

In subsequent experiments it was observed that some of these spleen colonies were constituted by 

identical daughter cells and could form multilineage colonies in the spleens of secondary irradiated 

recipients. More, each clonogenic colony contained a variable number of cells and a variable 

composition of mature and progenitor cells. Collectively these findings suggested that the 

haematopoietic system would arise from a rare group of BM cells that were characterized by 

“stemness “, self-renewal capacity, capacity to originate multi haematopoietic lineages and high 

proliferative potential, the nowadays well established HSCs (A. J. Becker et al., 2014). Further 

developments in this field came from studies in vitro and in vivo, all pointed to a hierarchic 

haematopoietic development from a multipotential progenitor to lineage restricted progenitors (C. 

J. Eaves, 2015).  

Nonetheless, only in 1996 was the proof of principle for an HSC established by Osawa, when the 

injection of a single lineage negative (negative for a pool of canonical markers for mature 

haematopoietic cells) CD341o/- c-Kit+ Sca-1 (Stem cell antigen)+ cell reconstituted the lympho-

haematopoietic system of a recipient mouse for more than four months (M. Osawa et al., 1996, C. 

J. Eaves, 2015). 
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HSCs have been extensively studied over the past decades because they provide a source of 

potential stem cell based therapeutic tools in the approach of a wide range of haematopoietic, 

genetic and immune disorders. HSCs transplantation (enriched from BM cells, mobilized 

peripheral blood stem cells or umbilical cord blood) is nowadays a well-established procedure that 

saves thousand of lives every year, but it still relies on the availability of donors with matching 

human leukocyte antigens (HLA) (M. A. Walasek et al., 2012). 

In humans, patient survival upon the HSCs transplantation has been directly associated to the 

initial amount of stem cells (CD34+ cells in humans). To face the scarcity of HSCs obtained by 

conventional sources, many attempts have been made to establish protocols to expand HSCs ex 

vivo but it was soon found that in vitro HSCs readily differentiate and loose self-renewal attributes, 

becoming therefore inadequate to reconstitute the haematopoietic system when transplanted (M. 

A. Walasek et al., 2012). 

The culture conditions that allow HSCs to undergo ex vivo symmetrical self-renewal over 

unlimited differentiation divisions have not yet be defined. However the intense research over the 

past decades on the mechanisms regulating of expansion and maintenance of self-renewal of HSCs 

has disclosed some molecular mechanisms and regulatory networks that modulate HSCs fate (M. 

A. Walasek et al., 2012, S. Lin et al., 2015). 

The lack of a protocol suitable to expand HSCs for clinical purposes, despite its importance in a 

wide range of disease scenarios, illustrates two important features regarding the study of HSCs in 

adult mammalians: 1) the regulation of HSCs seems to be extremely complex and depend on 

intricate dynamics between intrinsic and extrinsic factors; 2) the study of HSCs is technically 

challenging due to their scarcity in the adult and rapid differentiation in ex vivo settings.  

In the next sections, we will discuss some molecular mechanisms relevant to the regulation of 

HSCs function.  

1.1.4.1 Haematopoietic Stem Cell, Quiescence versus Proliferation  

The hallmarks of stem cells are their dual capacity to produce more identical stem cells (self-

renewal) and to produce cells that ultimately will give rise to mature cells (multipotential of 

differentiation). One strategy by which HSCs can accomplish these two tasks is either by 

asymmetric cell division, in which the stem cell divides to generate one daughter with a stem-cell 

fate (self-renewal) and one daughter that initiate differentiation. Or alternatively, symmetrical 

divisions may give rise to two identical stem cells (self-renewal) or two lineage-committed 

daughter cells (differentiation) (Figure 1.4) (A. D. Ho and W. Wagner, 2007). 
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Figure 1.4 - Schematic overview of different HSCs cellular fate choices. Quiescent HSCs (G0) 

can be activated to enter the cell-cycle (G1/S/G2/M phases) to self-renew and/or differentiate by 

cell-intrinsic or cell-extrinsic factors, leading to symmetric or asymmetric cell divisions. HPC 

(heamatopoietic peogenitor cell) (Adapted from (A. Nakamura-Ishizu et al., 2014)).  

 

In this section, we provide some examples of in vivo studies that lead to the characterization of 

molecular factors relevant in the regulation of HSCs fate. These examples, and others not 

discussed here, are summarized in Table 1.2 (Adapted from (K. W. Orford and D. T. Scadden, 

2008, M. R. Warr et al., 2011, A. Nakamura-Ishizu et al., 2014)). 

The quiescent HSCs reside at the top of the haematopoietic hierarchy and fine tuned regulation of 

their cell cycle, decision to self-renew and/or differentiate is therefore required to maintain the 

adequate production of blood cells at the expense of minimum stem cell exhaustion. It is accepted 

that the decision to exit quiescence depends both on cell-intrinsic and -extrinsic factors that induce 

quiescent HSCs to proliferate and differentiate (A. Nakamura-Ishizu et al., 2014). 

Murine embryonic stem cells (mES) can be expanded in vitro without compromising their self-

renewal potential and this ability has been attributed to their shorter cell cycle. mES have reduced 

G1 phase because they have constitutive cyclin E-cdk2 activity and express very low levels of the 

D-type cyclins. In contrast, in adult cells cyclin E-cdk2 activity is transient peaking at the G1 to S 

transition. Likewise, mES do not display early G1 phase or restriction point of cell cycle (Figure 

1.5). In contrast, most somatic cells to progress through the early G1 phase of the cell cycle require 
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mitogen activated protein kinase (MAPK) signaling, which was shown (particularly prolonged 

MAPK signaling) to be an inducer of differentiation. Therefore it was suggested that the absence 

of early G1 in mES cells might allow them to escape the differentiation-inducing effects of certain 

mitogenic signaling pathways, otherwise active during early G1 in somatic cells. Therefore, it is 

not surprising that many factors associated with the regulation of HSCs quiescent/self-renewal 

potential are molecular factors that regulate the cell cycle (K. W. Orford and D. T. Scadden, 2008). 

 

Figure 1.5 - Overview of cell cycle. Cell proliferation occurs through a series of stages that are 

collectively termed the cell-cycle. Classically, the cell-cycle has been divided into four phases that 

are organized around the synthesis (S) phase and mitotic segregation (M) phase of the genome 

with two intervening gap phases (G1 and G2) preceding S and M phases, respectively. Progression 

through the cell cycle is highly regulated, particularly at the transitions from G1 phase to S phase 

and from G2 phase to M phase. In addition to other cell-intrinsic checkpoints (for example, the 

evaluation of the integrity of the genome), combinations of intrinsic and extrinsic signals regulate 

the passage from early to late G1 phase in somatic cell. This transition is called the restriction (R) 

point, and divides the G1 phase of the cell cycle into the mitogen-dependent early G1 phase and 

the mitogen-independent late G1 phase. In general, cells nave to be stimulated by mitogenic 

signals (for example, soluble growth factors) to “cut through” the G1 phase and enter into the cell-

cycle. The R point represents the ‘point of no return’ for the cell, after which the cell has 

committed to enter the cell-cycle and mitogenic stimuli are no longer required. In the absence of 

mitogenic stimulation, cells can exit from the cell cycle during early G1 phase and enter a 

dormant, or quiescent, state called the G0 phase that is characterized by small cellular size and low 

metabolic activity (Adapted from (K. W. Orford and D. T. Scadden, 2008)). 
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The cyclin-dependent kinase (CDK)-inhibitor p21 seems to be important in DNA damage 

responses but its role in the steady-state is less clear. Initial studies showed p21−/− lineage negative 

cells (enriched for HSPCs) were more proliferative and displayed self-renewal defects, 

characterized by early exhaustion following serial BM transfer and repeated 5- Fluorouracil (FU) 

treatments (M. R. Warr et al., 2011). Then, an other study using a more purified population 

enriched for LT-HSCs (LSK CD150+ CD48-) showed conflicting results. The number of quiescent 

HSCs was maintained in mice deficient for p21. However, in the absence of this factor, the 

function of HCSs was impaired compared to wild type (WT) HSCs in BM transplant (BMT) 

assays, but only if the transplanted BM cells were first treated with 2Gy irradiation. This suggested 

that p21 was important for DNA repair but not crucial in HSCs function (R. Van Os et al., 2007) 

The transcription factor c-Myc has been implicated in the regulation of cell proliferation, 

differentiation, and apoptosis. c-Myc heterodimerizes with its partner Max induce the expression 

of genes that promote cell-cycle G1 /S transition (including cyclin D1, cyclin D2, cyclin E and cyclin 

A) and represses the expression of cell cycle inhibitors p27 and p21, favoring cell-cycle 

progression (M. J. Murphy et al., 2005). Conditional deletion of Myc in BM was associated to 

severe anemia and leucopenia and increased number of HSCs (defined as LSK Flt3-). Myc-

deficient HSCs failed to engraft in recipient, suggesting that Myc-deficient HSCs were 

functionally defective, and that in the basis of this impaired haematopoiesis was an intrinsic defect 

in HSCs function (A. Wilson et al., 2004). Interestingly p21 a c-Myc target with disputed roles in 

cell-cycle regulation and in HSCs self-renewal, was found upregulated in HSCs following 

conditional deletion of c-Myc in vivo, and it was proposed that c-Myc may modulate HSCs 

functions through p21 repression (E. Baena et al., 2007). 

An example of the role of extrinsic factors in regulating HSCs function comes from the canonical 

Wnt signalling cascade, which has been implicated not only in the regulation of HSCs function but 

also in the development of other haematopoietic progenitors. The specific impact of canonical Wnt 

signalling in haematopoiesis is still disputed, due to opposing outcomes resulting from various 

inducible Wnt-signaling loss-of-function and gain-of-function models (T. C. Luis et al., 2010a). 

Wnts are secreted glycoproteins that bind to membrane-associated receptors, the Frizzled (FZD) 

proteins, a family of seven-pass transmembrane receptors. So far, nineteen different Wnt ligands 

and ten FZD receptors have been identified in humans and mice, and the complexity is further 

increased because Wnts can use distinct co-receptor proteins that initiate canonical and non-

canonical signaling pathways. The activation of canonical Wnt signaling pathway is defined by the 

translocation of the transcriptional co-activator β-catenin to the nucleus, where together with T-

cell factor (TCF) and lymphoid enhancer binding factor (LEF) initiates the transcription of target 

genes. When Wnt signaling is not activated, β-catenin is associated in the cytoplasm to a protein 



 37 

complex responsible for the phosphorylation and degradation of β-catenin, preventing it 

accumulation in the cytoplasm and nuclear translocation. This destruction complex is composed 

by axis inhibition protein 1 (AXIN1), adenomatous polyposis coli complex (APC), and the 

serine/threonine glycogen synthase kinase 3 beta (GSK3β) (C. J. Cain and J. O. Manilay, 2013). 

The role of canonical Wnt signaling became evident when it was shown that Wnt3a-deficient mice 

die around embryonic day (E) 12.5.  HSCs from fetal liver (FL) showed cell intrinsic defects, such 

as severely reduced reconstitution capacity as measured in transplantation assays into Wnt3a 

competent mice (T. C. Luis et al., 2009). 

Nonetheless in adult Mx-Cre-mediated β-catenin deficiency, under control of the type I interferon-

inducible Mx promoter, did not impact in haematopoiesis, although this might be explained by 

incomplete deletion of Wnt signaling. In contrast, when Wnt signalling was inhibited by 

ectopically expressing Axin in HSCs, these showed a dramatic impairment in the reconstitution of 

lethally irradiated mice when compared to control transduced HSCs (T. Reya et al., 2003). To add 

more confusion, other gain of function assays to determine role of Wnt canonical signaling 

resulted in conflicting outcomes (T. C. Luis et al., 2010a). 

A more recent work, suggested that Wnt signaling during haematopoiesis has to be tightly 

regulated. This study was performed using mouse models carrying specific hypomorphic 

mutations at the Apc gene resulting in specific Wnt signaling dosage. Mildly increased activation 

(two fold) of the Wnt signaling pathway in HSCs resulted in increased frequency of repopulating 

cells compared to control donor HSCs, 12 weeks after transplantation, both in primary and 

secondary transplantation assays. On the other hand, donor HSCs expressing higher levels of 

canonical Wnt activation had decreased reconstitution potential in lethally irradiated recipients 

compared to control donor cells. This suggested that only mildly increased levels of activation 

enhance long-term repopulation capacity (T. C. Luis et al., 2011). 

Another example how the same TFs may play different roles in different stages of haematopoietic 

development is the role of GATA-3, for long known to be crucial in the development of T cells at 

multiple stages in the thymus and for Th2 differentiation in the peripheral organs. The TF GATA-

3 was found also expressed in various haematopoietic progenitor populations in BM, with HSCs 

expressing the highest levels of GATA-3 (C.-J. Ku et al., 2012). Recent studies have suggested 

that GATA-3 is important the maintenance of a normal number of HSCs and to be required for 

their entry into the cell cycle, however it was also implicated in loss of self-renewal potential 

during stress-induced haematopoiesis (C.-J. Ku et al., 2012, C. Frelin et al., 2013) . 
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For example, it was shown that upon poly I:C treatment, proliferating HSCs showed nuclear (i.e. 

active) GATA-3 and were only capable of short-term multilineage reconstitution. After the 

proliferative stimulus was removed, GATA-3 re-localized to the cytoplasm and long-term lineage 

reconstitution was restored. Further, in competitive transplant assays of BM cells from poly I:C 

treated GATA-3 cKO and WT mice, GATA-3 deficient donor cells were more efficient in 

performing haematopoietic reconstitution, upon 32 weeks. These data suggested that GATA-3 

might limit long-term self-renewal during proliferation of HSCs. The localization of GATA-3 in 

the nucleus depended directly on p38α activation in culture, as shown by in vitro pharmacological 

inhibition (C. Frelin et al., 2013). Additionally, the activation of the p38 MAPK pathway in 

response to reactive oxygen species has been reported to cause HSC exhaustion, pharmacological 

inhibition of p38 MAPK maintained stemness of cultured mouse and human HSCs, and in vitro 

studies showed that p38 MAPK modulates the activity of the critical regulator of HSC quiescence 

p57 (Cdkn1c) (C. Frelin et al., 2013, M. Tesio et al., 2015). 
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Table 1.2 - Summary of relevant genetic mouse models that contributed to the identification 

of molecular modulators of HSCs cell-cycle  

 

Cyclin A Conditional KO Increased Decreased

Rb family (Rb1, 
Rbl1, Rbl2)

Triple KO
(Mx-1-Cre) Increased Decreased

Cdkn2a (p16) KO (aged mice) Increased Increased

Cdkn1a (p21) KO
 Decreased or Unchanged

Decreased

Cdkn1c (p57)
 Conditional KO

(Mx1-Cre)  Decreased Decreased

p53 (Trp53) KO Increased Increased

Myc/Mycn
Conditional KO 

(Mx-1-Cre) Decreased differentiation Decreased

Fbxw7
Conditional KO

(Mx-1-Cre) Increased Decreased

Runx1
Conditional KO 

(Mx-1-Cre) Increased Decreased

Gfi1 KO Increased
Unable to engraft in 

CRA

Mef (Elf4) KO Increased Increased

Foxo1/3/4 KO Increased Decreased

Bmi1 KO Increased Decreased

Foxo1/3/4 KO Increased Decreased

Pten
Conditional KO 

(Mx-1-Cre) Increased Decreased

Mysm1 KO Increased Decreased

Dnmt3a Conditional KO Decreased Decreased

Tpo KO Increased Decreased

Ang-1
Retroviral 
expression Increased Decreased

Kit
Hypomorphic 

allele Increased Decreased

Cxcr4 Conditional KO Increased Decreased

Epigenic Regulators

Table  1.2: Table summarizing relevant genetic mouse models that have contributed to the understanding of 
HSCs cell cycle regulation

CRA, competitive repopulation assay; HSC, haematopoeitic stem cell; KO, knockout, Ang, Angiopoietin; Tpo, 
Trombopoietin. 

Cell cycle regulators

Nuclear regulators

Cell intrinsic 
regulators

Gene Mouse model HSCs cell cycle activity Effect on repopulation 
potential

Environmental factors
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1.1.4.2 Immunophenotypic evaluation 

The assessment of HSCs function (‘stemness’) in vivo has been possible due to constant technical 

improvements: in ex vivo culture systems, in cell purification strategies throught a set of cell-

surface markers, in cell-cycle status evaluation and in vivo long-term reconstitution assays upon 

transplantation to conditioned recipients. In spite of decades of research on HSCs, the 

characterization of markers for isolation is still in flux, with the frequent description of new 

markers for HSCs purification (Table 1.3). This requires retrospective studies to be evaluated with 

caution. Another constraint in the study of HSCs function comes from their relative scarcity, 

which restricts the study of HSCs function to approaches that do not require large amounts of 

starting material or throught inference. More recently, advances in in vivo imaging and 

transcriptomic analysis at the single cell level have started to provide important insights on HSC 

biology (G. A. Challen et al., 2009, A. Nakamura-Ishizu et al., 2014). 

 

Table 1.3 - Summary of most commonly used combinations of cell surface marker used to 

segregate HSPCs 

 

The phenotypic identification of haematopoietic progenitor cells relies on the expression (or lack 

of expression) of a combination of cell surface expressed proteins (markers) on individual cells, 

since a unique surface-cell marker has yet to be defined to segregate HSCs from onward 

progenitors. Using flow cytometry became possible to determine which fluorochrome conjugated 

!

Cell type Phenotype Ref. 

Long-term hematopoietic stem cells (LT-
HSCs) Lineage-/low Sca1+ cKithi FLt3- CD34- 

(Kondo et al., 
2003) 

 
Short-term hematopoietic stem cell (ST-HSC) Lineage-/low Sca1+ cKithi FLt3- CD34- 

Multipotent progenitors (MPP) Lineage-/low Sca1+ cKithi FLt3+ CD34- 

   
Hematopoietic stem cells (HSCs) Lineage-/low Sca1+ cKithi CD150+ CD48- 

(Oguro et al., 
2013) Hematopoietic progenitor cells 1 (HPC-1) Lineage-/low Sca1+ cKithi CD150- CD48+ 

Hematopoietic progenitor cells 2 (HPC-2) Lineage-/low Sca1+ cKithi CD150+ CD48+ 

   
Common lymphoid progenitors (CLP) Lineage-/low cKithi IL-7Rα+ CD34-/low 

(Kondo et al., 
2003) 

(Belyaev et al., 
2010) 

Common myeloid progenitor (CMP) Lineage-/low cKithi CD16/32-/low IL-7Rα- CD34+ 

Granulocyte-macrophage progenitor (GMP) Lineage-/low cKithi CD16/32+ IL-7Rα- CD34+ 

Megakaryocyte-erythrocyte progenitor (MEP) Lineage-/low cKithi CD16/32- IL-7Rα- CD34- 
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monoclonal antibodies binds to each cell, allowing not only the identification of different cell 

populations but also the isolation of live cells (cell-sort) to use in further functional assays, using 

the so-called fluorescence activated cell sorting (FACS) technology (G. A. Challen et al., 2009). 

The vast majority of HSCs isolation approaches include the selection of cells expressing c-Kit 

(stem cell growth factor receptor/CD117) and Sca-1 and negative selection for markers of mature 

haematopoietic cell lineages (typically B220, CD4, CD8, Gr-1, Mac-1 and Ter-119), the so-called 

LSK which are enriched in cells with haematopoietic reconstituting activity, about 10% of LSK 

cells are bona fide long-term HSCs (G. A. Challen et al., 2009). For the further enrichment in 

murine HSCs and onward progenitors a variety of combinations of cell-surface marker have been 

proposed, the most commonly used were resumed in Table 1.3.  

1.2 STRESS-INDUCED HAEMATOPOIESIS 

1.2.1 Overview of Stress-induced Haematopoiesis 

In spite of decades of investigation, much is yet to learn about the regulation of haematopoiesis, 

and this lack of knowledge becomes further evident regarding the cell fate of HSPCs in non 

steady-state conditions, such as infection, inflammation or anaemia (J. L. Zhao and D. Baltimore, 

2015). 

A classic example of stress-induced haematopoiesis is the rapid increased production of myeloid 

cells in response to acute systemic bacterial infection, often referred to as emergency 

myelopoiesis. The emergency myelopoiesis is characterized by, leukocytosis, neutrophilia, 

emergence of immature neutrophils in peripheral blood (PB) and increased production of 

myelomonocytic cells in BM. The aforementioned phenomenon in an illustrative example of how 

the haematopoietic system evolved to respond fast and efficiently to the higher demand of innate 

immune cells to fight an acute infection (H. Takizawa et al., 2012).   

Most haematopoietic cells are post mitotic requiring the de novo production from BM HSPCs, 

when they are consumed in response to injury, during an immune response or due to blood loss. 

Therefore, chronic uncontrolled stimulation may be detrimental to the long-term function of HSCs, 

on the top of blood cell production. It has been reported that highly proliferative cells (for 

example, during experimental serial transplantation) showed intrinsic reduced self-renewal 

activity, suggesting that sustained stress-induced haematopoiesis may result in exhaustion of 

functional HSCs and increased probability of occurring cumulative genetic alterations (K. Y. King 

and M. A. Goodell, 2011, H. Takizawa et al., 2012).  
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In humans it was not yet established if dysregulation of stress-induced haematopoiesis contributes 

to haematological disorders, such as BM failure or neoplasias, nonetheless epidemiological studies 

have shown an association between chronic immune stimulation (infections and autoimmune 

diseases) and increased risk of posterior development of myeloproliferative neoplasms, BM 

fibrosis and myelodysplastic syndromes (J. L. Zhao and D. Baltimore, 2015). 

The adaptation of haematopoiesis to dynamic homeostatic requirements is possible due to the 

expression of different receptors at each developmental step, which integrate the information 

provided by different stress mediators.  

Haematopoietic progenitors have different mechanism to sense injury that may collaborate to 

respond to the specific haematopoietic demands: (1) respond to anemia, for example producing 

more erythrocytes upon sensing increased levels of erythropoietin; (2) respond to inflammatory 

mediators produced during an immune response to an infection, for example in a mouse model of 

malaria, IFNγ signaling induce the emergency of an IL-7R+ cKithi myelolymphoid progenitor 

population that contribute for the increased production myeloid cells beneficial for infection 

resolution; (3) respond to pathogen-associated molecular patterns (PAMPs) and danger-associated 

molecular patterns (DAMPs) directly through toll like receptors (TLRs), for example, in mice 

infected with Pseudomonas aeruginosa the expansion of LSK depended on the expression of 

TLR4, the main receptor for lipopolysaccharide (LPS); (5) respond to signals from the BM 

mesenchymal stem cell niche, for example mice with infected with Listeria monocytogenes have 

increased serum levels of G-CSF, which was shown to repress the expression of CXCL12 by 

osteoblasts promoting increased mobilization of HSPCs; (6) so far there are no evidence that 

HSPCs themselves could be infected by pathogens, nonetheless in theory this may be a further 

mechanism of haematopoietic regulation (C. Cheers et al., 1988, N. N. Belyaev et al., 2010, K. Y. 

King and M. A. Goodell, 2011, H. Takizawa et al., 2012, J. L. Zhao and D. Baltimore, 2015).  

1.2.2 Inflammatory Modulation of Early Events in Haematopoiesis 

The impact of infection on haematopoiesis has been reported in many models, regulated by both, 

systemic demand for immune cells, and direct sensing of “infection” by haematopoietic 

precursors, the so-called “Push and Pull Model” (Figure 1.6) (K. Y. King and M. A. Goodell, 

2011).  

Another common feature associated to haematopoietic alterations during chronic infections is the 

establishment of extramedullary haematopoiesis that may occurs due to an increased egress of 

immature haematopoietic cells from the BM to the periphery or in sito expansion of circulating 
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HSPCs (V. M. Peterson et al., 1994, Y. F. Zhan et al., 1998) (A. M. Mirkovich et al., 1986, S. E. 

J. Cotterell et al., 2000a, T. Junt et al., 2007, S. Massberg et al., 2007). 

In steady state, HSCs are mostly found in quiescence and it was formerly believed that HSCs were 

protected in their niches from infectious challenge. Nowadays, is well established that HSCs play a 

central role in the responses to infection (H. Takizawa et al., 2012). 

In the following section we will discuss the effects of inflammation on the modulation of 

haematopoiesis in different models of infection and its functional consequences, focusing in HSCs 

and immediate early progenitors. 

 

Figure 1.6- Overview of the “Push and PulL Modell” proposed to frame the alterations 

observed in haematopoiesis during infection. All haematopoietic cells originate from a small 

population of haematopoietic stem cells (HSC), which is separable into at least two subsets: long-

term reconstituting HSC (LT-HSC) and short-term reconstituting HSCs (ST-HSC). Differentiation 

of ST-HSCs generates multipotent progenitors (MPP) and then lineage-committed oligopotent 

progenitors derived from MPP. These include the common lymphoid progenitor (CLP), common 

myeloid progenitor (CMP), megakaryocyte-erythrocyte progenitor (MEP) and granulocyte-

monocyte progenitor (GMP) populations. To explain demanded- haematopoiesis during infection a 

model defined as “The push and pull on HSCs” has been proposed; the “push” being associated 

with the direct response of HSC to stimuli associated with infections (including pathogen-
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associated molecular patterns (PAMPs) or in response to pro-inflammatory cytokines; and the 

“pull” associated with the HSCs proliferation due to the depletion of committed progenitor 

populations from the bone marrow.  CCL2, CC-chemokine ligand 2; CLP,; IFN, interferon; IL-6, 

interleukin-6; LPS, lipopolysaccharide; MEP, megakaryocyte and erythrocyte progenitor; MPP, 

multipotent progenitor; NK, natural killer; TNF, tumor necrosis factor (Adapted from (K. Y. King 

and M. A. Goodell, 2011, L. D. Wang and A. J. Wagers, 2011)). 

 

1.2.2.1 Regulation of stress-induced haematopoiesis by Toll-like receptor signaling 

Pathogen-associated molecular patterns (PAMPs), including lipids, lipoproteins, proteins and 

nucleic acids, can be recognized by germline-encoded pattern-recognition receptors (PRRs), 

including Toll-like receptors (TLRs), C-type lectin receptors and NOD-like receptors, amongst 

others expressed in immune cells. For example, TLRs recognized PAMPs derived from various 

pathogens and initiate MyD88-dependent or TIR-domain-containing adapter-inducing interferon 

beta (TRIF)-dependent signaling pathways, leading to the activation of IRF3 and/or late-phase 

nuclear factor kappa light chain enhancer of activated B cells (NF-κB) TF (T. Kawai and S. Akira, 

2010). 

HSPCs have high expression and respond to engagement of TLR2 and TLR4 with entry into cell 

cycle and selective myeloid lineage differentiation in vitro (Y. Nagai et al., 2006a) and in vivo (J. 

Megias et al., 2012) . 

For example, during sepsis using an established murine model by inoculation of the virulent strain 

of P. aeruginosa UCBPP-PA14 or P. aeruginosa LPS it was observed a significant increase in 

LSK cells, but BM cellularity was reduced, as well as BM Gr1+Mac1+ population, which includes 

maturing myeloid cells, monocytes, and neutrophils, suggesting a block in myeloid differentiation. 

In competitive BMT assays, BM donor cells pre-challenged with P. aeruginosa LPS showed low 

engraftment potential, both in the long and short term periods, and defective ability to generate 

myeloid progenitors, in comparison to control BM donor cells. TLR4 expression was upregulated 

in LSK by LPS, and in mutant mice deficient for TLR4 the phenotype upon LPS challenge 

observed in WT mice was at great extent prevented, LSK cells were not significantly increased, 

and the number of myeloid cells preserved, suggesting that TLR4 signaling could modulate HSCs 

functions (long-term self-renewal and multilieage differentiation) (S. Rodriguez et al., 2009). 

Staphylococcus aureus infection was also associated to an expansion of HSCs and multipotent 

progenitors. However, in mice MyD88-/- TRIF-/- (dKO) mice, which lack all TLR signaling the 
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expansion of HSPCs was comparable to infected WT mice, suggesting that TLR signaling is not 

required for HSPCs activation during S. aureus infection (P. O. Scumpia et al., 2010).  

It was also proposed that the modulation of HSPCs function may also be mediated by TLR 

signaling in non-haematopoietic cells that compose their microenvironment.  In this study using 

BM mixed chimeric challenged with Escherlichia coli, it was established that endothelial cells 

produce increased level of G-CSF production in a MyD88-dependent mechanism, which results in 

emergency myelopoiesis and reduced BM cellularity in this model of infection (S. Boettcher et al., 

2014). 

Stress-induced haematopoiesis complex and dynamic processes integrate signals from the 

pathogen, HSPCs, BM stromal cells, and non-haematopoietic tissues. The aforementioned studies 

discussed in this section suggested that the TLR signaling impact in stress-induced haematopoiesis 

is pathogen-specific, can be deleterious or advantages and most likely characterized by 

redundancy with other mechanisms coping in each infectious context (J. L. Zhao and D. 

Baltimore, 2015). 

1.2.2.2 Regulation of Stress-induced Haematopoiesis by Cytokine Signalling 

In response to an infection a wide range of soluble factors are released locally, and as soon as its 

levels increase in serum they become available to impact in the BM niches for haematopoiesis. 

The soluble factors, as referred above, include PAMPs but also cytokines (colony-stimulating 

factors, interleukins and interferons) and chemokines, for which HSPCs express cognate receptors 

(H. Takizawa et al., 2012). 

Initial studies on the impact of infection in haematopoietic development focused in immune 

effector cells and committed progenitors, and the alterations were described as an homeostatic 

reaction to the increased demand of immune effector cells described as “emergency 

myelopoiesis/granulopoiesis” and “emergency lymphopiesis”. In order to maintain a reservoir of 

HSCs for the lifetime of an organism, these rare cells are in either a dormant or homeostatic 

proliferative state, but in the light of recent findings HSCs have assumed a preeminent role in the 

response to infection, because alterations in its function have been described in a wide range of 

acute and chronic infection models (M. T. Baldridge et al., 2011, K. Y. King and M. A. Goodell, 

2011). 

Many growth factors required for steady-state haematopoiesis may be present the serum in 

increased levels in inflammatory contexts such as, G-CSF, M-CSF, GM-CSF, IL-3, IL-6, and Flt3 

ligand, with the potential to modulate cell fate “decisions” both in non-committed and lineage-

committed precursors (H. Takizawa et al., 2012). Beside the release of haematopoietic growth 
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factors, during infection may occur the release of pro-inflammatory cytokines such as interferon 

(IFN)α/β, IFNγ and tumor necrosis factor (TNF), which have been implicated in the direct 

modulation of HSCs function in various pathogen-specific contexts (M. T. Baldridge et al., 2011). 

M-CSF, traditionally viewed as a lineage-specific cytokine, provides an example for the potential 

impact of a growth factor in increased availability in the HSCs cell-fate decisions, promoting 

higher availability of innate immune cells in response to an infection. M-CSF is strongly induced 

during infection and it was shown that high systemic levels of M-CSF could act on M-CSF 

receptor expressed on HSCs and induce the expression of the transcription factor PU.1, a key 

regulator of haematopoietic differentiation. In vivo experiments showed the induction of PU.1 

expression in HSCs after transfer to LPS-challenged hosts or after injection of recombinant M-

CSF. The adoptive transfer of in vivo M-CSF primed HSCs to non-stimulated recipients showed 

an increase in the GMPs:MEPs progenitors ratio in the spleen and an increased myeloid to 

lymphoid cell ratio in circulation, the ratios returned to baseline upon six weeks and long-term 

multi-lineage contribution of M-CSF-primed HSCs was not compromised (N. Mossadegh-Keller 

et al., 2013). 

Another example illustrating that alterations in haematopoiesis due to infection can impact 

positively in the immune response came from experimental model for malaria. In this model IFNγ 

signalling led to the emergence of a Lin- IL-7R+cKithi progenitor with myelolymphoid potential of 

differentiation that in vivo generated mainly myeloid cells. This alteration in haematopoiesis 

seemed to be advantageous in response to infection since when infection-induced atypical 

progenitors from infected mice were transplanted into non-irradiated mice infected prior to P. 

chabaudi infection, the recipient mice showed significantly lower parasitemia compared to 

untransplanted infected controls (N. N. Belyaev et al., 2010).  

The rapid activation of HSCs to proliferate and differentiate, often along the myeloid lineage, 

during infection in response to pro-inflammatory cytokines may be required, because enhanced 

haematopoiesis dependent solely on onwards progenitors could not be equipped to sustain the 

demand of effector cells required to resolve infection, and prevents the accumulation 

differentiation-ready progenitor cells in steady-state. If in acute conditions HSCs activation may 

assist in host defense, the continuous activation of HSCs during chronic inflammation or infection 

may be detrimental for HSCs function, impairing their ability to cope with future demands 

(proliferation-associated functional exhaustion) or increasing the rate of genetic mutation 

accumulation (neoplastic syndromes) (K. W. Orford and D. T. Scadden, 2008, C. Mirantes et al., 

2014). In humans several haematological disorders have been associated to the overproduction of 

proinflammatory cytokines and therefore increasing efforts have been made to clarify the impact 



 47 

of these immunomodulators on HSCs function, with the aim to improve treatment of chronic 

inflammation and blood disorders (C. Mirantes et al., 2014, J. L. Zhao and D. Baltimore, 2015).  

Several studies have suggested that chronic IFN stimulation might lead HSCs to functional 

exhaustion that in long run might result in anergy or increased death susceptibility (M. T. 

Baldridge et al., 2011, C. Mirantes et al., 2014). 

Interferons are produced by immune cells in response to intracellular pathogens, such as viruses 

and bacteria, but also tumor cells. In steady-state IFNs are constitutively produced, albeit at very 

low levels. The Type I IFNs contain multiple IFNα species and a single IFNβ, which are expressed 

by many cell types. The type II IFNs are comprised solely by IFNγ, mainly produced by NK 

(Natural Killer) and T cells. The IFNs are important in the limitation of replication of virus 

through innate mechanisms (induction of anti-proliferative state and pro-apoptotic “antiviral 

state”), and in the generation of adaptive immune responses, in collaboration with other immune 

cells, to resolve infections and produce immunological memory to prevent reinfection (A. M. 

Prendergast and M. A. G. Essers, 2014). 

The Type I IFNs, IFNα and IFNβ/α signal through the IFNα/β receptor (IFNAR), and their potent 

expression can be induced by the viral RNA, which can be mimicked by the double-stranded RNA 

mimetic polyinosinic-polycytidylic acid (poly(I:C)). The type I IFN-inducible Mx1–Cre allele has 

been commonly used in mouse lines to eliminate genes flanked by loxP sites (floxed) in HSCs and 

other haematopoietic cells. In these mutant mice the expression of the Cre recombinase is 

controlled by the Mx1 promoter, since the expression of MX1 gene in heamatopoietic cells is 

induced by interferon α or β and by pI-pC (an interferon inducer), this system allows gene 

targeting in hematopoietic cells (R. Kuhn et al., 1995). It was first observed that poly(I:C) 

treatment induced the proliferation of HSCs both in mice containing or lacking the Mx1-Cre or 

floxed genes. Then, in WT mice poly(I:C)-mediated proliferation of homeostatic HSCs and also 

dormant HSCs (BrdU long-retainer cells), but this effect was prevented in in mice deficient for 

IFNAR. These findings suggested that IFNα signalling induced HSCs proliferation in vivo, which 

was quite a surprise at the data since it had been extensively showed in vitro that IFNα act as an 

inhibitor of cellular proliferation for multiple other cells types, including haematopoietic 

progenitors. These findings also should be considered in the interpretation of other studies using 

this conditional loss-of-function approach to study the biology of HSCs (M. A. G. Essers et al., 

2009). 

The functional relevance of chronic IFNAR signaling was demonstrated in vivo BM transplant 

(BMT) competitive assays. In mixed BM chimeric mice 50:50% wild type:Ifnar-/- upon eight 

challenges with poly(I:C) (every second day) and eight day of recovery, HSCs from WT donors 
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could not be detected and all the HSCs in BM, as well as the vast majority of mature cells derived 

from Ifnar-/-donor. These findings strongly suggested that chronic activation of IFN-α signaling 

significantly impairs HSCs function (M. A. G. Essers et al., 2009). 

A mechanism to explain the impact of type I interferon was proposed in a study by Pitetras et al. 

In this work, it was showed that IFN-α induced HSC proliferation by 12 h, with BrdU 

incorporation peaking after 1–3 days of poly I:C treatment, while upon 5-30 days of continuous 

administration of poly I:C the incorporation of BrdU in HSCs was at basal levels, suggesting that 

IFN-α challenge induces a rapid and transitory proliferation in HSCs, which rapidly return to a 

quiescent state during chronic exposure (E. M. Pietras et al., 2014). 

In subsequent experiments it was showed that HSCs chronically exposed IFN-α were functionally 

impaired compared to “intact” HSCs, in despite of returning to quiescence. IFN-Is have been 

shown to be pro-apoptotic in multiple cell types, therefore in subsequent experiments the 

expression of pro-apoptotic and pro-survival was assessed in HSCs challenged in vivo with poly 

I:C for either three (cycling) or seven (quiescent) days directly ex vivo and upon forced to 

proliferation in in vitro culture, transplantation, or 5-FU-mediated myeloablation. These 

esperiments lead to the proposal of the following model: in steady-state HSCs are largely found in 

quiescence and protected from pro-apoptotic signals, upon IFN-α exposition HSCs enter in cell-

cycle due to transitory down regulation of quiescence-enforcing mechanisms and are therefore 

vulnerable to pro-apoptotic signals, if IFNα levels remain elevated the HSCs return to quiescence 

to prevent IFN-α induced apoptosis, nonetheless if due to other stimuli they are forced to enter in 

cell-cycle p53-dependent proapoptotic gene program may be activated rendering HSCs highly 

susceptible to cell-death (E. M. Pietras et al., 2014). 

In humans there are studies establishing an association between inflammatory contexts and 

alterations in BM functions, therefore indicating that inflammatory stimuli have the potential to 

modulate humans HSCs functions. Across the few studies performed in human the pro-

inflammatory cytokines that are more prevalent were IFNγ and TNF, which expression was 

increased in BM of patients with myelodisplasic syndrome (MDS), idiopathic aplastic anemia and 

Fanconi Anemia (FA) (M. Kitagawa et al., 1997, L. G. Schuettpelz and D. C. Link, 2013). 

Additionally, alterations in haematopoiesis have been often reported among patient in anti-TNF-α 

agents and interferon therapeutic regimes (L. G. Schuettpelz and D. C. Link, 2013). For example, 

in BM samples from MDS patient it was found the expression of TNF and IFNγ mRNA, otherwise 

not detected in control samples and these results were then confirmed by immunohistochemical 

staining in BM sections (M. Kitagawa et al., 1997). 
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Aplastic anaemia (AA) is a clinical syndrome characterized by hypocellular BM and 

pancytopenia, which in the most severe presentations results in BM failure (BMF). There are 

inherited and acquired forms of AA: inherited forms have been associated to genetic defects, 

including DNA repair defects (Fanconi anemia, FA), abnormal telomere physiology (dyskeratosis 

congenita,) or abnormalities of ribosomal biogenesis (Shwachman-Diamond syndrome); it as been 

suggested that acquired forms of AA, are in most of the cases idiopathic and may result from the 

autoimmune response of cytotoxic T cells targeting HSPCs inducing apoptosis and BMF (A. E. 

DeZern and E. C. Guinan, 2014). 

In patients with idiopathic AA it was initially found that IFNγ concentration was increased in the 

supernatants of PB mononuclear cells (PBMNCs), as well as in the supernatant of stimulated BM 

T-lymphocytes, compared to healthy controls. Following theses experiments, IFNγ and TNF 

mRNA expression was detected in the BM of newly diagnosed patients, but not in the BM of 

healthy controls or AA patients treated with immunossupressive drugs. Furthermore, it was found 

that AA patient bear in their BM more CD4+ and CD8+ T cells compared to healthy controls, and 

these lymphocytes have an increased potential to produce IFNγ and TNF upon stimulation. 

Interestingly, it was found that in PB the fraction of T cells producing IFNγ and TNF was 

comparable among AA patients and controls, suggesting that “reactive” T cells may localize 

preferentially in BM were they exert their deleterious effects upon HSPCs (C. Dufour et al., 2001). 

More recently it was determined that an individual homozygous for a single mutation (in intron 1 

at position -874, T→A) that results in increased levels of IFNγ expression was associated to a 

higher predisposition to AA (B. Serio et al., 2011). 

According with the aforementioned findings it was proposed a model to explain the pathogenesis 

of AA: lymphocytes T are activated by an unknown antigen become autorreactive and sustain the 

anomalous secretion of pro-inflammatory mediators such as IFNγ and TNF, which by not yet 

completely defined mechanisms may impair effective haematopoiesis (C. Dufour et al., 2001). 

This proposed immunopathogenic model have been supported by several studies performed in 

experimental models of disease (F.-c. Lin et al., 2014, C. Arieta Kuksin et al., 2015).  

More recently it have been shown that CD4+ T cells play an important role in alterations observed 

at the haematopoietic progenitors during infection, using experimental models of disease for AA 

and human monocytic ehrlichiosis (HME) (Y. Zhang et al., 2013, F.-c. Lin et al., 2014, C. Arieta 

Kuksin et al., 2015) . 

For example, it was shown using mutant mice (IFNγ ARE-del mice), in which IFNγ is constantly 

expressed in T cells and NK cells that this is sufficient to promote AA phenotype (BM 

hypocellularity and pancytopenia). In the BM of IFNγ ARE-del mice it was determined that HSCs 
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(LSK CD34– Flt3– CD150+ cells) numbers were increase, MPPs were maintained and all the 

lineage-committed progenitors decreased. The functions of CMPs, GMPs, and MEPs were 

analyzed in vitro using colony-forming assay, in IFNγ ARE-del mice their ability to form colonies 

was significantly decreased, suggesting quantitative and qualitatively impairment. The functional 

impairment in differentiation was further evidenced by the accumulation in immature erythrocytes 

and a two-fold decrease in the mature erythrocytes, disruption in early B-cell differentiation and 

decreased potential of proliferation among lineage-committed progenitors. Using BM chimeras it 

was shown that it was a cell intrinsic defect, ARE-del èWT chimeras showed clinical signs of 

AA while WTèARE-del chimeras presented haematological parameters within the normal range. 

As such, this study suggested that abnormal expression of IFNγ have the potential to establish AA 

in mice, as shown by the capacity of its chronic expression to suppress efficient haematopoiesis in 

a cell-intrinsic manner (F.-c. Lin et al., 2014).  

In steady-state mature CD4+ T cells and CD8+ T cells reside in BM in low numbers, where 

priming of antigen-specific T cells can take place, and BM was found to be a privileged site for 

homing of memory T cells (F. Di Rosa and R. Pabst, 2005).  

During homeostatic traffic T cells migrate to the BM in response to chemokines, such as stromal-

cell derived factor-1a (SDF-1a or CXCL12), the ligand for the chemokine receptor CXCR4 

expressed in CD4+ T cells. Recently, it was shown that CXCR4 mediates migration of pathogenic 

T cells to the BM in an experimental model for lethal AA, characterized by pancytopenia, 

increased levels of IFNγ and TNF, all features found in patients with AA. In this study, it was 

reported that expression of CXCR4 was increased in T cells isolated the BM of AA mice and 

when the SDF-1a–CXCR4 interactions were pharmacologically prevented there was a significant 

reduction in BM T cells infiltration in AA mice compared to controls. Because it was showed in 

breast cancer models that NF-kB signaling modulates CXCR4 expression, the authors 

pharmacologically inhibited NF-kB signaling in AA mice. Blocking NF-kB signaling in AA mice 

prevented BM hypocellularity, BM T cell infiltration, pancytopenia and increased concentration of 

TNF and IFNγ in PB. Overall this study suggested that anomalous expression of CXCR4 

dependent on NF-kB-signaling may be one of the mechanisms underlying AA progression (C. 

Arieta Kuksin et al., 2015). 

The regulation of stress-induced haematopoiesis by infection is poorly understood, however 

studies using a wide range of infection models have been showing that activated immune cells act 

upon haematopoietic BM compartment. Also in the models of infections where alterations were 

reported, those were commonly associated to the increased expression of TNF and IFNγ (S. E. J. 

Cotterell et al., 2000a, L. G. Schuettpelz and D. C. Link, 2013, A. M. de Bruin et al., 2014), and 
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IFNγ has been appointed as a major regulator of functional activation of HSCs during infection 

(M. T. Baldridge et al., 2010, Y. Zhang et al., 2013).  

Initial studies performed in vitro showed that IFNγ decreased CFU activity of BM cells, as well as 

their long-term repopulating activity upon in vivo transfer. On the other hand, in vivo studies 

showed that upon immune challenge, IFNγ induced expansion of LSKs and impaired HSCs long-

term functions (M. T. Baldridge et al., 2010, A. M. de Bruin et al., 2014). 

The mouse model of M. avium infection allowed the study of the impact of infection on HSCs 

function in a chronic non-cytopenic systemic infection. In BM it was reported an increase in the 

proportion of cycling of LT-HSCs (LSK CD34- Flt3- or LSK CD150+, or LSK Side Population) 

and an increase in the absolute number of ST-HSCs (LSK CD34+ Flt3-) and MPPs (LSK CD34+ 

Flt3-), while the number of myeloid lineage committed precursors was decreased. The increased 

proliferation of HSCs accounted for functional impairment, in BMT assays LT-HSCs recovered 

from M. avium-infected mice showed impaired engraftment in comparison to LT-HSCs derived 

from not infected mice. In vitro, HSCs proliferated when challenged with purified mouse 

recombinant IFNγ (rIFNγ), and no increase in apoptosis was reported. In addition, in vivo 

challenge with rIFNγ induced a significant increase in the fraction of HSCs in cell division. The 

alterations in haematopoietic progenitors during M.avium infection were abrogated in mice lacking 

IFNγ receptor 1 (Ifngr1) or the Stat1, encoding the downstream signal transducer for IFNγ 

receptor subunit 1. This set of experiments suggested that the increase in proliferating HSCs and 

subsequent functional impairment during M. avium infection could be mediate solely by IFNγ (K. 

Y. King et al., 2010). 

Other example, come from mouse model for HME which is an infectious disease caused by the 

obligate intracellular pathogen Ehrlichia chaffeensis, characterized by anemia and 

thrombocytopenia. In mice, Ehrlichia muris infection was used as experimental model of HME 

and it was found that the infection was associated to the expansion of LSK cells in BM dependent 

of IFNγR signalling. In WT mice at day 8 post-infection (p.i.) were reported alterations in PB, 

decrease in hemoglobin, platelets, lymphocytes and increase in monocytes concentrations, and all 

these manifestation of disease were much less expressive in IFNγR deficient mice (K. C. 

MacNamara et al., 2011b). In following studies using this same experimental model it was 

determined that in BM of infected mice CD4+ T cells mice play a non-redundant role in LSK 

expansion being the main source of IFNγ (Y. Zhang et al., 2013). 

Fanconi anemia (FA) is a rare genetic disease characterized by BMF and susceptibility to cancer, 

most often acute myelogenous leukemia. Most genetic alteration described so for were in genes 

implicated in DNA repair. In a clinical study, it was showed that the frequency of BM cells from 
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FA patients expressing TNF and IFNγ was very increased compared to BM cells from controls. 

Interestingly, using colony-forming assays it was reported that in FA patients the number of CFU-

E was lower compared to the controls, but upon addition of anti-TNF fusion protein the number of 

CFU-E resulting from BM cells derived from FA patients increased significantly, while in control 

BM cells the addition of anti-TNF had no impact. These finding suggested that TNF may 

participate in the development of erythropoietic failure in FA patients, and its reasoned to 

speculate that this might also true regarding other haematopoietic lineages not assessed in this 

clinical study (C. Dufour et al., 2003). The increased production of TNF in FA was confirmed by 

other studies in humans and in experimental models of the disease (W. Du et al., 2014). 

TNF anomalous expression is commonly associated to a wide range of haematopoietic alterations, 

nonetheless the mechanisms by which this pro-inflammatory regulates stress-induced 

haematopoiesis renain unresolved. Different in vitro studies suggested adverse and beneficial 

impact of TNF in HSPCs growth and development (T. Tian et al., 2014). More recently, a study in 

vivo reported that BM cells from TNF receptor deficient mice showed competitive advantage over 

WT BM cells in their ability to long-term reconstitute myeloid and lymphoid cell lineages in 

myeloablated recipients. In addition, administration of TNF results in reduced BM cellularity, that 

is further evident in mice treated with 5-FU, suggesting that in vivo TNF signaling may be 

detrimental for HSCs functions (C. J. H. Pronk et al., 2011). 

The sum of the studies reported in this section pointed out for a beneficial role of stress-induced 

haematopoiesis in acute infection, favoring the formation of immune cells in enough number to 

mount an effective response against an pathogen in detriment of erythropoiesis, which transient 

suppression might be tolerated and leaves more growth factors and space available in the BM to 

assist emergency myelopoiesis. Nonetheless if the pro-inflammatory stimuli are chronically 

sustained it might lead in first instance to anemia and thrombocytopenia, since erythrocyres and 

platelets are required in very higher number and have a small life span, and in more severe cases it 

may underlie the establishment of pancytopenia due to exhaustion of HSCs function rendering the 

individual more vulnerable to subsequent infections or BMF.  

The impact of cytokines in the regulation of HSCs function is far from fully clarified, therefore 

more studies are required to understand the modulation of HSCs responses to infection and injury, 

to improve diagnostic, prophylactic and therapeutic approaches to the immense range of 

debilitating haematological alterations that afflict patients suffering from autoimmune disorders 

and chronic infections. 
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1.3 VISCERAL LEISHMANIASIS 

1.3.1 Overview of Visceral Leishmaniasis 

Visceral leishmaniasis (VL) is an intracellular infection caused by the protozoan Leishmania 

donovani and L. infantum in vertebrate hosts, including humans. The main targets of parasitation 

in mammalian host are the liver, the spleen and the BM, where the parasites may establish a 

chronic infection (P. Kaye and P. Scott, 2011). 

Leishmaniasis is a vector-borne parasitic disease caused by protozoan of the genus Leishmania, 

consisting of trypanosomatid protozoans belonging to the order Kinetoplastida. There are 

approximately twenty species identified and different species types have been characterized 

among different endemic areas. Leishmania is found in the Old World (Europe, Asia and Africa) 

and in the New World (Central and South America), where female sandflies, belonging to the 

genera Phlebotomus in the Old World and Lutzomyia in the New World, are the vectors for 

Leishmaniasis transmission (D. Pace, 2014). 

The propagation of leishmaniasis relies on the accomplished transmission between the sandfly 

vector and a mammalian reservoir. Leishmania parasites have a complex life-cycle: 1) in the 

sandfly parasites reside in the gut where they multiply as free flagellated promastigotes, 2) then the 

parasites differentiate into non-dividing ‘metacyclic’ promastigotes transmitted in the course of a 

sandfly blood meal, 3) finally within the mammal host through additional morphological changes, 

parasites differentiate into non-flagellated amastigotes that multiply as obligatory intracellular 

parasites mostly in mononuclear phagocytes, eventually parasites are released to infect other cells 

when an infected host cell bursts, 4) if an infected individual is again bitten the cycle of 

transmission resumes (P. Kaye and P. Scott, 2011). 

VL is still a neglected tropical infection and responsible for significant morbidity and mortality in 

the developing world, particularly in India, Sudan, Nepal, Bangladesh, and Brazil. The 

epidemiological impact of this disease can only be estimated, due to insufficient epidemiological 

supervision and lack of appropriate diagnostic “tools” in endemic areas. The most recent estimates 

indicated that the number of new VL cases ranges between 0.2 to 0.4 million and 20,000 to 40,000 

leishmaniasis deaths per year (D. Pace, 2014).  

The main groups of individuals infected with VL vary on endemic geographic areas, for example 

in Europe, North Africa and West and Central Asia, children between one and four years old are 

the most affected group, while in East Africa VL occurs more frequently in adults. Upon infection 

the emergence of clinical symptomology can take ten days to over one year, and the main 
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manifestations include fever, anorexia, weight loss, abdominal distension due to splenomegaly and 

hepatomegaly, hyperglobulonemia and disturbances in the haematopoietic homeostasis, including 

anemia, leucopenia and thrombocytopenia (D. Pace, 2014).  

Post-kala-azar dermal leishmaniasis (PKDL) may occur as a complication of VL, months to years 

after treatment of VL. It takes place mainly in India, Kenya, and Sudan in 20-50% of treated 

patient. In PKDL patients present with macules, papules, or nodules in the skin as a result of 

dermal parasitic persistence, which constitutes an important reservoir for transmission (A. Ismail 

et al., 2006). 

VL is fatal if left untreated and due to lack of investment an effective vaccine is not yet available 

(A. Maroof et al., 2012). The most commonly drugs used to treat infected people are pentavalent 

antimony and amphotericin B (and its liposomal derivatives), which have been associated with 

parasite resistance and increased drug toxicity, caused by the need for long periods of treatment. 

The pharmacological treatment is highly effective however the frequency of relapses within six to 

twelve months is significant, and even with treatment patients may succumb to VL-associated 

pathology or increased vulnerability to opportunistic infections. In the absence of treatment, VL 

patients may develop anaemia, haemorrhagic bleeding secondary to low platelets, secondary 

infections and death within two to three years (D. Pace, 2014). 

1.3.2 Immunopathology in VL 

In order to develop new effective prophylactic or therapeutic approaches intrusive techniques 

would be required to analyze responses in VL patients, therefore our current understanding of the 

host immune response during VL largely derives from studies performed in mice (P. M. Kaye et 

al., 2004). 

In mice, it was found that parasites establish chronic infection in the spleen and BM (S. E. J. 

Cotterell et al., 2000b), whilst the infection in the liver was self-resolving within 6–8 weeks and 

relies on the development of a Th1-dominated granulomatous response. In the liver parasites are 

mostly found in Kupffer cells (KCs) the most prevalent population of hepatic resident 

macrophages, that upon infection release chemokines including CCL3 (MIP-1a), CCL2 (MCP-1) 

and CXCL10 (gIP-10), which results in the rapid increase of monocytes, neutrophils and T cells. 

Activated T cells are responsible for the secretion of Th1 cytokines such as IL-12, IFNγ, TNF, 

lymphotoxin-α (LT), GM-CSF and IL-2. These cytokines are required for the activation of KCs 

and other macrophage to produce leishmanicidal molecules such as reactive oxygen intermediates 

(ROI) and reactive nitrogen intermediates (RNI) and the establishment of granulomas (A. C. 

Stanley and C. R. Engwerda, 2007). 
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In the spleen, IFNγ-producing Th1 responses are not able to control parasite replication, although 

why this happens is unclear, various mechanisms have been proposed. The presence of high levels 

of TNF, which is a key cytokine for parasite clearance in the liver, promotes the disruption of the 

splenic marginal zone micro-architecture, impeding the migration of DCs and naive T cells to the 

T-cell area. Furthermore, the presence of suppressive CD4+ T cells secreting IL-10 and IFNγ was 

reported, and these cells have also been observed in VL patients (S. Staeger et al., 2010). More 

recently, it was shown that at 28 days p.i. with L. donovani there was an increase in the frequency 

of DCs CD11clo CD45RB+ in the spleen and in vitro cells with this same phenotype after 

lipopolysaccharide (LPS) stimulation produced large amounts immunorregulatory cytokine IL-10 

(A. Wakkach et al., 2003). 

BM has long been recognized as a site of infection in mice (V. Leclercq et al., 1996) but much less 

is known about the relationship between parasite dynamics in this organ, changes in cytokine and 

chemokine expression, and local haematopoietic activity. Nevertheless, a striking correlation 

between increased haematopoietic activity and parasite growth in both the spleen and BM has been 

noted previously (S. E. J. Cotterell et al., 2000a).  

1.3.3 Haematopoietic alterations during VL in experimental models of disease 

Inbred mice have been widely used to study the VL immunology due to the genetic homogeneity 

among strains and the great availability of “tools” for immunological assessment. Nonetheless the 

course of infection varies considerably between mice and human, for instance in mice VL is not 

fatal, the infections becomes chronic in the spleen but it is self-resolving in the liver with the Th1-

dependent formation of granulomas (P. M. Kaye et al., 2004).  

Another experimental model widely used to study VL is the Syrian golden hamster (Mesocricetus 

auratus), despite of limited availability of immunological reagents and more genetic variability. 

Syrian golden hamsters are very susceptible to L. donovani infection requiring a much smaller 

inoculum of parasites and the progression of disease during the course of infection is much closer 

to humans; persistence of parasites in the BM, spleen, and liver, hepatosplenomegaly, anaemia, 

leucopenia and death by 9–10 weeks after infection (J. M. Requena et al., 2000). In hamsters it 

was shown that regardless of the infection-driven high expression of Th1 cytokines in the liver, 

spleen, and BM, macrophages were enable to induce Nitric oxide synthase 2 (NOS2) activity, 

which is an essential antileishmanial effector mechanism in mice. The expression of IL-10 and 

TGF-β was significantly increased in infected hamsters, and both cytokines are known inhibit 

macrophage activation and NOS2 expression (P. C. Melby et al., 2001). 
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The establishment of anemia in the Syrian golden hamster during the course of infection is well-

characterized, initial studies reported drop a in haemoglobin levels followed by a significant 

increase in the reticulocyte in circulation and suggested that osmotic fragility was on the basis of 

anaemia (T. Biswas et al., 1992). 

More recently an extensive study focusing on the impact of L.donovani infection on erythropoiesis 

in the spleen and BM of infected Syrian hamsters was performed. In this study it was described 

that in infected hamster the number of erythrocytes and leukocytes were decreased. Using colony-

forming assays, it was determined that the frequency of erythroid progenitors was increased both 

in BM and spleen, indicating that disruption of erythropoiesis might occur in later stages of 

differentiation and not due to lack of progenitors. Subsequent experiments showed that the 

expression of erythroid differentiation genes (alpha-globin, beta-globin, and ALAS2) was 

decreased in BM while increased in the spleen of infected hamster compared to the controls. The 

expression of mRNA for IL-10, TGF-β, and IFNγ mRNA was highly increased in BM and the 

spleen of infected mice and all these cytokines have been showed to be able to inhibit 

erythropoiesis. Furthermore, the fraction of apoptotic erythroblasts was higher in infected hamsters 

than control hamsters. According to these findings it was suggested that the occurrence of anemia 

could be due to an impairment of terminal differentiation of erythrocytes and/or increased 

apoptosis of erythroblasts that resulted in the establishment of emergency extramedullary 

erythropoiesis in the spleen (W. P. Lafuse et al., 2013). 

In mice experimental model of VL, chronic infection has been associated with alteration in the 

haematopoietic progenitors and in the stroma of haematopoietic sites. During the course of L. 

donovani infection, it was observed that the increase in parasite burden in the BM and spleen was 

associated with a gain in HSPCs numbers at both haematopoietic sites. Using colony-forming 

precursors assays it was found that in the BM there was an increase in colony forming unit-

granulocyte, erythrocyte, monocyte, megakaryocyte (GEMM-CFU), CFU-granulocyte, monocyte 

(GM-CFU) and burst forming unit–erythrocyte (BFU-E), while in the spleen there was a specific 

increase in GM-CFU. These findings suggested that the infection could induce an increase in the 

egress of haematopoietic precursors and/or in the rates of haematopoiesis in extramedullary sites 

(S. E. J. Cotterell et al., 2000a). 

In the same study, it was shown that the frequency of cycling progenitors in the spleen of scid 

mice was not increased following infection, while in the BM the frequency of cells in proliferation 

increased about 1.5 fold in both the infected scid mice (lacking functional T and B lymphocytes) 

and infected BALB/C mice. In addition, it was determined that there were higher levels of mRNA 

for the growth factors G-CSF, M-CSF and GM-CSF in the BM and spleen from infected scid mice 

and infected BALB/C, during chronic phase of infection. This upregulation of the colony 
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stimulating factors was observed in the BM of infected BALB/C and scid mice but not in the 

spleen of the latter. Taken together the findings suggested the modulation of haematopoiesis might 

rely that different cellular and molecular signaling pathways at these two distinct sites during 

chronic infection with L. donovani (S. E. J. Cotterell et al., 2000a). 

Studies have shown that BM macrophages could become infected with L. donovani both in vivo 

and in vitro, but there were no indication that a significant number of progenitors harbored 

parasites. Infected BM derived macrophages showed an increased efficiency to support the 

formation of GM-CFU in vitro. When BM or spleen cells were plated in methylcellulose in the 

absence of exogenous growth factors, the addition of 14M1.4 (BM derived macrophage-like cells 

line) promoted formation of CFU-GM, BFU-E, and additionally in BM, CFU-GEMM. 

Furthermore, the addition of L. donovani-infected 14M1.4 cells instead to these assays was 

associated to a specific increase in CFU-GM formation. The infected macrophages express more 

GM-CSF and TNF, and the addition of neutralizing antibodies to the cultures caused a reduction in 

the formation of GM-CSF. These in vitro experiments suggested that L donovani infection has the 

potential to selectively enhance myelopoiesis, acting upon the stromal macrophages (S. C. Smelt et 

al., 2000).  

In vitro splenic stromal cells from mice infected with L. donovani had an enhanced capacity to 

direct haematopoietic progenitors (BM Lineage- cells) toward a regulatory dendritic cells (rDCs) 

phenotype in vitro, CD11clow CD45RB+, while DCs derived from co-cultures of BM Lineage- cells 

with naive stroma cells or GM-CSF protocol were CD11chi. These in vitro generated rDCs 

expressed higher levels of IL-10 compared to the controls (GM-CSF derived DCs) and using co-

cultures with primed rDCs and it was showed that these could induce CD4+ T cells to produce 

immunossupressor IL-10, while primed GM-CSF derived DCs induced CD4+ T cells to secrete 

pro-inflammatory IFN-γ, under the same experimental conditions (M. Svensson et al., 2004).  

