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Abstract

Train driver scheduling is the problem of finding an assignment of drivers to

cover all train vehicle work, such that cost is minimized while all constraints are

satisfied. Relieving of drivers happens mostly at train stops; in many cases the train

will stop for several minutes, giving rise to a window of relief opportunities (WRO),

but current industry practice is to consider relieving only at the time the train

arrives at the station. This thesis studies an extension of the train driver scheduling

problem to exploit relieving drivers within WROs at times other than the arrival.

While extending the problem in this way may lead to a more expressive model, and

better solutions, it also gives rise to problem sizes too large for existing scheduling

methods.

Two different approaches to solve the problem of driver scheduling with WROs

are presented. In the first, relief opportunities inside WROs are evaluated in terms

of their role in generating solutions unavailable to the relief-on-arrival formulation.

Heuristics based on this evaluation result in instance sizes that are manageable with

current generate-and-select (GaS) methods. Experiments produce new best-known

solutions for some real-life instances of the problem.

The second approach is a hybridized system that generates an initial solution

using GaS on a relief-on-arrival formulation, which is fed into a local search method

running on a full WRO model. This method is then extended by allowing infeasible

solutions to be considered during the search. A novel way of costing infeasible

solutions is introduced, where the cost of an infeasible solution is derived from a

repaired, feasible version of that solution. This strategy is embedded in a local search

framework that alternates between exploration of feasible and infeasible regions,

where infeasibility arises from complex moves that remove undesirable structural

features in the current feasible solution.
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Chapter 1

Introduction

1.1 Rail Transport in the UK

In the mid-nineties, rail transport in the UK was privatized. As of 2007, the rail

infrastructure is owned by Network Rail, and train operations are split into approx-

imately 25 regional franchises, which are awarded by the Department of Transport

(DfT) to private Train Operating Companies (TOCs). The government, through the

DfT, controls many aspects of the rail services provided; in particular, it controls

to a great extent the so-called train service patterns (or service levels), which define

among others origins and destinations of services, and minimum peak and off-peak

frequencies for train services. As an example, we include here an excerpt from a

Stakeholder Briefing Document issued by the DfT in relation to the new East Mid-

lands franchise due to start in November 2007 [19]. Note that although the actual

specification of services in the franchise bid documents is necessarily more detailed

(if only from a legal point of view), it still leaves TOCs considerable room for their

own planning/optimization:

1
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Train service pattern

The timetable from June 2006 will continue to operate from the start of

the new franchise in November 2007, until December 2008. From the

timetable change date in December 2008 the following will operate.

Midland Main Line (MML)

[. . . ] the specification from December 2008 will require the introduction

of a dedicated service between London and Kettering. [. . . ] The off-peak

weekday service on the MML will continue to provide 4 trains per hour to

and from London St Pancras. Additional trains will run in the London

commuter peaks. [. . . ] It is likely extra capacity via train lengthening will

be proposed by bidders to accommodate the anticipated growth.

• The hourly London-Sheffield service will operate as now, however,

[. . . ] the off-peak calls at East Midlands Parkway and Luton stations

will be at the bidders’ discretion.

• The existing hourly fast London-Nottingham service will include a

train portion for Derby, with portions splitting and joining at Le-

icester. The services will run fast between London and Leicester in

the off-peak. The Nottingham portion will run fast; the Derby por-

tion will call at Loughborough, East Midlands Parkway and Long

Eaton.

• The existing hourly Nottingham to London semi-fast service will

operate as now, but with additional calls at East Midlands Parkway

and the Luton call swapped for Luton Airport Parkway.

• A new service will operate between London and Kettering, with in-

termediate calls at Luton, Bedford and Wellingborough.

Long-term operations’ planning for TOCs in the UK is then driven by the need

to implement a timetable of services, including working vehicle and crew schedules,

for the train service patterns agreed between the TOC and the DfT as part of the

franchise bid. The process of going from an agreed level of service to a fully-formed

daily, weekly and monthly set of timetables, vehicle and crew assignment is complex
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and long. In the UK, the processes laid by the DfT and other agencies specify in

detail milestones, deliverables and interactions with various entities over a period

stretching for almost a year before putting a new set of timetables in place.

Conceptually, the planning process is often split into a number of stages that are

executed sequentially. We show these in Figure 1.1. In the first stage –timetabling–

a timetable of services or trips that satisfies the service level agreed is built. In

the next stage, unit scheduling (also called vehicle scheduling), train formations

are assigned to cover those trips. The vehicle schedule specifies the trips for each

vehicle in the fleet, along with other operations such as fueling, and cleaning, along

with supplementary schedules such as for maintenance, stabling at night, cyclic links

between consecutive days, etc. The third stage, crew scheduling, consists of assigning

notional drivers (shifts) to cover the vehicle schedule; other types of crew are usually

also part of this stage, e.g. conductors or catering staff. A crew schedule will usually

span a period of one day of operation, although in some cases this is extended (for

example in long inter-urban services where drivers cannot return to their home depot

within the same day). Finally, the rostering stage deals with specifying the workload

for each individual member of the crew. An individual roster will usually specify

the assignments for between a week to several months’ work. Rostering involves

defining the patterns of work days and rest days, and assigning notional shifts to

individual members of the crew.

This conceptual division of the planning process into stages is also frequently

followed in practice, although the separation may be less strict; also, there is usually

some room for back-tracking or iterating over the stages, particularly between unit

and driver scheduling. It is also worth noting that many of these stages involve active

negotiation with entities that are external to the TOCs. For example, TOCs in the

UK almost always share the rail infrastructure with other TOCs, and they must

negotiate its use with Network Rail. Similarly, crew schedules frequently undergo

revision from the workers’ unions, even if they obey all agreed labour rules.
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timetabling

rostering

driver scheduling

unit scheduling

Figure 1.1: Stages in the planning of rail operations.

1.2 Train Driver Scheduling

In this thesis we will concentrate on the problem of driver scheduling in railway

operations. Driver scheduling is a key stage in planning of railway operations, since

crew costs are frequently the single biggest component of the operating costs of a

TOC. In line with the description of the process of planning of public transport

above, we will use the following definition:

Definition 1 (Train driver scheduling). Train driver scheduling (TDS) is the prob-

lem of assigning crew to cover all work as specified in the vehicle schedule, maximiz-

ing the efficiency of the resulting schedule while meeting all constraints.

Measures of efficiency/cost and constraints are described in detail in Chapter 2.

Notice that although we refer to the problem in terms of assigning drivers, we allow

for other types of crew to be part of the scheduling exercise – throughout this thesis,

we will use the terms ‘driver scheduling’ and ‘crew scheduling’ interchangeably. It

should be clear however that any personnel that is not part of the train crew (e.g.

staff at the ticket offices) is not encompassed in this problem.
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Computational Complexity Driver scheduling belongs to the class of combi-

natorial optimization problems, where the set of feasible solutions is discrete; the

reader is directed to Section 3.1.2 for a formulation of the problem where this dis-

creteness is easy to appreciate. Many authors have shown that crew scheduling

problems belong in general to the class of NP-hard problems. In this thesis, we fol-

low the results of Fischetti et al. [27, 28], who link the bus driver scheduling problem

to the problems of Fixed Job Scheduling with Spread-Time Constraints (FJSS) and

Working-Time Constraints (FJSW), and show that these are NP-hard, effectively

making even the simplest versions of bus driver scheduling NP-hard. Train driver

scheduling is regarded as an extension (or generalization) of bus driver scheduling,

because of the introduction of multiple depots, and more complex constraints. It

can be shown that, in complexity theory terms, bus driver scheduling can be reduced

to TDS, which means that TDS also belongs to the class of NP-hard problems.

The fact that a problem p belongs to the class of NP-hard problems is an almost-

conclusive indication that it is impossible to find an algorithm that guarantees ob-

taining an optimal solution for any instance of p in polynomial time; doing so would

imply proving P = NP , while most researchers in combinatorial optimization would

seem to work under the assumption that P 6= NP . However, it is also true that many

NP-hard problems admit algorithms that produce solutions of good enough quality

on real-life instances, including optimal solutions in many cases; TDS is one such

case. Another important consideration is that even if a problem can be pinpointed

to a specific class from the point of view of complexity theory, different algorithms

will have different behaviours in practice – this observation underlies all applied re-

search in solving NP-complete and NP-hard problems. In particular, research in the

TDS problem is still producing improvements in the solutions obtainable in practice

on real-life instances. As an example, recent work by Kwan and Kwan [56] has been

shown to improve on best-known solutions for several UK real-life instances, and

the algorithm is in regular use by a number of TOCs in the UK.
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1.3 Motivation of the Thesis

Research in crew scheduling, and in particular the TDS problem, has been going

on for over 40 years. Most of the recent work has concentrated on applying new

algorithmic approaches to basically the same underlying model for the problem, with

two main aims: improving the cost of solutions, and handling increased problem

sizes. For example, the Scheduling Group at the University of Leeds has in the last

10 years experimented with Mathematical Programming and Column Generation,

Evolutionary Algorithms, Tabu Search, Constraint Programming, Fuzzy Logic and

Hyperheuristics, among others. Other two active research areas in crew scheduling

are: a) integrated transport scheduling, where consecutive steps in the diagram in

Figure 1.1 are tackled as a single problem (Section 2.1.5), and b) looking at shorter-

term transport scheduling, and especially online re-scheduling, where crew schedules

are adjusted dynamically as they are executed to adjust for disruptions and delays

(Section 2.1.4). However, we believe that there is an area of research in driver

scheduling that has been neglected, which is that of looking for ways to improve or

extend the existing models for the problem, particularly where the extensions may

lead to solutions (driver schedules) that were unavailable on previous models. In

particular, we believe the current models for driver scheduling impose limitations

on the way that drivers are relieved which are for the most part artificial – and

removing them could allow for more expressiveness and better solutions.

In train driver scheduling, opportunities for relieving a driver frequently stretch

over a time interval. For example, if a train stops at a station for several minutes,

most of the period (usually all but the last minute before departure) can be used for

relieving drivers. We will denote any non-empty interval of time that can be used

for relieving purposes a window of relief opportunities (WRO). A WRO can then be

described by a pair of times (start and end time of the interval) and a location. A

common practice among both schedulers and scheduling software is to only consider

relieving at the start of the interval – on WROs arising from train stops, the start

of the interval corresponds to the arrival time of the train at the station. We will

then concentrate on two distinct formulations of the problem in relation to the use

of WROs:



Chapter 1 7 Introduction

Definition 2 (relief-on-arrival formulation). We will call any formulation of the

driver scheduling problem where drivers are only allowed to relieve on train stops

at the arrival time of the train to the station a relief-on-arrival formulation (abbr.

RoA formulation).

Definition 3 (WRO formulation). We will call any formulation of the driver schedul-

ing problem where drivers are allowed to relieve at any valid times within an attended

train stop a WRO formulation. Valid relief times within stops are understood to

satisfy all other problem-specific constraints.

This thesis deals with the extension of the driver scheduling problem to consider

WROs more fully. We call this extension the problem of Train Driver Scheduling with

Windows of Relief Opportunities (TDSW). The main motivations of incorporating

WROs into a model of the train driver scheduling problem are:

It allows the scheduling model to be enriched. Information such as window

length and attendance constraints, for example, allows users to describe better the

real-world situation. A specific example on how this added flexibility allows to

express ways of adding robustness into a schedule which are unavailable on a relief-

on-arrival formulation is shown later in this section.

More efficient schedules could be obtained. Given an instance I of the

scheduling problem, the solution space of a model for I which approximates WROs

(e.g. by restricting relieving to certain times within the WROs) is –all other things

being equal– a subset of the solution space of a model with no approximations;

therefore, optimal solutions in the latter model are always better than or equal to

those obtainable in the former. In Section 2.3.1 we build an instance of the problem

where the optimal solution on the WRO-aware model is strictly better than that of

a RoA approximation. It is worth noting that this is a theoretical property of the

solution sets, and this relation may not hold in practice when the algorithms used

over these spaces are not exact.

Robustness could be enhanced. Although this may be thought of as a special

form of cost reduction, it is worth considering robustness separately; firstly, because
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it is becoming one of the main priorities for train operators, particularly in the UK.

Second, WROs provide for a very specific way of creating buffers which may help

avoid the cascading of delays.

To illustrate how WROs can be used to increase schedule robustness, consider

the example in Figure 1.2. Here, the driver in shift s1 is relieved by the driver in

shift s2. The existence of a 10-minute time window within vehicle v can be exploited

to create a 3-minute buffer for the driver of shift s2, by requiring s2 to start covering

v three minutes before s1 leaves v (the length of the buffer is arbitrary, and could

be set in principle to any other length). Because there is a 3-minute period in which

both s1 and s2 are covering (part of) the WRO, the schedule effectively allows the

driver of s2 to begin its spell on vehicle v up to three minutes late without causing

any disruption to the execution of s1, hence no disruption to the execution of the

whole schedule. This kind of buffer could be easily incorporated into a formulation

for driver scheduling with WROs e.g. by adding a constraint that all relieving within

WROs (that are at least three minutes long) is subject to a minimum overlap of three

minutes. On the contrary, if WROs are modelled as a single < time, location > pair

there is no opportunity to consider the creation of this kind of buffer.

s1
s2

vehicle v

10-min

time window

Figure 1.2: An example on how WROs can be used to enhance robustness. Vehicle v contains a

10-minute long WRO (red lines delimit minutes within the time window). By requiring s2 to start

covering the WRO three minutes before s1 leaves the vehicle, the schedule can absorb a delay of

three minutes of s2 at this relief point without any further propagation.

1.4 Research Questions and Theme of the Thesis

The problem of driver scheduling with WROs has so far been studied in only a

very limited way, and there are many basic questions that have not been tackled
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properly. In this section we describe what we think are the main questions that

need addressing, given the current state of research in the area.

The fundamental questions about any extension or substitute for an existing

model for a problem any researcher would probably want to answer are: is this model

better than the existing ones, and if so, in what way, and under what circumstances?

The comparison between models can be carried out at a theoretical level, at a

practical level, or both. In this thesis we put the emphasis on the impact in real-life

applications; hence, the theme of the thesis is that of investigating whether exploiting

WROs allows to obtain better schedules in practice, on real-life instances.

Still, and as a starting point, a question that has not been answered formally for

the train driver scheduling problem is whether it can be proved that a model that

considers WROs fully can contain solutions that are not available in an otherwise

equivalent relief-on-arrival formulation. Although this is intuitively true, we tackle

this question formally by constructing instances of the driver scheduling problem

where the optimal cost achievable on the WRO formulation is strictly less than the

one on the RoA formulation.

As we move closer to the practical impact of the model, it is important to study

whether there are structural differences between the problem of driver scheduling

with WROs and the one where relieving is done on arrival, and if so what are these

differences. Again, although this analysis could be done from a purely theoretical

point of view, we are interested in finding out how these differences impact on the

application of existing algorithms for the RoA formulation to the WRO formulation.

In the thesis we find that current approaches to solving the TDS problem in real-

life problems break down when applied to their corresponding WRO formulations;

this is likely one of the main reasons why this extension has not received enough

attention in the literature. However, the fact that there are noticeable structural

differences between the two formulations suggests that this structure might be ex-

ploited effectively when designing new algorithms for the WRO formulation. The

central part of this thesis is then devoted to finding and studying new algorithms

that are specific to the WRO formulation, with the aim of improving on the results

that can be obtained with current algorithmic approaches for the RoA formulation.
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1.4.1 Hybridization

Research in hybridization of metaheuristics and other optimization techniques has

gathered considerable momentum recently. For example, the 2007 edition of the

Metaheuristics International Conference (MIC) series included a session for hybrid

methods; in the previous edition (2005), 15 out of the 150 papers presented were

classified by the organizers as related to hybridizations with exact methods.

In their recent overview of metaheuristics in combinatorial optimization, Blum

and Roli [7] present a categorization of hybridization techniques, and make the case

for more research into this kind of approach. They also suggest that there are ‘sub-

tasks’ in the search process where some metaheuristics perform better than others.

In the same sense, is the view of the author that implementing an optimization

technique ‘from the book’ is only necessary when the aim of the research is to

evaluate that specific technique. Instead, when the objective is to solve a given

optimization problem, doing it through the canonical application of an existing

technique is likely to limit the quality of results achievable.

Specifically in the case of the driver scheduling problem, our survey of the litera-

ture in Chapter 3 suggests no evidence that a particular technique or metaheuristic

is clearly best suited for solving the problem. At the same time, there is an exten-

sive body of work in solving the TDS problem in the RoA formulation, particularly

using mathematical approaches based on the set-covering formulation. Even if these

approaches do not work well when applied to the WRO formulation, from a method-

ological point of view it makes sense to make use of or adapt these tools for the new

formulation. Hybridization, as a form of composition, can be a powerful technique

to re-purpose the work on the driver scheduling problem over the RoA formulation

to account for WROs.

From the observations above, we derive a set of criteria that guide the research

conducted in this thesis:

• we do not limit ourselves to the canonical application of one specific technique

or metaheuristic; rather, we use and combine elements of existing techniques

as and when deemed necessary

• we emphasize the reuse of existing research in the driver scheduling problem;
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we give special consideration to hybridization as a means of integrating existing

techniques with new proposals

• hybridization works both at the design and implementation levels – when feasi-

ble, we interface with existing software packages, rather than re-implementing

their functionality

• we note that in order to use hybridization effectively it is essential to under-

stand the motivations, benefits and limitations of each technique or tool

1.5 Organization of the Thesis

We start our thesis by first describing the train driver scheduling problem in detail,

presenting WROs more thoroughly and discussing modeling issues associated with

them. We then construct a minimal instance of the problem where it is easy to

show that the optimal solution involves relieving at points unavailable to a RoA

formulation. We also study the structural differences between the usual formulation

and the one with WROs, and examine the implications of these differences. All of

this is done in Chapter 2.

In Chapter 3 we review the existing literature on the driver scheduling problem,

both with and without WROs. We also present an overview of certain optimization

techniques that we use as a basis of our research in this thesis. We look at the

challenges they set to solve, and compare them with the problems we face when

exploiting WROs. By doing this matching, we can then reinterpret the solutions

they propose in the context of our problem; we extract valuable ideas that guide

our developments throughout the rest of the thesis.

In Chapters 4 to 8 we present original approaches to solving the problem of driver

scheduling with WROs. In Chapter 4 we present a first stab at exploiting WROs

by using the popular generate-and-select approach to solve the driver scheduling

problem without WROs as a starting point to a local search over a WRO formulation.

Experiments with this approach suggest that better schedules can be obtained in

practice by considering WROs; however, those improvements are limited. We also

look at the potential of iterating between generate-and-select and local search phases.
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In Chapter 5 we take a very different approach to exploiting WROs, based on

the observation that most scheduling constraints can be used to determine strict

intervals for the start or end of a spell or shift. Given an instance of the scheduling

problem, these limits can be exploited to heuristically reduce the set of WROs to

be considered, to a point where generate-and-select approaches can be used on the

resulting model. Experiments with this technique show significant improvements on

real-life instances.

We then return to study the use of a hybridized generate-and-select and local

search approach, with the aim of making the local search phase more effective. Ex-

perience on earlier chapters leads us to consider relaxing the constraint that all

intermediate solutions in the search must be feasible. This in turn introduces the

problem of comparing infeasible solutions among themselves, and against feasible

solutions. We tackle these issues in Chapter 6, where we propose and explore a

new methodology to cost schedules containing infeasible shifts, based on repairing

the infeasible schedule into a feasible one, and returning the cost of this feasible

schedule. At the same time, our experiments in Chapters 4 and 5 suggest that the

initial proposals in Chapter 4 make limited use of domain knowledge. In Chapter

7 we look into exploiting domain knowledge in the form of reducing or eliminating

perceived local inefficiencies in the current solution.

In Chapter 8 we consolidate several of the tools developed in earlier chapters

into a local search framework that takes the starting solution using a generate-

and-select approach on a relief-on-arrival formulation, and then iterates between

exploring the spaces of feasible and infeasible solutions. Switching from feasible to

infeasible solution exploration is triggered by the search reaching a local optimum,

and the execution of an inefficiency-correcting move. We conduct experiments on

this proposal, and also suggest and test variations including the use of a reduced

WRO formulation derived from the work in Chapter 5, both during the generate-

and-select phase and/or during the local search phase, and starting the search from

an empty schedule.

We conclude the thesis in Chapter 9 with a summary of results, and a discussion

of open issues and further research questions.



Chapter 2

The Train Driver Scheduling

Problem

2.1 Description of the Problem

In this section we describe the train driver scheduling problem in more detail. We do

so by first defining the inputs to the problem, then discussing the cost function, and

finally describing the constraints most commonly enforced in practice, and where

they arise from.

2.1.1 Inputs

Vehicle schedule, relief opportunities The main output of the vehicle schedul-

ing phase, a vehicle schedule is usually represented as a set of vehicle blocks, each

of which indicates the trips to be made by a given vehicle over the day, along with

other operations such as fueling, cleaning, preparation (putting the train in a state

that a driver can start driving it) and disposal (setting the train in a state that is

safe for leaving unattended, when finishing the day). Unless specified, all trips have

to be covered by a driver; some of the other operations, such as preparation and

13
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disposal, are also usually carried out by drivers, before driving or leaving the train.

Figure 2.1 shows a schematic representation of a vehicle block. Vehicle blocks

are annotated with relief opportunities and windows of relief opportunities, which

–as discussed in Chapter 1– are (time, location) points during the operation of the

vehicle where it is feasible to change or relieve drivers. We call the stretch of driving

work between two consecutive relief opportunities in a vehicle block a piece of work.

Most if not all relief opportunities arise either when a train stops at a station, or

when a train is in a depot. Not all train stops are relief opportunities; some will be

only used for the purposes of passenger-travel of drivers, and some will not be used

at all for driver scheduling. Relief opportunities play a key role in driver scheduling.

Throughout this thesis, we will study how relief opportunities can be better modelled

and exploited in the context of driver scheduling.

relief opportunitywindow of relief opportunities

A AB C B DD

0530 0626 − 0628 0841−0843

P

0906−0918 0930 1012−1015 1103

time

location

piece of work

passenger−only stop

Figure 2.1: Schematic representation of a vehicle block.

Labour agreement rules A legal schedule must satisfy labour agreement rules

that are usually determined by local practice, as agreed between the TOC and the

unions, as well as government regulations. We describe the constraints derived from

labour rules in detail in Section 2.1.3.

Route and traction knowledge Complex operations may be such that their

vehicle fleets contain more than one vehicle or traction type. Different rules may

apply to different traction types, including restrictions on which drivers can be

assigned to each type; we call this extra information traction knowledge. Similarly,
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drivers may be allowed to drive only those sections of the network they are trained

to operate on, and have maintained a minimum frequency of driving over them; we

call this route knowledge. Often, TOCs and their schedulers find it useful to define

associations between shift ‘classes’ and routes / traction types, such that only drivers

of specific classes will be allowed to drive certain routes / traction types; in this case,

it can be useful to think of traction and route knowledge input as represented by

binary matrices, with one row per shift type and one column per traction type or

route, with a 1 in position i, j indicating that a shift of type i can be assigned to

cover route or traction j. Limits on the number of shifts of each type in a schedule

can be established based on the skills of the staff available to the TOC (taking this

approach to the extreme, each real driver in the TOC could be associated to an

individual shift type, but this is usually not feasible because the workforce is not

fixed).

2.1.2 Output and Objectives

Structure of a schedule The main output of the driver scheduling phase is a

driver schedule, which is a set of driver shifts. Figure 2.2 shows a schematic repre-

sentation of a schedule of four shifts, covering a vehicle schedule of three vehicles.

Each shift is usually described as a sequence of 1 or more spells, where each spell is

an uninterrupted sequence of work on the same vehicle. In general, each shift will

be composed of not more than four or five spells, although in some cases it may be

useful to concentrate as much of the preparation and disposal operations to a few

drivers, whose shifts will then include many more spells than usual.

For a schedule to be a valid solution to the problem, all pieces of work must be

covered by at least one driver. Covering of a piece by more than one driver is called

overcovering. Although overcover may not be desirable in itself, overcover pieces do

not make a schedule infeasible (since given any overcovered piece of work, all but

one driver can always be assigned as passengers).
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shift 3, spell 1 shift 4 (1 spell)

shift 2 (1 spell)shift 1, spell 2

shift 3, spell 2

DB AA

A A C B D

D BCBA

B

vehicle 1

vehicle 2

vehicle 3

shift 1, spell 1

Figure 2.2: Schematic representation of a four-shift driver schedule.

Objective function The most commonly used indicators of the cost of a schedule

S (cost(S)) with shifts s1, . . . sk are

(a) the number of shifts in S:

cost(S) = |S| = k (2.1)

(b) the sum of individual shift cost c(s) for every shift s in S:

cost(S) =
k∑

i=1

c(si) (2.2)

(c) a combination of the two above:

cost(S) = W1

k∑
i=1

c(si) + W2|S| (2.3)

where W1 and W2 are fixed weighting constants.

In this context, the objective of the driver scheduling problem is to build a feasible

schedule S (i.e. one that meets all the constraints) that minimizes cost(S).

Notice that while the cost c(s) will usually be driven by the overall amount of

hours worked or paid to the driver of shift s, it may also include other elements such

as penalties for undesirable attributes in s (e.g. a shift requiring a taxi connection

between two consecutive spells). The same also applies to the overall schedule cost,

which might include schedule-level penalties (for example, for a schedule requiring

the opening of a specific canteen for mealbreak purposes).
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In some approaches to solving the driver scheduling problem, the cost function

is augmented with other terms, for example to penalize certain constraints when

violated, or to force certain properties on the solutions (e.g. no overcover). This

is done with the aim of helping the algorithms find better solutions, or find them

more quickly. However, these are part of the solution to the problem, rather than

its description, and as such will not be covered here.

On the effect of the choice of cost function on the optimization problem

When the cost function in use is based on the size (i.e. number of shifts) of the

schedule, the set of possible values for the function is quite limited; for example, a

daily schedule for a UK operator usually contains between 50 and 300 shifts. We

would expect a competitive search algorithm for the problem to be within 10–15%

of the optimal schedule size soon after starting the search. This means that the

number of possible function values throughout the crucial part of the search is

extremely limited – if the optimal schedule is expected to be of around 100 shifts,

an optimization is expected to spend most of its time evaluating solutions whose

cost is in a range of only about 10 distinct values, and even fewer when close to the

optimum. This creates a real problem for any algorithm that is based on iteratively

improving a solution, since it is very difficult to differentiate solutions in terms of

their cost.

Common ways of tackling this problem in optimization include ‘smoothing’ the

cost function by augmenting it with other (artificial) measures of the quality of a

solution, which are designed to be smooth. However, it must be noted that these

extra terms are not directed by a need of the user of the solution, and hence may in

principle even prevent certain good-quality solutions from being found; for example,

Equation 2.2 is not a good proxy for Equation 2.1, as e.g. shifts with a short spread-

over tend to be inefficient for Equation 2.1 but are generally useful when optimizing

on Equation 2.2. Fortunately, most of the times the TOC will be interested in a

combination of schedule size and total shift cost, which allows search algorithms to

work on smoother landscapes.

Most experiments in this thesis will be conducted on the cost function in Equa-

tion 2.3, which combines both measures. Some experiments in Chapter 8 will be
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carried on the objective function in Equation 2.2, i.e. the sum of shift costs only.

Schedule Robustness

In the last few years, and particularly in the UK, the cost of a train driver schedule is

increasingly being assessed by its robustness, which can be defined as the capability

of a schedule to withstand operational disruption. Disruptions mainly take the

form of delays/cancellations of train services (e.g. a train not available at the time

defined in the schedule), and delays/cancellations in driver resources (e.g. a driver

not available to drive a train unit at the time defined in the schedule). Causes for

these delays are multiple, from signaling problems that affect the execution of the

vehicle schedule, to drivers being off sick.

Alterations to the vehicle or driver schedule can feed on themselves (and on each

other), causing more alterations on later stages of the execution of the schedules,

triggering what is known as a cascading of delays – a situation very well known by rail

commuters in this country. Therefore, one of the main ways of measuring robustness

in a static driver (or vehicle) schedule is by evaluating or estimating its capacity to

absorb delays and avoid their propagation. As of today, research in the area is still

at the point of determining which measures of robustness are most suitable, both in

terms of their correlation to actual robust schedules as perceived by operators and/or

the general public, and in terms of their applicability to existing computational

approaches to solve these problems. As an example, Yen and Birge [86] devise

a stochastic airline crew scheduling model along with a solution methodology for

integrating disruptions into the evaluation of crew schedules. We introduce specific

measures of robustness for train driver scheduling in Section 4.2.2. Other models

for assessing disruptions appear in the context of online re-scheduling, e.g. Walker

et al. [78], and it is likely that these can also be adapted to assess static schedules

during a long-term crew scheduling exercise.

Multi-objective optimization

Most optimization problems are such that there is a number of objectives that

should ideally be optimized simultaneously. For example, the cost function formula-

tion in Equation 2.3 specifies two objectives (total cost and schedule size). Similarly,
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TOCs are increasingly faced with the usually conflicting objectives of minimizing

the operating cost the schedule, in terms of man-hours paid, while maximizing its

robustness. There is considerable work in the literature on transport scheduling as

a multi-objective optimization problem, although mostly within airline operations;

for example, Ageeva [2] discusses the tradeoff between robustness and optimality

in the context of airline (vehicle) scheduling, and proposes methods to incorporate

robustness into the model. Ehrgott and Ryan [23] present a (cost, robustness) bicri-

teria airline crew scheduling model, and generate Pareto-optimal crew schedules on

their formulation.

In this thesis we will mostly restrict ourselves to single-objective formulations of

the problem. When dealing with more than one objective simultaneously, we will

either use a weighted formulation like that of Equation 2.3, or rely on a sequential

optimization on the different objectives (e.g. optimize schedule size first, then total

man-hours).

2.1.3 Constraints

In the research community in combinatorial optimization, constraints in the prob-

lem of train driver scheduling are generally regarded as very difficult to satisfy.

Adding constraints to a problem will usually make the space of feasible solutions

smaller. However, algorithms that rely on iterative improvement, and in particular

local search algorithms, might find it harder to generate feasible solutions in the

neighbourhood of the current solution. Throughout this thesis we will discuss in

more detail the effect of constraints on local search approaches for the train driver

scheduling problem.

Shift-level Constraints

Individual shifts are subject to a number of constraints. The most basic constraint

derives from the recognition that the driver is a human being:

• a driver cannot be assigned to cover more than one piece of work simultane-

ously

Many constraints on individual shifts arise from the labour agreement; these include
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• The restriction that a driver must start and end (i.e. sign on and sign off) its

daily shift at the same depot; there are some exceptions to this rule, e.g. in the

now-finished GNER operations on the East Coast Main Line, where drivers were

sometimes required to do overnight stays in a city far away from the sign-on

point.

