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Abstract

In the study of fluid flows experimentally obtained data is of importance due to the complex nature

of modelling complex fluid flows computationally. Most flows of academic or industrial interest

are turbulent, requiring complex experimental methods to capture meaningful data. Currently the

dominant method of experimentally obtaining fluid flow data is Particle Image Velocimetry (PIV).

The first part of this study focuses on evaluating cross-correlation based PIV vector calculation

algorithms. Algorithms are tested against synthetic images depicting Oseen vortex flow enabling

calculated and exact displacements to be compared. Image parameters are varied to investigate

the sensitivities of each algorithm to each parameter. The methods evaluated are standard cross-

correlation, multigrid (MGRID), the products of adjacent correlation functions (CBC), particle

image deformation (PID) and an original method combining PID methods and CBC methods. The

new method is shown to return displacement vectors with a reduced level of error compared to

existing methods, especially in regions of high spatial velocity gradients.

The second part of this study focuses on recording and evaluating experimentally obtained

fluid flow data. One of the most important flow features within turbulence is the vortex, to investi-

gate vortex flow a laboratory tornado-like vortex generator was created from which PIV data could

be obtained. Velocity vectors were extracted for varying flow configurations showing the impact

of swirl ratio on vortex characteristics such as variability and precession of the vortex as well as

the internal vortex structure. The methods developed for quantifying this variability give a greater

ability to understand the bulk and internal vortex dynamics for swirling flows.

Proper Orthogonal Decomposition, a correlation based method for extracting coherent struc-

tures is applied to the tornado-like flow to further show the underlying dynamics of the variations

within the vortex flow and its spatial precession. Temporal characteristics of the tornado-like

vortex are also investigated using velocity vectors obtained from high-speed PIV.
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Chapter 1

Particle Image Velocimetry

1.1 Overview

Particle image velocimetry (PIV) is a non-intrusive optical full-field method for the measurement

of velocities in a fluid. Due to the optical non-intrusive nature there are clear advantages over

other methods such as rakes of hotwires or pressure probes as the flow is not disturbed. The

method involves imaging seed particles (or droplets) that follow the flow sufficiently and then

calculating the displacement of the particles between two subsequent frames. In most applications

the seed particles are illuminated by a laser light sheet and imaged using a charged couple device

(CCD) camera, a typical modern two-dimensional PIV system diagram can be seen in Figure 1.1.

Once the images have been captured there are a number of ways in which the velocity vector

field can be extracted, the most common method is to divide the recorded image into small inter-

rogation windows, the cross-correlation between two interrogation regions from two subsequent

frames is then taken. The displacement vector, ds, is then calculated from the location of the

largest peak in the correlation plane and when divided by the time between frames, dt, the average

velocity of particles in the interrogation region is then calculated as ds/dt.

1.2 Historical Background

The idea behind modern PIV can be traced back to the work carried out by Ludwig Prandtl at

the turn of the century, he developed a water tunnel to study the unsteady flow behind objects

submerged in the flow. Mica particles were suspended on the surface of the water and from this

the flow structures could be observed, though only qualitatively as quantitative methods had not

yet been developed (Raffel et al., 1998).

It was later recognised that photographing a set of particle tracers in a flow field generated a

faithful reproduction of the particle distribution (rather than a speckle pattern) and from a multiply

exposed image, particle and thereby flow velocities can be inferred. This realisation led to the

expression particle image velocimetry (PIV) in 1984 (Pickering and Halliwell, 1984).

In early applications prior to the availability of digital cameras film cameras were used in
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Fig. 1.1 Basic PIV setup, from (Raffel et al., 1998).

which case two frames were imaged onto the same sheet of film giving a double exposed image.

This presented difficulty in determining the direction of the flow in complex flows (for example,

turbulent flows) as it could not be distinguished whether particle images belonged to the first or

second exposure. It was Adrian (1988) who laid down the groundwork for modern PIV theory

by outlining a method for calculating the auto-correlation function for a double-exposure PIV im-

age, this method though did not overcome the directional ambiguity as when the auto-correlation

is taken there is a peak value at zero displacement with lower magnitude peaks at positive and

negative positions corresponding to the actual particle displacement in the correlation plane.

With the development of digital CCD cameras digital PIV was developed (Willert and Gharib,

1991) with particle images now recorded on separate frames and analysed using cross-correlation

analysis. See §1.8 for a detailed review.

1.3 General considerations of PIV

PIV has developed considerably during the last twenty years and considerable research has been

done and published (Adrian, 1991; Raffel et al., 1998); some of the general considerations con-

cerning PIV are mentioned below

• PIV is a non-intrusive technique as opposed to conventional techniques which use probes,

pressure tubes etc. Therefore, PIV can be applied to high speed flows, boundary layers

which may be disturbed and modified by the presence of a probe or in multi-phase systems

such as a fuel spray where the atomisation processes will not be affected by the measure-

ments.
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Fig. 1.2 Levels of seeding density of PIV images, (a) low density, (b) medium density and (c) high
density. Image from (Raffel et al., 1998).

• Velocities using PIV are measured indirectly; these are calculated by measuring the veloci-

ties of tracer particles which, in most of the cases, have been previously added to the flow.

• Unlike most of the available diagnostics techniques, PIV is a whole field technique. It is

possible to record images of large parts of the flow giving a high spatial resolution with a

temporal resolution limited by technical restrictions; on the other hand, most of the conven-

tional techniques for velocity measurement (such as hot wire anemometry) provide mea-

surements at a single point with high temporal resolution.

• The choice and distribution of the tracer particles is of fundamental importance; seeding

particles must follow the flow accurately and the seeding level should be of medium density

and homogeneously distributed in the flow.

• The selection of the illumination source is equally important and dependant on the particular

application; in gas applications a high power laser source is usually required due to the need

of using small particles (~2µm), which will scatter less light, so that they follow the flow

accurately. On the other hand, in liquid flows larger particles (~20µm), which scatter more

light, can be used and therefore a lower power laser source may be used.

• The time delay between the two laser pulses must be long enough to determine the displace-

ment of the tracer particles and short enough to avoid tracer particles leaving the laser sheet

between consecutive illuminations due to in-plane or out of plane displacement.

• Although the density of the particle images vary according to different applications, three

types of images can be distinguished as shown in Figure 1.2.

Low density images, as presented in Figure 1.2a require tracking methods for evaluation and

this method is normally referred to as particle tracking velocimetry; images with medium image

density (Figure 1.2b) require statistical evaluation techniques and this case is referred to as par-

ticle image velocimetry (PIV); images with high particle density are referred to as laser speckle

velocimetry (Figure 1.2c).
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Different factors have influenced the development of PIV during the last two decades such as

the use of digital techniques which have replaced conventional analogue recording and evaluation

techniques; there have also been other important landmarks on the development of PIV and can

be grouped as follows (Raffel et al., 1998):

• The use of Nd:YAG lasers with doubled frequency (wavelength of 532nm of green visible

light achieved) and double oscillator allowed the illumination of a plane with laser pulses

of the same energy with any delay between the two laser pulses at repetition frequencies of

around 10Hz.

• Initial efforts on image recording did not allow separate recordings of the first and second

illumination so the temporal sequence of the images could not be obtained. Different meth-

ods were developed to overcome the limitations of directional ambiguity including image

shifting. It was also very important that there was a considerable improvement in com-

puter hardware (memory size and processors) allowing for a faster and more reliable image

handling and processing of PIV data.

• Similarly, recording devices have also improved considerably in the last 20 years; today’s

progressive scan video cameras allows for the recording on separate frames of different

illumination images with exposure separations of <1 microsecond.

1.4 Acquisition of PIV Data

1.4.1 Light Scattering of Small Particles

PIV recordings are generated by capturing the light scattered by tracer particles from an illumi-

nation source with the recorded image contrast directly proportional to the power of the scattered

light (Raffel et al., 1998). For particles with a diameter greater than the wavelength of the illu-

minating light Mie’s scattering theory can be applied (Hulst, 1957; Stanislas and Monnier, 1997;

Willert and Gharib, 1991). Mie scattering is characterised using a normalised diameter, dλ , and is

defined as:

dλ =
πdp

λ
(1.1)

Where dp is the particle diameter and λ the wavelength of the light (Raffel et al., 1998; Stanis-

las and Monnier, 1997). Figure 1.3 shows the light scatter intensity for 10µm oil particles in air

(Raffel et al., 1998). The data is from the Lorenz-Mie solution to the Maxwell equations of elec-

tromagnetism with illumination at 532nm (Hulst, 1957), it can be seen that scatter is greatest for

forward and backward angles (0◦ and 180◦ respectively) however for practical reasons owing to

limited depth of field recording at 90◦ is most often used (Raffel et al., 1998).
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Fig. 1.3 Mie scatter light (λ = 532nm) intensity against scatter angle for a 10µm oil particle in air
(Raffel et al., 1998).

1.4.2 Light Sources

Two of the overriding requirements of PIV are that a) the time between the capturing of subsequent

image frames is very short (usually on the order of 10-100µs) to ensure that the displacement of

the tracer particles between images remains low and b) the exposure time of the image is also low

(nanoseconds) as the target images are not stationary long exposures will result in streaked particle

images with indeterminate location.

Taking into account the short exposure times the tracer particles need to reflect enough light

through Mie scattering for the recording device to be able to detect the particles. In modern PIV

the most common light sources are lasers owing to their ability to “output a large amount of light

in a very small solid angle and then it is quite easy to transform the laser beam into a thin sheet

of light” (Stanislas and Monnier, 1997). Pulsed lasers are most commonly used over continuous

output lasers as short light pulses are required so that particle images do not become blurred, pulse

lasers can fire short nano-second scale pulses whereas continuous lasers require a high speed

mechanical shuttering system to emit short pulses.

Pulsed lasers come in two varieties, single pulse and repetitive. Single pulse lasers, of which

a ruby laser is an example have a very low repetition rate but are capable of emitting high energy

pulses at 694.3nm (Stanislas and Monnier, 1997).

Many pulsed lasers, specifically designed for applications to PIV are equipped with two laser

cavities enabling two pulses to be separated by an arbitrary time whilst both pulsing at a rate for

the continuous capture of PIV image pairs. If single cavity laser heads are used then it is often

required to use two laser heads to get the required time separation between pulses which adds

extra complications in that the two beams have to be aligned to follow the exact same path after

they have exited their individual laser heads. This tends to be more complex to setup and maintain

alignment than when the two laser cavities are housed within a single laser head. A comprehensive

review of helium-neon (He-Ne), argon-ion (Ar+), ruby (Cr 3+), semiconductor and Nd:YAG lasers

and applications to PIV is provided in (Raffel et al., 1998) with a further detailed evaluation of

Nd:YAG lasers provided in (Stanislas and Monnier, 1997).
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Fig. 1.4 Formation of a laser light sheet using a combination of spherical and cylindrical lenses.

Neodymium-YAG Laser

The most commonly used laser for PIV experiments is the Nd:YAG (neodymium-yttrium alu-

minium garnet) solid-state laser (Raffel et al., 1998; Stanislas and Monnier, 1997). Nd:YAG lasers

emit light at 1064nm generated by Nd3+ ions which are incorporated in YAG crystals (Raffel et al.,

1998). The natural output wavelength of 1064nm lies outside the visible range and the absorption

range of silicon detectors and is hence not suitable for PIV but by using a frequency doubler the

output wavelength can be halved to 532nm (Stanislas and Monnier, 1997) which also happens to

be in the optimum region of most CCD cameras. Short pulse durations of the order approximately

5–10ns are also ideal for fulfilling the requirement of short exposure times to avoid blurring of

particle images.

Nd:YAG lasers can be configured to output beams with a Gaussian energy profile. Before

using an Nd:YAG laser, the cavity has to reach a thermal equilibrium as beam quality and output

power are all finely tuned to the laser rod (Stanislas and Monnier, 1997).

1.4.3 Beam Shaping

When emitted from a Nd:YAG laser the beam is approximately Gaussian profiled and normally

collimated with a small cross-sectional area (of the order of millimetres), two dimensional PIV

requires a sheet of illumination in the measurement plane. The most common way of shaping a

collimated beam of laser light into a flat sheet is through the use of a cylindrical lens. Unlike

spherical lenses a cylindrical lens is only curved in one axis causing light to converge in only

that axis as show in Figure 1.4. Owing to the small profile of the laser beam a spherical lens (with

negative focal length) is used to expand the beam first before hitting the cylindrical lens to increase

the effect.

For planar PIV a thin light sheet is required to increase the energy incident on the particles, this

means arranging the optical setup so the focus of the light sheet is in the centre of the measurement

plane.

Certain considerations have to be taken into account when creating a light sheet for use in
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PIV experiments, mainly that the more the sheet is expanded in the x-direction (see Figure 1.4)

the energy density of the light is reduced as it is spread over a larger area meaning that less light

will be available to illuminate the tracer particles. The light sheet intensity is at a maximum

at the y-direction focus of the light sheet, it is important to make sure the distance between the

cylindrical lens and the light sheet focus is not too small to ensure the thickness of the sheet in the

measurement area does not diverge too much and reduce particle image contrast.

1.4.4 Image Acquisition

As previously stated the first PIV experiments were carried out using photographic film but modern

digital PIV is now the state of the art with vast improvements in digital camera technology over

the last 20 years.

The most commonly used typed of camera for capturing particle images is a charge coupled

device (CCD) camera. A CCD is essentially a device which converts light into an electronic

signal. A CCD sensor works using the photoelectric effect, a silicone crystal at its rest state has

its electrons mostly in a low energy state, when excited by impacting photons electrons jump to

a higher energy state creating a potential well. These excited electrons are stored as a charge

for the duration of the exposure, during this time the more photons that hit the CCD the greater

the charge. Each CCD has a maximum charge it can store, if more photons hit above this the

stored charge does not increase and this is what leads to overexposure (Raffel et al., 1998). A

CCD Camera has a sensor that is made up of a two-dimensional array of detector elements with

each representing an image pixel. It is typical for modern PIV to have sensors containing 1 to

4 megapixels although with advancing technology higher resolution sensors are available. When

the exposure is complete the charge is converted to a digital signal which is stored in the camera

memory before it is transferred to a computer as a digital image.

CCD sensors are only able to detect photons for a given band of wavelengths from ultraviolet

to near infrared. The efficiency of the CCD to detect photons reduces at the extremes with typical

maximum efficiencies in the region of 450-700nm (Raffel et al., 1998) giving the greatest light

sensitivity in the visible region. A typical light efficiency spectrum for a given CCD is shown in

Figure 1.5.

1.4.5 Tracer Particles

As the point behind PIV is to measure fluid by tracing the movement of particles within the flow,

some form of seed particles have to be used. Suitable tracer particles must meet two main require-

ments:

1. They must scatter enough of the illumination source light to be detected by the imaging

device.

2. They must follow the flow as accurately as possible without modifying the nature of the
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Fig. 1.5 CCD quantum efficiency as a function of photon wavelength (taken from
www.brucegary.net ).

measured flow.

The major source of error by particles not accurately following the measured flow arises from the

inertia of the particle due to difference in the densities of the fluid and the tracer particles (Raffel

et al., 1998). A particle’s behaviour under acceleration can be described using Stokes drag law, the

velocity lag of a particle under continuous acceleration in a viscous fluid is described as (Raffel

et al., 1998):

us = up −u (1.2)

us = d2
p

(
ρp −ρ f

18µ

)
a (1.3)

Where us is the velocity lag, up is the particle velocity, u the fluid velocity dp the particle

diameter, ρp and ρ f the particle and fluid densities respectively, µ the dynamic viscosity of the

fluid and a the acceleration the particle is undertaking (Raffel et al., 1998). It can be seen from

(1.3) that the velocity lag can be minimised when the density of tracer particles is equal to that of

the fluid, this is not always achievable in practice so the aim should be to match the tracer particle

density as closely as possible.

In situations where the density of the tracer particles is much greater than that of the fluid

the step response of the particle velocity up to a step change in flow velocity can be modelled as

follows:

up (t) = u
[

1− exp
(

t
τs

)]
(1.4)
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Where the relaxation time τs is defined by (Raffel et al., 1998):

τs = d2
p

ρp

18µ
(1.5)

By combining (1.4) and (1.5) it can be seen that the time response of the particles increases with

particle diameter and particle density meaning they will react to changes in the flow more slowly.

As light scattering increases with particle diameter but particle velocity lag also increases with

diameter a compromise has to be reached where the particles accurately follow the flow but remain

large enough to scatter the required amount of light for imaging.

1.5 Analysis Methods

The nature of PIV images which contain anywhere between thousands and millions of particle

images implies that manual analysis of the displacement between pairs of particle images between

one frame and another is impossible, therefore automated algorithms have to be applied. The

aim of PIV is to statistically calculate the average displacement of a number of particles in a

particular region (interrogation region) of the full image between the two image frames. The way

this is achieved is by using cross-correlation image-matching algorithms which can be calculated

in either the spatial or frequency domain, the two approaches are described subsequently.

1.5.1 Direct Spatial Domain Cross-Correlation

When subsequent particle images are contained on separate image frames cross-correlation can be

applied to analyse the data (Keane and Adrian, 1992). The continuous cross correlation function

(CCF), C, of two images q1 and q2 which are sub-images of the whole image frames and known

as interrogation regions is defined as (Grant, 1997; Keane and Adrian, 1992):

C (m,n) =
∫

∞

−∞

q1 (x,y)q∗2 (x+m,y+n)dxdy (1.6)

where q1,2(x,y) are the greyscale light intensity value in the image plane at the location (x,y) with

values ranging from zero (black) to 255 (white) for 8-bit images, q∗2 denotes the complex conjugate

of q2, (x,y) is a spatial coordinate and (m,n) is a coordinate in the CCF relating to the spatial offset

between q1 and q2. Once the cross correlation has been carried out, within the CCF there is a peak

at some coordinate (m,n), this is the mean displacement of particle images between frames 1 and

2. The main advantage of using the cross-correlation compared to auto-correlation is that there is

no self-correlation peak relating to no image shift and there is only one main peak at the particle

displacement as the temporal order of the particle images is known.

When using digital images it is not practical to use the continuous cross-correlation so instead

the discrete version is utilised:

C (m,n) = ∑
i

∑
j

q1 (i, j)q2 (i+m, j+n) (1.7)
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Where (i, j) is an integer pixel coordinate in the image q and is summed over the dimensions of

the image. The above equation is very sensitive to fluctuations in the intensity values q1 and q2,

to overcome this it is common to normalise the equation in the following manner (Huang et al.,

1997):

C (m,n) =
∑i ∑ j[q1 (i, j)− q̄1][q2 (i−m, j−n)− q̄2]√

∑i ∑ j[q1 (i, j)− q̄1][q2 (i, j)− q̄2]
(1.8)

Where, q̄ is the mean pixel intensity of the overlapping regions and the summations are only

calculated over the overlapping regions (Gonzalez and Woods, 2001; Huang et al., 1997). Shavit

et al. (2007) present a method to further reduce sensitivity to variations in particle brightness by

capping all intensity values at a certain intensity.

1.5.2 Frequency Domain Cross-Correlation

The above spatial cross-correlation is computationally intensive, to save processing time the cross-

correlation can be calculated in the frequency domain implementing the Fast Fourier Transform

(FFT) and the Wiener-Khinchin theorem. The Wiener-Khinchin theorem states that the auto-

correlation function (CA) is equal to the inverse Fourier transform, F−1 of the Fourier transform,

F of the original function squared (Hariharan, 1984):

CA = F−1
[(

F (q)
)2
]

(1.9)

(1.9) can easily be modified to implement the cross-correlation, C by taking the inverse Fourier

transform of the product of the Fourier transforms of the two images q1 and q2:

C = F−1 [F (q1)F (q2)] (1.10)

which reduces to the convolution between the two input images, q1 and q2

C = q1 ⊗q2 (1.11)

Implementing FFT correlation the number of computations is reduced from order O[N4
W ] using

direct spatial cross-correlation to order O[N2
W log2NW ] (Pratt, 2001; Raffel et al., 1998) making

it much more efficient, where NW is the linear dimension of the interrogation region. There are

a number of studies that have shown that the FFT implementation of the correlation function is

less accurate than that of the direct normalised spatial cross-correlation (Gui and Merzkirch, 2000;

Pust, 2000) with Pust showing that peak locking (of which a description is provided in § 1.5.5)

effect is more pronounced when the FFT method is used.
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Windowing

Problems arise when using the FFT method as the FFT is taken over a finite domain which in

most cases is very small, i.e. 16x16pix2, 8x8pix2 etc, but for the transform to work effectively

the function that is to be transformed must be periodic, this can be assumed to be true in the case

where there are no particle images on the boundary of the interrogation window giving an ideal

value (greyscale intensity) of zero at every point on the boundary. In the alternate case where

a particle image or part particle image is present on the boundary the image (the transformed

function) is no longer periodic causing leakage of the energy present in the spectral power density

and hence a loss of information when inverting the transform. One solution to this problem is to

apply a window-function (i.e. Hanning, Hamming, Gaussian, zero-padding etc...) (Eckstein and

Vlachos, 2009a; Gui and Merzkirch, 2000; Nogueira et al., 1999; Scarano, 2003). In a detailed

review of windowing techniques Eckstein and Vlachos (2009b) show how windowing can reduce

the error in estimating particle displacement by 30%-50% when compared to no windowing, there

is however no information regarding the extra computations and how much more processing time

it takes as the aim of the FFT correlation is to decrease processing time.

Zero-padding (Raffel et al., 1998) which extends the sample size to four times the original

by filling in zeros has proved to perform poorly as the original image usually contains a noisy,

non-zero background causing the spectra of the image to become contaminated with the high

frequencies present at the edge where the noisy background meets the padding zeros. Fore et al.

(2005) show how this effect can be reduced through background scaling and noise removal.

Previously when implementing the FFT the interrogation window had to have sides of a length

of a power of two limiting the range of velocities that could be effectively resolved but Gui (1998)

devised a method in which interrogation regions of any size can be used.

It is assumed that the FFT-based correlation transforms a periodic function resulting in the

correlation function also being periodic, this creates problems when the particle displacement

exceeds more than half the interrogation region size as the correlation peak will appear on the

other side of the correlation plane. This arises due to a breach of the Nyquist theorem resulting in

aliasing of the data. To overcome this one would have to increase the interrogation window size

or reduce the time between frames, dt (Raffel et al., 1998).

1.5.3 Correlation Function Peak Fitting

Once the cross correlation has been carried out the average particle displacement is at the location

of the highest peak in the correlation plane but as the data is digitised correlation values only exist

at integer displacements giving an accuracy of only ±1/2pix. To get a more accurate measure

of the particle displacement to sub-pixel accuracy a function can be fitted to the correlation peak

values. The most common peak fitting estimator is the Gaussian peak fit as the correlation peaks

tend to be approximately Gaussian in shape. The Gaussian peak fit is typically a three-point

estimator, using three points in each direction to fit a Gaussian curve to the peak location gives a
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Table 1.1 The-point subpixel correlation function fitting functions. Reproduced from (Raffel et al.,
1998).

Fitting function Estimators

Peak centroid x0 =
(m−1)C(m−1,n)+mC(m,n)+(m+1)C(m+1,n)

C(m−1,n)+C(m,n)+C(m+1,n)

f (x) = first order moment
zero order moment y0 =

(n−1)C(m,n−1)+nC(m,n)+(n+1)C(m,n+1)
C(m,n−1)+C(m,n)+C(m,n+1)

Parabolic peak fit x0 = m+
C(m−1,n)−C(m+1,n)

2C(m−1,n)−4C(m,n)+2C(m+1,n)

f (x) = αx2 +βx+ γ y0 = n+
C(m,n−1)−C(m,n+1)

2C(m,n−1)−4C(m,n)+2C(m,n+1)

Gaussian peak fit x0 = m+
lnC(m−1,n)−lnC(m+1,n)

2lnC(m−1,n)−4lnC(m,n)+2lnC(m+1,n)

f (x) = γ exp
[
−(x0−x)2

k

]
y0 = n+

lnC(m,n−1)−lnC(m,n+1)
2lnC(m,n−1)−4lnC(m,n)+2lnC(m,n+1)

more accurate particle displacement. Other methods of peak detection include finding the centroid

of the peak and fitting a parabolic curve, the three methods are summarised in Table 1.1. The

following process can be used to detect correlation peaks to sub-pixel accuracy:

1. Scan the correlation plane C to find the maximum value C(m,n) at the location (m,n).

2. Record the four adjoining correlation values: C(m−1,n), C(m+1,n), C(m,n−1), C(m,n+

1).

3. Use three points in each direction to apply a three point estimator, see Table 1 1.

1.5.4 Errors

There are two main types of error present in PIV measurement; random and bias errors. Random

errors arise due to electrical camera noise and errors associated with identifying the sub-pixel

displacement (Christensen, 2004). Random errors can be reduced by statistical analysis using a

sufficiently large ensemble set of data in either space or time (Chen and Katz, 2005; Christensen,

2004).

Bias errors are more problematic as they arise due to uncertainties with the fill ratio of the

CCD camera, interrogation algorithm and most significantly peak locking (pixel locking) errors

(Christensen, 2004). Sources of and means of reducing bias errors are discussed in the following

sections.
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1.5.5 Peak Locking

The peak-locking effect arises due to the biasing of particle displacements towards integer pixel

values. The scale of the peak locking is effected by a number of factors such as particle image

diameter (Adrian, 1991), particle displacement (Adrian, 1991; Raffel et al., 1998), the sampling

of the particle images. The sub-pixel locator used with Westerweel (1997) showing that the Gaus-

sian fit outperforms both centroid and parabolic fitting in terms of minimising peak lock errors

and where Pust (2000) shows that a normalised direct spatial cross-correlation has reduced peak

locking error when compared to an FFT based correlation. Gui and Wereley (2002) and Cholemari

(2007) present studies into the peak locking effect and a methods by which it can be reduced.

There are many methods for reducing the effect of peak locking (Gui and Wereley, 2002) such

as the use of correlation mapping as done by Chen and Katz (2005), the use of discrete window

shifts (Westerweel et al., 1997) to name but a couple.

The diameter of captured particle images plays an important role in the effect of peak locking,

ideally particle images should have a diameter of 2-3pix. Particle images with a diameter of 1

pixel or less leads to a high peak locking effect as the centre of the particle image will be located

at the centre of the pixel when calculated using curve fitting functions giving bias towards integer

values. Conversely particles with a diameter greater than two pixels can be located more accurately

as when applying a curve fitting function the location of maximum intensity can be calculated to

sub-pixel accuracy.

To minimise the effect of peak locking it is therefore necessary when setting up a PIV experi-

ment to choose appropriate optics and carefully selected tracer particles to ensure that the captured

particle images are of an optimum size. Further it is important to choose algorithms such as Gaus-

sian sub-pixel peak detection when processing the PIV data to further minimise the effects of peak

locking.

1.5.6 Discrete window shifting and multigrid algorithms

Various studies show that errors in displacement vector calculations are at a minimum when the

particle displacements are less than 0.5pix (Cameron, 2011; Raffel et al., 1998). This fact can be

taken advantage of by introducing an iterative window offset method (Westerweel et al., 1997).

An initial displacement field is calculated using cross-correlation and vector validation to remove

erroneous displacement vectors. Using the discrete displacement value from the initial cross-

correlation function a second iteration is carried out only this time the interrogation window in the

second image, I2, is displaced by the discrete displacement calculated in the first iteration, ds as

shown in Figure 1.6. The particle image displacement is then given as the sum of the discrete offset

from the first iteration and the sub-pixel displacement from the subsequent iteration. This helps

to reduce the effect of loss-of-pairs between images (reducing bias towards low levels of particle

displacement) and reduces errors in the calculated displacements as all further displacements of

particle images between the two new windows are in the range -0.5pix to 0.5pix.
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Fig. 1.6 Interrogation region arrangement for first and second iterations when using discrete win-
dow shifting.

Experiments carried out by Westerweel et al. (1997) show that a measurement error of only

0.5% can be obtained when evaluating grid-turbulence when using a discrete window shift. Scarano

and Riethmuller (1999) further develop this method into an iterative procedure where the particle

displacement is iteratively predicted and corrected with vector validation carried out after each

iteration to further increase accuracy. The multigrid method allows for an increase in spatial

resolution of the vector field by increasing the detectable particle displacement, Adrian (1991) es-

tablished the general rule that a particle displacement should not exceed more than one quarter of

the size of the interrogation window due to increasing error with displacement due to the ‘loss of

pairs’ where particle images move outside the interrogation window resulting in lower correlation

peaks and consequently a lower signal to noise ratio. The errors due to the loss of pairs can almost

wholly be eliminated using window offsets as the displacement of particle images is followed by

the interrogation windows and using this method the window size can be iteratively decreased fur-

ther increasing spatial resolution as shown in Figure 1.7. In Figure 1.7 the first iteration is carried

out with two interrogation regions, I1 and I2 with the same coordinates in the first and second im-

ages. In the second iteration the interrogation window size is reduced (by half in this case) giving

four new interrogation windows; I1,1, I1,2, I1,3 and I1,4 in the first image and I2,1, I2,2, I2,3 and I2,4 in

the second. CCFs are then calculated between corresponding interrogation windows (I1,n and I2,n)

where the second frame interrogation windows, I2,n are translated by the displacement calculated

in the first iteration as in Figure 1.6.

Applying the iterative multigrid method to flow over a backward facing step Scarano and

Riethmuller (1999) show that the minimum resolvable displacement is reduced by approximately

a third and the maximum amplified by up to a factor of four when compared to the method without

any offset. This is an increase in the dynamic range (the ratio of measurable displacements to

window size) allowing larger displacements to be measured using smaller window sizes and thus

increasing spatial resolution.
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Fig. 1.7 Interrogation region arrangement for first and second iterations when using discrete multi-
gridding.

1.5.7 Continuous Window Deformation

As in most practical fluids experiments velocity gradients are present within the flow field resulting

in non-uniform particle displacement within an interrogation region (Westerweel, 2008). In cases

where these spatial velocity gradients are high the cross-correlation function can fail to provide a

dominant displacement peak resulting in spurious data or less accurate displacement vectors due

to the stretching of the cross-correlation peak. Iterative multi-gridding with a discrete offset can

reduce the effect up to a point by reducing the window size and hence reducing the difference in

particle image displacements within the window due to gradients.

First proposed by Huang et al. (1993) particle image distortion (PID) or iterative image de-

formation methods (Scarano, 2002), apply a continuous offset to each pixel in the second inter-

rogation window based on the displacement field calculated in the first iteration using standard

cross-correlation (SCC) (see § 1.5.1). Huang et al (Huang et al., 1993) state that fluid motion can

be described as the summation of three components; convection (translation), stretch and rotation.

The first of these, translation is dealt with in the previous section using a discrete offset of the

second interrogation window, but in this case a continuous sub-pixel translation is applied. The

stretch and rotation terms are calculated from the various spatial derivatives of the displacements.

By using an image interpolation scheme the displacement at each pixel between each vector grid

point can be calculated, these individual displacements are then applied to each pixel in the second

interrogation window to deform it in such a way as that it follows the local velocity distribution

across the interrogation region.

Since the second image is translated by a sub-pixel amount an image interpolation algorithm

has to be applied to calculate the correct grey levels in the deformed window. The choice of in-

terpolation algorithm has a large effect on the quality of the calculated vectors (Astarita, 2008;

Astarita and Cardone, 2005; Duncan et al., 2009; Kim and Sung, 2006; Roesgen, 2003) and a

trade-off between computation time and the accuracy of the reconstructed image has to be made.



16 Particle Image Velocimetry

Jambunathan et al. (1995) proposed a method where the second interrogation window is offset

by a fractional amount and a linear deformation applied. Latterly more complex transformations

are introduced such as sinc interpolation (Scarano and Riethmuller, 2000), spline and third order

Lagrange interpolation (Fincham and Delerce, 2000) and quadratic and fourth-order Lagrange in-

terpolations (Stanislas et al., 2003). Astarita (2008) and Kim and Sung (2006) provide a detailed

evaluation of a number of deformation methods with the latter concluding that the sinc and La-

grange interpolations performed best with sinc interpolation optimal in terms of both performance

and computation time for small particle images and Lagrange interpolation for larger particle im-

ages.

1.5.8 Other Vector Calculation Algorithms

Local field correction (Nogueira et al., 1999, 2001) is able to resolve flow structures smaller than

the interrogation window and is almost indifferent to the effect of particles with differing bright-

nesses as the field is first estimated using the brighter particles but then the deformation of particles

is compensated and fainter particles are considered to finish the correlation. Other advanced meth-

ods include adaptive space resolution (Astarita, 2009), reverse hierarchical processing (Rohály

et al., 2002), phase correlation (Eckstein et al., 2008; Eckstein and Vlachos, 2009b), phase only

filtering (Awwal et al., 2000; Wernet, 2005) and the use of weighting windows with significantly

increased computation time and some improvements in particle displacement resolution (Astarita,

2007; Nogueira et al., 2002).

Another more advanced correlation based vector calculation algorithm is Hart’s ’correlation

based correction’ (CBC) (Hart, 2000) which aims to reduce the amount of spurious vectors cal-

culated whilst improving the accuracy in measured velocity, especially in regions of high velocity

gradients through the multiplication of adjacent correlation functions. The CBC method is inves-

tigated in detail in § 5.

1.6 High-Speed Time-Resolved PIV

High-Speed Time-resolved PIV (TR-PIV) is a rapidly developing implementation of PIV in which

the temporal evolution of flows can be evaluated by capturing PIV image pairs at a high tempo-

ral frequency. This is an important development as highly resolved temporal data is crucial for

the analysis of the smaller structures present in turbulence as will be discussed in the following

chapter. The three major limiting factors with TR-PIV are laser repetition rate, camera framing

rates and camera memory capacity (Wernet, 2007). However, with the use of modern equipment

PIV data can be captured at rates of 50 kHz (25 kHz for frame pairs) for low spatial resolutions

(640x80 pixels) (Wernet, 2007). Towers and Towers use high speed TR-PIV to capture data at

14kHz in three orthogonal planes in an optical gasoline direct injection (GDI) engine cylinder and

isolate high-frequency turbulence from bulk-flow components, this evaluation of high frequency
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Fig. 1.8 (left) Raw velocity vector field containing spurious data and (right) the same vector field
after spurious vectors are removed and replaced with interpolated vectors.

temporal structures is possible using standard, low repetition rate PIV (Towers and Towers, 2004,

2008). With TR-PIV data techniques such as proper orthogonal decomposition (presented in § 3)

can be used to investigate turbulent flow evolution (Cosadia et al., 2007).

Using multiple lasers and cameras Timmerman et al. (2009) present a method where tempo-

rally resolved high resolution (2048 x 2048 pixel square images) PIV data can be recorded at

megahertz frequencies. Using six cameras and five lasers Timmerman et al were able to capture

up to six consecutive 4MP images at a temporal resolution of 2MHz from which both spatial and

temporal flow structures can be evaluated.

1.7 Spurious Vector Detection

1.7.1 Introduction

In every PIV experiment, no matter how well designed, especially when investigating flows with

complex structures when it comes to calculating the vector field there are more often than not

vectors that do not fit in with the flow and can clearly be seen to be erroneous, these are referred

to as spurious vectors, an example of which can be seen in Figure 1.8. A spurious vector can be

identified as having a substantially different magnitude or direction to the surrounding data (Raffel

et al., 1998). Spurious vectors arise due to interrogation windows having insufficient particle

image pairs or a low signal to noise ratio (Nogueira et al., 1997), bad seeding, poor illumination,

over exposure of images just to name a few and it is of interest to find, remove and replace these

spurious vectors with interpolated values. Figure 1.8 shows the same vector field before and after

data validation.

Due to very large data sets (thousands of vector fields each containing tens of thousands of vec-

tors) the process has to be highly automated and has to be highly robust as individually checking
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each vector field qualitatively is impossible.

The algorithm used to detect spurious vectors has to be robust as it is used in the intermediate

stages when calculating the predictor fields during iterative vector calculation (multigrid). Due

to this if any spurious vectors that are not identified, removed and replaced at each stage the

predicted particle image displacement and resulting window shift deformation for the next iteration

will be wrong leading to spurious or no vectors being calculated in the next iteration. Also it is

important in the final vector field that all spurious data is removed from a data-set as further

calculated properties such as divergence or vorticity based on raw velocity vector fields containing

spurious vectors will greatly affect the quality of the results. After a vector validation algorithm

has been applied the result is a vector grid with data missing at points where spurious vectors were

present (Nogueira et al., 1997). In most cases it is desirable to fill in these gaps using interpolation

methods, of which there are many including linear and bilinear interpolation of surrounding data,

the median value of surrounding data or the mean value of the surrounding data (Raffel et al.,

1998).

A spurious vector detection must meet two main criteria (Raffel et al., 1998):

• Detection of all spurious data.

• Rejection of the data if it cannot be decided whether the data is valid or not.

There are many methods for the detection of spurious vectors in a vector field, most of which are

based on statistical methods. Westerweel (1994) presents a purely statistical method of detecting

spurious vectors by comparing each displacement vector with nearby vectors. This was a key de-

velopment as detection of spurious vectors by visual inspection is time consuming and subjective,

for large data-sets a person carrying out the inspection will easily become fatigued and not all

spurious vectors will be detected, or valid vectors will be detected as spurious (Raffel et al., 1998).

Westerweel further develops this algorithm into a robust and efficient process for the detection of

spurious vectors in fields and is described below in detail along with a number of other detection

algorithms.

1.7.2 Global Histogram Operator

The global histogram operator (Raffel et al., 1998) is a basic spurious vector detection algorithm

based on the difference in magnitude of a central vector to those surrounding it. It assumes that

if the length scale of the flow is much greater than the distance between vectors then if a vector

is spurious the difference in magnitude to its neighbours is above some threshold εthresh. The

difference Udi f f is calculated as the magnitude of the difference in vectors:

Udi f fn = |ui −u0| (1.12)

Where ui is a neighbouring vector and u0 is the vector under inspection. If Udi f f > εthresh the the

vector is identified as spurious. The main limitation of this algorithm is that the threshold level
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Fig. 1.9 Grid of a neighbouring 8 vectors centred around the spurious vector u(0).

chosen is sensitive to the velocity magnitudes present in the flow, if a threshold is chosen to be

sensitive to spurious data in regions of high velocity spurious vectors in regions of low velocity

may not be detected.

1.7.3 Normalised Median Test

A common and robust spurious vector detection algorithm is the normalised median test (NMT)

as presented by Westerweel and Scarano (2005) an adaptation of the original and widely used

median test by Westerweel (1994). The algorithm works by comparing the vector of interest to

the local median of the nearest eight or 24 vectors, see Figure 1.9. At each point the local median

is normalised by a specific value to enable a single threshold value to be used for the entire flow

field making it more suitable to large area images where both high and low velocities are present.

In the case when a 3 x 3 vector filter is applied the nearest eight neighbouring vectors centred

about the vector of interest, u0 are denoted by ui where i = 1, 2,..., 8. The local median of the

neighbouring vectors, u1−8 is denoted um. From the local median and for each neighbouring

vector a residual value, ri is calculated as the modular difference between each vector ui and the

median vector um:

ri = |ui −um| (1.13)

A normalising value is next calculated, this is the median of the above residual values, ri and is

denoted rm. The normalised residual, r′0 of the vector u0, is then calculated by dividing the residual

ri by the normalising residual rm:

r′0 =
|u0 −um|

rm
(1.14)

This value r′0 is then compared to a predefined threshold value, εthresh and if r′0 is greater than the

threshold value the vector is flagged as spurious.
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1.7.4 Cellular Neural Network Algorithm

Liang et al. (2003) devised a method for the detection of spurious vectors using an artificial neural

network. Neural networks are composed of simple elements operating in parallel so named as they

are inspired by biological neural systems. The cellular neural network (CNN) is a single layer,

local feedback network, composed of m x n neurons in the two-dimensional case. The neurons

are then linked between all other neurons within a radius r, if r = 1 then each neuron is connected

only to the nearest eight neighbours and to the nearest 24 if r = 2. Each neuron in the network

corresponds to a vector in the velocity field and has either a value of one or zero representing

valid and spurious vectors respectively. In the two-dimensional case each flow field corresponds

to two neural networks, one each for the u and v components of the velocity field. The vector

is then marked as spurious if either one, or both, of these components is shown to be erroneous.

The algorithm works for each vector component (initially set to a value of one) the weight of the

neuron with it’s neighbours is calculated and if this is above a defined threshold level the vector is

marked as spurious, the method is iterative and is repeated until no more vectors are detected as

spurious.