Following in vitro studies, using transwell co-cultures suggested that the infection of the MBA-1 

cell line (BM derived stromal cell line) with L. donovani could promote the differentiation of 

haematopoietic precursors (BM Lin- cKit+) towards immunossupressor DCs in vitro. When CD4+ 

T cells were stimulated either with GM-CSF-LPS-stimulated DCs alone, or in the presence of 

CD11c+ DCs differentiated in co-culture with control MBA-1 cells, or CD11c+ cells differentiated 

in co-culture with infected MBA-1 cells, it was observed that DCs generated in the presence of 

MBA-1 infected cells could prevent T cells proliferation, suggesting that they were functionally 

immunossupressor. It was determined that in the spleen of infected mice the mRNA expression of 

CCL8 and CXCL12 was increased. Taking advantage of the transwel co-culture system and using 

neutralizing Abs for CXCL12 and CCL8 it was determined that these two chemokines collaborate 

in the recruitment of HSPCs induced by MBA-1 cell line in vitro. All these finding suggested that 
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infected splenic stromal cells could induce the increase seeding of HSPCs and modulate their 

differentiation favoring the generation of rDC, during L. donovani infection (A. T. Nguyen Hoang 

et al., 2010).  

Taken together the aforementioned studies suggest that the L. donovani infection might regulate 

haematopoiesis by modulating the function of cells that compose the haematopoietic supporting 

stroma.  

Recently our laboratory reported that alterations in peripheral blood (PB) also take place in mice 

chronically infected with L. donovani (28 days post-infection), such as a significant decrease in the 

number of erythrocytes (normocytic anemia), leukocytes (leucopenia) and platelets 

(thrombocytopenia) which dropped 36.7%, 43% and 88%, respectively in infected mice compared 

to controls. Within the leukocytes compartment, it was also noticed that there is an inversion in the 

T cell:B cell relation, in healthy animals there are more B cells than T cells but upon infection the 

number of T cells in circulation was almost twice that of the B cells (F. A. d. Pinho, 2015). 

The histopathologic evaluation of the BM from mice chronically infected with L. donovani 

revealed significant alterations in the myeloid/erythroid ratio, with infected mice bearing more 

myeloid lineage cells and less mature erythrocytes. Other morphological alterations were also 

reported, such as asynchronous nuclear-cytoplasmic maturation (reflecting delayed or incomplete 

nuclear maturation relative to cytoplasmic development), presence of megalocytes and binucleated 

erythroid cells, among other atypical cells. Additionally, profound alterations were described in 

BM architecture, in infected mice there was significant increase in cells expressing the 

macrophage specific marker F4/80, and in further characterization a significant alteration in the 

distribution of different mature myeloid cell populations within the BM of infected mice was 

noticed (F. A. d. Pinho, 2015). These findings suggested that haematopoietic alterations in BM 

during VL are clinically relevant being expressed in significant decrease of haematopoietic 

components of PB, and indicate that impaired haematopoiesis could be one of the mechanisms 

underlying cytopenias in chronic VL. Nonetheless the mechanisms underlying the impact of 

infection on haematopoiesis and its consequences to the immune responses to VL are yet to be 

determined.  

1.3.4 Haematopoietic alterations during VL in humans 

In humans, a wide range of alteration to the haematopoietic system following L. donovani 

infection have been described, which are reflected in the haematopoietic composition of PB and 

BM cellularity. The alterations in PB are very common but the degree of alteration varies 

considerably in terms of severity (N. Varma and S. Naseem, 2010). 
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Normochromic normocytic anemia was described as a common finding among VL patients in 

several clinical reports, both in adults and children. The presentation of anaemia is quite variable 

amongst patients, accounting for mild to severe anaemia with haemoglobin values ranging from 

2.4 to 8.3 g/dl, compared to 11.5 to 18g/dl normal reference values (G. E. Cartwright et al., 1948, 

N. Marwaha et al., 1991, N. A. M. Aljurayyan et al., 1995). Various mechanisms have been 

proposed to explain the onset of anemia in VL patients: haemolysis in spleen and liver, 

haemodilution due to expansion of the plasma volume, inhibition of erythrocyte enzymes, and 

immune mechanisms of haemolysis such as increased vulnerability to complement and presence of 

anti-erythrocyte antibodies (N. Varma and S. Naseem, 2010). 

According with several clinical reports, leucopenia was reported in over 60% of VL patients and it 

was characterized by low number of neutrophils and eosinophils in circulation and mild 

lymphocytosis (G. E. Cartwright et al., 1948, N. Marwaha et al., 1991, N. Varma and S. Naseem, 

2010, Y. Agrawal et al., 2013). 

Thrombocytopenia has been reported as a later occurrence in the course of infection. The values 

for platelets number varied considerably among patients ranging from 4-633 x 109/l, and over 

50%-85% of patients were thrombocytopenic according to different clinical reports, both in adults 

and children. Antibodies against platelets have not yet been reported in VL patients and the most 

consensual explanation for thrombocytopenia have been the splenic sequestration and progressive 

loss of hepatic function, the main responsible for thrombopoietin production in adult (G. E. 

Cartwright et al., 1948, N. Marwaha et al., 1991, N. A. M. Aljurayyan et al., 1995, G. A. Hamid 

and G. A. Gobah, 2009).  

Splenic sequestration has been appointed as the main cause behind peripheral cytopenias in VL 

patients but cannot account for the emergence of BM alterations. The alterations most commonly 

described in BM aspirates included erythroid hyperplasia, increased frequency of plasma cells, 

increased frequency of granulocytic and megakaryocyte immature forms, dyserythropoeisis, bi and 

multinuclearity in the erythroid series and histiocytic hyperplasia, suggesting that alterations in 

haematopoiesis could contribute to pancytopenia (K. K. Dhingra et al., 2010, N. Varma and S. 

Naseem, 2010). However the degree of BM alterations was not correlated to the level of BM 

parasitemia (N. Varma and S. Naseem, 2010). Furthermore, several clinical reports described 

pancytopenia in VL patients followed by BM multilineage myelodisplasia reminiscent of true 

myelodysplastic syndrome (MDS), which could not be explained by the presence of 

hypersplenism, suggesting the presence of ineffective haematopoiesis (N. Yarali et al., 2002, P. 

Kopterides et al., 2003, G. M. de Vasconcelos et al., 2014). 
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The onset of pancytopenia extensively contributes to the morbidity and mortality following L. 

donovani infection; therefore more efforts should be made to elucidate the impact of infection in 

haematopoiesis. Understand the mechanism underlying the establishment of haematopoietic 

dysfunction in VL patients would contribute to the development of better clinical approaches and 

prevent fatal outcomes due to massive bleeding or increased vulnerability to secondary infections.  
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1.4 AIMS 

It is well established that haematopoietic dysfunction (notably various forms of cytopenias) is 

associated with human VL, and may contribute to the disease outcome. However the mechanisms 

underlying the impairment of haematopoietic function are poorly defined (G. E. Cartwright et al., 

1948, N. Varma and S. Naseem, 2010). The aim of this thesis was to characterize the alterations in 

BM haematopoiesis during experimental infection with L. donovani and establish whether there is 

a correlation with the establishment haematopoietic dysfunction in the periphery.  The specific 

aims were as follows: 

Chapter 3 

• To characterized alterations in BM haematopoiesis;  

• To examine phenotypic alterations of LT-HSCs;  

• To examine functional alterations of LT-HSCs;  

• To relate the alteration in the proliferative status of LT-HSCs with changes in the 

expression of selected transcription factors. 

Chapter 4 

• To examine alterations in cellular components of the BM microenvironment; 

• To establish whether there was a correlation between changes in cellular components of 

BM and alterations in haematopoiesis;  

• To characterize phenotypic and functional changes in BM T cells and assess the role of 

CD4+ T cells in regulating changes in haematopoiesis;  

• To examine the specific contributions of IFNγ and TNF signalling in haematopoietic 

dysfunction. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 ANIMALS 

Mouse lines C57/BL6 (Black 6 (B6)), (B6).CD45.1, B6.CD45.2, B6.CD45.1xCD45.2 and 

B6.Rag2KO.CD45.1Cg (Z. Y. Hao and K. Rajewsky, 2001) used in this study, were bred and 

maintained under SPF conditions at the Biological Services Facility (BSF) within the University 

of York.  

B6.Myc-eGFP were originally developed by Dr. Ching-Yu Huang (Department of Pathology and 

Immunology, Washington University School of Medicine, St. Louis, USA) (C.-Y. Huang et al., 

2008). Both B6.Myc-EGFP mice and derived BM cells were kindly provided by Dr. Dinis Pedro 

Calado (Cancer Research UK, The Francis Crick Institute London, United Kingdom). BM cells 

from mice lacking the ifngr2 gene (IFNγ-R2 KO) on B6 background were generously provided by 

Dr. John Grainger (Faculty of Life Sciences, University of Manchester, United Kingdom)(B. F. 

Lu et al., 1998). Tnfrsf1-dKO B6.129S mice (TNF receptor double KO) were originally obtained 

from the Jackson Laboratory (stock no. 003243) followed by subsequent backcrossing for at least 

ten generations to C57BL/6 mice at the Lund University animal facility. Tnfrsf1-dKO mice were 

originally generated through the interbreeding of mice deficient for Tnfrsf1a (or Tnfr-p55, 

generated on a C57BL/6 background) with mice deficient for Tnfrsf1b (or Tnfr-p75, generated on 

a 129 background) (J. J. Peschon et al., 1998). Dr. Bengt Johansson Lindbom (Division of 

Immunology, Faculty of Medicine Lund University, Sweden) generously provided BM cells from 

TNF receptor double KO mice. IFNγ-KO (B6.129S7-Ifngtm1Ts/J, stock no. 002287) mice, in B6 

background, were obtained from the Jackson Laboratory (D. K. Dalton et al., 1993). 

All mice were females between 5-8 weeks of age at the start of experimental work, except for the 

experiment with B6.Rag2KO.CD45.1Cg that included in the naive controls male mice. All 

experiments in this thesis were carried out with the approval of the UK home office (United 

Kingdom Home Office Project License PPL 60/4377) and under ARRIVE guidelines. 

2.2 INFECTIONS 

Mice were infected via the lateral tail vein with 3x107 amastigotes of the Ethiopian strain of 

Leishmania donovani (LV9), maintained by passage in B6.Rag2KO.CD45.1Cg and B6. EYFPKI. 

Rag1KO immunodeficient mice. Amastigotes were isolated from infected spleens. The infected 

spleens were removed following CO2 euthanisation and dislocation of the neck. The spleen was 

homogenized in RPMI 1640 medium (Gibco, Paisley, UK) in a glass homogenizer (Fisher 

Scientific, UK), the resulting suspension was transferred to 50 milliliters (ml) Falcon tube 
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(Sarstedt AG & Co, Germany) and centrifuged at 137 G for 5 minutes at room temperature (RT) 

in a Heareus Multifuge 3S-R (DJB labcare, UK). The supernatant was retained and transferred to 

a 50ml Falcon tube coated with 25mg saponin (BDH, Leicestershire, UK) per 20ml supernatant, 

for 5 minutes at RT to lyse erythrocytes. The suspension was washed with in RPMI 1640 medium 

at 2063 G at 37oC for 10 minutes three times. Finally, the pellet was suspended in RPMI 1640 

medium and passed through a 26-guage needle (BD Biosciences, USA) 2-3 times to break up 

clumps of parasites using a 10 ml syringe (BD Biosciences, USA). Parasites were counted using a 

Thomas bacteriological counting chamber (Weber Scientific International, Middlesex, UK).  

Spleen parasite burden was determined from impression smears following methanol fixation and 

Giemsa staining. Parasite burden was expressed as Leishmania-Donovani units (LDU), where 

LDU was equal to the number of parasites per 1,000 host nuclei times the organ weight in 

milligrams or, alternatively, it was expressed as number of parasites per 1,000 host nuclei. BM 

aspirates from the iliac crest were removed with the aid of a 23G needle and a 5ml syringe, placed 

onto a slide (Thermo Scientific) and squashed between two slides (“squash” technique). Dr. 

Flaviane Pinho performed this procedure. Smears were then fixed with methanol and stained with 

Hemacolor Rapid staining of blood smears (Merck, Germany). The parasite burden was 

determined microscopically as the number of parasites per 1,000 host nuclei. 

2.3 CELL ISOLATIONS 

2.3.1 Bone Marrow cells isolation 

Mice were sacrificed by CO2 euthanisia and followed by dislocation of the neck. The tibias and 

fibias were removed and placed into a petri dish containing Dulbecco's Modified Eagle Medium 

(DMEM) (Gibco, Paisley, UK). All the fat and muscles were removed from the bones using a 

scalpel (Swann-Morton, Sheffield, UK) and the very edges of the bones were cut. Each bone was 

flushed with 10 ml of phosphate buffered saline (PBS) 1x with 2% HyClone foetal calf serum 

(FCS) (purchased from Thermo Fisher Scientific (Loughborough, UK) and heat inactivated by 

incubating in a 56°C water bath for 30 minutes) and forced through a 70µm strainer (Scientific 

Laboratory Supplies (SLS), East Riding of Yorkshire, UK) into a 50 ml Falcon tube. The cell 

suspensions were centrifuge for 7 minutes at 309 G at 4oC, and the resulting pellets were 

suspended in 1ml of ACK Lysing Buffer (Gibco, Paisley, UK) for 2 minutes at RT to lyse the 

erythrocytes. After adding 18 ml of 1x PBS with 2% FCS, the cell suspensions were centrifuged 

at 309 G for 10 minutes at 4oC and the resulting pellets suspended in 10 ml of complete DMEM 

(DMEM containing 10% of FCS, 100 U/ml penicillin (Sigma-Aldrich, Dorset, UK) and 100 µg 

(milligrams)/ml streptomycin (Sigma-Aldrich, Dorset, UK). The cell viability and concentrations 

were assessed manually by dye exclusion with Trypan Blue (Sigma-Aldrich, Dorset, UK) and 
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counted on an Improved Neubauer haemocytometer (Weber Scientific International, Middlesex, 

UK) or using the Vi-CELL Cell Viability Analyzer (Beckman Coulter, HighWycombe, UK) 

(adapted from (S. E. J. Cotterell et al., 2000a)). 

2.3.2 Spleen cells isolation 

Spleens were removed from sacrificed animals and placed in a petri dish containing RPMI-1640, 

and all the fat and muscle were removed using a scalpel. The tissue was forced through a 70 µm 

(micrometers) strainer using the back of a 10 ml syringe into a 50ml Falcon. Cell suspensions 

were centrifuged at 309 G for 7 minutes at 4oC, the resulting pellets were suspended in ACK 

lysing Buffer for 5 minutes to lyse erythrocytes. After adding 18 ml of 1x PBS with 2% FCS, the 

cell suspensions were centrifuged at 309 G for 10 minutes at 4oC and the resulting pellets were 

resuspended in 10 ml complete DMEM. The cell viability and concentration were assessed 

manually by dye exclusion with Trypan Blue and counted on an Improved Neubauer 

haemocytometer or using the Vi-CELL Cell Viability Analyser (adapted from (S. E. J. Cotterell et 

al., 2000a)). 

2.4 FLOW CYTOMETY AND BM TRANSFER ASSAYS 

2.4.1 Staining for surface markers 

HSPCs were assessed according with the phenotype for expression of surface markers displayed 

in supplementary Table 2.1. Cell suspensions were diluted to a concentration of 20-30 x 106 

cells/ml, and then 200 ul (microliters) were transferred to individual wells on a 96 round bottom 

well plate (Sarstedt AG & Co, Germany). The cell suspensions were incubated for 20 min at 4°C 

with 0.125µg/100 µl fragment crystallizable region receptor (FcR block) (CD16 (Fc gamma III 

Receptor) and CD32 (Fc gamma II Receptor); eBioscience) and then centrifuged for 7 min at 309 

G at 4°C. The supernatants were discarded and the pellet was suspended in optimized 

concentration of surface antibodies (Table 2.2) and fixable live-dead dye (Invitrogen, Paisley, 

UK) diluted in 1x PBS 1% FCS and left at 4°C for 30 minutes in the dark. Plates were centrifuged 

for 7 min at 309 G at 4°C, supernatants were discarded and the cells were washed twice in 1x PBS 

1 % FCS by centrifugation at 309 G for 7 min at 4°C. When only surface staining was performed, 

cells were fixed post-washing in 200 µl 2% formaldehyde (PFA) (Sigma-Aldrich) for 20 min at 

4°C in the dark, followed by two washes with 1x PBS 1% FCS by centrifuging at 309 G for 7 min 

at 4°C. Finally, cells were suspended in 400 µl of 1x PBS 1% FCS and stored protected from light 

at 4°C until acquisition on either the BD LSR Fortessa X-20 (BD Biosciences, Oxford, UK) or the 

CyAn ADP analyzer (Beckman Coulter, High Wycombe, UK). 
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Table 2.1 - Surface markers used to characterize HSPCs by flow cytometry analysis 

 

2.4.2 Intracellular staining for cytokines  

Cell suspensions were diluted to 3x107 cells/ml in complete DMEM and 200 µl were transferred 

to individual wells on round bottom 96 well plates. Unstimulated cells were used as controls. For 

stimulation, required volumes of Phorbol-12-myristate-13-acetate (PMA) (Sigma-Aldrich) and 

ionomycin (Sigma-Aldrich) were added to final concentrations of 10 ng/ml of PMA and 1 µg/ml 

of ionomycin to the cells. Cells were then incubated at 37°C in 5% CO2 for 2 hours. Brefeldin A 

(Sigma-Aldrich) was then added to each well at a final concentration of 10 µg/ml and the cells 

incubated for a further 3 hours at 37 °C in 5% CO2. The plates were centrifuged at 309 G for 7 

minutes at 4°C, the resulting pellets suspended in complete DMEM and then stained as described 

in section 2.4.1. Following surface staining the cells were fixed in 2% PFA and washed twice 

with 1x PBS 1% FCS by centrifuging at 309 G for 7 minutes at 4°C, and suspended in 200 µl of 

permeabilisation buffer (1x PBS, 1% FCS, 0.2% saponin and 0.5 % bovin serum albumin (BSA) 

(Sigma-Aldrich, Dorset, UK)). The cells were centrifuged at 309 G for 7 minutes at 4°C and the 

pellets suspended in optimized concentrations of intracellular antibodies diluted in 

permeabilization buffer (Table 2.2) and left at 4°C for 30 minutes in the dark. Then, the cell 

suspensions were washed twice by centrifugation at 309 G for 7 minutes at 4°C in 

permeabilization buffer, and washed further twice in 1x PBS 1% FCS by centrifugation at 309 G 

for 7 minutes at 4°C. Finally, the pellets were suspended in 400 µl of 1x PBS 1% FCS and stored 

protected from light at 4°C until acquisition on either the BD LSR Fortessa X-20 (BD 

Biosciences, Oxford, UK) or the CyAn ADP analyzer (Beckman Coulter, High Wycombe, UK). 

(Adapted from (T. Jung et al., 1993)) .  

!

Table 1.3: Summary of most commonly used combination of cell markers used to segregate murine HSPCs 

Cell type Phenotype Ref. 
Long-term hematopoietic stem cells (LT-
HSCs) Lineage-/low Sca1+ cKithi FLt3- CD34- 

(Kondo et al., 
2003) 

 
Short-term hematopoietic stem cell (ST-HSC) Lineage-/low Sca1+ cKithi FLt3- CD34- 

Multipotent progenitors (MPP) Lineage-/low Sca1+ cKithi FLt3+ CD34- 

   
Hematopoietic stem cells (HSCs) Lineage-/low Sca1+ cKithi CD150+ CD48- 

(Oguro et al., 
2013) Hematopoietic progenitor cells 1 (HPC-1) Lineage-/low Sca1+ cKithi CD150- CD48+ 

Hematopoietic progenitor cells 2 (HPC-2) Lineage-/low Sca1+ cKithi CD150+ CD48+ 

   
Common lymphoid progenitors (CLP) Lineage-/low cKithi IL-7Rα+ CD34-/low 

(Kondo et al., 
2003) 

(Belyaev et al., 
2010) 

Common myeloid progenitor (CMP) Lineage-/low cKithi CD16/32-/low IL-7Rα- CD34+ 

Granulocyte-macrophage progenitor (GMP) Lineage-/low cKithi CD16/32+ IL-7Rα- CD34+ 

Megakaryocyte-erythrocyte progenitor (MEP) Lineage-/low cKithi CD16/32- IL-7Rα- CD34- 
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2.4.3 Intracellular staining for transcription factors (GATA-3 and β-catenin) 

Following surface staining the cells were centrifuged at 309 G for 7 min at 4oC and suspended in 

ice-cold fixation-permeabilisation buffer (eBioscience, Hatfield, UK) for 2-16 hours at 4oC in the 

dark. Cells were washed by centrifugation at 309 G for 7 min once in permeabilization buffer 

(eBioscience, Hatfield, UK), suspended in optimized concentrations of intracellular antibodies 

diluted in permeabilization buffer (Table 2), and left at 4°C for 60 min in the dark. Cells were 

washed twice by centrifugation at 309 G for 7 minutes in permeabilization buffer and then 

washed further twice by centrifugation at 309 G for 7 min in PBS1x 1% FCS. Finally, the pellets 

were suspended in 400 µl of 1x PBS 1% FCS and stored protected from light at 4°C until 

acquisition on either the BD LSR Fortessa X-20 (BD Biosciences, Oxford, UK) or the CyAn ADP 

analyzer (Beckman Coulter, High Wycombe, UK). 

2.4.4 Intracellular staining for Annexin-V  

BM cells were isolated as described in section 2.3.1. Cell suspensions were diluted to a 

concentration of 20-30 x 106 cells/ml and 200ul of cell suspensions were transferred to individual 

wells on a 96 round bottom well plate. The cells suspensions were incubated for 20 minutes at 

4°C with 0.125µg/100 µl FcR block and then centrifuged for 7 minutes at 309 G at 4°C. 

Supernatants were discarded and the pellets were suspended in optimized concentration of surface 

antibodies CD45, Lineage cocktail, Sca1, cKit, CD150, CD48, CD34 and (Table 2.2) and fixable 

live-dead dye (Invitrogen, Paisley, UK) diluted in 1x PBS 1% FCS and left at 4°C for 30 min in 

the dark. The plate was centrifuged for 7 minutes at 309 G at 4°C, the supernatant was discarded 

and the cells were washed in 1x PBS 1 % FCS by centrifugation at 309 G for 7 minutes twice. 

Following the second wash, cell pellets were suspended in 250 µl of 1x Binding Buffer (Annexin-

V: PE apoptosis detection kit, BD Biosciences, Oxford, UK) and 12.5 µl of Anexin V-PE was 

added. The cells were gently vortexed and incubated for 15 minutes at RT in the dark. Then cells 

were washed in Binding Buffer by centrifugation at 309 G for 7 minutes twice, and fixed in 2 % 

PFA diluted in Binding Buffer for 20 min at o4C. Finally, the cells were washed in Binding Buffer 

by centrifugation at 309 G for 7 minutes twice and suspended in 400 µl of Binding Buffer and 

stored protected from light at 4°C until acquisition on either the BD LSR Fortessa X-20 (BD 

Biosciences, Oxford, UK) or the CyAn ADP analyzer (Beckman Coulter, High Wycombe, UK). 

2.4.5 Intracellular staining for Wnt3a 

BM cells were isolated as described in section 2.3.1 and suspended in complete DMEM. 

Brefeldin A was then added to each well at a final concentration of 10 µg/ml and the cells were 

incubated for 2 hours at 37°C in 5% CO2 incubator. The cells were stained for Sca1, cKit, CD150, 
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CD48, CD34 and Live-dead staining as described in section 2.4.1. Following surface staining 

cells were stained for Wnt3a in the presence of Rat serum (1:500) as described in section 2.4.2. 

All buffers were kept ice-cold. 

2.4.6 Cell sorting of HSCPs cells from bone marrow and adoptive transfer to lethally 

irradiated recipient mice. 

BM cells were isolated from naive and 28 days infected mice as described in section 2.3.1. Cell 

suspensions were diluted to a final concentration of 30 x 106 cells/ml and transferred to a sterile 5 

ml BD Falcon Round Bottom Polystyrene capped tube. The cells were labeled with in optimized 

concentration of CD45.2, Lineage cocktail, Sca1, cKit, CD150, CD48 and CD34 (Table 2.2) 

diluted in 1x PBS 1% FCS and left at 4°C for 30 minutes in the dark. Then 2 ml 1x PBS 1% FCS 

were added and the cells were centrifuged for 10 minutes at 309 G. The resulting pellets were 

washed with a further 4 ml of PBS. The samples were then suspended in 1x PBS 5% FCS and 

filtered through a 70 µm and a 40 µm strainers. Cells were sort purified according with the 

following phenotype: CD45+ Lin- Sca1+ cKit+ CD150+ CD48- CD34- cells (HSCs); CD45+ Lin- 

cells (enriched for HSCPs), CD45+ Lin- Sca1-cKit- cells (LSKneg) and CD45+ Lin- Sca1+ cKit+ cells 

(LSK). Cells were sorted into pre-coated 50 ml Falcon tubes containing complete DMEM. 

Following the cell-sort in the MoFlo Astrios (Beckman Coulter, High Wycombe, UK), the 

purities of the various selected cell populations were assessed to attest that purity of sorted cells 

were > 95%. Sorted cells were centrifuged at 4°C for 15 minutes at 309 G, suspended in RPMI-

1640 and then 200 µl were transplanted into recipient mice via the lateral tail vein post-irradiation 

treatment. Recipient mice were placed with water acidified with hydrochloric acid (pH 2.5) for 

five days, then irradiated with 550 rad / 5 minutes on two consecutive days and they were kept in 

Baytril (Bayer) for seven day upon first irradiation treatment. In competitive adoptive transfer 

experiments infected and naive donor cells were mixed at 50:50 ratio, in non-competitive 

adoptive transfer experiments a minimum of 3.5 x 105 radio protective total bone marrow cells 

were transferred together with the sorted donor cells. 

2.4.7 Establishment of BM chimeras B6.c-Myc-eGFP èWT B6.CD45.1 and intracellular 

staining for c-Myc-eGFP 

BM cells from B6.CD45.1 donor mice were isolated as described in section 2.3.1. Vials 

containing frozen BM cells from B6.Myc-EGFP (CD45.2) were placed in on water bath pre-

heated to 370C for 1-2 minutes to thaw (defrost). Cell suspensions were transferred to a 50 ml 

Falcon tubes and topped up with warmed complete DMEM, centrifuged at 309 G for 5 minutes, 

the resulting pellets were suspended and the cells counted. Each recipient B6.CD45.1 received a 

2x106 BM cells from B6.Myc-EGFP cell (CD45.2) donors post-irradiation treatment. Recipient 
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mice were placed with water acidified with hydrochloric acid (pH 2.5) for three days, then 

irradiated with 550 rad/5 minutes on two consecutive days and then they were kept in Baytril 

(Bayer) for seven day upon first irradiation treatment. Following a period of 10 weeks, recipient 

mice were infected with LV9 for 28 days. 

Mice were sacrificed by CO2 euthanization and followed by dislocation of the neck. BM cells 

from recipient mice were isolated as described in section 2.3.1. Cells were labeled for CD45.2, 

Lineage cocktail, Sca1, cKit, CD150, CD48, CD34 and Live-dead staining, as described in 

section 2.4.1. Following surface staining the cells were centrifuged at 309 G for 7 minutes at 4oC 

and suspended in cold 2% PFA for 60 minutes on ice protected from light. Cells were washed by 

centrifugation at 309 G for 7 minutes once in permeabilization buffer (eBioscience, Hatfield, 

UK), suspended in permeabilization buffer and left at 4°C for 60 min in the dark. The cells were 

washed twice by centrifugation at 309 G for 7 minutes in permeabilization buffer and then 

washed further twice by centrifugation at 309 G for 7 minutes in 1x PBS 1% FCS. Finally, the 

pellets were suspended in 400 µl of 1x PBS 1% FCS and stored protected from light at 4°C until 

acquisition on BD LSR Fortessa X-20 (BD Biosciences, Oxford, UK). 

2.4.8 Cell sorting of CD4+ T cells from spleens and adoptive transfer to RAG2 KO mice. 

Splenocytes were isolated from naive and infected mice as described in section 2.3.2. Cell 

suspensions were diluted to a concentration of 30 x 106 cells/ml and transferred to a sterile 5 ml 

BD Falcon Round Bottom Polystyrene capped tube. The cells were labeled with in optimized 

concentration of CD45, CD4, CD8, B220, TCRγδ, CD49b and CD3 antibodies (Table 2.2) diluted 

in 1x PBS 1% FCS and left at 4°C for 30 minutes in the dark. Then 2 ml 1x PBS 1% FCS were 

added and the cells were centrifuged for 10 minutes at 309 G. The resulting pellets were washed 

with a further 4 ml of 1x PBS 1% FCS. The samples were then suspended in 1x PBS 5% FCS and 

filtered through 70 µm and 40 µm strainers. CD45+ CD4+ CD3+ CD8- B220- TCRγδ- CD49b- cells 

were sort-purified using the MoFlo Astrios (Beckman Coulter, High Wycombe, UK). Cells were 

sorted into pre-coated 50 ml Falcon tubes containing complete DMEM. Following the cell-sort, 

the purities of the cell populations were assessed to attest that purity of sorted cells were > 95%. 

Sorted cells were centrifuged at 4°C for 15 minutes at 309 G, resuspended in RPMI-1640 at 3x106 

cells/ml, then 200µl were transplanted into B6.Rag2KO.CD45.1Cg recipient mice via the lateral 

tail vein. In the following day recipient mice and controls were infected with LV9 as described in 

section 2.2. 

2.4.9 Mixed BM chimeras B6.CD45.1: B6.CD45.2.Ifnγr2-/- (50:50) èB6CD45.1 mice 
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BM cells from WT B6.CD45.1 and B6.IFNγ-R2KO donor mice were isolated as described in 

section 2.3.1. Each recipient B6.CD45.1 received 1x106 BM cells from WT B6.CD45.1 donor 

mice and 1x106 BM cells from B6.IFNγ-R2KO donor mice post-irradiation treatment. Recipient 

mice were previously placed with water acidified with hydrochloric acid (pH 2.5) for three days, 

then irradiated with 550rad /5 minutes on two consecutive days and then they were kept in Baytril 

(Bayer) for seven day upon first irradiation treatment. Recipient mice were infected with LV9 for 

28 days, following nine weeks from the adoptive transfer. 

2.4.10 Mixed BM chimeras B6.CD45.1:B6.CD45.2.TNF-RdKO (50:50) è  B6.CD45.1 mice 

BM cells from WT B6.CD45.1 donor mice were isolated as described in section 2.3.1. Vials 

containing frozen BM cells from mice deficient for both Tnfrsf1a (TNF-R1a, p55) and Tnfrsf1b 

(TNF-R1b, p75) receptors, hereafter called TNF-RdKO (CD45.2), were placed in on water bath 

pre-heated to 370C for 1-2 minutes to thaw (defrost). Cell suspensions were transferred to a 50 ml 

Falcon tube, topped up with pre-warmed complete DMEM and centrifuged at 309 G for 5 

minutes. The resulting pellets were suspended and the cells counted. Each recipient B6.CD45.1 

received a 2x106 BM cells from each donor post-irradiation treatment. Recipient mice were 

previously placed with water acidified with hydrochloric acid (pH 2.5) for three days, then 

irradiated with 550rad /5 minutes on two consecutive days and then they were kept in Baytril 

(Bayer) for seven day upon first irradiation treatment. Recipient mice were infected with LV9 for 

28 days, following nine weeks from the adoptive transfer. 

2.4.11 Flow cytometry and sorting of CD4+ T cells from BM for RNA extraction 

BM cells were isolated from naive and infected mice as described in section 2.3.1. Cell 

suspensions were diluted to a concentration of 30 x 106 cells/ml and transferred to a sterile 5 ml 

BD Falcon Round Bottom Polystyrene capped tube. The cells were labeled with in optimized 

concentration of CD45, CD4, CD8, TCRγδ, B220 (CD45R), DX5 (CD49d) and CD3 antibodies 

(Table 2.2) diluted in 1x PBS 1% FCS and left at 4°C for 30 min in the dark. Then 2 ml 1x PBS 

1% FCS were added and the cells were centrifuged for 10 minutes at 309 G, the resulting pellets 

were washed with a further 4 ml of PBS. The samples were then suspended in 1x PBS 5% FCS 

and filtered through 70 µm and 40 µm strainers. CD45+ CD4+ CD3+ CD8- B220- DX5- cells (CD4+ 

T cells) and CD45+ CD4- CD3+ CD8+ B220- DX5- cells were sort-purified using the MoFlo 

Astrios cell sorter (Beckman Coulter, High Wycombe, UK). Cells were sorted into pre-coated 50 

ml Falcon tubes (Sigma-Aldrich, Dorset, UK) containing complete DMEM. Following the sort, 

cell purities were assessed to ascertain > 95% purity. Sorted cells were centrifuged at 4°C for 15 

minutes at 309 G, the supernatant was discarded, the pellets were suspended in DMEM and 

transferred to an RNAse free 1.5 ml Eppendorf, cells were centrifuged at 4°C for 10 minutes at 
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425 G in a Accuspin Micro centrifuge (Fisher Scientific, Pittsburg, USA). The supernatant was 

carefully removed and cell pellet suspended in 700 µl of Qiazol (Qiagen, UK), vortexed for 1 

minute and then placed on dry ice before storing the samples at -80°C. 

2.4.12 Flow cytometry analysis 

For phenotypic analysis and cell sorting, cell suspensions were stained with monoclonal 

antibodies as described in Supplementary Table 2.2. Negative controls were stained with 

matched-isotype controls. Dead cells were excluded by Fixable Viability Dye eFluor780 

(eBioscience) or LIVE/DEAD Fixable Aqua Cell Stain (ThermoFisher) and cellular aggregates 

were electronically excluded in all experiments. A Fortessa II (Becton Dickinson) or CyAn 

(Dako-Beckman) were used for analytical flow cytometry, and data were analyzed with FlowJo 

software (TreeStar).  

The measurements derived from flow cytometric analysis were presented in relative and absolute 

quantifications. The frequencies of various cell populations although important to determined the 

relative proportion of each cell type within the tissue may be vary due to egress or ingress of cells, 

and therefore not reflect a true alteration in the number of cells in the organ.  

2.5 BLOOD COLLECTION AND HEMOGRAM 

Mice were anesthetized by inhalation (dispensed by Apollo TEC3 Isoflurane Vaporise, Sound 

Veterinary Equiment) of Isoflurane (Baxter)(2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane) 

and blood was then collected through heart puncture into 1.5 ml Eppendorfs coated with heparine 

(Sigma-Aldrich) or Microtainer Blood Collection Tubes with K2EDTA (Becton, Dickinson and 

Company). Hemavet (Drew Scientific) and Vet abc Plus+ (Horiba Medical) were used to 

determine blood parameters.  

2.6 TOTAL RNA EXTRACTIONS AND MICROARRAY OF 

BM T CELLS 

Sorted BM CD8+ T cells (section 2.4.11) were stored at -80°C in 700 µl of Qiazol (Qiagen, 

Manchester, UK) and used to test the miRNeasy Micro Kit (Qiagen, Manchester, UK) and the 

Directzol kit (Zymo Research Corporation, Irvine, USA). Extracted RNA was kindly assessed by 

Dr. Sally James (Genomics, Technology facility, York, UK) for yield and quantity, using the 

Agilent RNA 6000 Pico Kit (Agilent Technologies, USA), according to the manufacturer’s 

instructions. The Directzol kit showed best results with limiting number of sorted cells and, 

therefore, was selected to perform the RNA extraction on our samples (BM CD4+ T cells). 
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2.6.1 RNA extraction using the miRNeasy Micro Kit 

Sorted T cells were stored at -80°C in 700 µl of Qiazol. Samples were allowed to thaw and RNA 

extracted by carrying out a Qiazol/chloroform phase extraction. Once the samples had thawed, 

200 µl of chloroform were added and the tubes shaken vigorously by hand for 2 minutes. The 

samples were allowed to stand at room temperature for 5 minutes and then spun down at 13,000 x 

g for 15 minutes in a microcentrifuge (Microcentrifuge 5424R, Eppendorf) at 4°C. The aqueous 

phase was carefully pipetted out and transferred to a fresh Eppendorf tube. 1.5 volumes of 100% 

ethanol were added, the samples thoroughly mixed and subsequently the extractions were carried 

out using the miRNeasy micro kits (Qiagen, Manchester, UK), according to the manufacturer’s 

instructions. On-column DNase digestion was carried out to remove any contaminating genomic 

DNA using the RNAse-free DNase set (Qiagen, Manchester, UK) according to the manufacturer’s 

instructions. RNA quality and quantity was assessed by measuring the absorbance at 230, 260 and 

280 nm with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Loughborough, 

UK) and by Sally James using the Agilent RNA 6000 Pico Kit according to the manufacturer’s 

instructions (Genomics, Technology facility, York, UK). All samples were then stored at -80 °C. 

2.6.2 RNA extraction using the Direct-zol™ RNA MiniPrep 

One volume ethanol (100%) was added directly to one volume sample homogenate (1:1) in 

Qiazol and mixed well by vortexing. The mixture was loaded into a Zymo-Spin™ IIC Column in 

a Collection Tube and centrifuge for 30 seconds. The column was transferred into a new 

collection tube. At this point, on-column DNase digestion was carried out to remove any 

contaminating genomic according to the manufacturer’s instructions (Direct-zol™ RNA 

MiniPrep). 400 µl Direct-zol™ RNA PreWash was added to the column and centrifuge for 30 

seconds and the flow-through discarded, this step was then repeated. 700 µl RNA Wash Buffer 

was added to the column and centrifuged for 2 minutes to ensure complete removal of the wash 

buffer. The column was transferred carefully into an RNAse free Eppendorf tube. 25 µl of 

DNase/RNase-Free Water were pipetted directly onto the column matrix and centrifuge for 30 

seconds. RNA quality and quantity was assessed by measuring the absorbance at 230, 260 and 

280 nm in a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Loughborough, UK) 

and by Sally James using the Agilent RNA 6000 Pico Kit according to the manufacturer’s 

instructions (Genomics, Technology facility, York, UK). All samples were then stored at -80 °C. 

2.6.3 Microarray 

The microarray was performed using the microarray slide SurePrint G3 Mouse Gene Expression 8 

x 60K Microarray (Agilent Technologies, Stockport, UK), composed by eight arrays and 
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representing a complete coverage of known coding transcripts (59308 transcripts). Dr. Sally 

James conducted the microarray according to the manufacturer’s instructions (Genomics, 

Technology facility, York, UK). The resulting data was analyzed by Dr. Sandy McDonald 

(Genomics, Technology facility, York, UK) using GeneSpring GX Software (Agilent 

Technologies, Stockport, UK).  

2.7 REVERSE TRANSCRIPTION REACTION AND 

QUANTITATIVE REAL-TIME POLYMERASE CHAIN 

REACTION OF TOTAL BM CELLS 

BM cell suspensions were obtained as described in section 2.3.1, and then centrifuged at 4 °C for 

15 minutes at 309 G. The supernatants were discarded; the pellets suspended in DMEM and 

transferred to RNAse free 1.5 ml Eppendorf tubes. Cells were centrifuged at for 10 minutes at 425 

G in Accuspin Micro centrifuge (Fisher Scientific, Pittsburg, USA). The supernatants were 

carefully removed, cell pellets suspended in 700 µl of Qiazol (Qiagen, UK), vortexed for 1 

minutes and then placed on dry ice before storing the samples at -80°C. Total RNA was extracted 

as previously described in section 2.6.2. 

2.7.1 Reverse transcription reaction (RT Reaction) 

The cDNA syntheses were performed with the Superscript II reverse transcriptase system 

(Invitrogen), according to manufacture’s instructions. Previously, RNA purity was assessed in the 

device a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Loughborough, UK). 

About 1 µl Oligo (dT)12-18 (0,5µg/µl), 1µl dNTPs [10mM] and appropriate volume of nuclease free 

water (Qiagen, UK)  to complete a final volume of 13 µl were added to 500 ng of total RNA. This 

mixture was heated for 5 minutes at 65oC and then placed immediately in ice. Then the cDNA 

synthesis master mix (4 µl of 5x Reverse Transcription Buffer, 1 µl DTT (0.1 M; 

dithiothreitol), 1 µl RNase Out (40U/µl) and 1 µl Superscript Reverse Transcriptase II (200 

U/ul)) was prepared, mixed thouroughly and spun down at 10000 G for 5 seconds. 8 µl of master 

mix were added to 12 µl of RNA/ Oligo (dT)12-18 to complete a final volume of 20 µl per reaction. 

cDNA synthesis reaction mixtures were incubated for 60 minutes at 50oC, and then for 5 minutes 

at 70oC and finally placed on ice. The newly generated cDNA was stored at -20 oC. 

2.7.2 Quantitative real-time polymerase chain reaction (qRTPCR) 

The qRT-PCR of Wnt3a mRNA expression in total BM was performed with the SYBR-green 

qPCR Kit (Applied Biosystems, Warrington, UK) in StepOnePlus Real Time PCR detection 

system (Applied Biosystems), accordingly to manufacturers’ instructions. The reactions were 
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performed in MicroAmp Optical 96-well reaction plates (Applied Biosystems) in ice-cold 

conditions. Reactions contained 10 µl Fast SYBR Green Mix (2x), 0.8 µl of cDNA, 8.2 µl of 

nuclease free water (Qiagen, UK) and 0.5 µl of mix of primers pair (10 µM of each primer) 

(FORWARD: tactacgaggcctcacccaa; REVERSE: acccatctatgccatgcgag). The plates were sealed 

and centrifuged to assure all liquid was at the bottom of the well. Then qRT-PCRs were 

performed under the following cycling conditions: 95°C for 20 seconds followed by 40 cycles of 

95°C for 1 second and 60°C for 20 seconds. Data were analysed using the StepOne Software 

version 2.2.2 (Applied Biosystems, Warrington, UK). mRNA expression levels were normalized 

to HPRT1 housekeeping gene using ΔΔCt calculations. Mean relative microRNA expression 

levels between control and experimental groups were calculated using the 2-ΔΔCt calculations. 

2.8 STAINING OF PURIFIED LSK CELLS FOR CONFOCAL 

MICROSCOPY ANALYSIS 

BM cell suspensions were obtained as described in section 2.3.1, and following cell-surface 

staining (described in section 2.4.1), were sort-purified in the MoFlo Astrios (Beckman Coulter). 

Sort-purified LSK cells were centrifuged for 7 minutes at 309 G at 4°C, the supernatant was 

discarded and the cells were fixed of 2% PFA (Sigma-Aldrich) for 20 minutes at 4°C in the dark. 

Cells were washed twice with 1x PBS 1% FCS by centrifugation at 309 G for 7 minutes and 

suspended in 1x PBS 1% FCS. Following the slides preparation, chamber and blotter were placed 

carefully in the Cytospin™ 4 Cytocentrifuge (Thermo Scientific). Then, 100 µl of cell 

suspensions were placed into the slide chamber and spun down at 137 G for 5 minutes. Slides 

were carefully removed from the cytospin-centrifuge and left to dry, prior to staining. The areas 

containing the samples on the slides were delimited with an ImmEdge pen (Vector Laboratories, 

USA). The slides were washed in PBS 0.05% Bovine Serum Albumin (BSA) (Sigma-Aldrich), 

hereafter called wash buffer, then blocked by the addition of 10% Goat serum (Sigma-Aldrich) 

and 0.001mg of Fc block diluted in wash buffer for 20 minutes at RT. Excess wash buffer was 

removed and the cells were permeabilized by addition of PBS + 0.2% Triton X-100 (Sigma-

Aldrich) for 5-10 minutes at RT. The slides were washed by incubation with wash buffer for 5 

minutes, then anti-GATA-3 (HG3-31, Santa Cruz Inc.) (1:500) or Isotype control (anti-IgG1 

mouse, eBioscience) were added diluted in PBS containing 10% Goat serum and 0.001 mg of Fc 

block. Slides were incubated overnight at 4oC. The slides were washed three times in wash buffer 

the following day. Then secondary antibody IgG goat anti-mouse Alexa 594 (Invitrogen) (1:400) 

was added diluted in PBS containing 10% Goat serum and 0.001 mg of Fc block and the slides 

were incubated for 30 minutes at RT. The slides were wash three times in wash buffer and then 

once in PBS. 1µg/ml DAPI (4',6-diamidino-2-phenylindole) (Sigma-Aldrich) diluted in PBS was 

added to the slides, incubated for 5 minutes and then washed twice in PBS. Excess PBS was 

removed and a small amount of ProlongGold (Invitrogen) was applied in each sample to mount 



 74 

by the placement coverslips over the samples. Slides were kept protected from light overnight at 

4oC, and were then sealed with nail varnish. Slides were stored protected from light at 4oC until 

analysis in confocal microscope (Zeiss LSM 710, Zeiss). 

2.9 STATISTICAL ANALYSIS 

In most experiments the statistical analyses were performed by parametric or non-parametric 

tests, selected according to the distribution of the raw data. The comparisons between 

experimental groups were performed using student Unpaired t test, Mann-Whitney and one-way 

ANNOVA. The analysis of population distribution was performed using Chi-square test. The 

statistical analyses fold changes were performed using Wilcoxon signed-rank test. All analyses 

were conducted using GraphPad InStat (versions 5 and 6) software (GraphPad software, San 

Diego, California, US). 
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Table 2.2 - Monoclonal antibodies used to evaluate expression of surface cell markers, 

cytokines and transcription factor by flow cytometry analysis  

 

 

 

 

Antigen   Clone Fluorochrome Supplier 

β-Catenin 15B8 PE eBioscience

Wnt3a 217804 APC R&D Systems

TNF MP6-XT22 PE eBioscience

Ter-119 TER-119 PE-Cy7 eBioscience

TCRγδ eBioGL3 (GL-3, GL3) PE eBioscience
Mouse Lineage Antibody Cocktail (CD3e, Ly-

6G and Ly-6C, TER-119, CD45R, CD11b)
145-2C11, RB6-8C5, TER-

119, RA3-6B2, M1/70 PerCPCy5.5 Becton Dickinson (BD) Bioscience

MHC II M5/114.15.2 APC eBioscience

MHC II M5/114.15.2 PerCP-Cy5.5 Biolegend

MHC II M5/114.15.2 eF450 eBioscience

Ly6C AL-21 FITC Becton Dickinson (BD) Bioscience

Ly6A/E (Sca1)  D7 BV510 Becton Dickinson (BD) Bioscience

Ly6A/E (Sca1)  D7 APC eBioscience

Ly6A/E (Sca1)  D7 V500 Becton Dickinson (BD) Bioscience

Ki67 MOPC-21 PE Becton Dickinson (BD) Bioscience

IL-10 JES5-16E3 APC eBioscience

IFNγ XMG1.2 APC eBioscience

IFNγ XMG1.2 eF450 eBioscience

GR1 RB6-8C5 PE-Cy7 eBioscience

GATA3 16E10A23 BV421 Biolegend

FOXP3 FJK-165 APC eBioscience

F4/80 BM8 FITC eBioscience

F4/80 BM8 BV421 Biolegend

CD8α 53-6.7 APC Becton Dickinson (BD) Bioscience

CD8α 53-6.7 PE eBioscience

CD8 H35-17.2 PerCP-eF710 eBioscience

CD62L MEL-14 PE eBioscience

CD51 RMV-7 PE eBioscience

CD49b DX5 PE eBioscience

CD48 HM48-1  Pe-Cy7 eBioscience

CD45R (B220) RA3-6B2 Alexa 647 eBioscience

CD45R (B220) RA3-6B2 PE eBioscience

CD45R (B220)  RB6-8C5 PE Biolegend

CD45.2 104 APC-eFluor 780 eBioscience

CD45.2 104 FITC eBioscience

CD45.2 104 Alexa 700 eBioscience

Table 2.1 - Monoclonal antibodies used for detection of surface markers, cytokines and transcription factors by flow cytometry
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Table 2.2 (cont.) - Monoclonal antibodies used to evaluate expression of surface cell 

markers, cytokines and transcription factor by flow cytometry analysis 

 

 
 

 

Antigen   Clone Fluorochrome Supplier 

CD45.1 A20 FITC Becton Dickinson (BD) Bioscience

CD45.1 A20 BV650 Biolegend

CD45.1 A20 PE Becton Dickinson (BD) Bioscience

CD45 30-F11 Alexa 700 eBioscience

CD45 30-F11 APC eBioscience

CD44 IM7  Alexa647 Biolegend

CD4 4SM95 ef660 eBioscience

CD4 GK1.5 APC eBioscience

CD4 RM4-5 Briliant Violet 650 Biolegend

CD4 RM4-5 FITC Biolegend

CD34 RAM34 FITC Becton Dickinson (BD) Bioscience

CD31 390 FITC eBioscience

CD3 145-2C11 FITC eBioscience

CD3 145-2C11  Pe-Cy7 Biolegend

CD3 MEC14.7 BV421 Biolegend

CD29 (Integrin beta 1) eBioHMb1-1 (HMb1-1) PE eBioscience

CD25 PC61 Pe-Cy7 Biolegend

CD16/32 93 PE-Cy7 eBioscience

CD150 TC15-12F12.2 Briliant Violet 421 Biolegend

CD150 TC15-12F12.3 Briliant Violet 650 Biolegend

CD135 (Flt3)  A2F10 Biotin eBioscience

CD127 A7R34 Briliant Violet 421 Biolegend

CD127 A7R34 eF450 eBioscience

CD127 A7R34 PE-Cy5 eBioscience

CD120b (TNF R Type II/p75) 55R-286 PE Biolegend

CD120a (TNF R Type I/p55) TR75-89 PE Biolegend

CD11c N418 PE Biolegend

CD11b M1/70 Alexa 488 eBioscience

CD11b M1/70 BV510 Biolegend

CD11b M1/70 APC eBioscience

CD117 (cKit) 2B8 PE Becton Dickinson (BD) Bioscience

CD117 (cKit) 2B8 Briliant Violet 421 Biolegend

CD117 (cKit) 2B8 FITC Biolegend

B220 (CD45R) RA3-6B2 Alexa 647 Biolegend

B220 (CD45R) RA3-6B2 PE eBioscience

 Strepdavidin PE-Cy7 Becton Dickinson (BD) Bioscience

Table 2.2 - Monoclonal antibodies used for detection of surface markers, cytokines and transcription factors by flow cytometry
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CHAPTER 3.  ALTERATIONS IN HAEMATOPOIESIS 

DURING LEISHMANIA DONOVANI INFECTION 

3.1 INTRODUCTION 

VL is a vector-borne disease caused by the intracellular protozoa Leishmania donovani and L. 

infantum. In vertebrate hosts, including humans, parasites reside mainly in mononuclear 

phagocytes where they multiply as obligatory intracellular amastigotes. L. donovani amastigotes 

are detected primarily in the spleen, lymph nodes, BM and liver, and their persistence contributes 

to chronic infection (E. Handman, 2000).  

In humans, VL is characterized by hypergammaglobulinaemia, hepato-splenomegaly and 

disturbances in blood homeostasis, including anemia, thrombocytopenia, leucopenia and 

neutropenia. Unfortunately, an effective vaccine has not yet been produced and the therapeutic 

drugs available have been associated with increased parasite resistance and toxicity (C. R. Davies 

et al., 2003, C. R. Engwerda et al., 2004a). It has been estimated that 500,000 new cases of VL 

occur annually. The infection is fatal without drug treatment and even treated patients may die 

from the pathology, bleeding or opportunistic bacterial infections (M. A. Santos et al., 2002, V. E. 

Miranda de Araujo et al., 2012). 

In humans, splenic sequestration and ineffective haematopoiesis have been suggested as possible 

causes to explain peripheral cytopenia. In addition to alterations in the blood, VL has been 

associated with the alterations in the BM, including erythroid hyperplasia, increased plasma cells, 

increased frequency of granulocytic and megakaryocyte immature forms, and histiocytic 

hyperplasia (N. Varma and S. Naseem, 2010). Furthermore, several clinical reports described 

pancytopenia in VL patients followed by BM multilineage myelodisplasia reminiscent of true 

myelodysplastic syndrome (MDS), suggesting the presence of ineffective haematopoiesis (N. 

Yarali et al., 2002, P. Kopterides et al., 2003, G. M. de Vasconcelos et al., 2014). 

Experimental mouse models have been extensively used to study the immunopathology of VL, 

and these have reported alterations in haematopoietic function. For example, in the spleen, a 

secondary site of haematopoiesis in adult mice, higher frequencies of macrophages and dendritic 

cells (DCs) were described in chronic infection (J. E. Dalton et al., 2010). DCs that produce low 

levels of the proinflammatory cytokine IL-12 and high levels of the immunorregulatory cytokine 

IL-10 were found in the spleen of infected mice, and it was shown that these impact negatively on 

parasite clearance (B. M. J. Owens and P. M. Kaye, 2012). Splenic stromal cells isolated from L. 

donovani infected mice showed an enhanced capacity in vitro to direct haematopoietic progenitors 
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toward a regulatory dendritic cell (rDC) phenotype (M. Svensson et al., 2004), suggesting that L. 

donovani infection is able to modulate haematopoiesis and alters the function of immune effector 

cells towards immunosuppression in the spleen. Alterations in spleen function in experimental VL 

are further described in Chapter 4.  

In experimental VL, amastigotes also persist during chronic infection in the BM (S. E. J. Cotterell 

et al., 2000a, S. E. J. Cotterell et al., 2000b) (Figure 3.1), though the impact of infection at this 

site is less well studied. During the course of L. donovani infection in BALB/c mice, increased 

BM parasite burden was associated with increased numbers of all haematopoietic precursor cells, 

as assessed by the number of colony-forming units in culture (S. E. J. Cotterell et al., 2000a). 

These studies showed that BM macrophages (including stromal macrophages defined by CD169 

expression) could become infected with L. donovani both in vivo and in vitro, but there were no 

indications that a significant number of haematopoietic progenitor cells harbored parasites (S. E. 

J. Cotterell et al., 2000b). Infected BM-derived macrophages showed an increased efficiency to 

support the formation of GM-CFU in vitro, and this effect was partially mediated by higher 

expression of GM-CSF and TNF by infected macrophages (S. C. Smelt et al., 2000). Furthermore, 

infection of a fibroblast-like BM stromal cell line (MBA-1) with L. donovani directed 

differentiation of haematopoietic precursors into “regulatory DCs”, and this is thought to be due 

to an infection-dependent increase in the levels of CCL8 expression (A. T. N. Hoang et al., 2010). 

Taken together these findings indicated that VL has the potential to alter haematopoiesis. This 

could be due to the modulation of haematopoiesis-supporting stromal cells, or through the 

systemic action of cytokines or other mediators. Hence, the mechanisms underlying the impact of 

infection on haematopoiesis and its consequences on immune responses during VL remain 

unclear.  

During infection, the systemic release of pro-inflammatory mediators induces changes in BM 

populations, either directly or through alteration in their microenvironment, which may impact on 

their rates of proliferation, lineage fates or mobilization (K. Y. King and M. A. Goodell, 2011). 

Therefore, an impact of infection on haematopoiesis has been reported in association with many 

infections, although with variable pathogen-specific outcomes. An increase in haematopoietic 

stem and progenitor cells (HSPCs) has been reported to occur in response to the increased 

demand for immune cells and/or in direct response to pathogen associated molecular patterns 

(PAMPs) and pro-inflammatory cytokines, recognized respectively by the pattern recognition 

receptors and cytokines receptors expressed by HSPCs (K. Y. King and M. A. Goodell, 2011). 

Within several infectious contexts, HSCs have in recent years emerged as central players in the 

development of immune responses, nonetheless in some models, infection-induced 

haematopoiesis was reported to negatively impact on HSCs function (M. T. Baldridge et al., 

2011). 



 79 

Haematopoiesis is a strictly regulated process that depends on a very small pool of long-term 

haematopoietic stem cells (LT-HSCs), which have self-renewal capacity and the potential to give 

rise to all mature blood cells during the lifespan of an individual. According to the classical 

pathway of haematopoiesis, LT-HSCs differentiate into short-term haematopoietic stem cells (ST-

HSCs) that then give rise to a heterogeneous group of multipotent progenitors (MPPs). LT-HSCs, 

ST-HSCs and MPPs are contained within the LSK population, so called for their lack of 

expression of mature blood cell-associated markers (Lineage negative) and their expression of 

Sca1 (Stem cells antigen 1) and cKit (Stem cell factor receptor). MPPs give rise to a succession of 

intermediary progenitors, the common lymphoid progenitors (CLPs) and the common myeloid 

progenitors (CMPs). CMPs may then give rise to both granulocyte/macrophage progenitors 

(GMPs), and the megakaryocytic/erythrocyte progenitors (MEPs). The lineage-committed 

precursors, CMPs, CLPs, GMPs and MEPs are all contained in the Lineage negative, Sca1 

negative and cKit positive cell population (cKithi) [24]. Herein, we use the term HSPCs to 

collectively include all Lineage negative cKit+ cells (multipotent progenitors and lineage-

committed progenitors), each defined by their pattern of surface molecular markers, as 

highlighted in Figure 3.2 (M. Kondo et al., 2003a). 

In this chapter, we aimed to characterize HSPCs during experimental L. donovani infection in 

order to establish whether infection affects their function and / or survival. This is the first study 

evaluating HSPCs in the BM directly ex vivo in experimental VL. Using a panel of stem cell 

markers, we characterized HSPCs over the course of L. donovani-infection in C57BL/6 (B6) 

mice. Chronically infected mice showed a significant increase in intermediary non-committed 

multipotent haematopoietic precursors (Lineage- Sca1+ cKit+ (LSK), CD150+ CD48+ cells) 

without reciprocal increases in either lineage-committed precursors or mature cells in circulation. 

In steady state, the majority of LT-HSCs (LSK CD150+ CD48- CD34- cells) were found in a 

quiescent state, representing cells with the highest degree of reconstitution potential. In contrast, 

during chronic infection most were found to have progressed to cell-cycle and this correlated with 

a reduced potential to engraft into syngeneic recipients. These finding suggested that L. donovani 

infection have the potential to impair haematopoietic development through the “functional 

exhaustion” of HSCs. 
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3.2 RESULTS 

3.2.1 L. donovani infection was associated with alterations in the number of HSPCs in BM 

and spleen 

Alterations in the number of haematopoietic progenitors, both in BM and spleen during L. 

donovani infection have been previously described during the course of infection in BALB/c mice 

using colony-forming assays (S. E. J. Cotterell et al., 2000a). To confirm the previously reported 

increase in haematopoietic progenitors during the course of infection, we quantified HSPCs 

(including LT-HSCs, ST-HSCs, MPPs, CMPs, GMPs, MEPs and GMPs) in the BM and in the 

spleen of B6 mice infected with L. donovani over a period 64 days, using a flow cytometric rather 

than functional approaches.  

Haematopoietic progenitors were defined using a panel of cellular markers as previously 

described (M. Kondo et al., 2003a) (Figure 3.3;Figure 3.4). In several models of infection, it has 

been reported that Sca1 expression was upregulated in all progenitors upon infection (N. N. 

Belyaev et al., 2010, K. Y. King and M. A. Goodell, 2011, K. C. MacNamara et al., 2011b, J. L. 

Granick et al., 2012). We observed the same phenomenon in mice chronically infected with L. 

donovani (Figure 3.5). Therefore, we included all Lineage- cKit+ cells even those expressing Sca1 

to quantify lineage-committed precursors in all the experiments where a group of infected mice 

was included.  

During the course of L. donovani infection, the parasite burden in the spleen increased from day 3 

to day 28, with a degree of resolution by d64 p.i. (Figure 3.6a). Nevertheless, splenomegaly and 

increased number of splenocytes were maintained in infected mice at day 64 (Figure 3.6c; Figure 

3.7b), which suggested that in spite of the decline in parasite burden the inflammation persisted. 

Parasite burden in BM followed a similar trend (Figure 3.6b). In contrast, the number of cells in 

BM was decreased at later time points (Figure 3.7a). 

The relative frequency of HSPCs in BM within Lineage- cKit+ cells was increased on day 7 (1.434 

± 0.064, x̄ ± SEM). On days 16 and 28 p.i. with L. donovani, the frequencies of HSPCs were 

comparable to naive mice. However by day 64 p.i., their frequency was increased 2.039 ± 0.232 

fold compared to naive controls (Figure 3.8a). A similar biphasic response was observed when 

evaluating the absolute number of HSPCs (Figure 3.8b). In the spleen, the relative frequencies of 

HSPCs in BM were increased compared to control uninfected mice from day 16, peaked at day 28 

and declined at day 64 p.i.  (Figure 3.9a), again with a similar trend observed in terms of absolute 
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numbers (reflecting fourteen times more HSPCs in the spleen of infected mice compared to the 

controls at later time points; Figure 3.9b).  

