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Abstract 

Corrosion and scale deposition on pipelines are two of the major flow 

assurance issues which have been recognized in the oilfield. Corrosion 

control of carbon steel pipelines requires understanding of the simultaneous 

occurrence of both processes. To date there have been few studies 

demonstrating the interactions between surface scale deposition and 

corrosion processes. Combined scale/corrosion inhibitors (mixture of scale 

and corrosion inhibitors) are gaining in popularity in the oil and gas industry 

as one of many methods to mitigate both those processes.  

A newly developed methodology of combined bulk jar scaling/bubble cell 

technique (corrosion) was used to assess the corrosion rate, CaCO3 

deposition on the material surface and bulk precipitation in a CO2 

environment. In this study the effects of single components of scale and 

corrosion inhibitors on the corrosion processes (general and localized 

corrosion) and scale deposition (bulk and surface deposition) have been 

investigated. Surface analysis techniques (SEM, EDX and Light 

Interferometry) and bulk analysis (Turbidity meter and ICP-MS) enable the 

corrosion/scale mechanisms to be studied in detail for X65 pipeline material. 

An experimental design method has been used to evaluate single and/or 

synergistic effect of single components of combined scale/corrosion inhibitor 

on the corrosion and scale processes. 

The methodology used in this study a newly-developed combined bulk jar 

scaling/bubble cell prove that is very effective tool in assessment of 

corrosion and scale interactions when they occurs simultaneously. 

Assessment of calcium carbonate precipitation on the sample showed that 

scale plays an important role of accelerating pitting corrosion by providing a 

suitable environment. XRD analysis showed that the calcium carbonate 

crystals which formed on the metal sample in the tests with 2-

mercapthoethanol were calcite crystals only.  

The simple linear regression model was developed to predict corrosion and 

scale when these process occur simultaneously. The model also enables 

the interactions between the corrosion and scale inhibitor components to be 

quantified.  
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Chapter 1  

Introduction 

Oil and gas remains one of the largest sources of energy in the world [1]. 

The natural reserves of this product are very important from a political and 

social point of view. However the most important factor of oil and gas is its 

economic potential. 

World use of petroleum products continues to grow [1]. In the hunt for new 

lands rich in oil and gas, drilling activities have moved to more severe 

environments - deeper high-pressure/high-temperature wells and in deeper 

waters. As a consequence, scale, corrosion and biofouling are major 

operational problems in oil and gas production [2]. The present project 

focuses on calcium carbonate scale inhibition and CO2 corrosion inhibition in 

the oil and gas industry. 

1.1 Oil and gas: origin and exploration 

Crude oil is derived mainly from the remains of plants and animals [3, 4]. 

Organic material falls on the sea bed buried by other materials and decays. 

These organic remains can become source rocks for crude oil or natural 

gas. As the temperature and pressure of the buried organic matter grows 

due sediment material overlay transformation to kerogen occurs (Figure ‎1.1).  

 

Figure ‎1.1 Alteration of sediments [5] 

Kerogen changes into liquid state (oil) at around 90oC and into a gas at 

around 150oC [3]. The lighter densities of gas and oil then rise up through 

the water and other substances in the pore spaces of the surrounding rock 

formation. The oil and gas movement is stopped by impermeable rock 

formations. However they escape to the surface sometimes and appear as 

surface seeps (Figure ‎1.2). 
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Figure ‎1.2 Oil and gas migration from the source rock [6] 

If the presence of oil or gas is confirmed, the exploration stage is 

implemented. According to the Speight [7] three phases of recovering oil can 

be distinguished: primary, secondary and tertiary. The recovery techniques 

are presented in Figure ‎1.3. 

 

Figure ‎1.3 Methods for oil recovery [7] 

The oil is driven through the reservoir by natural pressure caused by 

formation water. The pressure is usually high enough to pump oil to the 

surface. This type of recovery refers to the primary recovery process. As the 

reservoir matures the pressure inside the well starts to decrease. At this 
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point secondary recovery techniques need to be applied. This involves the 

injection of gas or water into reservoir, with the aim to lift oil or natural gas to 

the surface. The third method is tertiary recovery which relies on increasing 

liquid mobility within the reservoir. It can be achieved by injecting solvents, 

detergents or steam [7]. 

The mixture of oil, gas and saline water are typically in a state of equilibrium 

within the reservoir. The oil or natural gas extraction usually results in a 

change away from equilibrium state which causes scale deposition [8]. While 

CO2 dissolved in the formation water forms weak carbonic acid and it causes 

the problem of corrosion (CO2 corrosion – sweet corrosion) [9]. 

1.2 Inorganic scaling and impact for the oil and gas industry 

Scale deposit formation is a natural consequence of handling water 

associated with crude oil. The formation of scales from flowing brine 

solutions occurs due to brine being supersaturated with scaling minerals, 

suitable nucleation sites and sufficient time are available. Scale deposition 

can cause many problems such as: blocked pores in the reservoir, reduced 

cross-section of pipelines and reduced efficiency of surface facilities [8]. 

Many different mineral scales are found in oilfields: sulphates (barium, 

strontium and calcium), carbonates (e.g. calcium, magnesium), iron scales 

(iron oxides and hydroxides). However calcium carbonate and barium 

sulphate are the most common due to their very low solubility. 

1.3 Present removal and inhibition methods 

Scaling conditions can be avoided by applying  one or two known 

techniques: antiscalants surfaces [10], mechanical cleaning (scraping, 

wiping, etc.) and chemical (inhibitors) [8, 10]. However, the most popular 

method used in the oil and gas industry is scale inhibitors. Scale inhibitors 

can be quite specific in their action towards individual scaling minerals due 

to their different  mechanisms of scale inhibition [9]. 

1.4 Corrosion and impact for the industry 

The crude oil and natural gas from the oil reservoir typically contain some 

level of CO2 or/and H2S. CO2 dissolves with the water forming carbonic acid 

and makes brines very corrosive. The corrosion of drilling, production, 

refinery and transportation facilities can have serious influences: lost 

revenue, lost production, delays in production, contaminated products, 
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environmental damage, safety risks, excessive maintenance and 

replacement costs [11]. Over 25% of these difficulties in the oil and gas 

industry are related to corrosion with sweet corrosion being responsible for 

more than half [11]. 

1.5 Current prevention methods 

Corrosion attack in many cases can be reduced to acceptable levels. 

However it is impossible to totally eliminate the corrosion process. 

Numerous methods are applied to reduce corrosion: cathodic protection, 

corrosive gas removal, coatings, material selection, design and chemical 

inhibition (inhibitors) [12]. Different corrosion inhibitors slow the corrosion 

process by: reducing ion diffusion to the metal surface or changing the 

electrochemical potential of the metal to more cathodic or noble [12]. 

1.6 Combined inhibitors 

Corrosion and scale deposition are routinely controlled by the use of 

corrosion inhibitors (CI) and scale inhibitors (SI). However, the application of 

combined inhibitors (ComI) is establishing itself as the preferred option [13]. 

The reasons for this lie in the fact that they help to minimise potential 

compatibility problems between corrosion and scale inhibiting chemicals also 

lack of umbilicals for injection as well as reducing chemical costs. The 

development of combined inhibitors is a logical choice and researchers have 

indicated that combined inhibitors are capable of adequately controlling 

corrosion and scale processes [14-17]. 

1.7 Aims and objectives of the PhD 

Corrosion and scale deposition are well known flow assurance issues in the 

oil and gas industry. Corrosion control of carbon steel and scaling in 

pipelines requires an understanding of the simultaneous occurrence of both 

processes. There are a number of studies which have separately researched 

general corrosion, pitting corrosion, bulk scaling and surface scaling with 

and without the presence of inhibitors. However, in the oilfield engineers 

have to tackle two, three or four processes in the field at the same time. To 

date there have been few studies demonstrating the interactions between 

scale and corrosion processes. However, combined scale/corrosion 

inhibitors (mixture of single components (scale and corrosion inhibitors)) are 
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gaining popularity in the oil and gas industry as means of mitigating both 

those processes. The aims of this PhD study are as follows: 

 Asses the newly-developed combined bulk jar scaling/bubble cell  [18] 

as a method of assessing: 

1. general corrosion 

2. localised corrosion 

3. bulk precipitation 

4. surface deposition 

when all processes occurring simultaneously 

 Evaluate the effect of single components of the combined inhibitors 

on all four processes when only single component is present in the 

system 

 

 Evaluate the effects of the single components of the combined 

scale/corrosion inhibitor and/or synergistic effects on all four 

processes when all single components are blended together 

 

 Develop empirical relation equation (model) for prediction corrosion 

and scale processes 

 

Objectives of the PhD 

 

 Run number of the test in the lab with the use a newly developed bulk 

jar test/bubble cell. Use electrochemical techniques to measure in-situ 

general corrosion and measure bulk scaling by turbidity meter and 

Inductively Coupled Plasma. Use surface analysis techniques such 

as: Scanning Electron Microscope, X-Ray Diffraction Analysis and 

Light Interferometry to assess the localized corrosion and surface 

scaling. 

  

 Use an experimental design method to design test matrix and quantify 

the effects of the single components of the combined scale/corrosion 

inhibitor and/or synergistic effects on all four processes. 
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1.8 Contribution of this research 

 Further understanding of effect CaCO3 scaling on general corrosion 

by finding that scale forms mainly on ferrite grains microstructure 

leaving pearlite grains uncovered. 

 

 2-mercapthoethanol almost completely prevents of formation of 

calcium carbonate on the metal surface. Small calcium carbonate 

crystals which formed during the tests with 2-mercapthoethanol were 

composed only by calcite crystals. 

 

 Polyphosphinocarboxylic acid showed good inhibition against the 

localised corrosion.  

 

 The simple linear regression model was developed to predict 

corrosion and scale when these processes occurs simultaneously. 

1.9 Scope of work 

The scope of work was to do literature review and study methodology to 

produce reproducible results in a newly developed bulk jar test/bubble cell. 

At the same time, the work also focused on choosing the most suitable 

method from an experimental design to study the effect of the combined 

inhibitors on the general corrosion, localized corrosion, bulk scaling and 

surface scaling. The interaction between inhibitors and the scale (iron 

carbonate and calcium carbonate) has been investigated by FTIR and 

Raman spectroscopy analysis. Simultaneously, the work was concentrated 

to develop an empirical equation to predict corrosion and scale. 

1.10 Outline of the thesis 

Chapter 1 gives a brief introduction of the industrial background associated 

to mineral scale and corrosion problems in the oil and gas industry as well 

as the aims and the objectives of this thesis. 

 

Chapter 2 presents overview of mechanism of calcium carbonate formation 

and theories of nucleation and crystal growth. It presents the background of 

the mechanism of aqueous corrosion and CO2 corrosion. 
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Chapter 3 provides the literature review for calcium carbonate scale and CO2 

corrosion in the oil and gas field. A review the different parameters 

influencing calcium carbonate formation and CO2 corrosion and the different 

methodologies to study them. It presents the mechanisms of inhibition of 

corrosion and scale, and the different inhibitors used in the industry.  

  

Chapter 4 presents the methodology and materials used to complete the 

aims and objectives of this research. 

 

Chapter 5, 6, 7 and 8 presents the results obtained in this study. 

Chapter 5 provides results for the test when the corrosion and scale process 

occurring simultaneously in the absence of any inhibitor while Chapter 6 

gives the results of the effect of the single component of combined inhibitor 

on the corrosion and scale processes occurring simultaneously. Chapter 7 

presents results of corrosion and scale assessments in the presence of the 

combined inhibitor and calculation of the quantitative effect of single 

component inhibitor and their interactions: on general corrosion, localized 

corrosion, surface scaling and bulk precipitation. Chapter 8 gives the results 

obtained with the Fourier Transform Infrared Spectroscopy and Raman 

spectroscopy. The interactions between the single components and calcium 

carbonate or iron carbonate formed on the metal sample has been 

investigated. 

 

In Chapter 9 the results are discussed also referring to the literature 

reviewed.  

 

Chapter 10 presents the main findings from this thesis and Chapter 11 

present some recommendations for future work. 
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Chapter 2   

Theory of scale and corrosion 

2.1 Introduction 

This PhD project has focused only on calcium carbonate and CO2 corrosion. 

The aim of this chapter is to present the theory of mechanism of calcium 

carbonate formation and the mechanism of aqueous corrosion and CO2 

corrosion.  

2.2 Mechanisms of calcium carbonate formation 

Calcium carbonate precipitation from a solution occurs in three steps: 

supersaturation, nucleation and crystal growth. The liquid needs to be 

supersaturated for the nuclei to form and increase in size.  

2.2.1 Calco-carbonic equilibrium 

The calco-carbonic system is derived from the dissolution of carbon dioxide 

and carbonate minerals into the water [19]. Calcium carbonate is governed 

by the following equilibria [20]: 

    𝐂𝐎𝟐(𝐠) + 𝐇𝟐𝐎 ↔  𝐇𝟐𝐂𝐎𝟑 
(‎2-1) 

𝐇𝟐𝐂𝐎𝟑 ↔ 𝐇𝐂𝐎𝟑
− + 𝐇+ (‎2-2) 

𝐇𝐂𝐎𝟑
−  ↔  𝐂𝐎𝟑

𝟐− + 𝐇+ (‎2-3) 

   𝐂𝐚𝟐+ + 𝐂𝐎𝟑
𝟐−  ↔  𝐂𝐚𝐂𝐎𝟑 (‎2-4) 

The reaction in Equation (‎2-4) can be shifted in the direction to dissolve or 

precipitate scale and this depends on: supersaturation, temperature, pH and 

flow rate of the solution [19]. 

2.2.2 Saturation 

The saturation ratio of the calcium carbonate formation has an important 

impact on the induction, growth, crystal morphology and rate of scale 

formation [21]. The saturation ratio (𝑆𝑅) of calcium carbonate can be 

calculated from the following equation: 
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𝐒𝐑 = 
(ɑ𝐂𝐚𝟐+) ∗ (ɑ𝐂𝐎𝟑𝟐−

)

𝐊𝐬𝐩
 (‎2-5) 

where Ksp is the solubility product (𝐶𝑎𝐶𝑂3) depending on the temperature 

and the pressure, and (ɑ𝐂𝐚𝟐+) and (ɑ𝐂𝐎𝟑𝟐−
) is the ion activity [22]. 

According to Mullin [22] three different levels of solution SR can be 

distinguished: 

 SR < 1: the solution is undersaturated and scale formation is not 

thermodynamically feasible. 

 SR = 1: The solution is saturated. The scale formation and dissolution 

rate in the solution is the same and no scale is formed in the solution. 

 SR > 1: The solution is supersaturated and scale formation is 

thermodynamically possible. 

In a solution which is undersaturated or at equilibrium homogenous 

spontaneous nucleation cannot occur. Crystals added to an undersaturated 

solution will dissolve while in a solution at equilibrium the crystals will not be 

dissolved (no nucleation or the growth). The supersaturated region can be 

divided in three parts [23]: 

1. the metastable zone – no homogenous spontaneous nucleation 

however, crystals added will grow 

2. the labile zone –  spontaneous homogenous nucleation occurs 

3. the precipitation zone – oversaturated in which an amorphous 

precipitate is formed 

In calcium carbonate formation ions are the crystallizing agents and the 

crystals of calcium carbonate are the macromolecules. 

 

Figure ‎2.1: A representation of crystallisation in the absence and 
presence of macroseeds [23] 



- 10 - 

The change of Gibbs free energy is the driving force for calcium carbonate 

formation. During formation the Gibbs free energy is changing. Equation 

(‎2-6) demonstrates the differences in the Gibbs free energy during a 

nucleation (formation) process [24]: 

∆𝐆 = −
𝟏

𝟐
𝐑𝐠𝐓𝐥𝐧 (

𝐈𝐏

𝐊𝐒
𝐨) (‎2-6) 

with Rg as the gas constant, 𝑇 the absolute temperature, IP the activity 

product of CaCO3 in the solution and KS
o solubility at equilibrium. 

After the solution reaches supersaturation and when crystals start form, the 

time before the solution reaches supersaturation and first nucleation starts, 

is called induction time. 

2.2.3 Induction time 

The induction time can be defined as the time before supersaturation and 

the first observable changes in the physical property of the precipitating 

system (ie. the appearance of crystals or turbidity, change of solution 

conductivity and change in solution composition etc.) [25, 26]. The induction 

time (tind) equals the nucleation time (tn) and the time needed for a nucleus 

to grow until a detectable size (tg) as seen in Equation (‎2-7) [27]. The 

precise measurement of induction time is very challenging because the 

detection of the nuclei depends on the accuracy of the method used. 

𝐭𝐢𝐧𝐝 = 𝐭𝐧 + 𝐭𝐠 (‎2-7) 

In case where the homogeneous nucleation is followed by a diffusional 

growth, the induction period is defined by Equation (‎2-8) [26]: 

𝐥𝐨𝐠𝐭𝐢𝐧𝐝 = 𝐂 +
ɑ𝐭

(𝐥𝐨𝐠𝐒ɑ)𝟐
 (‎2-8) 

where tind is the induction time, 𝐶 is a constant, ɑt is the slope of logtind 

versus (logSɑ)
2 function and Sɑ is the supersaturation of the solution. 

The relationship between the induction time and supersaturation are 

presented in the equation developed by Gill et al. [28]. 

𝐊 = 𝐓𝐂𝐚
(𝐩−𝟏)

𝐭 (‎2-9) 

where 𝐾 is a constant, 𝑇𝐶𝑎 is the molar concentration of ions, 𝑝 the apparent 

number of ions in the critical nucleus, 𝑡 the induction time.   

2.2.4 Nucleation 

The stable nucleus is formed from several molecules. The different crystals 

mainly contain from 10 to several thousand molecules. The molecules 
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before‎they‎become‎stable‎(‘insoluble’)‎need‎to‎coagulate‎and‎have‎a‎certain‎

orientation within a fixed lattice. The‎nucleation‎process‎is‎a‎‘chain‎reaction’,‎

starting by two molecules colliding into each other followed by further 

collision with other molecules until the nucleus is formed [22]. In calcium 

carbonate, calcium ions with carbonate ions dissolved in solution are paired 

and clustered by electrostatic interactions (Figure ‎2.2). This is followed by 

growth of the clusters by the addition of ions, until they reach a critical size 

[29]. 

 

Figure ‎2.2: Schematic representations of processes involved in the 
initial stages of scale formation: (a) ion pairing, (b) prenucleation 
aggregate growth, (c) and (d) particle nucleation and growth [30] 

Three different forms of nucleation are distinguished: primary homogenous 

nucleation, primary heterogeneous and secondary nucleation [22] as shown 

on Figure ‎2.3. 

 

Figure ‎2.3 The different types of nucleation [22] 

Primary homogeneous nucleation is determined by the formation of nuclei in 

an extremely supersaturated bulk solution free of any particles or impurities. 

From Equation (‎2-10), it can be calculated the number of crystals formed 

during the homogeneous nucleation following diffusional growth [14]. 
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𝐥𝐨𝐠 𝐍 = 𝐃 −
ɑ𝑵

(𝐥𝐨𝐠 𝐒ɑ)𝟐
 

(‎2-10) 

where 𝑁 is the number of crystals, 𝐷 a constant, ɑN the slope of log 𝑁 

versus (𝑙𝑜𝑔 𝑆)−2 function and  Sɑ the supersaturation. 

Primary heterogeneous nucleation is induced by the solid surfaces which are 

present, impurities or ions in the solution. Primary heterogeneous nucleation 

is more predominant than primary homogeneous nucleation [31] and is 

possible in low supersaturated solutions. 

Secondary nucleation is induced by parent crystals in the bulk solution. 

2.2.5 Growth 

After nucleation, the growth process leads to the formation of crystals of a 

noticeable size. There are three main theories of crystals: surface energy 

theory, adsorption-layer theory and dislocation theory [22]. 

2.2.5.1 Surface energy theory 

According to Gibbs crystal growth is the entire free energy of a crystal when 

it is in equilibrium with its surroundings at a stable temperature and pressure 

would be a minimum for given volume (energy) [22]. If a crystal grows in a 

supersaturated solution, the development of the various faces will grow in 

such manner as to ensure that all crystal faces have the lowest total surface 

energy for a given volume [22]. In theory the surface energy and the rate of 

growth of faces should be inversely proportional to the reticular (lattice) 

density of the lattice plane. It means that crystal faces which have low 

reticular densities grow rapidly and eventually disappear while at the same 

time crystal faces with high reticular densities grow slow. Figure ‎2.4 presents 

an invariant crystal which grows and retains its shape during the growth 

process and the overlapping crystal which does not always maintain its 

shape during growth. 

 

                        (a)                   (b) 

Figure ‎2.4: Velocities of crystal growth faces: (a) invariant crystal: (b) 
overlapping crystal [22] 
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2.2.5.2 Adsorption layer theory 

Kossel, Stranski and Volmer  (KSV) developed the adsorption theory [32]. 

This theory suggested that the crystal surface is not homogeneous, it 

contains smooth surfaces, steps and kink sites (Figure ‎2.5). Kink sites are 

most likely the sites where growth will occur.  A kink site has three faces 

which can be linked to the growth unit (atoms, molecules or ions)  and the 

binding energy. It has the highest binding energy compared to the step site 

and the flat surface site [33]. It has been suggested that atoms tend to bind 

to the crystal lattice where the binding force are the greatest; and this step 

will continue until the whole plane is completed. This means that no new 

layer can be erected till the formation of the previous has finished. Though, 

this last suggestion was not confirmed by experimental work [33]. 

 

Figure ‎2.5: Growing crystal surfaces: (A) flat surfaces, (B) steps,  
(C) kinks [22] 

2.2.5.3 Dislocation 

A dislocation is a defect of the crystal structure. It is very common for 

crystals to grow in irregular shapes. The most common cause of that  are 

impurities, foreign atoms or ions. The screw dislocation has been 

characterized by the Burton, Cabrera, Franck (BCF) theory [22, 32]. 

Throughout the process of the crystal growth occasionally some small faces 

can be excessively develop leading to one of the parts of the crystal to be 

dislocated. 

 

                        (a)                     (b)               (c) 

Figure ‎2.6: Development of growth spiral starting from screw 
dislocation [22] 



- 14 - 

2.2.5.4 Growth mechanism 

Crystal growth occurs in three successive reaction steps [34]: 

 the transport of solute to the crystal solution interface 

 the adsorption of solute at the surface 

 the incorporation of the crystal constituents into the lattice 

According to Noyes and Whitney [35] crystallisation is the reverse 

dissolution. Crystallisation and dissolution rates corresponded to the change 

of concentration at the surface and concentration in the bulk solution. This is 

shown in Equation (‎2-11) [22]: 

𝒅𝒎

𝒅𝒕
= 𝒌𝒎𝑨(𝒄 − 𝒄

∗) (‎2-11) 

where 𝑚 is the mass of the solid deposited with time, 𝑘𝑚 the coefficient of 

mass transfer, 𝐴 the surface area of the crystal, 𝐶 the solute concentration in 

the solution and 𝐶∗ the equilibrium saturation concentration. 

In the case of calcium carbonate, the decrease of calcium concentration has 

been expressed by Nancollas and Reddy according to Equation (‎2-12) and 

is shown below [26]: 

−𝒅[𝑪𝒂]

𝒅𝒕
= 𝒌𝒄𝑨(𝒕) (𝑪𝑪𝒂 − 𝑪𝑪𝒂𝒆𝒈)

𝒈

 (‎2-12) 

where 𝑘𝑐 is the crystal growth constant, 𝐴(𝑡) the surface area of the crystal, 

𝐶𝐶𝑎 is the molar concentration of calcium, 𝐶𝐶𝑎𝑒𝑔 is the molar concentration of 

calcium at equilibrium and 𝑔 the kinetic order of crystal growth. 

2.3 Aqueous corrosion 

2.3.1 Definition of corrosion 

Corrosion‎has‎been‎defined‎as‎the‎degradation‎of‎a‎material’s‎properties‎or‎

mass over time due to a chemical reaction with the environment [36, 37]. 

The mechanism of CO2 corrosion is complex; and its understanding, 

prediction and control are important challenges [38]. 

The corrosion of metals in aqueous solution is an electrochemical 

mechanism. In this mechanism atoms at the surface of the metal depart their 

matrix and go in to solution as metal ions. Then, electrons migrate through 

the metal to a site where appropriate reaction occurs. Electrons are 

consumed by electrochemically active species in contact with the metal 

surface [37]. 
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2.3.2 Thermodynamics 

2.3.2.1 Free energy 

Metals are transformed from ores (low energy level) with the use of external 

energy. Metals try to revert to their lower energy state by spontaneously 

reacting with the corrosive environment [37, 39]. The driving force for 

metallic corrosion is the Gibbs free energy change (∆𝐺), the change (∆𝐺) in 

Gibbs free energy show tendency of the corrosion reaction to occur [37].  If 

∆𝐺 <0, the corrosion reaction occurs spontaneously [37]. When ∆𝐺 is 

positive, the metal requires energy to react with the surrounding 

environment. However ∆𝐺 is not indicating the rate of the reaction, the rate 

of reaction is influenced by other factors. 

2.3.2.2 The Corrosion cell 

Aqueous corrosion is an electrochemical process established by Michael 

Faraday. An electrochemical corrosion cell (Figure ‎2.7) contains four key 

components [37]: 

- The anode, which is the corroding metal and where the anodic/ 

oxidation reaction occurs  

- The cathode, which is the metal or another electronic conductor 

and where the cathodic/reduction reactions occurs  

- The electrolyte, which provides a conducting path between the 

cathode and anode 

- The electrical connection, which enables electrons to move 

between the cathode and anode  

 

Figure ‎2.7 An electrochemical cell [40] 

2.3.2.3 Corrosion reactions 

Corrosion reactions can be divided into cathodic and anodic reactions. The 

anodic reaction is: 

𝑴 → 𝑴𝒏+ + 𝒏𝒆− (‎2-13) 
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where 𝑀  is the metal and 𝑛  is the number of electrons (𝑒−) released by the 

metal.  

The electrons produced do not go into the solution. They remain on the 

corroding metal and migrate through the electrical connection between the 

cathode [37]. 

The cathodic reaction consumes electrons produced by the anode. The 

reducible species in the electrolyte adsorb on the metal surface and remove 

the electrons [37]. Both reactions (the anodic and cathodic) of the corrosion 

processes are occurring on the same metal surface and the free energy 

changes for each reaction can be measured as electrical potentials and 

current flow [41]. 

An equation derived by Faraday relates potential difference and charge 

transported with the Gibbs free energy change of the corrosion process: 

∆𝑮 = (−𝒏𝑭)𝑬 (‎2-14) 

where ∆𝐺 is the free energy change for the corrosion reaction in kJmol-1;  

𝑛 is the number of electrons taking part in the corrosion reaction; 𝐹 is the 

Faraday constant (96 494 Coulombs/mole) and 𝐸 is the potential difference 

at non-standard conditions in Volts.  

By using the superscript (o), this equation can be rewritten to represent 

standard conditions: temperature of 273.15 K and pressure of 1 atmosphere. 

∆𝑮𝒐 = (−𝒏𝑭)𝑬𝒐 (‎2-15) 

Values of 𝐸𝑜 are provided in standard tables using the half redox reaction. 

Examples of standard half cell potentials are provided in Table ‎2.1. Metals 

with a positive value of 𝐸𝑜 (for example gold) are qualified as noble metals. 

Metals with a negative value of 𝐸𝑜 corrode readily and tend to be anodes. 

Table ‎2.1 Standard electrode potential Eo (V) standard hydrogen 
electrode (SHE)[41] 

Electrode Standard Electrode Potential Eo (V) (SHE) 

𝐴𝑢3+ + 3𝑒− = 𝐴𝑢 +1.50 

𝐹𝑒3+ + 𝑒− = 𝐹𝑒2+ +0.771 

2𝐻+ + 2𝑒− = 𝐻2 0.000 (by definition) 

𝐹𝑒2+ + 2𝑒− = 𝐹𝑒  -0.440 

𝑍𝑛2+ + 2𝑒− = 𝑍𝑛 -0.763 
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2.3.2.4 The Nernst equation and cell potential 

Corrosion is dependent upon temperature because the free energy states of 

the species depend upon temperature. The change in Gibbs free energy can 

be calculated at given activities of the reactants and products of reaction, as 

follows: 

∆𝑮 =  ∆𝑮𝒐 +𝑹𝑻𝒍𝒏
[𝐚𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬]

[𝐚𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭𝐬]
 (‎2-16) 

where 𝑅 is the gas constant (8.314  J/mol*K), 𝑇 is the absolute temperature 

in Kelvins (K), and [𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠] or [𝑎𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠] are the concentrations of all the 

product or reactant species multiplied together in moles. 

The Nernst equation was deduced by combining the thermodynamic 

equations‎ and‎ Faraday’s‎ Law.‎ This‎ equation‎ determines‎ how‎ the‎ cell‎

potential varies with cell conditions: 

∆𝑬 = ∆𝑬𝒐 + 
𝑹𝑻

𝒏𝑭
𝒍𝒏
[𝐚𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬]

[𝐚𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭𝐬]
 (‎2-17) 

Cell potential containing of both anodic and cathodic reaction can be 

combined arithmetically from electrode potentials. If the difference of cell 

voltage is calculated from Equation (‎2-18), (the galvanic potential cells which 

operate spontaneously) will give a positive cell voltage. 

𝑬𝒄𝒆𝒍𝒍 = 𝑬𝒄𝒂𝒕𝒉𝒐𝒅𝒊𝒄 − 𝑬𝒂𝒏𝒐𝒅𝒊𝒄 (‎2-18) 

where 𝐸𝑐𝑒𝑙𝑙  is the cell potential in Volts, 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐 is the reduction potential of 

the cathodic reaction and 𝐸𝑎𝑛𝑜𝑑𝑖𝑐 is the reduction potential of the anodic 

reaction. 