1.7.5 Variable Threshold Algorithm

The variable threshold method introduced by Shinneeb et al. (2004) first uses an aggressive spu-

rious vector detection algorithm such as CNN (Liang et al., 2003) or local-median testing (West-

erweel and Scarano, 2005) to first remove any vector suspected of being an outlier. The vectors

detected as spurious in this first pass are then replaced by a Gaussian-weighted average of their

neighbours whilst vectors not initially detected as spurious are unmodified at this stage. From

this new provisional field the ‘expected’ difference between a velocity vector and its immediate

neighbours is calculated, this expected deviation then has a Gaussian filter applied to give a local

threshold for each point in the flow field. Whilst this method shows improved detection of spuri-

ous vectors against the local-median and CNN methods it is much more computationally intensive

than the normalised median test method and is based on a similar principle of varying the threshold

criterion for each point in the flow.

1.7.6 Other Spurious Vector Detection Algorithms

There are a number of other methods presented in the literature by which spurious vectors can be

detected and each have their advantages and disadvantage. Methods include model-based valida-

tion by Young et al. (2004), flow-adaptive data validation by Liu et al. (2008), rule based fuzzy

logic by Sapkota and Ohmi (2008) and mode ratio bootstrapping by Pun et al. (2007). Whilst

improved performance can be obtained, the computational ‘cost’ can be significant; furthermore,

careful optimisation of the PIV experimental system can reduce the number of outliers to less than

a few percent.
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1.7.7 Other Considerations for Vector Post-Processing

For iterative vector calculation algorithms, e.g. multigrid it is sometimes beneficial to smooth the

vector field before proceeding with subsequent iterations. PIV data sets usually contain noise and it

can be beneficial to reduce the noise levels by applying a smoothing kernel such as replacing each

vector with the median of the neighbouring vectors. For final vector calculations smoothing should

be treated with caution as it can have the effect of filtering out very small scale flow structures or

purely turbulent fluctuations.





Chapter 2

Turbulence and Vortex Identification

2.1 What is turbulence?

“Observe the motion of the surface of the water, which resembles that of hair,

which has two motions, of which one is caused by the weight of the hair, the other by

the direction of the curls; thus the water has eddying motions, one part of which is

due to the principal current, the other to random and reverse motion.”

Leonardo da Vinci, 1452-1519

Reportedly, on his deathbed the great physicist Werner Heisenberg, one of the pioneers of

quantum theory said he would ask God two questions, “Why relativity and why turbulence? I

really think he may have an answer for the first one”. This hints towards the complex nature of

turbulent flow.

Most flows, whether naturally occurring or present in a mechanical system are turbulent. Tur-

bulence is a feature of everyday life, wind is turbulent, the flow of water over a waterfall is turbu-

lent, the smoke exiting the chimney of a steam train is turbulent. What these all have in common

is that when looked at closely it becomes apparent that there is a chaotic, stochastic nature to

these flows which appear to have no structure and rapidly change with time. The study of and an

understanding of turbulence is required in a lot of fields, for example, predictive weather models

used in weather forecasting depend heavily on turbulence models as the movement of air in the

atmosphere which dictates the weather is turbulent. Mixing, an everyday process depends heavily

on turbulence, without it the quality of mixing would be greatly reduced affecting the quality of

products from medicines to paint to chemicals. Combustion, for example in an internal combus-

tion engine is heavily dependent on turbulence to control the quality of combustion and hence the

performance of the engine. Turbulence has applications in astrophysics as it governs the formation

of galaxies and the dynamics of supernova.

In his book on turbulence Cebeci collates the two following early definitions of turbulence by

Hinze and von Karman (Cebeci, 2004):

von Kármán (1937) gave the following definition:
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“Turbulance is an irregular motion which in general makes its appearance in

fluids, gaseous or liquid, when they flow past solid surface or even when neighbouring

streams of the same fluid flow past or over one another”

Hinze, in 1959 gives the following definition of what he believes to be turbulent flow (Hinze,

1975):

“Turbulent fluid motion is an irregular condition of the flow in which the vari-

ous quantities show a random variation with time and space co-ordinates, so that

statistically distinct average values can be discerned.”

And in 1985 Chapman and Tobak (1985) go on to give a more formal definition of turbulence:

Turbulence is any chaotic solution to the 3-D Navier-Stokes equations that is sen-

sitive to initial data and which occurs as a result of successive instabilities of laminar

flows as a bifurcation parameter is increased through a succession of values

Tennekes and Lumley (1972) list a number of characteristics of turbulent flows:

• Irregularity: The stochastic nature of turbulence renders analytical solutions impossible

meaning statistical methods have to be used to describe turbulent flows.

• Diffusivity: Diffusivity of turbulence causes rapid mixing and increased rates of momen-

tum, heat and mass transfer; as far as applications are concerned Tennekes and Lumley

describe this as the most important feature.

• Large Reynolds Numbers: All turbulent flows occur when the flow is dominated by inertial

forces rather than internal viscous forces.

• Three-Dimensional Vorticity Fluctuations: Turbulence is defined by fluctuating vorticity,

vortex stretching is an essential feature of turbulence and is not present in two dimensional

flow.

• Dissipation: Viscous shear stresses cause an increase in the internal energy of the fluid,

this energy is passed down from the inertial energy of the turbulence. If the application of

energy to the flow ceases all turbulent energy will dissipate due to viscous forces and the

turbulence will be impossible to maintain.

• Turbulent flows are flows: Turbulence is not a feature of fluids but of fluid flows and most

of the dynamics of turbulence are the same for both liquid and gas phase flows.

When making observations of turbulent flows at a fixed point (an Eulerian reference frame)

one notices that the measured quantity, for example, velocity fluctuates both in direction and speed

with time and it is the magnitude of these fluctuations away from the average flow that give a

measure of the scale of the turbulence. These fluctuations arise from “the sensitivity of the flow to
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uncontrollable perturbations in the initial and boundary conditions” (Bernard and Wallace, 2002).

Bernard and Wallace go on to suggest that the defining feature of turbulence is the ability of

the flow to take minute fluctuations in boundary and initial conditions caused by such things as

changes in small scale surface roughness or slight variations in the driving mechanism and amplify

them in a chaotic nature to a measurable scale. Whilst always present, if the flow is laminar viscous

forces damp out these slight perturbations and the flow remains constant not changing with time.

2.2 The Navier-Stokes Equations of Fluid Motion

Developed in the 1840s by Claude-Louis Navier and George Gabriel Stokes the Navier-Stokes

equations describe the motion of fluid elements and are derived by applying Newton’s Second law

to a fluid element (Navier, 1823; Stokes, 1848).

2.2.1 The Convective Derivative

Introduced by Stokes, the operator D(·)/Dt represents the rate of change of a quantity associated

with a given fluid element as opposed to ∂ (·)/∂ t which represents the rate of change of a quantity

associated at a fixed point in space (Davidson, 2004). D(·)/Dt has a Lagrangian reference frame

(moves with the fluid) whereas ∂ (·)/∂ t has an Eulerian reference frame (velocities related to this

fixed frame). In the case of the velocity vector u we have (Davidson, 2004):

Du
Dt

=
∂u
∂ t

+(u ·∇)u (2.1)

Where ∇ is the three dimensional gradient opperator:

∇ =
∂

∂xi
+

∂

∂x j
+

∂

∂xk
(2.2)

2.2.2 Derivation of Navier-Stokes Equations from the Momentum Equation

Using Newton’s second law one can relate the acceleration of a fluid element to the surface and

body forces acting upon it with the following, the momentum equation (Pope, 2000):

ρ f
Du j

Dt
=

∂τi j

∂xi
−ρ f

∂Ψ

∂x j
(2.3)

Where τi j is the stress tensor which contributes the surface forces acting on the fluid element and

Ψ is the gravitational potential which gives rise to the body forces. The body force per unit mass

is defined as:

g = −∇Ψ (2.4)
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where g is the acceleration due to gravity. For flows of constant-property Newtonian fluids the

stress tensor is:

τi j = −Pδi j +µ
∂ui

∂x j
+

∂u j

∂xi
(2.5)

where P is pressure, µ the viscosity and δi j, the Kronecker delta defined as:

δi j =

1, if i = j,

0, if i ̸= j.
(2.6)

Substituting (2.5) into (2.3) we can derive the Navier-Stokes equations:

Du j

Dt
= µ

∂ 2u j

∂x2
i
− ∂P

∂x j
−ρ f

∂Ψ

∂x j
(2.7)

The body force and pressure terms can be combined by defining the modified pressure, p:

p = P+ρ f Ψ (2.8)

If in place of the dynamic viscosity, µ the kinematic viscosity, ν where ν = µ/ρ f is used in

conjunction with the modified pressure term, p as defined in (2.8) the the Navier-Stokes equation

presented in (2.7) reduces to:

Du
Dt

= − 1
ρ f

∇p+ν∇
2u (2.9)

Looking at (2.9) one can see that the Navier-Stokes equations are a series of second-order partial

differential equations and they describe the motion of a fluid element for both laminar and turbulent

flow regimes. Due to the complex nature of the equations analytical solutions are only attainable

for the most simple of flows in the laminar flow region with non-complex boundary geometry.

One analytical solution is the Oseen vortex which is described in detail in §5. For more complex

flows analytical solutions do not yet exist and it is unsure whether analytical solutions will ever be

found so modelling is reduced to numerical solutions of the equations.

2.2.3 Reynolds Number

Whether a flow is in the turbulent or laminar flow regime is dependent on the dimensionless num-

ber, the Reynolds number, Re. The Reynolds number is a measure of the ratio of inertial forces to

viscous surface forces and is defined as:

Re =
ρ f ul

µ
(2.10)

Re =
ul
ν

(2.11)
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where ρ f is the fluid density, u the velocity of the flow, l the characteristic length scale of the flow.

What do (2.10) and (2.11) tell us about the flow regime? The Reynolds number will be high if the

inertial forces are dominant over the viscous forces, this is the case when the flow velocity is high,

the viscosity of the fluid is low or a combination of the two. Turbulent flows are typical of high

Reynolds numbers, it can be seen that for low Reynolds numbers the viscosity term dominates

over the inertial term meaning any disturbances in the flow caused by inertial forces are damped

out through viscosity resulting in a laminar flow regime.

Derivation of Reynolds Number from Navier-Stokes Equations

The Navier-Stokes equations as presented in (2.9) can be made non-dimensional by using the

characteristic velocity, U and length, L scales to define the independent dimensionless variables

∇ = ∇′/L and t = t ′(L /U ) and the dependent variables u = u′U and p = p′U 2ρ f . Substituting

these variables into (2.9) and expanding the convective derivative we have (Bruno and Carbone,

2005):

∂u′

∂ t ′
+
(
u′ ·∇′)u′ = −∇

′p′+
ν

U L
∇
′2u′ (2.12)

Recognising in (2.11) that Re = U L /ν and dropping the prime notation for clarity we end up

with the following non-dimensional representation of the Navier-Stokes equations:

∂u
∂ t

+(u ·∇)u = −∇p+
1

Re
∇p2u (2.13)

(2.13) shows that the Reynolds number is the only parameter of the flow (Bruno and Carbone,

2005) and as the Navier-Stokes equations govern all fluid motion it can be assumed that flows with

similar Reynolds numbers behave in the same manner. (2.13) also shows that for high Reynolds

numbers the viscous term becomes negligible meaning the flow is essentially inviscid and is dom-

inated by the inertial forces.

2.3 Statistical Methods in Turbulence Analysis

2.3.1 Reynolds Decomposition

Due to the stochastic nature of turbulent flows looking at only instantaneous data is not very helpful

when attempting to describe the flow as a whole, so averaged values are used. The most commonly

used quantity when trying to describe the overall structure of a turbulent flow is to use Reynolds

decomposition. A turbulent flow when observed over time can display certain bulk features which

appear to remain relatively constant but upon closer inspection it can be seen that this bulk motion

contains temporal fluctuations.

For the three-dimensional velocity vector u(x, t) where u = (u,v,w) and x = (x,y,z) is the

position vector the time averaged velocity, u over a period T and beginning at t0 is calculated as



28 Turbulence and Vortex Identification
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u, u'

time average mean velocity, u

velocity fluctuations from the mean, u'

raw measured velocity, u

0

0

Fig. 2.1 (top) Raw velocity time series containing random fluctuations, u and (bottom) velocity
fluctuations, u′ after subtracting the mean velocity through Reynolds decomposition.

follows (Pope, 2000):

u = lim
T→∞

1
T

∫ t0+T

t0
udt (2.14)

The above equation assumes continuous velocity data. While useful in mathematical models of

fluid flows experimental data is obtained at discrete time intervals, when this is the case the average

velocity vector is calculated as the summation of all instantaneous velocity vectors at times tn

divided by the total number of velocity measurements, N:

u =
1
N

N

∑
n=1

u(tn) (2.15)

A time average only makes sense if the mean flow is steady, i.e. does not vary with time meaning
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the following condition has to be met (Pope, 2000):

∂u
∂ t

= 0 (2.16)

Using the time-average velocity calculated in (2.15) one can decompose the instantaneous velocity

vector, u into mean, u, and fluctuating, u′, velocity components by subtracting the mean velocity

from the instantaneous velocity:

u′ = u−u (2.17)

and finally, for completeness, instantaneous velocities can be represented as the sum of the mean

flow and the instantaneous fluctuation from the mean:

u = u+u′ (2.18)

From the above it can be seen that the time-average of the fluctuating values is equal to zero. Fig-

ure 2.1 shows this graphically. Reynolds decomposition, by subtracting the time-average centres

the fluctuating velocities around zero making it easier to spot smaller scale features of the flow

which are often hidden by the average flow, though it is not uncommon for the fluctuating values

to be greater than the mean value.

2.3.2 Turbulent Kinetic Energy and Turbulence Intensity

It is useful to have a way of quantifying the magnitude of the turbulence present in a flow, this is

done using the related quantities of turbulent kinetic energy and turbulence intensity. In the above

section it was stated that the time average of the fluctuating velocity components is equal to zero

however, when taking the mean of the squares of the fluctuating values a positive value is obtained

(Cebeci, 2004):

u′ =
1
N

N

∑
n=1

u′
n = 0 (2.19)

u′2 =
1
N

N

∑
n=1

u′2
n (2.20)

Where u′
n = u′ (tn). It can be seen in (2.20) that the mean of the squares of the fluctuating values

is only equal to zero when the fluctuating values are equal to zero, in this case the instantaneous

velocity at each time is equal to the mean velocity meaning the flow is laminar and steady and

hence has no turbulent fluctuations. Taking the square root of (2.20) gives the strength of the

turbulence (i.e. the average magnitude of velocity fluctuations from the mean) and is defined as
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the root-mean-square of the fluctuating velocity values, urms as follows:

urms =

√
1
N

N

∑
n=1

u′2
n (2.21)

(2.21) shows that the greater the magnitude of the velocity fluctuations the greater the turbulence

strength, urms is. This means that the strength of the turbulence is greater the more the fluctuations

deviate from the mean; in low turbulence systems fluctuations deviate little from the mean velocity

and conversely in highly turbulent systems the fluctuations deviate from the mean by a much

greater amount.

Whilst the turbulence strength is a useful quantity it is often non-dimensionalised by normal-

ising by the mean velocity, this quantity is referred to as the turbulence intensity, I and is defined

by the three quantities (one each for the three velocity components, u, v and w) (Cebeci, 2004):

Iu,v,w =
urms

u
,
vrms

v
,
wrms

w
(2.22)

Turbulence kinetic energy, k, is defined as the mean kinetic energy per unit mass in a turbulent

flow and is defined as follows (Cebeci, 2004; Davidson, 2004; Pope, 2000):

k =
1
2
(
u2

rms + v2
rms +w2

rms
)

(2.23)

As can be seen with the previously defined quantities the greater the RMS fluctuation values the

greater the turbulence kinetic energy. This turbulence kinetic energy is associated with the energy

contained within the larger eddies of the flow and is subsequently transferred through the smaller

scales until dissipated at the Kolmogorov scale (Pope, 2000) as will be introduced next.

2.3.3 Homogeneity and Isotropy

Turbulence is considered to be homogeneous if statistics relating to velocity fluctuations such

as intensity, energy, length scales (introduced later), etc... are invariant across the measurement

domain (Pope, 2000), i.e. statistics measured at a point x are the same at the point x+ ζζζ where

ζζζ = (ζ1,ζ2,ζ3) is the spatial translation vector where ζ1,ζ2 and ζ3 are translations in the x, y and

z coordinate directions respectively.

If the turbulence statistics are invariant under rotations or reflections of the coordinate system,

i.e. independent of orientation, then the turbulence is said to be isotropic (Pope, 2000). For

example, in isotropic turbulence the turbulence intensity is the same for each velocity component,

Iu = Iv = Iw.

2.4 Scales of Turbulence

To fully understand the properties of turbulent flows length scales have to be investigated. Length

scales give a measure of the size of structures present in turbulent flows and govern the mixing
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Fig. 2.2 One dimensional turbulent energy-wavenumber spectrum.

process in heat and mass transfers (Thacker et al., 2010).

2.4.1 Kolmogorov Energy Cascade

Much of modern turbulence theory can be said to be based on the work carried out in the mid-20th

Century by A. N. Kolmogorov, specifically his two publications of 1941 where he outlines the

notion of the local isotropy of turbulence (Kolmogorov, 1941a) and the cascade of energy from

large eddies to smaller ones (Kolmogorov, 1941b).

In turbulent flows the largest eddies contain the majority of the turbulence kinetic energy

as previously discussed, these large eddies are however unstable and break up transferring their

energy into smaller eddies which in turn break up and transfer energy to yet smaller eddies. This

energy cascade continues until the length scale reaches a point where eddies no longer break down

into smaller ones but their energy is dissipated to heat through molecular viscosity (Tennekes and

Lumley, 1972), the order of the scale at which dissipation occurs is referred to as the Kolmogorov

micro-scale. The process of the energy cascade is nicely described by the following verse by

Richardson (1922):

Big whirls have little whirls

Which feed on their velocity;

And little whirls have lesser whirls,

And so on to viscosity.

Kolmogorov describes in the first of his 1941 papers (Kolmogorov, 1941a) that at the smallest

scales the forces driving the main large scale turbulence are of little influence and that at these
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Fig. 2.3 Autocorrelation function of an eddy of wavenumber κ and wavelength 2πκ .

smallest scales the flow turbulence is homogeneous and isotropic meaning that at scales approach-

ing the Kolmogorov microscale the turbulent motions are statistically independent of those at the

scale of the largest eddies and that at these scales the fluid motion is universal for all high Reynolds

number fluid flows and is governed only by the viscosity of the fluid and the dissipation rate (Pope,

2000). This holds true even though at the larger scales in general the flow turbulence is inhomo-

geneous and anisotropic containing directional properties (also referred to as ‘shape’) owing to

factors such as geometrical bounds (Tennekes and Lumley, 1972). Following from the hypotheses

that at the smallest scales the flow is isotropic and homogeneous Kolmogorov then goes on to hy-

pothesise that at very high Reynolds numbers, at these small scales the statistics of the turbulence

are the same for all turbulent flows, only depending on the viscosity of the fluid and the dissipation

rate (Kolmogorov, 1941a).

The variation of energy at the different scales of turbulent flow is shown in Figure 2.2 in the

form of the turbulent energy spectrum, E(κ). The different scales at which energy is contained are

defined by wavenumber, κ which is a measure of the spatial frequency of an eddy of a particular

scale l where spatial eddy size and wavenumber are linked as follows:

κ =
2π

l
(2.24)

Figure 2.3 shows the autocorrolation function, B of a eddy of wavenumber κ and spatial wave-

length l, the corresponding energy spectrum, E(κ) of this eddy is presented in Figure 2.4 showing

that the energy content of the eddy is centred on wavenumber κ with the majority of the energy

contained between 0.6κ and 1.6κ (Tennekes and Lumley, 1972).

As stated the turbulent kinetic energy contained within a flow is distributed among eddies of

varying scale (size). Figure 2.4 shows the energy spectrum E(κ) of a single eddy of wavenumber

κ and the total energy spectrum for eddies of all scales contained within a flow is presented in

Figure 2.2. The normalised energy contained at each wavenumber, B̃(κ) is obtained by taking the

Fourier transform of the autocorrelation function, B (Equation (2.29)) of the fluctuating velocities
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as follows Batchelor (1953):

B̃(κ) =
∫

∞

−∞

B(ζ )eiκζ dζ (2.25)

The correlation function B is normalised as presented in Equation (2.29) with the result that

the energy spectrum B̃ provides a normalised energy content at each wavenumber, κ with the

total energy integrated over each wavenumber equalling 1. The total turbulent energy contained

within the flow, k as previously stated in (2.23) is equal to half the square of the RMS velocity

fluctuations, this same energy must also be contained in the energy spectrum E(κ):

k =
1
2

u2
rms =

∫
∞

0
E(κ)dκ (2.26)

From (2.26) and the fact that the energy contained within the normalised energy spectrum, B̃ is

equal to 1 it can be seen that in order for the energy content of E(κ) to be equal to k, B̃ needs to

be scaled by a factor 2u2
rms as follows:

E(κ) = 2u2
rmsB̃(κ) (2.27)

Turbulent flow can be broken down as containing four main flow scales as are highlighted in

Figure 2.2 which will now be discussed further:

1. The large scale, governed by the geometry of the system.

2. The integral scale, the scale of the largest eddies contained within the flow.

3. The Taylor microscale, an intermediate scale corresponding to Kolmogorov’s inertial sub-

range.

4. The Kolmogorov scale which contains the smallest scale flow structures.

2.4.2 Integral Length Scale

The integral length scale (also known as the Taylor macro-scale) (Taylor, 1935), Λ is “character-

istic of the larger eddies” (Pope, 2000) and these largest eddies contain most of the turbulence

kinetic energy (Li et al., 2002) and is also used in the calculation of the Reynolds number (Pope,

2000). For contained flows such as pipe flow the integral length scale is a feature of the physical

constraints of the system such as the diameter of the pipe as no eddies can be larger than this

(O’Neill et al., 2004). In systems which are not enclosed the largest length scales are not imme-

diately apparent. Taylor proposes a relationship between the integral length scale and the distance

or time over which velocity fluctuations become uncorrelated; mathematically the integral length

scale, Λ is defined as the integral of the longitudinal autocorrelation function of the fluctuating ve-

locity component (Benedict and Gould, 1998; Chanson and Carosi, 2007; Li et al., 2002; O’Neill
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Fig. 2.4 Energy spectrum E(κ) of single eddy of wavenumber κ .

et al., 2004; Pope, 2000; Swamy et al., 1979; Tritton, 1988):

Λ =
∫

∞

0
Bii(ζ , t)dζ (2.28)

Where Bii(ζ ) is the longitudinal autocorrelation function of the ith fluctuating velocity component,

u′ = (u′,v′,w′) = (u′1,u
′
2,u

′
3) and ζ is the distance, in the direction of the ith velocity component,

between two points in the flow. The longitudinal autocorrelation function of the ith fluctuating

velocity component is defined as:

Bii(ζ , t) =
⟨u′i(xi, t)u′i(xi +ζ , t)⟩〈

u′2i
〉 (2.29)

Bii(ζ ) shows that when the distance between points is zero (ζ = 0) the flow is fully correlated

with a value of 1 and this decreases with increasing r until the flow is no longer correlated. Using

this formulation of the integral length scale it is possible to calculate this quantity directly from

PIV data as only the velocity fluctuations are required.

It must be noted in (2.28) the length scale is calculated as an integral between zero and infinity,

in practice however the integral is limited to the size of the domain. For situations where the

turbulence is homogeneous the turbulent length scale when measured over the whole measurement

domain will be the same at each point in the flow field. In inhomogeneous turbulence where the

scale of the present structures varies spatially care has to be taken in the selection of the size of

the integration domain as the integral length scale varies spatially and can be different in different

directions (Bewley et al., 2012). Spatial variation in the calculation of the integral length scale are

presented in numerous studies, for example when looking at the swirling flow inside an internal

combustion engine (Breuer et al., 2005; Li et al., 2002) or when looking at boundary layer flows

(Saddoughi and Veeravalli, 1994). O’Neill et al. (2004) shows that the size of the integral domain

have an effect on the calculated integral length scale. When calculating the integral length scale



2.4 Scales of Turbulence 35

Fig. 2.5 Fluctuating velocity component autocorrelation function and commonly used integral
limits for the calculation of the integral length scale.

using the fluctuating velocity autocorrelation function the limits of the integration domain can be

defined in a number of ways, the four most common of which are shown in Figure 2.5 and are

described here (O’Neill et al., 2004):

1. Integrate over the whole of the available domain (between zero and ζ = ζmax in Figure 2.5).

2. If the autocorrelation function has a negative region, integrate between zero and the first

minimum point (ζBmin in Figure 2.5).

3. Integrate up to the first point the autocorrelation crosses zero (if it crosses zero).

4. Integrate between zero and the point where the autocorrelation value falls to e−1.

In the practical analysis of autocorrelation values the above conditions quite often do not ex-

ist, most commonly the autocorrelation function does not have a negative region so integrating

between zero and the first minimum point or zero and the first zero-crossing cannot be evaluated

leaving integrating over the entire domain and to the value where the autocorrelation value reaches

a value of e−1 as the most commonly used.

Looking at Figure 2.5 it can be seen that when integrating between zero and the point where the

autocorrelation function reaches a value of e−1 a large portion of the information contained within

the autocorrelation function is disregarded, this can have the effect of giving an underestimate of

the integral length scale (O’Neill et al., 2004).

Pope (2000) shows that the majority of the energy containing eddies exist in the range of length

scales of between 6Λ and Λ/6 where the turbulence is generally anisotropic. Below length scales
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of Λ/6 (the inertial subrange and dissipation range) the turbulence tends to be isotropic.

2.4.3 The Taylor Micro-Scale and Inertial Subrange

The Taylor micro-scale, λT is an intermediate length scale in the turbulence energy cascade, it is

the largest scale at which fluid viscosity has a considerable effect on the dynamics of turbulent

eddies contained within the flow (Tennekes and Lumley, 1972). At length scales smaller than this

viscosity is dominant and kinetic energy is dissipated rather than cascaded down to the production

of smaller eddies, these lie in the dissipation range in Figure 2.2. The Taylor micro-scale inhabits

the inertial subrange in the energy cascade (Figure 2.2), in this range the net energy coming from

the energy-containing eddies is in equilibrium with the net energy cascading to smaller eddies

where it is dissipated (AMS, 2012). The gradient of the energy spectrum in this region is -5/3

(Kolmogorov, 1941b).

2.4.4 The Kolmogorov Scale and the Dissipation Range

As previously stated, at length-scales shorter than the Taylor micro-scale viscous forces dominate

over inertial forces and the flow kinetic energy at these scales is dissipated as heat rather than

cascading down to the production of smaller eddies. At this scale the turbulence is isotropic

(Tennekes and Lumley, 1972). The Kolmogorov length-scale, η is defined as:

η =

(
ν3

ε

) 1
4

(2.30)

where ν is the kinematic viscosity and η the dissipation rate. When the Reynolds number is

calculated at this scale to fully resolve the spatial and temporal behaviour of turbulence the spatial

and temporal resolution of the measurements should be less than or equal to the the Kolmogorov

length and time scales. Saarenrinne et al show that to account for 65% and 95% of the total turbu-

lent kinetic energy the spatial resolution of the velocity measurements should be of the order 90η

and 20η respectively (Saarenrinne et al., 2001) showing that the majority of the flow turbulence

can be measured without having to resolve all the way down to the Kolgmogorov length or time

scales.

2.4.5 Dissipation Rate

The dissipation of turbulent energy from the larger to the smaller scales is governed by the dissi-

pation rate, ε of the flow and determines the efficiency of many industrial processes (Saarenrinne

and Piirto, 2000). Experimental evidence suggests that this rate is dictated by the energy of the

large eddies and their corresponding timescale and can be estimated as (Saarenrinne and Piirto,

2000; Stelmach and Kuncewicz, 2012; Tennekes and Lumley, 1972):

ε = Cd
u3

rms

Λ
(2.31)
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Where Cd a numerical constant which for isotropic flows is equal to 1 but otherwise should be

determined experimentally. In practice the integral length scale, Λ, for complex flows varies over

different regions of the flow meaning one value cannot be chosen to give an accurate estimation of

the dissipation rate using this method (Sheng et al., 2000).

Alternatively to (2.31) the dissipation rate can be calculated directly from the energy spectrum,

E(κ) (as in (2.27)) by integrating the product of E(κ) and κ2 over all wavenumbers and then

multiplying by twice the kinematic viscosity, ν as follows (Pope, 2000):

ε = 2ν

∫
∞

0
κ

2E(κ)dκ (2.32)

For PIV data where spatial derivatives of the velocity field are available the dissipation rate for a

two-dimensional velocity field can be calculated directly from the strain rate tensor, si j as defined

in (2 3) (Saarenrinne and Piirto, 2000; Sheng et al., 2000; Tennekes and Lumley, 1972):

ε = 2ν
〈
si jsi j

〉
=

ν

2

(
∂u′

∂y
+

∂v′

∂x

)2

(2.33)

The above definition requires highly spatially resolved velocity fields with a resolution less than

the Kolmogorov scale in order to get an accurate estimation of the dissipation rate (Sheng et al.,

2000). The error introduced by a lack of spatial resolution can be countered by applying a correc-

tion to (2.33) to model the sub-grid-scale turbulence (Stelmach and Kuncewicz, 2012):

ε = (CS∆l)2

[
1
2

(
∂u′

∂y
+

∂v′

∂x

)2
] 3

2

(2.34)

where ∆l is the spatial resolution of the velocity vector grid and CS is the Smagorinski constant and

usually has a value ranging from 0.11 to 0.21 and often taking the value 0.17 (Sheng et al., 2000;

Stelmach and Kuncewicz, 2012). (Sheng et al., 2000) give a detailed evaluation of the difficulties

in obtaining the dissipation rate from experimental PIV data, in the majority of cases either the

spatial or temporal measurement resolution is the limiting factor.

2.5 Vortex Identification from PIV Data

2.5.1 Introduction

It is impossible to study turbulent flows in an empirical nature without studying the structures

that characterise the flow. The study of these structures, known as coherent structures and their

properties are key to understanding the dynamics of a turbulent flow such as the transfer of energy

from different flow scales. Whilst turbulent flows appear random and chaotic to the naked eye it

has been shown that there are, contained within the flow, organised complex structures which are

known as coherent structures (Cantwell, 1981; Jeong and Hussain, 1995; Vincent and Meneguzzi,

1991).
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Fig. 2.6 Example of a vortex as captured using PIV on a tornado-like flow.

2.5.2 What is a vortex?

A vortex is a flow pattern which in general exhibits a swirling motion around a central point

(Figure 2.6) and of all coherent structures in turbulent flows it is vortices that receive the most

attention with Prandtl stating that “vortices are the muscles of the flow” and “vortices are the

voices of the flow” (Müller and Obermeier, 1988). Lugt (1972) defines a vortex as:

“A vortex is the rotating motion of a multitude of material particles around a

common centre.”

And Robinson (1991) goes on to describe a vortex in a three-dimensional flow as:

“A vortex exists when instantaneous streamlines mapped onto a plane normal

to the vortex core exhibit a roughly circular or spiral pattern, when viewed from a

reference frame moving with the centre of the vortex core.”

A more formal mathematical definition of a vortex is provided by Chong et al. (1990) but even tak-

ing into account various definitions of a vortex from the literature currently available no consensus

on a definitive definition has yet been reached.

In order to study the vortex structures present in a turbulent flow methods are required to

identify them from the measured velocity data, a number of methods for which are now discussed.
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2.5.3 Identification of Vortex Structures in Turbulent Flows

Velocity Gradient, Strain Rate and Vorticity Tensors

The velocity gradient tensor, ∇u of a flow field u = (u,v,w) is a measure of the rate of change

of the three components of the velocity vector in the three spatial directions x = (x,y,z) and is

defined as:

∇u =
∂ui

∂x j
=


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂ z

∂v
∂ z

∂w
∂ z

 (2.35)

For two-component velocity data as is the case in the work carried out in this thesis (2.35) reduces

to:

∇u =

 ∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

 (2.36)

Decomposing the velocity gradient tensor, ∇u into its symmetric and anti-symmetric parts one

obtains the strain-rate and vorticity tensors. The strain rate tensor, S is defined as the symmetric

part of the velocity gradient tensor (Jeong and Hussain, 1995):

S =
1
2

[
∇u+(∇u)T

]
(2.37)

Which can be expanded in two dimensions as:

S = ei j =

 e11 e12

e21 e22

 (2.38)

With individual strain components ei j defined as:

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(2.39)

Similarly, the vorticity tensor ΩΩΩ, is defined as the anti-symmetric part of the velocity gradient

tensor:

ΩΩΩ =
1
2

[
∇u− (∇u)T

]
(2.40)

Which in two dimensions expands as:

ΩΩΩ =

 0 ω12

ω21 0

 (2.41)

With individual vorticity components ωi j defined as:

ωi j =
1
2

(
∂u j

∂xi
−+

∂ui

∂x j

)
(2.42)
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Vortex Identification: Maximum Vorticity Method

Probably the simplest of analytical vortex identification methods is the maximum vorticity method

(MVM) where the existence of a vortex core can be identified as a local maximum in the vorticity

magnitude field as calculated by (2.41). Vorticity magnitude is used as vorticity is directional and

can take positive or negative values (Bussiere et al., 2012; Strawn et al., 1999). The main downfall

in using this method is that vorticity not only occurs in regions where vortices exist but also in

regions of shear meaning that other algorithms have to be employed in conjunction with the MVM

in order to distinguish between regions of vorticity caused by shear and regions caused by vortex

motion (Bussiere et al., 2012; Jeong and Hussain, 1995; Strawn et al., 1999). Bussiere et al. (2012)

go on to use the MVM as a means of identifying regions where vortex cores could potentially be

located and then proceed to investigate these highlighted regions of interest with further algorithms

to identify vortex cores as part of their combinatorial vortex detection algorithm (CVD). It is also

worth noting that when applying MVM to real data (such as that obtained using PIV) it is often

necessary to apply a low pass filter such as a Gaussian filter to remove noise from the data or

high frequency spatial fluctuations; this is important as vorticity is calculated by taking the spatial

derivatives of velocity data and high frequency changes can create spikes in the vorticity field

which may be wrongly identified as vortices (Bussiere et al., 2012).

As a way of alleviating the problem of high vorticity values being present in shear flow regions

Jiang et al. (2005) suggest searching for a local maximum in the vorticity field where the spatial

derivative of the vorticity field is zero, this is useful as shear flows do not contain a peak-like local

maxima as vortices do.

Vortex Identification: Winding Angle Method

The winding angle method (WAM) is a numerical interpretation of the description of a vortex

as having looping streamlines and was first proposed by Portela in 1998 (Bussiere et al., 2012;

Portela, 1998; Sadarjoen and Post, 1999). The winding angle, αw belonging to a streamline, S is

defined as the sum of all the angles between Nα streamline segments connected at points Pi as in

Figure 2.7:

αw =
Nα−1

∑
i=1

∠(Pi−1,Pi,Pi+1) (2.43)

where ∠(a,b,c) denotes the angle between the line segment connected by points a and b and

the segment connected by points b and c, positive angles defining a counterclockwise rotation.

Sadarjoen and Post (1999) state two criteria that must be met to be considered part of a vortex:

1. The streamline must form a closed loop meaning the winding angle αw ≥ 2π .

2. Since it is possible the winding angle may be large enough without the streamlines forming

a closed loop the start and endpoint of the streamline must be sufficiently close.
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Fig. 2.7 Schematic showing how the winding angle, αw of the streamline S is calculated.

Vortex Identification: λ2-Criterion

Using the definitions of the strain-rate (2.37) and vorticity (2.40) tensors Jeong and Hussain

(1995) go on to identify a vortex as the region where the symmetrical tensor (Ω2 +S2) has two

negative eigenvalues λ1 and λ2. Since the eigenvalues λ are arranged in increasing order (λ1 ≥

λ2 ≥ λ3), λ2 must be negative for this condition to be met. For a two-dimensional incompressible

flow it can be shown that the second eigenvalue λ2 is:

λ2 =

(
∂u
∂x

)2

+

(
∂u
∂y

)(
∂v
∂x

)
(2.44)

This measures the excess of rotation rate over the strain rate magnitude in the specific plane (Alim,

2006). In the centre of the vortex region the magnitude of λ2 reaches a maximum and this is used

to define the location of the vortex.

Vortex Identification: Q-Criterion

Hunt et al. (1988) define a vortex as a region in which the second invariant, Q, of the velocity

gradient tensor ∇u is positive and that the pressure in this region is lower than that of the ambient

pressure of the flow field in question. The second invariant of ∇u is:

Q =
1
2
[
(∇ ·u)2 − tr(∇u2)

]
(2.45)

Where tr(·) is the trace operator. (2.45) is the same as:

Q = −1
2

(
∂ui

∂x j

)(
∂u j

∂xi

)
(2.46)

Using the definitions for the strain-rate and vorticity tensors Q becomes

Q =
1
2

(∥∥∥ΩΩΩ
2
∥∥∥−∥∥S2∥∥) (2.47)
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Fig. 2.8 Schematic of Γ1 function variables.

Where∥∥∥ΩΩΩ
2
∥∥∥ = tr

(
ΩΩΩΩΩΩ

T
)

(2.48)

∥∥S2∥∥ = tr
(
SST) (2.49)

This shows that when Q = 0 the strain-rate and the vorticity magnitude are in balance therefore,

when Q > 0 the local rotational component of the flow exceeds the local strain-rate suggesting

there is a vortical flow pattern.

Vortex Identification: Γ1-Criterion

Graftieaux et al. (2001) introduced the Γ1 function as a means of identifying vortices. The algo-

rithm is especially suited to identifying the centre point of large scale turbulent vortices as it is

dependent only on the topology of the flow field and not the magnitude and depending on the size

of the domain of the integration employed it removes small scale fluctuations resulting in the bulk

centre of rotation being identified. The function is defined as:

Γ1(P) =
1

SD

∫
M∈SD

(
−→
PM∧uM) · ẑ∥∥∥−→PM ·uM

∥∥∥ dSD (2.50)

where SD is the domain surrounding the point P and the velocity vector uM at point M lies in S

with ẑ the normal vector to the measurement plane as depicted in Figure 2.8. Γ1 is calculated for

all P in the measurement plane (x,y) ∈ SD and gives a maximum or minimum approaching 1 or -1

depending on the direction of rotation. In the remainder of the work in this thesis the Graftieaux

Γ1 method will be employed as it returns normalised values for the strength of vortices enabling

one to identify the location of the main vortex structures from datasets comprising of multiple

vortices of varying scale.
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The Proper Orthogonal Decomposition

3.1 Introduction

Proper Orthogonal Decomposition (POD) is a method commonly used in the analysis of turbulent

flows to develop reduced-order models of the flow for use in prediction and analysis of the flow.

POD decomposes a flow onto a set of basis functions (known as modes) that represent the flow

optimally in the energy norm (Holmes et al., 1998; Prabhu et al., 2001). POD as it is referred

to when applied to turbulent flows (POD also goes under a number of other titles depending on

the application, including Principle Component Analysis (PCA), Karhunen-Loeve Decomposi-

tion or Expansion, Singular Value Decomposition (SVD), Principle Factor Analysis and Hotelling

Transform (Tropea et al., 2007; Uruba, 2012) is a powerful tool which is used extensively in the

analysis of two dimensional velocity data obtained experimentally using PIV and for the analysis

of 3-Dimensional data as obtained by direct numerical simulation (DNS), large eddy simulation

(LES) or holographic PIV (HPIV) (Adrian et al., 2000). Whilst Reynolds decomposition as in-

troduced in § 2.3.1 is ample for investigating the mean flow field or for analysing various turbulent

statistics such as turbulence intensity it is insufficient if one wishes to focus solely on either the

large scale coherent structures or the smaller scale turbulent vortices present within the flow. By

decomposing the flow information on the basis of energy contained at different levels POD is able

to identify structures in the flow at a range of energy scales (Adrian et al., 2000). It can be shown

that the basis functions (modes) generated by POD are optimal in the sense that they converge to

the instantaneous data sets quicker than any other basis (e.g. Fourier Decomposition) meaning that

the flow can be represented to a specified accuracy with the fewest possible modes (Liang et al.,

2002). The aim of POD is to represent a realisation of the flow ui (of Ns total realisations of the

flow) as a linear combination of basis functions or modes, φ in the form:

ui =
Ns

∑
n=1

a(n)i φ
(n) (3.1)

Where ai are the POD coefficients which will later be more formally introduced. The power of

POD comes from the ability to extract flow features from a series of realisations of a flow based
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on the content of their energy. The larger scale, coherent structures present in the flow account for

the majority of the flow energy whilst the smaller unorganised turbulent flow structures contain

less energy. Using the information present in the high energy containing modes it is possible

to rebuild a model of the flow using a combination of these modes or coherent structures, this

lower dimensional modelling is useful if one is only concerned with the large scale flow structures

present in the flow rather than the small scale turbulence (Druault et al., 2005a; Holmes et al.,

1998; Kourentis and Konstantinidis, 2012; Shinneeb, 2006; Shinneeb et al., 2008)

3.2 Mathematical Formulation of the Proper Orthogonal Decompo-

sition

3.2.1 Direct Method

As introduced by Lumley (1967) POD is the problem of finding the orthonormal set of basis

functions that maximise the mean square energy of a set of realisations of a flow (Druault et al.,

2005b). Lumley (1967) and Druault et al. (2005b) propose that a coherent structure is a structure

that has the largest mean square projection of the velocity field.