The increase in the frequency of multipotent progenitors was an early event following infection in 

BM, with the maximum fold increase taking place at day 28 p.i..  The frequency of CD150+ Flt3- 

CD34- (LT-HSCs) cells was increased 117.750 ± 32.684 fold and the frequency of CD150+ Flt3- 

CD34+ cells (ST-HSCs) was increased 22.175 ± 6.974 fold at 28 days p.i.. At later time points, the 

frequencies of LSK CD150+ Flt3- CD34- cells and LSK CD150+ Flt3- CD34+ cells remained high 

in infected mice compared to control mice (Figure 3.8c). Changes in LSK CD150- Flt3+ CD34+ 

cell (MPPs) frequencies during the course of infection were relatively mild compared to earlier 

progenitors (of LSK CD150+ Flt3- CD34- cells and LSK CD150+ Flt3- CD34+ cells). On day 28 

p.i., there was a 18.750 ± 7.091 fold increase in MPPs frequency in infected mice, but this 

normalized by day 64 p.i. (Figure 3.8c). Changes in the absolute number of LSK CD150+ Flt3- 

CD34- cells, LSK CD150+ Flt3- CD34+ cells and LSK CD150- Flt3+ CD34+ cells followed the 

same trend (Figure 3.8d).  

The frequency of lineage-committed precursors during the course of infection was also assessed 

in BM. By day 7 p.i., the frequency of GMPs increased 1.584 ± 0.245 fold,  but was comparable 

to naive at other time points. The frequency of CMPs increased 2.079 ± 0.333 fold at day 28 p.i., 

returning to normal by d64 p.i.. MEPs frequency remained relatively unchanged during the course 

of infection, with only a 2.814 ± 1.747 fold increase at d64 p.i. (Figure 3.8e). In term of absolute 

numbers, CLPs were significantly increased only at day 7 p.i. (1.88 ± 0.29 fold). At latest time 

point, MEPs were found 2.386 ± 0.829 fold increased at day 64 p.i.. The absolute number of 

CMPs and GMPs did not alter as a result of infection (Figure 3.8f). 

In the infected spleen, there was an increase in multipotent progenitors, with the peak fold 

increase at day 28 p.i., following the same pattern observed in BM (Figure 3.9c; Figure 3.9d). At 

day 28 p.i., the frequency of LSK CD150+ Flt3- CD34- cells was 1051.128 ± 228.787 fold and 

LSK CD150+ Flt3- CD34+ cells was 46.470 ± 8.165 fold increased in infected mice, their 

frequencies remained high at the latest time point (Figure 3.9c). In early time points, we could not 

detect LSK CD150- Flt3+ CD34+ cells in the spleen of infected or naive mice, but at day 28 p.i. the 

frequency of LSK CD150- Flt3+ CD34+ cells was increased 11.777 ± 3.863 fold, while at day 64 

p.i. it was comparable to naive controls (Figure 3.9c). This pattern was repeated in terms of 

absolute numbers for multipotent progenitors in the spleen (Figure 3.9d). For lineage-committed 

precursors in the spleen, MEPs increased 16.353 ± 4.63 fold at day 28 p.i., remaining high at day 

64 p.i.. The frequency of CMPs in infected mice was not significantly different at any evaluated 

time point. The frequency of GMPs increased 3.451 ± 0.188 fold on day 64 p.i., while CLPs were 

reduced (0.455 ± 0.080 fold) at this time point (Figure 3.9e). Absolute cell numbers showed a 
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similar trend for GMPs and MEPs. However, the number of CMPs was 5.105 ± 1.814 and 7.216 ± 

1.533 fold increased in infected, at days 28 and 64, respectively. The number of CLPs was not 

significantly changed in the spleen of infected mice at all time points (Figure 3.9f). 

In spite of the significant changes in the number of multipotent progenitors, the overall number of 

total cells in BM remained relatively unchanged in mice infected with L. donovani over a period 

64 days (Figure 3.7a). In contrast, the increased number of HSPCs in the spleen coincided with 

increased cellularity over time (Figure 3.7b). 

Overall, these data showed a significant increase in the number of multipotent precursors both in 

BM and spleen, during the course of infection that was most evident at day 28, overlapping with 

the peak of parasite burden both in the spleen and in the BM. At day 28, the extent of increase in 

non-committed progenitors was not reproduced in the degree of alterations in the lineage-

committed progenitors both in BM and in the spleen. This suggested the possibility of inhibition 

in HSPCs differentiation and that the expansion/accumulation of multipotent progenitors might 

not be underlying an increase in effective haematopoiesis, during the chronic phase of infection, 

previously defined as the stage of infection when pathological remodeling of lymphoid tissue 

becomes prominent i.e. post d21(C. R. Engwerda et al., 2004a) (28 and 64 days p.i.). 

In further analysis, we focused on day 28 p.i., where both the parasite burden and altered 

cellularity were most striking.  

3.2.2 Experimental VL was characterized by increased numbers of primitive 

haematopoietic progenitors 

To confirm changes in BM HSPCs at day 28 p.i., further independent experiments were 

conducted.  In the BM of the infected mice the frequency of LSK cells increased approx. 10-fold 

and the absolute number increased approx. 8 fold compared to naive mice (Figure 3.10a). 

Next we focused in the most immature haematopoietic progenitors, which are contained within 

the LSK population. The frequency and number of LSK Flt3- CD150+ CD34- cells was 

significantly increased in the mice infected with L. donovani (Figure 3.10a; Figure 3.10b). 

LSK Flt3- CD150+ CD34+ cells and LSK Flt3+ CD150- CD34+ cells were also increased in both 

frequency and number in infected mice (Figure 3.10a; Figure 3.10b). These results also indicate 

that among early progenitors considered in these analyses, LSK Flt3- CD150+ CD34- cells were 

the largest contributor to the observed increase in total LSK cells. 
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For Lineage- cKit+ cells, which are enriched for all HSPCs, there was a significant though modest 

increase in frequency (3.35% ± 0.52 vs. 2.30% ± 0.53 in day 28 infected and control mice 

respectively) (Figure 3.10c) although absolute number was unchanged (Figure 3.10d). The 

frequency and absolute number of CMPs, GMPs and MEPs in the BM of infected mice were not 

significantly different from naive controls. CLPs frequency was found slightly increased in 

infected mice, but the absolute cell number was not significantly change upon infection (Figure 

3.10c; Figure 3.10d). 

In summary, these independent experiments confirmed our initial observations (Figure 3.8) 

pointing to significant differences in BM cellularity at 28 day of L. donovani infection. These 

alterations were characterized by a large increase in the number of early multipotent progenitors, 

suggesting that haematopoiesis was significantly modulated at the peak of L. donovani infection.  

3.2.3 Experimental VL is characterized by alterations in blood homeostasis 

In order to determine if the aforementioned alterations in the BM (section 3.2.2) were 

accompanied by alterations in the blood, we performed a completed blood count, hemogram, as a 

broad screening test to assess for haematological disorders at day 28 p.i.  

In infected mice we found that the number of erythrocytes (red blood cells) were significantly 

decreased, 5.84 x106 (M)/µl ± 0.61 (x̄ ± SD), compared to the basal values obtained in naive 

controls, 7.69 K/µl ± 0.85 (Figure 3.11a). Haematocrit, which indicates the percentage of volume 

occupied by red blood cells in a given volume of whole blood, was also significantly lower in 

infected mice (31.46% ± 3.11) in comparison to naive controls (40.20% ± 4.86)  (Figure 3.11b). 

The other parameter assessed was the concentration of hemoglobin in PB, which in line with the 

others parameters was also found decreased in infected mice (6.93 g/dl ± 0.77) compared to the 

values determined for controls (8.50 g/dl ± 1.31) (Figure 3.11c). 

The number of platelets in circulation in infected mice was also significantly lower in infected 

mice (246.1K/µl ± 61.87) when compared to the number of platelets found in healthy controls 

(435.6 K/µl ± 187.7) (Figure 3.11d).  The number of total leukocytes (or white blood cells) in PB 

in infected mice and controls was comparable. However, when we analyzed the number of 

leukocytes segregated into different cell types we found significant differences between infected 

and non-infected mice. In infected mice the number of neutrophils was increased, while the 

number of basophils and eosinophils contracted (Figure 3.11e). 
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In summary, these analyses indicate that anaemia, thrombocytopenia, coupled with mild 

neutrophilia and basopenia / eosinopenia, emerge in B6 mice as a consequence of L. donovani 

infection.  

3.2.4 L. donovani infection was not associated with increased cell death in BM 

Pro-inflammatory cytokines commonly released in response to infection have the potential to 

induce increased cell-death in BM (C. Selleri et al., 1995, K. Y. King and M. A. Goodell, 2011). 

We observed that during the peak of infection with L. donovani there was a specific increase in 

early non-committed progenitors, however infected mice displayed anaemia and 

thrombocytopenia. It was conceivable that an increase susceptibility to cell death of 

haematopoietic progenitors was on the basis these alterations; as such, the proportion of 

live/viable cells, excluding both dead and apoptotic cells was assessed, in BM cells from mice 

infected with L. donovani for 28 days (Figure 3.12a). 

The analysis performed in BM to determine the proportion of live cells among stromal cells 

(CD45- Lineage- cells) and mature haematopoietic cells (CD45+ Lineage+ cells) revealed that there 

were no differences between infected and healthy controls (Figure 3.12b). Surprisingly across all 

the populations of HSPCs assessed, we found that infected mice showed a significant increase in 

the fraction of live cells (i.e. neither dead nor apoptotic) (Figure 3.12b). 

Hence, increased cell death and apoptosis in BM could be excluded as a mechanism underlying 

the establishment of impaired haematopoietic function in PB. Collectively, these findings raised 

the possibility that infection could induce changes in haematopoietic differentiation prior to 

lineage commitment. Therefore, we decided to study in further detail the phenotypic and 

functional alterations in early haematopoietic progenitors. 

3.2.5 HSPCs from infected mice showed impaired engraftment in BM and decreased 

reconstitution of the periphery 

To evaluate whether L. donovani infection affected the function of HSPCs, we used a competitive 

adoptive transfer model. BM lineage negative cells (enriched for HSPCs) from day 28 infected 

B6.CD45.2 mice and from uninfected B6.CD45.1 mice were mixed 50:50 and transferred into 

non-infected x-irradiated (B6.CD45.1 x B6.CD45.2)F1 recipients. By using donor cells expressing 

distinct CD45 isoforms, we could follow the fate of the transferred cells in recipient mice and 

separate these from any cells not eliminated by irradiation (which co-express CD45.1 and 

CD45.2). Analyses were performed seven weeks after adoptive transfer (Figure 3.13a).  
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The contribution to haematopoiesis was significantly different between the donor populations, 

with infected donor-derived cells accounting for 21.81% ± 11.27 in comparison to 78.19% ± 

11.27 of naive donor-derived cells amongst total donor cells in the BM of recipient mice (Figure 

3.13b). In the spleen, the results followed the same trend, with infected donor cells contributing 

for 24.76 % ± 2.43 of total splenocytes while naive donor cells comprised 75.24% ± 2.43 of total 

donor-derived splenocytes (Figure 3.13b).  

To assess whether L. donovani infection could impact on the differentiation potential of HSPCs, 

the frequencies of terminally differentiated blood cells were determined in the spleen (here 

representing the periphery). There were no significant differences found in the frequencies of B 

cells, T cells and CD11b+ cells (Myeloid cells) arising from infected and naive donor cells (Figure 

3.13c). In the BM of recipient mice, we assessed the frequency of the multipotent progenitors, 

LSK CD150+ Flt3- CD34- cells, LSK CD150+ Flt3- CD34+ cells and LSK CD150- Flt3+ CD34+ 

cells (Figure 3.13d) and the lineage committed precursors, CMPs, GMPs, MEPs and CLPs 

(Figure 3.13e), within the two groups of donor cells. No significant differences were determined 

in their frequencies between infected and naive derived donor cells.  

Collectively, these data suggested that infection is impacting negatively on the reconstitution 

potential of HSPCs, both in BM and spleen, where the frequency of infected donor cells, in both 

sites, was significantly lower compare to naive donor cells.  Despite the overall lower frequency 

of infected donor cells, the infection did not promote alterations in cell fate, since no changes 

were detected in the relative proportion of different progeny when transferred to a healthy 

recipient.  Hence, infection may result in cell intrinsic functional impairment of HSCs prior to 

lineage commitment.  

3.2.6 L. donovani infection stimulates expansion of LSK CD150+ CD34- expressing CD48  

CD48 is a GPI-linked member of the signaling lymphocyte activation molecule (SLAM) family 

broadly expressed on haematopoietic cells except for LT-HSCs (M. J. Kiel et al., 2005).  It acts as 

ligand for 2B4 receptor expressed in T and NK cells and has been implicated in cell activation, 

proliferation and differentiation (M. Elishmereni and F. Levi-Schaffer, 2011).  

The frequency and the number LSK CD150+ CD34- cells (enriched for LT-HSCs) not expressing 

CD48 were unchanged upon infection with L. donovani (Figure 3.14a; Figure 3.14b). In contrast, 

the frequency and absolute number of LSK CD150+ CD34- CD48+ cells were significantly 

increased in the BM of infected mice compared to the controls (Figure 3.14a; Figure 3.14b).  
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Whereas at steady-state the vast majority of LT-HSCs, as defined so far (LSK CD150+ CD34- 

cells) lacked CD48, upon infection less than 5% of phenotypic LT-HSCs were CD48 negative 

(Figure 3.14c; Figure 3.14d). Hence, these data suggested that during infection phenotypic LT-

HSCs population have progressed further in their differentiation, since CD48 expression is 

associated to a loss of stemness (M. J. Kiel et al., 2005, M. J. Nemeth and D. M. Bodine, 2007). 

3.2.7 L. donovani infection was associated with depletion of the reservoir of quiescent LT-

HSCs  

LT-HSCs are largely in G0 or G1 and it has been shown that the quiescent state is functionally 

important. Studies in experimental models characterized by increased proliferation of multipotent 

progenitors reported loss of LT-HSCs and increased susceptibility to stress-induced 

haematopoietic exhaustion (K. W. Orford and D. T. Scadden, 2008). In order to shed some light 

into the mechanisms responsible for the increase in the most immature haematopoietic precursors 

and loss of reconstitution potential, we determined the frequency and number of HSCs in G0, by 

staining for Ki67, an antigen expressed in all phases of the cell-cycle, but absent in quiescent or 

resting cells (J. Gerdes et al., 1984). 

Within the population of LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs) approximately 

half were quiescent (43.05 ± 0.017 expressing Ki67) in steady-state. At day 28 p.i., the frequency 

of cells that progressed into cell-cycle was significantly increased (96.52% ± 3.19 of total LSK 

CD150+ CD34- CD48- cells). On the other hand, onward populations of multipotent progenitors, 

namely LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells were highly proliferative 

both in steady-state and upon infection, with more than 90% expressing Ki67 (Figure 3.15a). 

The absolute number of cells in proliferation showed that the overall increase of multipotent 

progenitors was due to the increase in the number of LSK CD150+ CD34- CD48+ Ki67+ cells and 

LSK CD150+ CD34+ Ki67+ cells in infected mice (90 fold and 4.8 fold, respectively, increased 

compared to naive mice) (Figure 3.15b). The number of LSK CD150+ CD34- CD48- Ki67+ cells 

(enriched for LT-HSCs) although significantly altered in infected compared to naive mice, was 

increased to a lesser extent in comparison with the other populations assessed (1.5 fold increased 

in infected mice; Figure 3.15b). 

These results showed that the upregulation of CD48 in HSCs (see section 3.2.6, above) was 

associated with the progression into active cell-cycle, with almost all the CD48 positive cells also 

expressing Ki67, both in non-infected and infected mice. Furthermore, the loss of LSK CD150+ 

CD34- CD48- Ki67- cells (enriched for quiescent LT-HSCs) during infection represents a 24 fold 

decrease in the number (from 831 ± 0.017 to only 34.62 ± 31.93 cells in total BM) of this already 
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very rare cell population (Figure 3.15c; Figure 3.15d). This alteration may account for the loss of 

reconstitution efficiency of HSPCs in adoptive transfer, suggesting that proliferation may be 

depleting the reservoir of HSCs with long-term reconstitute potential.  

3.2.8 LSK CD34- CD150+ CD48- cells were functionally impaired during chronic infection 

with L. donovani 

Mice chronically infected with L. donovani showed alterations in HSCs proliferative status that 

may reflect impairment in the mechanisms regulating proliferation. It has been shown that 

quiescence is inherently related to the ability of HSCs to achieve long-term reconstitution of the 

haematopoietic system in lethally irradiated recipient mice (A. Nakamura-Ishizu et al., 2014). 

Therefore loss of quiescence during L. donovani infection may account for loss of HSCs function 

(i.e. long-term multilineage reconstitution and self-renewal).  

To test this hypothesis, we performed long-term non-competitive adoptive transfer of LSK 

CD150+ CD34- CD48- cells (enriched for LT-HSCs) from CD45.2 naive or infected mice into 

naive CD45.1 recipients (Figure 3.16a). Donor mice belonged to a congenic mouse strain 

expressing the same allelic variant of CD45 (CD45.2), excluding the impact of subtle functional 

differences of CD45.1 and CD45.2 in their efficiency to reconstitute the haematopoietic system 

following transplant into lethally irradiated recipients (S. Basu et al., 2013). 

LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs) from infected mice in comparison to 

naive donor cells were less efficient in their ability to reconstitute the haematopoietic system of 

lethally irradiated recipient mice. The contribution of donor HSCs from infected mice showed a 

trend towards being lower both in BM (51.60% ± 22.95 vs. 21.17% ± 27.68, for naive and 

infected mice, respectively) and in the spleen (32.30% ± 16.76 vs. 10.81% ± 18.75, for naive and 

infected mice, respectively). However, the large variation within groups prevented this being 

significantly different (Figure 3.16b). 

The number of BM cells derived from naive mice (2.72 x 107 ± 1.41 x 107) was significantly 

greater than those derived from infected donor cells (6.95 x 106 ± 7.89 x 106).  In the spleen, one 

sample could not be used to perform absolute quantification due to technical problems. In the 

spleen the number of cells derived from infected donor was on average 3.4 fold decreased 

compared to the number of cells recovered from naive donor in the recipient mice (Figure 

13.16c). 

In infected mice, the frequencies of HSPCs derived from naive and infected mice donor cells were 

comparable in the BM of recipient mice, except for LSK CD150+ FLT3- CD34- cells (enriched for 
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LT-HSCs). The frequency of these most immature progenitors was significantly higher within 

naive donor cells suggesting that HSCs from infected mice were less efficient in their ability to 

reconstitute the rare pool of HSCs (i.e. loss of self-renewal potential; Figure 3.16d). 

In spleen, here representing the periphery, we could not detect any alteration in the distribution 

mature cells derived from infected compared to naive donor cells; we detected an overall decrease 

in all populations in mice receiving HSCs from infected mice, but not a lineage bias toward any 

cell population (Figure 3.16e). 

To further investigate the long-term reconstituting potential and to more accurately evaluate the 

reduction in functional capacity of HSCs from infected mice, we transferred a reduced number of 

LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs) that were isolated from the primary 

adoptive transfer recipients into secondary recipients. Once again, we used different CD45 

isoforms expressed in donor and recipient cells to track the progeny of transferred cells (Figure 

3.17a). 

Unfortunately one of the mixed BM chimeric died leaving us with small number of samples in the 

group receiving cells primarily derived from infected donors, further the variation within groups 

was very high. Nevertheless the results were suggestive of further functional impairment in HSCs 

primarily derived from infected donors, in the secondary adoptive transfers. Regarding cells 

derived from infected mice, we could detect infected donor cells in the BM of two out of three 

recipients, and in the spleen of one out of three recipients, whereas donor cells derived from HSCs 

isolated from naive mice were detected in the BM and spleen of 4/4 recipients of HSCs from 

naive mice (Figure 3.17b). 

Furthermore, in one of the recipient mice receiving HSCs isolated from infected donor we were 

unable to detect any LSK cells, and in the remaining two recipients the numbers of total 

progenitors was on average less than 30 cells (Figure 3.17c). Furthermore, in only one recipient 

receiving cells derived from infected donors, were Lin- cKithi cells (enriched for lineage-

committed progenitors) detected in BM (Figure 3.17d). However, in all secondary recipient mice 

transplanted with HSCs isolated from non-infected mice we could detect donor HSPCs for the 

three lineages in BM of recipient mice (Figure 3.17c; Figure 3.17d).  

In summary, these data show that following an overall period of 40 weeks of transfer into healthy 

recipients, LSK CD150+ CD34- CD48- cells derived from naive donors were capable of self-

renewal and of giving rise to all lineages (hallmarks of stemness). In secondary recipient mice, 

2316 ± 3472 LSK CD150+ CD34- CD48- cells derived from the original naive donor were present 

in total BM. In contrast, in the only secondary recipient where LSK CD150+ CD34- CD48- cells 
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could be found that originated from HSCs derived from infected mice, only 16 LSK CD150+ 

CD34- CD48- cells were present (Figure 3.17c). Similarly, in all recipient mice transplanted with 

HSCs originating from non-infected mice we could consistently detect mature progeny in both the 

lymphoid and myeloid lineages, whereas among recipient receiving HSCs originating from 

infected mice we could only detect very low numbers of mature cells in the spleen of one out of 

three recipient mice (Figure 3.17e). Collectively, these data suggested that HSCs from infected 

mice show intrinsic long-term functional impairment, linked to alterations in cell-cycle regulation. 

3.2.9 Alteration in expression of transcription factors associated with cell-cycle regulation 

of HSCs during L. donovani infection 

3.2.9.1 LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs) in infected mice expressed of 

β-catenin at increased levels 

It has been showed that wingless and int (Wnt) signaling is required for the adequate function of 

HSCs using several gain and loss-of-functions approaches. However the results from different 

studies aimed at clarifying its role in HSCs self-renewal were conflicting (P. Kirstetter et al., 

2006, T. C. Luis et al., 2010a, C. J. Cain and J. O. Manilay, 2013). More recently experiments 

using different combinations of APC (Adenomatous polyposis coli gene) mutants have shown that 

mild increases (about 2 fold) in Wnt signaling enhanced HSC function, while impaired HSC 

repopulation capacity was associated with intermediate and higher levels of activation of the Wnt 

signaling pathway (T. C. Luis et al., 2011). 

In order to assess if a higher degree of activation of Wnt canonical signal was associated with the 

alterations observed in HSCs during infection with L. donovani, we used intracellular flow 

cytometry to assess the relative accumulation of β-catenin in multipotent progenitors in naive and 

day 28 infected mice. The relative amount of β-catenin protein in multipotent progenitors was 

determined by the fold change in Mean Intensity Fluorescence (MFI), since we found β-catenin to 

be expressed in all multipotent progenitors (Figure 3.18a). We observed a significant increase in 

β-catenin protein detected in LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs), LSK 

CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells in the BM of infected mice (1.41 ± 

0.39 fold, 1.49 fold ± 0.45 and 1.33 ± 0.24 fold, respectively in infected compared to naive mice; 

Figure 3.18b). 

Wnt3a, the prototypical Wnt ligand for the canonical pathway, has been suggested to play an 

important role in activation of HSCs that express its cognate receptors (R. Sugimura et al., 2012). 

Therefore, we next assessed expression of Wnt3a, using flow cytometry to detect intracellular 
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expression in cells treated with brefeldin A prior to staining, to promote Wnt3a intracellular 

accumulation.   

Across all the populations assessed in BM, we could not detect a significant increase in the 

frequency of cells expressing Wnt3a during infection (Figure 3.19a; Figure 3.19d). However, 

when we evaluated the amount of Wnt3a expressed in each cell population significant alterations 

were detected. In infected mice, mature haematopoietic cells (CD45+ Lin+ cells) expressed higher 

levels of Wnt3a as assessed by the MFI, than naive mice (Figure 3.19b; Figure 3.19c). A 

significant increase in Wnt3a expression, following L. donovani infection, was also determined in 

LSK CD150+ CD48- cells (enriched for LT-HSCs) displaying a 1.5 fold increase in Wnt3a 

expression (Figure 3.19b; Figure 3.19c).  

Thus, we assessed if Wnt3a mRNA accumulation was altered in total BM in infected mice 

compared to naive mice. Contrary to protein expression, the Wnt3a mRNA accumulation was 

decreased in total BM cells from infected mice (Figure 3.20), suggesting that level of Wnt3a 

could be controlled by post-transcriptional mechanisms. 

Overall these findings suggested that alterations in BM during infection with L. donovani were 

associated with enhanced activation of Wnt canonical pathway in haematopoietic progenitors that 

may be supported by an increase availability of Wnt3a in BM stem cells niche, as well as by 

increased autocrine Wnt3a signaling in LT-HSCs. 

3.2.9.2  LSK CD150+ CD34- CD48- cells (LT-HSCs) in infected mice have increased 

expression of the transcription factor c-Myc  

The Myc proto-oncogene has been described as a central transcription factor in haematopoiesis, 

and is expressed in all haematopoietic progenitors. Mice deficient for Myc dye before birth and its 

believed that defects in the haematopoietic system development are the basis of embryonic 

lethality (M. D. Delgado and J. Leon, 2010).  This hypothesis was confirmed by observing the 

marked haematological changes associated with conditional Myc deletion, in MxCre;c-mycflox/flox 

mice (A. Wilson et al., 2004). These studies also suggested that Myc participates in the regulation 

of HSCs self-renewal and differentiation through the regulation of adhesion molecules expression, 

notably CD29 (A. Wilson et al., 2004).  

The HSCs phenotype we observed during L. donovani infection shared many features that have 

been reported in mice following conditional ablation of Myc (A. Wilson et al., 2004). Therefore, 

we next assessed the expression of c-Myc in HSCs. c-Myc protein is difficult to detect by direct 

antibody staining. Therefore we transferred total BM cells from c-Myc-Egfp mice, expressing 
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EGFP under the control of the c-Myc endogenous promoter, into lethally irradiated recipients. 

After a period of ten weeks, these mice were infected with L. donovani and HSPCs phenotype 

examined at day 28 p.i., using intracellular flow cytometry to detect the EGFP tag. In infected 

mice, LSK CD150+ CD48- cells (enriched for LT-HSCs) expressed more c-Myc compared to 

naive mice, and the same trend was observed in LSK CD150+ CD48+ cell (Figure 3.21). We also 

assessed the level of CD29 protein expression in haematopoietic multipotent progenitors 

including HSCs, but we could not determine any significant differences between naive controls 

and mice infected mice (Figure 3.22). In summary, although we identified an increase in the 

expression c-Myc in LT-HSCs isolated from L. donovani infected mice, this was not coupled to a 

detectable change in expression of the adhesion molecule CD29. 

3.2.9.3 LSK CD150+ CD48- cells (enriched for LT-HSCs) in infected mice have increased 

expression of the transcription factor GATA-3 

The transcription factor GATA-3 is expressed in various haematopoietic progenitor populations in 

BM, with HSCs expressing the highest levels of GATA-3 (C.-J. Ku et al., 2012). Recent studies 

have suggested that GATA-3 is important in the regulation of HSCs proliferative status and self-

renewal potential during stress-induced haematopoiesis (C.-J. Ku et al., 2012, C. Frelin et al., 

2013). For example, in GATA-3 KO mice the deleterious impact of Poly:IC challenge on HSCs 

function could be prevented (C.-J. Ku et al., 2012, C. Frelin et al., 2013). We observed that during 

L. donovani infection the number of HSCs in active cell-cycle increased with concomitant loss of 

quiescent cells, suggesting an alteration in the regulation of cell-cycle, which prompted us to 

investigate intracellular expression of GATA-3 in HSPCs.  

We first observed that neither the frequency of mature haematopoietic cells nor the frequency of 

total HSPCs (enriched in Lin- cKit+ cells) expressing GATA-3 was altered by the infection 

(Figure 3.23a). Upregulation of GATA-3 expression in BM was restricted to the most immature 

cells contained in the LSK CD150+ cells compartment (Figure 3.23a; Figure 3.23c). The 

frequency LSK CD150+ CD48- cells (enriched for LT-HSCs) expressing GATA-3 was 48.93% ± 

21.11 in infected mice compared to 21.31% ± 13.61 in naive controls (Figure 3.23a). Within LSK 

CD150+ CD48+ cells (other multipotent progenitors) the increase in cells expressing this 

transcription factor was also significant in BM of infected mice compared to naive mice (54.82% 

± 27.80 vs. 79.15% ± 9.47) (Figure 3.23a; Figure 3.23c). This increase in very immature cells 

expressing GATA-3 was concomitant with a 1.22 ± 0.19 fold increase in the amount of GATA-3 

expressed in LSK CD150+ CD48- GATA-3+ cells, and a 1.29 ± 0.16 increase in LSK CD150+ 

CD48+ GATA-3+ cells in infected compared to naive controls, as assessed by the fold change in 

MFI (Figure 3.23b).  
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We next sought to determine whether the expression of GATA-3 could be related to the 

proliferative state of LSK CD150+ CD48- cells (enriched LT-HSCs). In infected mice, a 

significant alteration in the distribution of LSK CD150+ CD48- cells segregated according with 

the expression of GATA-3 and Ki67 was observed (Figure 3.24).  

In fact, we observed that the expression of this transcriptional factor was almost absent in cells in 

G0 (Ki67- cells). In naive mice, 43.24% ± 5.69 of LSK CD150+ CD48- cells were Ki67- GATA-3-, 

but following infection there was a significant decrease in cells falling in this group (5.20% ± 

5.31). Also, concomitant with chronic infection, we observed a significant increase in LSK 

CD150+ CD48- cells expressing Ki67 and GATA-3 (17.64 ± 11.23 vs. 46.68 ± 21.66, in naive and 

infected, respectively), while in steady-state the majority of LSK CD150+ CD48- cells in cycle 

were GATA-3 negative (Figure 3.25).  

These data demonstrate that GATA-3 expression was up-regulated in LSK CD150+ CD48- cells 

(enriched LT-HSCs) during induced haematopoiesis following L. donovani infection. As such, 

GATA-3 over expression due to inflammation may represent a mechanism for impaired 

maintenance of homeostatic numbers of LT-HSCs in quiescence, during L. donovani chronic 

infection. 

It is known that upon poly I:C treatment, GATA-3 re-locates to the nucleus in proliferating HSCs 

and restricts these cells to short-term multilineage reconstitution, however after the removal of 

proliferative stimulus, GATA-3 returns to the cytoplasm and long-term lineage reconstitution is 

restored (C. Frelin et al., 2013). We therefore attempted to determine the subcellular localization 

of GATA-3 in HSCs in infected vs. naive mice. We optimized protocols for sort purification of 

HSCs and for imaging GATA-3 expression by confocal microscopy, using thymocytes in 

suspension as a positive control (Figure 3.26). Despite our efforts in sorted LSK we were unable 

to obtain a reliable staining (Figure 3.27). 
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3.3 DISCUSSION 

VL in humans and animal models is associated with significant changes in haematological 

function, and parasite persistence in BM is well characterized (G. E. Cartwright et al., 1948, S. E. 

J. Cotterell et al., 2000a, N. Varma and S. Naseem, 2010, W. P. Lafuse et al., 2013, F. A. d. 

Pinho, 2015). However, very little is known about the impact of L. donovani infection on 

upstream processes underlying haematopoiesis. 

In this chapter, we showed that L. donovani infection impacts on BM haematopoiesis. Using a 

panel of stem cell markers, we characterized murine HSPCs in the BM over the course of L. 

donovani-infection in B6 mice. At the peak of infection, mice showed a significant increase in 

intermediary non-committed multipotent haematopoietic precursors (LSK CD150+ CD34- CD48+ 

cells and LSK CD150+ CD34+ cells) without reciprocal increases in either lineage-committed 

precursors or mature cells in circulation. In the steady-state, the majority of LT-HSCs (LSK 

CD150+ CD34- CD48- cells) were quiescent, representing cells with the highest degree of 

reconstitution potential. In contrast, during infection most were found to have progressed to cell-

cycle and this correlated with a reduced potential to engraft into syngeneic recipients. The 

functional alterations in proliferative LT-HSCs were associated with the upregulation of the co-

activator surface molecule CD48 and the transcriptions factors GATA-3 and β-catenin.  

In the only work that previously characterized the alteration in haematopoiesis in experimental 

VL, it was shown that following infection with L. donovani myelopoiesis was increased, both in 

BM and in the spleen. This study by Cotterell and colleagues used an assay of colony-forming 

precursors and progenitors to determine the association between L. donovani parasite burdens and 

changes in haematopoietic activity. They showed that the frequency of all progenitor cells from 

the BM increased during the course of L. donovani infection; while in the spleen there was a 

specific increase in GM-CFU. These correlate with the increase in parasite burden both in the BM 

and the spleen. Furthermore, the proportion of progenitors in S phase in both the spleen and BM 

increased, indicating a higher level of proliferation, during chronic infection. Additionally, it was 

found that there is greater accumulation of mRNA for the growth factors G-CSF, M-CSF, and 

GM-CSF in the BM during chronic phase of infection (S. E. J. Cotterell et al., 2000a).  

This study was performed in BALB/c while our model of experimental VL was established in B6 

mice. The outcome of L. donovani infection varies considerably among mouse strains, for 

example BALB/c genetic background was associated to an impaired clearance of parasites from 

the liver compared to B6 mice (M. Lipoldova and P. Demant, 2006). Therefore, we decided to 

characterize the kinetics of alterations in HSPCs and parasite burden during the course of 

infection in B6 mice. 
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Instead of CFU assays, we chose to characterize HSPCs (LT-HSCs, ST-HSCs, MPPs, CMPs, 

GMPs, MEPs and CLPs), as defined previously (M. Kondo et al., 2003a, J. L. Granick et al., 

2012) according with their pattern of surface markers expression using flow cytometry, directly ex 

vivo. More, although short-term cultures are very useful to study lineage-committed progenitor 

cells that differentiate in less than 3 weeks, they are unable to quantify more primitive progenitors 

that require longer culture periods to produce mature cells (L. Coulombel, 2004). On the other 

hand, the usage of long-term cultures could overcome this limitation, but the growth factors 

required for HSCs and immediate progeny culture are not well established and may, therefore, 

impact in the differentiation process (L. Coulombel, 2004). 

In steady-state, the LSK cell population contains the most immature non-committed progenitors, 

conventionally called haematopoietic progenitor cells (HPCs) (K. Y. King and M. A. Goodell, 

2011), whereas lineage-committed progenitors are contained in the Lineage- Sca1- cKit+ cells 

(cKithi cells; Figure 3.2) (M. Kondo et al., 2003a). In adults, Sca1 expression is mainly restricted 

to non-committed progenitors but its expression may be induced in other cells by Interferon Type 

I and II, TNF and IL-1, commonly found present at increased levels at sites of infections (A. 

Sinclair et al., 1996, S. Maltby et al., 2014).  It has also been shown in a wide range of infection 

models that Sca1 expression is upregulated in all HSPCs. Likewise upon an infection; the 

immune-phenotypically defined LSK fraction may contain functional lineage-committed 

progenitors (N. N. Belyaev et al., 2010, M. B. Buechler et al., 2013, E. M. Pietras et al., 2014). 

During the course of infection we observed the expansion of the LSK compartment concomitant 

with the contraction in Lineage- Sca1- cKit+ cell number. Taking in account the above findings, we 

included Lineage- cKit+ Sca1+/- cells in the process of selecting for lineage-committed progenitors 

in addition to the other defined cell surface markers. 

In B6 mice, contrary to BALB/c mice, the peak parasite burden was reached at day 28 p.i. and by 

day 64 the number of parasites in the BM and spleen were very low, although the splenomegaly 

was maintained indicating that inflammation persisted. Another difference related to the number 

of myeloid progenitors in BM that, except for MEPs, were not significantly increased (S. E. J. 

Cotterell et al., 2000a). Over 64 days following infection the number multipotent progenitors, 

namely LSK CD150+ Flt3- CD34- cells and LSK CD150+ Flt3- CD34+ cells increased steadily, and 

their number remained high even at the latest time point, when the parasite burden was minimal in 

BM and in the spleen. The number of multipotent progenitors was increased in the spleen at later 

time points, as well as, CMPs and MEPs.  

The detection of HSPCs in increased number in the spleen has been described in other models of 

infection (K. C. MacNamara et al., 2009, M. T. Baldridge et al., 2010). HSCs survey the 

periphery and have the potential to seed and originate myeloid immune cells in extramedullary 



 95 

tissues. It was suggested that during infection migratory HSCs may function as a prompt provider 

of progenitors that expand in situ and give rise to myeloid effector cells (S. Massberg et al., 

2007). In the spleen of mice infected with L. donovani the frequencies of macrophages and 

dendritic cells (DCs) are found increased (J. E. Dalton et al., 2010). Most likely, the increase in 

HSPCs that occurs during infection may result from non-exclusive phenomena such as alteration 

in the egress of HSCs from BM, splenic sequestration and subsequent expansion and 

differentiation in loco. 

Dramatic increases in LSK CD150+ Flt3- CD34- cells and LSK CD150+ Flt3- CD34+ cells in BM 

were observed at day 28 p.i. that was highly consistent across multiple experiments. Yet the 

number of lineage-committed progenitors remained at basal values, providing the first evidence 

for a block in HSPCs progression.   

The expansion of HSCs and/or onward multipotent progenitors has been described in a wide 

range of experimental models of infections (S. Rodriguez et al., 2009, M. T. Baldridge et al., 

2010, K. C. MacNamara et al., 2011a, S. Maltby et al., 2014). The acute model of respiratory 

infection (pneumonia virus of mice) provides an example of the impact of a localized infection on 

alterations in haematopoiesis. In mice infected with pneumonia virus of mice (PMV), the fraction 

of LSK cells and LT-HSCs (LSK CD150+ CD48- cells) expanded in BM, while the number of 

granulocytes was found greatly increased in peripheral blood (S. Maltby et al., 2014). In the 

present study, we observed expansion of LT-HSCs (LSK CD150+ Flt3- CD34- cells) in BM of L. 

donovani infected mice, but only a modest neutophilia was observed. 

In a model of sepsis, an increase in the number of LSK cells, as well as LT-HSCs (LSK Flt3- 

CD34- cells) and MPPs (LSK Flt3+CD34+ cells) was observed following inoculation with a 

virulent Pseudomonas aeroginosa strain. These mice displayed severe neutropenia that was 

partially explained by a block in differentiation of MPPs to myeloid lineage-committed 

progenitors. CMPs and GMPs were found at very decreased number in BM and expressed less 

lysozyme compared to controls, an indication of delayed maturation (S. Rodriguez et al., 2009).  

The accumulation of immunophenotypic LT-HSCs (characterized as LSK CD150+ Flt3- cells) was 

reported in the BM in other models of acute infection (P. O. Scumpia et al., 2010, K. C. 

MacNamara et al., 2011a). In mice inoculated with Ehrlichia muris, it was reported that an 

accumulation of LT-HSCs and loss of functional myeloid committed progenitors occurred in BM 

(K. C. MacNamara et al., 2011a). Furthermore, similarly to our model, mice infected with E. 

muris displayed splenomegaly, thrombocytopenia and anaemia, features common to human 

monocytic ehrlichiosis (K. C. MacNamara et al., 2009). Interestingly, in mice infected with 

Ehrlichia muris erythroid progenitors also expand in great number (defined by the expression of 
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CD71 and Ter119) (K. C. MacNamara et al., 2009). Data from our laboratory showed that in 

spleens of mice infected with L. donovani, the number of erythroid progenitors is also greatly 

increased (O. Preham unpublished data). The data provided here on the number of MEPs in the 

spleen support the proposition that during infection the spleen becomes a site of extramedullary 

erythropoiesis.  

Activation of multipotent progenitors toward expansion is not restricted to models of acute 

infection, for instance in mice, chronic systemic infection with Mycobacterium avium resulted in 

enlarged spleens, thrombocytopenia, the accumulation of immunophenotypic ST-HSC (defined as 

LSK Flt3- CD34+ cells) and marginal increase in the number of LT-HSC (defined as LSK Flt3- 

CD34- cells and MPPs (defined as LSK Flt3+ CD34+ cells) in the BM. In the spleen, the number 

of LT-HSCs (defined as LSK CD150+ cells) was also very increased in mice chronically infected, 

suggesting that the infection may result in the mobilization of progenitors to the periphery (M. T. 

Baldridge et al., 2010). These findings resemble the phenotype we described in mice infected 

with L. donovani for 28 days.   

The clinical symptoms vary considerably among VL patients, ranging from asymptomatic to very 

severe clinical symptoms, including fever, splenomegaly and hepatomegaly, cachexia, 

pancytopenia and hypergammaglobinemia. Anaemia is often described in association with L. 

donovani chronic infection, but there are many reports showing that other haematological 

alterations may emerge such as, leucopenia, thrombocytopenia, pancytopenia, haemophagocytosis 

and coagulation abnormalities (G. E. Cartwright et al., 1948, N. Varma and S. Naseem, 2010). In 

addition to alterations in peripheral blood, several clinical reports describe alteration in BM 

cellularity; these alterations include histiocytic hyperplasia, erythroid hyperplasia, increase in the 

number immature forms of granulocyte and megakaryocyte (N. Yarali et al., 2002, N. Varma and 

S. Naseem, 2010). These haematological alterations have been mainly attributed to spleen 

sequestration of circulating cells and ineffective haematopoiesis (G. E. Cartwright et al., 1948, N. 

Yarali et al., 2002, N. Varma and S. Naseem, 2010). 

In the present study, we found that mice infected with L. donovani show signs of impairment of 

haematopoietic function, such as anaemia and thrombocytopenia. 

In the experimental model of VL using Syrian golden hamsters infected with L. donovani, an 

experimental model that more resembles end stage human VL, it has been shown that chronic 

infection is associated with anaemia and leucopenia and increased number of erythroid 

progenitors both in BM and in the spleen. In hamsters, the increase in erythroid progenitors and 

the emergence of stress-induced erythropoiesis in the spleen was associated to the elevation in the 

concentration of erythropoietin in circulation, as a response to the increase cells death of BM 
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erythroblasts (W. P. Lafuse et al., 2013). Dogs bearing natural L. donovani infection have also 

been described to have significant haematological alterations, including anaemia, 

thrombocytopenia and leucopenia, alongside with alteration in BM cellularity (F. A. d. Pinho, 

2015). 

In contrast to human disease, and that in hamsters and dogs, experimental VL in mice is not fatal 

and although parasites number increase in spleen and liver following infection, in the latter the 

infection is self-resolving with the formation of granulomas (P. M. Kaye et al., 2004). 

Nevertheless, more recently it was reported that B6 mice chronically infected with L. donovani 

display mild pancytopenia (anemia, leucopenia and thrombocytopenia) (F. A. d. Pinho, 2015). 

These findings were obtained through the analysis of PB using flow cytometric approaches, and 

agree with results we obtained using automated method to perform PB hemogram at same time 

point of infection. Furthermore, in B6 mice were also described morphological alterations in BM, 

such as asynchronous nuclear-cytoplasmic maturation, presence of megalocytes and binucleated 

erythroid cells (F. A. d. Pinho, 2015). Overall these findings suggested that stress induce 

haematopoiesis during chronic infection with L. donovani may induce ineffective haematopoiesis 

and contribute to the (most likely multifactorial) establishment of cytopenias, in spite of the 

increased haematopoietic activity in BM.  

In malaria infection, anaemia is a common finding and contributes very significantly to the 

morbidity and mortality of this parasitic infection. Its thought that on the basis of anaemia is the 

destruction of infected erythrocytes and changes in erythropoiesis (J. Pablo Quintero et al., 2011). 

Alteration in haematopoietic function were also described in experimental models of disease, in 

which besides the establishment of anaemia were described alterations of haematopoiesis such as 

decreased clonogenic activity of BM cells in colony-forming assays and decreased number of 

phenotypic myeloid-committed progenitors in BM (N. N. Belyaev et al., 2010, N. N. Belyaev et 

al., 2013).   

Expansion of the LSK compartment in the BM may be required to respond to the increase demand 

of immune cells during the response to an acute infection. For example, the infection with 

Plasmodium chabaudi results in the IFNγ-dependent emergence of a LSK IL7-Rα+ progenitor cell 

otherwise absent in steady-state, with the potential to produce myeloid cells that contributed to the 

parasite clearance (N. N. Belyaev et al., 2010). In response to acute pneumovirus infection the 

expansion of LSK in BM is concomitant with the increase of functional myeloid progenitors, as 

determined by CFU in BM cells. In this model of infection the increase in myeloid-committed 

progenitors is TNF- and IFNγ-dependent, since administration of anti-TNF or anti-IFNγ 

prevented the increase in myeloid progenitors and lead to an increased the virus load in the lung 

in comparison to the controls (S. Maltby et al., 2014).  
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However in several models of disease it was showed that the sustainment of the stress-induced 

haematopoiesis such as during a chronic infection might result in the functional exhaustion of 

HSCs (K. Y. King and M. A. Goodell, 2011, C. Mirantes et al., 2014). For instance in humans, 

anaemia, leucopenia, or pancytopenia have been commonly described in association with chronic 

infectious diseases, such as HIV, atypical mycobacterial infection and viral hepatitis (A. Jain and 

M. Naniwadekar, 2013).  

In fact, it was shown in various models of infection or following poly:IC stimulation (inducer of 

Interferons Type I release) that HSCs perform poorly reconstitution of the haematopoietic system 

when transplanted to lethally irradiated syngeneic mice (S. Rodriguez et al., 2009, K. C. 

MacNamara et al., 2011a, A. M. de Bruin et al., 2013, C. Frelin et al., 2013, K. A. Matatall et al., 

2014).  As so, we hypothesized that infection with L. donovani resulted in the activation of HSCs 

followed by their functional compromise.  

To evaluate if the expansion of LSK compartment accounted for functional alterations early in 

haematopoiesis or down the line in lineage-committed progenitors we established competitive 

radiation BM chimeras with equal numbers of BM Lineage- cells (enriched for all HSPCs) sort-

purified from naive and infected mice. In recipient mice, donor cells derived from infected mice 

were much less efficient in their ability to engraft in BM and reconstitute the periphery. However, 

in spite of the overall lower number of infected donor mice we failed to determined any lineage 

bias. These findings suggested that L. donovani infection was impacting early in haematopoiesis 

prior to lineage-commitment, and the increase in HSCs cell number was not associated with an 

increase in stem cell activity, but resulting from cell-intrinsic functional impairment of 

multipotent progenitors, as observed previously in several models of infection (S. Rodriguez et 

al., 2009, K. C. MacNamara et al., 2011a, A. M. de Bruin et al., 2013, C. Frelin et al., 2013, K. A. 

Matatall et al., 2014).  

HSCs are far from being fully characterized. The most common markers to select HSCs are LSK 

cells, CD34 negative/low and Flt3 negative and more recently LSK CD150 positive and CD48 

negative, and it was shown that the self-renewal and reconstituting potentials of HSCs decrease as 

CD150 expression levels decline (G. A. Challen et al., 2009). Nevertheless, the alterations in the 

phenotype of HSCs and MPPs in proinflammatory conditions are yet to be fully resolved (J. L. 

Granick et al., 2012).  

In the present study, the magnitude of the increase in the number of phenotypic LT-HSCs induced 

following L. donovani infection was such that it raised the possibility that LSK CD150+ FLt3- 

CD34- cells could no longer be true LT-HSCs. As such, we have included CD48 as an extra 

surface marker to select for true LT-HSCs. 
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CD48 expression was shown to be transiently upregulated when HSCs were stimulated to cycle 

by systemic administration of 5-flurouracil (5-FU) (which promotes cell death in dividing cells), 

and using BMT assays it was found that the majority of HSCs with long-term potential of 

reconstitution were contained in the CD48 negative compartment. Furthermore, in CD48-deficient 

mice it was described that HSCs are more quiescent both in steady-state and upon 5-FU 

administration, suggesting that the repression of CD48 expression may be required to preserve the 

pool of LT-HSCs in G0 (M. J. Kiel et al., 2005, N. C. Boles et al., 2011).   

In steady-state, we found that CD48 was not expressed in the vast majority of LSK CD150+ FLt3- 

CD34- cells but was up-regulated upon infection with L. donovani in the majority of phenotypic 

LT-HSCs. Therefore, in subsequent experiments LT-HSCs were defined as LSK CD150+ CD48- 

CD34- cells. In fact, when CD48 was used as an additional maker of haematopoietic 

differentiation, we found that the number of LT-HSCs (LSK CD150+ CD48- CD34- cells) was 

conserved in the BM, but this was followed by a significant increase in intermediary non-

committed precursors. Similarly, in mice infected with E. muris, it was reported that while in 

steady-state the LSK CD150+ Flt3- cells express low levels of CD48, upon infection it is almost 

evenly expressed at high levels in LSK CD150+ Flt3- cells (K. C. MacNamara et al., 2011a). 

In the adult, LT-HSCs are mainly found in a quiescent state and the regulation of HSC 

quiescence/proliferation relies on cell-intrinsic and -extrinsic factors, which availability may vary 

considerably between homeostatic haematopoiesis and infection-induced haematopoiesis (K. Y. 

King and M. A. Goodell, 2011, C. Mirantes et al., 2014, A. Nakamura-Ishizu et al., 2014).  The 

proliferative status of HSCs has been assessed in various models of infection. For instance, in 

mice infected with Ehrlichia muris, the number of dividing phenotypic HSCs increase almost two 

fold following infection (K. C. MacNamara et al., 2011a). Identical alterations in HSCs cell-cycle 

activation were made in mice challenged with Poly:IC (C. Frelin et al., 2013, D. Walter et al., 

2015), mice infected with Mycobacterium avium (M. T. Baldridge et al., 2010) and mice infected 

with LCMV (K. A. Matatall et al., 2014). In all these studies the increase in proliferative activity 

in HSCs correlated with loss of long-term reconstitution potential upon transplant into lethally 

irradiated recipients, suggesting that proliferation of HSCs under infection–induced conditions 

may result in cell-intrinsic functional impairment.  

In line with the above studies, we also found that in steady state the majority of LSK CD150+ 

CD34- CD48- cells (LT- HSCs) were quiescent. However, during L. donovani infection the vast 

majority progressed into active cell-cycle, resulting in a dramatic depletion in the reservoir of 

quiescent LT-HSCs. On the contrary, the other populations of multipotent progenitors 

characterized, namely LSK CD150+ CD34+ CD48+ cells and LSK CD150+ CD34+, were highly 

proliferative both in steady-state and upon infection.  
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Decision making for HSC progression to active cell-cycle and subsequent decision to self-renew 

and/or differentiate (symmetric versus asymmetric division) is far from fully understood. 

However in the past decade many progresses were made to address these questions (K. W. Orford 

and D. T. Scadden, 2008). It is known that signaling by morphogens, such as Wnt, Notch and 

Hedgehog pathways have the potential to regulate entry to the G1 phase of the cell-cycle, and the 

presence of these morphogens was reported in stem cell niches raising the possibility that 

morphogen signaling prevents HSCs differentiation. In very simple lines, it was proposed that the 

decision towards self-renewal and/or differentiation depends on the different balances established 

by the availability of mitogens inducing differentiation (such as cytokines and growth factor 

inducing MAPK signaling) and the availability of morphogens promoting self-renewal (K. W. 

Orford and D. T. Scadden, 2008). Hence, it would be possible that during infection the relative 

abundance of pro-inflammatory mediators and growth factors could promote an “excess” of stem 

cell commitment that was not compensated by the mechanisms regulating quiescence and self-

renewal, increasing the chances of HSCs functional exhaustion in the long-term. 

It has long been postulated that the maintenance of adults stem cell quiescence is an evolutionary 

advantage, protecting them from genomic instability and therefore, preventing accumulation of 

mutations that could be perpetuated in their progeny (A. Trumpp et al., 2010). Nevertheless, only 

recently a direct correlation was established between stress-induced haematopoiesis and the 

deterioration of HSCs function. In mice stimulated with Poly:IC, there is an immediate activation 

of LT-HSCs (LSK CD150+ CD34- CD48- cells) into active cell-cycle, and this is concomitant 

with the accumulation DNA double-strand breaks and single-strand breaks. Moreover, these same 

effects were replicated in mice stimulated with IFN-α, G-CSF, TPO or by serial bleeding, 

suggesting that the emergence of damages in DNA is a common result of stress-induced HSCs 

proliferation and may therefore, be present during infection-induced haematopoiesis (D. Walter et 

al., 2015). The functional consequences of the accumulation of DNA damage in LT-HSCs 

became evident throught the observation that in competitive BM transfer donor cells derived from 

mice subjected to extended poly:IC treatment had a two fold decrease in their repopulating 

activity compared to controls, 24 weeks upon transplant (D. Walter et al., 2015). This work, for 

the first time established a direct evidence that increased proliferation of HSCs may account for 

accumulation of defects, that if sustained beyond the limit of repair may result in BM failure, but 

also provides a plausible explanation to the increased frequency of haematopoietic dysplastic cells 

observed in chronic VL (N. Yarali et al., 2002, N. Varma and S. Naseem, 2010, G. M. de 

Vasconcelos et al., 2014, F. A. d. Pinho, 2015). 

Nowadays, it is indisputable that infection has the potential to drive proliferation with outcomes 

that vary considerably from pathogen to pathogen (K. Y. King and M. A. Goodell, 2011, C. 

Mirantes et al., 2014, A. M. Prendergast and M. A. G. Essers, 2014). In our model of 
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experimental VL, we determined that the fraction of proliferative LT-HSCs was increased and 

this related to loss of potential to perform long-term haematopoietic reconstitution in healthy 

recipients, indicating that L. donovani infection led to cell-intrinsic functional impairment. 

Aiming to determine potential molecular targets underlying these alteration, we then evaluated the 

expression of several transcription factors previously determined to play important roles 

regulating of LT-HSCs proliferation including, β-catenin (T. C. Luis et al., 2011), GATA-3 (C.-J. 

Ku et al., 2012, C. Frelin et al., 2013), and c-Myc (A. Wilson et al., 2004).  

Canonical Wnt signaling pathway is very important mediator of HSCs functions (T. C. Luis et al., 

2011, W. Lento et al., 2013). For example, it was shown that Wnt3a deficient mice die around 

embryonic day (E) 12.5, and HSCs from fetal livers showed cell intrinsic defects, such as severely 

reduced reconstitutive activity (T. C. Luis et al., 2009). Furthermore, in adult mice its activity 

seems to be very fine-tuned. Using mutant displaying Wnt signaling pathway at different levels of 

activation, it was shown that mild increase in Wnt signaling activation enhances HSCs function, 

nevertheless higher levels of activation of the Wnt signaling pathway impair HSCs repopulation 

capacity (T. C. Luis et al., 2011). 

Wnt canonical signaling is initiated when Wnt ligands engage their cognate receptor complex in 

the membrane of the target cell, which ultimately results in the translocation of β-catenin, a 

transcriptional coactivator, to the nucleus, where it binds to the classical canonical Wnt 

transcription factors, T-cell factor (TCF) and lymphoid enhancer binding factor (LEF) to initiate 

transcription of target genes. When Wnt receptors are not engaged, β-catenin is localized to the 

cytoplasm, and in association a destruction complex, which target β-catenin for proteasomal 

degradation (T. Reya and H. Clevers, 2005, C. J. Cain and J. O. Manilay, 2013).  In mice 

expressing a stable form of β-catenin under the control of Mx-cre, resulting in higher expression 

of Wnt target genes in BM cells, signs of pancytopenia and an accumulation of granulocytic cells 

and immature erythroid cells in the BM were reported. Underlying these alterations was the 

establishment of a block in differentiation of all three lineages, expansion of LSK cells, 

accumulation of multipotent progenitors (LSK Flt-3– CD34+ cells), decreased number of lineage-

committed progenitors, and finally functional decline of LT-HSCs (LSK Flt-3– CD34– cells) 

which were unable to perform reconstitution in competitive adoptive transplant assays (P. 

Kirstetter et al., 2006). Mice expressing a stable form of β-catenin display a severe form of the 

haematopoietic alterations, resembling the phenotype we observed in mice infected with L. 

donovani, including pancytopenia, accumulation of intermediary multipotent progenitors and 

impairment of LT-HSCs function. Therefore, we evaluated the relative accumulation β-catenin in 

LT-HSCs, and found this to be increased following infection, suggestive of increased activation 

of Wnt signaling pathway in LT-HSCs. Future experiments should seek to evaluate β-catenin 

subcellular localization.  
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Wnt–β-catenin signaling canonical pathway is activated following binding of Wnt1, Wnt3a, or 

Wnt8 to its receptor the seven-transmembrane domain receptor Frizzled (Fzd) and co-receptor, 

the single-membrane-spanning low-density receptor-related protein 5/6 (LRP5/6), expressed in 

target cell (L. Grumolato et al., 2010). Wnt3a was the first Wnt protein purified and it has been 

described as the prototypical Wnt ligand for the canonical pathway. Wnt3a homozygous mutants 

die early during embryonic development, and it was showed using a Wnt reporter that Wnt3a is 

unique in its ability to activate canonical Wnt signaling in the HSCs in fetal livers (T. C. Luis et 

al., 2009, T. C. Luis et al., 2010b). Studies in vitro showed that adult HSCs stimulated with 

purified Wnt3a had an improved capacity to reconstitute the haematopoietic system of 

conditioned mice in vivo (T. Reya and H. Clevers, 2005). These studies suggested that Wnt3a 

may play an important role in activation of HSCs that express its cognate receptors (R. Sugimura 

et al., 2012). Therefore, we assessed expression of Wnt3a on BM cells in mice infected with L. 

donovani. 

In the BM of infected mice we found that of Wnt3a was expressed at increased levels by mature 

haematopoietic cells (CD45+ Lineage+ cells), suggesting increased availability of Wnt3a in the 

BM microenvironment during infection might drive an enhanced activation of Wnt canonical 

pathway within LT-HSCs. LT-HSCs did also expressed increased levels of Wnt3a following 

infection with L. donovani. Interestingly, it was previously described that HSCs display an 

increased potential to produce Wnt3a, and therefore mediate autocrine induction of canonical Wnt 

signaling, as a compensatory mechanism in the absence of Wnt expression by osteoblasts (C. 

Schaniel et al., 2011).     

We failed to determine an increase in the Wnt3a mRNA expression in total BM cells from 

infected, suggesting that protein levels may depend of post-transcriptional regulation. 

c-Myc was identified as a Wnt/β-catenin target gene in colorectal cancer cell lines characterized 

by the accumulation of β-catenin and the activation of Wnt target genes including c-Myc (M. D. 

Delgado and J. Leon, 2010). This transcription factor is implicated in the regulation of a wide 

range of gene groups including, apoptosis, cell-cycle regulation and metabolism. However, c-Myc 

may play as a transcriptional repressor of genes regulating cell adhesion and quiescence, for 

example the cyclin-dependent kinase inhibitors p21CIP1 and p15INK4B (J. A. Wilkins and O. J. 

Sansom, 2008).  

Alterations in c-Myc expression have been also reported in various haematological malignancies, 

and c-Myc seems to act as an important regulator of haematopoiesis, for instance mice deficient 

for c-Myc die before birth, mostly due to defective haematopoiesis (M. D. Delgado and J. Leon, 

2010). 
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In the adult, the function of c-Myc in haematopoiesis was evaluated using c-Myc conditional KO 

mice under the control of MX-cre transgene (MxCre;c-mycflox/flox mice). In these mice observed 

the following was observed: an accumulation of non-committed multipotent progenitors (LSK 

Flt3- cells) in BM, severe pancytopenia, and HSPCs were very impaired in their ability to 

reconstitute conditioned recipient mice, which was associated to the inability of HSCs to 

proliferate (A. Wilson et al., 2004). One the other hand, over expression of c-Myc lead to loss of 

HSCs, and in mixed BM chimeric mice donor cells overexpressing c-Myc although capable of 

homing in BM and perform multilineage reconstitution in the short-term, in the long-term they 

nearly disappear, and it was proposed that enforced expression of c-Myc may result in HSCs 

premature functional exhaustion due to premature differentiation (A. Wilson et al., 2004, M. J. 

Murphy et al., 2005). These studies revealed that the fine-tuning of c-Myc expression in HSCs 

might be very important in the modulation of cell self-renewal and differentiation (A. Wilson et 

al., 2004). In the present study, we found the expression of c-Myc increased in LT-HSC following 

infection, suggesting that c-Myc upregulation may contribute to the impairment of HSCs function 

under pro-inflammatory conditions established by L. donovani infection.   

c-Myc deficiency in HSCs is not associated with significant alterations in differentiation in vitro, 

therefore is thought that the alterations observed in vivo may be partially explained by changes 

HSCs-BM stroma signals crosstalk (M. J. Murphy et al., 2005). In MxCre;c-mycflox/flox mice there 

were alterations in the expression of several adhesion molecules in LSK cells, including the 

increased expression of CD29 (β1-integrin), and it was suggested that c-Myc conditional deletion 

resulted in accumulation of HSCs and impaired differentiation due to withholding of HSCs in the 

BM niche (A. Wilson et al., 2004). In mice chronically infected with L. donovani we failed to 

determine any alteration in the expression of CD29. Overall, these finding suggested that L. 

donovani infection prompted the up-regulation of c-Myc in HSCs, but there was no indication that 

this was associated with impaired HSC-niche adhesion, at least mediated by CD29.  

The transcription factor GATA-3 is expressed in various HSPCs in BM, with LT-HSCs 

expressing the highest levels of GATA-3. In competitive transfer assays, GATA-3-null 

haematopoietic donor cells are less efficient to engraft, even though the fraction HSCs in 

quiescence is higher compared to WT mice. Furthermore, upon myelossuppression LT-HSCs 

from GATA-3 deficient mutants fail to enter into active cell-cycle, suggesting that GATA-3 is 

required for HSCs proliferation under conditions of stress-induce haematopoiesis (C.-J. Ku et al., 

2012).  More recently it was shown that upon poly I:C treatment proliferating HSCs display 

nuclear GATA-3 (active form), and although capable of performing short-term multilineage 

reconstitution are no longer efficient in long-term multilineage reconstitution of lethally irradiated 

recipients. However, if the proliferative stimulus is removed, GATA-3 re-localizes to the 

cytoplasm and the long-term lineage reconstitution is restored. Additionally, in competitive 
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transplant assays of BM cell from poly I:C treated GATA-3-deficient and WT mice, GATA-3 

deficient cells are much more efficient performing haematopoietic reconstitution. These data 

suggested that GATA-3 might limit self-renewal during proliferation of HSCs (C. Frelin et al., 

2013). 

