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Abstract 

This thesis explores polyanion binding and sensing using varirty of different approaches 

and aims to understand and manipulate these interactions. 

 

Amine-functionalised pyrene derivatives Py-G1 and Py-DAPMA can act as effective 

heparin sensors in competitive media using a ratiometric fluorescence sensing 

approach. The assembly of Py-G1 into pre-formed self-assembled multivalent (SAMul) 

nanostructures provides it with a significant (order of magnitude) advantage in terms 

of the dynamic range of sensory response over the non-SAMul Py-DAPMA in buffer. In 

the presence of serum, both ligands can still detect heparin ratiometrically, however, 

the SAMul sensing mechanism of Py-G1 is switched off. 

 

Three series of SAMul dendrons based on L or D lysine and focal point hydrophobic 

groups, either pyrene or hydrocarbon chains, have been developed. Their ability to 

exhibit different chiral binding preferences towards chiral polyanions DNA and heparin 

have been studied. The way in which the ligands are displayed, which in turn depends 

on the nature of the hydrophobic component and the overall structural characteristics, 

are absolutely critical. Insertion of a simple linker allows expression of the chiral 

information at the nanoscale surface. 

 

The interaction between heparin and Mallard Blue (Mal-B) or a series of SAMul heparin 

binders are explored by NMR spectroscopy. The choice of buffer has significant impact 

on Mal-B/heparin binding, but precipitation of the Mal-B:heparin complex limits the 

opportunity for NMR analysis. NMR provides some insight to the binding events at the 

nanoscale and appears particularly useful for uncovering the role of ligands and 

dynamics in mediating binding with the best binder appearing to have best resolved 

ligand NMR resonances. 

 

The ability of C22-G1 and Py-G1 to ast as “nanoglue”, causing adhesion between 

polyanions and carbon nanotubes was studied. Both can self-assemble and bind to 

DNA and SWCNT respectively and C22-G1 is a better DNA and SWCNT binder. Although 
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the attempt to quantitatively assay simultaneous DNA and SWCNT binding was 

unsuccessful, TEM imaging clearly allowed onto monitor the binding of DNA and CNT, 

and demonstrated that our synthetic nanoglue system causes them to co-assemble. 
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Chapter 1 Introduction 

1.0 Overview 

This thesis explores molecular recognitions processes at nanoscale surfaces and 

aims to understand them at a molecular level and then apply this understanding to 

achieve controlled adhesion between nanosystems. Each chapter has its own specific 

introduction, and as such, this general introduction aims to present area of the key 

over-arching concepts in outline form to inform more detailed discussion which comes 

later. 

  

1.1 Supramolecular chemistry  

 Supramolecular chemistry was defined by Jean-Marie Lehn, who was awarded the 

Nobel Prize for his work in the area in 1987. He defined the field as the "chemistry of 

molecular assemblies and of the intermolecular bond"1 and sometimes summarised as 

“chemistry beyond the molecule!”2 In other words, supramolecular chemists aim to 

control and understand non-covalent interactions, and as a result, develop highly 

complex systems which are held together and organized by non-covalent 

intermolecular forces such as hydrogen bonds, - stacking interactions, electrostatic, 

van der Waals forces, metal-ligand bonds or hydrophobic effects (Figure 1.1).1, 3-5 The 

controllable nature of such interactions allows supramolecular chemists to manipulate 

molecules and the way they communicate with one another with a high degree of 

precision.  
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Figure 1.1 Example of non-covalent intermolecular forces: Schematic representation of 

the interactions between polarizable non-polar groups involving flavonoids through 

dispersive van der Waals interactions (-stacking) and the role of the surrounding 

hydrogen-bond network.6 

 

1.2 Self- Assembly 

 Self-assembly is the spontaneous association of molecules into well-defined 

structures held together by non-covalent interactions.7-9 While large molecules held 

together by covalent bonds normally need a number of synthetic steps, self-assembly 

often only requires smaller, simpler building blocks which can aggregate spontaneously 

to generate large nano-scale structures. This process is driven by directed non-covalent 

interactions between the molecules. As such, self-assembly provides a simple 

methodology by which molecular-scale building blocks can be used to assemble the 

nanoworld from “bottom-up” which opens a route to nanostructures that are currently 

inaccessible by the “top down” approach.10, 11 

 

1.2.1 Inspiration From Nature 

 DNA (Deoxyribonucleic acid), exists in double helical form,12 and constitutes one 

of the best known self-assembling structures in biological systems. The two single 

strands are held together by hydrogen bonds between purine and pyrimidine bases. 

Guanine (G) forms triple hydrogen bonds with cytosine (C) and adenine (A) forms 

double hydrogen bonds with thymine (T). (Figure 1.2) The X-ray diffraction studies 
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revealed that the hydrogen bonds holding G-C and A-T complexes are about the same 

length (2.9 ± 0.1 Å). The molecular-scale information programmed into the 

self-assembled double helix has the function of passing on hereditary information and 

the double helical structure plays a key role in helping protecting this vital information 

from damage by binding it within the interior of the nanostructure.  

 

 

Figure 1.2: Complementary base pairing in DNA helical structure and base pairing in 

DNA (guanine and cytosine form triple hydrogen bonds; adenine and thymine form 

double hydrogen bonds).13 

 

Another archetypal example of self-assembly is the tobacco mosaic virus (TMV) 

(Figure 1.2), the first virus discovered by Demitri Iwanowsky in 1892 and isolated by 

Wendell Stanley in 1935. The viral particle is composed of 2130 identical protein 

subunits, each comprising 158 amino acids, which form a helical sheath around a single 

strand of RNA with 6390 nucleotide bases in length which give a helical rod-shaped 

particle with dimensions of 300 nm in length and 18 nm in diameter.14  
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Figure 1.3: The tobacco mosaic virus (TMV). a) Electron micrograph. b) schematic 

representation. The protein subunits are colored yellow. (Taken from ref. 14)  

 

As illustrated in Figure 1.4, the protein subunits form a stable doubly docked 

disk-shape sub-assembly (a), then a loop of RNA into the central hole of the protein 

disk opens up the base-paired stem as it does so (b) and is then transformed into a 

helical form (c). Additional protein disks, each corresponding to two turns of the final 

helix, associate with the growing viral particle (d) until assembly is complete. The 

formation of a doubly docked disk sub-assembly from protein subunits through 

noncovalent interactions is under thermodynamic control. This gives a low probability 

of generating a defect TMV structure by intrinsically error-checking and 

self-correcting.14 Remarkably, simply mixing together the individual compounds in 

solution leads to spontaneous self-assembly of the functional virus. This clearly 

demonstrates how self-assembly of non-functional compounds can give rise to overall 

assemblies with new emergent properties.15 
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Figure 1.4: Self-assembly of the tobacco mosaic virus at different stages.10  

 

1.2.2 Self-Assembly in Synthetic Chemistry 

 Inspired by nature, many examples of supramolecular assemblies have been 

reported involving hydrogen bonding,16, 17  -  stacking,18, 19 charge transfer,20, 21 the 

hydrophobic effect,22 and chelation of metal cations.23, 24 This section will focus on 

describing selected recent advances in the area of self-assembly in supramolecular 

chemistry driven by  -  stacking and the hydrophobic effect which are important 

within the context of this thesis. 

 

1.2.2.1  Self-Assembly by  -  stacking 

  -  Stacking refers to non-covalent interactions between the π-orbitals of a 

unsaturated organic system (Figure 1.5).25 The benzene dimer is the prototypical 

system for the study of π –π stacking, and is experimentally bound by 2–3 kcal/mol in 

the gas phase with a separation of 4.96 Å between the centers of mass for the 

T-shaped dimer. T-shaped (edge-to-face) is more stable than π –π stacking (face to face) 

due to high electrostatic repulsion of the electrons in the π orbitals.26 

 

Figure 1.5: Energy-minimized structures of the benzene dimer: a) T-shaped and b) π – 

π stacked.25 
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As an example, crown ether phthalocyanine (Figure 1.6), contains a 

phthalocyanine ring with four benzo crown ether moieties attached. It can 

self-assemble into helix and superhelix forms based on the self-assembly of 

disk-shaped molecules driven by  -  interactions. The helicity in these 

superstructures is controlled by chiral centers remote from the sites of interaction in 

the periplal chain and can be tuned by the addition of K+ ions. The effects of this can be 

observed using transmission electron microscopy (TEM) (Figure 1.7).27  

 

 

Figure 1.6: Structure of crown ether phthalocyanine27 
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Figure 1.7: Transmission electron micrographs (platinum shadowing) of crown ether 

phthalocyanine. (A) Left-handed coiled-coil aggregates in chloroform. (B) Schematic 

representation of the helices in (A). (C) Non-helical rods formed in chloroform in the 

presence of KCl. (D) Schematic representation of the rods in (C).27 

 

Crown ethers can form stable complexes with alkali metal cations and a titration 

experiment of crown ether phthalocyanine with K+ ions was performed. At low 

concentrations, K+ ions are shared between two crown ether units of two different 

phthalocyanines. At higher concentraion, the crown ethers start to take up one K+ ion 

in each ring, which leads to separation of the sandwich-like complexes (Figure 1.8). In 

this way, complexation to the self-assembled nanostructures helps to control the 

evolution of the morphology. 

 

 

Figure 1.8: Schematic representation of the formation and breakdown of the 

sandwich-type complexes between K+ ions and crown ether phthalocyanine 
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1.2.2.2  Self-Assembly by hydrophobic effect 

The hydrophobic effect is the phenomenon of non-polar substances to aggregate 

in aqueous solution and exclude water molecules.28 The free energy to solvate small 

hydrophobic molecules scales linearly with solute volume, while that to solvate large 

hydrophobic species scales linearly with surface area. This process is driven by the 

entropic gain of releasing high energy water from hydrophobic sties. These water 

molecules can then also maximise their enthalpically favourable solvent-solvent 

hydrogen bond interactions.  

 

A simple amphiphilic molecule will aggregate in aqueous solution, the driving 

force for which is the hydrophobic effect. The overall structure of the aggregates 

formed depends on a number of factors such as monomer concentration and 

morphology.29 The hydrophobic group at the focal point controls the size of the 

nanoscale aggregate;30 the ratio of sizes of hydrophobic and hydrophilic groups 

controls the resulting self-assembled morphology.31 Israelachvili et al. demonstrated 

how these relative sizes can affect surfactant self-assembly, and predicted the 

structure by using the so-called packing factor (p),   
 

    
 where, V is the volume of 

the hydrophobic chain, a0 is the mean cross sectional area of the head group in the 

aggregate and lc is the length of the fully extended chain (Figure 1.9).32, 33 As the 

volume contribution of the hydrophobic region increases, the aggregate morphology in 

solution alters in order to provide greater internal volume and hence minimise 

unfavourable solvent interactions with the hydrophobic domain. These rules can be 

derived from simple geometric relationships, for example in spherical micelles the head 

groups cannot exceed the surface area of the sphere while the hydrophobic chains 

must fit within the volume of the sphere.  
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Figure 1.9: Structure of supramolecular aggregates according to the packing factor of 

amphiphiles.34 

 

 Zhang et al.35 have demonstrated the self-assembly behaviour of amphiphilic 

dendrimers dependent on both head-group and hydrophobic chain length. Short 

hydrophobic chains lead to irregular spherical micelles whereas long alkyl chains with a 

theoretical alkyl chain length/radius above 1 is conducive to forming regular vesicular 

structures (Figure 1.10). 
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Figure 1.10 Schematic representation of the organization of amphiphilic dendrimers 

with different alkyl chain lengths in the process of self-assembly (Q1QPAMC8 = 

Generations 1 PAMAM with 8 carbon alkyl chain; Q1QPAMC16 = Generations 1 PAMAM 

with 16 carbon alkyl chain).35 

 

 Another example is from Percec’s group with their self-assembly of the 

amphiphilic Janus dendrimers in 2014.36 The group studied the effect of branching 

pattern in the hydrophilic part to the architectures assembled in water. They suggested 

that the (3,4,5)-hydrophilic pattern with three triethylene glycol monomethyl ether 

groups favors the formation of vesicles. When the hydrophilic part only had two 

triethylene glycol monomethyl ether groups in (3,4)- or (3,5)-hydrophilic patterns, the 

dendrimers did not self-assemble into vesicles apart from 10bd (Figure 1.11b). If the 

hydrophilic part has the (3,4,5)-substitution pattern and the (3,4)-dodecyl substitution 

in their hydrophobic building block, the dendrimers self-assemble into vesicles (Figure 

1.11c). The effect of the linking group between the two groups did not have effect on 

self-assembly. For example, both 9cf (Figure 1.11a) and its constitutional isomers, 10cf, 

form dendrimersomes (Figure 1.11d).  
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Figure 1.11: Cryo-TEM images of the structures assembled of (a) 

(3,4,5)12G1-L-Ala-CH2-(3,4,5)-3EO-G1-(OCH3)3, 9cf;  (b) (3,5)12G1-CH2-L-Ala-(3,4)-3EO 

-G1-(OCH3)2, 10bd; (c) (3,5)12G1-L-CH2-Ala-(3,4,5)-3EO-G1-(OCH3)3, 10bf; (d) 

(3,4,5)12G1-L-Ala-CH2-(3,4,5)-3EO-G1-(OCH3)3, 10cf.36 
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1.3 Multivalent binding 

 Multivalency is frequently used in biological systems to generate high affinity 

binding at nanoscale surfaces via simultaneous interaction of multiple binding groups 

on one molecule with the complementary receptors on another to achieve 

complexation in competitive media. This approach has been used extensively by 

supramolecular chemists, when binding to large biomolecules or attempting to achieve 

high affinity adhesion in solid surfaces.37, 38  

 

 Multivalent ligand binding is related to the well-known "chelate effect" and can 

bring about high affinity binding through statistical rebinding, chelation, clustering, and 

subsite binding as depicted in Figure 1.12: (A) Statistical rebinding between a 

monomeric receptor and a tetravalent scaffolded ligand. High local concentration of 

ligand enables occupation of the receptor by another ligand upon dissociation. (B) 

Chelation achieved by bridging adjacent binding sites of a dimeric receptor with a 

divalent ligand. (C) Clustering of receptors via binding of a trivalent scaffolded ligand. 

(D) Subsite binding between a receptor with a secondary binding site and divalent 

molecule containing two discrete ligands.39 In general thermodynamic terms 

multivalent binding is entropically preferred in comparison to monovalent ligands as a 

result of the pre-organisation of the ligand array and the enhanced local concentration.   
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Figure 1.12: Specific modes of multivalent binding.39 

 

Rigid multivalent arrays benefit from the greatest pre-organisation with lower 

entropic cost upon binding. Conversely, flexible multivalent systems exhibit the ability 

to optimise each individual interaction in enthalpic term and screen themselves from 

the surrounding competitive medium.40 As such, there are advantages and 

disadvantages of each approach. Whitesides et al. compared the free energy change of 

a multivalent interaction with a monovalent interaction in order to define a binding 

enhancement factor, α, described as the degree of cooperativity, Equation 1.1;41 

 

    
       

       
  

          

         
   Equation 1.1 

 

where N is the number of ligand-receptor pairs, ΔGmulti is the free energy associated 

with the interaction between N receptors and N ligands, ΔGmono is the free energy 

change from the corresponding monovalent interaction and Kmulti and Kmono are the 
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affinities resulting from a multivalent and a monovalent binding event, respectively. 

This allowed multivalent systems to be to categorized as cooperative (synergistic, α> 1), 

non-cooperative (additive, α= 1) or negatively cooperative (interfering, α< 1).  

 

 It is worth noting that biological systems make use of multivalent binding 

interactions, particularly to enhance relatively weak binding interactions such as those 

formed by sugars. Glycoside cluster ares extensively found on cell surfaces to mediate 

molecular recognition through multivalent binding interactions.42 

 

1.4. Self-Assembled Multivalency (SAMul) 

 The combined concept of self-assembly, the spontaneous association of molecules 

into well-defined structures held together by non-covalent interactions, and 

multivalency have been referred as ‘self-assembling multivalency’ or ‘SAMul’ by Smith 

and co-worker.38, 43-45 The key advantages of this approach are spontaneous assembly, 

well-defined low-molecular-weight building blocks, easily tunable ligands, tunable 

nanostructure morphologies, ability to assemble different active components into a 

single nanostructure and simple or triggered disassembly/degradation (see Figure 

1.13).38 This approach is becoming a powerful and general tool for generating synthetic 

multivalent nanoscale binding arrays with biomolecular applications.46  

 

 

Figure 1.13: Self-assembled high affinity multivalent binding.38 

 

 One of the first examples of SAMul was developed by Whitesides and co-workers, 

who attached a sialic acid (SA) group to a lipid chain and incorporated the resulting 

amphiphilic ligand into a phosphatidylcholine and cholesterol based liposome (Figure 
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1.14).47  It was found that the self-assembled system was an extremely potent 

inhibitor of the protein hemagglutinin, with up to 100,000 times higher activity than 

the equivalent monovalent system.  

 

Figure 1.14: Structure of sialic acid functionalised lipid used as a SAMul inhibitor of 

hemagglutinin.47  

 

 Brunsveld and co-workers used photo-active discotic molecules containing 

C3-symmetric aromatic cores consisting of three 2,2’-bipyridine-3,3’-diamine molecules 

connected to a central benzene-1,3,5-tricarbonyl unit which self-assembles into 

columnar stacks via  -  stacking (Figure 1.15).48 The surface ligands are tunable by 

controlling the ratio of mono-, di- and/or tri-functionalised discotics present within a 

‘mixed’ columnar stack. With water-solubilizing glycol and mannose functionalization, 

the SAMul discotics become able to bind targets such as Con A with enhanced affinity 

over the non-assembled discotics. Additionally, Brunsveld and co-workers also studied 

the effect of mono- and tri-functionalisation of each monomer disk with mannose and 

discovered that the tri-functionalized derivative offered no valency-corrected binding 

enhancement over the mono-functionalized derivative. This suggested that “less is 

more”, a feature observed in many multivalent binding events. Clearly optimizing ligand 

display plays an important role in mediating the SAMul binding effect.31  
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Figure 1.15: Self-assembling multivalent mannose-functionalised lectin-binding discotic 

molecules.48 

 

1.5 Project Aims 

This thesis aims to use fundamental principles of supramolecular chemistry, such 

as those described in brief above, in order to understand and control the binding mode 

to different biological polyanions in order to achieve controlled nanoscale assembly. 

Polyanions make versatile targets for this study as a result of their potential biomedical 

and clinical applications, as described in more detail in the following chapters. 

 

The initial goals of the research were to use simple binding of polyanions to 

develop innovative sensors while can self-assemble and bind in a multivalent manner 

to their targets. We aimed to explore and understand the way in which binding could 

be tuned and controlled using molecular-scale programming. For example, installing 

chrial information in the molecular-scale building blocks would allow us to explore how 

self-assembly displayed this information for polyanion binding. NMR methods would 
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enable us to gain a molecular scale insight into the binding interface. Bringing all this 

information together we then hoped to gain precise and controllable adhesion 

between different types of nanoscale surfaces. 
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Chapter 2 Pyrene-based heparin sensors in highly 

competitive aqueous solution and serum 

 Some of the results presented in this Chapter have been reported in C. W. Chan 

and D. K. Smith, Chem. Commun., 2016, 52, 3785-3788.49 

 

2.1 Introduction 

2.1.1 Heparin 

 Heparin is a highly sulfated polysaccharide, a member of the glycosaminoglycan 

(GAG) family and the most charge-dense polyanion present in biological systems, 

widely used as an anti-coagulant drug during surgical processes or administration in 

low doses to bed-bound patients to prevent thrombosis.50 Structurally, heparin consists 

primarily of 1–4 linked L-iduronic acid and -D-glucosamine subunits (Figure 2.1, 

bottom left), and the varying degrees of sulfation along these sugar components makes 

heparin the most complex member of the GAG family (Figure 2.1, Top).  

 

 

Figure 2.1: An example heparin polysaccharide (top) along with the predominant 

disaccharide repeat unit (bottom left) and the specific pentasaccharide sequence 

required to confer anticoagulant activity (bottom right).51 

 

The anticoagulant activity of heparin is dependent on the presence of a specific 

pentasaccharide sequence (Figure 2.1, bottom right),52 which forms a ternary complex 

with thrombin and the naturally occurring thrombin inhibitor, antithrombin III (ATIII). In 

general, only approximately one third of the polysaccharide content in heparin displays 

anticoagulant activity.53 As such, the concentration of heparin is not defined by mass 
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(based on the average repact unit) in clinical use but rather in the measurement of 

“international units” (IU). The current international heparin standard (IHS) is calibrated 

by using all major assay methods to determine the amount of heparin required to 

cause one millilitre of sheep plasma to half-clot when held for one hour at 37°C.54 

Heparin is sold in terms of acivity (IU) rather than mass, such as 100 kIU of heparin 

with a designated activity of 185 IU mg-1. 

 

The blood coagulation cascade in vivo starts with two distinct pathways (Figure 

2.2).55  The ‘intrinsic’ pathway originates from a surface contact trauma event while 

the ‘extrinsic’ pathway originates from tissue damage. Both pathways involve a 

plethora of clotting factors, distinguished by roman numerals, becoming activated or 

deactivated through interaction or reaction with each other, before converging and 

sharing the final few steps of the cascade to ultimately generate a fibrin-reinforced 

clot.56 At the convergence of this ‘common’ pathway sits Factor-Xa, which plays a key 

role catalysing the production of thrombin, the species responsible for catalysing the 

production of the insoluble fibrin fibre and hence the final clot. It is the ability of 

heparin to directly inhibit the catalytic activity of thrombin, thereby retarding the 

production of fibrin, which primarily confers the anti-coagulant activity.57 
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Figure 2.2: Schematic representation of the blood coagulation cascade.55 

 

 Following the administration of heparin as an anticoagulant drug during surgery, 

there is a need to reverse its effects in order to allow the blood to regain its natural 

clotting ability. This is important to prevent patients from internal bleeding after 

surgical operations. Currently the only heparin reversal agent licensed for clinical use is 

protamine sulphate, which is constituted by a diverse family of small arginine-rich 

proteins, synthesised in the spermatids of many animals and plants (Figure 2.3). The 

primary role of naturally occurring protamines is to bind with polyanionic DNA.58 

However, the large number of arginine residues present in the primary structure of 

protamines in high density makes them highly cationic59 and thus able to also bind 

electrostatically to negatively charged heparin in order to reverse its anticoagulant 

activity.60  
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Figure 2.3: An example protamine structure with the prevalent arginine residues 

depicted as wedges, adapted from reference43. 

 

 On the other hand, protamines are known to have adverse effect in patients 

which vary from urticaria and rash to systemic hypotension, bronchospasm, pulmonary 

hypertension, cardiovascular collapse, and death.61, 62 Overdose of protamine sulfate 

may cause bleeding as protamine has a weak anticoagulant effect of its own due to an 

interaction with platelets, and with many proteins including fibrinogen. Hence, it is 

important to have effective knowledge of heparin levels in vivo.  

 

 Heparin determination is also of crucial importance during surgery itself due to 

the risk of adverse effects such as hemorrhages and heparin-induced 

thrombocytopenia (HIT) resulting from heparin overdoses.63, 64 Various assays have 

been established to monitor heparin concentration, including the most commonly used 

activated partial thromboplastin time (aPTT), anti-Xa and activated clotting time (ACT) 

assays.65 All of these assays determine the amount of heparin present in terms of its 

activity as they directly monitor its impact on the coagulation cascade. However, the 

aPTT assay is poorly standardized and is affected by numerous factors, anti-Xa is not 

widely available66 and the ACT test is non-specific such that many variables can alter its 

results.67 Furthermore, all of these tests require blood samples to be sent to the 

laboratory for “off-line” testing. Therefore, it is of great interest to monitor heparin 

binding spectroscopically and develop sensors with potential for development of 

“in-line” sensing and monitoring during major surgery.  
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2.1.2 Heparin Sensors 

2.1.2.1 Electrochemical Sensors 

 The binding mode of protamine with heparin is mainly by electrostatic interaction 

(Figure 2.4). As such, protamine will not select between the regions of the heparin 

polysaccharide chain which are active or inactive in terms of their anti-coagulant 

behaviour. It would therefore be interesting to develop sensors which bind in the same 

way and can hence effectively predict the optimal protamine dose. 

 

Figure 2.4: Computer model of protamine (blue) bound to the major disaccharide 

repeat unit of heparin (alternating purple and green units represent the two different 

saccharides).51 

 

In 1993, Ma et al. developed a potentiometric sensor for heparin. Their system 

incorporating cationic units into PVC membranes and films which were able to obtain a 

quantitative heparin binding response even when using relatively non-functional 

quaternary ammonium groups as the cationic species within the membrane (Figure 

2.5).68 On the other hand, this methodology has a limitation of the irreversibility of 

heparin binding to the membranes and required a rinsing step between each heparin 

assay. Various groups have reported electrochemical and voltammetric techniques 

based on this general approach and in some case the detection limits were as low as 

0.005 IU mL-1. 69-71  
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Figure 2.5 : Schematic representation of heparin binding to Ma’s quaternary amine 

functionalized membrane, adapted from reference68. 

 

2.1.2.2 Fluorescent Sensors 

Spectrophotometric or fluorescent heparin sensors are of particular interest as 

these methods can give simple read-out of heparin levels as well as potentially being 

optimized to respond to heparin only, rather than other competitor anionic species. 

Thionine dyes (Figure 2.6) were amongst the first to be investigated and have been  

used commercially as dyes during the twentieth century. Their unreliable purity72 

meant that they require purification before using them.73 Thionine dyes have 

previously been investigated in systems to bind biological polyanions such as DNA.74 
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Azure A was reported to be able to monitor heparin levels in plasma.75 However, it was 

also known to be acutely sensitive to many of the electrolytes present in biological 

samples as a consequence of the relatively low charge of the dye and it is unable to 

compete against media of high ionic strength for heparin binding.76 As such, it does not 

work in biologically or medically relevant conditions. 

Figure 2.6: Selection of dyes from the thionine family 

 

The unreliability of commercially available thionine-derived dyes led to interest in 

the design and development of synthetic systems for heparin sensing. In 2002, Zhong 

et al. produced a tris-boronic acid species able to indicate heparin indirectly through 

displacement of a more weakly-bond pyrocatechol violet indicator dye (Figure 2.7).77 

The system binds heparin as a result of electrostatic interaction and binding between 

the boronic acid units and diols on the heparin backbone The system shows good 

affinity and selectivity for heparin over similar polysaccharides possessing lower 

anionic charge density and the authors suggested disaccharidic units are the likely sites 

for binding to the receptor. 

 

Figure 2.7: Zhong’s heparin sensors operating in an indicator displacement regime. 
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However, the binding affinity of Zhong’s heparin sensors was insufficient to allow 

quantification of heparin in serum at physiologically-relevant concentrations. Moreover, 

although the indicator-displacement assay gave a dramatic yellow to purple color 

change in response to heparin, it was found that the indicator also bound 

non-specifically with proteins in crude serum which undermined the quantitative 

results. To solve these problems, in 2005, the same group reported a related receptor 

with a fluorescent core scaffold functionalised with 1,3,5- triphenylethylnylbenzene, 

modified with positively charged ammonium groups for electrostatic heparin binding 

and boronic acids which have high affinity for sugar moieties.78 This did not require any 

indicator for sensing as a result of its built-in fluorescence (See Figure 2.8). Upon 

addition of heparin to the receptor the fluorescence emission was quenched, an effect 

which was then fully reversed by the addition of protamine. Importantly, this detection 

method was found to work in both human and equine serum making this system 

potentially applicable as a diagnostic tool for monitoring heparin concentrations in the 

clinic.  

 

Figure 2.8: Structure of the tripodal ammonium and boronic acid functionalised 

heparin receptor.78 

 

 In 2007, Wang and Chang discovered two benzimidazolium dyes (Heparin Orange 

and Heparin Blue, See Figure 2.9) using a diversity oriented fluorescence library 

approach. 79 Unlike the thionine dye family or Anslyn’s heparin sensors which are 
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switch-off sensors, Heparin Orange and Heparin Blue are switch-on sensors (Figure 

2.10). Compared with switch-off sensors, the spectroscopic signal increases from zero 

upon heparin binding. As such, switch-on sensors carry the advantage of even easier 

detection. 

 

Figure 2.9 Structures of heparin chemosensors Heparin Orange and Heparin Blue.79 

 

 

Figure 2.10: Heparin Orange (10 μM, Top) and Heparin Blue (10 μM, Bottom) with 

indicated concentrations of UFH and LMWH in 10 μM, HEPES buffer (pH = 7.4) in a 

96-well plate under 365 nm UV lamp light. 

 

Both fluorescent dyes were tested in various conditions (biological anionic 

analytes, proteins, pH differences) and high selectivity for heparin were confirmed with 

a detection range in HEPES buffer from 0.1 to 10 μM. Both dyes were able to respond 

to clinically relevant concentrations of heparin in the presence of 20% human plasma.  

 

In 2013, Bromfield et al. reported the use of Mallard Blue (Mal-B), which is a 
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high-affinity selective heparin sensor that operates in highly competitive media.80 

 

Mallard Blue 

  

 Unlike most heparin sensors, Mal-B only required two synthetic steps from 

commercial starting materials with 29% overall yield (see Figure 4.1). The Mal-B - 

heparin interaction was reported to be highly tolerant of both electrolyte and buffer, as 

well as operating in human serum and horse serum. Moreover, it was reported that 

Mal-B can selectively bind with heparin over chondroitin sulfate and hyaluronic acid, 

which are potential glycosaminoglycan competitors for binding. 

 

 

Figure 4.1: Synthetic scheme for Mal-B (MalB, 1) along with the UV−visible absorption 

band at 615 nm (25 μM, photo) before (solid line) and after (dashed line) binding to 

heparin.80 

 

2.1.2.2 Nanoparticle Sensors 

 There is growing interest in using nanoparticle approaches, particularly gold 

nanoparticles (AuNPs), to heparin sensing. Li and Cao functionalized AuNPs with 

cationic cysteamine groups and were able to observe an absorbance change at 670 nm 

as the AuNPs aggregated along the heparin chain with a detection limit of 0.1 μg mL-1 

in the presence of 1% human serum.81 Vasimalai and John reported a folic acid capped 
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gold nanoparticles (FA-AuNPs) as fluorophore for determination of protamine and 

heparin.82 The FA-AuNPs exhibit an emission maximum at 780 nm when excited at 510 

nm. The emission intensity decreased at 780 nm upon the addition of protamine via 

electrostatic interaction and then increased upon the addition of heparin due to 

binding with heparin thus freeing up the FA-AuNPs. The lowest detection limits were 

found to be 4.8 ng mL-1 for protamine and 12.6 ng mL-1 for heparin in the presence of 

1000-fold concentration of major interferences such as Na+, K+, Ca2+, etc. This system 

was tested with human blood serum and a good agreement was obtained between 

spiked and measured protamine and heparin samples. In other work, Fu et al. 

monitored the change in surface plasmon resonance signals as citrate-capped AuNPs 

aggregated on a graphene oxide (GO) surface, with protamine as a bridge between the 

GO and the AuNPs (Figure 2.11).83 A blue-to-red’ colour shift was observed upon the 

addition of heparin as protamine found preferential electrostatic interactions with it, 

which lead to AuNPs being deaggregated away from the GO surface. This system could 

detect heparin in fetal bovine serum samples at 1.7 ng mL−1 with a linear range of 

0–0.8 μg mL−1. 

 

 

Figure 2.11: GO-AuNPs sensing system from Fu et al., figured adapted from reference83. 
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2.1.2.3 Ratiometic Sensors 

Ratiometric sensing involves monitoring spectroscopic changes at two 

wavelengths to provide internal calibration of the system: a key advantage over a single 

wavelength approach which requires external calibration. A ratiometric outcome can 

either be achieved using a single component or multi component methodlogy. Pu et al. 

developed a range of versatile conjugated polyelectrolyte structures appended onto a 

polyfluorene backbone, able to respond to heparin either in a switch-on, direct 

colorimetric or ratiometric fashion as a result of aggregation. Furthermore, the colour 

change upon heparin binding in 2 mM PBS was so vivid that it could be observed by the 

naked eye (Figure 2.12).84  

 

 

 

Figure 2.12: (Left) A polyfluorene heparin sensing derivative from Pu et al.; (Right) 

photoluminescence (PL) spectra of polyfluorene heparin sensing derivative at 60μM in 

2 mM PBS at pH 7.4 in the  presence  of  heparin  with  concentrations  ranging  

from  0  to  50 μM  at  intervals  of  2 μM  (excitation  at  365  nm), figure 

adapted from reference84 . 

 

 Shi et al. reported a phosphorescent conjugated polyelectrolyte (PCPE) containing 

an Ir(III) complex which was able to selectively respond to heparin in a ratiometric 

manner both in aqueous solution and in the presence of serum with quantification 

ranges of 0–70 μM and 0–5 μM, respectively.85 PCPEs had blue fluorescence in 

aqueous solutions,and on adding heparin, the electrostatic interaction between them 

improved the energy transfer between the polyfluorene units and the Ir(III) complex 
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and the result also lights up the red signal for effective naked-eye sensing. 