The basis functions are optimal in the sense that they have the smallest error out of all possible

orthogonal basis functions and hence for any number Nc ≤ Ns the error, ε , is a minimum where uNc
i

is a reconstruction of the ith velocity field using the first Nc basis functions (Rowley et al., 2000)

(∥·∥ denotes the standard L2 norm and ⟨·⟩ the spatial average over all M = NxNy vector grid points

where Nx and Ny are the number of vectors in the x and y directions respectively):

ε =
∥∥∥ui −uNc

i

∥∥∥ (3.2)

Where ||.|| is the discrete two-dimensional norm defined as (Meyer et al., 2007):

∥y∥ =
√

y2
1 + y2

2 + . . .+ y2
M (3.3)

The set of basis functions ΦΦΦ are calculated by solving the following Fredholm integral eigenvalue

problem (Druault et al., 2005b; Prabhu et al., 2001):

Nv

∑
j=1

∫
D

ui(x)u j(x′)φ
(n)
j (x′)dx = λ

(n)
φ
(n)
i (x) (3.4)

Where x = (x,y,z) is a spatial coordinate vector, Nv is the total number of velocity components

(which is 2 in the case of planar PIV, the u and v velocity components). ui(x)u j(x′) is the time-

average spatial cross-correlation tensor and φ (n)(x) and λ (n) are the nth eigenfunction and eigen-

value respectively. D represents the domain of interest and in the case of PIV is generally taken as

the field of view of the vector field.

In practice (3.4) is discretised as all data from experiments or numerical simulations is in a
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discrete form and the cross-correlation tensor becomes (Alan et al., 2010):

ui(x)u j(x′) =
1
Ns

Ns

∑
k=1

ui(x, tk)u j(x′, tk) (3.5)

Using (3.5), the Fredholm integral eigenvalue problem (3.4) can be solved for φ and λ . Since

the basis functions φ (n) are orthonormal, the vector product of any two modes of differing order is

zero and those of equal order unity. Letting δnm be equal to the Kronecker delta and (a,b) denote

the vector product (Borée, 2003) the following shows the orthogonality of the basis functions:

(
φ
(n),φ (p)

)
= δnp =

1, if n = p,

0, if n ̸= p.
(3.6)

The method of calculating the eigenfunctions and eigenvalues demonstrated here is often compu-

tationally very expensive so a more efficient algorithm is used and is detailed below.

3.2.2 Snapshot Method

The direct method of calculating the POD is computationally very expensive. Instead when there

are a large number of realisations of the velocity field, known as snapshots, the snapshot method

can be used. Introduced by Sirovich (1987) the method of snapshots is applicable when the number

of spatial data points in the measurement domain, M, is much larger than the number of realisa-

tions, Ns (snapshots) captured of the flow field. In this thesis this condition is met as the minimum

spatial resolution of individual velocity vectors is Nx = 128,Ny = 128 vectors giving a total of

M = 16384 vectors compared to a longest data set of Ns = 2700 snapshots.

Snapshot POD is carried out on the fluctuating component of the velocity vector field, this

is calculated by subtracting the time average velocity field from each velocity field snapshot as

defined in (2.17). By arranging the fluctuating velocity components in a column vector from the

entire dataset of all snapshots can be represented by the matrix U as follows (Meyer et al., 2007):

U =
[
u1,u2, . . . ,uNs

]
=



u1
1 u2

1 . . . uNs
1

...
...

...
...

u1
M u2

M . . . uNs
M

v1
1 v2

1 . . . vNs
1

...
...

...
...

v1
M v2

M . . . vNs
M


(3.7)

Where Ns is the total number of snapshots and M = Nx ×Ny is the number of vectors in each

snapshot. Using the above representation of the velocity data the autocovariance matrix C is

calculated as:

C = UTU (3.8)
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When calculated this way the autocovariance matrix, C has dimension Ns×Ns and is symmetrical.

It can be seen that calculating the autocovariance matrix in this manner the problem reduces to

solving an Ns × Ns matrix eigenvalue problem as opposed to a M × M matrix (M = Nx × Ny)

eigenvalue problem as with the direct method (Druault et al., 2005b). From the autocovariance

matrix the following eigenvalue problem is solved:

CA(n) = λ
(n)A(n) (3.9)

The symmetry of C implies that all eigenvalues are real and positive and can be ordered as:

λ
(1) > λ

(2) > .. . > λ
(Ns) = 0 (3.10)

The individual spatial POD modes φ (n) are generated by projecting the POD coefficient matrix A

onto the velocity vector snapshots and normalising:

φ
(n) =

∑
Ns
i=1 A(n)

i ui∥∥∥∑
Ns
i=1 A(n)

i ui

∥∥∥ (3.11)

Where A(n)
i is the ith component of the eigenvector corresponding to the eigenvalue λ (n) (Meyer

et al., 2007).

As with any decomposition individual snapshots must be able to be represented from the cal-

culated basis functions, in the case of POD a velocity vector snapshot is a linear combination of

individual modes φ (n) multiplied by the corresponding POD coefficient an. The coefficients ai for

the ith velocity vector snapshot are calculated by projecting the fluctuating velocity onto the POD

modes (Meyer et al., 2007):

ai = ΦΦΦ
Tui (3.12)

Where ΦΦΦ is a matrix containing all POD modes arranged as such:

ΦΦΦ =
[
φ

1
φ

2 . . .φ Ns
]

(3.13)

Taking (3.12) it can be seen that the POD coefficient for the nth mode and the ith velocity snapshot,

an
i is the projection of the nth mode onto the ith velocity field:

a(n) = φ
(n)ui (3.14)

Similarly, as with the basis functions φ as shown by (3.6) the orthogonality (zero-correlation) of

the POD coefficients can also be shown (Borée, 2003; Tamura et al., 1999):

a(n)i a(p)
i = λ

(n)
δnp (3.15)

This leads to the result showing that the energy contained in the nth mode is equal to the mean



3.3 Reconstruction of Velocity Snapshots from POD Modes 47

square of the nth POD coefficients (Tamura et al., 1999):

(
a(n)i

)2
= λ

(n) (3.16)

Furthermore, as one would expect the total energy contained in the eigenvalues λ (n)is equal to the

fluctuating kinetic energy of the flow (Borée, 2003):

(ui,ui) =
Ns

∑
n=1

λ
(n) (3.17)

Finally, for completeness, with all eigenvalues, modes and coefficients calculated the scaling of φ

is as follows (Borée, 2003):

φ
(n) =

a(n)i ui

λ (n)
(3.18)

3.3 Reconstruction of Velocity Snapshots from POD Modes

As previously stated any individual snapshot velocity field can be approximated using a linear

combination of a number of POD modes, since the decomposition is carried out on the fluctuating

velocity component to reproduce the full flow field the modes have to be added to the ensem-

ble average. Thus each full snapshot velocity field, ui, is recreated as the sum of the ensemble

average u and a linear combination of each of the Ns (number of snapshots) modes φ (n) and the

corresponding POD coefficient a(n)i (Sirovich, 1987):

ui = u+
Ns

∑
n=1

a(n)i φ
(n) (3.19)

The above representation, as the summation represents the full fluctuating component of the snap-

shot and is equivalent to the classical Reynolds decomposition:

ui = u+u′i (3.20)

For completeness it can be seen that by combining (3.19) and (3.20) that:

u′i =
Ns

∑
n=1

a(n)i φ
(n) (3.21)

As an extension to the Reynolds decomposition as shown in (3.20) Roudnitzky et al. (2006) show

that the fluctuating velocity component u′i can be further decomposed into a large scale coherent

fluctuating component, ũ and incoherent small scale turbulence, û :

u′i = ũi + ûi (3.22)
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Thus giving the total flow field snapshot as a triple decomposition:

ui = u+ ũi + û+ i (3.23)

The representation of u in (3.19) since it includes all Ns modes contains the full flow information.

If one needs only to consider the large scale flow structures, neglecting the small scale incoherent

turbulence the summation to Ns in (3.19) can be truncated to a cut-off mode number, Nc since it

is the first Nc modes that contain the majority of the flow energy associated with the large scale

coherent structures, the POD approximation then becomes:

u(Nc)
i = u+

Nc

∑
n=1

a(n)i φ
(n) (3.24)

Further, the full flow snapshot can be recreated as follows:

u(Ns)
i = u+

Nc

∑
n=1

a(n)i φ
(n)+

Ns

∑
n=Nc+1

a(n)i φ
(n) (3.25)

Where the coherent fluctuating velocity component is the summation of the first Nc modes:

ũ(Nc)
i =

Nc

∑
n=1

a(n)i φ
(n) (3.26)

And the incoherent turbulent fluctuating component is the summation of the modes from Nc+1 to

Ns:

û(Ns)
i =

Ns

∑
n=Nc+1

a(n)i φ
(n) (3.27)

Using a truncated number of modes to recreate the velocity snapshots means that only an approx-

imation is being modelled since not all of the flow information is included but due to the nature of

the decomposition the most important, dominant flow structures are contained in the earlier modes

(since λ (n) > λ (n+1)) whereas the higher modes contain the smaller scale coherent structures and

the even smaller scale incoherent turbulence.

3.4 Applications to Turbulence

One area in the analysis of turbulent flows where POD features heavily is in the analysis of the

swirling flow in internal combustion engines as with the rise in the number of research engines

giving optical access more and more PIV is being carried out for which POD is a perfect analysis

tool. The POD has been applied to in-cylinder flows in many studies (Bizon et al., 2010; Cosadia

et al., 2006, 2007; Druault et al., 2005b; Fogleman et al., 2004; Graftieaux et al., 2001; Kostas

et al., 2005; Roudnitzky et al., 2006; Vu and Guibert, 2012). Cosadia et al. (2006) also apply

the POD to circulation data calculated from the vector fields to study modes which contribute to

the fluctuations of the circulation, it is shown that the fluctuations of circulation converge using
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Fig. 3.1 (left) Energy content of the first POD mode for varying crank angle degree of the flow in
an engine cylinder and (right) the number of POD modes required to account for 75% of the total
energy for varying crank angle degree. Reproduced from (Fogleman et al., 2004).

less modes at a radius further away from the centre of the vortex than those close to the centre

suggesting that variability is higher and structure more complex closer to the vortex core.

Recent developments in the application of the POD to flow variables other than velocity such

as the vorticity field have been investigated. Kostas et al. (2005) show that coherent structure

identification in the case of flow over a backward facing step captured using 2D PIV is more

efficient when POD is carried out on the out of plane vorticity field rather than when using the

velocity decomposition in the sense that the energy contained in the modes converges quicker. For

POD carried out on vorticity fields also see Gurka et al. (2006); Regert et al. (2005).

Fogleman et al. (2004) were among the first to obtain fully three-dimensional POD modes

from a three-dimensional velocity field (CFD) and the first in relation to in-cylinder flows, in

this case in the tumble plane. The CFD data was generated using a large eddy simulation model

(Haworth and Jansen, 2000; Lumley, 2001) and was simulated over 33 consecutive engine cycles

giving 32 instantaneous vector fields for each crank angle degree (the first cycle was discarded to

avoid contamination by the initial conditions). It is shown that for PIV data the energy present

in the POD modes converges quicker than for CFD generated data owing to the larger number of

snapshots present for PIV. The percentage of energy present in the first POD mode (the mode con-

taining the highest energy) varies significantly at differing crank angle degrees (CAD) Figure 3.1,

for the CAD where the first mode contains a high proportion of the energy the flow is of a more

simple (more organised) nature compared to CAD at the end of the intake stroke where only a low

proportion of energy is contained in the first mode which suggest a more complex structure and

more modes are required to model the flow.

Maurel et al. (2001) and Borée (2003) introduced a variant on POD known as Extended-POD

to investigate inhomogeneous flows where certain areas of the measurement domain contain a

small proportion of the turbulent kinetic energy. The benefit of this method is that traditional POD

extracts coherent structures present in the full measurement domain whereas in reality for flows

with localised features these structures are also highly localised; a mathematical description of
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extended POD is provided in (Borée, 2003) and an example of Extended-POD as applied to a

jet/vortex interaction in (Maurel et al., 2001). More recently Duwig and Iudiciani (2010) applied

Extended-POD to the analysis of unsteady flames in combustion.

There are numerous studies where POD is used as a tool for the direct extraction of coherent

structures in a number of differing turbulent flows such as turbulent wakes (Kourentis and Kon-

stantinidis, 2012), vortex shedding behind cylinders of various shapes (Chong et al., 2013; Feng

et al., 2011; Huera-Huarte and Vernet, 2010; Liu et al., 2011), free jets (Patte-Rouland et al., 2001;

Schram and Riethmuller, 2001; Shinneeb et al., 2008) and the analysis of mixing in stirred tanks

which are used heavily in the chemical industry (Doulgerakis et al., 2011; Hasal et al., 2000; Kim

et al., 2012; Liné et al., 2013) to name but a few flow types POD has been applied to.

The literature at present does not contain a POD analysis of either a tornado vortex flow or

laboratory tornado-like vortex flow though the work carried out by Graftieaux et al. (2001) on a

vortex in a wall bounded circular cylinder with water shows similarities to the work carried out in

this thesis and will be referred to in later chapters.

3.5 Phase-Invariant POD

Fogleman et al. (2004) present a method for the application of the POD to time resolved PIV

(TRPIV) for in-cylinder flows. During the intake and compression strokes in an IC cylinder the

size of the flow domain parallel to the cylinder axis evolves as the piston moves, the aim of the

phase-invariant POD is to remove the dependency on phase of standard POD so that flows with

a temporally evolving domain can be studied. This is carried out by manipulation of the in-

stantaneous velocity fields through stretching and normalising so that all flow phases are equally

weighted. Through the projection of these phase-invariant POD modes a model for the temporal

breakdown of flow structures parallel to the cylinder axis can be produced. It is also shown that

the phase-invariant POD modes converge quicker than the phase-dependant modes, possibly due

to the increased number of realisations used (all velocity fields at all phases rather than all velocity

fields at a certain phase).

Cosadia et al. (2007) use a phase-invariant POD method on time-resolved PIV with a low

temporal resolution to study the temporal evolution of the in-cylinder flow in the swirl plane. In

this case the spatial domain decreases as early in the compression phase the flow is able to fill

the full bore of the cylinder whereas at the top of the compression stroke the flow is confined to

the piston bowl. It is shown that fluctuations in intensity and displacement of the swirling motion

increase in the latter stages of the compression stroke, especially during transfer to the piston bowl.

An interpolation method is also presented based on the phase-invariant POD modes to generate a

continuous time-resolved flow field for the compression stroke between the first and last phases.

A similar approach is presented by Druault et al. (2005b) also in the plane perpendicular to the

cylinder axis.



Chapter 4

Laboratory Generated Tornado-Like

Vortices

4.1 Introduction

Tornadoes produce the highest naturally occurring wind speeds on earth and in the USA on average

are the cause of 80 fatalities and 1500 injuries annually and US$850 million in damage according

to statistics provided by the Wind Hazard Reduction Coalition. In 2011 alone there were 553

recorded deaths from tornadoes (NOAA, 2012).

A tornado, according to Glickman (2000) is:

“a violently rotating column of air, pendant from a cumuliform cloud or under-

neath a cumuliform cloud, and often (but not always) visible as a funnel cloud.”

Tornadoes form within a parent thunderstorm with a large circulation known as a mesocyclone

where the mesocyclone is two orders of magnitude greater in horizontal dimension than the re-

sulting tornado and contains a vastly great amount of energy and circulation (Davies-Jones, 1986;

Glickman, 2000). Ying and Chang (1970) list the main features of tornado as being:

1. A huge votex column with a low pressure core that travels along the ground with very large

rotational velocity and centrifugal force.

2. The circulation of the tornado vortex is maintained by the parent storm.

3. A large buoyant updraft is present in the vortex core arising from warm humid air of low

density next to the ground with the visual vortex column forming from the reverse flow of

the condensing air.

4. The ground boundary layer is occupied by a spiral inflow of the warm air into the base of

the vortex core where there is an appreciable pressure drop.

5. Prevailing winds at usually mid-tropospheric level drives the precession of the parent storm

causing the tornado vortex to lean and be stretched.
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In terms of fluid mechanics a tornado is a vortex with an axis perpendicular to the ground with

an overall upward axial velocity. As one can see looking at video footage of tornadoes the vortex

does not remain stationary in space but precesses with a bulk motion as well as exhibiting more

random fluctuations in their movement.

4.2 Historical Notes on Laboratory Generated Tornado-Like Vor-

tices

Due to the size of naturally occurring tornadoes and the lack of ability to accurately predict where

and when a tornado would form, in the late 1960’s work moved towards generating laboratory

scale tornadoes using apparatus that would generate tornado-like vortices that provide accurate

scaled down representations of full scale naturally occurring tornadoes.

Ying and Chang (1970) were among the first to publish on laboratory generated tornado-like

vortices, they identified four criteria that were necessary to be fulfilled:

1. A single stationary vortex column touching the ground.

2. A pressure drop and updraft within the vortex core.

3. A ground boundary layer with flow spiraling in towards the vortex core.

4. The vortex flow should be turbulent.

It became apparent that to generate a tornado-like vortex two separate flow components are

required, a rotating flow with axis perpendicular to the ground plane and an exhaust vertical flow

component. In this early model Ying and Chan produced the circulation through means of a

rotating mesh screen of diameter 198cm through which air could flow through and the axial flow

was provided by use of an exhaust fan, a schematic of this tornado vortex simulator is show in

Figure 4.1. The fan generating the updraft is separated from the main flow region by a hood with

an updraft orifice of diameter 21.6cm allowing the flow to escape toward the fan. This design

enabled Ying and Chan to independently control the circulation and updraft parameters allowing

them to study a wide range of tornado-like vortices.

Ying and Chan using anemometers and pressure transducers in their simulator recorded tan-

gential and radial velocity profiles, they show that the pressure drop on the ground increases with

circulation and the pressure drop on the hood decreases with increasing circulation as the axial fan

becomes less efficient with increased circulation. It is shown that in the ground boundary layer

pressure remains almost constant aside from the vortex core region, this leads to a drop in tan-

gential velocity and hence centrifugal force which is no longer able to balance the radial pressure

gradient leading to the inward radial flow. However, at this stage accurate measurement of the flow

further away from the floor within the boundary layer was not possible without introducing large

interference errors due to the presence of probes. It is also shown that above the boundary layer the
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radial inflow is very small compared to the tangential flow velocities. The main findings of their

work however was that a scaled down tornado-like vortex which exhibits similar characteristics to

natural tornadoes can be created in a lab environment. These are all key findings which remain

consistent with the evolution of future studies and tornado-like vortex simulators. Wan and Chang

(1972) show that this model tornado-like vortex generator provides a reasonable similarity to the

1957 Dallas Tornado (Hoecker, 1960).

Ward (1972) improves on the design of Chang’s simulator by adding a honeycomb at the top of

the chamber to straighten the flow and remove vertically oriented vorticity from the generated vor-

tex simulating more closely the conditions present at the top of an atmospheric vortex, a schematic

of the Ward tornado vortex simulator is shown in Figure 4.2. Also differing from the Chang model

the inflow of air is restricted to the region close to the chamber floor while the circulation is as

with the Chang model provided by a rotating mesh screen and the updraft by an exhaust fan. It is

this Ward type simulator that provides the basis of the majority of tornado-like vortex simulators

that follow. Using this simulator Ward was the first to report multi-celled tornadoes in a laboratory

simulator. Multi-celled tornadoes are tornadoes which contain a number of individual vortex cores

inside of the main tornado vortex.

Jischke and Parang (1974) show that for a tornado-like vortex simulator three dimensionless

numbers define the size and structure of the vortex; swirl ratio, aspect ratio and radial Reynolds

number. The swirl ratio, S is defined as the ratio of axial to angular momentum of the vortex as

follows:

S =
ΓR

2QV
(4.1)

Where QV is the volumetric flow rate through the system and is usually measured as the flow rate

through the axial fan or blower. R is the vortex radius defined as the radius from the centre of the

vortex to where the tangential velocity is greatest, i.e. the radius of maximum wind and Γ is the

circulation around the circular path at radius R from the centre of the vortex. The aspect ratio,

ar is defined as the ratio of the height of the vortex chamber, h0 to the radius of the updraft orifice,

r0 as follows:

a0 =
h0

r0
(4.2)

The radial Reynolds number, Rer is defined as:

Rer =
QV

h0ν
(4.3)

Where ν is the kinematic viscosity of air at lab temperature.

Davies-Jones (1973) shows, using the Ward (1972) simulator that it is the swirl ratio alone

that controls the radius of the tornado vortex core and that similar vortex radii can be created using

different combinations of circulation intensity and updraft to create the same swirl ratio. These
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Fig. 4.1 Schematic of the Ying and Chen tornado vortex simulator. Reproduced from (Ying and
Chang, 1970).

Fig. 4.2 Schematic of the Ward Tornado Vortex Simulator. Reproduced from (Ward, 1972).
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results are backed up by numerical calculations carried out on the Ward simulator by Rotunno

(1979). Davies-Jones goes on to show that volumetric flow rate and not the radial momentum

flux is the important factor in the production of atmospheric vortices as for constant flow rate,

circulation, updraft radius and the in-draft height did not alter the size of the core radius.

Church et al. (1977) constructed a large scale Ward type simulator at Purdue University mea-

suring 4m wide and 7m tall, a schematic of which is presented in Figure 4.3 and a photograph

in Figure 4.4, again using a rotating mesh to create the circulation. The research emphasised the

nature of the vortex structure as a function of swirl ratio and demonstrated that they could achieve

vortex breakdown and multiple vortices. Church et al. (1979) define five different flow regimes

based on swirl ratio, in order of increasing swirl ratio:

1. Single laminar vortex.

2. A single vortex with an upper turbulent region separated from the lower laminar region by

a separation bubble.

3. Fully developed turbulent vortex core where breakdown bubble penetrates to the chamber

floor.

4. Transition to two intertwined helical vortices.

5. Higher order multiple-vortex configurations that form in the core region.

Church et al. (1979) showed that as the angular momentum in the vortex increased, relating

to an increase in the swirl ratio, the vortex evolves from a single-celled vortex to a two-celled

vortex before moving onto higher multiple core vortex. They came to the conclusion that it is the

swirl ratio that is the dominant parameter in defining vortex configuration and that aspect ratio and

Reynolds number have a much smaller influence on the overall configuration of the tornado-like

vortex.

The overall design of laboratory tornado vortex simulators has evolved very little from these

original steps described above. Lund and Snow (1993) adapted their TVS at Purdue University

to enable them to take flow measurements using laser Doppler velocimetry (LDV) rather than

using hotwires as most previous research relied on. The advantage of this is that they were able

to increase the spatial resolution of their measurements however they were only able to measure

one velocity component at a time meaning instantaneous information regarding the tangential and

radial velocity components were not available.

In 2008 Mishra et al at Texas Tech State University, USA, present a new type of TVC, the

Texas Tech University vortex simulator II (TTU-VSII) (Mishra et al., 2008a,b). TTU-VSII is

based on a Ward type TVC. Axial flow is provided by sucking air through the chamber from the

updraft orifice and circulation is provided by 16 slotted jets made out of PVC pipe with axial

slits cut in each. A schematic of the TTU-SVII is shown in Figure 4.5. They show that flow

velocity data obtained via hotwire probes is in strong agreement with real atmospheric tornado
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Fig. 4.3 Schematic of the Purdue University tornado vortex simulator. Reproduced from (Church
et al., 1977).

Fig. 4.4 Photograph of the Purdue University tornado vortex simulator. Reproduced from (Church
et al., 1977).
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Fig. 4.5 Texas Tech University vortex simulator II (TTU-VSII). Diagram from (Mishra et al.,
2008a).

measurements, showing that this modified TVC design provides a good model for the study of

tornado-like vortices.

4.3 PIV and Laboratory Generated Tornado-Like Vortices

With the development of PIV as detailed in § 1 a means of whole field, non-intrusive, quantita-

tive flow measurement became available without disturbing the flow using single point, intrusive

measurement probes such as hotwire probes as were used in many of the experiments detailed in

the previous section. Even with the wide adoption of PIV as a flow measurement technique in

many academic and industrial outposts a review of the available literature returned a relatively low

number of PIV measurements of laboratory generated tornado-like vortices.

Among the earliest work on a tornado vortex simulator providing full optical access to the flow

perpendicular to the swirl axis is that at Iowa State University (ISU), USA (Haan Jr et al., 2008;

Sarkar et al., 2005). The TVC is a large modified Ward type TVC mounted so the chamber is able

to translate relative to the ground plane enabling a travelling tornado-like vortex to be modelled.

Their initial results show that measurements of this type of vortex bear a strong resemblance to

real atmospheric tornado measurements obtained with Doppler radar.

In 2008 Hangan et al presented velocity vectors measured in the vertical plane using PIV in

order to benchmark CFD simulations of laboratory generated tornado-like vortices (Hangan et al.,

2008).

Using a 1:3 scale ISU TVC Zhang and Sarkar (2012) use PIV to record velocity measurements
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in both the vertical and horizontal planes obtaining clear full field instantaneous velocity vector

fields showing compact single cell vortices at low swirl ratios and large multi-cellular vortices at

high swirl ratios. In the same study Zhang et al go on to show, through identifying the vortex

core location in instantaneous velocity fields, that the degree of vortex wondering/precession are

considerably greater at low swirl ratios.

Hashemi-Tari et al. (2010) designed and built a TVC enabling full optical access in both the

horizontal and vertical planes allowing PIV measurements to be taken and over a wide range of

swirl ratios from 0.08 to 1 showing that the radius of the vortex core increases with swirl ratio

and in the near core region the tangential velocity profiles closely fit a Rankin vortex model. By

investigating the turbulent flow characteristics Hashemi-Tari et al show that both normal and shear

stresses contained within the flow increase with increasing swirl ratio.

More recently Yang et al again using the ISU TVC use PIV to study the flow characteristics and

wind loads of a tornado-like vortex interacting with a model high-rise building showing that the

flow patterns in the wake of and the resultant wind loads on the model building were considerably

different to those observed in conventional head on winds. It is shown that the wind loading on the

building model were at their greatest when the building model was mounted at the outer boundary

of the tornado-like vortex core (Yang et al., 2011). Making use of the ISU TVC once again Hu et al

conducted an investigation similar to the previously mentioned study but this time on gable-roofed

building models (Hu et al., 2011).



Chapter 5

Evaluation of PIV Vector Calculation

Algorithms

5.1 Introduction

The work in this study is an evaluation and expansion of the Correlation Based Correction (CBC)

PIV vector calculation algorithm as presented by Hart (Hart, 2000).The implementation of CBC

aims to reduce errors in vector calculation by reducing noise levels in the correlation function and

increasing the signal strength of the displacement peak by multiplying spatially adjacent correla-

tion functions.

When a correlation function is calculated using a correlation based algorithm aside from the

main displacement peak other peaks are present due to correlations between particles other than

their pair between the two frames, image noise as well as other factors as discussed in the literature

review. It is also possible for the correlation peak to become splintered due to the presence of ve-

locity gradients across the interrogation region (Huang et al., 1997). In some cases the magnitude

of the noise peaks are larger than the displacement peak resulting in an erroneous vector being

calculated for that interrogation region. The CBC algorithm aims to overcome this by multiply-

ing adjacent correlation functions value by value. Through multiplication of adjacent correlation

functions random noise peaks are eliminated or significantly reduced as it is highly improbable

that exactly the same noise peaks will be present in adjacent correlation functions.

5.1.1 Implementation of the Correlation Based Correction Algorithm

Figure 5.1 shows a schematic of the arrangement of individual interrogation regions, Ii, {i = 0, 1,

2, 3, 4} used to calculate the vector located at the centre of interrogation region I0. Interrogation

regions 1 – 4 are translated from the location of I0 by a distance δW in the up, right, down and

left directions respectively. Correlation functions, Ci are then generated using a correlation based

algorithm such as the normalised cross-correlation algorithm as presented in § 1.5 for each of

the five interrogation regions. The final cross-correlation function, C is then calculated as the
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Fig. 5.1 Arrangement of individual interrogation windows, I0−4 for the implementation of CBC
with a window offset δW for the calculation of the vector centred on the central (black) interroga-
tion region I0

element-wise product of each correlation function as follows:

C =
4

∏
i=0

Ci (5.1)

Figure 5.2 shows individual correlation functions Ci and their product C as calculated using

CBC and the interrogation region arrangement presented in Figure 5.1. It can be seen that each

correlation function Ci contains a strong displacement peak of approximately similar size and

location and a number of smaller noise peaks which vary between each correlation function. As

seen in the product, C the displacement peak is maintained and all noise peaks are reduced to a

near zero value increasing the signal to noise ratio of the displacement peak by many orders of

magnitude.

5.1.2 Previous Findings and Outline of Present Study

When originally presenting CBC Hart applies the technique to both synthetic and experimentally

obtained images (Hart, 2000). The major part of the work presented by Hart focuses on large win-

dow offsets of δW = 32pix and individual interrogation regions of size 64 x 64 pix2 and shows that

CBC leads to increased accuracy in the measurement of sub-pixel displacements when compared

to standard single cross-correlation vector calculation (SCC). Hart also goes on to show how the

implementation of CBC can reduce the amount of spurious vectors (caused by loss-of-pairs, out

of plane motion, inter-particle correlations and electrical and optical image noise) almost entirely

and in some cases completely when compared to SCC.

Developing the original findings of Hart the present work aims to expand on this by conduct-

ing a thorough evaluation of the performance, measured by evaluating the accuracy of calculated

vectors and the amount of spurious data through the use of Monte Carlo simulations using synthet-

ically generated particle image pairs with a deterministic imposed flow field. All image parameters
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Fig. 5.2 Correlation function noise reduction (C) by applying CBC as the product of five individual
correlation functions (Ci).

used in the construction of the synthetic images, such as particle image diameter and the degree of

out of plane displacement are varied to model varying aspects of PIV experiment design. Then the

effect of each parameter on the performance of the CBC algorithm can be independently investi-

gated with the aim of identifying an optimum set of experimental parameters in order to minimise

measurement error. This work also sets out to investigate CBC performance with smaller spatial

offsets, δW values, which are important in flows with strong spatial gradients.

In order to evaluate the amount of spurious data returned through the implementation of vari-

ous vector calculation algorithms an enhanced implementation of the Westerweel normalised me-

dian test (Westerweel and Scarano, 2005) algorithm is presented.

The CBC algorithm is then applied in conjunction with and against other well established

vector calculation algorithms such as discrete iterative multigridding (MGRID) and particle im-

age distortion (PID) to evaluate the performance on synthetic images containing a range of flow
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conditions such as high and low spatial gradients and velocity magnitudes.

Finally a new hybrid PID/CBC algorithm (HPIDCBC) is presented which is shown to utilise

the optimum performance of each of the two individual algorithms under differing flow conditions.

5.2 Synthetic Flow Field

In order to evaluate the accuracy of various vector calculation algorithms a deterministic flow field

is required where the exact velocity is known at each point. For this study the time-independent

Oseen vortex was chosen as it closely models naturally occurring fluid vortices and only has a

tangential velocity component, uθ with the radial velocity component, ur equal to zero at all points,

such that the flow field is defined by the following equations:

uθ =
Γ

2πr

[
1− exp

(
−r2

γ

)]
(5.2)

ur = 0 (5.3)

Where Γ is the strength of the vortex circulation and is directly related to the magnitude of

the displacement of particle images between image pairs and r is the radial distance from the

vortex centre. The variable γ relates to the vortex size and thus controls the magnitude of spatial

velocity gradients within the flow. The constant variables Γ and γ were assigned values based

on the parameters of the experiment, namely images pairs of size 512 x 512 pix2 and 16 x 16

pix2 vector calculation interrogation regions. Γ was assigned a value of 1200π pix2 resulting in

a maximum displacement of 5.41pix as can be seen in Figure 5.3. This is approximately equal

to one third of the size of the interrogation regions used and was chosen to be greater than the

maximum ideal displacement of one quarter the size of the interrogation region as discussed in the

literature review in order to test the limits of the algorithm. A value of 5000 pix2 was assigned to

γ giving a wide range of spatial displacement gradients and displacement magnitudes over the 512

x 512 pix2 image area. Referring to Figure 5.3 it can be seen that the flow contains a region, close

to the origin, of high displacement gradient presenting a tough challenge for vector calculation

algorithms whereas the outer regions of the images contain regions of small displacement and

low gradient enabling the effectiveness of various algorithms to be evaluated under different flow

conditions.

5.3 Generation of Synthetic Particle Image Images

Synthetic image pairs were generated following the method of Raffel et al. (1998) using randomly

distributed 256-greyscale Gaussian particle images. Particle intensity q, is modelled by a two-

dimensional Gaussian function; for a particle image of diameter dp (which may be selected from
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Fig. 5.3 Oseen vortex profiles of tangential displacement uθ (black curve) and radial displacement
gradient (blue curve).

a statistical distribution) and centre located at (x0,y0) the pixel intensity at (x,y) is given by:

q(x,y) = q0 exp

[
−(x− x0)

2 +(y− y0)
2

(dp/2)2

]
(5.4)

Where q0 is the maximum particle brightness based on its location z, within the Gaussian profile

laser sheet of thickness Z defined as:

q0(z0) = qmax exp

[
−(z− z0)

2

(2σl)
2

]
(5.5)

Where qmax is the maximum greyscale intensity. To generate the image each pixel (i, j) is assigned

a value by integrating (5.4) over the image area A = IxJ for each individual particle.

q(i, j) =
∫∫
A

q0 exp

[
−(x− x0)

2 +(y− y0)
2

(dp/2)2

]
dA (5.6)

Where particle images overlap the pixel greyscale intensity value is calculated as the sum of the

greyscale levels of the overlapping particle images at that pixel. The number of particle images,

Np distributed over the whole image area, A, can be calculated from the desired particle density

µp (pix−2) using the following equation:

µp =
Np

A
(5.7)

Once the first image in an image pair is generated as above the second image is created by displac-

ing individual particle images by a distance as calculated from its spatial location using the Oseen

vortex displacement field as presented in (5.2). Using the above method to generate synthetic im-
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Fig. 5.4 (left) Full 512 x 512pix2 synthetic particle image image constructed using the default
parameters and (right) a zoomed in 64 x 64pix2 region.

age pairs the following parameters are modified to create different sets of images to analyse the

effects of varying image parameters on the accuracy of the vector calculation algorithms.

• Mean particle image diameter, dp

• Particle image density, µd

• Magnitude of out of plane displacement, W

• Particle image brightness, qmax

• Image background noise level, qbg

• Standard deviation of particle image diameters, σp

The default image set (for which a 64 x 64 pix2 region of a particular image is shown in

Figure 5.4) has the parameters listed below with each additional set only varying one of the above

parameters.

• Image size, A = IxJ = 512 × 512 pix2

• Particle density, µd = 0.04 pix2 ( 10 particles / interrogation region for 16 x 16 pix2 interro-

gation regions)

• Particle diameter, dp = 2.5 pix

• Standard deviation of particle diameters (Gaussian distribution), σp = 0.5 pix

• Light sheet thickness, 2σl = 20 pix

• Maximum particle image intensity value, qmax = 200
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Fig. 5.5 64 x 64 pix2 region of a synthetic image with mean particle image diameters of (left) dp =
0.5 pix and (right) dp = 7 pix.

• No background image noise

• No out of plane displacement

5.3.1 Details of Image Parameter Variation

Particle Image Diameter

Particle image diameter, dp is an important parameter to control when designing a PIV experiment

as it has an impact on the shape of the peaks in the cross-correlation function as discussed in the

literature review. To simulate a range of particle image diameters the mean diameter was varied

from 0.5 pix to 7.0 pix at 0.5 pix intervals (see Figure 5.5), the standard deviation of diameters

remains constant at 0.5 pix as per the default images.

Particle Image Density

One of the more important considerations when designing a PIV experiment is the density of

seed particles, if the seeding density is too low then in any given interrogation region too few

particle images will be present to calculate an accurate displacement, too high and individual

particle images become indistinguishable and deteriorate the quality of the displacement peak in

the correlation function. In this analysis 16 x 16 pix2 interrogation windows were used and the

average number of particle images per interrogation region was varied between 2 and 20 at an

interval of 2 giving a range of particle densities of 0.0078 to 0.078 particles/pix2, see Figure 5.6.

Out of Plane Displacement

The out of plane displacement is modelled as a normalised parameter W , where W = w/2σl .

Where 2σl is the light sheet thickness and w is the out of plane displacement in pixels. In the

tests carried out the maximum magnitude of W was varied between 0 and 0.5 at intervals of 0.1

which for a sheet thickness of 20 pix gives a maximum out of plane displacement of 10 pix. It

was chosen not to go higher than this as when using a 16 x 16 pix2 interrogation window the
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Fig. 5.6 64 x 64 pix2 region of a synthetic image with particle image densities of (left) µp = 0.0078
pix2 and (right) µp = 0.078 pix2.

Fig. 5.7 64 x 64 pix2 region of a synthetic image with maximum particle image brightness of (left)
qmax = 50 greyscales and (right) qmax = 250 greyscales.

maximum resolvable displacements are approximately 1/3 x 16 = 5.33 pix With a value of W =

0.5 any particle which starts in the centre of the light sheet will have disappeared by the second

image.

Particle Image Brightness

To model the effect that particle brightness has on the accuracy of the vector calculation algorithms

the maximum particle image greyscale intensity value (when located in the middle of the light

sheet) was varied between 50 and 250 at intervals of 50 greyscales to simulate a full range of

particle image intensities, see Figure 5.7.

Image Background Noise Level

In experimental PIV images the background greyscale level is not zero due to non-optimal light

conditions, electrical noise in the camera CCD chip and other factors relating to the design of

the experiment as discussed in the literature review. In order to model background noise a set

of images was created with nonzero background image intensity. Four image sets were created

with mean background greyscale levels of 0, 20, 40 and 60 and 10% Gaussian noise. As can

be seen in Figure 5.8 X when the mean background greyscale is set to 60 the individual particle
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Fig. 5.8 64 x 64 pix2 region of a synthetic image with average background noise brightness of
(left) qbg = 0 greyscales and (right) qbg = 60 greyscales.

Fig. 5.9 64 x 64 pix2 region of a synthetic image with standard deviation of particle image diame-
ters of (left) σp = 0 pix and (right) σp = 2.5 pix.

images become much less distinguished making it more difficult for a clear displacement peak to

be identified from a cross-correlation function.

Standard Deviation of Particle Image Diameters

To simulate variation in particle image diameters as a result of non-uniformity of tracer particle

diameters the standard deviation of the synthetic particle image diameters was varied. Using a

mean diameter of 2.5 pixels the standard deviation of the normal distribution of particle image

diameters was varied in the range 0 to 2.5 pix at 0.25 pix intervals, see Figure 5.9.

5.4 Algorithms

Along with the previously introduced CBC algorithm several other algorithms discussed in the

literature review are evaluated as a comparison with and in conjunction with the CBC algorithm.

The standard cross-correlation (SCC), multigrid (MGRID) and particle image distortion (PID)

algorithms are briefly recapped below.
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5.4.1 Standard Spatial Cross-Correlation

The control vector calculation algorithm used to measure the performance of all other algorithms

against is the normalised spatial (as opposed to Fourier space) standard cross-correlation (SCC)

algorithm as outlined in the literature review (§ 1.5.1). The cross-correlation function, C is calcu-

lated as follows:

C (m,n) =
∑i ∑ j[q1 (i, j)− q̄1][q2 (i−m, j−n)− q̄2]√

∑i ∑ j[q1 (i, j)− q̄1][q2 (i, j)− q̄2]
(5.8)

Where q(i, j) is the greyscale intensity at pixel coordinates (i, j) and m and n are coordinates in the

cross-correlation function. The mean intensities q̄1 and q̄2 are determined over the over-lapping

region of the two images. In the following analysis 16 x 16 pix2 interrogation windows are used

(unless specifically stated) resulting in cross-correlation functions of the same dimension. As spa-

tial resolution of the final vector grid is not important in this analysis and to reduce computational

time there is no overlap between adjacent interrogation regions.