• The spreadover, which measures the time elapsed between sign-on and sign-off

in a shift; for example, a full-time shift may have a maximum spreadover of 9

hours, while for a part-time shift it might be 5 hours instead.

• The total working time, which may differ from the spreadover if not all time

in a shift (e.g. mealbreaks or non-driving time) is classified as working time.

• The spell length, which controls the amount of continuous driving time; for

example, a driver about to reach the maximum spell length must either finish

its shift, or take a break in driving.

• PNBs: constraints on spell length give rise to periods or rest between spells;

these are usually called PNBs (Physical Needs Break!) or mealbreaks; con-

straints in the labour agreement may control their number, length and location

or separation within a shift.

• The joinup time, which is the time elapsing between the driver leaving a train

and taking the next train (in the event that no PNB or mealbreak takes place);

minimum joinup times are sometimes enforced to add robustness to the sched-

ule.

• Minimum travel times between particular pairs of locations; these may also be

used to increase robustness

• Restrictions on sign-on and sign-off times (e.g. through valid intervals for

sign-on and sign-off). These are usually associated with particular shift types,

and may be used to control the distribution of shifts in a schedule throughout

the day.

Other constraints include route and traction knowledge, as discussed in 2.1.1. In the

same way as route and traction knowledge, all shift-level constraints related to the
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labour agreement can in principle be fine-grained, by associating different values

to different shift types. For example, a shift type ‘diesel’ (which would only be

able to drive diesel traction types) could eventually be assigned a shorter maximum

spreadover to compensate for the perceived extra effort involved in driving a diesel

engine, as opposed to driving an electric one.

Schedule-level Constraints

Apart from constraints that govern the validity of individual shifts, schedules will

also usually be subject to constraints that involve the set of shifts as a whole. Ex-

amples of usual schedule-level constraints are:

• capping of the number of shifts belonging to a specific depot; this constraint

may be determined by patterns in geographical availability of drivers, or may

respond to restrictions in infrastructure (e.g. the size of a depot canteen)

• composition of the schedule in terms of full-time vs. part-time shifts (e.g. no

more than 30% part-time shifts)

• maximum average shift length per depot

2.1.4 Short-term Scheduling and On-line Re-Scheduling

In this thesis we concentrate on long-term planning of transport operations: sched-

ules obtained through these methods are expected to be available usually months

before their actual implementation. However, transport planning in general and

driver scheduling in particular are also subject to shorter-term requirements. In

crew scheduling, these are frequently categorized into short-term scheduling and

online re-scheduling.

Short-term scheduling is necessary –at least in UK railway operations– in re-

sponse to either engineering work in the rail infrastructure, special events (e.g. the

2005 G8 Summit in Gleneagles), or major disruptions due to e.g. flooding. Although

details are different in each case, in general short-term planning involves considerable

short-term alterations to service timetables, vehicle schedules and driver schedules.

The objectives in short-term scheduling are usually less related to cost, and more to
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minimizing (as much as possible) changes to the existing assignments (particularly

in the case of timetables). Hence the cost function has to be adapted to incorporate

measures of change in relation to existing schedules. The amount of time available

to produce the new timetables and schedules will obviously depend on the causes,

and it will usually range from a couple of months (pre-planned engineering work)

to becoming online re-scheduling, e.g. when flooding occurs. Balancing similarity

between previous and new schedules with efficiency is a delicate issue. Kwan et al.

[54] describe a ‘minimum-change’ approach, where shifts in a pre-existing schedule

are added to the set of candidate shifts with a cost of zero, so that they will be

artificially favoured by the selection phase.

Online re-scheduling occurs when there is disruption to the execution of the pre-

planned daily schedule, e.g. due to delays, signalling failures, or a driver calling in

sick. As with short-term scheduling, re-scheduling can involve service timetables,

and vehicle and crew schedules. The main difference between short-term scheduling

and online re-scheduling, apart from the timeframe for obtaining new solutions,

is the quality and nature of information available: while in short-term scheduling

information is likely to be stable and well-known, online re-scheduling often suffers

from unreliable information, which is also short-lived in nature as the disruption

progresses or spreads across the network. As with short-term scheduling, minimizing

change is important. Walker et al. [78] discuss models and methods for real-time

recovery from disruptions which generate alterations to the train timetable and crew

schedules simultaneously.

2.1.5 Integrated Vehicle and Crew Scheduling

In integrated transport scheduling, two or more consecutive stages in operations

planning (Figure 1.1) are solved together as a single problem. Within this area,

recent research efforts have concentrated on integrating vehicle and crew scheduling,

mostly in the airline and bus industries. The main motivation for solving these

stages as a single problem is to obtain increased efficiency. In his PhD thesis [45],

Huisman states that this increased efficiency is due to the fact that crew costs

dominate vehicle costs, and that the feasibility of a crew schedule is much more

restricted than that of a vehicle schedule. It is worth noting that an integrated
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approach may however be more difficult to implement for a TOC since it involves

negotiating two sets of decisions (vehicle and crew assignments) simultaneously with

most likely independent entities.

Because most of the recent work in integration of vehicle and crew scheduling is

based on column-generation approaches, the reader is referred to Section 3.1.5 for

an overview of related work.

2.2 Modeling of WROs

2.2.1 Attended and Unattended WROs

When a train stops at a station, it is sometimes possible to leave the train unattended

(i.e. unmanned); we call such a WRO an unattended WRO. This can be exploited

to make the schedule more efficient –especially if the train stops for a long period of

time– since the work to be covered can be reduced by not covering the train with a

driver while the train is stopped.

In order to leave a train unattended, drivers must perform a set of predefined

actions to secure the train whilst unattended and to start it up again shortly before

the train departs again. These operations take a non-negligible amount of time to

execute; for example, one UK operator allows drivers two minutes when leaving a

train (‘immobilizing’) and five minutes when resuming driving (‘mobilizing’). This

means that the choice of leaving a train unattended is only feasible when the stop

is long enough, e.g. more than seven minutes in this case (in many cases these

mobilization/immobilization times are longer).

The scheduling system we will compare to and integrate with on this thesis,

TrainTRACS (Section 3.1.7) allows users to specify unattended WROs; the system

can then use an unattended WRO u in one of two ways:

1. u is not used to relieve drivers. In this case, the same driver covers all of u

and both pieces of work at the sides of u; the train remains attended during

the stop (and no mobilization or immobilization operation will be carried on

u during the execution of the schedule).

2. A relief takes place in u, and the train remains unattended during the stop.
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The driver leaving the train immobilizes it before leaving, and the driver re-

lieving him mobilizes the train before departure.

While this model is sufficient to exploit WROs that can be left unattended in the

sense of not covering the stop, it also omits a third option, namely that of leaving the

train attended during the stop and relieving drivers at any given point within the

stop. Note that relieving while leaving the train unattended forces the driver leaving

the train to do so only after immobilizing, which could be too late to take another

train later (and similarly the driver taking up the train is forced to arrive at the train

in time to perform the mobilization). Since mobilization and immobilization are only

required if the train is effectively left unattended, the restrictions on relieving times

just described do not apply when the train is left attended, and therefore omitting

the third option formally limits the schedules that can be generated.

Nevertheless, in this thesis we treat unattended WROs in the same way that

TrainTRACS does, i.e. we will not consider the third option described above. We do

so mostly because the two options supported by TrainTRACS are usually adequate

enough for exploiting unattended WROs, and in any case the time needed to immo-

bilize and mobilize a train usually makes unattended WROs a small fraction of all

the stops. Hence we believe that restricting our study to attended WROs does not

affect the results or applicability of our research significantly, while simplifying the

models and implementation.

2.2.2 One-minute expansion of WROs

Many mathematical models for events that can occur within a time window [ts, te]

use a variable t to represent the time at which the event occurs, then bound the

value of t through two inequalities,

ts ≤ t ≤ te

In general, TOCs in the UK use the minute as the smallest unit of time for schedul-

ing purposes (although some work on 30-second units). Allowing for drivers to be

relieved at a non-integer number of minutes (or half-minutes) would not then make

a model more general, since in practice relief times obtained on this model would
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have to be adjusted to minutes or half-minutes. Hence if t is specified at a minute

level, the above formulation is equivalent to

t ∈ {ts, ts + 1, . . . , te}

Although the two formulations describe the same sets of ROs, they can be seen

to represent different ‘views’ on what WROs provide: the first one related to the

concept of an interval of time where the driver can be relieved, the second one

suggesting a discrete, contiguous set of relief times that can be used for relieving a

driver. Throughout this thesis we will take the latter view.

Following from the view of a WRO as a set of contiguous relief times, a possible

representation for a WRO at location l starting at time ts and ending at time

te = ts + k is that of a set of k + 1 relief opportunities of the type < ts + i, l >, i =

0, . . . , k. These ROs would delimit pieces of work that are one minute long, and

have the same rules regarding covering by drivers than all other pieces of work. We

call this formulation a one-minute expansion of WROs:

Definition 4 (1-minute WRO expansion). We call the representation of a WRO w

as a set of 1-minute-apart ROs a 1-minute expansion of w. By extension, we call

the formulation of a TDSW instance I where all WROs are represented through

one-minute expansions a 1-minute expansion of I.

2.3 Solving the Problem of Train Driver Schedul-

ing with WROs

In the remainder of this chapter, we look at the structure of the TDS and TDSW

problems, and give an initial insight into how WROs may help in obtaining more

efficient schedules, and why the methods that are designed for the RoA formulation

may break down when used in a WRO formulation, e.g. by applying the same

methods over a 1-minute expansion of WROs as described in the previous section.
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2.3.1 An Example on the Limitations of the RoA Formula-

tion

In this section, we show that considering WROs in the scheduling model may allow

for strictly better solutions to be produced. We do so by building a minimal instance

of the problem, where it is easy to see that the (unique) optimal solution with WROs

is strictly better than the (unique) one on the RoA formulation.

The example is built using three vehicles. Figure 2.3 shows vehicle work for the

three vehicles, and the optimal schedule when WROs are considered. Work for each

of the vehicles v1, v2, v3 is formed of two pieces of work; vehicles v1 and v3 contain

WROs at 11.00–11.01 and 10.59–11.01 respectively.

��

��
��
��
��V3
10.59 - 11.01 14.39

11.01

07.49

s2s3

s3

11.00 - 11.01 14.4508.00

s1

15.0007.40

s1s2

V1

V2

Figure 2.3: A 3-vehicle instance of the problem, with WROs.

Under the conditions that (a) maximum shift spreadover1 is seven hours, and (b)

travel time between relief points is zero, the optimal schedules in the 1-minute WRO

expansion and the RoA formulations contain 3 and 4 shifts respectively. This can

be shown by observing that the total work on v2 is over 7h and therefore to achieve

a 3-shift schedule, work on v2 must be split up (i.e. the driver on v2 must be relieved

at 11.01). With RoA, the ROs are 11.00, 11.01, 10.59 on v1, v2 and v3 respectively.

The driver on v2 could be relieved by either that on v1 or v3, but then he would be

too late to start the second portion of work on either v1 or v3 and therefore an extra

driver would be needed. It is also easy to see that if time is discretized in 1-minute

intervals, then the optimal schedule for this instance on each model is unique. The

unique optimal schedule on the 1-minute expansion is:

1the maximum total shift time from sign-on to sign-off
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S1: v1 08.00 – 11.01

v2 11.01 – 15.00

S2: v2 07.40 – 11.01

v3 11.01 – 14.39

S3: v3 07.49 – 11.01

v1 11.01 – 14.45

while the unique optimal schedule for the RoA formulation has the following four

shifts:

S1: v1 08.00 – 14.45

S2: v2 07.40 – 11.01

S3: v2 11.01 – 15.00

S4: v3 07.49 – 14.39

This minimal example proves that –at least on some instances– the solution space

for the RoA formulation will not contain any of the optimal solutions for the original

scheduling problem, and so any algorithm that searches this space will unavoidably

lead to sub-optimal solutions.

We built this example so that the optimal schedule for each model is unique; we

also did it so that both solutions differ in all of their shifts (and in fact only share a

single spell). Moreover, this approach can be extended to create examples involving

more vehicles and requiring more shifts on the optimal solutions, without losing any

of the properties described. All of this would suggest that the gains available from

a full consideration of WROs may require a very extensive transformation, which

would be difficult to obtain from solving local, independent subproblems.

A considerable part of this thesis will be devoted to studying methods for building

an optimal solution on a WRO formulation by starting from an optimal solution for

the RoA formulation. In this context, the example above –and the fact that it

can be extended to bigger instances– suggests that the problem of transforming an

optimal solution on an approximated model to an optimal solution for the WRO
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formulation may effectively be as hard as the full driver scheduling problem for

WRO formulations.

2.3.2 Structural Differences between the RoA and WRO

Formulations

Establishing the existence of differences in structure between two formulations of a

problem is very important as this can be used to characterize them and relate them,

helping answer questions as essential as whether one formulation is a generalization

of the other. In turn, this helps evaluate whether existing algorithms for a formula-

tion can be reused for a different formulation, and if so whether any adaptation is

needed to reuse them. In this section we study the differences in structure between

the sets of ROs derived from a RoA formulation and those obtained when consid-

ering WROs. We will consider a ‘real-world’ problem instance IR, and two sets of

ROs Rroa and Rwro implicit on the RoA and WRO formulations for IR, when using

a 1-minute expansion of the WRO formulation as discussed in Section 2.2.2.

A first immediate observation is that |Rroa| ≤ |Rwro|. Moreover, |Rroa| = |Rwro| if
an only if IR contains no WROs. This holds for any instance of the driver scheduling

problem. A look at real-life instances of the problem (e.g. those in Table 5.1) shows

that usually |Rwro| is more than double |Rroa|. This in principle already separates

the two formulations in terms of the feasibility of solving the problem in practice,

since the size of the solution space is in general exponential in the number of relief

opportunities.

In our opinion, the second crucial difference between the sets Rroa and Rwro is

the way in which ROs within those sets are distributed in time and space. It is

important to consider this aspect carefully, as the implications are central to any

attempt at solving the driver scheduling problem with WROs. We claim that the

distribution of relief opportunities is completely different in Rroa and Rwro, because

of the way new ROs in Rwro cluster together, to the point where most algorithms

designed to solve the driver scheduling problem in the RoA formulation will not be

suited to deal with the extension to consider WROs.

To investigate this, we took a real-life instance I from Wessex Trains and
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computed first the time distances between consecutive relief opportunities in a

vehicle, for all vehicle work specified in I, under the relief-on-arrival formulation.

|Rroa| = 809. Figure 2.4 shows a histogram of these distances, at 5-minute intervals

between 0 and 120 minutes (which account for more than 96% of all distances).

We also run a curve-fitting package (available online at www.zunzun.com) that

fitted the data from the histogram using least-squares, for more than 100 different

functions commonly used in experimental sciences. The best fit was achieved with

a Gaussian function, i.e. a function of the form

f(x) = ae−
(x−b)2

2c2 (2.4)

where a defines the height of the Gaussian peak, b controls the position (x-value)

of the center of the peak, and c is related to the concentration of the distribution

around the peak. In this fit, b = 54m7s (54 minutes and 7 seconds); with distances

above 120 minutes considered, the mean sample value is 56m5s instead.

Although it is beyond the scope of this thesis to analyse the ‘real-world’ motiva-

tions for the distribution of train stops, we can argue that a Normal distribution of

distances between relief opportunities is to be expected: time distances in the RoA

formulation are very strongly correlated to physical distances between stations in

the underlying rail network; in turn, train stations (and hence relief opportunities)

would often be ‘evenly’ spaced, the spacing being subject to possibly Gaussian noise

in the exact spatial distribution of population centres / town centres. The existence

of peaks that do not correspond to the peak of the Gaussian fit could be explained

by the fact that rail networks will usually have an uneven concentration of services

throughout their physical network (since some origin-destination pairs have more

passenger demand than others, for example), and this translates into some pairs of

consecutive trips appearing more frequently than others in the specification of vehi-

cle work. As an aside, it is worth noting that the distance between two consecutive

relief opportunities is also the length of the piece of work delimited by them.

We repeated the analysis above for the WRO formulation. For this test, unat-

tended WROs were also expanded, resulting in |Rwro| = 6854 (|Rwro| ≈ 8.47|Rroa|).
The corresponding histogram of distances between consecutive ROs is shown in Fig-

ure 2.5. In this case, more than 80% of the distances are smaller than 5 minutes; it
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is clear that the data cannot be explained by a normal distribution. Moreover, there

is no meaningful probability distribution that would explain the data by itself2. In

our view, any explanation of this distribution would need to consider ROs arising

from WROs separately from the ones arising from the relief-on-arrival formulation.

Discussion The experiments above make it clear that introducing ROs within

WROs into the problem changes the distribution of relief opportunities dramatically.

Throughout this thesis we will see that this difference is at the center of the need

for algorithms that tackle ROs within WROs explicitly, as opposed to considering

them the same as non-windowed ROs in the model.

It is interesting to see that, as far as we know, none of the literature on TDS

studies the distribution of lengths of pieces of work in real-life instances explicitly.

However, it can be argued that when no explicit assumption is made on the distribu-

tion of a random variable, the implicit assumption is that the distribution is normal.

Hence, we could say that the assumptions implicit in the literature would match our

empirical observation that these lengths actually appear to be distributed normally.

On the other hand, any approach to solving the driver scheduling problem on the

WRO formulation that treats ROs within WROs as any other RO, and considers

the (1-min) piece between two consecutive ROs within WROs a piece of work like

any other, would be wrong to assume (implicitly or explicitly) that the distribution

of piece lengths is normal. As an introduction to the issue from the point of view

of algorithms, consider a hypothetical algorithm to solve the driver scheduling prob-

lem on the RoA formulation. This algorithm works by first constructing a feasible

solution, and then iteratively selecting a piece of work randomly from the set P of

all pieces in the problem instance, removing it from the shift that is currently cov-

ering it (assuming no overcover), and evaluating re-assigning it to some other shift

in the schedule. In the Wessex problem instance described earlier, this would mean

that on each ‘move’ this algorithm would be re-assigning on average approximately

56 minutes of work on each move (the amount of work moved having a Gaussian

distribution around that value). Consider now a modification of this algorithm for

2A Gaussian fit is still relatively descriptive of the sample data if all distances below 5 minutes

are removed, although the least-squares fit fails to explain the second small peak around 65 minutes
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the WRO formulation, which consists of adding all ROs within WROs as new ROs,

and considering the space between two consecutive ROs within a WRO a separate

piece of work. If we apply the same algorithm, 8 out of every 10 moves would be

re-assigning less than 5 minutes of work.

Based on the analysis presented in this section, and the study of the literature

presented in Chapter 3, and more specifically in Section 3.2, the proposals for tack-

ling the driver scheduling problem with WROs in this thesis will in most cases (and

when under our control) consider relief opportunities arising from WROs –and the

work in between them– separately from relief opportunities present in the relief-on-

arrival formulation.
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Figure 2.4: Histogram of time differences between consecutive relief opportunities in the relief-on-

arrival model (Wessex Trains), along with a fitted Gaussian function.
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Figure 2.5: Histogram of time differences between consecutive relief opportunities when considering

WROs as sets of 1-minute-apart ROs (Wessex Trains).



Chapter 3

Literature Review

3.1 Solving the Crew Scheduling Problem

Crew scheduling in public transport has been the subject of considerable research

in the last forty years. A number of conference series are directly or indirectly

related to the study of the problem. Chief among them is the series of International

Conferences on Computer-Aided Scheduling of Public Transport (CASPT), which

started in 1975 and is held roughly every three years; selected papers from these are

available in [42, 77, 81, 15, 22, 16, 68, 82]. Other conference series, such as PATAT

[11, 9, 10] and MIC [46] usually include tracks specific to transport scheduling.

In this chapter we introduce the main computational approaches to solving the

public transport crew scheduling problem. This is presented from a historic perspec-

tive, highlighting past and current research trends. Other surveys in the literature

include Wren and Rousseau [84], who cover the bus driver scheduling problem, in-

cluding commercial packages; this however only spans work up to 1993. Kwan [55]

presents a more recent review on bus and train driver scheduling, concentrating on

current algorithmic approaches; Gopalakrishnan and Johnson [38] provide a review

on airline crew scheduling.

Notice that, unless specified otherwise, all work described in this Section tackles

33
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the problem in the relief-on-arrival formulation, i.e. the TDS problem, rather than

TDSW.

3.1.1 Heuristics

According to Wren and Rousseau [84], most computerized crew scheduling systems

up to the late 1970’s were based on heuristics (many of which were attempts to mimic

a rule used by human schedulers), their suggestion being that although researchers

knew that the problem could be formulated with integer linear programming, the

technology at that point in time didn’t allow for problems of reasonable size to be

solved with that kind of approach.

As mathematical programming took over, the use of heuristics subsided, although

they still played a role in complementing mathematical approaches, or helping reduce

the problem sizes so that the mathematical approach could find a solution in a

reasonable amount of time. This is still true of many academic and commercial

crew scheduling tools – we will see that no mathematical approach presented so

far (including those involving column generation) has been able to solve large-size,

real-life crew scheduling problem instances without incorporating heuristics on at

least one of the components of the system.

3.1.2 Generate and Select

The crew scheduling problem, along with some related problems in transportation,

have been successfully modelled using integer linear programming. A frequently

cited unified framework for many routing and scheduling problems is proposed by

Desaulniers et al. [20].

The most widely used approach to solving the problem in practice is the so-

called Generate-and-Select (GaS) approach. In the first phase of this algorithm

–the generation phase– a (usually very large) set C of candidate shifts is built. These

shifts are valid according to labour agreement rules, and cover all of the vehicle work

(usually many times over). Additional constraints such as minimum spell length are

frequently added to limit the size of C; note that these constraints are artificial, in

the sense that violating the restrictions they impose would not necessarily make the
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shifts invalid in terms of the labour agreement. In the selection phase, a minimal

cost subset S ⊂ C such that all vehicle work is covered is selected to form a schedule.

The Set Covering Formulation

The selection phase (for the formulation where the schedule cost is described by

Equation 2.3) can be described mathematically using a set covering model:

min
∑n

j=1(W1cj + W2)xj

s.t.
∑n

j=1 aijxj ≥ 1, 1 ≤ i ≤ m

xj ∈ {0, 1}, 1 ≤ j ≤ n

(3.1)

where n = |C| is the number of candidate shifts, m is the number of pieces of work,

xj indicates whether shift j is selected (xj = 1) or not (xj = 0), cj is the cost of

shift j, and aij is 1 if and only if shift j covers the piece of work i. W1 and W2 are

used to weight the different objectives (total cost and number of shifts).

Some domain-specific constraints, and in particular all schedule-level constraints,

will appear as added constraints to the model above; for example, the number of

shifts with drivers from a specific depot k can be capped to bk by defining a vector

dk, |d| = n, such that dk
j = 1 if and only if shift j belongs to depot k, and then

adding the constraint
∑n

j=1 dk
j xj ≤ bk.

Notice that this formulation hides the structure of individual shifts – therefore,

constraints governing the validity of individual shifts are not explicit in it. However,

these constraints will determine the structure of all shifts in the pool, which is

represented in the mathematical formulation through the matrix {aij}. Likewise,

individual components of the cost of each shift sj are encapsulated in the coefficient

cj. It is worth remembering that any computational approach that is strictly based

on this model will not have access to the ‘hidden’ information described here.

An important aspect of this model is that it allows for pieces of work to be

covered by more than one driver simultaneously; we call this overcovering a piece of

work. This feature of the model may seem counter-intuitive, especially since many

early approaches to driver scheduling actively worked on discouraging overcover.

However, set partitioning is a more constrained problem than set covering, and it

is generally regarded as more difficult to solve. Crucially, allowing for overcover is
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not problematic from a modeling point of view, since when executing a schedule,

a piece of work p that is covered by two or more drivers will have only one driver

assigned to drive it, while the other driver(s) assigned to p will travel as passengers.

In some cases, overcover work can be subtracted from the schedule cost by checking

whether overlapping shifts can be modified to remove the overcover. Also, even when

overcover is allowed on the model, it may still be penalized; for example, TrainTRACS

generally adds a cost component equal to three times the amount of overcover to

the total cost of a schedule.

It is worth noting that Garey and Johnson [34] have shown that the set covering

problem is NP-hard in the number of sets, or shifts in this case. Worse, we show

in Section 3.2.2 that the number of shifts n in C can grow exponentially with the

number of relief opportunities, resulting in an extremely hard problem to solve.

3.1.3 Constraint Programming

Public transport crew scheduling, and in particular train driver scheduling, are re-

garded to be highly constrained problems. Hence these problems seem naturally

suited to be solved using so-called constraint programming approaches. A constraint

satisfaction problem (CSP) consists of a set of variables X = {x1, . . . , xn}, each

of which can take a finite set Di of possible values, and a set of constraints that

restrict the values that the variables can take simultaneously. When using a CSP to

solve an optimization problem, we are interested in finding an assignment of values

to all variables, such that all constraints are satisfied, and the cost of the solution

is optimal (or as close to optimal as possible). As with ILP problem formulations,

CSP formulations are declarative, in the sense that they do not impose a particular

computational method for solving the problem. However, authors such as Curtis et

al. [14] suggest that the choice of modelling (as a constraint satisfaction problem)

can greatly affect the performance of the algorithm.

Constraint programming approaches have been successfully applied to schedul-

ing of crews in public transport. Curtis et al. [14] solve the problem of bus driver

scheduling using a constraint programming approach based on the set partitioning

formulation. The authors consider two alternative models of the set partitioning

problem, and propose specific methods and reduction techniques to make the algo-
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rithms more efficient; they also incorporate heuristics derived from analysing the

solution for a LP relaxation of a set-covering formulation of the problem. Prelimi-

nary results suggest ILP-based systems can produce solutions faster and on larger

problems, but it is hoped that constraint programming approaches will allow to add

more constraints that are hard to model in an LP formulation.

More recently, De Silva [18] and Fahle et al. [25] incorporate constraint pro-

gramming techniques in the context of solving a crew scheduling problem (bus and

airline respectively) using column generation. As discussed later in Section 3.1.5,

most column generation approaches to the crew scheduling problem solve the gen-

eration subproblem through a constrained shortest path formulation, but this has

the drawback that many of the more complex rules arising in real life cannot be

expressed entirely in that formulation, or can only be expressed at the expense of

the subproblem becoming too difficult to solve in practice. As with Curtis before,

the authors of both papers claim that using a constraint programming formulation

instead allows them to model real-life constraints more fully.

3.1.4 Metaheuristics

Although there is no agreed consensus on the exact definition of a metaheuristic, we

will take Blum and Roli’s view [7], who say that a metaheuristic is

a new kind of approximate algorithm [. . . ] which tries to combine

basic heuristic methods in higher level frameworks aimed at efficiently

and effectively exploring a search space.

In the last twenty years or so research in metaheuristics and its application to

scheduling problems has become very popular. Most of the major metaheuristics

have been (and are still) adapted to and tested on the crew scheduling or rostering

problem for either either airline, bus or train operations.

We present here a brief overview of how different metaheuristics have been ap-

plied to crew scheduling. We concentrate on the choice of solution representation,

where a very wide range of proposals is exhibited. This is undoubtedly linked to

the fact that metaheuristics impose very few constraints on the underlying repre-

sentation (as opposed to e.g. linear programming). However, it must be noted that
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some questions are only relevant to particular metaheuristics – for example, genetic

algorithms seem to be much more sensitive to solution representation than other

metaheuristics, in particular when the standard mutation and crossover operators

are used. Where relevant, we also highlight how metaheuristics are modified to

incorporate elements that are not part of the standard formulation. We refer the

reader to Section 3.3 for a more comprehensive look at the key metaheuristics in the

context of their potential application to problem of driver scheduling with WROs.

Tabu Search Cavique et al. [12] propose algorithms for a decision-support system

for crew scheduling at Lisbon Underground. Initial solutions are built with a well-

known problem-specific heuristic. In their first Tabu Search proposal, the next

solution in the search is built by removing inefficient shifts from the current solution

and replacing them with more efficient shifts (which the authors claim to be a form of

‘strategic oscillation’). In their second proposal, moves do not operate on the solution

space directly, but rather indirectly on the space of possible partitions of the set of

vehicle blocks into pieces. A matching graph G is built over this partition, and

finally a schedule is obtained by solving a maximum-cardinality matching problem

over G. Moves modifying the partition are implemented as sequences of simple

moves; these sequences are usually referred to as ‘subgraph ejection chains’ in Tabu

Search literature. Shen and Kwan [70, 69] propose a tabu search approach for the

TDSW problem; their approach is described in more detail in Section 3.2.1.

Simulated Annealing Emden-Weinert and Proksch [24] present a simulated an-

nealing approach for airline crew pairing. Their application of simulated annealing

is quite straightforward, although they introduce an extension where after the com-

pletion of each temperature level a deterministic local improvement phase is fired,

exploring specific compound moves.

Evolutionary Computation Levine [58] presents a steady-state genetic algo-

rithm (GA) for airline crew scheduling, where in each iteration the worst-ranked

solutions (usually one or two) in the current set are replaced with new ones. A

chromosome contains one bit per ‘column’ (i.e. candidate shift) in the set-covering

formulation (each bit can then be directly associated with a 0-1 variable in the
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set-covering formulation). Recently, Kotecha et al. [52] claim to have improved on

the results from Levine on another GA proposal which uses a different, row-based

encoding, and a cost-biased crossover.

Kwan [53] and Kwan et al. [57] study variants of GA where so-called ‘combi-

natorial traits’ (features of a solution that are deemed positive) are detected on

elite solutions, and are carried forward to offsprings. Initial solutions are built with

information derived from solving the LP relaxation of a set covering model, which

provides with an initial list L of preferred shifts. A chromosome does not represent a

full solution; instead, it contains one bit per preferred shift in L. Their chromosome

representation and crossover/mutation operators mean that in most cases the chro-

mosomes will not describe a valid schedule; hence, a greedy repair heuristic stage is

added. The repair heuristic presented in this work predates those introduced in our

proposal in Chapter 6.

Current Research Research in metaheuristics for transportation scheduling is

still very active. As we discuss in more detail in Section 3.3, there is currently a

research trend in hybridizing search techniques in order to solve a combinatorial opti-

mization problem. Among the presentations on the most recent CASPT conference

(2006), Moz et al. [64] propose two evolutionary (meta)heuristics for a bi-objective

formulation of the bus driver rostering problem, one of which integrates local search

into an evolutionary framework. Similarly, Souai and Teghem [72] propose a hy-

bridization of genetic algorithms and simulated annealing, where the latter is used

to restore feasibility to the solutions generated by the genetic algorithm under their

crossover and mutation operators.

Another promising development that can be linked to the area of metaheuris-

tics is the so-called ‘hyper-heuristic’ approach introduced by Soubeiga et al. [13].