 

Figure 2.13: (Left) A phosphorescent conjugated polyelectrolyte structure from Zhao, 

Liu and Huang. (Right) PL spectra in HEPES buffer with addition of heparin from 0 to 

70μM upon excitation at 380 nm. Inset: emission color changes of solution under 

hand-held UV-lamp excited at 365 nm.85 

 

2.1.2.4 Pyrene-derived Heparin Sensor 

 Pyrene is a useful fluorophore for ratiometric sensors, as it can form an excimer 

when excited-state and ground-state molecules are brought into close proximity.86, 87 To 

exemplify this, Zhang et al. reported a bis-pyrene-based pH-dependent 

conformationally  responsive compound. It exists in an unstacked conformation 

under acidic conditions (low pH) due to the electrostatic repulsion of protonated 

nitrogen atoms with purple–blue monomer fluorescence at 370–420 nm when excited 

at 363 nm. Under basic conditions (high pH), however, it self-assembled in a stacked 

conformation owing to – interactions in aqueous solution with a new broad excimer 

emission in blue–green at 460–540 nm (Figure 2.14).88 

 

Figure 2.14: Chemical structures of bis-pyrene and conformational changes from 

stacked to unstacked conformations in aqueous solution under basic and acidic 
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conditions by Zhang et al., figure adapted from reference88. 

 

 The first pyrene-based heparin sensor PQ (Figure 2.15) was reported by Zeng et 

al.89 This was a quinine derivative bearing a pyrenyl group as a fluorophore which 

mainly shows monomer-like emission at 376 nm in buffer. Upon addition of heparin, 

excimer emission at 489 nm developed while the monomer emission at 376 nm 

decreased concomitantly. The sensor exhibited good selectivity and sensitivity for 

heparin over other biological anions, even with highly charged ones. The sensor was 

also tested in the presence of diluted bovine serum albumin (BSA) with heparin and 

overcame the background fluorescence of blood. However, the assay required addition 

of a co-solvent ethanol to perform in both buffer and serum. This is probably a result of 

the relatively low charge of the sensor limiting the binding ability.  

 

Figure 2.15: Structure of PQ 

 

In 2011, Dai et al. reported a ratiometric fluorescence sensor based on a dual 

quaternary ammonium 1,4-diazobicyclo(2,2,2)octane (DABCO) derivative with a pyrene 

group attached.90 They proposed that the dual positively charged DABCO unit can 

effectively form electrostatic interactions with the negatively charged heparin and 

bring two molecules of sensor close to one saccharide ring. It was argued that the long 

hydrophobic chain may help allow the directional alignment of the sensor, resulting in 

the formation of a dimer to give excimer emission (Scheme 2.1). Again, the assay 

required addition of co-solvent (ethanol) to perform in both buffer and serum, 

suggesting relatively weak binding interactions. 
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Scheme 2.1: Structure of ratiometric fluorescence sensor and the schematic illustration 

of heparin detection developed by Dai et al.90 

 

 Very recently, while this work was in progress, Kim et al. reported a peptidyl 

fluorescent chemosensor Py12 (Figure 2.16).91 Py12 showed a sensitive ratiometric 

response to heparin over a wide pH range (1.5 ≤ pH ≤ 11.5) and exhibited very high 

selectivity for heparin compared to other biological competitors, such as hyaluronic 

acid and chondroitin sulphate, with a detection limit of ca. 30 pM in aqueous buffer 

solutions containing 5% human plasma for heparin. Clearly this sensor is highly 

effective but is also quite structurally complex and will have relatively high cost. 

 

Figure 2.16: Structure of Py12. 
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2.1.3 Aim 

It is worth noting that a number of sensors which report binding ‘in serum’ 

actually achieve this by adding a small amount of heparinised serum to the sensor in 

buffer – in the assay itself, levels of serum are relatively low (<10%). Alternatively they 

employ co- solvent in order to reduce competition and strengthen relatively low 

affinity binding events. The development of robust, ratiometric dual-wavelength 

heparin sensors which operate in highly-competitive media therefore remains a 

desirable goal. 

 

Self-assembled multivalency (SAMul), in which self-assembly (via non-covalent 

interactions) is used to organise the multiple binding sites, which then show 

high-affinity binding to the target was described in Chapter 1. Pyrene can act as a 

fluorescent unit capable of detecting heparin in a ratiometric manner, and it was 

realised that it can also provide a driving force for self-assembly of the system. As such, 

the pyrene sensing unit may mediate assembly of the ligand into a nanostructure 

capable of very high-affinity multivalent binding and sensing. It was reasoned that it 

would be of interest to study this two-in-one approach to high-affinity binding and 

ratiometric sensing in highly competitive media.  

 

 The aim of this chapter is to develop heparin sensors and explore the role of 

self-assembled multivalency (SAMul).  

 

With this goal in mind we targeted the synthesis of SAMul pyrene derivatives 

Py-G1 and non-SAMul pyrene derivatives Py-DAPMA. Both of these compounds contain 

a pyrene unit and equivalent ligands but predicted that only Py-G1 would self-assemble 

into multivalent arrays prior to heparin binding. This was reasoned because of the 

lower flexibility of the Py-DAPMA and also its smaller hydrophilic unit compared with 

Py-G1 which will change the hydrophilic-lipophilic balance (HLB) and modifly the 

assembly preference.92  As such we reasoned that we could probe the differential 

effects of self-assembly on hepain binding and sensing. 
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Py-G1 

 

Py-DAPMA 

 

 

2.2 Effect of SAMul in Heparin Sensing 

2.2.1 Synthesis of Py-G1 and Py-DAPMA 

Py-G1 is an analogue of C22-G1, which was first reported by Rodrigo et al. as a 

self-assembling dendron for heparin binding (Figure 2.17).93 C22-G1 contains peripheral 

amines that are protonated at physiological pH, allowing highly effective electrostatic 

binding to polyanionic heparin. These amines are supported on the degradable, 

biocompatible scaffold first introduced by Hult, Fréchet, and co-workers.94-98 The 

straight-chain alkane located at the focal point of the structure act as hydrophobic unit 

driving the self-assembly of the ligands into a larger nanoscale architecture in aqueous 

media as a consequence of the hydrophobic effect. C22-G1 was reported to be a 

significantly more effective heparin binder than protamine in the presence of 

electrolyte.93 However, it was reported later that the performance in serum was more 

disrupted than protamine due to partial disassembly of the multivalent array.43 
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Figure 2.17: Structure of C22-G1 (top) and Py-G1 (bottom). 

 

Py-G1 was designed in this project, replacing the alkyl chain with a pyrene unit. 

We hoped this would introduce inherit sensing ability at the focal point. At the same 

time, we reasoned that the - interactions of the pyrene units may allow 

self-assembly and also help to further stabilise the self-assembled structure in highly 

competitive media such as serum. 

 

Compound Py-G1 required a new synthetic approach in order to attach the focal 

point unit. The Fréchet dendron scaffold was synthesized using the previously 

described methodology.97 The 1,3 diol moiety of bis-MPA was protected to afford 

acetonide group 1 by reaction of bis-MPA with 2,2-dimethoxypropane and a catalytic 

amount of p-toluenesulfonic acid (TsOH) in acetone.95 The product was then 

self-coupled to itself in dichloromethane using N,N'-dicyclohexylcarbodiimide (DCC). 

The resulting product 2 was reacted with propargyl alcohol, leading to the 

incorporation of an alkyne group appropriate for click chemistry, this reaction gave an 

excellent yield of 3.99 Compound 3 was then deprotected with conc. H2SO4 in MeOH to 

remove the acetonide group and result in the diol, giving 4. Compound 4 was then 

reacted using p-nitrophenyl-chloroformate methodology to yield activated compound 

5. The N,N-di-(3-aminopropyl)-N-methylamine (DAPMA) surface ligands, with 

N-tert-butoxycarbonyl (Boc) protecting groups 6 produced by mono-boc protection of 

DAPMA, were then coupled to the activated surface groups to yield compound 7. 
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Scheme 2.2: Synthesis of alkyne-functionalised dendron, 7, based on previously 

published method for C22-G1.91  

 

The procedure reported by Saha et al.100 to synthesise an azide-functionalized 

pyrene suitable for click chemistry was then followed (Scheme 2.3). 

1-Pyrenecarboxaldehyde was reduced to alcohol 8 using sodium borohydride. 

PBr3-mediated bromination replaced the alcohol with a bromine to give 9. Finally, a 

nucleophilic substitution with azide in DMF gave target compound 10 in a excellent 

overall yield of 87%. 
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Scheme 2.3: Synthesis route of azide-functionalised pyrene 10 

 

Azide 10 was then attached via click chemistry methodology to 

alkyne-functionalised dendron, 7, using the same method reported for the Rodrigo 

synthesis of C22-G1 (Scheme 2.4). The ‘click’ chemistry reaction is a copper (I) catalysed 

modification of the Huisgen 1,3-dipolar cycloaddition101 developed by Meldal et al. in 

2002.102 The reaction is generally high yielding and tolerant of a wide range of 

substrates and reaction conditions.103-105 Since its initial report, the methodology has 

been applied to the synthesis of many dendritic systems.106-108  

 

 

Scheme 2.4: Synthesis route of 11. 

 

 Unfortunately, in this case, only a 3% yield of compound 11 was obtained. This is 

possibly a result of interaction between the amine group of compound 7 and the 

copper catalyst. Also, since the compound will decompose in water as a result of the 

ester linkage between the head group and the azide linker and the procedure for the 
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"click" chemistry used water as medium, we reasoned that alternative "click" chemistry 

reaction conditions may improved yield. Meldal and Tornøe discussed the possibilities 

for coordination and delivery of azide to alkyne during the transition state of the 

Cu-Catalyzed azide-alkyne cycloaddition reaction ("click chemistry") as shown in Figure 

2.18.109 From the Figure, we can see at the intermediate 4 the pyrene (as R2) may also 

become a steric hindrance increasing the activation energy and slowing the reaction 

rate.  

 

Based on the review by Meldal and Tornøe,109 DMF can be used as solvent for 

click chemistry110 which may overcome the problem that the compound will 

decompose in water and allow the reaction mixture to be left longer and overcome the 

steric hindrance. 

 

Figure 2.18: Plausible mechanisms for the Cu(I) catalyzed reaction between azides and 

alkynes.109 

 

 Compound 11 was obtained with a much-improved 72 % yield (compared with 3%) 

by changing the solvent from degassed THF/H2O to degassed DMF stirring under N2 for 

72 hours. Comparing the 1H NMR speatra of compound 11 (Figure 2.19) with that of its 

synthetic precursor, 7, the spectrum for compound 11 has a new peak observed at 7.45 



64 

 

ppm corresponding to the CH of the triazole. Moreover, the CH2 adjacent to the 

propyne group for compound 7 at 4.68 ppm now moves to 5.11 ppm for compound 11 

corresponding to the CH adjacent to the triazole in the hydrophilic part of the dendron, 

due to the alkyne functionality of 7 being converted to an aromatic ring in the 

formation of the triazole of 11. 

 

Figure 2.19: 1H NMR spectra of Compound 11. 

 

Compound Py-G1 was then obtained by Boc-deprotection using HCl gas bubbled 

thought MeOH (Scheme 2.5). The peak corresponding to the Boc group protons was no 

longer observed in the 1H NMR spectrum for compounds Py-G1 (Figure 2.20), 

indicating that a successful Boc deprotection took place. Additional product 

confirmation was acquired by mass spectrometry and all other analytical methods (see 

Experimental section). 
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Scheme 2.5: Synthesis of Py-G1. 

 

Figure 2.20: 1H NMR spectra of Py-G1 
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 To synthesise Py-DAPMA compound, 6 was coupled with 1-pyrenecarboxylic acid 

using TBTU and excess Et3N in DCM and then the Boc protecting groups were removed 

using HCl gas bubbled though MeOH (Scheme 2.6). The peak corresponding to the Boc 

group protons was not observed in the 1H NMR spectrum for compound Py-DAMPA 

(Figure 2.21), indicating that successful Boc deprotection took place. Additional 

product confirmation was acquired by mass spectrometry and all other analytical 

methods. This synthesis worked in good yield and gave the desired target compound 

quickly and simply. 

 

Scheme 2.6: Synthesis of Py-DAMPA 
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Figure 2.21: 1H NMR spectra of Py-DAMPA 

 

2.2.2 Critical Aggregation Concentration (CAC) 

To probe the self-assembly of Py-G1, a Nile Red assay was performed, in which the 

solubilization of the hydrophobic dye, as monitored by fluorescence spectroscopy, acts 

as a probe for the minimum concentration at which self-assembly can take place.111 

Before the target compound self-assembly takes place, the dye is free in the solution 

and hence has a quenched fluorescence. When self-assembly takes place, a 

hydrophobic core is generated into which the dye can diffuse and therefore, as a result, 

there is no longer quenching of the fluorescence. However, studying Py-G1 using the 

Nile Red assay did not yield a result like C22-G1.93 We suggest that this may be due to 

the pyrene ring quenching the fluorescence of the encapsulated Nile Red when Py-G1 

self-assembled.  

 

We therefore developed an alternative approach to determine the CAC value. This 

assay method used the unique optical properties of the pyrene unit, which can report  

directly on its aggregation state, as if it is aggregated, when pyrene is excited at 363 nm, 
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it exhibits an excimer emission between 460 -540 nm.88 It was found that when Py-G1 

was excited at 363 nm, a emission band with max emission at 495 nm was observed 

and this band could therefore be monitored to determine the CAC. This band is 

concentration dependent because excimer formation is only favoured in the interior of 

the micelle when pyrene groups are close together in a self-assembled environment. 

We assumed that the discontinuity in the excimer emission bond plot represents the 

concentration at which self-assembly is initiated i.e. CAC. The CAC of Py-G1 was found 

to be 18.6 ± 1.3 μM in 0.01M PBS buffer (Figure 2.22). 

 

 

Figure 2.22: Fluorescence intensity at 495 nm of Py-G1 at increasing concentration in 

aqueous PBS Buffer (0.01 mM). 

 

 The same method was then applied to Py-DAPMA to discover the CAC, however, 

in this case, there was no emission band at 495 nm when this compound was excited at 

363 nm (Figure 2.23). This suggested that Py-DAPMA did not self-assemble at 

concentrations below 200 μM. Having two potential sensors, one of which 

self-assembles at concentration above ca. 20 μM while the other one does not - of 

great interest for further study. 
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Figure 2.23: Fluorescence intensity of Py-DAPMA against wavelength (450 nm to 

550 NM) as recorded for increasing concentrations of Py-DAPMA in PBS Buffer 

(0.01 mM). 

 

2.2.3 Transmission Electron Microscopy (TEM)  

The self-assembled nanostructures formed by these compounds were visualised 

using transmission electron microscopy (TEM). The samples were first prepared in 

clean water at concentrations of 1 mg/mL and then deposited as solution-phase 

aliquots onto a formvar grid, staining with uranyl acetate and drying in air. Py-G1 

appeared to form relatively polydisperse spherical assemblies with approximate 

diameters ranging from ca. 10 to 40 nm (Figure 2.24) – given the (much smaller) 

molecular size (2-3 nm), it is suggested that these could be vesicular objects or clusters 

of micellar assemblies which aggregate on drying. Under these conditions, Py-DAPMA 

also appeared to form relatively polydisperse spherical assemblies with approximate 

diameters ranging from ca. 2 to 40 nm when visualised by TEM (Figure 2.24). 

Py-DAPMA was found not to self-assemble in the previous section when attempting to 

determine the CAC value. However, TEM images are determined at millimolar 
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concentrations (1 mg/mL) which are much higher than micromolar concentrations 

tested for the CAC value using fluorescence spectroscopy. It is these latter micromolar 

conditions which are relevant for the binding assays described in detail below. Hence 

we suggest that Py-DAPMA may self-assemble at high concentrations and clearly has 

some potential for self-assembly but not in the micromolar regime.  

 

Figure 2.24: TEM images of Py-DAPMA (left) and Py-G1 (right) in the absence (top) and 

presence of heparin (bottom). 

 

2.2.4 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) investigates self-assembled objects in solution 

rather than, like TEM, deposited on a surface in the solid like phase. The DLS data for 

Py-G1 and Py-DAPMA are summarised in Table 2.1. Py-G1 supported the formation of 

relatively polydisperse assembled nanostructures, albeit with somewhat larger 

diameters (18.5 ± 21.9 nm) (volume distribution). The large error associated was due to 

the DLS software counting a second peak into single peak (Figure 2.25) and can be 

considered to be somewhat of an artefact. Inspection of the volume distribution data 

actually suggests a diameter of ca. 9 nm. For Py-DAPMA, again self-assembled 

nanostructures was observed with diameters of 15.4 ± 4.5 nm (Figure 2.26). In cases 

where the quality report is flagged, this is a result of sample polydisperisity making 
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cumulant fit error high – this means that the ‘averaged’ results for the whole trace 

presented in red should be disregarded – the results listed for the individual peaks are 

still valid. Similarly to the TEM imaging, we propose that under these millimolar 

condition self-assembly of both Py-G1 and Py-DAPMA is able to occur. The zeta 

potentials for both Py-G1 and Py-DAPMA were positive (+27.9 ± 1.4 mV for Py-G1, 

+15.6 ± 2.2 mV for Py-DAPMA). This is a result of protonation of the DAPMA ligands at 

physiological pH. As such, these self-assembled cationic nanostructures would be 

expected to show high affinity towards polyanionic heparin. The higher zeta potential 

of Py-G1 may due to the fact that it has two DAPMA ligands rather than just one. 

 

Sample in 10 mM Tris HCl,  

NaCl (150 mM) 

Size (d.nm) Zeta Potential 

(mV) 

PDI 

Py-G1 14.2 ± 28.2 27.9 ± 1.4 0.51 

Py-DAPMA 12.3 ± 3.7 15.6 ± 2.2 0.57 

Table 2.1: DLS data for Py-G1 and Py-DAPMA. 

 

Figure 2.25: DLS data for Py-G1 measured at 1 mg/mL. 
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Figure 2.26: DLS data for Py-DAPMA measured at 1 mg/mL 

 

2.2.5 Heparin sensing in 10 mM Tris HCl with 150 mM NaCl buffer 

Having established the self-assembly characteristics of Py-G1 (micromolar) and 

Py-DAPMA (millmolar), we went on to assay their ability to bind to heparin. Hence, we 

were interested to determine whether there was any difference between them in 

terms of sensing ability induced by the enhanced ability of Py-G1 to self-assemble in 

aqueous solution. Both Py-G1 and Py-DAPMA were investigated. The interaction of 

both binders with heparin was investigated by titrating heparin (in buffer) into a 

buffered solution of the binder  

 

Since the therapeutic dosing level of heparin is 2 – 8 U mL-1 (17 to 67 μM) in 

cardiovascular surgery and 0.2 – 1.2 U mL-1 (1.7 to 10 μM) for postoperative and 

long-term therapy,112 the heparin assay range was set from 0 to 40 μM. The 

concentration of Py-G1 was set to be 30 μM, above the CAC to ensure self-assembly 

and Py-DAPMA was set to be 60 μM, for identical comparison with Py-G1 in terms of 

charge ratio (Py-G1 = 4 +ve, Py-DAPMA = 2 +ve). Experiments were preformed in 

triplicate. 

 



73 

 

Initiallly the UV-Vis spectrum was measured to characterise the system ( ) prior to 

using florescence spectroscopy to monitor binding. 

 

Figure 2.27: UV-Vis Absorption spectra of Py-G1 (0.5 mg/mL Tris Hcl with 150 mM 

NaCl) 

 

In the absence of heparin, self-assembling Py-G1 shows characteristic monomer 

emission with peaks at 383 and 400 nm with small, but observable, excimer emission 

at 495 nm. Upon addition of heparin, the fluorescence emission intensity at 383 nm 

decreased while the emission band centred at 495 nm increased significantly until it 

became the dominant feature of the spectrum (Figure 2.29). The emission band at 495 

nm shows a large enhancement with increasing concentration of heparin and can be 

attributed to the enhanced formation of pyrene excimers induced by heparin binding. 

Figure 2.28 (inset) shows a photograph of Py-G1 when heparin is absent (A) or present 

(B). Clearly, the strong “switch-on” excimer emission can even be seen using the naked 

eye when the sample is under UV irradiation, as the fluorescence changes colour (and 

intensity) to be somewhat more ‘green’. Figure 2.29 shows the emission intensity data 

extracted at  383 nm (monomer) and 495 nm (excimer). This clearly demonstrates the 

way in which excimer emission becomes dominant, once heparin has bound, and 

provides the basic of the sensing event. We define this as a self-assembled 

multivalency (SAMul) sensing mechanism. 
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Figure 2.28: Fluorescence spectra of Py-G1 on addition of heparin in buffer. The inset 

shows the photographs of a solution of Py-G1 without heparin (A) and with heparin 

(B). 

 

Figure 2.29: Fluorescence intensities extracted at 383 nm and 495 nm for the titration 

of heparin into Py-G1 in buffer. 

 

 On titrating Py-DAPMA with heparin under the same conditions as Py-G1, the 

fluorescence emission at 395 nm decreased in intensity but the band at 495 nm was 

effectively unchanged (Figure 2.31). There was also no ‘naked eye’ change in the 

fluorescence emission (Figure 2.30). This suggests that the large increase in excimer 

emission intensity observed for Py-G1 is associated with its self-assembly, and its 

subsequent reinforcement as a result of multivalent binding to the heparin. The 
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non-self-assembling system Py-DAPMA can sense heparin as a result of loss of intensity 

at 395 nm, but the system is unable to switch on an excimer-type response under these 

conditions. As such, the fluorescence sensing mechanism is clearly significantly 

different to that of the SAMul system (Py-G1). 

 

 

Figure 2.30: Fluorescence spectra of Py-DAPMA on addition of heparin in buffer. The 

inset shows the photographs of a solution of Py-DAPMA without heparin (A) and with 

heparin (B). 
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Figure 2.31: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA in buffer. 

 

By treating the data extracted at 383 nm and 495 nm, these compounds can be 

demonstrated to sense heparin in buffer solution through a ratiometric 

(dual-wavelength) approach. The emission intensity ratio, I495/I383, increases as the 

concentration of heparin increases. In order to obtain a linear plot, log(I495/I383) was 

plotted against heparin concentration (Figure 2.32). Comparing the ratiometric 

response for Py-G1 and Py-DAPMA, it is evident that Py-G1 shows the much larger 

response. This is a result of the switching on of excimer emission by self-assembled 

multivalent binding leading to a much larger increase in I495 and hence giving an order 

of magnitude difference in the ratio log(I495/I383) for Py-G1. We suggest that this SAMul 

mode of sensing is novel and has not been previously reported – it may be of general 
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use for quite a wide range of potential analytes beyond the scope of this heparin 

binding project. The difference between SAMul and non-SAMul sensing is clear under 

these conditions. It is evident that the SAMul system (Py-G1) shows better sensing of 

heparin than the non-SAMul system (Py-DAPMA). In particular there is an effective 

high sensory response to heparin across the clinically important concentration (1 to 10 

μM). In summary, Py-G1 shows a significant advantage in terms of the dynamic range 

of sensory response due to the pre-formed SAMul nanostructures.  

 

 

Figure 2.32: The changes of the fluorescence intensity ratio of Py-G1 and Py-DAPMA 

(log(I495/I383)) plotted against increasing heparin concentration in 10 mM Tris HCl buffer 

with 150mM NaCl buffer. 

 

 Binding constants were not determined for these binding events. Heparin is a 

disperse polyanion which has different binding sites along the polymer chain. As such, 

as binding processes and the heparin serves were fully saturated the effective binding 

constant will change for two reasons: 

 (i) Different regions of heparin have different binding affinities. 

 (ii) as heparin neutralization processes the binding constant will decrease. 

 

 As such modelling the data to a single binding constant is challerging and 

potentially misleading and it is preferred to consider instead the amounts of binder 

required to patially or fully saturated the of heparin chain as the best indicator of 

-1.6 

-1.4 

-1.2 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0 10 20 30 40 50 

Lo
g 

I 4
9

5
/I

3
8

3
 

[Heparin] μM 

Py-G1 

Py-DAPMA 



78 

 

binding affility. This also avoids potentical problems which ay arise from different or 

poorly defined binding storichiametries. 

 

 It is reasoned that these data are as surrogate for binding constants with greater 

applicatility and without the assumption of a specific, potentially incorrect binding 

model. 

  

2.2.6 Heparin sensing in 12.5% serum with 20 mM Tris HCl 

In order to monitor the effectiveness of these sensors in more clinically relevant 

conditions we performed a titration study in 12.5% serum with 20 mM Tris HCl. This is 

typical of a sample of patient blood which has had its red blood cells removed by 

ultrafiltration and is then added into a sample of the sensor in buffered solution. 

Clearly 12.5% serum is more competitive than the buffered conditions described above 

and we wanted to determine the impact of this on the heparin sensing capacity. Both 

Py-G1 and Py-DAPMA were therefore tested for binding to heparin under these 

conditions. The interaction of both were investigated by titrating heparin in 12.5% 

serum with 20 mM Tris HCl into a solution of the binder in 12.5% serum with 20 mM 

Tris HCl. 

 

In the absence of heparin, self-assembling Py-G1 shows a characteristic monomer 

emission with peaks at 383 and 400 nm with a small, but observable, excimer emission 

at 495 nm. Upon addition of heparin, the fluorescence emission intensity at 395 nm 

decreased while the emission band centred at 495 nm increased (Figure 2.33). 

However the increase in excimer band was significantly less than that observed in 

buffer alone (i.e. in absence of serum). Indeed the excimer band, which in buffer, never 

became the dominant feature of the emission spectrum in 12.5% serum. This would 

therefore suggest that serum disrupts the full self-assembled multivalency of Py-G1 as 

previously observed for some related systems.43, 93 C22-G1 was reported to be a 

significantly more effective heparin binder than protamine in the presence of 

electrolyte, but in serum was not as good as protamine.43 We suggest that the 

presence in serum of albumin proteins, which are well-known to bind to hydrophobic 
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fragments, can disrupt the sell-assembly event and hence act in a competitive way to 

counteract the SAMul sensing mechanism observed in buffer. 

 

 

Figure 2.33: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-G1 in 12.5% serum with 20 mM Tris HCl. 

 

In 12.5% serum, in the absence of heparin, like in buffer, self-assembling 

Py-DAPMA shows a characteristic monomer emission with peaks at 383 and 400 nm 

without significant excimer emission at 495 nm. Upon addition of heparin, the 

fluorescence emission intensity at 395 nm decreased while the emission band centred 

at 495 nm increased slightly (Figure 2.34).  Clearly there is more of a response in 

12.5% serum for this compound then there was in buffer. This may surprisingly suggest 

that the pyrene is somewhat better able to detect the presence of heparin under these 

conditions.  
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Figure 2.34: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA in 12.5% serum with 20 mM Tris HCl. 

 

 Since serum disrupts the full self-assembled multivalency of Py-G1, this 

compound no longer shows a significant advantage for sensing heparin over Py-DAPMA. 

Indeed Both Py-G1 and Py-DAPMA showed similar responses (Figure 2.35), with a 

modest increase in the intensity at 495 nm for both Py-G1 (Figure 2.33) and Py-DAPMA 

(Figure 2.34). This can be explained by a model in which these non-assembled sensors 

bind to heparin, subsequently bringing pyrene units into closer proximity and 

encouraging a degree of formation of an excimer band. This reflects some less-ordered 

self-assembly induced on the heparin backbone, rather than full self-assembled 

multivalency prior to, and reinforced by, heparin binding of the  heparin sensors. 

However, both Py-G1 and Py-DAPMA were effective sensors across the clinically 

relevant concentration range of 1 to 10 μM in serum. 
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Figure 2.35: The changes of the fluorescence intensity ratio of Py-G1 and Py-DAPMA 

(log(I495/I383)) plotted against increasing heparin concentration in 12.5% serum with 20 

mM Tris HCl. 

 

2.2.7 Heparin sensing in 100% serum 

 After testing Py-G1 and Py-DAPMA in 12.5% serum, the ability of these sensors to 

detect heparin in 100% serum was then examined. Unlike in most studies of heparin 

sensing with pyrene derivatives,89-91, 113, 114 all components were dissolved in 100% 

serum. This was to simulate the condition of an in-line sensor which must detect 

heparin with only very limited sample treatment (i.e. with ultrafiltration to remove red 

blood cells but no dilution steps). In 100% serum, for Py-G1, both monomer emission 

with peaks at 383 and 400 nm and excimer emission with a peak at 495 nm did not 

change with increasing concentrations of heparin (Figure 2.36). This same was also 

observed for Py-DAPMA (Figure 2.37). 
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Figure 2.36: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-G1 in 100% serum. 
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Figure 2.37: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA in 100% serum. 

 

 From Figure 2.38, we can see there were no observable changes in the log(I495/I383) 

plot in either compound. At this point, it could be either the background competition 

by albumin proteins (etc.) binding too strongly to all of the hydrophobic parts and 

hence preventing any excimer from being established and limiting heparin binding or 

the fluorescence scattering from serum itself meaning we can’t detect anything. 

Therefore, we performed the test with elevated concentrations of both the sensors and 

heparin in order to determine the impact of concentration on the sensing array in 

these highly competitive conditions. 
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Figure 2.38: The changes of the fluorescence intensity ratio of Py-G1 and Py-DAPMA 

(log(I495/I383)) plotted against increasing heparin concentration in 100% serum. 

 

2.2.8 Heparin sensing in 10 mM Tris HCl with 150 mM NaCl buffer at 

elevated concentrations. 

 Since in 100% serum, no response to heparin was observed, we decided to probe 

these sensors at ca. seven times elevated concentrations (Py-G1 213μM, Py-DAPMA 

426μM). This may also provide the answer whether it was background competition by 

albumin proteins or fluorescence scattering by serum itself that limied detection. Once 

again, we performed the assay in buffer, 12.5% serum and 100% serum. 

  

Under these elevated concentration conditions in buffer, Py-G1 showed a 

characteristic monomer emission with peaks at 383 and 400 nm with a small, but 

observable, excimer emission at 495 nm. Upon addition of heparin, the fluorescence 

emission intensity at 395 nm decreased while the emission band centred at 495 nm 

increased significantly (Figure 2.39). This was attributed to the formation of pyrene 

excimers induced by heparin binding. Strong “switch-on” excimer emission could be 

seen using the naked eye when the sample was under UV irradiation.  
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Figure 2.39: Fluorescence spectra of Py-G1 (213μM) on addition of heparin. The inset 

shows the photographs of a solution of Py-G1 without heparin (A) and with heparin (B) 

in buffer. 

 

 When looking much more closely at the change of intensity at 495 nm during the 

titration, it was clear that it initially decreased first and then increased back again. The 

initial drop in intensity may suggest that the self-assembled system was disrupted 

when a small amount of heparin was added. However, when more heparin was added 

into the system, this gave rise to additional aggregation which caused a large increase 

in intensity (SAMul sensing).  

 

 Overall, however, these observations are in-line with those in 100% buffer at 

lower concentrations.  
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Figure 2.40: Fluorescence intensities extracted at 383 nm and 495 nm for the titration 

of heparin into Py-G1 (213μM) in buffer. 

 

On titrating Py-DAPMA (426μM) with heparin under the same conditions, 

although the fluorescence emission at 395 nm decreased in intensity, the band at 495 

nm was relatively unaffected (Figure 2.42) This is the same as what was observed for 

Py-DAPMA at low concentrations in buffer. Clearly, on binding the pyrene groups are 

still not brought into close proximity and no excimer is formed under these conditions. 

However, there was a ‘naked eye’ change in the fluorescence emission when the 

sample is under UV irradiation, as the fluorescence changed colour from somewhat 

more ‘purple’ to ‘green’ primarily due to the loss of the intense monomer emission 

band (Figure 2.41). It is clear therefore that even at elevated concentrations, 

Py-DAPMA remains unable to exhibit a true SAMul response in buffer – while Py-G1 is a 

useful sensor with a clear SAMul sensing mechanism.   
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Figure 2.41: Fluorescence spectra of Py-DAPMA on addition of heparin. The inset 

shows the photographs of a solution of Py-DAPMA without heparin (A) and with 

heparin (B) in buffer. 
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Figure 2.42: Fluorescence intensities extracted at 383 nm (Top)  and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA (426μM) in buffer. 

 

Comparing the ratiometric response for Py-G1 and Py-DAPMA (Figure 2.43), it is 

evident that Py-G1 shows the larger response. This is a result of the very significant 

switching on of excimer emission induced by self-assembled multivalent binding of 

Py-G1 to heparin leading to a much larger increase in I495 and hence giving an order of 

magnitude difference in the ratio log(I495/I383). The difference between SAMul and 

non-SAMul sensing is clear even under these elevated concentration conditions. Both 

sensors showed a linear response to heparin under these assay conditions in 

concentrations from 10-150 μM (Py-DAPMA) and 10-200 μM (Py-G1). Given that 

overall the concentration of DAPMA ligand was the same in each case, the fact that 

Py-G1 has a larger concentration range response than Py-DAPMA would suggest that 

more of the DAPMA ligands can be bound by heparin for Py-G1 than is the case for 

Py-DAPMA. This would suggest that the SAMul approach is a more effective way of 

displaying ligands to ensure they can more effectively interact with heparin polyanions.  
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Figure 2.43: The changes of the fluorescence intensity ratio of Py-G1 and Py-DAPMA 

(log(I495/I383)) plotted against increasing heparin concentration in buffer. 

 

2.2.9 Heparin sensing in 12.5% serum with 20 mM Tris HCl at elevated 

concentrations  

 We then performed this these elevated concentration assay in 12.5 % serum with 

20 mM Tris HCl. This assay conditions were the same as those employed in the lower 

concentration regime.  

 

In the absence of heparin, self-assembling Py-G1 shows a characteristic monomer 

emission, with peaks at 383 and 400 nm with a small, but observable, excimer emission 

at 495 nm. Upon addition of heparin, the fluorescence emission intensity at 395 nm 

decreased while the emission band centred at 495 nm increased slightly (Figure 2.44). 

This would suggest that serum disrupts the full self-assembled multivalency of Py-G1. 