Despite the conflicting data from the above cited studies, both pointed out that GATA-3 has a role 

in cell-cycle entry regulation in LT-HSCs during stress induced haematopoiesis (T. Yoshida and 

K. Georgopoulos, 2013). In mice infected with L. donovani, we determined that GATA-3 

expression was up-regulated in LT-HSCs. However, its expression was mainly restricted to LT-

HSCs in active cell-cycle. In fact, LT-HSCs in active cell-cycle expressing GATA-3 were the 

population that mostly contributed to the overall increase of LT-HSCs in proliferation, since the 

fraction of proliferating LT-HSCs not expressing GATA-3 remain unchanged following infection. 

The specific increase of GATA-3 in proliferative HSCs but not HSCs in G0 following L. 

donovani, and its limited contribution to the fraction of HSCs in homeostatic proliferation, 

suggested GATA-3 over expression due to inflammation was associated with an impaired 

maintenance of homeostatic numbers of LT-HSCs in quiescence, during L. donovani chronic 

infection. Therefore, GATA-3 and upstream regulators should be considered as potential targets 

for therapeutic intervention in the prevention of HSCs impairment during stress-induced 

haematopoiesis. 

In vitro studies suggested that nuclear localization of GATA-3 depends directly on p38 MAPK 

activation, as shown by pharmacological inhibition (C. Frelin et al., 2013). More recently, it was 

shown that the (deubiquitinase cylindromatosis) CYLD - (tumor necrosis factor–associated factor 

2) TRAF2 pathway is very important for the regulation of LT-HSCs quiescence through the 

repression of p38MAPK activity (M. Tesio et al., 2015). In Mx1-Cre conditional KO for 

functional CYLD (CYLDΔ932Mx) mice, the majority of LT-HSCs are found in active proliferation 

and in BMT assays BM cells from CYLDΔ932Mx mice perform very poor reconstitution of all 

lineages in blood and HSCs in BM. TRAF2 is a CYLD substrate and using mutant mice 

displaying hyper-ubiquitinated TRAF2, it was observed loss of quiescent LT-HSCs was similar to 

that seen in CYLDΔ932Mx mice. TRAF2 controls the activation of p38 MAPK, and it was shown 

that therapeutic inhibition (using two different specific inhibitors) in vivo of p38 activation could 

restore the frequency of quiescent LT-HSCs to baseline levels both, in mutant mice displaying 

hyperubiquitinated TRAF2 and in CYLDΔ932Mx mice, suggesting that CYLD–TRAF2 pathway 

regulates HSCs passage to active cell-cycle preventing p38MAPK activity (M. Tesio et al., 2015). 

However, in these experiments p38 activity was inhibited in all cells, as such to isolate the impact 

of p38 in HSCs, those cells from mice treated with the pharmacological inhibitors should have 

been transfer to conditioned recipients. These studies emphasize the pertinence of the further 
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investigation focusing in the role of p38MAPK and GATA-3 in loss of HSCs function in the 

context of chronic infection.    

Alterations in haematopoietic function have been commonly found in patents suffering from 

chronic infections. VL is a pernicious chronic infection that has been associated with the 

establishment of haematopoietic alterations and increased vulnerability to secondary infections or 

bleeding (P. M. Kaye et al., 2004). Nevertheless, very few systematic reports have addressed the 

underlying mechanisms responsible for these haematological alterations or their association with 

the stage of disease, geographic area, response to treatment and relapse, among others (G. E. 

Cartwright et al., 1948, N. Varma and S. Naseem, 2010).  The research discussed in this Chapter 

provides a first step in readdressing this deficiency in knowledge on the impact of L. donovani in 

the haematopoietic function. We have shown that following L. donovani infection in mice, 

expansion of multipotent progenitors occurs at the expense of quiescent LT-HSCs, which resulted 

in intrinsic impairment of HSCs function (Figure 3.28). We were able to relate the alteration in 

the proliferative status of LT-HSCs and consequent functional decline with the upregulation of 

the co-activator CD48, and transcription factors β-catenin, c-Myc and GATA-3. These findings 

support the hypothesis that during L. donovani chronic infection, sustained infection-induced 

immune responses compromise HSCs function and in the long-term the sustainability of the 

haematopoietic compartment. Furthermore, we identified potential molecular targets that, 

although requiring further investigation, could be in the basis of novel therapeutic approaches to 

address haematological impairment in VL patients, and other chronic inflammatory conditions. 
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3.4 FIGURES 

 

 

Figure 3.1 - L. donovani parasites in BM. BM smear from B6 mouse infected for 28 days. 

Parasite indicated by arrow. Giemsa staining 63x. Source: Pinho F. and Pinto A.I. (Unpublished). 
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Figure 3.2- Diagram of stepwise differentiation of haematopoietic precursors and panel of 

associated surface molecular markers commonly used to characterize the different 

haematopoietic stem and progenitor cells (HSPCs). According with the “Classical Model” of 

haematopoiesis, all haematopoietic cells originate from a small population of haematopoietic stem 

cells (HSCs), which can be subdivided into at least two subsets based on the period of 

maintenance of self-renewal potential following transfer to lethally irradiated recipient mice: 

long-term reconstituting HSC (LT-HSCs) and short-term reconstituting HSCs (ST-HSCs). 

Differentiation of ST-HSCs generates multipotent progenitors (MPPs) and then lineage-

committed oligopotent progenitors derived from MPPs. These include the common lymphoid 

progenitor (CLPs), common myeloid progenitor (CMPs), megakaryocyte-erythrocyte progenitor 

(MEP) and granulocyte-monocyte progenitor (GMP) populations (Adapted from (M. J. Nemeth 

and D. M. Bodine, 2007)). 
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Figure 3.3 - Gating strategy for characterizing multipotent progenitors using flow cytometry 

analysis. Representative dot plots from BM cells from a naive B6 mouse. LSK CD150+ Flt3- 

CD34- cells (enriched for phenotypic LT-HSCs), LSK CD150+ Flt3- CD34+ cells (enriched for 

phenotypic ST-HSCs) and LSK CD150- Flt3+ CD34+ cells (enriched for phenotypic MPPs). LSK 

stands for Lineage neg (CD3e- CD45R/B220- TER-119- Ly-6G- Ly-6C- cells) Sca1hi cKithi cells. 
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Figure 3.4 - Gating strategy for characterizing BM populations enriched for lineage-

committed haematopoietic progenitors using flow cytometry. Representative dot plots of 

characterization of lineage-committed progenitor cells in the BM of a naive B6 mouse. CMPs 

(common myeloid progenitor cells), GMPs (granulocyte-monocyte progenitor cells), MEPs 

(megakaryocyte-erythrocyte progenitor cells) and CLPs (common lymphocyte progenitor cells). 
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Figure 3.5 - Sca1 was expressed in the vast majority of HSPCs in the BM of L. donovani 

infected mice. Representative dot plots of expression of Sca1 within lineage negative cells in the 

BM of a naive (left) and day 28 - infected mice  (right). b) Representative dot plots from BM cells 

from a B6 mouse infected for 28 days with L. donovani. LSK CD150+ Flt3- CD34- cells (enriched 

for phenotypic LT-HSCs), LSK CD150+ Flt3- CD34+ cells (enriched for phenotypic ST-HSCs) 

and LSK CD150- Flt3+ CD34+ cells (enriched for phenotypic MPPs). LSK stands for Lineage neg 

(CD3e- CD45R/B220- TER-119- Ly-6G- Ly-6C- cells) Sca1hi cKithi cells.c) Representative dot 

plots of characterization of lineage-committed progenitor cells in the BM of B6 mouse infected 

for 28 days with L. donovani. CMPs (common myeloid progenitor cells), GMPs (granulocyte-

monocyte progenitor cells), MEPs (megakaryocyte-erythrocyte progenitor cells) and CLPs 

(common lymphocyte progenitor cells). 
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Figure 3.6 - The kinetics of parasite burden in the BM and the spleen of L. donovani infected 

mice.  L. donovani infected B6 mice were examined for parasite burden at times indicated. (a) 

Spleen parasite burden determined from Giemsa stained impression smears and expressed as 

Leishman Donovan Units (LDU). (b) BM parasite burden determined from BM aspirates smears 

stained with eosin and azur staining and expressed as number of amastigotes per 1,000 host cells. 

(c) Degree of splenomegaly, expressed as spleen / body weight ratio. Data from one experiment 

represented as Mean ± SD (n=3-4 mice per time point). 
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Figure 3.7 - L. donovani infection affects the BM and the spleen cellularity.  (a) Absolute cells 

number of BM cells per two legs for each sample at indicated times post infection with L. 

donovani. (b) Absolute cells number of splenocytes. Data presented as Mean ± SD for (n=4 mice 

per group per time point). Data from one experiment was presented as Mean ± SD, p values were 

determined using unpaired t test: *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. 
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Figure 3.8 - L. donovani infection results in changes to the number of HSPCs in BM. (a) 

Relative frequency of Lineage- cKit+ cells (enriched for HSPCs). (b) Relative number of Lineage- 

cKit+ cells (enriched for HSPCs). (c) Relative frequency of LSK CD150+ Flt3- CD34- cells 

(enriched for phenotypic LT-HSCs), LSK CD150+ Flt3- CD34+ cells (enriched for phenotypic ST-

HSCs), and LSK CD150- Flt3+ CD34+ cells (enriched for phenotypic MPPs). (d) Relative number 

of LSK CD150+ Flt3- CD34- cells, LSK CD150+ Flt3- CD34+ cells and LSK CD150- Flt3+ CD34+ 

cells. (f) Relative frequency of CMPs, GMPs, MEPs and CLPs. (f) Relative number of CMPs, 

GMPs, MEPs and CLPs. Data from one experiment was presented as Mean ± SD of normalized 

values for each infected mice (n=4) with the mean of values determined in naive mice (n=4), for 

each time point. Measurements were performed at 3 (n=4), 16 (n=4), 28 (n=4) and 64 (n=3) days 

post-infection with L. donovani in the BM (two femurs and two tibias per mice). Significant 
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differences with control (* p < 0.05) were determined by one-way ANOVA followed by post-hoc 

analysis using Dunnett's Multiple Comparison Test. 
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Figure 3.9 - L. donovani infection results in changes to the number of HSPCs in the spleen. 

(a) Relative frequency of Lineage- cKit+ cells (enriched for HSPCs). (b) Relative number of 

Lineage- cKit+ cells (enriched for HSPCs). (c) Relative frequency of LSK CD150+ Flt3- CD34- 

cells (enriched for phenotypic LT-HSCs), LSK CD150+ Flt3- CD34+ cells (enriched for 

phenotypic ST-HSCs), and LSK CD150- Flt3+ CD34+ cells (enriched for phenotypic MPPs). (d) 

Relative number of LSK CD150+ Flt3- CD34- cells, LSK CD150+ Flt3- CD34+ cells and LSK 

CD150- Flt3+ CD34+ cells. (f) Relative frequency of CMPs, GMPs, MEPs and CLPs. (f) Relative 

number of CMPs, GMPs, MEPs and CLPs. Data from one experiment was presented as Mean ± 

Standard Error Mean (SD) of normalized values for each infected mice (n=4) against the mean of 

values determined in naive mice (n=4), for each time point. Measurements were performed at 3 

(n=4), 16 (n=4), 28 (n=4) and 64 (n=3) days post-infection with L. donovani in the spleen. 
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Significant differences with control (* p < 0.05) were determined by one-way ANOVA followed 

by post-hoc analysis using Dunnett's Multiple Comparison Test. 
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Figure 3.10 - L. donovani infection results in increased numbers of multipotent 

haematopoietic progenitors without a reciprocal increase in lineage-committed progenitors. 

(a) Frequency of Lineage- Sca1+ cKit+ cells (LSK), enriched for multipotent progenitors, LSK 

CD150+ Flt3- CD34- cells (enriched for phenotypic LT-HSCs), LSK CD150+ Flt3- CD34+ cells 

(enriched for phenotypic ST-HSCs) and LSK CD150- Flt3+ CD34+ cells (enriched for phenotypic 

MPPs). (b) Number of LSKs, LSK CD150+ Flt3- CD34- cells, LSK CD150+ Flt3- CD34+ cells and 

LSK CD150- Flt3+ CD34+ cell. (c) Frequency of CMPs, GMPs, MEPs and CLPs. (d) Number of 

CMPs, GMPs, MEPs and CLPs. Measurements were performed at 28 post-infection with L. 

donovani (Ld28) in BM. Absolute number calculated from two femurs and two tibias for each 

mouse. Comparisons were made between naive (n=12) and infected mice (n=8) in three 

independent experiments. Data presented as Mean ± SD, p values were determined using unpaired 

t test: *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001.  
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Figure 3.11 - L. donovani infection was associated to decreases in mature blood cells in 

circulation. (a) Concentration of red blood cells (RBC) in peripheral blood (PB). (b) PB 

hematocrit (HCT). (c) Concentration of hemoglobin (Hb) in PB. (d) Concentration of platelets 

(PLT) in PB. (e) Concentrations of total white blood cells (WBC), lymphocytes (LY), neutrophil 

(NE), monocytes (MO), basophils (BA) and eosinophils (EO) in PB. Values were determined in 

whole blood collected in heparin using an automated system for blood cell counting (Hemavet). 

Comparisons were made between mice at day 28 p.i. (Ld28) (n=9) and naive mice (n=9). Data 

from two independent experiments is presented as Mean ± SD, p values were determined using 

unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. 
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Figure 3.12 - L. donovani infection was not associated with increased cell death in the bone 

marrow. The frequency of live/viable cells was determined within mature cells and HSPCs in 

bone marrow through the exclusion of cells permeable to the live dead dye (dead) and/or positive 

to annexin-v (apoptotic). (a) Representative dot plots of gating applied to select live/dead cells. 

(b) Frequency of live/viable cells within CD45- Lin- cells (stromal cells), CD45+ Lin+ cells 

(mature haematopoietic cells), CD45+ Lin- (enriched for haematopoietic progenitor cells), CD45+ 

LSK CD150+ CD34- cells (enriched for LT-HSCs) and CD45+ LSK CD150+ CD34- (enriched for 

ST-HSCs). Comparisons were made between mice infected with L. donovani for 28 days (Ld28) 

(n=4) and naive mice (n=4). Data from one experiments is presented as Mean ±	SD, p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, 

****p ≤0.0001. 
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Figure 3.13 - HSPCs from infected mice showed impaired engraftment in BM and decreased 

reconstitution of the periphery. (a) Diagram of experimental design: non-infected B6.CD45.1 x 

CD45.2 (n=4) lethally irradiated recipient mice received BM Lineage negative cells from 

B6.CD45.2 mice infected for 28 days with L. donovani and B6.CD45.1 naive mice (50:50 mixed 

BM chimera). After seven weeks, the contribution of each group of donor cells to the 

reconstitution of the haematopoietic system was assessed in the BM and spleen of recipient mice, 

by gating on single CD45.1 or CD45.2 cells. (b) Frequency of donor haematopoietic cells in BM 

and spleen of recipient mice. (c) Frequencies of T cells, B cells and myeloid cells (CD11b+) 

within donor compartment in the spleen of non-infected recipient mice. (d) Frequencies LSKs, 

LSK CD150+ Flt3- CD34- cells, LSK CD150+ Flt3- CD34+ cells and LSK CD150- Flt3+ CD34+ cell 
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within each donor compartment in the BM of non-infected recipient mice. (e) Frequency of 

CMPs, GMPs, MEPs and CLPs within each donor compartment in the BM of non-infected 

recipient mice. Data presented as Mean and Scatter plot. Comparisons made between infected 

donor cells and naive donor cells. p value were determined using Mann Whitney test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ****p ≤0.001. 
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Figure 3.14 - Increased expression of CD48 on LSK CD150+ CD34- cells (enriched for 

phenotypic LT-HSCs) following L. donovani infection. (a) Frequency of LSK CD150+ CD34- 

CD48- cells, LSK CD150+ CD34+ CD48+ cells and LSK CD150+ CD34+ cells in BM of B6 mice 

non-infected and infected mice. (b) Number of LSK CD150+ CD34- CD48- cells, LSK CD150+ 

CD34+ CD48+ cells and LSK CD150+ CD34+ cells in BM of B6 mice non-infected and infected 

mice. (c) Frequency of cells not expressing CD48 within LSK CD150+ CD34- cell in BM of B6 

mice non-infected and infected mice. (d) Representative dot plots of gating strategy applied to 

define CD48 positive expression according with the isotype control background (top left), dot 

plots displaying frequency of CD48+ and CD48- cells within LSK CD150+ CD34- population in a 

naive (bottom left) and in a infected mouse (bottom right). Comparisons were always made with 

BM cells recovered from non-infected mice and mice infected with L. donovani for 28 days 

(Ld28). Absolute numbers were calculated from two femurs and two tibias for each mouse. 

Comparisons were made between naive (n=12) and infected mice (n=12), from three independent 

experiments. Data was presented as Mean ± SD, p values were determined using unpaired t test: 

not significant, *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001.  
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Figure 3.15 - Loss of quiescent LSK CD34- CD150+ CD48- cells (enriched for LT-HSCs) 

following L. donovani infection. (a) Frequency of Ki67+ within LSK CD150+ CD34- CD48- cells, 

LSK CD150+ CD34+ CD48+ cells and LSK CD150+ CD34+ cells in BM of B6 mice non-infected 

and infected mice. (b) Number of LSK CD150+ CD34- CD48- cells, LSK CD150+ CD34+ CD48+ 

cells and LSK CD150+ CD34+ in active cell-cycle (expressing Ki67) in BM of B6 mice non-

infected and infected mice. (c) Number of LSK CD150+ CD34- CD48- cells in G0 (not expressing 

Ki67) in BM of B6 mice non-infected and infected with LV9 for 28 days. (d) Representative dot 

plots of gating strategy applied to define Ki67 expression according with the isotype control 

background (top left), dot plots displaying frequency of Ki67+ and Ki67- cells within LSK 

CD150+ CD34- CD48- population in a naive (bottom left) and in a infected mouse (bttom right). 

Comparisons were always made with cells recovered from the BM of non-infected mice (n=10) 

and mice infected with L. donovani for 28 days (Ld28), (n=11). Absolute numbers were 

calculated from two femurs and two tibias for each mouse. Data presented from three independent 

experiments was presented as Mean ± SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. 
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Figure 3.16 - LSK CD150+ CD34- CD48- cells (enriched for HSCs) from infected mice were 

impaired in their efficiency to engraft and poorly reconstituted the periphery. (a) 

Representative dot plots of gating strategy used to segregate between recipient (CD45.1) and 

donor cells (CD45.2) within live cells, displaying frequency for each population in BM: naive B6 

CD45.1 control (left), recipient transplanted HSCs derived from naive donor (center) and 

recipient transplanted with HSCs derived from infected donor (right). (b) Frequency of donor 

haematopoietic cells in the BM and in the spleen of recipient mice. (c) Number of donor 

haematopoietic cells in the BM and in the spleen of recipient mice. (d) Frequency of donor 

haematopoietic progenitors cells: Lin- Sca1- cKit+ cells (enriched for lineage-committed 

progenitors), LSK cells (enriched for non-committed progenitors), LSK CD150+ FLT3- CD34- 

cells, LSK CD150+ FLT3- CD34+ cells, LSK CD150+ FLT3+ CD34+ cells within donor cells in 

BM of recipient mice. (e) Frequency of mature haematopoietic cells: B cells, T cells and CD11b+ 

cells (myeloid cells) within donor cells in the spleen of recipient mice. Analysis were performed 

16 weeks after transplant of CD45.2 HSCs (160 cells) sort purified from mice naive or day 28 
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infected mice along with a radiation protective dose of 3.5 x 105 CD45.1 total BM cells to lethally 

irradiated CD45.1 recipients. Absolute numbers were calculated from two femurs and two tibias 

for each mouse. Data shown as scatter plot and mean bar. Comparisons were made between naive 

donor cells (n=4) and infected donor cells (n=4 or n=3). p values were determined using unpaired 

t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ****p ≤0.001. 
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Figure 3.17 - LSK CD150+ CD34- CD48- cells (enriched for HSCs) from infected mice were 

impaired in engraftment efficiency in secondary adoptive transfer. (a) Representative dot 

plots of gating strategy used to segregate between recipient (CD45.1) and donor cells (CD45.2) 

within live cells, displaying frequency for each population in BM: naive B6 CD45.1 control (left), 

recipient transplanted HSCs derived from naive donor (center) and recipient transplanted with 

HSCs derived from infected donor (right). (b) Number of donor haematopoietic cells in the BM 

and in the spleen. (c) Number of LSK cells (enriched for non-committed progenitors), LSK 

CD150+ CD48- cells and LSK CD150+ CD48+ cells derived from donor cells, in BM. (d) Number 

of lineage-committed progenitors (enriched among Lin- Sca1- cKithi cells), CMPs, GMPs, MEPs 

and CLPs derived from donor cells in the BM. (e) Number of mature haematopoietic cells derived 

from donor cells in the spleen of recipient mice: B cells, T cells and CD11b+ cells, CD11b- F4/80+ 

cells, CD11c+ MHC II+ cells. Analysis performed 24 weeks after transplant into B6 CD45.1 

lethally irradiated mice of radiation protective total BM cells (3.5x105) and 50 CD45.2 HSCs 
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(LSK CD150+ CD34- CD48- cells) sort purified from CD45.1 recipient mice previously that were 

previously adoptively transferred with CD45.2 HSCs from mice naive or day 28 infected mice, 

alongside a radiation protective dose of total BM cells, to lethally irradiated CD45.1 recipient 

mice for 16 weeks. Absolute numbers were calculated from two femurs and two tibias for each 

mouse. Data was presented as scatter plot and mean bar. 
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Figure 3.18 - LSK CD34- CD150+ CD48- cells (enriched for LT-HSCs) accumulate higher 

levels of β-Catenin. (a) Representative histogram overlay of β-catenin expression in LSK CD34- 

CD150+ CD48- cells (enriched for LT-HSCs): isotype control (grey), naive mouse (green) and 

infected mouse (orange). (b) Fold change in mean intensity fluorescence (MFI) of β-catenin in 

LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and 

LSK CD150+ CD34+ cells infected mice, in each experiment the MFI calculated for infected mice 

was divided by the average MFI calculated for naive controls in each experiment. Comparisons 

were always made with cells recovered from the BM of non-infected mice (n=13) and mice 

infected with L. donovani for 28 days (Ld28), (n=13). Data presented from three independent 

experiments was presented as Mean ± SD, p values were determine using Wilcoxon signed-rank 

test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. 
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Figure 3.19 - Mature haematopoietic cells in bone marrow of L. donovani infected mice 

express increased levels of Wnt3a protein. (a) The frequency of cells Wnt3a+ was determined 

within CD45- Lin- cells (stromal cells), CD45+ Lin+ cells (mature haematopoietic cells), CD45+ 

Lin- cells (enriched for haematopoietic progenitor cells), CD45+ LSK CD150+ CD48+ cells and 

CD45+ LSK CD150+ CD48- cells. (b) Mean intensity fluorescence (MFI) of Wnt3a in LSK 

CD150+ CD48- cells (enriched for LT-HSCs) and LSK CD150+ CD48+ cells expressing Wnt3a in 

BM of naive and infected mice. (c) Representative histogram overlay of Wnt3a expression in 

LSK CD150+ CD48- cells (enriched for LT-HSCs): naive isotype control (dark grey), infected 

isotype control (light grey), naive mouse (green) and infected mouse (orange). (d) Representative 

dot plots of gating applied to select Wnt3a positive cells in CD45+ Lin+ cells. Comparisons were 

always made with cells recovered from the BM of non-infected mice (n=4) and mice infected 

with L. donovani for 28 days (Ld28), (n=4). Data from one experiment was presented as Mean ± 

SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001, ****p ≤0.0001. 
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Figure 3.20 - Accumulation of Wnt3a mRNA is reduced in total BM cells from L. donovani 

infected mice. Quantitative PCR (qPCR) analysis of Wnt3a mRNA accumulation in total bone 

marrow cells cells. Results are presented in-terms of a fold change after normalizing with HPRT1 

mRNA. Comparisons were made with cells recovered from the BM of non-infected mice (n=3) 

and mice infected with L. donovani for 28 days (Ld28), (n=3). Data from one experiment was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001, ***p ≤0.0001.  
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Figure 3.21 - HSCs in BM expressed increased levels of c-Myc during infection with L. 

donovani. (a) Mean intensity fluorescence (MFI) of cMyc-EGFP in LSK CD150+ CD48- cells 

(enriched for LT-HSCs) and LSK CD150+ CD48+ cells in BM of naive and infected mice. (b) 

Representative histogram overlay of c-Myc-EGFP expression in LSK CD150+ CD48- cells 

(enriched for LT-HSCs): WT control (grey), naive mouse (green) and infected mouse (orange). 

Comparisons were always made with cells recovered from the BM of non-infected mice (n=3) 

and mice infected with L. donovani for 28 days (Ld28), (n=3). Data from one experiment was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001, ***p ≤0.0001. 
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Figure 3.22 - The expression of CD29 levels in LT-HSCs was unaltered during infection with 

L. donovani. (a) Mean intensity fluorescence (MFI) of CD29 in LSK CD150+ CD34- CD48- cells 

(enriched for LT-HSCs) LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells in BM 

of naive and infected mice. (b) Representative histogram overlay of CD29 expression in LSK 

CD150+ CD34- CD48- cells (enriched for LT-HSCs): WT control (grey), naive mouse (green) and 

infected mouse (orange). Comparisons were always made with cells recovered from the BM of 

non-infected mice (n=3) and mice infected with L. donovani for 28 days (Ld28), (n=3). Data from 

one experiment was presented as Mean ± SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ***p ≤0.0001. 
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Figure 3.23 - The frequency of LSK CD150+ CD48- cells (enriched for LT-HSCs) expressing 

GATA-3 was increased following L. donovani infection. (a) The frequency of GATA-3+ cells 

was determined within CD45+ Lin+ cells (mature haematopoietic cells), CD45+ Lin- cKit+ cells 

(enriched for haematopoietic progenitor cells), CD45+ LSK CD150+ CD48+ (other multipotent 

progenitors) cells and CD45+ LSK CD150+ CD48- cells (enriched for LT-HSCs). Data from two 

independent experiment was presented as Mean ± SD, p values were determined using unpaired t 

test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ***p ≤0.0001. (b) Fold change in 

mean intensity fluorescence (MFI) of GATA-3 in LSK CD150+ CD48- cells and LSK CD150+ 

CD48+ cells expressing GATA-3 in BM of infected mice calculated using the average MFI 

determined in naive mice for each experiment. Data from two independent experiment was 

presented as Mean ± SD, p values were determined using Wilcoxon signed-rank test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. Comparisons were always 

made with cells recovered from the BM of non-infected mice (n=8) and mice infected with L. 

donovani for 28 days (Ld28), (n=8). (c) Representative dot plots of gating applied to select 

GATA-3 positive cells in LSK CD150+ cells. 
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Figure 3.24 - The distribution of LSK CD150+ CD48- cells (enriched for LT-HSCs) 

segregated according with the expression of GATA-3 and Ki67 is altered following L. 

donovani infection. (a) Distribution of cells according with Ki67 and GATA-3 expression within 

LSK CD150+ CD48- cells. Comparisons were always made with cells recovered from the BM of 

non-infected mice (n=8) and mice infected with L. donovani for 28 days (Ld28), (n=8). Data 

presented from two independent experiment is presented as Mean, p value was determined using 

Chi-square test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001, ***p ≤0.0001. (b) 

Representative dot plots of Ki67 and GATA-3 expression within LSK CD150+ CD48- cells. 
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Figure 3.25 - Cycling LSK CD150+ CD48- cells (enriched for LT-HSCs) upregulated GATA-

3 expression following L. donovani infection. Frequency of cells expressing Ki67 and GATA-3 

within LSK CD150+ CD48- cells, in BM of naive and infected mice. Comparisons were always 

made with cells recovered from the BM of naive mice (n=8) and mice infected with L. donovani 

for 28 days (Ld28), (n=8). Data from two independent experiment was presented as Mean ± SD, p 

values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p 

≤0.001, ****p ≤0.0001. 
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Figure 3.26 - Detection of the subcellular localization of GATA-3 protein by 

immunofluorescence microscopy analyses in total thymocytes. Representative confocal 

immunofluorescence microscopy images of thymocytes of mice infected with L. donovani for 28 

days were fixed, permeabilized, and examined for GATA-3 (red) and the DNA-intercalating dye 

DAPI (blue) expression. Confocal fluorescent images were obtained with a objective Plan-

Apochromat 63x. Bar, 5 µm 
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Figure 3.27 - GATA-3 protein subcellular localization by immunofluorescence microscopy 

analyses in LSK cells from BM. Representative confocal immunofluorescence microscopy 

images of sorted LSK cells from the BM of mice infected with L. donovani for 28 days, which 

were fixed, permeabilized, and examined for GATA-3 (red) and the DNA-intercalating dye DAPI 

(blue) expression. Confocal fluorescent images were obtained with objective Plan-

Apochromat 63x. Bar, 5 µm. 
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Figure 3.28 - Leishmania donovani infection resulted in the depletion of the reservoir of 

quiescent LT-HSCs in BM. Following L. donovani infection LT-HSCs and onward multipotent 

progenitors expand greatly at the expense of LT-HSCs in G0. The accumulation of intermediary 

multipotent progenitors is not associated to an increase in effective haematopoietic activity since 

the numbers of effector haematopoietic cells are unchanged or even reduced in circulation. 
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CHAPTER 4. CELLULAR AND MOLECULAR 

DETERMINANTS UNDERLYING ALTERATIONS 

IN HAEMATOPOIESIS DURING INFECTON 

WITH L. DONOVANI 

4.1 INTRODUCTION 

VL is still one of the most neglected tropical diseases despite its dramatic impact in morbidity and 

mortality in endemic areas. This infection is fatal if left untreated and a prophylactic vaccine is 

not yet available. In very severe cases, patients may die due to increased vulnerability to 

secondary infection or due to coagulopathies (M. A. Santos et al., 2002, V. E. Miranda de Araujo 

et al., 2012). In humans, the clinical manifestations of disease vary considerably from sub-clinical 

to severe and include, hepatosplenomegaly, fever, weight loss and pancytopenia (P. M. Kaye et 

al., 2004).  

Alterations in the haematological system are common in chronic VL, not only in humans and 

dogs, natural reservoirs for L. donovani (N. Varma and S. Naseem, 2010, F. A. d. Pinho, 2015), 

but also in experimental models of disease such as mice and hamsters (W. P. Lafuse et al., 2013, 

F. A. d. Pinho, 2015). The impairment of the haematological system includes changes not only in 

peripheral blood, such as anaemia, thrombocytopenia and leucopenia, but also alterations in BM 

such as erythroid hypoplasia, dysplasia of myeloid cells, accumulation of blasts and histiocytic 

hyperplasia (N. Varma and S. Naseem, 2010, F. A. d. Pinho, 2015). Nevertheless, the mechanisms 

by which VL modulates alterations in the haematological system remain elusive. 

The induction of stress-induce haematopoiesis during infection have been long described as 

means to replace the large numbers of immune effector cells consumed fighting invading 

pathogens, for example emergency myelopoiesis in septicemia. In recent years, it has been shown 

that HSPCs, besides responding to the increased demand for immune cells, can be directly 

activated by pathogen-associated patterns and pro-inflammatory cytokines, recognized 

respectively by pattern recognition receptors and cytokines receptors, expressed on their surface. 

Furthermore, the impact of infection is not restricted to lineage-committed progenitors, but 

includes more immature cells such as LT-HSCs (K. Y. King and M. A. Goodell, 2011). 

The regulation of LT-HSCs numbers is a strictly regulated process aiming to maintain the 

homeostatic levels of blood cells and simultaneously prevent LT-HSCs exhaustion (C. Mirantes et 

al., 2014). Under homeostatic condition most LT-HSCs are in quiescence, which have been 
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correlated to the maintenance of long-term self-renewal potential and multipotency, and protects 

these cells from cytotoxicity and mutagenesis (M. R. Warr et al., 2011). Nevertheless, LT-HSCs 

can be very quickly pushed into active cell-cycle by a multiplicity of stimuli, including TLR-

signalling, pro-inflammatory cytokines and growth factors (K. Y. King and M. A. Goodell, 2011). 

Haematopoietic progenitors possess the machinery to directly sense infectious particles, such as 

TLRs, and high expression of TLR2, TLR4, and MD-2 mRNA was observed in HSCs (Y. Nagai 

et al., 2006b). In vitro cultures of purified LSK cells (a population highly enriched in HSCs) 

showed that these primitive cells respond to LPS, a TLR4 ligand, or Pam3CSK4, a ligand for 

TLR2, increasing the expression of markers associated with myeloid lineage commitment. The 

stimulation of TLR2 and TLR4 was also associated with increased proportions of cells in cell-

cycle within HSCs (LSK Flt3- cells), as assessed by BrdU labelling experiments (Y. Nagai et al., 

2006a). In mice infected with Pseudomonas aeroginosa, a model for severe sepsis, intact TLR4 

signalling was required to activate LSK cells into proliferation in response to the infection (S. 

Rodriguez et al., 2009). 

It was proposed that during infection, high systemic levels of M-CSF may act on M-CSF receptor 

expressed on LT-HSCs and induce the expression of the transcription factor PU.1, driving HSCs 

differentiation toward the myelomonocytic lineage (N. Mossadegh-Keller et al., 2013). In vivo 

experiments showed the induction of PU.1 expression in LT-HSCs in LPS-challenged hosts or 

after injection of recombinant M-CSF, and this was correlated to an increase in myeloid 

progenitors in BM and myeloid effector cells in the spleen (N. Mossadegh-Keller et al., 2013).  

The mouse model of M. avium infection allowed the study of HSC in a chronic non-cytopenic 

systemic infection, characterized by the maintenance of the absolute number of mature cells in 

circulation. During infection an increase in the proliferation and mobilization of LT-HSCs was 

observed, and these displayed decreased repopulation capacity in secondary recipients. These 

features were abrogated in mice lacking IFNγ receptor 1 (Ifngr1) or Stat1, encoding the 

downstream signal transducer for IFNγ receptor subunit 1 (M. T. Baldridge et al., 2010). 

In addition to systemic factors, signals provided by the BM microenvironment including 

osteoblasts, osteoclasts, endothelial cells, adipocytes and mesenchymal stem and progenitor cells, 

the so-called BM stroma (F. E. Mercier et al., 2012), regulate the functions of HSCs and other 

haematopoietic progenitors. Several studies have suggested that the BM stroma can respond to 

infection through the expression and secretion of immunomodulatory molecules, which can then 

modulate the haematopoiesis (F. E. Mercier et al., 2012). For example, it has been showed that 

following LPS administration, MSCs express CCL2, and this was also reported in mice infected 

with Listeria monocytogenes. The deletion of CCL2 in MSCs (Nestin+ cells) was associated with 
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impaired monocyte emigration from the BM resulting in increased susceptibility to L. 

monocytogenes infection (C. Shi et al., 2011). Furthermore, exogenous administration of G-CSF, 

which is released during inflammation, was associated with a decrease in CXCL12 production by 

osteoblasts that resulted in increased mobilization of HSCs (M. J. Christopher et al., 2009).  

More recently, it was shown that in mice infected with LCMV, a model of acute viral infection, 

CD8+ T cells expressing IFNγ favor myelopoiesis indirectly through the induction of IL-6 

secretion by BM stromal cells (C. M. Schuerch et al., 2014), suggesting that BM T cells may have 

an important role in mediating changes in haematopoiesis during infection. 

T cells reside in BM, composing 4-8% of total BM cells. The function of the T cell compartment 

in BM has, however, seldom been investigated. Recent studies positioned BM as a preferential 

site for homing and persistence of memory T cells with high proliferative potential to a second 

encounter with a cognate antigen (F. Di Rosa and R. Pabst, 2005, K. Tokoyoda et al., 2009b, K. 

Tokoyoda et al., 2010). Furthermore, alterations in BM T cells have been reported in patients 

suffering from BMF syndromes (C. Dufour et al., 2003) and in experimental models for aplastic 

anaemia (AA) (F.-c. Lin et al., 2014, C. Arieta Kuksin et al., 2015).  

The association between alterations in haematopoietic function and changes in BM T cells were 

also described in mice infected with Ehrlichia muris, displaying severe haematopoietic 

impairment (K. C. MacNamara et al., 2011b, Y. Zhang et al., 2013). In infected mice, LSK cells 

were found to be proliferating, which was mediated by IFNγ acting directly on LT-HSCs, with 

BM CD4+ T cells defined as the main source of IFNγ (Y. Zhang et al., 2013). 

The integration of systemic and local signals by HSCs and other haematopoietic progenitors may 

be a mechanism to allow these cells to respond the presence of invading pathogens, and guide 

progenitors to supply the haematopoietic systems with adequate cell types and amounts of 

effector cells required to mount an efficient immune response (C. Mirantes et al., 2014). On the 

other hand, prolonged activation of HSCs into active proliferation has been associated with 

functional exhaustion in several infection models (S. Rodriguez et al., 2009, M. T. Baldridge et 

al., 2010, Y. Zhang et al., 2013, K. A. Matatall et al., 2014), and may underlie the association 

between chronic infection and hematological dysfunction, commonly described in humans (A. 

Jain and M. Naniwadekar, 2013).  

Very recently it was showed that in mice challenged with Poly (I:C) (TLR3 ligand), which 

mimics the conditions for infection-induced haematopoiesis, HSCs are “pushed” to active cell-

cycle and this was associated with the acquisition of DNA-damage and severe functional 

impairment in long-term BMT assays (D. Walter et al., 2015). As such, study of the mechanisms 
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underlying haematological dysfunctions, frequently emerging as a consequence of an infection, 

are fundamental in the process of developing improved therapeutic approaches for the prevention 

of BMF syndromes.  

In Chapter 3, we established that L. donovani chronic infection induced the activation of LT-

HSCs into active proliferation at the expense of cells in quiescence, and this was related to the 

functional impairment of LT-HSCs following transfer to lethally irradiated mice. Both in humans 

and in experimental models of disease, the basis for the establishment of haematological 

alterations during chronic infection with L. donovani remain elusive. As such, in this chapter we 

aimed to study the molecular and cellular determinants underlying the impairment haematological 

function during experimental chronic VL.  
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4.2 RESULTS 

4.2.1 Infection with L. donovani in immunodeficient mice was not associated to the loss of 

quiescent HSCs in BM. 

Our initial characterization of L. donovani infection kinetics showed an overlap between the 

major alterations in the number of HSPCs and the peak of infection at 28 days p.i., both in BM 

and the spleen. In BM, there was a significant expansion of non-committed progenitors at the 

expense of LT-HSCs in G0 (Chapter 3). To determine whether these alterations were a function of 

parasite load per se, we infected immunodeficient Recombination activating gene 2 knockout 

(RAG2 KO) mice, establishing the conditions for a super-infection. We could not detect any 

differences in the number of multipotent haematopoietic progenitors onward from LT-HSCs in 

day 28 infected mice vs. non-infected mice (Figure 4.1a). Furthermore RAG2 KO mice were not 

depleted in the reservoir of quiescent HSCs upon infection (Figure 4.1b). As expected, extensive 

differences in parasite burden were found between RAG2 KO and wild-type (WT) mice (Figure 

4.1c) and splenomegaly was absent (Figure 4.1d). These data indicated that the alterations in LT-

HSCs and onward progenitors were not directly induced by parasite-derived molecules or through 

stimulus of innate immune response, but rather suggested a central role for the adaptive immune 

system as a driver of the haematopoietic alterations observed in WT mice.  

4.2.2 Splenectomy did not impact in the increase of intermediary multipotent progenitors 

nor in the loss of quiescent LT-HSCs during L. donovani infection  

In experimental VL, previous work using BALB/c mice suggested that the number of myeloid 

progenitors was increased in the spleen of infected mice based on the observation that the 

development of GM-CFU derived from infected mice splenocytes was enhanced in vitro assays 

(S. E. J. Cotterell et al., 2000a). To confirm these findings in B6 mice we evaluated the number of 

haematopoietic progenitors in the spleen of mice chronically infected with L. donovani directly ex 

vivo using flow cytometry. In the spleens of B6 we found significant increases in the frequency 

and number of HSPCs during chronic phase of infection (Figure 4.2a; Figure 4.2b). There were 

also significant alterations in lineage-committed cell compartment both in relative and absolute 

numbers. (Figure 4.3a; Figure 4.3b). These findings confirmed that experimental chronic VL is 

characterized by a noticeable increase in haematopoietic progenitors in the spleen, and therefore 

the establishment of extramedullary haematopoiesis. 
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To determine the impact of the spleen in the alterations seen in the BM, we assessed the effect of 

splenectomy on BM cellularity in mice infected for 28 days with L. donovani.  Our data showed 

that splenectomy did not impact on changes in BM cellularity during chronic phase of L. 

donovani infection. Splenectomized mice and “sham” infected mice showed the same degree of 

losses in the reservoir of quiescent HSCs (Figure 4.4a; Figure 4.4b), as well as, similar increases 

in multipotent precursors (Figure 4.4c; Figure 4.4d). We also could not determine any differences 

between splenectomized and “sham” infected mice regarding alteration neither in the frequency of 

lineage-committed progenitors (Figure 4.4e; Figure 4.4f), nor in the frequency of mature 

haematopoietic cells in BM (Figure 4.4g; Figure 4.4h). 

Hence, we could conclude that the alterations in the spleen and BM haematopoietic compartment 

during chronic infection with L. donovani were independent processes, and that the presence of 

splenomegaly was not impacting directly in the haematopoiesis in BM during chronic infection.  

If extramedullary haematopoiesis is taking place in the spleen its efficiency should be very limited 

since its abolishment did not account for further impairment in the haematopoietic system, such as 

further loss of HSCs in G0 or further alterations in lineage-committed progenitors and mature 

cells. Furthermore, recent findings from our laboratory determined that in B6 mice chronically 

infected with L. donovani splenectomy prior to the establishment of infection could not prevent 

the onset of anaemia, but limited thrombocytopenia (Preham O., unpublished data). Nevertheless, 

it is conceivable that compensatory mechanisms of extramedullary haematopoiesis take place in 

other organs following infection. 

4.2.3 L. donovani infection was characterized by increased numbers of BM T cells  

In the steady state CD4+ T cells represented 0.64 % ± 0.19 of total BM cells, or 2.26 x105 ± 7.49 x 

104 cells / femur-tibia pair. CD4+ T cells increased 24-fold (4.42 x 106 ± 2.92 x 106) during L. 

donovani infection, composing now 8.71% ± 2.83 of total BM cells (Figure 4.5a; Figure 4.5b). 

The frequency of CD8+ T cells in BM was also increased in infected compared to naive mice 

(2.74 % ± 0.98 vs 1.43 % ± 0.45, respectively), mirrored by an ~2-fold increase in the CD8+ T 

cell number (1.10 x 106 ± 7.99 x 105 vs. 5.07 x 105 ± 1.17 x 105) (Figure 4.5a; Figure 4.5b). CD3+ 

CD4- CD8- (double negative (DN)) T cells comprised 0.94 % ± 0.41 of BM cells in healthy 

controls, but their frequency dropped to 0.56 % ± 0.43 in the BM of chronically infected mice, 

however in absolute number no changes were observed following L. donovani infection (Figure 

4.5a; Figure 4.5b). The extent of the CD4+ T cell increase in BM was much more evident 

compared to the other lymphocytes evaluated, and accounted for an inversion in the proportion of 

CD4+ / CD8+ T cells in BM of mice chronically infected with L. donovani (Figure 4.5c). 
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The B cell compartment also presented significant changes during infection. The frequency of B 

cells was 3 fold decreased in the BM of infected mice (Figure 4.6a), consistent with a reduction in 

absolute number from 4.72 x 106 ± 2.32 x 106 in naive to 1.24 x 106 ± 3.50 x 106 cells in infected 

mice (Figure 4.6b).  We also assessed the frequency and number of overall myeloid cells (CD11b+ 

cells) in non-infected and infected mice. Despite the modest increase in the frequency of CD11b+ 

we did not find any significant alterations in cell number after 28 days of L. donovani infection 

(Figure 4.7a; Figure 4.7b). 

We then assessed if the stromal compartment presented alterations during infection. As there are 

not yet definitive cell markers to select for stromal cells in BM, we selected for cell populations 

enriched for MSCs (CD45- Ter119- CD31- Sca1+ CD51+ cells), osteoblastic lineage cells (CD45- 

Ter119- CD31- Sca1- CD51+ cells), and endothelial cells (CD45- Ter119- CD31+ cells), using 

parameters defined by others previously (I. G. Winkler et al., 2010, D. Fonseca-Pereira et al., 

2014) (Figure 4.8a). The overall stromal compartment (CD45- Ter119- cells) did not show 

significant differences during infection, either in frequency and absolute cell number (Figure 4.8b; 

Figure 4.8c). However a small but significant increase in MSCs was observed in infected mice 

(Figure 4.8d; Figure 4.8e). 

The analysis of cell distribution and counts revealed that the infection was modulating BM 

cellularity during chronic infection with L. donovani, of which amplification of the BM T cell 

pool was the most substantive.  

4.2.4 L. donovani infection results in increased numbers of “effector” T cells in BM 

Given the increase in number and frequency of BM CD4+ T cells during infection, these were 

further characterized for phenotype and function. CD4+ T regulatory cells (Tregs), defined as 

CD45+ CD3+ B220- CD4+ CD25hi FOXP3+ cells, were not contributing to the increase in total 

CD4+ T cell number (Figure 4.9a; Figure 4.9b). In contrast, Treg numbers did increase in the 

spleen (Figure 4.9c; Figure 4.9d). 

Next, we used CD62L (L-selectin) and CD44 to discriminate naive (CD62Lhigh CD44-/low), 

effector memory (CD62L-/low CD44high) and central memory (CD62Lhigh CD44high) CD4+ T cells 

(J. Hu and A. August, 2008, T. Lucas et al., 2010). In the BM of mice infected mice, CD62L-/low 

CD44high effector T cells appeared to contribute most to the changes in overall CD4+ T cell 

frequency and number in BM (Figure 4.10a; Figure 4.10b). 

Within the CD8+ T cell compartment, “central memory” and “effector memory” CD8+ T cells also 

increased in frequency and number  (Figure 4.10c; Figure 4.10d).  
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When we analyzed the distribution of each subset within the total CD4+ T cell compartment, it 

was clear that the majority of CD4+ T cells were CD62L-/low CD44high in the BM of infected mice 

(91.66 % ± 2.17 vs. 58.09% ± 8.36 in infected vs. naive respectively) (Figure 4.10e; Figure 

4.10g).  The proportion of CD62L-/low CD44high CD8+ T cells within the CD8+ T cell compartment 

also increased significantly at the expense of CD62Lhigh CD44-/low cells  (Figure 4.10f).  

It was reported by others that the distribution of T cells populations differs considerably between 

the BM and the spleen (P. W. Price and J. Cerny, 1999). Therefore these analyses were also 

performed on splenic T cells (Figure 4.11). The increase of CD4+ T cells in the spleen of infected 

mice appeared mainly due to CD62L-/low CD44high CD4+ T cells (Figure 4.11a; Figure 4.11b). 

Similarly, analysis of the frequencies of CD62L-/low CD44-/low and CD62Lhigh CD44high CD8+ T 

cells in total splenocytes showed no differences in infected mice compared to healthy controls 

(Figure 4.11c), although both populations increased in absolute cell number in infected mice 

(Figure 4.11d). 

In comparison to BM, CD4+ and CD8+ T cell subsets were more heterogeneous in spleen. Over 

half of CD4+ T cells were CD62L-/low CD44high in the BM of infected mice (26.93 % ± 3.58 vs 

60.28 % ± 7.27, naive vs infected), while CD62Lhi CD44low the most representative population in 

naive mice was decreased in chronically infected mice (47.21 % ± 7.85 vs. 23.76 % ± 8.71, naive 

vs. infected) (Figure 4.11e; Figure 4.11g). The proportion of CD62L-/low CD44high CD8+ T cells 

also increased significantly at the expense of CD62Lhigh CD44-/low cells (Figure 4.11f).  

To determine if BM T cells were phenotypically similar to the recently described BM resident 

effector cells, we examined the expression of CD127 and Ly6C (F. Di Rosa and R. Pabst, 2005, 

K. Tokoyoda et al., 2010). In the BM of infected mice the total number of “activated cells” 

(defined by the high expression of CD44) was 12 fold increased compared to that in naive mice 

(Figure 4.13a). The CD4+ T cells CD44high Ly6C-/low CD127-/low (“effector T cells”) was the 

population with the maximum increase in absolute cell number (4.47 x 104 ± 3.46 x 104 vs. 1.26 x 

106  ± 3.21 x 105, naive vs infected). The number of CD4+ T cells CD44high Ly6Chigh CD127high 

(“memory T cells”) was also increased in the BM of infected mice (6.15 x 103 ± 5.04 x 103 vs. 

2.42 x 104 ± 9.56 x 103, naive vs. infected), but their contribution to the overall increase in CD4+ 

T cell CD44high was limited compared to those from CD4+ T cells CD44high Ly6C-/low CD127-/low. 

Additionally, the number of CD4+ T cells CD44high Ly6C-/low CD127high and CD4+ T cells CD44high 

Ly6Chigh CD127-/low were also increased in the BM of infected mice compared to healthy controls 

(Figure 4.12a). 

We also analysed of the frequencies of CD44high CD4+ T cells segregated according to the 

expression of Ly6C and CD127 within total CD4+ T cells. In the BM we found that the majority 
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of CD4+ T cells were CD44high cells, increasing from 72.22 % ± 8.67 of total CD4+ T cells in 

naive mice to 93.56 % ± 1.39 in infected mice, and the most abundant population of CD4+ T cells 

was CD44high Ly6C-/low CD127-/low (“effector T cells”) (Figure 4.12b; Figure 4.12e).  

The number of CD44high CD8+ T cells was 5 fold increased in the BM of infected mice compared 

to naive mice (Fig. 4.13c), due largely to increases in the CD44high Ly6C-/low CD127-/low CD8+ T 

cells and CD44high Ly6Chigh CD127-/low populations (Figure 4.12d; Figure 4.12e).  

Together, these data shows that the increase in T cells in the BM of infected mice was due to 

expansion and/or accumulation of activated CD4+ T cells, the majority of which were 

phenotypically characterized as CD44high Ly6C-/low CD127-/low “effector” T cells, consistent with 

the accumulation of BM resident effector CD4+ T cell during chronic infection with L. donovani. 

4.2.5 The number of CD4+ T cells producing IFNγ and TNF was increased in BM 

following L. donovani infection 

Pro-inflammatory cytokines including IFNγ and TNF are important in the immunopathology of L. 

donovani infection. In mice, hepatic infection is self-resolving through the Th1-dominated 

formation of granulomas. On the other hand, in the spleen where parasites remain persistent, TNF 

is responsible for the disruption of the microarchitecture that is associated with impaired 

immunity (S. Staeger et al., 2010). Several reports suggested that both cytokines might impact 

negatively on the modulation of haematopoiesis in the BM (M. T. Baldridge et al., 2010, C. J. H. 

Pronk et al., 2011, C. Mirantes et al., 2014). 

To characterize the potential for cytokine production by BM T cells, we used ex vivo stimulation 

of cells with Phorbol Myristate Acetate (PMA) and ionomycin stimulation followed by flow 

cytometry. The frequency of CD4+ T cells capable of producing IFNγ within the total BM was 

very low (0.10% ± 0.05) in naive mice, but increased substantially following infection (7.64% ± 

3.57 of total BM cells). The percentage of CD8+ T cells with the potential to produce IFNγ also 

increased in the BM of infected mice (0.24% ± 0.14 vs 1.16% ± 1.03, naive vs. infected) (Figure 

4.13a). 

The absolute number of CD4+ T cells capable of producing IFNγ+ in naive mice increased >40 

fold in infected compared to naive mice. In contrast, we did not detect a significant change in the 

absolute numbers of CD8+ T cell able to produce IFNγ (Figure 4.13b).  Within the CD4+ T cell 

population, 82.06% ± 14.23 had the potential to produce IFNγ in infected BM, compared to 

17.33% ± 8.95 in naive controls (Figure 4.13c; Figure 4.13f). Similarly, the percentage of IFNγ+ 

CD8+ T cells within total BM CD8+ T cells also significantly increased in infected mice (Figure 
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4.13c). Analysis of the MFI for IFNγ+ within CD4+ T cells also demonstrated an increase in 

cytokine production on a per cell basis, compared to CD4+ T cells from naive mice, and this was 

also observed with CD8+ T cells (Figure 4.13d). 

Next, we assessed cytokine production by cells from naive and infected mice directly ex vivo as a 

better measure of ongoing function. Less than 1% of steady-state CD4+ T cells expressed IFNγ 

(0.33% ± 0.39), while in infected mice 9.29% ± 3.22 were IFNγ positive (Figure 4.13e; Figure 

4.13f). Surprisingly the fraction of CD8+ T cells producing IFNγ recovered from the BM of 

infected mice was very low (< 1%) and was comparable to naive controls (Figure 4.13e).  

We then examined BM T cells for TNF production. After PMA and ionomycin stimulation the 

frequency of CD4+ T cells but not CD8+ T cells in total BM producing TNF was increased (Figure 

4.14a). The number of CD4+ T cells with the potential to produce TNF was increased almost 17 

fold in infected compared to naive mice (Figure 4.14b). Within total BM CD4+ T cells and CD8+ 

T cells, the fraction of cells producing TNF was unchanged following infection, suggesting that 

the increase in TNF+ CD4+ T cells resulted from the overall expansion of CD4+ T cell 

compartment in the BM of infected mice (Figure 4.14c; Figure 4.14f). However, it was also found 

that the amount of TNF expressed by stimulated CD4+ T cells (as judge by MFI) was enhanced in 

infected mice compared to naive controls (Figure 4.14d). Increased levels of TNF expression 

were also seen in TNF+ CD8+ T cells (Figure 4.14d). Direct ex vivo analysis showed that in steady 

state less than 0.42% ± 0.35 of CD4+ T cells expressed TNF, while in infected mice 1.54% ± 0.91 

were TNF+ (Figure 4.14e; Figure 4.14f). Similarly, the fraction of BM CD8+ T cells spontaneously 

producing TNF increased following infection, to a lesser extent than observed in BM CD4+ T 

cells (Figure 4.14e). 

IL-10 is generally considered an immunossupressive cytokine, since in vitro studies showed that 

IL-10 limits the production of pro-inflammatory cytokines such as TNF, IL-1a, IL-1b and IL-6 by 

activated immune cells (W. Ouyang et al., 2011). IL-10 is known to play a central role in the 

immune response to L. donovani infection, as blockade of IL-10 signalling blockade caused rapid 

clearance of the parasite, whilst mice over expressing IL-10 were unable to control the parasite 

burden (H. W. Murray et al., 2002). In the spleen of chronically infected mice, CD4+ T cells co-

expressing IL-10 and IFNγ have been described (S. Stager et al., 2006). However, no published 

study has determined whether BM T cells produce IL-10 following L. donovani infection. 

Following stimulation with PMA/Ionomycin, the frequency of BM CD4+ T cells from infected 

mice that were IL-10+ was increased compared to naive controls, but nevertheless comprised a 

small fraction of total BM. The frequency of BM CD8+ T cells with the potential to produce IL-10 

was unchanged (Figure 4.15a). Similar trends were determined for the absolute numbers of BM T 
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cells expressing IL-10 (Figure 4.15b). The fraction of CD4+ T cells expressing IL-10 cells was 

unchanged in infected mice compared to naive, whilst the fraction of CD8+ T cells IL-10+ in total 

BM CD8+ T was only slightly increased (Figure 4.15c; Figure 4.15f). Additionally, the analysis of 

the IL-10 MFI within CD4+ T cells IL-10+ and CD8+ T cells IL-10+ showed no significant 

alteration upon infection (Figure 4.15d). 

Directly ex vivo, the fraction of IL-10+ cells within CD4+ T cells was comparable between naive 

and infected mice, whereas, the fraction of CD8+ T cells producing IL-10 increased from 0.30% ± 

0.32 in naive mice to 0.75% ± 0.35 in infected mice (Figure 4.15e). Within the BM CD4+ T cells 

IFNγ+ population the proportion of cells that expressed either or both TNF and IL-10 was 

unchanged following infection (Figure 4.16a; Figure 4.16c), and the same was observed for CD8+ 

T IFNγ+ cells (Figure 4.16b). As such, the increase of total CD4+ T cells observed in BM of 

chronically infected mice was mainly due to the accumulation of IFNγ+ or IFNγ+ TNF+ CD4+ T 

cells (Figure 4.16a; Figure 4.16c). 

Overall these data show that L. donovani promoted alterations in the cytokine milieu in BM. This 

was mainly due to the increased production of cytokines by CD4+ T cells with the potential to 

promote inflammation in the BM through the expression of Th1 cytokines.  

4.2.6 Infection-induced loss of quiescent LT-HSCs was mediated by CD4+ T cells  

Based on the data presented above, we hypothesized that CD4+ T cells might act as drivers of the 

alterations observed in the haematopoietic compartment during chronic infection (Figure 4.17). 

To assess whether this was the case, RAG2 KO mice were adoptively transferred with sorted 

CD4+ T cells from naive mice, and then infected in the following day with L. donovani. At day 28 

p.i., we analysed the distribution of haematopoietic progenitors in the BM, compared to WT 

infected mice and infected RAG2 KO mice that did not receive adoptively transferred CD4+ T 

cells. Analyses of cell frequencies were performed gating on Lineage negative cells, to avoid 

biases due to the lack of lymphocytes in RAG2 KO mice. The transfer of CD4+ T cells to infected 

RAG2 KO mice was associated with a recovery of the phenotype observed in WT infected mice 

(Figure 4.18; Figure 4.19; Figure 4.20; Figure 4.21). Adoptive transfer of CD4+ T cells prior to 

infection significantly increased the frequency and the number of LSK cells and intermediary 

non-committed progenitors (LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells) to a 

similar extent as observed in infected WT mice (Figure 4.18a-h). More importantly, infected 

RAG2 KO mice preserved their reservoir of quiescent HSCs, whereas these were significantly 

depleted in RAG2 KO mice given CD4+ T cells, (Figure 4.19a; Figure 4.19b). In RAG2 KO 
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infected mice, 42.85% ± 21.69 of LT-HSC were in G0, but this was reduced to 8.82% ± 3.27 in 

mice that received CD4+ T cells prior to the infection (Figure 4.19c; Figure 4.19d).    

CD4+ T cell transfer was not associated with alteration in the frequencies of CMPs or GMPs, and 

only minor changes in absolute number of CMPs were observed, among lineage-commited 

progenitors (Figure 4.20). CLPs were decreased irrespective of the presence of CD4+ T cells, 

which may be due to their inherent inability to produce de novo T and B cells (Figure 4.20f; 

Figure 4.20j). The frequency of MEPs was increased in BM of infected RAG2 KO mice 

adoptively transferred with CD4+ T cells in comparison to naive RAG2 KO mice, a trend 

observed in infected WT mice compared to naive WT. However, in absolute number, there were 

no differences amongst all the experimental groups (Figure 4.20e; Figure 4.20i). 

To exclude that these alterations were the result of homeostatic proliferation of T cells in the RAG 

host, HSPC populations and the proliferative status of LT-HSCs were assessed in adoptively 

transferred RAG2 mice that were not subsequently infected (Figure 4.21). These control mice 

were unaltered compared to naive RAG2 KO mice with regards the number of the HSPCs (Figure 

4.21a; Figure 4.21c) and the frequency of LT-HSCs in G0 (Figure 4.21b). As such, the expansion 

of multipotent progenitors and subsequent loss of LT-HSCs in G0 following T cell transfer 

requires T cell activation as a consequence of infection. 

In infected WT mice, we observed signs of mild anaemia and thrombocytopenia, features absent 

in infected RAG2 KO mice. On the other hand, infected RAG2 KO mice adoptively transferred 

with CD4+ T cells showed a significant loss of RBCs (Figure 4.22a), lower concentration of 

haemoglobin (Figure 4.22c) and reduced platelet counts (Figure 4.22b). These haematological 

alterations were absent in RAG2 KO mice adoptively transferred with CD4+ T cells but not 

infected (Figure 4.23a-d). These findings suggested that alterations in CD4+ T cell compartment 

were sufficient to mediate the onset of anaemia and thrombocytopenia in experimental VL. 

CD4+ T cells are crucial for the control of parasite burden. In WT mice the number of parasites 

per 1000 nuclei in the spleen was on average 31.25 ± 28.49. This value increase to 1469 ± 1334 

parasites/1000 nuclei in infected RAG2 KO. However in RAG2 KO mice given CD4+ T cells 

prior to infection the parasite counts dropped to 64.89 ± 68.92 parasites/1000 nuclei (Figure 

4.24a). Moreover, in RAG2 KO mice given CD4+ T cells following infection developed 

splenomegaly, as observed in WT mice (Figure 4.24b), suggesting that CD4+ T cells were 

required to drive inflammation in the spleen. 