The key idea of hyper-heuristics is to provide a high-level, problem-independent

framework to control the execution of lower-level, presumably very simple problem-

specific heuristics. A key suggestion is the use of a ‘choice function’ that dynamically

ranks the low-level heuristics during the search, ideally using only minimal informa-

tion from the heuristics, such as improvements generated by each call to a specific

heuristic. The approach has been applied to the bus driver scheduling problem
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by Rattadilok and Kwan [67], using an extension of the choice-function approach

where the controller dynamically selects a set of parameters to instantiate a low-level

heuristic to be executed during the search.

3.1.5 Column Generation

Column generation (CG) is a very popular technique in the area of linear program-

ming, and it targets problems where the number of variables (‘columns’) is too

big to be considered explicitly, while the number of basic variables is expected to

be very small in comparison. Lübbecke and Desroisiers [62] describe the approach

comprehensively and give an up-to-date survey of applications.

Column generation works by decomposing the problem into a (restricted) master

problem, which is the original problem restricted to a subset of the original variables,

and a pricing subproblem where new variables with negative reduced cost are found

to be added to the master problem. Both problems are solved iteratively in a loop,

the master problem finding the optimal solution for the current (sub)set of variables,

the pricing subproblem selecting new variables to add to the master problems based

on updated reduced costs. This loop is in theory finished when there are no new

variables with reduced cost to add to the master problem.

When solving the driver scheduling problem using the set covering formulation, it

is easy to see that the vast majority of the xj variables will be zero (i.e. non-basic) in

all but extremely inefficient solutions. For example, a typical instance of the problem

may result in 100,000 valid shifts, but its optimal solution contain 100 shifts in it

(hence 99.9% of the xj variables will be zero). Therefore, driver scheduling would

fit the conditions under which CG can be useful. The master problem is still the

set covering problem described in Section 3.1.2, but the set C of shifts available to

the set covering phase will change (grow) over time, and it is the task of the pricing

subproblem to select new (negative reduced-cost) shifts to add to C.

Column generation is actively applied to the driving scheduling problem both in

academic research and in commercial scheduling systems (such as TrainTRACS and

CrewOpt). We briefly discuss some of these applications.
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TRACS II In her PhD thesis [30], Fores investigates the use of CG techniques for

the bus driver scheduling problem, using the bus driver scheduling system TRACS II

as a starting point and benchmark. Her work aims principally at allowing systems

like TRACS II to be able to (implicitly) consider bigger sets of candidate shifts. Her

proposal is different from most current CG approaches in that, instead of resorting

to CG in the context of solving an ILP, she uses CG during the construction of

the optimal solution for the LP relaxation of the problem. The system runs a loop

where it alternates between (re-)optimization and CG stages, until the relaxed LP

solution is optimal over the original set of candidate shifts. Fores notes that some of

the constraints handled in TRACS II mean that the usual network formulations for

the pricing problem in set covering formulations cannot be applied, and the pricing

problem would in some instances be NP-hard in itself. Hence, she extends her CG

proposal by adding a number of heuristics to accelerate and bound execution times.

This CG strategy was later incorporated into TRACS II [32]. This system is the

predecessor to TrainTRACS, the train driver scheduling system we will use or interact

with throughout this thesis. TrainTRACS has inherited the CG phase from TRACS

II virtually unmodified.

Integrated Vehicle and Crew Scheduling Within the area of integrated vehi-

cle and crew scheduling, most of the research has concentrated in applying column-

generation approaches to solve it. After the foundational paper by Desaulniers et al.

[20] several authors (often working together) have made sustained progress in the

problem sizes and the complexity of the constraints handled, particularly in the crew

scheduling subproblem, which is the most complex part of the integration. Haase et

al. [39] and Stojkovic et al. [74] introduce models for urban mass transit systems

and airlines, respectively. Freling et al. [33] and Huisman [45] solve integrated bus

scheduling problems. Recent PhD work by Weider [79] claims to improve solution

quality and execution times in a number of instances solved by Huisman in [45],

while also applying his algorithms on real-life instances of a German bus operator.
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Embedding Heuristics within the Column Generation Framework

One of the main problems faced by column generation approaches for crew scheduling

is that the column pricing problem, which is usually modelled as a constrained

shortest path problem, is frequently NP-hard for models containing anything more

than the simplest constraints. This means that researchers usually have to resort to

limiting their models severely; for example, in his thesis [45] Huisman only considers

crew constraints that are defined on an individual shift – rules which e.g. require that

a (maximum/minimum) number (percentage) of the duties has certain properties

cannot be taken into account. Weider claims to allow for more general constraints

than Huisman, but his work is still restricted to bus operations, which are usually

regarded as simpler than railways.

Common approaches to tackle NP-hard pricing subproblems include heuristics

for the shortest path problem, and also adding many columns per pricing phase.

An interesting approach is taken by Borndörfer et al. [8], who resort to a method

they call ‘callback’, where they “ignore the rule[s] in their pricing model, construct

a pairing, and send it to a general rule verification oracle that either accepts or

rejects the pairing”. This is interesting in that the use of such a mechanism seems

to break with all the mathematical foundation of CG and its roots in mathematical

programming. Moreover, we will see that we resort to a similar technique when

generating neighbouring solutions in our local search proposals, where we rely on

an external oracle (TrainTRACS’s CHECKER) to validate the new solutions generated

during the search.

Criticism and Ongoing Work

Column generation for driver scheduling is a very active area of research. How-

ever, although one company (GIRO) reports to use CG in their widely-used CrewOpt

scheduling system [17], to our knowledge there are no peer-reviewed reports on ap-

plications of CG for the bus or train driver scheduling problem that can fully handle

the size and complexity of real-life instances within the pricing problem.

As an example of current research on this area, recent work by Steinzen et al. [73]

proposes a time-space network representation for the shift generation subproblem,
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which is claimed to result in reduced network sizes. However, no results are reported

on the integration of this representation into the main driver scheduling problem,

neither in terms of schedule sizes nor costs; also, although the authors claim that

complex constraints are considered, they are not described in the paper.

3.1.6 Current Trends

Driver scheduling is a very active field of research. In this section we highlight what

we consider two of the most interesting areas of development.

Increased Problem Size and Complexity

In the last decade, theoretical development, along with more powerful computer

hardware, have triggered a major commercial takeover of computerized driver schedul-

ing systems. This in turn has resulted in demands for systems to be able to solve

bigger and more complex real-life problem instances, and take into consideration

more sophisticated objectives and constraints.

An example of current work in this area is that by Kwan and Kwan [56]. In their

previous system, TRACS II, a large problem would have been handled by first manu-

ally decomposing it into smaller subproblems and solving them separately, and later

joining the individual solutions into an overall solution for the original problem, with

possibly some final re-run to optimize on the quality of the end solution. However,

this approach results in suboptimal solutions. Their new PowerSolver tool tackles

the problem instead by initially solving a simplified version of the problem, where

most relief opportunities are eliminated from the problem description. Based on this

first solution, the system then iteratively explores more refined formulations of the

original problem, by selectively reinstating parts of the set of relief opportunities

that were initially left out and re-running the optimization on this augmented prob-

lem instance. Results obtained on big-size instances improve over results on earlier

systems. In practice, all railway companies currently using TrainTRACS obtain their

final solutions using this new method.

It is worth noting that PowerSolver can be seen as an iterative hybridization

between GaS and a tool that generates a new formulation (in terms of the ROs
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available to GaS) for the same problem instance on each iteration. In this sense, the

proposal can be linked to some of the proposals in this thesis, in particular the GaS

and Local Search loop introduced in Chapter 4.

Crew Scheduling as an Inspiration for New Search Techniques

Driver scheduling is an interesting problem that has inspired many new techniques

while being studied, some which have been generalized to general-purpose search

techniques. As an example, early work on fuzzy evolutionary bus and rail driver

by Li [60] and Li and Kwan [59] was generalized for the set covering problem [61];

recently Li et al. [4] present a continuation of this work through hybridization

between evolutionary algorithms and Squeaky Wheel Optimization.

It is likely that the driver scheduling problem will remain an inspiration for new

search techniques. In particular, the proposals on repair costing developed in this

thesis (Chapters 6 and 8) have arisen while studying the driver scheduling problem,

but are likely to be generalizable to a much broader range of problems.

3.1.7 TrainTRACS

TrainTRACS is a commercial package developed over the last 30 years by the Univer-

sity of Leeds [54, 83, 31]. TrainTRACS is becoming the de facto standard in the UK

railway industry – as an illustration, in a recent UK franchise bid all the bidders

used TrainTRACS to assess their crew requirements. Through extensive testing by

experienced schedulers in the transport industry, TrainTRACS solutions have consis-

tently produced solutions at least as good, most often better, than the best previous

known solutions, including those generated manually by human schedulers. Hence,

TrainTRACS solutions obtained on RoA formulations are regarded as near-optimal

(for that formulation) throughout this thesis.

The implementation of most of the algorithms presented in this thesis will either

rely on or integrate with parts of the TrainTRACS system. Therefore, we include

here a description of its main components in terms of their functionality, expected

inputs, and outputs generated.

The TRAVEL module is used at a pre-processing stage to generate a set of feasible
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travel links available to drivers for a given instance of the driver scheduling problem,

which is vital for determining whether spells can be joined to form valid shifts. It

does so by looking at a description of the railway network, the vehicle schedule for the

current driver scheduling exercise, and other travel opportunities available (either

through walking/taxi or other bus/rail services that are not part of the scheduling

exercise), along with the set of labour rules and other constraints. Travel links are

multi-modal and can incorporate up to two stages on train/bus services. TRAVEL is

also used in some heuristics presented in Chapter 5 to evaluate earliest arrival times

and latest departure times.

TrainTRACS uses a generate-and-select approach to solve the driver scheduling

problem. Its generation phase is executed by a module called BUILD, which takes

the vehicle schedule, the labour agreement and the outputs of executing TRAVEL to

generate the set of all feasible shifts for the problem instance. Since the number of

feasible shifts may be too big for the selection phase to run on, TrainTRACS allows

for the specification of extra constraints (e.g. minimum spell length) to restrict the

size of the resulting set. When these constraints are not enough, or the user wants

to prioritize execution times over solution quality, a so called reduced build can be

triggered. A reduced build incorporates some heuristics (mostly limiting the time

elapsed between the end of a spell and the start of the next spell in a shift) to further

reduce the number of shifts generated. Some test instances used in this thesis have

to be run using reduced builds in order to get a solution.

TrainTRACS exposes the functionality to determine whether any given shift is

valid or invalid according to labour agreement rules and extra constraints; we call

this the CHECKER. Throughout the thesis, we will rely on CHECKER’s functionality

(which is exposed as a Windows DLL) to determine whether shifts generated by our

algorithms are valid. Apart from the usual advantages in terms of software re-use,

this ensures consistency at a shift level between TrainTRACS and our proposals when

comparing solutions.

The selection phase is executed by a module called SCHEDULE. It uses a set-

covering formulation, operating over the set of shifts generated by BUILD, and is

based on branch-and-bound. SCHEDULE first finds the optimal solution for an LP re-

laxation of the set covering problem, using column generation to iteratively add more
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shifts (from those available from BUILD) to the model. This (possibly non-integer)

solution is used to define a target schedule size, and also the set of relief opportu-

nities available to the branch-and-bound phase. The branch-and-bound phase uses

problem-specific branching rules to gradually take the non-integer solution to an inte-

ger one; it also incorporates a number of heuristics to make execution times smaller,

including a limit on the number of tree nodes evaluated, and rules for aborting the

evaluation of the tree when ‘good enough’ solutions are found.

As described in Section 3.1.6, TrainTRACS has recently been extended with a

new module, PowerSolver, that runs BUILD and SCHEDULE (that is, generate and

select) cycles iteratively, concentrating the efforts on each iteration on a particular

subset of the relief opportunities available on the problem instance. Recent expe-

rience [56] shows that PowerSolver is able to consistently improve on the results

of single runs of BUILD + SCHEDULE for large problem instances. Therefore, when

testing extensions to the generation or selection phases (Chapter 5), we will use

PowerSolver to assess their efficiency. Although the system provides the users the

choice of specifying the way each iteration looks at relief opportunities, it also in-

cludes a tool to generate control files automatically; for the purposes of testing, we

use the automatic mode as it reduces the opportunities for tailoring the test runs

to favour a particular algorithm.

3.2 Solving the Problem of Driver Scheduling with

WROs

Although we have explained that train operating companies will usually follow the

policy of relieving drivers on arrival, we know from conversations with schedulers

that they will sometimes consider relieving on times other on arrival if it results

in big enough savings, either when building a driver schedule manually or when

taking one obtained from a computerized system as a starting point. This means

that although currently no automated scheduling software package seems to offer

support for exploiting WROs, schedules implemented in real life are already making

use of them.
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3.2.1 Previous Work

In the area of transport scheduling and routing, the concept of a ‘time window’ is

usually associated with a constraint that some action (e.g. a pick-up or delivery,

arrival or departure) must happen within certain time bounds; in this sense, adding

the consideration of time windows is usually a way of specializing a problem by

adding new constraint dimension to it. Although WROs as introduced in the previ-

ous chapter could be seen as delimiting a range of times in which a certain action

can happen, we observe that driver scheduling with WROs is instead a generaliza-

tion of the original driver scheduling problem, as described in Section 1.3. From a

methodological point of view, we are interested in comparing TDS and TDSW, and

investigate the benefits in considering WROs. It is then important to differentiate

research in time windows in terms of whether they restrict or expand the original

problem.

Time windows have been studied for a long time in the area of vehicle routing,

although mostly in a restrictive sense. Time windows in daily aircraft routing and

scheduling are considered by Desaulniers et al. [21]. Two models are proposed: a set-

partitioning one, which is solved using branch-and-bound and column generation,

and a time-constrained multicommodity network flow formulation. Their column

generation approach also involves the use of a multicommodity network model for the

subproblem. Multicommodity network flow formulations have remained popular in

vehicle scheduling [6, 85]; however, they do not translate easily to the crew scheduling

problem.

Incorporation of time windows as an extension to vehicle or crew scheduling

is more recent. Klabjan et al. [51] propose a variation to the crew scheduling

problem in airlines, where the flight departure times are allowed to be modified

within given time windows for the purposes of obtaining a better crew schedule.

Although the problem is different than the one tackled in this thesis, in the sense

that windows ‘arise’ from allowing the vehicle schedule to be modified, rather than

existing in the original vehicle schedule, there is a direct association between the

reasons for modifying a flight departure time and those for relieving inside a WRO

in our problem. In principle, this formulation (and the algorithms proposed for it)
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might be re-interpreted and reused for (T)DSW, by modeling the WROs in TDSW

as time windows for vehicle departure times. However, it must be noted that the

formulation is some ways more restrictive than TDSW, since given a choice of vehicle

departure times, relieving is then restricted to those departure times only, whereas in

our formulation the full WRO is in principle always available for relieving. However,

in Chapter 4 we propose a method that loops over GaS and Local Search phases,

where each GaS phase is run with a set of re-timed relief points within WROs derived

from the previous local search phase; in this case the two underlying models are very

similar.

Other authors also consider time windows in aircraft scheduling as a facilitator

for increased efficiency within integrated planning of operations. Ahuja et al. [3]

develop models for a combined through and fleet assignment problem with time

windows. The authors claim that time windows during fleet assignment allow for

greater opportunities between flight legs, which in turn allows for improvements on

the combined through and fleet assignment problem. A multicommodity network

flow model is first introduced, but the resulting problem is too large to be solved to

a reasonable quality; hence, they develop a neighbourhood search algorithm instead,

which they claim produce improvements over existing solutions.

A Tabu Search Approach for Driver Scheduling with WROs

To our knowledge, the problem of driver scheduling with windows of relief opportuni-

ties is only considered in Shen’s PhD thesis [69] and a technical report by Shen and

Kwan [71]. In her PhD thesis, Shen initially concentrates on solving the TDS prob-

lem without consideration of WROs. A neighbourhood search scheme is proposed,

which considers three possible ways (moves) to modify the existing schedule:

1. ‘swap links’: this move is similar to the 1-point crossover described in Section

4.2.1.

2. ‘replace AROs’: this move is similar to the transfer of pieces of work (at piece-

level only) in Section 4.2.1

3. adding a shift: because their solution can be infeasible and not cover all vehicle

work, a specific move to efficiently add a new duty to an existing solution is
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proposed. Some work may be removed from existing shifts in the schedule

when adding a new shift.

Based on the neighbourhoods described above, Shen then proposes a Tabu Search

approach that is embedded into the algorithm described in Algorithm 1.

Algorithm 1 HACS (Shen and Kwan)

1: construct a (possibly infeasible) initial schedule, using a heuristic

2: minimize total penalty (using Tabu Search)

3: minimize total cost (using Tabu Search)

4: if current best schedule is feasible then

5: END

6: else if if total cost has been reduced then

7: go to step 2

8: else

9: use an extra shift to reduce penalty, go to 2

10: end if

Shen and Kwan then develop an extension of HACS for the TDSW problem.

WROs are modelled using 1-minute expansions (Section 2.2.2). The ‘replace AROs’

move is modified to account for WROs. This is done by modifying the interpretation

of a predecessor and successor of a RO in a vehicle block (where the order relation

is given by the relief time of ROs) in the context of a 1-minute expansion of WROs.

For example, given a vehicle block with one RO at location A at 12.00 and one (at-

tended) WRO at location B between 12.30 and 12.31, the predecessor of (B, 12.30)

is (A, 12.00), while the predecessor of (B, 12.31) is (B, 12.30). The ARO-replacing

move is then redefined to look at predecessors and successors of AROs in terms

of the new definition. This equates to considering the work between each pair of

consecutive relief times within a WRO as a separate piece of block for the purposes

of this move. New moves (swapping spells and inserting spells) are also added.

Experiments are carried in a set of 10 instances, mostly small in size (only one

of the ten instances is comparable in size to those used in Chapter 5 in this thesis).

Moreover, instances are simplified (e.g. by eliminating unattended WROs). It is not

clear from the thesis or report which side constraints (e.g. labour agreement rules)
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apply to the test instances. In most cases, the test instances are RoA formulations

where WROs are added artificially, using a uniform 5-minute WRO length; our expe-

rience in this thesis suggests that this may overestimate the amount of time windows

available on real-life instances (for example, most WROs in the InterCity dataset

are two or three minutes long; most WROs in the ThamesLink dataset are only

one or two minutes long). On these instances, experiments on HACS starting from

solutions not obtained by TrainTRACS are on average 0.55% higher cost than those

obtained running TrainTRACS on a RoA formulation, while experiments on HACS

starting from the solutions obtained with TrainTRACS over the RoA formulation

show an average decrease in cost of around 1%.

Discussion The work by Shen and Kwan provides a good starting point to the

study of WROs in the context of train driver scheduling. Some central concepts are

introduced, like the idea of a 1-minute expansion of WROs, and that of retiming an

active relief on a WRO, although the latter is only exploited in a very limited way,

i.e. by moving the relief point one minute at a time in the context of ‘replace ARO’

moves.

In our view, the main limitations in this work are, first, that no study is con-

ducted on how the problem of driver scheduling changes when WROs are introduced;

second, the algorithms are developed for simplified versions of the problem, and

WROs in the test instances are artificially generated –hence, it is difficult to trans-

late the gains in performance shown in the experiments with actual gains achievable

in a real-life context. At the same time, existing tools for the TDS problem are only

exploited in a very limited way, e.g. to provide starting solutions. In this thesis we

try to address these three perceived limitations to advance the study of the TDSW

problem.

3.2.2 Limitations of GaS

A first intuitive approach to considering WROs in the scheduling problem is to

adapt the GaS approach to accommodate for them. To do so, it is sufficient to

adapt the generation phase, since all inputs to the selection phase (including the set

C of candidate shifts and its derived matrix {aij} in the set covering representation)
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are determined during the generation phase.

A relatively straightforward way of extending the generation phase to account

for WROs is to model each WRO as a discrete set of individual ROs of the form

< time, location >, as suggested in section 2.2.2. Since TrainTRACS works on minute

units, it makes sense to discretize WROs as a set of ROs separated by one minute;

therefore, a WRO in location L starting at 10:10 and ending at 10:12 would be

represented as a set of three ROs at location L, occurring at 10:10, 10:11, and 10:12.

Hence, the piece of the WRO between each of these new ROs becomes a separate,

new piece of work, while the piece of work to the right of the WRO is reduced in

length by two minutes when compared to the RoA formulation.

In theory, any algorithm that works on the original RoA instance should be

able to generate shifts on this new ‘extended’ instance. However, there is a major

drawback to this approach: the number of feasible shifts usually grows exponentially

with the number of ROs considered. The problem is even worse when ROs are

bundled together, as is the case with the 1-minute WRO expansion proposed. This

is illustrated in Figure 3.1. Suppose s is a legal spell on vehicle v. The right

legal spell in RoA formulation

10-min WRO

new spells if WRO is modelled with 1-min discretization

vehicle v

Figure 3.1: Combinatorial explosion in the number of shifts when incorporating time windows into

the scheduling model. Spells which are legal in the non-windowed model usually give rise to many

new legal spells if a WRO on one of its ends is expanded.

end of the spell is marked by the presence of a 10-minute WRO, which in a RoA

formulation will be approximated by its arrival time. Now, if we model the WRO

with the discretization proposed in the previous section, 10 new ROs will be added.

Because these new ROs are so close in time to the original one, it is very likely

that changing the end-RO for spell s to any of the new ROs will result in a (new)
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legal spell. This means that where the generation phase on the RoA formulation

would build a single valid spell, it will instead build ten legal spells on a WRO

formulation. The nature in which spells are then combined to form shifts results in

an exponential increase in the number of valid shifts. Incidentally, if one were to

run the selection phase without any modifications to the usual mechanism, covering

of WROs would follow the unconstrained model presented in Appendix A.1, which

is a further indication of the difficulties a GaS approach would face in finding good

solutions on this extension.

In practice, fully expanding WROs with 1-minute apart ROs results in instances

that are intractable with current selection mechanisms and computer hardware.

However, the fact that WROs will result in groups of bundled ROs also has a posi-

tive implication. Going back to the previous 3-minute WRO example introduced in

Section 3.2.2, it is likely that for every optimal schedule using the RO at time 10:11

to relieve drivers, there is a schedule with the same cost that uses either 10:10 or

10:12 as the relief point instead. This would mean that we can skip the addition of

the RO at time 10:11 without affecting the solution cost achievable. In the context

of building an optimal solution on the WRO formulation from an optimal solution

for the RoA formulation, this suggests that perhaps only some ROs within WROs

will play a part in allowing for better solutions to be found (and so we may not need

to consider all ROs within WROs). The interplay between the choice of formula-

tion (in terms of the ROs made available to the solver), the resulting problem size,

and the possibility of obtaining efficient schedules is one of the main themes of this

thesis.

3.3 Overview of Optimization Techniques

In this section we look in more detail at a group of general-purpose optimization

techniques whose underlying ideas and principles form the basis of the proposals

in this thesis. We assess their motivations and key ideas in the context of solving

the problem of driver scheduling with WROs, and also introducing notation and

vocabulary that is later used throughout the thesis. Aarts and Lenstra [1] provide

a comprehensive presentation of these techniques and many others, including the
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application of some of them to vehicle routing and machine scheduling. For illustra-

tion purposes, and without loss of generality, we restrict ourselves to minimization

problems.

Some techniques that are also related to our proposals but to a lesser degree

are discussed in the context where the relation is more evident; these include Evo-

lutionary Algorithms, Squeaky Wheel Optimization, Simulated Annealing and Path

Relinking.

Neighbourhood Search A good starting point when looking at general-purpose

optimization techniques within combinatorial optimization is neighbourhood search,

since most successful metaheuristics can be seen as extensions to it – this agrees

with the view implicit by Aarts and Lenstra, who in their book include simulated

annealing, tabu search, genetic algorithms and artificial neural networks under the

category of ‘local search’ algorithms. In this thesis we will use the terms ‘neighbour-

hood search’ and ‘local search’ interchangeably.

The key proposal in local search is that of building a sequence of increasingly

better solutions to the problem, where each new solution Snext is selected from a

set of neighbouring solutions to the current solution Scurr. Intuitively, neighbouring

solutions are ‘close’ to each other in some measurable way. In general, the relation

is defined through a perturbation or move, which determines how new solutions can

be generated from Scurr; the minimum number of moves needed to get from one

solution to another can be seen as the distance between them.

In order to get a sequence of increasingly better solutions, the selection of the new

solution in the sequence is usually driven by a comparison of costs, i.e. the value

of the objective function. In the simplest implementation, called hill climbing, a

solution has to be strictly better in terms of cost than the current solution in order to

be chosen as the next solution in the sequence: cost(Snext) < cost(Scurr). Variations

exist within hill climbing in the way that the neighbourhood of the current solution

Scurr is explored. In simple hill climbing, the first solution in the neighbourhood of

Scurr whose cost is less than that of Scurr is chosen to be Snext. In steepest descent hill

climbing, all neighbours of Scurr are evaluated, and Snext is chosen as the/a solution

with the lowest cost (assuming its cost is lower than that of Scurr). Exploring
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a neighbourhood fully can be extremely expensive (in some cases, neighbourhood

sizes can even be exponential in the problem size) – in this thesis we will mostly

follow a first-improvement criterion.

Criticism and Extensions The main drawback of local search approaches

as described so far is that, by their very construction, they will become trapped in

local optima, i.e. solutions for which there is no neighbouring solution with lower

cost. In most combinatorial optimization problems, the search space –as defined

by the problem representation and the local search implementation, including the

neighbourhood structures– will contain a vast number of local optima, only some

of which are also global optima. Therefore, the local optima to which local search

converges will most of the times be sub-optimal solutions.

Many of the extensions to local search can be seen as attempts to augment

the basic scheme with tools that allow it to ‘escape’ from local optima. A simple

adaptation includes re-starting the search when it reaches a local optimum. In order

to have successive runs arrive at different optima, some sort of randomization in the

search process is needed; the most popular such technique, known as GRASP [26],

proposes a greedy-randomized mechanism for constructing the initial solution, which

is followed by a local search. Although we do not implement GRASP in the thesis,

some similarities can be established between its greedy-randomized construction

stage and the randomized repair proposals in Chapter 6.

A different approach is to allow for cost(Snext) = cost(Scurr); this however is

usually not enough to escape most basins of attraction. Two very successful meta-

heuristics, simulated annealing [50] and tabu search, take this further by allowing

(under certain conditions) cost(Snext) ≥ cost(Scurr). Both relaxations to the cost

relationship between cost(Snext) and cost(Scurr) create a new problem in that the

sequence of solutions in the search could become cyclical, since as soon as a solu-

tion of bad quality is inserted in the sequence the local search will tend to take the

sequence back to lower-cost solutions, and previous solutions in the sequence are

very likely to be selected as they are ‘close’ to the current bad-quality solution (at

least in neighbourhoods that are symmetrical, i.e. s1 ∈ N(s2) ⇔ s2 ∈ N(s1)). We

describe the solution to this problem proposed by tabu search in more detail later
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in this chapter.

A second criticism to local search approaches is that (at least in its simplest

forms) they rely almost completely on the cost function to compare solutions and

therefore guide the search, making it difficult to consider elements at a more atomic

level than a full solution. It is therefore difficult to force biases on the search pro-

cedure, for example towards a desirable particular structural property. We believe

that two intuitive ways of dealing with this are:

1. adapting the cost function used in the search to include explicit consideration

of structural attributes

2. integrating stages in the search where the solution is perturbed explicitly to

favour or impose a particular type of structural attribute on the current solu-

tion

Notice that the two approaches are orthogonal, since one operates over the definition

of the cost function, and the other by temporarily working outside of a traditional

cost-comparison local search framework. We study the first type of mechanism in

the context of the local search proposal introduced in Chapter 4 (Section 4.2.1,

conditioning), while in Chapter 8 we make use of the second type of method to

‘unlock’ a search that stagnates.

Tabu Search As described earlier in this section, tabu search extends the local

search framework by allowing cost(Snext) ≥ cost(Scurr). To overcome the problem of

the search getting trapped in a cycle, tabu search incorporates the concept of a tabu

list, which stores solutions (or attributes of solutions); any solution appearing in the

tabu list (or sharing an attribute with one stored in that list) is not allowed to be

selected as the next solution in the search. The list is updated dynamically during

the search, and at any point in time it usually contains recently-accepted solutions

in the search sequence (or attributes of those solutions), effectively forbidding recent

solutions from being accepted again.

When the tabu list is implemented by storing (thus forbidding) attributes of

solutions, rather than complete solutions, it is possible that promising solutions that

share certain attributes with past solutions in the search are unfairly prohibited from
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being selected. To counter this, many implementations of tabu search also include

an overriding aspiration criterion, which states that if a candidate solution has a

cost better than that of all previous solutions in the sequence, then the solution is

accepted even if it violates the tabu list.

Criticism and Possible Uses Tabu search introduces a number of very in-

teresting concepts, and it has proven very popular and successful in practice (for

an early survey of applications of tabu search in the literature, see Chapter 8 in

[36]). The tabu list is a very clever way of preventing cycles when combined with

accepting cost-increasing solutions. In particular, the variation in which the tabu

list contains attributes of solutions is very attractive, as it can be argued that it

allows to incorporate explicit structural considerations during the search. In many

cases, these attributes are directly associated with the moves being used; for exam-

ple in the context of k-opt neighbourhoods one might choose to include the reverse

exchange in the tabu list.

A drawback of tabu search (which is shared by many metaheuristics, particularly

those extending a simpler technique) is that any implementation of the technique

must determine values for a number of parameters, such as list size or the length of

time for which a solution or attribute is forbidden. There is usually no automatic

way of determining or ‘tuning’ these, so most implementations either choose an

arbitrary value for them, or determine them empirically based on a (usually small)

set of problem-specific test instances.

It is worth noting that many authors use different terminology to describe the

characteristics or main attributes of tabu search; in particular, tabu search is often

described as a way of incorporating (short-term) memory into the search. However,

there are other metaheuristics that can be said to extend local search by adding

memory; as an example, when describing the motivations for their Variable Neigh-

bourhood Search (VNS) metaheuristic, Hansen and Mladenović [40] consider memory

as a key element in a local search framework by stating that ‘a local optimum often

provides some information about the global one’.

Throughout this thesis, there will be more than one time where we find ourselves

in a situation where steps should or must explicitly be taken to prevent the search
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from looping back to previously obtained solutions; in these cases, the solutions

suggested or implemented will be similar in spirit to tabu search. In particular, the

mechanism to avoid cycling in Chapter 8 can be seen as an attribute-based tabu list

of size 1, with an aspiration criterion as defined above.

Column Generation Although it is our belief that column generation is not

mature enough in the context of train driver scheduling to address the extension to

WROs, we think it is relevant to examine its motivations and proposals, and evaluate

whether these can be translated to a context other than linear programming, where

they can be applied to the train driver scheduling problem with WROs.