However, unlike when the assay was performed at lower concentrations, in this case 

I495 > I383 once heparin is bound which indicated that increasing the concentration has 

significantly improved the ability of the system to self-assemble and yield excimer 

emission in these more competitive conditions, once heparin binding has taken place.  

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

0 100 200 300 400 

Lo
g 

I 4
9

5
/I

3
8

3
 

[Heparin] μM 

Py-G1 

Py-DAPMA 



90 

 

 

 

Figure 2.44: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-G1 in 12.5% serum with 20 mM Tris HCl. 

 

In the absence of heparin, self-assembling Py-DAPMA shows a characteristic 

monomer emission with peaks at 383 and 400 nm. There is also some small amount of 

excimer emission at 495 nm, possibly encouraged by the significantly larger 

concentration supporting some self-assembly. On addition of heparin, the fluorescence 

emission intensity at 395 nm decreased while the emission band centred at 495 nm 

increased (Figure 2.45). We suggest that the increase in intensity at 495 nm was due to 

excimer emission of Py-DAPMA once bound to heparin. As for Py-G1, on binding to 

heparin the excimer peak became larger than the monomer.  
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Figure 2.45: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA (426μM) in 12.5% serum with 20 mM Tris 

HCl. 

 

 Interestingly, both Py-G1 and Py-DAPMA showed similar ratiometic responses 

(Figure 2.46), which would support the view that the presence of serum to some 

extent limits the SAMul sensing response observed for Py-G1 under buffered 

conditions. Nevertheless, for both sensors, log(I495/I383) > 0 in the presence of heparin 

which suggests that after binding to heparin, excimer emission dominates and some 

self-assembly was in operation. This is in contrast to the lower concentration studies in 

which log(I495/I383) remained < 0, indicating that the extent of sensor self-assembly was 

relatively limited. We therefore suggest that at higher concentration, self-assembly is 

now better able to compete against disruptive agents such as albumin proteins.   
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Figure 2.46: The changes of the fluorescence intensity ratio of Py-G1 (213μM) and 

Py-DAPMA (426μM) (log(I495/I383)) plotted against increasing heparin concentration in 

12.5% serum with 20 mM Tris HCl. 

 

2.2.10 Heparin sensing in 100% serum at elevated concentrations 

 We then studied these sensors in the most challenging conditions of 100% serum, 

at elevated concentrations. In 100% serum, monomer emission of Py-G1 with peaks at 

383 and 400 nm decrease and the excimer emission with peak at 495 nm increased 

slightly on addition of heparin (Figure 2.47). This clearly suggested that Py-G1 was able 

to sense heparin in 100% serum, unlike in the low concentration regime. However, it is 

also clear that there is less evidence of SAMul sensing in 100% serum than there was in 

12.5% serum or simple buffered conditions. 
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Figure 2.47: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-G1 (213μM) in 100% serum. 

 

 In 100% serum, monomer emission of Py-DAPMA with peaks at 383 and 400 nm 

decreased and excimer emission with a peak at 495 nm increased slightly in addition of 

heparin (Figure 2.47). The behaviour, was similar to that observed for Py-G1 in 100% 

serum. This would suggest that full SAMul sensing is not occurring, but at elevated 

concentrations both Py-G1 and Py-DAPMA can undergo some self-assembly on binding 

to heparin allowing detection of this polyanion via fluorescent output.   
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Figure 2.48: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-DAPMA (426μM) in 100% serum. 

 

 Once again, considering the ratiometric response, a linear response is observed (in 

this case better for Py-G1 than Py-DAPMA) (Figure 2.49). The dynamic range is less 

than observed in buffer for these compounds, presumably due to competition from 

other binding and fluorescence events in serum. However, it is clear from this assay 

that Py-G1 in spite of losing its large switch-on excimer response in serum, could still 

act as an effective heparin sensor under these elevated concentration conditions. In 

contrast to binding in 12.5% serum, log (I495/I383) only just exceeded 0 for Py-G1 – this 

would suggest that, as expected, there is less self-assembly of the pyrene sensors in 

100% serum than that was in 12.5% serum. However, it suggests that excimers are still 
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favoured for Py-G1 bound to heparin.  

 

The study also indicates the, perhaps surprising, ability of even a very simple 

sensor (Py-DAPMA) to respond to heparin. Synthetically simple sensors have significant 

advantages for potential clinical application. Overall, it is remarkable that a simple 

dication (Py-DAPNA) and tetracation (Py-G1) can respond to heparin polyanions in such 

highly competitive media. It should however be noted that unlike Py-G1, for Py-DAPMA 

log (I495/I383) did not exceed 0 in the presence of heparin, Nevertheless, we propose 

that the amphiphilic ligand design, and the ability of pyrene to assemble after binding 

to heparin, plays a significant role in assisting heparin sensing in 100% serum. 

 

 

Figure 2.49: The changes of the fluorescence intensity ratio of Py-G1 (213μM) and 

Py-DAPMA (426μM) (log(I495/I383)) plotted against increasing heparin concentration in 

100% serum 

 

2.3 Conclusion and future work 

Both Py-DAPMA and Py-G1 can act as effective heparin sensors in competitive 

media using a ratiometric fluorescence sensing approach, which is desirable for a 

clinical setting in terms of detecting this biologically important polyanion.   
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pre-formed nanostructures provides it with a significant advantage in terms of the 

dynamic range of sensory response and its ability to give a naked eye response to 

polyanionic heparin (in comparison to non-assembling Py-DAPMA). We believe this is a 

new mechanism of sensing which may be broadly applicable for a wide range of SAMul 

ligands binding to a wide variety of target analytes in buffer.    

 

In the presence of serum, both ligands can detect heparin ratiometrically with 

similar responses. In each case, a degree of aggregation appears to take place after 

these cations have bound to heparin, which helps mediate the sensing response.  

These sensors, particularly synthetically simple Py-DAPMA, may also have roles to play 

in heparin detection technologies. However, full SAMul sensing is not observed in the 

presence of serum, primarily due to competitive disassembly caused by the presence 

of albumin proteins. This conclusion is supported by the ability of the sensors to be 

effectively detect heparin in 100% serum at elevated concentrations. If the 

self-assembly event could be further reinforced at lower concentrations, this should 

give rise to SAMul sensors which are capable of operating at clinically-relevant 

concentrations in highly competitive conditions – including human serum. 

 

 For future work, binding different polyanions such as chondroitin sulfate, 

hyaluronic acid, siRNA, DNA, etc. and test the selectivity of the SAMul sensors towards 

them. Also, enhancing the stability of the self-assemblies formed in the presence of 

serum and thus enhance the SAMul sensing.  
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Chapter 3 Effect of Chirality on Self-Assembled 

Multivalent (SAMul) Biological Polyanion Binder 

3.1 Introduction 

In Chapter 2, the primary focus was on developing heparin sensors. However, 

there is also an acute need for heparin binders which do not necessarily directly report 

on the heparin binding event. Such systems are potential replacements for the clinical 

agent protamine which has a number of side effects. Furthermore, understanding the 

way in which such systems bind to biologically important polyanionic targets is of 

fundamental importance in terms of molecular recognition of complex biological 

targets.  

 

3.2 Heparin binder 

Many groups have attempted to synthesise alternative heparin rescue agent 

including low molecular weight protamine,60 small molecules such as surfen115 and 

foldamers,116 peptides,117, 118 antibodies119 and lactoferrins.120 

 

Cunsolo et al. reported two polycationic calix[8]arenes (Figure 3.1, left) which are 

capable of binding to heparin in blood.121, 122 A dye displacement assay in conjunction 

with NMR titration data indicated that both compounds were able to bind to heparin 

as effectively, in some cases more effectively, than protamine in solution. It was 

proposed that the flexibility of the scaffold maximized heparin binding as the cationic 

groups had some freedom to optimize their individual interactions with the biopolymer 

(Figure 3.1, right) and an ‘octopus-like’ chelate effect was observed computationally. 

Blood clotting assays revealed some interesting differences between the calix[8]arenes; 

when unfractionated heparin was used, the lysine based system, 1, performed most 

effectively whereas, in the case of low molecular weight heparin the amine derivative, 

2, with a lower overall positive charge, outperformed both the lysine calix[8]arene and 

protamine.121 The same group then successfully grafted the calix[8]arene 1 onto a 

polymer matrix. The system was still able to effectively reverse the effects of heparin in 

blood making it a potential blood filter for the extracorporeal removal of heparin.122 
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Figure 3.1: Structure of polycationic calix[8]arenes (left) and space-filled species 

represents calix[8]arene, stick model represents heparin. Figure adapted from121 

 

With a different application in mind, Toth et.al. employed dendrons, (which are 

branched, well-defined, wedge-like structures)123 with a lipophilic core as potential 

heparin binding and delivery agents (Figure 3.2).124 They found that the lysine 

derivative was much more effective at increasing the activity of heparin, indicated by 

an increased anti-factor Xa activity in rats, whereas the arginine dendron had an 

inhibitory effect. They proposed that the lysine dendron was much more effective at 

releasing its heparin cargo once adsorbed while the arginine derivative acts as a 

relatively effective heparin reversal agent.124  

 

Figure 3.2: Structure of lipophilic lysine and arginine functionalised dendrons.124 

 

In 2006, Rajangam et al. reported a complex lipopeptide (Figure 3.3) capable of 

self-assembling into heparin binding cylindrical micellar nanostructures.125 Structurally, 

it consisted of three lysine and one arginine group as the cationic hydrophilic region of 

the self-assembling lipopeptide, while an n-alkyl chain acted as the hydrophobic region 

and therefore the molecule is amphiphilic and has self-assembly potential. In vivo, the 

nanostructures stimulated the formation of new blood vessels (angiogenesis). 
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Figure 3.3: A self-assembling heparin-binding lipopeptide (top) and Schematic 

representation of heparin-nucleated nanofiber (bottom) from Rajangam et al..125
 

 

In 2011, Rodrigo et al. reported C22-G1 (Figure 3.4, top) as a self-assembling 

dendron for heparin binding.93 C22-G1 contains peripheral amines that are protonated 

at physiological pH, allowing electrostatic binding to polyanionic heparin. These amines 

are supported on the degradable, biocompatible scaffold first introduced by Hult, 

Fréchet, and co-workers.94-98 Straight-chain alkanes act as hydrophobic units located at 

the focal point of the structure, driving the self-assembly of the ligands into a larger 

nanoscale architecture in aqueous media as a consequence of the hydrophobic effect. 

C22-G1 was able to self-assemble in aqueous conditions at concentrations above ca. 4 

μM. TEM Images of dried samples of C22-G1 showed micellar assemblies sized at 

approximately 8.5 (± 1.5) nm in diameter (Figure 3.4, bottom left). TEM also appeared 

to show micelles aligned in an ordered fashion across the polysaccharide surface of 

heparin (Figure 3.4, bottom right). C22-G1 was reported to be a significantly more 

effective heparin binder than protamine in the presence of electrolyte.93 However, it 

was reported later that the performance in serum was not as good as protamine, 

presumably due to disruption of the self-assembly event.43 
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Figure 3.4: Structure of C22-G1 (top), TEM images in absence (bottom left) and 

presence (bottom right) of heparin. 

 

3.3 DNA binder 

 In terms of understanding the fundamentals of polyanion binding, it is of some 

interest and importance to compare the binding of heparin to that of other polyanionic 

targets such as DNA (Deoxyribonucleic acid). DNA, exists in double helical form,12 one 

of the best known self-assembling structures in biological systems. The interest in 

synthetic DNA binders has been driven by research into gene therapy. The treatment of 

disease by the transfer of genetic material into a patient’s cells, was conceptualized in 

1972 by Friedmann and Roblin.126, 127 This started from the development of virus-based 

methods for transforming mammalian cells in the 1960s and the advent of 

recombinant DNA technology in the 1970s which offered the prospect of genetic 

medicines that could compensate for errors in an individual’s DNA sequence associated 

with disease. Even through virus-based methods are effective, in vivo side effects such 

as development of leukaemia,128 severe immune response and even patient death129 

have been observed. As a result non-virus-based methods have been gaining attention 

with potential safety advantages and a greater degree of control over toxicity. This 

section provides a brief insight into a few key systems.  
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 Cationic polymers bind DNA through multiple electrostatic interactions (Figure 

3.5). 130 For example, Poly(L-lysine) (PLL) has been used as a gene delivery vehicle for 

more than 20 years due to the fact that it is relatively biocompatible and can be easily 

degraded by cells.131 Polyethyleneimine (PEI), binds DNA among its cationic cage, and 

in linear and branched forms, still possesses unprotonated amines in its complexes 

with DNA at physiological pH which ensure endosomal escape within cells and hence 

help mediate gene delivery.132 Poly(amidoamine) (PAMAM) dendrimer are protonated 

at physiological pH and thus are able to bind polyanionic DNA electrostatically with 

partial degradation and increased flexibility of the fractured systems allowing for more 

compact complexation with DNA and more efficient gene delivery.133, 134 However, 

overall polymer chains > 3000 Da are required to effectively condense DNA135 and high 

molecular-weight compounds exhibit relatively high cytotoxicity.136 

  

Figure 3.5: Some example of cationic polymers.130 

 

Cationic lipids self-assemble into higher order architectures with high-affinity for 

DNA.137 They were pioneered by Felgner et al. who developed the lipid 
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N-[1(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA).138-140 The 

same group then performed a more detailed structure-activity relationship study, 

including 1,2-dioleyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide (DORIE) 

and 1,2-dimyristyloxy-propyl-3-dimethyl-hydroxyethyl ammonium bromide (DMRIE), in 

order to further improve the performance of their vectors. (Figure 3.6).137, 141 

 

Figure 3.6: Structure of cationic lipids DOTMA, DORIE and DMRIE. 

 

These studies yielded several commercially available vectors including DOTMA, 

sold under the name LipofectinTM,138 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl] 

-N,N-dimethyl-1-propanaminiumtrifluoroacetate (DOSPA), known as 

LipofectamineTM,142 1,2-dioleoyl-3-trimethyl-ammoniumpropane (DOTAP)143 and 

dioctadecylamido- glycylspermine (DOGS) or Transfectam® (Figure 3.7).144 
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Figure 3.7: Structure of cationic lipids DOTAP, DOGS and DOSPA. 

 

 Self-assembling approaches have also been applied to DNA binding. In such 

systems, self-assembly of the hydrophobic chain(s) enables the formation of 

nanostructures which can then achieve high adhesion for DNA binding. Furthermore, 

the lipids chain can play an active role in disrupting cell membranes and hence 

mediating transfection via a “flip-flops” mechanism.145 

  

In 2003, Joester et al. reported a novel self-assembling vector for DNA binding and 

gene delivery which used a polyamine-surfaced dendron attached via a 

phenylacetylene rigid rod segment to a branched unit with long aliphatic dodecyl chain 

surface groups (Figure 3.8).146 This systems could be designed and optimised to exhibit 

enhanced self-assembly with DNA for gene transfection applications with the balance 

between hydrophobic and cationic parts being of key importance for optimisation.30 
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Figure 3.8: Self-assembling dendritic systems which possess groups to bind DNA 

(polyamines) as well as groups which encourage the self-assembly of the system 

(hydrophobic alkyl tails).30  

 

 In 2005, Kostiainen et al. reported the use of first and second generation 

Newkome branched dendrons for DNA binding (Figure 3.9).147 Both vectors were able 

to effectively condense DNA while spermine alone showed very weak binding. However, 

in the presence of NaCl, the DNA binding of the G1 dendron was significantly reduced 

whereas the G2 dendron bound in a salt independent manner clearly demonstrating 

the strength of the multivalency. A further study of this with molecular modelling 

suggested that G2 dendron possess more surface ligands, and allows some spermine 

groups to sacrifice their binding energy for DNA in favour of screening the complex 

from increasing levels of NaCl. This demonstrates the importance of flexibility in this 

multivalent system.40 In later work from the same group, hydrophobic cholesterol 

groups were grafted onto the focal point of the Newkome scaffold (Figure 3.10).148 to 

introduce self-assembling capability to these molecules. Interestingly, Chol-G1 showed 

even more effective DNA binding than the equivalent generation two compound which 

had less capability to self-assemble. This was clear and quantifiable example of SAMul 

binding. Multiscale modelling provided some explanation as to the observed 

differences between the cholesterol dendrons. Chol-G1 was found to assemble more 

efficiently than Chol-G2 in terms of surface ligand packing, resulting in an aggregate 

with a much higher charge density which, in turn, leads to greater DNA binding 

affinity.149   
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Figure 3.9: Structure of first and second generation Newkome dendrons with 

peripheral spermine ligands.147 

   

 

Figure 3.10: Structure of cholesterol functionalised Newkome dendrons with peripheral 

spermine ligands.148 

 

3.4 Effect of chirality on DNA and heparin binding 

 As mentioned in Chapter 1, DNA exists in double helical form,12 which not 

surprisingly has lead to some interest in the investigation of chirality effects with DNA. 

The impact of chirality on DNA binding was demonstrated by Qu et al. in 2000.150 

(-)-Daunorubicin (WP900), a synthesized enantiomer of the anticancer drug 

(+)-daunorubicin, binds selectively to a left-handed (Z-DNA) form of a synthetic DNA 
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polynucleotide whereas the (+)-daunorubicin binds selectively to a right-handed 

“normal” DNA. It was suggested that such work could lead to applications in areas such 

as enantiomeric purification151 and asymmetric catalysis.152 

 

(-)-daunorubicin (WP900) 

 

 Another example is provided by peptide nucleic acids (PNAs), which are 

oligonucleotide analogues in which the sugar-phosphate backbone has been replaced 

by a pseudopeptide skeleton (Figure 3.11). They bind DNA and RNA with high 

specificity and selectivity.153 PNAs containing monomers derived from D-amino acids 

(D-PNAs) were found to bind to right-handed DNA with higher affinity than L-PNAs.154, 

155 

 

Figure 3.11: Structure of PNAs 

 

In Chapter 2, we mentioned the heparin polysaccharide is composed primarily of 

an α-1,4-linked D-glucosamine–L-iduronic acid disaccharide repeat unit which of course 

means that heparin is also a chiral polyanion. Heparin has been used as a chiral 

additive in capillary electrophoresis via combination of ionic, hydrogen bonding and 

hydrophobic interactions to enantiomerically separate underivatised drugs such as 

anti-malarials and anti-histamines.156-158 However, Wang and Rabenstein reported that 
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a sequence of exclusively D amino acids interacted with heparin in exactly the same 

manner as the corresponding sequence of L amino acids (i.e., no chiral recognition) and 

suggested that the specific spatial arrangement of lysine and arginine residues in this 

peptide sequence promoted heparin interaction, rather than the presence of an 

enantiomerically complementary structure to heparin.159  

 

Very recently, however, while this work was in progress, Bromfield and Smith 

reported simple cationic self-assembling multivalent (SAMul) dendrons which 

demonstrated chiral preferences in polyanion binding (Figure 3.12).160 Firstly it was 

reported that non-assembiling 1 and 2 did not show any binding towards heparin and 

DNA, which suggested that self-assembly was required for multivalent binding. It was 

then stated that the first generation dendrons 1L and 1D, formed identical nanoscale 

assemblies in terms of dimensions and charge densities but exhibited different chiral 

binding preferences towards heparin and DNA compound. 1L was preferentially bound 

by DNA whereas 1D was preferentially bound by heparin. Conversely, higher 

generation dendrons (2L and 2D) with larger hydrophilic head groups were bound 

identically by these polyanions, irrespective of chirality and it was suggested that the 

ligands were displayed less effectively on the large dendron surface and charge density 

effects became dominant.  

 

Figure 3.12: Self-assembling chiral cationic ligands for binding polyanions by Bromfield 

and Smith.160 
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3.5 Project aim 

 While Bromfield and Smith reported that simple cationic chiral self-assembling 

multivalent (SAMul) dendrons showed chiral preferences in polyanion binding for the 

first generation dendrons.160 It required multi-step synthesis to yield the desired 

compounds. Furthermore, in order to gain greater insight into polyanion binding 

processes we considered that there were minimal systems which might be capable of 

should both self-assembly and chiral discrimination characteristics that could be simply 

synthesised. As such we reasoned they could help provide insight into these kinds of 

binding processes, and potentially enable us to control nanoscale binding interfaces.  

 

As such, we targeted the design and synthesis of ‘simple’ SAMul biological 

polyanion binders: C16-L-Lys and C16-D-Lys to explore the role of chirality in heparin and 

DNA binding. They contain lysine head group that are protonated at physiological pH, 

allowing highly effective electrostatic binding to polyanionic. The straight-chain alkane 

located at the focal point of the structure act as hydrophobic unit driving the 

self-assembly of the ligands into a larger nanoscale architecture in aqueous media as a 

consequence of the hydrophobic effect. We also aimed to explore the impact of 

modifying the pyrene senser system described in Chapter 2 with the optimised chiral 

ligand groups. 
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3.6 C16-L-Lys and C16-D-Lys 

3.6.1 Synthesis of C16-L-Lys and C16-D-Lys 

 Self assembling lysine derivatives with appropriate chirality were targeted to 

probe the head group effect on binding. Protected L/D-Lysine was coupled with 

1-hexadecylamine using TBTU and excess Et3N in DCM. Then the target C16-L-Lys and 

C16-D-Lys were obtained by removing the protecting groups using HCl gas bubbled 

through MeOH. The synthesis worked in good yields and gave the desired target 

compounds C16-L-Lys and C16-D-Lys (Scheme 3.1). The peak corresponding to the Boc 

group protons was not observed in the 1H NMR spectrum for compounds C16-L-Lys 

(Figure 3.13) and C16-D-Lys (Figure 3.14), indicating that a successful Boc deprotection 

took place. Additional product confirmation was acquired by mass spectrometry and all 

other analytical methods (see Experimental section). 

 

Scheme 3.1: Synthesis of Synthesis of C16-L-Lys and C16-D-Lys 
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Figure 3.13: 1H NMR spectra of C16-L-Lys. 

 

 

Figure 3.14: 1H NMR spectra of C16-D-Lys. 
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3.6.2 Circular Dichroism (CD) 

 Circular dichroism spectroscopy was used to probe the chirality of the final 

products to ensure amino acid chirality had been successfully preserved throughout 

the synthesis. As shown Figure 3.15, the molar ellipticity for the two systems is 

effectively equal and opposite, indicating that the two target molecules are of 

approximately equal enantiopurity, and crucially that chirality has not been scrambled 

lost during synthesis. As such, comparison of the performance to these two systems 

should provide insights into the impacts of chirality on polyanion binding. 

 

 

Figure 3.15 : Circular dichroism spectra of target molecules C16-L-Lys and C16-D-Lys (1 

mg/mL in methanol) indicating opposing chirality. 

 

3.6.3 Critical Aggregation Concentration (CAC)  

 Although C16-L-Lys and C16-D-Lys both dissolve in distilled water. They do not 

dissolve in PBS buffer at room temperature. PBS is the buffer of choice for the Nile Red 

assay, in which the solubilization of the hydrophobic dye monitored by fluorescence 

spectroscopy, acts as a probe for the minimum concentration at which self-assembly 

can take place.161 However, it was found that both C16-L-Lys and C16-D-Lys dissolved in 

PBS buffer at 45 oC in a water bath. Therefore cuvettes with the desired concentration 

of both compounds with Nile red (1 μL) were placed in the 45 oC water bath for 10 min 

prior to being monitored by the fluorimeter.  

-30 

-20 

-10 

0 

10 

20 

30 

190 240 290 

M
o

la
r 

El
lip

ti
ci

ty
/ 

m
d

eg
 

Wavelength (nm) 

C16-D-Lys 

C16-L-Lys 



112 

 

 

 The CAC of C16-L-Lys was found to be 33 ± 3 μM (Figure 3.16) whereas the CAC of 

C16-D-Lys was found as 29 ± 4 μM (Figure 3.17). Both compounds therefore have similar 

CAC values (within error). Since the only difference between them are the L or D 

configuration, this equivalence in CAC was expected, as the only difference between 

the self-assemblies is their head group and hence their overall nanoscale chirality. 

Enantiomeric nanoscale object will be effectively identical unless or until they interact 

with other chiral objects. 

 

Figure 3.16: Fluorescence intensity of Nile Red in the presence of increasing amounts 

of C16-L-Lys 

 

Figure 3.17: Fluorescence intensity of Nile Red in the presence of increasing amounts 

of C16-D-Lys 
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3.6.4 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) was used in order to observe the 

self-assembled morphologies of C16-L-Lys and C16-D-Lys (Figure 3.18). Both monomers 

appear to aggregate into micellar assemblies, with approximate diameters of ca. 8 nm. 

The binder assemblies were also imaged in the presence of DNA and heparin. In both 

cases, the micellar objects appeared to remain intact and co-assemble with the 

polyanionic components. The presence of ‘un-bound’ micelles in the background of the 

TEM images in the presence of heparin/DNA is thought to arise from a 

disproportionate amount of C16-L-Lys and C16-D-Lys being present in the samples. This 

clearly demonstrated that micellar stability is high and that the self-assembly event is 

not adversely affected by the presence of highly interactive polyanions. This is of 

considerable interest as in some cases it is predicted that simple cationic surfactant 

assemblies and disrupted by binding to polyanions. 

 

Figure 3.18: TEM images of C16-L-Lys (left) and C16-D-Lys (right) in the absence (top) and 

presence of heparin (middle) and DNA (bottom). 
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3.6.5 Dynamic Light Scattering (DLS) 

DLS investigates self-assembled objects in solution The DLS data for C16-L-Lys and 

C16-D-Lys are summarised in Table 3.1. Both C16-L-Lys and C16-D-Lys formed aggregates 

ca. 6.3 nm in diameter, in good agreement with TEM. The zeta potentials for both 

C16-L-Lys and C16-D-Lys were positive (45.2 ± 1.6 mV for C16-L-Lys, +39.2 ± 1.55 mV for 

C16-D-Lys). This is a result of protonation of the Lysine ligands at physiological pH. As 

such, these self-assembled cationic nanostructures would be expected to show high 

affinity towards polyanionic heparin and DNA. As expected, the assemblies formed by 

C16-L-Lys and C16-D-Lys are effectively equivalent, given that they are enantiomeric 

nanoscale objects. 

 

Sample in 10 mM Tris HCl, 

NaCl (150 mM)  

Size (d.nm)  Zeta Potential (mV)  PDI  

C16-L-Lys  6.2 ± 1.7  45.2 ± 1.6  0.6 

C16-D-Lys  6.3 ± 1.7  39.2 ± 1.55  0.5 

Table 3.1: DLS data for C16-L-Lys and C16-D-Lys. 

 

Figure 3.19: DLS data for C16-L-Lys measured at 1mg/ mL. 
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Figure 3.20: DLS data for C16-D-Lys measured at 1mg/ mL. 

 

3.6.6 DNA assay (Ethidium bromide displacement assay) 

 The DNA binding ability of C16-L-Lys and C16-D-Lys was initially measured via the 

displacement of the intercalating agent ethidium bromide (EthBr) from DNA as 

monitored by fluorescence spectroscopy in SHE buffer. This is a simple and quantifiable  

way to determining DNA binding affinity and has been widely employed by several 

groups.38, 162, 163 The CE50 value is the charge excess required for the 50% displacement 

of ethidium bromide in the fluorescence displacement assay and the EC50 value is the 

concentration required for the 50% displacement of ethidium bromide in the 

fluorescence displacement assay. C16-L-Lys was found to have CE50 = 1.6 ± 0.2 and EC50 

= 3.2 ± 0.1 μM whereas C16-D-Lys was found CE50 = 1.7 ± 0.1 and EC50 =3.2 ± 0.1 μM 

(Figure 3.21). The data therefore suggested C16-L-Lys and C16-D-Lys bind DNA similarly 

and under these conditions and the nanoscale chirality has no significant impact. 
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Figure 3.21: Charge ratio vs. normalised fluorescence from the EthBr displacement 

assay used to determine CE50 values for C16-L-Lys and C16-D-Lys. 

 

3.6.7 Heparin assay (Mallard Blue (Mal-B) competition assay) 

In order to quantify their relative heparin binding abilities, C16-L-Lys and C16-D-Lys 

were tested using a Mallard Blue (Mal-B) competition assay, in which the extent of 

MalB displacement from heparin, as monitored by the associated UV-Vis abs. change, 

indicates the extent of binding.80, 164 The CE50 value is the charge excess required for 

the 50% displacement of MalB in the fluorescence competition assay and the EC50 

value is the concentration required for the 50% displacement of MalB in the 

fluorescence competition assay. C16-L-Lys was found to have a CE50 = 0.9 ± 0.1 and an 

EC50 = 100 ± 3 μM whereas C16-D-Lys was found CE50 = 0.9 ± 0. 1 and EC50 =99.9 ± 0.2 

μM (Figure 3.22). The data suggested that, as for DNA binding, C16-L-Lys and C16-D-Lys 

also bind heparin similarly with absolutely no impact of chirality on the binding event. 

As such these resilt are similar to the previons report of Wang and Rabenstein,159 and 

for the 2nd generation system reported by Bromfield and Smith.160 
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Figure 3.22: Charge ratio vs. normalised fluorescence from the (MalB) competition 

assay used to determine CE50 values for C16-L-Lys and C16-D-Lys. 

 

3.6.8 Summary  

 Both C16-L-Lys and C16-D-Lys self assemble and bind to DNA and heparin. However, 

there were no chiral binding preferences to DNA or heparin for this system. It was 

reasoned that this may be due to the proximity of the molecular chiral information to 

the aliphatic tail of the monomer unit and suggested this may restrict the chiral 

expression at the surface of the chiral nanostructure with a densely packed 

nano-surface which simple binds to the targets or a result of charge density. Therefore, 

we decided to introduce a spacing group between the molecular-scale chiral 

information and the aliphatic tail (Figure 3.23). In the hope that this would allow the 

chirality to be less embedded in the self-assembled core of the nanostructure and 

hence have a potentially greater impact on the binding event at the nanoscale binding 

interface. 

 

 

Figure 3.23: Schematic representation of C16-L-Lys and C16-D-Lys with spacing group. 

 

 To maintain the simple synthetic strategy, we chose glycine as a spacing group. 
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This is straight-forward to do, biologically relevant and does not introduce any other 

chiral information or significant binding sites.  

 

 

C16-Gly-L/D-Lys 

 
3.7 C16-Gly-L-Lys and C16-Gly-D-Lys 

3.7.1 Synthesis of C16-Gly-L-Lys and C16-Gly-D-Lys  

 Protected glycine was coupled with 1-hexadecylamine using TBTU and excess Et3N 

in DCM, then the Boc protecting group was removed using HCl gas in methanol. The 

resulting compound was then coupled with protected L/D-Lysine using TBTU and 

excess Et3N in DCM. The target compounds, C16-Gly-L-Lys and C16-Gly-D-Lys, were 

obtained by removing the Boc protecting groups using HCl gas in methanol. The 

synthesis worked in good yields and gave the desired target compounds C16-Gly-L-Lys 

and C16-Gly-D-Lys (Scheme 3.2). The peak corresponding to the Boc group protons was 

not observed in the 1H NMR spectrum for compounds C16-Gly-L-Lys (Figure 3.24) and 

C16-Gly-D-Lys (Figure 3.25), indicating that a successful Boc deprotection took place. 

Additional product confirmation was acquired by mass spectrometry and all other 

analytical methods (see Experimental section). 
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Scheme 3.2: Synthesis of C16-Gly-L-Lys and C16-Gly-D-Lys 
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Figure 3.24: 1H NMR spectra of C16-Gly-L-Lys. 

 

 

Figure 3.25: 1H NMR spectra of C16-Gly-L-Lys. 
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3.7.2 Circular Dichroism (CD) 

 Circular dichroism spectroscopy was used to probe the chiral character of the final 

products to ensure amino acid chirality had been successfully preserved throughout 

the synthesis. As shown in Figure 3.26, the molar ellipticity for the two systems is 

effectively equal and opposite. This indicates that the two target molecules are of 

equal enantiopurity, and crucially that chirality has not been scrambled or lost during 

synthesis. As such, any differences in binding between the systems will be the result of 

the chiral information programmed into the head group. 

 

 

Figure 3.26: Circular dichroism spectra of target molecules C16-Gly-L-Lys and C16-Gly-D-Lys (1 

mg/mL in methanol) indicating opposing chirality 

 

3.7.3 Critical Aggregation Concentration (CAC)  

 Although C16-Gly-L-Lys and C16-Gly-D-Lys both dissolve in distilled water, again they 

do not dissolve in PBS buffer at room temperature. However, it was found that both 

C16-Gly-L-Lys and C16-Gly-D-Lys dissolved in PBS buffer at 45 oC in a water bath. 

Therefore cuvettes with the desired concentration of both compounds with Nile red (1 

μL) were placed in the 45 oC water bath for 10 min prior to being monitored by the 

fluorimeter.  
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 The CAC of C16-Gly-L-Lys was found to be 31 ± 3 μM (Figure 3.27) whereas the CAC 

of C16-Gly-D-Lys was found with 28 ± 3 μM (Figure 3.28). Both compounds therefore 

have similar CAC values (within error). Since the only difference between them are the 

L or D configuration, this equivalence in CAC was expected as the self-assemblies are 

enantiomeric in nature and should be indentical unless exposed to chiral influences .  