CD4+ T cells expanded greatly in the BM of RAG2 KO mice following infection, with associated 

signs of activation (Figure 4.25a). In WT infected mice, the number of CD44high Ly6C-/low CD127-
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/low CD4+ T cells was on average 13 fold increased compare to naive mice, and the number CD4+ 

T cells CD44high Ly6Chigh CD127-/low about 19 fold (Figure 4.25b). In adoptively transferred RAG2 

KO mice, the number of CD44high Ly6C-/low CD127-/low CD4+ T cells was on average 72 fold, and 

the number CD44high Ly6Chigh CD127-/low CD4+ T cells about 174 fold, greater in infected mice 

compared to naive mice where only homeostatic proliferation of T cells occurred (Figure 4.25b). 

The analysis of the distribution of cells within CD4+ T cells showed that in uninfected RAG2 KO 

mice most cells displayed an phenotype CD44high Ly6Chigh CD127high attributed to “memory T 

cells”, while in RAG2 KO infected mice CD4+ T cells were mainly CD44high Ly6Chigh CD127-/low 

or CD44high Ly6C-/low CD127-/low (phenotype attributed to “BM effector T cells”), as observed in 

WT infected mice (Figure 4.25c). 

In summary, CD4+ T cells transferred to RAGKO mice and examined 28 days after L. donovani 

infection displayed immunophenotype alterations that resemble those found in similarly infected 

WT mice. 

4.2.7 Loss of LT- HSCs in quiescence was mediated by IFNγ 

About 90% of total BM CD4+ T cells were primed to produce IFNγ, and even in the absence of in 

vitro stimulation a significant fraction was found actively producing this pro-inflammatory 

cytokine following infection (section 4.2.6). We also showed that CD4+ T cells, which were found 

in expanded numbers and were the major producer of IFNγ in BM following L. donovani 

infection, could mediate the loss of HSCs in G0 (section 4.2.8). As such, we assessed whether 

IFNγ KO CD4+ T cells were also able to affect BM function. 

As previously shown in Figure 4.21, the transfer of WT CD4+ T cells to RAG2 KO mice prior to 

infection with L. donovani resulted in the increased frequency of LSK cells, LSK CD150+ CD34- 

CD48+ cells and LSK CD150+ CD34+ cells, within Lineage negative population. However, CD4+ 

T cells derived from IFNγ KO mice were unable to mediate these effects (Figure 4.26a). Instead, 

in RAG2 KO mice that received IFNγ KO CD4+ T cells, there was a significant increase in the 

frequency of CMPs and GMPs in comparison to infected RAG2 KO and RAG2 KO transplanted 

with WT CD4+ T cells, and we did not observed significant differences in MEPs and CLPs in 

comparison with infected RAG2 KO (Figure 4.26b). 

Likewise, whereas transfer of WT CD4+ T cells to RAG2 KO mice resulted in a significant 

decrease in the frequency and number of LT-HSCs in G0, this did not occur following transfer of 

IFNγ KO CD4+ T cells (Figure 4.27a; Figure 4.27b). As with infected RAG2 KO mice, infected 

mice given IFNγ KO CD4+ T cells had approximately half their LT-HSC population in 

quiescence (48.40% ± 11.30), whereas this was significantly reduced in infected RAG2 KO given 
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WT CD4+ T cells mice (8.82% ± 3.27) (Figure 4.27c Figure 4.27d). These findings suggested that 

IFNγ production by CD4+ T cells underlies the depletion in the reservoir of quiescent LT-HSCs, 

as well as, the expansion of intermediate multipotent progenitors in BM during infection with L. 

donovani.  

Infected RAG2 KO mice given WT CD4+ T cells developed anaemia and thrombocytopenia, but 

this did not occur in RAG2 KO mice given IFNγ KO CD4+ T cells prior to infection (Figure 

4.28a-d). As such, IFNγ production by CD4+ T cells also underlies impaired haematological 

function. 

Not surprisingly, IFNγ produced by CD4+ T cells was important to limit the number of 

parasites/1000 nuclei in the spleen, as RAG2 KO given IFNγ KO CD4+ T cells had comparable 

numbers of parasites / 1000 host cell nuclei in the spleen (1267 ± 342) to RAG2 KO infected mice 

(1996 ± 802), whereas this was reduced in mice receiving WT CD4+ T cell (257 ± 129, parasites/ 

1000 nuclei) (Figure 4.29a). Additionally, whereas WT CD4+ T cells transfer induced 

splenomegaly following infection, this did not occur following IFNγ KO CD4+ T cells transfer 

(Figure 4.29b), suggesting that CD4+ T cells IFNγ+ are required to drive inflammation in the 

spleen. 

Finally, it was found that both WT and IFNγ KO CD4+ T cells expanded to similar numbers in the 

BM of RAG2 KO recipient mice, which in both cases was due to high number of cell with an 

activated CD44hi phenotype (Figure 4.30a). The number of CD4+ T cells expressing either or both 

Ly6C or CD127 was comparable between WT CD4+ T cells and IFNγ KO CD4+ T cells (Figure 

4.30b). Nevertheless, significant changes were observed in the percentages of cells within the 

CD4+ T cell compartment; 82.85% ± 3.22 of WT CD4+ T cells were CD44high Ly6C -/low CD127-

/low compared to 66.62% ± 9.53 of IFNγ KO CD4+ T cells, whilst the frequency of CD44high Ly6C 
high CD127-/low was increased within of IFNγ KO CD4+ T cells (25.98% ± 10.62) compared to WT 

CD4+ T cells (5.68% ± 1.05) (Figure 4.30c). These findings show that IFNγ is dispensable for the 

expansion of CD4+ T cells (at least in a non-competitive environment). In contrast, CD4+ IFNγ+ T 

cells contributed to the immunophenotypic changes observed during the immune response to L. 

donovani infection. 

4.2.8 Loss of quiescent LT-HSCs was not mediated by intrinsic IFNγ receptor signalling 

in LT-HSCs  

HSCs express receptors for IFNγ, which have been directly associated with LSK expansion and 

impaired engraftment in X-irradiated hosts (K. Y. King et al., 2010, A. M. de Bruin et al., 2013, 

Y. Zhang et al., 2013). As such, we hypothesized that IFNγ signaling would be responsible for the 
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depletion of LT-HSCs in G0 during chronic infection with L. donovani (Figure 4.31). To test this 

hypothesis, we generated 50:50 mixed BM chimeras using cells derived from both WT and 

IFNγR2−/− mice. We assessed donor cells chimerism and alterations in progeny in response to 

subsequent infection with L. donovani (Figure 4.32).  

Twelve weeks after transplantation, in infected chimeric mice, the frequency of IFNγR2−/− cells 

was higher in the BM (60.18% ± 15.20) compared to naive mice (39.82% ± 15.20) but not 

statistically different, and in absolute cell number we found no significant differences. 

Furthermore, the frequency and number of WT or IFNγR2−/− donor cells did not change in BM 

following L. donovani infection (Figure 4.33a; Figure 4.33b).   

In the spleen, the percentage of cells derived from IFNγR2−/− donor cells was increased both in 

non-infected mice and infected mice (Figure 4.33c; Figure 4.33e), with similar data for absolute 

cell numbers (Figure 4.33d). This suggested that IFNγ signalling impacts on haematopoietic 

function both in steady-state and inflammatory conditions. The frequency of WT or IFNγR2−/− 

donor cells in the spleen was similar following L. donovani infection (Figure 4.33c). However, the 

absolute number of IFNγR2−/− donor cells was increased compared to WT (Figure 4.33d), 

suggesting that in the periphery IFNγR2−/− donor cells had a competitive advantage over WT cells 

in inflammatory conditions.  

In the BM of non-infected mice, the frequency and the number of LSK cells (enriched in 

multipotent progenitors) and Lin- Sca1- cKit+ cells (enriched in lineage-committed progenitors) 

was comparable between WT and IFNγR2−/− donor cells, suggesting that IFNγ signaling was not 

required for the maintenance of HSPCs under homeostatic conditions (Figure 4.34a; Figure 4.34b; 

Figure 4.349e).  

Following infection, the number of BM LSK cells derived from WT and IFNγR2−/− donor cells 

was increased compared to respective WT and IFNγR2−/− donor cell numbers found in non-

infected recipients (Figure 4.34b), and the same changes were observed in regard to their 

frequency within donor compartment cells (Figure 4.34a). However, the magnitude of the 

increase in number of LSK cells in infected mice was greater for WT donor cells (6 fold) 

compared to IFNγR2−/− derived LSK cells (2.6 fold) (Figure 4.34b). 

In the BM of infected mice, the increase in the frequency of WT LSK cells was concomitant with 

the contraction in the percentage Lin- Sca1- cKit+ cells (0.66% ± 0.32 vs 0.07 % ± 0.07, naive 

versus infected), while the increase in IFNγR2−/− LSK cells was not followed by alterations in Lin- 

Sca1- cKit+ cells frequency or absolute cell numbers (Figure 4.34a; Figure 4.34b; Figure 4.34e). 
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These alterations suggested that the up-regulation of Sca1 in HSPCs during L. donovani infection 

in WT B6 was directly mediated by IFNγ signaling.  

In the spleen of non-infected mice, we found comparable numbers and frequencies of LSK cells 

and Lin- Sca1- cKit+ cells derived from WT and IFNγR2−/− donor cells (Figure 4.34c; Figure 

4.34d). In infected mice the frequency and the cell numbers of WT LSK cells and IFNγR2−/− LSK 

cells were both increased in infected mice, compared to their respective cell numbers in non-

infected recipients (Figure 4.34d). In the spleen, we did not observe any differences in WT Lin- 

Sca1- cKit+ cells, but found the number of Lin- Sca1- cKit+ cells derived from IFNγR2−/− donor 

cells was increased following infection compared to WT cells (Figure 4.34c; Figure 4.34d). In 

summary, these finding suggested that IFNγ signaling acting directly upon HSPCs was not 

required to drive the increase in HSPCs in the spleen during chronic infection with L. donovani. 

We found no significant differences in the frequency of LSK CD150+ CD48- cells (enriched for 

LT-HSCs) and LSK CD150+ CD48+ cells (enriched for other multipotent progenitors) derived 

from WT donor cells and IFNγR2−/− donor cells, both in BM (Figure 4.35a) and in the spleen 

(Figure 4.35c). This was true in absolute cell number (Figure 4.35b; Figure 4.35d), suggesting 

that IFNγ signaling was dispensable in the steady-state to regulate the number of multipotent 

progenitors.  

In infected recipient mice, the frequency of WT LSK CD150+ CD48- cells and IFN-γR2−/− LSK 

CD150+ CD48- cells in the BM was unchanged (Figure 4.35a), and the same was observed in 

regard to their cell number (Figure 4.35b). Among IFNγR2−/− donor cells only in the spleen, there 

was a significant increase in the frequency and in the number of LSK CD150+ CD48- cells, while 

the frequency and the number of WT LSK CD150+ CD48- cells were not impacted by the 

infection (Figure 4.35c; Figure 4.35d). Finally, in infected mice, both in BM and in the spleen, an 

increase in LSK CD150+ CD48+ cells derived from WT donor cells and IFNγR2−/− donor cells 

was observed both in frequency and absolute cell number (Figure 4.35a-d). Overall, these results 

suggested that direct IFNγ signaling was not mediating the expansion of multipotent progenitors 

onward from LT-HSCs during infection with L. donovani. 

In the BM of naive chimeric mice, the study of lineage-committed progenitors showed that the 

frequencies and the absolute cell numbers of all the populations assessed were comparable 

between WT donor cells and IFN-γR2−/− donor cells (Figure 4.36a; Figure 4.36b). Following 

infection, the frequency of IFNγR2−/− GMPs was increased, while within WT donor cells the 

populations increased were the MEPs and CLPs, in comparison to respective populations in naive 

recipient mice (Figure 4.36a). However, we did not observe any significant changes in absolute 

cell number following in infection in all the other populations assessed. As such, it appears that 
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IFNγ signalling in lineage-committed progenitors was not required to sustain cell numbers under 

homeostatic conditions or in inflammatory conditions.   

In the spleen of non-infected recipient mice, there were no differences either in frequency or 

absolute number of all the lineage-committed progenitors evaluated (Figure 4.36c; Figure 4.36d). 

During infection, the alterations in WT and IFN-γR2−/− derived CLPs followed the same trends, 

i.e. in both compartments there was a significant decrease in their frequency compared to naive 

recipients, but in absolute cell numbers we did not observed any differences (Figure 4.36c; Figure 

4.36d). On the other hand, the frequencies and number of IFN-γR2−/− CMPs and GMPs were 

increased, whilst WT CMPs and WT GMPs were unchanged compared to respective naive 

populations (Figure 4.36c; Figure 4.36d). Finally, we observed that the number of MEPs derived 

either from donor WT or IFN-γR2−/− donor cells was increased following infection. These 

findings suggested that IFNγ signaling in lineage-committed progenitors was not necessary to 

sustain their number neither under homeostatic conditions nor for the expansion of CMPs, GMPs 

and MEPs in the spleen that followed infection.   

Under homeostatic conditions, the frequency and the number of BM LT-HSCs in G0 were 

comparable between WT and IFN-γR2−/− derived cells (Figure 4.37a; Figure 4.37b). Most 

importantly, there were no differences in the frequency of number of quiescent HSCs following 

infection between WT and IFN-γR2−/− derived cells, both decreasing compared to naive controls 

(Figure 4.37a-c). Overall, these findings led us to reject the hypothesis that cell intrinsic IFNγ 

signalling was responsible for the reductions in frequency and number of HSCs in G0 in VL.  

As previous experiments had shown IFNγ derived from CD4+ T cells was responsible for 

enhanced LT-HSCs proliferation (section 4.2.9), yet this was not due to IFNγ intrinsic signalling, 

these data suggested that IFNγ could indirectly regulate HSCs proliferation, during chronic 

infection with L. donovani.  

IFNγ is important in Th1 differentiation, but its role in T cells proliferation is unresolved due to 

opposing findings attributed to different models of infection (J. K. Whitmire et al., 2005, J. S. 

Haring and J. T. Harty, 2006, X. Li et al., 2007, O. Sercan et al., 2010). As such, we evaluated the 

alterations in T cell compartment in (B6.CD45.1 + B6.CD45.2.Ifnγr2-/-)èB6.CD45.1 chimeric 

mice following L. donovani infection. We also assessed whether IFNγ signalling was responsible 

for the alterations in other effector cells during infection and analyzed the B cell and myeloid 

compartments. In BM and spleen of non-infected recipient mice, the frequency and absolute 

number of T cells was comparable between WT and IFN-γR2 KO donor cells, (Figure 4.38a-d), 

indicating that IFNγ signalling in T cells was not required for their development or homeostatic 
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maintenance. In contrast, IFN-γR2 KO T cells in BM did not increase following infection, unlike 

their WT counterparts (Figure 4.38a; Figure 4.38b).  

In summary, in uninfected mice WT and IFN-γR2 KO donor cells made approximately equal 

contributions to the BM and splenic T cell populations, while during chronic infection IFNγ 

responsive (WT) T cells were significantly enriched at both sites, suggesting that IFNγ signalling 

in T cells conferred a competitive advantage under inflammatory conditions. As such, intrinsic 

IFNγ signalling confers a proliferative or survival advantage during L. donovani induced 

inflammation, but not in homeostatic conditions.  

In naive recipient mice, the analysis of the B cell compartment showed an increase in the 

frequency in BM B cells derived from IFNγR2 KO donor cells compared to BM WT B cells in 

non-infected mice (Figure 4.38a). Nevertheless, we did not detect differences in their absolute cell 

numbers (Figure 4.38b). Similarly, WT and IFNγR2 KO donor cells contributed at similar extent 

to the splenic B cell compartment in steady-state (Figure 4.38c; Figure 4.38d). Overall, these 

finding suggested that IFNγ signalling is not critical to sustain the number of B cell numbers 

under non-inflammatory conditions.  

In infected mice, there was a significant decrease in the frequency and number of WT BM B cells 

and IFNγR2 KO BM B cells, but no differences were observed in their absolute cell number, 

compared to uninfected mice (Figure 4.38a; Figure 4.38b). Following infection, in the spleen the 

percentages of WT B cells and IFNγR2 KO B cells were unchanged, nevertheless the absolute 

number of B cells derived from IFNγR2 KO donor cells was increased, in comparison to 

respective populations in naive recipients (Figure 4.38c; Figure 4.38d). As such, there was no 

indication that IFNγ signalling played a major role regulating the B cell compartment in BM and 

in the spleen. 

BM from non-infected mice displayed comparable frequencies and number of most myeloid 

populations derived from WT and IFNγR2 KO donor cells, except that CD11b+ F4/80- cells from 

IFNγR2 KO donor cells were reduced in frequency compared to WT, and the number CD11bhi 

F4/80hi cells and CD11b- F4/80hi cells from IFNγR2 KO donor were also decreased compared to 

WT (Figure 4.39a; Figure 4.39b). In the BM of infected mice the number of IFNγR2 KO CD11b+ 

F4/80hi cells was decreased (Figure 4.39b). In contrast, the number WT CD11b+ F4/80hi cells 

increased ~ 2 fold following infection (Figure 4.39b). The number of CD11chi MHC IIhi cells 

(DCs) and CD11b- F4/80hi cells derived from WT were increased compared IFNγR2 KO donor 

cells in BM following infection (Figure 4.39a; Figure 4.39b).  
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In the spleens of non-infected mice, all populations of myeloid cells derived from IFN-γR2 KO 

donor cells were decreased compared to WT donor cells, both in frequency and cell number 

(Figure 4.39c; Figure 4.39d). Following infection, with the exception of IFN-γR2 KO CD11b+ 

F4/80- cells, all other myeloid populations derived from IFN-γR2 KO donor cells failed to expand 

(Figure 4.39c; Figure 4.39d). In contrast, the number of CD11chi MHCIIhi cells and CD11b+ 

F4/80- cells, derived from WT donor cells increased following infection (Figure 4.39d). To the 

quantitative differences in myeloid cells may have contributed cells derived from the recipient 

mice, since it was reported that macrophage resident cells are more resistant to x-irradiation (D. 

Hashimoto et al., 2013). 

In summary, with these findings we could exclude IFNγ signaling as a direct mediator of loss of 

LT-HSCs in G0 during experimental VL. Nevertheless, our results support a role for T cell 

intrinsic IFNγ signaling leading to expansion of T cell number in BM and the spleen during 

chronic VL.  

4.2.9 The number of LT-HSCs and onward progenitors expressing TNF receptors was 

increased following infection with L. donovani  

TNF has been proposed to play an important role in directly modulating HSCs function and may 

cooperate with other mechanisms in driving stress-induced haematopoiesis and mediating 

haematopoietic dysfunction (C. J. H. Pronk et al., 2011), and we have shown above that the 

number of T cells producing TNF was greatly enhanced in the BM during infection. We therefore 

tested an alternate hypothesis, namely that TNF may mediate changes in the BM HSPCs 

population. 

We first assessed the expression of the two functional receptors for TNF, TNFR1a (or TNFR-

p55), and TNFR1b (TNFR-p75), the latter normally restricted to haematopoietic cells and 

upregulated in inflammatory conditions (N. Askenasy, 2015).  

The majority of mature BM haematopoietic cells expressed TNFR1a in steady-state, and this 

increased following infections (60.98% ± 5.02 vs 75.70% ± 5.02, naive vs infected), whilst the 

absolute number of TNFR1a+ cells remained unchanged (Figure 4.40a; Figure 4.40b). We also 

found that the frequency and number of TNFR1a expressing Lineage- cKit+ cells (enriched for all 

HSPCs) were increased in chronically infected mice (Figure 4.40a; Figure 4.40b). 

Next we focused on the most primitive progenitors. Most LT-HSCs (enriched in LSK CD150+ 

CD34- CD48- cells) expressed TNFR1a under homeostatic conditions (Figure 4.41a), nevertheless 

their number increased following infection (Figure 4.41b), and TNFR1a was expressed at 
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increased levels following infection (Figure 4.41c; Figure 4.41d). These alterations were 

replicated in the onward multipotent progenitors (Figure 4.41a; Figure 4.41b; Figure 4.41c). 

The percentage of mature haematopoietic cells expressing TNFR1b increased significantly upon 

infection (27.74% ± 8.42 vs 59.98% ± 18.37, naive vs infected), but this did not result in 

significant alterations in absolute cell number in BM (Figure 4.42a; Figure 4.42b). The frequency 

of Lineage- cKit+ TNFR1b+ cells increased from 36.52% ± 12.67 in naive mice to 71.60% ± 15.64 

in infected mice, and this was reflected by an increase in absolute cell numbers (Figure 4.42a; 

Figure 4.42b). The frequency and number of LT-HSCs expressing TNFR1b increased in infected 

mice (Figure 4.43a; Figure 4.43b), and LT-HSCs in infected mice also expressed TNFR1b at 

elevated levels, as judged by MFI (Figure 4.43c; Figure 4.43d). Similar results were seen for 

onward multipotent progenitors (Figure 4.43a-c), suggesting a potential role for TNF signalling in 

the mediation of changes in HSPCs function. 

4.2.10 TNF intrinsic signalling does not regulate loss of LT-HSCs in G0  

To formally test whether direct cell intrinsic TNF signalling plays a role in driving LT-HSCs into 

active cell-cycle and subsequent depletion of the reservoir of quiescent LT-HSCs we generated 

further mixed chimeras (Figure 4.44). We transferred equal numbers of BM WT donor cells and 

BM donor cells devoid for both TNF receptors (TNFR-dKO) into lethally irradiated recipients 

(Figure 4.45). After thirteen weeks, it was expected that most of the haematopoietic cells found in 

the recipient would be derived from donor LT-HSCs, since most haematopoietic cells have a 

relatively short life (R. Duran-Struuck and R. C. Dyskoz, 2009).  

Under homeostatic conditions, WT donor cells constituted 28.88% ± 9.17 of total BM donor cells 

compared to 68.51% ± 7.58 TNFR-dKO cells (Figure 4.46a; Figure 4.46c). In absolute cells 

number TNFR-dKO donor cells were also dominant (Figure 4.46a). The competitive advantage of 

donor cell devoid in TNFR signaling over WT donor cells was also observed in the spleen of non-

infected recipient mice, in which the frequency and number of TNFR-dKO cells were also 

increased compared to WT donor cells (Figure 4.46a; Figure 4.46b), suggesting that TNF 

signalling may modulate on haematopoietic function in homeostasis.   

Following infection, the frequency of WT cells in BM was increased ~10% but their cell number 

remained comparable to those found non-infected recipients. In contrast, in infected mice the 

frequency of donor TNFR-dKO cells was not significantly changed (Figure 4.46a; Figure 4.46c), 

but their numbers decreased from 2.19 x 107 ± 4.22 x 106 cells in non-infected recipients to 1.17 x 

107 ± 3.17 x 106 cells in the BM of infected recipients (Figure 4.46b). The cell numbers of WT 

and TNFR-dKO donor cells in BM were comparable in mice chronically infected with L. 
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donovani (Figure 4.46b). The frequency of WT donor cells expanded in the spleen of infected 

mice, but their absolute cell numbers seemed to follow this trend, although these changes were 

not statistically significant (Figure 4.46a; Figure 4.46b). In contrast, the percentage of engraftment 

of TNFR-dKO donor cells contracted following infection, whilst their absolute cell numbers were 

unchanged (Figure 4.46a; Figure 4.46b) 

In the BM of non-infected mice the frequency and the number of LSK cells (enriched in 

multipotent progenitors) and Lin- Sca1- cKit+ cells (enriched in lineage-committed progenitors) 

was comparable between TNFRdKO donor cells and WT donor cells, implying that TNF 

signaling was dispensable to sustain HSPCs number under homeostatic conditions (Figure 4.47a; 

Figure 4.47a).  The expansion of both WT LSK cells and TNFR-dKO LSK cells was made at the 

expense of the contraction in the Lin- Sca1- cKit+ cells compartment, suggesting that TNF 

signaling was not implicated in the up-regulation of Sca1 in most HSPCs during L. donovani 

infection (Figure 4.47c).  

In line with findings described above, in non-infected mice we could not find significant 

differences in the frequency of LSK CD150+ CD48- cells (enriched for LT-HSCs) and LSK 

CD150+ CD48+ cells (enriched for other multipotent progenitors) derived from WT donor cells 

and TNFR-dKO donor cells in the BM of non-infected recipients (Figure 4.48a) although in the 

latter, the absolute cell number of both cell populations was increased (Figure 4.48b). Following 

infection, the frequencies of WT LSK CD150+ CD48- cells and TNFR-dKO LSK CD150+ CD48- 

cells in the BM were unchanged (Figure 4.48a), but the number of TNFR-dKO LSK CD150+ 

CD48- cells was about two fold decreased in infected mice (Figure 4.48b), which can partially be 

explained by the contraction on BM cellularity (Figure 4.46b). In infected mice, we found that 

LSK CD150+ CD48+ cells were greatly increased both in percentage within WT donor cells and 

TNFRdKO donor cells (Figure 4.48a), and the same was observed in absolute terms (Figure 

4.48b). In summary, these findings argued against the possibility that TNF signaling was 

intrinsically mediating the expansion of multipotent progenitors onward from LT-HSCs during 

infection with L. donovani. 

In recipient mice under homeostatic conditions, the frequency of LT-HSCs in G0 was comparable 

between WT and TNFR-dKO donor derived cells (Figure 4.49a), but the number TNFR-dKO LT-

HSCs in G0 was 2.5 fold the number of WT HSCs in quiescence (Figure 4.49b). Of relevance, 

following infection, we observed no significant differences either in the percentage LT-HSCs in 

quiescence between donor cells or in their absolute cell number (Figure 4.49a; Figure 4.49b).  

Lastly, we determined that LT-HSCs lacking TNF functional signaling receptors were as with WT 

LT-HSCs, driven into active cell-cycle as a consequence of infection (Figure 4.49c; Figure 
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4.49d). Hence, TNF acting directly on LT-HSCs was not the underlying mechanisms responsible 

for the alteration in LT-HSCs proliferative status, and subsequent loss of the reservoir of LT-

HSCs in G0.  

TNF has been suggested to have direct effects on lineage-committed progenitors (C. J. H. Pronk 

et al., 2011). As such, we examined the frequency and number of mature haematopoietic cells in 

BM and spleen in the mixed chimeras described above. In BM, lineage-committed progenitors in 

non-infected mice were comparable between WT donor cells and TNFR-dKO donor cells (Figure 

4.50a). Most likely due to an overall competitive advantage of TNFR-dKO donor cells, the 

number of all considered cell populations of TNFR-dKO lineage-committed cells were increased 

compared to WT (Figure 4.50b). Following infection, the frequency of WT lineage-committed 

progenitors was unchanged or minimally reduced, and cell numbers were unchanged relative to 

TNFR-dKO donor derived cells (Figure 4.50a; Figure 4.50b). Reflecting an overall decrease in 

total BM cells derived from TNFR-dKO donor cells in infected recipient mice, the number of 

CMPs, GMPs and CLPs were decreased following infection (Figure 4.50b). These results 

suggested that TNF signaling neither was required nor deleterious to sustain the number of 

lineage-committed progenitors under homeostatic conditions, but may contribute to the decrease 

in myeloid-committed progenitors in BM that followed infection. 

In non-infected chimeras, we failed to find significant differences either in the frequencies or in 

the cell number of total T cells and CD4+ T cell derived from WT in comparison to TNFR-dKO 

donor cells (Figure 4.51a; Figure 4.51b).  In contrast following infection, differences in T cells 

derived from WT and TNFRdKO donor cells became evident in the BM (Figure 4.51a). The 

frequency of T cells within WT donor cells expanded from 9.43% ± 2.76 to 37.29% ± 11.32 

following infection, while the percentage of T cells derived from TNFRdKO donor cells was 

unchanged. These patterns of alterations were replicated in the alterations in absolute cell 

numbers (Figure 4.51b).  

Next focusing on WT BM CD4+ T cells, we observed an expansion in their frequency (2.17% ± 

0.82 vs. 27.70% ± 6.92, “WT naive” vs. “WT infected”) (Figure 4.51a) and number (~13 fold) in 

infected recipient mice (Figure 4.51b). In contrast, BM CD4+ T cells lacking TNF signaling failed 

to expand significantly following infection (0.5% ± 0.19 vs. 0.85% ± 0.28, “TNFR-dKO naive” 

vs. “TNFR-dKO infected”) (Figure 4.51a), and their cell number remain at basal levels (Figure 

4.51b). These findings did not suggest that intrinsic TNF signalling provided T cells with a 

competitive advantage to expand or seed in the BM under homeostatic conditions. Moreover, 

following infection, it appeared that TNF receptor signalling was critical to the expansion of the 

BM T cell compartment, and of CD4+ T cells in particular. 
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The frequency of BM TNFR-dKO B cells within donor was increased compared to WT donor 

cells in steady-state, but comparable following infection (Figure 4.51a). In the BM of infected 

recipient mice the percentage of WT B cells decreased about 2.4 fold compared to non-infected 

mice, while TNFR-dKO B had a less expressive 2 fold decrease following infection (Figure 

4.51a), and similar reductions were determined in B cell numbers (Figure 4.51b).  

In BM, the frequency of CD11b+ cells within WT and TNFR-dKO donor cells was comparable in 

steady-state (Figure 4.51a), however the number of CD11b+ cells TNFRdKO was found to be 

increased (Figure 4.51b). Following infection, the frequency of WT CD11b+ cells decreased while 

the frequency of TNFR-dKO CD11b+ cells was unchanged compared to non-infected mice 

(Figure 4.51a), but in absolute cell number there were no alteration in WT donor cells and TNFR-

dKO CD11b+ cells decreased (Figure 4.51b).  

According with these findings, intrinsic TNF signalling was dispensable to establishment of B cell 

and CD11b+ cell compartments in BM in steady-state. Following infection, in the absence of TNF 

signaling the alterations in these populations in BM resembled those observed in WT donor cells. 

In contrast, in BM the T cell compartment diverged considerably between WT and TNFR-dKO 

donor cells. The lack of intrinsic TNF signaling was not associated to an impairment of T cell 

reconstitution in BM, under homeostatic conditions, indicating that TNF signaling is not essential 

to the maintenance of BM T cells number in homeostasis. However, following infection, the lack 

of TNF signaling receptors completely abolished the expansion of T cells observed in WT T cells, 

which was mainly sustained by CD4+ T cells.  

In the spleen under homeostatic conditions, the percentage of total T cells and CD4+ T cells was 

decreased within TNFR-dKO donor cells compared to WT donor cells (Figure 4.52a). 

Nevertheless, in absolute cell number they were comparable (Figure 4.52b), suggesting that TNF 

signaling was not critical to T cell development nor conferred T cells with a competitive 

reconstitution advantage in steady-state. Following infection, WT T cells were increased in 

frequency and cell number (Figure 4.52a; Figure 4.52b). On the contrary, the percentage and the 

number of T cells within TNFRdKO donor cells were unchanged following infection (Figure 

4.52a; Figure 4.52b). The increase in total WT T cells observed during chronic in infection in the 

spleen, was mainly sustained by the increase in WT CD4+ T cells, which percentage varied from 

31.00% ± 3.56 in non-infected mice to 46.19% ± 4.03 in infected mice (Figure 4.52a) and their 

cell number increased ~ 3.55 fold (Figure 4.52b). In TNF-RdKO CD4+ T cells we failed to find 

any alteration both in percentage and cell number following infection (Figure 4.52a; Figure 

4.52b). Thus, TNF acting directly in CD4+ T cells mediated the expansion of CD4+ T cells 

compartment in the spleen following infection with L. donovani.  
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In the spleen, we also assessed the distribution of myeloid cells characterized according with the 

expression of CD11c, CD11b, MHC-II and F4/80 (Figure 4.53a). In steady-state, the percentages 

and the cell numbers of the myeloid populations assessed within donor cells were comparable 

between WT and TNF-RdKO cells, suggesting that TNF intrinsic signalling was unnecessary to 

the development and maintenance of homeostatic numbers of myeloid cells in the spleen.  

Following infection, the alterations in myeloid cells were characterized by an increase the 

frequencies of in CD11b+ F4/80- cells and CD11chi MHC-IIhi cells derived from TNF-RdKO 

donor cells, whilst in WT cells only the frequency of CD11b- F4/80hicells was increased, 

compared to naive recipients (Figure 4.53a). In absolute cell number, only TNF-RdKO CD11b- 

F4/80+ cells were increased in comparison to naive recpients (Figure 4.53b). Finally, the 

comparison between WT and TNF-RdKO donor cells showed that following infection all myeloid 

cells displayed similar cell number, except TNF-RdKO CD11b+ F4/80- cells, which were found 

increased in comparison to WT donor cells in infected recipients. These findings suggested that 

TNF signaling intrinsic signalling in these myeloid populations was dispensable for their 

expansion following infection with L. donovani. 

According with our findings TNF signaling was not a direct mediator of loss of LT-HSCs in G0 

during experimental VL. Of relevance, the results suggested that TNF acting directly on T cells 

underlined the huge enhancement in BM T cells that characterized infection with L. donovani, by 

means that remain to be established. TNF signaling may be required to recruitment, survival or 

proliferation of BM and splenic T cells during experimental VL.  

4.2.11 Loss of TNFR signaling prevents expansion of BM CD4+ T cells with the potential to 

express IFNγ  

In previous experiments, we established that CD4+ T cells could solely mediate the loss of LT-

HSC in G0 in BM and impairment of haematological function (anaemia and thrombocytopenia) in 

the periphery (section 4.2.8). The potential of CD4+ T cells to mediate these alterations during L. 

donovani infection critically relied on the expression of IFNγ (section 4.2.9).  The expansion of T 

cells following infection was prevented in cells lacking TNF signaling receptors, as such it was 

conceivable that this could also impact in their function. Therefore, we decided to assess if T cells 

devoid of TNF signaling were impaired in their efficiency to produce IFNγ. 

The requirement of TNF intrinsic signaling in T cells to express IFNγ during infection with L. 

donovani was evaluated in mixed BM chimeras WT:TNF-RdKO established as described in 

previous section. In our analysis we included B cells as a potential source of IFNγ that was not 

evaluated in previous analysis (Figure 4.54a; Figure 4.54b). The number of WT and TNF-RdKO 
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B cells expressing IFNγ in BM following infection was very low, excluding B cells as a relevant 

producer of IFNγ (Figure 4.54b). In total BM cells from infected mice upon in vitro stimulation, 

CD4+ T cells expressing IFNγ comprised 21.41% ± 4.83 within WT donor cells compartment, but 

less than 1% (0.6% ± 0.19) of TNF-RdKO donor cells (Figure 4.54a). This disparity in WT and 

TNF-RdKO donor CD4+T cells contribution to the overall expression IFNγ in BM, following 

infection was manifest in absolute cell number. The number of WT CD4+ T cells IFNγ+ increased 

about 100 fold upon infection, while the number of TNF-RdKO CD4+ T cells IFNγ+ was 

unchanged, following infection with L. donovani (Figure 4.54b). 

CD8+ T cells also contributed to the overexpression of IFNγ during chronic infection although to 

a limited extent in comparison to CD4+ T cells (Figure 4.54a; Figure 4.54b). The number of WT 

CD8+ T cells expressing IFNγ increased 2.5 fold in infected compared to non-infected recipient 

mice, while the number TNF-RdKO CD8+ T IFNγ+ remain at levels found under homeostatic 

conditions (Figure 4.54b). The frequency and the cell number of CD3+ CD4- CD8- T cells 

expressing IFNγ derived from both, WT and TNF-RdKO donor cells was very low under 

homeostatic conditions and remained unaltered following infection (Figure 4.54a; Figure 4.54b). 

These findings confirmed CD4+ T cells as the main source of IFNγ in BM of mice infected with 

L. donovani. Noteworthy, in the absence of TNF intrinsic signaling the number of CD4+ T cells 

expressing IFNγ was unchanged, suggesting that TNF may play a pivotal role in the expansion of 

CD4+ T cells mediating the loss of HSCs in G0 during experimental chronic VL. Arguing in favor 

of a central role for TNF in the mediation of IFNγ overexpression in BM of infected mice, was 

the observation that beside impairing the expansion of CD4+ T cell compartment in BM, TNF 

intrinsic signaling impacted on their efficiency to express IFNγ (Figure 4.54c; Figure 4.54d). In 

BM cells from infected recipient mice stimulated in vitro, 90.95% ± 3.43 of WT CD4+ T cell 

expressed IFNγ, but this dropped to 70.48% ± 6.66 in TNF-RdKO CD4+ T cells (Figure 4.54c; 

Figure 4.54d). Following infection, directly ex vivo we detected IFNγ in 12.05% ± 1.19 of WT 

CD4+ T cell, while within TNF-RdKO CD4+ T cells this frequency was limited to 4.47% ± 1.02 

(Figure 4.54c; Figure 4.54d). 

In summary, these findings suggested that TNF acting directly on CD4+ T cells was required to 

the accumulation of CD4+ T cells expressing IFNγ in BM of mice infected with L. donovani, at 

least in this competitive chimeric setting. In previous experiments, we determined that lack of 

IFNγ signaling in T cells also prevented their accumulation in BM during infection. Further 

experiments would be required to definitely determine the role of IFNγ and TNF intrinsic 

signaling in the alteration of BM CD4+ T cells in mice infected with L. donovani and, how these 

alterations relate to the loss of HSCs in G0. Nevertheless, in the light of the set of experiments its 

conceivable that following infection, (1) IFNγ and TNF signaling produced as part of immune 
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response co-operate to mediate the CD4+ T cells accumulation in BM; (2) in these cells, TNF 

signaling in association with other mediators drive the expression of IFNγ that by indirect 

mechanisms stimulate LT-HSCs to enter in active-cell cycle; (3) the “perpetuation” of LT-HSCs 

stimulation results in the depletion of HSCs in quiescence with consequent loss of function, and 

the accumulation of intermediary progenitors that are less efficient to produce effector mature 

progeny, resulting in the establishment of anaemia (Figure 4.55).  
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4.3 DISCUSSION 

The collection of findings presented in this chapter revealed that alongside the depletion of LT-

HSCs in G0 and subsequent loss of function associated to anaemia and thrombocytopenia 

(Chapter 3) induced by infection with L. donovani, there was the establishment of evident 

alterations in the composition of T cells residing in the BM. Following infection, there was a 

dramatic increase in the frequency and number of T cells, mainly sustained by the expansion of 

CD4+ T cells displaying an “effector” phenotype and releasing IFNγ at increased levels. The 

production of IFNγ by CD4+ T cells was sufficient to drive the depletion in LT-HSCs in G0 in 

addition to anaemia, defining this pro-inflammatory cytokine as a key modulator of 

haematopoiesis during infection with L. donovani. The absence of TNF signaling in CD4+ T cells 

prevented their expansion in the BM of infected mice, and limited their potential to produce IFNγ, 

suggesting that TNF plays a central role in regulating the alterations in the T-cell compartment of 

the BM, and therefore indirectly contributing to the impairment of haematopoietic function during 

chronic infection with L. donovani. 

To assess the direct impact of the parasite burden in haematopoiesis we established the condition 

for a “super-infection” in immunodeficient RAG2 KO mice, lacking functional T and B cells. In 

the current study, despite the increase of parasites/1000 nuclei in the spleen of immunodeficient 

mice compared to WT mice, RAG2 KO mice did not display any alterations in the number of 

HSPCs following infection. Additionally, the depletion of the reservoir of quiescent LT-HSCs in 

the BM was prevented in the absence of functional T and B cells in infected hosts. These findings 

suggested that in B6 mice, the alterations in haematopoiesis were not directly induced 

by pathogen-associated molecular patterns from L. donovani parasites, but dependent on 

mechanisms associated with the adaptive immune system.  

However, in previous studies carried out in BALB/c mice infected with L. donovani, in which 

CFU assays were used to quantify haematopoietic progenitors in the BM and spleen, it was shown 

that the magnitude of parasite burden was directly associated to the extent of increase in the 

number of haematopoietic progenitors found at both sites (S. E. J. Cotterell et al., 2000a). This 

trend was also observed in SCID (severe combined immunodeficiency) mice, suggesting that 

innate immune mechanisms contribute to the expansion of haematopoietic progenitors (S. E. J. 

Cotterell et al., 2000a).  

Different antigens from Leishmania species induce alterations in TLR signaling, and TLR4 

specifically seems to be required to control parasite burdens by acting as an inducer of nitric oxide 

synthase (iNOS), which is a crucial mechanism for parasites killing (R. K. Singh et al., 2012). 

LT-HSCs and other early haematopoietic progenitors express TLRs, and in vitro stimulation of 



 166 

LSK cells with TLR ligands is sufficient to induce proliferation and myelopoiesis in vitro (Y. 

Nagai et al., 2006a). Similar results were described in mice challenged with TLR2, TLR4 and 

TLR9 agonists (J. Megias et al., 2012).  

Another example regarding the potential of TLRs to activate HSCs came from mice infected with 

Pseudomonas aeroginosa, model for sepsis, characterized by severe neutropenia due to block in 

myelopiesis and expansion of HSCs associated with functional impairment in long-term 

repopulating capacity. Interestingly, in mice deficient for TLR4 signalling, the neutropenia was 

prevented and the expansion of LSK cells limited, suggesting that TLR-signalling although 

advantageous to induce replenishment of post-mitotic short-lived myeloid cells during infection, 

may also be associated with the emergence of dysfunctional haematopoiesis (S. Rodriguez et al., 

2009). 

In contrast, it was reported that expansion of LSK cells during Staphylococcus aureus infection is 

independent of TLR signaling. The expansion of LSK cell following infection is not prevented in 

S. aureus-infected RAGKO mice (P. O. Scumpia et al., 2010), emphasizing the variability of 

mechanisms mediating alterations in haematopoiesis in response to different microbe insults. 

Another study showed that the loss of myeloid-committed progenitors in the BM during acute 

phase of infection in WT mice infected with the parasite Plasmodium chabaudi (malaria) is not 

prevented in mice deficient for MyD88 and TRIF, adaptor molecules that are required for TLR-

signalling (N. N. Belyaev et al., 2013). 

As previously described in BALB/c (S. E. J. Cotterell et al., 2000a), in the present study we also 

found the number of myeloid-committed progenitors increased in the spleen of mice chronically 

infected with L. donovani, in addition to increased frequency and number of non-committed 

progenitors. Signs of extramedullary myelopoiesis were also described in other models of 

parasitic infection such as malaria (N. N. Belyaev et al., 2013).   

In adult mammals, most of haematopoiesis takes place in the BM. The regulation of the dynamic 

process of retention and egress of haematopoietic progenitors is poorly understood, however, the 

current understanding is that various cell types composing the BM stroma such as, osteoblasts, 

CXC chemokine ligand 12 (CXCL12)-expressing reticular cells, and vascular endothelium cells 

contribute to these complex processes (C. H. Kim, 2010).  

However, during the response to an infection extramedullary haematopoiesis may be established 

in the spleen and liver as a consequence of increased haematopoietic activity in the BM, 

mobilization of haematopoietic progenitors and release of chemokines and growth factors, (J. L. 

Johns and M. M. Christopher, 2012). For example, the trafficking of LSK cells (with 
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reconstitution potential following transplant into x-irradiated recipients), between the BM and the 

periphery has been established in steady-state, however it was reported that pro-inflammatory 

conditions established by the administration of LPS, correlated to increased number of HSCs 

seeding into peripheral organs (S. Massberg et al., 2007).  

In humans and in animal models of disease, infection with L. donovani has been associated with 

the advents of BM alterations and cytopenias at various degrees of severity (N. Varma and S. 

Naseem, 2010, F. A. d. Pinho, 2015). The basis for these alterations are poorly defined, however 

splenic sequestration of blood cells and ineffective haematopoiesis have been appointed as the 

principal factors underlying the emergency of haematopoietic alterations both in the BM and in 

the periphery (N. Varma and S. Naseem, 2010). For instance, spleen removal has been for long 

defined as a therapeutic intervention when pharmacological approaches fail, which results in the 

recovery of blood cells in circulation to normal values (G. E. Cartwright et al., 1948). The clinical 

improvement upon splenectomy is not well defined, and some authors suggest that may be due to 

removal of a large amount of parasites (the spleen being a major reservoir), increased 

chemotherapeutic drugs available upon removal of hyperplasic spleen, and/or due to increased 

haemophagocytic activities of the enlarged spleen (G. E. Cartwright et al., 1948, R. A. Dutra et 

al., 2012).  

To assess the contribution of the spleen to the establishment of inflammation-induced 

haematopoiesis in the BM of mice infected for 28 days with L. donovani, the impact of spleen 

removal in BM cellularity was determined in the current study. During chronic infection with L. 

donovani, we failed to determine any differences either in frequencies of quiescent LT-HSCs, 

HSPCs (LSK CD150+ CD34- CD48- cells, LSK CD150+ CD34- CD48- cells, LSK CD150+ CD34- 

CD48- cells, CMPs, GMPs, MEPs and CLPs) or mature cells in the BM between splenectomized 

mice and “sham” infected mice, suggesting that for the alteration in BM cellularity do not 

contribute the alteration in the spleen, either by increased sequestering of haematopoietic effector 

cells or by it establishment as a site for extramedullary haematopoiesis. Nevertheless, it is 

conceivable that following spleen removal, extramedullary haematopoiesis could be established 

elsewhere, like the liver.  

Importantly, in previous work from P. T Bunn et al. it was reported that long-lasting immune 

response against L. donovani can be established in B6 mice lacking secondary lymphoid tissues 

and spleen, and that antigen-specific CD4+ T cells critical to control parasite growth can be 

generated in the liver (P. T. Bunn et al., 2014). 

We determined that alterations in haematopoiesis during infection with L. donovani were absent 

in mice lacking functional T and B cells, which suggested that adaptive immunity might play a 
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pivotal role in the regulation of haematopoietic function. In fact, the analysis of BM cellularity 

revealed profound alterations in the frequency and in the number of haematopoietic effector cells 

in BM. Amongst these alterations, the most compelling were the expansion of the T cell 

compartment followed by the contraction of the B cell compartment. However, the degree of the 

expansion of T cells, mainly sustained by CD4+ T cells, was far more extensive than the 

contraction of B cells. Furthermore, T cells in the BM are found in close proximity to IL-7 

producing stromal cells, which are required for maturation of B cells (F. E. Mercier et al., 2012). 

Most likely B cells are found in decreased numbers because they have to compete with T cells for 

the same niches in the BM, whose cell numbers are hugely increased during infection.  

In mice infected with L. donovani for 28 days we found the number of BM CD4+ T cells was 

increased ~20 fold compared to naive mice, and spleen removal did not limit the expansion of the 

CD4+ T cell compartment in BM. However, previous work carried out in mice infected with 

OVA-transgenic L. donovani parasites reported that 5 days following infection the number of 

proliferating Ag-specific CD4+ T cells in BM was unchanged compared to control (P. T. Bunn et 

al., 2014). In addition, treatment with FTY720 which causes S1P1R internalization preventing 

lymphocytes trafficking lead to a significant decrease in the number of Ag-specific CD4+ T cells 

in BM (P. T. Bunn et al., 2014). These finding suggested that is not BM a privileged site for T 

cell priming during L. donovani infection. As such in future experiment it would be pertinent to 

access using an OVA-Leish system the proportion of CD4+ T cells Ag-specific in BM, as well as, 

determined the contribution of ingress of Ag-specific T cells into BM, at various time points 

following infection.    

In steady-state mature CD4+ T cells and CD8+ T cells reside in BM in low numbers (K. Tokoyoda 

et al., 2009b, Y. Zhang et al., 2013), where priming of antigen-specific T cells can take place (M. 

Feuerer et al., 2003). The proof that BM T cells are fully functional came from the onset of graft 

versus host disease in allogeneic host receiving total BM cells transplants (F. Di Rosa and R. 

Pabst, 2005). Furthermore BM has been described as a privileged site for homing of memory T 

cells (C. Arieta Kuksin et al., 2015). 

It has been shown that CD4+ T cells play an important role in the regulation of normal 

haematopoiesis (J. P. Monteiro et al., 2005). Furthermore, changes in T cells in BM have been 

described in association with haematological alterations in experimental models of BMF 

syndromes and human monocytic ehrlichiosis (HME) (Y. Zhang et al., 2013, F.-c. Lin et al., 

2014, C. Arieta Kuksin et al., 2015). As such, there is an emerging demand to better understand 

the role of BM resident T cells in the immune response and in the regulation of haematopoiesis. 
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The association between alteration in T cells and haematopoietic activity has been formerly 

established in aplastic anaemia (AA) (C. Dufour et al., 2001, C. Dufour et al., 2003, N. S. Young 

et al., 2008). In humans, AA is characterized by the expansion of T cells displaying Th1 

phenotype that release IFNγ at increased levels. It was proposed that on the basis of AA 

pathophysiology is the increased cell death of HSPCs mediated by these expanded T cells, that 

ultimately results in BM failure (C. Dufour et al., 2001). Using experimental models for AA, it 

has been also suggested that T cells are key mediators of haematopoietic dysfunction and 

ultimately result in BM failure (F.-c. Lin et al., 2014, C. Arieta Kuksin et al., 2015). T cells 

migrate to the BM in response to chemokines, such as stromal-cell derived factor-1 (SDF-1, also 

known as CXCL12), the ligand for the chemokine receptor CXCR4 expressed in CD4+ T cells (C. 

Arieta Kuksin et al., 2015). Using an experimental model for lethal AA it was shown that the 

number of BM-infiltrating T cells was increased, in which the CXCR4 expression was aberrantly 

up-regulated, however, when the interaction of CXCR4-SDF1 was blocked this resulted in 

reduced accumulation of pathogenic T cells and sick mice were rescued from lethal BMF (N. S. 

Young et al., 2008, C. Arieta Kuksin et al., 2015). 

In other study, using mutant mice where IFNγ is constitutively expressed at low levels in T cells 

and Natural Killer cells (NK cells), it was reported that this is sufficient to promote AA phenotype 

(F.-c. Lin et al., 2014). Furthermore, in this experimental model of disease, as a result of the 

persistent exposure to low levels of IFNγ, the number of phenotypic HSCs (Lin– cKit+ Sca1hi 

CD34– Flt3– CD150+ cells) is increased and the differentiation of MPPs to myeloid progenitors, 

erythrocytes and B cells is defective, suggesting that the emergence of ineffective haematopoiesis 

contributes to AA (F.-c. Lin et al., 2014). 

Alterations in T cells in association with haematopoietic impairment are not restricted to BMF 

syndromes. For example, in experimental model of human monocytic ehrlichiosis (HME), 

infected mice, similarly to infected humans, display anaemia and thrombocytopenia (Y. Zhang et 

al., 2013). The establishment of infection correlated with the expansion of LSK cells in BM, 

which was dependent of IFNγR signalling in mice infected with Ehrlichia chaffeensis 

(experimental model of the disease), and then it was determined that during infection the main 

source of IFNγ were CD4+ T cells (Y. Zhang et al., 2013). 

A recent review compiled the most relevant studies performed on the characterization of T cells in 

BM using experimental models of disease. In an attempt to shed some light on the classification 

of activated T cells in the BM, it proposed the following: “effector” BM T cells are enriched in 

the CD44high CD127 (IL-7Rα)-/low Ly6C-/low population and “memory” BM T cells are enriched in 

CD44high CD127high Ly6Chigh population (K. Tokoyoda et al., 2010).  
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Based on the above studies reporting that T cells have the potential to impair haematopoietic 

function in periphery and induce the activation of HSCs into active cell-cycle in BM, we decided 

to characterize BM T cells in further detail. In the current study, the phenotypic and functional 

characterization of BM T cells revealed that following infection with L. donovani the vast 

majority (about 90%) of CD4+ T cells were CD44hi CD127-/low Ly6C-/low cells, a phenotype 

previously attributed to BM “effector-T cell” (K. Tokoyoda et al., 2010). Additionally, we found 

that both in steady-state percentage of BM CD4+ T cells CD44hi was higher in the spleen 

compared to BM, and this become further evident following infection. 

The observation of a higher proportion of T cells with an “activated” phenotype reside in BM in 

steady-state compared with the spleen has been made previously by others. These differences in 

the distribution of T cells population in BM are followed by other important phenotypic and 

functional differences in T cells between BM and the spleen (F. Di Rosa and R. Pabst, 2005).  

For example, it was reported that in mice, BM T cells express higher level of CD44 compared to 

other sites, as studies in LCMV models of infection demonstrated that CD8+ T cells CD44hi are 

more activated in BM compared to those found in the spleen. Antigen-specific CD8+ T cells 

persist for much longer periods of time in BM compared to other extra-lymphoid following 

infection resolution, while retaining their ability to perform an efficient secondary immune 

response when transferred to an immunodeficient infected host (F. Di Rosa and R. Pabst, 2005). 

In more recent study using LCMV model of infection these same features were also attributed to 

BM CD4+ T cells (K. Tokoyoda et al., 2009b). 

Activated T cells have been classically segregated in short-lived “effector” T cells and long-lived 

‘‘memory’’. “Memory” T cells are then classified into “central memory‘‘ that are in permanent 

circulation between the blood and secondary lymphoid organs and have a higher potential of 

expansion compared to the ‘‘effector memory” T cells, which survey extra-lymphoid organs 

providing a quick response to invading pathogens (F. Di Rosa and R. Pabst, 2005). The 

classification into the above mentioned categories has been a matter of debate for a long time due 

to differences in the expression of surface markers among T cells from different tissues, and due 

to the plasticity of ‘‘memory’’ and ‘‘effector’’ cells. In chronic infection where residual 

pathogens persist over time the distinction becomes even harder as effector T cells may be present 

for extended periods of time (F. Di Rosa and R. Pabst, 2005, K. Tokoyoda et al., 2010).  

The distinction between central memory and effector memory has been usually made on the 

assumption that “central memory” T cells express CCR7 and have a more proliferative compared 

to “effector memory” T cells that do not express CCR7 (F. Di Rosa and R. Pabst, 2005). To add 

more complexity to this subject it was reported that BM memory T cells may not express CCR7 
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or CD62L but the majority express Ly6C, rarely found expressed in memory T cells in other sites 

(K. Tokoyoda et al., 2009a, K. Tokoyoda et al., 2009b). Furthermore, memory T cells in BM 

rapidly expand extensively upon challenge, displaying simultaneously functional features 

classically associated to the so-called “central memory” (i.e. rapid extensive proliferation) and 

“effector memory” T cells (i.e. residing in BM) (F. Di Rosa and R. Pabst, 2005, K. Tokoyoda et 

al., 2009b). 

Further experiments would be required to functionally define the CD4+ T cells found in BM as 

“effector” or “memory” cells. A “memory” T cells is defined as a antigen-specific cells that 

persist after antigen removal and is capable to expand following a second encounter with cognate 

antigen (F. Di Rosa and R. Pabst, 2005). For example, experiments could be developed using 

transgenic mice bearing CD4+ T cells expressing a TCR specific for a defined antigen, in 

immunized mice following the removal of the cognate-antigen, the persistence and the phenotype 

of CD4+ T could be assessed, as well as their kinetics of expansion in a subsequent stimulation 

with target antigen, for example using an OVA-Leish OT II system. In addition, different 

populations Ag-specific BM CD4+ T cells (based on the differential expression of CD44, CD127 

and Ly6C) could be transferred to RAG2 KO recipients and their localization, phenotype and 

response to secondary L. donovani infection in comparison to naive BM CD4+ T cells isolated 

from naive mice.  

In the present study, we found that ~ 90% of BM CD4+ T cells, besides displaying an “effector” 

phenotype  (CD44hi CD127-/low Ly6C-/low cells), were primed to express IFNγ at increased levels. 

A substantial proportion of CD4+ T cells were actively expressing IFNγ and TNF in the BM of 

infected mice, suggesting though not proving a degree of antigen specificity to the response.  

In hamsters infected with L. donovani, characterized by severe anaemia and leucopenia, it was 

reported that mRNA levels of IFNγ and TNF-related apoptosis-inducing ligand (TRAIL) are 

significantly increase both in BM and the spleen, and this is coincident with an increase in 

apoptotic erythroblasts in BM, collectively suggesting that in the hamster, anaemia is mediated by 

cytokine-induced increased apoptosis of erythroid progenitors (W. P. Lafuse et al., 2013).    

Additionally, previous studies reported that both IFNγ and TNF are found expressed increased in 

the BM of patients suffering from BMF syndromes, suggesting that increased levels of expression 

of these cytokines may contribute to the decline of a haematopoietic function (C. Dufour et al., 

2001, C. Dufour et al., 2003).  

Initial studies in vitro suggested that IFNγ has an inhibitory impact in haematopoiesis, through the 

inhibition of proliferation and induction of apoptosis (A. M. de Bruin et al., 2014). However, in 
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vivo studies in different models of infections have been less consensual regarding the impact of 

IFNγ in the modulation of inflammation-induced haematopoiesis, and respective mechanisms of 

action (A. M. de Bruin et al., 2014). For example, in mice infected with Mycobacterium avium, it 

was proposed that IFNγ acting directly on LT-HSCs through the activation of the transcription 

factor STAT1 (Signal transducer and activator of transcription 1) induced proliferation with 

significant decrease of cells in quiescence, accumulation of early committed progenitors and loss 

of myeloid-committed progenitor in the BM (M. T. Baldridge et al., 2010). In this study from 

Baldridge et al, it was reported that in BMT competitive assays, BM cells derived from donors 

treated with IFNγ performed poorly in the reconstitution of haematopoietic system following 

transplantation in lethally x-irradiated recipients, compared to PBS treated controls. The cell 

numbers for LT-HSCs in the donors were very similar irrespective of IFNγ treatment, suggesting 

that the competitive disadvantage of  “IFNγ-activated” LT-HSCs results from their lower degree 

of quiescence, a property intrinsically related to engraftment potential (M. T. Baldridge et al., 

2010).  

The experimental model for HME provided another example supporting a role for IFNγ as a key 

mediator of haematopoietic dysfunction, established not only in the periphery but coincident with 

increased proliferation of HSCs and consequent loss of engraftment potential in long-term BMT 

assays (K. C. MacNamara et al., 2011a, K. C. MacNamara et al., 2011b). Mice infected with 

Ehrlichia muris are characterized by the emergence of anaemia, thrombocytopenia and BM cells 

show decreased colony forming activity in vitro, however all these features were prevented in 

infected mice deficient for IFNγ signalling. Importantly, infected mice lacking receptor for IFNγ 

only in the stromal compartment display similar alterations in haematopoiesis, including the 

expansion of LSK cells compartment in BM, compared to the IFNγR competent control (K. C. 

MacNamara et al., 2011b). Overall, these findings suggested that IFNγ signalling in 

haematopoietic cells is required to induce haematopoietic impairment during infection with E. 

muris (K. C. MacNamara et al., 2011b). In a following study, it was reported that infection with 

E. muris leads to the activation of HSCs (LSK CD150+ Flt3- cells) into active cell-cycle and this 

correlated with poor reconstitution upon transfer to non-infected recipient mice. In competitive 

BMT experiments, LSK cells derived from infected IFNγR deficient mice showed competitive 

advantage over LSK cells derived from infected WT mice. And so, it was proposed that IFNγ 

directly mediates HSCs loss of function through the induction of increased proliferation during 

infection with E. muris, however proliferative state of IFNγR KO HSCs in chimeric mice was not 

assessed (K. C. MacNamara et al., 2011a). 

On the contrary, in LCMV infected mice, a model for acute viral infection, it was proposed that 

IFNγ acting directly on LT-HSCs (LSK CD150+ CD48- cells) inhibits proliferation and reduces 

self-renewal divisions (A. M. de Bruin et al., 2013). Mice infected with Armstrong strain of 
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LCMV display BM hypocellularity, low number of LT-HSCs and leucopenia. In this study from 

de Bruin et al, it was reported that in vitro stimulation of LT-HSCs with IFNγ results in a lower 

division index. However, the infection of IFNγ-deficient mice or mixed BM-chimeric mice 

reconstituted with BM cells from IFNRγ-deficient mice and WT mice, resulted in both scenarios 

in a faster recovery of HSCs number from IFNγ-signalling deficient cells during the course of 

infection. In vitro stimulation of LT-HSCs with IFNγ impaired TPO-mediated phosphorylation of 

STAT5 by the induction of SOCS1 (inhibitor of STAT5 activation) and abrogated TPO-mediated 

proliferation of LT-HSCs, then it was determined that IFNγ limit the downregulation of the cell-

cycle inhibitor p57 induced by TPO in LT-HSCs. Finally, it was reported that WT HSCs from 

LCMV mice upregulate the expression of mRNA for p57 but this was prevented in HSCs 

deficient for IFNγR (A. M. de Bruin et al., 2013). As such, IFNγ in the context of LCMV 

infection seems to limit LT-HSCs function through the downregulation of the expression of genes 

involved in the regulation of cell-cycle progression (A. M. de Bruin et al., 2013).  

On the other hand, in a study designed to study the impact of CD8+ T cells in haematopoiesis in 

mice infected with WE strain LCMV, it was proposed that IFNγ mediates increased myelopoiesis 

not acting directly on HSPCs but instead mediating the release of IL-6 by BM stromal cells (C. 

M. Schuerch et al., 2014). In this study, to isolate the impact of CD8+ T cells, cells from TCR-

gp33 epitope of LCMV transgenenic mice (p14 CD8+ T cells) were transferred for mice 

expressing gp33 in all cells (H8 mice). In H8 mice, the transfer of p14 CD8+ T cells was related to 

the expansion of Lin- cKit+ cells, maintenance of LT-HSCs number followed by the expansion of 

all the other HSPCs, increase colony-forming activity biased toward myeloid differentiation in 

vitro and increased number of Ly6C+Ly6G SSClo inflammatory monocyte in circulation. These 

alterations were prevented in both H8 mice receiving IFNγ-deficient p14 CD8+ T cells and in 

IFNγR-deficient H8 mice receiving WT p14 CD8+ T cell. Subsequently, using mixed BM 

chimeras, it was demonstrated that in this system IFNγ released by CD8+ T cells acts directly on 

BM stromal cells to induce IL-6 release, which then mediates the downregulation of Runx-1 and 

Cebpa in Lin- cKit+ cells thus favoring myeloid differentiation (C. M. Schuerch et al., 2014). 