It is commonly accepted that column generation was in great part spawned by

a 1958 paper from Ford and Fulkerson on maximal multi-commodity network flows

[29]. As early as this paper, the proposal addressed the issue of problem instances

where the number of elements (non-basic variables) to be considered when finding a

solution (using simplex) are too many to even be listed explicitly (when determining

a vector to enter the basis). In terms of the proposed solution, column generation

as a methodology can be seen as incrementally building the set of elements that

is considered explicitly during the optimization. The choice of new elements to

be added to this set is interleaved with the optimization process itself, and uses

information from the optimization to help evaluate or find such elements.

In the case of the driver scheduling problem we have a similar problem at hand,

since the set of feasible shifts sometimes becomes too large to be considered fully.

In particular, when considering WROs the full set of feasible shifts will most of the

times be too big to consider all shifts explicitly. Similarly, the solution proposed by

column generation could be abstracted out of linear programming, with the descrip-

tion given above, and possibly applied to the driver scheduling problem. Finally, we

note that authors like Fores [30] use column generation in a pre-processing stage. It

can then be argued that our proposals in Chapter 5 address the same issue through

a similar kind of approach than some existing applications of column generation,

when the motivations and methods in column generation are generalized out of

linear programming.



Chapter 4

A Hybridized Integer

Programming and Local Search

Approach

4.1 Motivation

In Chapter 3 we showed that the GaS approach is unsuited to the case where WROs

are expanded in 1-minute intervals; this is mainly due to the exponential increase in

valid shifts that can/would be produced during the generation phase. As its name

suggests, GaS is based on pre-generating a set of candidate shifts, from which a

schedule is then built. In the standard GaS approach, we can think of the gener-

ation of shifts as static, in the sense that no new shifts will be created during the

selection phase. Because the number of valid shifts in a real-life instance of the

TDSW problem is extremely big, any algorithm that is based on (pre-)generating

candidate shifts statically needs to incorporate ways of constraining the size of the

set generated. This is even the case for approximated models (such as RoA); for ex-

ample, runs of TrainTRACS on real-life instances will usually be subject to artificial

58
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constraints (such as minimum spell length), or may even require the execution of

so-called reduced builds, where heuristics are applied to keep the size of the resulting

pool of shifts manageable. Still, static shift generation approaches, and in particular

GaS, have proved very effective in practice, at least for approximated models of the

problem.

In contrast, algorithms that do not pre-generate a set of candidate shifts will in

principle not be constrained by the number of potential valid shifts for a particular

problem instance. This makes them especially attractive in our setting of 1-minute

expansion of WROs. We will call any scheme that does not rely on a set of pre-

generated shifts a dynamic shift-generation approach.

In summary, dynamic shift generation approaches seem to scale to large, real-

life instances of the driver scheduling problem with WROs, while GaS (a static

generation approach) has proven very effective at solving the same problem for

approximated models. Our first proposal will then be an attempt at reconciling

these two properties of dynamic and static shift generation.

4.2 The Proposal

Our first proposal for solving the train driver scheduling problem with WROs is a

two-phase scheme. In the first phase, GaS is run on an approximated (i.e. non-

windowed) model of the problem, yielding a solution SGaS. After that, a local

search phase is run on a WRO formulation, using the schedule SGaS as the initial

solution. We use the set of ROs derived from a RoA formulation as the initial set

of approximations for the WROs. The approach is illustrated in Figure 4.1.

Consistent with the motivations presented in the previous section, the scheme

first relies on explicit shift generation/enumeration on an approximated model,

where the number of feasible shifts is still manageable, banking on the efficiency of

GaS approaches on approximated models to generate a near-optimal solution for the

RoA formulation. It then switches to fully considering WROs, while simultaneously

moving to a dynamic shift-generation approach, therefore avoiding the limitations of

static-generation approaches on WRO formulations. It is worth noting that because
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0.
generate a set A of approximations for the WROs in the set of

vehicle blocks B (using arrival times)

1.
run Generate and Select on the model approximated by A,

obtaining a schedule SGaS

2.

run Local Search on an extended (i.e. non-approximated) model

for B, with initial solution SGaS, to obtain an improved solution

SLS

Figure 4.1: The proposed two-phase, GaS and Local Search approach for solving the TDSW

problem

the solution set of the WRO formulation is a superset of any approximated model,

SGaS is always a feasible solution for the WRO formulation, and thus can be safely

used as an initial solution for the local search phase.

4.2.1 The Local Search Phase

In this section we describe the main aspects of our local search proposal. We put

special emphasis in describing how WROs are exploited, and how low-level moves

are integrated into higher-level schemes, including the use of ‘conditioning’ phases

to try and impose certain structural attributes into the active solution.

Local Search and the Artificial Constraints in GaS

Because of the way the scheme is structured, it is only in the local search phase that

WROs can be exploited. This is therefore the main objective of the local search

phase. However, local search is complementary to GaS in other areas. In particular,

because the practicability of a local search phase is in principle not tied to the num-

ber of feasible shifts for the problem instance, we can relax any/all of the artificial

constraints that are introduced on a GaS setting for real-life instances to limit the

size of the output shift pool. This means the local search can effectively consider

shifts that would be illegal on GaS because of artificial constraints. This adds an-

other way of achieving improvements in the schedule, which is actually independent
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of the introduction of WROs to the driver scheduling model.

A Generic Two-Step-Move Framework for Exploiting WROs

Since the main aim of the local search phase in our proposal is to exploit WROs, we

prioritized creating moves that involve the use of WROs over moves that exploit the

structure of the TDS problem in general. Our initial intention was then to design

a set of WRO-exploiting moves, complemented as necessary by others that don’t.

However, it turned out that for every move that doesn’t exploit WROs we could

design a move with the same function, but which also exploited WROs.

Therefore, we modified the initial scheme by one where every move may poten-

tially exploit WROs. This is done by dividing every move into two steps. In the

first step, we apply a specific perturbation to a subset of the shifts of the current

schedule. The second step is a generic procedure that, given a set R of (W)ROs

that are active in the current schedule (after step 1), evaluates the possibility of

altering the times at which driver reliefs take place inside any WROs in R. Each

move selects this set R according to the characteristics of the perturbations it has

performed on the first step. For example, if a move splits a shift s into two shifts

s′1, s
′
2, the second phase will probably receive a set that consists of the ROs occurring

at the ends of s′1 and s′2. A graphical example of this two-step methodology can

be seen in Figure 4.2. After the specific perturbation (in this case, a swap of two

spells) is performed, the ROs delimiting the gaps between the new spells are chosen

as the set R to be passed to the window-evaluating routine (these are shown with

arrows in the figure). The routine will consider combinations of re-timings of reliefs

inside WROs in R, generating different sets of candidate shifts from s′1, s′2, which by

construction only differ in the relief times inside WROs in R. Eventually, the best

of these options will be chosen as the new solution.

Choosing a model for covering WROs is a balance between flexibility and com-

plexity/running time. In this local search phase, as in later local search proposals in

this thesis, we rely on a model of WRO covering in which all spells in shifts in the

schedule that start or end at a given WRO w do so at the same time. This model,

along with a number of alternatives, is analyzed in more detail in Appendix A. The

model we use is the constrained (version III) in A.1.4, with k = 0.
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s1

s2

s1,1 s1,2

s2,1 s2,2

s′1

s′2

s2,2s1,1

s2,1 s1,2

Figure 4.2: Example of a move: spell swapping. s1 is a shift with two spells s1,1, s1,2; s2 is a shift

with two spells s2,1, s2,2. Dotted lines represent non-driving periods. First, spells s1,2 and s2,2

are swapped (move-specific perturbation). Then, ROs that are relevant to the perturbation just

performed are inspected for optimal relief times within WROs.

Validation of Candidate Solutions

The feasibility of a schedule is governed by both shift- and schedule-level constraints.

An example of the former is the maximum shift length; an example of the latter, the

number of part-time shifts in relation to the total number of shifts in the schedule.

Since a move is basically a perturbation of a subset of shifts of a schedule (the

current solution), shift-level constraints need only be checked for shifts that are

being perturbed – notice this may include shifts which were not initially selected by

the move, but which took part in a relief re-timing in the second step of the move.

In principle, it would be desirable to be able to guarantee that a schedule gen-

erated by a move is always feasible, as this avoids spending time on generating

solutions that then have to be discarded. Failing that, it would be desirable that at

least the shifts generated by a move are feasible, since this would intuitively increase

the probability of the new schedule being feasible as a whole. However, in real-life

train driver scheduling shifts must adhere to a large and complex set of labour agree-

ment rules. This not only makes the task of designing a move that generates only

feasible shifts extremely hard: it even makes the task of assessing the feasibility of a

shift difficult. Therefore, in our implementation we don’t attempt to design moves

that guarantee feasible shifts. Instead, local search moves only guarantee that the
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most basic ‘structural’ constraints are satisfied (e.g. a driver is never assigned to

drive two pieces of work that overlap in time). Most of the labour agreement rules

are disregarded when executing a move, with the exception of maximum shift/spell

length in some moves. It is worth noting that the relief re-timing trials in the second

stage of a move may not only decrease the cost of a solution, but also turn an infea-

sible solution into a feasible one. Therefore, candidate solutions are not checked for

validity during the first step of the move, but rather for each possible combination

of relief timings inside the set R of ROs derived by the move.

In order to check that shifts are still valid after executing the perturbations, the

local search interfaces in a black-box fashion with checking routines that are also used

during the generation phase of the GaS solver. In this implementation, we interface

with shift-validation routines (the CHECKER) available in the TrainTRACS package,

by linking to an external Windows DLL provided by it. TrainTRACS does not

natively support WROs; therefore, in order for CHECKER to be able to correctly assess

the validity of shifts using WROs we use a 1-minute-expansion formulation of the

problem for the purposes of validation; the association between relief points inside

WROs in the WRO formulation and ROs in the 1-minute-expansion formulation is

handled internally by our tools. CHECKER does not rely on building all shifts explicitly

in order to validate shifts, and hence is not subject to the problem of combinatorial

explosion in the number of feasible shifts.

Decoupling the validation of shifts from the perturbation of schedules not only

simplifies the task of designing the moves, but also has a number of advantages from

a software engineering point of view, including the fact that shift-level constraints

are guaranteed to be treated consistently on the two phases, and even allowing for

external tools to be used for this purpose, as described.

Design and Implementation of Moves

We designed a two-level hierarchy for moves. L0 moves are atomic moves, i.e. they

do not resort to other moves to perform the perturbation.

• re-timing of a relief inside a time window. In the first phase, an (active) WRO

is selected. In the second phase, all possible re-timings of the relief inside that
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window are evaluated.

• 1-point crossover. Two shifts are selected. One relief opportunity (windowed

or not) is selected on each shift. The portions of the shifts to the right of those

ROs are exchanged (if certain basic checks are satisfied). Because selected ROs

are not necessarily placed at spell boundaries, this move can in effect break

existing spells. Also, if the shifts share an RO, it is possible to select this RO

as the crossover point. In this case, the so-far active RO becomes inactive

after the exchange. In the second phase, ROs selected as crossover points are

tested for relief re-timing.

• Transfer of spells and pieces of work. Individual spells or pieces of work can be

transferred from one shift to another. Begin and end ROs of the spell or piece

transferred are tested for relief re-timing in the second phase of the move.

Moves similar to the 1-point crossover and transfer of pieces of work were originally

proposed in Shen [69] and Shen and Kwan [70] for a simplified version of the problem,

as described in Section 3.2.1, although as described their moves do not handle the

concept of a WRO explicitly and hence no relief retiming is possible.

L0 moves are used or combined into L1 moves. Some of these moves are high-

level, requiring perhaps a sequence of many L0 moves to be called; for example,

“shift dismembering” is an L1 move in which a procedure systematically tries to

transfer every piece of work in a shift to other shifts in the schedule, or a move

in which the spells of a 2-spell shift are distributed to two other existing shifts in

the current schedule. Other L1 moves are aimed at avoiding the cost of calling L0

moves where we have reason to believe that the solutions generated will be infeasible,

and instead only calling L0 moves for which certain checks are satisfied. Therefore,

although the feasibility of a shift is tested with external, black-box-like checking

routines, some domain-specific knowledge is incorporated into the local search for

efficiency reasons.

The overall driving scheme used in this chapter (what we call an L2 move) was

determined by comparing several different loops of sequential calls to specific L1

moves, sometimes combined with conditioning phases (see next section). For ev-

ery alternative, the choice and ordering of L1 calls and conditioning phases was
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hardcoded. Tests presented in this chapter use the disposition that experimentally

showed the best results.

Conditioning

All moves described in the previous section are called with the intention of decreasing

the cost of the current solution; therefore, new solutions are accepted only if the

cost is decreased (or, under certain circumstances, not increased). This may lead

the local search to quickly stagnate in a local optimum. As discussed in Section

3.3, metaheuristic approaches like Tabu Search or Simulated Annealing tackle this

problem by accepting certain cost-increasing moves; however, these approaches leave

the cost function and (to a certain extent) the neighbourhoods unchanged.

We want to be more proactive in guiding the local search to good areas, and away

from local optima; more specifically, we intend to favour certain structural properties

in the solutions, which intuitively could lead the local search to better final solutions.

As an example, short-spreadover shifts might be easier to “dismember” into other

shifts; if the cost function is based on the number of shifts in the schedule, having

a schedule with many short-spreadover shifts could make the task of reducing the

number of shifts in the solution easier. However, a schedule with short-spreadover

shifts will be inefficient in terms of schedule size, and hence will rarely be selected

by a local search metaheuristic (including tabu search and simulated annealing).

The way we favour the appearance of these properties is by temporarily chang-

ing the cost function with which the local search is conducted. We call these the

conditioning phases.

We investigated favouring two different properties:

1. Generate short-spreadover shifts. For that purpose, the cost of a move (which

is a perturbation to a subset Sm ⊆ S of shifts) is the decrease in the minimum

spreadover of Sm (mins∈Sm spreadover(s)), relative to the original minimum

spreadover in Sm before executing the move.

2. Generate long inter-spell gaps of non-work time, which may increase the

chances of adding new work to the shifts in those gaps, and also of performing

some spell-swapping moves that were previously infeasible. For that purpose,
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the cost of a move is defined to be the increase in the maximum inter-spell gap

of Sm, relative to the original maximum inter-spell gap in Sm before executing

the move.

The first criterion produced better results than the second. Overall, this way of

alternating between conditioning and non-conditioning phases has the inconvenience

that moves executed in the conditioning phase may be later undone by moves made

in the following cost-improving phase, because different, often conflicting and even

opposite cost functions are used in each phase. In our experience, it is quite complex

to tailor the specific moves and cost functions to stop this from happening. One

such approach, borrowing from the concepts of the tabu list and aspiration criteria

in tabu search, is presented in Chapter 8.

4.2.2 Experiments

The algorithm was tested using real-life instances from the Scottish train operator

Scotrail. We used TrainTRACS as the GaS solver for the first phase or our algorithm.

A typical instance from Scotrail contains around 1,000 relief opportunities, which

under the usual set of constraints (including the artificial ones) results in a pot

of around 170,000 candidate shifts generated during the execution of GaS. The

solutions obtained after the local search phase adhere to all operating rules as defined

by the operator for its scheduling exercises.

Schedule Cost

We first analyzed the potential of the new approach for reducing the cost of a

schedule. Results for a sample run are shown in Table 4.1.

artificial constraints GaS GaS+LS improvement

not relaxed 459.48h 458.13h -0.34%

relaxed N/A 455.18h -0.98%

Table 4.1: Results of the GaS and Local Search approach for a real-life instance. Two variants of

the hybridized method were analyzed: in the first one, the artificial constraints introduced during

the GaS phase enforced during the local search phase; in the second one, they are removed.
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For an average train operator, a 1% cost reduction in the drivers schedules would

mean a saving of several hundred thousand pounds per year. The improvements ob-

tained are thus considerable for train operators, especially given the near-optimality

of the initial solution (on the approximated model).

Schedule Robustness

WROs could play a very important role in increasing schedules’ robustness. Interac-

tion with schedulers has allowed us to identify some aspects of a schedule that are

key to enhance its capability of absorbing delays that may occur during operation.

We have defined two such indicators. (1) Slack is the unproductive time during

signing on, mealbreak or joinup. Slack occurs naturally in a schedule; it might be

added to a shift so that it conforms to some labour union rules. Moreover, slack in a

shift could be used to absorb some delay when it occurs. The scheduler has to strike

a balance between producing a cost-efficient schedule and adding enough slack so

that the schedule meets robustness criteria. (2) When a train is so delayed that the

slack in the driver’s shift is unable to absorb it, a pragmatic way which a train crew

manager would employ is to switch an available driver, say d, at the same location

to take over the next train that the delayed driver was due to take on. This way

the train driver can be relieved and have his/her legal break, and then take on the

train that was originally assigned to d. We refer to this as a swap opportunity.

To test the capability of our approach in tackling robustness, we translated these

two measures of robustness into separate cost functions: given a schedule S, slack(S)

computes the total minutes of slack in S, and swapOpp(S) computes the number

of swap opportunities in S. Let cost(S) be the original cost function related to the

number of shifts and total payable hours in S. Then, the GaS phase is still executed

using cost as the cost function, generating a solution SGaS. The local search phase,

however, is now driven by one of the new, robustness-related cost functions. It is

likely that train operators will want to balance cost and robustness in a schedule.

For these initial tests we decided to force the local search to guarantee that every

solution obtained during its execution is as cost-efficient as the starting solution,

SGaS; this was achieved by adding a constraint cost(S ′) ≤ cost(SGaS), where S ′ is

any candidate solution being considered during the local search phase.
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Results for experiments on the same data used in the previous tests are presented

in Figure 4.2. These suggest that both measures of robustness can be increased by

using our approach, with no additional cost to the schedule. However, it should

be noted that the GaS solver used for these tests is not tailored to optimizing any

of the two robustness measures, so comparisons between the local search approach

and TrainTRACS in terms of how they can improve schedule robustness would be

misleading; similarly, the contribution of WROs to improving robustness cannot

be assessed conclusively through these tests. The next logical step in this research

direction would be to modify the GaS solver (in this case, TrainTRACS) so that the

selection phase is guided by the same robustness-related cost functions than the local

search. However, TrainTRACS does not provide access to modifying the cost function

in use, and even if it did it is likely that the algorithms for both the generation and

selection phases would have to be reconsidered thoroughly, including heuristics in

the generation phase and branching rules and column-generation procedures in the

selection phase. This research is not tackled in this thesis.

measure of robustness SGaS after LS improvement

slack 1,604 1,648 2.74%

swapOpp 6 8 33.33%

Table 4.2: Results of the GaS and Local Search approach for a real-life instance, using measures of

robustness in the LS phase. Both total slack and number of swap opportunities could be increased,

at no extra cost in the schedule.

On the Reproducibility of Results

One of the main premises of research in optimization (and many other areas) is

that experiments and results should be reproducible. We can refine on this concept

by distinguishing to aspects of reproducibility: first, the researcher that conducted

the experiments has to be able to repeat the experiment and obtain the same (or

reasonably similar) results; second, it is expected that other researchers can also

generate similar results by following the description of the experiments in question.

With regards to the first item, it should be clear that for most (if not all) optimization

problems, once the problem and a particular problem instance are described fully,
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the researcher would be expected to be able to reproduce previous results faithfully,

e.g. generate the same end-solution for that problem instance.

Many algorithmic approaches to optimization problems resort to randomization,

i.e. incorporate points during the execution of the algorithm where a choice be-

tween two or more alternatives is selected on the basis of an instantiation of a ran-

dom variable. True randomization would seem to make it impossible to guarantee

reproducibility in those cases (other than in some statistical sense); however most

implementations of randomization in computer systems resort to pseudo-random

number generators, which allow some control over the sequence of ‘random’ num-

bers generated over time.

In this thesis, all implementations of algorithms that involve randomization and

are under our control are done in a way that the sequence of numbers generated

can be reproduced in later executions, mostly by having a single-threaded imple-

mentation that shares a single number generator across the whole execution, and

allowing for the specification of ‘seeds’ for those number generators, thus making

it easier to achieve reproducibility. However, we also interact in many cases with

external tools, particularly TrainTRACS. We observe that TrainTRACS does not pro-

vide a way to guarantee that the results for a given problem instance will be the

same in two separate runs; moreover, we have experienced TrainTRACS generating

different results for the same problem instances while working on this thesis, and

this behaviour has been corroborated by other TrainTRACS users. This means that

when our experiments involve the use of TrainTRACS (particularly when using the

selection phase of their GaS solver), reproducibility can be compromised.

An apparent manifestation of this problem can be observed in Figures 4.4 and

4.5 in pages 72 and 73, where the cost of the first solution in the loop varies from

one experiment to another (roughly 690 hours in the first experiment against 695

hours in the second), under apparently the same problem instance. However in

this case the difference is actually due to the fact that the BUILD tool used for the

generation phase had to be run in a different mode in the second experiment than

in the first, due to the addition of constraints, and this results in a slightly different

set C of candidate shifts generated for the first iteration. Hence one must also be

careful when aiming for reproducibility in verifying that the problem and problem
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instances are actually equivalent across experiments.

4.3 Looping Back to GaS

4.3.1 Motivation

The final step in the approach proposed in Section 4.2 is a call to a local search

phase, which produces a schedule SLS. Now, even if the schedule was generated on

the extended, windowed model, all driver reliefs in SLS happen at precise time points.

Therefore, SLS is also a solution for a particular approximated model ALS, namely

that obtained by approximating all windows of relief opportunities by the times at

which the reliefs are taking place in SLS (inactive WROs can be approximated by

e.g. their arrival times). If cost(SLS) < cost(SGaS), it can be argued that ALS is a

better approximated model than the one derived from A, which was used in the GaS

phase.

The GaS approach has been very good in solving approximated models; in partic-

ular, TrainTRACS is being successfully used by transport operators for their schedul-

ing tasks. Therefore, if restricted to an approximated model, it may happen that

GaS/TrainTRACS can perform better than the (somehow basic) local search we have

implemented in this chapter. It may thus be wise to attempt solving the problem

for the approximated model ALS using GaS. Once this first loop-back to GaS is

established, it is natural to consider extending the idea to running GaS and local

search in a loop, iterating until no further improvements to the approximation can

be made. The algorithm is presented in the next section.

4.3.2 A Loop-back Version of the Algorithm

The loop-back version of the algorithm is presented in Figure 4.3. Again, an initial

set A1 of approximations is generated using the arrival times. GaS and Local Search

phases are then carried out in sequence. In step 5, a new set of approximations

Ai+1 is generated according to the times at which reliefs are taking place inside

windows in SLS
i , and the GaS and Local Search loop starts again with this new set

of approximations.
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0.
set i := 1; generate a set A1 of approximations for the WROs in

the set of vehicle blocks B (using arrival times)

1.
run Generate and Select on the model approximated by Ai,

obtaining a schedule SGaS
i

2a.
run Local Search on an extended (i.e. non-approximated) model

for B, with initial solution SGaS
i , obtaining SLS

i

2b.
generate a new set of approximations Ai+1 for the windows in B,

based on the active relief opportunities in SLS
i

2c. set i := i + 1; go to step 1

Figure 4.3: A loop-back version of the algorithm: a new set of approximations Ai+1 is generated

from the solution SLS
i obtained in the last call to local search, and fed back to the GaS solver

4.3.3 Experiments

We present two sets of experiments on the loop-back mechanisms to GaS. These

provide initial evidence that the approach is viable, pointing out at the same time

the main issues arising when implementing such a scheme.

One: Unconstrained GaS phases

On the first set of experiments, the only information derived from the local search

phase for the next call to GaS is that of the next set of approximations Ai+1. We

call these unconstrained experiments, because even if we know that solutions with

specific cost values exist (we obtained them on the local search phase), we don’t

force GaS to equal or better those costs. The results of a typical run are shown in

Figure 4.4.

As shown in the figure, the behaviour of the loop is erratic. Since the local search

is set to accept only cost-decreasing solutions for these experiments, it is intuitive to

expect that the overall behaviour of the cost function during the loop is decreasing.

The reason why this is not reflected in the actual results is that the GaS solver is

not an exact algorithm, and some heuristics are built into it to speed up the CPU
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Figure 4.4: Unconstrained experiments for the GaS and Local Search loop. The x-axis shows the

number of iteration of the loop; the y-axis show two measures of cost, number of shifts and payable

hours. The objective is to first minimize the number of shifts, and then the total payable hours.

times; for example, with the default settings the branch and bound phase will stop

as soon as it reaches a “good enough” solution, which might not be the best that

can be achieved if all branches are explored. It is still interesting to see that, even

with these settings, the loop has been able to generate better solutions (iterations

9 and 10) than the one obtained on the first iteration. This supports the intuition

that considering time windows would lead to more efficient solutions.

Two: Constrained Schedule Size on GaS Phases

For the second set of experiments, we added a hard constraint on the calls to GaS,

specifying that the number of shifts in the final solution must not exceed the one

obtained in the previous call to the local search. The results are shown on Figure

4.5.

The results show that GaS now enforces the max-schedule-size condition. How-

ever, since there was no constraint issued on the total payable hours, the behaviour

on that component of the cost is still erratic. It is easy to think of different ways

of further constraining the GaS phase to control its behaviour. As an example, we
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Figure 4.5: Cost-constrained experiments for the GaS and Local Search loop: schedule size and

total payable hours vs. iteration number. While the constraint on schedule size succeeds in

controlling the upper limit on size, the end result is worse than the one obtained when the constraint

was not enforced. The algorithm is erratic when dealing with payable hours.

tried adding a constraint on the total payable hours; however, this seemed to render

the solver unable to find a feasible solution. We don’t have a final explanation for

this behaviour. However, we can think of several possible reasons for this; among

them:

1. The local search solution is present at some node of the branch-and-bound

tree, but a limit on the number of nodes to expand prevents the algorithm

from finding it; this limit is currently set to 5,000 nodes.

2. Because the GaS solver we are using includes a preprocessing phase, in which

some relief opportunities deemed not useful are taken out of the problem,

it may happen that the solution found in the local search (and every other

solution with equal or better cost) is actually left out of the solution space

considered by the branch-and-bound phase (no matter how many nodes are

visited). Forcing TrainTRACS to consider all ROs is not viable, because of the

resulting increase in problem size.
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3. Because the generation phase is artificially constrained to restrict the number

of shifts generated, it might happen that some of the shifts in the local search

solution are not available to the next phase of GaS. We can circumvent this

problem by explicitly adding those shifts to the pot available for the selection

phase; in fact, the choice of shifts to add is not restricted to those in the

final schedule SLS
i , but could also include shifts generated during the search

process.

The reasons just described are quite independent from each other, and therefore it

is possible that we have to tackle all of them before being able to get GaS to always

find a solution that is better than or equal to the one obtained in the previous call

to local search. However, tackling any of them would involve relaxing some heuristic

rule which was originally added to make the execution time of the GaS phase feasible.

This means that we must be intelligent in how to relax them, the way we solved the

third problem being an example of that.

4.4 Conclusions

The experiments conducted in this chapter suggest that a local search approach is

capable of overcoming the limitations of the Generate and Select approach on an

extended scheduling model, which fully incorporates windows of relief opportuni-

ties. We developed different algorithms which show that cost improvements can

be achieved; we also show that there is room for enhancing the robustness of the

schedules. Better models need to be built to analyse the how cost and robustness

can be tackled at the same time.

Experiments carried out in this chapter suggest many open areas. The local

search phase should ideally be less conservative; on the other hand, constraints on

shift structure mean that generating feasible perturbations of the current solution

(i.e. altering the shifts in the current schedule) may be a hard task. These two ob-

servations suggest that it could be useful to accept infeasible intermediate solutions.

This is studied in Chapter 6. The problem of cycling when including conditioning

phases must also be properly studied. Also, while the test instances used did not

contain schedule-level constraints, they should still be handled by the local search
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phase in order to make this a general-purpose tool.

The loop-back version of the algorithm presented here is relatively simple, and

our intuition is that much better results might be obtained with the right algorithms.

These should be centered on better exploiting the information gathered during a lo-

cal search phase for the next call to the GaS phase, which may include new shifts

generated during the search, information about relief opportunities that were instru-

mental in producing cost improvements, etc. Feasible solutions obtained during the

LS phase could even help in pruning the branch-and-bound tree on the following

call to GaS.



Chapter 5

Exploiting Scheduling Constraints

in the Generation Phase of GaS

5.1 Introduction

In the previous chapter we presented a two-phase approach to solving the driver

scheduling problem with WROs, where we first run a GaS phase on a RoA approx-

imation of the problem instance, to obtain an initial solution for a second phase

which is a local search that works over the 1-minute WRO expansion. The search it-

self makes no explicit attempt at understanding the potential contribution of WROs

to better schedules, hence treating all WROs equally when exploiting them. This

would seem to contradict our observation that most of the ROs in a 1-minute ex-

pansion of WROs might be redundant, in the sense that eliminating them will not

affect the theoretical optimal cost obtainable for that instance. Results on the ex-

periments carried out on our first GaS + Local Search proposal suggest that only a

small subset of the WROs is actually exploited during the search.

In this chapter, we propose a heuristic framework for exploiting WROs in the

context of a GaS approach, where only those ROs within WROs that are deemed to

76
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be potentially useful in getting lower-cost schedules are actually added to the model

considered during the generation phase. To do so, we concentrate on identifying ROs

within WROs that can be used to build new ‘useful’ shifts that were unavailable in

the RoA formulation. The qualification of ‘usefulness’ arises from the fact that,

although in general most of the ROs within WROs can be used to create shifts that

are unavailable in a RoA formulation, many of these new shifts would only differ

from shifts in the RoA formulation in the way WROs are covered – if we disregard

work content inside WROs, most of the new shifts would actually have the same

work content as an existing shift in the RoA formulation.

More formally, define spells sp1, sp2 to be structurally equivalent if, without con-

sidering work that occurs inside WROs, sp1 and sp2 cover the same pieces of work;

if they cover different pieces of work, we say they are structurally different. By

extension, shifts s1, s2 are structurally equivalent if for each spell in s1 there is a

structurally equivalent spell in s2 and viceversa (and structurally different other-

wise). In these terms, we claim that most of the shifts that can be created by using

ROs within WROs are structurally equivalent to shifts in the RoA formulation. Our

heuristic framework proposal is that of extending the set of ROs from the RoA for-

mulation by adding only ROs within WROs that allow (or are likely to allow) GaS

to generate shifts that are structurally different to any shift that can be generated

in the RoA formulation.