If reduction in Gibbs energy occurs then a spontaneous reaction of corrosion 

occurs, therefore ∆𝐺 must be negative. So, 𝐸𝑐𝑒𝑙𝑙 must be positive for 

corrosion to occur. 

2.3.3 The mechanism of aqueous corrosion and electrical double 

layer (EDL) 

After a metal is immersed into an aqueous solution small local anodic and 

cathodic areas are generated rapidly at the interface between the solids and 

liquids. This is caused by differences in free energy states between reacting 

sites. As mentioned before, once metal corrodes, ions at the surface of the 

metal depart from their matrix leaving behind their electrons. This causes a 

negative charge on the metal surface and tends to attract some of the 

positively charged ions. Water molecules then surround the metal ions as 

they escape the lattice, hydrating them. The water layer around the ions 
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prevents them diffusing freely in the bulk solution and they are prohibited 

from becoming metal atoms. Simultaneously, the positive charged ions in 

the electrolyte are attracted toward the opposite charge surface [42]. 

Therefore, electrolytes which contain water molecules and ions from both 

the metal and bulk electrolyte are adjacent to an electrode surface; it has a 

different composition compared to the rest of the bulk phase. It is referred as 

the electrical double layer (EDL) [42]. 

When two opposite charged planes created by the EDL are separate 

physically, it causes capacitor-like behaviour. The level of capacitance can 

be defined by the metal and electrolyte composition. Excess electrons which 

are transferred to the electrochemically active ions can be resists by metal. 

So, the EDL can behave as a resistor too [42]. 

When two opposite charged planes in an EDL are separate, this separation 

certainly creates an electrical potential which can be measured. 

Subsequently the participation of electron transfer in corrosion process 

suggests that, it is a relationship between the EDL chemical composition, 

voltage and electric current [42]. 

2.3.3.1 The relationship between EDL chemical composition, electric 

current and voltage 

𝐸𝑐𝑜𝑟𝑟 is a free corrosion potential at which the sum of the anodic and 

cathodic reaction rates are equal zero. The metal and the nature of the 

solution influences the 𝐸𝑐𝑜𝑟𝑟. The corresponding current density is called 

𝑖𝑐𝑜𝑟𝑟 (the corrosion current density) [43].  

𝐸𝑐𝑜𝑟𝑟 values can change when EDL chemical composition changes and 

applied voltages change the EDL chemical composition. EDL behaviour to 

electrical potential can be expressed by The Nernst equation: 

∆𝑬 = ∆𝑬𝒐 + 
𝑹𝑻

𝒏𝑭
𝒍𝒏
[𝐚𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬]

[𝐚𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭𝐬]
 (‎2-19) 

The chemical activity components of the reaction ([𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠] and [𝑎𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]) 

can be replaced with the activity coefficient (𝛾) multiplied by the 

concentrations of species represented by an element symbol in brackets 

(e.g. [Fe2+]).Therefore, the equation can be rewritten as: 

∆𝑬 =  ∆𝑬𝒐 + 
𝑹𝑻

𝒏𝑭
𝒍𝒏
𝜸𝒑[𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬]

𝜸𝒓[𝐫𝐞𝐚𝐜𝐭𝐚𝐧𝐭𝐬]
 (‎2-20) 

Where 𝛾𝑝 and 𝛾𝑟 are the activity coefficients for products and reactants, 

respectively. 
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The potential which is measured, depends on the concentrations of both the 

metal ions and electrochemically active species in the EDL. The measured 

potential is dependent upon the concentrations of both the metal ions and 

electrochemically active species in the EDL. The magnitude of a measured 

potential will therefore change with EDL chemical composition. Hence, if the 

bulk electrolyte composition is changed in this way it will change the EDL 

chemical composition, 𝐸𝑐𝑜𝑟𝑟 will change too [42, 44]. 

The Nernst equation expresses the potential of a material to corrode, not the 

rate‎at‎which‎the‎material‎will‎corrode.‎Ohm’s‎Law‎states‎that if the EDL has 

a voltage and a resistance it must have a current. The Butler-Volmer 

equation describes  the relationship which is experimentally observed 

between applied current density and potential corroding electrodes; in the 

environment where no competing reduction-oxidation reactions occur [45]. 

This relationship can be applied in the presence of single anodic reactions 

and a single cathodic reactions: 

𝐢𝐨 = 𝐢𝐜𝐨𝐫𝐫 [𝐞
(
(𝟏−ɑ)𝐧𝐅(𝐄−𝐄𝐜𝐨𝐫𝐫)

𝐑𝐓
)
− 𝐞

(
−ɑ𝐧𝐅(𝐄−𝐄𝐜𝐨𝐫𝐫)

𝐑𝐓
)
] 

(‎2-21) 

where 𝑖𝑜 is the external current in Amps/cm2 flowing to or from the electrode 

because of an applied potential, 𝑖𝑐𝑜𝑟𝑟 is the corrosion current density in 

Amps/cm2 that occurs when the electrode is at 𝐸𝑐𝑜𝑟𝑟, 𝐸𝑐𝑜𝑟𝑟 is the free 

corrosion potential in Volts (V), 𝐸 is the applied potential in Volts (V), 𝑎 is a 

coefficient ranging from 0 to 1 and 𝑛, 𝐹, 𝑅 and 𝑇 have been explained 

before. 

This equation can be expressed in term of Tafel slopes (𝛽𝑎 and 𝛽𝑐) 

respectively. Which are given by the slopes of the polarisation curves in the 

anodic and cathodic regions for a plot of 𝐸 vs 𝑙𝑜𝑔(𝑖): 

𝐢𝐨 = 𝐢𝐜𝐨𝐫𝐫 [𝐞
(
𝟐.𝟑𝟎𝟑(𝐄−𝐄𝐜𝐨𝐫𝐫)

𝜷𝒂
)
− 𝐞

(
−𝟐.𝟑𝟎𝟑(𝐄−𝐄𝐜𝐨𝐫𝐫)

𝜷𝒄
)
] 

(‎2-22) 

This relationship offers the foundation for the electrochemical polarisation 

technique for a corroding electrode at its 𝐸𝑐𝑜𝑟𝑟,  [45]. 

2.3.4 Electrochemical measurement techniques 

2.3.4.1 Linear Polarisation Resistance (LPR) method 

The linear relationship between applied voltage and current inside a few 

millivolts of polarisation from 𝐸𝑐𝑜𝑟𝑟,, has been observed by many 

researchers. Stern and Geary [46] simplified (Equation (‎2-22)) relationship to 

the following form: 
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𝑹𝒑 = [
∆𝐄

∆𝐢
]
(𝑬−𝑬𝒄𝒐𝒓𝒓)→𝟎

=
𝟏

𝟐. 𝟑𝟎𝟑
[
𝜷𝒂𝜷𝒄
𝜷𝒂+𝜷𝒄

] (‎2-23) 

Reordering this equation gives: 

𝒊𝒄𝒐𝒓𝒓 =
𝟏

𝟐. 𝟑𝟎𝟑𝑹𝒑
[
𝜷𝒂𝜷𝒄
𝜷𝒂+𝜷𝒄

] =
𝑩

𝑹𝒑
 (‎2-24) 

where 𝑅𝑝 is‎the‎polarisation‎resistance‎(Ohm·cm2), 𝑅𝑝 = 
∆𝑬

∆𝒊
  for a plot of 𝐸 vs 

𝐼. The 𝐵 factor is influenced more by the smaller of the 𝛽𝑎 and 𝛽𝑐 Tafel 

slope, in situations where both are unequal. 

If 𝑅𝑝, 𝛽𝑎 and 𝛽𝑐 are known, then the corrosion rate can be determined at any 

particular time [45]. Within the range of ±5-20 mV of 𝐸𝑐𝑜𝑟𝑟 the measured 

current is behaving nearly linearly. Therefore, this method is commonly 

called the linear polarisation technique. 

2.3.4.2 Tafel plots 

One of the advantages of linear polarisation curves are that there is no need 

to regularly replace electrodes. However, the corrosion rate is estimated 

because the Tafel slopes are not measured. The range of potential in which 

Tafel plots are measured is around 200 to 500mV from 𝐸𝑐𝑜𝑟𝑟  [42]. Tafel plots 

provide more information than linear polarisations tests [42]. 

The measured current in the different potentials are plotted on a logarithmic 

scale illustrating the cathodic and anodic branch as presented in Figure ‎2.8.  

Both of them can be activation controlled - controlled by the reaction rate or 

diffusion controlled - dictated by the rate of diffusion of species to and from 

the surface. 

      

Figure ‎2.8: Representing how to determine Tafel slopes [42] 
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Tafel slopes have units of mV/decade (decade is related to the current). This 

can be found by determining the slope of the anodic and cathodic slopes 

from the linear parts of the 𝐸  vs 𝑙𝑜𝑔(𝑖) plot. By determining Tafel slopes, it is 

possible to calculate the corrosion rate of a metal. If this information is used 

in combination with linear polarisation data and the Stern-Geary equation, a 

value of corrosion rate can be calculated [47]. Otherwise, 𝑖𝑐𝑜𝑟𝑟 (corrosion 

current density) can simply be read directly from a Tafel plots. 

After 𝑖𝑐𝑜𝑟𝑟 has been read, then the corrosion rate (CR) in mils per year can 

be calculated as showed in Equation (‎2-25) [42]: 

𝑪𝑹 = 𝒊𝒄𝒐𝒓𝒓(𝑲)
𝟏

𝝆
(𝜺) (‎2-25) 

where 𝐾 is a conversion terms equal to 1.287.105 (eq.s.mils)/(C.cm.y), 𝜌 is 

the metal density (equal to 7.85 g/cm3 for carbon steel) and 𝜀 is the 

equivalent weight which is the molecular weight/number of electrons in the 

metal anodic half reaction (equal to 27.9 g/eq). 

The value of the corrosion rate can be converted from mils per year (mpy) to 

millimetres per year (mm/y) (1mpy = 0.0254 mm/y) [48]. 

Tafel plots can be used only to measure the general corrosion not localised 

corrosion. It requires extended anodic polarisations for these types of tests 

[42]. 

2.4 CO2 corrosion mechanism 

2.4.1 Cathodic reactions in CO2 environment 

CO2 dissolves in water to give a weak carbonic acid H2CO3 ([38]: 

𝑪𝑶𝟐 +𝑯𝟐𝟎 ↔ 𝑪𝑶𝟐 −𝑯𝟐𝟎 ≅ 𝐇𝟐𝐂𝐎𝟑 ↔ 𝐇+ + 𝐇𝐂𝐎𝟑
− (‎2-26) 

Then partially dissociates in two steps [49, 50]: 

a) forming bicarbonate ions 

𝐇𝟐𝐂𝐎𝟑 ↔ 𝐇+ +𝐇𝐂𝐎𝟑
− (‎2-27) 

b) forming carbonate ions 

𝐇𝐂𝐎𝟑
− ↔ 𝐇+ + 𝐂𝐎𝟑

𝟐− (‎2-28) 

Hydrogen evolution is then the next step: 

𝟐𝐇+ + 𝟐𝐞− ↔ 𝐇𝟐 (‎2-29) 

The reaction of the dissociation Equation (‎2-27) and Equation (‎2-28) occurs 

much faster than other simultaneous reactions in the system. Reaction of 
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CO2 dissolving in Equation (‎2-26) is much slower than the dissociation 

reactions. 

The most important cathodic reaction is considered the hydrogen evolution 

reaction (Equation (‎2-29)). It is limited by the rate at which hydrogen ions 

(H+) can be transported from the bulk solution to the steel surface [51]. 

The reaction (Equation (‎2-29)) is easily influenced by the pH level. The fast 

consumption H+ ions can be readily replenished by the dissociation reactions 

of H2CO3. Therefore, in the environment where the pH is greater than 4; the 

presence of CO2 makes a much more corrosive environment than that can 

be found in a solution of strong acid at the same pH [51]. 

The cathodic reaction (Equation (‎2-29)) is dominating in the CO2 system; 

where the pH is lower than 4  because of the high concentration of H+. In the 

pH range from 4 to 6, another cathodic reaction becomes important in 

addition to the reduction of H+ [49].  

This reaction is the direct reduction of H2CO3 [49]: 

𝟐𝑯𝟐𝑪𝑶𝟑 + 𝟐𝒆
− → 𝑯𝟐 + 𝟐𝑯𝑪𝑶𝟑

− (‎2-30) 

This reaction is controlled by the reaction of CO2 dissolving in water 

(Equation (‎2-26)). It is related to the H2CO3 concentration; which depends on 

the partial pressure of CO2 [51]. 

2.4.2 Anodic reactions in CO2 environment 

The anodic reaction is a dissolution of metal in solutions containing CO2. The 

main anodic reaction for a carbon steel in solution containing CO2
- is as 

follows: 

𝐅𝐞 ↔ 𝐅𝐞𝟐+ + 𝟐𝐞− (‎2-31) 

According to Bockris et al. [52], the Fe is oxidized by reaction with water 

(first step): 

𝐅𝐞 + 𝐇𝟐𝐎 ↔ 𝐅𝐞𝐎𝐇+ + 𝐞− (‎2-32) 

Then is followed by further oxidation of Fe2+ (second step): 

𝐅𝐞𝐎𝐇 → 𝐅𝐞𝐎𝐇+ + 𝐞− (‎2-33) 

The second step is considered as the rate determining step in the overall 

anodic reaction [53]. 

In the third final step Fe2+ is produced: 

𝐅𝐞𝐎𝐇+ + 𝐇+ → 𝐅𝐞𝟐+ + 𝐇𝟐𝐎 (‎2-34) 
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In literature, the majority of research articles appear to support the 

mechanism suggested by Bockris et al. [52]. 

In‎ a‎ recent‎ study‎ by‎ Nešić‎ et al. [54], it is suggested that the anodic 

dissolution of iron is influenced by the presence of CO2. The different 

kinetics reactions of iron dissolution in solution saturated with CO2 for strong 

acids are explained. The difference is to be associated with carbonic species 

acting as chemical ligands and stimulating the dissolution of iron. This effect 

was found to be independent of pH. The concentration of the carbonic 

species H2CO3 and CO2 is pH independent. In this mechanism, the ligand 

FeL denotes the complex Fe-CO2 which is formed and adsorbed at the 

electrode surface. This stimulates the dissolution of iron. Numerous 

sequential models have been used to explain this findings. One of them 

explains the experimental results for pH > 5: 

𝐅𝐞 + 𝐂𝐎𝟐 ↔ 𝐅𝐞𝐋 (‎2-35) 

𝐅𝐞𝐋 + 𝐇𝟐𝐎 ↔ 𝐅𝐞𝐋𝐎𝐇𝐚𝐝 + 𝐇
+ + 𝐞− 

(‎2-36) 

𝐅𝐞𝐋𝐎𝐇𝐚𝐝
𝐑𝐃𝐒
→  𝐅𝐞𝐋𝐎𝐇𝐚𝐝

+ + 𝐞− (‎2-37) 

𝐅𝐞𝐋𝐎𝐇𝐚𝐝
+ + 𝐇𝟐𝐎 ↔ 𝐅𝐞𝐋(𝐎𝐇)𝟐𝐚𝐝 + 𝐇

+ (‎2-38) 

𝐅𝐞𝐋(𝐎𝐇)𝟐𝐚𝐝 ↔ 𝐅𝐞𝐋(𝐎𝐇)𝟐𝐬𝐨𝐥 (‎2-39) 

𝐅𝐞𝐋(𝐎𝐇)𝟐𝐬𝐨𝐥 + 𝟐𝐇
+ ↔ 𝐅𝐞𝟐+ + 𝟐𝐇𝐂𝐎𝟑

− +𝐇𝟐 (‎2-40) 

The overall reaction is presented in Equation (‎2-41): 

𝐅𝐞 + 𝟐𝐇𝟐𝐂𝐎𝟑 → 𝐅𝐞
𝟐+ + 𝟐𝐇𝐂𝐎𝟑

− + 𝐇𝟐 (‎2-41) 

2.5 Summary 

This chapter is presented the theory of mechanism of calcium carbonate 

formation and the mechanism of aqueous corrosion and CO2 corrosion. 

In the next chapter in the first part of literature review will present how 

different parameters affect the formation of calcium carbonate. It will present 

different strategies to prevent formation of calcium carbonate. The second 

part will present the literature review of CO2 corrosion as a complex process. 

It will present the formation of iron carbonate scale and how various factors 

influencing it. The third part of literature review will present the effect of 

combined inhibitors on scale and corrosion processes and factors 

influencing performance of the combined inhibitor. 
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Chapter 3   

Literature reviews of calcium carbonate and CO2 

corrosion 

3.1 Introduction 

This PhD project has focused only on calcium carbonate and on carbon 

steel corrosion in CO2-containing environments.  

The aim of the first part of this chapter is to present various form of scale, 

the different polymorphs of calcium carbonate and the different chemical and 

physical parameters influencing the formation process. In first part of chapter 

a review of the different methods of scale removal and inhibition used in oil 

and gas industry, with a main focus on scale inhibitors, will be presented. 

The mechanisms of inhibition will be presented as well as the common scale 

inhibitors in oil and gas industry. The first part of chapter will also present the 

different methods used to generate and to study CaCO3 on the surface and 

in the bulk solution. 

The aim of the second part of this chapter is to present different types of CO2 

corrosion. The second part of this chapter will outline the influence of 

different factors, including temperature and pH, on the CO2 corrosion and 

the formation of the corrosion product (FeCO3 - iron carbonate). The second 

part of chapter will also present a review of corrosion mitigation by corrosion 

inhibitors. Finally the mechanisms of inhibition as well as common corrosion 

inhibitors in the oil and gas industry will be reviewed. 

The aim of third part of this chapter is to present the different methods of 

testing of combined inhibitors. The third part of the chapter will outline the 

influence of different factors on performance of combined inhibitor. Finally 

this third part of this chapter will also present a review of effect of corrosion 

inhibitors on scale processes and the effect of scale inhibitors on corrosion 

processes. 

3.2 Different types of scales 

Various types of scales can be found in oilfields. Inorganic scaling can occur 

in the well tubing and near wellbore formations of production, block pores in 

the reservoir, reduce cross-sections of pipeline, efficiency of surface facilities 
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and injection wells [55]. Different factors can cause formation of different 

scale deposits (Table ‎3.1 below). 

 

Table ‎3.1 Most common oilfield scales [56] 

Name Chemical Formula Primary Variables 

Calcium Carbonate CaCO3 Temperature, Partial 

pressure of CO2, Total 

dissolved salts, pH 

Calcium Sulphate: 

Gypsum 

Hemihydrate 

Anhydrite 

 

CaSO4.2H2O 

CaSO41/2H2O 

CaSO4 

Temperature, Total 

dissolved salts, 

Pressure 

Barium sulphate BaSO4 Temperature, 

Pressure 

Strontium Sulphate SrSO4 Temperature, 

Pressure, Total 

dissolved salts 

Iron Compounds: 

Ferrous Carbonate 

Ferrous Sulphide 

 

FeCO3 

FeS 

Corrosion, Dissolved 

gases, pH 

3.3 Calcium carbonate polymorphism 

Calcium carbonate is a substance that is capable of crystallizing into 

different crystals forms - known as polymorphs. It is encountered in several 

polymorphic crystalline phases. According to Brecevic et al. [57] the first 

polymorph‎ that‎ crystallizes‎ as‎ a‎ “predecessor”‎ is‎ the‎ amorphous‎ calcium‎

carbonate which evolves into a more stable state to form anhydrates 

polymorphs: calcite, vaterite and aragonite. Two other phases: hexa and 

monohydrate have been also studied [58, 59]. Examples of anhydrates 

polymorphs are shown in Figure ‎3.1 below. 
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Figure ‎3.1: The crystalline polymorphs of calcium carbonate: (a) 
calcite, (b) aragonite and (c) vaterite [60] 

The most stable form are aragonite and calcite, which can be found in 

nature. Vaterite is the unstable form of calcium carbonate, it is easily 

transformed into a more stable polymorph [61]. To differentiate the 

polymorphs, various techniques can be used such as SEM, XRD, Raman or 

FT-IR [58, 62]. 

Table ‎3.2 presents a summary of different information that can be found in 

the literature about the three polymorphs. 

Table ‎3.2: Description of the three calcium carbonate polymorphs 

Parameter Calcite Aragonite Vaterite 

Crystal system Rhombohedral Orthorhombic Hexagonal 

   
Crystal 

morphology 
Cubic to 

rhombohedral 
Needlike Spherical or 

disclike 

Density (g/cm3) 2.71 2.93 2.66 

 

3.3.1 Factors influencing calcium carbonate formation 

3.3.1.1 Effect of temperature 

Temperature is one of the most influencing factors to consider for a study of 

calcium carbonate formation. Calcite, aragonite and vaterite polymorph 

solubility in water decreases as temperature increases (Figure ‎3.2) [63].  
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Figure ‎3.2: Solubility of calcium carbonate in water as a function of 
temperature [63] 

In addition when the temperature increases the solution becomes more 

supersaturated and the nucleation process occurs faster which leads to a 

shorter induction time [64, 65]. 

At 25°C deposits are composed of calcite and vaterite while at higher 

temperatures aragonite is formed (50°C [66] and 60°C [67]). 

3.3.1.2 Effect of pressure 

During oil and gas production pressure in the system varies significantly and 

can reach 100MPa. According to researchers [68] scaling tendency 

marginally decreases when pressure increases. The effect of the pressure is 

more significant at high temperature (180oC) than at lower (50°C) [68]. 

3.3.1.3 Effects of hydrodynamic conditions 

Hydrodynamic conditions of the system can affect scale growth rate. 

Deposition rate increases with Reynolds number [69, 70]. A higher flow 

supply provides more scaling elements onto the surface and the necessary 

activation energy needed for the nucleation or epitaxial growth of the 

crystals. Mass transport has been demonstrated to be diffusion controlled 

[69].  

The morphology of the deposit is affected by the flow, thus in an 

environment where the flow rate is low, the CaCO3 which is formed has 

bigger crystals and the layers are more compact [71, 72]. 

3.3.1.4 Effect of supersaturation 

Supersaturation affects induction time [21, 73] and the growth of crystals in 

the bulk solution and on the metal surface [21]. In solutions with high 

supersaturation, with respect to calcium carbonate, the induction time is 

short and the growth of CaCO3 is rapid for crystals nucleated in the bulk or 



- 28 - 

on the surface. While In solutions with low supersaturation, with respect to 

calcium carbonate, the induction time increases and the growth slowdown is 

only for the crystals nucleated in the bulk solution. 

Heterogeneous nucleation occurs at low supersaturation and both 

heterogeneous and homogeneous nucleation occurs at higher 

supersaturation [73]. Increasing supersaturation results in a faster nucleation 

rates and in a development of 2-D nuclei [74]. 

The morphology of the crystals is affected by supersaturation. Decreasing 

supersaturation increases the aragonite fraction and results in the 

disappearance of the calcite polymorph in the scale that is formed [75, 76]. 

3.3.1.5 Effect of pH 

Calcium carbonate is controlled by the calcocarbonic equilibrium presented 

in Equation (‎2-1) - (‎2-4). This system equilibrium is influenced by the pH. 

Figure ‎3.3 presents the distribution of the carbonic species according to pH. 

Calcium carbonate forms easily at a high pH. 

 

Figure ‎3.3 Distribution of carbon total fraction as a function of pH 

pH affects crystal morphology, the higher the pH the greater the effect [77]. 

At a higher pH smaller average size particles formed due to higher 

supersaturation [78, 79]. Higher supersaturation increases the nucleation 

rate which leads to a change of the morphology of the crystals formed. 

When the pH increases the induction time decreases accordingly [21, 80]. 
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3.3.1.6 Effect of divalent ions 

Different ions are very often present in produced water. Their presence 

effects the crystallisation of calcium carbonate. 

3.3.1.6.1 Effect of calcium (Ca2+) 

In water with a low degree of hardness (10ºF) nucleation is gradual and 

vaterite polymorph’s are formed. Whereas in water with a higher degree of 

hardness (30ºF and 50ºF) nucleation is instant and calcite polymorph’s are 

observed. There is a correlation between nucleation and the type of crystal 

which is formed [81]. The nucleation time of calcium carbonate decreases 

with increasing water hardness degree [73]. 

The number of calcium carbonate crystals and the average size of each 

crystal formed increases with an increase in Ca2+ ions [82]. 

3.3.1.6.2 Effect of iron 

FeCO3 precipitates on the surface of calcite inhibiting calcite growth [83]. 

Fe3+ has smaller inhibiting effect than Fe2+. Fe2+ has an inhibition effect on 

calcite and a small or negligible inhibition effect on aragonite growth. 

Fe2+ and Fe3+ are effective in inhibiting calcite growth and the inhibition 

effect increases with the presence of oxygen [84]. More effective growth 

inhibition is observed at larger iron concentrations, smaller supersaturations, 

smaller seed loadings, and higher alkalinity. Inhibition is caused by the 

absorption of iron into the calcite surface which reduces the growth rate and 

enables a higher calcium concentration to exist‎ in‎ solution‎ in‎ “equilibrium”‎

with calcite seeds.  

Iron ions delay calcium carbonate formation in tube blocking tests [85]. The 

iron ions are thought to have an inhibitory effect on the calcium carbonate 

formation and/or enable the preferential formation of iron carbonate [85]. 

3.3.1.6.3 Effect of other divalent ions 

The kinetics and morphology of calcium carbonate formation is affected by 

presence of seven divalent cations [86]. The divalent cations Fe2+, Mg2+, 

Ni2+, Co2+, Zn2+ and Cu2+ promote aragonite formation whereas Cd2+ seems 

to have no effect. In the absence of these impurities aragonite polymorph 

are nucleated initially then transformed into calcite. In the presence of Fe2+, 

Ni2+, Mg2+ and Zn2+ aragonite does not to transform into calcite.  
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Aragonite polymorph is favoured by the presence of divalent ions such as 

Ag+, Al3+ and Cr3+ also they reduce the crystal growth rate by impurity 

adsorption [87]. 

It has been observed that in the presence of zinc ions a high number of 

small calcium crystals are formed [88]. Calcium carbonate formation is 

reduced in the presence of copper or zinc. 

Recent studies have shown that trace amounts of copper and zinc can 

inhibit the formation of calcium carbonate by the formation of a neutral 

complex which inhibits the growth of the crystals. The effectiveness of 

copper is higher than zinc in inhibition [89]. When zinc is present in trace 

amounts the amount of scale is reduced [90].  

3.3.1.6.4 Effect of magnesium 

Magnesium ions (Mg2+) do not affect aragonite crystal growth because they 

are not adsorbed readily on to the surface and into the aragonite crystal 

lattice [91, 92]. However, magnesium ions are adsorbed readily into the 

surface of the calcite and incorporated into the crystal structure inhibiting 

crystal growth [91, 92]. Free magnesium ions in seawater inhibit the 

formation of calcium carbonate at low temperatures [93]. 

The magnesium amount incorporated in calcite increases with the 

magnesium concentration and is affected by salt type in the solution [94].    

Calcite growth is inhibited by the presence of magnesium and non-uniform 

magnesium incorporated into the calcite crystal surface. New crystals have 

higher Mg2+ density and lower growth rate than the original calcite [95]. 

Magnesium inhibits calcium carbonate precipitation in the bulk and on the 

metal surface [96]. The inhibition effect is greater on the bulk solution. 

Magnesium increases the induction time of scale forming in the bulk solution 

and suppresses the vaterite formation (calcite dominate). Magnesium which 

is absorbed into the surface of the calcite causes distorted crystals which 

have rough surfaces [97]. 

In the early stages of calcium carbonate formation magnesium incorporates 

into nuclei [98]. 

3.4 Methods of scale inhibition and removal 

There are two main methods of dealing with organic scale. The first method 

is a strategy of inhibition which prevents the scale formation in the first place. 

The second method is mechanical and chemical removal of scale. This 
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method allows the scale to build up in downhole tubes, heat exchangers and 

pipes, etc. and then the scale is mechanically or chemically removed. 

3.4.1 Mechanisms of inhibition and chemicals 

One of the most common methods of prevention of scale formation is the 

use of chemical inhibitors. The inhibition mechanisms and common inhibitors 

are presented in the next section. 

3.4.1.1 Mechanism of inhibition 

There are three process involved in scale inhibition [99]: 

 threshold effect 

 crystal distortion  

 dispersancy 

Figure ‎3.4 illustrates these three process. 

 

Figure ‎3.4: Three main processes of scale inhibition [100] 

Inhibitors can act in three different ways: on the nucleation step, the crystal 

growth or on the agglomeration of the fine scale particles. The Minimum 

Inhibitor Concentration (MIC) is the concentration which prevents scale 

formation during the test period [101]. The larger the amount of scaling ions 

the inhibitor can maintain in solution, the more effective the inhibitor is. 

Threshold effect - In‎ the‎ 1930’s‎ it was noticed that a greater amount of 

insoluble material can be maintained in solution by the addition of a small 

amount of inhibitors [102]. This is known as the threshold effect. Threshold 

inhibitors (organic chemical) prevent or retard the scale formation at a sub-

stoichiometric levels (ppm) [99]. These inhibitors are often used to prevent 

scale formation [29]. 
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Crystal distortion - Crystals are distorted by the presence of inhibitors in 

the solution. Distorted crystals are less adherent and have a reduced 

propensity to agglomerate [79, 99]. 

Dispersancy – Is the ability to minimize agglomeration and setting of 

suspended solids. The attachment of inhibitors on the surface can increase 

the negative charge density which causes particles to repel each other [99, 

103]. 