 

Figure 3.27: Fluorescence intensity of Nile Red in the presence of increasing amounts 

of C16-Dly-L-Lys 

 

 

Figure 3.28: Fluorescence intensity of Nile Red in the presence of increasing amounts 

of C16-Gly-D-Lys 
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3.7.4 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) was used in order to observe the 

self-assembled morphologies of C16-Gly-L-Lys and C16-Gly-D-Lys (Figure 3.29). Both 

monomers appeared to aggregate into micellar assemblies, with approximate 

diameters of ca. 8 nm. The binder assemblies were also imaged in the presence of DNA 

and heparin. In both cases, the micellar objects appeared to remain intact and 

co-assemble with the polyanionic components. The presence of ‘un-bound’ micelles in 

the background of the TEM images in the presence of heparin/DNA is thought to arise 

from a disproportionate amount of C16-Gly-L-Lys and C16-Gly-D-Lys being present in the 

samples. Once again this indicates excellent stability of these self assemblies and no 

evidence that they rearrange in the presence of polyanions other than by being 

hierarchical organised into a nanoscale superstructure. 
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Figure 3.29: TEM images of C16-Gly-L-Lys (left) and C16-Gly-D-Lys (right) in the absence 

(top) and presence of heparin (middle) and DNA (bottom). 

 

3.7.5 Dynamic Light Scattering (DLS) 

The DLS data for C16-Gly-L-Lys and C16-Gly-D-Lys are summarised in Table 3.2. 

C16-Gly-L-Lys formed aggregates ca. 120 nm in diameter and C16-Gly-D-Lys formed 

aggregates ca. 83 nm in diameter, which were not in good agreement with TEM. DLS 

measures the molecules in the solution phase, this may suggest that they are not 

micellar assemblies but vesicular assemblies. It is known from lsvaelachvilis rule that 



125 

 

increasing the hydrophobic domain which we have done here by inserting the Gly 

spacer can drive a transition from spherical micelles to cylindrical or vesicular 

assemblies.32, 82 However, the large distribution of sizes is noted. It is also noted that 

DLS is performed at signigicantly elevated concentrations. The zeta potentials for both 

C16-Gly-L-Lys and C16-Gly-D-Lys were positive (40.1 ± 2.2 mV for C16-Gly-L-Lys, +47.1 ± 

1.4 mV for C16-Gly-D-Lys). This is a result of protonation of the Lysine ligands at 

physiological pH. As such, these self-assembled cationic nanostructures would be 

expected to show high affinity towards polyanionic heparin and DNA. Importantly, the 

enantiomeric assemblies had size and charge characterisations which were roughly 

within error range of each other, as would be expected. 

 

Sample in 10 mM Tris HCl, 

NaCl (150 mM)  

Size (d.nm)  Zeta Potential (mV)  PDI  

C16-Gly-L-Lys  120.0 ± 56.6  40.1 ± 2.2  0.5 

C16-Gly-D-Lys  82.5 ± 50.0 47.1 ± 1.4  0.3 

Table 3.2: DLS data for C16-Gly-L-Lys and C16-Gly-D-Lys. 

Figure 3.30: DLS data for C16-Gly-L-Lys measured at 1mg/ mL. 
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Figure 3.31: DLS data for C16-Gly-D-Lys measured at 1mg/ mL. 

 

3.7.6 DNA assay (Ethidium bromide displacement assay) 

 The DNA binding ability of C16-Gly-L-Lys and C16-Gly-D-Lys was measured via the 

displacement of the intercalating agent ethidium bromide (EthBr) from DNA as 

monitored by fluorescence spectroscopy in SHE buffer. C16-Gly-L-Lys was found to have 

CE50 = 3.8 ± 0.7 and EC50 = 7.6 ± 1.3 μM whereas C16-D-Lys was found to have CE50 = 1.5 

± 0.1 and EC50 = 3.1 ± 0.2 μM (Figure 3.32). As such there is now a very significant 

difference indeed between enantiomeric assemblies. The data therefore suggested 

C16-Gly-D-Lys binds DNA much better than C16-Gly-L-Lys (the lower the CE50 value the 

better the binding). 
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Figure 3.32: Charge ratio vs. normalised fluorescence from the EthBr displacement 

assay used to determine CE50 values for C16-Gly-L-Lys and C16-Gly-D-Lys. 

 

3.7.7 Heparin assay (Mallard Blue (Mal-B) competition assay) 

In order to quantify their relative heparin binding abilities, C16-Gly-L-Lys and 

C16-Gly-D-Lys were also tested using Mallard Blue (Mal-B) competition assay. 

C16-Gly-L-Lys was found to have CE50 = 1.7 ± 0.2 and EC50 = 180 ± 16 μM whereas 

C16-Gly-D-Lys was found to have CE50 = 1.1 ± 0.1 and EC50 = 122 ± 2 μM (Figure 3.33). 

The data therefore suggested that C16-Gly-D-Lys also binds significantly heparin better 

than enantiomeric C16-Gly-L-Lys. 
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Figure 3.33: Charge ratio vs. normalised fluorescence from the (MalB) competition 

assay used to determine CE50 values for C16-Gly-L-Lys and C16-Gly-D-Lys. 

 

3.7.8 Summary  

 Both C16-Gly-L-Lys and C16-Gly-D-Lys self assemble and bind to heparin and DNA. 

DNA and heparin both show a very significant preference towards binding C16-Gly-D-Lys 

rather than the enantiomeric C16-Gly-L-Lys. The introduction of a Gly spacer somewhat 

lower the apparent ability to bind but very importantly introduces a large 

discrimination ability between the enantiomeric assemblies. We suggest that the 

surface ligands are much more effectively displayed on a more “open” surface once the 

glycine group is present and that although this lowers the binding strength, it allows 

enough space for enantio-discrimination at the nanoscale binding interface. This is the 

first report in which a simple molecular-scale modification is able to switch on or off 

enantio-discrimination in the binding of biologically important polyanionic targets. 
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3.8 Chirality effect in heparin sensing 

 Having gained this unique insight into self-assembled chiral heparin binders, we 

reasoned that we could employ methods from Chapter 2 in order to give these systems  

interesting reporting and sensing characteristics. As such we designed systems in which 

the hydrophobic C16 groups were replaced with a pyrene unit. In this section, we 

designed and synthesised synthetically simple Py-L-Lys and Py-D-Lys in order to 

determine the impact of chirality on some simple sensors. 

 

 

3.8.1 Synthesis of Py-L-Lys and Py-D-Lys 

To synthesise Py-L-Lys and Py-D-Lys, Boc-protected L-Lysine and D-Lysine were 

coupled with 1-pyrenemethylamine using TBTU and excess Et3N in DCM and then 

protecting groups were removed using HCl gas bubbled through MeOH (Scheme 3.3). 

The peak corresponding to the Boc group protons at 1.4 ppm was not observed in the 

1H NMR spectrum for compounds Py-L/D-Lys, indicating that a successful Boc 

deprotection took place. Additional product confirmation was acquired by mass 

spectrometry. In analogy with the systems described in previous sections, we assumed 

the chirality was maintained during this procedure. This synthesis worked in good yield 

and gave the desired target compounds.  
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Scheme 3.3: Synthesis of Py-L-Lys and Py-D-Lys 

 

3.8.2 Critical Aggregation Concentration (CAC) 

 The CAC value was determined using the same method described in section 2.2.2. 

In the previous chapter, Py-DAPMA was found to not self-assemble at these 

concentrations. Interestingly, however, when Py-L-Lys and Py-D-Lys were excited at 363 

nm, an emission band with max emission at 495 nm was observed. This band was 

concentration dependent because excimer formation is favoured in the interior of the 

micelle when pyrene groups are close together. As such, this experiment clearly 

suggests that both Py-L-Lys and Py-D-Lys were able to self-assemble and therefore have 

potential to act as SAMul sensors. The CAC of Py-L-Lys was found to be 70 ± 13 μM in 

0.01M PBS buffer (Figure 3.34) and the CAC of Py-D-Lys was found to be 58 ± 14 μM in 

0.01M PBS buffer (Figure 3.35). Observably these values are within error of one 

another as the enantiomeric compounds should form identical, but mirror-image, 
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assemblies. It is interesting to consider why Py-Lys assembles but Py-DAPMA does not. 

The difference between Py-DAPMA and Py-Lys was a extra flexible spacing group in 

between the pyrene unit and the carbonyl group. We suggest that this flexible CH2 may 

play a role in the self-assembly event by allowing the pyrene groups to organise 

themselves on the interior of the self-assembled nanostructures. 

 

Figure 3.34: Fluorescence intensity at 495 nm of Py-L-Lys with increasing concentration 

in aqueous PBS Buffer (0.01 mM) 

 

 

Figure 3.35: Fluorescence intensity at 495 nm of Py-D-Lys with increasing concentration 

in aqueous PBS Buffer (0.01 mM) 
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3.8.3 Transmission Electron Microscopy (TEM) 

The self-assembled nanostructures being formed were visualised using 

transmission electron microscopy (TEM). The samples were first prepared in clean 

water at concentrations of 1 mg/mL and then the deposited as solution-phase aliquots 

onto a formvar grid, stained with uranyl acetate and dried in air. Both Py-L-Lys and 

Py-D-Lys appeared to form relatively polydisperse spherical assemblies with 

approximate diameters ranging from ca. 10 to 40 nm (Figure 3.36) – given the (much 

smaller) molecular size (2-3 nm), it is suggested that these could be vesicular objects or 

clusters of micellar assemblies which aggregate on drying. Clearly, whatever 

self-assembly process is occurring is not as well-defined as for C16-Lys. This may reflet 

the more bulky hindered nature of pyrene making it hard to organise the 

nanostructures. 

 

Figure 3.36: TEM images of Py-L-Lys (left) and Py-D-Lys (right) in the absence (top) and 

presence of heparin (bottom). 
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3.8.4 Dynamic Light Scattering (DLS) 

The DLS data for enantiomeric assemblies are summarised in Table 2.2. Py-L-Lys 

supported the formation of relatively polydisperse self-assembled nanostructures with 

diameters 11.7 ± 3.8 nm (volume distribution). For Py-D-Lys, self-assembled 

nanostructures with diameters of 18.2 ± 8.1 nm similar to the TEM imaging. It should 

be noted that DLS also reflects a relatively polydisperse assembly process – diameters 

of the enantiomeric self-assembled nanostructures are within range of one another. 

The zeta potentials for both enantiomeric assemblies were positive (+18.3 ± 8.4 mV for 

Py-L-Lys, +34.1 ± 1.5mV for Py-D-Lys). This is a result of protonation of the lysine 

ligands at physiological pH. As such, these self-assembled cationic nanostructures 

would be expected to show high affinity towards polyanionic heparin. 

 

Sample in 10 mM Tris HCl,  

NaCl (150 mM) 

Size (d.nm) Zeta Potential 

(mV) 

PDI 

Py-L-Lys 11.7 ± 3.8 18.3 ± 8.4 0.58 

Py-D-Lys 18.2 ± 8.1 34.1 ± 1.5 0.32 

Table 2.2: DLS data for Py-L-Lys and Py-D-Lys. 

 

Figure 3.37: DLS data for Py-L-Lys measured at 1mg/ mL. 
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Figure 3.38: DLS data for Py-L-Lys measured at 1mg/ mL. 

 

3.8.5 Heparin sensing in 10 mM Tris HCl with 150 mM NaCl buffer 

 On titrating Py-L-Lys (60 μM) with heparin under the same conditions as Py-G1 in 

Section 2.2.5, the monomer fluorescence emission at 395 nm decreased in intensity 

but the excimer band at 495 nm was effectively unchanged (Figure 3.39). Titrating 

Py-D-Lys (60 μM) with heparin had similar results as Py-L-Lys (Figure 3.41). Since the 

concentration of both sensors were only just at the CAC value (Section 3.8.2), this may 

limit the self-assembly, in any case, the SAMul sensing mechanism observed for Py-G1 

was not seen and we instead observe similar behaviour as for Py-DAPMA. Figure 3.40 

(inset) shows a photograph of Py-L-Lys when heparin is absent (A) or present (B). 

Clearly, some “switch-on” emission can be seen using the naked eye when the sample 

is under UV irradiation, as the fluorescence changes colour (and intensity) to be 

somewhat more ‘green’. However, for Py-D-Lys (Figure 3.42), there was also no ‘naked 

eye’ change in the fluorescence emission. This is discussed in more detail below. 
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Figure 3.39: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-L-Lys in buffer. 

 

Figure 3.40: Fluorescence spectra of Py-L-Lys on addition of heparin in buffer. The inset 
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shows the photographs of a solution of Py-L-Lys without heparin (A) and with heparin 

(B). 

 

 

Figure 3.41: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-D-Lys in buffer. 
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Figure 3.42: Fluorescence spectra of Py-D-Lys on addition of heparin in buffer. The inset 

shows the photographs of a solution of Py-D-Lys without heparin (A) and with heparin 

(B). 

 

 Comparing the ratiometric response for Py-L-Lys and Py-D-Lys, it is evident that 

Py-L-Lys shows the larger response in agreement with the naked eye observations. It 

was clear that Py-L-Lys shows better sensing of heparin than the Py-D-Lys (Figure 3.43). 

While this work was in progress, Bromfield et al. reported SAMul nanosystems 

exhibiting a chiral preference in polyanion binding. In particular, they reported that the 

D-conformation of lysine displayed on the surface of their nanostructures was more 

favoured for binding to heparin.160 This is different to our observations here. In our 

study the sensor directly binds to heparin, whereas Bromfield was using a competition 

assay with a heparin sensor Mallard Blue (Mal-B), a high-affinity selective heparin 

sensor that operates in highly competitive media and is itself, also chiral.80 However, it 

must also be noted that different hydrophobic units might be expected to 

self-assemble and display their chiral ligands in different ways and this may lie at the 

origin of the differences. 
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Figure 3.43: The changes of the fluorescence intensity ratio of Py-L-Lys and Py-D-Lys 

(log(I495/I383)) plotted against increasing heparin concentration in in 10 mM Tris HCl 

buffer with 150mM NaCl buffer. 
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at 395 nm decreased in intensity but the band at 495 nm was effectively unchanged 
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(Figure 3.45). 
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Figure 3.44: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-L-Lys in 12.5% serum with 20 mM Tris HCl. 
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Figure 3.45: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-D-Lys in 12.5% serum with 20 mM Tris HCl. 
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Figure 3.46: The changes of the fluorescence intensity ratio of Py-L-Lys and Py-D-Lys 

(log(I495/I383)) plotted against increasing heparin concentration in 12.5% serum with 20 

mM Tris HCl. 
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Figure 3.47: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-L-Lys in 100% serum. 
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Figure 3.48: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-D-Lys in 100% serum. 
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Figure 3.49: The changes of the fluorescence intensity ratio of Py-L-Lys and Py-D-Lys 

(log(I495/I383)) plotted against increasing heparin concentration in 100% serum. 
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for both Py-L-Lys (Figure 3.50) and Py-D-Lys (Figure 3.51) the fluorescence emission 
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and can be attributed to the enhanced formation of pyrene excimers being induced by 

heparin binding. 
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Figure 3.50: Fluorescence intensities extracted at 383 nm and 495 nm for the titration 

of heparin into Py-L-Lys (426μM) in buffer. 
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Figure 3.51: Fluorescence intensities extracted at 383 nm and 495 nm for the titration 

of heparin into Py-D-Lys (426μM) in buffer. 
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a glycine spacer unit, as earlier in the chapter may encourage the more effective 

display of the chiral ligands on surface of the nanostructures. 

 

 

Figure 3.52: The changes of the fluorescence intensity ratio of PyL-Lys and Py-D-Lys 

(log(I495/I383)) plotted against increasing heparin concentration in buffer. 
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Figure 3.53: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-L-Lys in 12.5% serum with 20 mM Tris HCl. 
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Figure 3.54: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-D-Lys in 12.5% serum with 20 mM Tris HCl. 
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Figure 3.55: The changes of the fluorescence intensity ratio of Py-L-Lys and Py-D-Lys 

(426μM) (log(I495/I383)) plotted against increasing heparin concentration in 12.5% 

serum with 20 mM Tris HCl. 
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Figure 3.56: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom)  

for the titration of heparin into Py-L-Lys (426μM) in 100% serum. 
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Figure 3.57: Fluorescence intensities extracted at 383 nm (Top) and 495 nm (Bottom) 

for the titration of heparin into Py-D-Lys (426μM) in 100% serum. 

 

Once again, considering the ratiometric response, a linear response is observed (in 
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condition. This may due to the serum light scattering, as well as competition from the 

binding and fluorescent event in serum 
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Figure 3.58: The changes of the fluorescence intensity ratio of Py-G1 (213μM) and 

Py-DAPMA (426μM) (log(I495/I383)) plotted against increasing heparin concentration in 

100% serum 
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overall structural characteristics, are absolutely critical. This view is strongly supported 

by the observation that the introduction of a spacer unit in C16-Gly-Lys switches on 

nanoscale enantio-differentiation in contrast to C16-Lys. Furthermore the impact of 

concentration on the chiral recognition potential of Py-Lys would also suggest that the 

extent of self-assembly, which impacts directly on ligand display, will help to mediate 

and control the binding preferences. Clearly, nanoscale recognition events are complex 

and it is too simplistic to imagine that a specific ligand will target a specific guest, 

rather, the overall nanoscale display is required to optimize binding. This in fact 

suggests that this field of research, still in its infancy, has considerable potential for 

further optimisation and development.   

 DNA Heparin 

1L/1D160 L D 

2L/2D160 No preference No preference 

C16-L/D-Lys No preference No preference 

C16-Gly-L/D-Lys D D 

Py-L/D-Lys 

Low concentration 
Not studied L 

Py-L/D-Lys 

High concentration 
Not studied No preference 

 Table 3.3: List of SAMul polyanion binder. 

 

For future work, the study the effect of spacer groups in chiral systems such as use 

of another animo acid as spacer groups and the study of effect of morphology of 

self-assembly. Other modifications could include variation of the surface binding 

groups to examine the effects of different cationic ligands on DNA/heparin binding 

performance. 

 

 

 

 

 
 



155 

 

  



156 

 

Chapter 4 NMR investigation of Heparin binding with 

Mallard Blue (Mal-B) and Self-Assembled Multivalent 

(SAMul) Heparin Binders 

 

4.1 Introduction 

 In the previous chapter we explored the impact of structural changes on 

polyanion sensing and binding. Specifically, we have observed how modifying the 

hydrophobic units responsible for self-assembly can give the overall nanostructures the 

capacity for heparin sensing. We have also explored the impact of chirality, and more 

importantly the precise display of chiral ligands, on the specifics of polyanion 

recognition. In this chapter we explore the specifics of ligand design on interaction with 

polyanionic heparin in precise molecular detail.  

 

4.1.1 Heparin NMR 

 As discussed in Chapter 2, heparin is a highly sulfated polysaccharide which is the 

most charge-dense polyanion present in biological systems and is used widely as an 

anti-coagulant drug.50  

 

Nuclear magnetic resonance (NMR) spectroscopy has been used for structural 

characterization of heparin, without the possibility of loss or conversion of structural 

information as a result of breakdown of the polymer, as established by several early 

studies.165, 166 One dimensional (1D) proton and carbon NMR have been used to 

elucidate the monosaccharide composition, patterns of sulfation and acetylation 

present in heparins isolated from different sources, as well as chemically modified 

heparin (Figure 4.2).167-169 Such studies are of key importance give the heterogeneous 

nature of many heparin samples, and variability from batch to batch. While 1D NMR 

analysis was limited by severe signal overlapping, two dimensional (2D) NMR such as 

heteronuclear single quantum coherence (HSQC) spectroscopy, which provides 

correlation between the aliphatic carbon and its attached protons, allowed the 



157 

 

determination of the various monosaccharide components. The spectrum contained a 

peak for each unique proton attached to the heteronucleus being considered (Figure 

4.3). Recently, the use of high-field NMR analysis was employed not only to probe 

monosaccharide composition, but also to find the presence of impurities such as 

oversulfated chondroitin sulfate (OSCS) present in marketed heparin products.170-172 

 

 

Figure 4.2: (Top) 1H-NMR spectra acquired at 800 MHz and assignment of heparin: a, 

H1 GlcNS, GlcNS6S; b, H1 IdoA2S; c, H1 IdoA; d, H5 IdoA2S; e, H1 GlcA; f, H6 GlcNS6S; g, 

H2 IdoA2S; h, H6′ GlcNS6S; i, H3 IdoA2S; j, H4 IdoA2S; k, H5 GlcNS6S; l, H6 GlcNS; m, H4 

GlcNS6S; n, H3 GlcNS, GlcNS6S; o, H2 GlcA; p, H2 GlcNS6S; q, acetyl CH3.173
 (bottom) 

Structures of the common disaccharide pairs in the heparin chains and assignment. 
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Figure 4.3: Plot of the anomeric region (4.4 to 6.1 ppm proton (f2) and 90 to 110 

carbon ppm (f1)) the 2D 1H–13C HSQC spectrum obtained on a 50 mg sample of 

sodiated heparin in 700 μL of D2O.174 

 

4.1.2 Mallard Blue  

 In 2013, Bromfield et al. reported the use of Mallard Blue (Mal-B), which is a 

high-affinity selective heparin sensor that operates in highly competitive media.80 We 

employed this dye in Chapter 3 for the competition assays of heparin binding. 

 

Mallard Blue 

   

 The binding site of Mal-B to heparin is of particular interest. Bromfield et al., who 

reported the use of Mal-B for heparin sensing also reported a molecular dynamics (MD) 

study of the interaction of both (Figure 4.4), and it was suggested that cationic sites on 

the sensor were in close proximity to anionic sites on the heparin with the sensor 
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binding over the heparin chain in a “groove-like” site.80 This binding mode was in 

agreement with the experimentally observed stoichiometry but there was no other 

experimental data available to support this model. Clearly, dissecting such interactions 

at the molecular level would be of considerable value. 

 

Figure 4.4: Equilibrated MD snapshot of the Mal-B -heparin system. Mal-B, rosy brown 

sticks; heparin (D-glucosamine units), dark magenta spheres; and CPK (L-iduronic acid 

units), chartreuse spheres. Some Cl− and Na+ ions are shown as large and small white 

spheres, respectively. Water omitted for clarity.80 

 

4.1.3 NMR study of heparin interaction  

 Nuclear magnetic resonance (NMR) can be used for investigating intermolecular 

and intramolecular interactions in inclusions, ion pairs, and aggregates.175, 176 A 

decrease of electron density around a nucleus increases the chemical shift 

(high-frequency downfield shift), whereas an increase of electron density around a 

nucleus decreases the chemical shift (low-frequency upfield shift). In terms of 

host-guest chemistry, when a guest binds to a host through ionic interactions, electron 

density around the cation will decrease, which will result in an increase of chemical 

shift177 and the chemical shift for the protons near the anion will increase.178 

 

 In 2010, Feng et al. studied the interactions between a G5 PAMAM dendrimer and 

heparin via isothermal titration calorimetry (ITC), 1H nuclear magnetic resonance (1H 
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NMR), pulsed-field gradient (PFG) NMR, nuclear Overhauser effect spectroscopy 

(NOESY), and atomic force microscopy (AFM) studies. From Figure 4.5, we can see that 

changing the molar ratios of heparin/G5 dendrimer lead to a consistent downfield shift 

of protons b' and d', which are methylene protons adjacent to the terminal amine 

groups, of G5 dendrimer. They suggested that the G5 dendrimer binds with heparin 

through ionic paring between cationic amine groups on the dendrimer and 

sulfate/carboxylate groups on the heparin chain, and the observed chemical shift for 

dendrimer protons was a time-weighted average of the free state and bound state of 

the surface amine groups on dendrimers.179 As such, this study confirmed the expected 

electrostatic binding mode between the nanoscale objects. 

 

 

Figure 4.5: (Top) Structure of G5 PAMAM dendrimer (Bottom) 1H NMR titration spectra 

of G5 dendrimer with heparin. The G5 dendrimer concentration in the samples is fixed 

at a concentration of 2 mg/mL. The molar ratios of heparin/G5 dendrimer in (1-8) are 0, 

1, 2, 4, 8, 10, 15, and 20, respectively.179
 



161 

 

4.1.4 Project aim 

Since we are interested in understanding the interaction of heparin binders with 

heparin using experimental data rather than just using molecular dynamics, we 

decided to apply the NMR technique to compare the binding of Mal-B or heparin with 

the molecular dynamics. In a second part of the study, we also decided to apply the 

NMR technique to a family of self-assembled multivalent (SAMul) heparin binders 

which consist of a 16 carbon chain length hydrophobic unit with different anion binding 

ligand head groups. In this way, we hoped to get the bottom of the precise molecular 

details of the interactions between heparin binding systems and this important 

polyanionic biomolecule.  
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4.2 NMR investigation of Heparin binding with Mallard Blue (Mal-B) 

4.2.1 NMR spectra of heparin and Mal-B 

 The 1H NMR spectrum of our commercially available sample of heparin in D2O is 

shown in Figure 4.6. Most peaks are in the range of 3 to 5.5 ppm. This spectrum is in 

agreement with the report by Keire el al,172 and consistent with the assumed skeleton 

of the polysaccharide.  

 

 The 1H NMR spectrum of Mal-B in D2O then is shown in Figure 4.7 and most peaks 

are between 1 and 3.5 ppm (aliphatic region, Arg "arm") or 6.2 and 8.5 ppm (thionine 

core). The region of crossover between the spectra of heparin and Mal-B was small. As 

such, if heparin and Mal-B interacted with each other, we might expect to be able to 

detect peak shifting in the 1H NMR.  

 

 

Figure 4.6: 1H NMR spectrum of heparin in D2O. 
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Figure 4.7: 1H NMR spectrum of Mal-B in D2O. 

 

 Unfortunately, the sample of Mal-B in D2O of Figure 4.7 was run at relatively high 

concentration (40 mg (92.4 mM) of Mal-B in 600 μL of D2O). The broad, low signal to 

noise in the aromatic region at the spectrum suggests aggregation of Mal-B in water at 

these high concentrations. We have previously tested Mal-B for aggregation, which 

does not occur at the conditions of the UV-Vis heparin binding assay (μM) but it does 

begin to occur when the concentration is elevated into the mM regime.80 

 

4.2.2 2D NMR spectra  

 From the 1H NMR spectrum of heparin, we can see significant overlap of peaks. In 

order to unambiguously assign the signals, we applied a 2D 1H–13C-heteronuclear 

single quantum coherence (HSQC) spectroscopy experiment (Figure 4.8) to 

characterize the compound and compare the spectroscopic data with literature values 

(Figure 4.9 and Figure 4.10).172  
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Figure 4.8: HSQC NMR spectrum of heparin in D2O 

 

Figure 4.9: Plot of aliphatic region (3.0 to 5.0 ppm proton (f2) and 50 to 90 ppm 

carbon (f1)). Bottom right is the N-acetyl methyl signal. Selected signals are labeled 

based on the assignments of Keire et al.172 
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Figure 4.10: Plot of anomeric region (4.0 to 6.0 ppm proton (f2) and 90 to 110 ppm 

carbon (f1)). Selected signals are labeled based on the assignments of Keire et al.172 

 

 The HSQC of Mal-B (high concentration sample) in D2O did not exhibit any peaks 

in the aromatic region (Figure 4.11). We suggest that this is a result of the stacking of 

the Mal-B at NMR concentrations. If the stacking is, as proposed, driven by  -  

interactions, then the aromatic peaks would be those most subject to line broadening 

as they will be fully immobile in the core of the assembly. The arginine arms on 

periphery of aggregate would, in contrast, be more mobile. 
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Figure 4.11: HSQC NMR spectrum of Mal-B in D2O 

 

4.2.3 Low concentration Mal-B NMR study 

 It was therefore decided to use a lower concentration of Mal-B to limit the 

aggregation of Mal-B. Figure 4.12 was measured at low concentration (40 μM) of Mal-B 

in D2O and we can now clearly see the peaks in the aromatic region. Indeed these 

peaks are more clearly visible than was the case at much higher concentration, which is 

supportive of the view that aggregation was limiting signal intensity. However, when 

we expand the aromatic region, it is also clear the we observe more peaks than 

expected (Figure 4.13). This was thought to be possibly due to the stacking of Mal-B. It 

could also be possibly be the result of slow rotation about the amide bonds. Therefore 

the sample was heated to 50 oC overnight but then the effect became even greater 

(Figure 4.14).  
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Figure 4.12: 1H NMR spectrum of low concentration of Mal-B in D2O. 

 

Figure 4.13: Expansion of the 6.0-9.0 ppm region of the of low concentration of Mal-B 

in D2O. 
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Figure 4.14: Expansion of the 6.0-9.0 ppm region of the of low concentration of Mal-B 

in D2O at 50 oC overnight. 

 

On the addition of heparin, we can see clearly that the major peaks have been 

shifted significantly downfield and simplified the spectrum (Figure 4.15). We reasoned 

that these significant changes on heparin binding may allow us to use titration 

methods to characterise the mode of binding. Clearly interaction of Mal-B with heparin 

significantly changes its NMR spectrum. 
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Figure 4.15: Expansion of the 6.0-9.0 ppm region of the of Mal-B with heparin in D2O. 

  

We then prepared Mal-B (40 μM) with the same buffer system as that used by  

Bromfield et al. 80 in their heparin binding assay (Tris HCl ,10 mM, pH 7, 150 nM NaCl). 

This simplified the aromatic region very significantly (Figure 4.16). Indeed the spectrum 

could now be fully assigned in which all of them are the protons on the thionine core. 
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Figure 4.16: Expansion of the 6.0-9.5 ppm region of the of Mal-B (40 μM) in Tris HCl ,10 

mM, pH 7, 150 nM NaCl, D2O. 

 

 However, using Tris HCl as buffer introduces additional signals in the 1H NMR 

spectrum at ca. 3.7 ppm which will overlap with heparin saccharide signals and may 

affect studies of binding later on. Therefore we used a phosphate buffer (10 mM, pH 7, 

150 nM NaCl) and observed that it also had limited peak splitting (Figure 4.17). It is 

therefore possible that as ionic strength increases in buffer solution, the aggregation of 

Mal-B is limited, perhaps because of interactions between Mal-B and anions present 

within the buffer. Alternatively, the pH control offered by the buffer system may help 

limit the number of protonation states of the Mal-B and hence simplify the NMR 

spectra – although usually peaks associated with different protonation should be in fast 

exchange. As such we prefer the explanation that control over ionic composition is 

limiting aggregation. 
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Figure 4.17: Expansion of the 6.0-8.5 ppm region of the of Mal-B in phosphate,10 mM, 

pH 7, 150 nM NaCl, D2O. 

 

4.2.4 Effect of buffer in Mal-B binding with heparin 

 Given the apparent importance and significance of the buffer, a binding study of 

Mal-B with heparin in different buffer systems was therefore performed using UV-Vis 

spectroscopy to investigate the impact of this factor on heparin binding and sensing. In 

Tris HCl buffer, as reported by Bromfield et al.80 (Figure 4.18), the max absorbance 

wavelength shifts from 615 to 585 nm as the concentration of heparin increases 

whereas in phosphate buffer, the max absorbance does not shift at all (Figure 4.19). As 

the concentration of heparin increases, both systems decrease in absorbance which 

indicates the binding of heparin to Mal-B. This meant we can use either buffer system 

in our NMR study as binding clearly taken place. However, there were some subtle and 

important differences between heparin binding in the two different buffer systems. 
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Figure 4.18: UV absorbance of Mal-B with increasing heparin concentration in Tris 

HCl ,10 mM, pH 7, 150 nM NaCl, 

 

Figure 4.19: UV absorbance of Mal-B with increasing heparin concentration in 

phosphate ,10 mM, pH 7, 150 nM NaCl, 

 

 The above UV-Vis titration experiments were performed in triplicate and the 

results are shown in Figure 4.20. It is clear from the binding profiles that when binding 
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take place in Tris HCl, the titration curve is sharper - which would correspond with a 

stronger binding. Furthermore, the binding in Tris Hcl saturates at ca. 20 μM heparin, 

whereas in phosphate buffer it saturates at ca. 15 μM. These observations may suggest 

that the phosphate anions in the buffer compete for binding to Mal-B. These 

differences are particularly clear when considering the normalised titration curves in 

Figure 4.20. Nonetheless, heparin binding can still be observed for Mal-B even in the 

presence of 10 mM phosphate (a large excess). This indicates the high degree of 

selectivity and binding preference between Mal-B and polyanionic heparin. 

 

 

Figure 4.20: Normalised absorbance of Mal-B vs heparin concentration in different 

buffer systems at max absorbance 615 nm. 

 

 We then studied the UV-Vis spectra of Mal-B on changing the ratio of Tris HCl 

buffer and phosphate buffer. The max absorbance only shifts ~1 nm from 1:0 to 0:1 

phosphate : Tris HCl when there is no heparin present (Figure 4.21). However, in the 

presence of heparinm there is a large shift as the buffer is changed from 1:0 to 0:1 

phosphate : Tris HCl (Figure 4.22).  

 

 Figure 4.22 clearly shows that the complex formed between Mal-B and heparin 

has a different optical response depending on the choice of buffer. However Mal-B 
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itself is relatively unchanged in the different buffers (Figure 4.21). We suggest that 

interactions with phosphate anions change the nature of the Mal-B/heparin complex, 

and modify the way in which these two species bind to each another. 

 

 

Figure 4.21: UV absorbance of Mal-B in different ratio of buffer (1:0 to 0:1 phosphate : 

Tris HCl) 
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Figure 4.22: UV absorbance of Mal-B with heparin in different ratio of buffer (1:0 to 0:1 

phosphate : Tris HCl) 

 

 Clearly these data demonstrated that the choice of buffer can be crucial in binding 

experiments and can play an active role in mediating interactions between host and 

guest. Others have reported related phenomena180 and it is important for 

supramolecular chemists to keep in mind that buffers can play active roles in binding 

events above and beyond simple pH control. 