5.4.2 Discrete Iterative Multigrid

Later analysis makes use of discrete iterative multigridding (MGRID) as outlined in § 1.5.6. The

multigrid technique is applied using either SCC or CBC to calculate CCFs, in each case two

iterations are used, the first iteration, the predictor phase, employs 32 x 32 pix2 interrogation

windows with 50% window overlap. Following this spurious vectors are removed and replaced

with interpolated vectors using the modified universal outlier detection algorithm as described

in § 1.7.3. The second (final) iteration employs 16 x 16 pix2 interrogation regions (no overlap

between adjacent regions) with the second interrogation region offset by the nearest integer value

to the displacement calculated in the first iteration.

When the multigrid algorithm is used in conjunction with CBC the first and second itera-

tions both employ CBC in the calculation of correlation function. Results are denoted in the form

‘MGRID δW = #’ where ‘#’ is the spatial pixel offset between CBC correlation functions as pre-

sented in Figure 5.1, when δW = 0 this indicates that the SCC algorithm is used and ‘MGRID δW

= 8’ denotes that CBC with a correlation function offset of 8 pix is used in each iteration.

5.4.3 Particle Image Distortion

The particle image distortion algorithm (PID) is a continuous extension of the discrete multigrid

method detailed above where the second interrogation region for the second iteration is distorted

on a pixel by pixel basis taking into account local spatial displacement gradients calculated from

vectors calculated in the first iteration as opposed to a single integer valued displacement over the

whole interrogation region as with the discrete multigrid algorithm.

Unlike the discrete multigrid method this is a continuous transformation (sub-pixel offsets)

meaning an interpolation algorithm has to be applied to calculate the discrete pixel intensity in
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Fig. 5.10 Interpolation grid for 12 point simplex interpolation algorithm.

the second interrogation region. A 12 point simplex interpolation algorithm was selected as it was

shown (Astarita and Cardone, 2005) that this offers a good trade-off between the accuracy of the

reconstructed image and computational complexity.

The intensity value q, located at the sub-pixel coordinate (x,y) is calculated as a weighted

average of the intensity values of the 12 nearest points (as arranged in Figure 5.10) as follows:

q(x,y) = q(0,0)+
x2

8
a1 +

y2

8
a2 + xya3 +

x
8

a4 +
y
8

a5 (5.9)

with the coefficients ai defined as follows:

a1 = q(0,−1)−q(0,0)−q(0,1)+q(0,2)+q(1,−1)−q(1,0)−q(1,1)+q(1,2) (5.10)

a2 = q(−1,0)+q(−1,1)−q(0,0)−q(0,1)−q(1,0)−q(1,1)+q(2,0)+q(2,1) (5.11)

a3 = q(0,0)−q(0,1)−q(1,0)+q(1,1) (5.12)

a4 = −q(0,−1)−7q(0,0)+9q(0,1)−q(0,2)−q(1,−1)+q(1,0)+q(1,1)−q(1,2) (5.13)

a5 = −q(−1,0)−q(−1,1)−7q(0,0)+q(0,1)+9q(1,0)+q(1,1)−q(2,0)−q(2,1) (5.14)

5.4.4 Spurious Vector Detection Algorithm

Original Normalised Median Test Algorithm

The algorithm used to detect spurious vectors is an enhanced version of the ‘normalised median

test’, NMT (Westerweel and Scarano, 2005) as presented in the literature review § 1.7.3. An

example of a grid of raw vectors containing erroneous vectors and grid points where no vectors

are calculated is presented in Figure 5.11. Erroneous vectors are located at the grid locations (2,2),

(0,1), (−1,−1) and (0,−2) and the grid points (1,2), (1,1), (−2,0) and (0,−1) represent grid
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Fig. 5.11 Grid of vectors used when implementing the normalised median test utilising the nearest
eight neighbouring vectors (red square) and the nearest 24 vectors (blue square).

locations where the PIV vector calculation algorithm was unable to calculate a vector.

The NMT algorithm as presented by Westerweel and Scarano identifies a vector as spurious if

the normalised residual, r′0 is above a certain threshold and is calculated as follows (this example

uses a window of size 3 x 3 vectors for simplicity, depicted by the red square in Figure 5.11):

1. For the vector under inspection at grid location (0,0) the local median, um of the eight

surrounding vectors ui, i = 1...8 is calculated.

2. For each surrounding vector ui the residual value ri is calculated as the modular difference

between that vector and the median vector um calculated in step 1:

ri = |ui −um| (5.15)

3. Calculate the normalising value, rm by finding the median of the ri values.

4. Calculate the normalised residual of the vector u0:

r′0 =
|u0 −um|

rm
(5.16)

5. If the value r′0 is greater than a predefined threshold, εthresh mark the vector u0 as spurious.

For two component velocity vectors the value r′0 is calculated individually for both vector com-

ponents and the final residual value is calculated as the magnitude of the two using Pythagoras’

theorem. In some circumstances the above algorithm may be applied over a larger window, for

example a 5 x 5 vector window as depicted by the blue box in Figure 5.11 in which case the sur-

rounding 24 vectors are used in calculating the residual r′0 rather than the nearest 8 as with a 3 x 3

vector window.
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Enhanced Normalised Median Test Algorithm

Whilst the NMT algorithm is robust in detecting spurious vectors and is used in commercial pack-

ages such as LaVision DaVis (as used in later chapters) for this work the algorithm was extended

(referred to as ENMT) to further increases its robustness.

The first refinement to the algorithm is to crudely pre-filter the surrounding vectors ui of obvi-

ously spurious data. The algorithm as originally presented does not discriminate against outlying

data points contained within the surrounding vectors when calculating the local median value Um

and hence the residual, r′0, thereby decreasing the sensitivity to detect spurious data at the vector

under inspection u0. The new adapted algorithm calculates the local median of the surrounding

non-zero vectors as in step 1 of the original algorithm, but the standard deviation, σm of the sur-

rounding vectors is also calculated. Following calculation of the local median all vectors that were

used to calculate it are tested to see if they lie within a certain threshold of the calculated median

value. In the work carried out the threshold used is ±2σm, any surrounding vectors that lie outside

of this range centred on the median are rejected for use in the remainder of the algorithm. In the

example vector grid presented in Figure 5.11 this would result in the vectors located at (0,1) and

(-1,-1) being rejected. The residual r′0 is then calculated using the remaining surrounding vectors.

The second refinement is to specify how many vectors as a minimum are required to carry out

the test, using the example shown in Figure 5.11 for a 3 x 3 vector window only 4 surrounding

vectors are available due to the fact that no vectors were calculated at the grid points (0,−1) and

(1,1) and the crude filtering of the surrounding vectors described in the previous paragraph rejects

two more vectors. If it is decided that more than 4 surrounding vectors are required to carry out

the test the new algorithm automatically increases the radius of the window by a value of 1 to use

a 5 x 5 vector window and so on until the threshold of minimum number of vectors available for

use for each filter size (5x5, 7x7, etc. . . ) in calculating the residual is met.

By removing obviously spurious data from the surrounding vectors the normalising value rm

in (5.16) is reduced as larger values of ri which are associated with vectors far away from the

local median are discounted. The lower value of rm then increases the sensitivity of the r′0 value

enabling a more reliable spurious / non-spurious threshold value to be selected which reduces the

possibility of valid vectors being detected as spurious and also reduces the possibility of spurious

data being overlooked as positive.

5.5 Analysis Methods

For each set of N = 100 image pairs displacement vectors were calculated using SCC and CBC

with spatial shifts, δW , of 2pix, 4pix and 8pix giving four sets of displacement vectors for each

image pair. After vector calculation two tests were carried out; the percentage of spurious data

and the accuracy of the calculated displacement vectors.

In order to measure the amount of spurious data returned, the ENMT spurious vector detection
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algorithm was applied to identify erroneous data as previously described. A threshold value of 2

was selected and residual values, with a residual threshold, r′0 greater than this were identified as

spurious. The total number of spurious data points in the nth (n = 1...100) vector field, Sn is then

calculated as the sum of the number of spurious displacement vectors identified using the ENMT

algorithm, SnA , and grid points where no vector was calculated, Sn0 :

Sn = SnA +Sn0 (5.17)

The average number of spurious data points, s as a percentage of the total number of vector grid

points in each vector field, NM across each of the N = 100 vector fields is then calculated as:

s =
100
N

N

∑
n=1

Sn

NM
(5.18)

After spurious vectors were identified they were removed and replaced with interpolated vectors

equal to the median of the nearest surrounding 24 vectors.

Once all spurious data points were removed and replaced by interpolated vectors the magni-

tude of the errors between the two components of the calculated displacement vectors, u, and the

analytic displacement, ua, as calculated by (5.2) is calculated. The displacement vector at grid

location (i, j) for the nth image pair, un(i, j) has orthogonal components in the x and y directions

ux and uy respectively. The displacement error magnitude εn(i, j) is then calculated as the resultant

of the magnitudes of the individual component errors as follows:

εnx(i, j) = |unx(i, j)−uax(i, j)| (5.19)

εny(i, j) =
∣∣uny(i, j)−uay(i, j)

∣∣ (5.20)

εn(i, j) =
√

ε2
nx
(i, j)+ ε2

ny
(i, j) (5.21)

After displacement errors were calculated at each grid point for each of the N = 100 vector fields

the ensemble average error at each grid location, ε(i, j) is calculated as:

εn(i, j) =
1
N

N

∑
n=1

εn(i, j) (5.22)

And finally the spatially averaged error ⟨ε̄⟩ is calculated over each grid point where I and J are the

total number of grid points in the x and y directions:

⟨ε̄⟩ =
1
IJ

I

∑
i=1

J

∑
j=1

εn(i, j) (5.23)
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Fig. 5.12 (Top left) Initial vector field calculated using standard cross correlation (SCC), (top right)
detection and removal of spurious vectors and (bottom) final vector field with missing vectors
interpolated.

5.6 Results and Discussion

5.6.1 Spurious Vector Detection, Removal and Replacement

Figure 5.12 shows the results of implementing the spurious vector detection algorithm for the

vectors calculated using SCC; it shows that all spurious vectors are identified and removed with

no valid data identified as spurious and when interpolation is applied to gird points with removed

vectors the result is a complete grid.

Figure 5.13 shows four displacement vector fields for the same image pair generated with a

normalised out of plane displacement W = 0.2 equating to an out of plane displacement of 4 pixels

based on the simulated laser sheet thickness of 20 pixels. The four displacement vector fields were

generated using the SCC algorithm and CBC with window offsets of δW = 2, 4 and 8 pixels. For

the vector grids presented the total number of spurious data points, s (erroneous vectors and grid
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Fig. 5.13 Vector fields for a flow field with a normalized out of plane motion of 0.2 and no vector
validation for (top left) SCC and for CBC with window offsets of (top right) δW = 2pix, (bottom
left) δW = 4pix and (bottom right) δW = 8pix.

. The red circles indicate the vectors calculated from the correlation functions in Figure 5.14.

points where no vector is calculated) is greatly reduced when CBC is applied, even for a window

offset of 2 pixels. When SCC is applied to this pair of images Sn = 155 spurious data points are

returned, when applying CBC with an offset of 2 pixels this reduces to Sn = 33, a reduction of

78.7%. Increasing the window offset to 4 and 8 pixels further reduces the number of erroneous

data points to Sn = 14 and Sn = 6 respectively, reductions of 91.0% and 96.1% respectively.

Correlation functions for the vectors calculated at grid point (345,361) in Figure 5.13 using

SCC and CBC with a window offset of 2 pixels are presented in Figure 5.14. The single correla-

tion function generated when using SCC (Figure 5.14 top left) is equal to the central correlation

function, C0 when using CBC. It can be seen that the vector at this location is clearly spurious by

having a positive displacement in the y direction whereas valid vectors at this location have a nega-

tive y-displacement. The correlation function C0 shows a large well defined peak located at (−4,4)

in the correlation function plane and a second peak of lower magnitude located at (−3,−4). The
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Fig. 5.14 Individual cross-correlation functions C0−4 and their CBC product, C, for the vector at
grid point (345,361).

imposed displacement for the vector at this grid location is (-3.25pix, -2.75pix), from this it is clear

that it is the second lesser peak that identifies the correct displacement of the particle images and

not the larger peak that is used instead. Looking at the correlation functions C1 to C4 in Figure 5.14

generated by applying CBC (δW = 2pix) with individual correlation functions calculated from in-

terrogation regions arranged as in Figure 5.1 it can be seen that each contain a peak in the region

of the correct displacement which in the case for C1 and C2 (as with C0) is not the largest peak,

however the product of the five correlation functions, C shows a very clearly defined peak located

at (−3,−3) with the correlation function approximately equal to zero at all other locations. This

demonstrates very clearly how CBC, even with a very small window offset of 2pix is very effec-

tive at removing noise signals from individual correlation functions leaving only a peak associated

with the mean displacement of the particle image pairs within that interrogation window.
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5.6.2 Spurious Vectors And Displacement Error

As has already been shown for an individual vector field the CBC algorithm greatly reduces the

total number of spurious data points compared to SCC, Figure 5.15 shows that for all image pa-

rameter variations when CBC is utilised the percentage of spurious vectors is reduced by between

a factor of approximately 10 to 100 and in the case of high particle density images by a factor of

1000.

Particle Image Diameter

Figure 5.15a and Figure 5.16a show that for SCC the optimum particle image diameter, dp is lo-

cated at different values for reducing the number of spurious vectors and minimising the displace-

ment error. A particle image diameter of 1.5pix returns the highest proportion of valid vectors

with only 6.3% spurious, for diameters above this the percentage of spurious vectors increases to

84.5% for a particle image diameter of 7pix using 16 x 16 pix2 interrogation regions. Applying

CBC δW = 2, 4 and 8pix the percentage of spurious vectors is for all particle diameters less than

3% compared to a minimum of 6.3% for standard cross-correlation. The optimum particle image

diameter for reducing spurious data when using CBC increases with the degree of window dis-

placement, δW . With δW = 2pix the optimum particle image diameter is 4pix resulting in 0.5%

spurious data, for window offsets of 4 and 8 pixels the optimum diameter increases to 4.5 and 5

pixels respectively with 0.019% and 0.016% spurious data respectively.

To minimise the spatially averaged error, ⟨ε̄⟩ the optimum particle image diameter when using

SCC is 2.5-3pix where the error is approximately 0.12pix, this diameter is consistent with the

findings of previous studies (Raffel et al., 1998). For particle images with diameter greater than

three pixels the average error begins to rapidly increase up to a magnitude of 0.65pix for a particle

image diameter of 7pix. When using CBC, unlike for reducing the number of spurious vectors,

the optimum particle image diameter for reducing displacement error occurs at a diameter of 4

pixels for all window offsets (which is consistent with the findings presented by Hart (Hart, 2000))

with spatially averaged errors of 0.096pix, 0.088pix and 0.08pix for window offsets of 2, 4 and

8pix respectively. Under optimum conditions for particle image diameter the CBC method when

applied with a window offset of 8pix reduces the displacement error by 33.3% when compared to

SCC under optimum conditions.

Figure 5.17 shows the correlation function generated using SCC with a 16x16pix2 interro-

gation region with a mean particle image diameter corresponding to the CBC optimum of 4pix

which is considerably larger than the SCC optimum of 2.5pix. For this interrogation region the

imposed displacement is 0pix in y-direction and 1pix in the x-direction. It can clearly be seen

that the displacement peak is very wide (approximately 10px) owing to the large size of the par-

ticle images which leads to reduced accuracy when calculating the sub-pixel displacement using

a three-point Gaussian fit. The measured displacement for this interrogation region was 0.961pix

in the x-direction and 0.080pix in the y-direction giving a total error of ε = 0.089pix. Figure 5.18
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Fig. 5.15 Percentage spurious data, s for variation of synthetic image parameters. Error bars
indicate ± one standard deviation of the percentage of spurious vectors.
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Fig. 5.16 Spatial average displacement vector error, ⟨ε̄⟩ for variation of image parameters. Error
bars indicate ± one standard deviation of displacement errors.
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Fig. 5.17 Correlation function of a 16 x 16pix2 interrogation region for particle diameter of 4pix
using standard cross-correlation. The peak profiles are taken along the dashed lines shown on the
full correlation function.

Fig. 5.18 Correlation function of a 16x16pix2 interrogation region for particle diameter of 4pix
using CBC with a shift of 8pix. The peak profiles are taken along the dashed lines shown on the
full correlation function.

shows the correlation function calculated using CBC with δW = 8pix for the same image pair used

in Figure 5.17 and it is instantly noticeable that the correlation peak is much more well defined

(approximately 4px wide) than is the case when using SCC. The sharpening of the peak can be

explained by the fact that the points surrounding the peak maximum when multiplied by their

corresponding values in adjacent individual correlation functions are reduced by a greater amount

than the central peak value. The displacement vector calculated from this correlation function is

0.983pix in the x-direction and 0.013pix in the y-direction resulting in a total error, ε = 0.021pix,

an improvement of 76% on the error when using SCC.
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Particle Image Density

As can be seen in Figure 5.15b and Figure 5.16b increasing the particle density (number of particle

images per interrogation window, Np) reduces both the amount of spurious data and the error

in measured displacement. With Np = 2 particle images per 16x16pix2 interrogation region the

amount of spurious data is very high with 91.9% of all data points containing either spurious or no

vectors when SCC is applied, at this low density CBC offers significant improvements in reducing

the amount of spurious data with spurious percentages of 55.1%, 40.9% and 36.7% for δW = 2, 4

and 8pix respectively. Even in the best case scenario of δW = 8pix this is over one third of all the

data and as such is not suitable. For SCC and CBC with all three degrees of window offset the

amount of spurious data decreases with increasing particle image density. It is not until there are

on average 10 particle images per interrogation region that the amount of spurious data drops to

10% when using SCC whereas to reach the same level of valid vectors using CBC approximately

5, 4 and 4 particle images per interrogation are required for δW = 2, 4 and 8pix, respectively,

showing that CBC greatly outperforms the SCC algorithm for reducing the amount of spurious

data calculated at low particle image densities. The rate at which the amount of spurious data

reduces with increasing image density is much greater when using CBC. At a density of 20 particle

images per interrogation region the amount of spurious data when using SCC is at 3.0% reducing

to 0.02% when CBC is applied with a window offset of 2pix. For window offsets of 4 and 8pix

the amount of spurious data decreases as particle image density increases to 14 particle images per

interrogation region to a value of approximately 0.003% where increasing particle image density

beyond this appears to have no further effect on the amount of spurious data. The improvement in

the amount of spurious data when using CBC can partly be attributed to the greater total number

of particle images available to calculate the average displacement due to the increased sample area

of the images used as well as the suppressing of noise signals as previously discussed.

As with the amount of spurious data the spatially averaged displacement error, ⟨ε̄⟩ decreases

with increasing particle image density for SCC and CBC with each of the window offsets. At a

density of 2 particle images per interrogation region the average displacement error was not calcu-

lated as 91.9% of the data returned was spurious and thus of no use for calculating displacement

vectors. Using a density of 4 particle images per interrogation region the average error is 0.25pix

with SCC which is approximately the same as when CBC is used with all degrees of window off-

set. The minimum error for each case occurs at the highest tested density of 20 particle images per

interrogation region with errors of 0.1pix for SCC and 0.09pix, 0.08pix and 0.07pix when CBC is

used for δW = 2, 4 and 8pix respectively.

Out of Plane Displacement

When particle images undergo zero displacement in the out of plane direction the amount of spu-

rious data and average displacement error are consistent with the results of the default image set

and both increase with increasing out of plane displacement due to the loss of pairs between im-
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age frames as shown in Figure 5.15c and Figure 5.16c. Both the increase in spurious data and

displacement error are reduced when CBC is applied with greater reductions when a higher de-

gree of window offset is applied. When the normalized out of plane displacement W = 0.5 (10pix

based on the laser sheet thickness of 20pix) any particle image in the centre of the light sheet in

the first frame will have disappeared by the second. At this level when using SCC the amount

of spurious data 51.0% compared to 18.8% when CBC is applied with a window offset of 8pix

which, while a reduction in erroneous data of over a half, is still a significant proportion. When

using SCC for all levels of out of plane displacement above zero the amount of spurious data is

greater than 10% whereas the amount of spurious data does not exceed 10% until W ≈ 0.25 when

CBC is applied with δW = 2pix further increasing to W ≈ 0.32 and 0.42 for δW = 4pix and 8pix

respectively showing a greater robustness in calculating valid vectors for higher degrees of out of

plane displacement. As the out of plane displacement increases the average displacement error

⟨ε̄⟩ likewise increases. However the amount the error increases is much reduced when CBC is

utilised, the error for SCC when W = 0.5 is 0.54pix, this error is more than halved to 0.25pix when

CBC with δW = 8pix is applied thus CBC can give quarter pixel accuracy despite approximately

half of the particle images moving out of the light sheet between frames.

As very few flows with strictly two-dimensional flow exist in the real world the improvements

provided by using CBC over SCC both in terms of the reduction in spurious data and the increase

in vector accuracy are to be welcomed as when looking at a specific fluid flow this can be much

harder to control than the other parameters varied here such as particle image diameter and density.

Particle Image Brightness

Maximum particle image brightness, qmax (Figure 5.15d and Figure 5.16d) has little effect on

either the amount of spurious data or the displacement error which can be explained by the fact

that the cross-correlation algorithm (5.8) used to calculate the SCC correlation function and the

individual cross-correlation functions for CBC is normalized reducing the effect of changes in

particle image brightness (Willert and Gharib, 1991). The amount of spurious data resulting from

the SCC algorithm for all particle image brightnesses remains at approximately 10% whereas this

reduces from approximately 0.33% to approximately 0.08% for values of qmax of 50 and 250

respectively when CBC is applied with δW = 4pix and 8pix from which it can be drawn brighter

particles reduce the number of erroneous vectors for CBC but have negligible effect when using

SCC.

Background Noise

As one would expect increasing the level of background noise, qBG in the images increases both

the amount of spurious data and the error as is shown in Figure 5.15e and Figure 5.16e. As the

background noise level increases particle images further away from the centre of the light sheet

become less well defined or completely drowned out by the noise resulting in fewer particle images
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in the interrogation region. When qBG = 80 greyscales (with 10% Gaussian noise) the amount of

spurious vectors is 52.0% for the SCC algorithm and falls to 37.7% when CBC is applied with δW

= 8pix. For all algorithms ⟨ε̄⟩ rapidly increases at approximately the same rate when qBG is above

20 greyscales with values of 0.28pix and 0.13pix when qBG = 80 greyscales for SCC and CBC

with δW = 8pix respectively, a reduction in the calculated displacement error of 55.0%.

Uniformity of Particle Image Diameter

As the standard deviation of particle image diameters, σp increases the amount of spurious data for

the SCC algorithm increases from 7.4% to 20.0% for σp = 0pix and σp = 2.5pix respectively (see

Figure 5.15f). When CBC is applied the amount of spurious data remains approximately constant

for all σp at 0.1%, 0.09% and 0.08% for δW = 2pix, 4pix and 8pix respectively showing that the

variation in particle image diameters has negligible effect on the amount of spurious data for CBC.

Unlike with the amount of spurious data when using CBC increasing the variation in parti-

cle image diameters increases the error in the calculated displacement vectors as shown in Fig-

ure 5.16f, with lower errors for greater degrees of window offset and the increase in error slowing

as σp further increases with ⟨ε̄⟩ = 0.09pix for δW = 8pix. The error when SCC is used increases

approximately linearly with σp up to 0.13pix when σp = 2.5pix, only a 12% increase in error over

completely uniform particle image diameters when σp = 0pix (⟨ε̄⟩ = 0.12pix).

5.6.3 Displacement error Against Radius

Whilst the spatially averaged measured displacement errors presented in Figure 5.16 show the

overall accuracy of the CBC and SCC algorithms over the whole displacement field no information

is provided about the effect of local displacement gradients on the measured displacement. In

order to quantify the errors due to displacement gradient radial profiles of the displacement error

are investigated. The centre of the Oseen vortex in the flow field is chosen as the zero radius

point (r = 0) (see Figure 5.3). In the following radial plots of measured displacement error the

error values presented are an azimuthal average of all displacement errors of vectors at that radial

location. The dataset used for the radial error analysis presented here is the default image set with

zero out of plane displacement and a particle image density of 0.078 particle images per pix2.

The previous section discussing the results of the spatially averaged velocity errors for all

datasets focused on the CBC algorithm and SCC as a control, the following results also incorporate

a number of more advanced algorithms as previously discussed.

The graph presented in Figure 5.19 shows that for the SCC and CBC algorithms the error in

calculated displacement is significantly higher in the centre of the vortex where the displacement

gradients are at a maximum which for the SCC algorithm is consistent with previous findings in the

literature (Huang et al., 1993). The SCC algorithm is the worst performing returning the highest

displacement errors at each radial location with a maximum error of 0.35pix at the vortex origin.

It can be seen that the CBC algorithm makes considerable improvements in the displacement error
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Fig. 5.19 Azimuthally averaged displacement error against radial position for the SCC algorithm
and CBC algorithm with window displacements of 2pix, 4pix and 8pix.

Fig. 5.20 Spatially averaged displacement vector errors for all tested algorithms. Error bars indi-
cate +/- one standard deviation of error values.

in both regions of high and low gradients, in the case where CBC is applied with a window offset

of 8pix the displacement error in the centre of the vortex is reduced to approximately 0.24pix, an

improvement of 32%. Figure 5.20 shows the spatially averaged displacement error (average over

each vector in the flow field) for each of the applied vector calculation algorithms and it can be
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Fig. 5.21 Correlation functions for low gradient region (top) and high gradient region (bottom) for
vector field calculated using standard cross-correlation. The correlation function peak profiles are
taken through the correlation function origin.

Fig. 5.22 Correlation functions for low gradient region (top) and high gradient region (bottom) for
vector field calculated using correlation based correction with δW = 8pix. The correlation function
peak profiles are taken through the correlation function origin.

seen that when CBC is applied with a window offset of 8pix the average displacement error is

reduced by 23% compared to the SCC algorithm. Combining the results presented in Figure 5.19

and Figure 5.20 it can be seen that the CBC increases the accuracy of calculated displacements

and the most significant improvements in accuracy are to be found in the inner region of the vortex

where displacement gradients are at a maximum.

It has been shown in literature that large velocity gradients stretch the correlation function

(Hart, 2000; Huang et al., 1993; Raffel et al., 1998) this effect is shown in Figure 5.21. The two

highlighted correlation functions are chosen so that the displacement values are approximately the

same but one is in a location of high velocity gradient (near the core) and a velocity gradient close

to zero (near the edge). The two plots of the correlation functions clearly show that the peak is
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much more clearly defined in the low gradient region and in the high gradient region it is much

more spread out which leads to larger errors when applying the sub-pixel Gaussian fit.

Figure 5.22 shows that by using CBC the effect of local velocity gradients on the spread of

the correlation peak is negated giving very well defined peaks for both high and low gradient

regions leading to a much more accurate sub-pixel fit. It should be noted that when using the

CBC the overall peak value decreases, this is due to multiplying several peak values with sub-

unity magnitude. Whilst the overall peak value is reduced the signal-to-noise ratio is considerably

larger as all other peaks in the correlation function tend to zero.

When applying the CBC algorithm with a fixed individual interrogation window size the effec-

tive area of image used to calculate each vector is increased due to the shifting of the interrogation

regions over which individual correlation functions are calculated before taking their product. The

degree of offset between the windows dictates the total image area used in calculating the displace-

ment vector. For example when CBC is applied using the standard individual interrogation region

window size of 16x16pix2 and δW = 2pix the size of the interrogation window encompassing all

five individual interrogation windows (see Figure 5.1) becomes 20x20pix2 (neglecting the small

number of pixels in the corners between interrogation regions, see see Figure 5.1). As the results

presented show the calculated displacement error reduces with increasing window shift it is useful

to compare the results with the SCC algorithm over larger window size to investigate whether the

increased accuracy is due to the increased area over which each vector is calculated.

Comparisons between CBC and SCC with the SCC interrogation window size chosen based

on the degree of offset of the windows used in CBC are presented in Figure 5.23 for offsets of

2pix, 4pix and 8pix. It can clearly be seen that the improved accuracy of CBC when applied with

larger window shifts is not exhibited when the SCC interrogation window size is increased. As

one would expect in regions of high gradient increasing the size of the SCC interrogation window

decreases the accuracy of the calculated displacements as the variation of individual particle image

displacements within each window becomes greater as the size of the window is increased thus

distorting the peak in the correlation function by a greater amount. This shows that applying CBC

with greater window offsets has the opposite effect of increasing the individual interrogation region

size in SCC by reducing calculated displacement errors rather than increasing them in regions of

high gradient. In low gradient regions (large r) it is shown in Figure 5.23 that CBC and SCC using

a window size based on the CBC window shift perform approximately equally.

Figure 5.24 shows the displacement error against radius when CBC is applied combined with

iterative multigridding using two iterations, the first using a window size of 32x32pix2 and the final

vectors calculated using 16x16pix2 windows. It is observed that the application of multigridding

without CBC (δW = 0) reduces the calculated displacement error compared to single iteration SCC

as is predicted in the literature due to the second iteration only having to calculate the subpixel

displacement as the first iteration calculates the total displacement to the nearest integer and thus

reducing the effect of loss-of-pairs. Further improvements are achieved when CBC is applied
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Fig. 5.23 Comparisons of SCC and CBC algorithms where interrogation region used in SCC is
equal to the area over which CBC correlation functions are generated.

to each iteration of the multigrid process with increasing accuracy as the CBC window offset is

increased. In the region very close to the centre of the vortex even with the application of CBC

multigrid the displacement errors are greater than those when single iteration CBC is applied (see

Figure 5.19). This can be explained by the greater error returned by the muligrid first iteration due

to the larger 32x32pix2 interrogation window as shown in Figure 5.23. However, still in a high

gradient region (r is approximately greater than 25pix) the errors using multigrid CBC are much

lower than those observed by single iteration CBC. When multigrid CBC is applied with a window

offset of 8pix the spatial average displacement error is 0.054pix compared to 0.077pix for single

iteration CBC, an improvement of 30% and 46% on the SCC algorithm.

The displacement error against radial location when using the PID algorithm is presented in

Figure 5.25. In the two PID cases presented the first iteration is carried out using a 32x32pix2

window with SCC for the case PID δW = 0pix and CBC with a window shift of 8pix for the case

PID δW = 8pix. The utilisation of CBC in the predictor phase has minimal effect on the final
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Fig. 5.24 Displacement error against radial location for CBC applied using iterative multigridding.

Fig. 5.25 Displacement error against radius for the particle image distortion algorithm.

calculated error. The results clearly show that the PID algorithm is superior to each of the pre-

viously tested algorithms in regions of high gradient where errors due to high gradients observed

with each previous algorithm are almost entirely removed. The error level in the high gradient

regions is much closer (though still greater) to those observed in low gradient regions for the other

algorithms. This is explained by the application of PID removing the velocity gradients from sub-

sequent interrogation region pairs as discussed in the literature review (§ 1.5.7). Whilst significant

error reduction is observed in the high gradient region the spread of displacement errors in low

gradient regions is much greater than for other algorithms. A possible explanation of this is the

degradation in image quality of the reconstructed image due to the applied interpolation method.
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Fig. 5.26 Comparison of of displacement errors of various vector calculation algorithms and the
new HPIDCBC algorithm.

Due to the greater spread of displacement errors in the low gradient regions and despite the

large improvements in the high gradient region the overall spatially averaged displacement error

is approximately 0.08pix as can be seen in Figure 5.20.

Combining the results presented it can be seen that the optimum algorithm for the vortex

core region where spatial gradients are high is PID and in the low gradient region the optimum

algorithm is multigrid CBC with a window shift of 8pix. Using these results the Hybrid PID

CBC (HPIDCBC) algorithm is applied. Local displacement gradients are calculated during a first

iteration using CBC with a window size of 32x32pix2 and a window offset of 8pix, with vectors

calculated in the second iteration if the local displacement gradient is above a certain threshold (in

this case 0.05pix/pix) using the PID algorithm and if below this threshold the CBC algorithm is

used with a window offset of 8pix (and a 16x16pix2 interrogation region).

The results of the best performing algorithm in each category, SCC, CBC, MGRID, PID and

HPIDCBC are presented in Figure 5.26 showing that the HPIDCBC algorithm is optimum in terms

of the accuracy of calculated displacement vectors at each point in the displacement field with the

low gradient region accuracy of the multigrid CBC algorithm and the high gradient region accuracy

of the PID algorithm. The spatially average displacement error for the HPIDCBC algorithm is

0.049pix which is a 9.3% improvement on the multigrid CBC (δW = 8pix) algorithm and a 51%

improvement on the SCC algorithm.

5.6.4 Computational Expense and Overall Cost Benefit Analysis

In order to measure the computational expense of the various algorithms the vector calculation

process was timed using MATLAB’s inbuilt timing function. The average total time to calculate

all vectors for each of the 100 image pairs, Tv is calculated and then divided by the number of
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vectors, NM to give the processing time per vector, tv for each of the algorithms. As the absolute

values of tv are hardware dependent the normalized time per vector t ′v is calculated by normalizing

tv by the time per vector of the 16x6 pix2 interrogation region SCC algorithm, tvSCC :

t ′v =
tv

tvSCC

(5.24)

The calculation time per vector for the SCC algorithm using a 16x16pix2 interrogation region,

tvSCC was calculated to be 1.47ms which for the total number of vectors calculated for each image

pair, NM = 1024 gives a total processing time of 1.5s per image pair.

For each of the algorithms applied with different parameters presented in Figure 5.20 the spa-

tially average error ⟨ε̄⟩ is plotted against the normalised vector calculation time in Figure 5.27

showing that improved displacement vector accuracy comes with the cost of increased computa-

tion time. The most accurate algorithm, the new HPIDCBC algorithm is also the most computa-

tionally expensive with t ′v = 9.47 which translates to it taking approximately 9.5 times longer to

calculate each vector for a 50.8% reduction in average measured displacement error than when the

SCC algorithm is applied with a 16x16pix2 interrogation region.

Increasing the size of the interrogation region used for SCC increases the computational ex-

pense with 32x32pix2 interrogation regions taking t ′v = 2.24 times longer than 16x16pix2 interroga-

tion regions which is to be expected due to the increased amount of image data used in calculating

the cross-correlation functions. The reduction in error associated with increased computational

time for SCC with larger windows is the result of greater accuracy in low gradient regions despite

the decrease in accuracy in the high gradient region.

The CBC algorithms have values of t ′v = 1.46 and 2.00 for δW = 2pix and 8pix respectively

which in the case of δW = 8pix returns a 23.5% reduction in average calculated displacement error

for double the vector computation time. The increase in computation time for greater window dis-

placements can be attributed to programming inefficiencies in the application of the algorithm as

sub-windows from the main image pairs are transferred to a new variable before the individual in-

terrogation regions are calculated, if the cross-correlation functions were calculated directly from

the main image inputs it is expected that there would be significantly less variation in computation

time with window offset due to the reduced amount of data being transferred.

The iterative algorithms, MGRID, PID and HPIDCBC are all much more computationally ex-

pensive than single iteration algorithms due to the vector field being calculated twice, in each case

with 32x32pix2 interrogation regions for the first pass. MGRID applied without CBC (MGRID

δW = 0pix) has t ′v = 3.41 and results in a higher average displacement error than CBC δW = 8pix

which has a lower computational time of t ′v = 2.00 showing that applying CBC with δW = 8pix is

both less computationally expensive and more accurate than the two iteration multigrid standard

cross-correlation algorithm. When applying MGRID in conjunction with CBC (MGRID δW =

2pix, 4pix and 8pix) the computational time is greatly increased mainly due to the much greater

overheads of applying CBC in the initial iteration when using 32x32pix2 windows, the increased
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Fig. 5.27 Average spatial displacement vector error against normalised computation time per vec-
tor for various vector calculation algorithms employed with varying parameters.

computation time comes with a marked increase in the accuracy of the calculated vectors as has

been shown. Applying CBC to the multigrid algorithm, MGRID δW = 8pix, the average displace-

ment error is reduced by 29.8% when compared to the single iteration CBC δW = 8pix but comes

at much greater computational expense with t ′v = 8.95, 4.49 times longer than CBC δW = 8pix.

The PID algorithm is computationally expensive due to the sub-pixel reconstruction of the

second image frames in the second iteration and as has been previously shown leads to higher

overall spatial error in low gradient regions with only improvements in the high gradient regions.

The most computationally expensive of all the algorithms tested is the new HPIDCBC algorithm

with δW = 8pix with t ′v = 9.47 showing that the average error can be reduced by approximately

50% compared to the SCC algorithm but requires almost ten times the amount of time to calculate

each vector.

5.7 Summary

In chapter five a number of PIV vector calculation algorithms are investigated using synthetic

datasets of an Oseen vortex. It is confirmed that the accuracy of calculated vectors is sensitive to
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spatial velocity gradients with higher gradient levels decreasing the accuracy of calculated vectors

and it is shown that employing more advanced algorithms such as mulitgrid and image deforma-

tion can reduce these errors. Hart’s Correlation Based Correction algorithm is fully investigated

providing new insight into the performance of the algorithm for small window offsets. It is shown

that the amount of spurious data and error in measured velocity vectors can be significantly re-

duced through the multiplication of neighbouring correlation functions offset by just 2 pixels.

New information has been obtained regarding the effect of varying a wide range of PIV image pa-

rameters such as particle image diameter, uniformity of particle image size, degree of out of plane

displacement and the effect that varying these parameters has on the amount of spurious data and

the measurement error for SCC and CBC with varying window offsets.

It was shown that in regions of high spatial gradients particle deformation algorithms provide

much superior accuracy in measured vectors when compared to other algorithms, including CBC.

However, in regions of low velocity gradient it is shown that the CBC algorithm performs the

best offering the lowest error in measured velocity vectors. It was using these two results that a

new hybrid algorithm was proposed where after an initial iteration spatial gradients are calculated

and then in subsequent iterations vectors located in a region where the local spatial gradient is

above a predefined level are calculated using an image deformation algorithm and those in low

gradient regions are calculated using the CBC algorithm. The new hybrid algorithm was shown

to outperform each of the individual algorithms by minimising the error in calculated vectors at

all points in the flow with the average measurement error reduced by approximately half when

compared to standard cross-correlation. Finally it was shown that the increased accuracy of the

new algorithm comes at a high computational cost, taking approximately ten times longer than the

standard cross-correlation algorithm to calculate each vector.





Chapter 6

Flow Structure and Turbulence

Properties of a Lab Generated

Tornado-Like Vortex

6.1 Experimental Apparatus and Data Analysis

6.1.1 Tornado Vortex Simulator

The tornado vortex simulator (TVS) (Figure 6.1) is a Ward-type simulator based on the Texas

Tech University vortex simulator II (TTU-VSII) (Mishra et al., 2008). In a laboratory simulation

to produce a tornado-like vortex one needs to apply an updraft and circulation to a body of air. In

the TVS updraft is applied by means of an axial fan (manufacturer: Axair, model number: HEP-

31-2T single-phase plate mounted axial fan.) extracting air from the convection chamber (height

240mm, diameter 550mm) as can be seen in Figure 6.2 and has a maximum measured flow rate

of 0.09m3/s. The manufacturer flow characteristics of the axial fan are displayed in Figure 6.3.

To reduce turbulence in the updraft through the updraft orifice aluminium honeycomb measuring

150mm x 150mm and 50mm deep with 7mm diameter holes is placed in the convection chamber

covering the top of the updraft orifice.