3.4.2 Scale inhibitors 

There are various types of inhibitors used in the oilfields: polycarboxylic 

acids, polyelectrolytes, phosphonates and polyphosphates. 

3.4.2.1 Phosphonates 

Phosphonates (organophosphorus compunds) are widely used in the water 

treatment industry and the oil and gas industry. Phosphonates are used as 

threshold scale inhibitors, chelating metal ions, crystal growth modifications 

and corrosion inhibitors [104]. HEDP (Hydroxyethylidene Diphosphonic acid) 

and DETPMP (Diethylenetriaminepenta-methylenephosphonic acid) are 

presented in Figure ‎3.5. 

  

(a) (b) 

Figure ‎3.5: Molecular structure of phosphonates used as scale 
inhibitors : a) HEDP (Hydroxyethylidene Diphosphonic acid) and 
b) DETPMP (Diethylenetriaminepenta-methylenephosphonic acid) 

The mechanism of inhibition of CaCO3 by phosphonates involves blockage 

of crystal growth sites, inhibiting nucleation and inhibition by threshold effect 

[105-110]. 

Phosphonates are effective against calcium carbonate and stable in high 

temperature [108]. They have better adsorption with shorter chain and 

scaling inhibition. The phosphonate molecules are more resistant to 

hydrolysis and aid effectiveness in scaling inhibition [106].  



- 33 - 

Semi-empirical mathematical inhibitor models based  on results obtained 

during tests using NaCl brine show that HEDP and NTMP are the most 

effective inhibitors for calcium carbonate in test conditions [105]. 

DETPMP effectiveness against scale is not improved by the addition of 

EDTA and citric acid [111]. 

As temperature increases from 25 to 200°C the induction time for calcium 

carbonate formation in the presence of DETPMP decreases significantly 

[112]. 

3.4.2.2 Polyphosphate 

Polyphosphate inhibitors show good inhibition of calcium carbonate in a 

range of temperatures: 20 to 50oC. However, the efficiency decreases with 

time with increasing temperature. This is associated with the fact that the 

hydrolysis reaction of phosphates with water is accelerated with rising 

temperature [106]. The chemical structure of phosphate is presented in 

Figure ‎3.6.  

 

Figure ‎3.6: Chemical structure of linear polyphosphate 

Adsorbed polyphosphate molecules inhibit the calcite crystal growth by 

adsorbing to the surface and blocking active crystal growth sites [113]. 

Tripolyphosphate has stronger inhibitory effects than pyrophosphate and 

hexametaphosphate.   Tripolyphosphate inhibition effect is two orders of 

magnitude greater than the inhibition effect of orthophosphate. 

The presence of inorganic orthophosphate in supersaturated solutions at 

levels as low as 8*10−8 mole dm−3 entirely inhibits crystal growth by 

adsorption of phosphate, at the active growth sites, and by the reduction of 

crystal growth rates [114].   

3.4.2.3 Polyelectrolyte 

Senogles et al. [115] characterize a polymeric inhibitors in three groups: 

polymers containing carboxylic acids, polymers containing phosphate 

groupsand polymers containing sulfonate groups. In Figure ‎3.7 are 

presented the different types of polymersused as scale inhibitors in water 

treatment and the oil and gas industry . 
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(a) (b) 

 

(c) 

Figure ‎3.7: Schematic representation of polyelectrolytes used as scale 
inhibitors: a) Polyphosphinocarboxylic acid (PPCA), b) Polyvinyl 
sulfonate and Polyacrylic acid copolymer (PVS)  
and c) 2-phosphono-butane-1,2,4-tricarboxylic acid (PBTC) 

The Phosphinopolycarboxylic acid (PPCA) is considered as a nucleation 

inhibitor and it has a great affinity with calcium ions. 

Chen et al. [116] found out that PPCA inhibits surface deposition, suppress 

the calcite formation and resulted vaterite dominated scale. With increasing 

PPCA concentration in the scaling solution the induction time of surface 

deposition increases [109, 116].  PPCA has greater inhibition effect on 

calcite plane (110) than (113) plane [116]. 

Chen et al. [109] found out that increasing concentration of PPCA increases 

the induction time of scale formation in the bulk solution. PPCA delays 

nucleation where the delays are associated with complexation with Ca2+ ions 

and the growth of crystals is retarded (DETPMP better efficiency). 

Smith et al. [117] showed that 5ppm of PPCA was able completely prevent 

the scale build up in the tube blocking test.  

PPCA has greater affinity for calcium ions than magnesium ions at all 

calcium levels. When the high levels of calcium are present in the solution 

with PPCA, the effectiveness of the inhibitor decreases because PPCA 

dropped out of solution as precipitate (less in the solution) [118].  

3.4.3 Removal methods  

Scale deposition can be removed by chemical and mechanical methods, or 

sometimes a combination of both methods [8]. 
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In the oil and gas industry many different mechanical removing techniques 

are in use, such as: abrasive slurries, milling, fluid mechanical jetting 

methods or explosives. Each of these methods have some limitations in 

application so proper selection depends on the type of scale deposition and 

the well type [8]. 

One of the most common techniques is dissolution of calcium carbonate by 

hydrochloric acid (HCl) [8, 119]. This technique is very effective against 

carbonates due to their high solubility in HCl. Other chemicals agents used 

include Ethylenediamenetetraacetic Acid (EDTA) which acts as a dissolver 

and chelating agent [119]. 

3.5 Different methodologies used to study calcium 

carbonate 

The scale occurs as surface deposition and/or the bulk precipitation. 

Calcium carbonate formation and inhibition are studied by various test 

methods. In industry, these methods are used to select the right type of 

inhibitor and concentration [120]. 

3.5.1 Scale precipitation in the solution 

Bulk jar tests – these are usually used to test the kinetics of scale formation 

in the bulk and/or the efficiency of inhibitors. Two brines are mixed in a jar or 

a beaker and the precipitation is followed. Chen et al. [96] studied the effects 

of magnesium by comparing the bulk precipitation and surface deposition. 

The kinetics of the scaling have been determined by using a supersaturated 

brine and the weighing the filtrate after the experiment.  

Scale precipitation inhibition has been studied by turbidity measurements 

[121]. He et al. [105] investigated the induction time of calcium carbonate 

precipitation at 25 and 90°C by turbidity measurements.  

The precipitation can be characterised by various bulk chemical analysis. 

Calcium carbonate precipitation has been studied by observation of changes 

in the pH. pH measurements are usually performed using a pH meter. While 

no further changes in the pH value are observed, it is assumed that the 

precipitation has ended [67].  

Changes in Ca2+ levels can be used to study the precipitation process. 

Calcium ion concentration can be followed using radioactive isotopes (47Ca 

[122] or 45Ca [123]) as well as selective ion electrode [124-127]. 
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3.5.2 Scale deposition on a surface 

Surface deposition studies can be divided in two categories: non 

electrochemical or electrochemical. 

Non electrochemical methods 

Dynamic tube blocking test –  The formation of scale is evaluated by 

measuring, with time, the differential pressure between inlet and outlet of the 

pipe. During scale formation by flow of the solution which contains scaling 

ions, the pressure in the tube is dropping by the scale which build up on the 

surface of the tube [8]. Dyer and Graham [68] used this method to study 

effects of the temperature and the pressure on formation of calcium 

carbonate and barium sulphate. They found out that the temperature has 

greater effect on the scaling tendency. Zhang et al. [128] used this method 

to develop a kinetic model to predict the scale formation. 

The quartz microbalance technique (QCMB) – A thin film which is depositing 

on the surface decreases the frequency in proportion to the mass of the film. 

Increase  of 0.5ng can be measured according to the model of the QCMB 

[129]. Abdel-Aal et al. [130, 131] studied the adhesion mechanism of CaCO3 

by QCM. They found that calcium carbonate precipitates firstly as an 

amorphous compound and then as a stable crystalline form. At high 

supersaturation mainly calcite precipitated while at low at low 

supersaturation ratio leaf-like vaterite precipitated. 

Electrochemical methods 

Chronoamperometry - It was first electrochemical method proposed by 

Ledion et al. in 1985 [132]. The principle is to apply a negative potential on 

metal electrode immerse in solution to reduce oxygen dissolved in water 

(Equation (‎3-1)). The local increase of the pH (by the generation of 

hydroxide ions) in the vicinity of the electrode forcing the calcium carbonate 

to form on the electrode surface. 

𝑂2 + 2𝐻2𝑂 + 4𝑒
−  → 4𝑂𝐻− (‎3-1) 

The limiting current (IL) is proportional to the flow of oxygen moving towards 

the electrode. Current decreases when the active surface gets blocked by 

the adsorbing scale.  IL reaches the value close to zero when the surface of 

the electrode is totally covered by the calcium carbonate. 
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Figure ‎3.8: Typical chronoamperometry curve [133] 

Figure ‎3.8 shows typical chronoamperometric curve. Scaling rate is related 

to the falling current. Ledion defined the scaling time, ts , as the intersection 

between the time axis and the line extrpulate from step reduction of the 

current. It provides the rough estimation of the scaling potential of the 

solution. 

Electrochemical impedance technique - In this method during the 

measurement of the electrochemical impedance two time constants are 

apparent: CHF – a pseudo high frequency capacitance and RHF - a pseudo 

high frequency resistance. These two are related to the coverage of the 

scale. CHF depends on the on the surface coverage and RHF on the 

morphology of the deposit [134]. 

The measurement of the impedance when the surface of electrode is 

covered completely by scale provides information on the morphology, the 

compactness and thickness of scale deposit. During the tests, the 

thicknesses of the deposit does not change and the porosity changes with 

time [135]. 

Chronoelectrogravimetry (EQCMB) - This is the method that is often connect 

to the QCM. Determination of the nucleation is possible and the total mass 

formed on the electrode surface as a function of time is followed by precision 

measurement of mass [136].  

Garcia et al. [137] have combined this method with the a channel flow cell 

which allowed them to study the effect of the hydrodynamic condition on the 

scale formation and inhibition. 

The Rotating Disc Electrode (RDE) - It has been developed by Neville et al. 

[138, 139]. It allows the study of the extent of surface coverage on scaled 

electrodes.  The RDE method allows measurement of the exact coverage of 
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the surface by enabling uniform controlled hydrodynamic conditions over the 

surface of the electrode. 

The limiting current (iL) relation with the rotational speed allows calculate of 

the percentage of surface coverage in accordance with the Levich equation 

(Equation (‎3-2)). 

𝑖𝐿 = 0.62𝑛𝐹𝐴𝐶
𝑏𝐷

2
3𝑣−

1
6𝜔

1
2 (‎3-2) 

where iL is the limiting current (mA), n is the number of electrons involved in 

the reaction, F is‎ the‎Faraday’s‎ constant‎ (96487‎Coulombs/mole), A is the 

electrode area (cm2), Cb is the bulk concentration of electroactive species 

(mol dm3), D is the diffusion coefficient of the electroactive species (cm2 s-1), 

𝑣 is the kinematic viscosity (cm2 s-1) and ω is the angular velocity of the RDE 

(rad s-1). 

By plotting iL against ω
1

2, the percentage of the surface covered by scale can 

be determined. 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 covarage = [(m1 −m2)/m1]x100 (‎3-3) 

where m1 and m2 are the gradient of the iL against ω
1

2 plot for the unscaled 

surface before test and scaled surface after the test respectively. 

Chen et al. [21] used RDE to measure calcium carbonate surface scaling 

and the ICP (Induced Coupled Plasma) to assess bulk precipitation. They 

found out that crystals which formed on the surface are bigger than crystals 

precipitated in the bulk solution. They suggested that studying both bulk 

precipitation and surface scaling is necessary to completely understand a 

real scaling system. 

3.6 Different types of internal corrosion 

Four different types of internal corrosion of pipelines can occur in the oil and 

gas industry [140]: 

1. Sour corrosion – associated with the presence of hydrogen sulphide 

(H2S) in brine. 

2. In the water injection pipelines – associated with presence of 

oxygen in the water or presence of sulphate-reducing bacteria (SRB). 

3. Microbiological corrosion – associated with activity and growth of 

SRB in the pipeline. 

4. CO2 corrosion (sweet corrosion) – related to presence of carbon 

dioxide dissolved in the fluids. This corrosion is typically slow. 
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3.7 Types of CO2 corrosion damage 

According Kermani and Morshed [38], CO2 corrosion occurs mainly in form 

general corrosion and localized corrosion. Three types of localized corrosion 

can be distinguished:  

 pitting - occurs at low flow conditions and adjacent to non-metallic 

inclusions  

 mesa attack - occurs in low to medium flow conditions, it places 

where the protective iron carbonate film forms but it is remove by the 

flow. 

 flow-induced localized corrosion - starts from pits and/or sites of mesa 

attack above critical flow velocities 

In this thesis, the focus will be assessed on general and pitting corrosion. 

3.7.1 General corrosion 

General corrosion (uniform corrosion) results in a fairly uniform metal loss 

(or thinning) over the entire exposed metal surface [141]. General corrosion 

is electrochemical reactions uniformly proceed on the whole exposed 

surface or over a large area [142]. 

3.7.2 Pitting corrosion 

Pitting is a highly localized form of the corrosion which results in holes in the 

metal. A pit is defined as a hole or a cavity with a surface diameter equal or 

less than the depth of the pit [142]. Pits may have various sizes and shapes 

which are presents on Figure ‎3.9. 

 

Figure ‎3.9: The different cross-sectional shapes of pits [143] 
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3.8 Factors affecting CO2 corrosion 

3.8.1 Water chemistry 

The solution chemistry has the biggest effect on CO2 corrosion. The 

composition of the water can vary from one brine to the other [54]. It can 

contain different ions such as sodium, chloride, bicarbonate, calcium, 

magnesium, hydrogen, hydroxide, iron, potassium, barium, strontium, 

acetate and sulphate, and dissolved gases such as CO2, H2S and Oxygen - 

associated with the formation of localised corrosion [144], and the presence 

of crude oil [54]. Organic acids can also be present in the system, for 

instance acetic acid, this can influence the corrosion rate [54, 144-147]. 

3.8.2 Formation of CO2 corrosion product 

During the carbon steel corrosion process, Fe2+ ions are released from the 

surface into the electrolyte. Iron ions together with carbonate ions can form 

iron carbonate FeCO3 (Siderite) which it is commonly known as the CO2 

corrosion product (Equation (‎3-4)). 

Fe2+ + CO3
− → FeCO3(s) (‎3-4) 

Iron carbonate formation can inhibit the corrosion kinetics by covering the 

surface of the steel or by forming a diffusion barrier for the corrosive species 

participating in the corrosion reactions [38, 51, 148, 149]. The corrosion 

product will be protective only if it is adherent and covers the whole surface. 

However, localised corrosion can occur on the regions of the steel where the 

scale has broken down and/or did not form [54]. 

The corrosion product protectiveness and growth depend on several 

parameters: the supersaturation [150], temperature, pH, CO2 partial 

pressure, metal composition and microstructure [54]. However, 

supersaturation and temperature are considered as the most influential. 

Supersaturation is the main factor influencing the formation of FeCO3. To 

precipitate a protective film, supersaturation needs to be exceeded in order 

to obtain a precipitation [54], which can be calculated from Equation (‎3-5). 

SR =
(ɑFe2+)(ɑCO32−)

Ksp
 

(‎3-5) 

where Ksp is the solubility product (FeCO3) , and 𝒂𝑭𝒆𝟐+  and ɑCO32− is the ion 

activity. 
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It is important to remember that in the case of iron carbonate, SR is only 

high in close vicinity to the metal surface while in the case of calcium 

carbonate the whole bulk solution is supersaturated. 

At room temperature, even at high supersaturation the precipitation of iron 

carbonate is slow. An unprotective film with voids will form unless the pH is 

very high. It has been described [54] that iron carbonate films are more 

protective and dense at higher temperatures: above 60˚C (even at low 

supersaturation). The increase of temperature reduces the solubility of iron 

carbonate which accelerates the precipitation process of iron carbonate.  

Crolet et al. [151] found that corrosion product layers built from the same 

solid components can be extremely protective, very little protective or even 

corrosive. Crolet et al [151] studies showed that corrosion layers contain iron 

carbonate (insoluble) and/or cementite (Fe3C - retaining a solid form). It was 

concluded that the main difference between protective and unprotective 

corrosion layers is the presence of unfilled space between the Fe3C and the 

steel. 

Crolet et al. [151] illustrated the different types of protective and non-

protective corrosion layers: 

 

Figure ‎3.10: Different types of protective and non-protective corrosion 
layers – from Crolet et al. [151] 

3.8.3 Effect of pH 

Another important factor in FeCO3 scale formation is pH. The pH values 

influence the electrochemical mechanisms and the formation of protective 

iron carbonate films [152]. An increasing pH decreases the FeCO3 solubility, 

promotes its precipitation and causes lower corrosion rates. While a low pH; 

causes the dissolution of the FeCO3 film formation [153] and a higher 

corrosion rate. It is considered that below the pH value of 5 is a non-film-

forming condition. Above the pH of 5, it is easy for an iron carbonate film to 
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grow on the metal surface, after reaching FeCO3 supersaturation, which can 

contribute to a lower corrosion rate [54]. 

3.8.4 Partial pressure 

In the CO2 environment, where the steel surface is free from corrosion 

products and the CO2 partial pressure increases it results in an increased 

corrosion rate. The concentration of carbonic acid (H2CO3) is increasing with 

increasing 𝑃𝐶𝑂2, which enhances the cathodic reaction, and eventually the 

corrosion rate [54]. In the environment with conditions favourable for the 

precipitation of corrosion product (high pH), the increase of 𝑃𝐶𝑂2 will increase 

the rate of the formation of the corrosion product by increasing the 

concentration of bicarbonate and carbonate ions [38]. 

3.8.5 Temperature 

Temperature accelerates the corrosion reactions (Nernst equation). In the 

environment where the pH is low, the temperature increase is causing an 

increase of the corrosion rate (no formation of corrosion product) [54]. 

However, in the environment where the pH is high, the corrosion rate will 

decrease because the high temperature reduces the solubility of iron 

carbonate and facilitates the formation of the protective corrosion product. 

Depending on the water chemistry and flow behaviour, the corrosion peak 

tends to be expected between 60°C and 80°C. It is referred to as‎the‎‘scaling‎

temperature’‎[154]. 

3.8.6 Effect of flow 

In an environment where corrosion products do not form, the turbulent flow 

enhances the transport of species to the metal surface and away. This 

causes an increase in the corrosion rate [54, 144]. Corrosion rate can be 

increased even in an environment where a corrosion product or an inhibitor 

film is present on a surface. This is associated with the removal of the 

protective corrosion product or the inhibitor film by high flow velocity [54]. 

 

Figure ‎3.11: Schematic of the critical velocity effect for erosion-
corrosion [141] 
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3.8.7 Effect of chemical composition and microstructure 

Chemical composition and microstructure are two important factors and are 

not independent. Different chemical compositions can be used to 

manufacture a metal with the same microstructure and two different 

microstructures can be manufactured from the same chemical composition 

[155]. 

General corrosion rate is significantly reduced with increasing Cr content in 

low-alloy steels by the formation of a stable chromium oxide film [38]. Better 

resistance against corrosion is achieved by the addition of stronger carbide-

forming elements such as: chromium, vanadium and molybdenum.  At the 

same time, small quantities of silicon and nickel are added to regain the 

strength of low carbon steel [156]. 

The potential difference on a metal surface is the driving force for the 

corrosion in a solution. This potential difference is caused by heterogeneities 

(inclusions or impurities, chemically different phases, the structure) in the 

material [157]. Heterogeneities are predominantly controlled by the chemical 

composition, thermal and mechanical heat treatments [157]. Different 

heterogeneities of the steel microstructure provide sites for the anodic and 

cathodic reactions and can affect the corrosion rate [157, 158]. 

3.8.8 Effect of calcium on CO2 corrosion 

The presence of calcium affects the corrosion behaviour by the formation of 

non-protective calcium carbonate which restricts the formation of protective 

FeCO3 [159]. In a solution with a low concentration of the Ca2+ (<100 ppm) 

the corrosion rate was seen not to be significantly affected. While at high 

concentration of Ca2+ (>=10000ppm) the corrosion rate measured was high 

[159]. 

It is concluded that corrosion rate decreased in a short period in the 

presence of Ca2+ and Mg2+, but there was no big difference at longer periods 

of exposure [160, 161]. However, it is claimed that  the corrosion rate 

increased with increasing concentration of the Ca2+ in the solution [162]. 

3.9 Pitting corrosion of in CO2 environment 

Pitting corrosion is a complex process with a sequence of steps [163]: 

 initiation or nucleation of pits -  breakdown of the passive film or 

corrosion product film 
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 pit growth -  pits growth depends on the material composition, pit 

electrolyte concentration and it-bottom potential 

 metastable pitting - Metastable pits are pits that initiate and grow for a 

limited period before repassivating 

Pit initiation is only possible in the situation that the passive film of 

passivating metal will breakdown. However, pit initiation in the active 

materials occurs while some voids are present in the corrosion products 

formed on the surface. Halides anions promote the pit initiation, while the 

chlorides (Cl-) anion is the most aggressive [143, 164, 165]. 

Kvarekval [166], Nesic et al. [51] and Papavinasam et al. [167] suggested 

that the same mechanism of film breaking and pit initiation occurs in the 

carbon steel in the oil and gas industry. 

After initiation, the processes within a pit produce conditions which are 

stimulating and necessary for further growth. Growth is an autocatalytic 

process [168]. The metal dissolution is increased by reaction of metal ions 

with halide anions (for example Cl-)(Equation (‎3-6)). Then hydrolysis reaction 

(Equation (‎3-7)) occurs which produces acids and lower pH inside pit and 

promotes pit growth [143].  

M(aq)
+ + Cl(aq)

− → MCl(aq) (‎3-6) 

MCl(aq) + H2O(aq) → MOH(aq) +HCl(aq) (‎3-7) 

Pit growth is also related to the chemical composition and microstructure of 

the material, chemistry of electrolyte, local solution conditions and duration 

of attack [169]. 

Pit can stop growing or die – when corrosion product will cover the pit or 

cavities become dried out [170]. 

Pitting corrosion in the CO2 environment is highly associated with the 

formation and removal of corrosion product.  

Crolet et al. [151] suggested that if protective corrosion product is not from at 

the start of corrosion, uniform corrosion will occur. It may slowly progresses 

to localised (pitting) corrosion due to the formation of non-protective 

corrosion product. Different viewpoint is suggested by Papavinasam et al. 

[167].  When the corrosion product does not form, the corrosion rate will be 

uniform. However, if a complete and protective corrosion product form, the 

corrosion rate will decrease to a negligible value. 
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3.10 Corrosion mitigation 

Several different approaches in mitigation of corrosion have been developed 

[141]:  

 Material selection 

 Coatings 

 Design 

 Cathodic protection 

 Inhibitors  

This PhD study focus only corrosion mitigation by inhibitors.  

3.10.1 Corrosion inhibitors 

Corrosion inhibitors are chemical compounds specifically designed to 

mitigate corrosion of metals. The National Association of Corrosion 

Engineers (NACE) defines corrosion inhibitors as: A substance which 

retards corrosion when added to an environment in small concentrations 

[171]. Corrosion inhibitors are chemicals effective in certain environments. 

Corrosion inhibitor effectiveness are affected by the conditions under which 

they are applied and the interaction with surface. Inhibitors form adsorption 

layers or protective films, which influence  the electrochemical reactions at 

the metal-electrolyte interface causing inhibition of corrosion. The corrosion 

inhibitor can also promote passivation or change the solution chemistry 

[172]. 

Corrosion inhibitors affect the corrosion rate, which are determined by the 

anodic and cathodic reactions. The four groups of corrosion inhibitor are 

referred to as [172]:   

 anodic inhibitor - which directly affects the anodic reaction 

by adsorption on active anodic sites on the surface. It 

changes the activation energies involved in the dissolution 

of the metal surface, thus lowering corrosion rate. 

 cathodic inhibitor - which directly affects the cathodic  

reactions. The corrosion potential is change by adsorption 

of inhibitor. This affects the point at which the Tafel 

polarisation curve changes from activation controlled to 

mass transfer control 

 mixed inhibitor - which directly affects the anodic and 

cathodic reactions 
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 passivating inhibitors - which change the corrosion potential 

into positive range and the metal passivation occurs 

Corrosion inhibitors adsorb onto the metal by: physical adsorption 

(physisorption) and chemical adsorption. On the level of the adsorption few 

factors have an effect, such us: the chemical properties of the inhibitor, the 

metal surface condition, the environment and the electrochemical potential 

at the interface [173]. 

Physical adsorption is due to electrostatic forces occurring between the 

inhibitor compounds (which are generally ionic in nature) and the metal 

surface. Physisorption are weak intermolecular forces - van der Waals 

forces. Physical adsorption is an easily reversible process by changing the 

environmental conditions such as the temperature or the velocity [174]. 

Chemical adsorption (chemisorption) occurs when the forces involved are 

valence forces - the forces involved in the formation of chemical compounds.  

The inhibitor with the surface forms covalent or ionic bond by the transfer or 

sharing of the inhibitor molecules charge - electrons. The chemisorption 

process is slower than physical adsorption, it occurs faster at elevated 

temperatures [174]. Chemisorption is specific for certain metals and the 

types of material. The inhibitor molecule, if is a positively charged (have an 

unshared, lone pair of electrons) in the functional group adsorb to a 

negatively charged surface and the electron transfer is enabled from the 

inhibitor to the metal [175]. 

The reactions are reduced by inhibitor which not always occupied whole 

surface but sites which are electrochemically active. The corrosion rate it is 

reduced proportionally with the number of sites inhibited by the inhibitor 

[152]. 

3.10.1.1 Common corrosion inhibitors 

CO2 corrosion inhibitors are amphiphilic, surface-active molecules (charged 

polar head) with hydrocarbon chains typically in the range C12-C18 [176]. 

Surface-active molecules of the inhibitor adsorb into the metal surface to 

anodic or cathodic sites. The hydrophobic stick out from surface into solution 

and attract the oil particles. This forms a hydrophobic film which gives 

protection against corrosion.  The charged polar head which adsorb into 

metal surface contains heteroatoms: nitrogen, phosphorous, sulphur and 

oxygen [177, 178]. 
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3.10.1.1.1 Inhibitors structure relevant to this PhD with 

description. 

Phosphate ester is generally considered as the inhibitor which protects the 

anode [179, 180]. The general chemical structure of phosphate ester is 

presented in Figure ‎3.12.  

Phosphate esters form fairly insoluble salts/complexes with Fe2+ and Ca2+ 

[179]. Phosphates esters which contain a hydrophobic nonylphenol group 

have better inhibition effects than linear or branched aliphatic phosphate 

esters [179].  

When phosphate ester is adsorbed to the surface and Fe2+ ions are added to 

the solution, the growth of FeCO3 scale is prevented [181]. However, Wong 

et al. [181] suggested that the added Fe2+ and phosphate ester interact to 

form a more protective film on the surface. 

Polyhydric alcohol phosphate esters (PAPE) retard both the dissolution of 

metal and hydrogen evolution in sea water (an anodic and cathodic inhibitor) 

[182]. It adsorbs immediately and compactly on the steel surface and with 

time the thickness of inhibitor film increases. It adsorbs to the metal surface 

by complexation with metal ions accumulated on the steel surface, i.e. Fe2+, 

Ca2+, etc [182]. 

 

Figure ‎3.12: General chemical structure phosphate ester 

Quaternary ammonium salts (Figure ‎3.13) have high solubility in the oil faze 

and the nitrogen atoms carry a positive charge [178].  

Benzyl dimethyl-n-hexadecylammonium chloride (BHDC) in solutions 

saturated with CO2 inhibit the anodic process and are absorbed by charge 

sharing the positively charged nitrogen atoms and electrons in the benzene 

ring [183]. 

The rate of growth of the iron carbonate scale increases with the presence of 

quaternary amine [184]. Iron carbonate crystals are smaller and the layer is 

thinner compared with a scale formed without the presence of quaternary 

amine [184].  At 50 ppm concentration of quaternary amine the iron 

carbonate is not entirely prevented [184]. 
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Figure ‎3.13: General chemical structure quaternary ammonium salts 

Imidazolines and their salts are very common inhibitors in the oil and gas 

industry and their structure is presented in Figure ‎3.14. The head group is 

very important in the adsorption process [185]. While the hydrocarbon chain 

in an imidazoline film provide a barrier to water and chloride ingress [185].  

Imidazoline inhibitors have been seen to interact with Fe2+ ions, creating an 

adsorbing film that decreases the corrosion rate [181]. The imidazoline 

inhibitor stopped the growth of FeCO3 at concentrations above 25 ppm. 

However, imidazloine at concentrations of 10 ppm or less promoted tightly 

packed FeCO3 scale with higher impedance of the film compared to FeCO3 

scale formed when no inhibitor was present [181]. 

 

Figure ‎3.14: The molecular structure imidazoline 

Thiols compounds are generally considered as anodic inhibitors and electron 

acceptors [186] however, in some studies mercaptoethanol (thiols 

compound) has not been considered as anodic or cathodic inhibitor [187]. 

Mercapthoethanol is predominantly cathodic inhibitor and has good inhibition 

effect on general and pitting corrosion [188]. 

Mercapto compounds due to oxidation of the mercapto group (-SH) to 

disulphide groups (-S-S-) adsorbed to the metal surface by formation 

complexes with iron ions [188]. 