5.2 Scheduling Constraints and Shift Boundaries

Driver scheduling can be seen as a way of partitioning vehicle work into a set of

driver shifts (in the USA, for example, crew scheduling is often referred to as run

cutting); looking at driver scheduling from this point of view, it can be noted that

scheduling constraints give rise to limiting boundaries on the spells of work that

can be ‘carved out’ of a given vehicle schedule. Figure 5.1 depicts such an example:

given an RO r on vehicle v at time t, a maximum work spell length of x minutes will

define a boundary in vehicle v at time t− x, such that any spell on vehicle v ending

at r will satisfy this constraint if the spell starts at or after t−x, and will break the

constraint otherwise. If t−x falls inside a WRO w at vehicle v (but not at its arrival
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time), then considering relieving inside w at t − x leads to forming a spell which

was invalid on the simplified, relief-on-arrival model. This would indicate that the
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WRO w

t− x t

V

RO r

valid spells (RoA formulation)

new valid spell when RO at time t− x is considered

Figure 5.1: Looking at boundary conditions for the maximum spell length constraint. A maximum

spell length of x restricts any spell ending at time t to start within the interval [t − x, t). A new

spell can be formed if the RO within WRO w at time t− x is added to the model.

RO at vehicle v and time t− x is a good candidate to be included in the extended

model, because it allows for a new (structurally different) spell to be generated, and

thus should allow for new (structurally different) shifts to be generated as well.

This kind of property is exhibited by many of the constraints in the driver schedul-

ing problem, among them:

• maximum spell length

• the existence of feasible travel links between consecutive spells, sign-on and

first spell, last spell and sign-off

• maximum shift spreadover

• mealbreak start/end times, lengths

5.3 Analyzing Individual Constraints

The approach outlined above can be applied to all constraints that are time-dependent,

to produce a set of ROs within WROs to add to the ones derived from the RoA

formulation. In its simplest form, the procedure can be tested on any given set I

of test instances I with the method described in Algorithm 2. The key step in this

algorithm is step 4, where the scheduling constraint c is used to determine the set

WI of ROs to be added to AI . The implementation of this step will be specific to

the chosen constraint c.
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Algorithm 2 Testing the heuristic expansion of the RO set

1: given a scheduling constraint c that is time-dependent

2: for each instance I ∈ I of the scheduling problem do

3: let AI be the set of ROs from the RoA formulation

4: compute WI , the set of ‘useful’ ROs within WROs in I, according to c

// run GaS on AI

5: set SRoA := select(generate(AI))

// run GaS on AI∪WI

6: set SWRO := select(generate(AI ∪WI))

7: compare schedules SRoA and SWRO

8: end for

To test the applicability of this idea, we run the experiment outlined above by

choosing the constraint that, for any given shift s to be valid, there must exist a

feasible travel link between the end of each spell of work in s and the beginning of the

next spell. The availability of these links is key in the process of joining individual

spells into full shifts. The procedure for computing WI is outlined in Algorithm 3,

and it relies on a set of travel links computed by a module in TrainTRACS called

TRAVEL, running on a 1-minute-expansion formulation of the problem. We run GaS

Algorithm 3 Computing WI under the feasible travel links constraint

1: given an instance I of the scheduling problem

2: set WI := ∅
3: for each location l, relief opportunity r ∈ AI do

4: compute tea(l, r), the earliest arrival time t for which there exists a feasible

travel link between r and (l, t) according to I
5: if (l, tea(l, r)) is an RO within a WRO in I then

6: set WI := WI ∪ (l, tea(l, r))

7: end if

8: end for

on AI and AI ∪ WI using PowerSolver, an iterative GaS tool that is part of the

TrainTRACS driver scheduling package. We use four recent real-life data sets from

UK rail operators. The objective is to minimize schedule size first, then hours paid.
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Results are shown in Table 5.1.

Results show a considerable decrease in cost (schedule size and/or hours paid)

for the Wessex and Wales data sets, a relatively small improvement for ThamesLink,

and an increase in cost for InterCity. This last result would seem contradictory, since

AI ⊆ (AI ∪WI), and so every feasible schedule obtainable from AI should also be

obtainable from AI ∪WI ; however, the reader should be aware that solutions in the

test are not theoretical optimal solutions, but rather those obtained with a computer

run of a (non-exact) software tool – indeed, the compromise between problem size

and solution quality is precisely the driver for designing heuristics to restrict the set

of ROs within WROs being added1. The fact that the proposed method generates

new best-known solutions on three out of the four datasets is further proof that

considering WROs may result in better schedules; moreover, the tool proposed can

easily be applied in practice: a real-life scheduler, faced with the problem of assigning

drivers to its operations, can always run TrainTRACS on both sets AI and AI ∪WI

(or even have TrainTRACS do this automatically for him) and then simply choose

the best solution from the two.

Results on the Wessex dataset are insightful. We investigated how many of the

new ROs added by the procedure are actually functional in allowing for the 109-shift

solution to be found. To do this, we replaced where possible all shifts that involve

relieving at a newly-added RO with shifts covering the same work but relieving

on arrival. Replacement is done in pairs (where one shift leaves the unit at that

RO, and the other takes the unit at that point), so that all work –including that

within WROs– remains covered after the replacement. Replacements that result in

infeasible shifts were not carried out. The procedure allowed us to conclude that

only one of the newly added ROs is responsible for the decrease in schedule size.

It is still necessary to add more ROs to get the total number of hours paid down

significantly; also, some of the ROs seem to play a part in allowing the selection

phase to find a low-cost solution. This result backs our intuition that most of the

1It must be noted that although this heuristic may result in more ROs added than necessary

for the solution space in the selection phase to contain an optimal-cost schedule equivalent to that

of the full WRO formulation, finding a minimum-size set of ROs that provides such a guarantee

will usually be a hard problem in itself
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ROs derived from WROs are redundant, and it is worth designing algorithms that

can sift ROs derived from WROs. Similar arguments have been stated when looking

at individual ROs in the RoA formulation, where both early [66] and recent [56] work

involves the use of heuristics to reduce the set of ROs used during the search.

In summary, the new method proposed is able to produce new best-known so-

lutions for real-life instances of the TDS(W) problem. The proposal works a pre-

processing stage, where instead of constructing the set of relief-on-arrival ROs AI

for I we generate an expanded set AI ∪ WI . Therefore, from an implementation

point of view, existing GaS systems should be easily amenable to this extension.

5.4 Exploiting a Group of Scheduling Constraints

Many of the constraints that apply to a driver scheduling problem instance can

be exploited in a similar way to the feasible travel links constraint, to yield a set

WI of ROs within WROs which can be used to generate new, structurally different

shifts. Therefore, a simple approach to exploit a group of scheduling constraints

C = {c1, . . . , ck} is to build separate sets W
cj

I for each constraint cj, and then run

GaS on the set AI ∪ (
⋃k

j=1 W
cj

I ).

A first objection to this approach is that the resulting set of ROs available to

the generation phase of GaS will grow quickly, exacerbating the effects seen in some

of the instances of Table 5.1. The key for this behaviour in Algorithm 2 (and its

extensions to sets of constraints) is the fact that, while a particular RO r is added

because we have proof (or a suspicion) that there is a structurally new shift that

depends on r being available, the generation phase will most likely also use r to

generate new shifts that are structurally equivalent to shifts that could be obtained

without using r.

At least two alternatives to adding ROs are available:

a. provide the generation phase with new, structurally different spells than those

available under the RoA formulation

b. add shifts that are structurally different from those generated under the RoA

formulation to the pool available in the selection phase
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In either case, the pool of shifts available to the selection phase will not contain any

structurally equivalent shifts.

A second observation about this proposal is that because several scheduling

constraints impose the same kind of structural restrictions on shifts, they could be

tackled within a single algorithm. Moreover, there are several scheduling constraints

for which all structurally different shifts obtained by running the generation phase

on AI ∪WI can also be obtained directly by altering a specific shift S from the RoA

pool, extending a particular spell in S so that it starts within an earlier WRO (but

not at its arrival time).

Based on the previous two observations, we present a constructive algorithm (Al-

gorithm 4) that implicitly exploits a group of scheduling constraints by adding new,

structurally different shifts to an existing pool of shifts P (usually generated from a

RoA formulation); these shifts are obtained from existing shifts in P , manipulating

them in the way described in the previous paragraph.

To investigate what type of constraint this method can effectively exploit, we run

Algorithm 4 (page 83) on an existing pool of shifts CI generated with TrainTRACS

on the RoA formulation. Using the notation in Algorithm 4, we then analyzed for

every new shift s′wro created with this method which constraints are violated by its

structurally equivalent (infeasible2) shift s′roa under the RoA formulation – this gives

us an indication of which constraint we are implicitly exploiting when generating

s′wro. s′roa is completely similar to s′wro except that relief within w happens on arrival

in s′roa. To determine the constraint(s) violated by s′roa, we feed it to the CHECKER

on a RoA formulation of the problem instance; CHECKER returns only one of the

constraints violated when the shift is infeasible; although knowing all reasons for

a shift being infeasible would have been preferable, this still allow us to have a

reasonably complete idea of the constraints being exploited.

In the following paragraphs we show three examples of how the new method is

able to capture new structurally different shifts, and how they exploit scheduling

constraints. For each example, we show on the right hand-side a new structurally

different shift s′wro obtained with this method, and on the left hand-side the shift s

in the RoA pool that gave rise to it.

2s′roa in infeasible, otherwise s′wro would not have been generated by Algorithm 4
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Algorithm 4 Adding structurally different shifts to an existing pool C

1: given an instance I of the scheduling problem, and a pool CI of shifts obtained

from I by running a generation phase on AI

2: for each shift s in CI do

3: for each spell sp in s, on vehicle v, starting at RO r do

4: if the RO w immediately earlier than r on v is a WRO then

5: let sp′ be the ‘extension to the left’ of sp, so that it now starts in w, at

its arrival time

6: let s′roa be the shift created from s by replacing sp with sp′

7: if s′roa is feasible then

8: continue with next spell sp

9: else

10: if the start time of sp′ within w can be changed to t so that it becomes

feasible then

11: set CI := CI ∪ s′wro, where s′wro is built from s′roa by modifying sp′ to

start at time t within w

12: end if

13: end if

14: end if

15: end for

16: end for
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In the first example (Figure 5.2) the equivalent shift s′roa in the RoA formulation

turns out to be infeasible due to lack of travel opportunities – the earliest travel link

from depot to the location of the WRO in vehicle 1752 containing the time 15:51 is

15:51, so starting the spell earlier than 15:51 in w is infeasible. This kind of situation

wouldn’t have been caught by Algorithm 3 since it only considers travel links during

joinups, but not at sign-on/off, due to technical details on which feasible travel links

are represented in the files generated by TRAVEL.

29 1752 17:25 19:30

29 1754 20:38 21:48

29 1755 22:46 23:57

29 1752 15:51 19:30

29 1754 20:38 21:48

29 1755 22:46 23:57

Figure 5.2: Results on Algorithm 4: new travel opportunity allows for an earlier sign-on. The shift

on the right hand-side is created from that on the left hand-side by applying Algorithm 4.

In both the second and third cases (Figure 5.3, page 85), moving the start of the

spell sp earlier makes the gap between the start of sp and the end of the previous

spell in the shift less than 15 minutes. However, a hard constraint on the minimum

joinup time of 15 minutes makes relieving on arrival infeasible in both cases. Notice

how the joinup gap in both new shifts s′wro (which benefit from the possibility of

relieving later than arrival within the WRO) is exactly 15 minutes. Note also that

the situation arising in these two examples can be linked to the potential of WRO

formulations on robustness as described in Section 1.3 and Figure 1.2, where we

suggest that the creation of certain buffers can be considered better in a WRO

formulation.

Further analysis on the Wessex dataset show at least the following constraints

to be exploited: feasible travel links (both for joinups and sign on/off); maximum

spell length; maximum shift spreadover; min/max joinup time; at least some of the

mealbreak rules. Although it would be difficult to determine precisely, initial analyses

suggest that this mechanism is actually able to build most (if not all) of the relevant

shifts that are not available under a RoA formulation because of violations to the

constraints enumerated here.

It is worth noting that this extension to GaS is not as easy to implement as

the one described in Section 5.3: the new shifts have to be generated at a point
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71 1710 08:18 09:40

71 1701 10:24 11:30

71 1705 12:02 13:31

71 1705 14:59 15:40

71 1710 08:18 09:40

71 1701 09:55 11:30

71 1705 12:02 13:31

71 1705 14:59 15:40

73 1707 14:08 14:55

73 1707 16:15 18:55

73 1709 21:20 22:39

73 1702 23:05 23:28

73 1707 14:08 14:55

73 1707 16:15 18:55

73 1709 21:20 22:39

73 1702 22:54 23:28

Figure 5.3: Results on Algorithm 4: relieving later than the arrival time allows to enforce the

hard constraint on minimum joinup time. The shift on the right hand-side is created from that on

the left hand-side by applying Algorithm 4. In both cases, the joinup time between the affected

spell and that preceding it is exactly 15 minutes, which is the minimum joinup time according to

constraints for the dataset.

between the generation and the selection phases, so it cannot be implemented as

a preprocessing stage. Moreover, the selection phase and the generation phase will

need to be able to work on different sets of ROs, AI and AI ∪ WI respectively

(part of the matrix {aij} in Equation 3.1 is now effectively related to pieces of work

that are not available during the generation phase). Adapting existing software to

accommodate for this, while keeping the system to produce operational schedules

for real-life instances, is subject to further research.

5.5 Conclusions

In this chapter, we propose new mechanisms to address the perceived benefit of

incorporating more domain knowledge when exploiting WROs.

We investigate how WROs may play a part in achieving more efficient solutions.

WROs are looked at in terms of the new ‘structurally different’ feasible spells and

shifts they may allow to be formed, compared to those available from the standard

RoA formulation. This is first done by looking at individual scheduling constraints,

and the role WROs may play in exploiting them. A second approach is then pre-

sented, in which so-called ‘useful’ ROs within WROs are detected by a constructive
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procedure.

We derive a heuristic framework for adding selected ROs within WROs to a relief-

on-arrival model (which can be seen as an extension to the usual generation phase of

GaS). Tests conducted on real-life instances show substantial improvements in most

of the test cases, and in a particular example, a reduction of more than 2.5% in the

schedule size. Moreover, an analysis of this last instance shows that most of the

improvement in schedule size can be attributed to a single new RO. This reinforces

our view that most of the ROs within WROs will not be of use in obtaining more

efficient solutions, and therefore can be eliminated from the model without affecting

the quality of results, while at the same time showing that some of them are crucial

to obtaining better schedules and therefore must be considered.

Although the tools presented here are relevant per se, there is much that can

be done from here. To begin with, we would like to adapt TrainTRACS to fully

implement our constructive proposal. At the same time, the algorithms and experi-

ments presented on this chapter arise from an attempt at adding domain knowledge

into the GaS + Local Search proposal. It would be important to investigate how

the observations on the relationship between WROs and scheduling constraints may

be translated into the GaS + Local Search framework; this includes the relatively

straightforward modification to have the initial GaS phase run on a RoA formu-

lation that is enhanced with selected ‘useful’ ROs, but also guided variants of the

local search, where moves involving exploiting WROs and scheduling constraints are

given preference.
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Chapter 6

Repair-Costing of Infeasible

Solutions

6.1 Introduction

The hybrid approach in Chapter 4 is an initial attempt at explicitly exploiting WROs

in the TDSW problem. While the search is able to improve on results obtained using

GaS on the RoA model, the improvements are relatively limited, and the tool is

outperformed by the second hybridization proposed in Chapter 5. In the remainder

of this thesis, we develop and evaluate a more sophisticated local search scheme

for the TDSW problem. This new scheme attempts at improving the first local

search proposal by addressing two perceived limitations in its local search phase:

difficulty in generating valid solutions in the neighbourhood of the current solution,

and limited use of domain knowledge.

In this chapter we tackle the first limitation, and analyse the possibility of allow-

ing infeasible solutions during the search, with particular emphasis in the problem

of costing feasible and infeasible solutions. We propose a repair-based scheme, and

we develop and compare several repair-costing heuristics.

In Chapter 7 we briefly study inefficiency in driver schedules. Finally, in Chapter

8 we integrate the ideas in Chapters 6 and 7 into a single framework, and evaluate

its performance.

88
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6.2 About Generating Neighbouring Solutions

In the proposal in Chapter 4, we enforce that all intermediate solutions in the

search are feasible. This implies that all shifts in a schedule must satisfy all labour

rules. Each move attempts to form new candidate shifts to replace shifts in the

current solution. We implement the constraint that the resulting new shifts must

be valid by first ignoring all but the most essential structural shift constraints while

creating the shifts (for example, a driver is not assigned two different pieces of work

at the same time), and once the shifts are built validating them using an external

routine provided by TrainTRACS (the CHECKER). This approach has the advantage of

automatically enforcing all the shift-level constraints enforced by TrainTRACS, and

being very robust to changes in the specification of shift validity criteria. However,

in practice it also means that during the local search only a tiny fraction of the shifts

that are generated are valid according to the CHECKER; the majority of the solutions

built are in fact discarded because they are not even valid.

Our experience in the experiments in Chapter 4 is that the search space is too

sparsely connected under most neighbourhood moves if the search is restricted to

feasible solutions. At the same time, the requirement for feasibility adds considerable

complexity to the design and implementation of moves. Detaching that part of the

complexity into a specific component would make the design of complex moves

easier and cleaner. Moreover, if handling of infeasibility arising from moves could

be achieved through a general-purpose mechanism, this would eliminate (or reduce

substantially) the need for consideration of feasibility constraints from the process

of move design. While our policy in Chapter 4 can be seen as establishing this

kind of separation (if the call to CHECKER is taken as the component that handles

infeasibility), in practice this results in too many potential solutions discarded. In

this chapter we develop an alternative, general-purpose way of handling inefficiency

in moves, which in effect allows for infeasible solutions during the search, but presents

these solutions as feasible to the levels above. We call this method repair costing.
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6.2.1 Search Space Connectivity

For a given instance of the train driver scheduling problem, Let F be the space

of schedules whose shifts are all structurally feasible, i.e. they satisfy the min-

imum physical constraints, such as not assigning a driver to cover two different

pieces/vehicles at the same time. Then, calling CHECKER on each shift of the sched-

ule defines a subspace Fc ⊂ F, Fc = {S ∈ F : CHECKER(S)}, where CHECKER(S) is

true if and only if all shifts in the schedule S are valid to CHECKER. Accordingly,

we can think of two neighbourhood relations: the one defined by the moves them-

selves, N(S), and its restriction to Fc, Nc(S) = {S ′ ∈ N(S) : S ′ ∈ Fc}. These are

exemplified in Figure 6.1.

s

s 0

*

Figure 6.1: Two solution spaces, two neighbourhood structures. The set F of all structurally

feasible schedules can be partitioned into solutions in Fc (represented by circles) and those in F\Fc

(squares). The neighbourhood relation N is represented by dashed and solid arcs between solutions.

Solid arcs represent the restricted neighbourhood Nc. Under Nc, S0 and S? are disconnected.

We are interested in obtaining the best possible solution in Fc. However, as

suggested by Figure 6.1, it is likely that by allowing for the local search to work

over the space F (rather than Fc), connectivity between solutions in Fc will increase,

and this will result in better solutions in Fc being reached. In this chapter we

investigate and propose ways of costing infeasible solutions in a way that they are

easily comparable with other solutions, both feasible and infeasible. In Chapter 8

we integrate these proposals into a local search framework that allows for certain

intermediate solutions in the search to violate validity constraints.
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6.3 Costing Feasible and Infeasible Solutions

Local search frameworks generally request that all intermediate solutions be feasible.

Two reasons for this are that, first, there is usually no natural, fair way of comparing

feasible and infeasible solutions in terms of the original cost function; second, the

search might stray into the infeasible region and not be able to return to the feasible

region, therefore rendering the rest of the search useless.

Many authors allow for infeasible solutions to be considered by augmenting the

original objective function of the problem with a series of penalty terms [41]; through

them, a solution becomes more unattractive (in terms of the augmented cost func-

tion) as the constraints get more violated. A first problem faced by this type of

approach is that for many problems the original cost function may not be applicable

to certain (or all) infeasible solutions. In the driver scheduling problem, we argue

that for shifts violating structural constraints, the usual cost (defined as the number

of hours between sign-on and sign-off) cannot be computed sensibly; for example, if

a driver is assigned simultaneously to two vehicles during a period p, the sign-on to

sign-off time would underestimate the number of man-hours driven (and even if p

was counted twice, the ‘extra’ travel time will generally be impossible to compute).

At a schedule level, a schedule not covering all of the work cannot be costed sensibly

with the original cost function, as it would not account for uncovered work. Overall,

this means that (even leaving the penalty terms aside) feasible and infeasible solu-

tions may not be compared fairly. Most approaches involving penalty terms omit

this discussion.

A second drawback of this approach is that the extended cost function mixes

two separate evaluations of the solution that are extremely different in nature: on

one hand, the quality of the solution in terms of the original problem, and on the

other the ‘amount’ of infeasibility. The modeller must then tune the weighting

of the original cost component against the amount of constraint violation, which

usually involves empirically determined individual weights for each type of constraint

violation that may occur. Some authors have proposed methods for adaptively

adjusting these weights during the search [35]. A method that decouples these two

evaluations, however, would give the modeller more control over the search process.
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6.4 Using a Repair Heuristic to Cost Infeasible

Solutions

6.4.1 Design Aims

Based on the limitations of the approaches based on penalty terms, we would like to

find an alternative mechanism that allows for both feasible and infeasible solutions

in the search space, and addresses the following issues:

1. how to compare feasible and infeasible solutions fairly, and if possible, in terms

of the original cost function; this issue is especially critical when the current

solution is on or near the boundary between the feasible and infeasible regions;

2. if and how to limit the ‘amount’ of infeasibility that is to be tolerated during

the search process – if possible, in a way that is decoupled from objective-cost

considerations;

3. the need to provide a feasible solution as a result of the search process.

Consistency in Costing Infeasible Solutions As stated earlier, we are not

interested in infeasible solutions per se, but rather as a way of connecting different

parts of the feasible space. Then, a cost function fi that evaluates an infeasible

solution Si can also be thought of as a way of stating how promising Si is, in terms

of future feasible solutions that can be reached from it. Function fi is then providing

an estimation of the result of a particular process (for example, the quality of the

next feasible solution in the local search, if it is continued from Si). This gives

rise to the issue of consistency: if two solutions S1,S2 are equally promising, then

we would expect fi(S1) ' fi(S2); accordingly, if S1 is more promising than S2, we

would expect fi(S1) < fi(S2). Crucially, even if one is able to precisely specify what

the function fi should estimate, it might not be easy to evaluate how consistent

fi actually is; in particular, the process being estimated will most likely depend

–among others– on the fi itself.

Unbiased Costing of Feasible and Infeasible Solutions In a combinatorial

optimization problem, a desirable property of any cost function is that solutions of
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the same ‘quality’ are assigned the same (or very similar) costs. When designing

a local search framework that allows both feasible and infeasible solutions during

the search, we will in general want to be unbiased in relation to whether a solution

is feasible or infeasible1. In other words, we want the ‘quality’ of a solution to be

measured independently of whether the solution is feasible or infeasible (or of the

amount of infeasibility).

It is then important that our proposed costing mechanism for feasible and infea-

sible solutions is not biased towards feasible or infeasible solutions. Even if we do

not introduce any explicit bias when designing the method, any such method could

nevertheless result in cost functions that are biased towards feasible or infeasible

solutions. Therefore, the experiments on Section 6.6 will also look at the existence

of biases as defined here. We will sometimes refer to this problem as that of an

‘infeasibility step’, since e.g. if the repair is inefficient, there might be a difference in

cost in the limit between feasible and infeasible regions (against infeasible solutions)

that is only attributable to that inefficiency in repairing.

6.4.2 The Proposal

Instead of relying on penalty terms, our approach to allowing infeasible solutions

to be part of the search space is based on the use of a fast repair heuristic, which

projects infeasible solutions into feasible ones. When considering the cost of an in-

feasible solution S ∈ F \ Fc, the repair operator is first applied, obtaining a feasible

solution Sr ∈ Fc; the cost of S is then defined to be the cost of its repaired, feasi-

ble equivalent Sr. In this way, the original cost function is naturally extended to

infeasible solutions.

Previous work

Although repair costing is not frequently associated with neighbourhood search meta-

heuristics, the concept of repairing and repair costing has been studied considerably

in the area of evolutionary algorithms, although using different terminology. In the

1A possible exception being that, if needed, we might at some point actively discourage infea-

sibility in order to return a feasible solution as a result of the search
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context of evolution, the concept of repairing can be derived from a re-interpretation

of the concept of learning, and the role of repairing during a search was originally

studied in terms of the interaction between learning and evolution. In so-called

Lamarckian evolution, learning during the lifetime of a phenotype is transferred

back to its genotype, effectively feeding that information back into the evolutionary

process. In the context of evolutionary algorithms, Lamarckian evolution can be

equated to locally improving each new solution s generated during the evolutionary

process, and replacing s with its repaired version. Local improvement can take the

form of e.g. a greedy heuristic, or a short local search phase; if s was infeasible,

local improvement would involve a repair procedure as well. Although Lamarckian

evolution is nowadays considered an incorrect model of biological evolution, it is still

widely used within the area of evolutionary computing.

A competing theory of evolution was proposed by Baldwin [5]. In this theory,

good traits learnt during the lifetime of an individual affect its fitness, but those

traits are not inherited by their offsprings. In optimization terms, this equates

to using a locally-improved version of a solution s for the purposes of evaluating

its cost, but crucially not replacing s with its improved version during the search

process. A frequently-cited work on Baldwinian evolution was developed by Hinton

and Nowlan [43]. Whitley et al. [80] compare Lamarckian and Baldwinian evolution

in the context of genetic search, and suggest that Baldwinian evolution may be more

efficient in reaching global optima. Mills and Watson [63] revisit the potential of

Baldwinian evolution in escaping local optima and crossing fitness valleys.

As with Lamarckian evolution, local improvement of a solution s is in principle

independent of s being feasible or infeasible – in biology this concept may not even

exist. However, work by Ishibuchi et al. [47] contemporary to this thesis presents

Lamarckian and Baldwinian evolution in the context of dealing with infeasibility

arising during the execution of an evolutionary optimization algorithm. By compar-

ing several variants of Lamarckian and Baldwinian evolution on a multi-objective

0/1 knapsack problem, they are able to conclude that Baldwinian evolution (i.e. that

which relies on repairing for costing purposes only) performs better than Lamarckian

evolution.
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The exploration of the infeasible region as a means to connect feasible parts of

the search space is also discussed in other applications or optimization techniques.

A relatively recent metaheuristic called Path Relinking [37] makes an explicit consid-

eration for traversing the space of infeasible solutions as part of the search procedure

(tunneling). Ho and Gendreau [44] implement path relinking method for the vehi-

cle routing problem; however, their implementation of tunneling involves the use of

penalties in the cost function.

6.5 Designing a Repair Heuristic

As described in Chapter 4, our local search approach to the driver scheduling prob-

lem involves running a generate-and-select phase over a simplified model, obtaining

a first solution S0, which is used as the starting point for a local search over the

extended scheduling model. As a by-product of the first phase we obtain a set of

shifts C that covers (with huge redundancy) all of the drivers’ work. This set pro-

vides for an efficient strategy to repair an infeasible schedule S, which is based on

first removing all infeasible shifts from the schedule, and then covering back any un-

covered work by adding shifts from C to S. Kwan [57] and Li [59] have used similar

strategies; however, they use the repair procedures to generate a feasible solution,

rather than to cost an infeasible one.

This approach allows for computationally efficient implementations. Algorithm

5 depicts the framework shared by the heuristics we designed.

Algorithm 5 repair heuristic using the set C of candidate shifts

1: given a schedule S containing infeasible shifts

2: remove all infeasible shifts from S
3: while S does not cover all the work do

4: select a piece of work pi which is not covered by S
5: select a shift sj ∈ C such that sj covers piece pi (i.e. aij = 1)

6: S := S ∪ {sj}
7: end while

This is a greedy repair framework, since the repair is done incrementally and
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with no backtracking. Different heuristics can be obtained by varying the criteria

for selection in steps 3 and 4. Also, step 1 can be extended to consider removing not

only infeasible shifts in the schedule S, but also feasible ones, the intuition being

that removing specific feasible shifts in the current schedule may make it easier for

the repair heuristic to produce a good feasible schedule.

6.5.1 Data Structures to Support an Efficient Repair Heuris-

tic

It is very important that the resulting repair heuristic is efficient. In the context of

the framework described in algorithm 5, we add a pre-processing stage to the local

search that takes the set C and generates an efficient representation of how pieces

of work in the current instance are covered by shifts in C. The result is an array

coveredBy[1 . . . |P|], where P is the set of pieces of work for the current instance.

coveredBy[i] lists all shifts in C that cover piece pi, and is stored as a list of (pointers

to) shifts. This representation makes it extremely efficient to:

• access all shifts covering a particular piece p: O(1), or O(k) to access all k

shifts covering the piece;

• compare pieces of work in terms of the number of shifts that cover them: O(1),

since the number of shifts covering a piece pi is the size of the list coveredBy[i],

which is stored/cached along with the list.

Additionally, during the repair we keep an array powCovered[1 . . . |P|] that counts

the number of shifts covering each piece. This allows to find uncovered pieces easily

(e.g. by traversing the array as if it were a list), and also to compare the number

of uncovered pieces covered by different shifts efficiently. The choice of a count

of the number of shifts covering a piece, rather than a boolean covered/uncovered

description allows for an efficient update of powCovered as the repair progresses.

6.5.2 Selecting the Piece p to Cover

There are many different criteria that can be used to select the next currently-

uncovered piece p to cover. We start by presenting deterministic criteria; after that,
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we introduce randomized versions of them, where possible.

First uncovered piece The first uncovered piece in the list is selected. On each

new selection, the search can be resumed from the last piece covered.

Least-covered piece It may be argued that it is better to start by covering the

pieces that appear in the fewest number of shifts – by doing so, it is hoped that the

last shifts to cover are those on which the algorithm has more choices. To implement

this method, one can traverse the powCovered and coveredBy in parallel, keeping

track of the uncovered piece (or one of the pieces) with the lowest coveredBy list

size.

Start-of-run piece Experiments with the first heuristics show a problem in that

the piece p selected would often be adjacent to a run of other uncovered pieces,

which occur exactly before p on the same vehicle. This sometimes causes problems

in that those adjacent pieces would then be left uncovered by the shift selected to

cover p. If that run was short, it would later almost surely cause the need for an

extra shift to just cover those few pieces in the run. A way to fight this problem is

for example by restricting the choice of p to those pieces starting a run of uncovered

pieces. This criterion is in principle orthogonal to the criteria presented before. In

practice, we apply a slightly different method: we first find the least-covered piece

p1, and then select the piece p2 that starts the run to which p1 belongs (p2 may

eventually be p1, if it starts one such run).

A symmetric criterion to the start-of-run piece is that of selecting end-of-run

pieces (that is, pieces ending a run of uncovered work on a vehicle). Although the

start-of-run criterion solves the problem at hand, start- and end-of-run criteria could

be evaluated simultaneously during a repair (especially in a multi-run, randomized

setting as described later in this section) to increase the likelihood of finding lower-

cost repairs. Similar arguments of considering or traversing vehicle work in both

directions have been proposed earlier in the literature, see e.g. [66].