 

4.2.5 Titration study of Mal-B with heparin in phosphate buffer. 

 We then went back to NMR to consider further the interaction between Mal-B 

and heparin in buffer. The 1H NMR spectra of Mal-B (200 μM) with an increase of 

heparin concentration (1:0 to 1:1) in phosphate buffer are shown in Figure 4.23. As the 

concentration of heparin increased, the intensity of the Mal-B signal was lost. From 

Figure 4.24, it was clear that when Mal-B binds heparin at NMR concentrations the 

complex precipitated from solution. Indeed this could be observed visually. 
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Figure 4.23: 1H NMR spectra of Mal-B (200 μM) with increasing heparin concentration 

(1:0 to 1:1). 

 

Figure 4.24: Photo of NMR tubes of Mal-B with increasing of heparin concentration 

 

4.2.6 Conclusions  

 It was clear that using Tris HCl or phosphate buffer minimises peak splitting in the 

aromatic region of Mal-B and we suggest that this is a result of limiting aggregation of 

Mal-B. We reasoned this may allow us to learn about the interaction between Mal-B 
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and heparin via titration study in NMR. However in such studies at NMR 

concentrations, precipitation of the complex was observed, limiting the opportunity 

for analysis. 

 

 We explored the interaction between Mal-B and heparin in different buffer 

systems using UV-Vis spectrocopy and it was clear that the Mal-B:heparin complex has 

a different spectropic signature in Tris HCl and phosphate buffer. We suggest that the 

highly anionic nature of the phosphate buffer means that it can interact in the binding 

processes. There is evidence from binding curves that the binding is weaker in 

phosphate and we suggest that phosphate anions are involoved at the nanoscale 

binding interface in a competitive sense. 
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4.3  NMR investigation of Heparin binding with Self-Assembled 

Multivalent (SAMul) Heparin Binders 

4.3.1 Self-Assembled Multivalent (SAMul) Heparin Binders 

 We then went on to extend these studies to some self-assembled multivalent 

(SAMul) heparin binders of particular interest. We discussed SAMul heparin binders in 

Chapter 3. Inspired by Jones et al. who compared the effects of the surface ligands on 

dendron-DNA interaction using 1,3-diaminopropane (DAP), N,N-di-(3-aminopropyl)-N- 

(methyl)amine (DAPMA) and spermine functionalized low-molecular dendrons and 

suggested that structural influences of the surface ligands on dendrons helped to 

control DNA binding and gene delivery ability,181 we considered that there may be 

structural effects of surface ligands of SAMul binders on binding to heparin. Loryn 

Fechner, a visiting Masters student from Freie Universität Berlin, synthesised four 

SAMul binders with palmitic acid coupled to diamine DAP, triamines DAPMA and 

spermidine, and tetraamine spermine (Figure 4.25).  

 

Figure 4.25: Structure of self-assembled multivalent (SAMul) heparin binders. 

 

 Fechner studied the heparin binding ability of these compounds and related, using  

data from the Mal-B competition assay, that the effective concentration and charge 

excess at 50% replacement of Mal-B for C16-Spermidine indicated that it was the most 

effective heparin binder. The order of effectiveness (Table 4.1) can be summarized as 
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follows:  

 

 C16-Spermidine (+2)> C16-Spermine (+3) > C16-DAPMA (+2) > C16-DAP (+1) 

 

  C16-DAP  C16-DAPMA  C16-Spermidine  C16-Spermine  

CE50   0.69 0.69 ± 0.05  0.34 ± 0.05  0.49 ± 0.1  

EC50 [µM]  74 37 ± 3  19 ± 3  17.5 ± 0.3  

Dose [mg]  0.75 0.49 ± 0.03  0.24 ± 0.04  0.28 ± 0.01  

Table 4.1 Summary of the binding parameters for heparin binding for SAMul heparin 

binder 

 

 C16-DAP was ineffective because its solubility in water was too low for it to work in 

the binding assay – this is a result of its relatively small hydrophilic unit (just a single 

positive charge. We had perhaps expected that the most highly charged C16-Spermine 

would be the most effective polyanion bindier and as such these results were initially 

surprising. Furthermore, it was not clear why C16-Spermidine significantly 

outperformed C16-DAPMA when both ligands have the same +2 charge. 

 

 The results indicate that the structure of the ligand plays an important role in 

heparin binding ability and that an increase in the amount of positive charges does not 

necessarily increase binding efficiency in a simple predictable manner. Therefore we 

became interested in using our NMR technique to understand the interaction of 

different SAMul heparin binders with heparin in order to compare the binding site of 

these ligands and the way in which they interacted on a molecular level when binding 

to heparin. 

 

4.3.2 Result and discussion 

4.3.2.1 C16-DAP 

 NMR confirmed the insolubility of C16-DAP as no signals could be observed from 

the spectrum. 
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4.3.2.2 NMR titration of C16-DAPMA with heparin 

 An NMR titration of C16-DAPMA with heparin was performed where C16-DAPMA (2 

mg/mL) was titrated with increasing heparin concentration (1:0 to 1:1) and the 1H NMR 

spectra are shown in Figure 4.26. We can see the signal of the binder initially decrease 

to zero and then increase back with broadened, shifted peaks as the concentration of 

heparin increases. From Figure 4.27, we can see that when the concentration of 

heparin is between 1:0.5 and 1:0.6, the NMR tubes are a clear solution with white 

particulate matter which matches the NMR data. The disappearance of the peaks at 

the 1:0.5 ratio could suggest the formation of a charge-balanced complex at this point 

between the heparin binder and the heparin leading to precipitates of an aggregate. 

However, clearly in the presence of excess heparin, the complex reorganizes and 

redissolves into solution. As such, this allows us to gain some insight into molecular 

level interactions underpinning these complexes. 

 

 

Figure 4.26: 1H NMR spectra of C16-DAPMA with increase heparin concentration (1:0 to 

1:1) 
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Figure 4.27: Photo of NMR tubes of C16-DAPMA with increase of heparin concentration 

(1:0 to 1:1) 

 

When we look more closely at the region associated primarily with C16-DAPMA 

binder between 0 to 3.5 ppm (Figure 4.28) , it was clear that a, CH2N(CH3) and c, 

CH2CH2N(CH3) reappeared, slightly shifted downfield, whereas b, CH2CONH; d, 

CH2CH2NH2; e, CH2CH2CONH were still missing even when the compound reaches 1:1 

ratio. This would agree with a view that the protonated amines are the primary site of 

interaction with heparin and the CH2 group next to these sites shift downfield as they 

became deshielded. It is not completely clear why the other peaks disappear from the 

spectrum and remain unseen – we suggest that in that presence of excess heparin the 

peaks directly responsible for binding are exchanging between heparin chains and can 

be observed, while the other peaks which are not directly responsible for interacting 

with heparin remain in slow exchange on the NMR timescale. Molecular modelling181 

suggests that DAPMA has a relatively hindered molecular skeleton which is less able to 

rotate and reorganise than some of the other amine ligands. 

Increase in concentration of heparin 
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Figure 4.28: 1H NMR spectra of C16-DAPMA with increase of heparin concentration 

from 0 to 3.5 ppm. 

 

 We then performed the experiment in reverse adding the C16-DAPMA to heparin 

in order to observe which heparin peaks are most affected. A 1H NMR titration of 

C16-DAPMA with heparin was performed where heparin (2 mg/mL) was titrated with 

increasing of C16-DAPMA concentration (1:0 to 1:1) and the 1H NMR spectra of are 

shown in Figure 4.29. When we look more closely at the region between 4.7 and 5.7 

ppm, two peaks which are: a, H1 GlcNS, GlcNS6S; b, H1 IdoA2S; of heparin shifted 

slightly upfield as the concentration of C16-DAPMA increased (Figure 4.30). In the 

region between 4.5 and 3.0 ppm, five peaks which are: f, H6 GlcNS6S; g, H2 IdoA2S; i, 

H3 IdoA2S; j, H4 IdoA2S; k, H5 GlcNS6S of heparin shifted as the concentration of 

C16-DAPMA increased (Figure 4.31). This suggested that C16-DAPMA interacted with 

these protons on heparin – however, all shifts were relatively small so it is hard to came 

to clear conclusions, furthermore, C16-DAPMA peaks are not clearly seen at the end of 

the experiment and it is possible that in this titration the C16-DAPMA:heparin complex 
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remains as an insoluble precipitate – hence its NMR peaks are not really being 

observed. 

 

 

Figure 4.29: 1H NMR spectra of heparin with increase of C16-DAPMA concentration (1:0 

to 1:1) 
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Figure 4.30: 1H NMR spectra of heparin with increase of C16-DAPMA concentration 

from 4.7 to 5.7 ppm 

 

Figure 4.31: 1H NMR spectra of heparin with increase of C16-DAPMA concentration 

from 3.0 to 4.5 ppm 

a 
b 

f 
g i j k 



185 

 

 

 In summary, C16-DAPMA binds with heparin through ionic interactions between 

cationic amine groups on and sulfate/carboxylate groups on the heparin chain forms an 

insoluble precipitate at charge equivalence. Interestingly in the presence of excess 

heparin the protons adjacent to the N+ binding sites on C16-DAPMA reappeared 

suggesting they may be in fast exchange between heparin chains. The protons on 

heparin are very slightly shifted. It is worth noting that anomeric proton, H1 GlcNS, 

GlcNS6S shifted upfield and H1 IdoA2S shifted downfield which may suggest the “H1 

GlcNS, GlcNS6S” was near the cation177 whereas “H1 IdoA2S” shifted away from cation 

or moved closer to anion.178 IdoA2S is a L sugar whereas GlcNS6S is a D sugar, this may 

suggest that the chiral identity of the sugar has an effect on the heparin binder as 

C16-DAPMA is a non-chiral compound. For the non-anomeric proton, all five proton 

peak (H6 GlcNS6S; H2 IdoA2S; H3 IdoA2S; H4 IdoA2S; H5 GlcNS6S) that were shifted 

slightly downfield consistent with binding to the cationic sites.  

 

4.3.2.3 NMR titration of C16-Spermidine with heparin 

The triamine spermidine, a naturally-occurring constitutional isomer of DAPMA, 

shares the same charge as DAPMA. However, Fechner reported that C16-Spermidine is a 

more significantly effective heparin binder than C16-DAPMA. Hence we titrated heparin 

into C16-Spermidine to observe the effect on the C16-Spermidine NMR spectrum. The 1H 

NMR spectra of C16-Spermidine (2 mg/mL) on increasing of heparin concentration (1:0 

to 1:1) are shown in Figure 4.32. We can see the signal of the binder first decrease to 

zero and then increase back with significantly broadening, and shifted peaks as the 

concentration of heparin increases. This is similar overall behaviour as that observed 

for C16-DAPMA, however in this case all the ligand peaks reappear in the presence of 

excess heparin. 
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Figure 4.32: 1H NMR spectra of C16-Spermidine with increase of heparin concentration 

(1:0 to 1:1) 

 

 When we look more closely at the in region between 0 and 3.5 ppm (Figure 4.33), 

peak  a, CH2NH + CH2NH2  b, CH2CH2NHCO  and c CH2CH2NH2 + CH2CH2CONH, all 

reappeared and shifted downfield whereas other peaks remained the same. We 

suggest that only the shifted peaks interacted with heparin. Since protons of all three 

peaks are next to or two bonds away from the cationic amine and they all shifted 

downfield, this suggests that they experience a decrease in electron density around the 

nucleus as a result of the ionic interaction of the binder and heparin. Interestingly, we 

note that for C16-Spermidine the protons further from the charged nitrogen area also 

reappear and shift downfield, which was not the case for C16-DAPMA where they 

remained broadened. This is indicative of a different binding interface between 

C16-Spermidine and heparin, perhaps with larger electrostatic interections. This would 

be in agreement with the better binding observed in binding assays. 
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Figure 4.33: 1H NMR spectra of C16-Spermidine with increase of heparin concentration 

(1:0 to 1:1) from 0 to 3.5 ppm 

 

 We then reversed the experiment and titrated C16-Spermidine into heparin in 

order to observe the effect of binding on specific regions of the heparin biopolymer. 

The 1H NMR spectra of heparin (2 mg/mL) with increasing C16-Spermidine 

concentration (1:0 to 1:1) are shown in Figure 4.34. When we look closer at the region 

between 4.7 and 5.7 ppm, two peaks which are: a, H1 GlcNS, GlcNS6S; b, H1 IdoA2S; of 

heparin shifted slightly as the concentration of C16-Spermidine increase (Figure 4.35). 

In region between 3.0 and 4.5 ppm, four peaks which are: g, H2 IdoA2S; i, H3 IdoA2S; j, 

H4 IdoA2S; k, H5 GlcNS6S of heparin shifted with very small value  as the 

concentration of C16-Spermidine increase (Figure 4.36).  
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Figure 4.34: 1H NMR spectra of heparin with increase of C16-Spermidine concentration 

(1:0 to 1:1)  

 

Figure 4.35: 1H NMR spectra of heparin with increase of C16-SPERMIDINE 

concentration from 4.7 to 5.7 ppm 
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Figure 4.36:
 1H NMR spectra of heparin with increase of C16-Spermidine concentration 

from 3.0 to 4.5 ppm 

 

 Importantly the presence of C16-Spermidine was clearly observed in this titration, 

unlike C16-DAPMAin the equivalent experiment. This suggests the complexes have very 

different solubilities and affinities just as a consequence of the minor ligand changes. 

 

In summary, C16-Spermidine shows difference in its NMR response compared with 

C16-DAPMA when it binds with heparin through ionic interactions between cationic 

amine groups on and sulfate/carboxylate groups on heparin chain. In particular the 

complex retains much faster dynamics on the NMR timescale supportive of potential 

for complex optimisation and resulting in most of the protons on heparin being shifted.  

 

4.3.2.4 NMR titration of C16-Spermine 

 We then studied the more highly charged C16-Spermine system to observe its 

interaction with heparin. The 1H NMR spectra of C16-Spermine (2 mg/mL) with 

increasing heparin concentration (1:0 to 1:1) are shown in Figure 4.37. We can see the 
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signals of the binder again initially decrease to zero as aggregation and precipitation 

occurs at charge equivalence, then increase back with broadening, and shifted peaks as 

the concentration of heparin increases further. This general pattern is similar to that 

observed for C16-DAPMA and C16-Spermidine. 

 

Figure 4.37: 1H NMR spectra of C16-Spermine with increase of heparin concentration 

(1:0 to 1:1). 

 

 When we look closer at the region between 0 and 3.5 ppm (Figure 4.38) , it is 

clear that a, CH2NH + CH2NH2, shifted, and formed a combined peak which is too broad 

to be assigned. We suggest they all interact with heparin. As for the other binders, we 

suggest that proton decrease in electron density around the nucleus as a result of the 

ionic interactions of the binder and heparin. Interestingly the protons two carbons 

away from the charges were significantly broadened but did not appear to shift to any 

major extent. This is closer to the behaviour of C16-DAPMA than C16-Spermidine and 

would support the view that C16-Spermidine was a better binder with more effective 

ligand organisation dynamics than either C16-DAPMA and C16-Spermine. 
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Figure 4.38: 1H NMR spectra of C16-Spermine with increase of heparin concentration 

(1:0 to 1:1) from 0 to 3.5 ppm 

 

 The 1H NMR spectra of Heparin (2 mg/mL) with increasing C16-Spermine 

concentration (1:0 to 1:1) are shown in Figure 4.39. When we look closer in the region 

between 4.7 and 5.7 ppm, two peaks which are: a, H1 GlcNS, GlcNS6S; b, H1 IdoA2S of 

heparin shifted slightly as the concentration of C16-Spermine increased (Figure 4.40) As 

in the other cases, proton a shifted upfiled while proton b shifted downfield suggesting 

direct effects at these anomeric position. In the region between 3.0 and 4.5 ppm, four 

peaks which are: d, H2 IdoA2S; e, H3 IdoA2S; f, H4 IdoA2S; g, H5 GlcNS6S of heparin 

shifted as the concentration of C16-Spermine increased (Figure 4.41). However, once 

again, shifts were very small and might indicate that the binding here is not as effective 

as that for C16-Spermidine. Furthermore, the C16-Spermine peaks in this experiment 

were also much broader than those of C16-Spermidine in the equivalent experiment – 

suggesting that the latter forms better optimised complexes.  
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Figure 4.39: 1H NMR spectra of heparin with increase of C16-Spermine concentration 

(1:0 to 1:1) 
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Figure 4.40: 1H NMR spectra of heparin with increase of C16-Spermine concentration 

from 4.7 to 5.7 ppm 

 

Figure 4.41: 1H NMR spectra of heparin with increase of C16-Spermine concentration 

from 3.0 to 4.5 ppm 
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 In summary, C16-Spermine shares a similar shifting pattern in NMR with 

C16-DAPMA and C16-Spermidine when binding with heparin through ionic interactions 

between cationic amine groups on the binder and sulfate/carboxylate groups on the 

heparin chain and resulting in most of the protons on heparin being shifted. However, 

peak broadening on the ligand is intermediate between C16-DAPMA and 

C16-Spermidine.  

 

4.3.2.5 700 MHz titration study of SAMul heparin binder with heparin 

 Since improvements in the field strengths of magnets lead to greater resolution of 

signals by NMR, we initially titrated C16-DAPMA into heparin to observe which heparin 

peaks are mostly affected at the resolution affected by a 700 MHz NMR spectrometer. 

An NMR titration of heparin with C16-DAPMA was performed in which Heparin (2 

mg/mL) with increase of C16-DAPMA concentration (1:0 to 1:1) and the 1H NMR spectra 

of are shown in Figure 4.42. When we look more closely at the region between 4.7 and 

5.7 ppm, three peaks which are: a, H1 GlcNS, GlcNS6S; b, H1 IdoA2S; of heparin shifted 

slightly as the concentration of C16-DAPMA increases (Figure 4.43). In the region 

between 4.5 and 3.0 ppm, four peaks which are: f, H6 GlcNS6S; g, H2 IdoA2S; h H6’ 

GlcNS6S; i, H3 IdoA2S; j, H4 IdoA2S; k, H5 GlcNS6S of heparin shifted very slightly as 

the concentration of C16-DAPMA increases (Figure 4.44).  
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Figure 4.42: 1H NMR spectra (700 MHz) of heparin with increase of C16-DAPMA 

concentration (1:0 to 1:1) 

 

Figure 4.43: 1H NMR spectra (700 MHz) of heparin with increase of C16-DAPMA 

concentration from 4.7 to 5.7 ppm 
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Figure 4.44: 1H NMR spectra (700 Mhz) of heparin with increase of C16-DAPMA 

concentration from 4.5 to 3.0 ppm 

 

 As such, the results at 700 MHz were in good agreement at 400 MHz. Running the 

titration study at 700 MHz resolved one extra peak, H6’ GlcNS6S. The titration study 

was also performed with C16-Spermine as well as C16-Spermidine in 700 MHz 

spectrometer, however, apart from the extra proton H6’ GlcNS6S being resolved, all the 

shifting patterns are the same, and the experiment will not be discussed further here. 

 

4.3.3 Conclusion and future work 

 On titration between heparin binders and heparin, at charge equivalence, 

precipitation occured as a result of aggregate formation and no NMR signals were 

observed. However on addition of excess heparin to binder (or vice vsera) the 

complexes became soluble again and its was possible to observe changes and shifted 

peaks which provided some insight into the binding mode. Peak shifts were relatively 

small but similar protons on the heparin framework were consistently affected.  
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All SAMul heparin binders interacted with H1 GlcNS, GlcNS6S; H1 IdoA2S; H2 

IdoA2S; H3 IdoA2S; H4 IdoA2S; H5 GlcNS6S of heparin and share the same pattern in 

shifting in NMR. The anomeric proton H1 GlcNS, GlcNS6S shifted upfield and H1 IdoA2S 

shifted downfield. With 700 MHz, an extra proton that interacted with the binder H6’ 

GlcNS6S was resolved. 

  

 On titrating heparin into binder, shifts in the binder protons could be observed. 

Specifically the protons adjacent to the cationic charged nitrogens were shifted 

downfield. For the best binder (C16-Spermidine) protons two carbons away from N+ 

were also shifted and quite well resolved whereas for the less effective binders 

(C16-Spermine and C16-DAPMA) these more distant protons remained very broadened 

(or invisible) and there was little evidence of shifting. This strongly suggests that 

different ligands on the periphery of these SAMul nanostructures have different 

dynamics at the binding interface with polyanionic heparin. We suggest that the 

dynamics at this interface are of key importance in the binding strength – this view may 

support modelling performed by Pricl and co-workers on these systems,182 which 

related to similar data in the literature.181 This modelling focuses on the impact of 

ligand dynamics and reorganisation on the entropy of binding and hence the binding 

affinity. 

 

 In summary, NMR can provide some insight to the binding events at the nanoscale 

and appears particularly useful for uncovering the role of ligands and dynamics in 

mediating binding.  

 

For future work, the study of other SAMul heparin binders such as C16-L/D-Lys and 

C16-Gly-L/D-Lys discussed in Chapter 3 and therefore understand the effect of the 

spacer group toward heparin binding 
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Chapter 5 Orthogonal Nanoscale adhesion of 

Nanotubes and DNA using SAMul System 

5.0 Overview 

 In the previous chapters, we have discussed the sensing and binding of 

polyanionic targets, heparin and DNA, by synthetic systems. We have used NMR 

techniques to gain insight into the molecular detail of their interactions and shown that 

the combination of self-assembly and multivalency is a promising strategy by which we 

can obtain adhesion to polyanionic nanoscale surfaces. In this chapter, we aim to 

demonstrate, in a proof-of–principle study, that such interactions can be applied as a 

general in methodology in order to bring together nanoscale building block in new and 

controllable ways. As such, we initially need a brief introduction about some of the key 

structures used in the methodology which we may want to manipulate. The synthetic 

work in this chapter contributed to S. M. Bromfield, P. Posocco, C. W. Chan, M. 

Calderon, S. E. Guimond, J. E. Turnbull, S. Pricl and D. K. Smith, Chem. Sci., 2014, 5, 

1484-1492.43 

 

5.1 Nanomaterial  

5.1.1 Carbon nanotubes 

Carbon nanotubes (CNTs) were first reported by Oberlin et al. in 1976183 and consist of 

rolled graphene sheets with diameters in the nanometre range and lengths in the 

micrometre range. In 1991, Iijima reported that multi-walled carbon nanotubes were 

found in the insoluble material of arc-burned graphite rods184 and this gave rise to a 

great interest in CNT research and development.  

 

 CNTs can be produced by arc discharge, laser ablation or chemical vapor 

deposition (CVD).185 The arc discharge method uses two electrodes with at least one 

electrode being made of graphite through which a direct current (DC) is passed in a 

gaseous atmosphere. The laser ablation method uses an intense laser beam to ablate 

vaporize a target consisting of a mixture of graphite and metal catalyst in a flow of inert 
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gas. The CVD method involves catalyst-assisted decomposition of hydrocarbons and 

growth of CNTs over the catalyst in a temperature range of 300–1200 oC.186 Hence CNTs 

prepared by the above methods contain carbonaceous impurities such as amorphous 

carbon, fullerenes, and carbon nanoparticles and metal catalyst particles.  

 

 CNTs can be purified via chemical or physical methods, or a combination of both. 

The chemical method purifies CNTs via gas phase, liquid phase and electrochemical 

approaches whereas the physical method can involve filtration, centrifugation, 

solubilization with functional groups, high temperature annealing and other techniques 

such as chromatography.186 

 

 CNTs can exist as a single layer, (single-walled carbon nanotube, SWCNT, Figure 

5.1), or multiple layers nested within one another (multi-walled carbon nanotube, 

MWCNT). CNTs are also known to have applications in areas such as resilient composite 

materials, field emission, energy storage, and molecular electronics.187-190 As such they 

can be considered to be nanomaterials of considerable interest and importance.  

 

 

Figure 5.1: Single-wall carbon nanotube. 

 

5.1.2 Functionalising CNTs 

Although CNTs have a wide range of potential applications, they are undermined 

by the low solubility of these structures in either water or organic solvents and incident 

aggregation of the CNTs.191 However, CNTs can gain solubility via functionalising them 

through both covalent192 and non-covalent means.  

 

 Covalent methods typically involve either oxidation in an acidic medium or 1,3- 

dipolar cycloaddition, producing substituted structures with much of the carbon 
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nanotubes’ unique aromatic character being disrupted by the modifying groups.192 It 

should be noted that covalent modification can be difficult to control with 

functionalisation occurring at a number of different sites or to different sheets. 

Examples of covalent functionalisation are illustrated in Figure 5.2. 

 

 

Figure 5.2: (A) CNT treated with acid to cut them and form carboxylic groups at the tips 

and the sidewalls. (B) CNT undergoing 1,3 dipolar cycloaddition by reacting an -amino 

acid derivative with para-formalaldehyde. R = CH3O(CH2CH2O)2CH2CH2.192
 

 

 Covalent modification of the surface may have effects on the internal electronic 

properties of CNTs by disrupting conjugation pathways. Hence, effective 

functionalisation of the carbon nanotubes by non-covalent methods has attracted 

increasing recent interest.193 The aromatic and hydrophobic character of CNTs allows 

non-covalent functionalisation via - stacking or van der Waals interactions (Figure 

5.3). This approach can leave the electronic properties of the CNT intact. 
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Figure 5.3: 1-Pyrenebutanoic acid, succinimidyl ester irreversibly adsorbing onto the 

sidewall of a SWCNT via - stacking.193 

 

5.1.3 Dendrons and carbon nanotubes 

Dendrons and hyperbranched dendritic structures provide a particularly 

interesting approach for non-covalent functionalisation of carbon nanotubes. The 

presence of multiple surface groups on the periphery of the branched 

nanostructures provides a large surface area for interactions with the solvent, 

while the orthogonal groups at the dendron focal point can interact with the 

carbon nanostructure. As such there is a capacity to use such structures to 

mediate interactions between CNTs and solvent via directed non-covalent 

interactions. Wurm et al. demonstrated how this principle using 

,n-heterotelechelic hyperbranched polyethers and it's pyrene analogue can 

bind to MWCNTs, using hydrophilic block copolymers, with multiple hydroxyl end 

head groups to help solubilise the assembly in an aqueous medium (see Figure 

5.4).194 This gave rise to water soluble CNTs. 
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Figure 5.4: Non-covalent modification of MWCNT inducing water solubility.194 

 

 On the other hand, Bahun et al. used an inverse strategy in which the denditic 

surface groups interacted in a multivalent way with the CNT while the polymer  

(Polystyrene) at the dendritic focal point helped mediate solubility. As such, these 

pyrene-functionalized linear-dendritic hybrid polymers dissolved CNTs in organic 

solvents such as THF.195 (see Figure 5.5). 

 

Figure 5.5: Schematic illustration of the interaction between a linear-dendritic hybrid 

polymer (second generation dendron) and a SWNT.195 
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5.1.4 CNTs in biomedical applications.    

 CNTs have been of interest to many researchers as nanovectors for the highly 

efficient delivery of drugs and biomolecules.196 They can be functionalised 

non-covalently or covalently with drugs, biomolecules and nanoparticles and have 

been suggested as carriers with great potential for the development of 

new-generation delivery systems for drugs and biomolecules (for an overall view, see 

Figure 5.6). Clearly there is significant interest in the ability to interface CNT with 

biologically relevant molecules of therapeutic interest. In the section below, we focus 

on cellular uptake and potential in gene delivery as just one example of this work.  
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Figure 5.6: Overview of functionalization of carbon nanotubes (CNTs) using different 

molecules and their biomedical applications. Figure adapted from Ref196. 

 

5.1.5 Cellular uptake of CNTs 

 There are two possible major pathways by which CNTs can cross the cellular 

membrane.197 The first is an endocytosis dependent pathway which may be either 

receptor-mediated or non-receptor mediated and the second is based on an 

endocytosis independent pathway which includes diffusion, membrane fusion, or 
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direct pore transport of the extracellular material into the cell (Figure 5.7 a, b). In 

general, such systems are taken up across cellular membrane via the first 

endocytosis-mediated passway. However, CNTs can also be taken via the second, more 

direct mechanism. The second approach is a direct translocation of CNT through the 

plasma membrane into the cytoplasm, which has been termed by some researchers as 

the “nanoneedle” mechanism.198 This pathway includes processes such as diffusion, 

membrane fusion, and direct pore transport (Figure 5.7 c). This relatively unique 

mechanism means CNTs have seen particular interest for their unique ability to 

intervene within cells, although of course this also raises the risk of uncontrolled 

uptake and hence toxicity. 

 

Figure 5.7: Pathways for the penetration of CNTs into the cell. (a) Non-receptor 

mediated endocytosis: (1) membrane that surrounds the drug loaded functionalized 

CNTs, (2) internalization of drug loaded CNTs, and (3) release of drug; (b) receptor 

mediated endocytosis: (4) membrane surrounds the CNT-receptor conjugate by 

forming endosomes followed by internalization, (5) release of drug, and (6, 7, 8) 

regeneration of receptor; (c) endocytosis independent pathway: (9) direct penetration 

of drug loaded functionalized CNT and (10) release of the drug.197
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5.1.6 CNTs as gene delivery vector 

 In 2004, Bianco et al. reported the first work using carbon nanotubes as a 

novel gene delivery vector system with covalently-modified carbon nanotubes using 

the Prato reaction, a method based on the 1,3-dipolar cycloaddition of azomethine 

ylides which had been used to introduce amines (Figure 5.8).199 The cationic amine 

functionalized carbon nanotube was able to condense plasmid polyanionic DNA to 

form supramolecular complexes with globular conformations through electrostatic 

interactions.200 The level of gene expression depended on the charge ratio between the 

ammonium groups on the SWNT surface and the phosphate groups of the DNA 

backbone. Moreover, the DNA carbon nanotube (DNA-CNT) complexes did not appear 

to exert any mitogenic or toxic effect on activated or non-activated lymphocytes.  

 

 

Figure 5.8: Azomethineylides functionalized carbon nanotube. 

 

  Non-covalent functionalisation of CNTs with amphiphilic molecules is of great 

importance because, in contrast to covalent functionalisation, the  -network of 

graphene sheets is not disturbed, and their extraordinary physical properties remain 

intact.201 Futhermore, it avoids complex and relatively uncontrolled covalent 

functionalisation reactions. 

  

 Surfactants such as sodium dodecyl sulfate,202 sodium dodecyl- 
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benzenesulfonate,203 cetyltrimethylammonium bromide (CTAB),204 and the Triton-X 

series205 have been shown to enhance the stability and dispersibility of CNTs in the 

culture medium by absorbing onto the surface of CNTs, thereby reducing 

cytotoxicity.196 Dispersion of SWCNTs helps to diminish SWCNT cytotoxicity.206 Studies 

with polyoxylethylene sorbitan monooleate, a surfactant, also enhanced the 

dispersibility of CNTs and showed no toxicity to human lung mesothelial (MSTO-211-H) 

cells.207  

 

 Therefore, achieving functionalisation of carbon nanotubes by non-covalent 

means while at the same time facilitating strong CNT-polyanion binding became an 

interesting topic to explore.  

 

5.2 Project Aim 

 In general terms, we reasoned it is of great interest to understand generic 

adhesion processes between diverse nanoscale structures and design system which can 

interact simultaneously and controllable with two different nanostructures. In this way 

we should be able to study the advantages/properties of each of the nanostructures 

within a single hybrid. As such, we became interested in enabling carbon nanotubes, or 

graphene sheets, to interact with anionic biomolecules. For this study, we selected 

DNA as the polyanion of interest rather than heparin because of the potential 

applications of such organised nano-hybrids. Such systems might have applications in 

gene delivery. Figure 5.9 shows our general schematic approach in which we design a 

bi-functional supramolecular dendron with a hydrophobic unit capable of biding to 

CNTs and polycationic ligands capable of binding to polyanionic DNA. Such a systems  

can be considered to be “nanoscale glue” and it should be noted that this approach to 

the supramolecular organisation of nanoscale matter has broader scope and potential 

than only binding CNTs or DNA. As such, this project can be consided as a 

proof-of-principle to demonstrate the potential of such “nano-glues”. 
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Figure 5.9: Schematic drawing of dendrons as a "nanoglue' that glue two different 

nanoscale building blocks together such as double helical DNA and a carbon nanotube. 

 

5.3 Compound Design 

This project therefore aims to employ self-assembling dendrons to 'glue together' 

different orthogonal nanoscale building blocks, such as SWCNT and DNA. Initial target 

molecules were C22-G1 and Py-G1. These compounds contain hydrophobic units to 

potentially bind to the SWCNT and polyamine ligands to bind to DNA. 

 

 

 

C22-G1 Py-G1 

 

 C22-G1 was first reported by Rodrigo et al.93 as a self-assembling dendron for 

heparin binding. The amine surface groups were shown to bind DNA as reported by 
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Barnard et al.,208 however this published structure had not been investigated for DNA 

binding potential. Furthermore the hydrophobic tail should have potential to bind with 

SWCNT. In addition to studying C22-G1, we proposed to employ Py-G1, as we reasoned 

the pyrene group may bind with higher affinity to SWCNT as a consequence of the 

pyrene's -  stacking mechanism. The synthesis and heparin-sensing potential of this 

SAMul binder were described in Chapter 2. So Clearly Py-G1 has the ability to bind 

polyanions – although once again, its DNA binding potential had not yet been assessed. 

 

5.4 Result and Discussion 

5.4.1 Synthesis of C22-G1  

To synthesise C22-G1, the procedure reported by Rodrigo et al.93 was followed. The 

synthesis of alkyne-functionalised dendron, 7, was same as reported in Chapter 2. Then 

“click” chemistry was used to attach 1-azidodocosane 13 to 7 and the resulting 14 was 

purified by gel permeation chromatography. Target C22-G1 was obtained by removing 

the protecting groups of 14 using HCl gas in methanol (Scheme 5.1). 