 

 

Figure ‎3.15: The molecular structure thiol compound 
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3.11 Combined inhibitors 

In many oil and gas fields during production operations, different chemicals 

are added to control both corrosion and inorganic scale issues. During the 

design stage of well or subsea systems in the oil and gas industry, fewer 

injection lines was predicted which was the reason for development of the 

combined inhibitors [13]. Very often a scale inhibitors and corrosion 

inhibitors are incompatible when mixed. This problem can be overcome by 

development of multifunctional molecules which works as the corrosion 

inhibitor and the scale inhibitor or an active component have to be chosen 

with care to avoid any negative effect on the performance of one of the 

active components [13, 189, 190]. Performance of the scale inhibitors and 

the corrosion inhibitors blend can be reduce beside physical incompatibilities 

by [191, 192]: 

• competitive adsorption – of one species would limit adsorption of 

the other species and overall reduce its performance   

• the scale inhibitor and the corrosion inhibitor complexation – in 

solution would effectively reduce their performance 

• surface adhesion – of the corrosion inhibitors have impact on the 

adherence and the growth of the scale crystals on the surface and 

bulk scale inhibition performance 

Other factors such as brine composition – different concentrations of scaling 

ions, pH and organic acid were investigated [189, 193]. So, laboratory tests 

methods used to investigate the combined inhibitors performance have to be 

chosen with care. 

3.11.1 Effect of corrosion inhibitor on scale inhibition and 

scale formation 

The effect of corrosion inhibitors on the bulk scaling and surface scaling was 

investigated.  

It was presented that the two commercial corrosion inhibitors A and B are 

ineffective at preventing bulk inhibition while the scale inhibitor is absent. 

However, the corrosion inhibitor A and B by presence on the metal coupons 

surfaces minimises the amount of heterogeneous nucleation and growth that 

adheres to the metal coupons [191, 192]. It could be observed that the 

corrosion inhibitors have an effect on the morphology of scale which have 

formed on the metal coupons [191, 192].  
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It is observed that four different inhibitors introduced to the test brine (Forties 

and Heron brine systems) results in a reduction in performance of the scale 

inhibitors against (DETPMP, PPCA and PVS - poly vinyl sulphonate) [191]. 

Electrochemical impedance spectroscopy (EIS) was used to study scale and 

corrosion processes [194]. The corrosion and the scale processes are 

closely linked and occur simultaneously at different sites of the metallic 

surface. Hydroxyphosphonoacetic acid (HPA) corrosion inhibitor chelates 

with Ca2+ ions and formed a compact layer which provides respectable 

protection against corrosion [194]. 

3.11.2 Effect of scale inhibitor on corrosion inhibition 

Different researchers have investigated how scale inhibitors affect the 

corrosion processes. 

The effect of two different types of inhibitor (polycarboxylic acid type inhibitor 

and polymeric phosphate based inhibitor) on general corrosion rate and 

formation of iron carbonate was investigated [15]. Both inhibitors presented 

some reduction of corrosion rate, however scale inhibitors did not lower the 

corrosion rate below 0.1 mm/year. The scale inhibitors interfered with the 

iron carbonate growth and formation of dense film [15]. 

Scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) reduces 

scale formation on surface by modifying the structure of calcium carbonate 

on being incorporated into the crystals, furthermore shows a corrosion 

inhibition effect [194]. 

Polyamino Polyether Methylene Phosphonate (PAPEMP) is an effective 

calcium carbonate inhibitor at low and moderate saturations compared to 

HEDP (1-Hydroxyethylidene-1,1-Diphosphonic Acid). It is far more efficient 

at high saturation ratio values. PAPEMP has excellent inhibition properties 

against corrosion in supersaturated brines with respect to calcium carbonate 

than HEDP [195]. 

Three different phosphonates (LPA – lauryphosphonic acid, ELP – 

ethyllarylphosphonate and DELP – diethyllaurylphosphonate) effect on the 

formation a corrosion protective film was investigated [196].  ELP provides 

corrosion inhibition by formation of protective film on the carbon steel 

surface with the optimum protection after 24h immersion in the solution 

[196]. However, phosphonobutanetricarboxylic acid scale inhibitor added to 

solution has no substantial effect on the corrosion rates [197]. 
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Polyacrylamide was tested as corrosion and scale inhibitor in the cooling 

systems [198]. Polyacrylamide reduced the corrosion rate by more than 

68.2% and inhibited the anodic reaction. It was very efficient (90%) against 

calcium carbonate scale [198]. 

3.12 Summary 

The first part literature review presented that the formation of calcium 

carbonate are affected by many different parameters. There are different 

strategies to prevent formation of calcium carbonate with main focus of this 

literature on scale inhibitors. Various techniques were reviewed which are 

employed to study calcium carbonate formation and inhibition.  

The second part of literature review presented that CO2 corrosion is a 

complex process. The electrochemistry of the carbon steel dissolution is well 

understood and influence of different parameters have been investigated. 

The formation of iron carbonate scale has been studied with various factors 

influencing it. There are different strategies to prevent CO2 corrosion with 

main focus of this literature on corrosion inhibitors.  

The third part of literature review presented that effect of combined inhibitors 

on scale and corrosion processes and factors influencing performance of the 

combined inhibitor. The effect the combined inhibitors, scale inhibitor and 

corrosion inhibitors on corrosion and scale process were presented.  

However, most of the studies done in past has focused on general corrosion, 

pitting corrosion, surface scaling or bulk scaling. None of them has asses all 

these processes at the same time which could help to fully understand the 

whole system. 
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Chapter 4  

Methodology 

4.1 Introduction 

This chapter discusses methodology that is used in this study. The first 

section describes the Jar test/bubble cell.  The next two sections describe 

methods used to measure general, localized corrosion, surface scaling and 

bulk precipitation. The fourth part describes different technique used to study 

interaction of inhibitors with scale. In the last part experimental design used 

in this study is explained. 

4.2 Jar test/bubble cell 

The experiments for this PhD have been conducted under CO2 saturated 

conditions using a newly developed combined bulk jar test/bubble cell 

methodology [18] as shown on Figure ‎4.1. In this set up, 4 key parameters 

are measured:  

 general corrosion (continuously during test), 

 localised corrosion (after test),  

 bulk scale (continuously during test), 

 surface scale deposition (after test). 

 

Figure ‎4.1 A combined bulk jar test/bubble cell: 1) hot-plate/stirrer, 2) 
working electrode, 3) temperature probe, 4) combined reference 
and counter electrode, 5) pH electrode, 6) CO2 inlet and  
7) CO2 outlet [199] 
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4.2.1 Hot plate stirrer 

A Multi-Hotplate Stirrer with 3 places manufactured by Witeg was used. The 

hotplate stirrer has an accuracy of maintaining temperature ±0.3°C at a set 

temperature with exact speed control. 

4.2.2  Working electrode 

The working electrodes were made up of X65 carbon steel with a chemical 

composition as presented in Table ‎4.1. The oil and gas industry frequently 

uses carbon and low alloy steel materials. These materials have limited CO2 

corrosion performance [200]. Their popularity could be explained by the low 

cost of carbon steel and protection gained from the use of inhibitors. Carbon 

steel used with inhibitors very often outperform corrosion resistance alloys 

(CRA) on field efficiency and cost [201]. 

 Table ‎4.1: Chemical composition (wt.%) X65 carbon steel [202] 

C Si Mn P S Cr Mo Ni 

0.12 0.18 1.27 0.008 0.002 0.11 0.17 0.07 

Cu Sn Al B Nb Ti V  

0.12 0.008 0.022 0.0005 0.054 0.001 0.057  

The microstructure of X65 steel is composed of ferrite (white) and pearlite 

colonies as presented in Figure ‎4.2. 

 

Figure ‎4.2: The microstructure of X65 steel in 50 magnification 

The diameter of the working electrodes were 25mm. Copper wire was 

soldered to the back of the working electrodes and then the working 

electrodes were mounted into a non-conductive resin - Varidur BUEHLER. 

The working electrodes were then wet-ground up to 1000 grit using SiC 

paper on a Buehler - Beta Grinder-polisher. They were then degreased with 
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acetone, washed with distilled water, and dried using compressed air before 

being submerged into the test brine. 

4.2.3 Combined reference and counter electrode 

The combined electrodes were InLab® Redox-L electrodes each with a 

platinum ring indicator and were manufactured by METTLER TOLEDO. The 

manufactured specification temperature range for the combined electrodes 

was 0-100oC. The combined electrodes were filled with 3mol/L KCl 

electrolyte and the test temperature was 80oC. 

4.2.4 pH electrode and apparatus 

pH electrode HI1296D and pH apparatus HI 991001 were used 

manufactured by Hanna Instruments. The pH electrode HI1296D was filled 

with Ag/AgCl solution. The pH apparatus HI 991001 measured a pH range 

from -2.00 to 16.00 pH with an accuracy of ±0.2 pH.  The pH solution across 

this study was between 6.5 to 5.5.  

4.2.5 Solution composition 

The MultiScale software version 7.1 was used to calculate the desired brine 

composition with a saturation ratio (SR) with respect to the calcium 

carbonate. This MultiScale software is based on the multiphase equilibrium 

model  as shown schematically in Figure ‎4.3 and was developed by Baard 

Kaasa [203] and Kristian Sandengen [204]. Three main systems can be 

distinguished in the model: 

1. the hydrocarbon phase  

2. the aqueous phase  

3. the solid phases 

 

Figure ‎4.3: Schematic figure of the multiphase equilibrium model [203] 
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The exact brine composition used are presented in Table ‎4.2 below. 

Table ‎4.2: Brine composition 

Supersaturation 

of CaCO3 (SR) 

Brine 1 Brine 2 

≈40 CaCl2•6H2O 

g/l 

NaCl 

g/l 

NaHCO3 

g/l 

NaCl 

g/l 

11.39 77.7 4.36 80.24 

To prepare the supersaturated solutions calcium chloride (CaCl2•6H2O), 

sodium chloride (NaCl), and sodium bicarbonate (NaHCO3) of analytical 

grade were used. 

4.2.6 Inhibitors 

The details of the single inhibitors used to blend the combined inhibitors are 

presented in Table ‎4.3. 

Table ‎4.3: Description of the single inhibitors 

Inhibitor 

description 

Abbreviation Active components Supplier 

Libraphos 1082 CI1 Alcohol ethoxy 

phosphate ester 

Baker Hughes 

Pentonium 24 CI2 C12-C14 

Alkyldimethylbenzyl 

ammonium chloride 

Baker Hughes 

MK216K CI3 Ethoxylated 

imidazolines 

Baker Hughes 

Bellasol S40 SI Phosphinocarboxylic 

acid 

Baker Hughes 

2-

mercaptoethanol 

SA 2-mercaptoethanol Baker Hughes 

The concentration (v/v%) of the single components in the combined 

inhibitors was set accordingly: 

 corrosion inhibitor : 0.5% low (L) or  10% high (H)  

 scale inhibitor: 1% low (L) or 20% high (H)  

 souring agent: 0.25% low (L) or 5% high (H)  

 rest of solvent 
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25ppm of combined inhibitor was present in 1 litre of solution. This 

concentration was advised by the sponsors of this PhD. Hence, the 

concentrations of single components used in the tests with single 

components were: 

 2-mercaptoethanol – 1.25 ppm 

 alcohol ethoxy phosphate ester – 2.5 ppm,  

 C12-C14 alkyldimethyl-benzylamonium chloride – 2.5 ppm 

 ethoxylated imidazolines – 2.5 ppm 

 polyphosphinocarboxylic acid (PPCA) – 5 ppm 

All single components were treated as pure chemicals (only active 

component see Table ‎4.3) - which was advised by the sponsors of this PhD. 

Every time before the tests 2000µl of fresh combined inhibitor was prepared 

to avoid micelle formation.  

The concentrations were calculated using the dilution equation: 

C1V1 = C2V2 (‎4-1) 

where: C1 is initial concentration, V1 is initial volume, C2 is final concentration 

and V2 is  final volume. 

The Table ‎4.4 presents the variation of concentration of the single 

component concentration in 32 combinations of combined inhibitors. 

4.3 Corrosion measurements 

4.3.1 General corrosion 

General corrosion was measured using Ivium-n-Stat: multi-channel 

Potentiostat/Galvanostat. The Ivium-n-Stat: multi-channel potentiostat was 

used to control the potential of the working electrodes to a selected value 

with respect to the reference electrodes. Potential was measured by a 

voltmeter. The Ivium-n-Stat: multi-channel galvanostat supplied a constant 

current to the working electrode independent of the voltage and the 

impedance fluctuations at the electrode surface. 

4.3.2 Localized corrosion 

Pitting corrosion damage evaluation is associated with pit identification and 

characterisation. Pits can be identified by a number of methods. This 

includes a visual examination, metallographic examination and non-

destructive inspections [169, 205]. Pitting corrosion damage evaluation in 

laboratories and in field applications is very challenging.  The pit shape, 
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general morphology of pits, surface dimensions and density need to be 

evaluated [169]. The most important factor in localized corrosion evaluation 

is finding the deepest pits on an exposed surface as it is usually the first to 

perforate [169]. Hoeppner [169] describes pitting as; 

* negligible when at a depth of 0.025 mm (25 µm) maximum and 

* moderate pitting is viewed as potentially 0.25 mm (250 µm) 

According to the ASTM standard [205] the most useful methods of 

evaluating pitting corrosion damage are: 

• Metal penetration which is expressed in terms of maximum pit 

depth or average of the 10 deepest pits and most preferably both 

• Metal penetration can also be expressed in terms of pitting factor 

defined as the ratio of the deepest metal penetration to the 

average metal penetration, determined by weight loss. Pitting 

factor of one represent uniform corrosion and the lager the 

number the deeper the penetration 

However, pitting factor is not useful where pitting or general corrosion is very 

small as values of zero can be obtained when dealing with a ratio [205]. 

In this PhD project white light interferometry was used to evaluate the pit 

depth and evaluation of the deepest pits was used to characterise the extent 

of pitting corrosion. 

NPFLEX 3D Surface Metrology made by Bruker was used to measure the 

pitting corrosion. NPFLEX is designed specifically for investigating different 

sample sizes and shapes without damaging the sample. White Light 

Interferometry (WLI) is not sensitive to material type. It is effective in imaging 

deep trenches, holes and samples with a high topographic relief. 

White light interferometers scan the morphology of the test surface. The 

white light beam is split by a beam splitter to two beams: the reference beam 

which is reflected from the reference plane and the measurement beam 

which is placed on the sample surface (Figure ‎4.4). When the distance is 

changed between the sample and the white light interferometer, the same 

change is observed between the reference plane and white light 

interferometer. The returning beams are relayed by the beam splitter into 

camera. The software builds the topography of the object based on the 

retuning beams. 
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Figure ‎4.4: Schematic layout of a White light Interferometer [206] 

For the assessment of depth of pits in this PhD, a certain threshold 

accordingly to the damage of sample by general corrosion was applied 

(Figure ‎4.5). Any significant hole below of this threshold was classified as a 

pit. 

 

Figure ‎4.5: Schematic of representation of a threshold on a sample 

The surface for each sample was 4.9 cm2. Avoiding sides of the sample, ten 

small squares were chosen for scanning for pits as shown on Figure ‎4.6. 

The surface area for the 10 squares was equal to 1.6 cm2 which represents 

32.65% of the tested sample surface. It represented approximately one-third 

of the sample surface area.    
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Figure ‎4.6: Schematic of representation of tested surface area for 
analyses of pitting corrosion 

4.4 Bulk and surface scale measurements  

4.4.1 Bulk scale measurements 

During the combined bulk jar test/bubble cell testing, Hach DR 890 

colorimeter was used to measure the turbidity of the brine. Turbidity is the 

optical measurement of scattered light resulting from the interaction of 

incident light with particulate material in a liquid sample. A higher level of 

scattered light reaching the detector results in a higher turbidity value. The 

turbidity unit is the Formazin Attenuation Unit (FAU) and is calibrated by use 

of the formazin polymer. FAU is specified by ISO 7027 for water treatment 

standards for turbidity measurements at 0° [207]. The Hach DR 890 

colorimeter allowed detection up to 1000 FAU with a precision of ±2 FAU 

[208]. 

 

Figure ‎4.7 Schematic representation of the turbidity-meter [209] 
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An inductively coupled plasma mass spectrometry (ICP-MS) was used to 

measure the difference of calcium concentration before and after tests in the 

bulk solution and the amount of scale deposited on the sample (Figure ‎4.8). 

To measure the surface scale after the test, the sample was immersed for 

48 hours into a 25 ml of 10% v/v of acetic acid to allow the surface scale to 

dissolve. Then 10 ml of the solution was analysed for the presence of the 

calcium ions. The dilution factor is accounted into results and after 

conversion results are expressed in mg/cm2. The heat energy of the plasma, 

strips the electrons from the elements to create ions. The ion stream from 

the plasma is focused and filtered. Only ions with a certain range of ratio 

mass-to-charge can reach the detector. The ion stream hits the detector, 

which produces an electrical signal which is used to determine the quantity 

of ions it has received. The computer software then converts the saved 

signal to a number of ion concentration. 

 

Figure ‎4.8 Schematic representation of the ICP-MS [210] 

4.4.2 Surface scale measurements   

Scanning Electron Microscopy (SEM) (Carl Zeiss EVO MA 15) was used to 

examine the polymorphs of the scale which formed on the samples (Figure 

‎4.9). The SEM contains a metallic filament which is heated and produces an 

electron beam. The electron beam makes its way through electromagnetic 

lenses which focus and direct the beam on to the sample. Once it hits the 

sample, electrons backscattered and secondary electrons are ejected from 

the sample. Detectors collect the electrons and convert them to a signal 

which is used to produce an image on a TV screen. 
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Figure ‎4.9 Schematic representation of the SEM [211] 

Energy dispersive X-ray (EDX) is an analysis technique in which an electron 

beam hits a sample target and the transition from a high-energy state to a 

lower energy state of the chemical components results in the emission of an 

X-ray of equal magnitude to the energy associated with the change in state. 

A detector (the most common are made of Si(Li) crystals) is used to 

separate the characteristic emission x-rays of different elements into an 

energy spectrum. Software is then used to analyse the energy spectrum in 

order to define the abundance of the specific elements. 

 

Figure ‎4.10 Schematic representation of the energy-dispersive X-ray 
[212] 
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X-ray diffraction (XRD) (The‎Philips‎X’Pert‎1‎X-ray diffractometer) was used. 

X-rays are produced by blasting a metal target with a beam of electrons 

emitted from a hot filament (Co tube). The beam will ionize electrons from 

the K-shell (1s) of atoms and the X-rays which are produced as vacancies 

are filled by electrons moving down from L (2P) or M (3p) levels (Figure 

‎4.11).  

 

Figure ‎4.11: Schematic representation of the X-rays production [213] 

Diffraction (interference of waves) of X-rays by crystals is described by 

Bragg’s‎Law‎(Equation (‎4-2)), 

nλ = 2d sinθ (‎4-2) 

where n is the integer,‎λ‎ is‎the‎wavelength‎of‎ the‎x-ray, d is the spacing of 

the‎crystal‎layers‎and‎θ‎is‎the‎incident‎angle. 

 

Figure ‎4.12: Bragg diffraction [214] 
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The direction of the diffraction of an X-ray depends on the size and shape of 

the unit cell of the material crystal. The scale formed on the surface of a 

metal sample has a specific X-ray diffraction pattern for each crystal. The 

position of the diffraction peaks and their intensities are specific for a 

crystalline phase. 

A Hugo Rietveld [215] written computer programme which took into account 

the overall isotropic temperature factors, atomic coordinates, scale factors, 

scattering factors, background and instrumental factors to obtain a model 

based on a least squares fit between the calculated and observed integrated 

intensities, measured at regular angular intervals from powder diffraction for 

alkaline earth metal uranates. It was developed to get the maximum amount 

of‎ information‎ from‎overlapping‎peaks‎and‎ is‎ termed‎“Rietveld‎Refinement”‎

[216]. The Rietveld Refinement is quite complex, it is built on several key 

areas that are considered for the least-squares operation. These key 

parameters are: peak width based on CW parameters U, V, W by Caglioti 

[217], orientation correction, peak profile (pseudo-Voight, Lorentzian, 

Gaussian), structure factors and least square parameters (scale factor, 

lattice parameters, asymmetry, space group, background and temperature 

factors) [216].  

X’Pert‎HiScore‎[218] is software based on the Rietveld Refinement and was 

used in this PhD project which allows quantitative phase analysis. 

4.5 Interaction of the inhibitors with scale on surface 

measurements 

Fourier Transform Infrared Spectrometry (FTIR) (Perkin Elmer® Spectrum 

SpotLight TM) was used. This FTIR spectroscopy machine can create a 

spectrum range from 650 to 4000 cm-1. Infra-red intensity adsorbed by the 

sample is measured accordingly to the wavelength of the light emitted. The 

signal is digitized and sent to the computer where the Fourier transformation 

is measured and the infrared spectrum is presented to the operator of FTIR 

machine for further analysis. 
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Figure ‎4.13: Schematic representation of the FTIR [219] 

A Renishaw in Via confocal Raman microscope was used. The microscope 

uses a laser as a source of light which is focused by lenses onto the sample 

to collect scattered light. Filters then purify the reflected and scattered light 

which is detected by sensors. A computer is then used to display the 

spectrum and analyse the information. The Raman microscope measures a 

very tiny fraction of the scattered light which has a different colour. The light 

has a different colour than the source because during the scattering process 

it has lost some energy to the material, which is causing some of the atoms 

to vibrate. 

 

Figure ‎4.14: Schematic representation of the Raman spectrometer [220] 

4.6   Experimental design 

There are wide variety of methods and analysis techniques, known as 

experimental design [221]. One of the main goals of experimental design is 

to evaluate how changes in input factors affect the results (responses) of the 
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experiment [222]. Design of experiments (DOE) is a tool which can be used 

in a variety of experimental situations [223, 224]. 

4.6.1 Design of Experiments (DOE) 

DOE is commonly used in research as well as in industry but for very 

different purposes. The main goal in scientific research is usually to 

demonstrate the statistical significance of the effect that a particular factor 

exerts on the dependent variable of interests. The DOE is a systematic 

approach to study a process or a system. It is used to investigate a 

phenomenon in order to gain an understanding or improve performance 

[224]. The DOE gives a well-defined framework for: 

 data collection 

 analysis 

 interpretation.  

This approach can help to answer queries linked to an assumption and 

understand how different factors influence interesting variables. 

Several models for the DOE are available, including Full Factorial, Fractional 

Factorial and Taguchi approach. In this PhD study a Two Level Full Factorial 

Experiments was used. 

4.6.2 Two Level Full Factorial Experiments [224] 

A full factorial experiment is an experiment in which one or more input 

factors are set at two levels each. In full factorial experiments all possible 

combinations of these levels across all such factors are investigated. It can 

be investigate the effect of each factor on the response (variable), as well as 

the effects of the interactions between factors on the response (variable). 

In this PhD study a 25 full factorial design method was applied to study the 

individual effects of each component of combined scale/corrosion inhibitor 

as well as their interactive effects on:  

• General corrosion 

• Localised corrosion 

• Bulk scale 

• Surface scale 

The experimental tests in this study focused on 5 single components of a 

combined inhibitor. Each parameter (single components) was set at two 

levels, thus there were 2 × 2 × 2 ×2× 2 = 32 trials for the combined inhibitor 

(see Table ‎4.4).  
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Table ‎4.4: 32 combination of combined inhibitors 

Std Run CI 1 CI 2 CI 3 SI SA 

23 1 L H H L H 

21 2 L L H L H 

5 3 L L H L L 

13 4 L L H H L 

11 5 L H L H L 

14 6 H L H H L 

6 7 H L H L L 

8 8 H H H L L 

4 9 H H L L L 

32 10 H H H H H 

1 11 L L L L L 

3 12 L H L L L 

12 13 H H L H L 

22 14 H L H L H 

31 15 L H H H H 

10 16 H L L H L 

25 17 L L L H H 

29 18 L L H H H 

28 19 H H L H H 

7 20 L H H L L 

17 21 L L L L H 

2 22 H L L L L 

20 23 H H L L H 

26 24 H L L H H 

30 25 H L H H H 

27 26 L H L H H 

24 27 H H H L H 

15 28 L H H H L 

18 29 H L L L H 

16 30 H H H H L 

19 31 L H L L H 

9 32 L L L H L 

A factorial experiment can be analysed using the analysis of variance 

(ANOVA). 

4.6.3 The analysis of variance (ANOVA) 

ANOVA is a collection of statistical models which are applied to analyse the 

differences between group means and their associated procedures. The 

experimental design method combined with factorial ANOVA can then be 

used to assess the effect that a particular factor has on the dependent 

variable of interest. In this PhD study the effect of 5 single components 

(factors) on general corrosion, localized corrosion, surface scaling and bulk 

precipitation (variable of interests) was assessed. 
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In order to obtain a systematic analysis on how the single components and 

their interactions effect general corrosion, localized corrosion, surface 

scaling and bulk precipitation a routine statistical calculation method was 

applied. The calculations were computed with the use of Design-Expert® 

Software Version 6.0.8 [225]. The design matrix for the five-parameters with 

two levels each was shown in Table ‎4.4. This table presented the thirty two 

different combinations which were set for the combined inhibitor (5 single 

components). 

The contribution percentage of the 5 single components of combined 

inhibitor and their interactions  on general corrosion, localized corrosion, 

surface scale and bulk scaling was calculated. Contribution percentage 

calculation are presented on general corrosion as example; exactly the 

same way contribution percentage of the 5 single components of combined 

inhibitor and their interactions was calculated on localised corrosion, surface 

scale and bulk scaling. From the Table ‎4.4, the trial conditions for low level 

of corrosion inhibitor 1 (CI1) - 1, 2, 3, 4, 5, 11, 12, 15, 17, 18, 20, 21, 26, 28, 

31 and 32 were used. Hence the calculation for the average output at the 

CI1 at low level on general corrosion can be calculated: 

CRCI1Lc =
1

16
(CR1 + CR2 +⋯+ CR32) (‎4-3) 

where:‎CR1‎…‎and‎CR32‎is‎the‎corrosion‎rate‎in‎Table ‎7.1 corresponding to 

experiment‎conditions‎1,2,….and‎32,‎respectively‎in Table ‎4.4.  

The output at high level of CI1 on general corrosion can be calculated in the 

same manner. In the Table ‎4.5 are presented outputs of single components 

(factors) at each level. 

Table ‎4.5: The average outputs of individual factors for each level 

Factors Level 

Low High 

Corrosion inhibitor 1 (CI1) CI1Lc CI1Hc 

Corrosion inhibitor 2 (CI2) CI2Lc CI2Hc 

Corrosion inhibitor 3 (CI3) CI3Lc CI3Hc 

Scale inhibitor (SI) SILc SIHc 

Souring agent (SA) SALc SAHc 
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Sum of squares is the sum of the squared deviations. In this PhD study, the 

sum of squares of outputs due to corrosion inhibitor1 (CI1) can be obtained 

by using the following formula: 

SSCRCI1 = 2
2(CRCI1Lc − CRG) + 2

2(CRCI1Hc − CRG) (‎4-4) 

where CRLCCI1 and CRHCCI1 refer to the average effects analogous to the CI1 

factor for low and high levels (concentration) while CRG is the average 

corrosion rate for 32 experiment conditions. 

The sums of squares for other factors and interactions were calculated in the 

same way. The final part of statistical calculation of ANOVA was finished 

easily to obtain the percentage contribution, for example the percentage 

effect of corrosion inhibitor 1 (CI1) on general corrosion was be calculated 

by the following equation: 

CI1(%) =
SSCRCI1

SSCRCI1 + SSCRCI2 +⋯+ SSCRCI1SISA + SSCRCI1CI2CI3SISA
∗ 100% 

(‎4-5) 

where: 𝑆𝑆𝐶𝑅𝐶𝐼1 and 𝑆𝑆𝐶𝑅𝐶𝐼1𝑆𝐼𝑆𝐴 are the sum of squares of the single 

components of combined inhibitor an their interactions. 

4.7 Experimental procedure summary 

Experiments were conducted using a newly developed combined bulk jar 

test/bubble cell methodology, under CO2 saturated conditions . This setup 

uses a 1 litre test solution with test specimens being made from API X65 

carbon steel with 4.9 cm2 exposed area. Each of the samples were polished 

up to to 1000 grit using SiC paper, degreased with acetone, rinsed with 

distilled water, and dried before immersing into the test brines. 

The test solution used in the experiment was saturated with respect to 

CaCO3 by mixing two solutions (500 ml brine 1 containing calcium ions and 

500 ml brine 2 containing bicarbonate ions). The solution compositions have 

been calculated by MultiScale software version 7.1 and are shown in Table 

‎4.2. Prior to transferring the test solutions into combined bulk jar test/bubble 

cell, they were fully de-aerated using CO2 overnight. 

The temperature was set at 80oC and CO2 gas was purged during whole 

test. The solution pH after two brines were mixed was 6.5. 25ppm of 

combined inhibitor was injected to the test solution (see composition of the 

combined inhibitor in Table ‎4.4), before the two brines were mixed and the 

specimen immersed. Test conditions are outlined in Table ‎4.6. 
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Table ‎4.6: Test conditions 

Parameters Conditions 

Temperature 80oC / 176 °F 

pH 6.5 

Steel API 5L X65 

Flow condition Static 

Total Pressure 1 Bar 

pCO2 0.5 Bar 

Test duration 4hrs, 72hrs (pitting tests) 

The three-electrode setup connected to Ivium n-stat potentiostat was used to 

monitor corrosion behaviour. A colorimeter was used to measure the 

turbidity of the brine; scale inhibition was then evaluated by the incubation 

time of precipitation in bulk. Scanning Electron Microscopy (SEM) and X-Ray 

Diffraction (XRD) were used for the post-test surface analysis to determine 

polymorphs of calcium carbonate and detection of iron carbonate; to identify 

that localized corrosion is present white light Interferometer profiler have 

been used. The Ca2+ ions concentrations were measured in solutions on the 

end of test by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). 