Circulation is applied to the system via four pipes made from 75mm diameter PVC pipe, each

of the four pipes have eight 3mm diameter holes drilled at intervals of 30mm vertically starting

30mm from the floor of the chamber. The design of TVS differs from TTU-VSII in using only

four pipes rather than the sixteen used there as the vortex data is to be recorded using PIV meaning

optical access for a large light sheet filling the inflow region is required. The four circulation

pipes are connected to a plenum (height 240mm, diameter 550mm) with airflow provided by four

circulation blowers (manufacturer: EBM-Pabst, model number: RG 125-19/14 N DC centrifugal

compact fan) each with a maximum flow rate of 0.024m3/s. The manufacturer flow characteristics

of the circulation blowers are shown in Figure 6.4

The floor of the inflow region is constructed from smooth plywood with a glass optical window
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Fig. 6.1 Photograph of the Leeds Tornado Vortex Simulator.
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Fig. 6.2 Schematic of the Leeds Tornado Vortex Simulator.
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Fig. 6.3 Manufacturer airflow characteristics for Axair HEP-31-2T (curve 3) single-phase plate
mounted axial fan. (http://www.axair-fans.co.uk/wp-content/uploads/2015/12/Plate-Cased-Axial-
2012-WEB.pdf)

Fig. 6.4 Manufacturer airflow characteristics for EBM-Pabst RG 125-19/14 N circula-
tion blower. (http://img.ebmpapst.com/products/datasheets/DC-centrifugal-fan-RG1251914N-
ENU.pdf?_ga=1.155651826.852076993.1463566719)
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fitted flush with the floor and centred axially to provide optical access via a mirror below as in

Figure 6.2. The height of the inflow region, h0 from the floor to the chamber ceiling is 0.25m,

the updraft orifice r0 into the convection chamber has radius 75mm and the distance between

circulation pipes is 0.36m.

Through independent control of the axial fan and circulation blowers a wide range of swirl

ratios can be obtained and in the current study range from 0.0017 to 1.33. The aspect ratio of the

simulator a0 = h0/r0 for the experiments carried out is fixed at 3.33 though this can be changed

by altering the height of the circulation pipes.

6.1.2 PIV Measurements

A light sheet with thickness 0.5mm at the focus is created via a pair of 532nm wavelength Nd:Yag

pulse lasers with a pulse energy of 31mJ with the beam expanded using a -50mm focal length

plano-concave lens and then shaped into a light sheet with a 300mm focal length cylindrical lens.

The measurement plane (x-y) used was set at an axial height of 140mm from the floor of the inflow

region. Seeding is added to the system via a smoke generator (Martin Magnum 650), smoke is

directed underneath the floor of the inflow region via a pipe and is sucked into the system as part

of the inflow. Particles were measured to have a mean diameter of 3.4µm and was measured using

interferometric droplet sizing (Damaschke et al., 2005, Glover et al., 1995). Particle images were

captured using a LaVision Imager Intense PIV CCD camera with a resolution of 1376 x 1040

pixels with a dynamic range of 12-bit and 6.45 x 6.45µm pixel size fitted with a Sigma 28-80mm

lens set to F number 3.5. The interval between image pairs was 10µs - 35µs depending on the

flow configuration, this was limited not by the in-plane particle displacements but by loss-of-pairs

due to the large axial out-of-plane velocity component. The field of view was 159.63 x 120.65

mm2 capturing 500 instantaneous image pairs per fan configuration.

The particle images were processed in LaVision DaVis 8.0.2 to generate planar velocity vector

fields using the multigrid method with an initial pass using a 32x32 pixel interrogation window

with no weighting function and 50% overlap, the final two passes are carried out using 16x16

pixel interrogation windows with a circular weighting function and again a 50% overlap. Using

the interrogation windows specified the spatial resolution of the measured velocity field ∆x = ∆y =

0.927mm. Spurious vectors were detected using the enhanced normalised median test algorithm as

presented in § 5.4.4 and did not exceed 2.5% of the 22360 (172x130 vector grid) vectors calculated

from each image pair. Removed spurious vectors were replaced by interpolated vectors using a

median filter.
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Fig. 6.5 Coordinate system used in tornado vortex PIV experiments. The red circle represents an
instantaneous vortex of radius Ri and the blue circle represents the mean flow vortex traced out by
the precession of the instantaneous vortices and has radius Ra.

6.2 Results and Discussion

6.2.1 Flow Configurations

To investigate the flow dynamics of the tornado-like vortex a large number of swirl ratios are in-

vestigated by using a number of different combinations of axial and circulation fan speeds. The

circulation blowers run on a DC power supply and the voltage supplied to these, VΓ, ranges from

15V to 30V. The axial fan which runs on AC mains has the fan speed regulated with a potentiome-

ter and is set to five different speeds denoted A-E. For example, the data set name A25 refers to

axial fan speed A and circulation blower voltage of 25V. A summary of flow parameters which

will be calculated throughout this chapter is presented in Table 6.1. The coordinate system that

will be used throughout this chapter is presented in Figure 6.5.
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Table 6.1 Flow parameters for varying axial and circulation fan configurations

Flow Configuration S Rer Γ (m2s−1) Q (m3s−1) uθmax (ms−1) R (mm) R/r0

A20 0.0041 22772 0.158 0.089 5.409 4.64 0.062

A25 0.0168 21490 0.305 0.084 5.222 9.28 0.124

A30 0.0374 21336 0.450 0.084 5.140 13.92 0.186

B15 0.0017 21551 0.078 0.084 3.354 3.71 0.049

B20 0.0085 19305 0.198 0.076 4.865 6.49 0.086

B25 0.0449 16284 0.413 0.064 4.727 13.90 0.185

B30 0.0978 14201 0.559 0.056 4.574 19.46 0.259

C15 0.0172 16368 0.217 0.064 3.387 10.19 0.136

C20 0.1147 12493 0.457 0.049 2.965 24.56 0.327

C22.5 0.1699 10402 0.515 0.041 3.053 26.87 0.358

C25 0.2133 10402 0.587 0.041 3.148 29.65 0.395

C30 0.3302 8189 0.663 0.032 3.301 31.97 0.426

D15 0.5119 3018 0.344 0.012 1.555 35.21 0.470

D22.5 1.0386 2972 0.466 0.012 1.430 51.90 0.692

D30 1.3284 2832 0.501 0.011 1.356 58.85 0.785

E15 0.0520 11303 0.293 0.044 2.956 15.75 0.210

E20 0.1539 9040 0.444 0.035 2.879 24.56 0.327

E25 0.3487 6571 0.587 0.026 3.057 30.58 0.408

E30 0.4804 5972 0.656 0.023 3.045 34.29 0.457

Flow Rates

For each fan configuration the flow rate through the updraft orifice, QV is required for calcula-

tion of swirl ratio and the radial Reynolds number. Before measuring the flow rate (and before

recording any PIV datasets) the axial and circulation fans were left running for 5 minutes to en-

sure they had settled to a stable state. The flow rate was measured by measuring the axial flow

velocity profile across the updraft orifice using a hotwire probe (Testo 425 Thermal Anemometer),

measurements were taken at 10mm intervals across the orifice, each measurement is an ensable

average of five time averages with each taken over two minutes with the probe recording at 2Hz,

the velocity measurement resolution of the probe is 0.01m/s with an accuracy of 0.03m/s (both

the resolution and accuracy are quoted from the probe manual). The velocity profiles were then

integrated around a circle to give the full flow rate through the updraft orifice.

Figure 6.6(a) shows the measured flow rate through the updraft orifice, QV , for each of the 19

flow configurations. Measurements were taken for 5 axial fan speeds labelled A to E, for these

fixed axial fan speeds the voltage supplied to the circulation fans, VΓ was varied between 15V and

30V. It must be noted that for axial fan flow rates A to D the flow rate decreases with D having the
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Fig. 6.6 (a) Axial flow rate, QV . Error bars indicate +/- one standard deviation of the measured
flow rate. (b) swirl ratio, S, and (c) radial Reynolds number, Rer, for circulation fan speeds A to E
and varying axial fan voltage supply, VΓ.
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lowest flow rate, after capturing these initial four datasets configuration E was captured to fill in

the gap between C and D and hence the axial flow rate of E is in between C and D. The flow rate

through the system varies from a minimum of 0.011m3/s for configuration D30 (axial fan speed

D, circulation fan voltage, VΓ = 30V) to a maximum of 0.089m3/s for configuration A20. It can be

seen that for a fixed axial fan speed the flow rate decreases as the circulation voltage increases with

a tight linear trend, though for the lowest axial fan speed (D) the effect of the circulation voltage

on flow rate is almost negligible.

Swirl Ratio and Radial Reynolds Number

As highlighted in § 4 the swirl ratio is the parameter that most strongly governs the properties of

a tornado-like flow and is defined as the ratio of angular to axial momentum and is calculated as

follows:

S =
ΓR

2QV
(6.1)

Where Γ is the circulation, R is the vortex radius and QV the flow rate through the system. Here

the circulation is calculated at the radius of maximum tangential velocity as follows:

Γ = 2πRuθmax (6.2)

Where R is the radius of the vortex, i.e. the radius at which uθ is a maximum. Substituting (6.2)

into (6.1) the swirl ratio from the PIV data is calculated as:

S =
2πR2uθmax

QV
(6.3)

The radius of the vortex R for a particular flow configuration is the mean distance from the centre

of instantaneous vortices to the distance at which uθmax is observed.

Swirl ratio as a function of circulation fan speed for differing axial fan speed settings is pre-

sented in Figure 6.6(b). As expected from (6.3) swirl ratio is heavily dependent on the axial flow

rate, Q. With flow configurations (D) with the lowest axial flow rate giving the highest swirl ratios

whereas high axial flow rate configurations give the lowest swirl ratios. Swirl ratio ranges from a

minimum value of 0.0017 to a maximum of 1.328 for configurations B15 and D30 respectively.

With independent control of both the axial fan speed and the circulation fan speeds it is possible

to configure the flow to have a similar swirl ratio for different combinations of fan speeds as can

be seen for, as an example, configurations A25 and C15 which have flow rates of 0.084m3/s and

0.064m3/s respectively and swirl ratios of 0.0168 and 0.0172 respectively.

The radial Reynolds number, Rer is defined as:

Rer =
QV

h0ν
(6.4)

Where h0 is the height of the flow chamber and ν the kinematic viscosity of air (at lab temperature).
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hν is a constant resulting in Rer having sole dependence on QV resulting in the same trends as in

Figure 6.6(a) and Rer is shown in Figure 6.6(c). Radial Reynolds numbers range from a minimum

of 2,832 to a maximum of 22,772 for flow configurations D30 and A20 respectively.

6.2.2 Mean Flow Field

Figure 6.7 and Figure 6.8 present ensemble averaged velocity vectors of instantaneous vector

fields for various flow configurations, each containing N = 500 individual vector fields, the average

velocity vectors are calculated as follows:

u(x,y) =
1
N

N

∑
i=1

ui(x,y) (6.5)

v(x,y) =
1
N

N

∑
i=1

vi(x,y) (6.6)

Where ui and vi are the ith instantaneous orthogonal velocity vectors in the x and y directions

respectively. The blue circles in Figure 6.7 and Figure 6.8 show the radius of the vortex present

in the ensemble average of the instantaneous flow vectors as in (6.5) and (6.6), Ra is the radius

(with origin at the mean flow vortex centre) at which the azimuthally averaged velocity profile has

maximum velocity.

6.2.3 Instantaneous Vortex Radius

The radius of the vortex produced under certain flow configurations is highly dependent on swirl

ratio with low swirl ratio vortices having a small radius and large swirl ratio vortices having a

larger radius. The vortex radii range from 3.71mm to 58.85mm for swirl ratios of 0.0017 (B15)

and 1.328 (D30) respectively. When plotted on a log-log graph as in Figure 6.9 it can be seen

by the straight line nature of the data that the radius of the vortex is related to the swirl ratio by

a power law, it was found by regression that vortex radius, R is related to swirl ratio, S by the

following relationship:

R = 51.75S0.417 (6.7)

For a more general relationship between vortex radius and swirl ratio the normalized vortex radius,

R/r0 is introduced where the measured vortex radius R is normalized by the tornado chamber

updraft radius r0 with the relationship with swirl ratio shown in Figure 6.9. The normalized vortex

radius follows the following relationship with swirl ratio:(
R
r0

)
= 0.69S0.417 (6.8)

The coefficient of determination, R2
D for this fit is 0.99 suggesting the data fits very closely to the

curves presented in Figure 6.9. The coefficient of determination in literature is usually referred to
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Fig. 6.7 Ensemble average velocity vectors for axial fan settings A-C. Blue circle shows radius of
mean flow vortex, Ra. Only every fourth vector shown for clarity.
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Fig. 6.8 Ensemble average velocity vectors for axial fan settings D and E. Blue circle shows radius
of mean flow vortex, Ra. Every fourth vector shown for clarity.

Fig. 6.9 (left) Radius of vortex against swirl ratio for axial fan speeds A-E and (right) normalised
vortex radius. Error bars indicate +/- one standard deviation of instantaneous vortex radii and
normalised vortex radii.
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Fig. 6.10 (left) Instantaneous velocity vectors for dataset B15, S = 0.0017 vector field number 1 (i
= 1) and (right) vector field 100 (i = 100).

as R2 but in this work is referred to as R2
D to avoid confusion with the vortex radius R).

6.2.4 Vortex Spatial Stability

The spatial stability of a vortex is an important property of vortex flow. For different applications

a vortex that is spatially unstable, i.e. the vortex centre precesses a large amount may be required

where other applications require a highly stable vortex that has little precession (vortex centre

remains very close to the mean vortex location). An example of vortex precession is shown in

Figure 6.10 where it can be seen that for two instantaneous sets of velocity vectors the instanta-

neous vortex is located at two very different locations within the measurement field. In this work

the spatial stability of a vortex, ‘vortex spread’ is quantified by analysing the statistics of the in-

stantaneous vortex core locations. Here ‘vortex spread’, σc, for a particular flow configuration is

defined as the standard deviation (non-gaussian) of the distance of individual vortices from the en-

semble average vortex core location. The distance of an instantaneous vortex core, (xci ,yci) from

the ensemble average vortex core location (xc,yc) is defined as:

dci =
√

(xci − xc)2 +(yci − yc)
2 (6.9)

The standard deviation of dc, σc is then calculated giving a measure of the degree to which the

core location deviates from the mean core location thus quantifying ‘vortex spread’. Larger values

of σc indicate that individual vortices are located further away from the mean vortex location

suggesting there is more precession (less spatial stability) in the flow whereas low values suggest

the instantaneous location of the vortex core is always close to the mean core location and hence

indicating low levels of vortex precession (greater vortex spatial stability).

For each instantaneous velocity field with Cartesian vector components ui(x,y) and vi(x,y) it

is required to find the instantaneous vortex core (xci ,yci) as this precesses around the measurement

region through the process of vortex wandering. The vortex identification scheme employed in
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Fig. 6.11 Instantaneous vortex centre plots for axial fan configurations A-C. Red circles are centred
on the mean vortex core location and have radius 2σc.
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Fig. 6.12 Instantaneous vortex centre plots for axial fan configurations D and E. Red circles are
centred on the mean vortex core location and have radius 2σc.

this study is the Graftieaux et al. (2001) Γ1 function (see § 2.50) defined as:

Γ1(P) =
1

SD

∫
M∈SD

(
−→
PM∧uM) · ẑ∥∥∥−→PM ·uM

∥∥∥ dSD (6.10)

Γ1 is calculated at all vector grid locations in the measurement plane (x,y) and gives a maxima

or minima approaching 1 or -1 depending on the direction of rotation, in this case only the main

instantaneous vortex core location is required so a large domain, SD may be used and it is the

maxima of |Γ1| that gives the instantaneous vortex core location. For each fan configuration the

size of the vortex changes and hence the domain size SD was varied so that each vortex in each set

was identified. For each flow configuration the filter size used in the identification algorithm, the

threshold above which vortex centres were identified and the number of vortex cores identifies,

NΓ1 for each flow configuration are displayed in Table 6.2. The filter size SD was varied for each

flow configuration due to the changing physical extent of the main vortex core, hence a smaller

filter size is used a low swirl ratios (small radius main vortices) and large filter size used for high

swirl ratios. The threshold, εΓ was also adjusted to give at least one vortex core in the majority

of instantaneous vector fields. In some cases, mainly at low swirl ratio, where spatial spread of
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Table 6.2 Vortex detection algorithm parameters for each flow configuration

Flow Configuration Filter Size, SD Threshold, εΓ1 No. of Cores Detected, NΓ1

A20 9 0.75 494

A25 11 0.75 498

A30 11 0.75 500

B15 9 0.75 486

B20 9 0.87 496

B25 17 0.85 500

B30 21 0.84 499

C15 17 0.82 496

C20 25 0.82 500

C22.5 25 0.82 499

C25 31 0.8 497

C30 31 0.8 500

D15 35 0.7 500

D22.5 35 0.7 499

D30 35 0.7 499

E15 21 0.82 499

E20 25 0.82 499

E25 31 0.8 499

E30 31 0.8 498

vortices is large some instantaneous vortices were unable to be detected due to residing on the

edge of the measurement domain.

Instantaneous vortex core location plots corresponding to the maxima of |Γ1| for different

flow configurations are shown in Figure 6.11 and Figure 6.12 with the red circles centred on the

mean vortex core location and having a diameter of 2σc. In instances where multiple vortices

are identified in the instantaneous velocity vectors the main vortex is identified as the one with

the greatest |Γ1| value. It can be seen that increasing the swirl ratio has the effect of reducing

the area over which instantaneous vortex cores are located (denoted by the red circles), this trend

is followed up to swirl ratios of approximately 0.5, above this (axial fan configuration D) the

value σc increases slightly, this is shown more clearly in Figure 6.13 where σc is plotted as a

function of swirl ratio. At the lowest swirl ratio (B15, S = 0.0017) the highest value for vortex

spread, σc is found as having a value of 14.94mm, in Figure 6.11 it can be seen that for this flow

configuration instantaneous vortex core locations are spread over a large area with a small number

located outside of the field of view (see Table 6.2 for numbers of vortices identified in each dataset)

showing that spatially the vortex has a low degree of stability and a high degree of precession. As
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Fig. 6.13 (left) Standard deviation of individual vortex distances from mean vortex location for
varying swirl ratio and (right) normalised by mean vortex radius.

swirl ratio is increased the amount of vortex spread decreases to a minimum of 5.97mm for flow

configuration C30, S = 0.330. It can be seen in Figure 6.11 that for this flow configuration all

instantaneous vortex core locations are located very close to the mean vortex core location with

the vortex displaying high spatial stability and little vortex precession.

It is shown in Figure 6.13 that the amount of vortex spread increases for swirl ratios above

approximately 0.35. This can be explained as deviating from the low swirl ratio trend of decreasing

vortex spread with increasing swirl ratio by the fact that at higher swirl ratios the size of the vortex

is greater. The larger vortices at higher swirl ratios give more variation in location due to the size

of the vortex rather than vortex precession as is presented in Figure 6.14 and Figure 6.15 where

instantaneous vortex core locations are plotted with the blue dashed circles representing the mean

radius of instantaneous vortices centred on the mean instantaneous vortex location. To illustrate

this more clearly the vortex spread relative to the size of the vortex (σc/R) as a function of swirl

ratio is displayed in Figure 6.13. Here it can be clearly seen that the degree of vortex spread relative

to the size of the vortex is very closely linked to swirl ratio, when plotted on a log-log graph the

straight line trend indicates that (σc/R) is related to swirl ratio by a power law relationship. Using

regression methods the relationship between (σc/R) and swirl ratio was found to be:(
σc

R

)
= 0.098S−0.613 (6.11)

The coefficient of determination, R2
D for the data fitting the relationship in (6.11) is 0.977 showing

that the data fits very closely. The two data points for S = 1.039 (D22.5) and S = 1.328 (D30) were

not included in calculating the regression as these do not seem to fit the trend of the data for swirl

ratio less than 1 indicating that there is a change in the flow regime when swirl ratio exceeds 1.

The graph presented in Figure 6.16 shows the radius of the vortex present in the mean flow

vector fields, Ra (averaged over the instantaneous PIV data which includes vortex precession) as

a function of swirl ratio, the data shows that the radius of the mean flow vortex is at its highest at
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Fig. 6.14 Instantaneous vortex centre plots for axial fan configurations A-C. Blue circles are cen-
tred on the mean vortex core location and have radius R.
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Fig. 6.15 Instantaneous vortex centre plots for axial fan configurations D and E. Blue circles are
centred on the mean vortex core location and have radius R.
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to mean instantaneous vortex radii (Ra/R) against swirl ratio and (right) ratio of maximum mean
field vortex speed to maximum tangential velocity of centred velocity vectors for varying swirl
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either limit of the measured range of swirl ratios with a minimum between approximate swirl ratios

of 0.04 – 0.1. Also plotted on the graph is the ratio of the mean flow vortex radius and vortex radius

with the effects of precession removed, Ra/R (as R is determined from the average instantaneous

vortex radius without the effects of precession). At low swirl ratio the mean flow vortex radius

is much greater than the radius of the instantaneous vortices which contribute to the mean flow.

At the minimum swirl ratio of 0.0017 the mean flow vortex radius is 13.27 times greater than the

instantaneous vortex radius suggesting that the structure of the mean flow field is dominated by

the effect of the precession of instantaneous vortices at low swirl ratio. The ratio Ra/R continues

to decrease with increasing swirl ratio meaning that at higher swirl ratio the structure of the mean

flow field more closely represents that of the instantaneous flow field, at a swirl ratio of 0.1 (the

value above which Ra begins to increase from the minimum region) the ratio Ra/R is 1.4 which

is much smaller than at lower swirl ratios. Ra/R continues to approach a value of 1 as swirl ratio

increases further, by swirl ratio 0.15 Ra/R is equal to 1.21 and for the two highest measured swirl

ratios, 1.039 and 1.328 the ratio Ra/R is 1.02 highlighting that the size of the mean flow vortex is

almost identical to the instantaneous vortices and that precession of the vortex plays little part in

the formation of the mean flow field.

Figure 6.16 also shows the ratio of uθmax/Umax where Umax is the absolute maximum speed of

the mean flow field vortex (measured at the azimuthally averaged distance Ra from the mean flow

field vortex centre) and uθmax the tangential velocity measured at the radius, R of velocity vectors

with the effects of precession removed. At low swirl ratio uθmax/Umax is high, with a value of

4.20 at a swirl ratio of 0.0017 showing that the velocities present in the instantaneous vortices are

much higher than those depicted in the mean flow field. It is the effects of vortex precession that

reduce, through averaging, the velocities measured in the mean flow field. The value of uθmax/Umax

continues to decrease with increasing swirl ratio, very much in the fashion of Ra/R, approaching
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1 at high swirl ratio. At the highest measured swirl ratio of 1.328 uθmax/Umax has a value of 1.03,

comparing this with a Ra/R value of 1.02 at the same swirl ratio it can be seen that the mean flow

vortex is very representative of the instantaneous vortices present in the raw PIV data.

It is shown in Figure 6.13, as previously discussed that the extent of vortex precession with

respect to instantaneous vortex size, σc/R decreases with increasing swirl ratio, when combining

this with the data presented in Figure 6.16 it can be seen that there is a critical region, between

swirl ratio of 0.04 and 0.1 where the mean flow field undertakes a transition from being dominated

by the effect of vortex precession brought about by the lack of vortex spatial stability at low swirl

ratios to a mean flow field where the effects of vortex precession on the mean flow field become

negligible and the mean flow field very closely represents that of the instantaneous vortices which

constitute the mean.

6.2.5 Vortex Structure

Figure 6.17 to Figure 6.20 show examples of instantaneous velocity fields for varying swirl ratios,

streamlines are overlaid to enhance visualisation of the vortex structure. It is clear to see that

with increasing swirl ratio the size of the vortex increases but so does the internal structure of the

vortex.

It can clearly be seen that the structure of the vortex varies with swirl ratio, at a very low swirl

ratio of 0.0041 for configuration A20, presented in Figure 6.17, it can be seen that the structure of

the vortex can be split into two regions, there is a small, tight vortex core where the flow is very

uniform around the vortex centre and then further away from the vortex centre the flow becomes

more disorganised. Increasing swirl ratio it can be seen that the structure of the vortex remains

similar at a swirl ratio of 0.33 (flow configuration C30, Figure 6.18) only with larger vortex radius.

The flow remains highly organised as a vortex. At swirl ratios greater than unity, where radial

momentum becomes more dominant than axial momentum as in Equation (6.3), the structure of

the vortex changes as can be seen in Figure 6.19 (S = 1.04) and Figure 6.20 (S = 1.33). No longer

is the vortex a single well-formed vortex but it has secondary smaller vortices which swirl inside

of and in the same direction of the main vortex. These multicellular vortices were first presented in

laboratory generated tornado-like vortices by Ward (1972) and are also reported more recently by

Zhang and Sarkar (2012) and confirm that the tornado-vortex generator is capable of generating

flows comparable to those presented in the literature.

To conduct meaningful analysis of instantaneous vortex structure and properties the Carte-

sian velocity vectors with components u(x,y) and v(x,y) need to be converted to cylindrical co-

ordinates with radial and tangential components ur(r,θ) and uθ (r,θ) respectively with origin at

the instantaneous vortex core location, (xci ,yci) calculated using (2.50). Once the instantaneous

vortex core locations are identified the velocity vectors are converted from Cartesian to cylindrical
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Fig. 6.17 Example of instantaneous velocity vectors for A20, S = 0.0041.

Fig. 6.18 Example of instantaneous velocity vectors for C30, S = 0.330.
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Fig. 6.19 Examples of instantaneous velocity vectors for D22.5, S = 1.039.

Fig. 6.20 Examples of an instantaneous velocity vectors for D30, S = 1.328.
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co-ordinates using the following transformations:

uθi(r,θ) = −ui sin
[

tan−1
(

y′

x′

)]
+ vi cos

[
tan−1

(
y′

x′

)]
(6.12)

uri(r,θ) = ui cos
[

tan−1
(

y′

x′

)]
+ vi sin

[
tan−1

(
y′

x′

)]
(6.13)

Where x′ = x− xci and y′ = y− yci . From the centred velocity fields azimuthally averaged ur(r)

and uθ (r) components are calculated for each radius point from the vortex core, r and it is from

these azimuthally averaged profiles that the average vortex radius, R is defined as the radius of

maximum tangential velocity, uθmax and the radius at which circulation for calculating swirl ratio

is calculated.

Ensemble averaging after centering each instantaneous velocity vector field for each axial and

circumferential flow condition are shown in Figure 6.21 and Figure 6.22 with the background

colour indicating velocity magnitude (speed), U . It can clearly be seen that increasing the swirl

ratio has the effect of increasing the radius of the vortex as in Figure 6.9.

6.2.6 Comparison of Vortex Structure with an Analytical Oseen Vortex

The vortex tangential velocity profiles, uθ exhibit the shape of an Oseen vortex. To see how close

the averaged velocity profiles fit an Oseen vortex they are plotted next to each other. The Oseen

vortex is defined as follows:

uθOseen(r,θ) =
Γ

2πr

[
1− exp

(
−γr2

4ν

)]
(6.14)

urOseen(r,θ) = 0 (6.15)

where Γ is circulation, ν is viscosity and γ a variable governing the size of the vortex. As uθOseen

is a function of r and all other parameters act as a scaling with Γ/2π controlling the velocity

magnitude and −γ/4ν controlling the vortex size (6.14) can be rewritten as:

uθOseen(r) =
αv

r

[
1− exp

(
−βvr2)] (6.16)

with αv = Γ/2π and βv = γ/4ν . Fitting the vortex then becomes a question of finding the value βv

which best gives the maximum tangential velocity at the same radius of the azimuthally averaged

PIV velocity fields and then selecting an αv value to match up the peak velocity at that radius. The

relationship between R0 and βv is R0 = 1.1209β−0.5
v .

The ensemble average centred velocity vectors shown in Figure 6.21 and Figure 6.22 show ab-

solute measured velocity magnitudes, from these centred vortex velocity vectors the azimuthally

averaged velocity profiles are extracted, these profiles are then normalised by the maximum tan-

gential velocity, uθmax located at the vortex radius, R. These normalised velocity profiles are pre-
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Fig. 6.21 Time average velocity vectors for centred vortices for axial fan settings A-C. Every
fourth vector shown for clarity.
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Fig. 6.22 Time average velocity vectors for centred vortices for axial fan settings D and E. Every
fourth vector shown for clarity.

sented in Figure 6.23 as a function of the radial distance, r from the vortex centre normalised by

the vortex radius R. Also shown as a solid black line is an analytical Oseen vortex velocity profile

as previously discussed.

It is apparent from the velocity profile plots that the PIV measured vortices fit very closely

to the analytical Oseen vortex in the main vortex region (see Figure 6.23). At lower swirl ratios

(axial fan settings A-C) it can be seen that the measured data deviates from the model the further

away from the vortex core it is measured. For each fan configuration A-C the measured data fits

closer to the model as the circulation is increased (thereby increasing the swirl ratio).

The closeness of fit for the measured data to the Oseen model is good with each measured

velocity profile closely resembling the shape of the Oseen vortex profile. Figure 6.24 shows the

coefficient of determination, R2
D between the tangential velocity profile data and the analytical

Oseen model, it is apparent that the data fits the model to a higher degree with increasing swirl

ratio. This can be quite misleading though as by looking at the velocity profiles in Figure 6.23 it

can be seen that the data fits the model most closely in the region around the radius of the vortex

core (r/R = 1) and deviates more at increasing radius but the radius range over which data is

available decreases at higher swirl ratios owing to the increasing radius of the individual vortices.
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Fig. 6.23 Normalized tangential velocity profiles of ensemble averaged centred instantaneous vor-
tices fitted against an Oseen vortex (black line) for different flow configurations.
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Fig. 6.24 Coefficient of determination against swirl ratio showing the degree to which experimental
velocity profile data fits an analytical Oseen model.

To further evaluate the degree to which the measured data fits the Oseen model the fractional error

between the measured data and model, εOseen was calculated as a function of the radius from the

vortex core as follows:

εOseen(r) =

√
(uθOseen(r)−uθ (r))

2

uθOseen(r)
(6.17)

The error plots of εOseen shown in Figure 6.25 all show zero error at the vortex radius (r/R = 1).

This is due to the normalisation of the velocity profiles where uθ/uθmax is equal to one at the vortex

radius. In general as the circulation fan speed increases for a fixed axial fan setting the error

between the measured and modelled data decreases. Figure 6.26 shows the fractional error, εo at a

radius of r/R = 0.5 (midway between the vortex centre and the radius of the vortex), in this region

the PIV data differs from the model by a maximum of 15% at a swirl ratio of 0.017 and the trend

of the data shows this decreases with increasing swirl ratio down to a value of 2% at a swirl ratio

of 0.213 before increasing again at higher swirl ratios. A similar trend is also shown at a radius

of r/R = 1.5 where the minimum error between the data and the model is observed at a swirl

ratio of 0.33 with a value of 0.2% before increasing at higher swirl ratios. The maximum error

at this radius occurs at a swirl ratio of 0.004 with an error value of 8.9%. The magnitude of the

errors between the data and the model show that in regions close to the vortex radius the measured

tangential velocity profiles more closely fit that of a model Oseen vortex outside the vortex core

region at 1.5R than at a radius of 0.5R which is located inside the vortex core region.
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Fig. 6.25 Fractional error εOseen between measured velocity profile and Oseen model as a function
of normalized radius from the vortex centre.
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Fig. 6.26 Fractional error εOseen between PIV data and Oseen model at a radius (left) r/R = 0.5
and (right) r/R = 1.5.

6.2.7 Velocity Variance

Velocity variance (turbulent kinetic energy) was first calculated for the raw data sets, i.e. velocity

vectors including the effect of vortex precession. The variance is calculated from the average RMS

values of the u′ and u′ velocity components as follows:

k =
1
2
(
u2

rms + v2
rms

)
(6.18)

To enable comparison between different flow conditions the turbulence level is normalized by

the magnitude of the maximum velocity vector of the mean flow field, U2
max. Figure 6.27 shows

azimuthally averaged plots of k/U2
max against radial distance from the mean flow vortex centre.

Each turbulence profile shows a maximum value at the mean vortex centre apart from the two

highest swirl ratio cases, S = 1.039 and 1.328 which show consistent levels of turbulence from

the vortex centre out to a radius of r/Ra of approximately 0.4 before decreasing with increasing

radius as with the profiles at lower swirl ratio. The values of k/U2
max at the mean flow vortex

centre (where peak turbulence occurs) are presented in Figure 6.28 as a function of swirl ratio

and generally decrease with increasing swirl ratio. In this presentation of the velocity variance the

dominant factor contributing to the turbulence level is the effect of vortex precession. At low swirl

ratio vortex precession is high and instantaneous vortices are small meaning that the deviation of

instantaneous velocities from the mean flow are much greater than at higher swirl ratios.

Figure 6.29 shows the turbulence characteristics of the vortex flow with the effect of vortex

precession removed, removing the effects of vortex precession is beneficial for the analysis of

the velocity variance as precession increases the measured variance masking the true turbulence

characteristics. The variance for the centered velocity vectors (precession removed) is calculated
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Fig. 6.27 Turbulent kinetic energy, k normalized by mean flow field maximum flow speed Umax

for different flow configurations.
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as the turbulent kinetic energy as follows:

kc =
1
2
(
u2

θrms
+u2

rrms

)
(6.19)

The turbulent kinetic energy of the centred velocity vectors is then normalized by u2
θmax

to give a

non-dimensional measure. The value of kc/u2
θmax

, plotted as a function of the radius from the vortex

core can be seen to increase outwards from the vortex centre before reaching a maximum value

inside the vortex core region (r/R < 1) before decreasing again. Figure 6.30 shows the radius at

which kc/u2
θmax

reaches a maximum as a function of swirl ratio. It can be seen that between swirl

ratios of 0.008 and 0.5 the region of maximum turbulence occurs at a radius of between r/R = 0.40

and 0.56. For the two lowest swirl ratios the maximum turbulence intensity occurs at a radius of

r/R = 1.06 and 0.80 for swirl ratios of 0.0017 and 0.004 respectively, these results are consistent

with the findings of Zhang and Sarkar (2012) who show that the radius of maximum turbulence

intensity is greater at a lower swirl ratio though they only present data at two swirl ratios so it is

not possible to infer if at beyond a certain swirl ratio the radius of maximum turbulence becomes

consistent with little dependence on swirl ratio as Figure 6.30 shows.

The peak velocity variance (kc/u2
θmax

)max of the data in Figure 6.29 is presented in Figure 6.31,

as with the radius at which maximum turbulence occurs (Figure 6.30) it can be seen that between

swirl ratios of 0.008 and 0.5 the peak turbulence level is largely unaffected by swirl ratios with

values across multiple datasets of (kc/u2
θmax

)max lying between 0.025 and 0.036. At swirl ratios

above 0.5 the turbulence levels jump significantly to values of 0.067 and 0.075 for swirl ratios of

1.039 and 1.328 respectively which are over double the amount of turbulence in the swirl ratio

range 0.008 to 0.5. This increase in turbulence level can be attributed to the more complex flow

structure of high swirl ratio vortices which include more complex secondary vortices as can be

seen in Figure 6.19 and Figure 6.20. At the other end of the swirl ratio scale, at S = 0.0017 the
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highest peak turbulence level occurs with a value of 0.090. A contributing factor to this elevated

turbulence level could be attributed to the high degree of vortex precession. Instantaneous vortices

at this swirl ratio are distributed over a much larger spatial region than at higher swirl ratios which

could in turn highlight the different flow conditions due to being close to the circulation pillars or

not underneath the updraft orifice which could explain the increased turbulence levels even though

the effects of vortex precession are removed.
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6.3 Summary

In the work presented in this chapter flow characteristics of a TLV from PIV data are investigated.

Through the use of the Grafteaux vortex identification algorithm a robust method of calculating

swirl ratio from planar PIV velocity data is presented. This calculated swirl ratio is seen to be a

genuine non-dimensional number that characterizes the flow as flows with similar swirl ratios but

different axial and circumferential flow rates are seen to be similar.

From the time averaged vortex velocity data it is shown, in agreement with previous literature

that the radius of instantaneous vortices increases with increasing swirl ratio. It is show that over

the full range of swirl ratios investigated the mean radius of instantaneous vortices follows a strict

power law relationship with swirl ratio and is proportional to S0.417. The power law relationship

between swirl ratio and vortex radius, to the knowledge of the author has not been presented

previously.

It is show that over the range of swirl ratios investigated there are three distinct flow regimes:

1. At low swirl ratio (S < 0.008) the flow is dominated by the precession of a small radius

single-celled vortex.

2. At intermediate swirl (0.008 < S < 0.5) some vortex precession is evident at the lower swirl

end (0.008 < S < 0.08). In this intermediate swirl range, as with the low swirl range the

vortex remains single celled in structure.

3. At high swirl ratio (S > 0.5) the effects of vortex precession are minimal with the size of

instantaneous vortices approximately equal to that of the mean flow vortex. In this swirl

range it is shown that the vortex has a tendency to go multi-cellular with instantaneous

double and triple-celled vortices present.

The differentiation between the three aforementioned flow regimes is highlighted through two

means; the spread of the instantaneous vortex core centres and the ratio of instantaneous vortex

core radius and mean flow vortex radius.

It is shown that the degree of spread of instantaneous vortex cores relative to the mean instan-

taneous vortex radius decreases with increasing swirl ratio with a tight power law relationship.

At low swirl ratios the flow consists of small radius instantaneous vortices with high precession

(low spatial stability) and at high swirl ratios large vortices with little precession relative to the

instantaneous vortex radius (high spatial stability).

The difference in flow regime between high and low swirl ratio is also illustrated by comparing

instantaneous vortex radii and mean flow vortex radii. At low swirl ratio it is shown that, due to

precession, the mean flow vortex radius is between 2 and 14 times that of the instantaneous vortex

radius. At high swirl ratio it is shown that the mean flow vortex is much more characteristic of the

instantaneous flow vortex as both have radius and maximum velocity equal to within 5%.

Mean instantaneous vortex velocity profiles with the effects of vortex precession removed are
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shown to closely resemble an analytic Oseen vortex model with increasing accuracy as swirl ratio

is increased.

The turbulence intensity of the flow (with precession) is at a maximum at the mean flow vortex

centre and is shown to decrease with increasing swirl ratio and spatially with increasing radius.

With the effects of vortex precession removed it is shown that the highest turbulence levels

occur within the vortex core radius (< R) except for the very lowest swirl ratio. At low swirl

(S < 0.008) maximum turbulence occurs close to the vortex radius. At intermediate swirl levels

the radius of maximum turbulence is at approximately half the vortex radius before increasing

slightly at high swirl ratio (S > 0.5).

The results presented in this chapter have led to some new understanding of tornado-like vortex

flows and the range of swirl ratios over which measurements were taken is greater than in previous

studies. Further understanding of the flow regimes can be garnered by performing a decomposition

of the flow which is the subject of the next chapter.



Chapter 7

Proper Orthogonal Decomposition of

Low Speed PIV Data

7.1 Introductory Remarks

Using the PIV velocity data obtained from a laboratory generated tornado-like vortex (see Chapter

§ 6) proper orthogonal decomposition (POD) is applied to generate an understanding of the co-

herent structures present in the flow. By using POD, coherent structures can be educed and their

dynamics as a function of swirl ratio are investigated.

In this study the POD is applied to 500 two-component velocity vector fields for each of the

swirl ratio and fan configurations resulting in 19 decompositions in total. The dynamics and influ-

ence of the coherent structures are investigated by analysing the POD eigenvalues (modal energy

content which is directly related to the turbulent kinetic energy contained within that structure),

the eigenfunctions (modes/coherent structures) and the reconstruction coefficients.

Lower order modelling of the flow fields is also investigated using reconstructed velocity vec-

tors from a truncated number of POD modes, the aim of this is to educe as much information

as possible regarding the large scale flow dynamics whilst neglecting the unstructured turbulent

fluctuations and as a tool for data reduction when investigating large data sets of velocity vectors.

7.2 Convergence of Mode Energy

As detailed in § 3 the eigenvalues, λ (n) of the POD are related to the energy associated with the

corresponding eigenmode φ (n). Here the eigenvalues (or mode energy), λ (n) are normalised to

represent the proportion of the total turbulent kinetic energy contained in the modes as a percent-

age.

Plots of individual and cumulative mode energy against mode number for increasing swirl

ratio, S are displayed in Figure 7.1 and Figure 7.2 respectively. Mode energy against swirl ratio

is presented in Figure 7.3 and Figure 7.4 and cumulative mode energy against swirl ratio in Fig-

ure 7.5 and Figure 7.6 and both as functions of swirl ratio and mode number in Figure 7.7. The
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Fig. 7.1 Individual mode energy, λ (n) for each flow configuration.
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Fig. 7.2 Cumulative mode energy for each flow configuration.
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Fig. 7.3 Energy content as a function of swirl ratio for the first 6 POD modes, λ (n) for varying
axial fan speeds.
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Fig. 7.4 Energy content as a function of swirl ratio for higher order POD modes, λ (n) for varying
axial fan speeds.
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Fig. 7.5 Mode cumulative energy content against swirl ratio for the first 1 - 6 modes for various
axial fan speeds.
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Fig. 7.6 Mode cumulative energy content against swirl ratio for higher cut-off mode numbers for
various axial fan speeds.
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Fig. 7.7 (Left) Cumulative mode energy for the first 10 modes against swirl ratio and (right) indi-
vidual mode energy, λ (n) against swirl ratio for the first 6 modes.

decompositions of the velocity vectors at each swirl ratio show that it is the first two modes which

are dominant in an energy sense. It can be seen in Figure 7.8 that there is a very close trend be-

tween swirl ratio and the energy content of the first two modes, λ (1) and λ (2) with them accounting

for 13.21% and 10.54% respectively at the lowest swirl ratio of S = 0.0017. The mode one and

mode two energy content continues to increase with increasing swirl ratio up to approximately

a swirl ratio of S = 0.3 to S = 0.4 where the energy values flatten out to λ (1) and λ (2) values of

approximately 29% and 27% respectively of the total energy.