 

 

Scheme 5.1: Synthesis of C22-G1 

 

 It should be noted that some of the compounds synthesised by me in this project 
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were used in a full study of the heparin binding potential of these carried out by Dr S. 

M. Bromfield. The results of this study were published in Chemical Science43 but are 

not discussed in detail here as the analysis was carried out primarily by Bromfield. 

 

Some of the spectroscopic assignment of these compounds were revisited. When 

compared with the published report of Rodrigo et al.,93 compound 14 showed a proton 

at 5.20 ppm, which was not reported. This proton had 2J or 3J correlation to 3 carbons 

at 123.4, 142.3 and 173.1 ppm in the HMBC. Based on the correlation from HMBC this 

peak was assigned as the CH2O adjacent to the triazole unit with 1H NMR (400MHz, 

CDCl3) δ: 5.20 and 13C NMR (100MHz, CDCl3) δ: 58.3 (see Figure 5.10). This proton and 

this carbon had been missed in the previous assignment. 

 

Figure 5.10: HMBC correlations observed for proton at 5.20 ppm in compound 10 in 

CDCl3 

 

 The deprotected target compound, C22-G1, also had a missing proton and carbon 

assignment for the CH2O adjacent to the triazole. This was now assigned as 1H NMR 

(400MHz, MeOD-d4) δ:5.15 and 13C NMR (100MHz, MeOD-d4) δ: 142.3. All other 

characterisation was in full agreement with the published report by Rodrigo et al.93 

 

In Chapter 2, the click chemistry step for the synthesis of protected Py-G1 

suggested that the yield could be significantly enhanced by changing the solvent from 

aqueous THF to dry and degassed DMF. Therefore, the synthesis of protected C22-G1 

was repeated with the new method, as reported for protected Py-G1, to see whether 

the yield could be improved.  
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 The yield using the new method was found to be 81%, which was significantly 

higher than what was reported by Rodrigo et al.93 with 40%. As such, this indicated that 

this optimised method should be employed for the synthesis of all of this class of 

compounds in future studies.  

 

5.4.2 Critical Aggregation Concentration (CAC) of C22-G1 and Py-G1 

 The CAC of C22-G1 was reported by Rodrigo et al.93 as 3.88 ± 0.25 μM in 0.01M 

PBS buffer using a Nile Red assay,111 in which the solubilization of the hydrophobic dye 

monitored by fluorescence spectroscopy acts as a probe for the minimum 

concentration at which self-assembly can take place in 0.01M PBS buffer 

(phosphate-buffered saline at pH 7.4). In this study, the CAC of C22-G1 was found as 16 

± 4 μM using the same Nile Red assay method as reported by Rodrigo et al.93 but in 

0.01M SHE buffer made up with: NaCl [9.4 mM], EDTA [20μM] and HEPES [2 mM] at pH 



212 

 

7 (see Figure 5.11).  

 

 

Figure 5.11: Fluorescence intensity of Nile Red in the presence of increasing amounts 

of C22-G1 in SHE Buffer 

 

 The result suggested that the CAC of C22-G1 in SHE Buffer is higher than that in 

PBS buffer. This may due to PBS buffer having higher ionic strength than SHE buffer 

which helps drive the self-assembly. Specifically interactions between the phosphate 

anions (10 mM) in PBS and cationic C22-G1 would be expected to encourage 

self-assembly. In 2013, Javadian et al. reported that the CAC value of ester-containing 

cationic gemini surfactants, dodecyl esterquat and dodecyl betainate decreased as the 

concentration of NaBr increased because the addition of salt causes the neutralization 

and screening of the charge of head groups and reduction of repulsive electrostatic 

interactions.209 Indeed it is quite well-known that salt can act to screen electrostatic 

repulsion and lower CAC.210 Therefore, we suggest it is not unsurprising that the CAC of 

C22-G1 in SHE Buffer was higher than that observed in PBS buffer. 

 

 The CAC of Py-G1 was also determined in SHE buffer using the method descried in 

Chapter 2. It was found that when Py-G1 was excited at 363 nm, a emission band with 

max emission at 495 nm was observed and this band could therefore be monitored to 

determine the CAC. This band is concentration dependent because excimer formation 

is favoured in the interior of the micelle when the pyrene groups are close together in 
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space. The CAC of Py-G1 was found to be 21 ± 4 μM in 0.01 M SHE buffer (Figure 5.12). 

 

 

Figure 5.12: Fluorescence intensity at 495 nm of Py-G1 in the presence of increasing 

amounts of Py-G1 in SHE Buffer (0.01 M). 

 

The difference between the CAC value of Py-G1 in PBS buffer (19 ± 2 μM, reported 

in Chapter 2) and SHE buffer (21 ± 3 μM) was not as significant as that for C22-G1. This 

may be due to the more rigid structure of the aromatic rings of pyrene causing the 

assembly to have less overall dynamic flexibility and hence less dependence on ionic 

strength or interactions with components of the buffer solution. Overall, however, the 

data suggest that C22-G1 self assembles more effectively than Py-G1.  

 

5.4.3 DNA assay C22-G1 and Py-G1 

 The DNA binding ability of C22-G1 and Py-G1 was then measured via the 

displacement of the intercalating agent ethidium bromide (EthBr) from DNA as 

monitored by fluorescence spectroscopy in SHE buffer with DNA (4.0 μM) and EthBr 

(5.07 μM).211, 212 The CE50 value is the charge excess required for the 50% displacement 

of ethidium bromide in the fluorescence displacement assay and the EC50 value is the 

concentration of binder required for the 50% displacement of ethidium bromide in the 

fluorescence displacement assay. C22-G1 was found to have a CE50 = 1.5 ± 0.2 and EC50 = 

1.5 ± 0.2 μM whereas Py-G1 was found to have a CE50 = 2.7 ± 0.3 and EC50 = 2.7 ± 0.3 
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μM (see Figure 5.13). Although these values are very dependent upon assay conditions 

they are an ideal way of comparing the performance of the two analogous DNA 

binders. 

 

 

Figure 5.13: Charge ratio vs. normalised fluorescence from the EthBr displacement 

assay used to determine CE50 values for C22-G1 and Py-G1. 

  

 Considering the whole titration plot, rather than only the point at which 50% 

displacement is observed, it is worth noting that in the initial part of the assay, when 

only small amounts of binder are present, the binding is relatively similar. However, 

once more binder is present, Py-G1 becomes increasingly ineffective at displacing EthBr. 

This suggests that the initial binding sites on DNA bind equally well to micelles formed 

by C22-G1 and Py-G1. However as the DNA become more saturated with nanoscale 

binders, C22-G1 begins to significantly outperform Py-G1. This might suggest that the 

former system with the more flexible hydrophobic chain, may have greater potential to 

adapt and bind to these less favourable secondary binding sites, Similar effects have 

previously been discussed in other systems binding to polyanionic targets.160, 213 As 

such we suggest the difference between C22-G1 and Py-G1 in binding to DNA lies not in 
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the initial primary binding sites but in the more crowded secondary binding 

environments.  

 

 Overall, the data suggested that C22-G1 binds DNA better than Py-G1. This may be 

because of more effective multivalent binding, particularly in the secondary binding 

sites. Barnard et al. in 2011 reported a family of second-generation dendrons with four 

triamine surface ligands capable of binding to DNA, degradable aliphatic-ester 

dendritic scaffolds, and hydrophobic units at their focal points (see Figure 5.14).208 The 

results suggested that Z-G2 did not aggregate and also indicated an inverse 

relationship between the length of the hydrophobic chain and the CMC value (C12-G2 > 

C16-G2 > C22-G2). At the same time, the CE50 values of EthBr displacement assay 

decreased from C16-G2 to C22-G2 whereas Z-G2 and C12-G2 were unable to effectively 

displace ethidium bromide from the DNA double helix under the conditions 

investigated. This suggested that self-assembly activated multivalent binding when the 

CAC was reached and hence effective DNA binding only occurred for the assembled 

nanostructures. C22-G1 self-assembles more effectively than Py-G1 (lower CAC value 

for C22-G1), we also noted that Py-G1may be expected to form a more rigid 

self-assembled structure with less dependence on assay conditions. This supports the 

view that C22-G1 binds DNA better than Py-G1 by more effective activation of flexible 

and responsive multivalent binding when the CAC is reached. 

 

 

Figure 5.14: Dendrons investigated by Barnard et al.208 
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5.4.4 Carbon nanotube assay 

 We then moved on to consider the ability of our dendrons to bind the other 

nanoscale component of interest, i.e. the carbon nanotubes. The simplest way to 

consider interaction with CNTs is though a simple solubilisation assay. CNTs are not 

soluble in water, but in the presence of a solubilising ligand should be capable of 

bening more effectively dissolved and to disperse in this medium. We therefore 

developed a sonication/dissolution assay to probe CNTs binding.  

 

To find out the optimised sonication time needed for C22-G1 to bind with SWCNT, 

SWCNT (~5 mg) was added into a cuvette with 2 ml of deionized water, and sonicated 

for 5, 10, 15 and 20 min and the spectra recorded. C22-G1 (0.51 mg) was added to 1 ml 

of deionized water, shaken well, added to another cuvette with SWCNT (~5 mg) and 

deionized water, sonicated for 5, 10, 15 and 20 min and the spectra recorded. The 

results are shown with the intensity at 400 nm being used to detect the dispersion of 

the CNTs into the aqueous solution (Figure 5.15). 

 

 

Figure 5.15: UV Absorbance at 400 nm vs time sonicated for SWCNT with/without 

C22-G1 in H2O 

 

Sonication of SWCNT in the presnce of C22-G1 clearly led to the solubilization of the 
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0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 5 10 15 20 25 

A
b

so
rb

an
ce

 a
t 

4
0

0
 n

m
 

Time (min) 

SWCNT only 

SWCNT with C22-G1 



217 

 

was no difference in absorbance at 400 nm after sonication for 15 min or 20 min. As 

suc,h the results to optimise the assay indicated that 15 min of sonication is sufficient 

for most of the C22-G1 to bind with, and hence, solubilise SWCNT. 

 

 After sonication, there was sometimes a problem in these initial experiments with 

the inhomogeneous nature of some of the samples. We therefore decided to introduce 

a centrifugation step to reduce light scattering effects. SWCNT (~5 mg) was added into 

4 tubes each with 2 ml of deionized water in them. They were then sonicated for 15 

min, followed by centrifugation at 2000 RPM for 30 min. The supernatant solution was 

then carefully transferred to cuvettes for recording. The samples were then returned to 

the centrifugation tubes, and aliqouts of C22-G1 were then added into the 4 tubes 

respectively and then sonicated for 15 min and centrifuged at 2000 RPM for 30 min 

and the spectra recorded. The above process was repeated at centrifuge speeds of 

3000and 4000 RPM. Figure 5.16 to Figure 5.18 present the differences in the 

absorbance at 400 nm before and after addition of dendron. 

 

 

Figure 5.16: Difference in Absorbance of SWCNT in H2O before and after adding C22-G1 

vs [C22-G1] at 2000 RPM  
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Figure 5.17: Difference in Absorbance of SWCNT in H2O before and after adding C22-G1 

vs [C22-G1] at 3000 RPM 

 

  

Figure 5.18: Difference in Absorbance of SWCNT in H2O before and after adding C22-G1 

vs [C22-G1] at 4000 RPM 

 

 At 2000 RPM, there was still a lot of inhomogeneous material present, leading to 

lots of light scattering, while at 4000 RPM, even the nanoscale complexes appeared to 

have been centrifuged out of the sample, leading to low absorbance values. It is well 

known that centrifugation can lead to sedimentation of larger nanoscale aggregates. As 

such we believe the assay at 3000 RPM fairly and optimally reflects the ability of C22-G1 

to "solubilise" SWCNT into water.  
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 After it was found that sonication for 15 mins and centrifugation at 3000 RPM 

(1450 g min-1) could be used as a standard procedure when quantifiying the SWCNT 

binding, both C22-G1 and Py-G1 were tested with SWCNT in SHE buffer. The results 

showed that as the concentration of C22-G1 and Py-G1 increased, there was better 

uptake SWCNT for C22-G1 (Figure 5.19). The result suggested that C22-G1 showed 

effective uptake of SWCNTs. However, using this assay, Py-G1 could not be seen to 

uptake SWCNT. It was clear that for C22-G1, SWCNT uptake is detected at 

concentrations above 25 μM and above. This in in-line with the observed CAC of this 

self-assembling system. However, it should also be noted that the optical properties of 

pyrene may be interfering with this assay as it absorbs in the UV-Vis at a similar 

wavelength. 

 

Figure 5.19: Difference in absorbance at 400 nm of SWCNT in SHE buffer before and 

after adding binder and centrifugation. 

 

5.4.5 CNTs and DNA binding assay of C22-G1 

Having demonstrated that C22-G1 was both the most effective DNA binder and the 

most easily monitored system for CNT binding, we then had to demonstrate the 

capacity of this system to bind simultaneously to both nanostructures and hence act as 

a “nanoglue”.  
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An assay was therefore developed which combined both the CNT binding assay 

and the DNA binding assay. This should allow monitoring of both DNA and CNT binding 

together if we see increase in UV-Vis in absorbance at 400 nm (uptake of SWCNTs) and 

a decrease in fluorescence emission intensity at 590 nm (DNA binding monitored via 

EthBr displacement) as the concentration of C22-G1 increases.  

 

 SWCNT (~5 mg) were therefore added there into five tubes each with 2 ml of 

EthBr concentration of 5.07 μM and DNA at 4.0 μM in SHE buffer in them. They were 

then sonicated for 15 min, followed by centrifugation at 3000 RPM for 30 min. The 

solution was carefully transferred to cuvettes for recording and returned to the 

centrifugation tubes. Aliqouts of C22-G1 mixed with in EthBr (5.07 μM) and DNA (4.0 

μM) in SHE buffer were then added into the 5 tubes respectively and then sonicated 

for 15 min and centrifuged at 3000 RPM for 30 min and the spectra recorded.   

 

 

 

 From the data, it is clear that as the concentration of C22-G1 increases, the 

absorbance difference also increases which suggests some CNT uptake in the present 

of DNA and EthBr. Notably CNT uptake only appears above dendron concentrations of 

ca. 70 μM. This is higher than what was observed in the absence of DNA where uptake 

was observed from 25 μM. This might suggest that ineraction with DNA limits the 

ability to bind SWCNTs,. Perhaps by stabilising the aggregates of C22-G1 and limiting 
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their ability to reorganise and bind to the SWCNTs surface with their hydrophobic chain. 

Although it is clear that as the concentration increases, this SWCNT binding can still 

occur.  

 

 However, when we compare the fluorescence intensity of free EthBr, EthBr + DNA, 

EthBr + SWCNTs and EthBr + DNA + SWCNTs (See Table 5.1), it beame evident that the 

present of SWCNT quenched the fluorescence of EthBr. As such the EthBr assay was 

not valid as a method for quantifying the DNA binding in this case. Hence we needed to 

find a new method that might enable monitoring of DNA and CNT binding together. As 

such we turned to transmission electron microscopy (TEM). 

 

 EthBr  EthBr + DNA  EthBr + SWCNT  EthBr + SWCNT + DNA 

Fluorescence 

intensity 
65.75 332.6 3.255 3.834 

Table 5.1: Fluorescence intensity recorded at 590 nm. 

 

5.4.6 Transmission Electron Microscopy (TEM)  

 The morphology of the C22-G1 and CNT was characterised by TEM following the 

deposition of solution-phase aliquots onto a formvar grid, staining with uranyl acetate 

and drying. C22-G1 appeared to aggregate into micellar assemblies, with approximate 

diameters of ca. 7 nm, as previously reported by Rodrigo et al. (Figure 5.20, left),93 and 

the CNT sample we were using could clearly be categorized a single layer walled 

(SWCNT) (Figure 5.20, right). 
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Figure 5.20:TEM image of (left) C22-G1 and (right)CNT (100nm) 

  

The C22-G1 was then imaged in the presence of DNA (Figure 5.21). The micellar 

objects appeared to remain fully intact and co-assemble with the polyanionic 

components. The nano-aggregate formed had similar morphology as observed when it 

bound with heparin as reported by Rodrigo et al..93 This may suggest the micelles 

aggregates along the polyanionic backbone of DNA as a consequence of electrostatic 

interactions (Figure 5.22). Indeed these nanoscale aggregates can be considered to 

result from an effective ionic “close packing” of the two different counter-ionic 

component. Inpartally, these images demonstrate that the micelle assemblies formed 

by C22-G1 are not disrupted by the present of DNA, as sometimes happens when such 

contracts are brought into contract with a polyanion. Indeed, the micelles clearly have 

a very significant stability even when the ligand surface are bound to nanoscale DNA. 

  

Figure 5.21: TEM of C22-G1 with DNA (100 nm) 

 

Figure 5.22: TEM of C22-G1 with heparin.93 
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 Bromfield et al. reported modelling of C22-G1 bind binding to heparin in 2014 

(Figure 5.23).43 They suggested that the larger self-assembled micelles generated by 

C22-G1 exploit 32 (out of 96) positive charges to constantly bind one heparin chain in an 

efficient manner. Clearly as more polyanion chains are brought into contact with the 

micelle they can then satisfy the surface ligands – without disrupting the overall 

micellar nanostructure.  

 

Figure 5.23: Atomistic models of self-assembled C22-G1 is shown as teal sticks, with 

heparin is in dark olive green (L-iduronic acid) and light green (D-glucosamine) spheres. 

Water molecules are omitted for clarity while some Na+ and Cl- ions are shown as 

orange and grey spheres, respectively.43 

 

 We then investigated for the morphology of C22-G1 in the present of SWCNT. 

SWCNTs (~5 mg) were weighed out in a tube and C22-G1 in deionised water was added, 

sonicated for 15 min and centrifuged at 3000 RPM for 30 min. The solution was 

carefully transfered into a sample vial ready for TEM. The solution was then deposited 

as solution-phase aliquots onto a formvar grid, staining with uranyl acetate and dried. 
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Figure 5.24: TEM image of C22-G1 with CNT (100nm) 

  

 From Figure 5.24, it was visually clear that the C22-G1 allowed CNT to be taken up 

into solution as the solution became coloured. We suggest its own hydrophobic tail 

bound with CNT and the cationic amine surface groups allow dispersion in solution. 

From the TEM image (Figure 5.24), it was evidet that C22-G1 was being dispersed on 

the surface of the CNT which gained a brighter contrast. 

 

Hence, we wanted to test whether TEM help could demonstrate that C22-G1 binds 

with CNTs via its hydrophobic tail and DNA with the cationic amine surface groups. To 

the solution of C22-G1 with CNT (1 mL) which was prepared for the TEM image 

beforehand, was added with 1 ml of DNA solution (0.2 mg/mL). The mixed solution was 

then deposited in solution-phase aliquots onto a formvar grid, staining with uranyl 

acetate and dried. 

  

Figure 5.25: TEM image of C22-G1 + CNT + DNA (100 nm) 
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 From Figure 5.25, the excess C22-G1 which was not bound with CNTs in Figure 5.24 

was now also bound with the DNA in the solution with clear micelle clusteing being 

observed in the image, like in Figure 5.21. This suggested that in order to visualise the 

binding of all three at the same time, we needed to filter the excess C22-G1 after we 

bind it with CNT then only the modified nanotubes should bind with DNA for visual 

characterisation. 

 

The effect of the filtration step was probed on the C22-G1-CNT complexes. SWCNTs 

(~5 mg) were weighedt out and C22-G1 in deionised water was added, then sonicated 

for 15 min and centrifuged at 3000 RPM for 30 min. The solution was carefully 

transferred to Amicon Ultra centrifugal filter units, with a regenerated cellulose filter 

100 kDa, and centrifuged at 3000 rpm for 10 min, washed three times with deionised 

water and finally recovered by resuspending in 1 mL of deionised water. The resulting 

solution was transfered into a sample vial for the TEM. The solution was then 

deposited in solution-phase aliquots onto a formvar grid, staining with uranyl acetate 

and drying. 

  

Figure 5.26: TEM image of C22-G1 with CNT after filtration (100nm) 

 

From the TEM image of C22-G1 with CNT (Figure 5.26), after the removal of excess 

C22-G1, it was clear that the C22-G1 was retained mostly in micellar aggregates and 

surrounded the surface of the CNT. The background “free” C22-G1 micelles observed in 

Figure 5.24 are no longer observed and have clearn been removed by the filtration step. 

Next, to the solution of C22-G1 with CNT after filtration (1 mL), previously prepared for 

the TEM image, was added DNA solution (0.2 mg/mL), and the mixture was then 
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deposited in solution-phase aliquots onto a formvar grid, staining with uranyl acetate 

and dried. 

 

  

Figure 5.27: TEM image of C22-G1 + CNT + DNA after filtration (100 nm) 

  

From Figure 5.27, we could see dark regions coresponding to DNA warping on the 

surface of CNT. This suggested that our C22-G1 can indeed act as nanoglue that bind 

DNA and CNT together. Moreover, the micellar aggrgates still seem to remain largely 

intact, connecting the two orthogonal nanostructures together. 

 

 We then applied the same method as before for Py-G1 to determine visually  

whether Py-G1 can act as nanoglue or not. Py-G1 was first imaged in the presence of 

DNA, and it had similar morphology as did C22-G1 bound with DNA, which suggested 

that clusters of micellar assembiles of Py-G1 aggregate along the backbone of DNA as a 

consequence of electrostatic interactions in a “close packed” cation/anion arrangement 

(Figure 5.28). 
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Figure 5.28: TEM image of Py-G1 with DNA (100 nm) 

 

 We then studied the morphology of the Py-G1 with CNT using the same method 

as optimised for C22-G1. From Figure 5.29, it was clear that the Py-G1 remained mostly 

in vesicular or clusters of micellar assemblies and surrounded the surface of the CNT. In 

contrast to the UV-Vis assay described in Section 5.4.4, this clearly suggests that Py-G1 

can indeed uptake SWCNTs and would agree with the view that the optical properties 

of pyrene were interfering with this previous assay. We can also see a much larger size 

of Py-G1 assemblies on the surface of the CNT due to the fact that Py-G1 form much 

bigger assemblies in solution (~10 to 40 nm from DLS) compared with as C22-G1 which 

forms well-defined micelles with diameters of ca. 9 nm.43  

 

 

  

Figure 5.29: TEM image of Py-G1 with CNT after filtration (100nm) 

 

We then probed the ability of Py-G1 act as nanogule to simultaneously bind CNT 
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and DNA. To the solution of Py-G1 with CNT after filtration (1 mL) which was prepared 

for the TEM image beforehand, was added with DNA solution and the mixture was 

then deposited in solution-phase aliquots onto a formvar grid, staining with uranyl 

acetate and dried. 

 
 

Figure 5.30: TEM image of Py-G1 + CNT + DNA after filtration (100 nm) 

 

From Figure 5.30, we could see some evidence of DNA surrounding the surface of 

CNT. Although the images were not as clear as for C22-G1, this thereofre provides some 

evidence that Py-G1 can also act as a nanoglue that binds DNA and CNT together. 

 

5.5 Summary and future work 

 C22-G1 was successfully synthesised. After changing the solvent for the click 

chemistry step we successfully achieved excellent yields for C22-G1. We also revisited 

the characteriation of this molecule and contributed material for a major publication 

dealing with this hepain binder.43 

 

Both C22-G1 and Py-G1 self-assemble and bind to DNA and SWCNT respectively. 

The effect of buffer on the CAC of C22-G1 appeared to be stronger than the CAC of 

Py-G1. C22-G1 was also more effective than Py-G1 in binding to DNA (lower CE50 and 

EC50) and SWCNT (higher absorbance differences when increase in concentraion of 

C22-G1 than Py-G1). We suggest this reflects the flexible hydrophobic chain enabling 

better self-assembly and more responsive binding surfaces than the more rigid pyrene. 

As such we considered C22-G1 to be our primary candidate to act as nanoglue and 
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allow the adhesion of these othogonal nanostructures.  

 

 Although our attempt to quantitatively assay simultaneous DNA and SWCNT 

binding was unsuccessful, it is clear that TEM imaging allow us to monitor the binding 

of both DNA and CNT. Filtration of the excess binder prior to monitoring simultaneous 

DNA and CNT binding together was essential. But once this had been done, it could 

clearly be observed for C22-G1 that the three different nanostructures were being 

effectively linked together in solution.  

 

 As such we consider this as proof-of-principle for the way in which SAMul 

nanosystems can act to bind more than one nanosystem at the same time, and shows 

that surface ligands and hyprophboic core can possess othogoenal supramolecular 

organization, ensuring new interface between different nanoscale material – in this 

case, nanotubes and DNA. 

 

 For future work, it is of interested to move towards to gene delivery experiment 

for the C22-G1/Py-G1 with DNA and CNT investigate adhesion of other diverse 

nanostructures, such as graphene/fullene.  
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Chapter 6 Experimental 

6.1 General Materials and Methods 

All reagents were obtained from commercial sources and were used without further 

purification. Sodium salt heparin from porcine intestinal mucosa with a molecular 

weight between 15,000 ± 2,000 Da (1 kU = 1000 units) was obtained from Calbiochem®. 

Trizma® hydrochloride (Tris HCl) obtained from Sigma Aldrich. Phosphate buffer was 

obtained from Fisher Scientific. Column chromatography was performed on silica gel 60 

(35-70 μm) supplied by Fluka Ltd. Preparative gel permeation chromatography (GPC) 

was performed on Biobeads SX-1 supplied by Bio-Rad. Thin layer chromatography (TLC) 

was performed on Merck aluminum-backed plates, coated with 0.25 nm silica gel 60. 

1H, 13C, 1H-1H COSY,1H-13C HSQC and 1H-13C HMBC NMR were recorded on a JEOL 

ECX400 (1H 400 MHz, 13C 100 MHz) spectrometer. 1H NMR at 700 Mhz was recorded on 

a Bruker Avance (16.4 T) 700 MHz. ESI and HR-ESI mass spectra were recorded on a 

Bruker Daltonics Microtof mass spectrometer. For the acquisition of the UV-vis 

absorption spectra, a Shimadzu UV2041-PC instrument was used. A Thermo Scientific 

Heraeus Biofuge Primo was used for centrifugation. IR spectra were measured 

PerkinElmer Spectrum Two™ IR Spectrometers with ATR-IR. Circular Dichroism was 

carried out on a Jasco J810 CD Spectrophotometer (150w Xe lamp). Fluorescence 

emission was measured on a Hitachi F-4500 spectrofluorimeter. All Mal-B solutions 

were incubated at 50oC for 24 hours prior to use and stored in the dark. For the 

purpose of calculations, the molecular weight of heparin is assumed as that of the 

sodiated analogue of the heparin repeat unit (L-iduronic acid and β-D-glucuronic acid), 

namely 665.40 g mol-1. 

 

6.2 Assay Methods 

Pyrene-derivatives Critical Aggregation Concentration (CAC) Assay 

A stock solution of the pyrene-derivatives was made up in PBS/SHE buffer at various 

concentrations. Aliquots of the stock solution were taken and diluted with PBS/SHE to 

the desired concentration in a 1 ml assay volume. The fluorescence emission was 

measured on a Hitachi F-4500 spectrofluorimeter using an excitation wavelength of 
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363 nm. Fluorescence intensity was extracted at 495 nm. Experiments were performed 

in triplicate. 

 

 

Dynamic light scattering (DLS) 

Dynamic light scattering data were measured at 1 mg/mL using a Zetasizer Nano 

(Malvern Instruments Ltd., Worcestershire, UK), based on the principle of 

measurement of the backscattered light fluctuations at an angle of 173° and the 

calculation of an autocorrelation function. Data were recorded from 15–20 runs per 

single measurement, each of which was carried out at 25°C using folded capillary cells 

(DTS 1060). Monomer solutions were freshly prepared by dissolving an appropriate 

amount of dry compound in filtered aqueous media (e.g. 10 mM Tris HCl, 150 mM 

NaCl). All samples were agitated and incubated at 25°C for 10 minutes prior to 

measurement. Data are reported based on volume distribution.  

 

TEM Imaging  

Dendron solutions were prepared in clean water at 1 mg/mL. Samples imaged in the 

presence of heparin and DNA were introduced at 1 mg/ mL. Once prepared, aliquots of 

each solution were loaded on a formvar grid, negatively stained with uranyl acetate 

and allowed to dry before imaging. Image taken from FEI Tecnai 12 BioTWIN G2 

transmission electron microscope with SIS CCD camera 

 

Heparin Sensing Assay Using Fluoresence 

Aliquots of dendron solution were made up to 10 ml in volumetric flasks with 10 mM 

Tris HCl with 150 mM NaCl buffer solution or 12.5% Human Serum in 20 mM Tris HCl 

buffer or 100% Human Serum to yield stock solutions of the sensor. 5 mL of this 

solution was then added to heparin to yield a stock solution of sensor/heparin.  1 ml 

of stock sensor solution was added to the cuvette and titrated with stock 

sensor/heparin solution so that the cuvette ended up with 2 ml solution. The 

fluorescence emission was measured on a Hitachi F-4500 spectrofluorimeter using an 

excitation wavelength of 363 nm. Fluorescence intensity was extracted at 383 and 495 
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nm. Experiments were performed in triplicate. 

 

Nile Red Encapsulation161 

A 2.5 mM Nile Red stock solution was made in EtOH. A dendron stock solution was 

made up in PBS/SHE buffer at various concentrations. Aliquots of the stock solution 

were taken and diluted with PBS/SHE to the desired concentration in a 1 ml assay 

volume. Nile red (1 μl) was added and the fluorescence emission was measured on a 

Hitachi F-4500 spectrofluorimeter using an excitation wavelength of 550 nm. 

Fluorescence intensity was recorded at 635 nm. Experiments were performed in 

triplicate. 

 

Ethidium Bromide Displacement211, 212 

A solution of Calf Thymus DNA (8.0 μM) was prepared in SHE Buffer (2 mM HEPES, 0.05 

mM EDTA, 150mM NaCl) at pH 7.5. Ethidium bromide was diluted with SHE Buffer to 

give a final concentration of 10.14 μM. Background ethidium bromide fluorescence 

was measured at 5.07 μM. The dendron stock solution, at varying concentration 

depending on the charge of the dendron, was prepared in a 50:50 solution of the 

ethidium bromide and DNA solutions to give a final EthBr concentration of 5.07 μM 

and DNA at 4.0 μM with respect to one DNA base (Mr 330 gmol-1). Appropriate 

amounts of the dendron solution were added to 2 ml of a stock containing EthBr (5.07 

μM) and DNA (4.0 μM) to achieve the desired N:P ratio. The fluorescence was 

measured on a Hitachi F-4500 spectrofluorimeter using an excitation wavelength of 

540 nm. Fluorescence intensity was recorded at 595 nm. The fluorescence values were 

normalised to a solution containing only DNA (4.0 μM) and EthBr (5.07 μM). 

Experiments were performed in triplicate.  

 

Heparin Displacement Assay using Mal-B In Buffer 

A cuvette containing 2 mL of MalB (25 μM), heparin (27 μM) and NaCl (150 mM) in Tris 

HCl (10 mM) was titrated with binder stock solution to give the cuvette suitable 

binder-heparin charge ratios. The binder stock solution was composed of the original 

MalB/heparin/NaCl/Tris HCl stock solution endowed additionally with a concentration 
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of binder such that, after addition of 10 μL binder stock, the cuvette charge ratio (+ : –) 

is increased by 0.037. After each addition, the cuvette was inverted to ensure good 

mixing and the absorbance at 615 nm was recorded against a Tris HCl (10 mM) baseline. 

Absorbance was normalised between a solution of MalB (25 μM), NaCl (150 mM) in 

Tris HCl (10 mM) and one containing MalB (25 μM), heparin (27 μM), NaCl (150 mM) in 

Tris HCl (10 mM).  

 

Binding of Heparin to Mal-B.  

A cuvette was charged with 2 mL of a stock solution of MalB (25 μM) in NaCl (150 mM) 

and Tris HCl (10 mM) or phosphate buffer (10 mM). This solution was titrated with a 

stock solution of heparin (200 μM) in MalB (25 μM), NaCl (150 mM) and Tris HCl (10 

mM) or phosphate buffer (10 mM) to a final cuvette volume of 3 mL. The absorbance 

at 615 nm was recorded after each addition. Experiments were performed in triplicate.  

 

NMR method 

1H and 1H-13C HSQC NMR heparin spectra were obtained with 100mg of sodiated 

heparin in 600 μL of D2O on a JEOL ECX400 (1H 400 MHz, 13C 100 MHz) spectrometer. 

1H and 1H-13C HSQC NMR Mal-B spectra were obtained with 40mg of Mal-B in 600 μL of 

D2O on a JEOL ECX400 (1H 400 MHz, 13C 100 MHz) spectrometer. 

1H NMR Mal-B spectra at low concentration were obtained with 0.4 mg of Mal-B in 600 

μL of D2O in selected solvent buffer on a JEOL ECX400 (1H 400 MHz) spectrometer. 

 

NMR titration study for Mal-B with increasing heparin concentration. 

Mal-B stock solution was made up in buffer solution in D2O at 0.66 mg /mL to yield a 

stock solution of Mal-B. This solution was then added to heparin to yield a stock 

solution of Mal-B/heparin which was 1:1, (w/w). Aliquots of the stock solution of Mal-B 

were taken and diluted with the stock solution of Mal-B/heparin to provide the desired 

ratio in a 600 μL volume in NMR tube. 
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NMR titration study for SAMul Heparin Binder at 2mg/ mL with increasing heparin 

concentration. 