This method was used to quantify Ca2+ ions in the scale on metal surface, 

which have been dissolved in 10% acetic acid to compare with bulk solutions 

results.      
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Chapter 5  

Corrosion and scale results in the absence of combined 

inhibitor 

5.1 Introduction 

In this chapter, corrosion and scale occurring simultaneously in the absence 

of any inhibitor were studied using a new bubble cell/jar test. The objective 

was to better understand interactions between corrosion and scale 

processes. In order to measure and assess the general corrosion and pitting 

corrosion LPR, Tafel plots and light interferometry were used. The scale was 

observed under SEM and calcium carbonate polymorphs were assessed by 

XRD.  

5.2 Corrosion results 

5.2.1 General corrosion 

Tafel measurements from separate tests (anodic and cathodic) in the blank 

solution are shown in Figure ‎5.1 to indicate the reproducibility of the tests. 

From Tafel plots presented in Figure ‎5.1 it‎ is‎ clear‎ that‎βc is equal to 148 

mV/decade‎and‎βa is equal 42 mV/decade. It is clear that corrosion rate in 

the‎system‎without‎inhibitor‎is‎controlled‎by‎the‎cathodic‎reaction‎(βc>βa). In 

the tests without inhibitor the anodic reaction is an activation-controlled 

reaction (controlled by charge transfer reactions), while the cathodic reaction 

is a mixture of activation- and mass-transfer controlled reactions (controlled 

by the concentration of the reagent in the vicinity of the sample and diffusion 

in the bulk solution to the surface). The charge transfer reactions are 

influenced by formation of scale on the metal surface which affects mass 

transfer in the bulk solution. 

Figure ‎5.2 shows the average corrosion measurements in the tests in the 

absence of combined inhibitor. The repeatability is presented using error 

bars. Six tests have been run and the blue line in Figure ‎5.2 represents the 

average corrosion rate where the error bars represent the minimum and 

maximum corrosion values measured in six tests. At the beginning of the 

tests the corrosion rate measured was around 3.67 mm/year. After 8 

minutes of tests it reached the highest level observed during tests at 4.76 

mm/year; the corrosion rate then started decreasing quickly and 
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continuously up to the 60-minute mark. For the next 60 minutes it decreased 

slightly to reach a plateau of 0.20 mm/year. The corrosion rate remained 

steady for the rest of the tests to reach a final value of around 0.21 mm/year 

after 4 hours of testing. 

 

Figure ‎5.1: Tafel plots for carbon steel in blank brine solution at 80oC 
after 4 hours 

 

Figure ‎5.2: General corrosion results in the absence of combined 
inhibitor at 80oC over 4hours 

Figure ‎5.3 shows how the metal surface looks after scale has been removed 

by‎ Clarke’s‎ solution‎ at‎ the‎ end‎ of‎ the‎ tests, in the absence of combined 
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inhibitor. It could be observed on the sample that there were some regions of 

the metal damaged by general corrosion processes. The structure of Fe3C 

which remained unattacked can be seen in the areas that were corroded. 

 

(a) (b) 
 

Figure ‎5.3: Scanning electron micrographs in the test in the absence of 
combined inhibitor after cleaning by Clarke’s‎solution 

5.2.2 Localized corrosion 

In Table ‎5.1 the deepest pit depths from light interferometry analysis in tests 

after 4hrs, 72hrs and only polishing treatment are presented. Figure ‎5.4 

presents a schematic representation of a surface after tests which have 

been then analysed. A pit is defined in this work as a cavity which is 

significantly deeper than threshold (more than 3µm). The threshold is set at 

a level of the surface profile of the uniform corrosion attack.  

Table ‎5.1: Deepest pits in the tests in the absence of combined 
inhibitor and  for reference polished samples 

Time of 

test 

Deepest pit in the absence of combined 

inhibitor 

Pit depth (µm) 

- Polished sample grooves up to 0.7  

4hrs sample 3 

72hrs sample 1 24 

72hrs sample 2 23 

72hrs sample 3 23 
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After polishing, the grooves on the surfaces reached a depth up to 0.7µm. 

After 4hrs of tests the deepest pit reached a depth up to 3µm; because the 

pits were quite shallow in tests in the absence of inhibitor, tests were run for 

72hrs to be able to correctly assess pitting corrosion. It could be observed 

that the depth of the deepest pits is repeatable in tests after 72hrs (Table ‎5.1 

sample 1, sample 2 and sample 3). In the images acquired by light 

interferometry and presented in Figure ‎5.5. is clear that some damage has 

been done by general corrosion on the samples. However, in some of the 

cavities pitting corrosion occurred and some pits penetrated the samples 

and reached depths of around 24µm (Figure ‎5.5 c). 

 

Figure ‎5.4: Schematic representation of a sample after test with 
representation of a threshold 

 

 

(a) 
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(b) 

 

(c) 

Figure ‎5.5: Light interferometry images of deepest pit on surface in the 
tests in the absence of combined inhibitor: a) grooves on polished 
sample, b) pit after 4hrs test and c) pit1 after 72hrs  

In Table ‎5.2 the pit density from light interferometry analysis in tests after 

72hrs are presented. It could be observed that there are more pits in the  

-17.5 to -20 µm depth range than in others.  
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Table ‎5.2: Pit density in the tests in the absence of combined inhibitor 

Pit depth (µm) in tests in the 
absence of combined inhibitor 

Number of pits (per cm2) 

pit depth (µm)> 22.5 1 

20 < pit depth (µm) > 22.5 5 

17.5 < pit depth (µm) > 20 42 

5.3 Bulk and surface scaling results 

5.3.1 Bulk solution scaling 

5.3.1.1 Turbidity results and pH – for bulk scaling 

Turbidity trends in the test in the absence of inhibitor are shown in Figure 

‎5.6. It can be observed that the first crystals in bulk solution have been 

recorded‎after‎5‎minutes‎ (≈1.3‎FTU). The solution is highly supersaturated 

with respect to calcium carbonate (Table ‎4.2); because of that the induction 

time is very short before first crystals in bulk solution can be detected. After 

10 minutes the maximum value of turbidity measured was‎≈15‎FTU.‎Until 10 

minutes the number of crystals and size of particles is constantly increasing.  

 

Figure ‎5.6: Turbidity results in the tests in the absence of combined 
inhibitor at 80oC over 4 hours 

Then the number of scale crystals which can be detected in the bulk solution 

started decreasing sharply to reach 0 FTU value in 50 minutes of tests. Most 

of the crystals have settled on the bottom of the cell test due to their size. 
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The smaller particles were present in the solution. However due to their size 

the turbidity meter could not detect them. The crystals did not get bigger 

because of a drop of supersaturation ratio of the tested solution as time 

progressed.  

The measured variations of pH in the test in the absence of inhibitor are 

presented in Figure ‎5.7. At the beginning of the test, when the two brines 

were initially mixed, the pH was 6.53. After  mixing, the pH decreased 

quickly over the first few minutes until it reached a value ≈6.11 after 50 

minutes. This drop of the pH was caused by rapid precipitation from the 

solution of calcium carbonate (Equation (‎2-4)) crystals in the bulk solution as 

well as on the sample surface. Next the pH continued to decrease slightly for 

the‎rest‎of‎the‎tests‎to‎reach‎a‎final‎value‎≈‎5.91. A further decrease of pH is 

caused by continuous formation of tiny crystals in the bulk solution (which 

cannot be detected by turbidity meter) and their growth as well as 

continuous growth of scale formed on the metal sample. The pH decrease 

was caused by an increase of H+ ions due to the dissociation reaction of 

carbonic acid (Equation (‎2-2) and bicarbonate (Equation (‎2-3)). 

 

Figure ‎5.7: pH results in the tests in the absence of combined inhibitor 

5.3.2 Inductively coupled plasma mass spectrometry (ICP – MS) 

results from bulk solution and surface 

In Table ‎5.3 results from ICP-MS analysis are presented at the end of the 

tests from the bulk solution and from the dissolution of the deposit on the 

metal surface in the absence of combined inhibitor. Ca2+ ion concentration 
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has been measured to be at 694 ppm concentration in bulk solution. It could 

be observed that there was a substantial decrease compared to the initial 

concentration of Ca2+ of 917±12 ppm (this is measured concentration after 

the brines have been mixed). This means that the total amount of calcium 

carbonate which precipitated from solution is equal to 556 mg. The amount 

of calcium found on the metal surface tests in the absence of combined 

inhibitor was 2.14 mg/cm2. The amount of calcium carbonate formed on the 

metal surface is 5.3 mg respectively which is an almost 1% of the whole 

scale precipitated from the bulk solution.  

Table ‎5.3: ICP-MS results in the tests in the absence of combined 
inhibitor at the end of tests 

Test Amount of calcium in bulk 

on end of tests (ppm) 

Amount of calcium on 

metal surface (mg/cm2) 

Blank 694±10 2.14±0.11 

5.3.3 Surface scale 

5.3.3.1 Scanning Electron Microscopy (SEM) and X-Ray Diffraction 

(XRD) 

Figure ‎5.8 shows scale formed in the test in the absence of combined 

inhibitor. It could be observed that the scale which formed was very dense. 

However, there were some regions where scale did not form on the metal 

sample surface (Figure ‎5.8 a). The scale crystals which deposited on the 

metal samples had very irregular shapes. It can be observed that crystals 

had many different crystal growth sites (Figure ‎5.8 b).  

  

(a) (b) 

Figure ‎5.8: Scanning electron micrographs of CaCO3 formed in the 
tests in the absence of combined inhibitor 
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Figure ‎5.9 shows the acquired XRD spectrum of samples in the tests in the 

absence of combined inhibitor. It can be observed that the scale formed on 

the samples was only calcium carbonate. There are two peaks associated 

with iron carbonate in Figure ‎5.9. However, according to the International 

Centre for Diffraction Data (ICDD) [226] guidance, it needs to be at least 

three or more peaks to confirm presence of material (in this case is FeCO3). 

Calcium carbonate which formed on the metal surface, was composed of 

two polymorphs: calcite and aragonite. Table ‎6.5 shows results from 

Rietveld refinement. It is clear, that the main compound of scale formed on 

the metal samples in the tests in the absence of combined inhibitor, was 

calcite (92%). The remaining 8% of scale formed was calcium carbonate 

polymorph - aragonite. 

 

Figure ‎5.9: XRD spectrum of scale formed in the tests in the absence of 
combined inhibitor 

Table ‎5.4:  Different polymorphs of CaCO3 formed in the tests in the 
absence of combined inhibitor by Rietveld Analysis 

Test % Calcite % Aragonite 

Blank 92±1 8±0.17 
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5.4 Summary 

The corrosion and scale results in the absence of inhibitor when all 

processes occurring simultaneously were presented. The following 

conclusions could be reached. 

 General corrosion at the end of the 4hr test was 0.21 mm/year 

 Cathodic reaction controlled corrosion process – βc=148 mV/decade 

and‎βa=42 mV/decade (βc >‎βa)  

 The cathodic reaction is a mixture of activation control and mass 

transfer control reaction 

 The anodic reaction is activation control reaction 

 Deepest pit measured on surface was 24 µm depth 

 Pit density - 1 pit deeper than 22.5 µm/cm2  

 Induction time was equal 5 minutes 

 Amount of scale formed during the test was 2.14 mg/cm2 

 The scale formed on surface was composed by 92% of calcite and 

8% of aragonite 

In the next chapter general corrosion, pitting corrosion bulk scaling and 

surface scaling were assessed the same way as in this chapter. However in 

the next chapter the single inhibitor components was presented in the test 

solution.  
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Chapter 6  

Corrosion and scale results in the presence of single 

components of combined inhibitor 

6.1 Introduction 

In this chapter, corrosion and scale occurring simultaneously were studied 

using a new bubble cell/jar test in the presence of the single inhibitor 

components which would ultimately be used to make combined inhibitors. 

The objective was to better understand the interaction between corrosion 

and scale processes in the presence of the single components of combined 

inhibitor. In order to measure and assess the general corrosion and pitting 

LPR, Tafel plots and light interferometry were used. The scale was observed 

using SEM and calcium carbonate polymorphs were assessed by XRD. 

6.2 Concentration of the single components 

The combined inhibitor used for this study is composed of: 1 scale inhibitor, 

3 corrosion inhibitors and 1 souring agent formulated in a solvent. This is a 

formulation of combined inhibitor (v/v%): 

• 10v/v% corrosion inhibitor 1 

• 10v/v% corrosion inhibitor 2 

• 10v/v% corrosion inhibitor 3 

• 20v/v% scale inhibitor base 

• 5v/v% souring agent 

• the rest – solvent. 

25ppm concentration of blended combined inhibitor was used in the tests 

with combined inhibitor. Hence, the concentrations of single components 

used in the test were: 

 2-mercaptoethanol (souring agent) – 1.25 ppm concentration was 

added to the test solution,  

 alcohol ethoxy phosphate ester (corrosion inhibitor 1) – 2.5 ppm 

concentration was added to the test solution,  

 C12-C14 alkyldimethyl-benzylamonium chloride (corrosion inhibitor 2) 

– 2.5 ppm concentration was added to the test solution 

 ethoxylated imidazolines (corrosion inhibitor 3) – 2.5 ppm 

concentration was added to the test solution 
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 polyphosphinocarboxylic acid ((PPCA) – scale inhibitor) – 5 ppm 

concentration was added to the test solution 

6.3 Corrosion results 

6.3.1 General corrosion 

From Figure ‎6.1, it is clear that the values of icorr at the end of the tests with 

2-mercapthoethanol and without inhibitor were quite similar (icorr = 0.0041, 

icorr = 0.0032 mA/cm2). However, it could be observed that in the tests with 2-

mercapthoethanol the cathodic and the anodic reactions were affected 

(Table ‎6.1). The corrosion rate was controlled by the cathodic reaction 

because‎ βc = 107 mV/decade is greater than‎ βa = 52 mV/decade. Which  

indicates that the cathodic reaction occurred slower than the anodic reaction 

in the tests with 2-mercapthoethanol. In the tests with alcohol ethoxy 

phosphate ester it could be observed that corrosion current (icorr = 0.083 

mA/cm2) is bigger than in the tests without inhibitors and both reactions have 

been affected (Table ‎6.1).‎ βc = 126 mV/decade being larger than‎ βa = 73 

mV/decade indicates that the corrosion rate is controlled by the cathodic 

reaction.  

 

Figure ‎6.1: Tafel plots after 4 hours in tests with 2-mercaptoethanol and 
alcohol ethoxy phosphate ester (anodic and cathodic curves were 
constructed using separate samples) 

In Figure ‎6.1 it is observed that the cathodic reaction in the test with alcohol 

ethoxy phosphate ester at the beginning of polarisation is a mixture of 
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activation control and mass transfer control. However, with continuous 

polarisation to a more negative potential, the cathodic reaction becoming 

more controled by the mass transfer reactions which means that the 

cathodic reaction (Equation (‎2-29)) start reducing faster the reagent (H+) at 

the surface corrosion site and it concentration become smaller than in the 

bulk solution. This is happening because of slow diffusion of hydrogen ions 

(H+) reagent from bulk solution to the vicinity of the sample.  

Table ‎6.1: Corrosion potential, corrosion current and Tafel slopes 

Test Ecorr  

(mV) 

icorr 

(mA/cm2) 

βa  βc 

(mV/decade) 

Blank -684 0.0032 40 145 

2-mercapthoethanol -700 0.0041 52 107 

alcohol ethoxy 

phosphate ester 

-690 0.083 73 126 

C12-C14alkyl dimethyl 

benzyl ammonium 

chloride 

-700 0.0015 80 92 

ethoxylated imidazolines -698 0.0015 67 105 

Polyphosphinocarboxylic 

acid 

-680 0.039 73 82 

The biggest effect on Stern‎ −‎ Geary coefficient‎ ‎ (β)‎ (Equation (‎6-1)) has 

biggest from Tafels slope βa and‎ βc which means that reaction (anodic or 

cathodic) control the corrosion processes (slowest reaction controls how fast 

corrosion process occurs). 

β =
1

2.303
(
βaβc
βa + βc

) (‎6-1) 

Which means that the smallest parameter of βa and‎βc has largest effect on 

corrosion rate calculated from Linear Polarisation Resistance 

measurements. The smaller the value of the βa and‎βc then the corrosion 

rate is smaller. When the βa and‎βc is increasing and as does the corrosion 

rate.  

In Figure ‎6.2 it is observed that in the tests with C12-C14 alkyl dimethyl 

benzyl ammonium chloride icorr =0.0015mA/cm2 is smaller than in the test 

without (Table ‎6.1).‎βc = 92 mV/decade controlled‎the‎corrosion‎rate‎(βa = 80 

mV/decade). The cathodic reaction in the tests with C12-C14alkyl dimethyl 
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benzyl ammonium chloride is a mixture of activation - control and mass 

transfer control. However, with continuous polarisation to a more negative 

potential, the cathodic reaction becoming more controled by the mass 

transfer reactions. In the test with the ethoxylated imidazolines icorr is equal 

0.0015 mA/cm2 and βc is much larger than‎βa (105 to 67 mV/decade) which 

indicates that corrosion rate is controlled by the cathodic reaction. In the 

tests with ethoxylated imidazolines the anodic reaction is activation controled 

while the cathodic reaction have the same trend as cathodic reaction in the 

tests with C12-C14alkyl dimethyl benzyl ammonium chloride. icorr in the tests 

with the PPCA is equal 0.039 mA/cm2; cathodic and anodic Tafel constants 

are almost equal (βc = 73 and βa = 82 mV/decade). In Figure ‎6.2 it is 

observed that the anodic reaction were activation control reactions while 

cathodic is a mixture of activation control and mass transfer control. 

 

Figure ‎6.2: Tafel plots after 4 hours in tests with C12-C14alkyl dimethyl 
benzyl ammonium chloride, ethoxylated imidazolines and PPCA 
(anodic and cathodic curves were constructed using separate 
samples) 

Figure ‎6.3 shows the average corrosion rate in the tests in the presence of 

single components of a combined inhibitor. The repeatability is represented 

using error bars. In the tests with 2-mercaptoethanol corrosion rate at the 

beginning of‎ test‎ was‎ ≈0.72‎ mm/year. Then, it started decreasing 

continuously to reach 0.1 mm/year at 110 minutes of the tests and remain 

steady‎to‎the‎end‎of‎the‎tests‎(≈0.1‎mm/year). The corrosion rate in the tests 

with alcohol ethoxy phosphate ester at the start of the tests‎ was‎ ≈1.77‎
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mm/year.‎ After‎ 25‎ minutes‎ it‎ increased‎ to‎ ≈2.25‎ mm/year‎ and‎ remained‎

steady for the rest of the tests. At the end of the test with alcohol ethoxy 

phosphate ester the corrosion‎ rate‎ was‎ ≈2.23‎ mm/year. In the tests with 

C12-C14 alkyl dimethyl benzyl-amonium chloride and ethoxylated 

imidazolines, the corrosion rate at the start of the tests was respectively‎≈4.5‎

and‎ ≈3.8‎ mm/year. Then after 8 minutes of the tests with C12-C14 alkyl 

dimethyl benzyl-amonium chloride the highest corrosion rate of ≈5‎mm/year 

was reached while in the tests with ethoxylated imidazolines the highest 

corrosion‎ rate‎ ≈5.2 mm/year was reached at 4 minutes. In both tests 

corrosion started decreasing continuously to reach the plateau at 100 

minutes with the corrosion‎rate‎≈‎0.12‎mm/year.‎At‎the‎end‎of‎the‎tests‎with‎

C12-C14 alkyl dimethyl benzyl-amonium chloride and ethoxylated 

imidazolines the corrosion rates were accordingly 0.06 and 0.09 mm/year. 

The corrosion rate in the tests with PPCA at the start of the tests‎was‎≈1.51 

mm/year. After 33 minutes of tests it decreased to‎≈1 mm/year and remained 

steady for the rest of the tests. At the end of the test with PPCA, the 

corrosion rate‎was‎≈0.9 mm/year. 

 

Figure ‎6.3: General corrosion results in the presence of single 
components of combined inhibitor 

6.3.2 Localized corrosion 

In Table ‎6.2 the deepest pits from light interferometry analysis in the tests in 

the presence of single components of combined inhibitor after 72hrs are 
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presented. The deepest pit was measured in the tests with single 

components of combined inhibitor, in the tests with C12-C14 alkyl dimethyl 

benzyl-amonium chloride was 32.1µm (Figure ‎6.4c). Second deepest pit was 

measured in the tests with ethoxylated imidazolines 29.6µm (Figure ‎6.4 d). 

In the tests alcohol ethoxy phosphate ester deepest pit detected on sample 

had 19.6µm depth (Figure ‎6.4b). Deepest pits in the tests with PPCA and 2-

mercaptoethanol were 11.6 and 7.3µm accordingly (Figure ‎6.4a and d). 

Table ‎6.2: Deepest pits in the tests in the presence of single 
components of combined inhibitor after 72hrs 

Tests Pit depth (µm) 

2-mercapthoethanol 7.3 ± 0.4 

Alcohol ethoxy phosphate ester 19.6 ± 1 

C12-C14 Alkyldimethyl-

benzylamonium chloride 

32.1 ± 2 

Ethoxylated imidazolines 29.6 ± 2 

PPCA 11.6 ± 0.6 

In Figure ‎6.4 different shapes of deepest pits can be observed in the tests in 

the presence of single components of combined inhibitor. In the tests with 

alcohol ethoxy phosphate ester, C12-C14 alkyldimethyl-benzylamonium 

chloride and ethoxylated imidazolines (Figure ‎6.4b, c and d) it is clear that 

some damage has been done by general corrosion to the samples. 

However, in some of this cavities pitting corrosion occurred and some pits 

penetrated the sample further. In the Figure ‎6.4a in the tests with 2-

mercapthoethanol all the surface is quite well preserved and pit growth in 

random places on the sample can be observed. In the tests with PPCA 

(Figure ‎6.4d), it could be observed that most of sample area was destroyed 

by general corrosion and in some of these cavities pitting corrosion occurred 

(pit penetrated sample). 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure ‎6.4: Light interferometry images of deepest pits on surface in 
the tests in the presence of single components of combined 
inhibitor: a) 2-mercaptoethanol, b) Alcohol ethoxy phosphate 
ester; c) C12-C14 Alkyldimethyl-benzylamonium chloride; d) 
Ethoxylated imidazolines and e) PPCA 

In Table ‎6.3 pit density values from light interferometry analysis in the tests 

in the presence of single components of combined inhibitor after 72hrs are 

presented. The largest densities of deepest pits were measured in the tests 

with 2-mercapthoethanol and C12-C14 alkyldimethyl-benzylamonium 

chloride and were equal to 1 pit per cm2 were observed. While in the tests 

with alcohol ethoxy phosphate ester, ethoxylated imidazolines and PPCA pit 

densities of deepest pits were equal to 0.6 pit per cm2. This is 40% less than 

in two previous tests. Overall the smallest pit density was observed in the 

test with 2-mercapthoethanol (2 pits per cm2), while the biggest density was 

observed in the test with C12-C14 alkyldimethyl-benzylamonium chloride (85 

pits per cm2). Pit density in the tests with the alcohol ethoxy phosphate ester 

and ethoxylated imidazolines were very similar at 24 and 21 pits per cm2 
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respectively. In the tests with the PPCA the pit density values were around 8 

pits per cm2. 

Table ‎6.3: Pit densities in the tests in the presence of single 
components of combined inhibitor after 72 hrs 

Pit depth (µm) in tests with  

2-mercapthoethanol 

Number of pits (per cm2) 

pit depth (µm)> 5 1 

4 < pit depth (µm) > 5 1 

Pit depth (µm) in tests with  

alcohol ethoxy phosphate ester 

Number of pits (per cm2) 

pit depth (µm)> 15 0.6 

10 < pit depth (µm) > 15 4 

 7.5 < pit depth (µm) > 10 20 

Pit depth (µm) in tests with  

C12-C14 alkyldimethyl-

benzylamonium chloride 

Number of pits (per cm2) 

pit depth (µm)> 30 1 

25 < pit depth (µm) > 30 32 

20 < pit depth (µm) > 25 52 

Pit depth (µm) in tests with  

ethoxylated imidazolines 

Number of pits (per cm2) 

pit depth (µm)> 25 0.6 

22.5 < pit depth (µm) > 25 4 

20< pit depth (µm) > 22.5 17 

Pit depth (µm) in tests with PPCA Number of pits (per cm2) 

pit depth (µm)> 10 0.6 

8 < pit depth (µm) > 10 2 

6.5 < pit depth (µm) > 8 6 
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6.4 Bulk and Surface scaling results 

6.4.1 Bulk solution scaling 

6.4.1.1 Turbidity results 

The turbidity trend in the tests in the presence of single components of 

combined inhibitor are shown in Figure ‎6.5. It could be observed that in the 

tests with 1.25 ppm of 2-mercaptoethanol, 2.5 ppm of C12-C14 

alkyldimethyl-benzylamonium chloride and 2.5 ppm of ethoxylated 

imidazolines, the first crystals were detected after 5 minutes of tests and the 

highest amount of scale in the bulk solution was measured at 10 minutes 

(17, 16 and 13 FTU accordingly). The solution is highly supersaturated with 

respect to calcium carbonate (Table ‎4.2) because of that the induction time 

is very short before first crystals in bulk solution can be detected. None of 

the inhibitors have any effect on bulk scaling and their trends are similar to 

the tests without inhibitor (Figure ‎5.6). After 20 minutes of tests with 2-

mercaptoethanol and C12-C14 alkyldimethyl-benzylamonium chloride no 

bulk scale crystals have been detected, while in the tests with ethoxylated 

imidazolines took 30 minutes of tests to reached 0 FTU. Crystals could not 

get bigger because of a drop of supersaturation ratio of the tested solution 

as time progressed. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

Figure ‎6.5: Turbidity results in the tests over 4hours in the presence of 
single components of combined inhibitor: a) 2-mercapthoethanol, 
b) alcohol ethoxy phosphate ester; c) C12-C14 alkyldimethyl-
benzylamonium chloride; d) ethoxylated imidazoline and e) PPCA 

In Figure ‎6.5b it is shown that 2.5 ppm of alcohol ethoxy phosphate ester 

extended the induction time to 20 minutes and the maximum scale was 
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recorded at 50 minutes. After 75 minutes of the test with alcohol ethoxy 

phosphate ester no bulk scale crystals were detected. During the tests with 5 

ppm of PPCA no bulk scaling was measured for the whole duration of the 

tests (Figure ‎6.5e). Only PPCA prevented any bulk scaling during whole test 

duration. The induction time of single components of combined inhibitor is 

presented in Table ‎6.4. 

Table ‎6.4: Induction time in the tests with single components of 
combined inhibitor 

Test Induction time (minutes) 

2-mercapthoethanol 5±0.5 

alcohol ethoxy phosphate ester 20±1 

C12-C14 alkyldimethyl-

benzylamonium chloride 

5±0.5 

ethoxylated imidazolines 5±0.5 

PPCA >240 

6.4.2 Inductively coupled plasma mass spectrometry (ICP – MS) 

results from bulk solution and surface 

In Figure ‎6.6 surface scaling versus bulk scaling in the tests with single 

components results from ICP-MS analysis of the bulk solution and by 

dissolving the scale from the metal surface in the presence of single 

components of combined inhibitor are presented. There is a general trend 

that as bulk scaling increases that surface deposition increases also. It could 

be observed that PPCA retained the biggest amount of Ca2+ ions in the 

testing solution at the end of the tests (904 ppm) from all single components 

compared to initial concentration in the test solution (917 ppm). PPCA works 

as nucleation and crystals growth inhibitor as well adsorb to the metal 

surface to prevent surface scale deposition. In the test with ethoxylated 

imidazolines and C12-C14 alkyldimethyl-benzylamonium chloride (corrosion 

inhibitors) surface scale and bulk scaling increases; this could suggests that 

any of this inhibitor works as nucleation or crystal growth inhibitor. However, 

alcohol ethoxy phosphate ester (corrosion inhibitor) has some effect on 

surface, bulk scaling and induction time, this could suggests that it effects 

the crystal growth but not nucleation process as well as it adsorbs to the 

metal surface to prevent surface scale deposition. 2-mercaptoethanol has 

small effect on bulk scaling compare to the effect which has on surface scale 
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deposition. It suggests that it absorbs to the metal surface and form dense 

film which prevents surface scale deposition. 

 

Figure ‎6.6: Surface scaling versus bulk scaling in the tests with single 
components 

6.4.3 Surface scale 

6.4.3.1 Scanning Electron Microscopy (SEM) and X-ray diffraction 

(XRD) 

Figure ‎6.7 shows the effect of calcium carbonate scale formed during the 

tests in the presence of single components of combined inhibitor on the 

metal surface (not filtered from the bulk solution). In the tests with 2-

mercapthoethanol most crystals of calcium carbonate were smaller than 

5µm (Figure ‎6.7a). Crystals of CaCO3 had irregular cubic shape and were 

spread all over the sample surface. Crystals of calcium carbonate in the 

tests with alcohol ethoxy phosphate ester had more than 60µm diameter 

(Figure ‎6.7b). The shape is an irregular half sphere. It could be observed 

that there are a lot of small steps which are crystals growth sites. There were 

needle like crystals on the sample too. Crystals have spread quite evenly all 

over the sample but some agglomeration of crystals have been present too. 