A different role for IFNγ in the modulation of alterations in the haematopoietic system was 

proposed following experiments in an experimental model for Malaria. Mice infected with 

Plasmodium chabaudi are characterized by the loss of myeloid-committed progenitors in BM, and 

it was proposed that this is mediated by IFNγ signalling acting directly on the stromal 

compartment, and increased systemic levels of CCL2, therefore promoting the conditions for 

increased mobilization of myeloid-committed progenitors to the periphery via CCR2 expressed on 

these progenitors (N. N. Belyaev et al., 2013). 
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These above given examples illustrate the requirement of studies on the impact of IFNγ in the 

infection-induced haematopoiesis in the pathogen-specific contexts, additionally emphasise the 

limitation associated to the so far proposed general mechanisms concerning the regulation of 

haematopoiesis in the face of stress or injury.   

In the present study, to dissect the role of CD4+ T cells in the changes in haematopoiesis in BM 

and haematopoietic dysfunction in periphery, purified CD4+ T cells from naive B6 mice were 

transplanted to RAG2 KO mice, subsequently infected with L. donovani. In line with previous 

experiments, in mice lacking functional T and B cells, the infection with L. donovani parasites did 

not result in significant changes in the number of HSPCs nor in the number of LT-HSCs in G0. 

On the contrary, RAG2 KO mice that received CD4+ T cells displayed profound alterations in the 

haematopoietic compartment, such as the expansion of early progenitors and the depletion in the 

reservoir of quiescent LT-HSCs, resembling the phenotype observed in WT infected mice.  

Furthermore, we determined that the establishment of anaemia and thrombocytopenia in WT mice 

chronically infected with L. donovani were absent in immunodeficient RAG2 KO mice, however 

those haematological anomalies in the periphery emerged in RAG2 KO mice transplanted with 

CD4+ T cells following infection. These findings demonstrated that CD4+ T cells could solely 

mediate the alteration in haematopoiesis in BM and in haematopoietic function in the periphery 

during infection with L. donovani. CD4+ T cells showed a much higher degree of alteration 

compared to CD8+ T in the BM of infected mice. Nevertheless, it is conceivable that CD8+ T cells 

could also play an important role in the haematological changes resulting from infection. 

The phenotypic alteration of transplanted CD4+ T cells replicated those from BM CD4+ T cells 

found in WT infected mice i.e. massive expansion and skewing towards “effector” BM T cells 

(CD44hi LyC6-/lo CD127-/lo T cells). Interestingly, in naive RAG2 KO mice, the vast majority of 

transplanted CD4+ T cells had a “memory” phenotype (CD44hi LyC6hi CD127hi T cells), which 

argues in favor of the phenotype proposed for memory T cells in the BM (K. Tokoyoda et al., 

2010).  

Given the central role of IFNγ in the mediation of haematological dysfunction in other models of 

infection (M. T. Baldridge et al., 2010, K. C. MacNamara et al., 2011a, K. C. MacNamara et al., 

2011b, A. M. de Bruin et al., 2013) in the present study, we assessed whether CD4+ T cells 

modulated stress-induced haematopoiesis during infection with L. donovani through the release of 

IFNγ, expressed at increased levels in the BM in chronically infected mice. This hypothesis was 

further supported by the report that expansion of LSK cells compartment of mice infected with E. 

muris depended of IFNγ derived from CD4+ T cells (Y. Zhang et al., 2013). 
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In clear opposition to the results obtained by the transfer of WT CD4+ T cells, the phenotype of 

infected RAG2 KO transferred with CD4+ T cells lacking IFNγ was identical to infected RAG2 

KO mice not subjected to any cell transfer, namely in the number of HSPCs in BM, number of 

quiescent LT-HSCs and maintenance of blood parameters (RBC and platelets) at basal levels. The 

number CD4+ T cells in IFNγ KO and WT mice were identical in the BM of infected RAG2 KO, 

suggesting that CD4+ T cells lacking IFNγ were competent to expand in response to infection in 

non-competitive experimental settings. As such, in our model of experimental VL, we defined 

CD4+ T cells expressing IFNγ as key modulators for the depletion of quiescent LT-HSCs driven 

by the massive expansion early progenitors and ineffective haematopoiesis reflected in the 

establishment of anaemia. Additionally, in the sequence of these set of experiments we also 

resolved that CD4+ T cells expressing IFNγ were required to the clearance of parasites and the 

onset of splenomegaly in immunodeficient mice, which is strongly suggestive of a central role of 

these cells underlying these same manifestations in WT infected mice.  

These findings conform to previous reports establishing IFNγ as a mediator of disease progression 

in VL (A. P. Taylor and H. W. Murray, 1997, R. Kumar et al., 2014). In culture of splenic 

aspirates from VL patients with clinical symptoms of Kala-azar, the addition of blocking 

antibodies against IFNγ correlated with increased parasite load, suggesting that IFNγ is important 

to control the parasite growth in humans (R. Kumar et al., 2014). Interestingly, in this same study 

CD4+ T cells were defined as the main source of IFNγ in PB blood of VL patients (R. Kumar et 

al., 2014). Furthermore, it was formerly reported in experimental VL using BALB/c mice infected 

with L. donovani that the absence of IFNγ signalling resulted in uncontrolled parasite burdens in 

the liver, which is controlled in IFNγ competent littermates (A. P. Taylor and H. W. Murray, 

1997).  

Increased proliferation of LT-HSCs into active cell-cycle and impaired repopulating activity, as a 

consequence of stress-induced haematopoiesis has been attributed to IFNγ signalling acting 

directly on these cells in other models of infection (M. T. Baldridge et al., 2010, K. C. 

MacNamara et al., 2011a, K. A. Matatall et al., 2014). To test the hypothesis that IFNγ signalling 

in LT-HSCs were driving increased proliferation during chronic infection with L. donovani, we 

established BM mixed chimeras with equal number of total BM cells derived from WT and 

IFNγR2KO (WT: IFN-γR2KOèWT). This approach allowed the experimental evaluation of the 

impact of IFNγR signalling in LT-HSCs, whilst excluded confounding findings resulting from a 

global loss of IFNγ signalling. In agreement with previous findings from Bruin and MacNamara, 

we determined that donor cells lacking IFNγ signalling displayed higher repopulating potential in 

lethally irradiated recipients, following the establishment of infection (K. C. MacNamara et al., 

2011a, A. M. de Bruin et al., 2013). Nonetheless, an increased repopulation activity of IFNγR2 

KO was already prevalent in uninfected recipient mice, and this was not significantly changed 
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following infection with L. donovani. These findings suggested that basal levels of IFNγ regulate 

haematopoietic activity, as formerly reported by others (A. M. de Bruin et al., 2013). Nevertheless 

in the current study, under conditions established by infection with L. donovani, the lack of IFNγ 

signalling did not constitute a further competitive advantage.  

In our study, the lack of intrinsic IFNγ signalling did not prevent the expansion of LSK cells 

compartment in BM of mice chronically infected with L. donovani. However, in the BM of 

chronically infected recipient mice, we found that within the WT compartment, the increase in the 

frequency of LSK cells was coincident with a dramatic contraction of Lin- cKit+ cells, whilst 

within IFNγR2 KO donor cells those remain unaltered. As such, to the increase in WT LSK cells 

may contribute to the upregulation of Sca1 in functional lineage-committed progenitors 

classically included Lin- cKit+ cells mediated by intrinsic IFNγ signalling. This phenomenon has 

been formerly reported in other models of infection (N. N. Belyaev et al., 2010, N. N. Belyaev et 

al., 2013) and following IFNγ stimulation haematopoietic cells in vivo and in vitro (T. R. Malek et 

al., 1989, A. Sinclair et al., 1996, A. M. de Bruin et al., 2013).  

In the absence of intrinsic IFNγ signalling, we found that early committed progenitors expanded 

extensively follow infection, and noticeably LT-HSCs were driven to an active proliferative status 

at a similar extent as WT LT-HSCs. Therefore, in mice infected with L. donovani we could 

exclude IFNγ as a direct mediator of LT-HSCs loss of quiescence, and subsequent functional 

impairment (Chapter 3). As a consequence of these findings, it would be important to establish 

BM chimeras in which the receptor for IFNγ is expressed in LT-HSCs but not in radio-resistant 

BM stromal cells, to determine whether the deleterious effect of IFNγ impact in haematopoietic 

function could be mediated by the IFNγ signalling acting directly on BM stromal cells. In fact, 

this mechanism has been proposed previously to explain increased myelopoiesis in mice infected 

with LCMV strain WE (C. M. Schuerch et al., 2014).   

Former studies proposed that IFNγR expressed in HSPCs was directly implicated in activation of 

“dormant’” LT-HSCs and/or haematopoietic dysfunctions, which was attributed to the lack of 

increased proliferation in LT-HSCs and/or alteration in other progenitors and mature effector cells 

in IFNγRKO mice, (M. T. Baldridge et al., 2010, K. C. MacNamara et al., 2011a, K. C. 

MacNamara et al., 2011b, Y. Zhang et al., 2013). Under those conditions, infections were 

established in an “all system” deficient for IFNγ signalling, which could explain the conflicting 

results obtained in our model of chronic infection. On the other hand, in mixed BM chimeric mice 

with WT and IFNγR2 KO donor cells, following LCMV strain Armstrong infection the 

proportion of LT-HSCs in active cell-cycle was comparable between WT and IFN-γR2KO donor 

cells at various time points, as such it was proposed that IFNγ-signalling in HSCs to be not 
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responsible the activation of quiescent LT-HSCs into an active proliferative status (A. M. de 

Bruin et al., 2013).  

In the current study, we established that in steady-state IFNγ was not required to T cell 

development; on the contrary, lack of intrinsic IFNγ signalling clearly limited the expansion of 

these cells following infection with L. donovani. This competitive advantage based on IFNγR-

signalling on T cells, was further evident in BM, suggesting that IFNγ contributes to the dramatic 

increase in the T cell compartment during experimental VL. On the other hand, in non-

competitive settings, as a consequence of transfer into RAG2 KO recipients, IFNγ KO T cells 

were able to expand in the BM at a similar rate to WT T cells. These findings are difficult to 

reconcile and pointed to various conceivable scenarios; it is plausible that in immunodeficient 

mice compensatory mechanisms are in place and IFNγ from other sources (i.e. NK cells) may be 

sufficient to drive the increase in T cells in the BM, yet below a threshold required to propel 

haematopoietic dysfunction.  

Another hypothesis would be that IFNγR-signalling equipped T cells with an increased capacity 

to expand and the endogenous expression of IFNγ intrinsically related to other functions, such as 

additional expression of growth factor or anti-apoptotic mediators, features not assessed in this 

experiment. For instance, it is well established that IFNγ is important for the differentiation of 

CD4+ T cells into Th1 cells in detriment of Th2 cells (V. Lazarevic et al., 2013). It was proposed 

that IFNγ receptor and TCR signalling induce the expression of T-bet, the master regulator of Th1 

cell differentiation, the expression of T-bet promotes the expression of IFNγ, which in an 

autocrine manner regulates further expression of T-bet and therefore the stabilization of Th1 

phenotype, and consequent acquisition of functional and migratory features (V. Lazarevic et al., 

2013). As such, it would be important to determine in further experiments if IFNγ signalling in 

CD4+ T cells is required to the upregulation of T-bet during chronic infection with L. donovani. 

In other models of infection there is evidence that direct IFNγ signalling modulates T cells either 

by enhancing or suppressing their responses to infection (J. K. Whitmire et al., 2005, J. S. Haring 

and J. T. Harty, 2006). For example, in mice immunized with LCMV, using competitive transfer 

assays it was shown that antigen-specific CD4+ T cells expand at a much higher rate compared to 

antigen-specific CD4+ T cells lacking IFNγ signalling. The expression of IFNγ receptor correlated 

with higher efficiency of IFNγ production, suggesting that direct IFNγ signalling enhance CD4+ T 

cells functions (J. K. Whitmire et al., 2005). On the contrary, in an experimental model for 

Listeria monocytogenes infection, it was observed that a higher percentage of antigen-specific 

CD4+ T cells expressed IFNγ and IL-12 in IFNγR KO mice compared to WT mice, their 

frequency in IFNγR KO mice remained increased at later time points while in WT mice it steadily 

decreased over a period from 7 to 150 days post-infection. As such, it was proposed that IFNγ 
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signalling is not required for the differentiation of effector Th1 cells but important for the 

contraction of CD4+ T cell compartment upon LCMV infection resolution (J. S. Haring and J. T. 

Harty, 2006). These two examples frame the relevance of determining the role of IFNγ signalling 

in the regulation of T cells functions in the context of specific microbe insults. 

In the current study, we demonstrated that CD4+ T cells competent to produce IFNγ mediate 

haematopoietic impairment during chronic infection with L. donovani. To definitely establish the 

role of IFNγR-signalling on these cells, it would be important to determine whether the transfer of 

CD4+ T cell devoid IFNγR to RAG2 KO mice prevents the onset of haematopoietic alterations, 

otherwise present following transfer of WT CD4+ T cells, and subsequently determine how the 

lack of IFNγR-signalling relates to the proficiency to express IFNγ in our model of chronic 

infection.  

In BM mixed chimeric mice WT: IFN-γR2KOèWT, we also determined noteworthy alterations 

in the myeloid cell compartment. Following infection with L. donovani, within the IFNγR KO 

donor progeny there was a contraction in the frequency of CD11b+ F4/80+ myeloid cells 

(phenotype associated to macrophages in most tissues (X. Zhang et al., 2008)) in the BM of 

infected recipient, in an opposite trend to the increase observed among WT derived CD11b+ 

F4/80+ myeloid cells. In steady-state, the frequency of CD11b+ F4/80+ myeloid cells lacking 

intrinsic IFNγ signalling was already decreased compared to those from derived WT donor cells, 

both in BM and in the spleen, suggesting that basal IFNγ levels contribute to their development 

and/or survival. The differences in the frequency of CD11b+ F4/80+ myeloid cells and other 

myeloid populations became further evident in chronically infected mice, both in the BM and 

spleen, suggesting that in the conditions established by the infection with L. donovani, intrinsic 

IFNγ signalling provides a competitive advantage to myeloid cells. These findings raised non-

exclusive hypothesis: that IFNγ-signalling may “equip” infected myeloid cells to kill the parasites 

more effectively and avoid cell-death (A. C. Stanley and C. R. Engwerda, 2007); IFNγ signalling 

could induce myeloid biased differentiation of haematopoietic progenitors, which was proposed in 

other models of infection (K. C. MacNamara et al., 2011b, A. M. de Bruin et al., 2012, K. A. 

Matatall et al., 2014). 

BM macrophages mediate the development of erythrocytes and the retention of HSCs in the BM, 

this was established in CD169-DTR mice expressing diphtheria toxin receptor (DTR) knocked in 

downstream of the endogenous CD169 promoter, which allowed to examine the specific role of 

BM macrophages in haematopoiesis, since CD169 in BM is specifically expressed in 

macrophages, but not in other myeloid cells. (A. Chow et al., 2011, A. Chow et al., 2013). In 

mice, the depletion of BM CD169+ macrophages leads to a substantial increase in the number of 

LSK Flt3-cells (enriched in HSCs) in circulation, and this enhanced mobilization of HSCs driven 
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by the deletion of BM CD169+ macrophages correlated with the down-regulation in the gene 

expression of molecular mediators associated to HSCs retention within mesenchymal stromal 

cells (A. Chow et al., 2011). Moreover, the maturation of erythroid progenitors in BM takes place 

in special niches, the so-called erythroblastic islands, in which erythroblasts at various stages of 

development are found in close association with BM macrophages. In transgenic mice the 

deletion of BM CD169+ macrophages correlates with a dramatic reduction in the numbers of both 

F4/80+/Ter119+ islands, and erythroblasts in the BM, in addition to increased mobilization of 

erythroblasts to the circulation and the spleen (A. Chow et al., 2013). Given the important role of 

BM macrophages in haematopoiesis exemplified above, the alterations we observed in the 

myeloid compartment in the BM of chimeric mice WT:IFN-γRKO following L. donovani 

infection, it would be important to further assess the identity of BM myeloid cells (and expression 

of CD169), dissect their role in the establishment of haematopoietic dysfunction, and finally 

explore the significance of IFNγ signalling in these cells in the context of the alterations of 

haematopoiesis characterizing mice chronically infected with L. donovani. Moreover, it was 

recently reported in our laboratory that the frequency of myeloid cells CD169hi is decreased in the 

BM of B6 mice following L. donovani infection (O. Preham unpublished data). 

In the current study, we found that in mice chronically infected with L. donovani there was a 

significant increase in the level of TNF receptors (TNF-R1a or p55 and TNF-R1b or p75) 

expression in early haematopoietic progenitors including LT-HSCs, suggesting that these 

immature cells were responsive to the increase in pro-inflammatory cytokine availability in BM. 

These findings agree with previous studies reporting that TNF receptors expression is up-

regulated under conditions of stress-induced haematopoiesis, such as following transplantation 

(K. Mizrahi and N. Askenasy, 2014). 

In addition to IFNγ, changes in TNF levels of expression, both in BM and systemically have been 

reported in patients suffering from BMF syndromes (C. Dufour et al., 2001, C. Dufour et al., 

2003, W. Du et al., 2014). An important role for TNF mediating the establishment of 

haematopoietic dysfunction in patients suffering from Fanconi anaemia was proposed following 

the observation that the addition of anti-TNF fusion protein to cultures of BM cells from these 

patients was associated with an improvement in their potential to originate erythroid colonies in 

vitro (C. Dufour et al., 2003). Other in vitro studies, using human cells, defined TNF as a 

suppressor of haematopoiesis, for example the addition of TNF or IFNγ to total BM cultures 

results in a significant reduction of colony formation both from myeloid and erythroid lineages, 

however this inhibition was further increased by the combination of both cytokines, suggesting 

that TNF and IFNγ signalling may cooperate in the impairment of haematopoietic function (C. 

Selleri et al., 1995). Similar findings, reporting TNF as an inhibitor of haematopoiesis, were 



 180 

produced in in vitro experiments conducted with murine cells (Y. Zhang et al., 1995, D. Bryder et 

al., 2001, C. J. H. Pronk et al., 2011). 

Nevertheless, other studies performed in vitro suggested that under specific contexts TNF might 

induce HSCs activation (H. W. Snoeck et al., 1996, M. T. Baldridge et al., 2011). For example, 

TNF in combination with IL-3 induced increased colony-formation activity of human BM CD34+ 

CD38- cells (enriched for HSCs), which was nearly absent in cultures supplemented with IL-3 

alone (H. W. Snoeck et al., 1996). In addition, it was reported that TNF acts synergistically with 

IL-3 and GM-CSF in the formation of colonies in vitro when added to the culture system in low 

concentration, but it had an antagonistic impact at high concentrations, suggesting that TNF 

impact in haematopoietic activity may be dosage-dependent (L. S. Rusten et al., 1994). 

Additionally, it was observed that the transfer of LSK cells pre-stimulated in vitro with TNF to 

lethally irradiated recipients correlated with impaired HSCs activity, since after a period of 14-18 

weeks, the level of reconstitution of these cells was very poor compared to control LSK cells 

culture in the same conditions without TNF, and the same was observed with donor cells deficient 

for Fas, suggesting that this cytokine has the potential to limit HSCs self-renewal activity 

independently of Fas pathway (D. Bryder et al., 2001). However, in another study carried out in a 

co-culture system, it was proposed that CD8+ cells through the release of TNF induce LSK 

expansion, and that these cells contribute to long-term engraftment (F. Rezzoug et al., 2008). 

Increased release of TNF was also described in mice infected with Ehrlichia muris (Y. Zhang et 

al., 2013) and in mice stimulated with Poly:IC (E. M. Pietras et al., 2014). Both of these 

inflammatory models display extensive expansion of LSK cells in BM. 

TNF plays a very important role in the establishment of an effective immune response to a wide 

variety of pathogens (J. J. Peschon et al., 1998, T. Ellerin et al., 2003), including L. donovani (C. 

R. Engwerda et al., 2004b). Despite the controversy regarding the role of TNF, either as inducer 

or inhibitor of haematopoietic activity, the present body of literature agrees that alterations of 

TNF expression impact haematopoietic function and in HSCs activity, and that the regulation of 

haematopoiesis by TNF should be a complex and context-dependent process (M. T. Baldridge et 

al., 2011, K. Mizrahi and N. Askenasy, 2014, N. Askenasy, 2015). 

In mice infected with L. donovani we found that the frequency of CD4+ T cells expressing TNF at 

increased levels was significantly expanded in the BM. Additionally, the expression of TNF can 

be also upregulated by myeloid population in pro-inflammatory condition (K. Matsui et al., 

2013). As such, we hypothesized that TNF could be acting directly on HSCs during experimental 

VL as a mediator of the activation of HSCs into active cell-cycle, and subsequent functional 
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impairment. Aiming to dissect the role of TNF receptor signalling during chronic VL, BM mixed 

chimeras were established with equal number of total BM cells derived from WT and TNF-RdKO 

(doubly deficient cells for TNF-R1a and TNF-R1b) into WT recipients (B6.CD45.1 : 

B6.CD45.2TNF-RdKO è B6.CD45.1), and therefore avoid confounding results due to the 

absence of TNF signalling in other cell populations.  

Similar to a previous study carried out by Pronk et al (C. J. H. Pronk et al., 2011), we 

demonstrated that lack of TNF receptor signalling constitutes a competitive advantage in the 

reconstitution of lethally irradiated recipients, which was reflected in a higher proportion of 

TNFR-dKO donor cells compared to WT donor cells, both in the BM and spleen of recipient 

mice. These analyses were performed after a period of 13 weeks, and at this time point it is 

expected that the vast majority of mature cells to be derived from donor HSCs.  

On the other hand, these findings contradict a study that proposed that intrinsic TNF signalling is 

required for long-term engraftment of BM donor cells into WT lethally irradiated recipients (M. 

Pearl-Yafe et al., 2010). In the study by Pearl-Yafe et al, the transplantation experiments were not 

performed in a competition with WT donor cells and it is therefore conceivable that TNF 

signalling in other cells beside HSCs is required to efficiently reconstitute the haematopoietic 

system (M. Pearl-Yafe et al., 2010).  

Importantly, we observed that following chronic infection with L. donovani the frequency of 

TNF-RdKO donor cells decreased in BM and in the spleen, in an opposite trend to the 

proportional increase observed the WT donor cells at both sites. This finding suggested that under 

the conditions established by infection with L. donovani, TNF signalling might contribute to the 

maintenance of the number of cells, both in the BM and spleen. 

In infected mice, we reported an expansion of the LSK cell compartment at the expense of a 

contraction Lin- cKit+ Sca- cells, both in WT and TNF-RdKO donor cells, suggesting that TNF 

receptor signalling is not required to the up-regulation of Sca1 in lineage-committed progenitors. 

Furthermore, the lack of TNF intrinsic signalling could not prevent the expansion of LSK CD150+ 

CD48+ cells (cell population onward LT-HSCs enriched in multipotent progenitors). Most 

importantly, there were no evidence that TNF acting directly of LT-HSCs was mediating the 

depletion of the reservoir of quiescent LT-HSCs, since a decline in the number of these cells were 

comparable between WT and TNF-RdKO donor cells in the BM of recipient mice during 

infection. 

As such, our findings excluded TNF as a direct mediator of loss of HSCs in G0. The higher 

proportion of donor cells deficient for TNF signalling, both in steady-state or following infection, 
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may be partially explained by the susceptibility of WT donor cells progeny to activation-induced 

cell death mediated by TNF signalling on competent donor cells (N. Askenasy, 2015), otherwise 

absent in TNF-RdKO donor cells. In agreement with this hypothesis, is the report that stimulation 

of LSK cells in culture with TNF leads to up-regulation of Fas in differentiated progeny, 

suggesting that differentiation leaves cells more vulnerable to apoptosis (D. Bryder et al., 2001). 

Our findings contrast with a study from Pronk et all, in which it was proposed that TNF signalling 

could directly mediate the loss of HSCs self-renewal in vivo under conditions of stress-induced 

haematopoiesis (C. J. H. Pronk et al., 2011). In this study, the potential of long-term 

reconstitution of HSCs lacking either one of the TNF receptors was enhanced compared to WT 

cells, and this was further enhanced when both TNF receptors were defective. Additionally, donor 

cells from mice subjected to myeloablation (induced by 5-Fluororacil administration) and then 

treated with TNF showed impaired ability to reconstitute the haematopoietic system following 

transfer to lethally irradiated recipients, in comparison to donor cells from myeloablated mice 

treated with PBS. These findings suggested that TNF acting upon both TNF receptors expressed 

on HSCs significantly impairs the maintenance of self-renewal potential (C. J. H. Pronk et al., 

2011).  

However, in a former study it was proposed that TNF-R1a is required to maintain HSCs self-

renewal potential following the observation that donor cells from older mice (>6 months) 

deficient for TNF-R1a display decreased reconstitution activity in comparison to those from age-

matched WT or TNF-R1b−/− donor mice (V. I. Rebel et al., 1999). The discrepancies between the 

above-cited works may be attributed to the age of the mice, suggesting that the impact of TNF 

signalling may suffer alterations across the lifetime of an individual. Nonetheless, despite the 

somewhat conflicting conclusion, these two studies performed in vivo agree that TNF is an 

important regulator of HSCs function in stress-induced conditions. 

In WT:TNF-RdKO mixed BM chimeric mice, we also evaluated the impact TNF signalling in the 

differentiation, of  lineage-committed progenitors and mature cells. In the steady-state, WT and 

TNF-RdKO mice progeny displayed comparable frequencies for all the lineage-committed 

progenitors assessed. Additionally, mice chronically infected displayed similar pattern of 

alterations between the two groups of donor cells. No major differences were found in the 

percentage of myeloid effector cells present in the spleen of recipient mice, segregated according 

with the expression of CD11c, CD11b and F4/80, both in steady-state or following infection. 

Moreover the lack of striking changes either in the percentages of myeloid progenitors or mature 

myeloid cells in mice infected with L. donovani suggested that in our model of infection, intrinsic 

TNF signalling is dispensable for the expansion of myeloid effector cells. 
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Consistently with previous characterization of TNF-RdKO mice (J. J. Peschon et al., 1998), we 

found no indication that intrinsic TNF signalling was required for the development or sustenance 

of effector myeloid cells in basal conditions. Previous characterization of the mice lacking both 

receptors for TNF reported no signs that in steady-state TNF signalling was required to the 

development of T and B cells, which was assessed by flow cytometry in the thymus, spleen and 

mesenteric lymph node. Regarding others populations of leucocytes, the evaluation in histologic 

sections of spleen, mesenteric and inguinal lymph nodes did not reveal significant changes 

between WT and mutant mice (J. J. Peschon et al., 1998). Following infection with the bacteria 

Micropolyspora faeni, responsible for pulmonary infection characterized by high levels of TNF in 

the lungs, the frequency of lymphocytes and monocytes in the lung was comparable between WT 

mice, p55-/- mice, p75-/- and p55-/- p75-/- mice (J. J. Peschon et al., 1998).  

Nonetheless, in a model for acute infection using mice infected with pneumonia virus of mice 

(PVM), characterized by a specific increase in myeloid cells both in the BM and systemically, as 

well as an increase in myeloid progenitors in the BM, these features were prevented by the 

administration of anti-TNF mAbs, suggesting that in this model of infection TNF induces 

myelopoiesis under pro-inflammatory conditions (S. Maltby et al., 2014).  

In the current study the frequencies of overall T cells and CD4+ T cells deficient for TNF 

signalling were comparable in the BM, while in the spleen were decreased compared to those 

derived from WT donor cells, nonetheless their cell numbers were comparable at both sites in 

steady-state. These findings suggested that TNF receptor signalling did not provide a competitive 

advantage of WT T cells over TNF-RdKO T cells, arguing against impairment in the development 

or survival of T cells lacking TNF signalling. However, following infection with L. donovani, the 

deficiency in TNF signalling in T cells abolished their ability to expand in number in response to 

the presence of parasites, both in BM and in the spleen of recipient mice, otherwise greatly 

expanded within WT compartment. According to these findings, TNF acting directly on T cells 

and CD4+ T cells seems crucial to mediate their expansion and/or migration in mice infected with 

L. donovani.  

Rheumatoid arthritis (RA) is an autoimmune disease that ultimately results in the wastage of bone 

and cartilage. This affliction is driven by the production of autoantibodies in addition to the 

persistent inflammation of the synovial tissues. The chronic synovial inflammation is sustained by 

the presence of large infiltrates of leucocytes, amongst those CD4+ T cells were shown to be 

required to the establishment of disease (M. Mellado et al., 2015). TNF is crucial in RA, as 

proven by the effectiveness of TNF-signalling blocking agents in clinical contexts. It was reported 

that CD4+ T cells from RA patients; in transwell experiments migrate toward a TNF gradient, 

which was not observed in CD4+ T cells from controls. Subsequent experiments using blocking 
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antibodies demonstrated that the “migratory” potential of CD4+ T cells from RA patients depends 

on the expression of TNF-R1a, and this correlated to increased levels of intercellular adhesion 

molecule-1(ICAM-1) (M. Rossol et al., 2013). In mice, following LPS challenge in the absence of 

TNF-R1a mediated signalling there was a significant reduction in the number of lymphocytes 

found in the lungs airway (M. K. Oyoshi et al., 2007). These collection of findings suggested that 

TNF signalling is pivotal for the recruitment of T cells to sites of inflammation not only in 

autoimmune context but also under condition established by infection, and as such it is 

conceivable that in L. donovani chronic infection, TNF acting directly on T cells induces their 

recruitment to the BM, where through indirect mechanism they mediate alteration in 

haematopoiesis. Therefore, in future experiments it would be recommended to assess the 

expression of TNF receptors in T cells recovered from mice infected with L. donovani, and in vivo 

and in vitro to determine if they display aberrant migratory patterns.  

In addition to its role in the recruitment of cells to sites of inflammation, intrinsic TNF signalling 

has been implicated in the regulation of T cell development and survival during the course of the 

establishment of the immune response in experimental models of infection (A. Zganiacz et al., 

2004, E. Y. Kim et al., 2006). For example, in a study carried out to dissect the role of CD4+ and 

CD8+ T cell immune responses during Listeria monocytogenes infection, taking advantage of the 

availability well-characterized specific TCR transgenic systems for either MHC class I or MHC 

class II, it was reported that TNF receptor signalling plays a central role in T cell functions in 

mice infected with L. monocytogenes, a model widely used to study immune responses mediated 

by T cells following infection with intracellular bacteria (E. Y. Kim et al., 2006). The lack of 

TNF-R1b nearly abolish the expansion of CD4+ and CD8+ T cells in response to low 

concentrations of specific antigens, and even at high concentrations they expanded poorly 

compared to WT T cells, which was associated with a lower expression of anti-apoptotic 

mediators. Furthermore the absence of TNF-R1b signaling in CD4+ and CD8+ T cells extensively 

compromised the ability of T cells to express IFNγ following challenge with cognate antigen in 

vivo (E. Y. Kim et al., 2006). These findings suggested that TNF signalling under conditions 

established by infection with intracellular pathogens might be required to the development, 

expansion and survival of effector T cells. 

In contrast, other studies suggested that TNF was either not required or act as a suppressor in the 

expansion of T cells during the immune response to intracellular pathogens (M. I. Kafrouni et al., 

2003, A. Zganiacz et al., 2004). For example, the study of the role of TNF signalling in the 

development of T cell immune response during antiviral-immune responses in mice challenged 

with a replication-deficient β-galactosidase encoding recombinant adenovirus (AdCMV-lacZ), 

suggested that TNF signalling was dispensable to the expansion of CD8+ IFNγ+ T cells in mice 

deficient for the TNF receptors p55 or p75 (M. I. Kafrouni et al., 2003). This could be explained 
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by TNF receptor redundancy, since in TNF KO mice the expansion of these cells was limited 

compared to WT mice following infection (M. I. Kafrouni et al., 2003). Additionally, in TNF-

deficient mice infected with Mycobacterium bovis, it was reported that there is uncontrolled 

expansion of antigen-specific T cells expressing IFNγ, which depended on the expression of both 

TNF receptors to prevent the development of fatal immunopathology (A. Zganiacz et al., 2004). 

These above-mentioned examples embody the complexity of TNF signaling during immune 

response putting forward the requirement for studies in pathogen specific contexts and the risks 

associated anti-TNF therapies (T. Ellerin et al., 2003, X. Chen and J. J. Oppenheim, 2011). 

As such, we evaluated the impact of intrinsic TNF signaling in BM T cells potential to express 

IFNγ, during L. donovani infection. The lack of intrinsic TNF signalling limited over 30 times the 

expansion in BM CD4+ cells expressing IFNγ in chronically infected mice, and completely 

abrogated the expansion of BM CD8+ IFNγ+ T cells. The lack of CD4+ IFNγ+ T cells development 

from TNF-RdKO donor cells was evident not only in terms of the overall decrease in their cell 

numbers, but also their impaired efficiency to express IFNγ. Therefore, in our model of infection, 

TNF seems to be a crucial mediator in the development of functional T cells in the BM. However, 

to determine if TNF receptor signalling plays a pivotal role in the establishment of haematological 

dysfunction, it would be necessary to transfer CD4+ T cells TNF-RdKO to immunodeficient 

recipient mice and evaluate the alteration in haematopoietic progenitors within BM and 

haematological parameters in circulation, following the establishment of chronic infection with L. 

donovani. 

To our knowledge, this is the first study focusing on the factors modulating the alterations in BM 

haematopoiesis in experimental VL in B6 mice in vivo. In our model, we established that IFNγ 

produced by CD4+ T cells was sufficient to drive haematopoietic dysfunction, which was 

mirrored by the expansion of multipotent progenitors at the expense of quiescent LT-HSCs and 

the establishment of anaemia and thrombocytopenia. In addition, we determined that intrinsic 

IFNγ and TNF receptors signalling mediate the massive expansion of CD4+ T cells in BM of mice 

chronically infected with L. donovani. Furthermore, intrinsic TNF signalling in BM CD4+ T cells 

modulate their potential to produce IFNγ during chronic infection. As such, the collection of our 

findings suggested that TNF and IFNγ signalling pathway converge to induce the onset of 

impairment of haematopoietic function, during experimental VL.  

The pro-inflammatory mediators, IFNγ and TNF, are central players in the resolution of L. 

donovani infection, according to extensive studies carried in experimental models of disease (A. 

P. Taylor and H. W. Murray, 1997, P. M. Kaye et al., 2004). Therefore, directly targeting these 

molecules to prevent the establishment of dysfunctional haematopoiesis in the context of 

experimental VL would not be a viable option. However, we believe this study has paved new 
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avenues for future studies aimed at isolating potential targets to prevent the onset of 

haematopoietic functional impairment, and consequent impact on morbidity, without 

compromising the parasite clearance following infection with L. donovani. 
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4.3 FIGURES 

 

Figure 4.1 - RAG2 KO mice do not lose quiescent HSCs following infection with L. 

donovani. (a) Number of LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs), LSK CD150+ 

CD34- CD48+ cells and LSK CD150+ CD34+ cells in bone marrow (BM). (b) Number of LSK 

CD150+ CD34- CD48- cells in G0 (Ki67-) in BM. (c) Spleen parasite burden presented as number 

of parasites per 1000 nuclei. (d) Spleen weight as percentage of body weight. Comparisons made 

between BM cells of wild-type (WT) B6 mice non-infected (n=12) and WT B6 mice infected 

(n=12) with L. donovani for 28 days or B6 RAG2 KO mice non-infected (n=9) and B6 RAG2 KO 

mice infected (n=13) with L. donovani for 28 days. Two femur and two tibias were used from 

each animal. Data from three independent experiments was presented as Mean ± SD; p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001. 
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Figure 4.2 - The number of HSPCs was increased in the spleen following infection with L. 

donovani. (a) Frequency of LSK, LSK CD150+ CD48- cells (enriched for LT-HSCs) and LSK 

CD150+ CD48+ cells in the spleen of naive mice (n=5) and infected mice (n=8), in two 

independent experiments. (b) Number of LSK, LSK CD150+ CD48- cells (enriched for LT-HSCs) 

and LSK CD150+ CD48+ cells in the spleen of naive mice (n=4) and infected mice (n=4), in one 

experiment. Comparisons were made between naive B6 mice and B6 mice infected with L. 

donovani for 28-35 days. Two femur and two tibias were used from each animal. Data was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05 and **p ≤0.01.  
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Figure 4.3 - The number of HSPCs was increased in spleen following infection with L. 

donovani. (a) Frequency of Lin- cKithi cells (enriched for haematopoietic progenitors), CMPs, 

GMPs, MEPs and CLPs cells in spleen of naive (n=5) and infected mice (n=8), determined in two 

independent experiments. (b) Number of Lin- cKithi cells, CMPs, GMPs, MEPs and CLPs cells in 

spleen of naive (n=4) and infected mice infected (n=4), determine in one experiment. 

Comparisons always made between naive mice and mice infected with L. donovani for 28-35 

days. Two femur and two tibias were used from each animal. Data was presented as Mean ± SD, p 

values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p 

≤0.001 and ****p ≤0.0001.  
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Figure 4.4 - Alterations in BM cellularity occurred independently from the processes taking 

place in the spleen. (a and b) Frequency and number LSK CD150+ CD48- CD34- cells (enriched 

for LT-HSCs) in G0 (Ki67-) in BM. (c and d) Frequency and number of non-committed 

progenitors (LSK CD150+ CD34- CD48- (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ 

and LSK CD150+ CD34+ cells) in BM. (e and f) Frequency and number of lineage-committed 
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progenitor cells (CMPs, GMPs, MEPs and CLPs) in BM. (g and h) Frequency and number of 

mature haematopoietic cells B cells, CD4+ T cells, CD8+ T cells, CD4- CD8- CD3+ cells (DN T 

cells) and myeloid cells (CD11b+ cells) in BM. Comparisons were made between splenectomized 

(n=5) and “sham” (n=5) mice infected for 28 days with L. donovani. Data from one experiment 

was presented as Mean ± SD, p values were determined using Mann-Whitney: not significant 

(ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.5 - L. donovani infection lead to the expansion of T cell compartment in BM.  (a) 

Frequency of CD4+ T cells, CD8+ T cells and CD4- CD8- T (double negative (DN) T cells in bone 

marrow of naive mice and infected mice. (b) Number of CD4+ T cells, CD8+ T cells and DN T 

cells in bone marrow of non-infected mice and infected mice. (c) Representative dot plots of 

distribution of CD4+ T cells, CD8+ T cells and DN T cells within CD45+ CD3+ cells in bone 

marrow. Comparisons were made between naive mice (n=14) and mice infected (n=14) for 28 

days with L. donovani (Ld28). Two femur and two tibias were taken per animal. Data from four 

independent experiments was presented as Mean ± SD, p values were determined using unpaired t 

test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y 
of

 c
el

ls
 in

 b
on

e 
m

ar
ro

w

CD4+ T 
cells

CD8+ T 
cells

DN T 
cells

*** ** *

0
2×105

4×105

6×105

8×105

1×106

2×106

4×106

6×106

8×106

1×107

N
um

be
r o

f c
el

ls
 in

 b
on

e 
m

ar
ro

w

CD4+ T 
cells

CD8+ T 
cells

DN T 
cells

**** ** ns

Naive
Infected Ld28 

a b

Infected
Gated in CD3+ cells

CD4

C
D

8 CD4 T cells
75.5

CD8 T cells
16.9

DN T cells
4.3

Naive
Gated in CD3+ cells

CD4

C
D

8 CD4 T cells
15.1

CD8 T cells
39.4

DN T cells
39

c



 193 

 

Figure 4.6 - L. donovani infection was associated with the contraction of the B cell 

compartment in BM, during chronic phase of infection. (a) Frequency of B cells (CD45+ CD3- 

B220+ cells) in BM of non-infected mice and infected mice. (b) Number of B cells in BM of non-

infected mice and infected mice. Comparisons were made between naive mice (n=14) and mice 

infected (n=13) for 28 days with L. donovani (Ld28). Two femur and two tibias were taken per 

animal. Data from three independent experiments was presented as Mean ± SD, p values were 

determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001 
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Figure 4.7 - L. donovani infection was not associated with alterations in the number of total 

CD11b+ cells in BM. (a) Frequency of myeloid cells (CD45+ CD3- B220- CD11b+ cells) in BM of 

naive and infected mice. (b) Number of myeloid cells in BM of naive and infected mice. 

Comparisons were made between naive mice  (n=5) and mice infected (n=5) for 28 days with L. 

donovani (Ld28). Two femur and two tibias were used from each animal. Data from one 

experiment was presented as Mean ±SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.8 - L. donovani infection was associated with alterations in the number of MSCs in 

BM. (a) Diagram of gating strategy applied to select for stromal cells populations in BM. (b) 

Frequency of stromal cells (CD45- Ter119- cells), MSCs (CD45- Ter119- CD31- Sca1+ CD51+ 

cells), endothelial cells (CD45- Ter119- CD31+ cells) and osteoblastic lineage cells (CD45- 

Ter119- CD31- Sca1- CD51+ cells) in BM of naive and infected mice. (c) Number of stromal cells, 

MSCs, endothelial cells and osteoblastic lineage cells in BM of naive mice and infected mice. 

Comparisons were made between naive mice  (n=8) and mice infected (n=6) for 28 days with L. 

donovani (Ld28). Two femur and two tibias were taken per animal. Data from two independent 

experiments was presented as Mean ± SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. MSCs (mesenchymal 

stem cells), Endo (endothelial cells), Osteo (osteolineage cells), SSC (Side Scatter). 
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Figure 4.9 - L. donovani infection was not associated with alterations in the number of 

regulatory T cells in BM. (a) Frequency of CD4+ T cells and regulatory T cells (CD3+ CD4+ 

CD25hi FOXP3+ cells) in BM. (b) Number of CD4+ T cells and regulatory T cells in BM. (c) 

Frequency of CD4+ T cells and regulatory T cells in the spleen. (d) Number of CD4+ T cells and 

regulatory T cells in the spleen. Comparisons were made between naive mice (n=9) and mice 

infected (n=8) for 28 days with L. donovani (Ld28). Two femur and two tibias were used from 

each animal. Data from two independent experiments was presented as Mean ± SD, p values were 

determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001.  
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Figure 4.10 - The number of T cells CD62L-/low CD44high increased in the BM following L. 

donovani infection. (a) Frequency of total CD4+ T cells, and CD62Lhi CD44-/lo (naive), CD62L-/lo 

CD44-/lo (“effector”), CD62Lhi CD44hi (“central-memory”) and CD62L-/lo CD44hi (“effector-

memory”) CD4+ T cells in BM. (b) Number of total and CD4+ T cell subsets in BM. (c) 

Frequency of total CD8+ T cells, and CD62Lhi CD44-/lo (naive), CD62L-/lo CD44-/lo (“effector”), 

CD62Lhi CD44hi (“central-memory”) and CD62L-/lo CD44hi (“effector-memory”) CD8+ T cells in 

BM. (d) Number of total and CD8+ T cell subsets in BM. (e) Distribution of CD62Lhi CD44-/lo, 

CD62L-/lo CD44-/lo, CD62Lhi CD44hi and CD62L-/lo CD44hi cells within CD4+ T cells in the BM. 

(f) Distribution of CD62Lhi CD44-/lo, CD62L-/lo CD44-/lo, CD62Lhi CD44hi and CD62L-/lo CD44hi  

cells within CD8+ T cells in BM. (g) Representative dot plots of the expression of CD44 and 

CD62L in CD45+ CD3+ CD4+ cells in BM, from left to right: isotype control, naive mouse and 

infected mouse. Comparisons were made between naive mice (n=9) and mice infected (n=8) for 

28 days with L. donovani (Ld28). Two femur and two tibias were taken per animal. Data from 

two independent experiments was presented as Mean ± SD, p values were determined using 

unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. hi, 

high; lo, low. 
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Figure 4.11 - Following infection with L. donovani the number of CD4+ T cells CD62L-/lo 

CD44hi increased in the spleen. (a) Frequency of total CD4+ T cells, and CD62Lhi CD44-/lo 

(naive), CD62L-/lo CD44-/lo (“effector”), CD62Lhi CD44hi (“central-memory”) and CD62L-/lo 

CD44hi (“effector-memory”) CD4+ T cells in spleen. (b) Number of total and CD4+ T cell subsets 

in the spleen. (c) Frequency of total CD8+ T cells, and CD62Lhi CD44-/lo (naive), CD62L-/lo CD44-

/lo, CD62Lhi CD44hi (“central-memory”) and CD62L-/lo CD44hi (“effector-memory”) CD8+ T cells 

in spleen. (d) Number of total and CD8+ T cell subsets in spleen. (e) Distribution of CD62Lhi 

CD44-/lo, CD62L-/lo CD44-/lo, CD62Lhi CD44hi and CD62L-/lo CD44hi cells within CD4+ T cells in 

the spleen. (f) Distribution of CD62Lhi CD44-/lo, CD62L-/lo CD44-/lo, CD62Lhi CD44hi and CD62L-

/lo CD44hi cells within CD8+ T cells in spleen. (g) Representative dot plots of the expression of 

CD44 and CD62L in CD45+ CD3+ CD4+ cells in spleen, from left to right: isotype control, naive 

mouse and infected mouse. Comparisons were made between naive mice (n=9) and mice infected 

(n=8) for 28 days with L. donovani (Ld28). Data from two independent experiments was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. hi, high; lo, low.  
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Figure 4.12 - The number “Effector” CD4+ and CD8+ T cells increase in BM following L. 

donovani infection. (a) Number of total CD4+ CD44hi T cells, and CD44hi LyC6-/lo CD127-/lo 

(“effector”), CD44hi LyC6-/lo CD127hi, CD44hi LyC6hi CD127hi T cells (“memory”) and CD44hi 

LyC6hi CD127-/lo CD4+ T cell subsets in the BM. (b) Frequency within of total CD4+ T cells of 

CD44hi T cells, and CD44hi LyC6-/lo CD127-/lo (“effector”), CD44hi LyC6-/lo CD127hi, CD44hi 

LyC6hi CD127hi  (“memory”) and CD44hi LyC6hi CD127-/lo CD4+ T cell subsets in the BM. (c) 
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Number of CD8+ CD44hi T cells, CD44hi LyC6-/lo CD127-/lo (“effector”), CD44hi LyC6-/lo CD127hi, 

CD44hi LyC6hi CD127hi T cells (“memory”) and CD44hi LyC6hi CD127-/lo CD8+ T cell subsets in 

the BM. (d) Frequency within of total CD8+ T cells of CD44hi T cells, CD44hi LyC6-/lo CD127-/lo 

(“effector”), CD44hi LyC6-/lo CD127hi, CD44hi LyC6hi CD127hi T cells (“memory”) and CD44hi 

LyC6hi CD127-/lo CD8+ T cell subsets in the BM. (e) Representative dot plots of the expression of 

Ly6C and CD127 in CD45+ CD3+ CD4+ CD44+ cells and CD45+ CD3+ CD8+ CD44+ cells in BM: 

(middle left) isotype control, (top left) naive and (top right) infected gated in CD45+ CD3+ CD4+ 

CD44+ cells, (bottom left) naive mouse and (bottom right) infected mouse gated in CD45+ CD3+ 

CD8+ CD44+ cells. Comparisons were made between naive mice (n=9) and mice infected (n=8) 

for 28 days with L. donovani (Ld28). Data from two independent experiments was presented as 

Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p 

≤0.01, ***p ≤0.001 and ****p ≤0.0001. Two femur and two tibias were used from each animal. 

hi (high); lo (low). 
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Figure 4.13 - L. donovani infection was associated with an increase in the number of BM 

CD4+ T cells with potential for IFNγ expression. (a) Frequency of CD4+ T cells IFNγ+ and 

CD8+ T cells IFNγ+ in total BM upon in vitro stimulation. (b) Number of CD4+ T cells IFNγ+ and 

CD8+ T cells IFNγ+ upon in vitro stimulation. (c) Frequency of IFNγ+ cells within CD4+ T cells 

and CD8+ T cells following in vitro stimulation. (d) Mean of Fluorescence Intensity (MFI) of 

IFNγ in CD4+ T cells IFNγ+ and CD8+ T cells IFNγ+ following in vitro stimulation. (e) Frequency 

of IFNγ+ within CD4+ T cells and CD8+ T cells in ex vivo BM cells (not stimulated). (f) 
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Representative dot plots displaying frequencies of IFNγ expression within in CD45+ CD3+ CD4+ 

cells in BM: (top left) isotype control for IFNγ staining, (top center) naive mouse and (top right) 

infected upon in vitro stimulation with PMA/ionomycin, (bottom left) CD4+ T cells from (bottom 

right) naive and infected mice analyzed directly ex vivo. Comparisons were made between naive 

mice (n=9) and mice infected (n=9) for 28 days with L. donovani (Ld28). Two femur and two 

tibias were taken per animal. Data from three independent was presented as Mean ± SD, p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001. 
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Figure 4.14 - L. donovani infection was associated with increased number of BM CD4+ T 

cells with potential for TNF expression. (a) Frequency of CD4+ T cells TNF+ and CD8+ T cells 

TNF+ in total bone marrow following in vitro stimulation. (b) Number of CD4+ T TNF+ and CD8+ 

T TNF+ in total BM following in vitro stimulation. (c) Frequency of TNF+ cells within CD4+ T 

cells and CD8+ T cells following in vitro stimulation. (d) MFI of TNF in CD4+ T cells TNF+ and 
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CD8+ T cells TNF+ following in vitro stimulation. (e) Frequency of TNF+ cells within CD4+ T 

cells and CD8+ T cells determined in the absence of exogenous stimulation in BM. (f) 

Representative dot plots displaying frequencies TNF expression within in CD45+ CD3+ CD4+ 

cells in BM: (top left) isotype control for TNF staining, gated in CD4+ T cells from (top center) 

naive mouse and (top right) infected mouse upon in vitro stimulation, gated in CD4+ T cells from 

(bottom left) naive and infected analyzed in BM cells directly ex vivo Comparisons were made 

between naive mice (n=6) and mice infected (n=6) for 28 days with L. donovani (Ld28). Two 

femur and two tibias were taken per animal. Data from two independent was presented as Mean ± 

SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.15 - The number of BM CD4+ T cells with potential for IL-10 expression increased 

following L. donovani infection. (a) Frequency of CD4+ T cells IL-10+ and CD8+ T cells IL-10+ 

in total BM following in vitro stimulation. (b) Number of CD4+ T IL-10+ and CD8+ IL-10+ in BM 

following in vitro stimulation. (c) Frequency of IL-10+ cells within CD4+ T cells and CD8+ T cells 

following in vitro stimulation. (d) Mean of Fluorescence Intensity (MFI) of IL-10 in CD4+ T cells 

IL-10+ and CD8+ T cells IL-10+ following in vitro stimulation. (e) Frequency of IL-10+ cells 

within CD4+ T cells and CD8+ T cells in ex vivo bone marrow. (f) Representative dot plots 
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displaying frequencies of IL-10 expression within in CD45+ CD3+ CD4+ cells in BM: (top left) 

isotype control for IL-10 staining, gated in CD4+ T cells from (top center) naive mouse and (top 

center) infected mouse analyzed in BM cells upon in vitro stimulation, gated in CD4+ T cells from 

(bottom left) naive mouse and infected mouse analyzed in BM cells directly ex vivo. Comparisons 

were made between naive mice (n=9) and mice infected (n=9) for 28 days with L. donovani 

(Ld28). Two femur and two tibias were taken per animal. Data from three independent was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.16 - In BM the distribution of cells expressing TNF and/or IL-10 within CD4+ T 

cells IFNγ+ was unchanged following L. donovani infection. (a) Frequency of CD4+ T cells 

IFNγ+ expressing IL-10 and/or TNF following in vitro stimulation. (b) Frequency of CD8+ T cells 

IFNγ+ expressing IL-10 and/or TNF following in vitro stimulation. (f) Representative dot plots 

displaying frequencies of IL-10 and TNF expression within in CD45+ CD3+ CD4+ IFNγ+ cells in 

BM: (top left) Isotype control for TNF and IL-10 staining, gated in CD4+ T cells IFNγ+ from (top 

right) naive mouse and (bottom) infected mouse, analysis performed in BM upon in vitro 

stimulation. Comparisons were made between naive mice (n=6) and mice infected (n=6) for 28 

days with L. donovani (Ld28). Two femur and two tibias were taken per animal. Data from two 

independent was presented as Mean ± SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.17 - Proposed mechanism to explain depletion of LT-HSCs in G0 and inefficient 

haematopoiesis during the chronic infection with L. donovani (1). Following L. donovani 

infection, proliferating LT-HSCs and onward multipotent progenitors expand greatly at the 

expense of LT-HSCs in G0. The accumulation of intermediary multipotent progenitors was not 

associated with an increase in effective haematopoietic activity, since the numbers of effector 

haematopoietic cells were found either decreased or unchanged in PB. BM CD4+ T cells numbers 

greatly increase following infection and displayed immunophenotypic and functional alterations, 

suggesting that BM CD4+ T cell may act underlie haematological impairment. 
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Figure 4.18 - CD4+ T cells mediated expansion of intermediary non-committed progenitors 

onward LT-HSCs in BM following L. donovani infection. Frequency in Lineage negative cells of 
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(a) LSK cells, (b) LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs), (c) LSK CD150+ 

CD34- CD48+ cells and (d) LSK CD150+ CD34+ cells. Number of (e) LSK cells, (f) LSK CD150+ 

CD34- CD48- cells (enriched for LT-HSCs), (g) LSK CD150+ CD34- CD48+ cells and (h) LSK 

CD150+ CD34+ cells. Comparisons were made with BM cells recovered from B6 wild-type (WT) 

(n=12), B6 WT infected with LV9 for 28 days (Ld28) (n=12), B6 RAG2 knockout (KO)(lacking 

B and T cells) naive (n=12), RAG2KO B6 infected (n=17) and RAG2KO B6 infected inoculated 

with CD4+ T cells purified from spleen of naive WT mice (n=13). Two femur and two tibias were 

taken per animal. In each bar, data from at leat three independent experiments was presented as 

Mean ± SD, p values were determined using One-way Anova followed by Tukey’s multiple 

comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.19 - CD4+ T cells mediated the loss of HSCs in G0 in BM, following infection with 

L. donovani. (a) Frequency within Lineage negative cells of LSK CD150+ CD34- CD48- Ki67 cells 

(enriched for LT-HSCs in G0). (b) Number of LSK CD150+ CD34- CD48- Ki67- cells. (c) 
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Frequency of Ki67- cells within LSK CD150+ CD34- CD48- cells. (d) Representative dot plots of 

Ki67 expression within LSK CD150+ CD34- CD48- cells: (top left) isotype control for Ki67 

staining gated in LSK cells, (middle left) WT naive mouse, (middle right) WT infected mouse, 

(bottom left) RAG2 KO naive mouse, (bottom) centre RAG2 KO infected mouse and (bottom 

right) RAG2 KO mouse transplanted with CD4+ T cells prior to infected. Comparisons were made 

with BM cells recovered from B6 WT mice (n=12), B6 WT mice infected with L. donovani for 28 

days (Ld28) (n=12), B6 RAG2KO mice naive (lacking B and T cells) (n=9), RAG2KO B6 

infected mice (n=14) and RAG2KO B6 infected mice inoculated with CD4+ T cells purified from 

spleen of naive WT mice (n=13). Two femur and two tibias were taken per animal. In each bar, 

data from three independent experiments was presented as Mean ± SD, p values were determined 

using One-way Anova followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.20 - CD4+ T cells did mediate alteration in the number of myeloid-committed 

progenitors, following infection with L. donovani. (a) Frequency of Lineage negative cells 

(enriched for all HSPCs). (b) Frequency in Lineage negative cells. Frequency within Lineage negative 

cells of (c) CMPs, (d) GMPs, (e) MEPs and (f) CLPs. Number of (g) CMPs, (h) GMPs, (i) MEPs 

and (j) CLPs. Comparisons were made with BM cells recovered from B6 Wild Type (WT) (n=8), 

B6 WT mice infected with L. donovani for 28 days (Ld28) (n=8), B6 RAG2KO mice naive 

(lacking B and T cells) (n=7), RAG2KO B6 infected mice (n=12) and RAG2KO B6 infected mice 

inoculated with CD4+ T cells purified from spleen of naive WT mice (n=13). Two femur and two 

tibias were taken per animal. In each bar, data from at least two independent experiments was 

presented as Mean ± SD, p values were determined using One-way Anova followed by Tukey’s 

multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p 

≤0.0001. Common-myeloid progenitors (CMPs); Granulocyte-macrophage progenitors (GMPs); 

Megakaryocyte-erythrocyte progenitors (MEPs); Common lymphocyte progenitors (CLPs).  
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Figure 4.21 - The transfer of CD4+ T cells to naive RAG2 KO mice was not associated to 

alteration in the number of HSPCs in BM. (a) Number of LSK cell, LSK CD150+ CD34- 

CD48- cells (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ 

cells. (b) Frequency within Lineageneg cells of LSK CD150+ CD34- CD48- Ki67- cells. (c) Number 

of CMPs, GMPs, MEPs and CLPs. Comparisons were made with BM cells recovered from naive 

B6 RAG2KO mice (n=5), and naive B6 RAG2KO mice infected inoculated with CD4+ T cells 

purified from spleen of naive WT mice (n=5). Two femur and two tibias were taken per animal. 

Data from one experiment was presented as Mean ± SD, p values were determined using unpaired 

t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.22 - CD4+ T cells mediate the establishment of mild anaemia and 

thrombocytopenia following infection with L. donovani. (a) Concentration of red blood cells 

(RBC) in peripheral blood (PB). (b) Concentration of platelets (PLT) in PB. (c) PB hematocrit 

(HCT). (d) Concentration of haemoglobin (Hb) in PB. Values were determined in whole blood 

collected in EDTA using an automated system for blood cell counting (Hemavet). Comparisons 

were made with PB recovered from B6 Wild Type (WT) (n=8), B6 WT infected with LV9 for 28 

days (Ld28) (n=8), B6 RAG2KO (n=6), RAG2KO B6 infected (n=9) and RAG2KO B6 infected 

inoculated with CD4+ T cells purified from spleen of naive WT mice (n=8). Two femur and two 

tibias were taken per animal. Data from two independent experiments was presented as Mean ± 

SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.23 - CD4+ T cells do not induce anaemia and thrombocytopenia in naive RAG2 KO 

mice. (a) Concentration of red blood cells (RBC) in peripheral blood (PB). (b) Concentration of 

platelets (PLT) in PB. (c) Concentration of haemoglobin (Hb) in PB. (d) PB hematocrit (HCT). 

Values were determined in whole blood collected in EDTA, using an automated system for blood 

cell counting (Hemavet). Comparisons were made with PB recovered naive B6 RAG2KO mice 

(n=5) and naive B6 RAG2KO mice inoculated with CD4+ T cells purified from spleen of naive 

WT mice for 28 days (n=5). Data from one experiment was presented as Mean ± SD, p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001. 
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Figure 4.24 - CD4+ T cells mediated control of parasite burden during chronic infection with 

L. donovani in immunodeficient mice. (a) Parasites per 1000 nuclei in the spleen. (b) Spleen 

weight as percentage of body weight. Comparisons were made between B6 WT mice (n=8) and 

infected B6 RAG2KO mice (n=9), or between B6 RAG2KO infected mice and RAG2KO B6 

infected mice inoculated with CD4+ T cells purified from spleen of naive WT mice (n=9). All 

mice were infected with L. donovani for 28 days. Data from two independent experiments was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.25 - Adoptively transferred CD4+ T cells expand in infected RAG2 recipients and 

displayed a phenotype similar to BM CD4+ T cells of infected WT mice. (a) Number of CD4+ 

T cells, CD4+ T cells CD44hi and CD4+ T cells CD44lo cells. (b) Number of CD4+ CD44hi LyC6-/lo 

CD127-/lo T cells (“effector” T cells), CD4+ CD44hi LyC6-/lo CD127hi T cells, CD4+ CD44hi LyC6hi 
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CD127hi T cells (“memory” T cells) and CD4+ CD44hi LyC6hi CD127-/lo T cells in the bone 

marrow of naive and infected mice. (c) Frequency within of total CD4+ T cells of CD44hi, CD44hi 

LyC6-/lo CD127-/lo T cells (“effector” T cells), CD44hi LyC6-/lo CD127hi T cells, CD44hi LyC6hi 

CD127hi T cells (“memory” T cells) and CD44hi LyC6hi CD127-/lo CD4+ T cells. Comparisons 

were made between naive B6 WT mice (n=4) and infected B6 WT mice, or between naive 

RAG2KO inoculated with CD4+ T cells purified from spleen of naive WT mice (n=5) and 

infected RAG2KO inoculated with CD4+ T cells purified from spleen of naive WT mice (n=5). 