As it is the lower order modes that contain the bulk of the energy and the largest spatial coher-

ent structures the higher the percentage energy contained in these modes suggests a more organised

flow as it is higher order modes which contain the smaller scale structures and the unorganised tur-

bulence. This observation is backed up by examining the variation in core location from § 6.2.4.

At lower swirl ratios the vortex has large variability in where the core centre is located in any

snapshot, the extra variability this adds to the ensemble of velocity snapshots is reflected in the

lower order mode energy values as higher order modes are required more to describe the flow.

Conversely as swirl ratio increases the dominance of the lower order modes increases, this is a

reflection of the flow becoming more organised with less variability which is again shown in Fig-

ure 6.13 where the variance of the location of the vortex centre is shown to be much lower than at

lower swirl ratios. Given the highly reduced variation in core location and the fact that the vortex

structure appears to be highly organised with no apparent complexity in the planar velocity vectors

within the core the higher order modes have much less variability to account for hence the ability

for the flow to be more highly characterised by the lower order modes.

For swirl ratios above S = 0.5 the trend between mode energy for λ (1) and λ (2) and swirl ratios

appears to break down with energy content percentages similar to lower swirl ratios. A possible

explanation for the reduced energy content of lower order modes at higher swirl ratios is that as

swirl ratio increases the size and topography of the vortex changes. As shown in Figure 6.19

and Figure 6.20 the flow inside the vortex is no longer highly organised, tight and approximately

perpendicular to the vortex core but exhibits a large core radius with complex internal core flow
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Fig. 7.8 Combined energy content of first two modes against swirl ratio.

structure and overall vortex shape which is constantly changing. The extra complexity added to

the flow through the more highly fluctuating core structure means that the variability between

different snapshots of the flow requires more modes to be captured. Another explanation for the

slower convergence in mode energy could be that the three higher swirl ratios, S = 0.512, 1.039

and 1.328 were obtained with a very low axial fan speed (set D, see Table 6.1) resulting in much

lower absolute planar velocities than the other data sets, these lower velocities required a larger dt

time interval between PIV image pairs to be able to resolve the planar particle displacements and

due to the large axial velocity component loss-of-pairs could be increased and thus increasing the

amount of measurement noise in the velocity data.

The dominance of the first two modes is illustrated in Figure 7.9 as the ratio between the

average energy content of the first two modes, λ (1,2) and the third mode, λ (3) defined as:

λ (1,2)

λ (3) =
λ (1)+λ (2)

2λ (3) (7.1)

It can clearly be seen in Figure 7.9 that the dominance of the first two modes over subsequent

modes (since λ (n−1) > λ (n)) is a function of swirl ratio. For low values of swirl ratio (S < 0.05),

the dominance of the first two modes is less pronounced with the average energy content of the

first two modes being between approximately 1.3 and 2 times the energy content of the third. For

swirl ratios greater than S = 0.05 the dominance of the first two modes over the third grows with a

maximum ratio of 5.39 at a swirl ratio of S = 0.33 meaning the first two modes in this case account

for more than ten times the amount of energy contained in the third mode. This again reflects the
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variability of the flow with the vortex core becoming more stationary at this range of swirl ratios

such that the lower order modes are sufficient to accurately describe the flow.

Figure 7.9 also shows that for the highest swirl ratios, S > 0.5 the dominance of the first two

modes decreases in accordance with the reduced energy content of the lower order modes as shown

in Figure 7.3 (for flow configurations with low axial fan speed - D).

Figure 7.3 shows the mode energy as a function of swirl ratio for the first 6 POD modes. The

first two modes show increasing energy content with swirl ratio until there is a discontinuity for

data sets D (S > 0.5) which have lower mode 1 and 2 energy content. Mode three begins by having

low energy content (approximately 6%) at the lowest swirl ratios before increasing with swirl ratio

until peaking at approximately 13% for swirl ratios in the range 0.015 < S < 0.05. At higher swirl

ratios, mode three energy decreases again with increasing swirl and levelling off at approximately

6% again for swirl ratios above 0.2.

As mode number, n increases the energy content of the mode begins to uniformly decrease

after showing fairly constant energy content for lower swirl ratios. Figure 7.3 shows that for mode

n = 4 and 5 the energy content is approximately the same for S < 0.05 before decreasing with

increasing swirl ratio. At mode n = 6 the energy content begins decreasing at swirl ratios above

0.01. At higher order modes the decreasing trend in mode energy content with increasing swirl

ratio becomes even more defined as shown in Figure 7.4, mode 10 for the lowest swirl ratios still

account for approximately 2% of the total energy whilst at higher swirl ratios (approximately S =

0.5) the mode contains just over 0.5% of the total energy. This again shows that at higher swirl

ratios the flow is characterised by the lower order modes. As mode number increases to 100 the

energy content becomes much less dependent on swirl ratio with mode 100 on average containing

approximately 0.07% of the total energy with this dropping to approximately 0.045% for mode

200.

The convergence of energy can be seen in Figure 7.5 which shows the cumulative energy

content for up to the first six modes. The percentage of the total energy increases with swirl

ratio for S ≤ 0.5. By the time the first three modes are taken into account it can be seen that the

total energy content begins to level out above S = 0.09 remaining fairly constant at approximately

60% up to S = 0.5. As the number of modes taken into account increases through four to six

modes it can be seen that the point at which swirl ratio has a large effect on the cumulative energy

content decreases to approximately S = 0.03. Figure 7.6 shows that the cumulative energy content

becomes independent of swirl ratio at lower swirl levels when more modes are taken into account

with independence from swirl ratio beginning at S > 0.015 for 10 modes where the cumulative

energy content remains approximately 73% and for 15 modes energy content is approximately

75% for S > 0.01. When the first 30 modes are taken into account the cumulative energy content

is between 75% and 85% for 0.008 < S < 0.5 with only the two lowest swirl ratios, S = 0.0017

and 0.0041 showing lower cumulative energy at 67.9% and 71% respectively. This shows that at

lower swirl ratios the flow is more complex, with beyond mode 30 there is significant information
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Fig. 7.9 (left) Ratio between the average of first two mode energies and third mode energy for
varying swirl numberd and (right) number of modes required to capture varying percentages of
the total energy as a function of swirl ratio.

regarding the flow and these effects are swirl ratio dependent.

By the time the first 100 modes are taken into account the dependence of cumulative energy

on swirl ratio is much less pronounced with the cumulative energy content in the range 82-92%

for all swirl ratios below 0.5 and increasing to 88-95% for the first 200 modes. This suggests that

for mode numbers higher than 100 the energy content is independent of swirl ratio and do not

contribute to the large scale dynamics of the vortex and can be explained as containing incoherent

turbulent information (similar to the individual mode energy contributions of the higher order

modes in Figure 7.4).

By looking at the energy contribution to the total flow of the higher modes it becomes clear

that as the flow becomes more stable with increasing swirl ratio the dynamics of the vortex are

contained in the lowest order modes with large coherent structure and have a much reduced con-

tribution from the lower energy modes which contain more complex flow structures. Conversely

at the lowest swirl ratios whilst the first pair of modes are still dominant the contribution of the

higher order modes is more important in containing information about the flow as is shown by

the number of modes required to capture certain percentages of the total energy as a function of

swirl ratio in Figure 7.9. When mode number increases to mode 100 the dependence on swirl

ratio of the energy content appears to disappear suggesting that these modes contain information

regarding the incoherent turbulence within the system and do little to describe the bulk motions of

the vortex.

7.3 Analysis of Spatial POD Modes

Now that the distribution of energy, λ (n), amongst the spatial eigenmodes, φ (n) has been consid-

ered it is useful to investigate the spatial velocity vector structures present as these indicate the
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Fig. 7.10 Modes φ (1) (left) and φ (2) (right) for swirl ratios S = 0.0017 (top) and S = 0.115 (bottom).

underlying coherent structures which characterize the flow.

The structure of the modes at lower mode order, n, is the same for all swirl ratios with only

the size and orientation of the features varying for different swirl ratio data sets. Figure 7.10 and

Figure 7.11 shows the first two spatial modes, φ (1) and φ (2) for four swirl ratios, S = 0.0017, 0.115,

0.349 and 1.328. The similarity in structure between φ (1) and φ (2) leads to the assumption that

they are both modes contributing to the same coherent structure, this is backed up by consulting

the energy associated with the first two modes, φ (1) and φ (2) which are almost equal. Structurally

these modes contain a pair of counter rotating vortices, where φ (1) differs from φ (2) by a rotation

of 90°.

Mode 3, φ (3), as shown in Figure 7.12 consists of a single large vortex centred approximately

in the middle of the measurement plane, this mode like the first pair is consistent in type across all

swirl ratios.

Modes 4 and 5, φ (4) and φ (5) as shown in Figure 7.13 and Figure 7.14 for the two extremes of

the swirl ratio range, appear like the first two modes to act as a pair describing the same structure,

again this is backed up by the similar energy contributions of λ (4) and λ (5). The structure of the

modes contain two pairs of counter rotating vortices with each vortex approximately evenly spaced

around a central point. Mode 5 differs from 4 by a rotation of approximately 45◦.
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Fig. 7.11 Modes φ (1) (left) and φ (2) (right) for swirl ratios S = 0.349 (top) and S = 1.328 (bottom).

When mode 6, φ (6) is reached the consistency in structure for different flow configurations

breaks down with the type of structure varying between different data sets. For lower swirl ratios

the modes contain two pairs of counter rotating vortices arranged roughly in a line across the

measurement plane. The structure is similar to that of mode 1 but with an extra pair of counter

rotating vortices in between the two outer vortices. This topography is common in mode 6 for all

swirl ratios lower than S = 0.0449 and is shown in Figure 7.15. For swirl ratios S = 0.0449 (see

Figure 7.16) and above the mode displays a central vortex contained within a large vortex with

rotation in the opposite direction and in this sense resembles mode 3 with an added vortex inside

the core of the main vortex with opposite rotation. The interaction between the inner and outer

counter rotating vortices creates a region of shear which contains typically two smaller vortices.

This change in mode structure at a critical swirl ratio is not reflected in the dependence of the

energy content λ (6) on swirl ratio; as shown in Figure 7.3 there is no change in the relationship

between λ (6) and swirl ratio in the region where the mode structure changes.

The discussion in the preceding paragraphs about the overall structure of the low order spatial

modes shows that the structures contained in the flow are independent of swirl ratio until mode

6 where the structure changes at a critical swirl level. From this information it can be concluded

that the largest scale structures that drive the vortex flow are independent of swirl ratio and are
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Fig. 7.12 Mode φ (3) for swirl ratios S = 0.0017 (top left), S = 0.115 (top right), S = 0.349 (bottom
left) and S = 1.328 (bottom right).

Fig. 7.13 Modes 4 and 5 for flow configuration B15, S = 0.0017.
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Fig. 7.14 Modes 4 and 5 for flow configuration D30, S = 1.33.

Fig. 7.15 Mode 6 for low swirl ratios.

Fig. 7.16 Mode 6 for high swirl ratios.
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Fig. 7.17 Distance between mode 1 and 2 vortex centres, dv12 (shown by the red dashed line).

Fig. 7.18 Normalized distance between vortex cores for modes 1 and 2 against swirl ratio.

underlying features of this type of flow. Next an attempt to quantify the spatial properties of the

modes is made to investigate their dependence on swirl ratio further by measuring quantities such

as vortex radius and spatial distance between vortices.

As already discussed, modes 1 and 2 consist of a pair of counter-rotating vortices. This struc-

ture is common across all swirl ratios with only the size of the structure changing. The distance,

dv12 , between the centres of each vortex was calculated as shown by the red dashed line in Fig-

ure 7.17.

The distance between the cores of the two vortices in modes 1 and 2, dv12 , is dependent on

swirl ratio as shown in Figure 7.18. For each swirl ratio the vortex size quantified by the radius of

the vortex, R, (see Figure 6.9) is used to normalize dv12 giving a clear relationship between dv12/R

and swirl ratio with dv12/R quickly decreasing in a uniform manner with increasing swirl ratio

before the rate of decrease lowers for swirl ratios above S = 0.1.

Mode 3 consists of a single centred vortex so it was decided to measure the radius the vortex

to quantify this mode. Like modes 1 and 2 the radius of the vortex in mode 3 is closely linked to

swirl ratio. Figure 7.19(a) shows the radius of the vortex in mode 3, R3 normalized by the radius
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of the vortex, R, at the particular swirl ratio. The ratio R3/R decreases with increasing swirl ratio.

The normalized radius of the mode 3 vortex, R3/R is directly related to swirl ratio with the value

decreasing monotonically for S < 0.1. The dependence of the size of the mode 3 vortex to swirl

ratio decreases with increasing swirl ratio, becoming almost constant for S > 0.1.

The normalized vortex radius R3/R also has a close relationship with the extent of the spa-

tial spread of vortex core location, σc. As defined in § 6.2.4, σc is the standard deviation of the

distance dc of individual vortex cores from the mean vortex core centre giving a measure of the

spatial stability of the vortex. High values of σc represent vortices with a greater spread of spatial

locations. As previously discussed the value σc/R gives a measure of the vortex spatial stability

with respect to the size of the vortex and it can be seen in Figure 7.19(f) that this value decreases

with swirl ratio. The non-normalized vortex spread σc decreases with increasing swirl ratio (Fig-

ure 7.19(d)) for swirl ratios less than approximately 0.5 after which σc increases again, the low

swirl high values of σc are accounted for by the large amount of vortex precession in the flow

whereas the high values at high swirl ratio are due to the much larger vortex size at high swirl ratio

(see Figure 7.19(d)). Therefore, the quantity σc/R is used to show a measure of vortex precession

relative to vortex size. Figure 7.19(b) shows that the radius of the vortex structure which makes

up the third spatial POD mode relative to the mean radius of the instantaneous vortices under each

flow condition increases the greater the distance over which individual vortex cores are distributed

relative to the mean vortex radius.

Investigating R3/R as a function of σc/R and S as shown in Figure 7.20 it can be seen that for

swirl ratios less than 0.1 both normalised quantities R3/R and σc/R are useful parameters which

characterise the flow for swirl ratios up to 0.1.

Modes 4 and 5 contain two pairs of counter rotating vortices. To quantify the spatial properties

of these modes the distances between the two vortices with the same rotational direction were

calculated as shown in Figure 7.21. When normalized by the size of the tornado-vortex at a given

swirl ratio the distance between the pairs of vortices again shows a very clear decreasing trend

with increasing swirl ratio as shown in Figure 7.22. In Figure 7.21 and Figure 7.22 the distances

between vortex pairs at the highest swirl ratios could not be calculated as the separation between

the individual cores increased to the point where the cores lie outside of the measurement plane.

The trends shown in Figure 7.18, Figure 7.19 and Figure 7.22 for the distance between vortex

cores for modes 1, 2, 4 and 5 and the radius of the single vortex in mode 3 show that the size of

these structures are dependent on swirl ratio and that the structure size becomes closer to the size

of the tornado-vortex at higher swirl ratios whereas for lower swirl ratios the structures are much

larger than the individual tornado vortex.

7.4 Autocorrelation Functions of Spatial Modes

To determine the size of the structures contained within the POD modes the normalized spatial

autocorrelation of the mode velocity vectors was taken. With the spatial autocorrelation, Bi j taken
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Fig. 7.20 (top) Radius of mode 3 vortex against spread of vortex core locations and swirl ratio and
(bottom) normalised radius of mode 3 vortex against normalised spread of vortex core locations
and swirl ratio.

as:

Bi j(r′) =
ui(x)u j(x+ r′)

u′iu
′
j

(7.2)

Where i and j specify the velocity component u or v and r′ is a translation vector defining the

spatial distance over which the correlation is calculated, for example Buv is the autocorrelation of

the u velocity component in the direction of the v velocity component.

Figure 7.23 and Figure 7.24 show the spatial autocorrelation functions of various modes for

two flow configurations, B15, S = 0.0017 and E30, S = 0.480 respectively. It can be seen that

as mode number increases the distance over which velocity components stay correlated becomes

smaller which is to be expected as visual exploration of the spatial modes show the lower, higher

energy content modes as containing the largest more organized flow structures. In both cases

displayed there is still considerable correlation up to distances of approximately 20mm which
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Fig. 7.21 Distance between vortex pairs in modes 4 and 5.

Fig. 7.22 Normalized distance between vortex pairs for modes 4 and 5 against swirl ratio.

with a spatial resolution ∆x = ∆y = 0.9281mm represents correlation over 22 vector grid points

(rounded) up to mode 30. Both cases show by mode 200 that there is very little spatial correlation
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between velocity vectors with the correlation function approaching the form of a delta-function

with the only significant correlation at zero translation.

To quantify the scale of structures in the modes a distance L is defined as the distance over

which the correlation value B drops below a value of e−1 ≈ 0.364. L is taken as the average of the

value r′ for which B drops below this value for the two streamwise autocorrelation functions Buu

and Bvv as Figure 7.23 and Figure 7.24 show that these two values are approximately the same.

The correlation length L as a function of mode number for four swirl ratios is displayed in

Figure 7.25. It can be seen that up to mode 30 the spatial velocity vector correlations do not vary

much with swirl ratio with mode 30 having a correlation length of approximately 15 mm over

each swirl ratio. The fact that the correlation length of the modes up to mode 30 are similar for

varying swirl ratio suggests that these modes contain information regarding the vortex dynamics

of the overall flow.

For modes above 30 Figure 7.25 shows that the correlation length becomes dependent on swirl

ratio, with lower swirl ratios containing larger structures. At mode 40 the correlation lengths for

S = 0.480 and S = 0.0017 are 11.1mm and 15.8mm respectively with the correlation length of S =

0.0017 taking until mode 70 to decrease to the S = 0.480 correlation length at mode 40. By mode

100 the correlation length for S = 0.480 decreases to 4.6mm whereas for S = 0.0017 the correlation

length is 7.4mm. At the higher mode numbers up to n = 425 the correlation length converges to a

value of 3.71, this value is reached by mode 193 for S = 0.0017 but is reached much earlier for S

= 0.480 at mode 118.

The trends shown in Figure 7.25 are backed up by Figure 7.26 which shows correlation length

L as a function of swirl ratio for varying mode number. While up to mode 30 the correlation length

is fairly consistent with the amount of variance showing little dependence on swirl ratio. As with

Figure 7.25 the modes where a difference in correlation length is observed as a function of swirl

ratio are modes 50, 75 and 100 with the correlation length higher for lower swirl ratio.

The lack of spatial correlation at higher mode number is explainable as these modes contain

information arising from the randomly fluctuating turbulence and measurement noise in each ve-

locity snapshot. These modes account for a very low proportion of the total flow energy and in the

case of investigating the structured dynamics of the vortex flow can be ignored as is shown later

in this chapter.

7.5 Lower Order Modeling

As previously stated any individual snapshot velocity field can be approximated using a linear

combination of a number of POD modes. Since the decomposition is carried out on the fluctuating

velocity component to reproduce the full flow field the modes have to be added to the ensemble

average. Thus each full snapshot velocity field, ui, is recreated as the sum of the ensemble average
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Fig. 7.23 Autocorrelation functions of spatial POD modes for flow configuration B15, S = 0.0017.

and a linear combination of each mode:

u(x, ti) = u(x)+
Ns

∑
n=1

a(n)i φ
(n)(x, ti) (7.3)

The reconstruction of u in (7.3) since it includes all Ns modes contains the full flow information

and is exactly equal to the snapshot velocity vectors. If one needs only to consider the large

scale flow structures, neglecting the small scale coherent structures and small scale incoherent

turbulence the summation to Ns above can be truncated to a cut-off value Nc since it is the first

Nc modes that contain the majority of the flow energy associated with the large scale coherent

structures. The POD approximation then becomes:

u(Nc)(x, ti) = u(x)+
Nc

∑
n=1

a(n)i φ
(n)(x, ti) (7.4)

Once the decomposition of the velocity fields has being carried out and the orthonormal basis

of eigenfunctions (POD modes) found, the flow can be modelled using only a certain number

of the first most important modes. Using a truncated number of modes to recreate the velocity

snapshots means that only an approximation is being modelled since not all of the flow information

is included but due to the nature of the decomposition the most important energy wise, dominant

flow structures are contained in the lower modes whereas the higher modes contain the smaller
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Fig. 7.24 Autocorrelation functions of spatial POD modes for flow configuration E30, S = 0.480.

Fig. 7.25 Correlation length, L against mode number for varying swirl ratios.
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scale coherent structures and the even smaller scale incoherent turbulence.

7.5.1 Error in Approximated Velocity Vectors

The most straightforward way of comparing the resemblance between the snapshot data and the

truncated POD reconstructions is to consider the difference in the velocity magnitudes. The ve-

locity magnitudes of the ith snapshot U(x, ti) and POD reconstruction with Nc modes U (Nc)(x, ti)

are defined as:

U(x, ti) =

√
(u(x, ti))2 +(v(x, ti))2 (7.5)

U (Nc)(x, ti) =

√(
u(Nc)(x, ti)

)2
+
(
v(Nc)(x, ti)

)2 (7.6)

The percentage error in velocity magnitude, εui at each grid point is then defined as the residual

between the snapshot and POD velocity magnitudes divided by the snapshot velocity magnitude:

εu(x, ti) = 100×
∣∣U(x, ti)−U (Nc)(x, ti)

∣∣
U(x, ti)

(7.7)

With the percentage error in velocity magnitude calculated at each point a spatially averaged per-

centage error can be calculated ⟨εui⟩ and then to get the spatially averaged ensemble mean per-

centage error the spatial averages are averaged over each snapshot i:

⟨εu⟩ =
1
Ns

Ns

∑
i=1

⟨εu(ti)⟩ (7.8)

Figure 7.27 shows εu for increasing approximation order for a number of different swirl ratios.

The percentage error in approximated velocity magnitudes converges to the snapshot values quite

slowly, only the E30 data set with S = 0.480 having less than a 5% error when 300 modes are used

in the approximation. In contrast, for the lowest swirl ratio (dataset B15) at 300 modes the error is

still 21.5%. Order 1 and 2 approximations show a big difference in the velocity magnitude error

with S = 0.0017 having a 45.4% and a 45.0% error respectively compared to 14.6% and 12.8% for

S = 0.330. The slower convergence with decreasing swirl ratio is due to the slower convergence

of the decomposition energy as shown in Figure 7.5 with the lower swirl ratios having much more

variation in the flow and hence a much higher number of modes are required to accurately capture

all the flow information.

7.5.2 Comparison of actual and reconstructed vortex velocity profiles

As well as considering the differences in velocity magnitude from the reconstructed velocity vec-

tors, other parameters regarding the structure of the vortices can be investigated. In the current

study the centre of each POD approximated vortex with a particular number of modes is located

using the methods described in § 6.2.4. From here the mean vortex velocity profiles are extracted
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from which the vortex radius, maximum vortex tangential velocity and swirl ratio are calculated

and compared to the values obtained from the snapshot vector fields.

When looking at the similarity between the snapshot vortex structure and that of the POD

approximations it can be seen that the level of agreement between the two is highly dependent on

both the flow conditions and the number of modes used in the reconstruction. Figure 7.28 shows

that for the flow condition B15 at a low swirl ratio of 0.0017 the vortex velocity profiles extracted

from the lower order approximations of the vortex are very much different to that obtained from the

snapshot data. When a low number of modes are used in the approximation the resulting average

vortex profile overestimates the vortex diameter and underestimates the velocities present, at least

in the region inside and just outside the radius of maximum velocity. At a radius of approximately

40mm the approximated velocity profile is in strong agreement with the snapshot profile. As the

number of modes used in the approximation increases the vortex radius approaches that of the

snapshot radius as does the velocity magnitude although the latter approaches and then overtakes

the snapshot velocity magnitude before reducing to the snapshot velocity.

For a higher swirl ratio flow configuration, E30, with a swirl ratio of 0.4804 the vortex profile

(Figure 7.29) is almost identical to that of the snapshot profile from approximations with only one

mode; however as with the previous case the lower mode approximations give an overestimate of

the radius and an underestimate of the velocity magnitudes.

As with the case for S = 0.4804 at even higher swirl ratio, S = 1.039 the lower order approx-

imation vortex profiles are very close to the snapshot vortex profiles using very few modes as

shown in Figure 7.29. Visual inspection of the vortex velocity profiles over a range of swirl ratios

clearly show that at lower swirl ratios more modes (higher order approximation) are required to

model the vortex shape and velocity magnitude to a specific degree of accuracy. For higher swirl



7.5 Lower Order Modeling 155

ratios the vortex profiles are much more accurately modelled using only the first 5 modes.

7.5.3 Convergence of Vortex properties

The approximated velocity profiles from the previous figures (Figure 7.28 and Figure 7.29) can be

used to determine values of maximum velocity, vortex radius and swirl ratio for the POD mode

reconstructions and compared to the values calculated from the snapshot data. The convergence of

these measures depend heavily on the number of modes used in the reconstruction and is explored

in the following sections.

Convergence of Vortex Maximum Tangential Velocity

The vortex maximum tangential velocity uθmax is an important property of the vortex as it is used

in calculating the swirl ratio and also marks the point from the centre of the vortex to define the

radius of the vortex. Figure 7.30 shows the convergence of the POD approximation of maximum

tangential velocity using Nc modes, u(Nc)
θmax

, to the uθmax calculated from the raw PIV velocity data

with increasing approximation order Nc.

Figure 7.30(a) shows that the convergence of u(Nc)
θmax

is dependent on both the number of modes

used in the approximation and the swirl ratio of the vortex flow with lower swirl ratios requiring a

larger number of modes before the approximated maximum tangential velocity converges towards

the PIV values. For the lowest swirl ratio case, B15 with S = 0.0017 an order 1 and 2 (Nc = 1

and Nc = 2) approximation for the values of u(Nc)
θmax

are only 26.9% and 30.2% of the values from

the PIV data; with 15 modes required before this value reaches 50% and to reach a value of 90%

approximately 140-160 modes are required in the approximation.

In comparison a higher swirl ratio case E30, S = 0.480 with order 1 and 2 approximations give

a value of u(Nc)
θmax

to an accuracy of 94.8% and 98.6% respectively with 3 modes this increases to

99.4% and converges to a value of 100% after 5 modes. For swirl ratios between S = 0.0017 and S

= 0.480 the convergence of the maximum tangential velocity occurs at lower approximation order

Nc with increasing swirl ratio with the lower order approximations giving an underestimate of the

actual values.

For the case D225 where the swirl ratio has value S = 1.039 an order 1 approximation gives a

value of u(Nc)
θmax

equal to that of the PIV data, this value then increases with increasing approximation

order giving an overestimate for the vortex maximum tangential velocity peaking at a u(Nc)
θmax

value

103% that of the PIV value when 5 modes are used in the reconstruction before decreasing again

and converging to the actual value by mode 10. This difference in convergence trend to the lower

swirl ratios could be due to the difference in the convergence of mode energy for the lowest axial

fan speed data set (D15, D225 and D30) shown in Figure 7.6.
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Fig. 7.28 Ensemble averaged vortex velocity profiles for POD reconstructions with varying num-
bers of modes compared to the snapshot velocity profile (black line) for (top) set B15 with a swirl
ratio S = 0.0017 and (bottom) E15 with a swirl ratio S = 0.052.
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Fig. 7.29 Ensemble averaged vortex velocity profiles for POD approximations with varying num-
bers of modes compared to the snapshot velocity profile (black line) for (top) set E30 with a swirl
ratio S = 0.4804 and (bottom) D22.5 with a swirl ratio S = 1.039.
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Fig. 7.30 (a) Convergence of reconstructed vortex maximum tangential velocity u(Nc)
θmax

to snapshot
vortex maximum tangential velocity uθmax with increasing number of modes used for the recon-
struction. (b) and (c) Convergence of reconstructed vortex radius, R(Nc) to snapshot vortex radius,
R and (d) and (e) Convergence of reconstructed vortex swirl ratio, S(Nc) to snapshot vortex swirl
ratio, S
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Convergence of Vortex Radius

The approximated vortex radius R(Nc) in the flow reconstructed from Nc POD modes and how this

value converges as Nc increases is investigated by means of the ratio R(Nc)/R where R is the vortex

radius in the original PIV data. The convergence of R(Nc)/R with increasing approximation order

Nc is shown in Figure 7.30(b and c) for varying swirl ratios.

As with the maximum vortex tangential velocity, the convergence of the approximated radius

to the measured radius R(Nc)/R is a function of both swirl ratio and approximation order with the

convergence happening at lower approximation order for increasing swirl ratio.

For low swirl ratios the approximated value of vortex radius is significantly larger than the

measured radius from the PIV data when a low approximation order is used. For the lowest swirl

ratio, set B15, S = 0.0017 order 1 and 2 approximations give an approximated vortex radius of 10.3

and 9.8 times that of the actual radius. Even when the order of the approximation is 200 modes

the approximated vortex radius is still nearly twice that of the measured radius (R(200)/R = 1.75)

with R(Nc)/R falling to 1.25 and 1.0 at Nc = 300 and 400 modes respectively.

The convergence is much quicker for higher swirl ratios with R(Nc)/R for data set E30, S

= 0.480 having values of 1.06 for both 1 and 2 mode approximations falling to a value of 1 at

an order 15 approximation. In Figure 7.30(c) the discrete nature of the data can be seen in the

lack of smoothness of the graph with R(Nc)/R having the same value for a number of successive

approximation orders, this is due to the radius being limited to discrete vector grid points. It would

be possible to smooth out the radius data, for example by applying a three-point Gaussian fit to the

three data points centered on the vortex maximum tangential velocity, however, here the discrete

data is plotted and the trends are still observable.

As is the case with the convergence of the tangential velocity data set D225, S= 1.039, shows

a different trend for R(Nc)/R. While low order approximations for lower swirl ratios show an over

estimate in the vortex radius this case shows an underestimate before settling to the measured

value.

Convergence of Swirl Ratio

The convergence of the approximated vortex maximum velocity and radius to the snapshot values

is of key importance when deciding the truncation order of the approximation as flow parameters

such as swirl ratio are a function of these values. The convergence of the approximated swirl ratio

to the measured swirl ratio is again shown in the form of the ratio of approximated swirl ratio

(from the Nc reconstructed POD modes) to measured swirl ratio S(Nc)/S. Figures 7.30(d and e)

show that to accurately approximate the swirl ratio of the vortex a much higher number of modes

have to be used for a low swirl ratio than for a high swirl ratio as is the case with approximating

the vortex radius and vortex maximum velocity.

Figure 7.30(d and e) show that the convergence of S(Nc)/S follows a similar trend to the con-

vergence of the vortex radius rather than the vortex maximum tangential velocity. This is to be
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expected as swirl ratio is a function of the radius squared and a linear function of the velocity as in

(6.3). At low swirl ratio the approximation of the swirl ratio shows a large error for low approxi-

mation order, for data set S = 0.0017 order 1 and 2 approximations give values of S(Nc)/S of 28.4

and 28.8 respectively which are vast over estimates. At higher swirl ratios, set E30, S = 0.480,

give values of S(Nc)/S equal to 1.05 and 1.10 for order 1 and 2 approximations respectively. As is

the case with vortex radius and vortex tangential velocity maximum the data set D225, S = 1.039

gives an underestimate of the swirl ratio before converging to the actual value.

The convergence of swirl ratio can be thought to be the most important of the three properties

discussed in this section as it is swirl ratio that governs many of the other properties of the vortex

flow such as turbulence levels, vortex location stability shown in Chapter § 6.

7.6 Vortex Spatial Stability

As well as interest in the properties of the vortex such as radius and maximum velocity the spatial

stability of the vortex is also of interest. It is shown in § 6.2.4 that the location of vortex cores

from instantaneous velocity vectors is much more varied at lower swirl ratios with a larger number

of vortex cores located further from the mean vortex centre than at higher swirl ratio. It is there-

fore important to investigate the spatial distribution of individual vortex cores from lower order

approximations.

From the PIV velocity vectors the location of individual vortex cores (xci ,yci) are found by

using (6.10). The location of the vortex core for a lower order approximated vortex (x(Nc)
c ,y(Nc)

c )

is calculated in the same manner. From this the error in the core location εd can be calculated. The

mean vortex core location (xc,yc) is defined as the mean of all instantaneous core locations. The

distance of each instantaneous vortex core from the mean core location is then defined as:

dci =

√
(xci − xc)

2 +(yci − yc)
2 (7.9)

Likewise, the distance of the approximated vortex centre from the mean vortex centre is defined

as:

d(Nc)
ci =

√(
x(Nc)

ci − xc

)2
+
(

y(Nc)
ci − yc

)2
(7.10)

The error in the distance of the approximated vortex core from the mean can then be calculated as:

εd =
∣∣∣d(Nc)

ci −dci

∣∣∣ (7.11)

Figure 7.31 shows the ensemble averaged error in the distance of the approximated vortex core

from the mean vortex core location (the average of εd values over all realisations of the flow at a

particular axial and tangential flow condition). It can be seen that the error in core location reduces

with increasing order of the approximation and also decreases with swirl ratio. For S = 0.0017

order 1 and 2 approximations give an error in core location of 22.3mm and 14.9mm respectively
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and by 10 modes the error in the core location drops to 7mm, it is not until 200 modes are used

in the approximation that the error in the core location becomes less than the spatial resolution of

the velocity vector grid points. At a swirl ratio of S = 0.480 the error in core location for 1 and

2 order approximations are 8.7mm and 4.4mm respectively but still requires an order 200 mode

approximation to reduce the error to less than the spatial resolution of the data. It can be seen that

the error in core location for higher swirl ratios at lower order approximations is less than that of

high swirl ratios.

The increase in core location accuracy with lower order approximations can be attributed to

the fact that at lower swirl ratio there is much more variation in the location of individual vortex

cores and the energy convergence of the POD is slower requiring a higher number of modes to take

account of this much increased variability in the flow. At higher swirl ratios the vortex is much

more stable spatially meaning that similarity between individual snapshots is increased therefore

reducing the variability in the flow and requiring a lower number of modes to capture the bulk of

the flow information.

Spatial modes 1 and 2 for all data sets are shown to be a pair of orthogonal vector fields

containing a pair of counter rotating vortices each as shown in Figure 7.10 and Figure 7.11. Fig-

ure 7.32 shows the core locations of reconstructed velocity fields using the first two modes, blue

crosses show the core location when the reconstruction is made using only the mean and the first

mode, red crosses the mean and only the second mode and the green crosses show the core lo-

cation using the mean and both the first two modes (Nc = 2). It can be seen that modes 1 and 2

both have the effect of linearly translating the vortex core in orthogonal directions though only up

to a certain distance. For the lower swirl ratios S = 0.0017 and 0.017 it can be seen that the core

locations of reconstructed fields using both the first two modes are a combination of the mode 1

and mode 2 individual translations giving a circular distribution of core locations, for these low

swirl ratios the circles are largely hollow with a relatively low number of vortex cores inside the

circle as the majority of vortices at these swirl ratios lie outside of the limits of the translations of

the first two modes meaning higher order modes are required to move the vortex core further away

from the mean position.

For the higher swirl ratio case the distribution of vortex cores for an order 2 approximation

are again circular but with the majority of the cores located towards the centre, this is due to the

vortex at this swirl ratio having much greater spatial stability and more often lie within the limits

of the linear translations provided by the first two modes.

The effect of the first two modes on the location of the vortex core can go some way to ex-

plaining the quicker convergence of energy in the POD at higher swirl ratios as the vortex can be

more accurately placed spatially with fewer modes than is the case for low swirl ratio.

In § 6.2.4 a measure of the vortex spatial stability was presented as the standard deviation, σc

of the distance of the individual vortex cores from the mean vortex core location. The same is

done with approximated vector fields with the approximation of order Nc modes having standard
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Fig. 7.31 (top) Ensemble average error in the location of reconstructed vortex core, εd for recon-
structed velocity fields containing increasing an increasing number of modes, Nc. (bottom) Con-
vergence of the standard deviation of reconstructed vortex core location, σ

(n)
c to snapshot vortex

location standard deviation σc

deviation of core locations from mean core location of σ
(Nc)
c . The convergence of the core stability

to the PIV core stability is presented as the ratio of the two, σ
(Nc)
c /σc in Figure 7.31.

As is the case with other properties of the flow, the convergence of the vortex stability σ
(Nc)
c /σc

is quicker for higher swirl ratios though the extent of the difference in the convergence is much less

for different swirl ratios than other properties such as vortex radius, maximum tangential velocity

and swirl ratio. Each swirl ratio shows a decrease in σ
(Nc)
c /σc when Nc is 2 before moving towards

a value of 1 with increasing approximation order, Nc. For swirl ratios of 0.0017 to 0.052 it takes

up to approximately just over 100 modes for the scattering of the cores to converge (to within 5%

of the final value), this occurs at 50 modes for S = 0.154 and 10 modes for S = 0.480.
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Fig. 7.33 Error in reconstructed core distance from snapshot core distance from the mean snapshot
vortex core location for set B15, S = 0.0017.

Further to the average error in the vortex core location from vector fields approximated from

the POD Figure 7.33 and Figure 7.34 show that for lower order approximations the error in the

location of the vortex core increases the further away the original vortex core is from the mean

vortex core location. In the two cases shown, set B15, S = 0.0017 (Figure 7.33) and set E30, S

= 0.480 (Figure 7.34) it can be seen that a single mode approximation (Nc = 1) the relationship

between error in approximated core location εd is approximately linear with increasing distance

of the vortex core from the mean vortex core location dc. An explanation of this error can be seen

in Figure 7.32 where a single mode approximation only has the effect of translating the vortex

core over a straight line. For approximation of order 2, Nc = 2, εd remains largely the same for

values of dc between 0 and 30mm for S = 0.0017 and between dc = 0 and 24mm for S = 0.480,

whereas for core locations with dc greater than these values εd again increases in a linear fashion.

Again referring to Figure 7.32 it can be seen that the limits of the constant error range show the

diameter of the approximately circular distribution of vortex cores for a 2nd order approximation,

the bunching of vortex cores on the edge of these distributions represent vortices with a core

location outside of that which can be modelled using only the first two modes. The trend for a
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Fig. 7.34 Error in reconstructed core distance from snapshot core distance from the mean snapshot
vortex core location for set E30, S = 0.480.

3rd order approximation is very similar to that of a 2nd order one only with εd having slightly

lower values for higher dc and the error in the core location for the higher swirl ratio is lower for

corresponding dc values than the lower swirl ratio indicating that the higher proportional energy

content of the lower modes at higher swirl ratio lead to more accurate lower order approximations

of the flow.

For the S = 0.0017 case increasing the order of approximation still leaves a dependence on

the value of dc though the threshold over which the error increases with increasing approximation

order with εd remaining largely constant for dc values of up to 40-45mm before increasing for dc

values greater than this. By the time the approximation order is 100 the error in core location is

not dependent on the location of the core showing that between 50 and 100 modes are required

to accurately locate the vortex core spatially. The dependence on dc for S = 0.480 disappears for

approximations of order greater than 4.
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7.7 The Effect of Core Location on the Convergence of Turbulent

Kinetic Energy

The turbulent kinetic energy, k of an individual two-dimensional velocity vector field is given as:

k =
1
2
(
u2

rms + v2
rms

)
(7.12)

Similarly the turbulent kinetic energy of an approximated velocity field of approximation order Nc

is given as:

k =
1
2

((
u(Nc)

rms

)2
+
(

v(Nc)
rms

)2
)

(7.13)

Since the POD breaks the flow into a set of modes on energy terms and velocity fields are repre-

sented as a linear combination of these modes the more modes used in an approximation the more

of the total energy, k is contained within that approximation. Whilst the value λ gives the relative

energy associated with each mode on average across each snapshot vector field it is useful to in-

vestigate the energy content of individual order Nc velocity vector fields. The percentage energy

content of an individual approximation of order, Nc to the total energy content is then given as the

following ratio:

k(Nc)

k
(7.14)

Using the ratio of approximate energy content to total energy content the convergence of en-

ergy of the decomposition can be investigated as a function of the spatial location of individual

vortices. Figure 7.35 and Figure 7.36 show the convergence of turbulent energy for different or-

der approximations of individual velocity vector fields as a function of the spatial distance of the

individual vortex core from the mean vortex core location dc. For the low swirl ratio case in Fig-

ure 7.35 where S = 0.0017 it can be seen that the distance of an individual measured vortex core

from the mean vortex location has little bearing on the percentage energy content of approximated

velocity fields for approximations of order less than 50. For approximations of order 50, 75 and

100 it can be seen that the total energy content converges quicker (with a linear trend as shown in

Figure 7.37) the further away from the mean vortex location an individual vortex is located.