Figure ‎6.7c presents the CaCO3 crystals on metal surface in the presents 

C12-C14 alkyldimethyl-benzylamonium chloride. In that tests calcium 

carbonate cover all most whole surface of the sampler. Average crystal size 

was around 20µm with very irregular rhombus shapes. Similar situations 
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could be observed in the tests with ethoxylated imidazolines in Figure ‎6.7d. 

The difference was that crystals have been slightly bigger around 30µm and 

cubic irregular shapes with more sharp edges. In the tests with PPCA no 

scale was observed on the metal sample (Figure ‎6.7e) 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure ‎6.7: Scanning electron micrographs of CaCO3 formed at the 
surface in the tests in the presence of single components of 
combined inhibitor: a) 2-mercaptoethanol, b) alcohol ethoxy 
phosphate ester; c) C12-C14 alkyldimethyl-benzylamonium 
chloride and d) ethoxylated imidazolines and e) PPCA 
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In Figure ‎6.8 XRD spectra of the scales formed in the tests in the presence 

of single components of combined inhibitor are presented. In Figure ‎6.8a the 

XRD spectra of tests with 2-mercaptoethanol are presented and only calcite 

peaks can be observed. In the tests with alcohol ethoxy phosphate ester, 

C12-C1 alkyldimethyl-benzylamonium chloride and ethoxylated imidazolines 

(Figure ‎6.8b, c and  d) peaks for  calcite and aragonite are detected, while in 

the tests with PPCA no calcium carbonate peaks can be observed (Figure 

‎6.8e). 

Table ‎6.5 shows results from Rietveld analysis in the tests in the presence of 

single components of combined inhibitor. The calcite is the only polymorph 

formed in the tests with 2-mercaptoethanol. In the tests with alcohol ethoxy 

phosphate ester and ethoxylated imidazolines two polymorphs of calcium 

carbonate have precipitated on the metal surface: calcite and aragonite. 

Accordingly 99.8% of calcite and 0.2% of aragonite in the tests with alcohol 

ethoxy phosphate ester, while in the test with ethoxylated imidazolines 99% 

of calcite and 1% of aragonite. In the tests with C12-C14 alkyldimethyl-

benzylamonium chloride scale formed on metal surface contained 93% of 

calcite and 7% of aragonite (Table ‎6.5). 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

Figure ‎6.8: XRD spectrum of scale formed in the tests in the presence 
of single components of combined inhibitor: a) 2-
mercaptoethanol, b) alcohol ethoxy phosphate ester; c) C12-C14 
alkyldimethyl-benzylamonium chloride; d) ethoxylated 
imidazolines and e) PPCA 
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Table ‎6.5: Different polymorphs of CaCO3 formed in the tests in the 
presence of single components of combined inhibitor by Rietveld 
Analysis 

Test % Calcite % Aragonite 

2-mercaptoethanol 100 - 

alcohol ethoxy 

phosphate ester 

99.8 0.2 

C12-C14 

alkyldimethyl-

benzylamonium 

chloride 

93 7 

ethoxylated 

imidazolines 

99 1 

6.5 Systematic ranking of the single components of the 

combined inhibitor 

The single components of combined inhibitors were systematically ranked 

according to their effect on the 4 key parameters: general corrosion, pitting 

corrosion, bulk scaling (induction time and amount of calcium sustained in 

the bulk solution) and surface scaling. In Table ‎6.6 the effect on general 

corrosion and pitting corrosion are ranked according to the values of 

corrosion rate and pit depth. 

Table ‎6.6: Effect of the single components of combined inhibitor effect 
on general corrosion and pitting corrosion 

General 

corrosion –  

(CR) mm/year 

Effect Pitting 

corrosion – (pit 

depth) µm 

Effect 

CR‎≤‎0.1 1 pit depth < -10 1 

0.1 < CR < 0.5 2 -10 < pit depth < 

-15 

2 

0.5 < CR < 2 3 -15 < pit depth < 

-25 

3 

CR > 2 4 pit depth > -25 4 

 

In Table ‎6.7 how the inhibitor has an effect on induction time and the amount 
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amount of calcium sustained in the bulk solution and surface scaling are 

ranked. 

Table ‎6.7: Effect of the single components of combined inhibitor effect 
on induction time, amount of calcium sustained in the bulk 
solution and surface scaling 

Induction time – 

(IT) min 

Effect Amount of 

calcium 

sustained in the 

bulk solution on 

the end of the 

tests – (AC) 

ppm 

Effect 

IT > 240 1 AC > 900 1 

240 > IT >120 2 900 > AC > 750 2 

120 > IT > 15 3 750 > AC > 600 3 

IT < 15 4 AC < 600 4 

Amount of calcium on metal 

surface after the tests –  

surface scale (SS) mg/cm2 

Effect 

SS < 0.1 1 

0.1 < SS < 0.25 2 

0.25 < SS < 0.5 3 

SS > 0.5 4 

The aim of systematically ranking the single components is primarily to 

establish a pragmatic assessment of the inhibitor effects. Each parameter is 

assigned a number and it is considered with the same importance. So each 

parameter coefficient was equal 1, all numbers multiplied with each other to 

give a total number. The single component with the smaller total number is 

considered as the more efficient component. Each parameter coefficient 

could be changed to represent the difference in importance (2, 3, etc.) 

according to the application of the single components. So, for a system 

requiring better inhibition against general corrosion, a higher coefficient 

could be applied. This is not done in the thesis and a simple assessment is 

made onto 4 aspects of scaling and corrosion. 
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In Table ‎6.8 the systematic ranking of the single components of the 

combined inhibitor is presented. 

Table ‎6.8: Ranking of the single components of combined inhibitor  

Name of the single 

components 

CR Pit 

depth 

IT AC SS Total 

number 

effect 
corrosion scaling 

2-mercaptoethanol 1 1 4 3 1 12 

alcohol ethoxy 

phosphate ester 

4 3 3 3 3 324 

C12-C14 

alkyldimethyl-

benzylamonium 

chloride 

1 4 4 4 4 256 

ethoxylated 

imidazolines 

1 4 4 3 4 192 

PPCA 3 2 1 1 1 6 

The Polyphosphinocarboxylic acid (PPCA) has the best inhibition effect (6) 

on the whole system where corrosion (general and pitting) and scaling 

(induction time, amount of calcium sustained in the bulk solution and surface 

scaling) are assessed. While the 2-mercaptoethanol effect (12) was slightly 

higher than PPCA. PPCA is less effective against corrosion than  

2-mercaptoethanol while PPCA is outperforming 2-mercaptoethanol in of 

scale prevention. The least inhibition effect on the whole system of the 

singles components is alcohol ethoxy phosphate ester (324). 

6.6 Summary 

Corrosion and scale results in the presence of single components of 

combined inhibitor when all processes were occurring simultaneously were 

presented. The following conclusions could be reached: 

 The smallest corrosion rate was measured in the tests with C12-C14 

alkyldimethyl-benzylamonium (0.06 mm/year) chloride and 

ethoxylated imidazolines (0.09 mm/year) 

 The highest corrosion rate was measured in the test with alcohol 

ethoxy phosphate ester – 2.23 mm/year 
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 The smallest pit was measured in the test with 2-mercaptoethanol – 

7.3 µm while the deepest in the tests with C12-C14 alkyldimethyl-

benzylamonium 32.1 µm 

 The shortest induction time was measured in the tests with 2-

mercaptoethanol, C12-C14 alkyldimethyl-benzylamonium chloride 

and ethoxylated imidazolines – 5 minutes 

 Polyphosphinocarboxylic acid prevent any bulk precipitation for whole 

duration of tests (>240 minutes)  

 No surface scaling was measured in the tests with 

polyphosphinocarboxylic acid while the biggest amount of calcium 

was detected in the tests with C12-C14 alkyldimethyl-benzylamonium 

chloride 

 100% calcite precipitated on surface in the tests with 2-

mercaptoethanol 

 The single components of combined inhibitor was ranked 

systematically 

 Polyphosphinocarboxylic acid (PPCA) has the best inhibition effect on 

the whole system from all single components 

 The smallest inhibition effect on the whole system was seen for 

alcohol ethoxy phosphate ester 
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Chapter 7  

Corrosion and scale results in the presence of combined 

inhibitor 

7.1 Introduction 

In the previous chapter an evaluation of the single components of the 

inhibitor was made. In this chapter the formation of an optimum inhibitor is 

assessed. In this chapter, a Design of Experiments (DOE) methodology was 

used: 25 full factorial design method. DOE gives a well-defined framework for 

data collection, analysis and interpretation. This approach can help to 

answer how different factors (single components) influence an interesting 

variable of interest have for: general corrosion, localised corrosion, bulk 

scaling and surface scaling. A factorial experiment was analysed using the 

analysis of variance (ANOVA). To calculate the quantitative effects of single 

component inhibitor and their interactions: on general corrosion, localized 

corrosion, surface scaling and bulk precipitation. The corrosion and scale 

occurring simultaneously was studied using a new bubble cell/jar test in the 

presence of the individually composed (blended) combined inhibitor. In order 

to measure and assess the general corrosion and pitting corrosion, LPR, 

Tafel plots and light interferometry were used. The scale was observed 

using SEM. 

7.2 Experimental matrix - 25 full factorial design method 

The experimental tests in this study focused on 5 single components of 

combined inhibitor (25 full factorial design method). Each parameter was set 

at two levels, thus there were 2 × 2 × 2 ×2× 2 = 32 trials for one combined 

inhibitor (Table ‎4.4). The experimental design was explained in details in 

Chapter ‎Chapter 4 in section ‎4.6.  

25ppm of blended combined inhibitor was present in 1 litre solution. The 

concentration (v/v%) of single components in combined inhibitor blend was 

set accordingly: 

 corrosion inhibitor : 0.5v/v% low (L) and  10v/v% high (H)  

 scale inhibitor: 1v/v% low (L) and 20v/v% high (H)  

 souring agent: 0.25v/v% low (L) and 5 v/v% high (H)  

 rest of solvent 
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The assessment of the inhibitor component effects was done via 

consideration of the 4 measurements considered to represent a full 

evaluation of corrosion/scale: a) general corrosion rate, b) pitting corrosion, 

c) bulk scale and d) surface scale. 

7.3 Corrosion results 

7.3.1 General corrosion 

Table ‎7.1 shows the corrosion rate at the end of the 4 hour tests in all 32 test 

runs (composition of combined inhibitor blend can be found in Table ‎4.4).  

Table ‎7.1: Corrosion rate at the end of the tests with different 

combinations of single components in the combined inhibitor 

after 4 hours 

Number of run Corrosion rate 

(mm/year) 

Number of run Corrosion rate 

(mm/year) 

Run 1 0.03   ±0.005 Run 17 0.13   ±0.02 

Run 2 0.04   ±0.02  Run 18 0.08   ±0.05 

Run 3 0.67   ±0.2  Run 19 0.05   ±0.01 

Run 4 0.13   ±0.03 Run 20 2.11   ±0.3 

Run 5 0.05   ±0.02 Run 21 0.11   ±0.06 

Run 6 0.04   ±0.01 Run 22 0.18   ±0.05 

Run 7 0.06   ±0.02 Run 23 0.10   ±0.05 

Run 8 0.03   ±0.01 Run 24 0.17   ±0.02 

Run 9 0.03   ±0.01 Run 25 0.05   ±0.01 

Run 10 0.05   ±0.02 Run 26 0.06   ±0.02 

Run 11 0.18   ±0.2 Run 27 0.03   ±0.01 

Run 12 1.37   ±0.2 Run 28 0.20   ±0.2 

Run 13 0.10   ±0.2 Run 29 0.09   ±0.5 

Run 14 0.03   ±0.01 Run 30 0.09   ±0.03 

Run 15 0.09   ±0.02 Run 31 0.04   ±0.02 

Run 16 0.09   ±0.01 Run 32 0.09   ±0.06 
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7.3.2 Localized corrosion 

Table ‎7.2 shows the deepest pits in all 32 tests runs (composition of 

combined inhibitor blend can be found in Table ‎4.4). The tests results can be 

dived in to three groups: pits below 5 µm, between 5 and 15 µm and pits 

deeper than 15 µm.  

Table ‎7.2: Deepest pits in the tests with different combination of single 

components in combined inhibitor after 72hrs 

Number of run Pit depth (µm) Number of run Pit depth (µm) 

Run 1 5.9 Run 17 8.0 

Run 2 6.7 Run 18 2.4 

Run 3 11.1  Run 19 2.7 

Run 4 15.0 Run 20 29.3 

Run 5 7.3 Run 21 12.8 

Run 6 10.8 Run 22 6.9 

Run 7 10.5 Run 23 7.2 

Run 8 10.0 Run 24 4.5 

Run 9 9.1 Run 25 3.7 

Run 10 4.2 Run 26 4.5 

Run 11 25.9 Run 27 2.8 

Run 12 29.3 Run 28 20.2 

Run 13 7.2 Run 29 10.0 

Run 14 6.0 Run 30 6.2 

Run 15 3.4 Run 31 9.9 

Run 16 11.4 Run 32 26.5 
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7.4 Bulk and surface scaling results 

7.4.1 Bulk solution scaling 

7.4.1.1 Turbidity results 

The induction time results in the tests with different combinations of single 

components in combined inhibitor in bulk solution are presented in Table 

‎7.3. The. 

Table ‎7.3: The induction time results in the tests with different 
combination of single components in combined inhibitor in bulk 
solution 

Number of run Induction time 

(minutes) 

Number of run Induction time 

(minutes) 

Run 1 10 Run 17 >240 

Run 2 10 Run 18 >240 

Run 3 20 Run 19 >240 

Run 4 >240 Run 20 20 

Run 5 >240 Run 21 10 

Run 6 >240 Run 22 75 

Run 7 20 Run 23 40 

Run 8 10 Run 24 >240 

Run 9 60 Run 25 >240 

Run 10 >240 Run 26 >240 

Run 11 20 Run 27 5 

Run 12 15 Run 28 >240 

Run 13 >240 Run 29 50 

Run 14 120 Run 30 >240 

Run 15 >240 Run 31 15 

Run 16 >240 Run 32 >240 
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7.4.2 Inductively coupled plasma mass spectrometry (ICP – MS) 

results from bulk solution 

Table ‎7.4 shows the amount of calcium sustained in the bulk solution by the 

combined inhibitor blend in all 32 tests runs (composition of combined 

inhibitor blend can be found in Table ‎4.4).  

Table ‎7.4 ICP-MS results in the tests with different combinations of 

single components in combined inhibitor in bulk solution 

Number of 

run 

Amount of calcium 

in bulk on the end 

of tests  

(ppm) 

Number of run Amount of 

calcium in bulk on 

the end of tests  

(ppm) 

Run 1 697 Run 17 904 

Run 2 720 Run 18 909 

Run 3 701  Run 19 910 

Run 4 910 Run 20 652 

Run 5 913 Run 21 674 

Run 6 908 Run 22 696 

Run 7 792 Run 23 744 

Run 8 817 Run 24 915 

Run 9 912 Run 25 902 

Run 10 915 Run 26 908 

Run 11 701 Run 27 698 

Run 12 608 Run 28 909 

Run 13 913 Run 29 724 

Run 14 683 Run 30 911 

Run 15 915 Run 31 643 

Run 16 911 Run 32 906 
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7.4.3 Surface scale 

7.4.3.1 Inductively coupled plasma mass spectrometry (ICP – MS) 

results from surface 

Table ‎7.5 shows the amount of calcium deposited on the metal surface in 

the presence of combine inhibitor blend in all 32 tests runs (composition of 

combined inhibitor blend can be found in Table ‎4.4).  

Table ‎7.5 ICP-MS results in the tests with different combination of 
single components in combined inhibitor on metal surface 

Number of run Amount of 

calcium on 

metal surface  

(mg/cm2) 

Number of run Amount of 

calcium on 

metal surface  

(mg/cm2) 

Run 1 0.61 Run 17 0 

Run 2 0.41 Run 18 0 

Run 3 0.41  Run 19 0 

Run 4 0 Run 20 0.41 

Run 5 0 Run 21 0.82 

Run 6 0 Run 22 1.02 

Run 7 2.04 Run 23 2.65 

Run 8 0.82 Run 24 0 

Run 9 0 Run 25 0 

Run 10 0 Run 26 0 

Run 11 0.82 Run 27 1.84 

Run 12 0.20 Run 28 0 

Run 13 0 Run 29 2.65 

Run 14 0.41 Run 30 0 

Run 15 0 Run 31 0.82 

Run 16 0 Run 32 0 
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7.4.3.2 Inductively coupled plasma mass spectrometry (ICP – MS) 

results from surface 

In Table ‎7.6 and Table ‎7.7 a description of size and structure of CaCO3 

formed in the tests with different combinations of single components in all 32 

tests runs are presented (composition of combined inhibitor blends can be 

found in Table ‎4.4). 

Table ‎7.6 Size and structure of CaCO3 formed in the tests (Run 1 to Run 
16) with different combination of single components in combined 
inhibitor 

Test No Scale Structure Size 

Run 1  clusters, crystal small < 20 µm 

Run 2  clusters, crystal small< 10 µm 

Run 3  clusters, crystal small < 20 µm 

Run 4  crystal small < 2 µm 

Run 5  crystal small < 2 µm 

Run 6 none   

Run 7  crystals 

clusters, crystal 

big > 100 µm 

small < 30 µm 

Run 8  crystal 

clusters 

big > 100 µm 

small < 20 µm 

Run 9  crystal, clusters big > 80 µm 

Run 10 none   

Run 11  clusters, crystal small < 30 µm 

Run 12  clusters, crystal small < 30 µm 

Run 13 none   

Run 14  clusters  

crystal 

big > 80 µm 

small < 2 µm 

Run 15 none   

Run 16  crystal small < 2 µm 
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Table ‎7.7 Size and structure of CaCO3 formed in the tests (Run 17 to 
Run 32) with different combination of single components in 
combined inhibitor 

Run 17  crystal small < 2 µm 

Run 18  crystal small < 2 µm 

Run 19 none   

Run 20  crystal 

clusters 

small < 20 µm 

Run 21  crystal 

clusters 

small < 20 µm 

Run 22  crystal 

clusters 

big > 100 µm 

Run 23  crystal 

clusters 

small < 30 µm 

Run 24  crystal small < 2 µm 

Run 25 none   

Run 26 none   

Run 27  crystal 

clusters 

small < 20 µm 

Run 28  crystal small < 2 µm 

Run 29  crystal 

clusters, crystal 

big > 80 µm 

small < 30 µm 

Run 30  crystal small < 2 µm 

Run 31  crystal 

clusters 

small < 20 µm 

Run 32  crystal small < 2 µm 

In Figure ‎7.1 the different forms of scale formed during the tests with 

presence of combine inhibitor blend in all 32 tests runs (composition of 

combined inhibitor blend can be found in Table ‎4.4) are presented. In Figure 

‎7.1a a representation of the surface where no scale is formed is presented – 

Run 25. Figure ‎7.1b represents a surface where clusters were found – Run2. 
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Figure ‎7.1 represents a surface where single crystals <20 µm which were 

present on surface – Run21. In Figure ‎7.1d the surface it is an example 

(Run16) where crystals were found smaller than 2 µm. An example of 

crystals bigger than 80 µm found on surface during the test is shown in Run9 

(Figure ‎7.1e). 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure ‎7.1: Examples of scale formed during the test: (a) none scale – 
Run 25, (b) clusters – Run2, (c) small crystals <20 µm – Run 21, (d) 
smaller crystals than 2 µm – Run16 and (e) crystals bigger >80 µm 
– Run9 
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The test results can be divided in to 3 groups: first group – none and scale 

crystals on surface smaller than 2µm, group two – the crystal size on the 

surface from 2µm to 80µm and group three – the crystal size on surface 

larger than 80µm. In the Table ‎7.8 the amount of calcium on the metal 

surface is presented in two groups. 

Table ‎7.8: Crystals formed during the test with different combination of 
combined inhibitor divided into in three groups 

Crystal size on surface (µm) Number of run 

>2µm 4, 5, 6, 10, 13, 15, 16, 17, 18, 19, 24, 

25, 26, 28, 30, 32 

2> µm >80 1, 2, 3, 11, 12, 20, 21, 23, 27, 31 

>80µm 7, 8, 9, 14, 22, 29 

In the group with crystals on surface smaller than 2µm all runs had high 

concentration of scale inhibitor (PPCA). The tests runs with crystals larger 

than 80µm had high concentration of CI1 (alcohol ethoxy phosphate ester) 

added to combined inhibitor blend. 

7.4.4 Empirical equation 

An empirical equation can be generated from the DoE results to link the 

inputs (inhibitor concentration values) to the outputs (general corrosion, 

localised corrosion, surface scale and bulk scale). First with help of Half-

Normal Probability plot, the factors (the single components of combined 

inhibitor or interaction between them) which had the biggest effect on the 

response (general corrosion, localized corrosion, surface scaling and bulk 

precipitation) were identified. Then with the help of Design-Expert [225] the 

empirical equation was calculated. The letters A, B, C, D and E are coded 

factors by Design-Expert accordingly to CI1, CI2, CI3, SI and SA which are 

actual inputs to the software.  

The half-normal probability plot (Figure ‎7.2) is a graphical tool that helps 

assess which factors are important and which are unimportant. A half-normal 

probability plot is formed by horizontal axis from which factors (interactions) 

having the greatest effect on response are read and the vertical axis are 

given by the idealized expected values for this number of effects and ranked 

by increasing value.  
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Figure ‎7.2 should be read as follow. All factors and their interactions 

highlighted on blue (E, A, EA, DE, ADE, AD and D) have greatest effect on 

general corrosion. These factors and interactions have greatest effect as 

there are place in graph very close to the highest effect value (5) on x axis 

named Effect. In the similar way, Figure ‎7.4, Figure ‎7.6 and Figure ‎7.8 

should be read. 

 

Figure ‎7.2: Half-Normal Probability Plot showing the effect of the single 
components of combined inhibitor and their interaction on 
inhibition of general corrosion            

7.5 ANOVA analysis of general corrosion inhibition 

Table ‎7.9 shows the quantitative effects of the single component of inhibitors 

and their interactions on the general corrosion calculated by the analysis of 

variance (ANOVA) approach. Final values of general corrosion rate from all 

32 tests runs (Table ‎7.1) were used to calculate the percentages shown in 

Table ‎7.9; these are the values of the sum of squares for that variable 

relative to the total sum of squares for all variables. A higher percentage 

correlates to that parameter having a greater effect.  

Table ‎7.9 The contributions of single components and their interaction 
to inhibition of general corrosion 

SA CI1 SI CI2 CI3 

10% 9.7% 7.2% 2.8% 0.4% 

CI1,SA SI,SA CI1,SI CI1,SI,SA - 

9.5% 9% 7.9% 8.6% - 
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In the table results are presented for all single components as well as their 

interactions. However, interactions are only presented in the table if they 

contributed more than 7%. In this study all parameters which contributed 

less than 7% are considered insignificant because in the Half-Normal 

Probability Plot (Figure ‎7.2) the single components of combined inhibitor and 

interaction which has significant effect were identified. Using the 

contributions of single components and their interaction results the following 

empirical relationship (Equation (‎7-1)) was developed for general corrosion 

inhibition. Figure ‎7.3 presents a 2D-countour plot of the empirical 

relationship is presented based on the experiments results. 

𝐺𝐶𝑖 =  − 0.47 ∗ 𝐶𝐼1 

                                                   − 0.23 ∗ 𝑆𝐼 

                                                   − 0.96 ∗ 𝑆𝐴 

                                                   + 0.09 ∗ 𝐶𝐼1 ∗ 𝑆𝐼 

                                                   + 0.38 ∗ 𝐶𝐼1 ∗ 𝑆𝐴 

                                                   + 0.19 ∗ 𝑆𝐼 ∗ 𝑆𝐴 

                                                   − 0.07 ∗ 𝐶𝐼1 ∗ 𝑆𝐼 ∗ 𝑆𝐴 

(‎7-1) 

where: GCi – general corrosion inhibition, CI1 – corrosion inhibitor 1,  
SI – scale inhibitor and SA – souring agent 
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Figure ‎7.3: 2D-countour plot of empirical relationship of general 
corrosion inhibition 
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7.6 ANOVA analysis of localized corrosion inhibition 

In Table ‎7.10 results are presented of the quantitative effects of single 

components inhibition and their interactions on the localized corrosion 

calculated by the analysis of variance (ANOVA) approach.  

Table ‎7.10: The contributions of single components and their 
interaction to inhibition of localized corrosion 

SA CI1 SI CI3 CI2 CI1,SA 

34.2% 18.7% 5.1% 2.1% 0.3% 10.9% 

The deepest pit values from all 32 tests runs (Table ‎7.2) were used to 

calculate the percentages shown in Table ‎7.10; these are the values of the 

sum of squares for that variable relative to the total sum of squares for all 

variables. Higher percentage values correlate to inhibitor (or interaction) 

having a greater effect. In the table results for all single components as well 

as their interactions are presented. However, interactions are only presented 

in the table if it contributed more than 7%. In this study all parameters which 

contributed less than 7% are considered insignificant because in the Half-

Normal Probability Plot (Figure ‎7.4) the single components of combined 

inhibitor and interaction which has significant effect were identify. Using 

contributions of single components and their interaction results the following 

empirical relationship (Equation (‎7-2)) was developed for localized corrosion 

inhibition. In Figure ‎7.5 is presented a 2D-countour plot of empirical 

relationship based on results from 32 tests runs and empirical relationship. 

 

Figure ‎7.4: Half-Normal Probability Plot showing the effect of the single 
components of combined inhibitor and their interaction on 
inhibition of localized corrosion 
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    𝐿𝐶𝑖 = 21.9 
                                                     − 5.1 ∗ 𝐶𝐼1 
                                                     − 12.1 ∗ 𝑆𝐴 
                                                     + 3.6 ∗ 𝐶𝐼1 ∗ 𝑆𝐴 

(‎7-2) 

where: LCi – localized corrosion inhibition, CI1 – corrosion inhibitor 1 
and SA – souring agent 

 

 

Figure ‎7.5: 2D-contour plot of empirical relationship of localized 
corrosion inhibition 

7.7 ANOVA analysis of bulk scaling inhibition 

Table ‎7.11 show the quantitative effects of single components and their 

interactions on the bulk scaling calculated by the analysis of variance 

(ANOVA) approach. Maximum values of the turbidity from all 32 tests runs 

(Figure) were used to calculate the percentages shown in Table ‎7.11; these 

are the values of the sum of squares for that variable relative to the total sum 

of squares for all variables. Higher percentage values correlate to that 

parameter having a larger effect. In the table results for all single 

components as well as their interactions are presented. However, 

interactions are only presented in the table if they contributed more than 7%. 

In this study all parameters which contributed less than 7% are considered 

insignificant because in the Half-Normal Probability Plot (Figure ‎7.6) the 
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single components of combined inhibitor and interaction which has 

significant effect were identify.  

Table ‎7.11: The contributions of single components and their 
interaction to inhibition of bulk scaling inhibition 

SI CI1 SA CI2 CI3 CI1,SI 

81.6% 0.24% 0.24% 0.07% 0.04% 4.2% 

 

 

Figure ‎7.6: Half-Normal Probability Plot showing the effect of the single 
components of combined inhibitor and their interaction on 
inhibition of bulk scaling 

Using contributions of single components and their interaction results the 

following empirical relationship (Equation (‎7-3)) was developed for bulk 

scaling inhibition. In Figure ‎7.7 is presented a 2D-countour plot of empirical 

relationship based on results from 32 tests runs and empirical relationship . 

𝐵𝑆𝑖 = 67 ∗ 𝑆𝐼 (‎7-3) 

where: BSi – bulk scaling inhibition and SI – scale inhibitor 
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Figure ‎7.7: Linear graph of empirical relationship of bulk scaling 
inhibition 

7.8 ANOVA analysis of surface scaling inhibition 

In Table ‎7.12 results of the quantitative effects of single components and 

their interactions inhibition on the surface scale calculated by the analysis of 

variance (ANOVA) approach are presented. The amount of calcium ions 

dissolved at the end of the end all 32 tests runs (Table ‎7.5) were used to 

calculate the percentages shown in Table ‎7.12; these are the values of the 

sum of squares for that variable relative to the total sum of squares for all 

variables. Higher percentage values correlate to inhibitor (or interaction) 

having a greater effect. In the table are presented results for all single 

components as well as their interactions. However, interaction is only 

presented in the table if it contributed more than 7%. In this study all 

parameters which contributed less than 7% are considered insignificant 

because in the Half-Normal Probability Plot (Figure ‎7.8) the single 

components of combined inhibitor and interaction which has significant effect 

were identify. 

Table ‎7.12: The contributions of single components and their 
interaction to inhibition of surface scaling 

SI CI1 SA CI3 CI2 CI,SI 

43.5% 8.1% 3.8% 0.8% 0.3% 7.9% 
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Figure ‎7.8: Half-Normal Probability Plot showing the effect of the single 
components of combined inhibitor and their interaction to 
inhibition of surface scaling 

Using contributions of single components and their interaction results the 

following empirical relationship (Equation (‎7-4)) was developed for surface 

scale inhibition. In Figure 9.1 is presented a 2D-countour plot of empirical 

relationship based on results from 32 tests runs and empirical relationship. 

𝑆𝑆𝑖 = 1.8 ∗ 𝐶𝐼1 

                                                    − 0.5 ∗ 𝑆𝐼 

                                                    − 0.4 ∗ 𝐶𝐼1∗𝑆𝐼 

(‎7-4) 

where: SSi – surface scale inhibition, CI1 – corrosion inhibitor 1  
and SI – scale inhibitor 

 

Figure ‎7.9: 2D-contour plot of empirical relationship of surface scale 
inhibition 
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Validation is the task of determining that the model is a reasonable 

representation of the real system: that it imitate system behaviour with 

enough fidelity to satisfy analysis objectives. There are three approaches to 

model validation and any combination of them may be applied as suitable to 

the different aspects of a particular model. 