Mice were infected with L. donovani for 28 days (Ld28). Two femur and two tibias were taken 

per animal. Data from one experiments was presented as Mean ± SD, p values were determined 

using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.26 - CD4+ T cells through an IFNγ-dependent mechanism mediated the expansion 

of intermediary multipotent progenitors following infection with L. donovani. (a) Frequency 

in Lineage- cells of LSK cells, LSK CD150+ CD34- CD48- cells (enriched for LT-HSCs), LSK 

CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells. (b) Frequency within Lineage- cells of 

Lineage negative cKit+ cells, CMPs, GMPs, MEPs and CLPs. Comparisons were made between, B6 

RAG2KO infected mice (n=4), B6 RAG2KO infected mice inoculated with CD4+ T cells purified 

from spleen of naive WT mice (n=4), and B6 RAG2KO infected mice inoculated with CD4+ T 

cells purified from spleen of naive IFNγ KO mice (n=5), all mice were infected with L. donovani 

for 28 days (Ld28). Data from one experiment was presented as Mean ± SD, p values were 

determined using One-way Anova followed by Tukey’s multiple comparisons test: not significant 

(ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.27 - CD4+ T cells through an IFNγ-dependent mechanism mediated the loss of 

HSCs in G0 following infection with L. donovani. (a) Frequency within Lineage negative cells of 

LSK CD150+ CD34- CD48- Ki67 cells (enriched for LT-HSCs in G0). (b) Number of LSK 
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CD150+ CD34- CD48- Ki67- cells. (c) Frequency of Ki67- cells within LSK CD150+ CD34- CD48- 

cells. (d) Representative dot plots of Ki67 expression within LSK CD150+ CD34- CD48- cells: 

(top left) isotype control for Ki67 staining gated in Lineage negative cells, (bottom left) RAG2KO 

mouse infected, (bottom centre) RAG2KO mouse infected transplanted with WT CD4+ T cells, 

(bottom) right RAG2KO mouse infected transplanted with IFNγKO CD4+ T cells. Comparisons 

were made between, RAG2KO mice infected (n=3), RAG2KO mice infected inoculated with 

CD4+ T cells purified from spleen of naive WT mice (n=4), and RAG2KO mice infected 

inoculated with CD4+ T cells purified from spleen of naive IFNγKO mice (n=5), all mice were 

infected with L. donovani for 28 days (Ld28). Two femur and two tibias were taken per animal. 

Data from one experiment was presented as Mean ± SD, p values were determined using unpaired 

t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.28 - CD4+ T cells through an IFNγ-dependent mechanism mediated the 

establishment of anaemia and thrombocytopenia following infection with L. donovani. (a) 

Concentration of red blood cells (RBC) in peripheral blood (PB). (b) Concentration of 

haemoglobin (Hb) in PB. (c) Hematocrit (HCT) in PB. (d) Concentration of platelets (PLT) in PB. 

Values were determined in whole blood collected in EDTA, using an automated system for blood 

cell counting (Vet abc Plus+). Comparisons were made between, RAG2KO infected mice (n=3), 

RAG2KO infected mice inoculated with CD4+ T cells purified from the spleen of naive WT mice 

(n=4), and RAG2KO mice infected inoculated with CD4+ T cells purified from the spleen of naive 

IFNγKO mice (n=5), mice were infected with L. donovani for 28 days (Ld28). Data from one 

experiment presented as Mean ± SD, p values were determined using One-way Anova followed 

by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001 
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Figure 4.29 - CD4+ T cells through an IFNγ-dependent mechanism mediated decrease in 

parasites/1000 nuclei in the spleen following infection with L. donovani. (a) Parasites per 1000 

nuclei in the spleen. (b) Spleen weight as percentage of body weight. Comparisons were made 

between, RAG2KO mice infected (n=3), RAG2KO mice infected inoculated with CD4+ T cells 

purified from the spleen of naive WT mice (n=4), and RAG2KO mice infected inoculated with 

CD4+ T cells purified from the spleen of naive IFNγKO mice (n=5), mice were infected with L. 

donovani for 28 days (Ld28). Data from one experiment presented as Mean ± SD, p values were 

determined using One-way Anova followed by Tukey’s multiple comparisons test: not significant 

(ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.30 - Following transfer of CD4+ T cells to RAG2KO mice infected with L. donovani 

for 28 days, WT CD4+ T cells and IFNγ KO CD4+ T cells expanded at similar extent and 

displayed an “activated” phenotype. (a) Number of CD4+ T cells, CD4+ T cells CD44hi and 

CD4+ T cells CD44lo cells. (b) Number of CD4+ T CD44hi LyC6-/lo CD127-/lo (“effector” T cells), 

CD4+ T CD44hi LyC6-/lo CD127hi, CD4+ T CD44hi LyC6hi CD127hi (“memory” T cells) and CD4+ 

T CD44hi LyC6hi CD127-/lo in BM. (c) Frequency within of Total CD4+ T cells of CD44hi cells, 
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CD44hi LyC6-/lo CD127-/lo, CD44hi LyC6-/lo CD127hi, CD44hi LyC6hi CD127hi and CD44hi LyC6hi 

CD127-/lo cells CD4+ T cells. Comparisons were made between, RAG2KO mice infected (n=3), 

RAG2KO mice infected inoculated with CD4+ T cells purified from the spleen of naive WT mice 

(n=4), and RAG2KO mice infected inoculated with CD4+ T cells purified from the spleen of naive 

IFNγKO mice (n=5), mice were infected with L. donovani for 28 days (Ld28). Two femur and 

two tibias were taken per animal. Data from one experiment presented as Mean ± SD, p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01 and ***p ≤0.001. 

  

 

 

 



 230 

 

Figure 4.31 - Proposed mechanism to explain depletion of LT-HSCs in G0 and inefficient 

haematopoiesis during chronic infection with L. donovani (2). Following L. donovani infection 

LT-HSCs and onward multipotent progenitors expand greatly at the expense of LT-HSCs in G0. 

The accumulation of intermediary multipotent progenitors was not associated to an increase in 

effective haematopoietic activity, since the numbers of effector haematopoietic cells were found 

either decreased or unchanged in circulation. These alterations could be solely mediated by the 

transfer CD4+ T cells IFNγ+, but not by CD4+ T cells deficient for IFNγ expression, following 

transfer to L. donovani-infected immunodeficient mice, which are otherwise protected from 

impairment of haematological function. As such, IFNγ was defined as a critical modulator of 

haematopoiesis during chronic infection with L. donovani. As LT-HSCs express receptors for this 

pro-inflammatory cytokine, we hypothesized that IFNγ could act directly on the activation of LT-

HSCs into active cell-cycle, following infection.  
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Figure 4.32 - Experimental design for competitive mixed bone marrow chimeras using wild-

type (WT) and IFNγR2 knockout (IFNγR2 KO). Total unfractioned BM cells from WT 

(CD45.1) and IFNγR2 KO (CD45.2) mice were transferred in equal number into lethally 

irradiated recipients (CD45.1). Following eight weeks recipient mice were infected for 28 days 

with L. donovani, and haematopoietic reconstitution activity was assessed both in BM and in the 

spleen. 
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Figure 4.33 - The reconstitution potential of WT HSCs and IFNγR2−/− HSCs was similar in 

infected mixed BM chimeras. (a) Frequency of donor cells in BM. (b) Number of donor cells in 

BM. (c) Frequency of donor cells in spleen. (d) Number of donor cells in spleen. (e) 

Representative dot plots of frequency of donor cells in BM live cells; (left) isotype control, 

(centre) naive recipient and (right) infected recipient. Analyses were performed 12 weeks after 

transplant of total BM cells from CD45.2 IFNγR2−/− mice and CD45.1 WT mice (50:50) to 

lethally irradiated CD45.1 recipient mice. Comparisons were made within donor compartment 

between non-infected recipients (n=8) and recipient mice infected with L. donovani for 28 days 

(Ld28) (n=8). Two femur and two tibias were taken per animal. Data from two independent 

experiments was presented as scatter plot and mean bar. p values were determined using One-way 

Anova followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001 and ****p ≤0.0001.   
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Figure 4.34 - The frequency of Lin- cKit+ Sca1- cells was decreased in the WT but not 

IFNγR2−/− donor cells, following infection with L. donovani. (a) Frequency of LSK cells and 

Lin- cKit+ Sca1- cells within donor cells in BM. (b) Number of LSK cells and Lin- cKit+ Sca1- 

cells within donor cells in BM.(c) Frequency of LSK cells and Lin- cKit+ Sca1- cells within donor 

cells in the spleen. (d) LSK cells and Lin- cKit+ Sca1- cells within donor cells in the spleen. (e) 

Representative dot plots of the frequency of LSK cells and Lin- cKit+ Sca1- cells within donor Lin- 
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cells in BM; (top left) isotype control gated in Lin- cells, (top centre) naive recipient gated in WT 

donor Lin- cells, (top right) infected recipient gated in WT donor Lin- cells, (bottom left) naive 

recipient gated in IFNγR2−/− Lin- donor cells, (bottom right) infected recipient gated in IFNγR2−/− 

Lin- donor cells. Analysis performed 12 weeks after transplant of total BM cells from CD45.2 

IFNγR2−/− mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. 

Comparisons were made within donor compartment between non-infected recipients (n=8) and 

recipient mice infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias 

were taken per animal. Data from two independent experiments was presented as scatter plot and 

mean bar, p values were determined using One-way Anova followed by Tukey’s multiple 

comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.35 - L. donovani infection was associated with an increase in intermediary non-

committed progenitors within WT and IFNγR2−/− donor cells. (a) Frequency of LSK CD150+ 

CD48- cells (enriched for LT-HSCs) and LSK CD150+ CD48+ cells within donor cells in BM. (b) 

Number of LSK CD150+ CD48- cells and LSK CD150+ CD48+ cells in BM. (c) Frequency of 

LSK CD150+ CD48- cells (enriched for LT-HSCs) and LSK CD150+ CD48+ cells within donor 

cells in spleen. (d) Number of LSK CD150+ CD48- cells and LSK CD150+ CD48+ cells within 

donor cells in spleen. Analyses were performed 12 weeks after transplant of total BM cells from 

CD45.2 IFNγR2−/− mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient 

mice. Comparisons were made within donor compartment between non-infected recipients (n=8) 

and recipient mice infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias 

were taken per animal. Data from two independent experiments was presented as scatter plot and 

mean bar, p values were determined using One-way Anova followed by Tukey’s multiple 

comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.36 –The number of myeloid progenitors in BM was unchanged within WT and 

IFNγR2−/− donor cells, following L. donovani infection. (a) Frequency of lineage-committed 

progenitor cells (CMPs, GMPs, MEPs and CLPs) in BM. (b) Number of lineage-committed 

progenitor cells (CMPs, GMPs, MEPs and CLPs) in BM. (c) Frequency of lineage-committed 

progenitor cells (CMPs, GMPs, MEPs and CLPs) in the spleen. (d) Number of lineage-committed 

progenitor cells (CMPs, GMPs, MEPs and CLPs) in the spleen. Analyses were performed 12 

weeks after transplant of total BM cells from CD45.2 IFNγR2−/− mice and CD45.1 WT mice 

(50:50) to lethally irradiated CD45.1 recipient mice. Comparisons were made within donor 

compartment between non-infected recipients (n=4) and recipient mice infected with L. donovani 

for 28 days (Ld28) (n=4). Two femur and two tibias were taken per animal. Data from two 

independent experiments was presented as scatter plot and mean bar, p values were determined 

using One-way Anova followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.37 - The absence of direct IFNγ signaling in LT-HSCs did not prevent the depletion 

of the reservoir of quiescent HSCs, following L. donovani infection. (a) Frequency of LSK 

CD150+ CD48- cells (enriched for LT-HSCs) in G0 (Ki67-) within donor cells in BM. (b) Number 

of LSK CD150+ CD48- cells in G0 (Ki67-) in BM. (c) Representative dot plots of Ki67 

expression; (top left) isotype control gated in LSK cells, (top centre) naive recipient gated in WT 

donor LSK CD150+ CD48- cells, (top right) naive recipient gated in IFNγR2−/− donor LSK 

CD150+ CD48- cells, (bottom left) infected recipient gated in WT donor LSK CD150+ CD48- 

cells, (bottom right) infected recipient gated in IFNγR2−/− donor LSK CD150+ CD48- cells. 

Analyses were performed 12 weeks after transplant of total BM cells from CD45.2 IFNγR2−/− 

mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. Comparisons 

were made within donor compartment between non-infected recipients (n=6) and recipient mice 

infected with L. donovani for 28 days (Ld28) (n=6). Two femur and two tibias were taken per 
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animal. Data from two independent experiments was presented as scatter plot and mean bar, p 

values were determined using One-way Anova followed by Tukey’s multiple comparisons test: 

not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.38 - In the absence of intrinsic IFNγ signaling the expansion of T cells was limited 

in BM of mice infected with L. donovani.  (a) Frequency of T cells and B cells within donor 

cells in BM. (b) Number of donor T cells and B cells in BM. (c) Frequency of T cells and B cells 

within donor cells in the spleen. (d) Number of donor T cell and B cells in the spleen. Analyses 

were performed 12 weeks after transplant of total BM cells from CD45.2 IFNγR2−/− mice and 

CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. Comparisons were made 

between non-infected recipients (n=4) and recipient mice infected with L. donovani for 28 days 

(Ld28) (n=4). Two femur and two tibias were taken per animal. Data from one experiment was 

presented as scatter plot and mean bar, p values were determined using One-way Anova followed 

by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001. 
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Figure 4.39 - The absence of direct IFNγ signaling limited the expansion of macrophages in 

BM and spleen in mice infected with L. donovani.  (a) Frequency of CD11chi MHC-IIhi cells, 

CD11b- F4/80hi cells, CD11b+ F4/80hi cells and CD11b+ F4/80- cells within donor cells in BM. (b) 

Number of donor CD11chi MHC-IIhi cells, CD11b- F4/80hi cells, CD11b+ F4/80hi cells and 

CD11b+ F4/80- cells in BM. (c) Frequency of CD11chi MHC-IIhi cells, CD11b- F4/80hi cells, 

CD11b+ F4/80hi cells and CD11b+ F4/80- cells within donor cells in the spleen. (d) Number of 

donor CD11chi MHC-IIhi cells, CD11b- F4/80+ cells, CD11b+ F4/80+ cells and CD11b+ F4/80- 

cells in the spleen. Analyses were performed 12 weeks after transplant of total BM cells from 

CD45.2 IFNγR2−/− mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient 

mice. Comparisons were made within donor compartment between non-infected recipients (n=4) 

and recipient mice infected with L. donovani for 28 days (Ld28) (n=4). Two femur and two tibias 

were taken per animal. Data from one experiment was presented as scatter plot and mean bar, p 

values were determined using One-way Anova followed by Tukey’s multiple comparisons test: 

not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 

 

0.0

0.5

1.0

1.5

2.0

2.5
20
40
60
80

100
Fr

eq
ue

nc
y 

w
ith

in
 d

on
or

 c
el

ls
 in

 
bo

ne
 m

ar
ro

w

CD11chi MHC II+ CD11b- F4/80hi CD11b+ F4/80hi CD11b+ F4/80-

****
****

ns
ns

****
****

ns

ns ns
ns

ns ns

ns

ns ns

*

0.0
0.1
0.2
0.3
0.4
0.5
1.0
2.5
4.0
5.5
7.0
8.5

10.0

Fr
eq

ue
nc

y 
w

ith
in

 d
on

or
 c

el
ls

 in
 s

pl
ee

n

CD11chi MHC II+ CD11b- F4/80hi CD11b+ F4/80hi CD11b+ F4/80-

ns ns
****

** ns
***

****
**

ns *

**** ns **** ***
ns

ns

0

1×105

2×105

3×105

1×107
2×107
3×107
4×107

N
um

be
r o

f d
on

or
 c

el
ls

 in
 b

on
e 

m
ar

ro
w

CD11chi MHC II+ CD11b- F4/80hi CD11b+ F4/80hi CD11b+ F4/80-

**** ns
****

* ns **** ns
****

ns ns

ns * ** ns
ns

WT donor Naive
WT donor Ld28
IFNγR2 KO donor Naive
IFNγR2 KO donor Ld28

ns

0

2×105

4×105

6×105

2.0×106

7.0×106

1.2×107

1.7×107

N
um

be
r o

f d
on

or
 c

el
ls

 in
 s

pl
ee

n

CD11chi MHC II+ CD11b- F4/80hi CD11b+ F4/80hi CD11b+ F4/80-

* ns
**

* ns
**

ns ns
**

**

ns ****
ns

ns ns

ns

a b

dc



 241 

 

 

Figure 4.40 - The number of HSPCs (enriched in Lineage- cKit+ cells) expressing TNF-R1a 

in BM increased L. donovani following infection. (a) Frequency of CD45+ Lineage+ cells 

(mature haematopoietic cells) TNF-R1a+ and Lineage- cKit+ cells (enriched for all HSPCs) TNF-

R1a+ in total BM cells. (b) Number of CD45+ Lineage+ TNF-R1a+ cells and Lineage- cKit+ TNF-

R1a+ cells. Comparisons were made between naive mice (n=5) and mice for 28 days with L. 

donovani (n=5). Two femur and two tibias were taken per animal. Data from one experiment was 

presented as Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 

0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.41 - The number of LT-HSCs and onward multipotent progenitors expressing 

TNF-R1a increased following L. donovani infection. (a) Frequency of LSK CD150+ CD34- 

CD48- cells (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ 

cells expressing TNF-R1a in total BM cells. (b) Number of LSK CD150+ CD34- CD48- cells, 

LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells expressing TNF-R1a. (c) Mean 

intensity fluorescence (MFI) of TNF-R1a in LSK CD150+ CD34- CD48- cells (enriched for LT-

HSCs), LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells expressing TNF-R1. (c) 

Representative histogram of TNF-R1a expression on LSK CD150+ cells. Comparisons were made 

between naive mice (n=5) and mice for 28 days with L. donovani (n=5). Two femur and two 

tibias were taken per animal. Data from one experiment was presented as Mean ± SD, p values 

were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and 

****p ≤0.0001. 
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Figure 4.42 - The number of HSPCs (enriched in Lineage- cKit+ cells) expressing TNF-R1b 

increased following L. donovani infection. (a) Frequency of CD45+ Lineage+ cells TNF-R1b+ 

(mature haematopoietic cells) and Lineage- cKit+ cells (enriched for all HSPCs) TNF-R1b+ in total 

BM cells. (b) Number of CD45+ Lineage+ TNF-R1b+ cells and Lineage- cKit+ TNF-R1b+ cells. 

Comparisons were made between naive mice (n=5) and mice for 28 days with L. donovani (n=5). 

Two femur and two tibias were taken per animal. Data from one experiment was presented as 

Mean ± SD, p values were determined using unpaired t test: not significant (ns), *p ≤ 0.05, **p 

≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.43 - The number of LT-HSCs and onward multipotent progenitors expressing 

TNF-R1b increased following L. donovani infection. (a) Frequency of LSK CD150+ CD34- 

CD48- cells (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ 

cells expressing TNF-R1b in total BM cells. (b) Number of LSK CD150+ CD34- CD48- cells 

(enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and LSK CD150+ CD34+ cells 

expressing TNF-R1b. (c) Mean intensity fluorescence (MFI) of TNF-R1b expression on LSK 

CD150+ CD34- CD48- cells (enriched for LT-HSCs), LSK CD150+ CD34- CD48+ cells and LSK 

CD150+ CD34+ cells expressing TNF-R1b. (c) Representative histogram of TNF-R1b expression 

on LSK CD150+ cells. Comparisons were made between naive mice (n=5) and mice for 28 days 

with L. donovani (n=5). Two femur and two tibias were taken per animal. Data from one 

experiment was presented as Mean ± SD, p values were determined using unpaired t test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.44 - Proposed mechanism to explain depletion of LT-HSCs in G0 and inefficient 

haematopoiesis during the chronic infection with L. donovani (3). Following L. donovani 

infection proliferating LT-HSCs and onward multipotent progenitors expand greatly at the 

expense of LT-HSCs in G0. The accumulation of intermediary multipotent progenitors was not 

associated with an increase in effective haematopoietic activity, since the numbers of effector 

haematopoietic cells were found either decreased or unchanged in PB. CD4+ T cells could solely 

mediate these alterations through an IFNγ-dependent mechanism following transfer to L. 

donovani infected immunodeficient mice, otherwise protected from impairment of haematological 

function. The impact of IFNγ was not directly mediated through IFNγ receptor signalling in LT-

HSCs. In the BM of chronically infected mice, CD4+ T cells expressed increased levels of TNF, 

and LT-HSCs expressed increased levels of TNF receptors, being therefore conceivable that TNF 

could act directly modulating LT-HSCs proliferative status in mice chronically infected with L. 

donovani. 
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Figure 4.45 - Experimental design for competitive mixed BM chimeras using wild-type 

(WT) and TNF-R double knockout (TNF-RdKO HSCs) BM cells. Total unfractioned BM cells 

from WT (CD45.1) and TNF-RdKO (CD45.2) mice were transferred in equal number into lethally 

irradiated recipients (CD45.1). Following nine weeks recipient mice were infected for 28 days 

with L. donovani, and haematopoietic reconstitution activity was assessed both in BM and in the 

spleen. 
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Figure 4.46 - The reconstitution potential of WT HSCs and TNF-RdKO donor cells changed 

following infection with L. donovani. (a) Frequency of donor cells in BM and in the spleen. (b) 

Number of donor cells in BM and in the spleen. (c) Representative dot plots of frequency of donor 

cells in gated BM live cells; (left) isotype control, (centre) naive recipient and (right) infected 

recipient. Analysis performed 13 weeks after transplant of total BM cells from CD45.2 TNF-

RdKO mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. 

Comparisons were made within donor compartment between naive recipients (n=9) and recipient 

mice infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias were taken 

per animal. Data from two independent experiments was presented as Mean ± SD, p values were 

determined using One-way Anova followed by Tukey’s multiple comparisons test: not significant 

(ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.47 - Following infection with L. donovani the frequency of Lin- cKit+ Sca1- cells 

within WT and TNF-RdKO donor cells decreased in BM. (a) Frequency of LSK cells and Lin- 

cKit+ Sca1- cells within donor cells in BM. (b) Number of LSK cells and Lin- cKit+ Sca1- cells 

within donor cells in BM. (c) Representative dot plots of frequency of LSK cells and Lin- cKit+ 

Sca1- cells within donor Lin- cells in BM; (top left) naive recipient gated in WT donor Lin- cells, 

(top right) infected recipient gated in WT donor Lin- cells, (bottom left) naive recipient gated in 

TNF-RdKO donor Lin- donor cells, (bottom right) infected recipient gated in TNF-RdKO donor 

Lin- donor cells. Analysis performed 13 weeks after transplant of total BM cells from CD45.2 

TNF-RdKO donor mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient 

mice. Comparisons were made within donor compartment between non-infected recipients (n=9) 

and recipient mice infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias 

were taken per animal. Data from two independent experiments was presented as Mean ± SD, p 

values were determined using One-way Anova followed by Tukey’s multiple comparisons test: 

not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.48 - L. donovani infection was associated with an increase in intermediary non-

committed progenitors within WT and TNF-RdKO donor cells in BM. (a) Frequency of LSK 

CD150+ CD48- cells (enriched for HSCs) and LSK CD150+ CD48+ cells within donor cells in 

BM. (b) Number of LSK CD150+ CD48- cells (enriched for HSCs) and LSK CD150+ CD48+ 

cells. Analyses were performed 13 weeks after transplant of total BM cells from CD45.2 TNF-

RdKO mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. 

Comparisons were made within donor compartment between non-infected recipients (n=9) and 

recipient mice infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias 

were taken per animal. Data from two independent experiments was presented as Mean ± SD, p 

values were determined using One-way Anova followed by Tukey’s multiple comparisons test: 

not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.49 - The absence of intrinsic TNF-RdKO signaling did not prevent the depletion of 

the reservoir of quiescent HSCs, following L. donovani infection. (a) Frequency of LSK 

CD150+ CD48- cells (enriched for HSCs) in G0 (Ki67-) within donor cells in BM. (b) Number of 

LSK CD150+ CD48- cells (enriched for HSCs) in G0 (Ki67-). (c) Frequency of LSK CD150+ 

CD48- cells in G0. (d) Representative dot plots of Ki67 expression; (top left) Isotype control gated 

in Lineage negative, (middle left) naive recipient gated in WT donor LSK CD150+ CD48- cells, 

(middle right) naive recipient gated in TNF-RdKO donor LSK CD150+ CD48- cells, (bottom left) 
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infected recipient gated in WT donor LSK CD150+ CD48- cells, (bottom right) infected recipient 

gated in TNF-RdKO donor LSK CD150+ CD48- cells. Analyses were performed 13 weeks after 

transplant of total BM cells from CD45.2 TNF-RdKO mice and CD45.1 WT mice (50:50) to 

lethally irradiated CD45.1 recipient mice. Comparisons were made within donor compartment 

between non-infected recipients (n=9) and recipient mice infected with L. donovani for 28 days 

(Ld28) (n=8). Two femur and two tibias were taken per animal. Data from two independent 

experiments was presented as Mean ± SD, p values were determined using One-way Anova 

followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p 

≤0.001 and ****p ≤0.0001. 
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Figure 4.50 - Following infection with L. donovani, alterations in the frequency of myeloid 

progenitors were similar within WT and TNF-dKO donor cells. (a) Frequency of lineage-

committed progenitor cells (CMPs, GMPs, MEPs and CLPs) in BM. (b) Number of lineage-

committed progenitor cells (CMPs, GMPs, MEPs and CLPs) in BM. Analyses were performed 13 

weeks after transplant of total BM cells from CD45.2 TNF-RdKO mice and CD45.1 WT mice 

(50:50) to lethally irradiated CD45.1 recipient mice. Comparisons were made within donor 

compartment between non-infected recipients (n=9) and recipient mice infected with L. donovani 

for 28 days (Ld28) (n=8). Two femur and two tibias were taken per animal. Data from two 

independent experiments was presented as Mean ± SD, p values were determined using One-way 

Anova followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.51 - The absence of intrinsic TNF receptor signaling prevented the expansion of T 

cells in the BM of mice infected with L. donovani. (a) Frequency of T cell, B cells and CD11b+ 

cells within donor cells in BM. (b) Number of donor of T cell, B cells and CD11b+ cells in BM. 

Analyses were performed 13 weeks after transplant of total BM cells from CD45.2 TNF-RdKO 

mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient mice. Comparisons 

were made within donor compartment between non-infected recipients (n=9) and recipient mice 

infected with L. donovani for 28 days (Ld28) (n=8). Two femur and two tibias were taken per 

animal. Data from two independent experiments was presented as Mean ± SD, p values were 

determined using One-way Anova followed by Tukey’s multiple comparisons test: not significant 

(ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.52 - The absence of intrinsic TNF receptor signaling prevented the expansion of T 

cells in the spleen, following infection with L. donovani. (a) Frequency of T cell, CD4+ T cells 

and B cells within donor cells in the spleen. (b) Number of donor of T cell, CD4+ T cells and B 

cells in the spleen. Analyses were performed 13 weeks after transplant of total BM cells from 

CD45.2 TNF-RdKO mice and CD45.1 WT mice (50:50) to lethally irradiated CD45.1 recipient 

mice. Comparisons were made within donor compartment between non-infected recipients (n=9) 

and recipient mice infected with L. donovani for 28 days (Ld28) (n=8). Data from two 

independent experiments was presented as Mean ± SD, p values were determined using One-way 

Anova followed by Tukey’s multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, 

***p ≤0.001 and ****p ≤0.0001.  
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Figure 4.53 - The absence of TNF receptor signaling did not prevent the expansion of the 

myeloid cells in the spleen, following infection with L. donovani. (a) Frequency of CD11b+ 

F4/80- cells, CD11b+ F4/80hi cells, CD11b- F4/80hi cells and CD11chi MHC-IIhi cells within donor 

cells in the spleen. (b) Number of donor CD11b+ F4/80- cells, CD11b+ F4/80hi cells, CD11b- 

F4/80hi cells and CD11chi MHC-IIhi cells in the spleen. Analyses were performed 13 weeks after 

transplant of total BM cells from CD45.2 TNF-RdKO mice and CD45.1 WT mice (50:50) to 

lethally irradiated CD45.1 recipient mice. Comparisons were made within donor compartment 

between non-infected recipients (n=9) and recipient mice infected with L. donovani for 28 days 

(Ld28) (n=8). Data from two independent experiments was presented as Mean ± SD, p values 

were determined using One-way Anova followed by Tukey’s multiple comparisons test: not 

significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p ≤0.0001. 
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Figure 4.54 - Intrinsic TNF receptor signaling mediated expansion of CD4+ T cells 

expressing IFNγ in the BM following infection with L. donovani. (a) Frequency of B cells, 

CD4+ T cells, CD8+ T cells and CD3+ CD4- CD8- cells expressing IFNγ, following in vitro 

stimulation with PMA/ionomycin, within donor cells in BM. (b) Number of B cells, CD4+ T cells, 

CD8+ T cells and CD3+ CD4- CD8- cells expressing IFNγ following in vitro stimulation in BM. 

(c) Frequency of IFNγ+ cells within donor CD4+ T cells following in vitro stimulation and without 

exogenous stimulation. (d) Representative dot plots displaying frequencies of IFNγ expression 

gated in CD4+ T cells in BM;  (top left) isotype control, (top centre) naive recipient gated in WT 

donor CD4+ T cells, (top right) naive recipient gated in TNF-RdKO donor CD4+ T cells, (bottom 

left) infected recipient gated in WT donor CD4+ T cells cells, (bottom right) infected recipient 

gated in TNF-RdKO donor CD4+ T cells. Analyses were performed 13 weeks after transplant of 

total BM cells from CD45.2 TNF-RdKO mice and CD45.1 WT mice (50:50) to lethally irradiated 

CD45.1 recipient mice. Comparisons were made within donor compartment between non-infected 

recipients (n=4) and recipient mice infected with L. donovani for 28 days (Ld28) (n=4). Two 

femur and two tibias were taken per animal. Data from two independent experiments was 

presented as Mean ± SD, p values were determined using One-way Anova followed by Tukey’s 

multiple comparisons test: not significant (ns), *p ≤ 0.05, **p ≤0.01, ***p ≤0.001 and ****p 

≤0.0001. 
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Figure 4.55 - Proposed mechanism to explain depletion of LT-HSCs in G0 and inefficient 

haematopoiesis during the chronic infection with L. donovani (4). Following L. donovani 

infection proliferating LT-HSCs and onward multipotent progenitors expand greatly at the 

expense of LT-HSCs in G0. The accumulation of intermediary multipotent progenitors was not 

associated with an increase in effective haematopoietic activity, since the numbers of effector 

haematopoietic cells were found either decreased or unchanged in PB. CD4+ T cells could solely 

mediate these alterations, through an IFNγ-dependent mechanism following transfer to L. 

donovani infected immunodeficient mice, otherwise protected from impairment of haematological 

function. The expansion CD4+ T cells IFNγ+ was limited by the absence of intrinsic TNF receptor 

signaling, suggesting that TNF indirectly modulate LT-HSCs proliferative status through the 

induction of expansion of CD4+ T cell compartment, the main source of IFNγ in BM, during 

chronic infection in L. donovani. 
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CHAPTER 5. CONCLUDING DISCUSSION 

Although it is well established that impairment of haematological function occurs during human 

VL, the underlying mechanisms are poorly understood. In the current study, we sought to clarify 

these mechanisms by characterizing alterations in cellular components of BM and, through 

functional assays, to identify molecular mediators modulating haematopoietic activity.  

To our knowledge, this work represents the first detailed report characterizing the alterations in 

haematopoietic progenitors ex vivo during chronic experimental infection with L. donovani in 

mice. We identified accumulation of phenotypically defined non-committed early haematopoietic 

progenitors, without reciprocal increase in lineage-committed progenitors as a major change 

compared to steady state haematopoiesis, and this correlated with the establishment of anaemia 

and thrombocytopenia. The accumulation of early haematopoietic progenitors was driven by an 

increase in active proliferation at the expense of the reservoir of quiescent LT-HSCs, and resulted 

in loss of function, as determined by the impairment of long-term reconstitution potential in 

lethally irradiated syngeneic recipients. These findings are in agreement with studies reporting 

alterations in the proliferative status of LT-HSCs under pro-inflammatory conditions (M. T. 

Baldridge et al., 2010, K. C. MacNamara et al., 2011a, A. M. de Bruin et al., 2013, C. Frelin et 

al., 2013, K. A. Matatall et al., 2014, D. Walter et al., 2015). Recently, in vivo stress-induced 

haematopoiesis, including that promoted by chronic pro-inflammatory conditions, was shown to 

drive HSCs into active cell-cycle, and result in DNA damage (D. Walter et al., 2015), suggesting 

that single and double-strand breaks might also be found in LT-HSCs from L. donovani-infected 

mice.  

Alterations in haematopoiesis have been described in many models of infection. In some, it has 

been proposed that this promotes the differentiation of important effector cells (N. N. Belyaev et 

al., 2010, N. Mossadegh-Keller et al., 2013). In others, it has been suggested that inflammation-

induced haematopoiesis could result in impairment of haematopoietic function (K. C. MacNamara 

et al., 2009, S. Rodriguez et al., 2009), as suggested here. VL patients may die due to increased 

vulnerability to secondary infections or bleeding (F. Chappuis et al., 2007, V. E. Miranda de 

Araujo et al., 2012). The results reported here suggest that chronic infection with L. donovani 

may lead to deterioration of HSCs function and the ability of haematopoieis to respond to an 

increase demand of cells in a subsequent infection/injury. As such, further studies might 

profitably focus on examining how the haematopoietic system from mice chronically infected 

with L. donovani (or in resolution) copes with a secondary infection/injury.  

To begin to answer this important question we performed a pilot study in which mice infected 

with L. donovani for a period of seven weeks were treated with a single dose of 5-Fluoraracil (5-
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FU), a cytotoxic drug that eliminates haematopoietic progenitors in active proliferation and leads 

to the activation of quiescent HSCs into active proliferation (Figure 5.1). There was a significant 

decrease in the number of LT-HSCs in infected compared to naïve mice, and this difference 

became further evident after seven days. At both time points, the loss of HSCs in infected mice 

correlated with a decrease in the number of cells in circulation, that was far more deleterious in 

infected compared to naïve mice. This preliminary data suggested that following L. donovani 

infection, the haematopoietic system is functionally impaired to produce effector haematopoietic 

cells under severe stress conditions. 

In the current study the alteration in the proliferative status of LT-HSCs was associated with the 

upregulation of the expression of transcription factors GATA-3 and β-catenin. Alterations in the 

expression of these transcription factors have been previously associated with losses in the 

reconstitution potential of HSCs in BMT assays (T. C. Luis et al., 2011, T. Yoshida and K. 

Georgopoulos, 2013). These findings indicated that L. donovani infection has the potential to 

induce deleterious alterations in the mechanism regulating HSCs quiescence. In order to clarify 

the signaling networks inducing alterations in expression of GATA-3 and β-catenin, examination 

of the transcriptional profile of these cells, ideally using single cells analysis would be highly 

informative. 

The loss of quiescent LT-HSCs and expansion of early non-committed progenitors was not 

observed in chronically infected RAG2 KO mice, and these mice did not display alteration in PB. 

Together, these findings indicated that the presence of the parasite by itself was not responsible 

for the alterations in BM and PB cellularity, and pointed to a critical role for adaptive immunity in 

driving the haematopoietic dysfunction. We characterized for the first time a significant 

expansion of CD4+ T cells expressing IFNγ in the BM of chronically infected mice. Then, using 

adoptive transfer of WT and IFNγ KO CD4+ T, we established that CD4+ T cells mediate 

depletion of the reservoir of quiescent HSCs and the establishment of anaemia through an IFNγ-

dependent-mechanism. 

The vast majority of BM CD4+ T cells in infected mice were CD44+ Ly6C- CD127-, an 

immunophenotype associated with activated effector T cells in BM (K. Tokoyoda et al., 2010). 

These could be further characterized, for example, by determining the expression of T-bet (master 

regulator of Th1 differentiation), their persistence after spontaneous or drug induced disease 

resolution, and for their role in the control of parasite burden and the development of 

immunopathology. The application of MHC II tetramers would allow such analyses to be 

conducted on a defined antigen-specific population. 
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Finally, by using BM mixed chimeras we established that during L. donovani infection, intrinsic 

IFNγ and TNF receptor signaling did not directly mediate the loss of quiescent LT-HSCs. These 

results were unexpected since a wide body of literature suggested that IFNγ has the potential to 

directly mediate the activation of HSCs into active cell-cycle, and this was correlated with loss of 

reconstitution potential in BMT assays (M. T. Baldridge et al., 2010, K. C. MacNamara et al., 

2011a). More recently, TNF was also proposed as a direct mediator of impairment of HSCs 

function under myelosuppressive conditions (C. J. H. Pronk et al., 2011).  

Increased levels of IFNγ and TNF have been detected in the serum and in the BM in patients with 

BMF syndromes (C. Dufour et al., 2001, C. Dufour et al., 2003, C. Dufour et al., 2004), in 

experimental models of BMF and in an experimental model of infection (J. L. Johns et al., 2009, 

A. M. de Bruin et al., 2013, Y. Zhang et al., 2013). These clinical conditions share as a common 

denominator the emergence of alterations in haematopoietic function mirrored in alterations in 

haematopoiesis in BM or/and in effector cells in the periphery.  

Additionally, in several models of infection it was proposed that the alterations in the proliferative 

status of HSCs and subsequent functional impairment are directly mediated by IFNγ receptor 

signal in HSCs (M. T. Baldridge et al., 2010, K. C. MacNamara et al., 2011a, A. M. de Bruin et 

al., 2013). More recently, a similar role was suggested for TNF during stress-induced 

haematopoiesis (C. J. H. Pronk et al., 2011). However, our findings obtained in mixed BM 

chimeric mice disagreed with these previous reports and indicated that alternative mechanisms 

mediate the loss of quiescent HSCs during chronic VL. 

Our findings also strongly suggest that IFNγ and TNF receptor signaling converge to regulate the 

expansion of BM T cells following infection, since the absence of either IFNγR or TNFR 

expression on T cells prevented their accumulation. Additionally, CD4+ T cells from TNF-RdKO 

were impaired in their ability to express IFNγ compared to WT CD4+ T cells, arguing in favor for 

an important indirect role of TNF signaling in controlling T cell-dependent haematopoietic 

dysfunction. In this context, experiments involving transfer of IFNγR and TNFR deficient CD4+ T 

cells into RAG2 recipients would be highly informative.  

If proven true, the hypothesis that the signal from both IFNγR and TNFR in CD4+ T cells is 

required to mediate haematopoietic dysfunction during infection, efforts could then focus on 

determining which molecular mediators are activated non-redundantly by both signaling 

pathways. This could potentially lead to the isolation of a molecular target that could prevent 

CD4+ T cells from having a deleterious impact on haematopoiesis and simultaneously preserve 

their capacity to control parasite burden. A possible approach would be the transcriptional 

characterization of BM CD4+ T cells from WT, IFNγR KO and TNFR KO isolated from 
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chronically infected mice. From this initial screening, potential targets that are upregulated in WT 

BM CD4+ T cells but unchanged in both BM CD4+ T cells IFNγR KO and BM CD4+ T cells 

TNFR KO could be selected for further examination. 

In a preliminary transcriptomic analysis of BM CD4+ T cells from naïve and infected mice, we 

identified 861 differentially expressed (DE) transcripts  (Fold change > 4, p < 0.05). The top ten 

genes upregulated and downregulated in BM CD4+ T cells from infected mice are listed in Table 

5.1. 

As expected transcripts for Ifng and Tnf were upregulated in BM CD4+ T cells, ~11 fold and ~ 4 

fold, respectively in infected compared to naive mice. In infected mice the expression TNFR1b 

was upregulated (~3 fold), in contrast the expression IFNγR2 in BM CD4+ T cells was 

downregulated (~8 fold). These findings require confirmation by qPCR and flow cytometric 

analysis.  

The analysis the alterations in BM CD4+ T cells transcriptional profile in the context of 

predefined canonical pathways, using the analysis tool Ingenuity Pathways, showed the highest 

degree of association with the network associated to “T helper cell differentiation”, i.e. 29 genes 

out of a total of 71 genes were DE during L. donovani infection (Figure 5.2). Interestingly, the 

expression of T-bet (master regulator of Th1 cells) was found unchanged. In addition, BM CD4+ 

T cells upregulated the expression of IL-21, a cytokine mainly expressed by NKT cells, Th17 and 

T follicular helper cells, either suggesting that BM CD4+ T cells during chronic infection may 

display an intermediate immunophenotype (V. Lazarevic et al., 2013, R. Spolski and W. J. 

Leonard, 2014), or may reflect the heterogeneity of BM CD4+ T cell populations with potential to 

express IFNγ following infection, therefore requiring further extensive characterization.  

The anaemia and thrombocytopenia associated with human VL have been mainly attributed to the 

splenomegaly, due to the observation that splenectomy resolves these alteration in patients. Very 

recently in our laboratory, it was reported that in experimental VL splenectomy prevented the 

development of thrombocytopenia but not anaemia (O. Preham unpublished data), suggesting 

discordant regulation of these two processes. However, the onset of significant alterations in the 

morphology of BM cells, sometimes resembling myelodysplastic syndromes, have been more 

difficult to address and suggested that alteration in BM haematopoiesis could contribute to 

haematopoietic dysfunction, which is most likely multifactorial in VL patients (G. E. Cartwright 

et al., 1948, N. A. M. Aljurayyan et al., 1995, K. K. Dhingra et al., 2010, N. Varma and S. 

Naseem, 2010).  
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Many questions remain to be solved regarding the impact of VL on haematopoietic functions, 

some of which have been discussed above and elsewhere in this thesis. Nonetheless, the findings 

reported here have helped to shape a platform for future studies addressing the impact of VL in 

haematopoiesis, and have added to the extensive body of studies addressing the impact of chronic 

infection/inflammation in haematopoietic function. 

This thesis was developed in the context of a neglected tropical disease, and we hope that our 

findings contribute to future studies devoted to the improvement of therapeutics approach, namely 

the prevention/treatment of haematopoietic dysfunctions, which aggravate the life conditions of 

VL patients in areas commonly characterized by socioeconomic fragilities.  
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5.1 FIGURES 

 

Figure 5.1 - Changes in blood parameters after 5-FU treatment. (a) Number of LSK CD150+ 

CD34- CD48- cells (LT-HSCs) in BM following 5-Fluororacil (5-FU) administration.  (b-d) 

Concentration of white blood cells (WBC; b) red blood cells (RBC; c), and platelets (PLT; d) in 

PB following two days of 5-FU administration. (e-g) Concentration of WBC (e), RBC (f) and 

PLT (g) in PB following seven days of 5-FU administration. In each time point, one naive and 

one mouse infected with L. donovani for 38 days were injected intravenously with a single dose 

of 50 mg/kg of 5-FU, an unmanipulated naive mouse was used as control.  
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Table 5.1 - Top ten significantly up-/down-regulated genes in BM CD4+ T cells from mice 

infected with L. donovani for 28 days (compared to uninfected controls) 

 

Gene name Description Fold change 
infected vs. naive

log2 Fold change 
infected vs. naïve

adjusted p value Regulation

Saa3 Mus musculus serum amyloid A 3 (Saa3), mRNA [NM_011315] 1802 11 0.0016 Up

Gm5486
Mus musculus 2 cells egg cDNA, RIKEN full-length enriched library, 
clone:B020041A18 product:hypothetical protein, full insert sequence. 

[AK139943]
200 8 0.0016 Up

Tff1 Mus musculus trefoil factor 1 (Tff1), mRNA [NM_009362] 181 7 0.0011 Up

Arnt2 Mus musculus aryl hydrocarbon receptor nuclear translocator 2 
(Arnt2), mRNA [NM_007488] 178 7 0.0008 Up

Bace2 Mus musculus beta-site APP-cleaving enzyme 2 (Bace2), mRNA 
[NM_019517] 170 7 0.0049 Up

Rasd2 Mus musculus RASD family, member 2 (Rasd2), mRNA 
[NM_029182] 168 7 0.0005 Up

Tff1 Mus musculus trefoil factor 1 (Tff1), mRNA [NM_009362] 157 7 0.0014 Up

Il20ra Mus musculus interleukin 20 receptor, alpha (Il20ra), mRNA 
[NM_172786] 147 7 0.0001 Up

Synpo2 Mus musculus synaptopodin 2 (Synpo2), mRNA [NM_080451] 144 7 0.0003 Up

Serpina9
Mus musculus serine (or cysteine) peptidase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 9 (Serpina9), mRNA 
[NM_027997]

137 7 0.0019 Up

Dapl1 Mus musculus death associated protein-like 1 (Dapl1), mRNA 
[NM_029723] 234 -8 0.0003 Down

Klra15 Mus musculus killer cell lectin-like receptor, subfamily A, member 15 
(Klra15), mRNA [NM_013793] 230 -8 0.0013 Down

Gprc5b Mus musculus G protein-coupled receptor, family C, group 5, member 
B (Gprc5b), transcript variant 2, mRNA [NM_022420] 185 -8 0.0003 Down

Adh1 Mus musculus alcohol dehydrogenase 1 (class I) (Adh1), mRNA 
[NM_007409] 147 -7 0.0003 Down

A530021J07
Rik

PREDICTED: Mus musculus Riken cDNA A530021J07 gene 
(A530021J07Rik), miscRNA [XR_035179] 144 -7 0.0008 Down

Klra16 Mus musculus killer cell lectin-like receptor, subfamily A, member 16 
(Klra16), mRNA [NM_013794] 135 -7 0.0003 Down

St8sia6 Mus musculus ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 6 (St8sia6), mRNA [NM_145838] 129 -7 0.0007 Down

Atp1b1 Mus musculus ATPase, Na+/K+ transporting, beta 1 polypeptide 
(Atp1b1), mRNA [NM_009721] 126 -7 0.0003 Down

Grm6 Mus musculus glutamate receptor, metabotropic 6 (Grm6), mRNA 
[NM_173372] 120 -7 0.0002 Down

2610019F03
Rik

Mus musculus RIKEN cDNA 2610019F03 gene (2610019F03Rik), 
mRNA [NM_173744] 108 -7 0.0012 Down
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Figure 5.2 - DE genes in BM CD4+ T cells of naïve vs. L. donovani infection mapped to IPA 

canonical pathway of Th cell differentiation. The Ingenuity Pathway Analysis tool analyzed 

nearly 1000 genes significantly regulated in BM CD4+ T cells following L. donovani infection 

(Fold change > 3, p < 0.05), with the canonical pathway “ T helper differentiation” identified as 

having significant enrichment (p= 5.25 x 10 -11). Red indicates upregulated and green down-

regulated genes. Grey indicates unchanged according with the defined cut-off. 
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ABBREVIATIONS 

 

5-FU 5- Fluorouracil  

AA Aplastic anemia  

ACK2 Anti-Mouse CD117 (cKit) 

AdCMV-lacZ Replication-deficient β-galactosidase encoding recombinant adenovirus  

ALAS2 5'-Aminolevulinate Synthase 2 

Ang Angiopoietin 

AP-1 Activator protein 1 (TF) 

APC Antigen presenting cell 

APC Allophycocyanin  (Fluorochrome) 

APRIL 
A proliferation-inducing ligand, also known as tumor necrosis factor 

ligand superfamily member 13  

aPTT Activated Partial Thromboplastin Time  

ARRIVE Animal Research: Reporting of In Vivo Experiments (guidelines) 

ATF2 Activating Transcription Factor 2 

AXIN1 Axis inhibition protein 1  

B6 C57BL/6 mice, often referred to as black 6 mice 

BA Basophils 

BAFF 
B-cell activating factor, also known as tumor necrosis factor ligand 

superfamily member 13B 

BCL2 B-cell lymphoma 2 

BCLXL B-cell lymphoma-extra large  

BCP B-cell progenitor 

BFU-E Burst forming unit–erythrocyte  

BM Bone marrow 
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Bmi1 
Polycomb complex protein B lymphoma Mo-MLV insertion region 1 

homolog 

BMP-2  Bone morphogenetic protein 2  

BMP-6 Bone morphogenetic protein 6 

BMSCs  Bone marrow stromal cells  

BMT Bone marrow transfer assay 

BrdU Bromodeoxyuridine  

BSA Bovin serum albumin  

BSP Bone sialoprotein  

c-mpl 
Myeloproliferative leukemia protein, also known as thrombopoietin 

receptor 

C/EBPα CCAAT enhancer-binding protein α  

CAFC Cobblestone area-forming cells 

CAR CXCL12-abundant reticular (cells) 

CCL2 
Chemokine (C-C motif) ligand 2, also known as monocyte chemotactic 

protein 1  

CCL3  
Chemokine (C-C motif) ligand 3, also known as macrophage 

inflammatory protein 1-alpha 

CCL8 
Chemokine (C-C motif) ligand 8 (CCL8), also known as monocyte 

chemoattractant protein 2 

CCR2  C-C chemokine receptor type 2 

CCR7  C-C chemokine receptor type 7  

CD Cluster of differentiation 

Cdc42 Cell division cycle 42 (a Rho family GTPase) 

cdk Cyclin-dependent kinase  

CDKIs Cyclin dependent kinase inhibitors  

Cdkn Cyclin-dependent kinase inhibitor 

cDNA Complementary DNA  

CEMCs CXCL12-expressing mesenchymal cells  
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CFSE 5(6)-carboxyfluorescein diacetate N-succinimidyl ester  

CFU Colony forming units 

CFU-C Colony-Forming Unit Culture 

CFU-E  Colony forming unit-erythroid 

CFU-F  Colony forming units-fibroblast 

CFU-GEMM 
Colony-forming unit granulocyte–erythroid–macrophage–

megakaryocyte 

CFU-OB Colony-Forming Unit-osteoblast 

cKit 
Stem cell growth factor receptor, also called Proto-oncogene c-Kit or 

tyrosine-protein kinase Kit or CD117 

CLPs Common lymphoid progenitors  

CML Chronic myeloid leukaemia  

CMPs Common myeloid progenitors  

CMV Cytomegalovirus 

CRA 
Competitive repopulation assay, also referred as competitive bone 

marrow transfer assay 

Cre Cre recombinase 

Cre cAMP-responsive elements  

CRs Cytokine receptor 

CXCL10 
C-X-C motif chemokine 10, also known as Interferon gamma-induced 

protein 10 

CXCL12 
C-X-C motif chemokine ligand 12, also known as stromal cell-derived 

factor 1 

CXCR4 C-X-C chemokine receptor type 4 

CYLD Deubiquitinase cylindromatosis 

DAMPs Damage-associated molecular pattern molecules 

DAPI 4',6-Diamidino-2-Phenylindole, Dihydrochloride 

DCs Dendritic cells 

DICER1 Double-stranded RNA (dsRNA) endoribonuclease Type III 
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DKK1 Dickkopf-related protein 1 

DMEM Dulbecco's Modified Eagle medium  

DNA Deoxyribonucleic acid 

Dnmt3a DNA (cytosine-5)-methyltransferase 3A 

dsRNA Double-stranded RNA  

DTR Diphtheria toxin receptor 

E Embryonic day  

Ebf-1 Early B-Cell Factor 1 

Ebf1 Early B cell factor 1 

eGFP Enhanced green fluorescent protein 

EKLF Erythroid Krueppel-Like Transcription Factor  

EO Eosinophils  

EP Erythroid progenitor 

ERK Extracellular-signal-regulated kinases,  also known MAP kinases 

Ery Erythroid 

ES Embryonic stem (cells) 

EVl9 Ena/Vasodilator-Stimulated Phosphoprotein-Like 9 

FA Fanconi anemia  

FACS Fluorescence activated cell sorting (technology) 

Fas Fragment, apoptosis stimulating (cell receptor) 

FasL Fas ligand 

FcR Fragment crystallizable region receptor  

FCS  Fetal calf serum 

FLs Fetal livers  

Flt3 FMS-like tyrosine kinase 3 
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FOG-1 Friend of GATA protein 1 

FOXO Forkhead box proteins O 

Foxp3 Forkhead box protein 3 

FZD Frizzled protein 

Fzd Frizzled (receptor) 

G-CSF 
Granulocyte colony stimulating factor, also known as colony-

stimulating factor 3  

GAS IFNγ-activated site promotor sequences 

GATA-1  Erythroid transcription factor, also known as GATA-binding factor 1  

GATA-2  GATA binding protein 2 

GATA-3 Trans-acting T-cell-specific transcription factor GATA-3  

Gfi-1b Growth Factor Independent 1B Transcription Repressor 

GFP Green fluorescent protein 

gIP-10 
Interferon gamma-induced protein 10, also known as C-X-C motif 

chemokine 10 

GM-CFCs Granulocyte-Macrophage colony forming cells  

GM-CSF Granulocyte/macrophage colony-stimulating factor 

GMPs Granulocyte/monocyte progenitors  

GSK3β Glycogen synthase kinase 3 beta  

H2B Histone Cluster 2 

Hb Hemoglobin 

HCT Hematocrit 

hi High 

HLA Human leukocyte antigen  

HME Human monocytic ehrlichiosis  

HOXB4 Homeobox protein Hox-B4 

HPC-1 Haematopoietic progenitor cells 1 
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HPC-2 Haematopoietic progenitor cells 2 

HSCs Haematopoietic ctem cells 

HSPCs Haematopoietic stem and progenitor cells 

ICAM1 Intercellular Adhesion Molecule 1 

IFNAR IFNα/β receptor  

IFNα/β  Interferon alpha/beta 

IFNγ Interferon-gamma 

IFNγR  Interferon gamma receptor 

Ig Immunoglobulin  

IKK Inhibitor of nuclear factor kappa-B kinase 

IL Interleukin 

IL-7Rα Interleukin-7 receptor-α, also referred as CD127  

INK4a  Inhibitor of kinase 4a. Also known asp16INK4a. 

iNOS Inducer of nitric oxide synthase 

IRF Interferon regulatory factors 

ISG Interferon Stimulated Genes 

ISRE Interferon-stimulated response elements 

IT-HSCs Intermediate-term Haematopoietic ctem cells 

IκBα 
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor alpha 

JAK Janus kinase (part of JAK-STAT pathway) 

JNK c-Jun N-terminal kinase (a MAPK) 

KCs Kupffer cells  

KO Knockout 

KSL cKit+ Sca1+ Lineage- cells (also referred as LSK) 

LCMV Lymphocytic choriomeningitis virus  
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Ld28 Infection with Leishmania donovani for a period of 28 days 

LDU Leishmania-Donovani units  

LEF Lymphoid enhancer binding factor  

lerp Leptin receptor 

LMPPs 
Immature lymphoid-biased progenitors/ lymphoid primed multipotent 

progenitors   

lo Low 

LPS Lipopolysaccharide 

LRP5/6 Single-membrane-spanning low-density receptor-related protein 5/6  

LSK Lineage- Sca1+ cKit+ cells (also referred as KSL) 

LT Lymphotoxin-α  

LT-HSCs Long-term Haematopoietic ctem cells 

LTC-IC Long-term culture-initiating cell  

LV9 Ethiopian strain of Leishmania donovani  

LY Lymphocytes  

M-CSF Macrophage colony stimulating factor  

mAb Monoclonal antibody 

MAPK Mitogen-activated protein kinases 

MCP-1 Monocyte chemotactic protein , also known as CCL2 

MD-2 
Origin of abbreviation unknown. Also referred to as lympocyte antigen 

LY96. 

MDS Myelodisplasic syndrome  

MegE Megakaryocytes / Erythrocytes cellular lineages 

MEKK1 Mitogen-activated protein kinase kinase kinase  

MEPs Megakaryocyte/erythrocyte progenitors  

mES Murine embryonic stem (cells) 

MFI Mean Intensity Fluorescence  
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MHC I Major histocompatibility complex class I molecules 

MHC II Major histocompatibility complex class II molecules 

MIF 
Macrophage migration inhibitory factor, also known as glycosylation-

inhibiting factor  

MIP-1α Macrophage inflammatory protein 1-alpha 

miRNA Micro RNA 

MkP Megakaryocyte progenitor 

MO Monocytes 

MPPs Multipotent progenitor cells 

mRNA Messenger RNA 

MSCs Mesenchymal stem cells  

MX1 
Myxovirus (Influenza Virus) Resistance 1, Interferon-Inducible Protein 

P78 (Mouse) 

Myc Avian Myelocytomatosis Viral Oncogene Homolog 

MyD88 Myeloid differentiation primary response gene 88 protein 

MyRP Myeloid-restricted progenitor 

NE Neutrophil 

NES Nestin  

Nestin Neuroectodermal stem cell marker 

NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NK  Natural Killer (cells) 

NOS2 Nitric oxide synthase (enzyme) 

NOTCH 
Not an abbreviation but refers to a mutation resulting in a notch in 

Drosophila wings.  

ns Statistically not significant 

OB Osteoblast 

OCN Osteocalcin 
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ODN CpG oligodeoxynucleotides (TLR9 agonist) 

p38 P38 mitogen-activated protein kinases  

Pam3CSK4 

N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-

seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysineSynthetic diacylated 

lipoprotein 

PAMPs Pathogen-associated molecular patterns 

PAX5 Paired box protein 5 

PB Peripheral blood 

PB  Peripheral blood 

PBMCs Peripheral blood mononuclear cells  

PBMNCs Peripheral blood mononuclear cells  

PBS Phosphate-Buffered Saline 

PDGFR Platelet-derived growth factor receptor 

PFA Paraformaldehyde 

PKDL Post-kala-azar dermal leishmaniasis 

PLT Platelets 

PMA Phorbol 12-myristate 13-acetate 

poly I:C  Polyinosinic:polycytidylic acid 

PRRs Pattern recognition receptors  

PT Prothrombin Time  

Pten Phosphatase and tensin homolog 

qPCR Quantitative real-time polymerase chain reaction  

RA Rheumatoid arthritis  

Rb retinoblastoma (protein) 

RBCs Red blood cells 

rDCs Regulatory dendritic cells 
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rIFNγ Purified mouse recombinant IFNγ 

RIP 
Receptor-Interacting Protein 1, also known as Receptor (TNFRSF)-

Interacting Serine-Threonine Kinase 

RNA Ribonucleic acid 

RNI Reactive nytrogen intermediates 

ROI Reactive oxygen intermediates 

ROS Reactive oxygen species  

RPMI Roswell Park Memorial Institute medium 

RT Room temperature 

RT (reaction) Reverse transcription reaction  

Runx-1  
Runt-related transcription factor 1, also known as acute myeloid 

leukemia 1 protein  

Runx2 Runt-related transcription factor 2 

Sca1 Stem cell antigen 1  

SCF Stem cell factor,  KIT-ligand or steel factor  

SCID Severe combined immunodeficiency 

SCL/TAL1 Stem cell leukemia/T-cell acute lymphocytic leukemia protein 1  

SD Standard Deviation  

SDF-1 Stromal cell-derived factor 1 

SDF-1α  Stromal-cell derived factor-1α, also known as CXCL12 

SDF1 
Stromal cell-derived factor 1, also referred as C-X-C motif chemokine 

12 (CXCL12)  

SEM Standard Error Mean  

siRNA Small interfering RNA  

SLAM Signaling lymphocyte activation molecule  

SOCS1 Suppressor of cytokine signaling 1  

SP Side population  
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ST-HSCs Short-term Haematopoietic ctem cells 

STAT Signal transducer and activator of transcription (STAT) protein family 

T-bet  T-cell-specific T-box transcription factor T-bet 

TCF-1 T-cell factor transcription factor 

TCR T cell receptor 

TFs Transcription Factors 

TGF-β Transforming growth factor beta  

Th T-helper 

Th1 T-helper type 1 lymphocytes 

Th2 T helper type 2 lymphocytes 

TIR Toll/interleukin-1 receptor 

TLRs Toll-like receptors 

TNF Tumor necrosis factor 

TNFR Tumor necrosis factor receptor 

TNFR-dKO Tumor necrosis factor receptor double KO, also referred as Tnfrsf1-dKO  

TNFRα Tumor necrosis factor receptor 1a or Tnfr-p55 

TNFRβ Tumor necrosis factor receptor 1b or Tnfr-p75  

TNK T-cell natural killer cell progenitor  

TPA 
12-O-Tetradecanoylphorbol-13-acetate, also known phorbol 12-

myristate 13-acetate 

TPO Thrombopoietin  

TRADD 
Tumor necrosis factor receptor type 1-associated DEATH domain 

protein 

TRAF2 Tumor necrosis factor receptor-associated factor 2  

TRE TPA DNA-response elements  

Treg Regulatory T cells 

TRIF TIR-domain-containing adapter-inducing interferon-β  
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TYK2 Tyrosine-protein kinase 2 

VCAM1 Vascular cell adhesion molecule 1 

VL Visceral leishmaniasis 

vWF Willebrand factor  

WBC White blood cells 

WNT 
Wingless-Int, also known as Wingless-type MMTV integration site 

family member 

WT Wild-type 

 

  



 279 

REFERENCES 

"World health organization (who). Leishmaniasis: Epidemiology and access to medicines. 
Geneva, switzerland: Who; 2012. Available at: http://Www.Who.Int/leishmaniasis/resources/ 
leishmaniasis worldwide epidemiological and drug access  update.Pdf [accessed 11.12.13].". 
 
Agrawal, Y., A. Sinha, P. Upadhyaya, S. Kafle, S. Rijal and B. Khanal (2013). "Hematological 
profile in visceral leishmaniasis." 2013 2(2): 6. 
 
Aird, W. C. (2003). "The hematologic system as a marker of organ dysfunction in sepsis." Mayo 
Clinic Proceedings 78(7): 869-881. 
 
Akashi, K., X. He, J. Chen, H. Iwasaki, C. Niu, B. Steenhard, J. W. Zhang, J. Haug and L. H. Li 
(2003). "Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is 
hierarchically controlled during early hematopoiesis." Blood 101(2): 383-390. 
 
Aljurayyan, N. A. M., M. N. Alnasser, I. M. Alfawaz, I. H. Alayed, A. S. Alherbish, A. M. 
Almazrou and M. O. Alsohaibani (1995). "The hematological manifestations of visceral 
leishmaniasis in infancy and childhood." Journal of Tropical Pediatrics 41(3): 143-148. 
 