For the higher swirl ratio data set, E30, S = 0.480 the energy content of approximated veloc-

ity vectors is heavily dependent on the distance an individual vortex lies from the mean vortex

location as shown in Figure 7.36. It can be seen for a vortex close to the mean vortex location

approximated velocity vector fields contain a lower proportion of the total turbulent kinetic energy

than for vortices further away from the mean vortex location. Figure 7.38 shows that the energy

convergence as a function of the distance of a vortex from the mean vortex location closely fits a

second order polynomial trend.

Using the fitted data in Figure 7.39 the average proportion of turbulent kinetic energy contained
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Fig. 7.35 Convergence of turbulent kinetic energy of reconstructed velocity fields as a function of
vortex distance from mean vortex location for set B15, S = 0.0017.
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Fig. 7.36 Convergence of turbulent kinetic energy of reconstructed velocity fields as a function of
vortex distance from mean vortex location for set E30, S = 0.480.
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Fig. 7.37 Linear trend fits of turbulent energy convergence as a function of vortex distance from
mean vortex location for (left) a 50 mode approximation and (right) a 100 mode approximation
for data set B15, S = 0.0017.

Fig. 7.38 2nd order polynomial fits of turbulent energy convergence as a function of vortex distance
from mean vortex location for (left) a 3 mode approximation and (right) a 100 mode approximation
for data set E30, S = 0.480.

in approximations of various order as a function of the vortex distance from the mean vortex

location can be seen. For a low order approximation of order, Nc = 3 for a vortex close to the

mean vortex location, dc = 0.38mm, on average only 16% of the total turbulent kinetic energy is

accounted for, this increases up to 79% for vortices located at the furthest distance of 37.62mm.

This trend holds as the approximation order is increased, for an approximation of order Nc = 100

still only 55% of the total energy is captured for vortices a distance 0.38mm from the mean vortex

location, again, this increases up to 96% for vortices a distance of 37.62mm away.

A similar trend can be seen in the low swirl ratio case of data set B15, S = 0.0017 but the effect

of vortex location on energy convergence is not as pronounced as in the E30, S = 0.480 case in that

vortices close to the mean vortex location contain a higher proportion of the total turbulent kinetic

energy than those further away.
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Fig. 7.39 (left) Convergence of turbulent kinetic energy for data set B15, S = 0.0017 as a function
of vortex distance from the mean vortex location and (right) the convergence for data set E30, S =
0.480.
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7.8 Summary

Presented in this chapter, to the knowledge of the author, is the first proper orthogonal decompo-

sition of laboratory generated tornado-like vortex flow.

The total turbulent kinetic energy of the flow is distributed among a basis of spatial modes

(coherent structures). Energy is more heavily distributed in the lower order modes with subsequent

modes accounting for less of the total energy than the previous one.

For each flow configuration the first two modes are the most energetic, the combined energy

contained within the first two modes is shown to follow a well defined relationship increasing with

swirl ratio ranging from 24% to 58% for swirl ratios less than 0.5. The change in flow regime

for high swirl ratios (S > 0.5) highlighted in the previous chapter is again evident as the energy

content of the first two modes is reduced to approximately 40%.

Mode energy content quickly reduces with increasing mode number for mode 3 and above

with mode 3 at most containing only 13% of the total flow energy, by the sixth and 15th modes

only a maximum of 3.3% and 1.15% of the total flow energy respectively is contained showing

how low order modes dominate the flow.

The individual mode energy content is closely linked to swirl ratio with three distinct regimes

for low, intermediate and high swirl levels as identified in the previous chapter. Between modes 4

and 15 modal energy content is greatest at low swirl (S < 0.008−0.01) where the modal energy

varies little with swirl ratio. At intermediate swirl ratios (0.01<S<0.5) energy content decreases

with swirl ratio before increasing slightly for high swirl ratios (S > 0.5) showing how the domi-

nance of certain coherent structures is swirl ratio dependent.

Convergence of mode energy is quickest in the intermediate swirl range which is consistent

with the more organised, low precession, well defined vortex structure nature of the flow. Con-

vergence is slower at low swirl ratios owing to increased variation due to vortex precession and

slower at high swirl ratio owing to increased variation in structure within the vortex core due to

the multi-cellular nature.

Low order spatial modes (coherent structures) comprise of well defined, highly organised vor-

tex structures with some shown to act as pairs. Modes 1 and 2 are made of two counter-rotating

vortices with an approximate 90◦ rotation between the modes and also account for similar percent-

ages of the total energy. The same is observed with modes 4 and 5 which are each made of two

pairs of counter rotating vortices and again having similar energy content.

For the low order modes the structure of each mode remains unchanged with varying swirl

ratio with only the spatial dimension of the structures changing apart from mode 6 where a clear

change of structure is observed between low and intermediate to high swirl ratios.

The spatial dimensions of the structures in the lower order modes such as vortex radius and

distance between vortex pairs show well defined relationships to swirl ratio again showing different

regimes between low and high swirl ratio.

As modal energy content decreases so does the length scale of the spatial structures present
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within them showing that the most energetic lower order modes contain highly organised, struc-

tured flow information. Beyond mode 200 there is almost no correlation between spatially sep-

arated points which leads to the conclusion that these modes contain the unstructured stochastic

turbulence of the flow.

Mean velocity profiles of lower order approximations to the instantaneous PIV vectors are

presented showing how at higher swirl ratios the measured velocity profiles are more accurately

recreated using a lower number of modes than those at lower swirl ratios. This is reflected in the

convergence of vortex radius, vortex maximum tangential velocity and swirl ratio of approximated

velocity fields. In general, convergence towards the measured values (with an increasing number

of modes used in the approximation) is quicker with increasing swirl ratio owing to the reduced

variation in the flow with the decreasing influence of vortex precession.

Lower order approximations are shown to underestimate the level of vortex precession ob-

served in the measured data. Approximations comprising only the first or second modes are shown

to translate the vortex along two orthogonal straight lines. It is shown through the slow conver-

gence of approximated vortex core centres to measured values that significant flow information is

still contained within higher order modes up to approximately mode 100 and especially for low

swirl ratios where precessional effects are greatest.

When vortex precession is high (low swirl ratios) it takes a greater number of modes to accu-

rately spatially position a realisation of a measured vortex the further away from the mean vortex

core location it is positioned. At higher swirl ratios where the effect of precession is much re-

duced the error in vortex core location is independent of position for approximations of order 3

and greater.

At low swirl ratio energy convergence of approximated velocity vectors is quicker the further

away from the mean vortex centre a vortex is located suggesting that lower order modes contain

significant translational information.

The results presented here provide a new understanding of flows of this type identifying the

coherent structures that interact to form the flow we observe. The energy content of these structures

identified through POD provide a valuable means of characterising the variability of the flow and

its dependence on swirl ratio. POD provides valuable information regarding the spatial structures

contained within the flow, in order to investigate the temporal structures velocity data captured at

a higher sampling frequency is required and this is carried out in the next chapter.



Chapter 8

High Speed PIV of a Tornado-Like

Vortex

8.1 Introduction

The results obtained in Chapters § 6 and § 7 were obtained using low repetition rate PIV. While

this provided a good data set for the evaluation of spatial characteristics of the flow in order to

evaluate the dynamics of the flow, data captured at a higher sampling frequency is required.

As far as the author is aware this is the first time high temporal resolution full-field velocity

measurements of a laboratory tornado-like vortex have been conducted. The aim is to investi-

gate the dynamics of the flow through an evaluation of energy-frequency and energy-wavenumber

spectra and temporal and spatial velocity correlations from which length and time scales, charac-

teristic frequencies and wavenumbers and estimations of dissipation rates and Kolmogorov length

scales can be made. POD is also applied to the new data sets in which the dynamics of the coherent

structures are investigated by analysing the time evolution of the POD coefficients associated with

each mode. Finally the chapter concludes with a comparison of POD conducted on a synthetic

dataset with that obtained through PIV.

The PIV system used to capture the data in this chapter consists of a high repetition rate laser

synchronised to a high speed camera. The laser is a twin cavity 527nm Litron LDY300 PIV laser

with a maximum repetition rate of 10kHz per cavity resulting in a maximum repetition rate of

20kHz combining both cavities. The camera is a black and white Photron Fastcam SA1.1 with a

resolution of 1024 x 1024 pixels squared and 12-bit greyscale levels with enough onboard memory

to store 5400 images at full image resolution or 2700 PIV image pairs.

It is required that both high and low frequency flow features are measured, due to the limi-

tations of the camera storage capacity a compromise on the sampling frequency had to be made.

The sampling frequency was chosen to be 125Hz giving a temporal resolution of 0.008 seconds

and a recording length of 21.6 seconds (2500 image pairs) ensuring that the full effects of vortex

precession could be recorded.
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Based on the data presented in Chapter 6 five flow conditions were selected with a swirl ratio

range of 0.032<S<0.979 using three different axial fan speeds and two different circulation blower

supply voltages (see Table 8.1 for a summary of the flow configurations). Measurements were

taken in the same plane as the low repetition rate PIV measurements. The time separation between

image pairs was adjusted based on the axial fan flow rate, with a dt value of 2µs for the highest

axial fan flow rate and 6µs for the lowest.

8.2 Results

For the five flow configurations the swirl ratio was calculated using the method presented in § 6

where the effect of vortex precession is removed from the flow by finding the instantaneous vortex

centre. The mean radius, R of the vortex for each flow configuration is calculated based on this

centre point and the azymuthally averaged tangential velocity profile. Combined with the calcula-

tion of the flow rate through the rig from hotwire velocity profiles of the axial velocity component

through the updraft orifice the swirl ratio is calculated using (6.1). Swirl ratio and vortex radius

for each flow configuration are presented in Table 8.1. The datasets are labelled HS-A#. Where

HS indicates high speed so not to be confused with data sets from the low speed PIV. A is the axial

fan setting which has three values; F for full speed M for a medium fan speed and L for a low fan

speed with the number corresponding to the voltage supplied to the circulation blowers.

A range of swirl ratios was obtained, ranging from S = 0.032 up to S = 0.979. The mean

radius of the instantaneous vortices is presented as a function of swirl ratio in Figure 8.3. For

reference the vortex radius obtained from the low-speed PIV in Figure 6.9 is presented as a dashed

red line. The solid black line in Figure 8.3 is a power law trendline fitted using the inbuilt trendline

function in MS Excel. The relationship between vortex radius and swirl ratio for the low-speed

PIV experiments and the high-speed data presented here are largely in agreement. The relationship

between normalised instantaneous vortex radius, R/r0 and swirl ratio is of the following form:(
R
r0

)
= αSβ (8.1)

where α is a constant and β is the power law exponent. It can be seen in Figure 8.3 that for a

given swirl ratio the vortex radius is slightly less than that obtained at a corresponding swirl ratio

in the low speed PIV experiment with the scaling factor, α having a reduced value of 0.582 in the

current study compared to a value of 0.690 in the previous experiment. The power law exponents,

β are in close agreement with values of 0.462 for the high-speed data and 0.417 for the low speed.

The variation in measured vortex radius between the two experiments can be accounted for by the

fact that between the two experiments the rig was dismantled for storage so variation in the exact

alignment of the axial fan and the circulation pillars is to be expected. On the whole however the

two sets of results are largely in agreement showing reasonable repeatability.

Figure 8.1 and Figure 8.2 show PIV vector sequences at intervals of 1000ms for the lowest
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Fig. 8.1 PIV vector sequence at intervals of 1000ms for configuration HS-M17, S = 0.032. Every
fourth vector shown for clarity.
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Fig. 8.2 PIV vector sequence at intervals of 1000ms for configuration HS-L30, S = 0.979. Every
fourth vector shown for clarity.
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Fig. 8.3 Normalised mean instantaneous vortex core radius as a function of swirl ratio. Error bars
indicate +/- one standard deviation in instantaneous R/r0 values.

swirl ratio configuration, HS-M17, S = 0.032 and the highest, HS-L30, S = 0.979 respectively. It

can be seen that for S = 0.032 the vortex is small and exhibits a high degree of precession whereas

at high swirl, S = 0.979, a large vortex is present and shows little precession. This is consistent

with the results presented in Chapter 6.

The extensive analysis carried out in the previous section of the flow data obtained using low-

speed PIV will not be revisited here; rather the mean characteristics of the HS-PIV data will be

presented and the remaining analysis will focus on the unique understanding that can be gained

with high speed velocity realisations.

8.2.1 Mean Flow Characteristics

Time averaged velocity vectors of the PIV data were calculated using (6.5) and (6.6). From the

mean flow velocity vectors the radius of the vortex, Ra is calculated as the distance from the mean

flow vortex centre to the radius at which maximum wind speed, umax occurs. The radius of the

Table 8.1 Summary of flow vortex characteristics for the five flow configurations used in the high-
speed PIV experiments.

HS-M17 HS-F30 HS-M30 HS-L17 HS-L30

R/r0 0.128 0.208 0.288 0.416 0.608

Q (m3/s) 0.066 0.071 0.046 0.015 0.013

S 0.032 0.137 0.235 0.468 0.979
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Fig. 8.4 Mean flow vortex radius against swirl ratio and ratio of mean flow vortex to mean instan-
taneous vortex radii against swirl ratio.

mean flow vortex and the ratio of the mean flow vortex radius to the mean instantaneous vortex

radius, Ra/R are presented in Figure 8.4. As with the mean instantaneous vortex radius against

swirl ratio the mean flow vortex radius against swirl ratio relationship is in close agreement with

the results obtained from the low-speed PIV as presented in Figure 6.16. The current results

show that for the range of swirl ratios covered Ra increases with increasing swirl ratio, this is in

agreement with the results in Figure 6.16 where Ra also increases with increasing swirl ratio with

the only noticeable difference being that Ra for the current results is approximately 5mm lower

than those from the previous low-speed results, again, this can be attributed to natural variation

arising from the dismantling and rebuilding of the rig between experiments. The values of Ra/R

between the two experiments are both in close agreement with Ra/R having a value of between 2

and 2.5 for a swirl ratio in the region of 0.01 and becoming closer to 1 with increasing swirl ratio.

The mean flow properties and relationship with the instantaneous vortices presented here show

that the two experiments exhibit closely similar mean flow characteristics and are comparable.

8.2.2 Analysis of Velocity Time-Series

The results obtained in the first experiment were obtained using low-speed PIV with a low tem-

poral frequency of approximately 2-3Hz, the temporal resolution of which is too low to calculate

temporal turbulence characteristics and hence the focus on spatial properties of the flow. The

current high-speed PIV data was obtained at a much higher temporal resolution of fs = 125Hz

allowing for the investigation of turbulence properties temporally. As it has been shown the bulk

flow characteristics between data obtained from both experiments are comparable and for that
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Fig. 8.5 Coordinate system employed for the analysis of time series data. The red cross indicates
the mean flow vortex center (xc,yc) which becomes the origin for the position vector r = (ρ,θ).
The blue circle has radius Ra.

reason the majority of the spatial analysis will not be repeated on the high-speed data.

When analysing the time-series velocity data it is not practical to do so at each vector loca-

tion due to the large amount of data contained within each dataset. Each dataset consists of 2700

instantaneous velocity vector fields, each containing 128 x 128 = 16384 velocity vectors so time

series analysis will be conducted at a grid of individual points. The limiting factor of 2700 instan-

taneous velocity fields is based on the on-board memory capacity of the high speed camera which

at the sampling frequency chosen at 125Hz gives a recording time of 21.6 seconds.

It was decided to evaluate the velocity vectors using Cartesian components in the x and y

direction as the high degree of precession of the vortex make interpretation of instantaneous radial

and tangential velocity components somewhat misleading when a fixed origin is used thus leading

to steep gradients between positive and negative values as the instantaneous vortex core location

moves relative to the origin. The instantaneous velocity ui is the velocity component in the ith

coordinate direction which due to the planar measurements takes the values 1 (parallel to the x-

axis) and 2 (parallel to the y-axis).

Although Cartesian velocity components are used polar coordinates are henceforth used to

describe the position in the flow field, r = (ρ,θ) with origin at the centre of the mean flow vortex

and normalized radial component ρ = r/Ra and azimuth θ where θ = 0 runs parallel to the y-axis

in the positive direction. The coordinate system is shown in Figure 8.5, the position r = (1,θ) is a

point on the circle with origin at the mean flow vortex centre and radius equal to that of the mean

flow vortex.
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Time series data is evaluated at θ = π/4,3π/4,5π/4,7π/4 and ρ from 0 to 2 at intervals of

0.25.

The time-series mean velocity at point r is calculated in the usual manner:

u(r) =
1
N

N

∑
n=1

u(r, tn) (8.2)

Where tn = (n− 1)∆t with ∆t = 1/ fs the time between measurements at the sampling frequency

fs=125Hz and N = 2700 instantaneous vector fields. Likewise, using Reynolds Decomposition the

fluctuating component of velocity, u′i is calculated as follows:

u′(r, t) = u(r, t)−u(r) (8.3)

The average velocity magnitude U(r) is:

U(r) =

√
(u(r))2 +(v(r))2 (8.4)

The RMS value of velocity fluctuations, urms is defined as:

urms(r) =

√
1
N

N

∑
n=1

(u′(r, tn))2 (8.5)

with total velocity fluctuation over both u and v velocity components, urmsuv :

urmsuv =

√
1
2
(u2

rms + v2
rms) (8.6)

From here on, unless explicitly specified u′ will refer to the RMS value of the velocity fluctuations.

Many of the flow properties investigated in the rest of this chapter are functions of radius with

respect to the location of the centre of the mean flow vortex, taking this into account flow properties

are azymuthully averaged becoming spatially a function only of normalised radius, ρ rather than

radial position vector r = (ρ,θ).

Turbulence intensity, I, the ratio of the size of the velocity fluctuations to the mean flow value

is defined as:

I =
urmsuv

U
(8.7)

The time averaged mean flow properties defined above are presented in Figure 8.6 as a function

of ρ for the five different flow configurations. The plots of velocity magnitude show that at ρ =

0 the mean velocity is approximately zero, this is characteristic of the centre point of a vortex

and increases radially up to the point ρ = 1 before decreasing again outside of the core region

ρ > 1. The magnitude of the velocity fluctuations, u′ are at a maximum at ρ = 0 and decrease with

increasing radial position, this is characteristic of a vortex showing precession, the instantaneous

vortex is smaller than the vortex swept out in the mean flow (see Figure 8.4) the variation in
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Fig. 8.6 Radial plots of time series mean velocity magnitude U , the RMS value of velocity fluctu-
ations urmsuv , the turbulence intensity, I and the local turbulence intensity Il .
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velocity from the mean is much greater towards the centre of the mean flow whereas in the region

outside of the mean flow vortex the instantaneous flow is much closer to that of the mean flow and

hence the decrease in fluctuating velocity.

The turbulence intensity, I (Figure 8.6 and Figure 8.7 as a function of swirl ratio) decreases

outwards for ρ > 0. On the plots I is not shown for ρ = 0 as the approximately zero mean flow

velocity at this point results in turbulence intensity tending to infinity. The turbulence intensity is

very strongly a function of both the radial location within the flow and of swirl ratio. In Figure 8.7

it can be seen within the mean flow vortex core region (ρ < 1) the intensity increases as the centre

of the core is approached and the intensity is greater for lower swirl ratios. Outside the core region

(ρ > 0) the intensity collapses as a function of radial position and varies only with swirl ratio. In

all regions of the flow the intensity value is very high, this is due to the fluctuating component of

velocity being calculated using classical Reynolds decomposition which means that it includes the

large scale coherent variations caused by the precession of the vortex. To measure the intensity of

the turbulence without the contribution of the large scale coherent fluctuations one would have to

remove the effects of precession when calculating the fluctuating velocity component. Precession

of the instantaneous vortex is much greater at low swirl ratio than that at high swirl ratio as was

shown in the previous section giving rise to the very large turbulence intensity values in the inner

core region at low swirl ratio. At ρ = 0.25 the intensity is approximately 210% for the lowest

swirl ratio (S = 0.032) indicating that the mean flow does not at all give an accurate estimate of

what is happening at any instant in time, at the highest swirl ratio (S = 0.979) where the effects

of precession are much reduced the intensity value drops to 60% which is still significantly high.

The lowest recorded intensities occur outside the core region for swirl ratios above 0.235 where

the intensity values range from approximately 18-24%.

The high values of turbulence intensity recorded owing to large scale coherent fluctuations

are an indication that small scale eddies in the inertial range are not convected by a constant

velocity but by a convection velocity which varies in time. This is an important point as when

dealing with data in a Eulerian frame of reference (fixed in space, varying in time) one is often

required to convert from a temporal to a spatial series (fixed in time, varying in space) in order

to calculate certain properties of the flow such as length scales and wavenumber-energy spectra.

The conversion from temporal to spatial series is classically conducted using Taylor’s hypothesis

of frozen turbulence (Taylor, 1928) where the spatial fluctuating velocity u′(x) can be educed

from u′(t = x/u), however this requires a well defined convection velocity u and that the velocity

fluctuations are much smaller than u i.e. u ≫ u′ (small intensity).

In the current flow data it is clear that any turbulence at a specific location is not convected

at a constant velocity, the time series plots of u′1 in Figure 8.8 show two different situations,

one for a low swirl ratio flow (S = 0.036) at ρ = 0.25 and the other for S = 0.979 at ρ = 1.25,

the corresponding turbulence intensity values are 2.09 and 0.22 respectively. It is immediately

noticeable that in the high intensity case the magnitude of the fluctuations are considerably larger
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Fig. 8.7 Turbulence intensity as a function of swirl ratio for different radial locations.

than the low intensity case with the high intensity case fluctuations having a maximum deviation

from the mean of approximately ± 11m/s compared to an approximate maximum deviation of

±1m/s at low intensity. The black lines in Figure 8.8 are locally averaged fluctuating velocity

averaged over 25 data points (in time). The quasi-periodicity exhibited in the fluctuating velocity

are characteristic of large scale coherent structures and not true turbulence. It is this behaviour

that makes the application of Taylor’s hypothesis on this data invalid as the convective velocity

associated with these structures is not constant.

To overcome the limitations of Taylor’s hypothesis Pinton and Labbé (1995) employ a correc-

tion using a local time average as the convection velocity. Using their correction the velocity at

time t is related to the velocity at location x by:

u(t)→ u(x),x =
∫ t

0
u(τ)dτ (8.8)

Where u is the local average velocity defined in the usual way by:

u(τ) =
1
TA

∫
τ+

TA
2

τ− TA
2

u(t)dt (8.9)

Where TA is the time over which the local average is calculated and is generally in the region of

the integral time scale TInt . The proposed correction to Taylor’s hypothesis was applied by Pinton

and Labbé to a confined vortex flow and has more recently been used by several groups in the

analysis of vortex time series velocity data (Baroud et al., 2003; Simand et al., 2000; Sun et al.,

2005). Using the correction to Taylor’s hypothesis the local intensity level Il (see Figure 8.9)

is greatly reduced (averaged over the full time series), using a local averaging time TA equal to

that of the integral time TInt . At a radial distance ρ ≥ 0.5 all local turbulence intensity values are
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Fig. 8.8 Time series fluctuating velocity component u′1 for (top) S = 0.032 at ρ = 0.25 and (bottom)
S = 0.979 at ρ = 1.25. Black line is a local average of 25 datapoints.

below approximately 13% and above 4% with the exception of S = 0.979 when the intensity is

approximately 17% in the region of the vortex core position and at ρ = 0.25 the local intensity

values increase with greater variation depending on swirl ratio with the most extreme case again

S = 0.979 with a local intensity of a little over 35%. For the points where the local intensity is

above 15% the corrected Taylor’s hypothesis is still used but it must be regarded with caution

when interpreting spatial values calculated from time series data.

The integral time scale of the fluctuating velocity TInt is a characteristic timespan over which

the time series signal becomes decorrelated with it self thus giving a temporal description of the

size of the largest flow structures in the same way the integral length scale Λ provides a spatial

measure of the largest flow structures (see § 2.4.2). TInt is calculated by integrating the fluctuating

velocity auto-correlation function (in time) as follows:

TInti =
∫

τ|B=0

0
Bi(τ)dt (8.10)

Where Bi is the time-series autocorrelation of the ith fluctuating velocity component (essentially x

or y) and the limit of the integration is the first zero crossing of Bi. Bi at point r is calculated as

follows:

Bi(ζζζ , t) =
u′i(ζζζ , t)u

′
i(ζζζ , t + τ)

u′2i (ζζζ )
(8.11)

With the overbar denoting (as usual) a temporal average and ζζζ = (ζ1,ζ2) is the spatial separation

vector. In this work both spatial and temporal autocorrelation functions are denoted by B. For

autocorrelations in time there is a single subscript, e.g. Bi as time only has one direction, spatial
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Fig. 8.9 Local turbulent intensity Il after applying the correction to Taylor’s hypothesis.

correlation functions are of the form Bi j which is the autocorrelation of the ith fluctuating velocity

component in the direction of j. As B is non-dimensional the units of TInt obtained from the

integral in (8.10) are seconds.

As with many of the other properties of the flow the integral scales calculated are a function

of radial position and do not vary with azimuth hence for each radial location TInt(ρ) is taken as

the average of TInt as calculated at each azimuth. TInt is approximately equal for both velocity

components so again TInt is given as the average of TInt1 and TInt2 and is presented in Figure 9 8 as

a function of both radial position and swirl ratio. It is observable that the integral time scale only

has a loose relationship with swirl ratio and is more dependent on the strength of the circulation

fed to the system, at swirl ratios of S = 0.032 and S = 0.468 the integral time scale is considerably

larger than the other three, this can be explained by the fact that at those two swirl ratios the

circulation blowers are set to 17V whereas the others are set to 30V. This reduction in energy has

the effect of reducing the in-plane velocities meaning that any flow structures are convected more

slowly resulting in the fixed point velocity signal staying correlated with its self over a longer time

period. This behaviour is also visible when the integral time scale is plotted as a function of ρ .

TInt decreases with radial distance away from the centre of the vortex for all cases except S = 0.032

which sees a slight increase up to approximately ρ = 1 before decreasing again. The range of TInt

spans from 0.23s for S = 0.468 at the centre of the vortex down to 0.076s for S = 0.235 and in each
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Fig. 8.10 Integral time scale as calculated from the time autocorrelation function as a function of
swirl ratio and ρ .

case the rate of change of TInt with radial position is low in the region ρ < 1 where TInt remains at

a fairly constant level apart from the two cases at the extremes of the swirl ratio range. Outside of

the core region TInt shows a more rapid decline with increasing radial position.

In order to gain a more physical understanding, the integral time scale fluctuating velocity

time series are presented in Figure 8.11 at the extremes of the integral scale. The top time-series

is that of u′1 at r = (2,π/4) for S = 0.137 which has time-scale TInt = 0.078s and the second time-

series is for S = 0.468 captured at the centre of the mean flow vortex core and has an integral time

of TInt = 0.23s. It can be seen that the frequency of the large scale structures is much higher in

the low integral time-scale time-series showing that the velocity fluctuations become decorrelated

over a shorter time period than the high integral time case where the frequency of the large scale

structures is much lower.

The autocorrelation functions relating to these time series are presented in Figure 8.12. The

oscillatory nature of the correlation functions is a reflection of the oscillations shown in the time-

series and shows that the fluctuating velocity is on the largest scales periodic and therefore indica-
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Fig. 8.11 Fluctuating velocity time series with a low integral time (a) and a long integral time (b).
(c) and (d) are the same time series as in (a) and (d) but zoomed in on the first five seconds. The
black lines are a local moving average of 25 data points.



188 High Speed PIV of a Tornado-Like Vortex

Fig. 8.12 Autocorrelation functions of the fluctuating velocity time-series in Figure 8.11, (a) and
(b) full (one-sided) autocorrelation functions and (c) and (d) zoomed in autocorrelation functions.
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Fig. 8.13 Conversion of fluctuating velocity time-series (top) to a spatial series using the correction
to Taylor’s hypothesis (bottom).

tive of organized coherent structures. If the structures were non-coherent and purely turbulent one

would see the correlation function quickly approach zero without periodic features. It can be seen

as an example from the autocorrelation at S = 0.468 that the integral up to the first zero crossing

is approximately the area of a triangle of unit height and length of 0.45s which is very close to the

calculated value of TInt = 0.23s. The steep initial decline of the autocorrelation function for S =

0.137 (which is not present in the S = 0.468 case) is down to the large high frequency fluctuations

around the large scale motions.

The integral length scale, Λ is calculated from the time series fluctuating velocities converted

to a function of space using the correction to Taylor’s hypothesis, an example of which is shown

in Figure 8.13. If the time-series was converted using the traditional implementation of Taylor’s

hypothesis where a constant convective velocity is utilized the spatial velocity signal would hold

exactly the same shape as the time-series only dilated or stretched on the space axis. Using the

correction based on a locally averaged convective velocity. Whilst the features present in both sig-

nals remain constant the degree of dilationstretching varies along the space axis. It is noticed that

the peaks and minima present in the time signal are broadened when converted to a spatial series

and is explained by the greater magnitude of the velocity in the time series at these points which

indicates that the local convective velocity is greater. The distance spanned by the interpreted spa-

tial series is consistent with the distance travelled by a fluid particle travelling at the time-average

mean velocity at that point.

From the spatial fluctuating velocity time series the autocorrelation Bi j, (of the ith fluctuating

velocity component in the jth direction) is calculated in a similar way to the time series autocorre-
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Fig. 8.14 Spatial autocorrelation function of the u′1(0,0) for S = 0.468.

lation:

Bi j(ζi) =

〈
u′i(x j)u′i(x j +ζi)

〉〈
u′i(x j)u′i(x j)

〉 (8.12)

Where ⟨·⟩ indicates averaging over all spatial points and ζi is a spatial shift in the ith coordinate

direction. In this work only longitudinal correlation functions, Bii are considered. From the spatial

autocorrelation function the integral length scale Λi is calculated as:

Λi =
∫

ζi|B=0

0
Bii(ζi)dζi (8.13)

The spatial autocorrelation of the spatial series in Figure 8.13 is presented in Figure 8.14 and

the calculated integral length scales in Figure 8.15. The radial plots of Λ show that at a given radial

location Λ decreases with increasing swirl ratio apart from the two lowest swirl ratios, S = 0.032

and 0.137 where S = 0.137 is initially greater before crossing at ρ = 0.75. The integral length

is greatest at ρ = 0 and ranges from 0.98m for S = 0.137 down to 0.19m for S = 0.979. As the

integral length scale is a measure of the size of the largest structures that make up the fluctuating

velocity, which for the current flow is dominated by the precession of the vortex, which is to be

expected as at the low swirl ratios there is much more vortex precession than for the more stable

high swirl vortices. All flow configurations show a decline in integral length scale with increasing

radial position with the rate of decrease being greater at lower swirl ratio. For the outer core region

(ρ > 1) the integral length scale is smaller than the inner core region as one would expect as the

flow is less affected by the precession of the vortex and the flow is more uniform as is indicated

from the turbulence intensity in the outer core region (Figure 8.7) where the turbulent fluctuations

are closer in strength to those caused by precession of the vortex.

Integral Scale Reynolds Number

The Reynolds number, as described in § 2.2.3 is the ratio of inertial to viscous forces contained

within a flow and is given by:

Re =
ul
ν

(8.14)
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Fig. 8.15 Integral length scale as calculated from fluctuating velocity time-series using the correc-
tion to Taylor’s hypothesis.

Where u and l are a characteristic velocity and length scale of the flow. In the current work the

system is unbounded so a characteristic length based on the dimensions of the tornado vortex

chamber cannot be defined as flow structures may (and do as seen in Figure 8.15) exceed the

dimensions of the chamber, also in the current flow a characteristic velocity is difficult to define as

some regions of the flow have zero mean velocity and others a highly variable mean velocity. It is

for these reasons that a Reynolds number defined by the integral length and time scales, ReInt will

be used:

ReInt =
uIntΛ

ν
=

Λ

TInt
Λ

ν
=

Λ2

TIntν
(8.15)

In homogeneous turbulence one would expect the Reynolds number to be constant with varying

location within the flow as the integral length and time scales are constant (Saddoughi and Veer-

avalli, 1994), this is not the case with the current flow which exhibits inhomogeneity as shown by

the positional variation in integral time and length scales (Figure 8.10 and Figure 8.15). The same
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Fig. 8.16 Integral scale Reynlods number, ReInt as functions of swirl ratio and radial position.

inhomogeneity is also observed in the Reynolds number when presented as a function of radial

position as in Figure 8.16. The Reynolds number of the flow, invariant of swirl ratio has a maxi-

mum Reynolds number at the location of the mean flow vortex core and ranges from a peak value

of ReInt = 16084 to ReInt = 515090 for swirl ratios of S = 0979 and 0.137 respectively. Figure 8.16

shows that the Reynolds number does not have a clear relationship with the swirl ratio, this is to

be expected as the Reynolds number is the ratio of inertial to viscous forces within the flow and

it can be seen that the swirl ratio is more closely linked to the flow rate through the system. The

configuration with the highest Reynolds numbers, S = 0.137 is the configuration HS-F30 which

has the highest axial fan speed which indicates a greater energy input into the system which drives

the inertial structures, likewise the two swirl ratios corresponding to the lowest axial fan speed, S

= 0.468 and 0.979 (HS-L17 and HS-L30) have a much lower energy input which is reflected in the

lower value of Reynolds number as the inertial forces are closer in scale to the viscous forces.

Energy-Frequency Spectra

As detailed in the review chapter turbulent energy is distributed between different scale structures

within the flow which each have a unique frequency and corresponding wavenumber. To avoid
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confusion the turbulent energy spectrum taken in energy-frequency space from the time-series

data is denoted F( f ) with frequency, f . In energy-wavenumber space obtained from the con-

verted spatial series the energy contained by structures of wavenumber κ = 2π/l, where l, the

corresponding wavelength in the spatial domain is denoted as E(κ). Fi( f ) is obtained by taking

the Fourier transform of the corresponding temporal autocorrelation as obtained from (8.10) as

follows:

B̂i( f ) =
∫

∞

−∞

Bi(τ)e−2πi f τdτ (8.16)

The factor 2π in the exponent of (8.16) gives the frequency f in Hertz as opposed to angular

frequency ω = 2π f . F( f ) represents the amount of the total fluctuating kinetic energy, k at the

associated frequency f and as previously defined:

ki =
1
2

u′2i =
∫

∞

0
Fi( f )d f (8.17)

Using Parseval’s theorem which states that the energy contained within a signal is equal to that

contained in its transform then the normalized version of the autocorrelation function F( f ) is

related to B̂i( f ) as follows:

Fi( f ) = 2u′2i B̂i( f ) (8.18)

Likewise the distribution of turbulent energy as a function of wavenumber, κ is calculated from

the spatial autocorrelation function Bii:

B̃ii(κ1) =
∫

∞

−∞

Bii(ζ1)e−2κiζidζi (8.19)

Noting the absence of the factor 2π in the exponent the resulting transform is a function of

wavenumber, κ . In the same manner as the frequency domain transform the energy spectrum

Eii(κ) is:

Eii(κi) = 2u′2i B̃ii(κ) (8.20)

Dealiasing and the Welch Method

Due to the limits on the sampling frequency fs the energy spectra F( f ) and E(κ) show signs

of aliasing as can be seen in Figure 8.15. The original spectrum (black line) shows signs of

aliasing for frequency f greater than approximately 10Hz, this increase in energy contained in the

higher frequencies of the energy spectrum is an artefact of the limited sampling frequency which

moves energy contained in higher unresolved frequencies into the lower, resolved frequencies. It

can be seen that the spectrum exhibits a clear inertial range following the -5/3 power law until

aliasing begins to feature at approximately 10Hz. In an attempt to remove the excess energy at

high frequencies caused by aliasing a filter proposed by Gobbi et al. (2006) is applied, the effect
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Fig. 8.17 Effect of dealiasing the energy spectrum F( f ) using the Gobbi filter.

Fig. 8.18 Reducing spectral noise by employing the Welch method (black line) to compute energy
spectra compared to a single full signal FFT (blue line).
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of which is seen in the red line in Figure 8.17. Whilst the filter does not remove all the effects of

aliasing it is a marked improvement on the original spectrum. The filter is defined as follows:

ẑ( f ) =
[1+ cos(π f δ t)]2

4
x̂( f ) (8.21)

where ẑ is the filtered spectrum, x̂ is the raw frequency of wavebumber specra, F( f ) or E(κ), f is

frequency (or wavenumber) and ∆t the temporal resolution of the velocity measurements.

To further reduce noise in the energy spectra the Welch method is used as opposed to a tradi-

tional single FFT over the full range of the data (Welch, 1967). The Welch method reduces noise

in the spectrum at the expense of some resolution at low frequencies. A time (or spatial) data se-

ries is truncated into several subsamples on which a traditional FFT is carried out. For a stationary

signal (or periodic signal sampled over a long enough time frame) the spectra of the sub-samples

contains the same spectral features as the full signal meaning that the FFTs can be averaged to give

a spectrum with much reduced noise. In the work carried out the spectrum is generated from the

double sided autocorrelation functions which have a signal length (2N−1) = 5399 data points, the

Welch method was applied using a sub-sample length of 1024 data points and an overlap of 256

data points with an example displayed in Figure 8.18. It can be seen in Figure 8.18 that by using

the Welch method the noise levels of the spectrum are greatly reduced at the expense of losing the

ability to resolve the lower frequencies. However, using the stated window size it can be seen that

frequencies in the integral range (frequencies below approximately 1Hz) are still resolved.

In a further attempt to reduce noise in the energy spectra the spectra F1( f ) and F2( f ) are

averaged to give F( f ) and likewise with E11(κ) and E22(κ). The validity of taking the average

spectrum for the two velocity components is displayed in Figure 8.19 which shows that the spectra

of both velocity components are very similar, showing the same spectral features. The similarity

between the spectra of the different velocity components is a good indication that the turbulence is

isotropic (the same in each direction) at least in the measured plane. Likewise with the averaging of

the spectra between the two velocity components the spectra obtained from velocity measurements

at fixed radius, ρ but varying azimuth θ are strikingly similar as shown in Figure 8.19 so they are

again averaged to give the spectra at radius ρ , F(ρ, f ) and E(ρ,κ).

Energy Spectra

For reference azimuthally averaged frequency and wavenumber spectra for each flow configuration

are provided in Appendix 1. The azimuthally averaged energy-frequency spectra for S= 0.032 and

S = 0.979 presented in Figure 8.20 and Figure 8.21 respectively. The dashed red lines represent

F( f ) ∝ f−5/3 and represent the inertial range following Kolmogorov (1941b) and the blue dashed

vertical lines correspond to the frequency, fInt associated with the integral time-scale, TInt where

fInt = 1/(2πTInt). Azimuthally averaged energy-wavenumber spectra, E(κ) are presented in Fig-

ure 8.22 to Figure 8.23 with the red dashed lines indicating E(κ) ∝ κ−5/3 and the vertical blue

dashed lines the wavenumber, κInt which is related to the integral length scale Λ by κInt = 1/Λ.



196 High Speed PIV of a Tornado-Like Vortex

Fig. 8.19 (top) Averaging of energy spectra between the two velocity components and (bottom)
azimuthal averaging of spectra.
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For the energy-frequency and energy-wavenumber spectra presented in Figure 8.20 to Fig-

ure 8.21 it can be seen that the total energy contained within the spectra decreases with increas-

ing radial position from the vortex centre as is consistent with calculated turbulence intensity at

each radial position as presented in Figure 8.6. For the low swirl ratio case, S = 0.032 both the

energy-frequency and energy-wavenumber spectra show an inertial subrange which closely fits

Kolmogorov’s -5/3 power law until the effects of aliasing deviate the spectra from this trend at

higher frequency/wavenumber. The high swirl ratio case, S = 0.979 shows the spectra having a

-5/3 gradient over a much shorter frequency/wavenumber band due to the higher peak frequency

of the spectra and the effects of aliasing.