Given a repair task, and since the algorithms to implement the methods above

are very efficient, it makes sense to consider running a randomized version of them a
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number of times and selecting the best repaired schedule from those runs, especially

as it can help reduce the ‘infeasibility step’ as described in section 6.4.1. To see

this, we note that both the framework and the selection heuristics proposed are

greedy in nature. Greedy heuristics tend to be especially unreliable in terms of their

approximation to the optimal solution, in the sense that it may be very close to the

optimum for some instances but very far away from others. In order to minimize

the number of situations where the repair heuristic results in a gap in cost between

feasible an ‘nearly feasible’ solutions, randomizing the heuristics (and taking the

best or average of a number of runs) could ‘smooth’ the results returned by them.

In the following paragraphs, we sketch randomized versions of the methods above.

Random uncovered piece A random uncovered piece in the list is selected. This

can be seen as a randomized version of the ‘first uncovered piece’ criterion.

Randomized least-covered piece When selecting an uncovered piece to cover,

it is likely that there are a number of least-covered such pieces. In the randomized

version, a set LC of least-covered pieces is built. Then, a random piece is selected

from LC.

Start-of-run of randomized least-covered piece In this method, we first ran-

domly select a piece p1 from the set of least-covered pieces, and then select the piece

p2 that starts the run of uncovered pieces to which p1 belongs.

6.5.3 Selecting the Shift to Cover p

The methods we propose to select the shift to cover a given uncovered piece p share

a greedy mechanism for selecting the shift to cover p: from those shifts that cover

p, select the shift s that

a. maximises some measure of ‘quality’ of the uncovered pieces covered by s;

b. has the lowest cost.

If there is more than one such shift, we select the first on some pre-established order.

We propose three measures of the ‘quality’ of the uncovered pieces:
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1. Count the number of pieces covered by s.

2. For each uncovered piece pi covered by s, measure the percentage cpi
of shifts in

C that cover p. The overall quality of s is defined as
∑

i 1/cpi
. This has the effect

of giving a preference to shifts covering pieces that are ‘hard to cover’.

3. Early experiments showed that the term 1/cpi
might be too punishing for ‘easy-

to-cover’ pieces (or, conversely, give too much preference to hard-to-cover pieces).

An obvious alternative is to make that weighting less strong, e.g. by replacing

that term with 1/
√

cpi
.

6.6 Experiments – Repair Efficiency

We are interested in investigating a number of properties of the repair heuristics

outlined above. In particular,

1. What their behaviour is when the schedule to be repaired contains

a very small number of infeasible shifts. This helps us understand better

the behaviour of a search using such a repair heuristic in the limit between

feasible and infeasible regions. We want specifically to verify that the heuristics

do not result in any biases against infeasible solutions, which could for example

happen if the heuristics are very inefficient, leading to what we have called an

‘infeasibility step’ in the limit between the two regions. The possible situations

are depicted in Figure 6.2.

infeasible regionfeasible region

heuristic repair cost

optimal repair cost

infeasible regionfeasible region

heuristic repair cost

optimal repair cost

continuity gap

Figure 6.2: Possible scenarios for the behaviour of the repair-based cost function in the limit

between the feasible and infeasible regions. The graphs represent a section of the search space

with a uniform value for the optimal repair cost. left: no significant gap; right: significant gap.
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2. How their performance degrades as the number of infeasible shifts

in the schedule to be repaired increases. Because of inefficiencies in

the repair mechanism, every repair heuristic will tend to introduce a bias

against infeasible solutions as the number of infeasible shifts in a solution

increases. We want to understand how (and particularly how fast) this occurs

in our heuristics. The main consequence of a systematic bias against infeasible

solutions would be that a lot of infeasible candidates are considered during

the search only to be discarded; hence, knowing how performance degrades

would give us the choice of controlling the amount of infeasibility tolerated to

balance execution speed and capacity to accept new solutions with flexibility

in exploring the infeasible region.

3. How the different heuristics presented above compare. This includes

understanding how randomization affects them and what is the effect of in-

creasing the number of runs on randomized heuristics.

To do so, we devised the following experiment. Given an instance of the driver

scheduling problem, we first generate a schedule S using a generate-and-select ap-

proach; as a by-product of this stage, we also obtain a pool C of candidate shifts.

We then generate an infeasible schedule S(k)
i by randomly removing k shifts from S.

This infeasible solution S(k)
i is presented –along with C– to a repair heuristic, which

returns a repaired schedule S(k)
r . We can then assert the efficiency of each heuristic

by comparing |S| and |S(k)
r |: the smaller |S| − |S(k)

r |, the better the heuristic is

said to perform. This would correspond to a formulation of the scheduling problem

where schedule cost is the number of shifts.

We carried out this experiment for a set of 6 different heuristic types. Of those,

3 where randomized; for those we tested different numbers of re-runs. Individual

choices of heuristics or numbers of runs will be outlined later. In total, we evaluated

11 heuristics:

• random uncovered piece (rUP)

• least-covered piece (LCP) – pieces are scanned in vehicle → time order

• start-of-run LCP (SR-LCP)
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• randomized SR-LCP – this heuristic was tried for 1, 3, 6 and 12 runs per

instance (SR-rLCP-1,3,6,12 respectively)

• SR-rLCP, then select shift using linear weighting – tested with 3 and 12 runs

per instance (SR-rLCP-LW-3,12)

• SR-rLCP, then select shift using square-root weighting – tested with 6 and 12

runs per instance (SR-rLCP-QW-6,12)

We used a real-life instance of the driver scheduling problem provided by Scottish

train operator Scotrail; this instance contains approximately 1,000 relief opportuni-

ties, and the resulting set C of candidate shifts contains more than 170,000 shifts;

the resulting schedule S has |S| = 82. We run each heuristic over a set of 300 sched-

ules S(k)
i , for k = 1, . . . , 40, effectively running each heuristic over 12,000 different

inputs. Finally, for each heuristic h we computed the average of |S| − |S(k)
r (h)| for

all 300 schedules repaired, for every value of k. For each heuristic we also added the

results for every k, to obtain a single value Eh that allows us to compare heuristics

quantitatively; lower values of E imply better performance. Figure 6.3 shows a scat-

terplot of all 11 heuristics tested. X-axis shows the number of runs per instance (1

for non-randomized heuristics). Y-axis shows Ph.

rUP and LCP The first surprising result is that the random-uncovered-piece

heuristic performs almost as well as the least-covered-piece, even with no re-runs.

We believe this is justified by the fact that the simplest version of LCP does not

use the start-of-run criteria, therefore frequently causing the heuristic to leave gaps

between the start of run and the piece selected, which in turn render it inefficient.

LCP and SR-LCP The explanation of the lack of added efficiency of LCP over

rUP is backed by the comparison between LCP and its start-of-run variant, SR-LCP.

The added performance obtained by adding the start-of-run criterion results in us

adding this rule to all other heuristics tested.

SR-rLCP We then took SR-LCP as a first heuristic to test randomization. We

did so by considering 3, 6 and 12 re-run versions, plus a 1 re-run version for control
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against SR-LCP. Results show a steady increase in efficiency as the number of re-runs

increases, suggesting the randomization approach is worth considering. The rate of

increase in efficiency seems to decrease as the number of re-runs increases, possibly

to a point where no further performance increases can be achieved by further re-runs.

In the end, the choice of number of re-runs will be down to the specific weighting

between speed and efficiency required. Finally, the control (SR-rLCP-1) has a value

of Ph that is very close to that for SR-LCP, as expected.

SR-rLCP-LW The next two experiments test the addition of the criterion of

weighting shifts by the quality of uncovered pieces they cover, where that quality is

expressed in terms of the percentage cp of shifts covering a piece p: 1/cp. Results

show that the performance is increased by adding this criterion to SR-rLCP. Also,

performance increases with the number of re-runs, like before.

SR-rLCP-QW Detailed analysis of the choices taken by SR-rLCP-LW show that

the use of terms 1/cp in the summation is inconvenient, as this results in too much

importance being given to covering hard-to-cover shifts. More specifically, we would

want each term in the summation to act both as an indication of quality, but also

to signal that this shift is covering one more uncovered piece. As an example, when

using a linear term 1/cp, covering a piece that is covered by 1% of the shifts would

be worth as much as covering 10 pieces that are covered by 10% of the shifts.

In order to give less importance to hard-to-cover shifts, we propose the use of a

new term 1/
√

cp. Results show a surprisingly big increase in performance; more in

general, this also allows us to conjecture that selecting the right shift to cover the

piece(s) selected is as important as selecting the piece to cover.

General results Figure 6.4 shows the average extra shifts in the schedules built

by selected repair heuristics, |S| − |S(k)
r |. The efficiency of these repair heuristics

can be said to degrade linearly with the number of shifts removed, k. The particular

criteria for selecting the piece p to cover, and how uncovered pieces are weighted

when selecting a shift to cover p, make a difference in the rate at which performance

degrades: while the average value of |S| − |S(k)
r | is 0 for all heuristics when k = 1, it

varies between 8.83 and 5.96 (a 32% efficiency gap) when k = 40.
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Results are also useful in another way: since the original schedule S can be

regarded as optimal for practical purposes, this test would also indirectly provide

an insight in how estimates obtained from a repair heuristic compare with the cost

of ‘optimally repairing’ a solution. Figure 6.5 shows that for k ≤ 6 the best two

heuristics will return a schedule that is optimal the majority of times, since the

average number of extra shifts is less than 0.5. Hence we argue that, at least in this

case, these two heuristics can be considered unbiased against infeasible solutions

containing 6 or less invalid shifts, or approximately 7.3% of the optimal schedule

size. This could be used when determining a limit k in the maximum number of

infeasible shifts allowed in a solution during the search. In that case the size of

the optimal schedule wouldn’t be known in advance, but the value of k could be

adjusted dynamically based a current estimate of the optimal schedule size. As

discussed earlier in this section, higher values of k could be tolerated during the

search, but it is likely that the number of solutions that are rejected, as an artifact

of the increased inefficiency of the heuristics to recover a good-cost feasible solution,

will increase. We also argue that because the degradation of efficiency is basically

linear, the price paid for tolerating more infeasible shifts will not be excessively high.

It is worth noting that although these tests provide some evidence on how the

proposed heuristics behave, they are carried out in a different setting than the one in

which they will be used. Here, feasible shifts are removed from the schedule; during

local search, however, the shifts that will be removed are infeasible. In particular,

the result on |S| − |S(k)
r | = 0 for k = 1 will almost certainly not stand when the

heuristics are set to work in the context of a local search algorithm.

6.7 Experiments – Computational Cost

Since the aim of our research into repair heuristics is to use them for costing every

infeasible solution during a local search procedure, it is essential that the computa-

tional cost of executing the repair is reasonable. With this in mind, we have designed

the repair heuristics to be linear or sub-linear in the main measures of size of this

problem (including the size of the pool C of candidate shifts used during the repair).

However, it is important to study the actual running times (in CPU time or number
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of operations carried) in real-life instances of the problem.

In this section we study the SR-rLCP-QW-1 repair heuristic, which is the heuris-

tic used for testing the framework developed in Chapter 8. We first provide an

introductory theoretical analysis of the order of a single call to the algorithm; we

then conduct an empirical analysis of actual running times and number of operations

carried out by running an exploration phase of the framework proposed in Chapter

8 on two of the instances used for testing in that chapter.

6.7.1 Theoretical Complexity

Let us define the following measures of size in the problem input:

n number of shifts in the schedule being repaired

i number of invalid shifts in the schedule

m size of the pool of candidate shifts C used by the repair

p number of pieces of work to cover

k average number of pieces per shift

Throughout this analysis we will assume no overcover in the input schedule to the

repair heuristic. Although this is not true in many cases, the actual amount of

overcover occurring in schedules is usually very small; an assumption of a fixed

amount of overcover as a percentage of p could be used instead, and it would not

affect the results of the analysis below. We note the following relations between

variables:

• i ≤ n; in general i < n, and thus i/n < 1;

• k = p/n; it makes sense to extend this estimate for k on all shifts in C;

• It is expected that m >> p > n.

We analyse the theoretical complexity using O() notation; however where deemed

appropriate we replace worst-order analysis with mean-based estimates (particularly

when estimating pieces per shift, or number of shifts in C covering a particular piece).

We base the analysis on the pseudocode outlined in Algorithm 5 in page 95, and the

data structures discussed in Section 6.5.1.
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The repair algorithm consists of three main stages; first, removing all invalid

shifts in the input schedule; second, initializing the powCovered array that records

the number of shifts covering each piece in the current schedule (see Section 6.5.1);

third, adding feasible shifts to the schedule until all pieces are covered. The first

stage is O(n), as it simply consists of iterating through the shifts in the schedule

and reading a ‘feasible’ flag. The second stage is O(p), since it can be achieved by

iterating over the list of feasible shifts in the schedule, and for each shift s iterating

over the pieces of work it covers, increasing the count in powCovered[i] for every

piece i ∈ s.

The third stage in the repair is the most costly, and it involves incrementally

adding selected shifts from C to the schedule being repaired – steps 3–7 in Algorithm

5. Looking at each operation individually:

• The outer loop is formally executed O(i × k) = O(i × p/n) times, but this is

a very pessimistic estimate as it implies that each shift added covers roughly

only one uncovered piece of work. Based on the experiments in Section 6.6 we

will assume that the number of shifts added during the repair is proportional

to the number of infeasible shifts on the input schedule, hence this loop is

actually executed O(i) times.

• Step 4 (selecting an uncovered piece to cover) is O(p) under SR-rLCP-QW-1.

• Step 5 (finding a shift to cover the uncovered piece) involves looping over all

shifts in C that cover that piece. This is done efficiently as we use the array

coveredBy[1 . . . p] to record the list of shifts in C covering each piece of work; in

a local search setting, coveredBy would be computed as an initialization step

before the start of the search, an would remain unchanged during the search.

The number of shifts in C covering a particular piece can be approximated by

noting that each shift in C covers approximately p/n pieces, and so m shifts

cover m× p/n pieces, hence each piece is on average covered by m/n shifts in

C. Hence step 5 is executed O(m/n) times.

• For each shift s considered in step 5, a ‘score’ based on the uncovered pieces

covered by s is carried out. For SR-rLCP-QW-1, the cost of computing this
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score is O(k) as it involves accessing powCovered[i] for every piece i ∈ s.

Overall, the cost of step 5 is O(m/n× k).

• Step 6 is O(k) as it involves updating powCovered based on the shift being

added to the schedule.

The overall cost of the third stage –and hence of the full repair algorithm– is

then O(i×m/n× k) ≤ O(m× k). Although the cost is not linear on the size m of

C, it must be noted that the value k of average pieces per shift is usually bounded

by a small value for all real-life instances of the problem, and can be treated as a

constant, in which case the order of this heuristic is O(m). An exception to this

would be if WROs were modelled as sets of 1-minute-apart pieces of work, in which

case the value of k can grow considerably. It is likely that a different algorithmic

approach is needed in this case.

6.7.2 Empirical Analysis of Cost

To gain a better understanding of the expected computational cost of using the

repair heuristics proposed in practice, we devised the following experiment. We

take a real-life instance of the TDSW problem, and run one exploration phase of the

local search framework proposed in Chapter 8. For the purposes of the experiment

carried out here, it is sufficient to know that this exploration phase generates a big

number of candidate infeasible solutions, which are then costed using the repair

heuristic SR-rLCP-QW-1. For each test, we compute the average CPU time (in

milliseconds) for each call to the repair heuristic, and the input sizes as enumerated

in Section 6.7.1, taking average values wherever appropriate. We also measure the

average total number of accesses to the powCovered array; this is a good proxy for

the overall cost of the loop 3–7. We also compute the average number of times that

the loop of steps 3–7 is executed on each call to the repair, to validate our claim

that this is roughly similar to the number i of invalid shifts in the input schedule.

Results for two experiments on the InterCity and Wessex datasets (which are

later used for the experiments in Chapter 8) are summarised in Table 6.1 (page 112).

Tests were conducted on a computer based on an Intel Core2 4300 chip running at

1.8GHz, with 2GB of RAM. We observe that:
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• The actual CPU time is extremely small (0.8 and 2.1 msec for the InterCity and

Wessex datasets), making these heuristics completely suitable for integration

to a local search scheme in terms of CPU time per call.

• As discussed earlier, the actual number of times the loop 3–7 is run in practice

seems to be very close to the number of infeasible shifts in the schedule (1.14

and 1.27 times i for the InterCity and Wessex datasets).

• the average total accesses to powCovered per call to the repair heuristic is

well below m, the size of the pool of candidate shifts C. This suppports our

claim that the repair heuristics as proposed and implemented are linear (or

sublinear) in m.

• Finally, it is important to note that the average number of infeasible shifts in

the schedules input to the repair heuristic is considerably high (19% and 13%

of n for the InterCity and Wessex datasets), so scalability to big values of i is

already considered in these tests.

In summary, the computational experiments conducted in this section provide con-

clusive evidence that the repair heuristics proposed in this chapter are suitable for

use within a local search framework. Moreover, since the instances used represent

realistic instances of the TDS problem in terms of size and number of infeasible

shifts in the schedule, scalability to big values in input size is proven in these tests,

with the exception of k, for which an approach where WROs are modelled as sets

of 1-minute-long pieces of work might increase the value of k to a level not covered

by the experiments conducted in this section.

6.8 Conclusions

In this chapter we present the case for allowing the search to violate certain fea-

sibility constraints (currently encompassed in the call to the external CHECKER).

Working with feasible and infeasible solutions gives rise to the problem of costing

those solutions, and particularly how feasible and infeasible solutions are compared.

We propose a method of costing infeasible solutions through a fast repair heuris-

tic, which projects infeasible solutions onto feasible ones. The heuristics developed
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exploit the set of candidate shifts C derived from the generation phase of GaS to

re-cover work that was covered by infeasible shifts. We propose a number of criteria

for selecting the next piece to cover and the shifts used to cover that piece, and we

evaluate and compare the resulting heuristics. We also analyse the degradation in

performance as the percentage of infeasible shifts in a schedule increases, as a first

look into their use within a repair-costing framework in a local search. We estimate

a theoretical order of execution for the best-performing repair heuristic, and conduct

experiments on real-life instances of the problem to obtain empirical evidence about

its running cost; we conclude that the heuristics are suitable to be integrated into a

local search scheme in terms of their computational cost.
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Chapter 7

Inefficiency in Driver Schedules

7.1 Introduction

Other than through specific mechanisms for exploiting WROs, the local search phase

in Chapter 4 makes very limited use of domain knowledge. Our intuition is that it

may be desirable to make the search explicitly biased towards desirable structural

attributes (or against perceived ‘inefficiencies’). In this chapter we briefly charac-

terise inefficiency in driver schedules, with the aim of incorporating the rules derived

from these analyses into a local search scheme with active biases against these inef-

ficiencies.

In the context of solving a combinatorial optimization problem, it is tempting

to consider whether it is possible to ‘explain’ the reasons for a given solution being

sub-optimal. However, it is likely that a truly complete explanation would somehow

need to describe how to generate an optimal solution instead, and this is impossible

in general, at least for NP -complete or NP -hard problems under the premise that

P 6= NP . In fact, it can be argued that most iterative optimization techniques

(including local search metaheuristics but also ILP techniques such as branch and

bound) acknowledge this fact and instead work on finding, or attempting to find,

113
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partial explanations for sub-optimality. These ‘partial explanations’ can take dif-

ferent forms, for example a cost-improving move in a hill-climbing local search,

or the discarding of a node/subtree in branch and bound. In hill-climbing local

search frameworks, and particularly when using general-purpose moves and neigh-

bourhoods, we argue that the inefficiency exploited by a move is mostly determined

a posteriori, since it is only after the evaluation of the cost of the new solution that

the move will be accepted or rejected. An inefficiency that is determined a priori,

on the other hand, would guide (or bias) the search in determining the next move(s)

to be executed. Determining inefficiencies a priori and a posteriori are not mutually

exclusive choices, but can be integrated into a common framework.

7.2 Identifying Local Inefficiencies

Identifying desirable and/or undesirable attributes in solutions to an optimization

problem is a good starting point to incorporate domain knowledge into an algorithm

for solving that problem. In this section we revisit the problem of driver scheduling

with the aim of extracting indicators of inefficiency that may help guide a local

search metaheuristic in constructing the next solution in the sequence. For the

reasons described in the introduction, we do not attempt to provide a complete

explanation for sub-optimality. Instead, we work on identifying attributes or ‘parts’

of a solution that are inefficient. Notice that this approach is local in nature, and

it may be necessary for a solution to contain an inefficient component in order to

be efficient overall. This dichotomy is at the root of all combinatorial optimization

problems, and is present in most optimization techniques.

7.2.1 Inefficiency at the Shift Level

Our first approach to identifying local inefficiencies is to look at an individual shift s

in the current schedule, and study the relation between the amount of driving time

(dts) and non-driving time (ndts). Intuitively, the efficiency of a shift s will increase

when dts increases or ndts decreases. Standard ways of expressing this would be to

maximize one of:
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• dts/ndts

• dts/(dts + ndts), or dts/spreadovers

• dts − ndts

It may also make sense to limit the considerations to maximizing dts or minimizing

ndts: these still indirectly look at the relation between dts and ndts because shifts

are constrained in total length, i.e. dts + ndts = spreadovers < max spreadover.

We find that it is usually more intuitive to identify excessive non-driving time as an

inefficiency, hence implicitly looking at minimizing ndts. In any case, it is possible

to consider more than one of these criteria simultaneously, for example by checking

them against pre-determined bounds and triggering specific actions if one of these

bounds is exceeded.

In the following paragraphs, we decompose a shift into atomic components of

driving and non-driving time and categorize the types of non-driving time, with the

aim of finding ways to reduce those times. We start our analysis by considering a

typical 3-spell shift s, with the following breakdown:

a: sign on at depot 3

b: travel to location 5

c: drive vehicle 7 for 2h15m, ending at location 8

d: travel to canteen

e: have a 30-minute mealbreak/PNB

f: travel to location 6

g: drive vehicle 2 for 1h42m, ending at location 2

h: wait for 20 minutes

i: drive vehicle 9 for 1h35m, ending at location 4

j: travel to depot 3

k: sign off
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In this example, only stages c, g and i are strictly driving time; all other stages

(traveling, waiting, mealbreaks, and signing on and off) are non-driving time. We

look at these types of non-driving time in more detail, and briefly illustrate how

inefficiency may arise in them; we present them in what we believe is their order of

importance in terms of the role they play in determining the overall efficiency of a

schedule.

1. travel time: drivers frequently need to travel from one location to another in

the network; for example, to start the next spell of driving work (on a different

vehicle). This may also happen between sign-on and the first spell of work, or

before sign-off. Inefficient distribution of work among shifts in relation to the

resulting required travel time is one of the major causes for inefficient schedules.

In shift s, travel time is incurred in stages b, d, f and j.

2. idle (slack) time: it occurs when the shift includes some time on which the

driver is neither driving, nor traveling, nor having a mealbreak. For example, it

may happen that the travel time required to connect two consecutive spells of

work in a shift is shorter that the time that is physically available, and it can’t be

used as a PNB. In this case, the driver will simply have nothing to do during that

time, but will still be paid for it. It can also happen that some breaks between

vehicles are longer than what is actually required by the labour agreements, which

from the point of view of the operator is unnecessary paid non-working time. In

shift s, this happens in stage h. It is likely that not all 20 minutes are ‘wasted’,

since there may be a minimum joinup time (the time allowed to a driver between

two consecutive spells) mandated by the labour agreement; however, even in this

case it may be argued that a shift with fewer spells would incur less total absolute

joinup time, since the total minimum joinup time is proportional to the number

of spells in a shift.

A second (and less intuitive) example arises when a shift cannot start less than a

certain length of time t from the beginning of the first mealbreak. When a shift

is breaking this rule, it is not uncommon to solve this by padding it with some

minutes of non-driving time at the beginning of the shift, so that the mealbreak

will start t minutes from the start of the shift.
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3. mealbreak/PNB time: although PNBs are usually mandatory, the labour

agreement frequently offers some options regarding the distribution of PNB time

over the length of a shift; for example, a 3-spell shift may have one or two

mealbreaks. It may be possible that the different options result in a different

total amount of PNB time (say, one 30-minute PNB against two 20-minute PNB,

with 30 vs 40 total PNB minutes). In these cases, it can be argued that a shift

whose PNBs are distributed in a way that is not optimal regarding total PNB

time is inefficient.

4. sign-on/off time: while the sign-on/off times are usually viewed as fixed, it may

happen that the allowances for sign-on/off vary according to the depot where the

procedure is carried out; in these cases, choosing the right depot for a shift may

result in decreased sign-on/off times.

7.2.2 Inefficiency at the Schedule Level

The categorization above covers all of the instances of shift-level non-driving time

in our formulation of the driver scheduling problem. However, because in our model

we allow for pieces of work to be covered by more than one shift in a schedule, some

of the time we categorized as driving time in the previous analysis may actually

turn out not to be driving time when the shift is integrated into a schedule. As an

example, consider shift s above; if another shift s′ in the schedule was also assigned

to drive vehicle 2 during the same period as s, then only one of the two can be

actually driving vehicle 2 during that period, and hence the actual non-driving time

for either s or s′ would include time which we have categorized as driving time.

In an instance of k shifts (over)covering the same piece of work, rather than

arbitrarily considering the overcovered period as driving time in one of the shifts,

and as non-driving time on the other k − 1 shifts, it seems convenient to classify

this as a schedule-level inefficiency. We therefore identify our first schedule-level

inefficiency:

5. overcover driving time: this occurs when two or more shifts in a schedule are

assigned to cover the same piece of work.
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7.2.3 Criticism and Extensions

While categorizing or detecting inefficiencies at a shift level can be easy, this ap-

proach has its drawbacks. One such drawback is suggested by the perception that,

in many cases, an inefficiency in a shift s is actually forced by the presence of an-

other shift s′ in the schedule. This is especially frequent in methods that involve

constructive steps/heuristics. As an example, consider a shift s that contains a spell

that starts 5 min after the start of a certain vehicle block. If the schedule contains

no overcover, this means that there is another shift s′ which covers that 5-minute

spell left uncovered by s. In constructive approaches, this situation will usually arise

when s is added to the schedule before s′. With our categorization above, s′ will

probably be classed as inefficient (for example using the metric dts′/ndts′). However,

most human schedulers would agree that in order to solve this local inefficiency, it

is s that must be modified first.

One solution for this particular situation is to add a new shift-level inefficiency

rule for shifts containing a spell that starts or ends too close to the start/end of

a vehicle block (but not exactly at the start/end of that block). However, this

approach has the inconvenience that the new inefficiency is not expressed in terms

of driving or non-driving time, and therefore is difficult to compare or integrate with

other categories.

Moreover, we argue that this situation is or can still be covered by driving/non-

driving time considerations. We first observe that shifts s and s′ are adjacent, in

the sense that they share a relief opportunity (or WRO). In our first local search

proposal in Chapter 4, most moves would consider both a shift and its adjacent

shifts. For example a piece-swap would reassign a piece of work to an adjacent shift

– and in the example above this move might solve the problem by assigning the

5-minute spell in s′ to s.

In the situation of using a repair heuristic like those proposed in the previous

chapter, consider the case where shift s′ is invalid because the 5-minute spell is

not allowed by a (hard or soft) constraint. The standard approach of removing s′

wouldn’t work, since any shift added to replace s′ would either be invalid on a 5-

minute spell, or otherwise include overcover, but s wouldn’t be modified. However,

there is a simple extension to our repair mechanism that solves this problem:



Chapter 7 119 Inefficiency in Schedules

rule for repairing: given a schedule S containing a set I of invalid

shifts, determine the set AI of shifts in S adjacent to shifts in I; then,

when repair-costing S, remove all shifts in I∪AI from S before repairing.

In the example above, this rule would remove s since it belongs to I, but would also

remove s′ because it belongs to AI , therefore giving the repair cost an opportunity

to modify both s and s′. Although in principle tests in the previous chapter show

a linear degradation of repair heuristics with the number of shifts removed, it must

be noted that the rule above is different in that the additional shifts removed by the

rule are not randomly selected (as were the ones in the experiments in Chapter 6),

and hence the results on degradation may not apply to this rule – on the contrary,

we expect that the addition of this rule will help achieve better repair costs.

We believe that in most (if not all) situations where the initial perception is that

there is a need for a new inefficiency rule, careful analysis should show that the rules

introduced in this chapter regarding inefficient use of driving/non-driving time or

overcover are enough to detect and tackle those situations.



Chapter 8

A Local Search Approach with

Support for Exploration of

Infeasible Solutions and

Exploitation of Local Inefficiencies

In this chapter we integrate the tools and ideas developed in the previous two chap-

ters, and present a new hybridized (GaS and Local Search) approach for the TDSW

problem. We implement the proposed framework and evaluate it using a set of real

instances of the problem, varying the starting solution and the formulation. We also

consider alternatives to the framework proposed and evaluate them.

8.1 The Proposal

The proposal presented in this chapter is built on that of Chapter 4, and shares the

skeleton of first running a GaS stage over a RoA model, followed by a local search

stage over the WRO formulation. However, the local search stage now iterates
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over two distinct phases, the standard phase and the exploration phase. During

standard phases, the search is tied to all feasibility constraints, as is the case with

the local search in Chapter 4. When a standard phase reaches a local optimum (or

a similar criterion, e.g. a certain number of move trials without cost improvements),

a move tailored to correct a specific inefficiency in the current solution is executed.

This move is more complex in design than other moves in the search, but does not

guarantee a feasible solution – in some cases, it doesn’t even guarantee that all

work is covered in the resulting schedule. After this move, the search switches to an

exploration phase, where infeasible solutions are allowed, and which relies on repair

costing to compare (feasible and infeasible) solutions. When a termination criterion

is met, the current solution is repaired (if infeasible), and the search resumes in

standard mode. A global termination criterion dictates the end of the search. The

proposed framework is illustrated in Figure 8.1.

In combination, the execution of the inefficiency-reducing move and the subse-

quent exploration phase act as a diversification phase that ‘bridges’ parts of the fea-

sible search phase through both intelligent exploration of the infeasible search space

and use of domain knowledge. In this proposal, the inefficiency-reducing move and

the exploration phase are linked inextricably: allowing for infeasible solutions during

the exploration phase makes it possible to design a move that modifies the current

solution in a way that the standard phase cannot; at the same time, the exploration

phase relies on the inefficiency-correcting move to suggest a different direction in

the exploration of the search space.

8.1.1 The Standard Phase

This phase is similar in spirit to the local search phase in Chapter 4, and it shares

the same set of moves/neighbourhoods. Solutions are required to be feasible to be

considered, and only cost-decreasing (or non cost-increasing) solutions are accepted.