A dendron stock solution was made up in D2O at 2mg /mL to yield a stock solution of 

dendron. This solution was then added to heparin to yield a stock solution of dendron 

/heparin which was 1:1, (w/w). Aliquots of the stock solution of dendron were taken 

and diluted with stock solution of dendron/heparin to give the desired ratio in a 600 μL 

volume in NMR tube. 

 

NMR titration study for heparin at 2mg/ mL with increasing SAMul Heparin Binder 

concentration. 

A heparin stock solution was made up in D2O at 2mg /ml to yield a stock solution of 

heparin. This solution was then added to dendron to yield a stock solution of  

heparin/dendron which are 1:1, w/w. Aliquots of the stock solution of heparin were 

taken and diluted with stock solution of heparin/dendron to give the desired ratio in a 

600 μL volume in NMR tube. 

 

Optimised SWCNT uptake assay 

SWCNT (~5 mg) was added into five tubes each with 2 ml of SHE buffer. They were 

then sonicated for 15 min, followed by centrifugation at 3000 RPM for 30 min. The 

solution was carefully transferred to cuvettes for recording by UV-vis absorption 

spectroscopy and put back into the tubes. Aliqouts of dendron solution in SHE buffer 

were then added into the 5 tubes respectively and sonicated for 15 min and 

centrifuged at 3000 RPM for 30 min and the spectra recorded.   

 

CNT and DNA binding assay 

SWCNT (~5 mg) were added there into five tubes each with 2 ml of EthBr concentration 

of 5.07 μM and DNA at 4.0 μM in SHE buffer in them. They were then sonicated for 15 

min, followed by centrifugation at 3000 RPM for 30 min. The solution was carefully 

transfered to cuvettes for recording and returned to the centrifugation tubes. Aliqouts 

of dendron solution mixed with in EthBr (5.07 μM) and DNA (4.0 μM) in SHE buffer 

were then added into the 5 tubes respectively and then sonicated for 15 min and 
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centrifuged at 3000 RPM for 30 min and the spectra recorded. 

 

TEM imaging for CNT and DNA binding assay 

SWCNTs (~5 mg) were weighed out and C22-G1 in deionised water was added, then 

sonicated for 15 min and centrifuged at 3000 RPM for 30 min. The solution was 

carefully transferred to an Amicon Ultra centrifugal filter units, with a regenerated 

cellulose filter 100 kDa, and centrifuged at 3000 rpm for 10 min, washed three times 

with deionised water and finally recovered by resuspending in 1 mL of deionised water. 

The resulting solution was transfered into a sample vial and added to DNA solution (0.2 

mg/mL). The mixture was then deposited in solution-phase aliquots onto a formvar 

grid, stained with uranyl acetate and dried. 

 

Synthesis of Isopropylidene-2,2-bis(hydroxymethyl) propionic acid.94-98 

 

Molecular Formula = C8H14O4 

Molecular Weight = 174.19 

2,2-Bis(hydroxymethyl) propionic acid (15.0 g, 111.8 mmol), 2,2-dimethyoxypropane 

(20 ml, 162.7 mmol) and p-toluene sulfonic acid monohydrate (1.0 g, 5.3 mmol) were 

dissolved in acetone (60 ml) and the reaction mixture was stirred at room temperature 

for 3 h. The acid catalyst was neutralised with NH4OH in EtOH (1 ml, 50:50) and stirred 

for 10 minutes to allow a precipitate to form. The solvent was removed in vacuo and 

the resulting product was dissolved in DCM and extracted with H2O (2 x 30 ml). The 

organic phase was dried over MgSO4, filtered and the filtrate evaporated in vacuo 

yielding the product as white crystals (10.49 g, 59.9 mmol, 54%).  

Rf = 0.47 (9:1 DCM: MeOH). 

1H NMR (400 MHz, CDCl3) δ: 11.82 (br s, CO2H, 1H); 4.18 (d, CHaxHeqO, 2J = 12, 2H); 3.66 

(d, CHaxHeqO, 2J = 12, 2H); 1.44 (s, OC(CH3)2, 3H); 1.41 (s, OC(CH3)2, 3H); 1.21 (s, CH3, 

3H).  

13C NMR (100 MHz, CDCl3) δ: 180.3 (CO2H); 98.3 (OC(CH3)2); 65.8 (2 x CH2O); 41.7, 

(quaternary C); 25.2, 21.0, 18.4 (3 x CH3).  
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ESI-MS: Calcd. [M+Na]+(C8H14NaO4) m/z = 197.0784. Found [M+Na]+m/z = 197.0793. 

 

Synthesis of Isopropylidene-2,2-bis(hydroxymethyl) propionic anhydride.94-98  

 

 

Molecular Formula = C16H26O7 

Molecular Weight = 330.37 

Isopropylidene-2,2-bis(oxymethyl)propionic acid (9.0 g, 51.6 mmol) was dissolved in 

DCM (50 ml), and a solution of DCC (5.3 g, 25.8 mmol) dissolved in DCM (40 ml) was 

added. The reaction mixture was stirred at room temperature for 3 h and then filtered 

through celite. The solvent was removed in vacuo and the residue taken up in EtOAc. 

Residual DCU was then removed by refiltering the solution through a glass filter. The 

filtrate was evaporated in vacuo yielding a pure product as a viscous oil (7.61 g, 23.0 

mmol, 45%). 

Rf = 0.38 (9:1 DCM: MeOH) 

1H NMR (400 MHz, CDCl3) δ: 4.18 (d, CHaxHeqO, 2J = 12, 4H); 3.68 (d, CHaxHeqO, 2J = 12, 

4H); 1.41 (s, CH3, 6H); 1.37 (s, CH3, 6H); 1.20 (s, CH3, 6H).  

13C NMR (100 MHz, CDCl3) δ: 169.3 (C=O); 98.1 (OC(CH3)2); 65.4 (2 x CH2O); 43.4, 

(C(O)C(CH3)(CH2)2); 25.5, 21.1, 17.3 (3 x CH3).  

ESI-MS: Calcd. [M+Na]+ (C16H26NaO7) m/z = 353.1571. Found [M+Na]+m/z = 353.1576. 

 

Synthesis of Propyne isopropylidene-2,2-bis(hydroxymethyl) propionate. 94-98 

 

Molecular Formula = C11H16O4 

Molecular Weight = 212.24 

Propargyl alcohol (0.73 ml, 12.6 mmol) and DMAP (0.23 g, 19 mmol) were dissolved in 

pyridine 3.06 ml, 3 equivalents) and DCM (10 ml). Isopropylidene-2,2-bis 

(hydroxymethyl) propionic anhydride (5.0 g, 15.13 mmol) in dissolved DCM (20 ml) was 
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then added. The reaction mixture was stirred overnight at room temperature. The 

reaction was quenched with H2O (5 ml) and diluted with DCM (50 ml). The solution was 

washed with NaHSO4 (3 x 30 ml, 1.33 M), 10% Na2CO3 (3 x 30 ml) and sat. brine (30 ml). 

The organic phase was dried over MgSO4, filtered and the filtrate evaporated in vacuo 

yielding a product as a pale yellow oil (3.53 g, 16.6 mmol, 100 %).  

Rf  = 0.87 (9:1 DCM: MeOH) 

1H NMR (400 MHz, CDCl3) δ: 4.69 (d, CH2C≡CH, 4J = 2.6, 2H); 4.16 (d, CHaxHeqO, 2J = 11.9, 

2H); 3.61 (d, CHaxHeqO, 2J = 11.9, 2H); 2.45 (t, C≡CH, 4J = 2.6, 1H); 1.38 (s, CH3, 3H); 1.34 

(s, CH3, 3H); 1.16 (s, CH3, 3H).  

13C NMR (100 MHz, CDCl3) δ: 173.3 (C=O); 97.9 (OC(CH3)2); 77.4 (C≡CH); 74.9 (C≡CH); 

65.7 (CH2O); 52.2 (CH2C≡CH); 41.7 (C(O)C(CH3)(CH2)2); 24.5, 22.4, 18.3 (3 x CH3).  

ESI-MS: Calcd. [M+Na]+ (C11H16NaO4) m/z = 235.0941. Found. [M+Na]+m/z = 235.0947.  

 

Synthesis of Propyne-[G1]-OH94-98  

 

 

Molecular Formula = C8H12O4 

Molecular Weight = 172.18 

Propyne-[G1]-isopropylidene (3.41 g, 16.1 mmol) was dissolved in MeOH (115 ml, 25 

mg/ml) and concentrated H2SO4 (2.3 ml, 2% v/v) was added. After stirring overnight at 

room temperature the reaction mixture was neutralised with NH4OH in MeOH (8 ml, 

1:1), upon which a white precipitate of ammonium sulfate forms. The mixture was 

stirred for 30 minutes and the salt was then removed by filtering the solution through 

celite and the filtrate evaporated in vacuo. The crude product was taken up in CHCl3and 

filtered to remove any further impurities. The solvent was then removed in vacuo 

yielding a pure product as a yellow oil (2.41 g, 14.00 mmol, 92%).  

Rf = 0.45 (9:1 DCM: MeOH) 

1H NMR (400 MHz, CDCl3) δ: 4.66 (d, CH2C≡CH), 4J = 2.4, 2H); 3.80 (d, CHaHbOH, 2J = 

11.3, 2H); 3.65 (d, CHaHbOH, 2J = 11.3, 2H); 2.49 (t, C≡CH, 4J = 2.4, 1H); 1.05 (s, CH3, 3H).  

13C NMR (100 MHz, CDCl3,) δ: 175.0 (C=O); 77.3 (C≡CH); 75.2 (C≡CH); 67.6 (CH2OH); 
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52.4 (CH2C≡CH); 49.3 (C(O)C(CH3)(CH2)2); 19.0 (CH3). 

ESI-MS: Calcd. [M+Na]+ (C8H12NaO4) m/z = 195.0628. Found. [M+Na]+m/z = 195.0623.  

 

Synthesis of Propyne-[G1]- p-nitrophenyl carbonate93 

 

Molecular Formula = C22H18N2O12 

Molecular Weight = 502.38 

Propyne-[G1]-OH (2.00 g, 11.62 mmol) was dissolved in dry dichloromethane (DCM, 30 

ml) and pyridine (5.46 ml, 67.8 mmol) was added, followed by p-nitrophenyl- 

chloroformate (9.37 g, 46.48 mmol) dissolved in dry DCM (100 ml). The reaction 

mixture was stirred overnight at room temperature under a nitrogen atmosphere. The 

mixture was then diluted with DCM (50 ml) and washed with NaHSO4 (2 x 50ml, 1.33M) 

and sat. brine (50 ml). The organic phasewas dried over MgSO4, filtered and the filtrate 

evaporated in vacuo to provide the crude product as a white solid (8.2 g). 500 mg of 

crude product was purified by GPC (DCM) to yield a pure product as an off-white solid 

(210 mg, 0.42 mmol, 59 %).  

Rf = 0.46 (DCM, UV).  

1H NMR (400MHz, CDCl3) δ: 8.27 (d, CHC(NO2)CH, J 9.2 Hz, 2H); 8.26 (d,CHC(NO2)CH, J 

9.2 Hz, 2H); 7.38 (d, p-nitrophenyl H, J 9.2 Hz, 2H); 7.37 (d, p-nitrophenyl H, J 9.2 Hz, 

2H); 4.80 (d, CH2C≡CH, J = 2.4 Hz, 2H); 4.60 (d, CH2O, J 11.2 Hz, 2H); 4.50 (d,CH2OH, J = 

11.2 Hz, 2H); 2.51 (t, C≡CH, J = 2.4Hz, 1H); 1.43 (s, CH3, 3H).  

13C NMR (CDCl3, 100MHz) δ: 17.0 (C=O); 155.2 (OC=O); 152.1 145.5, 125.33121.7 (4x 

ArC); 75.7 (C≡CH); 69.0 (CH2O), 53.2 (CH2C≡CH); 46.6(C(O)C(CH3)(CH2)2); 17.6 (CH3).  

ESI-MS: Calcd. [M+H]+(C22H19N2O12) m/z = 503.0933; Obs. [M+H]+m/z = 503.0944. 

 

 

 

 



239 

 

Synthesis of tert-Butyl 3-((3aminopropyl)(methyl)amino)propyl carbamate4 

 

Molecular Formula = C12H27N3O2 

Molecular Weight = 245.36 

N,N-di-(3-aminopropyl)-N-methylamine (50 ml, 310 mmol) was dissolved in THF (250 

ml) and cooled to 0oC. Di-(tert-butyl)dicarbonate (25 g, 110 mmol) which dissolved in 

THF (50 ml) was added drop-wise over 2 h. The reaction was then quenched with 25 ml 

of water. The solvent was removed in vacuo and the residue was taken up in aqueous 

NaOH (pH>10) and extracted with DCM. The organic layers were then washed with 

citrate (pH 4-5). The water layers were combined and basified to pH >10 with 1 M 

NaOH. The mono-protected product was then extracted with DCM. The organic phases 

were combined, dried over MgSO4, filtered and the filtrate evaporated in vacuo 

yielding the product as a colourless oil (8.5 g, 34.6 mmol, 31% with respect to 

di-(tert-butyl)dicarbonate).  

Rf= 0.3 (4:1 MeOH: aqueous ammonia). 

1H NMR (400 MHz, DMSO-d6) δ: 6.79 (br t, 3J = 5.6, NH, 1H); 2.89 (q, CH2NHCO, 3J = 6.8 

Hz, 2H); 2.53 (t, CH2NH2, 3J = 6.8 Hz, 2H); 2.26 (t, CH2N(CH3), 3J = 6.8 Hz, 2H); 2.22 (t, 

CH2N(CH3), 3J = 6.8 Hz, 2H); 2.08 (s, N(CH3), 3H); 1.52 (q, CH2CH2NH2, 3J = 6.8 Hz, 2H); 

1.44 (q, CH2CH2NCH3, 3J = 6.8 Hz, 2H); 1.35 (s, 9H, C(CH3)3).  

13C NMR (100 MHz, DMSO-d6) δ: 155.2 (CONH); 77.2 (C(CH3)3); 55.6, 55.4 (CH2N(CH3)); 

41.7 (N(CH3)); 39.8 (CH2NHCO); 38.3 (CH2NH2); 30.5 (CH2CH2 N(CH3)); 28.2 (C(CH3)3); 

27.7 (CH2CH2NH2).  

ESI-MS: Calcd. [M+H]+ (C12H28N3O2)  m/z = 246.2176. Found [M+H]+m/z = 246.2186. 
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Synthesis of Propyne-[G1]-mono-Boc-DAPMA93  

 

 

Molecular Formula = C34H62N6O10 

Molecular Weight = 714.45 

A solution of propyne-[G1]- p-nitrophenyl carbonate (210 mg, 0.42mmol) in dry DCM 

(15 ml) was added to an excess of tert-Butyl 3-((3aminopropyl)(methyl)amino) propyl 

carbamate (615.3 mg, 2.52mmol) dissolved in dry DCM (20 ml). A solution of DMAP 

(51.03 mg, 0.42 mmol, 1 equivalent) and DIPEA (108.15 mg, 0.84mmol, 2 equivalents) 

in dry DCM (40 ml) was added and the reaction mixture was stirred for 48 hours under 

a nitrogen atmosphere. The solvent was then evaporated in vacuo to yield the crude 

product as a yellow oil. The crude product was purified by gel permeation 

chromatography to give the pure product as an orange foam (270 mg, 0.38 mmol, 

90%).  

Rf = 0.65 (95:5 MeOH:NH4OH).  

1H NMR (400MHz, CDCl3) δ: 6.03 (br s, NH, 2H); 5.40 (br s, NH, 2H);4.68 (s, CH2C≡CH, 

2H); 4.25-4.11 (m, CH2O, 4H); 3.26-3.09 (m, CH2NH, 8H); 2.48 (t, C≡CH, J = 2.4Hz, 1H); 

2.44-2.33 (m, 2x N(CH3), 6H), 1.85-1.70 (m, CH2CH2NH, 4H); 1.40 (s, C(CH3)3, 18H); 1.22 

(s, CH3, 3H).  

13C NMR (CDCl3, 100MHz) δ: 172.5 (C=O), 156.0 (C=ONH); 78.8 (C(CH3)3); 77.2 (C≡CH); 

75.1 (C≡CH); 65.5 (CH2O); 55.3, 55.7 (CH2N(CH3)); 52.3 (CH2C≡CH); 46.8 

(C(O)C(CH3)(CH2)2); 41.4 (N(CH3)); 39.8, 38.9 (CH2NH); 28.45 (C(CH3)3); 26.8, 26.1 

(CH2CH2NH, CH2CH2N(CH3)); 17.8 (CH3).  

ESIMS:Calcd. [M+H]+ (C34H63N6O10) m/z = 715.4600; Obs. [M+H]+m/z = 715.4596. 
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Synthesis of 1-Pyrenemethanol100 

 

Molecular Formula = C17H12O 

Molecular Weight = 232.28 

1-Pyrenecarboxaldehyde (0.50 g, 2.2mmol) was stirred at 0 oC in THF. A solution of 

NaBH4 (0.25 g, 6.5 mmol) in 100% ethanol (15 mL) was prepared and ten drops of 1 M 

NaOH was added. This solution was added to the aldehyde and stirred at 0 oC for 15 

min, which changed from a yellow-green color to milky-white. The mixture was 

quenched with 10% HCl (v/v), diluted with water (50 mL) and extracted with CH2Cl2 (3 

× 30 mL). The combined organic fractions were washed with NaHCO3 and water 

successively (30 mL each), and dried over MgSO4. Filtration and evaporation yielded 

the desired alcohol, (0.494 g, 2.13 mmol, 97%). 

1H NMR (400MHz, CDCl3) δ: 8.05-8.38 (m, 9H, Ar-H); 5.41 (s, 2H, ArCH2); 

 

Synthesis of 1-Bromomethyl pyrene100 

 

 

Molecular Formula = C17H11Br 

Molecular Weight = 295.17 

1-Pyrenemethanol (0.487 g, 2.09 mmol) was taken in toluene (60 mL). The resulting 

suspension was cooled to 0°C and PBr3 (0.24 mL, 2.48 mmol) was added to it drop wise. 

The reaction mixture was stirred at 0°C for 1 h and at room temperature for 12 h. After 

the reaction was complete, saturated Na2CO3 (50 mL) was added to it slowly under 

ice-cold condition, resulting in the formation of two layers. The toluene layer was 

separated, passed over Na2SO4, after which the solvent was removed to give a 

yellowish solid product (0.574g, 1.94 mmol, 93 %). This product was used directly for 
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the next step without further purification.  

1H NMR (400MHz, CDCl3) δ: 5.26 (s, 2H, ArCH2); 8.02-8.40 (m, 9H, Ar-H). 

13C NMR (100MHz, CDCl3) δ: 132.0, 131.2, 130.8, 129.1, 128.2, 128.0, 127.7, 127.3, 

126.3, 125.6, 125.6, 125.1, 124.9, 124.6, 122.8  (Ar-C); 32.2 (Ar-CH2) 

 

Synthesis of 1-Azidomethyl pyrene100 

 

Molecular Formula = C17H11N3 

Molecular Weight = 257.29 

1-Bromomethyl pyrene (0.564 g, 1.91 mmol) was dissolved in 35 mL of dry DMF. Then 

NaN3 (0.496 g, 7.64 mmol) was added to it and the reaction mixture was stirred at 50 

°C for 5 h. After the reaction was complete, 20 mL of H2O was added to it and the 

contents were extracted with EtOAc. The EtOAc layer was washed with brine, passed 

over Na2SO4 and purified on a silica column using petroleum ether and EtOAc as the 

eluent to get the yellow solid product (0.476g, 1.85 mmol, 97 %).  

1H NMR (400MHz, CDCl3) δ: 5.04 (s, 2H, ArCH2); 7.98-8.25 (m, 9H, Ar-H).  

13C NMR (100MHz, CDCl3) δ: 131.7, 131.2, 130.7, 129.2, 128.4, 128.2, 127.9, 127.4, 

127.3, 126.2, 125.6, 125.5, 125.0, 124.6, 122.6 (Ar-C); 53.1 (Ar-CH2) 
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Synthesis of Py-G1-Boc 

 

 

Molecular Formula = C56H107N9O10 

Molecular Weight = 1065.81 

Propyne-[G1]-mono-Boc-DAPMA (0.100 g, 0.14 mmol) was dissolved in degassed DMF 

(10 ml) along with 1-azidomethyl pyrene (0.036 g, 0.14 mmol), CuSO4•5H2O (3.49 mg, 

14μmol, 10 mol%) and sodium ascorbate (2.66 mg, 28μmol, 20 mol%). The reaction 

mixture was stirred 72 hours at room temperature under N2. The DMF was then 

removed in vacuo at room temperature and the residue taken up in DCM (20 ml). The 

solution was washed with H2O (2 x 10 ml), dried over MgSO4 and the solvent was 

evaporated in vacuo to leave the crude product (0.102 g). The crude product was 

purified by GPC (DCM) affording the desired product as a yellow solid (0.098 g, 0.101 

mmol, 72 %). 

1H NMR (400MHz, CDCl3) δ: 8.38-7.90 (m, 9H, Ar-H); 7.45 (br s, CH triazole, 1H); 6.21 (s, 

2H, ArCH2); 5.80 (br s, NH, 2H); 5.38 (br s, NH, 2H); 5.11 (s, CH2O triazole, 2H); 

4.22-4.12 (m, CH2O, 6H); 3.24-3.05 (m, CH2NH, 8H); 2.39-2.31 (m, CH2N(CH3), 8H); 2.15 

(s, N(CH3), 6H); 1.61 (app. q, CH2CH2NH, J = 6.8 Hz, 8H); 1.40 (s, C(CH3)3, 18H).   

13C NMR (100MHz, CDCl3) δ: 173.1(CONH); 156.1 (OCONH); 155.9 (OCONH); 142.35 (C 

triazole); 131.7, 131.2, 130.7, 129.2, 128.4, 128.2, 127.9, 127.4, 127.3, 126.2, 125.6, 

125.5, 125.0, 124.6, 122.6 (Ar-C); 123.47 (CH triazole); 78.79(C(CH3)3); 65.60 (CH2O); 

58.3 (CH2O triazole) 56.06, 55.64 (CH2N(CH3)); 52.0 (Ar-CH2N triazole); 46.88 (Cquat); 
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41.67 (N(CH3)); 40.08, 39.15 (CH2NH); 28.37 (Cquat(CH3)); 26.42, 26.40 (CH2CH2NH);  

IR (cm-1): 3378m (N-H), 2923m (C-H), 1697s (C=O), 1601w, 1530m (CONH), 1461m, 

1248s, 1128s, 1022m, 845m, 708m.   

ESI-MS: Calcd. [M+2H]2+ (C51H75N9O10) m/z = 486.7813; Found [M+H]+m/z = 486.7808 

(100%).  

 

Synthesis of Py-G1 

 

Molecular Formula = C41H61Cl4N9O6 

Molecular Weight = 917.17 

 

Py-G1--Boc-DAPMA (98 mg, 101 μmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

yellow foam (41mg, 45μmol, 44%).  

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ: 7.90-8.38 (m, 9H, Ar-H); 7.45 (br s, CH triazole, 1H); 

6.21 (s, 2H, ArCH2); 5.80 (br s, NH, 2H); 5.38 (br s, NH, 2H); 5.19 (br s, CH2O triazole, 

2H); 4.22-4.12 (m, CH2O, 6H); 3.05-3.24 (m, CH2NH, 8H); 2.31-2.39 (m, CH2N(CH3), 8H); 

2.15 (s, N(CH3), 6H); 1.61 (app q, CH2CH2NH, J = 6.8 Hz, 8H).   

13C NMR (100 MHz, MeOD-d4) δ: 173.1(C=O); 156.1 (OCONH); 142.35 (C triazole); 131.7, 

131.2, 130.7, 129.2, 128.4, 128.2, 127.9, 127.4, 127.3, 126.2, 125.6, 125.5, 125.0, 124.6, 

122.6 (Ar-C); 123.47 (CH triazole); 65.60 (CH2O); 58.3 (CH2O triazole) 56.06, 55.64 

(CH2N(CH3)); 56.0 (Ar-CH2N triazole); 46.88 (Cquat); 41.67 (N(CH3)); 40.08, 39.15 (CH2NH); 
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28.37 (Cquat(CH3)); 26.42, 26.40 (CH2CH2NH);  

IR (cm-1): 3362w (N-H), 2957m (C-H), 1708s (C=O), 1600m, 1529m (CONH), 1462w, 

1246m, 1131m, 1084 w, 846w, 707w   

ESI-MS m/z: Calcd. [M+2H]2+ (C41H59N9O6) 386.7289; Found [M+H]+386.7285. (100%)  

 

Synthesis of Py-DAPMA-Boc 

 

Chemical Formula: C29H35N3O3 

Molecular Weight: 473.62 

Pyrenecarboxylic acid (100 mg , 0.406 mmol) was dissolved in DCM (40 ml) and TBTU 

(130 mg, 0.406 mmol) and Et3N (5 ml) were added. The mixture was stirred for 5 min, 

then mono-Boc-protected N,N-di-(3-aminopropyl)-N-methylamine (99.6 mg, 0.406 

mmol) was dissolved in CH2Cl2 (20 ml) and added to the mixture.  The solution was 

left stirring overnight.  The solvent was evaporated in vacuo and the product purified 

by column chromatography (SiO2 in MeOH : DCM 1:9).  The product was obtained as 

pale yellow solid (0.156 g, 81%, 0.33 mmol). 

Rf= 0.25 (1:9 MeOH:DCM).  

1H NMR (400 MHz, CDCl3) δ: 8.38-7.90 (m, 9H, Ar-H); 6.18 (br s, NH, 2H); 3.40 (d, 

CH2NH, J = 6.8 Hz, 2H); 3.00 – 2.91(m, CH2N(CH3), 4H) 2.90-2.82 (m, CH2N(CH3), 2H); 

2.54 (s, N(CH3), 3H); 1.91, 1.61 (q, CH2CH2NH, J = 6.8 Hz, 4H); 1.40 (s, C(CH3)3, 9H). 

13C NMR (100 MHz, CDCl3) δ: 171.42 (C=O); 156.90 (C=ONH); 132.29, 130.76, 130.22, 

129.53, 128.49, 128.39, 128.15, 126.88, 126.25, 125.81, 125.65, 124.89, 124.21, 124.09, 

123.94, 123.82 (Ar-C); 79.61 (C(CH3)3); 54.05, 53.93 (CH2N(CH3)); 39.51 (N(CH3)); 37.14, 

36.93 (CH2NH); 28.30 (C(CH3)3); 24.64, 24.30 (CH2CH2NH).  

IR (cm-1): 3283w (N-H), 2929w (C-H), 1691s (C=O), 1633s, 1519s (CONH), 1363s, 1246s, 

1163s, 844s, 712m.   

ESI-MS m/z: Calcd. (C29H36N3O3) [M+H]+ 474.2751; Obs. [M+H]+m/z 474.2736 (100%).  
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Synthesis of Py-DAPMA 

 

Chemical Formula: C24H29Cl2N3O 

Molecular Weight: 446.42 

Py-DAPMA-Boc (100 mg, 0.211 mmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 h. The solvent was removed in vacuo to afford the product as a 

brown oil (89 mg, 200 mmol, 95%).  

Rf= 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ: 8.01-7.55 (m, 9H, Ar-H); 3.70-3.55 (m, CH2NH, 2H); 

3.20-2.90 (m, CH2N(CH3), CH2N(CH3), N(CH3) 9H) 2.30-2.00 (m, CH2CH2NH, 4H). peaks 

were relatively broad owing to aggregation at NMR concentrations. 

13C NMR (100 MHz, MeOD-d4) δ: 171.89 (C=O); 132.56, 131.02, 130.46, 130.02, 128.50, 

128.20, 126.86, 126.32, 125.82, 125.63, 125.03, 124.27, 124.19, 123.89 (Ar-C); 54.45, 

53.16 (CH2N(CH3)); 39.61 (N(CH3)); 37.05, , 36.89 (CH2NH); 24.39, 23.33 (CH2CH2NH)  

IR cm-1: 3385m (N-H), 2958m (C-H), 1708s (C=O), 1624m, 1528s (CONH), 1459s, 1244m, 

1050s, 847s, 708m.   

ESI-MS m/z: Calcd. [M+H]+ (C24H28N3O)  374.2227; Found [M+H]+374.2227 (100%).  

 

Synthesis of C16-L-Lys-(Boc)2 

 

Chemical Formula: C32H63N3O5 

Molecular Weight: 569.87 

L-Lys-(Boc)2 (500 mg, 1.44 mmol) was dissolved in DCM (40 ml) and TBTU (463 mg, 1.44 

mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then the 

1-hexadecylamine (390 mg , 1.44 mmol) was dissolved in DCM (20 ml) and added to 
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the mixture. The solution was left stirring overnight. The solvent was evaporated in 

vacuo. After evaporation of the solvent the product was dissolved again in EtOAc (50 

ml) and washed 1.33M NaHSO4 (2x 15 ml), sat. NaHCO3 (2x 15 ml), H2O (3x 15 ml) and 

sat. NaCl solution (15 ml). After column chromatography (SiO2 in Hexane : EtOAc 1:1), it 

was obtained as pale yellow solid in 0.466 g (56 %, 0.81 mmol). 

Rf = 0.25 (Hexane : EtOAc 1:1) 

1H NMR (400 MHz, CDCl3) δ: 6.72 (s, CHNH, 1H), 5.45 (s, CH2NH, 1H), 4.82 (s, CH2NH, 

1H), 4.01 (dd app. q, J = 4.4 Hz, CH(NHBoc), 1H), 3.20-3.04 (m, CH(NHBoc)CH2, 2H); 

1.69, 1.52 (comp m, CH2CH2CH2NHBoc, 4H), 1.34 (br s, C(CH3)3 + CH2, 22H), 1.15 (br s, 

CH2, 28H), 0.78 (t, J = 6.5 Hz, CH3, 3H).   

13C NMR (100MHz, CDCl3) δ: 172.18 (C=O); 156.16, 155.88, (C=O, Boc); 79.65, 78.91, 

(C(CH3)3); 54.33 (CHCONH); 39.99 (CH2NHBoc), 39.46 (CONHCH2); 32.31, 31.90, 29.69, 

29.66, 29.61, 29.57, 29.52, 29.35, 29.32 (CH2); 28.43, 28.33, C(CH3)3; 26.92 22.73, 22.67 

(CH2); 14.10 (CH3) 

IR cm-1: 3341m (N-H), 2918m ,2850m(C-H), 1685s (C=O), 1648m, 1532s (CONH), 1244m, 

1166s, 655m.   

ESI-MS: Calcd. [M+H]+ (C32H64N3O5) m/z = 570.4840; Obs. [M+H]+m/z= 570.4868. 

 

Synthesis of C16-D-Lys-(Boc)2 

 

Chemical Formula: C32H63N3O5 

Molecular Weight: 569.87 

D-Lys-(Boc)2 (500 mg, 1.44 mmol) was dissolved in DCM (40 ml) and TBTU (463 mg, 

1.44 mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then 

the 1-hexadecylamine (390 mg , 1.44 mmol) was dissolved in DCM (20 ml) and added 

to the mixture. The solution was left stirring overnight. The solvent was evaporated in 

vacuo. After evaporation of the solvent the product was dissolved again in EtOAc (50 

ml) and washed 1.33M NaHSO4 (2x 15 ml), sat. NaHCO3 (2x 15 ml), H2O (3x 15 ml) and 
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sat. NaCl solution (15 ml).. After column chromatography (SiO2 in Hexane : EtOAc 1:1), 

it was obtained as pale yellow solid in 0.452 g (55 %, 0.79 mmol). 

Rf = 0.25 (Hexane : EtOAc 1:1) 

1H NMR (400 MHz, CDCl3) δ: 6.72 (s, CHNH, 1H), 5.45 (s, CH2NH, 1H), 4.82 (s, CH2NH, 

1H), 4.01 (dd app. q, J = 4.4 Hz, CH(NHBoc), 1H), 3.20-3.04 (m, CH(NHBoc)CH2, 2H); 

1.69, 1.52 (comp m, CH2CH2CH2NHBoc, 4H), 1.34 (br s, C(CH3)3 + CH2, 22H), 1.15 (br s, 

CH2, 28H), 0.78 (t, J = 6.5 Hz, CH3, 3H).   

13C NMR (100MHz, CDCl3) δ: 172.18 (C=O); 156.16, 155.88, (C=O, Boc); 79.65, 78.91, 

(C(CH3)3); 54.33 (CHCONH); 39.99 (CH2NHBoc), 39.46 (CONHCH2); 32.31, 31.90, 29.69, 

29.66, 29.61, 29.57, 29.52, 29.35, 29.32 (CH2); 28.43, 28.33, C(CH3)3; 26.92 22.73, 22.67 

(CH2); 14.10 (CH3) 

IR cm-1: 3342m (N-H), 2919m ,2852m(C-H), 1687s (C=O), 1650m, 1530s (CONH), 1246m, 

1167s, 657m.  

ESI-MS: Calcd. [M+H]+ (C32H64N3O5) m/z = 570.4840; Obs. [M+H]+ m/z=  570.4839. 

 

Synthesis of C16-L-Lys 

 

Chemical Formula: C22H47N3O 

Molecular Weight: 369.64 

C16-L-Lys-(Boc)2 (100 mg, 175 μmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

off white foam (73 mg, 166μmol, 95%). 