Frequency and Wavenumber of Integral Scale Structures

It has already been shown from the temporal and spatial autocorrelation functions the largest

coherent structures that make up the fluctuating velocity component have an integral time and

length scale and from these a corresponding frequency and wavenumber can be calculated. A

structure with integral time scale TInt has corresponding integral frequency, fInt = 1/(2πTInt) and

likewise a structure with integral length scale Λ has the characteristic integral wavenumber κ =

1/Λ.

The integral frequency as a function of swirl ratio and radial position is presented in Fig-

ure 8.24 and can immediately be seen to be proportional to the inverse of TInt as presented in

Figure 8.10. One observes that the driving factor behind the frequency of the velocity fluctuations

is the strength of the circulation supplied to the system via the circulation blowers. The two swirl

ratios which exhibit lower integral frequencies both have 17V supplied to the circulation blowers

whereas the other three swirl ratios with higher integral frequencies all have 30V supplied to the

circulation blowers. The reduced circulation has the effect of reducing the rotation velocity of

the vortex which results in the slower advection of structures within the flow which correspond to

lower frequencies. Again, as with the integral time scale the integral frequency is near constant in

the inner core region of the mean flow vortex before increasing in the outer core region as the flow

structures become smaller and therefore more frequent which is shown by the increase in integral

wavenumber (smaller structures) in Figure 8.25.

Dissipation Rate

The dissipation rate, ε is the rate at which energy is dissipated from large integral scale flow struc-

tures to smaller scale structures as outlined in § 2.4.5. The dissipation rate from one-dimensional

energy-wavenumber spectra (Figure 8.22 and Figure 8.23) can be calculated as follows (Tennekes

and Lumley, 1972):

ε = 2ν

∫
∞

0
κ

2E(κ)dκ (8.22)
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Fig. 8.20 Energy-frequency spectra F( f ) for HS-M17, S = 0.032 at varying radial positions ρ .
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Fig. 8.21 Energy-frequency spectra F( f ) for HS-L30, S = 0.979 at varying radial positions ρ .
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Fig. 8.22 Energy-wavenumber spectra E(κ) for HS-M17, S = 0.032 at varying radial positions ρ .
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Fig. 8.23 Energy-wavenumber spectra E(κ) for HS-L30, S = 0.979 at varying radial positions ρ .
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Fig. 8.24 Frequency associated with the integral time scale as a function of swirl ratio and radial
position.

Here the dissipation rate is an estimate from the one dimensional longitudinal energy spectrum

so gives the streamwise rate of energy dissipation. For isotropic and homogeneous flows the full

dissipation rate can be calculated as ε = 15ν
∫

∞

0 κ2E(κ)dκ but it is already shown that the flow is

inhomogeneous and with only two velocity components available it will be assumed, due to the

highly three dimensional nature of the flow that isotropy is not present.

Using the estimated values of dissipation rate the Kolmogorov lengthscale, eta is calculated as

follows:

η =

(
ν3

ε

)1/4

(8.23)

The estimate of the longitudinal dissipation rate is presented in Figure 8.26, it is once more clear

that the flow shows strong inhomogeneity as the dissipation rate is heavily dependent on the posi-

tion within the flow. In terms of the dissipation rate the flow can be broken down into two distinct

regions, for the inner core region, ρ ≤ 1 the dissipation rate is at a maximum when ρ = 0 and



8.2 Results 203

Fig. 8.25 Wavenumber associated with the integral length scale of the flow as a function of swirl
ratio and radial position.

decreases radially outwards up to ρ = 1, outside the core region for ρ > 1 the dissipation rate re-

mains approximately constant. The Kolmogorov lengthscale calculated from the dissipation rate is

presented in Figure 8.27 where it can be seen that the Kolmogorov scale, the lengthscale at which

energy is dissipated to heat through viscosity is larger in the outer core region than in the inner

core region. The Kolmogorov lengthscale ranges from approximately 0.45mm at the location of

the mean flow vortex core up to a maximum of approximately 0.95mm in the outer core region for

S = 0.235.

Referring to Figure 8.6 it can be noticed that the rate of dissipation of turbulent energy and

the magnitude of the velocity fluctuations are linked as they both have considerably higher values

at lower radial position ρ where the size of the large energy containing structures of the integral

scale are also largest. From this one can say that the larger, higher energy content flow structures

dissipate their energy to smaller scale structures at a quicker rate than in the outer core region

where the dominant flow structures are smaller and contain much less turbulent energy.
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Fig. 8.26 Turbulent dissipation rate as a function of swirl ratio and radial location.

It can be seen that in the outer core region ρ ≥ 1 the dissipation rate becomes almost inde-

pendent of radial location and becomes singularly a function of the swirl ratio in which there are

two different regimes apparent. For low swirl ratios between S = 0.032 and 0.235 the dissipation

rate reduces in value by approximately a factor of 4 from values of 0.019m2s−3 to 0.005m2s−3.

For Swirl ratios above 0.235 the dissipation rate slowly increases with swirl ratio. The change in

behaviour of the dissipation rate could be explained by the changing of the mean flow from pre-

cession dominated to a more spatially stationary vortex with a greater degree of internal structure

variation.
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Fig. 8.27 Turbulent dissipation rate as a function of swirl ratio and radial location.

8.3 Proper Orthogonal Decomposition

8.3.1 Convergence of Mode Energy and Comparison with the Low Speed Data

Proper orthogonal decomposition was applied to the high speed PIV datasets in the same manner

as the low speed data. As to be expected the structure of the spatial modes is consistent with the

previous low speed data showing the same flow structures in corresponding modes. Furthermore

the distribution of mode energy, λ is consistent between the low speed and high speed data sets.

Figure 8.28 shows the percentage energy content and cumulative energy content of the first six

modes as a function of swirl ratio. The individual mode energy of the first six modes is consistent

with the energy distribution from the low speed data with the first two modes, which are related,

containing an increasing proportion of the total energy with increasing swirl ratio until the energy

content reduces at the highest swirl ratio, S = 0.979 which as with the low speed data can be

attributed to a change in the nature of the flow from precession dominated to a more spatially stable

large vortex exhibiting more complex multicellular vortex structure. The total energy contained
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Fig. 8.28 (left) Percentage energy content, λ of the first six modes and (right) cumulative energy
of the first 6 modes as functions of swirl ratio.

in the first two modes ranges between approximately 39% at S = 0.032 and 54% at S = 0.468

which is almost identical to the low speed data energy distribution as presented in Figure 8 15

the only difference being in the amount of energy contained at high swirl ratio (S ≈ 1), which is

reduced compared to lower swirl levels (consistent with the low speed data) but the energy content

is slightly higher at 54% compared to 40%.

The energy content of modes 3 and higher are again consistent with the low speed data showing

decreasing energy content with increasing swirl ratio with almost identical values between the two

datasets. It can again be seen that modes 4 and 5 can be considered a pair of modes identified with

the same structure as they contain approximately the same amount of the total flow energy. Due

to the similarities in the energy content and mode structure between the two datasets the analysis

carried out on the low speed data will not be repeated and it shows that the recording period

chosen for the high speed experiment was long enough to capture the long time-scale dynamics of

the flow.

8.3.2 Spectral Properties of the POD

In order to compare the distribution of turbulent energy between POD and Fourier decomposition

the Fourier transform was applied to a temporal autocorrelation function of the fluctuating velocity
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components averaged over both velocity components and each spatial coordinate, Ball as follows:

Ball(τ) =
1

2NxNy

2

∑
i=1

Nx

∑
j=1

Ny

∑
k=1

∫
∞

−∞

u′i(x j,yk, t)u′i(x j,yk, t + τ)dτ (8.24)

Where i indicates the two fluctuating velocity components, Nx and Ny the number of velocity vec-

tors in the x and y directions respectively and the integral is the standard temporal autocorrelation

function.

Figure 8.29 shows the convergence of cumulative energy with increasing numbers of POD

and Fourier modes. Like the POD the Fourier decomposition decomposes the total energy among

2700 Fourier modes where the Fourier modes are frequency bands. It is clearly visible that the

conversion of energy is much quicker with POD than Fourier which is to be expected as the POD

decomposes the flow information onto a set of basis functions that are optimal in the energy sense

(Chatterjee, 2000). An accelerated rate of energy convergence occurs in the Fourier decomposition

for frequencies above approximately 10Hz (approximately the 600th Fourier mode) and is a result

of aliasing as the sampling frequency at which the data was captured is too low to account for all

high frequency components as discussed previously in this chapter. It is seen that the bulk of the

energy is contained between approximately the 10th and 100th Fourier modes corresponding to a

0.2Hz to 2Hz band of frequencies.

Figure 8.30 shows the percentage of the total modes (2700) required to capture 80% and

90% of the total turbulent energy for both POD and Fourier decomposition as a function of swirl

ratio. It can be seen that the number of modes required to capture both 80% and 90% of the

energy increases with increasing swirl ratio whereas with the Fourier decomposition, apart from

the lowest swirl ratio case S = 0.032, the number of modes required to capture 80% of the energy

remains approximately constant with increasing swirl ratio with only a slight increase at S= 0.979,

and for 90% of the total energy does not vary with swirl ratio above S = 0.032. This shows that the

proportion of energy associated with the higher frequencies is approximately the same irrespective

of swirl ratio. Unfortunately more low swirl ratio flows would have to be recorded in order to

conclude that the lower number of Fourier modes required to capture 80% or 90% of the energy

at S = 0.032 is part of a larger trend or is an outlier from the trend displayed for swirl ratios above

0.032.

The ratio of the number of Fourier modes to number of POD modes required to capture 80%

of the energy increases with swirl ratio as one would expect as the POD converges more slowly at

high swirl. To capture 80% of the energy 4 times the number of Fourier modes are required at the

lowest recorded swirl ratio and this increases to 17 times at the highest swirl ratio.

Comparing the energy convergence between the two methods of decomposition it is shown

that the flow is much more accurately described, in terms of turbulent energy, by the POD rather

than the Fourier decomposition at low mode number showing that POD is much more efficient in

extracting dominant flow structures.
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Fig. 8.29 Convergence of turbulence energy among POD modes and Fourier modes (frequency
bands).
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Fig. 8.30 (left) Percentage of modes required to capture 80% and 90% of the total flow energy
for POD and Fourier decomposition and (right) The ratio of Fourier to POD modes required to
capture 80% and 90% of the energy.

8.3.3 Analysis of Temporal Coefficients

Fluctuating velocity vectors at an instant in time are recreated through a linear summation of

spatial POD modes φ multiplied by the corresponding temporal coefficient a as follows:

u′(t) =
Ns

∑
n=1

a(n)(t)φ (n) (8.25)

Where Ns is the number of modes which is equal to the number of snapshots which equal 2700 for

the high speed PIV data. The POD modes φ (n) describe the spatial flow structures associated with

mode n and the dynamics of these structures are contained within the temporally evolving POD

coefficients a(n). An example of the temporal evolution of a(1) for dataset HS-F30 is presented

in Figure 8.31 which displays a strong low frequency oscillatory motion (shown by the red line

representing a moving average of 25 datapoints) centred around zero as well as higher frequency

fluctuations (represented by the black line, the raw coefficients), Figure 8.31 is primarily presented

to show the effect of smoothing the data as subsequent plots present smoothed data for clarity.

The temporal evolution of the POD coefficients associated with modes 1 to 6 for dataset HS-

F30 are presented in Figure 8.32, again the data is presented as a moving average of window size 25

data points for greater clarity. The coefficients as presented are normalized by their energy content

λ . As previously stated certain pairs of modes were identified as having similar energy content

and spatial structure, this link between pairs of modes is visible in the evolution of their respective

coefficients. The coefficients of modes 1 and 2 both display oscillations of approximately equal

period separated by a phase difference in that peaks in one coefficient lag peaks in the other by

a certain time difference, the same behaviour is displayed in the coefficients for the 4th and 5th
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Fig. 8.31 Temporal evolution of the first mode POD temporal coefficients for data set HS-F30.

modes. Modes 3 and 6 are not associated with neighbouring modes in either spatial structure or

energy content and it can be seen by the longer period of the major oscillations of the coefficients

associated with these modes (coherent structures) that they describe lower frequency dynamics of

the flow than mode pairs 1 and 2 and 4 and 5.

The temporal structure of the POD coefficients is more clearly identified by looking at their

autocorrelation functions displayed in Figure 8.33 to Figure 8.35. Also displayed in these figures

is the temporal correlation function of the fluctuating component of the total velocity vectors as

defined by (8.24). It is observed that the periodicity of autocorrelation functions of the first

two modes is very closely linked to that of the total fluctuating velocity autocorrelation function

highlighting that the dominant temporal structures contributing to the full fluctuating velocity field

are described by the first mode coefficients. The pseudo-periodic nature of the higher order modes

is also evident in the autocorrelation functions of higher order coefficients with the mode-pair 4

and 5 showing shorter period dominant oscillations whereas modes 3 and 6 correspond to spatial

structures that vary again pseudo-periodically but with a noticeably longer period linking them to

lower frequency variations in the flow.

The integral timescale of the POD coefficients was calculated from their autocorrelation func-

tions to obtain the integral frequency fInt in the same manner the velocity integral timescale was

calculated using (8.10). The integral frequency data are presented for each dataset in Figure 8.36.

It can be seen that for each dataset the integral frequency increases in a linear fashion with mode

number before levelling off to values between 40Hz and 44Hz above a certain mode number. As

the integral frequency can be interpreted as the average frequency based on energy content across

all frequency bands, individual normalized spectra of the POD coefficients for mode 1 and mode

1000 for dataset HS-F30 are presented in Figure 8.37. The integral frequencies of the coefficient

spectra plotted in Figure 8.37 are 1.12Hz and 41.16 Hz for the first and 1000th modes respectively.

It can be seen for the first mode that the majority of the spectral energy is concentrated in the band
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Fig. 8.32 Temporal evolution of POD coefficients a(n) for dataset HS-F30 for the first 6 modes.
Data is smoothed using a running average of window size 25 data points.

Fig. 8.33 Autocorrelation functions of the first 6 POD coefficients for dataset HS-F30.
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Fig. 8.34 Autocorrelation functions of the first 6 POD coefficients for dataset HS-L17 (top) and
HS-L30 (bottom).

of frequencies below 2 Hz whereas for the 1000th mode the spectral energy is more evenly dis-

tributed among frequencies above approximately 1Hz showing that there are no dominant low

frequency structures and this mode is typical of random or turbulent fluctuations.

Referring back to Figure 8.36 it can be seen that the mode number at which the integral fre-

quency levels off to the 40-44Hz range differs between flow configurations which have a circula-

tion blower supply of 30 and 17 volts. For the three datasets at which 30V is supplied the integral

frequency begins to level off at approximately mode 200 whereas for the 17V configurations the

cut-off increases to approximately mode 300. This suggests that structured temporal features of

the flow are contained in a greater number of modes when the circulation supplied to the flow is

lower.

Whilst the POD decomposes the velocity data in terms of the energy content of the spatial

structures (modes) with the highest energy content modes being the lower modes and subsequent
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Fig. 8.35 Autocorrelation functions of the first 6 POD coefficients for dataset HS-M17 (top) and
HS-M30 (bottom).

modes containing less of the total energy it can be seen through the integral frequencies of the

coefficients that these energetic modes also contain the structured low frequency dynamics of the

flow and the higher order modes the unstructured turbulent variations. Referring back to Fig-

ure 8.29 and Figure 8.36 it can be seen that using Fourier decomposition flow information in the

frequency range below 40 Hz is distributed among approximately the first 1800 Fourier modes,

this same range of temporal frequencies are contained in only the first 200-300 POD modes de-

pending on the flow configuration. This shows that POD is a much more efficient method than

Fourier decomposition in reducing the flow and capturing the structured dynamics.

A spectral analysis of POD coefficients was carried out by computing the Fourier transforms

of the autocorrelation functions of the coefficients and for comparison, of the spatially averaged

fluctuating velocity autocorrelation function as defined by (8.24). The spectra presented in Fig-

ure 8.38 to Figure 8.40 are normalized by the total energy of the transform so that the value at
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Fig. 8.36 Integral frequency of POD coefficients.
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Fig. 8.37 Normalized spectra of the first and 1000th POD coefficients for dataset HS-F30.

Fig. 8.38 Normalized spectra of POD temporal coefficients and spatially averaged velocity data
for dataset HS-F30.
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Fig. 8.39 Normalized spectra of POD temporal coefficients and spatially averaged velocity data
for dataset HS-L17 (top) and HS-L30 (bottom).
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Fig. 8.40 Normalized spectra of POD temporal coefficients and spatially averaged velocity data
for dataset HS-M17 (top) and HS-M30 (bottom).



218 High Speed PIV of a Tornado-Like Vortex

each data point is the fraction of the signal energy contained within that frequency band (integrat-

ing over all frequencies gives a value of 1). The peak frequency f0 of the spectra is identified as

the frequency containing the most energy and is plotted in Figure 8.41. It can be seen in the spec-

tra plots and Figure 8.41 that the peak frequency of the first two POD coefficients is very closely

match to the frequency of the velocity fluctuations which further as one would expect due to the

similarity between the autocorrelation functions of these coefficients and the velocity fluctuations

which shows that as well as the spatially dominant flow structures the dominant dynamics of the

velocity fluctuations are also contained within these modes. As well as the similarity in the peak

frequencies of the first two modes the distribution of low frequency energy (<5Hz) shows a close

similarity to the velocity spectra with spectral peaks at the same frequencies which shows that the

dynamics of the lower order modes contain a broad range of frequencies related to those of the

overall flow.

The fourth and fifth mode coefficient peak frequencies are if not exactly, very close to twice

the peak frequency of the first two modes which suggest that dynamically the structures described

by the fourth and fifth modes are a harmonic of the first two modes with the exception of the fifth

mode coefficients at the highest swirl ratio where the peak frequency does not follow the trend

and is much lower at 0.4Hz. The third and sixth mode coefficient peak frequencies are consistent

with less energetic spectra peaks in the velocity signal in the <0.35Hz range for all datasets apart

from the lowest swirl case (HS-M17) where the third mode peak frequency is greater than that

of the first two modes. In this case the spectra of the velocity fluctuations differs from the other

datasets in that the majority of the spectral energy is contained in a relatively narrow band of low

frequencies below approximately 1Hz.

8.4 Comparison of POD between PIV and synthetic data

In order to develop a further understanding of the POD of the PIV velocity data the decomposition

was carried out on synthetic datasets. The synthetic datasets consist of a uniform grid measur-

ing 129 x 129 on which two-component velocity vectors were imposed of an Oseen vortex with

randomly placed centre (x0,y0):

uθ =
Γ

r

[
1− exp

(
−r2

r2
c

)]
(8.26)

Where r is the radial coordinate from the origin which is located at the centre of the grid at grid

coordinate (64, 64), rc is the radius of the vortex which is set to 10 grid units and Γ the circulation

which in this case will be set to unity. The degree of simulated precession is controlled by adjusting

the standard deviation of normally distributed instantaneous vortex core locations which in this

case is set to 20.

The first four randomly placed Oseen vortex vector fields and the instantaneous vortex core

locations for 1000 snapshots are presented in Figure 8.42 and Figure 8.43 respectively with the



8.4 Comparison of POD between PIV and synthetic data 219

Fig. 8.41 Peak frequency f0 of the first six POD temporal coefficients and the peak frequency of
the velocity spectra (black line) as a function of swirl ratio.

mean vector field presented in Figure 8.44

In Figure 8.45 the percentage mode energy λ (i) for the first 20 modes and the convergence of

λ over all modes is shown. It can be seen that the first two modes, λ (1) and λ (2) contain almost

50% of the total energy of the fluctuating velocity fields with the third mode, λ (3) containing

12.8% and modes four and five, λ (4) and λ (5) containing 7.1% and 6.5% respectively. The energy

convergence is very quick with the first ten modes containing 88.7% of the total energy, the first

15 modes containing 94% and the first 20 modes containing 96.5% of the energy. The very quick

convergence of the mode energy can be attributed to a number of factors. Firstly there is no

randomly fluctuating ‘turbulent’ element in the velocity data which is often featured in the higher

order modes in experimental data. Secondly the individual vortices have uniform shape and size,

in experimental data the size of the vortex fluctuates around a mean size and is often not perfectly

circular. It is these unordered random fluctuations that are present in the PIV datasets that attribute

the higher order mode energy content.

Looking at the energy distribution in Figure 8.45. it can be seen that modes 1 and 2 have a

similar energy content to that of the PIV data (Figure 8.28) and it can be assumed that these modes

describe the same structure. The same is apparent with modes 4 and 5 and to a lesser extent modes

6 and 7, these features are consistent with the PIV datasets previously discussed.
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The first five spatial POD modes, φ(1) to φ(5) are shown in Figure 8.46 and Figure 8.47, it

can be seen that the mode structure is equivalent to the structure of the related modes from the

PIV data as presented in § 7 with the first two modes showing a pair of counter rotating vortices,

the third mode showing a singular vortex and the fourth and fifth modes showing two pairs of

counter-rotating vortices each.

As a final comparison three different synthetic data sets of 1000 instantaneous vector fields

were constructed representing high, low and medium swirl ratios. The low swirl ratio case con-

sists of a small instantaneous vortex radius of 5 units with a high degree of precession (standard

deviation of core location equal to 20), the high swirl ratio case is a large spatially stable vortex

with radius 20 and positional standard deviation of 5 and the medium case falls in-between with

radius and standard deviation of 12.5. The distribution of energy among the first twenty modes is

presented in Figure 8.45, it can be seen that at higher swirl ratio, for a more stable large vortex a

higher percentage of the total energy is contained within the first two modes and is consistent with

the PIV data.

Figure 8.48: Distribution of POD mode energy for the first 10 modes for synthetic datasets

representing high, medium and low swirl ratios. The similarity in the distribution of mode energy

and spatial structure of the lower order modes between the synthetic and PIV data shows that the

large scale energy containing structures can, to a certain degree of accuracy be modelled by a

randomly distributed Oseen vortex and that the results are not an artefact of the methods used in

the capturing of the PIV data.

8.5 Summary

Presented in this chapter are the first known high temporal resolution full field velocity measure-

ments of a laboratory generated tornado like vortex. Due to hardware limitations (mainly camera

storage memory) and the requirement to account for large scale flow variations due to precession

as well as small scale turbulence a compromise on the temporal resolution of the measurements

had to be made. To account for the large scale temporal structures it was not possible to record

down to the Kolmogorov scale.

Initial results confirm the repeatability of configuring the flow as the relationships between

swirl ratio and instantaneous vortex radius and mean flow vortex radius agree, to a reasonable

degree with those obtained from the low speed data as presented in § 6.

Due to the periodic nature of the flow, single point temporally resolved velocity measurements

do not have a well defined mean and have large RMS values of velocity fluctuations which in

turn lead to very high turbulence intensity levels. Turbulence intensity is greatest at the mean

flow vortex centre (as is also shown in § 6 - Low Speed tornado-vortex PIV) reducing in value as

the radial position increases to the boundary of the vortex core region, outside of the vortex core

turbulence intensity is shown to be independent of spatial position. It is shown how applying a

correction to Taylor’s hypothesis based on a local mean (temporal) velocity value can return much
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lower local turbulence intensity values making it viable to apply Taylor’s hypothesis to convert

velocity time-series data to a function of space.

The integral time scale of the vortex is shown to be influenced little by swirl ratio but predom-

inantly by the flow rate of the circulation blowers. When induced circulation was low (17V supply

voltage) the integral time scale is significantly longer than when induced circulation is high (30V

supply voltage). Integral time scale is shown to be at a maximum and approximately constant at

all locations within the vortex core region (though differing depending on the flow configuration)

for swirl ratios below 0.5. At swirl ratio close to 1 the integral time scale is shown to decrease ap-

proximately linearly from the mean vortex centre outwards. As the flow domain is unbounded the

integral scale (spatial) structures extend beyond the size of the measurement domain. However, by

applying the correction to Taylor’s hypothesis it became possible to calculate integral length scales

from the time series velocity measurements. Unlike the integral time scale the integral length scale

is shown to have a much more defined relationship with swirl ratio with a maximum length scale

of 0.8m – 1.0m for S < 0.2 down to 10cm – 20cm for S = 0.979. Integral length scale is at a

maximum at the mean flow vortex centre reducing with increasing radial position.

Due to the compromise in temporal resolution of the velocity measurements there were con-

siderable artefacts due to aliasing in velocity spectra, it is shown how a filter can be applied to the

spectra to reduce, if not negate, the effect of aliasing.

Velocity spectra of both temporal and spatial (Taylor’s hypothesis) velocity measurements at

a single point are shown to vary only with radial position enabling the azimuthal averaging of

velocity spectra at a particular radius and thus reducing the noise levels in the spectra.

Both energy-frequency and energy-wavenumber spectra resemble traditional one-dimensional

energy spectra with the majority of the turbulent energy contained at low frequency/wavenumber

integral scale structures. A distinct inertial subrage is present in each spectra which in parts follow

Kolmogorov’s -5/3 law before departing at higher frequency/wavenumber due to aliasing of the

signal.

The frequency of the integral scale structures is linked to the integral time scale and therefore is

dependent on the fan configuration. The integral frequency is shown to be approximately constant

in the region within the mean flow vortex core before increasing outside suggesting outside of the

mean flow vortex core the flow is less organised.

Integral wavenumber is, like integral length scale, closely dependant on swirl ratio with low

values at low swirl ratio. There is little variation in wavenumber for swirl ratios below 0.2 and

above this value the integral wavenumber increases with increasing swirl ratio.

The dissipation rate of the flow is shown to have well defined relationships with both swirl

ratio and radial position. As to be expected the dissipation rate is at a maximum at the mean flow

vortex centre where turbulence intensity is greatest. From the centre of the core dissipation rate

decreases radially outwards up to the mean flow vortex radius outside of which the dissipation rate

remains constant for any given swirl ratio.
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Calculated Kolmogorov length scales had a maximum value of approximately 0.95mm (S =

0.979) which is considerably below the spatial resolution of the PIV vector data which was set

at 1.25mm. The Kolmogorov length scale is shown to be at a minimum in the centre of the

mean vortex core and at this point varies little with swirl ratio and having a minimum value of

approximately 0.42mm. The Kolmogorov length scale increases radially outwards to the vortex

core radius and once outside varies little with increasing radius.

The results of POD on the high speed data show the same trends for mode energy content and

energy convergence as those presented in Chapter 7 (Low speed tornado-vortex POD) with similar

values at similar swirl ratios.

Energy convergence of the POD is shown to be much quicker than Fourier decomposition with

10% of the total POD modes containing approximately 90% of the total energy and 10% of the

total Fourier modes containing only approximately 80% of the total energy.

Investigation of the POD coefficients shows that the large scale spatial structures contained

within the low order modes (as identified in Chapter 7) have distinct frequency spectra. Peaks in

the spectra of individual mode coefficients are shown to match certain spectral features of the full

velocity data showing that certain flow structures, POD modes, are associated with certain spectral

features of the whole flow.

The integral frequency was calculated for each set of mode coefficients and shows that lower

order modes contain low frequency structures which are characteristic of organised coherent struc-

tures. The integral frequency of the coefficients peaks at approximately 40-42Hz for approxi-

mately mode 300 and greater (out of a total of 2700), it is shown that at high mode number energy

is distributed approximately equally among frequencies above 1Hz and much lower values below

this level, characteristic of unorganised purely turbulent flow variations.

Finally POD is conducted on a synthetic data set of an Oseen vortex with simulated precession

and the structure of the spatial modes and patterns in the mode energy levels are shown to closely

match those from the results of the high and low speed PIV velocity measurements.
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Fig. 8.42 Distribution of vortex core locations for synthetic vector fields..
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Fig. 8.43 First four Oseen vortex vector fields with randomly Gaussian distributed vortex centres.
Only one in four vectors shown for clarity and background colour indicates velocity magnitude
(arbitrary units).
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Fig. 8.44 Mean vector field of synthetic dataset. Only one in four vectors shown for clarity.

Fig. 8.45 (left) Percentage mode energy for the first 20 modes and (right) the convergence of mode
energy.

Fig. 8.46 First two synthetic data POD modes φ (1) and φ (2). Only every fourth vector shown for
clairy.
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Fig. 8.47 Synthetic data POD modes φ (3), φ (4) and φ (5). Only every fourth vector shown for clairy.
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Fig. 8.48 Distribution of POD mode energy for the first 10 modes for synthetic datasets represent-
ing high, medium and low swirl ratios.





Chapter 9

Conclusions and Future Work

9.1 Conclusions

The first part of this study focuses on evaluating cross-correlation based PIV vector calculation al-

gorithms. Algorithms were tested against synthetic images depicting Oseen vortex flow enabling

the comparison between imposed and measured particle image displacements. The synthetic im-

age parameters were varied to investigate the sensitivities of each algorithm to each parameter.

The methods evaluated were standard cross-correlation (SCC), multigrid (MGRID), the products

of adjacent correlation functions (CBC), particle image deformation (PID) and an original method

combining PID methods and CBC methods (HPIDCBC). The major conclusions regarding the

investigation into vector calculation algorithms are as follows.

• It was shown that in regions of high spatial gradients the PID algorithms provide much

superior accuracy in calculated vectors when compared to the SCC, MGRID and CBC al-

gorithms. This is due to the deformations of the interrogation regions which compensates

for linear gradients in the particle image displacements.

• In regions of low velocity gradient it is shown that the CBC algorithm performs best of-

fering the lowest error in measured velocity vectors. This is due to the final correlation

function being generated by a greater number of particle image pairs owing to the offsets of

the individual interrogation regions and the near elimination of random noise signals in indi-

vidual correlation functions through the element-wise multiplication of adjacent correlation

functions.

• Combining the results of CBC and PID a new iterative algorithm was developed (HPID-

CBC) where CBC is utilised in regions of low spatial displacement gradients and PID in

regions of high spatial gradients. The new HPIDCBC method is shown to return displace-

ment vectors with a reduced level of error across the full Oseen vortex, and not just in

regions of low or high spatial gradients, when compared to existing methods.

• The new HPIDCBC algorithm, while offering greater accuracy in calculating displacement
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vectors, comes with a high computational cost; taking approximately ten times longer to

calculate individual vectors than SCC.

The second part of the study focusses on applying planar low repetition rate particle image

velocimetry (PIV) and high speed time resolved PIV to the study of vortex flow in a laboratory

generated tornado like vortex (TLV). New analysis methods were developed providing original

data on the structure, spatial stability and turbulence characteristics and their dependence on swirl

ratio of laboratory generated tornado-like vortices. The application of high speed time resolved

PIV gives for the first time, to the author’s knowledge, full field high speed planar velocity mea-

surements where previously high speed time resolved measurements have only been captured at

single points using hot wire anemometry. Also as far as the author is aware, the thesis presents

the first use of the proper orthogonal decomposition (POD) technique to investigate the spatial and

temporal structures of laboratory generated TLVs. The major fluid-mechanical conclusions of the

investigation into laboratory generated TLVs are as follows.

• Swirl ratio is seen to be a genuine non-dimensional number that characterizes the flow as

flows with similar swirl ratios but different axial and circumferential flow rates are seen to

be similar; exhibiting comparable vortex radius and degree of vortex precession.

• It is shown that over the range of swirl ratios investigated there are three distinct flow

regimes:

– At low swirl ratio (S <= 0.008) the flow is dominated by the precession (low spatial

stability) of a small radius single-celled vortex.

– At intermediate swirl (0.008 < S < 0.5) some vortex precession is evident at the lower

swirl end (0.008 < S < 0.08), in this intermediate swirl range, as with the low swirl

range the vortex remains single celled in structure.

– At high swirl ratio (S > 0.5) the effects of vortex precession are minimal (high spatial

stability) with the size of instantaneous vortices approximately equal to that of the

mean flow vortex. In this swirl range it is shown that the vortex has a tendency to

go multi-cellular with instantaneous double and triple-celled vortices present that are

increasingly prevalent at the high swirl end of the range investigated.

• The difference in flow regime between high and low swirl ratios is measured through the

spread of instantaneous vortex core locations and by comparing instantaneous vortex radii

and mean flow vortex radii. At low swirl ratio it is shown that, due to precession, the mean

flow vortex radius is between 2 and 14 times that of the instantaneous vortex radius. At

high swirl ratio it is shown that the mean flow vortex is much more characteristic of the

instantaneous flow vortex as the radius and maximum velocity are equal to within 5%.

• Mean instantaneous vortex velocity profiles with the effects of vortex precession removed
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are shown to closely resemble an analytic Oseen vortex model with increasing accuracy as

swirl ratio is increased.

• Due to the periodic nature of the flow, single point temporally resolved velocity measure-

ments do not have a well defined mean and have large RMS values of velocity fluctuations

which in turn lead to very high turbulence intensity levels. Turbulence intensity is greatest at

the mean flow vortex centre reducing in value as the radial position increases to the bound-

ary of the vortex core region. Outside of the vortex core turbulence intensity is shown to

not vary with spatial position. It is shown how applying a correction to Taylor’s hypothesis

based on a local temporal mean velocity value, much lower local turbulence intensity values

are obtained making it viable to apply Taylor’s hypothesis to convert velocity time-series

data to a function of space and thus allowing the calculation of the integral length scale,

which, due to the TVS being unbounded, cannot be calculated from the spatial velocity

vector data owing to the limited measurement domain. Unlike the integral time scale the in-

tegral length scale is shown to have a much more defined relationship with swirl ratio with a

maximum length scale of 0.8m – 1.0m for S < 0.2 down to 10cm – 20cm for S = 0.979. In-

tegral length scale is at a maximum at the mean flow vortex centre reducing with increasing

radial position.

• The integral time scale of the vortex is shown to be influenced little by swirl ratio but pre-

dominantly by the flow rate of the circulation blowers. When induced circulation was low

(17V supply voltage) the integral time scale is significantly longer than when induced cir-

culation is high (30V supply voltage). Integral time scale is shown to be at a maximum

and approximately constant at all locations within the vortex core region (though differing

depending on the flow configuration) for swirl ratios below 0.5. At swirl ratios close to 1 the

integral time scale is shown to decrease approximately linearly from the mean vortex centre

outwards.

• Velocity spectra of both temporal and spatial (Taylor’s hypothesis) velocity measurements at

a single point are shown to vary only with radial position enabling the azimuthal averaging

of velocity spectra at a particular radius and thus reducing the noise levels in the spectra.

• The frequency of the integral scale structures is linked to the integral time scale and therefore

is dependent on the fan configuration. The integral frequency is shown to be approximately

constant in the region within the mean flow vortex core before increasing outside suggesting

outside of the mean flow vortex core the flow is less organised.

• Integral wavenumber is, like integral length scale, closely dependant on swirl ratio with low

values at low swirl ratio. There is little variation in wavenumber for swirl ratios below 0.2

and above this value the integral wavenumber increases with increasing swirl ratio.

• The dissipation rate of the flow is shown to have well defined relationships with both swirl
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ratio and radial position. As expected the dissipation rate is at a maximum at the mean flow

vortex centre where turbulence intensity is greatest. From the centre of the core, dissipation

rate decreases radially outwards up to the mean flow vortex radius outside of which the

dissipation rate remains constant for any given swirl ratio.

• Calculated Kolmogorov length scales had a maximum value of approximately 0.95mm (S =

0.979) which is considerably below the spatial resolution of the PIV vector data which was

set at 1.25mm. The Kolmogorov length scale is shown to be at a minimum in the centre of

the mean vortex core and at this point varies little with swirl ratio and having a minimum

value of approximately 0.42mm. The Kolmogorov length scale increases radially outwards

to the vortex core radius and once outside varies little with increasing radius.

• POD analysis of a tornado-like vortex was conducted using both low speed and high speed

time resolved PIV data showing well defined relationships between POD mode energy and

mode cumulative energy.

– Mode cumulative energy exhibits distinct flow regimes for low swirl (S < 0.5) and

high swirl (S > 0.5). Individual mode energy content is closely linked to swirl ratio

with three distinct regimes for low, intermediate and high swirl levels.

– Between mode 4 and 15 modal energy content is greatest at low swirl (S < 0.008−

0.01) where the modal energy varies little with swirl ratio. At intermediate swirl ratios

(0.01 < S < 0.5) modal energy content decreases with swirl ratio before increasing

slightly for high swirl ratios (S > 0.5) showing how the dominance of certain coherent

structures is swirl ratio dependent.

– Energy convergence of the POD is shown to be faster than Fourier decomposition with

80% of POD modes containing comparable energy to 90% of Fourier modes.

– Investigation of the temporal POD coefficients shows that the large scale spatial struc-

tures contained within the low order modes have distinct frequency spectra. Peaks in

the spectra of individual mode coefficients are shown to match certain spectral features

of the full velocity data showing that certain flow structures are associated with certain

spectral features of the whole flow. The integral frequency was calculated for each set

of mode coefficients and shows that lower order modes contain low frequency struc-

tures which are characteristic of organised coherent structures. The integral frequency

of the coefficients peak at approximately 40-42Hz for approximately mode 300 and

greater (out of a total of 2700), it is shown that at high mode number energy is dis-

tributed approximately equally among frequencies above 1Hz and much lower values

below this level, characteristic of disorganised purely turbulent flow variations.
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9.2 Future Work

In the present study it was not possible to use the new HPIDCBC algorithm for calculating ve-

locity vectors from the TLV PIV images due to the processing time required. HPIDCBC showed

improved accuracy in calculating displacement vectors from synthetic particle image images. This

algorithm should be made viable, for the analysis of large high-resolution datasets through repro-

gramming in a compiled language rather than in MATLAB as presented.

Further improvements to HPIDCBC could be made by investigating a wider range of image

interpolation algorithms and windowing functions.

The performance of the enhanced normalised median test spurious vector detection algorithm

presented in Chapter 5 should comprehensibly analysed to see if it outperforms the original (West-

erweel) algorithm in increasing sensitivity to spurious data and reducing the number of false pos-

itives.

In the work presented all TLV PIV measurements were recorded in the same vertically located

horizontal plane. The height from the chamber floor from which velocity data is recorded should

be varied to investigate different regions of the flow. Of particular interest is the ground plane

where it is shown in the literature that most of the inflow (significant radial velocity component)

into the vortex occurs. By taking PIV measurements at different locations in the flow and by

applying the analytical techniques presented in this work further insights and a more complete

understanding of the structure and turbulence properties of the TLV will be obtained.

With improved camera storage capacity the temporal resolution of high speed PIV measure-

ments can be increased to capture both low frequency flow information and all information in-

cluding the Kolmogorov scale dissipation range removing the effect of aliasing and increasing the

accuracy of calculated dissipation rates and Kolmogorov length scales. By employing stereo-PIV

three component velocity vectors could be calculated in which the out of plane velocities can be

investigated, this is of high interest as the flow has a significant axial component and this has

remained uninvestigated in the work presented here.
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Appendix A

Energy Spectra of High-Speed

Tornado-Like Vortex PIV Velocity Data

A.1 Energy-Frequency Spectra
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Fig. A.1 Energy-frequency spectra F( f ) for HS-F30, S = 0.137 at varying radial positions ρ .



A.1 Energy-Frequency Spectra 247

Fig. A.2 Energy-frequency spectra F( f ) for HS-M17, S = 0.032 at varying radial positions ρ .



248 Energy Spectra of High-Speed Tornado-Like Vortex PIV Velocity Data

Fig. A.3 Energy-frequency spectra F( f ) for HS-M30, S = 0.235 at varying radial positions ρ .



A.1 Energy-Frequency Spectra 249

Fig. A.4 Energy-frequency spectra F( f ) for HS-L17, S = 0.468 at varying radial positions ρ .
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Fig. A.5 Energy-frequency spectra F( f ) for HS-L30, S = 0.979 at varying radial positions ρ .
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A.2 Energy-Wavenumber Spectra
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Fig. A.6 Energy-wavenumber spectra E(κ) for HS-F30, S = 0.137 at varying radial positions ρ .



A.2 Energy-Wavenumber Spectra 253

Fig. A.7 Energy-wavenumber spectra E(κ) for HS-M17, S = 0.032 at varying radial positions ρ .



254 Energy Spectra of High-Speed Tornado-Like Vortex PIV Velocity Data

Fig. A.8 Energy-wavenumber spectra E(κ) for HS-M30, S = 0.235 at varying radial positions ρ .



A.2 Energy-Wavenumber Spectra 255

Fig. A.9 Energy-wavenumber spectra E(κ) for HS-L17, S = 0.468 at varying radial positions ρ .



256 Energy Spectra of High-Speed Tornado-Like Vortex PIV Velocity Data

Fig. A.10 Energy-wavenumber spectra E(κ) for HS-L30, S = 0.979 at varying radial positions ρ .
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