Moves exploit WROs in the same two-stage way as the local search in Chapter 4.
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0.
set i := 1; run Generate and Select on a RoA formulation,

obtaining a feasible solution SGaS
i and a set CRoA of feasible shifts

1.

run a standard phase on a WRO formulation,

starting with the current (feasible) solution,

generating a new feasible solution Sstd
i

2a.
execute the inefficiency-correcting move on Sstd

i ,

leaving a possibly infeasible new solution S inf
i

2b.
add rules to prevent the next phase from undoing

the inefficiency correction

3

run an exploration phase starting with the current (infeasible)

solution S inf
i and using the pool of shifts CRoA,

generating a new feasible solution Sexp
i

4
remove rules to prevent undoing of the inefficiency correction;

set i := i + 1; go to step 1

Figure 8.1: Scheme for the extended GaS and Local Search proposal.

8.1.2 The Inefficiency-Correcting Move

The primary aim of this move is to remove or correct a perceived (local) inefficiency

in the current solution. At the point of executing this move the current solution

is expected to be a local optimum for the previous phase. The intuition is that

this local inefficiency might be preventing the local search to progress further, and

cannot be removed by the search because either

1. the changes needed make it difficult to modify the solution in a way that the

inefficiency is removed and the resulting solution is still feasible, or

2. any local modification of the solution to remove the attribute results in a

higher-cost solution, which is then rejected by the search, or

3. both of the above
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Although there are many approaches in the literature to detect recurring attributes

in a sequence of solutions, in this proposal we don’t attempt to discover these, and

instead concentrate on the current solution when looking for inefficiencies. This is

discussed further in Section 8.2.1.

Cycling As seen in Section 4.2.1 when attempting conditioning phases, correcting

a local inefficiency will almost always result in an increase in the cost function (at

least in the very short term). As with any local search approach in which the cost is

allowed to increase, this creates a problem of cycling. Hence, inefficiency-correcting

moves have to be designed taking into account this potential cycling problem. In

this proposal, we put an emphasis in designing the moves in a way that it is easy to

forbid the inefficiency that has been corrected from being undone by the following

search phase(s), taking also into account that the phase following the move is an

exploration phase. Details on the specific mechanisms are shown in Section 8.2.1.

8.1.3 The Exploration Phase

This phase starts at a point where an inefficiency-correcting move has been executed,

which means that the initial solution is likely to be infeasible. During this phase,

both feasible and infeasible solutions are considered, and all solutions are compared

through a repair-cost function, which relies on the pool of shifts C generated during

the GaS phase to execute the repair. The repair heuristic first removes all infeasible

shifts from the schedule (and in some configurations can also remove shifts adja-

cent to those infeasible shifts), and then covers the work left uncovered using shifts

selected from C.

New solutions are accepted if their repair cost is lower than or equal to that

of the current solution. Modifying the scheme to accept other solutions as well is

straightforward, and could be used for example to increase the distance between the

last solution in the previous standard phase and the resulting solution of the current

exploration phase.

Repairing and WROs Because the generation phase in the GaS is run on the

RoA model, all shifts in C are such that all of their spells start and end at arrival
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times within (W)ROs. This creates a problem for the repair heuristics proposed in

Chapter 6, in that requiring the WROs to be fully covered by the repair may result

in very inefficient repairs. To see this, consider an instance of the TDSW problem

containing a vehicle v with two pieces of work p1, p2, and a WRO w in between the

two pieces, as depicted in Figure 8.2. Now consider an infeasible schedule S inf in

spell ending at arrival time sr

w p2p1

Figure 8.2: An example of the limitations of the repair mechanism on WRO instances. If WRO w

is only partly covered by a shift sr after removing infeasible shifts from a schedule Sinf , a repair

mechanism relying on a set shifts obtained from a RoA formulation will need to (over)cover piece

of work p2, which is inefficient.

which (after removing all infeasible shifts), p2 is covered but p1 is uncovered, and

the shift sr covering p2 only covers part of WRO w. All shifts covering p1 in C

either cover p2 as well, or do not cover the WRO w. Therefore, strictly speaking

the repaired schedule would only be valid if the shift chosen to cover p1 also covers

p2. However, taking the approach of covering p2 would mean overcovering most of

p2. When taken to a whole schedule, this approach is likely to make the resulting

solution too inefficient – its repair cost too high. We present an alternative way to

tackle this problem in Section 8.2.2.

Moves as a shift-selecting mechanism The repair heuristics in use are based

on removing all infeasible shifts and then re-covering all uncovered work with feasible

shifts. At the same time, our experience is that most of the times the move preceding

the repair is such that all the shifts perturbed by the move become infeasible after the

perturbation. Together, this means that most of the times all the shifts perturbed

by a move during an exploration phase will be removed by the repair mechanism

(and replaced with other shifts). In turn, since all moves in our proposal work by re-

distributing the work in a subset of the shifts in the schedule, one might be tempted

to conclude that the only effective role of the move executed before the repair is

that of selecting a subset of shifts to remove from the current solution, leaving the

repair to find a better-cost replacement for those shifts: since all shifts perturbed
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become infeasible, the perturbation itself is lost to the repair.

The reasoning above would indeed be correct if the repaired solution were used

as the next point in the search, and the consequences would be significant – for

example, it might make sense to consider replacing the perturbation-based set of

moves with e.g. some sort of simple subset-selecting mechanism to determine the

shifts to remove. However, we note that although the repair will replace those

infeasible shifts generated by the move, this replacement is considered while costing

the solution only, but the shifts generated by the move will still be present in the

accepted solution, as the repair is not enforced on the solution. Hence, the view of

moves as limited to shift-selecting mechanisms is not correct in our repair-costing

setting – the specific ways in which work is re-distributed in our moves do have an

impact on the search process.

Dynamics of infeasibility during the exploration phase Experiments in Sec-

tion 6.6 show that the performance of the heuristics proposed degrades as the number

of infeasible shifts in the solution increases. Therefore, leaving the number of infea-

sible shifts to grow too much may result in the exploration phase to stall, simply

because of the limitations in the repair heuristics in use. Although this degrada-

tion in performance may act as a self-constraining mechanism for the exploration

phase not to create schedules with too many infeasible shifts, it may be sometimes

preferable to repair the solution during the exploration phase; in particular, there

are cases where it may be useful to use the repaired version of a solution as the

next point in the search. In this proposal, we implemented this in a way similar to

tabu-search’s aspiration criterion: during the search, we keep track of the best-cost

solution s? (including both standard and exploration phases); if at any point during

an exploration phase the solution s′ under consideration has a cost lower than that

of s?, then s′ is repaired, and the repaired solution is accepted as the next solution

in the search.

Generating a feasible solution for the standard phase At the end of an explo-

ration phase, and before starting the next standard phase, it is necessary to build a

feasible solution to feed to the standard phase. As discussed earlier, although every
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solution in the exploration phase is guaranteed to cover all pieces of work, WROs

may be partially uncovered. At the same time, the standard phase relies on a specific

model of WROs to simplify the phase where relief relocation within WROs is tried,

where all relieving within the same WRO in a given schedule must happen at the

same time (Section 4.2.1 and Appendix A). In conjunction, these issues mean that

generating a feasible solution out of the current solution at the end of an exploration

phase may not be trivial. We tackle this problem together with the covering of

WROs in Section 8.2.1.

8.2 Setup and Experiments

In this section we describe the setup and implementation of the proposal in more

detail. We then run a set of experiments using the new framework on the same

set of instances as those used in the experiments in Section 5.3. Finally, we discuss

a number of issues arising from an analysis of the results obtained on those tests.

The configuration used to run the main experiment in Section 8.2.4 is summarised

in Appendix B, including the reasoning behind some of the choices behind that

configuration, where that reasoning is not clear from the current chapter.

8.2.1 The Inefficiency-Correcting Move

In Chapter 7 we discussed a number of possible types of inefficiency to tackle when

trying to improve a solution. In the current proposal, we investigate the possibility

of removing occurrences of high joinup time, a shift-level measure that aggregates

travel time and idle time between spells. Given a schedule S, the move developed

removes from S the shift s with the highest total joinup time, adding in its place a

shift s′ selected from the pool of shifts C obtained during the GaS phase. The shift

s′ is selected by first finding the longest gap g between spells in s, and then finding a

shift that covers all the work in s before gap g, and either ends at that point or has

the smallest gap right after the spells shared with s. After that, any shift in S that

shares a piece of work with s′ is also removed from S. The pseudocode is presented

in Algorithm 6. Notice that by feeding this solution to the exploration phase, we are

placing the repair heuristic in a slightly different situation than originally designed
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for, since the schedule resulting from this inefficiency-correcting move will not meet

the constraint that all vehicle work must be covered, which we would usually consider

a structural constraint.

Algorithm 6 Correcting inefficient use of non-driving time

1: given a schedule S
2: find the shift s ∈ S such that the total joinup time is the biggest in S; call the

spells in s sp1, . . . , spn

3: find the longest gap g between spells spk and spk+1 in s

4: find the shift s′ ∈ C, with spells sp′1, . . . , sp
′
n′ such that

1. ∀i, 1 ≤ i ≤ k : spi = sp′i (disregarding covering of WROs)

2. n′ = k, or the gap between sp′k and sp′k+1 is the smallest from all shifts in

C that satisfy condition 1

5: remove s from S
6: add s′ to S
7: remove all shifts in S that cover a piece of work that is covered by s′

The aim of this move is to force the gap g out of the schedule. By having a shift

s′ covering all the work in s before g, no move or repair mechanism after this move

will find it useful to select shift s (or any other shift covering spk before gap g) as

part of the new solution, therefore making it impossible for the search to reintroduce

gap g into the solution. It must be noted however that is at least one instance where

shift s will have to be reintroduced anyway, namely when s is the only valid shift

that covers some of the work in spk+1, . . . spn. In this case, and while we disallow

shift s′ to be removed, any solution produced by the repair heuristics would include

both s and s′. As soon as s′ ceases to be fixed in the schedules, it is likely that it

will be replaced back by s. It can also happen that there is no shift that satisfies

the requirements in step 4. In this case, the correcting move cannot be executed.

We want to enforce that the gap is not immediately re-introduced by the search,

including discouraging the repair costing from considering re-introducing the gap

as part of the repair. To do so, we resort to a tabu-like mechanism, where we ‘fix’

the new shift s′ in the schedule, such that no move can modify it, and the repair
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mechanism cannot remove it from the schedule (step 2b in the framework described

in Figure 8.1). This guarantees that no shift s′′ in a repaired schedule will contain

this 100-minute gap, unless having that shift s′′ in the schedule is so important that

it has to be added even if it overcovers all work in spells sp1, . . . spi. The shift stays

fixed in the schedule for the duration of the current exploration phase, after which

the restriction is removed (step 4 in Figure 8.1).

Recurring local inefficiencies Even with a criterion to explicitly forbid at-

tributes from being re-introduced to the current solution in the search, early ex-

periments show that in many cases, once that restriction on an ‘undesirable feature’

is lifted, this feature makes it back to the active solution in the search. In extreme

cases, every run of a pair of (exploration, standard) phases results in a solution that

contains the same inefficient attribute in the end solution. In these cases, it may

seem more useful to try and find a different inefficiency to work on. This can be

tackled in different ways, and the choice depends mostly on the intuition of what

may be happening:

• it is possible to argue that the attribute is recurring because the search is un-

able to escape from the basin of attraction of the local optimum that contains

this feature;

• it is also possible to argue that this attribute is likely to be part of any (or

most) local optima, including global optima.

In the first case, a possible action to take is to keep the attribute for longer in the tabu

list, hence giving the search more time to escape from that optimum. In the second

case, a possible conclusion is that it may be better to accept that attribute as part of

the solution, for example by not attempting to remove this attribute in the remainder

of the search. It is also possible that both explanations are true. We subscribe to this

latter view, and in consequence modify the proposal by randomizing the selection of

the inefficiency to correct. During the execution of the inefficiency-correcting move,

we rank the shifts according to the measure of inefficiency, filter those above a certain

measure, and select a shift randomly from this list, with increasing probability for

more inefficient shifts – a strategy that is close to the greedy-randomized selection
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approach in GRASP [26]. In our opinion, this approach is a satisfactory answer to

both explanations for recurring inefficiencies: on one hand, it should allow the search

frequent chances to work on removing this inefficiency from the solution, which is

useful if indeed the inefficiency can and should be removed; on the other, it allows

the search to work on other inefficiencies as well, which is useful when the feature

is required to be present on every efficient solution.

An optimization metaheuristic called Squeaky Wheel Optimization (SWO) [48]

uses the history of the search to prioritize certain solution attributes dynamically.

Aickelin et al. [4] present a variant of SWO and apply it to the driver schedul-

ing problem; their experiments include comparisons with results obtained with an

early version of the TrainTRACS system. It is likely that the ideas on dynamic re-

prioritization of solution attributes can be incorporated into our proposal, to obtain

better ways of selecting the inefficiencies to correct/remove.

8.2.2 Repair Costing: Covering of WROs and Generation

of Feasible Solutions

The repair-cost function used in these experiments is based on the SR-rLCP-QW

repair heuristic described in Section 6.6. As discussed in Section 8.1.3, all repair

heuristics based on the set C generated on a RoA model have the problem that

covering WROs may result in very inefficient repairs (in terms of cost). To tackle

this problem, we considered the following alternatives:

• Add some intelligence to the repair mechanism. For example, in the case of a

partially-covered WRO, the repair could try to modify the shifts at the sides

of the WRO to find a combination in which all the WRO is covered, and

the shifts are feasible. This would substantially increase the complexity and

running time of the repair heuristic, and may still not be enough to solve the

problem, since it is possible that no relocation of the relief times that covers

all the WRO is feasible. More sophisticated methods could be envisaged, but

in general we would prefer to keep the repair heuristic fast (even greedy) if

possible.

• Disregard the covering of WROs during the repair, effectively allowing the
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repair to leave WROs partly uncovered. A first drawback of this approach is

that the repair costing ceases to provide a ‘real’ cost of an equivalent feasible

solution, and instead becomes an estimate of the cost that might be achievable

by some feasible solution. Worse, this still leaves a problem unsolved, since

there are points where a feasible solution is needed, in particular at the end of

the exploration phase, and also as a result of the search.

• Switching to a RoA model during the exploration phase. This has the advan-

tage that the repair functions described in Chapter 6 will result in all WROs

fully covered without any modification, hence making the repair cost reflect the

cost of an actual feasible solution, which in turn means that feasible solutions

are readily available at any point during the exploration phase.

In these experiments, we opt for the third option, i.e. switching to a RoA model

during the exploration phase. We do so at the start of each exploration phase,

after the inefficiency-correcting move has been executed. To achieve this, we move

every relief time happening inside a WRO in the current solution to the arrival

time of that WRO. It is likely that some shifts become infeasible as a result of this

procedure; however, this is also expected to be the case with the solution obtained

after correcting an inefficiency, and should be handled without problems by the

repair cost function.

8.2.3 Other Settings

Choice of cost function All optimizations using the new framework are run using

a cost function based on total cost only (Equation 2.2). This is mainly because the

repair heuristics designed in Chapter 6 work on minimizing cost – which in itself is

related to the discussion in Section 2.1.2 in relation to the difficulties in comparing

solutions on a schedule-size-based cost function.

Design of L0 and L1 moves As in the proposal in Chapter 4 (Section 4.2.1),

both standard and exploration phases are structured as a fixed sequence of L1 move

trials, each of them running hundreds or thousands of low-level, L0 moves. For the

experiments presented in this section, each standard phase iterates three times over
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a fixed set of L1 moves, while exploration phases iterate twice over a different set of

L1 moves; the active solution in an exploration phase is repaired after each of these

two iterations.

Additional complexity in the problem instances All three test instances in

the experiments presented in this section are more sophisticated than the ones used

in Chapter 4, in that certain vehicle work happening very early in the morning is

allowed to be covered by drivers scheduled on the previous day (as late-night work),

and similarly late-night vehicle work can be carried out by drivers in scheduled on

the following day (as early-day work). This is not trivial to model, and in our

case it means that standard phases are unable to generate shifts that use early

vehicle work as the end of late shifts, or late vehicle work as the start of early shifts.

However, exploration phases are still able to exploit this, since the pool C is generated

using TrainTRACS and therefore contains shifts exploiting this possibility. It is then

difficult and possibly unfair to compare results between TrainTRACS or PowerSolver

and the new proposal, in particular to those results obtained in Chapter 5. It is

worth mentioning however that although schedules obtained in our framework may

not be the most efficient for these test cases, they are still fully operational as they

satisfy all labour agreements and constraints.

8.2.4 Results

We run four different experiments over three real-life instances of the problem (Wales,

Wessex, InterCity), which were previously used in Chapter 5:

1. Run the new proposal on a RoA formulation, starting from a solution obtained

using TrainTRACS (but not PowerSolver) on a RoA formulation; notice running

the proposal on a RoA formulation is unnatural as there are no WROs to exploit;

we use this run only as a benchmark to compare other runs to.

2. Run the new proposal on a WRO formulation, starting from a solution obtained

using TrainTRACS (but not PowerSolver) over a RoA formulation; for each in-

stance, this is the experiment we are more interested in.
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3. Run the new proposal on a WRO formulation, starting from an empty solution

that is repaired into a feasible solution by a repair heuristic; although we are

more interested in investigating how WROs can be exploited from a good initial

solution for the RoA formulation, this run may show whether the new tool has

potential to be used as a standalone solver for the TDS(W) problem1.

4. Run the new proposal on a WRO formulation, starting from a solution obtained

using PowerSolver over an extended formulation obtained as in Section 5.3 by

looking at WROs in relation to the feasible-travel-links constraint; with the

caveats in Section 8.2.3, this run is used to assess the potential of the new tool

to optimize on the results of PowerSolver, which is run here over arguably the

only kind of model where GaS could exploit WROs. Throughout this chapter,

we will refer to this extended formulation as a URO (‘Useful ROs’) formulation.

Because one of the motivations for these experiments is to evaluate the role of

inefficiency-correcting moves and exploration phases as diversification phases, we do

not impose a general stopping criterion for the overall search in these experiments;

instead, we let the search run for a fixed amount of time (in general, 2h, or 7,200

seconds, per instance); common stopping criteria such as limits on time without

generating new best-cost solutions would be easy to integrate if desired. Experiments

were run on a computer with a single Intel 1.5GHz Pentium M processor and 512MB

or RAM. Results of the four tests on individual datasets are shown on Table 8.1 (page

146) and Figures 8.3, 8.4 and 8.5 (pages 147, 148 and 149). As part of the analysis

on the role of exploration phases in Section 8.2.6, we also graph the evolution of the

number of infeasible shifts during exploration phases for the Wessex and InterCity

datasets (Figures 8.7 and 8.8 respectively, pages 151 and 152).

As a starting point to our analysis, it is worth noting that as a result of the use

of our repair-costing scheme and heuristics, the cost displayed on the y-axis of all

graphs is always the cost of an existing feasible solution, irrespective of whether the

search is traversing the space of feasible or infeasible solutions. This is, in our view,

an extremely important feature of our proposals. In effect, the only unusual aspects

1In effect we are replacing the selection phase in GaS with a different selection tool, as our

heuristics still depend on a pool C of feasible shifts being available and so the generation phase is

still needed
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in the shape of the curves are not due to the switch to the infeasible region, but

rather to the execution of the inefficiency-correcting move.

Wales dataset

Although the Wales dataset is the set with the most relief opportunities of the

three, it is the one with the smallest schedule sizes according to both TrainTRACS

and PowerSolver. Similarly, this is the instance where our local search proposal

works faster, which results in smaller CPU times per phase, and hence more standard

and/or exploration phases per unit of time. Results for the Wales dataset are shown

in Figure 8.3 on page 147.

Although not our main objective in the analysis, it is clear that the search

mechanism is not powerful enough to beat TrainTRACS or PowerSolver in itself –

the three searches on the WRO formulation organize around three clearly different

areas in the range of possible costs. However, it is interesting to see that the search

is able to improve on the starting solution in all cases, and particularly when starting

from a solution from a RoA formulation, where it achieves an improvement of 2.7%

over the initial solution.

More importantly, a comparison between the two searches starting from the

TrainTRACS solution on the RoA formulation, but running over different formula-

tions (RoA and WRO) suggests that WROs are instrumental in getting a more

efficient schedule. The plot on the search using the RoA formulation also shows a

peculiarity (not present in experiments in other datasets) that at some point the

search is unable to find a replacement shift for the chosen inefficient shift; from that

point onwards, the search cannot progress any further.

Results on the WRO formulation, both when starting from an empty solution and

from the TrainTRACS solution over a RoA formulation, show how the exploration

phases are able to recover from the increase in cost due to inefficiency-correcting

moves. It is also interesting to see how the search traverses different regions of cost,

and doesn’t necessarily reach the best-cost solutions until late into the search. It is

difficult to say whether the history of the search is instrumental in leading to those

late good-cost solutions, or the improvements are due to quasi-random perturbations

(bearing in mind that even the inefficiency-correcting move is partially randomized).
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The questions of whether and how local search (meta)heuristics effectively exploit

search history, and how they compare to random-restart methods (e.g. GRASP) in

the way they explore the search space, are extremely interesting subjects, but also

very hard and difficult to define, and are outside of the scope of this thesis.

Finally, it is interesting to see that the search on the WRO formulation that

starts from an empty solution is within 3% of the TrainTRACS/RoA solution in less

than 2 minutes, and eventually manages to find a solution that is better than the

TrainTRACS RoA solution, even with the limitations in covering early/late vehicle

work.

Wessex dataset

Results of the four tests are shown in Figure 8.4. A first observation is that the

distribution of the costs of active solutions for different methods is not as clearly

spread into distinct regions as it was on the Wales dataset; in fact, all three searches

starting from a non-empty solution overlap with each other at some point during the

search. As with the Wales dataset, the search starting from the TrainTRACS/RoA

solution is able to make more improvements when working on the WRO formulation

instead of the RoA formulation, which further supports the idea that WROs are

instrumental in achieving better solutions.

It is interesting to give a more detailed look at the overlaps in cost between

the three searches, and in particular the two searches that operate on the WRO

formulation. It seems striking at first that although both searches reach stages

where the relationship between costs is inverted, this is quickly undone. On fur-

ther inspection, all such occurrences happen when the search that started from

the PowerSolver/URO solution is executing an inefficiency-correcting move. Our

intuition is that the PowerSolver/URO solution contains certain structural prop-

erties that are neither removed by the inefficiency-correcting moves, or capable of

being introduced by the search mechanism; the temporary increase in cost by the

inefficiency-correcting move is then either repaired or undone by a later standard

phase. A possible way to exploit this observation is by adding inefficiency-correcting

moves that tackle different inefficiencies.
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InterCity dataset

Results on the WRO formulation are shown in Figure 8.5. In this case, all searches

seem to converge to the same range of costs. As in the Wales dataset, the search

starting from an empty-repaired solution is able to match the cost obtained using

TrainTRACS on a RoA formulation. An interesting result arising from the graph

is that the runs on the WRO and RoA formulation using the new framework are

extremely similar in the range of costs spanned, and there is even a difference of 215

minutes (0.36% of the cost) in favour of using the RoA formulation when starting

from the solution obtained with TrainTRACS. This is consistent with the perceived

difficulties in PowerSolver to exploit UROs in the experiments in Section 5.3, and it

suggests that the impact of considering WROs in the scheduling model is not equal

among all instances.

Finally, results on the search using a starting solution from PowerSolver/URO

show, similarly to those on the Wessex dataset, how the search reaches points where

the cost is worse than that of solutions obtained on other searches, and seem to

confirm the intuition expressed when analyzing the Wessex dataset, in that the

solution generated with PowerSolver/URO contains certain structural attributes

that our framework is both unable to generate and remove from a solution.

8.2.5 Comparison with Earlier Proposals

The proposals in this chapter can be seen as extensions to the initial proposal in

Chapter 4. Therefore it makes sense to evaluate the new framework on the same

data than that used for testing the initial proposal. We run two experiments on

the ScotRail dataset, namely the first and second experiments run in Section 8.2.4,

running the local search on ROA and WRO formulations respectively, starting from

the solution obtained with TrainTRACS on a ROA formulation. Our aim is to com-

pare the results obtained with the new framework with those obtained using the

first proposal, specifically with the experiments conducted in Section 4.2.2. In both

experiments we do not relax artificial constraints in the description of the problem

instance, so results should be compared with the first row of Table 4.1 in Section

4.2.2.
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Results for the two experiments are graphed in Figure 8.6. The best-cost solution

obtained on the WRO formulation with the new proposal has a cost of 457h32m, a

43% increase in the gain in cost over the results in Section 4.2.2 (458h13m) when

compared to the original solution obtained with TrainTRACS (459h48m). It is dif-

ficult to ascertain the relevance of this extra reduction in cost in terms of getting

closer to the global optimum for this instance, as we do not know the value of the

optimal cost under the WRO formulation. The experiments also show that, for this

instance, the new proposal performs better when acting on the ROA formulation

than when conducted on the WRO formulation, achieving an extra 112% decrease

in cost (456h27m) over the best-cost solution in experiments in Section 4.2.2.

8.2.6 Discussion

It should be clear that the proposal discussed and tested in the previous sections

is only one of many possible ways of addressing the limitations discussed in Chap-

ter 6; in this sense, this proposal can be seen a proof of concept on how these

limitations can be tackled. The new framework addresses the limitation on search

space connectivity by lifting the restriction on the solutions being feasible during the

exploration phase; the problems associated with comparing infeasible solutions are

tackled through a repair-costing mechanism. Domain knowledge is further exploited

by executing specific inefficiency-correcting moves after standard phases. In the fol-

lowing paragraphs, we briefly look at some issues arising from the experiments on

this proposal.

Use of WROs As with previous proposals in this thesis to solve the TDSW prob-

lem, we are interested in determining whether the solutions found by the algorithms

make use of the WROs available in the problem instance, either in the best-cost solu-

tions or in intermediate solutions in the search. As in Section 5.3, we consider WROs

to be exploited fully in a shift s if replacing active reliefs occurring in s at times

other than arrival with relieving at arrival time results in s becoming infeasible.

To verify the use of WROs, we took the best-cost schedule from each of the

three experiments in Section 8.2.4 and performed the substitution described in the

previous paragraph. The number of infeasible shifts resulting from this procedure
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was two for the Wales dataset, two for the Wessex dataset, and six for the Inter-

City dataset, out of 72, 117 and 125 shifts respectively. The same behaviour was

also verified in intermediate solutions; for example, a (randomly selected) intermedi-

ate best-cost schedule for the Wessex dataset contained four infeasible shifts when

replacing all active reliefs inside WROs with relieving on arrival. Overall, results

suggest that the algorithm does make use of WROs during the search; moreover,

best-cost solutions found make use of WROs in all three cases.

A closer look at exploration phases As a separate analysis, we plot the evolution

on the number of infeasible shifts during the search, together with the changes

in cost in the active solution. Our aims are, first, to look at the way in which

the exploration phase makes use of the restriction on feasibility being relaxed and,

second, to understand the evolution of cost during the search in relation to standard

and exploration phases.

Results on the Wessex dataset for a search using the WRO formulation, starting

from a schedule obtained running GaS on a RoA formulation, are shown in Figure 8.7.

A first observation is that the exploration phases are making use of the possibility of

keeping infeasible shifts on the active solution. In principle, results would show that

exploration phases are able to find cost-equalling or cost-improving solutions even

when the active solution has a sizable number of infeasible shifts; this is evidenced

by the fact that the number of invalid shifts changes inside exploration phases (a

change in the number of infeasible shifts implies that the active solution has been

replaced; the reverse is not true, so the count of changes in the number of infeasible

shifts is a lower bound on the number of changes in active solution). However, we

must be more precise in the analysis, since the active solution is forcibly repaired

after each iteration of the exploration phase, and at the end of the exploration phase.

This means that on each exploration phase, two of the intermediate changes to zero

infeasible shifts, as well as the final change in the cycle, are due to forced repairs.

Hence for example the fourth, fifth, seventh and eight exploration phases in Figure

8.7 are such that almost all changes in the number of infeasible shifts result in more

infeasible shifts in the schedule, and the exploration phase is not able to recover to a

lower level of infeasible shifts until it is forced externally. Overall, this graph suggests
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that most of the cost improvements in the search are due to changes in the standard

phase; in particular, sharp decreases at the start of each standard phase are due

to the first L1 move in a standard iteration being devoted to analyze relocations of

active reliefs within WROs – in effect ‘reinstating’ the use of WROs that is removed

at the start of an exploration phase, as described in Section 8.2.2. It is difficult

to ascertain how much these improvements are related to changes occurring during

exploration phases, or the inefficiency-correcting move.

We plot the same graph for a test on the InterCity dataset (Figure 8.8). However,

in this case we plot results from the search that starts from an empty-repaired

solution. Although the evolution of the number of infeasible shifts over time seems

to broadly follow the same pattern, in this case most of the cost improvement seems

to happen within the exploration phases. Our intuition is that because in this case

the search starts from a very high-cost solution, the problem resembles more the

classical TDS problem than the TDSW problem, i.e. most of the improvements

should come from being able to solve the TDS problem efficiently, rather than from

exploiting WROs, and the repair heuristics would seem to be better at solving the

TDS problem than our standard phases with the current configuration. Together

with the observation in Section 8.1.3 that moves during exploration phases may

usually simply act as a shift-selecting mechanism, this suggests a promising general-

purpose approach for the design of moves in local search frameworks, where an

efficient repair heuristic is combined with a suitable selection of elements to remove

from the current solution.

On the need for standard phases With respect to the exploration of the infea-

sible region, this proposal differs from the original motivation in Chapter 6 in that

infeasible solutions are not allowed at every point during the search, but only on

specific (exploration) phases. The search could instead be structured into a single

‘exploration’ phase, with inefficiency-correcting moves triggered by the search getting

stuck in local optima, effectively removing the standard phases. This alternative pro-

posal may look simpler and cleaner; however, two issues make this not viable with

the current setup:
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• Exploration phases work over a RoA model; hence, if the standard phases are

removed, the search is effectively unable to exploit WROs;

• even without the problem above, exploration phases are inefficient when re-

pairing schedules with a sizable number of invalid shifts, a problem that the

standard phases are not subject to.

With regards to the second observation, an alternative way of interpreting the stan-

dard + exploration proposal in this chapter is to consider the exploration phases as

the driving force of the search, while the standard phases are used to ‘refine’ the so-

lutions obtained during the exploration phases – a local search within a local search.

In Section 8.3 we propose a search mechanism where standard and exploration phases

work on the same formulation; even then, it is still desirable to have standard phases

during the search.

Exploration vs. exploitation Any search algorithm for a combinatorial opti-

mization problem is subject to the exploration–exploitation disjunctive. In essence

this refers to the problem of balancing the time/resources spent on exploring new

areas of the search space, with that of exploiting the knowledge gathered in the

search, e.g. by looking for the local optimum in a basin of attraction. This a central

issue in all optimization algorithms based on iterative improvement, and also in all

areas of research related to learning, e.g. reinforcement learning [75, 49]. In the

proposals in this chapter, the exploration phase can be seen as doing most of the

exploration, while the standard phase does most of the exploitation.