These approaches are: 

•‎real‎system‎measurements, 

•‎expert‎intuition, 

•‎theoretical‎results/analysis. 

 

In this case Real System Measurements comparison with a real system 

would be the most reliable and preferred way to validate a simulation model. 

In this PhD project, the validation of the empirical equations (model) could 

not be done due to time restrictions. 

7.9 Summary 

 2-mercaptoethanol has the greatest effect on general corrosion 

inhibition as single component (10%) of combined inhibitor although 

alcohol ethoxy phosphate ester effect was slightly lower 9.7% 

 2-mercaptoethanol has the greatest effect on pitting corrosion 

inhibition as single component (34.2%) of combined inhibitor although 

alcohol ethoxy phosphate ester effect was also significant (18.7%)  

 Polyphosphinocarboxylic acid have the greatest on bulk scale 

inhibition – 81.6% 

 Polyphosphinocarboxylic acid has the greatest effect on surface scale 

inhibition as single component (43.5%) of combined inhibitor although 

alcohol ethoxy phosphate ester effect was lower - 8.1% 
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Chapter 8  

FTIR and RAMAN spectroscopy analysis of single 

components of combined inhibitors 

8.1 Introduction 

Scanning electron microscope images showed that the presence of 

inhibitors can lead to the formation of different shapes and sizes of calcium 

carbonate scale during the tests with single components and combined 

inhibitor. Some further analyses were carried out (Fourier Transform Infrared 

Spectroscopy and Raman spectroscopy) to characterise the interactions 

between the single components and calcium carbonate or iron carbonate 

formed on the metal sample. 

8.2 FTIR analysis of single components and interaction with 

calcium carbonate and iron carbonate 

8.2.1 FTIR analysis of single components and interaction with 

calcium carbonate 

In Figure ‎8.1 the IR-spectrum of neat liquid 2-mercaptoethanol is presented. 

The rest of the single component IR-spectra are presented in Appendix A. 

Figure ‎8.2 presents IR-spectra calcium carbonate formed with presence of 

2-mercaptoethanol in solution, reference IR-spectrum of calcium carbonate 

and carbon steel. Scanning electron microscope images (Figure ‎6.7) 

showed some interactions between the inhibitors and scale formed on the 

metal sample. During the first stage, calcium carbonate was formed on the 

sample then 1.25ppm of 2-mercaptoethanol was added to the test solution 

and the test continued for another 4 hours. From comparison of the 

spectrum in Figure ‎8.2 it is clear that no residual inhibitor part of 2-

mercaptoethanol adsorbed to calcium carbonate precipitated on the metal 

surface. Two spectra are almost the same. However a small shift of calcium 

carbonate could be observed. A similar situation was observed with the 

remaining single components of combined inhibitor. In Table ‎8.1 peaks of 

calcium carbonate found in this PhD work and literature are presented. For 

further reference of IR-spectrum of calcium carbonate formed with the rest of 

single components, results have been presented in Appendix A.  
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The small difference in peaks values are caused by various shapes and size 

of crystals calcium carbonate formed on sample surface as well as different 

thickness of scale precipitated on sample surface. In literature is pointed that 

PPCA can incorporate into calcium carbonate lattice [109] and phosphate 

esters inhibitor form insoluble salt with Ca2+ ions on metal surface [182]. 

However, in this study no residual inhibitor part in all single components test 

was observed in FTIR analysis. This could be caused by low concentration 

of the single components used during the tests. 

 

Figure ‎8.1: Infrared spectrum for neat 2-mercaptoethanol 

Table ‎8.1: Peaks of calcium carbonate found in this PhD work and 
literature 

IR-spectrum of calcium 

carbonate with: 

Wavenumber (cm
-1

) Reference 

Blank 2536
1
, 1802

2
, 1403

3
, 1101

4
, 869

5
, 

713
6 

2530, 1785, 1430, 1080, 877, 715 

This work 

[227, 228]  

2-mercapthoethanol 2533, 1803, 1406, 1100, 870, 714 This work 

alcohol ethoxy phosphate 

ester 

2529, 1801, 1402, 1102, 869, 713 This work 

C12-C14alkyl dimethyl 

benzyl ammonium chloride 

2537, 1801, 1397, 1101, 870, 714 This work 

ethoxylated imidazolines 2531, 1799, 1405, 1086, 870, 712 This work 

Polyphosphinocarboxylic 

acid 

2529, 1803, 1404, 1102, 870, 713 This work 
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1- v1+v3, 
2- v1+v4, 

3- v3 asymmetric CO3 stretching, 4- v1 symmetric CO3 stretching, 5-

v2 CO3 out of plane bending, 6- v4 CO3 in plane bending 

                 

 

 

 

(a) 

 

 

 

(b) 

 

 

(c) 

Figure ‎8.2: Infrared spectrum for: a) calcium carbonate formed with 
presence of 2-mercaptoethanol, b) calcium carbonate reference 
and c) carbon steel 

8.2.2 FTIR analysis of single components and interaction with 

iron carbonate 

Figure ‎8.3 presents the IR-spectra for iron carbonate formed with presence 

of 2-mercaptoethanol in solution, the reference IR-spectrum of iron 

carbonate and carbon steel. During the first stage, iron carbonate was 

formed on the sample then 1.25ppm of 2-mercaptoethanol was added to the 

test solution and test continued for another 4hours. From comparison of the 

spectrum in Figure ‎8.3 it is clear that no residual inhibitor part of 2-

mercaptoethanol adsorbed to iron carbonate precipitated on the metal 

surface. The two spectra are almost the same. However a small shift of iron 

carbonate could be observed. A similar situation was observed with the 

remaining single components of combined inhibitor. In Table ‎8.2 peaks of 
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iron carbonate found in this PhD work and literature are presented. For 

further reference of IR-spectrum of calcium carbonate formed with the rest of 

single components, results have been presented in Appendix A. 

The small difference in peak values are caused by various shapes and size 

of crystals iron carbonate formed on sample surface as well as different 

thickness of scale precipitated on sample surface. In the literature it is shown 

that PPCA was not effective at preventing iron carbonate [229] and 

imidazoline at low concentration and promoted tightly packed FeCO3 scale 

[181]. However, in this study no residual inhibitor part in all single 

components test was observed in FTIR analysis. This could be caused by 

low concentration of the single components used during the tests. 

 

 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

 

(c) 

Figure ‎8.3: Infrared spectrum for: a) iron carbonate formed with 
presence of 2-mercaptoethanol, b) iron carbonate reference and c) 
carbon steel 
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Table ‎8.2: Peaks of iron carbonate found in this PhD work and literature 

IR-spectrum of iron carbonate 

with: 

Wavenumber (cm
-1

) Reference 

Blank 3330
1
, 1410

2
, 1356

3
, 1092

4
, 862

5
, 738

6 

3300, 1420, 1345, 1068, 860, 735 

This work 

[230, 231] 

2-mercapthoethanol 3331, 1411, 1356, 1088, 862, 738 This work 

alcohol ethoxy phosphate 

ester 

3340, 1414, 1356, 1090, 864, 739 This work 

C12-C14alkyl dimethyl benzyl 

ammonium chloride 

3322, 1407, 1345, 1086, 863, 739 This work 

ethoxylated imidazolines 3330, 1411, 1357, 1090, 862, 738 This work 

Polyphosphinocarboxylic acid 3335, 1414, 1356, 1087, 864, 739 This work 

1- -OH, 2, 3- v3 asymmetric CO3 stretching, 4- v1 symmetric CO3 stretching, 5-v2 CO3 

out of plane bending, 6- v4 CO3 in plane bending 

8.3 Raman analysis of single components and interaction 

with calcium carbonate and iron carbonate 

8.3.1 Raman analysis of single components and interaction with 

calcium carbonate 

In Figure ‎8.4 the Raman spectrum of neat liquid 2-mercaptoethanol is 

presented. The  spectra for the rest of the single components are presented 

in Appendix B. In Figure ‎8.5 calcium carbonate the Raman spectrum formed 

in the absence of inhibitors, the Raman spectrum of carbon steel and the 

Raman spectrum of interaction of 2-mercaptoethanol with calcium 

carbonate. During the first stage, calcium carbonate was precipitated on the 

metal sample in tests for 4hrs, then 1.25ppm of 2-mercaptoethanol was 

added to the test solution and test continued for another 4hours. From 

Figure ‎8.5, it is clear that no residual inhibitor part of 2-mercaptoethanol 

adsorbed to calcium carbonate precipitated on the metal surface. In Table 

‎8.3 are presented peaks of calcium carbonate found in this PhD work and 

literature. Similar situation was observed with the reaming single 

components of combined inhibitor. Further results are presented in Appendix 

B. 

The small difference in peaks values are caused by various shapes and size 

of crystals calcium carbonate formed on sample surface as well as different 



- 126 - 

thickness of scale precipitated on sample surface. In literature is pointed that 

PPCA can incorporate into calcium carbonate lattice [109] and phosphate 

esters inhibitor form insoluble salt with Ca2+ ions on metal surface [182]. 

However, in this study no residual inhibitor part in all single components test 

was observed in Raman analysis. This could be caused by low 

concentration of the single components used during the tests. 

 

Figure ‎8.4: Raman spectrum for neat 2-mercaptoethanol 

Table ‎8.3: Peaks of calcium carbonate found in this PhD work and 
literature 

Raman spectrum of calcium 

carbonate with: 

Wavenumber (cm-1) Reference 

Blank 1561, 2822, 7123, 10874, 14385, 

17516 

156, 283, 713, 1086, 1436, 1749 

This work 

[232] 

2-mercapthoethanol 156, 282, 713, 1089, 1438, 1750 This work 

alcohol ethoxy phosphate 

ester 

156, 282, 713, 1089, 1438, 1748 This work 

C12-C14alkyl dimethyl benzyl 

ammonium chloride 

157, 283, 713, 1087, 1441, 1751 This work 

ethoxylated imidazolines 156, 282, 712, 1087, 1436, 1750 This work 

Polyphosphinocarboxylic 

acid 

156, 282, 713, 1087, 1439, 1750 This work 

1, 2- T – transitional lattice mode (Ca, CO3), 
3- v4 CO3 in plane bending, 4- v1 

symmetric CO3 stretching, 5- v3 asymmetric CO3 stretching, 6- v1+v4    



- 127 - 

 

 

 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

 

(c) 

Figure ‎8.5: Raman spectrum for: a) calcium carbonate formed with 
presence of 2-mercaptoethanol, b) calcium carbonate reference 
and c) carbon steel 

8.3.2 Raman analysis of single components and interaction with 

iron carbonate 

In Figure ‎8.6 iron carbonate Raman spectrum formed in the absence of 

inhibitors, Raman spectrum of carbon steel and Raman spectrum of 

interaction of 2-mercaptoethanol with iron carbonate. As in calcium 

carbonate scale tests, iron carbonate was precipitated on the metal sample 

in tests for 5hrs, then 1.25ppm of 2-mercaptoethanol (5ppm of PPCA) was 
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added to the test solution and test continued for another 4hours. In Table ‎8.4 

are presented peaks of iron carbonate found in this PhD work and literature. 

In Figure ‎8.6 could be observed characteristic peaks of iron carbonate at: 

215, 271, and 1087 cm-1. Similar situation is observed in the tests with 

alcohol ethoxy phosphate ester (212, 282, 1086 cm-1 - Table ‎8.4).  

Table ‎8.4: Peaks of iron carbonate found in this PhD work and literature 

Raman spectrum of iron 

carbonate with: 

Wavenumber (cm-1) Reference 

Blank 215, 285, 1087 

1941, 2752, 7343, 7454, 10825, 

17296, 17387 

This work 

[233-236] 

2-mercapthoethanol 215, 271, 1087 This work 

alcohol ethoxy 

phosphate ester 

212, 282, 1086 This work 

C12-C14alkyl dimethyl 

benzyl ammonium 

chloride 

214, 276 This work 

ethoxylated imidazolines 181, 277, 732, 1081, 1718 This work 

Polyphosphinocarboxylic 

acid 

186, 284, 746, 1084, 1727 This work 

1, 2- T – transitional lattice mode (Ca, CO3), 
3, 4- v4 CO3 in plane bending, 4- v1 

symmetric CO3 stretching, 5- v3 asymmetric CO3 stretching, 6, 7- v1+v4 

In the tests with C12-C14alkyl dimethyl benzyl ammonium chloride only two 

peaks 214, 276 cm-1 for iron carbonate could be observed. In the test with 

polyphosphinocarboxylic acid and ethoxylated imidazolines (Table ‎8.4) two 

other peaks which are associated with iron carbonate are present: 746 and 

1727 cm-1 for PPCA and 732 and 1718 cm-1 for ethoxylated imidazolines. 

The intensity of peak 1081cm-1 for PPCA and 1084 cm-1 ethoxylated 

imidazolines is bigger by one magnitude of order compare to the rest of 

Raman spectrums. no residual inhibitor part of 2-mercaptoethanol adsorbed 

to iron carbonate precipitated on the metal surface. Similar situation was 

observed with the reaming single components of combined inhibitor. A 

Raman spectrum shows peaks in region 389-399 cm-1 in all spectrums 

which is associated with goethite. For further reference results have been 

presented in Appendix B. 
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The small difference in peaks values are caused by various shapes and size 

of crystals iron carbonate formed on sample surface as well as different 

thickness of scale precipitated on sample surface. In literature is pointed that 

PPCA was not effective at preventing iron carbonate [229] and imidazoline 

at low concentration promoted tightly packed FeCO3 scale [181]. This 

explain why in the tests with PPCA and ethoxylated imidazolines more 

peaks and higher intensity of peaks (specially peak 1081,1084 accordingly) 

were observed. However, in this study no residual inhibitor part in all single 

components test was observed in Raman analysis. This could be caused by 

low concentration of the single components used during the tests.  
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(c) 

Figure ‎8.6: Raman spectrum for: a) iron carbonate formed with 
presence of 2-mercaptoethanol, b) iron carbonate reference and c) 
carbon steel 
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8.4 Summary 

 No residual part of single components inhibitors incorporated with the 

calcium carbonate, iron carbonate was observed in the FTIR analysis 

 No residual part of single components inhibitors (2-mercapthoethanol, 

alcohol ethoxy phosphate ester and C12-C14alkyl dimethyl benzyl 

ammonium chloride) incorporated with the calcium carbonate, iron 

carbonate was observed in the Raman analysis 

 Raman analysis revealed that, in the tests with 

Polyphosphinocarboxylic acid an extra peak and higher intensity of 

peaks was measured. This is in good agreement with the findings in 

the literature that PPCA was not effective at preventing iron carbonate 

formation 

 Raman analysis revealed that, in the tests with ethoxylated 

imidazolines an extra peak and higher intensity of peaks was 

measured. This is also in good agreement with the findings in the 

literature that imidazoline at low concentration promoted iron 

carbonate formation 
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Chapter 9  

Discussion 

9.1 Introduction 

In this chapter, three key points are discussed, new understanding of the 

interactions between corrosion and scale processes in the environment 

where no inhibitor is present; understand the effect of single components of 

the combined inhibitors on general corrosion, localized corrosion, bulk 

scaling and surface scale deposition.  Use an experimental design method 

to quantify the effects of the single components of the combined 

scale/corrosion inhibitor and/or synergistic effects on all four processes 

mention above. 

9.2 Corrosion and scale processes in an environment where 

both processes occurs simultaneously 

In this section, there are four main parts to discuss with respect to the 

behaviour of the scale-corrosion system: 

• X65 microstructure influences on formation of calcium carbonate  

• CO2 corrosion mechanism in calco-carbonic environment 

• Calcium carbonate role in localized pitting 

• A combined jar test/bubble cell as new method of assessment 

corrosion and scale interaction 

The carbon steel X65 used in this project has microstructure consisted of 

ferrite matrix with pearlite colonies (Figure ‎4.2). In CO2 corrosion due to the 

anodic reaction preferential dissolution of iron (Fe2+) from pearlite colonies 

occurs, leaving behind the uncorroded Fe3C phase (cementite) [237]. 

Simultaneously, calcium carbonate precipitation occurs in bulk and surface. 

At the same time the cathodic reactions occur (the most significant is 

considered the hydrogen-evolution reaction (Equation (‎2-29)) [51]. This 

reaction is influenced by the pH. As calcium carbonate forms on the surface 

(Figure ‎5.8), due to this formation (Equation (‎2-2 and (‎2-3)) it is providing an 

excess of hydrogen ions (H+) in the close vicinity to the sample which lowers 

the pH‎ in‎ this‎area‎ (not‎whole‎bulk‎solution‎pH‎≈6).‎ ‎ In‎ the‎systems‎where‎

the high concentration of H+ is present the cathodic reaction is dominating 

(pH lower than 4). From Tafel measurements (Figure ‎5.1) it could be 
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observed that in calco-carbonic/CO2 corrosion environment, general 

corrosion is government by the cathodic reaction [51]. The values of Tafel 

slopes measured were as expected. 

Figure ‎9.1 explains the early stages of interaction of calcium carbonate 

formation with carbon steel in CO2 corrosion environment at 80oC. The metal 

sample as soon as is immersed in solution starts corroding and losing iron 

ions (Fe2+) from the surface. The test solution is supersaturated with respect 

to‎calcium‎carbonate‎(SR‎≈40‎Table ‎4.2), so nuclei start forming immediately 

at the beginning of the test. After 5 minutes of test the first crystals of 

calcium carbonate are forming in the bulk solution (Figure ‎5.6). It could be 

assumed that calcium carbonate crystals are forming on surface too (Figure 

‎9.1 a), as the formation of crystals on the surface is government by primary 

heterogeneous nucleation. Primary heterogeneous nucleation is more 

predominant than primary homogeneous nucleation (which is associated 

with the formation of nuclei in the bulk solution (free of any particles or 

impurities) [31]. 

  

(a) 

 

(b) 

(c) 

 

Figure ‎9.1: Scale and corrosion surface interaction in calco-
carbonic/CO2 corrosion environment 



- 133 - 

For the remaining 4 hour tests calcium carbonate scale continues to 

precipitate on new sites on the sample and grows (Figure ‎9.1 c). This is 

supported by SEM images (Figure ‎5.8) which show that after 4 hours of the 

test most of the surface is covered with a dense calcium carbonate scale 

with some regions where the structure of uncorroded Fe3C remains which 

looks like as uniform corrosion attack.  

In Figure ‎9.2 explains that calcium carbonates favours precipitation on ferrite 

grains microstructure over pearlite grain.  Ferrite (constituent part of pearlite) 

easily dissolves from pearlite grains due to anodic reaction in sweet 

corrosion. This reaction with cathodic reaction on cementite causes internal 

acidification, which will change the local pH and local water chemistry and 

create an environment in which there is a smaller probability of formation of 

calcium carbonate on the surface (calcium carbonate forms easily at a high 

pH – pH test solution are presented in Figure ‎5.7). This is supported by SEM 

image Figure ‎5.3 and light microscope image of microstructure Figure ‎4.2. In 

Figure ‎5.3 it could be observed that scale which precipitated on ferrite grains 

is was dense and protective as polishing marks are clearly visible. The metal 

dissolution sites are in good agreement with the pearlite microstructure on 

image in Figure ‎4.2.   

 

Figure ‎9.2: Preferential sites of formation calcium carbonate on carbon 
steel X65 
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Pearlite forms the preferential sites where the pitting corrosion initiates [237]. 

Calcium carbonate formation around perlite areas provide source of extra H+ 

ions (not only from cathodic reaction in CO2 corrosion).  Calcium carbonate 

around pearlite make more difficult for solution from that recession/cavitation 

(pearlite areas) to mix with the rest of bulk solution and balance pH solution 

which cause internal acidification.  

At the test condition (Table ‎4.6) which tests were run in the absence of the 

combined inhibitor, calcite (92% - Table ‎5.4) was main component of scale 

presented on the surface.   The remaining 8 % of scale was aragonite. 

9.3 Inhibition effect of single components of combined 

inhibitor on corrosion and scale processes in the 

environment where both processes occurs 

simultaneously 

In this section, there are four main parts to discuss with respect to the of 

inhibition of the corrosion and scale in scale-corrosion system: 

• CO2 corrosion mechanism and inhibition by the single component 

in calco-carbonic environment 

• Effect of the single component on formation of calcium carbonate 

• The single component effect on localized corrosion 

• A combined jar test/bubble cell as new method of assessment of 

inhibitors in corrosion and scale system 

In order to assess the effect of the single component of combined inhibitor, 

the following parameters were assessed: general corrosion rate, pit depth, 

induction time of formation calcium carbonate crystals in bulk solution, 

maximum turbidity, amount of scale formed on the surface and amount of 

calcite in surface scale. 

9.3.1 Effect of 2-mercaptoethanol (souring agent) on corrosion 

and scale processes in the environment where both 

processes occurs simultaneously 

In Figure ‎9.3 results are presented which shows the effect of 2-

mercaptoethanol on the corrosion and scale processes and results from 

uninhibited tests. In Figure ‎9.3 it could be observed that in the tests with 2-

mercaptoethanol final corrosion rate was 0.1 mm/year. It was 2 times 

smaller than in the test without the single components. In the test without the 

single components the corrosion rate was lowered by the dense calcium 

carbonate formed on the sample surface (Figure ‎5.8) while in the tests with 
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2-mercapthoethanol the inhibition of general corrosion is caused by the 

adsorption of 2-mercapthoethanol to the metal surface. 2-mercaptoethanol 

reacted with the metals sample surface seconds after immersion in the test 

solution. This is evident after comparison of the initial general corrosion rate 

of tests with 2-mercapthoethanol - 0.72 mm/year (Figure ‎6.3) and uninhibited 

tests - 3.6 mm/year (Figure ‎5.2). The sample surface was covered by a 

dense film of 2-mercapthoethanol (Figure ‎9.4) with some small voids in the 

film formed where tiny crystals of calcium carbonate formed. 

 

Figure ‎9.3: Results presenting effect of all single components on 
corrosion and scale processes 

 

Figure ‎9.4: Schematic of film formed by 2-mercaptoethanol  
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Confirmation of that observation can be observed on SEM image presented 

in Figure ‎6.7a. In that figure it could be observed that the surface of the 

metal surface was well protected by film of 2-mercapthoethanol formed on 

the surface as the polishing marks are still visible on the surface. This is in 

good agreement with findings in the literature [238, 239].  

From Tafel measurements (Figure ‎6.1) it could be observed that in calco-

carbonic/CO2 corrosion environment, general corrosion in the presence of 

the 2-mercaptoethanol is government by the cathodic reaction. 2-

mercapthoethanol affected both an anodic and cathodic reaction compared 

to the tests without the single components. However, 2-mercaptoethanol had 

greater effect on the anodic reaction than cathodic reaction. It also shifts Ecorr 

to more cathodic potential -700 mV compare to blank test -684 mV (Table 

‎6.1). 

In Figure ‎6.7a it could be observed that scale crystals which precipitated on 

samples in the test with 2-mercapthoethanol are really small with the biggest 

crystal diameter around 10 µm. The crystals are spread all over the sample. 

Even though 2-mercaptoethanol did not completely prevent surface scale 

deposition (0.082 mg/cm2 - Figure ‎6.6), it significantly reduced the amount of 

scale compared to the blank test (2.14 mg/cm2 - Table ‎5.3).  This confirms 

that 2-mercapthoethanol adsorbed quickly on the metal surface and formed 

a dense film which gave some protection against surface scaling. 

2-mercapthoethanol has a great effect on the depth of the pit. It was able to 

reduce the depth of the pit more than 3 times; in the blank test pits were 24 

µm of deep (Table ‎5.1) compared to only 7 µm in the tests with 2-

mercaptoethanol (Table ‎6.2). In the literature was reported two different 

effects of 2-mercaptoethanol on pitting corrosion. Baker et al. [238] reported 

that 2-meraptoethanol caused pitting, while Jovancicevic et al. [188] reported 

good inhibition of pitting corrosion. In the blank tests, scale has played 

important role in localised corrosion. In the tests with 2-mercapthoethanol, 

which formed dense film on surface during the tests and reduced 

significantly amount of scale formed on the surface; 2-mercapthoethanol 

decreased the pit depth.  

Dense film of 2-mercapthoethanol which formed on the surface has affected 

polymorph of calcium carbonate which precipitated on the sample. Calcite 

was only polymorph which precipitated on sample in the tests with 2-

mercapthoethanol and this is a finding made for the first time.   
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The crystals which formed on the metal surface have rounded surfaces 

which could suggest that 2-mercapthoethanol interferes with crystal growth 

sites (crystal distortion effect). However, the results from FTIR and Raman 

analysis showed that no residual inhibitor part of 2-mercaptoethanol 

adsorbed to calcium carbonate crystals (Figure ‎8.2 and Figure ‎8.5). 2-

mercapthoethanol did not affect induction time as well as amount of scale 

formed in the bulk solution which would suggest that has no effect on 

nucleation process. 

9.3.2 Effect of alcohol ethoxy phosphate ester (corrosion 

inhibitor 1), C12-C14 alkyldimethyl-benzylamonium chloride 

(corrosion inhibitor 2) and ethoxylated imidazolines 

(corrosion inhibitor 3) on corrosion and scale processes in 

the environment where both processes occurs 

simultaneously 

In Figure ‎9.3 results are presented of effect of corrosion inhibitor 1, 2 and 3 

on corrosion and scale processes and results from uninhibited tests. In 

Figure ‎9.3 it could be observed that in the tests with alcohol ethoxy 

phosphate ester the final corrosion rate was 2.23 mm/year (It was 10 times 

higher than in the test without the single components). While in the test with 

C12-C14 alkyldimethyl-benzylamonium chloride and ethoxylated 

imidazolines was 0.06 and 0.09 mm/year.  

In the test without the single components the corrosion rate was lowered by 

the dense calcium carbonate formed on the sample surface (Figure ‎5.3). In 

Figure ‎6.3 could be observed that general corrosion trend in the tests with 

C12-C14 alkyldimethyl-benzylamonium chloride and ethoxylated 

imidazolines are very similar to general corrosion trend in the blank tests 

presented in Figure ‎5.2. Which suggested that the mainly inhibition in the 

tests with C12-C14 alkyldimethyl-benzylamonium chloride and ethoxylated 

imidazolines are caused by the formation of calcium carbonate scale on the 

metal surface followed by some adsorption of the single component to 

reduce the general corrosion (Figure ‎9.5) below corrosion measured in the 

uninhibited tests – 0.2 mm/year (Figure ‎5.2). Dense film of calcium 

carbonate is presented in the Figure ‎6.7c and d. 
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Figure ‎9.5: Schematic of film formed by C12-C14 alkyldimethyl-
benzylamonium chloride and ethoxylated imidazolines 

Different situation was observed in the tests with alcohol ethoxy phosphate 

ester the inhibition of general corrosion is caused first by the adsorption of 

alcohol ethoxy phosphate ester to the metal surface and followed by 

formation of calcium carbonate scale. Alcohol ethoxy phosphate ester 

reacted with the metals sample surface seconds after immersion in it to tests 

solution [182]. This is evident after comparison of the initial general corrosion 

rate of tests with alcohol ethoxy phosphate ester - 1.77 mm/year (Figure ‎6.3) 

and uninhibited tests - 3.6 mm/year (Figure ‎5.2). The sample surface was 

cover by film of alcohol ethoxy phosphate ester with some voids in the film 

formed where crystals of calcium carbonate formed. Confirmation of that 

observation can be made from SEM image presented in Figure ‎6.7b. In that 

figure it could be observed that the surface of the metal surface was not 

protected by film of alcohol ethoxy phosphate ester formed on the surface as 

some deterioration of the metal surface could be observed. In the literature 

was reported that imidazoline [240] and phosphate ester [239] are very 

effective inhibitors against general corrosion.  

Alcohol ethoxy phosphate ester and ethoxylated imidazolines are considered 

as oil soluble inhibitor [237, 241]. While C12-C14 alkyldimethyl-

benzylamonium chloride is considered as water soluble inhibitor [241]. Oil 

phase would form with long chain hydrocarbons barrier which would better 

protection against corrosion and scale (Figure ‎9.6). Even though alcohol 

ethoxy phosphate ester adsorbed immediately to the surface, it could not 

offer good protection against general corrosion. 



- 139 - 

 

Figure ‎9.6: Schematic of inhibitor film formation in presence of oil [241] 

From Tafel measurements (Figure ‎6.1 and Figure ‎6.2) it could be observed 

that in calco-carbonic/CO2 corrosion environment, general corrosion in the 

presence of corrosion inhibitor 1, 2 and 3 is government by the cathodic 

reaction. Alcohol ethoxy phosphate ester, C12-C14 alkyldimethyl-

benzylamonium chloride and ethoxylated imidazolines affected both an 

anodic and cathodic reaction compare to the tests without the single 

components. However, all corrosion inhibitors had slightly bigger effect on 

the cathodic reaction than anodic reaction. C12-C14 alkyldimethyl-

benzylamonium chloride shifted Ecorr to the most cathodic potential -700 

mV than ethoxylated imidazolines -698 mV and alcohol ethoxy phosphate 

ester -690 mV compare to blank test -684 mV (Table ‎6.1). 

In Figure ‎6.7b, c and d it could be observed that scale crystals which 

precipitated on samples in the test with all corrosion inhibitors. In the test 

with alcohol ethoxy phosphate ester, crystals were big with the average 

crystal diameter around 100 µm and were spread all over the sample. 