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ: 3.88 (dd app t, J = 4.4. Hz, CH(NH2), 1H), 3.21 (t, J = 7.0 

Hz, CH2NHCO, 2H); 2.94 (t, J = 8.0 Hz, CH2NH2, 2H) 1.88, 1.72 1.50 (comp m, 

CH2CH2CH2CH2NH2, 6H), 1.28-1.26 (m, CH2, 28H), 0.88 (t, J = 6.5 Hz, CH3, 3H).  

13C NMR (100MHz, MeOD-D4) δ: 169.82 (C=O); 54.16  (CHCONH); 40.66 (CH2NH2,); 

40.26 (CH2NH); 33.06, 32.13, 30.79, 30.76, 30.71, 30.47, 30.40, 30.27, 28.80, 28.71, 
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28.04, 27.99, 23.73, 23.00 (CH2); 14.48 (CH3).  

IR cm-1:2916m ,2848m(C-H), , 1667m, 1566s (CONH), 1269w, 720m.  

ESI-MS: Calcd. [M+H]+ (C22H48N3O) m/z = 370.3792; Obs. [M+H]+ m/z=370.3772. 

 

Synthesis of C16-D-Lys 

 

Chemical Formula: C22H47N3O 

Exact Mass: 369.37 

C16-D-Lys-(Boc)2 (100 mg, 175 μmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

off white foam (74 mg, 167 μmol, 96%). 

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ: 3.88 (dd app t, J = 4.4. Hz, CH(NH2), 1H), 3.21 (t, J = 7.0 

Hz, CH2NHCO, 2H); 2.94 (t, J = 8.0 Hz, CH2NH2, 2H) 1.88, 1.72 1.50 (comp m, 

CH2CH2CH2CH2NH2, 6H), 1.28-1.26 (m, CH2, 28H), 0.88 (t, J = 6.5 Hz, CH3, 3H). 

13C NMR (100MHz, MeOD-D4) δ: 169.82 (C=O); 54.16  (CHCONH); 40.66 (CH2NH2,); 

40.26 (CH2NH); 33.06, 32.13, 30.79, 30.76, 30.71, 30.47, 30.40, 30.27, 28.80, 28.71, 

28.04, 27.99, 23.73, 23.00 (CH2); 14.48 (CH3).  

IR cm-1:2916m ,2849m(C-H),, 1665m, 1561s (CONH), 1269w, 720m 

ESI-MS: Calcd. [M+H]+ (C22H48N3O) m/z = 370.3792; Obs. [M+H]+ m/z = 370.3788. 

 

Synthesis of C16-Gly-boc 

 

Chemical Formula: C23H46N2O3 

Molecular Weight: 398.63 

 

Boc-Gly-OH (1.48 g, 8.42 mmol) was dissolved in DCM (40 ml) and TBTU (463 mg, 8.32 
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mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then the 

1-hexadecylamine (2 g , 8.42 mmol) was dissolved in DCM (20 ml) and added to the 

mixture. The solution was left stirring overnight. The solvent was evaporated in vacuo. 

After evaporation of the solvent the product was dissolved again in EtOAc (50 ml) and 

washed 1.33M NaHSO4 (2x 15 ml), sat. NaHCO3 (2x 15 ml), H2O (3x 15 ml) and sat. NaCl 

solution (15 ml). The solvent was evaporated in vacuo and the product was obtained as 

white solid in 1.3 g (64 %, 5.39 mmol). 

Rf = 0.40 (Hexane : EtOAc 1:1).  

Rf = 0.40 (Hexane : EtOAc 1:1).  1H NMR (400 MHz, CDCl3) δ: 6.11 (br s, NH, 1H); 5.15 

(br s, NH, 1H); 3.76 (d, J = 4.4 Hz, COCH2NH, 2H); 3.25 (q, J = 4.4 Hz, CH2NHCO, 2H) 1.67, 

1.50-1.28 (comp m, C(CH3)3 + CH2, 37H), 0.86 (t, CH3, J = 8.0 Hz, 3H).  

13C NMR (100MHz, CDCl3) δ: 169.34, 156.47 (C=O); 80.45 C(CH3)3; 39.59 (COCH2NH); 

32.01 (CH2NHCO); 29.78, 29.75, 29.68, 29.62, 29.60, 29.45, 29.37 (CH2); 28.38 (C(CH3)3) 

26.94, 22.7 (CH2); 14.22 (CH3).  

IR cm-1: 3287m (N-H), 2916m ,2848m(C-H), 1693s (C=O), 1642s, 1530m (CONH), 1249m, 

1170s, 719m.  

ESI-MS: Calcd. [M+Na]+ (C23H46N2O3Na) m/z = 421.3401; Obs. [M+H]+ m/z = 

421.3390(100%) 

 

Synthesis of C16-Gly 

 

Chemical Formula: C18H39ClN2O 

Molecular Weight: 334.97 

 

C16-Gly-boc (600 mg, 1.51 mmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

off white foam (481 mg, 1.43 mmol, 96%). 

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD- d4) δ: 3.65, (s, CH2NH2, 2H); 3.28 (t, J = 8.0 Hz, CH2NHCO, 2H) 
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1.49 (app. q, J = 8.0 Hz, CH2CH2NHCO 2H); 1.35-1.20 (comp m, CH2, 26H), 0.90 (t, J = 7.0 

Hz, CH3, 3H).   

13C NMR (100MHz, MeOD-d4) δ: 165.68 (C=O); 40.66 (CH2NH2); 40.26 (CH2NHCO); 

31.75, 29.45, 29.37, 29.02, 26.65 22.41 (CH2); 13.11. (CH3). 

IR cm-1: 3287m (N-H), 2914m ,2848m(C-H), , 1642s, 1470s (CONH), 1114w, 661m.  

ESI-MS: Calcd. [M+H]+ (C18H39N2O) m/z = 299.3057; Obs. [M+H]+ m/z = 299.3068 (60%). 

 

Synthesis of C16-Gly-L-Lys-Boc 

 

Chemical Formula: C34H66N4O6 

Molecular Weight: 626.92 

L-Lys-(Boc)2 (283 mg, 0.60 mmol) was dissolved in DCM (40 ml) and TBTU (191.7 mg, 

1.44 mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then 

the C16-Gly (200 mg , 0.60 mmol) was dissolved in DCM (20 ml) and added to the 

mixture. The solution was left stirring overnight. The solvent was evaporated in vacuo. 

After evaporation of the solvent the product was dissolved again in EtOAc (50 ml) and 

washed 1.33M NaHSO4 (2x 15 ml), sat. NaHCO3 (2x 15 ml), H2O (3x 15 ml) and sat. NaCl 

solution (15 ml). The solvent was evaporated in vacuo and the product was obtained as 

pale yellow solid pale yellow solid in 150 mg (40 %, 0.24 mmol). 

Rf = 0.30 (Hexane : EtOAc 1:1).  

1H NMR (400 MHz, CDCl3) δ: 7.49 (s, NH, 1H), 7.09 (s, NH, 1H), 5.85 (s, NH, 1H), 5.27 (s, 

NH, 1H), 4.12 (dd app q, J = 4.4 Hz, CH(NHBoc), 1H), 3.81 (s, NHCH2CONH, 2H) 

3.20-3.04 (m, CH2NH, 4H); 1.69-1.52 (comp m, CH2CH2CH2NHBoc, 4H), 1.35-1.33 (m, 

C(CH3)3 + CH2, 22H), 1.16-1.14 (m, CH2, 26H), 0.77 (t, J = 7.0 Hz, CH3, 3H). 

13C NMR (100MHz, CDCl3) δ: 173.31, 169.08 (C=O); 156.45, 156.34 (CONHBoc) 79.98, 

78.99, (C(CH3)3); 55.32 (COCHNH); 43.07 (CH2NHBoc,), 39.68 (NHCH2CO) 31.39, 29.70, 

29.69, 29.66, 29.59, 29.55, 29.42, 29.36 (CH2); 29.36, 28.47 (C(CH3)); 26.98, 22.68 (CH2) 

14.13 (CH3). 
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IR cm-1: 3301m (N-H), 2922m ,2852m(C-H), 1692s (C=O), 1649m, 1525s (CONH), 1248m, 

1168s, 719m.  

ESI-MS: Calcd. [M+Na]+ (C36H66N4NaO6) m/z = 649.4875; Obs. [M+H]+ m/z = 649.4862 

(100%) 

 

Synthesis of C16-Gly-D-Lys-Boc 

 

Chemical  Formula: C34H66N4O6 

Molecular Weight: 626.92 

 

D-Lys-(Boc)2 (283 mg, 0.60 mmol) was dissolved in DCM (40 ml) and TBTU (191.7 mg, 

1.44 mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then 

the C16-Gly (200 mg , 0.60 mmol) was dissolved in DCM (20 ml) and added to the 

mixture. The solution was left stirring overnight. The solvent was evaporated in vacuo. 

After evaporation of the solvent the product was dissolved again in EtOAc (50 ml) and 

washed 1.33M NaHSO4 (2x 15 ml), sat. NaHCO3 (2x 15 ml), H2O (3x 15 ml) and sat. NaCl 

solution (15 ml). The solvent was evaporated in vacuo and the product was obtained as 

pale yellow solid pale yellow solid in 150 mg (40 %, 0.24 mmol). 

Rf = 0.30 (Hexane : EtOAc 1:1).  

1H NMR (400 MHz, CDCl3) δ: 7.49 (s, NH, 1H), 7.09 (s, NH, 1H), 5.85 (s, NH, 1H), 5.27 (s, 

NH, 1H), 4.12 (dd app q, J = 4.4 Hz, CH(NHBoc), 1H), 3.81 (s, NHCH2CONH, 2H) 

3.20-3.04 (m, CH2NH, 4H); 1.69-1.52 (comp m, CH2CH2CH2NHBoc, 4H), 1.35-1.33 (m, 

C(CH3)3 + CH2, 22H), 1.16-1.14 (m, CH2, 26H), 0.77 (t, J = 7.0 Hz, CH3, 3H).  

13C NMR (100MHz, CDCl3) δ: 173.31, 169.08 (C=O); 156.45, 156.34 (CONHBoc) 79.98, 

78.99, (C(CH3)3); 55.32 (COCHNH); 43.07 (CH2NHBoc,), 39.68 (NHCH2CO) 31.39, 29.70, 

29.69, 29.66, 29.59, 29.55, 29.42, 29.36 (CH2); 29.36, 28.47 (C(CH3)); 26.98, 22.68 (CH2) 

14.13 (CH3). 

IR cm-1: 3303m (N-H), 2923m ,2851m (C-H), 1694s (C=O), 1651m, 1523s (CONH), 
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1250m, 1167s, 720m.  

ESI-MS: Calcd. [M+Na]+ (C36H66N4NaO6) m/z = 649.4875; Obs. [M+H]+ m/z = 649.4857  

(100%) 

 

Synthesis of C16-Gly-L-Lys 

 

Chemical Formula: C24H52Cl2N4O2 

Molecular Weight: 499.61 

C16-Gly-L-Lys-(Boc)2 (100 mg, 159 μmol) was dissolved in MeOH (20 ml) and HCl gas 

was bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

off white foam (75 mg, 151 μmol, 95%). 

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ:, 4.12 (t, CH2NH, J = 4.4 Hz, 2H), 3.81 (s, NHCH2CONH, 

2H) 3.20 (m, CH2NHCO, 2H); 2.96 (t, CONHCH2, J = 7.5 Hz, 2H); 1.92, (m, NHCOCH2CH2, 

2H) 1.69, 1.52 (m, CH2CH2CH2NH2 + CH2, 6H), 1.35-1.33 (m, C(CH3)3 + CH2, 26H), 0.77 (t, 

J = 7.0 Hz, CH3, 3H).  

13C NMR (100MHz, MeOD-d4) δ: 169.51, 169.22  (C=O); 52.90 (CHCONH); 41.77 

(CH2NH2); 39.29 (CONHCH2); 31.75, 30.45, 29.47, 29.44, 29.40, 29.16, 29.06, 26.71, 

26.63, 22.42, 21.31 (CH2); 13.15. (CH3).  

IR cm-1: 3229m (N-H), 2916m ,2849m(C-H), 1654m, 1562s (CONH), 1251m, 720m.  

ESI-MS: Calcd. [M+H]+ (C24H51N4O2) m/z = 427.4007; Obs. [M+H]+ m/z = 427.3987. 

 

Synthesis of C16-Gly-D-Lys 

 

Chemical Formula: C24H52Cl2N4O2 

Molecular Weight: 499.61 
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C16-Gly-D-Lys-(Boc)2 (100 mg, 159 μmol) was dissolved in MeOH (20 ml) and HCl gas 

was bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as an 

off white foam (74 mg, 167 μmol, 94%). 

Rf = 0.00 (NH4OH).  

1H NMR (400 MHz, MeOD-d4) δ:, 4.12 (t, CH2NH, J = 4.4 Hz, 2H), 3.81 (s, NHCH2CONH, 

2H) 3.20 (m, CH2NHCO, 2H); 2.96 (t, CONHCH2, J = 7.5 Hz, 2H); 1.92, (m, NHCOCH2CH2, 

2H) 1.69, 1.52 (m, CH2CH2CH2NH2 + CH2, 6H), 1.35-1.33 (m, C(CH3)3 + CH2, 26H), 0.77 (t, 

J = 7.0 Hz, CH3, 3H).   

13C NMR (100MHz, MeOD-d4) δ: 169.51, 169.22  (C=O); 52.90 (CHCONH); 41.77 

(CH2NH2); 39.29 (CONHCH2); 31.75, 30.45, 29.47, 29.44, 29.40, 29.16, 29.06, 26.71, 

26.63, 22.42, 21.31 (CH2); 13.15. (CH3).  

IR cm-1: 3230m (N-H), 2917m ,2847m(C-H), 1652m, 1563s (CONH), 1252m, 721m.  

ESI-MS: Calcd. [M+H]+ (C24H51N4O2) m/z = 427.4007; Obs. [M+H]+ m/z = 427.4005. 

 

Synthesis of Py-L-Lys-Boc 

 

Chemical Formula: C33H41N3O5 

Molecular Weight: 559.71 

 

L-lys-(Boc)2 (129 mg, 0.48 mmol) was dissolved in DCM (40 ml) and TBTU (120 mg, 0.48 

mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then the 

1-pyrenemethylamine (100 mg , 0.48 mmol) was dissolved in DCM (20 ml) and added 

to the mixture. The solution was left stirring overnight. The solvent was evaporated in 

vacuo. After column chromatography (SiO2 in MeOH : DCM 1:9), it was obtained as 

pale yellow solid in 252 mg (93 %, 0.45 mmol). 

Rf = 0.5 (MeOH : DCM 1:9).  

1H NMR (400 MHz, CDCl3) δ:, 8.10-7.70 (m, Ar-H, 9H); 7.09 (br s, NH, 1H); 5.43 (br s, NH, 
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1H); 4.95 (m, ArCH2NH, 2H) 4.73 (br s, NH, 1H); 4.10 (m, COCH, 1H); 3.00 (m, CH2NH, 

2H); 1.91, 1.61 (comp m, CH2CH2CH2NH2, 4H); 1.40, 1.30 (m, CH2 + C(CH3)3, 20H) Peaks 

were relatively broad owing to aggregation at NMR concentrations. 

13C NMR (100 MHz, CDCl3) δ: 172.22 (C=O); 156.23 (C=ONH); 131.18, 131.04, 130.98, 

130.71, 128.80, 128.03, 127.32, 126.76, 126.01, 125.27, 124.88, 124.72, 124.63, 122.74 

(Ar-C); 79.94, 79.11 (C(CH3)3); 41.68 (ArCH2NH) 40.02 (CH2NH); 38.66 (CHNH) 32.21 

(CH2CHNH); 29.70 (CH2CH2NH); 28.53, 28.49 (2 × C(CH3)3); 26.34 (CH2CH2CH2NH). 

IR cm-1: 3322m (N-H), 2979m , 2931m 2847w(C-H), 1681s (C=O) 1651m, 1518s (CONH), 

1246m, 1164s, 844m. 

ESI-MS: Calcd. [M+Na]+ (C33H41N3O5Na) m/z = 581.2938; Obs. [M+H]+ m/z = 582.2929. 

(100%) 

 

Synthesis of Py-D-Lys-Boc 

 

Chemical Formula: C33H41N3O5 

Molecular Weight: 559.71 

D-lys-(Boc)2 (129 mg, 0.48 mmol) was dissolved in DCM (40 ml) and TBTU (120 mg, 

0.48 mmol.) and NEt3 (5 ml) were added. The mixture was stirred for 5 minutes, then 

the 1-pyrenemethylamine (100 mg , 0.48 mmol) was dissolved in DCM (20 ml) and 

added to the mixture. The solution was left stirring overnight. The solvent was 

evaporated in vacuo. After column chromatography (SiO2 in MeOH : DCM 1:9), it was 

obtained as pale yellow solid in 196 mg (73 %, 0.35 mmol). 

Rf = 0.50 (MeOH : DCM 1:9).  

1H NMR (400 MHz, CDCl3) δ:, 8.10-7.70 (m, Ar-H, 9H); 7.09 (br s, NH, 1H); 5.43 (br s, NH, 

1H); 4.95 (m, ArCH2NH, 2H) 4.73 (br s, NH, 1H); 4.10 (m, COCH, 1H); 3.00 (m, CH2NH, 

2H); 1.91, 1.61 (comp m, CH2CH2CH2NH2, 4H); 1.40, 1.30 (m, CH2 + C(CH3)3, 20H) Peaks 

were relatively broad owing to aggregation at NMR concentrations. 

13C NMR (100 MHz, CDCl3) δ: 172.22 (C=O); 156.23 (C=ONH); 131.18, 131.04, 130.98, 
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130.71, 128.80, 128.03, 127.32, 126.76, 126.01, 125.27, 124.88, 124.72, 124.63, 122.74 

(Ar-C); 79.94, 79.11 (C(CH3)3); 41.68 (ArCH2NH) 40.02 (CH2NH); 38.66 (CHNH) 32.21 

(CH2CHNH); 29.70 (CH2CH2NH); 28.53, 28.49 (2 × C(CH3)3); 26.34 (CH2CH2CH2NH). 

IR cm-1: 3322m (N-H), 2979m , 2931m 2847w(C-H), 1681s (C=O) 1651m, 1518s (CONH), 

1246m, 1164s, 844m. 

ESI-MS: Calcd. [M+Na]+ (C33H41N3O5Na) m/z = 581.2938; Obs. [M+H]+ m/z = 582.2932. 

(100%) 

  

Synthesis of Py-L-Lys 

 

Chemical Formula: C23H27Cl2N3O 

Molecular Weight: 432.39 

 

Py-L-Lys-(Boc)2 (100 mg, 179 μmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as a 

brown foam (74 mg, 167 μmol, 97%). 

Rf = 0.00 (NH4OH). 

1H NMR (400 MHz, MeoD-d4) δ:, 8.10-7.70 (m, Ar-H, 9H); 5.20 (m, ArCH2NH, 2H); 3.90 

(m, COCH, 1H); 3.00 (m, CH2NH, 2H); 1.91, 1.61, 1.35 (comp m, CH2CH2CH2CH2NH2, 6H); 

Peaks were relatively broad owing to aggregation at NMR concentrations. 

13C NMR (100 MHz, MeoD-d4) δ: 168.30 (C=ONH); 131.23, 131.21, 131.11, 130.88, 

130.66, 128.59, 127.63, 127.16, 127.14, 127.05, 125.90, 125.13, 125.03, 124.60, 124.58, 

124.49, 124.36, 122.66 (Ar-C); 41.30 (ArCH2NH) 38.90 (CH2NH); 37.97 (CHNH) 33.51 

(CH2CHNH); 30.92 (CH2CH2NH); 26.65 (CH2CH2CH2NH). 

IR cm-1: 3321m (N-H), 2939m , 2930m 2865w(C-H), 1681s (C=O) 1642m, 1516s (CONH), 

1246m, 1165s, 842m. 

ESI-MS: Calcd. [M+H]+ (C23H26N3O) m/z = 360.2070; Obs. [M+H]+ m/z = 360.2072. 

(100%) 
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Synthesis of Py-D-Lys 

 

Chemical Formula: C23H27Cl2N3O 

Molecular Weight: 432.39 

 

Py-D-Lys-(Boc)2 (100 mg, 179 μmol) was dissolved in MeOH (20 ml) and HCl gas was 

bubbled through the solution for 20 s. The reaction mixture was stirred at room 

temperature for 3 hours. The solvent was removed in vacuo to afford the product as a 

brown foam (74 mg, 167 μmol, 96%). 

Rf = 0.00 (NH4OH). 

1H NMR (400 MHz, CDCl3) δ:, 8.10-7.70 (m, Ar-H, 9H); 5.20 (m, ArCH2NH, 2H); 3.90 (m, 

COCH, 1H); 3.00 (m, CH2NH, 2H); 1.91, 1.61, 1.35 (comp m, CH2CH2CH2CH2NH2, 

6H).Peaks were relatively broad owing to aggregation at NMR concentrations. 

13C NMR (100 MHz, CDCl3) δ: 172.22 (C=O); 156.23 (C=ONH); 131.18, 131.04, 130.98, 

130.71, 128.80, 128.03, 127.32, 126.76, 126.01, 125.27, 124.88, 124.72, 124.63, 122.74 

(Ar-C); 41.68 (ArCH2NH) 40.02 (CH2NH); 38.66 (CHNH) 32.21 (CH2CHNH); 29.70 

(CH2CH2NH); 26.34 (CH2CH2CH2NH). 

IR cm-1: 3328m (N-H), 2981m , 2927m, 2865m(C-H), 1677s (C=O) 1650m, 1505s (CONH), 

1247m, 1165s, 842m. 

ESI-MS: Calcd. [M+H]+ (C23H26N3O) m/z = 360.2070; Obs. [M+H]+ m/z = 360.2067. 

(100%) 

 

Synthesis of docosyl mesylate214 

 

Molecular Formula = C23H48O3S 

Molecular Weight = 404.33 

 

To a solution of the 1-docoanol (5.29g, 16.2 mmol) and Et3N (5.23 mL, 37.3 mmol) in 
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DCM, mesyl chloride (2mL, 25.7 mmol) was added through a syringe. The resulting 

solution was stirred for 3h. The yellow reaction was washed sequentially  with water 

(14 mL), 2M HCl (14mL), water (14mL), saturated NaHCO3 (14mL), and water (14mL). 

The organic solution was dried with MgSO4 and concentrated to give a white-yellow 

solid (3.92g, 9.69 mmol 60%). The 1H NMR spectra of the respective crude products 

docosyl mesylate suggested that the material was suitable for the next step without 

further purification. 

1H NMR (400 MHz, CDCl3) δ: 4.55 (t, CH2O, J = 6.4 Hz, 2H); 2.99 (s, CH3SO3, J = 7.2 Hz, 

3H); 1.73 (c, CH2CH2O, J = 7.2, 2H); 1.42-1.18 (m, 18 x CH2, 36H); 0.861 (s, CH3, J = 6.8, 

3H).  

13C NMR (100 MHz, CDCl3,) δ: 70.2 (CH2O); 37.4 (CH3SO3); 29.7, 29.7, 29.6, 29.6, 29.5, 

29.4, 29.4, 29.1 (CH2); 29.0 (CH2CH2O); 25.4 (CH2);22.7 (CH2); 14.1 (CH3). 

 

Synthesis of 1-azidodocosane214 

 

Molecular Formula = C22H45N3 

Molecular Weight = 351.36 

 

To the solution of docosyl mesylate (2.77g, 6.84 mmol) in DMF (52 mL), NaN3 (1.28 g, 

19.5 mmol) was added. The mixture was stirred at room temperature for 30 min, and 

then refluxed at 85 oC for 4 h. Afterwards, the reaction was cooled before portions of 

hexane (104 mL) and water (10.5 mL) were added. The organic layer was separated, 

then washed successively with saturated NaHCO3 (10.5 mL) and saturated NaCl (10.5 

mL). The organic layer was dried with Na2SO4 and concentrated to give product as 

sticky white solid. 

1H NMR (400 MHz, CDCl3) δ: 3.24 (t, CH2N3, J = 7.2 Hz, 2H); 1.58 (c, CH2CH2N3, J = 7.2, 

2H); 1.38-1.18 (m, 18 x CH2, 36H); 0.86 (s, CH3, J = 6.8, 3H).  

13C NMR (100 MHz, CDCl3,) δ: 51.3 (CH2N3); 31.7, 29.4, 29.4, 29.4, 29.4, 29.3, 29.2, 29.1, 

28.9, 28.6, 26.4 (CH2); 22.4 (CH2CH3); 13.8 (CH3). 
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Synthesis of C22-G1-mono-Boc-DAPMA93 

 

Molecular Formula = C56H107N9O10 

Molecular Weight = 1065.81 

 

Propyne-[G1]-mono-Boc-DAPMA (160 mg, 0.22mmol) was dissolved in degassed 4:1 

THF: H2O (10ml) along with 1-azidodocosane (75.23 mg, 0.22mmol), CuSO4·5H2O (5.5 

mg, 22μmol, 10 mol%) and sodium ascorbate (8.72 mg, 44μmol, 20 mol%). The 

reaction mixture was stirred overnight at room temperature. The THF was then 

removed in vacuo at room temperature and the residue taken up in DCM (20 ml). The 

solution was washed with H2O (2 x 10 ml), dried over MgSO4 and the solvent was 

evaporated in vacuo to leave the crude product (130 mg). The crude product was 

purified by GPC (DCM) affording the desired product as yellow solid (130 mg, 95μmol, 

43%).  

Rf = 0.18 (MeOH); 0.75 (95:5 MeOH:NH4OH).  

1H NMR(400MHz, CDCl3) δ: 7.59 (br s, CH triazole, 1H); 5.89 (br s, NH, 2H); 5.38 (br s, 

NH, 2H); 5.20 (s, CH2O triazole, 2H); 4.30 (t, CH2N triazole, J =7.2 Hz, 2H); 4.22-4.12 (m, 

CH2O, 6H); 3.05-3.24 (m, CH2NH, 8H);2.31-2.39 (m, CH2N(CH3), 8H); 2.15 (s, N(CH3), 6H); 

1.87 (t, CH2CH2N triazole, J = 6.8 Hz,2H); 1.61 (q, CH2CH2NH, J = 6.8 Hz, 8H); 1.40 (s, 

C(CH3)3, 18H); 1.22 (s, CH2, CH3, 41H);0.84 (t, CH2CH3, J = 6.4 Hz, 3H).  

13C NMR (100MHz, CDCl3) δ: 173.1(C=O); 156.1 (C=ONH); 155.9 (C=ONH); 142.35 (C 

triazole); 123.47 (CH triazole); 78.79(C(CH3)3); 65.60 (CH2O); 58.3 (CH2O triazole) 56.06, 

55.64 (CH2N(CH3)); 52.57 (CH2C≡CH); 50.35 (CH2N triazole); 46.88(C(O)C(CH3)(CH2)2); 

41.67 (N(CH3)); 40.08, 39.15 (CH2NH); 31.83, 30.21, 29.61, 29.58,29.57, 29.53, 29.46, 
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29.33; 29.27, 28.93 (CH2); 28.37 (C(O)C(CH3)(CH2)2); 26.42, 26.40 (CH2CH2NH); 22.60 

(CH2CH3); 17.28 (CH3); 14.04 (CH2CH3).  

ESI-MS: Calcd. [M+2H]2+ (C56H109N9O10) m/z = 533.9143; Obs. [M+2H]2+ 

m/z= 533.9122. 

 

Synthesis of C22-G193 

 

Molecular Formula = C46H91N9O6 

Molecular Weight = 865.71 

 

Boc-protected compound 10 (103 mg, 95 μmol) was dissolved in MeOH (20 ml) and HCl 

gas was bubbled through the solution for 20 s. The reaction mixture was stirred at 

room temperature for 3 hours. The solvent was removed in vacuo to afford the product 

as an off white foam (93mg, 92μmol, 97%).  

Rf = 0.00 (NH4OH).  

1H NMR (400MHz, MeOD-d4) δ:8.22 (br s, CH triazole, 1H); 5.20 (br s, NH, 2H); 5.15 (s, 

CH2O triazole, 2H); 4.40 (t, CH2N triazole, J 6 Hz, 2H); 4.15-4.09 (m, CH2O, 6H); 

3.31-2.96 (m, CH2NH, CH2N(CH3), 16H); 2.85 (s, N(CH3), 6H); 2.11(br s, CH2CH2NH, 8H); 

1.97-1.82 (m, CH2CH2N triazole, 2H); 1.20 (s, CH2, CH3, 21H); 0.82(t, CH2CH3, J = 7.2 Hz, 

3H). 

13C NMR (100MHz, MeOD-d4) δ: 158.5(C=ONH); 66.9 (CH2O); 57.5 (CH2O triazole); 55.5 
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(CH2 triazole); 54.9 (CH2N(CH3)); 54.4(C(O)C(CH3(CH2)2); 52.2 (CH2N triazole); 40.7 

(N(CH3)); 38.8, 38.0(CH2NH); 33.1, 31.2, 30.8, 30.7, 30.6, 30.5, 30.1, 27.5, 25.9 (CH2); 

23.7, 23.6(CH2CH2NH); 17.9 (CH3); 14.5 (CH2CH3).  

ESI-MS: Calcd. [M+H]+(C46H92N9O6) m/z = 866.7165; Obs. [M+H]+m/z = 866.7127. 
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Appendices 

Appendix one: NMR spectra of Py-G1

 
1H NMR spectra of Py-G1 

13C NMR spectra of Py-G1 
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Appendix two: NMR spectra of Py-DAPMA 

 
1H NMR spectra of Py-DAPMA

 
13C NMR spectra of Py-DAPMA 
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Appendix three: NMR spectra of C16-L-Lys 

 
1H NMR spectra of C16-L-Lys

 
13C NMR spectra of C16-L-Lys 
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Appendix four: NMR spectra of C16-D-Lys 

 
1H NMR spectra of C16-D-Lys 

 
13C NMR spectra of C16-D-Lys 
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Appendix five: NMR spectra of C16-Gly-L-Lys 

 
1H NMR spectra of C16-Gly-L-Lys 

 
13C NMR spectra of C16-Gly-L-Lys 
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Appendix six: NMR spectra of C16-Gly-D-Lys 

 
1H NMR spectra of C16-Gly-D-Lys 

 
13C NMR spectra of C16-Gly-D-Lys 
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Appendix seven: NMR spectra of Py-L-Lys 

 
1H NMR spectra of Py-L-Lys 

 
13C NMR spectra of Py-L-Lys 
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Appendix eight: NMR spectra of Py-D-Lys 

 
1H NMR spectra of Py-D-Lys 

 
13C NMR spectra of Py-D-Lys 
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Appendix nine: NMR spectra of C22-G1 

 
1H NMR spectra of C22-G1 

13C NMR spectra of C22-G1 
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Abbreviations 

aPTT Activated partial thromboplastin time 

ATIII Antithrombin III 

AuNPs Gold nanoparticles 

br Broad 

bis-MPA 2,2-Bis(hydroxymethyl)propionic acid 

Boc tert-Butyloxycarbonyl 

CAC  Critical Aggregation Concentration 

CD Circular dichroism 

CE50 Charge excess or charge efficiency at 50% binding 

CNT Carbon nanotube 

d Doublet (NMR) 

DAP  Diaminopropane 

DMRIE 1,2-Dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide 

DAPMA N,N-Di-(3-aminopropyl)-N-methylamine  

DCC N,N’-Dicyclohexylcarbodiimide 

DCM Dichloromethane 

DIPEA Diisopropylethylamine 

DLS Dynamic light scattering 

DMF Dimethylformamide 

DOFLA Diversity-oriented fluorescent library approach 

DOGS Dioctadecylamido-glycylspermine 

DOGSHDO 1,2-Dioleyl-sn-glycero-3’-succinyl-1,6-hexanediol ornithine 

DOPE 1,2-Dioleoyl-L-α-glyero-3-phosphatidylethanolamine 

DORIE 1,2-Dioleyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide 

DOSPA 2,3-Dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propana

miniumtrifluoroacetate 

DOTAP 1,2-Dioleoyl-3-trimethylammonium propane 

DOTMA N-[1(2,3-Dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

EC50 Effective concentration at 50% binding 

EDTA Ethylenediaminetetraacetic acid 

ESI-MS Electrospray ionisation mass spectrometry 

EthBr Ethidium bromide 

GPC Gel permeation chromatography  

HSQC Heteronuclear single-quantum correlation spectroscopy 

HMBS Heteronuclear multiple-bond correlation spectroscopy 

IR Infra Red 
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J Coupling frequency 

m  Medium (IR) 

m Multiplet (NMR)  

Mal-B Mallard blue 

MD Molecular dynamics 

MWCNT Multi-walled carbon nanotube 

Mr Relative molecular mass 

m/z  Mass/charge ratio (Mass spectrometry) 

NMR Nuclear magnetic resonance 

PAMAM Poly(amidoamine) 

PBS Phosphate buffered saline 

PBr3 Phosphorus tribromide 

PDI Polydispersity index (DLS) 

PEI Poly(ethyleneimine)  

PLL  Poly(L-lysine 

PPI Poly(propyleneimine) 

ppm  Parts per million (NMR) 

q Quartet (NMR) 

RNA Ribonucleic acid 

Rf  Retention factor 

s  Strong (IR) 

s Singlet (NMR)  

SAMul Self-assembled multivalency 

SWCNT Single-walled carbon nanotube 

t Triplet (NMR) 

TBTU O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate  

TEM Transmission electron microscopy 

THF  Tetrahydrofuran 

TLC Thin layer chromatography 

TsOH para-Toluene sulfonic acid 

UV Ultra-violet 

Vis  Visible (light) 

w Weak (IR) 
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