Anthony, B. A. and D. C. Link (2014). "Regulation of hematopoietic stem cells by bone marrow 
stromal cells." Trends in Immunology 35(1): 32-37. 
 
Arieta Kuksin, C., G. Gonzalez-Perez and L. M. Minter (2015). "Cxcr4 expression on pathogenic 
t cells facilitates their bone marrow infiltration in a mouse model of aplastic anemia." Blood 
125(13): 2087-2094. 
 
Askenasy, N. (2015). "Interferon and tumor necrosis factor as humoral mechanisms coupling 
hematopoietic activity to inflammation and injury." Blood Reviews 29(1): 11-15. 
 
Baena, E., M. Ortiz, C. Martinez-A and I. M. de Alboran (2007). "C-myc is essential for 
hematopoietic stem cell differentiation and regulates lin(-)sca-1(+)c-kit(-) cell generation through 
p21." Experimental Hematology 35(9): 1333-1343. 
 
Baldridge, M. T., K. Y. King, N. C. Boles, D. C. Weksberg and M. A. Goodell (2010). "Quiescent 
haematopoietic stem cells are activated by ifn-gamma in response to chronic infection." Nature 
465(7299): 793-U799. 
 
Baldridge, M. T., K. Y. King and M. A. Goodell (2011). "Inflammatory signals regulate 
hematopoietic stem cells." Trends in Immunology 32(2): 57-65. 
 
Barreda, D. R., P. C. Hanington and M. Belosevic (2004). "Regulation of myeloid development 
and function by colony stimulating factors." Developmental and Comparative Immunology 28(5): 
509-554. 
 
Basu, S., A. Ray and B. N. Dittel (2013). "Differential representation of b cell subsets in mixed 
bone marrow chimera mice due to expression of allelic variants of cd45 (cd45.1/cd45.2)." Journal 
of Immunological Methods 396(1-2): 163-167. 
 
Becker, A. J., E. A. McCulloch and J. E. Till (2014). "Cytological demonstration of the clonal 
nature of spleen colonies derived from transplanted mouse marrow cells (reprinted from nature, 
vol 197, pg 452-454, 1963)." Journal of Immunology 192(11): 4945-4947. 
 
Becker, A. J., J. E. Till and E. A. McCulloch (1963). "Cytological demonstration of clonal nature 
of spleen colonies derived from transplanted mouse marrow cells." Nature 197(486): 452-&. 
 



 280 

Belyaev, N. N., J. Biro, J. Langhorne and A. J. Potocnik (2013). "Extramedullary myelopoiesis in 
malaria depends on mobilization of myeloid-restricted progenitors by ifn-gamma induced 
chemokines." Plos Pathogens 9(6). 
 
Belyaev, N. N., D. E. Brown, A.-I. G. Diaz, A. Rae, W. Jarra, J. Thompson, J. Langhorne and A. 
J. Potocnik (2010). "Induction of an il7-r(+)c-kit(hi) myelolymphoid progenitor critically 
dependent on ifn-gamma signaling during acute malaria." Nature Immunology 11(6): 477-U441. 
 
Biswas, T., M. Chakraborty, K. Naskar, D. K. Ghosh and J. Ghosal (1992). "Anemia in 
experimental visceral leishmaniasis in hamsters." Journal of Parasitology 78(1): 140-142. 
 
Boettcher, S., R. C. Gerosa, R. Radpour, J. Bauer, F. Ampenberger, M. Heikenwalder, M. Kopf 
and M. G. Manz (2014). "Endothelial cells translate pathogen signals into g-csf-driven emergency 
granulopoiesis." Blood 124(9): 1393-1403. 
 
Boles, N. C., K. K. Lin, G. L. Lukov, T. V. Bowman, M. T. Baldridge and M. A. Goodell (2011). 
"Cd48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation." Blood 
118(1): 80-87. 
 
Bryder, D., V. Ramsfjell, I. Dybedal, K. Theilgaard-Monch, C. M. Hogerkorp, J. Adolfsson, O. J. 
Borge and S. E. W. Jacobsen (2001). "Self-renewal of multipotent long-term repopulating 
hematopoietic stem cells is negatively regulated by fas and tumor necrosis factor receptor 
activation." Journal of Experimental Medicine 194(7): 941-952. 
 
Buechler, M. B., T. H. Teal, K. B. Elkon and J. A. Hamerman (2013). "Cutting edge: Type i ifn 
drives emergency myelopoiesis and peripheral myeloid expansion during chronic tlr7 signaling." 
Journal of Immunology 190(3): 886-891. 
 
Bunn, P. T., A. C. Stanley, F. d. l. Rivera, A. Mulherin, M. Sheel, C. E. Alexander, R. J. Faleiro, 
F. H. Amante, M. M. De Oca, S. E. Best, K. R. James, P. M. Kaye, A. Haque and C. R. Engwerda 
(2014). "Tissue requirements for establishing long-term cd4(+) t cell-mediated immunity 
following leishmania donovani infection." Journal of Immunology 192(8): 3709-3718. 
 
Cain, C. J. and J. O. Manilay (2013). "Hematopoietic stem cell fate decisions are regulated by wnt 
antagonists: Comparisons and current controversies." Experimental Hematology 41(1): 3-16. 
 
Cartwright, G. E., H. L. Chung and A. Chang (1948). "Studies on the pancytopenia of kala-azar." 
Blood 3(3): 249-275. 
 
Casanova-Acebes, M., C. Pitaval, L. A. Weiss, C. Nombela-Arrieta, R. Chevre, N. A-Gonzalez, 
Y. Kunisaki, D. Zhang, N. van Rooijen, L. E. Silberstein, C. Weber, T. Nagasawa, P. S. Frenette, 
A. Castrillo and A. Hidalgo (2013). "Rhythmic modulation of the hematopoietic niche through 
neutrophil clearance." Cell 153(5): 1025-1035. 
 
Challen, G. A., N. Boles, K. K.-Y. Lin and M. A. Goodell (2009). "Mouse hematopoietic stem 
cell identification and analysis." Cytometry Part A 75A(1): 14-24. 
 
Chappuis, F., S. Sundar, A. Hailu, H. Ghalib, S. Rijal, R. W. Peeling, J. Alvar and M. Boelaert 
(2007). "Visceral leishmaniasis: What are the needs for diagnosis, treatment and control?" Nature 
Reviews Microbiology 5(11): 873-882. 
 
Cheers, C., A. M. Haigh, A. Kelso, D. Metcalf, E. R. Stanley and A. M. Young (1988). 
"Production of colony-stimulating factors (csfs) during infection - separate determinations of 
macrophage-csf, granulocyte-csf, granulocyte-macrophage-csf, and multi-csf." Infection and 
Immunity 56(1): 247-251. 
 



 281 

Chen, X. and J. J. Oppenheim (2011). "Contrasting effects of tnf and anti-tnf on the activation of 
effector t cells and regulatory t cells in autoimmunity." Febs Letters 585(23): 3611-3618. 
 
Chow, A., M. Huggins, J. Ahmed, D. Hashimoto, D. Lucas, Y. Kunisaki, S. Pinho, M. Leboeuf, 
C. Noizat, N. van Rooijen, M. Tanaka, Z. J. Zhao, A. Bergman, M. Merad and P. S. Frenette 
(2013). "Cd169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and 
stress." Nature Medicine 19(4): 429-+. 
 
Chow, A., D. Lucas, A. Hidalgo, S. Mendez-Ferrer, D. Hashimoto, C. Scheiermann, M. Battista, 
M. Leboeuf, C. Prophete, N. van Rooijen, M. Tanaka, M. Merad and P. S. Frenette (2011). "Bone 
marrow cd169(+) macrophages promote the retention of hematopoietic stem and progenitor cells 
in the mesenchymal stem cell niche." Journal of Experimental Medicine 208(2): 261-271. 
 
Christopher, M. J., F. Liu, M. J. Hilton, F. Long and D. C. Link (2009). "Suppression of cxcl12 
production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced 
mobilization." Blood 114(7): 1331-1339. 
 
Cotterell, S. E. J., C. R. Engwerda and P. M. Kaye (2000a). "Enhanced hematopoietic activity 
accompanies parasite expansion in the spleen and bone marrow of mice infected with leishmania 
donovani." Infection and Immunity 68(4): 1840-1848. 
 
Cotterell, S. E. J., C. R. Engwerda and P. M. Kaye (2000b). "Leishmania donovani infection of 
bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving 
gm-csf and tnf-alpha." Blood 95(5): 1642-1651. 
 
Coulombel, L. (2004). "Identification of hematopoietic stem/progenitor cells: Strength and 
drawbacks of functional assays." Oncogene 23(43): 7210-7222. 
 
Dalton, D. K., S. Pittsmeek, S. Keshav, I. S. Figari, A. Bradley and T. A. Stewart (1993). 
"Multiple defects of immune cell-function in mice with disrupted interferon-gamma genes." 
Science 259(5102): 1739-1742. 
 
Dalton, J. E., A. Maroof, B. M. J. Owens, P. Narang, K. Johnson, N. Brown, L. Rosenquist, L. 
Beattie, M. Coles and P. M. Kaye (2010). "Inhibition of receptor tyrosine kinases restores 
immunocompetence and improves immune-dependent chemotherapy against experimental 
leishmaniasis in mice." Journal of Clinical Investigation 120(4): 1204-1216. 
 
Davies, C. R., P. Kaye, S. L. Croft and S. Sundar (2003). "Leishmaniasis: New approaches to 
disease control." British Medical Journal 326(7385): 377-382. 
 
de Bruin, A. M., O. Demirel, B. Hooibrink, C. H. Brandts and M. A. Nolte (2013). "Interferon-
gamma impairs proliferation of hematopoietic stem cells in mice." Blood 121(18): 3578-3585. 
 
de Bruin, A. M., S. F. Libregts, M. Valkhof, L. Boon, I. P. Touw and M. A. Nolte (2012). "Ifn 
gamma induces monopoiesis and inhibits neutrophil development during inflammation." Blood 
119(6): 1543-1554. 
 
de Bruin, A. M., C. Voermans and M. A. Nolte (2014). "Impact of interferon-gamma on 
hematopoiesis." Blood 124(16): 2479-2486. 
 
de Vasconcelos, G. M., F. Azevedo-Silva, L. C. Dos Santos Thuler, E. T. G. Pina, C. S. F. Souza, 
K. Calabrese and M. S. Pombo-de-Oliveira (2014). "The concurrent occurrence of leishmania 
chagasi infection and childhood acute leukemia in brazil." Revista brasileira de hematologia e 
hemoterapia 36(5): 356-362. 
 
Delgado, M. D. and J. Leon (2010). "Myc roles in hematopoiesis and leukemia." Genes & cancer 
1(6): 605-616. 



 282 

 
DeZern, A. E. and E. C. Guinan (2014). "Aplastic anemia in adolescents and young adults." Acta 
Haematologica 132(3-4): 331-339. 
 
Dhingra, K. K., P. Gupta, V. Saroha, N. Setia, N. Khurana and T. Singh (2010). "Morphological 
findings in bone marrow biopsy and aspirate smears of visceral kala azar: A review." Indian 
Journal of Pathology and Microbiology 53(1): 96-100. 
 
Di Rosa, F. and R. Pabst (2005). "The bone marrow: A nest for migratory memory t cells." Trends 
in Immunology 26(7): 360-366. 
 
Domen, J., A. Wagers and I. L. Weissman (2006). "2. Bone marrow (hematopoietic) stem cells." 
Regenerative Medicine: 13. 
 
Doulatov, S., F. Notta, E. Laurenti and J. E. Dick (2012). "Hematopoiesis: A human perspective." 
Cell Stem Cell 10(2): 120-136. 
 
Du, W., O. Erden and Q. Pang (2014). "Tnf-alpha signaling in fanconi anemia." Blood Cells 
Molecules and Diseases 52(1): 2-11. 
 
Dufour, C., M. Capasso, J. Svahn, A. Marrone, R. Haupt, A. Bacigalupo, L. Giordani, D. 
Longoni, M. Pillon, A. Pistorio, P. Di Michele, A. P. Iori, C. Pongiglione, M. Lanciotti, A. 
Iolascon, Aieop and S. M. Ospedale (2004). "Homozygosis for (12) ca repeats in the first intron 
of the human ifn-gamma gene is significantly associated with the risk of aplastic anaemia in 
caucasian population." British Journal of Haematology 126(5): 682-685. 
 
Dufour, C., A. Corcione, J. Svahn, R. Haupt, N. Battilana and V. Pistoia (2001). "Interferon 
gamma and tumour necrosis factor alpha are overexpressed in bone marrow t lymphocytes from 
paediatric patients with aplastic anaemia." British Journal of Haematology 115(4): 1023-1031. 
 
Dufour, C., A. Corcione, J. Svahn, R. Haupt, V. Poggi, A. N. Beka'ssy, R. Scime, A. Pistorio and 
V. Pistoia (2003). "Tnf-alpha and ifn-gamma are overexpressed in the bone marrow of fanconi 
anemia patients and tnf-alpha suppresses erythropoiesis in vitro." Blood 102(6): 2053-2059. 
 
Duran-Struuck, R. and R. C. Dyskoz (2009). "Principles of bone marrow transplantation (bmt): 
Providing optimal veterinary and husbandry care to irradiated mice in bmt studies." Journal of the 
American Association for Laboratory Animal Science 48(1): 11-22. 
 
Dutra, R. A., L. F. Dutra, M. d. O. Reis and R. C. Lambert (2012). "Splenectomy in a patient with 
treatment-resistant visceral leishmaniasis: A case report." Revista da Sociedade Brasileira de 
Medicina Tropical 45(1): 130-131. 
 
Eaves, C. J. (2015). "Hematopoietic stem cells: Concepts, definitions, and the new reality." Blood 
125(17): 2605-2613. 
 
Elishmereni, M. and F. Levi-Schaffer (2011). "Cd48: A co-stimulatory receptor of immunity." 
International Journal of Biochemistry & Cell Biology 43(1): 25-28. 
 
Ellerin, T., R. H. Rubin and M. E. Weinblatt (2003). "Infections and anti-tumor necrosis factor 
alpha therapy." Arthritis and Rheumatism 48(11): 3013-3022. 
 
Endele, M., M. Etzrodt and T. Schroeder (2014). "Instruction of hematopoietic lineage choice by 
cytokine signaling." Experimental Cell Research 329(2): 207-213. 
 
Engwerda, C. R., M. Ato and P. M. Kaye (2004a). "Macrophages, pathology and parasite 
persistence in experimental visceral leishmaniasis." Trends in Parasitology 20(11): 524-530. 
 



 283 

Engwerda, C. R., M. Ato, S. Stager, C. E. Alexander, A. C. Stanley and P. M. Kaye (2004b). 
"Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of leishmania 
donovani infection." American Journal of Pathology 165(6): 2123-2133. 
 
Essers, M. A. G., S. Offner, W. E. Blanco-Bose, Z. Waibler, U. Kalinke, M. A. Duchosal and A. 
Trumpp (2009). "Ifn alpha activates dormant haematopoietic stem cells in vivo." Nature 
458(7240): 904-U911. 
 
Fernandez, K. S. and P. A. de Alarcon (2013). "Development of the hematopoietic system and 
disorders of hematopoiesis that present during infancy and early childhood." Pediatric Clinics of 
North America 60(6): 1273-+. 
 
Feuerer, M., P. Beckhove, N. Garbi, Y. Mahnke, A. Limmer, M. Hommel, G. J. Hammerling, B. 
Kyewski, A. Hamann, V. Umansky and V. Schirrmacher (2003). "Bone marrow as a priming site 
for t-cell responses to blood-borne antigen." Nature Medicine 9(9): 1151-1157. 
 
Fonseca-Pereira, D., S. Arroz-Madeira, m. Rodrigues-Campos, I. A. M. Barbosa, R. G. 
Domingues, T. Bento, A. R. M. Almeida, H. Ribeiro, A. J. Potocnik, H. Enomoto and H. Veiga-
Fernandes (2014). "The neurotrophic factor receptor ret drives haematopoietic stem cell survival 
and function." Nature 514(7520): 98-+. 
 
Frelin, C., R. Herrington, S. Janmohamed, M. Barbara, G. Tran, C. J. Paige, P. Benveniste, J.-C. 
Zuniga-Pfluecker, A. Souabni, M. Busslinger and N. N. Iscove (2013). "Gata-3 regulates the self-
renewal of long-term hematopoietic stem cells." Nature Immunology 14(10): 1037-+. 
 
Frenette, P. S., S. Pinho, D. Lucas and C. Scheiermann (2013). "Mesenchymal stem cell: 
Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine." 
Annual Review of Immunology, Vol 31 31: 285-316. 
 
Gerdes, J., F. Dallenbach, K. Lennert, H. Lemke and H. Stein (1984). "Growth fractions in 
malignant non-hodgkin's lymphomas (nhl) as determined in situ with the monoclonal antibody ki-
67." Hematological oncology 2(4): 365-371. 
 
Granick, J. L., S. I. Simon and D. L. Borjesson (2012). "Hematopoietic stem and progenitor cells 
as effectors in innate immunity." Bone marrow research 2012: 165107-165107. 
 
Grumolato, L., G. Liu, P. Mong, R. Mudbhary, R. Biswas, R. Arroyave, S. Vijayakumar, A. N. 
Economides and S. A. Aaronson (2010). "Canonical and noncanonical wnts use a common 
mechanism to activate completely unrelated coreceptors." Genes & Development 24(22): 2517-
2530. 
 
Hamid, G. A. and G. A. Gobah (2009). "Clinical and hematological manifestations of visceral 
leishmaniasis in yemeni children." Turkish Journal of Hematology 26(1): 25-28. 
 
Handman, E. (2000). "Cell biology of leishmania." Advances in Parasitology, Vol 44 44: 1-39. 
 
Hao, Z. Y. and K. Rajewsky (2001). "Homeostasis of peripheral b cells in the absence of b cell 
influx from the bone marrow." Journal of Experimental Medicine 194(8): 1151-1163. 
 
Haring, J. S. and J. T. Harty (2006). "Aberrant contraction of antigen-specific cd4 t cells after 
infection in the absence of gamma interferon or its receptor." Infection and Immunity 74(11): 
6252-6263. 
 
Hashimoto, D., A. Chow, C. Noizat, P. Teo, M. B. Beasley, M. Leboeuf, C. D. Becker, P. See, J. 
Price, D. Lucas, M. Greter, A. Mortha, S. W. Boyer, E. C. Forsberg, M. Tanaka, N. van Rooijen, 
A. Garcia-Sastre, E. R. Stanley, F. Ginhoux, P. S. Frenette and M. Merad (2013). "Tissue-resident 



 284 

macrophages self-maintain locally throughout adult life with minimal contribution from 
circulating monocytes." Immunity 38(4): 792-804. 
 
Ho, A. D. and W. Wagner (2007). "The beauty of asymmetry: Asymmetric divisions and self-
renewal in the haematopoietic system." Current Opinion in Hematology 14(4): 330-336. 
 
Hoang, A. T. N., H. Liu, J. Juarez, N. Aziz, P. M. Kaye and M. Svensson (2010). "Stromal cell-
derived cxcl12 and ccl8 cooperate to support increased development of regulatory dendritic cells 
following leishmania infection." Journal of Immunology 185(4): 2360-2371. 
 
Hu, J. and A. August (2008). "Naive and innate memory phenotype cd4(+) t cells have different 
requirements for active itk for their development." Journal of Immunology 180(10): 6544-6552. 
 
Huang, C.-Y., A. L. Bredemeyer, L. M. Walker, C. H. Bassine and B. P. Sleckman (2008). 
"Dynamic regulation of c-myc proto-oncogene expression during lymphocyte development 
revealed by a gfp-c-myc knock-in mouse." European Journal of Immunology 38(2): 342-349. 
 
Ismail, A., A. F. A. Gadir, T. G. Theander, A. Kharazmi and A. M. El Hassan (2006). "Pathology 
of post-kala-azar dermal leishmaniasis: A light microscopical, immunohistochemical, and 
ultrastructural study of skin lesions and draining lymph nodes." Journal of Cutaneous Pathology 
33(12): 778-787. 
 
Iwasaki, H., S.-i. Mizuno, Y. Arinobu, H. Ozawa, Y. Mori, H. Shigematsu, K. Takatsu, D. G. 
Tenen and K. Akashi (2006). "The order of expression of transcription factors directs hierarchical 
specification of hematopoietic lineages." Genes & Development 20(21): 3010-3021. 
 
Jain, A. and M. Naniwadekar (2013). "An etiological reappraisal of pancytopenia - largest series 
reported to date from a single tertiary care teaching hospital." BMC hematology 13(1): 10-10. 
 
Jiang, Q., W. Q. Li, F. B. Aiello, R. Mazzucchelli, B. Asefa, A. R. Khaled and S. K. Durum 
(2005). "Cell biology of il-7, a key lymphotrophin." Cytokine & Growth Factor Reviews 16(4-5): 
513-533. 
 
Johns, J. L. and M. M. Christopher (2012). "Extramedullary hematopoiesis: A new look at the 
underlying stem cell niche, theories of development, and occurrence in animals." Veterinary 
Pathology 49(3): 508-523. 
 
Johns, J. L., K. C. MacNamara, N. J. Walker, G. M. Winslow and D. L. Borjesson (2009). 
"Infection with anaplasma phagocytophilum induces multilineage alterations in hematopoietic 
progenitor cells and peripheral blood cells." Infection and Immunity 77(9): 4070-4080. 
 
Jung, T., U. Schauer, C. Heusser, C. Neumann and C. Rieger (1993). "Detection of intracellular 
cytokines by flow-cytometry." Journal of Immunological Methods 159(1-2): 197-207. 
 
Junt, T., H. Schulze, Z. Chen, S. Massberg, T. Goerge, A. Krueger, D. D. Wagner, T. Graf, J. E. 
Italiano, R. A. Shivdasani and U. H. von Andrian (2007). "Dynamic visualization of 
thrombopoiesis within bone marrow." Science 317(5845): 1767-1770. 
 
Kafrouni, M. I., G. R. Brown and D. L. Thiele (2003). "The role of tnf-tnfr2 interactions in 
generation of ctl responses and clearance of hepatic adenovirus infection." Journal of Leukocyte 
Biology 74(4): 564-571. 
 
Kaushansky, K. (2006). "Mechanisms of disease: Lineage-specific hematopoietic growth factors." 
New England Journal of Medicine 354(19): 2034-2045. 
 
Kawai, T. and S. Akira (2010). "The role of pattern-recognition receptors in innate immunity: 
Update on toll-like receptors." Nature Immunology 11(5): 373-384. 



 285 

 
Kaye, P. and P. Scott (2011). "Leishmaniasis: Complexity at the host-pathogen interface." Nature 
Reviews Microbiology 9(8): 604-615. 
 
Kaye, P. M., M. Svensson, M. Ato, A. Maroof, R. Polley, S. Stager, S. Zubairi and C. R. 
Engwerda (2004). "The immunopathology of experimental visceral leishmaniasis." 
Immunological Reviews 201: 239-253. 
 
Kiel, M. J., O. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst and S. J. Morrison (2005). 
"Slam family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial 
niches for stem cells." Cell 121(7): 1109-1121. 
 
Kim, C. H. (2010). "Homeostatic and pathogenic extramedullary hematopoiesis." Journal of blood 
medicine 1: 13-19. 
 
Kim, E. Y., J. J. Priatel, S. J. Teh and H. S. Teh (2006). "Tnf receptor type 2 (p75) functions as a 
costimulator for antigen-driven t cell responses in vivo." Journal of Immunology 176(2): 1026-
1035. 
 
Kim, S. I. and E. H. Bresnick (2007). "Transcriptional control of erythropoiesis: Emerging 
mechanisms and principles." Oncogene 26(47): 6777-6794. 
 
King, K. Y., M. T. Baldridge, D. C. Weksberg, N. T. Eissa, G. A. Taylor and M. A. Goodell 
(2010). "Irgm1 is a negative regulator of interferon signaling and autophagy in the hematopoietic 
stem cell." Experimental Hematology 38(9): S21-S21. 
 
King, K. Y. and M. A. Goodell (2011). "Inflammatory modulation of hscs: Viewing the hsc as a 
foundation for the immune response." Nature Reviews Immunology 11(10): 685-692. 
 
Kirstetter, P., K. Anderson, B. T. Porse, S. E. W. Jacobsen and C. Nerlov (2006). "Activation of 
the canonical wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage 
differentiation block." Nature Immunology 7(10): 1048-1056. 
 
Kitagawa, M., I. Saito, T. Kuwata, S. Yoshida, S. Yamaguchi, M. Takahashi, T. Tanizawa, R. 
Kamiyama and K. Hirokawa (1997). "Overexpression of tumor necrosis factor (tnf)-alpha and 
interferon (ifn)-gamma by bone marrow cells from patients with myelodysplastic syndromes." 
Leukemia 11(12): 2049-2054. 
 
Kondo, M., A. J. Wagers, M. G. Manz, S. S. Prohaska, D. C. Scherer, G. E. Beilhack, J. A. 
Shizuru and I. L. Weissman (2003a). "Biology of hematopoietic stem cells and progenitors: 
Implications for clinical application." Annual review of immunology 21: 759-806. 
 
Kondo, M., A. J. Wagers, M. G. Manz, S. S. Prohaska, D. C. Scherer, G. F. Beilhack, J. A. 
Shizuru and I. L. Weissman (2003b). Biology of hematopoietic stem cells and progenitors: 
Implications for clinical application. Annual review of immunology. Volume 21. W. E. Paul. 
Volume 21: 759-806. 
Kopterides, P., S. Halikias and N. Tsavaris (2003). "Visceral leishmaniasis masquerading as 
myelodysplasia." American Journal of Hematology 74(3): 198-199. 
 
Ku, C.-J., T. Hosoya, I. Maillard and J. D. Engel (2012). "Gata-3 regulates hematopoietic stem 
cell maintenance and cell-cycle entry." Blood 119(10): 2242-2251. 
 
Kuhn, R., F. Schwenk, M. Aguet and K. Rajewsky (1995). "Inducible gene targeting in mice." 
Science 269(5229): 1427-1429. 
 



 286 

Kumar, R., N. Singh, S. Gautam, O. P. Singh, K. Gidwani, M. Rai, D. Sacks, S. Sundar and S. 
Nylen (2014). "Leishmania specific cd4 t cells release ifn gamma that limits parasite replication in 
patients with visceral leishmaniasis." Plos Neglected Tropical Diseases 8(10). 
 
Lafuse, W. P., R. Story, J. Mahylis, G. Gupta, S. Varikuti, H. Steinkamp, S. Oghumu and A. R. 
Satoskar (2013). "Leishmania donovani infection induces anemia in hamsters by differentially 
altering erythropoiesis in bone marrow and spleen." Plos One 8(3). 
 
Lazarevic, V., L. H. Glimcher and G. M. Lord (2013). "T-bet: A bridge between innate and 
adaptive immunity." Nature Reviews Immunology 13(11): 777-789. 
 
Leclercq, V., M. Lebastard, Y. Belkaid, J. Louis and G. Milon (1996). "The outcome of the 
parasitic process initiated by leishmania infantum in laboratory mice - a tissue-dependent pattern 
controlled by the lsh and mhc loci." Journal of Immunology 157(10): 4537-4545. 
 
Lento, W., K. Congdon, C. Voermans, M. Kritzik and T. Reya (2013). "Wnt signaling in normal 
and malignant hematopoiesis." Cold Spring Harbor perspectives in biology 5(2). 
 
Li, X., K. K. McKinstry, S. L. Swain and D. K. Dalton (2007). "Ifn-gamma acts directly on 
activated cd4(+) t cells during mycobacterial infection to promote apoptosis by inducing 
components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic 
signals." Journal of Immunology 179(2): 939-949. 
 
Lin, F.-c., M. Karwan, B. Saleh, D. L. Hodge, T. Chan, K. C. Boelte, J. R. Keller and H. A. 
Young (2014). "Ifn-gamma causes aplastic anemia by altering hematopoietic stem/progenitor cell 
composition and disrupting lineage differentiation." Blood 124(25): 3699-3708. 
 
Lin, S., R. Zhao, Y. Xiao and P. Li (2015). "Mechanisms determining the fate of hematopoietic 
stem cells." Stem Cell Investigation 2(5). 
 
Lipoldova, M. and P. Demant (2006). "Genetic susceptibility to infectious disease: Lessons from 
mouse models of leishmaniasis." Nature Reviews Genetics 7(4): 294-305. 
 
Lu, B. F., C. Ebensperger, Z. Dembic, Y. L. Wang, M. Kvatyuk, T. H. Lu, R. L. Coffman, S. 
Pestka and P. B. Rothman (1998). "Targeted disruption of the interferon-gamma receptor 2 gene 
results in severe immune defects in mice." Proceedings of the National Academy of Sciences of 
the United States of America 95(14): 8233-8238. 
 
Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers and S. A. Eming 
(2010). "Differential roles of macrophages in diverse phases of skin repair." Journal of 
Immunology 184(7): 3964-3977. 
 
Luis, T. C., M. Ghazvini, B. A. E. Naber, E. F. E. de Haas, J. J. M. van Dongen, R. Fodde and F. 
J. T. Staal (2010a). "Canonical wnt signaling regulates hematopoiesis in a dosage-dependent 
fashion." Experimental Hematology 38(9): S95-S95. 
 
Luis, T. C., B. A. E. Naber, W. E. Fibbe, J. J. M. van Dongen and F. J. T. Staal (2010b). "Wnt3a 
nonredundantly controls hematopoietic stem cell function and its deficiency results in complete 
absence of canonical wnt signaling." Blood 116(3): 496-497. 
 
Luis, T. C., B. A. E. Naber, P. P. C. Roozen, M. H. Brugman, E. F. E. de Haas, M. Ghazvini, W. 
E. Fibbe, J. J. M. van Dongen, R. Fodde and F. J. T. Staal (2011). "Canonical wnt signaling 
regulates hematopoiesis in a dosage-dependent fashion." Cell Stem Cell 9(4): 345-356. 
 
Luis, T. C., F. Weerkamp, B. A. E. Naber, M. R. M. Baert, E. F. E. de Haas, T. Nikolic, S. 
Heuvelmans, R. R. De Krijger, J. J. M. van Dongen and F. J. T. Staal (2009). "Wnt3a deficiency 



 287 

irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell 
differentiation." Blood 113(3): 546-554. 
 
Lyman, S. D. and S. E. W. Jacobsen (1998). "C-kit ligand and flt3 ligand: Stem/progenitor cell 
factors with overlapping yet distinct activities." Blood 91(4): 1101-1134. 
 
MacNamara, K. C., M. Jones, O. Martin and G. M. Winslow (2011a). "Transient activation of 
hematopoietic stem and progenitor cells by ifn gamma during acute bacterial infection." Plos One 
6(12). 
 
MacNamara, K. C., K. Oduro, O. Martin, D. D. Jones, M. McLaughlin, K. Choi, D. L. Borjesson 
and G. M. Winslow (2011b). "Infection-induced myelopoiesis during intracellular bacterial 
infection is critically dependent upon ifn-gamma signaling." Journal of Immunology 186(2): 
1032-1043. 
 
MacNamara, K. C., R. Racine, M. Chatterjee, D. Borjesson and G. M. Winslow (2009). 
"Diminished hematopoietic activity associated with alterations in innate and adaptive immunity in 
a mouse model of human monocytic ehrlichiosis." Infection and Immunity 77(9): 4061-4069. 
 
Malek, T. R., K. M. Danis and E. K. Codias (1989). "Tumor necrosis factor synergistically acts 
with ifn-gamma to regulate ly-6a/e expression in lymphocytes-t, thymocytes and bone-marrow 
cells." Journal of Immunology 142(6): 1929-1936. 
 
Maltby, S., N. G. Hansbro, H. L. Tay, J. Stewart, M. Plank, B. Donges, H. F. Rosenberg and P. S. 
Foster (2014). "Production and differentiation of myeloid cells driven by proinflammatory 
cytokines in response to acute pneumovirus infection in mice." Journal of Immunology 193(8): 
4072-4082. 
 
Maroof, A., N. Brown, B. Smith, M. R. Hodgkinson, A. Maxwell, F. O. Losch, U. Fritz, P. 
Walden, C. N. J. Lacey, D. F. Smith, T. Aebischer and P. M. Kaye (2012). "Therapeutic 
vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral 
leishmaniasis." Journal of Infectious Diseases 205(5): 853-863. 
 
Marwaha, N., R. Sarode, R. K. Gupta, G. Garewal and S. Dash (1991). "Clinicohematological 
characteristics in patients with kala-azar - a study from north-west india." Tropical and 
Geographical Medicine 43(4): 357-362. 
 
Massberg, S., P. Schaerli, I. Knezevic-Maramica, M. Koellnberger, N. Tubo, E. A. Moseman, I. 
V. Huff, T. Junt, A. J. Wagers, I. B. Mazo and U. H. von Andrian (2007). "Immunosurveillance 
by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues." Cell 
131(5): 994-1008. 
 
Matatall, K. A., C.-C. Shen, G. A. Challen and K. Y. King (2014). "Type ii interferon promotes 
differentiation of myeloid-biased hematopoietic stem cells." Stem Cells 32(11): 3023-3030. 
 
Matsui, K., N. Giri, B. P. Alter and L. A. Pinto (2013). "Cytokine production by bone marrow 
mononuclear cells in inherited bone marrow failure syndromes." British Journal of Haematology 
163(1): 81-92. 
 
Megias, J., A. Yanez, S. Moriano, J.-E. O'Connor, D. Gozalbo and M.-L. Gil (2012). "Direct toll-
like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and 
promotes differentiation toward macrophages." Stem Cells 30(7): 1486-1495. 
 
Melby, P. C., B. Chandrasekar, W. G. Zhao and J. E. Coe (2001). "The hamster as a model of 
human visceral leishmaniasis: Progressive disease and impaired generation of nitric oxide in the 
face of a prominent th1-like cytokine response." Journal of Immunology 166(3): 1912-1920. 
 



 288 

Mellado, M., L. Martinez-Munoz, G. Cascio, P. Lucas, J. L. Pablos and J. Miguel Rodriguez-
Frade (2015). "T cell migration in rheumatoid arthritis." Frontiers in Immunology 6: 1-12. 
 
Mendez-Ferrer, S., D. Lucas, M. Battista and P. S. Frenette (2008). "Haematopoietic stem cell 
release is regulated by circadian oscillations." Nature 452(7186): 442-U444. 
 
Mercer, E. M., Y. C. Lin and C. Murre (2011). "Factors and networks that underpin early 
hematopoiesis." Seminars in Immunology 23(5): 317-325. 
 
Mercier, F. E., C. Ragu and D. T. Scadden (2012). "The bone marrow at the crossroads of blood 
and immunity." Nature Reviews Immunology 12(1): 49-60. 
 
Mikkola, H. K. A., J. Klintman, H. D. Yang, H. Hock, T. M. Schlaeger, Y. Fujiwara and S. H. 
Orkin (2003). "Haematopoietic stem cells retain long-term repopulating activity and multipotency 
in the absence of stem-cell leukaemia scl/tal-1 gene." Nature 421(6922): 547-551. 
 
Miranda de Araujo, V. E., M. H. Franco Morais, I. A. Reis, A. Rabello and M. Carneiro (2012). 
"Early clinical manifestations associated with death from visceral leishmaniasis." Plos Neglected 
Tropical Diseases 6(2). 
 
Mirantes, C., E. Pctssegue and E. M. Pietras (2014). "Pro-inflammatory cytokines: Emerging 
players regulating hsc function in normal and diseased hematopoiesis." Experimental Cell 
Research 329(2): 248-254. 
 
Mirkovich, A. M., A. Galelli, A. C. Allison and F. Z. Modabber (1986). "Increased myelopoiesis 
during leishmania-major infection in mice - generation of safe targets, a possible way to evade the 
effector immune mechanism." Clinical and Experimental Immunology 64(1): 1-7. 
 
Mizrahi, K. and N. Askenasy (2014). "Physiological functions of tnf family receptor/ligand 
interactions in hematopoiesis and transplantation." Blood 124(2): 176-183. 
 
Monteiro, J. P., A. Benjamin, E. S. Costa, M. A. Barcinski and A. Bonomo (2005). "Normal 
hematopoiesis is maintained by activated bone marrow cd4(+) t cells." Blood 105(4): 1484-1491. 
 
Monteiro, J. P. and A. Bonomo (2005). "Linking immunity and hematopoiesis by bone marrow t 
cell activity." Brazilian Journal of Medical and Biological Research 38(10): 1475-1486. 
 
Mossadegh-Keller, N., S. Sarrazin, P. K. Kandalla, L. Espinosa, E. R. Stanley, S. L. Nutt, J. 
Moore and M. H. Sieweke (2013). "M-csf instructs myeloid lineage fate in single haematopoietic 
stem cells." Nature 497(7448): 239-+. 
 
Murphy, M. J., A. Wilson and A. Trumpp (2005). "More than just proliferation: Myc function in 
stem cells." Trends in cell biology 15(3): 128-137. 
 
Murray, H. W., C. M. Lu, S. Mauze, S. Freeman, A. L. Moreira, G. Kaplan and R. L. Coffman 
(2002). "Interleukin-10 (il-10) in experimental visceral leishmaniasis and il-10 receptor blockade 
as immunotherapy." Infection and Immunity 70(11): 6284-6293. 
 
Nagai, Y., K. P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, K. Takatsu and P. W. Kincade 
(2006a). "Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system 
replenishment." Immunity 24(6): 801-812. 
 
Nagai, Y., K. P. Garrett, S. Ohta, B. Uleng, S. Akira and P. W. Kincade (2006b). "Hematopoietic 
stem/progenitor cells express functional toll-like receptors that potentially stimulate 
replenishment of the innate immune system." Journal of Immunology 176: S309-S309. 
 



 289 

Nakamura-Ishizu, A., H. Takizawa and T. Suda (2014). "The analysis, roles and regulation of 
quiescence in hematopoietic stem cells." Development 141(24): 4656-4666. 
 
Nemeth, M. J. and D. M. Bodine (2007). "Regulation of hematopoiesis and the hematopoietic 
stem cell niche by wnt signaling pathways." Cell Research 17(9): 746-758. 
 
Nguyen Hoang, A. T., H. Liu, J. Juarez, N. Aziz, P. M. Kaye and M. Svensson (2010). "Stromal 
cell-derived cxcl12 and ccl8 cooperate to support increased development of regulatory dendritic 
cells following leishmania infection." Journal of immunology (Baltimore, Md. : 1950) 185(4): 
2360-2371. 
 
Nimmo, R. A., G. E. May and T. Enver (2015). "Primed and ready: Understanding lineage 
commitment through single cell analysis." Trends in cell biology 25(8): 459-467. 
 
Orford, K. W. and D. T. Scadden (2008). "Deconstructing stem cell self-renewal: Genetic insights 
into cell-cycle regulation." Nature Reviews Genetics 9(2): 115-128. 
 
Orkin, S. H. (2000). "Diversification of haematopoietic stem cells to specific lineages." Nature 
Reviews Genetics 1(1): 57-64. 
 
Orkin, S. H. and L. I. Zon (2008). "Hematopoiesis: An evolving paradigm for stem cell biology." 
Cell 132(4): 631-644. 
 
Osawa, M., K. Hanada, H. Hamada and H. Nakauchi (1996). "Long-term lymphohematopoietic 
reconstitution by a single cd34-low/negative hematopoietic stem cell." Science 273(5272): 242-
245. 
 
Ouyang, W., S. Rutz, N. K. Crellin, P. A. Valdez and S. G. Hymowitz (2011). Regulation and 
functions of the il-10 family of cytokines in inflammation and disease. Annual review of 
immunology, vol 29. W. E. Paul, D. R. Littman and W. M. Yokoyama. 29: 71-109. 
Owens, B. M. J. and P. M. Kaye (2012). "Stromal cell induction of regulatory dendritic cells." 
Frontiers in Immunology 3: 262-262. 
 
Oyoshi, M. K., R. Barthel and E. N. Tsitsikov (2007). "Traf1 regulates recruitment of 
lymphocytes and, to a lesser extent, neutrophils, myeloid dendritic cells and monocytes to the 
lung airways following lipopolysaccharide inhalation." Immunology 120(3): 303-314. 
 
Pablo Quintero, J., A. M. Siqueira, A. Tobon, S. Blair, A. Moreno, M. Arevalo-Herrera, M. V. 
Guimaraes Lacerda and S. Herrera Valencia (2011). "Malaria-related anaemia: A latin american 
perspective." Memorias Do Instituto Oswaldo Cruz 106: 91-104. 
 
Pace, D. (2014). "Leishmaniasis." Journal of Infection 69: S10-S18. 
 
Pearl-Yafe, M., K. Mizrahi, J. Stein, E. S. Yolcu, O. Kaplan, H. Shirwan, I. Yaniv and N. 
Askenasy (2010). "Tumor necrosis factor receptors support murine hematopoietic progenitor 
function in the early stages of engraftment." Stem Cells 28(7): 1270-1280. 
 
Peschon, J. J., D. S. Torrance, K. L. Stocking, M. B. Glaccum, C. Otten, C. R. Willis, K. Charrier, 
P. J. Morrissey, C. B. Ware and K. M. Mohler (1998). "Tnf receptor-deficient mice reveal 
divergent roles for p55 and p75 in several models of inflammation." Journal of Immunology 
160(2): 943-952. 
 
Peterson, V. M., J. J. Adamovicz, T. B. Elliott, M. M. Moore, G. S. Madonna, W. E. Jackson, G. 
D. Ledney and W. C. Gause (1994). "Gene-expression of hematoregulatory cytokines is elevated 
endogenously after sublethal gamma-irradiation and is differentially enhanced by therapeutic 
administration of biologic response modifiers." Journal of Immunology 153(5): 2321-2330. 
 



 290 

Pietras, E. M., R. Lakshminarasimhan, J.-M. Techner, S. Fong, J. Flach, M. Binnewies and E. 
Passegue (2014). "Re-entry into quiescence protects hematopoietic stem cells from the killing 
effect of chronic exposure to type i interferons." Journal of Experimental Medicine 211(2): 245-
262. 
 
Pinho, F. A. d. (2015). "A patogênese da pancitopenia na leishamiose visceral canina e murina." 
Doctoral Thesis, Instituto de Medicina Tropical de São Paulo, University of São Paulo, São Paulo. 
Retrieved 2016-02-03, from http://www.teses.usp.br/teses/disponiveis/99/99131/tde-20022015-
120914/. 
 
Pittet, M. J., M. Nahrendorf and F. K. Swirski (2014). "The journey from stem cell to 
macrophage." Year in Immunology: Myeloid Cells and Inflammation 1319: 1-18. 
 
Prendergast, A. M. and M. A. G. Essers (2014). "Hematopoietic stem cells, infection, and the 
niche." Bone Marrow Niche, Stem Cells, and Leukemia: Impact of Drugs, Chemicals, and the 
Environment 1310: 51-57. 
 
Price, P. W. and J. Cerny (1999). "Characterization of cd4(+) t cells in mouse bone marrow. I. 
Increased activated/memory phenotype and altered tcr v beta repertoire." European Journal of 
Immunology 29(3): 1051-1056. 
 
Pronk, C. J. H., O. P. Veiby, D. Bryder and S. E. W. Jacobsen (2011). "Tumor necrosis factor 
restricts hematopoietic stem cell activity in mice: Involvement of two distinct receptors." Journal 
of Experimental Medicine 208(8): 1563-1570. 
 
Rebel, V. I., S. Hartnett, G. R. Hill, S. B. Lazo-Kallanian, J. L. M. Ferrara and C. A. Sieff (1999). 
"Essential role for the p55 tumor necrosis factor receptor in regulating hematopoiesis at a stem 
cell level." Journal of Experimental Medicine 190(10): 1493-1503. 
 
Requena, J. M., M. Soto, M. D. Doria and C. Alonso (2000). "Immune and clinical parameters 
associated with leishmania infantum infection in the golden hamster model." Veterinary 
Immunology and Immunopathology 76(3-4): 269-281. 
 
Reya, T. and H. Clevers (2005). "Wnt signalling in stem cells and cancer." Nature 434(7035): 
843-850. 
 
Reya, T., A. W. Duncan, L. Ailles, J. Domen, D. C. Scherer, K. Willert, L. Hintz, R. Nusse and I. 
L. Weissman (2003). "A role for wnt signalling in self-renewal of haematopoietic stem cells." 
Nature 423(6938): 409-414. 
 
Rezzoug, F., Y. Huang, M. K. Tanner, M. Wysoczynski, C. L. Schanie, P. M. Chilton, M. Z. 
Ratajczak, I. J. Fugier-Vivier and S. T. Ildstad (2008). "Tnf-alpha is critical to facilitate 
hemopoietic stem cell engraftment and function." Journal of Immunology 180(1): 49-57. 
 
Rieger, M. A. and T. Schroeder (2012). "Hematopoiesis." Cold Spring Harbor perspectives in 
biology 4(12). 
 
Robb, L. (2007). "Cytokine receptors and hematopoietic differentiation." Oncogene 26(47): 6715-
6723. 
 
Rodriguez, S., A. Chora, B. Goumnerov, C. Mumaw, W. S. Goebel, L. Fernandez, H. Baydoun, 
H. HogenEsch, D. M. Dombkowski, C. A. Karlewicz, S. Rice, L. G. Rahme and N. Carlesso 
(2009). "Dysfunctional expansion of hematopoietic stem cells and block of myeloid 
differentiation in lethal sepsis." Blood 114(19): 4064-4076. 
 
Rossol, M., K. Schubert, U. Meusch, A. Schulz, B. Biedermann, J. Grosche, M. Pierer, R. Scholz, 
C. Baerwald, A. Thiel, S. Hagen and U. Wagner (2013). "Tumor necrosis factor receptor type i 



 291 

expression of cd4+t cells in rheumatoid arthritis enables them to follow tumor necrosis factor 
gradients into the rheumatoid synovium." Arthritis and Rheumatism 65(6): 1468-1476. 
 
Rusten, L. S., F. W. Jacobsen, W. Lesslauer, H. Loetscher, E. B. Smeland and S. E. W. Jacobsen 
(1994). "Bifunctional effects of tumor-necrosis-factor-alpha (tnf-alpha) on the growth of mature 
and primitive human hematopoietic progenitor cells - involvement of p55 and p75 tnf receptors." 
Blood 83(11): 3152-3159. 
 
Santos, M. A., R. C. Marques, C. A. Farias, D. M. Vasconcelos, J. M. Stewart, D. L. Costa and C. 
H. N. Costa (2002). "Predictors of an unsatisfactory response to pentavalent antimony in the 
treatment of american visceral leishmaniasis." Revista da Sociedade Brasileira de Medicina 
Tropical 35(6): 629-633. 
 
Sashida, G. and A. Iwama (2012). "Epigenetic regulation of hematopoiesis." International Journal 
of Hematology 96(4): 405-412. 
 
Schaniel, C., D. Sirabella, J. Qiu, X. Niu, I. R. Lemischka and K. A. Moore (2011). "Wnt-
inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells." 
Blood 118(9): 2420-2429. 
 
Schuerch, C. M., C. Riether and A. F. Ochsenbein (2014). "Cytotoxic cd8(+) t cells stimulate 
hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal 
stromal cells." Cell Stem Cell 14(4): 460-472. 
 
Schuettpelz, L. G. and D. C. Link (2013). "Regulation of hematopoietic stem cell activity by 
inflammation." Frontiers in Immunology 4. 
 
Scumpia, P. O., K. M. Kelly-Scumpia, M. J. Delano, J. S. Weinstein, A. G. Cuenca, S. Al-Quran, 
I. Bovio, S. Akira, Y. Kumagai and L. L. Moldawer (2010). "Cutting edge: Bacterial infection 
induces hematopoietic stem and progenitor cell expansion in the absence of tlr signaling." Journal 
of Immunology 184(5): 2247-2251. 
 
Selleri, C., T. Sato, S. Anderson, N. S. Young and J. P. Maciejewski (1995). "Interferon-gamma 
and tumor-necrosis-factor-alpha suppress both early and late stages of hematopoiesis and induce 
programmed cell-death." Journal of Cellular Physiology 165(3): 538-546. 
 
Sercan, O., D. Stoycheva, G. J. Haemmerling, B. Arnold and T. Schueler (2010). "Ifn-gamma 
receptor signaling regulates memory cd8(+) t cell differentiation." Journal of Immunology 184(6): 
2855-2862. 
 
Serio, B., C. Selleri and J. P. Maciejewski (2011). "Impact of immunogenetic polymorphisms in 
bone marrow failure syndromes." Mini-Reviews in Medicinal Chemistry 11(6): 544-552. 
 
Shi, C., T. Jia, S. Mendez-Ferrer, T. M. Hohl, N. V. Serbina, L. Lipuma, I. Leiner, M. O. Li, P. S. 
Frenette and E. G. Pamer (2011). "Bone marrow mesenchymal stem and progenitor cells induce 
monocyte emigration in response to circulating toll-like receptor ligands." Immunity 34(4): 590-
601. 
 
Sinclair, A., B. Daly and E. Dzierzak (1996). "The ly-6e.1 (sca-1) gene requires a 3' chromatin-
dependent region for high-level gamma-interferon-induced hematopoietic cell expression." Blood 
87(7): 2750-2761. 
 
Singh, R. K., A. Srivastava and N. Singh (2012). "Toll-like receptor signaling: A perspective to 
develop vaccine against leishmaniasis." Microbiological Research 167(8): 445-451. 
 



 292 

Sitnicka, E., D. Bryder, K. Theilgaard-Monch, N. Buza-Vidas, J. Adolfsson and S. E. W. 
Jacobsen (2002). "Key role of flt3 ligand in regulation of the common lymphoid progenitor but 
not in maintenance of the hematopoietic stem cell pool." Immunity 17(4): 463-472. 
 
Smelt, S. C., S. E. J. Cotterell, C. R. Engwerda and P. M. Kaye (2000). "B cell-deficient mice are 
highly resistant to leishmania donovani infection, but develop neutrophil-mediated tissue 
pathology." Journal of Immunology 164(7): 3681-3688. 
 
Snoeck, H. W., S. Weekx, A. Moulijn, F. Lardon, M. Lenjou, G. Nys, P. C. F. VanRanst, D. R. 
VanBockstaele and Z. N. Berneman (1996). "Tumor necrosis factor alpha is a potent synergistic 
factor for the proliferation of primitive human hematopoietic progenitor cells and induces 
resistance to transforming growth factor beta but not to interferon gamma." Journal of 
Experimental Medicine 183(2): 705-710. 
 
Spolski, R. and W. J. Leonard (2014). "Interleukin-21: A double-edged sword with therapeutic 
potential." Nature Reviews Drug Discovery 13(5): 381-393. 
 
Staeger, S., T. Joshi and R. Bankoti (2010). "Immune evasive mechanisms contributing to 
persistent leishmania donovani infection." Immunologic Research 47(1-3): 14-24. 
 
Stager, S., A. Maroof, S. Zubairi, S. L. Sanos, M. Kopf and P. M. Kaye (2006). "Distinct roles for 
il-6 and il-12p40 in mediating protection against leishmania donovani and the expansion of il-
10(+) cd4(+) t cells." European Journal of Immunology 36(7): 1764-1771. 
 
Stanley, A. C. and C. R. Engwerda (2007). "Balancing immunity and pathology in visceral 
leishmaniasis." Immunology and Cell Biology 85(2): 138-147. 
 
Sugimura, R., X. C. He, A. Venkatraman, F. Arai, A. Box, C. Semerad, J. S. Haug, L. Peng, X.-b. 
Zhong, T. Suda and L. Li (2012). "Noncanonical wnt signaling maintains hematopoietic stem 
cells in the niche." Cell 150(2): 351-365. 
 
Sugiyama, T., H. Kohara, M. Noda and T. Nagasawa (2006). "Maintenance of the hematopoietic 
stem cell pool by cxcl12-cxcr4 chemokine signaling in bone marrow stromal cell niches." 
Immunity 25(6): 977-988. 
 
Svensson, M., A. Maroof, M. Ato and P. M. Kaye (2004). "Stromal cells direct local 
differentiation of regulatory dendritic cells." Immunity 21(6): 805-816. 
 
Takizawa, H., S. Boettcher and M. G. Manz (2012). "Demand-adapted regulation of early 
hematopoiesis in infection and inflammation." Blood 119(13): 2991-3002. 
 
Taylor, A. P. and H. W. Murray (1997). "Intracellular antimicrobial activity in the absence of 
interferon-gamma: Effect of interleukin-12 in experimental visceral leishmaniasis in interferon-
gamma gene-disrupted mice." Journal of Experimental Medicine 185(7): 1231-1239. 
 
Tesio, M., Y. Tang, K. Muedder, M. Saini, L. von Paleske, E. Macintyre, M. Pasparakis, A. 
Waisman and A. Trumpp (2015). "Hematopoietic stem cell quiescence and function are controlled 
by the cyld-traf2-p38mapk pathway." Journal of Experimental Medicine 212(4): 525-538. 
 
Thoren, L. A., K. Liuba, D. Bryder, J. M. Nygren, C. T. Jensen, H. Qian, J. Antonchuk and S.-E. 
W. Jacobsen (2008). "Kit regulates maintenance of quiescent hematopoietic stem cells." Journal 
of Immunology 180(4): 2045-2053. 
 
Tian, T., M. Wang and D. Ma (2014). "Tnf-α, a good or bad factor in hematological diseases?" 
Stem Cell Investigation 1(6). 
 



 293 

Tokoyoda, K., A. E. Hauser, T. Nakayama and A. Radbruch (2010). "Organization of 
immunological memory by bone marrow stroma." Nature Reviews Immunology 10(3): 193-200. 
 
Tokoyoda, K., S. Zehentmeier, H.-D. Chang and A. Radbruch (2009a). "Organization and 
maintenance of immunological memory by stroma niches." European Journal of Immunology 
39(8): 2095-2099. 
 
Tokoyoda, K., S. Zehentmeier, A. N. Hegazy, I. Albrecht, J. R. Gruen, M. Loehning and A. 
Radbruch (2009b). "Professional memory cd4(+) t lymphocytes preferentially reside and rest in 
the bone marrow." Immunity 30(5): 721-730. 
 
Trumpp, A., M. Essers and A. Wilson (2010). "Awakening dormant haematopoietic stem cells." 
Nature Reviews Immunology 10(3): 201-209. 
 
Tsapogas, P., S. Zandi, J. Ahsberg, J. Zetterblad, E. Welinder, J. I. Jonsson, R. Mansson, H. Qian 
and M. Sigvardsson (2011). "Il-7 mediates ebf-1-dependent lineage restriction in early lymphoid 
progenitors." Blood 118(5): 1283-1290. 
 
Van Os, R., L. M. Kamminga, A. Ausema, L. V. Bystrykh, D. P. Draijer, K. Van Pelt, B. Dontje 
and G. De Haan (2007). "A limited role for p21(cip1/waf1) in maintaining normal hematopoietic 
stem cell functioning." Stem Cells 25(4): 836-843. 
 
Varma, N. and S. Naseem (2010). "Hematologic changes in visceral leishmaniasis/kala azar." 
Indian Journal of Hematology and Blood Transfusion 26(3): 78-82. 
 
Visnjic, D., Z. Kalajzic, D. W. Rowe, V. Katavic, J. Lorenzo and H. L. Aguila (2004). 
"Hematopoiesis is severely altered in mice with an induced osteoblast deficiency." Blood 103(9): 
3258-3264. 
 
Vonfreedenjeffry, U., P. Vieira, L. A. Lucian, T. McNeil, S. E. G. Burdach and R. Murray (1995). 
"Lymphopenia in interleukin (il)-7 gene-deleted mice identifies il-7 as a nonredundant cytokine." 
Journal of Experimental Medicine 181(4): 1519-1526. 
 
Wakkach, A., N. Fournier, V. Brun, J. P. Breittmayer, F. Cottrez and H. Groux (2003). 
"Characterization of dendritic cells that induce tolerance and t regulatory 1 cell differentiation in 
vivo." Immunity 18(5): 605-617. 
 
Walasek, M. A., R. van Os and G. de Haan (2012). "Hematopoietic stem cell expansion: 
Challenges and opportunities." Hematopoietic Stem Cells Viii 1266: 138-150. 
 
Walter, D., A. Lier, A. Geiselhart, F. B. Thalheimer, S. Huntscha, M. C. Sobotta, B. Moehrle, D. 
Brocks, I. Bayindir, P. Kaschutnig, K. Muedder, C. Klein, A. Jauch, T. Schroeder, H. Geiger, T. 
P. Dick, T. Holland-Letz, P. Schmezer, S. W. Lane, M. A. Rieger, M. A. G. Essers, D. A. 
Williams, A. Trumpp and M. D. Milsom (2015). "Exit from dormancy provokes DNA-damage-
induced attrition in haematopoietic stem cells." Nature 520(7548): 549-+. 
 
Wang, L. D. and A. J. Wagers (2011). "Dynamic niches in the origination and differentiation of 
haematopoietic stem cells." Nature Reviews Molecular Cell Biology 12(10): 643-655. 
 
Wang, L. D. and A. J. Wagers (2012). "Dynamic niches in the origination and differentiation of 
haematopoietic stem cells (vol 12, pg 643, 2011)." Nature Reviews Molecular Cell Biology 13(1). 
 
Warr, M. R., E. M. Pietras and E. Passegue (2011). "Mechanisms controlling hematopoietic stem 
cell functions during normal hematopoiesis and hematological malignancies." Wiley 
Interdisciplinary Reviews-Systems Biology and Medicine 3(6): 681-701. 
 



 294 

Whitmire, J. K., N. Benning and J. L. Whitton (2005). "Cutting edge: Early ifn-gamma signaling 
directly enhances primary antivliwal cd4(+) t cell responses." Journal of Immunology 175(9): 
5624-5628. 
 
Wilkins, J. A. and O. J. Sansom (2008). "C-myc is a critical mediator of the phenotypes of apc 
loss in the intestine." Cancer Research 68(13): 4963-4966. 
 
Wilson, A., M. J. Murphy, T. Oskarsson, K. Kaloulis, M. D. Bettess, G. M. Oser, A. C. Pasche, C. 
Knabenhans, H. R. MacDonald and A. Trumpp (2004). "C-myc controls the balance between 
hematopoietic stem cell self-renewal and differentiation." Genes & Development 18(22): 2747-
2763. 
 
Winkler, I. G., V. Barbier, R. Wadley, A. C. W. Zannettino, S. Williams and J.-P. Levesque 
(2010). "Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in 
vivo: Serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches." 
Blood 116(3): 375-385. 
 
Yamamoto, R., Y. Morita, J. Ooehara, S. Hamanaka, M. Onodera, K. L. Rudolph, H. Ema and H. 
Nakauchi (2013). "Clonal analysis unveils self-renewing lineage-restricted progenitors generated 
directly from hematopoietic stem cells." Cell 154(5): 1112-1126. 
 
Yarali, N., T. Fisgin, F. Duru and A. Kara (2002). "Myelodysplastic features in visceral 
leishmaniasis." American Journal of Hematology 71(3): 191-195. 
 
Yoshida, T. and K. Georgopoulos (2013). "Gata-3 controls self-renewal in stressed hscs." Nature 
Immunology 14(10): 1032-1033. 
 
Young, N. S., P. Scheinberg and R. T. Calado (2008). "Aplastic anemia." Current Opinion in 
Hematology 15(3): 162-168. 
 
Zganiacz, A., M. Santosuosso, J. Wang, T. Yang, L. H. Chen, M. Anzulovic, S. Alexander, B. 
Gicquel, Y. H. Wan, J. Bramson, M. Inman and Z. Xing (2004). "Tnf-alpha is a critical negative 
regulator of type 1 immune activation during intracellular bacterial infection." Journal of Clinical 
Investigation 113(3): 401-413. 
 
Zhan, Y. F., G. J. Lieschke, D. Grail, A. R. Dunn and C. Cheers (1998). "Essential roles for 
granulocyte-macrophage colony-stimulating factor (gm-csf) and g-csf in the sustained 
hematopoietic response of listeria monocytogenes - infected mice." Blood 91(3): 863-869. 
 
Zhang, X., R. Goncalves and D. M. Mosser (2008). "The isolation and characterization of murine 
macrophages." Current protocols in immunology / edited by John E. Coligan ... [et al.] Chapter 
14: Unit 14.11-Unit 14.11. 
 
Zhang, Y., A. Harada, H. Bluethmann, J. B. Wang, S. Nakao, N. Mukaida and K. Matsushima 
(1995). "Tumor-necrosis-factor (tnf) is a physiological regulator of hematopoietic progenitor cells 
- increase of early hematopoietic progenitor cells in tnf receptor p55-deficient mice in-vivo and 
potent inhibition of progenitor-cell proliferation by tnf-alpha in-vitro." Blood 86(8): 2930-2937. 
 
Zhang, Y., M. Jones, A. McCabe, G. M. Winslow, D. Avram and K. C. MacNamara (2013). 
"Myd88 signaling in cd4 t cells promotes ifn-gamma production and hematopoietic progenitor 
cell expansion in response to intracellular bacterial infection." Journal of Immunology 190(9): 
4725-4735. 
 
Zhao, J. L. and D. Baltimore (2015). "Regulation of stress-induced hematopoiesis." Current 
Opinion in Hematology 22(4): 286-292. 
 



 295 

Zhu, J. and S. G. Emerson (2002). "Hematopoietic cytokines, transcription factors and lineage 
commitment." Oncogene 21(21): 3295-3313. 
 

 