Different situation was observed in the test with C12-C14 alkyldimethyl-

benzylamonium chloride and ethoxylated imidazolines; in these tests small 

crystals with the average diameter around 20 µm and 30 µm accordingly 

formed on the surface and which covered almost whole the sample. Even 

though alcohol ethoxy phosphate ester, C12-C14 alkyldimethyl-

benzylamonium chloride and ethoxylated imidazolines did not prevent of the 

surface scale deposition it reduced amount of scale formed (0.47 mg/cm2, 

0.83 mg/cm2, 0.69 mg/cm2 - Figure ‎6.6 acordingly) compare to the blank test 
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(2.14 mg/cm2). As Alcohol ethoxy phosphate ester adsorbed really fast to 

the metal surface offered the best protection against surface scale 

deposition and confirms that did not form dense film on metal surface. 

From alcohol ethoxy phosphate ester, C12-C14 alkyldimethyl-

benzylamonium chloride and ethoxylated imidazolines only the first corrosion 

inhibitor reduced slightly the pit depth 19 µm, 32 µm and 30 µm accordingly 

(Table ‎6.2) compare to the test blank test 24 µm (Table ‎5.1). In the literature 

was reported that phosphate ester and imidazoline showed good inhibition of 

pit propagation [240], where in this thesis only phosphate ester showed 

small pitting corrosion inhibition. As was predominantly observed that scale 

has played an important role in localised corrosion in the blank tests, a 

similar situation was observed here with alcohol ethoxy phosphate ester. 

When big crystals formed close to each other, crystals form an environment 

between them where the solution pH was low due to formation of scale and 

corrosion processes and release H+ ions. Scale crystals which surround that 

area make it difficult for the solution to mix with the rest of the bulk solution 

and balance pH solution which causes internal acidification. It would appear 

that this is an environment conducive for pit initiation (Figure ‎9.7). 

 

Figure ‎9.7: Pit corrosion in the test with alcohol ethoxy phosphate 
ester 

Scale in the tests with C12-C14 alkyldimethyl-benzylamonium chloride and 

ethoxylated imidazolines precipitated in similar fashion as in the blank tests. 

Dense scale precipitated on ferrite grains leaving pearlite unprotected. 

Pearlite is preferential site in which the pitting corrosion initiates [237]. 

Calcium carbonate around perlite make more difficult for solution from that 

recession (pearlite areas) to mix with the rest of bulk solution and balance 

pH solution which cause internal acidification. Chlorides are compounds 

(C12-C14 alkyldimethyl-benzylamonium chloride) containing the element 

chlorine which, when it gains an electron and thus a negative charge, forms 
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the chloride ion. Chlorides ions play very important role of inducing pitting 

corrosion so this could explain deeper pit depth than in ethoxylated 

imidazolines and the blank tests. 

From all corrosion inhibitors, the alcohol ethoxy phosphate ester affects the 

polymorph of calcium carbonate which precipitated on the sample the most. 

Calcite (99.8%) was almost the only polymorph which precipitated on the 

sample in the tests with alcohol ethoxy phosphate ester (0.2% aragonite) 

compare to blank test surface scale composition - calcite 92% and aragonite 

8%. The ethoxylated imidazolines has a slightly smaller effect on the 

polymorph formed on the metal surface - 99% calcite and 1% aragonite. 

Scale composition in the tests with C12-C14 alkyldimethyl-benzylamonium 

chloride - 93% calcite and 7% aragonite is very similar to the blank test. 

The crystals which formed on the metal surface in the test with alcohol 

ethoxy phosphate ester have rounded surfaces and have a lot of step-like 

edges which suggest that alcohol ethoxy phosphate ester interferes with 

crystal growth sites (crystal distortion effect). The crystals which formed on 

the metal surface in the tests with C12-C14 alkyldimethyl-benzylamonium 

chloride and ethoxylated imidazolines have similar size and shape more 

cubic than in the blank tests. 

However, the results from FTIR and Raman analysis showed that no 

residual inhibitor part of alcohol ethoxy phosphate ester, C12-C14 

alkyldimethyl-benzylamonium chloride and ethoxylated imidazolines 

adsorbed to calcium carbonate crystals (Figure A.‎0.5, Figure A.‎0.6, Figure 

A.‎0.7, Figure ‎0.5, Figure ‎0.6 and Figure ‎0.7). 

9.3.3 Effect of polyphosphinocarboxylic acid (PPCA – scale 

inhibitor) on corrosion and scale processes in the 

environment where both processes occurs simultaneously 

In Figure ‎9.3 results are presented of effect of PPCA on corrosion and scale 

processes and results from uninhibited tests. In Figure ‎9.3 it could be 

observed that in the tests with PPCA final corrosion rate was 0.9 mm/year. It 

was more than 4 times higher than in the test without the single components 

(Figure ‎5.2). In the test without the single components the corrosion rate was 

lower by the dense calcium carbonate formed on the sample surface (Figure 

‎5.3) while in the tests with PPCA the inhibition of general corrosion is caused 

only by the adsorption of PPCA to the metal surface (Figure ‎6.7e). PPCA 

reacted with the metals sample surface seconds after immersion in it to tests 

solution. This is evident after comparison of the initial general corrosion rate 
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of tests with PPCA - 1.51 mm/year (Figure ‎6.3) and uninhibited tests - 3.6 

mm/year (Figure ‎5.2). PPCA film formation on metal surface is enhanced by 

electrochemical activity (cathodic sides) of sample surface and Ca2+ ions 

play important role by facilitating the transport and adsorption of the inhibitor 

[242]. In Figure ‎6.7d it could be observed that the surface of the metal 

surface was protected by film of PPCA formed on the surface as the 

polishing marks are still visible on the surface. 

From Tafel measurements (Figure ‎6.2) it could be observed that in calco-

carbonic/CO2 corrosion environment, general corrosion in the presence of 

the PPCA is government by the cathodic reaction. PPCA affected both an 

anodic and cathodic reaction compare to the tests without the single 

components. However, PPCA had greater effect on the cathodic reaction 

than anodic reaction. And it shift Ecorr to slightly more anodic potential -680 

mv compare to blank test -684 mv (Table ‎6.1). 

In Figure ‎6.7d it could be observed that scale did not precipitated on 

samples in the test with PPCA. As PPCA is nucleation inhibitor, it prevent 

completely of the surface scale deposition (0 mg/cm2 - Figure ‎6.6) compare 

to the blank test (2.14 mg/cm2).  

As no scale formed on the metal surface it was impossible to determine what 

polymorphs would precipitate in the tests condition present in the Error! 

eference source not found. and presence of PPCA. 

The results from FTIR and Raman analysis showed that no residual inhibitor 

part of PPCA adsorbed to calcium carbonate crystals (Figure A.‎0.8 and 

Figure ‎0.8). PPCA had great effect on induction time (more than 240 

minutes) as well as amount of scale formed in the bulk solution (no scale 

detected) which confirms that is working as nucleation inhibitor. 

PPCA has great effect on the depth of the pit. It was able reduce reduced 

depth of the pit 2 times, in the blank test pit has 24 um of depth compare to 

only 12 um pit depth in the tests with PPCA. As it was observed that scale 

has played important role in localised corrosion in the blank tests but PPCA 

by preventing of scale formed on the sample and by forming film on surface 

with facilitation of calcium ions during the tests decreased the pit depth. 

9.4 Effect of single components and their interactions on 

the corrosion and scale processes 

In the following section the contribution of the single components – when all 

are blended as a combined inhibitor and their interactions to inhibition of 
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general corrosion, pitting corrosion, bulk scaling and surface scaling is 

discussed. With the help the ANOVA analysis method the individual effects 

and interactions were studied.  

The final part of this section will discuss the empirical equations (model) 

developed to predict the corrosion and scale damage when the single 

components are present in the system. 

9.4.1 Effect of single components and their interactions on 

general corrosion inhibition  

Variable have higher effect when the sum of square is high. Higher effects 

are more significant, for example 10% contribution by a two-level factor 

means that factor is responsible for 1/10 of the total information in the data 

generated. 

The results of ANOVA analysis in Table ‎7.9 shown that 2-mercaptoethanol – 

SA (10%) has the highest effect on the inhibition of general corrosion from 

all the single components when all together are blended as combined 

inhibitor. Then alcohol ethoxy phosphate ester - CI1 (9.7%) and 

polyphosphino carboxyllic acid (PPCA) – SI (7.2%) has great effect on 

inhibition. The interaction between SA and CI1 (9.5%) has the greatest effect 

on inhibition from all interactions. The greatest effect between 3 single 

components CI1, SI and SA has contributed 8.6% to inhibition. All 

parameters which contributed significantly (above 7% in this study) to the 

inhibition of the general corrosion has contribution sum equal almost 62%. 

Which means that 3 factors and 4 of their interactions between them are 

responsible for more than 60% information generated in this a two-level 

factor system. The rest of factors and their interactions (25 together) are only 

responsible for 38% of generated data. 

The explanation why these components (SA, CI1 and SI) have such a big 

effect is in their reactivity with the surface of the sample. They reacted 

immediately with the sample surface offering protection against general 

corrosion which could be observed on Figure ‎6.3. 2-mercapthoethanol (SA) 

and alcohol ethoxy phosphate ester (CI1) shifted Ecorr to more cathodic 

potential would suggest that are anodic inhibitors which is in agreement with 

the literature [179, 188]. On the other side PPCA shifted slightly Ecorr to more 

anodic potential would suggest that is cathodicc inhibitor which is in 

agreement with the literature in which was suggested that is film formation 

on metal surface is enhanced by electrochemical activity (cathodic sides) of 

sample surface and Ca2+ ions play important role by facilitating the transport 
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and adsorption of the inhibitor [242]. In the literature was pointed that 

mercapthoethanol has synergistic effect with imidazoline on the general 

corrosion [188], however in this study no significant interaction between SA 

and CI3 (ethoxylated imidazoline) and effect on general corrosion was 

observed. 

Combined inhibitors are most effective when they contain anodic and 

cathodic inhibitors because they are effecting both corrosion reactions. 

As these three single components reacted really fast with metal surface 

covering with dense film, they did not leave to much free sites (anodic and 

cathodic) on the metal for the remain components to adsorb to the surface 

and have some effect on the general corrosion rate. 

9.4.2 Effect of single components and their interactions on 

localized corrosion inhibition 

The results of ANOVA analysis in Table ‎7.10 shown that 2-mercaptoethanol 

– SA (34.2%) has the highest effect on the inhibition of localized corrosion 

from all the single components when all together are blended as combined 

inhibitor, this is a finding made for the first time. Then alcohol ethoxy 

phosphate ester - CI1 (18.1%) has great effect on inhibition of localized. The 

interaction between SA and CI1 (10.9%) has the greatest effect on inhibition 

effect on localized corrosion from all interactions. All parameters which 

contributed significantly (above 7% in this study) to the inhibition of the 

localized corrosion has contribution sum equal almost 64%. Which means 

that 2 factors and interactions between them are responsible for more than 

60% information generated in this a two-level factor system. The rest of 

factors and their interactions (29 together) are only responsible for 36% of 

generated data. 

It is suggested that mercapthoethanol is inhibiting corrosion by formation not 

very soluble salt complex with iron [188]. While it is suggested that the 

phosphate ester is transported to the metal surface to perform complexes 

with Fe2+ and form iron phosphate and absorbed at the pitting site, which 

reduces the iron dissolution and stops further pitting propagation. Better 

effectiveness of the 2-mercapthoethanol against localized corrosion than 

alcohol ethoxy phosphate ester could explain by the difference of the 

chemical structure of the single components as these two single 

components inhibits anodic reaction. 

2-mercapthoethanol is much smaller molecule than alcohol ethoxy 

phosphate ester which contain long chain of hydrocarbon, so it easier for 2-
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mercapthoethanol to penetrate the pit and inhibit anodic reaction inside the 

pit (Figure ‎9.8). 

 

Figure ‎9.8: Schematic of inhibition of pits by a) alcohol ethoxy 
phosphate ester and b)2- mercapthoethanol 

2-mercapthoethanol was very effective against pitting corrosion in the tests 

with only single components while alcohol ethoxy phosphate ester did not 

reduce pitting significantly in that test. However it should be pointed out that 

in the test with ethoxy phosphate ester a significant role in pitting corrosion 

was played by surface scale. 

9.4.3 Effect of single components and their interactions on bulk 

scaling inhibition 

The results of ANOVA analysis in Table ‎7.11 shown that polyphosphino 

carboxyllic acid (PPCA) – SI (81.6%) has the highest effect on the inhibition 

of bulk scale from all the single components when all together are blended 

as combined inhibitor. Only SI contributed significantly - above 7% in this 

study - to the inhibition of the bulk scale. Which means that 1 factor (SI) is 

responsible for more than 81% information (inhibition) generated in this a 

two-level factor system. The rest of factors and their interactions (31 

together) are only responsible for 18% of generated data (inhibition). 

PPCA mechanisms of calcium carbonate inhibition are by delays nucleation 

by complexation with Ca2+ ions and retard the crystals growth. In this study, 

results showed that PPCA is very effective against bulk scaling and this is in 

good agreement with the result found in the literature [109] where is pointed 

that PPCA increases the induction time of scale formation in the bulk 

solution. 

In this study could be observed that PPCA prevent bulk scaling efficiently 

when it was present in the test solution as single components and when it 

was mixed with other single components and added as combined inhibitor to 

the test solution. 
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The results suggest that PPCA performance against bulk scaling is not 

affected by the present of other single components (alcohol ethoxy 

phosphate ester, 2-mercapthoethanol, alkyl dimethyl benzyl-amonium 

chloride and ethoxylated imidazolines) used in this study. 

9.4.4 Effect of single components and their interactions on 

surface scaling inhibition 

The results of ANOVA analysis in Table ‎7.12 shown that polyphosphino 

carboxyllic acid (PPCA) – SI (43.5%) has the highest effect on the inhibition 

of surface scale from all the single components when all together are 

blended as combined inhibitor. Then alcohol ethoxy phosphate ester - CI1 

(8.1%) has great effect on inhibition of localized. The interaction between SI 

and CI1 (7.9%) has the greatest effect on inhibition effect on surface scale 

from all interactions. All parameters which contributed significantly (above 

7% in this study) to the inhibition of the localized corrosion has contribution 

sum equal almost 60%. Which means that 2 factors and interactions 

between them are responsible for 60% information generated in this a two-

level factor system. The rest of factors and their interactions (29 together) 

are only responsible for 40% of generated data. 

PPCA is effective against surface deposition as was showed in the literature 

[116, 117]. It was pointed that 5ppm of PPCA was able completely prevent 

the scale build up in the tube blocking test [117]. In this study 92% of scale 

which formed on surface was calcite (no inhibited test - Table ‎5.4) and 

PPCA suppress the calcite formation [116] so this could explain why PPCA 

has good surface scale inhibition in this study. 

Alcohol ethoxy phosphate ester showed significant contribution to the 

inhibition of the surface scale in the test when all single components were 

blended together. However, from the results presented in the Table ‎7.5 

could be observed that in the most of the test (run 7, 8, 22, 23, 27 and 29) 

where the higher concentration of the alcohol phosphate ester  is added 

(PPCA is present in low concentration – Table ‎4.4)  to the combined 

inhibitor; amount of scale formed on the surface is higher than in the same 

blend but with low concentration of alcohol ethoxy phosphate ester 

(accordingly to run mentioned above – run 3, 20, 11, 31, 1 and 21). This is 

visually presented on Figure ‎7.9 where could be observed that with 

increasing amount of the alcohol ethoxy phosphate ester in the test solution 

the amount of scale precipitated increase too. 
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9.4.5 Empirical equations (prediction model) 

One of the most commonly used statistical techniques to predict un known 

values between the known variable levels is linear regression. It is applied in 

this study to develop an empirical corrosion and scale equations (prediction 

mode) based on the outputs collected under 32 testing conditions for tests 

condition presented in Table ‎4.4. Initial framework is done and improved 

prediction can be made by further experimental work by future studies. 

Example of linear regression model can be presented as the following 

empirical equation (Equation 6.4).  

𝑋 = 𝑌 + 𝑌∗𝐴 + 𝑌∗𝐵 + 𝑌∗𝐶 + 𝑌∗𝐷 + 𝑌∗𝐸 + 𝑌∗𝐴𝐵 +⋯ 

+ 𝑌∗𝐴∗𝐵∗𝐶∗𝐷∗𝐸 

(‎9-1) 

In which corrosion inhibitor 1, corrosion inhibitor 2, corrosion inhibitor 3, 

scale inhibitor and souring agent are set as A, B, C, D and E respectively. 

Based on the results (general corrosion) at 32 test conditions [X] (Table ‎4.4), 

the coefficients of the empirical equation [Y] can be calculated by the matrix 

algorithm (32x32 matrix).  

The laboratory testing contribute built up a huge database to develop the 

empirical equation (prediction model) for future corrosion and scale 

prediction. The methodology for modelling was a linear regression method. 

This is the first attempt to build the skeleton of empirical equation which 

more and more experimental points can be added so the accuracy of the 

empirical equation (model) could be enhanced. 

One function of this empirical equations (prediction model) are to show 

general corrosion, localised corrosion, bulk scaling and surface scale 

deposition over a range of different concentration inhibitors in tests. This will 

improve prediction for example scale condition on measured general 

corrosion in varied conditions. 

The empirical equations (Equation (‎7-1) to Equation (‎7-4)) were developed 

and based on the coefficient calculated from ANOVA analysis and presented 

in the tables (Table ‎7.9 to Table ‎7.12).  

The empirical equations and data were put to MatLab which is a technical 

computing environment for high performance numeric computation and 

visualization. 

The visualization of this empirical equations developed in Matlab is 

presented in figures (Figure ‎7.3, Figure ‎7.5, Figure ‎7.7 and Figure ‎7.9). 
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Another function of these empirical equations (prediction modelling) could be 

tracking of the condition present in the pipelines transporting of oil when the 

different levels of inhibitors were measured in different point of time. These 

could be useful investigation tool for failure analysis. 
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Chapter 10  

 Conclusions 

10.1 Introduction 

In this chapter it will be presented the different findings arising from this work 

on corrosion and scale interaction in the system when this process occurs 

simultaneously and on the performance of different single components and 

combined inhibitor regarding corrosion and scale inhibition. Four main 

objectives were achieved: 

- Evaluating the new developed a newly-developed combined bulk 

jar scaling/bubble cell as a method of assessing corrosion and 

scale interaction 

- Evaluating the performance of single components of combined 

inhibitor on corrosion and scale process occurring simultaneously 

- Evaluating the effects of the single components of the combined 

scale/corrosion inhibitor and/or synergistic effects on all four 

processes by experimental design method 

- Developed empirical relation equation (model) for prediction 

corrosion and scale processes 

10.2  Corrosion and scale process in the environment where 

both processes occurs simultaneously without presence 

of the inhibitor 

• SEM analysis of specimens observed that the calcium carbonate 

film is dense and it is covering almost whole surface. Scale form 

mainly on ferrite grains microstructure leaving pearlite grains 

uncover and as favourite side for corrosion. 

 

• General corrosion environment is government by the cathodic 

reaction and level of  general corrosion was highly affected by 

formation of calcium carbonate scale on the surface. 
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• Calcium carbonate precipitation on the sample play important role 

of accelerating of pitting corrosion by providing suitable 

environment. 

 

• XRD analysis observed that the calcium carbonate was mainly 

composed by calcite with small amount of aragonite. 

 

• The methodology used in this study a newly-developed combined 

bulk jar scaling/bubble cell prove that is very effective tool in 

assessment of corrosion and scale interactions when they occurs 

simultaneously. 

10.3  Inhibition effect of single components of combined 

inhibitor on corrosion and scale processes in the 

environment where both processes occurs 

simultaneously 

• 2-mercapthoethanol showed excellent inhibition effect against the 

general corrosion and the localised corrosion by forming dense 

film on sample surface. 

 

• 2-mercapthoethanol prevented almost completely of formation of 

calcium carbonate on the metal surface. 

 

• XRD analysis observed that the calcium carbonate crystals which 

formed on the metal sample in the tests with 2-mercapthoethanol 

were calcite crystals only. 

 

• Alcohol ethoxy phosphate ester had small effect of inhibition on 

general and localised corrosion. 

 

• SEM analysis observed big crystals of calcium carbonate on the 

metal surface in the tests with alcohol ethoxy phosphate ester 

which play important role of accelerating of pitting corrosion by 

providing suitable environment. 
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• XRD analysis observed that the calcium carbonate crystals which 

formed on the metal sample in the tests with alcohol ethoxy 

phosphate ester were mainly calcite 99.8% crystals with small 

amount of aragonite. 

 

• In the tests C12-C14 alkyldimethyl-benzylamonium chloride main 

inhibition of general corrosion is coming from formation of dense 

calcium carbonate scale. 

 

• Calcium carbonate precipitation on the sample in the tests with 

C12-C14 alkyldimethyl-benzylamonium chloride play important 

role of accelerating of pitting corrosion by providing suitable 

environment. 

 

• XRD observed that scale composition in the tests with C12-C14 

alkyldimethyl-benzylamonium chloride was very similar to the test 

without inhibitor 93% calcite and 7% aragonite. 

 

• In the tests ethoxylated imidazolines main inhibition of general 

corrosion is coming from formation of dense calcium carbonate 

scale. 

 

• Calcium carbonate precipitation on the sample in the tests with 

ethoxylated imidazolines play important role of accelerating of 

pitting corrosion by providing suitable environment. 

 

• XRD analysis observed that the calcium carbonate crystals which 

formed on the metal sample in the tests with ethoxylated 

imidazolines were mainly calcite 99% crystals with small amount 

of aragonite. 
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• Polyphosphinocarboxylic acid showed small inhibition effect 

against the general corrosion but good inhibition against the 

localised corrosion. 

 

• Polyphosphinocarboxylic acid showed excellent inhibition effect 

against the surface scale and the bulk scale. 

10.4  Effect of single components and their interactions on 

the corrosion and scale processes when their blend 

together as combined inhibitor 

• 2-mercaptoethanol , alcohol ethoxy phosphate ester  and 

polyphosphino carboxyllic acid (PPCA) their interactions between 

them contributed more than 60% to general corrosion inhibition. 

 

• 2-mercaptoethanol has the greatest effect on pitting corrosion 

inhibition (34.2%), as single component of combined inhibitor 

although alcohol ethoxy phosphate ester effect was also 

significant (18.7%). 

 

• 2-mecaptoethonal and alcohol ethoxy phosphate ester showed 

great synergistic effect on inhibition on pitting corrosion (10.9%). 

 

• Polyphosphino carboxyllic acid contributed more than 80% to bulk 

scale inhibition. 

 

• Polyphosphino carboxyllic acid (43.5%) has the highest effect on 

the inhibition of surface scale from all the single components when 

all together are blended as combined inhibitor although alcohol 

ethoxy phosphate ester effect was also significant (8.1%). PPCA 

and alcohol ethoxy phosphate ester showed great synergistic 

effect on inhibition on pitting corrosion (7.9%). 

 

• The simple linear regression model was developed to predict 

corrosion and scale when these processes occurs simultaneously. 
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Chapter 11  

Future work 

 It has been shown in this thesis that inhibitors which form dense film 

on the surface can prevent successfully scale deposition. This aspect 

of this study is important as the down-hole and pipe surfaces can be 

very hard to clear from any scale deposition. The next step should be 

investigation of formation of film of inhibitor onto a surface covered by 

scale deposit to reduce further scale agglomeration. 

 

 The effect of calcium carbonate on pitting and inhibition of both these 

process are an interesting area and very important issue in field 

service. Further investigation needs to be done relating to gain a 

better understanding of the mechanism of failure due to these 

problems and inhibition. 

 

 Improving newly-developed combined bulk jar scaling/bubble cell but 

addition of continuous monitoring of the bilk scaling and develop of 

sampling method of bulk scale crystals for further analysis. It would 

also be useful to create an system with a constant super saturation 

(SR). 

 

 Modify the existing tube-blocking apparatus by build an 

electrochemical cell, turbidity meter and filter for bulk scale particles 

for a further evaluation of combined scale/corrosion inhibitors in flow 

system. This would provide much needed equipment for data 

collection on the effect of flow on the corrosion and scale process 

occurring simultaneously.  

 

 The validation and the further development by adding different 

temperature range, use bigger variety of inhibitor concentration and 

addition of different inhibitors to the corrosion scale prediction tool. 

 

 This model could be used to develop commercial software, which can 

provide general information of scale and corrosion process in different 

environments. 
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 It has been shown in this thesis that scale inhibitor provide good 

inhibition of localized corrosion and some inhibition of general 

corrosion. The next step should be investigation of different scale 

inhibitors chemistries effect on two processes mentioned above. 

 

 Further research should consider testing different type of scale such 

as barium sulfate which is the second most common scale in oil and 

gas industry in the jar test/bubble cell. 
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Appendix A 

Infrared spectrum for neat single components. 

 

Figure A.‎0.1: Infrared spectrum for neat alcohol ethoxy phosphate 
ester 

 

Figure A.‎0.2: Infrared spectrum for neat C12-C14 alkyl dimethyl benzyl- 
ammonium chloride 
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Figure A.‎0.3: Infrared spectrum for neat ethoxylated imidazolines 

 

Figure A.‎0.4: Infrared spectrum for neat polyphosphinocarboxylic acid 
(PPCA) 
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Interaction between calcium carbonate and single components. 

 

Figure A.‎0.5: Infrared spectrum for calcium carbonate formed with 
presence of alcohol ethoxy phosphate ester, calcium carbonate 
reference and carbon steel  
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Figure A.‎0.6: : Infrared spectrum for calcium carbonate formed with 
presence of C12-C14 alkyl dimethyl benzyl- ammonium chloride, 
calcium carbonate reference and carbon steel  
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Figure A.‎0.7: Infrared spectrum for calcium carbonate formed with 
presence of ethoxylated imidazolines, calcium carbonate 
reference and carbon steel 
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Figure A.‎0.8: Infrared spectrum for calcium carbonate formed with 
presence of polyphosphinocarboxylic acid (PPCA), calcium 
carbonate reference and carbon steel 

 

  

4000 3500 3000 2500 2000 1500 1000

-3.20x10
-3

-1.60x10
-3

0.00

1.60x10
-3

0.00

5.10x10
-2

1.02x10
-1

1.53x10
-1

0.00

5.40x10
-3

1.08x10
-2

1.62x10
-2

 

Wavenumber (cm-1)

 carbon steel

 

 calcium carbonate

 

 

A
b

s
o

rb
a
n

c
e

 calcium carbonate with PPCA presence

1403

713

869

1101

18022536

1404

713

870

1102

18032529



- 175 - 

Interaction between iron carbonate and single components. 

 

Figure A.‎0.9: Infrared spectrum for iron carbonate formed with 
presence of alcohol ethoxy phosphate ester, iron carbonate 
reference and carbon steel 
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Figure A.‎0.10: Infrared spectrum for iron carbonate formed with 
presence of C12-C14 alkyl dimethyl benzyl- ammonium chloride, 
iron carbonate reference and carbon steel 
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Figure A.‎0.11: Infrared spectrum for iron carbonate formed with 
presence of ethoxylated imidazolines, iron carbonate reference 
and carbon steel 
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Figure A.‎0.12: Infrared spectrum for iron carbonate formed with 
presence of polyphosphinocarboxylic acid (PPCA, iron carbonate 
reference and carbon steel  
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Appendix B 

Raman spectrum for neat single components. 

 

Figure B.‎0.1: Raman spectrum for neat alcohol ethoxy phosphate ester 

 

Figure B.‎0.2: Raman spectrum for neat C12-C14 alkyl dimethyl benzyl- 
ammonium chloride 
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Figure B.‎0.3: Raman spectrum for neat ethoxylated imidazolines 

 

Figure B.‎0.4: Raman spectrum for neat polyphosphinocarboxylic acid 
(PPCA) 
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Interaction between calcium carbonate and single components. 

 

Figure ‎0.5: Raman spectrum for calcium carbonate formed with 
presence of alcohol ethoxy phosphate ester, calcium carbonate 
reference and carbon steel 
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Figure ‎0.6: Raman spectrum for calcium carbonate formed with 
presence of C12-C14 alkyl dimethyl benzyl-amonium chloride, 
calcium carbonate reference and carbon steel 
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Figure ‎0.7: Raman spectrum for calcium carbonate formed with 
presence of ethoxylated imidazolines, calcium carbonate 
reference and carbon steel 
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Figure ‎0.8: Raman spectrum for calcium carbonate formed with 
presence of polyphosphinocarboxylic acid (PPCA), calcium 
carbonate reference and carbon steel  

  

500 1000 1500 2000 2500 3000
0.00

2.50x10
3

5.00x10
3

7.50x10
3

1.00x10
4

0.00

3.30x10
4

6.60x10
4

9.90x10
4

0.00

1.80x10
4

3.60x10
4

5.40x10
4

 

Wavenumber (cm-1)

 carbon steel

 

 calcium carbonate

17501439

1087

713

282

156

 

 

In
te

n
s

it
y

, 
a

.u
.

 calcium carbonate with PPCA presence

17511438

1087

712

282

156



- 185 - 

Interaction between iron carbonate and single components. 

 

Figure ‎0.9: Raman spectrum for iron carbonate formed with presence 
of alcohol ethoxy phosphate ester, iron carbonate reference and 
carbon steel 
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Figure ‎0.10: Raman spectrum for iron carbonate formed with presence 
of C12-C14 alkyl dimethyl benzyl-amonium chloride, iron 
carbonate reference and carbon steel 
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Figure ‎0.11: Raman spectrum for iron carbonate formed with presence 
of ethoxylated imidazolines, iron carbonate reference and carbon 
steel 
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