In combinatorial optimization, exploration is associated with or referred to as

diversification; similarly, exploitation is associated with intensification. Some meta-

heuristics consider the balance of these two aspects explicitly (or at least expose the

issue more prominently); for example, the cooling schedule in simulated annealing is

a way of controlling the frequency of ‘exploratory’ moves, i.e. those that are taken

even if the cost of the new solution is worse than that of the previous solution in the

search. Unfortunately, there is no consensus in the literature over what constitutes

a desirable balance between exploration and exploitation, and hence usually each

implementation of a search procedure for an optimization problem will need tun-
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ing of this balance (see e.g. [76, 65] for research on cooling strategies in simulated

annealing).

The experiments in this chapter expose many areas where the algorithms can

be altered to favour exploration over exploitation, or viceversa. For example, the

inefficiency-correcting move between the standard and exploration phases is config-

ured to remove all shifts overlapping with the shift replacing the inefficient one.

This seems to be useful in allowing the repair some freedom to reshape the solu-

tion around the inefficiency. However, as the search progresses, and the cost of the

solution after a standard phase goes down, there is a stage at which removing all ad-

jacent shifts sometimes leaves the exploration phase unable to recover to a solution of

comparable cost to the previous standard phases. Further contradictions in the role

of the inefficiency-removing move can be seen in Figure 8.4, Wessex on the WRO

formulation, starting from an empty solution, where the inefficiency-correcting move

seems to be triggering a descent at around 1,000 seconds (first spike), only to stop

the search from getting closer to a local optimum 1,300 seconds later (third spike).

The idea of a cooling schedule in simulated annealing could be adapted to this

scheme; for example, the first issue described above could be tackled by only remov-

ing the overlapping shifts in the early stages of the search (or reducing the number

of shifts removed, or the probability of removing them, over time). However, as in

simulated annealing, the difficulty lies in determining what constitutes the best way

of (gradually) switching from exploration to exploitation. We do not explore the

impact of reducing exploration over time in this thesis.

Repairing at the end of an exploration phase In the current proposal, the

active solution at the end of an exploration phase is repaired before the execution

of the next phase; if two or more iterations of the exploration phase are executed

in sequence (e.g. as described in Section 8.2.3), we execute the repair after each

iteration of the exploration phase. This introduces a subtlety in that, because the

repair heuristic is randomized, the repaired solution may not have the same cost as

it originally had when first evaluated. Although this cost may be lower, in general it

will most likely be the opposite, since the search has a hard bias to accept good-cost

solutions. The effect is noticeable in the experiments conducted in this section. The
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graph in Figure 8.8 shows an extreme occurrence of this: in the sixth exploration

phase (at about 3,400 seconds into the local search), we can observe the cost of the

current solution increase in value three times during the same phase. This can be

explained by the cost going up after the inefficiency-correcting move before the start

of the exploration phase, and then once per repair after each of the two iterations

within the exploration phase.

This behaviour could be avoided by caching the original repaired version of each

solution that is accepted during an exploration phase. We have however kept this

unchanged because of a number of reasons: first, exploration phases are meant to

be exploratory in nature; second, there are performance issues in keeping a repaired

version of each accepted solution, particularly because we also accept solutions that

keep the cost unchanged (admittedly, performance would not suffer excessively);

thirdly, keeping a repaired version would imply that the repair is able to efficiently

produce feasible solutions with the exact repair cost – although this is true in the

current experiments, it is easily the case that a different repair heuristic would be

unable to do so, and a different repair mechanism (slower but lower-cost-yielding)

would be used at the end of an exploration phase instead. A setup with two distinct

repair mechanisms can be reproduced in our proposal by using a higher number of

trials when repairing at the end of an exploration phase than that used during repair

costing.

8.3 Running the Search on a Reduced Set of Re-

lief Opportunities

The work in Chapters 5 and 6 is in most part motivated by the observations that

a) most of the ROs within WROs in a 1-minute expansion may be redundant

b) most of the solutions generated by moves in the local search are infeasible (to

CHECKER), hence unnecessarily generated

However, the proposals presented so far in this chapter do not address these two

motivations fully. In particular, standard phases attempt to exploit WROs in the
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same way and are subject to the same constraints as the original proposal in Chapter

4 when creating/evaluating new solutions, and therefore exhibit the two problems

above.

In this section, we look at integrating the proposals in Chapter 5 into the local

search framework. We start by observing that during the standard phases, when a

move looks at exploiting WROs it considers all possible relocations of ROs within

selected WROs (using the model in A.1.4). Revisiting the study of constraint bound-

aries in Section 5.2, it can be argued that each execution of the relief-relocation step

of a move in an standard phase is, in terms of exploiting WROs, re-evaluating the

use of ROs within WROs to generate structurally different shifts. From this point

of view, it would make sense to replace these relief-relocation stages with a pre-

processing of the set of ROs within WROs, as suggested in Sections 5.3 and 5.4.

Our modified proposal is then to run a preprocessing stage on the problem in-

stance, generating a model M that contains all ROs in the RoA formulation, and

those ROs within WROs that are instrumental in generating structurally different

shifts from those available in the RoA formulation (a URO formulation), using one

or more rules related to scheduling constraints, as discussed in Chapter 5. In this

expanded RoA model, the interval of work between two consecutive ROs in a vehi-

cle is considered as a separate piece of work, independently of whether that interval

covers or has an overlap with an attended WRO. This means that any algorithm

operating over the model M cannot distinguish WROs within the problem instance.

The generation phase of GaS is still executed, to obtain a set C of valid shifts for M .

The search starts from an empty-repaired solution2. The new scheme is summarized

in Figure 8.9.

An important aspect of this proposal is that both standard and exploration phases

work on the same formulation of the problem. Hence the problems in covering WROs

described in 8.2.2 effectively disappear. Explicit consideration of WROs is removed

from the local search phase, so the WRO-relocation stage in moves is eliminated.

Instead, most of the responsibility for exploiting WROs is shifted to both moves that

re-distribute pieces of work (especially those targeting the start and end pieces of

2The selection phase of GaS can always be executed if one wants to generate an initial feasible

solution for the local search phase.
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spells), and the repair costing in exploration phases. We keep however the standard

and exploration phases in the proposal, as they still serve the same purposes of

exploitation and exploration.

8.3.1 Experiments and Results

We run the new proposal on the Wales dataset. We compare the results with those

obtained from the search on the WRO formulation, starting from an empty-repaired

solution as well. Both runs are graphed together in Figure 8.10. Results show that

the search on the URO formulation is initially able to make progress more quickly;

however, it soon reaches a point in the search where no cost improvements are

possible; at the same time, the inefficiency-correcting is unable to find replacement

shifts for the inefficient shifts it chooses to replace, which means that the search

effectively gets trapped in a local optimum. On the other hand, the search on

the WRO formulation is able to progress further, eventually reaching a better-cost

solution. This result would suggest that in the case of local search approaches –

where considering WROs in full does not imply an explosion in the problem size like

it does for the generation phase of GaS– full consideration of WROs may allow for

better solutions to be found.

8.4 Conclusions

This chapter presents a new hybridized, GaS and Local Search framework that

extends the ideas presented in Chapter 4. Based on the limitations discussed at

the start of Chapter 6, the work on repair heuristics on the same chapter, and

the identification of local inefficiencies in Chapter 7, we develop a new local search

framework where feasible and infeasible parts of the search space are iteratively

explored in sequence, through standard and exploration phases. The start of an

exploration phase is triggered by an inefficiency-correcting move (for which we design

one specific move); this move is more sophisticated than regular moves in standard

phases, but does not guarantee a feasible solution as an output. Solutions generated

during exploration phases are compared through a repair-cost function, which for a

given (possibly infeasible) solution s returns the cost of a feasible solution s′ built
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from s.

We evaluate the behaviour and performance of the new proposal over a set of

three real-life instances of the TDSW problem, which were previously used in Chap-

ter 5. Results suggest that the exploration phases are instrumental in taking the

search from the infeasible solutions generated by the inefficiency-correcting back to

cost-efficient feasible solutions. The new method is able to improve on all instances

when starting from a solution generated by TrainTRACS over a RoA formulation, and

two out of three instances (albeit only marginally) when starting from a solution

generated with PowerSolver over a specific URO formulation. Both results add fur-

ther support for the intuition that considering WROs in the scheduling model may

allow for better-quality solutions to be found. An analysis of the role of standard

and exploration phases in the evolution of the cost of the active solution suggests

that responsibility for improving on cost varies according to the choice of starting

solution: if the starting solution is a good solution for the TDS problem, then stan-

dard phases –which are designed to exploit WROs– are responsible for most of the

improvement; if on the other hand the starting solution is of poor quality, most of

the improvement would come from exploiting the structure of the TDS problem it-

self, rather than the use of WROs; in this case, exploration phases seem to generate

most of the improvement.

We also evaluate the possibility of applying the new methodology over a URO

formulation, where a preprocessing of the problem instance results in a reduced set

of ROs being available to the solver (compared to the full 1-minute expansion of

WROs). Results suggest that the new scheme as designed performs better when full

consideration of WROs is allowed.

The proposed framework involves a considerable number of distinct components,

and therefore there are many possible ways to try and improve on it. Better tuning

of the balance between exploration and exploitation could be beneficial to the search;

in particular, it would be desirable to make this a self-adaptive mechanism. Also,

the use of a single type of inefficiency during inefficiency-correcting moves is clearly

limited. We expect that considering more types of inefficiency would also result in

more efficient solutions being found; however, selecting the best type of inefficiency
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to tackle at any given point during the search is a complicated issue, since different

types of inefficiency are not comparable in general, and especially since we want

to avoid using the cost function as a decision tool when comparing inefficiencies.

Finally, the repair heuristics in use force some restrictions on the framework that

we would like to remove. In particular, the fact that the current repair heuristics

work on the RoA formulation (and hence the active solution needs to be stripped

of any reliefs occurring inside WROs) is undesirable; however, adapting any of the

heuristics proposed to work on a WRO formulation seems very difficult, since all of

them rely on the use of a pool of feasible shifts, and generating the full set of feasible

shifts for a WRO formulation is usually impossible in practice.
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0.
generate a URO formulation U for the instance,

by analyzing feasible travel links constraints

1.
set i := 1; run Generate and Select on formulation U ,

obtaining a feasible solution SGaS
i and a set CU of feasible shifts

2.

run a standard phase on formulation U ,

starting with the current (feasible) solution,

generating a new feasible solution Sstd
i

3a.
execute the inefficiency-correcting move on Sstd

i ,

leaving a possibly infeasible new solution S inf
i

3b.
add rules to prevent the next phase from undoing

the inefficiency correction

4

run an exploration phase on formulation U , starting with the current

(infeasible) solution S inf
i and using the pool of shifts CU ,

generating a new feasible solution Sexp
i

5
remove rules to prevent undoing of the inefficiency correction;

set i := i + 1; go to step 2

Figure 8.9: Scheme for the modified GaS and Local Search proposal, working on a reduced set of

relief opportunities derived from looking at scheduling constraints. In this proposal, both standard

and exploration phases work on the same formulation of the problem.
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Chapter 9

Conclusions

In this thesis we study the problem of train driver scheduling with windows of relief

opportunities (TDSW). To the best of our knowledge, this problem has only been

considered before by Shen [69] and Shen and Kwan [71]. In their work, time windows

is not the main focus of the research, and the models and solving tools developed are

based on simplified, artificial instances of the problem. In this thesis we concentrate

on the time-windows aspect of the problem; also, the research is conscious of the need

to make the formulations and solution methods more realistic, producing operational

schedules for real-life instances. We try to gain more understanding of the role of

WROs in allowing for better solutions to be found; we investigate whether existing

approaches to solving the problem on relief-on-arrival formulations can be adapted

or extended to exploit WROs, and we propose new methods to solve the problem.

The main contributions of this thesis can roughly be grouped into three cate-

gories: those specific to the TDSW problem and understanding of WROs, those

that are common to the TDS problem, and those that are general for solving combi-

natorial optimization problems. In the first group, we believe the main contributions

come from:

a) An initial investigation into the impact of considering WROs firstly on problem
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formulation and representation, and from there an understanding of the impact

on computational approaches for the problem. Our work in Section 2.3 suggests

that extending existing formulations that rely on a discrete set of opportunities,

e.g. by considering 1-minute expansions of WROs is not viable, mostly because

the increase in the number of ROs and the change in the statistical distribution

of ROs results in increases in problem sizes that are unmanageable with current

approaches.

b) A study on how WROs may allow for more efficient solutions, particularly in

relation to scheduling constraints (Chapter 5). It is our belief that experiments

in Chapters 5 and 8 clearly show that WROs may play a role in achieving more

efficient driver schedules, while at the same time providing evidence that most

ROs within WROs may not be instrumental in obtaining those solutions; consid-

ering these two observations in combination may lead to better tools for solving

the problem.

c) A number of novel proposals (Chapters 4, 5 and 8) that incorporate WROs into

both existing and new frameworks, making heavy use of hybridization as a way of

exploiting previous research and development. The first proposal in Chapter 5 is

able to generate new best-known, operational schedules for real-life instances of

the driver scheduling problem. The proposal in Chapter 8 is able to improve on

solutions obtained using PowerSolver on a URO formulation, and –even when

not designed with that intention– it is in some cases also able to produce more

efficient solutions than TrainTRACS when starting from an empty solution. At

the time of writing this thesis, a beta trial version of a tool derived from the

proposals in Chapter 5 has been made available to some TrainTRACS users.

From the point of view of the TDS problem, we provide an investigation into

repair heuristics that are based on (re)using the set C of valid shifts built during the

generation phase of GaS, and in particular its potential use as a powerful way of

perturbing solutions, as highlighted in the experiments in Chapter 8, where explo-

ration phases are sometimes more instrumental than standard phases in improving

cost.

In the area of combinatorial optimization, we present a way of allowing infeasible
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solutions during the execution of a search, in which infeasible solutions are still costed

in a measure that is directly related to the original objective function (Chapters 6

and 8). Although this has been partially studied before, particularly in the area of

Genetic Algorithms, work has been mostly oriented to making individual solutions

better (e.g. by local search). Instead, we use these results to build a framework in

which the capability to work over the space of infeasible solutions is exploited to

allow for the design of complex moves that are not subject to generating a feasible

solution as a result.

Our ultimate goal in relation to the use of repair costing is to devise local search

frameworks where the amount of infeasibility can be decoupled and eventually made

orthogonal to the process of comparing candidate solutions during the search – by

doing so, we can be much more adventurous in the design of moves and neighbour-

hoods. Experiments in Chapter 8 suggest that this type of approach is possible;

however, there are considerable hurdles to overcome to reach a point where this

can be exploited in full. In particular, the aim of making feasibility as orthogonal

to costing as possible implies that repair mechanisms should exhibit this property;

for example, an ‘efficiency gap’ in cost between feasible and infeasible solutions (as

discussed in Chapter 6) breaks this orthogonality. On the other hand, repairing

necessarily has to be a low-order-execution-time operation. Low-order heuristics

are usually tied to the problem being solved, which makes this part of the system

problem-dependent; for example, the strategy of relying on a pool of partial solutions

(e.g. shifts in TDS) may not be applicable to certain optimization problems.

Complete orthogonality cannot be achieved, at least with our proposed repair

mechanisms, since e.g. repairing a schedule where all shifts are infeasible is equiv-

alent to solving the full TDSW problem. Therefore, controlling the amount of

infeasibility may be needed. Although the degradation in performance of the repair

heuristics acts as a self-controlling mechanism on the amount of infeasibility, experi-

ments in Chapter 8 suggest that more explicit control could be beneficial. Overall, we

believe that the advantages of successfully implementing a general-purpose scheme

along these lines would be such that it definitely merits more research.
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9.1 Further Work

Aside from the long-term, optimization-wide goal of encapsulating the distinction

between feasible and infeasible solutions out of the search, there are a number of

issues that are specific to TDS and TDSW that arise from this thesis, and which are

worth exploring. We highlight those we consider most important in the following

paragraphs.

Better understanding of the potential of WRO formulations In this thesis

we have looked at expanding the driver scheduling model by considering windows

of relief opportunities. A valid research question is to understand the limits in

efficiency improvements achievable by switching to a WRO formulation. While we

have presented instances where we can prove that the expansion leads to better

optimal solutions, and we have also conducted experiments that suggest that this is

also true for real-life instances of the problem, we believe that to answer the question

more fully it is necessary to know how much better solutions to real-life instances

can be in theory, that is, decoupled from specific algorithms. In order to give an

algorithm-independent answer, it would be necessary to solve a number of real-life

problem instances to optimality for both RoA and WRO formulations; however, it

is not clear that this is possible with the algorithms currently at hand.

Use of local search as a tool to generate approximations for GaS In Chap-

ter 4 we studied a mechanism involving repeated, alternated calls to a GaS solver

and a local search phase. We hinted that the local search phase could be seen as

a tool to generate approximated formulations that would lead to increasingly effi-

cient solutions found by the GaS. We believe this is a very promising approach that

combines the biggest strengths of both mathematical programming approaches and

neighbourhood search mechanisms. However, much more work is needed to integrate

these two phases, particularly in terms of enhancing the quality of information fed by

the local search to the following GaS phase, and how the GaS uses this information.

General improvements/alternatives to the local search mechanisms Time

constraints forbid us from investigating all lines of research. In particular, we would
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have liked to tackle the following areas within the local search proposals:

• To show the ability of local search approaches to enforce schedule-level con-

straints: although it is easy from an implementation point of view to add

checks for any given constraint to a solution generated during the search, new

constraints would usually result in reduced search-space connectivity, to the

point where the search scheme or moves might need to be reconsidered. This

is also a valid question for the repair heuristics.

• It would be useful to consider the possibility of using a (long) unattended

WRO as if it were an attended WRO, in the sense of drivers covering the full

window and handing over inside the window. This would have been a more

encompassing model of windows, and might show further improvements in

solution quality over RoA models.

• Based on the explosion in the number of legal shifts when considering WROs,

we propose a local search scheme where some moves work at a piece-of-work

level; a valid research question is whether restricting moves to work at a spell

level only would result in more cost-effective algorithms.

Use of WROs to enhance robustness Although we have analyzed some mea-

sures of robustness, and adjusted local search proposals to deal with them (Chapter

4), we believe there is much more that could be done in this area. Robustness of a

schedule is by nature a statistical measure, since it deals with delays to unforeseen

events, which imply a source of randomness. Indicators of this kind are usually mea-

sured through simulation; in particular, robustness of a schedule could be measured

by ‘running’ a schedule through a number of delay scenarios, injecting delays (with

some randomness) to the operations on each run. However, evaluating each solu-

tion through simulation would be prohibitively time-consuming. Hence, the study

of low-order functions that reliably estimate robustness is a very important area of

research.

Exploiting WROs in the repair heuristic A limitation of the heuristic re-

pair mechanisms used to cost schedules in Chapters 6 and 8 is that, because the
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heuristics rely on the pool of valid shifts C generated on the RoA formulation, they

will effectively not consider WROs when repair-costing. A first idea to solve this

is would be to have the repair heuristics work on the pool of valid shifts from the

WRO formulation; however, the starting point of this research is the fact that GaS

doesn’t scale to WRO formulations, mostly because of the explosion in the size of

the pool of valid shifts, so this is not a viable option. Some approaches we consider

promising are:

• Let the repair heuristics work on a pool obtained from a URO formulation; al-

though experiments in Section 8.3 suggest that working on a URO formulation

doesn’t translate into better schedules, the proposal here is different in that

standard phases would still work on a WRO formulation, whereas in Section

8.3 they work over a URO formulation as well.

• Dynamically enlarge the pool of valid shifts used by the repair heuristic during

exploration phases with any new shifts created during standard phases which

actively use WROs; careful consideration should still be given in this case to

how the size of the pool is kept under control, although we know it will be

bounded by the number of solutions generated during the search.

• Have the repair heuristics use a pool of valid spells, rather than shifts, since

the pool of valid spells is likely to be of a manageable size even in WRO

formulations; a drawback of this approach is that shifts would have to be re-

generated on each call to the repair heuristics, and having a repair heuristic

efficiently generate valid shifts out of these spells may be difficult to achieve.

More comprehensive study of the role of moves in search space connectiv-

ity One of the themes of this thesis is how moves and neighbourhoods determine

(or restrict) connectivity between solutions in the search space. In this sense, it is

useful to see neighbourhoods as restricting the set of feasible solutions that can be

reached during the execution of a search. Chapters 6 and 8 are in big part motivated

by the need to increase connectivity from that in the original proposals in Chapter

4. The effect of the choice of moves on the resulting search landscape can be very

difficult to gauge; for example, the structure of moves designed in Chapter 4 leads
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to a very particular restriction in connectivity: because all moves keep or reduce the

amount of overcover, solutions in the search cannot have more overcover than the

initial solution in the search. This is clearly a restriction, since the optimal solution

may well have more overcover than the solution chosen to start the search. While

this is (implicitly) addressed by the repair heuristics in Chapter 6, it shows how

subtle the effect of moves can be on search space connectivity – hence, more work

should be carried in this direction.

Column generation on WRO formulations If the details of constraints are

omitted from the description of the problem of train driver scheduling, solving the

problem under a WRO formulation looks like the standard situation where column

generation may be of use. Unfortunately once constraints are added, the pricing

problem becomes NP-hard; even if some recent work claims success in considering

more complex constraints/penalties in the context of branch-and-price, it looks like

further development is needed before column generation can be considered on full

WRO models.



Appendix A

Modelling of WROs

Any algorithm for solving the driver scheduling problem with windows of relief op-

portunities relies, explicitly or implicitly, on a model for WROs. Given that the

driver scheduling problem is already very hard to solve on relief-on-arrival assump-

tions, special care must be placed when modeling WROs to achieve the right balance

between generality and the difficulty in solving the resulting problem instances. Also,

solutions allowed in a model must be executable in real life1.

A.1 Covering of WROs

A feasible schedule has to cover all WROs with drivers. In this sense, a WRO could

be seen as a piece of work. However, the similarities end as soon as a relief happens

within a WRO at a time other than the start or end of the time window, since

pieces of work cannot by definition be covered partially. More generally, there are

many ways in which a WRO can be covered by drivers. In this section we examine

a number of options regarding covering of WROs, analyzing them in terms of its

implications on applicability, schedule robustness, and size of the solution space; we

1otherwise there must be a suitable transformation to make them executable, which doesn’t

affect its perceived cost
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will start from the most general, and then propose several constrained versions.

A.1.1 Unconstrained Model

In this case, the only restriction is that the any feasible schedule must cover all WROs

completely. Crucially, this formulation allows for drivers who are not assigned to

drive any of the pieces of work limiting with the WRO to cover part of the WRO.

The model is illustrated in Figure A.1.

s3

s2

s1

WRO right PoWleft PoW

Figure A.1: Unconstrained covering of WROs. Shifts that are not assigned to cover any of the

pieces of work limiting with the WRO are allowed to cover part of the WRO.

This model is undesirable from more than one reason. First, from a robustness

point of view it seems counterproductive, as it makes the correct execution of the

schedule on this WRO to depend on more than two drivers, among others increas-

ing the number of hand-overs. Also, the model would result in an extremely high

number of possible ways to cover a WRO. The expected gain in modeling power and

efficiency seems more than offset by the loss in schedule robustness and the increase

in computational complexity.

A.1.2 Constrained Version I

Our first constraint to the general model is then to disallow drivers who don’t cover

one of the pieces of work adjacent to the WRO to cover a part of the WRO. A

sample allowed way of covering a WRO is presented in Figure A.2.

It is interesting to note that in this model, given any feasible schedule S for

instance I, and a WRO w ∈ I, it is always possible to select two shifts sl, sr ∈ S
such that w is completely covered by them. This is even when overcovering of work

is allowed; one way to select these shifts is to choose sl to be the shift covering the

most of w from those covering the piece to the left of w, and sr the one covering the
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left PoW

s4s2

s3s1

WRO right PoW

Figure A.2: Covering of WROs – constrained version I. Shifts that are not assigned to cover any

of the pieces of work limiting with the WRO are not allowed to cover part of the WRO.

most of w from those covering the piece to the right (in Figure A.2 this would yield

sl = s1, sr = s4).

The model is better than the unconstrained model. However, from an algorithmic

point of view the number of combinations for covering a WRO w is still very big:

for n shifts covering a WRO that is m minutes long (allowing for overcover), there

are O(mn) such combinations. We have shown that in practice covering of w can

be assessed by looking at only two shifts from those covering w; therefore, the

(very limited) expressiveness of the model gained from allowing each shift to cover

a different part of w does not seem to justify the high number of combinations it

allows.

A.1.3 Constrained Version II

We now further constrain the model to avoid the problems associated with the

previous model. We do so by forcing all shifts that cover the piece to the left of a

WRO to cover exactly the same part of the WRO (in effect meaning that they all

leave the train at the same time). The same applies for those shifts covering the

piece to the right of the WRO. This model is illustrated in Figure A.3.

s4
tltr

left PoW right PoWWRO

s1 s3

s2

Figure A.3: Covering of WROs – constrained version II. All shifts covering the piece to the left of

the WRO leave the train at the same time tl; all shifts covering the piece to the right board the

train at time tr.

In this model, the way the WRO is covered is determined by two variables: the
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time tl at which all shifts covering the left piece leave the train, and the time tr < tl

when all shifts covering the right piece board the train. This means that for a WRO

w that is m minutes long, there are O(m2) combinations to cover w when relieving

drivers, which is potentially a big decrease in size over the previous model.

It is worth noting that this model still allows to exploit WROs to improve sched-

ule robustness in the way described in section 1.3. Another potentially useful feature

of this model is that it is very easy to eliminate overcover while keeping WROs at-

tended, since as long as one leaves one shift covering each side of the WRO one is

guaranteed to keep the WRO covered. In the previous model, one would instead

have to look at the times at which all shifts leave or board the train before deciding

whether a particular shift can be removed from covering the WRO.

A.1.4 Constrained Version III

While the model just introduced seems to strike a good balance between expressive

power and computational complexity, there may be situations when analyzing O(m2)

ways of covering a WRO may be too time-consuming or deemed unnecessary. The

next natural simplification of the model is to further constrain tl and tr, by requiring

tl = tr+k, for a fixed value of k. This reduces the number of ways to cover m-minute

long WRO w to O(m). An example is shown in Figure A.4.

s4
tr + ktr

left PoW right PoWWRO

s1 s3

s2

Figure A.4: Covering of WROs – constrained version III. This model is defined by constraining

version II by requiring tl = tr + k.

This further constraining comes at a price in terms of expressive power, since the

amount of ‘buffering’ between shifts on the left and right sides of the WRO is set in

advance. This can be partially amended if the scheduler knows how many minutes

of buffering he wants at a particular WRO w beforehand, by setting a specific value

of k for w. Also, for a m-minute long WRO w, if k > m the constraint tl = tr + k

would make covering of that WRO impossible. This can be easily fixed by requiring
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tl = min(tr + k, te), where te is the end-time of w. Finally, it is possible to force no

buffering by setting k = 0; this is shown in Figure A.5.

left PoW

tl = tr s4s2

s3
s1

WRO right PoW

Figure A.5: Covering of WROs – constrained version III, k = 0.



Appendix B

Parameter Setup for Experiments

in Chapter 8

Figure B.1 summarises the main parameters that can affect the behaviour of the

proposal in Chapter 8. For each such parameter, we report the choice taken for the

experiment number 2 as described in Section 8.2.4. In the following paragraphs we

briefly comment on the choice of values for some parameters, where the motivation

is not clear from the description in Chapter 8.

Structuring of standard and exploration phases. As in the initial proposal in

Chapter 4, we use predetermined sets of moves structured as sequences of L1 moves;

in turn, both exploration and standard phases consist of a series of iterations over

those sequences. Iterations within a single standard or exploration phase provide

the search the opportunity to execute certain moves after other types of move have

already been made – our experience shows that this allows for a better exploration

of the search space. The number of iterations was determined experimentally, by

evaluating increasing the number of iterations within a phase up to a point where

the marginal improvement in resulting solution costs made extra phases unnecesary

or not cost-effective in terms of overall execution times. An intuitive alternative to
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allow for different combinations of moves to happen in different orders would be to

randomize the selection of the type of move on every move. However, we have used

the former mechanism because a non-randomized setup makes it easier to control,

analyze and explain the effects of multi-neighbourhood exploration over time.

Number of re-trials when repair-costing a solution. Although experiments

in Chapter 6 suggest that the randomized repair heuristics can find better-cost

solutions as the number of re-trials is incremented, we consider that in the context

of a local search, a similar effect will be achieved even if no re-trials are executed

during evaluation of a single solution, since many moves are likely to result in the

same effective schedule (after removing infeasible shifts) presented to the repair;

hence we set the number of re-trials to one (e.g. no re-trials). Experiments suggest

that this does not affect the quality of results obtained significantly, while reducing

the execution times considerably.
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Global parameters

termination criterion total time (7,200 seconds)

cost function total hours (Equation 2.2)

initial solution obtained using TrainTRACS on a RoA formulation

duration of tabu tenure

for attributes derived from

inefficiency-correcting move

one exploration phase

standard phase

formulation WRO

move acceptance criterion non-decreasing solution cost, new solution satisfies all

problem constraints

structuring of moves standard-specific predefined sequence of L1 moves

termination criterion three iterations over the sequence above

exploration phase

formulation RoA

move acceptance criterion non-decreasing solution cost, new solution only required

to satisfy ‘structural’ constraints; no limit on the number

of infeasible shifts in the new solution

structuring of moves standard-specific predefined sequence of L1 moves

termination criterion two iterations over the sequence above

other settings active solution is repaired after each iteration of L1

moves

Repair costing

heuristic SR-rLCP-QW (Section 6.6)

number of re-trials per re-

pair costing operation

no re-trials

Inefficiency-correcting

move

inefficiency exploited high joinup time

selection of inefficient shift randomized; probability of selection increasing on total

shift joinup time

Figure B.1: Summary of parameter setup for the main experiments in Chapter 8.



Appendix C

Notation and Abbreviations

Notation

C (candidate) pool of shifts obtained during a generation phase

cost(S) (schedule), c(s) (shift) cost function

I problem instance

p piece of work

r RO

S schedule

s shift

sp, sk,i (spell i in shift k) spell

v vehicle

w WRO
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Abbreviations

CG Column Generation

GaS Generate and Select

ILP Integer Linear Program / Programming

LP Linear Program / Programming

LS Local Search

PoW piece of work

RO relief opportunity

RoA relief-on-arrival

TDS Train Driver Scheduling (problem)

TDSW Train Driver Scheduling (problem) with Time Windows

TOC Train Operating Company

WRO window of relief opportunities
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