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Abstract

In this thesis we consider the class of simple graphs defigezktluding even holes
(i.e. chordless cycles of even length). These graphs amrkias even-hole-free graphs.
We first prove that every even-hole-free graph has a nodeevineighborhood is triangu-
lated. This implies that in an even-hole-free graph, withodes andn edges, there are
at mostn+ 2m maximal cliques. It also yields a fastest known algorithmdomputing a
maximum clique in an even-hole-free graph.

Afterwards we prove the main result of this thesis. The tteisub decomposition
theorem for even-hole-free graphs, that uses star cutsét®-foins. This is a significant
strengthening of the only other previously known decomipasof even-hole-free graphs,
by Conforti, Cornuéjols, Kapoor and Vuskovic, that ug¢sins and star, double star and
triple star cutsets. It is also analogous to the decompositi Berge (i.e. perfect) graphs
with skew cutsets, 2-joins and their complements, by Chuskyg Robertson, Seymour
and Thomas. In a graph that does not contain a 4-hole, a skisetgeduces to a star
cutset, and a 2-join in the complement implies a star cusgeit) a way it was expected
that even-hole-free graphs can be decomposed with justdahewgsets and 2-joins.

A consequence of this decomposition theorem iscgn'®) recognition algorithm
for even-hole-free graphs. The recognition of even-hate-graphs was first shown to
be polynomial by Conforti, Cornuéjols, Kapoor and VusSkov They obtained an al-
gorithm of complexity of about’(n*) by first preprocessing the input graph using a
certain “cleaning” procedure, and then constructing a dgmsition based recognition
algorithm. The cleaning procedure was also the key to cocistig a polynomial time
recognition algorithm for Berge graphs. At that time it waserved by Chudnovsky and
Seymour that once the cleaning is performed, one does ndtandecomposition based
algorithm, one can instead just look for the “bad structaiedctly. Using this idea, as op-
posed to using the decomposition based approach, one geifscsintly faster recognition
algorithms for Berge graphs and balanced 0 matrices. However, this approach yields
an ¢ (n%Y) recognition algorithm for even-hole-free graphs. So thighe first example of
a decomposition based algorithm being significantly fasten the Chudnovsky/Seymour
style algorithm.

The results in this thesis are a joint work with Kristina Wasic.
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Chapter 1

Introduction

1.1 Overview

We say that a grap® containsa graphF, if F is isomorphic to an induced subgraph of
G. A graphG is F-freeif it does not contairF. Let.# be a (possibly infinite) family of
graphs. A graplt is .7 -freeif it is F-free, for everyF € .%.

A holeis a chordless cycle of length at least four. A holeev®n(resp. odd) if it
contains even (resp. odd) number of nodes. A hole of lengglalso called am-hole In
this thesis we are concerned with the clasgwén-hole-fregraphs, i.e. graphs that are
7 -free where# denotes the family of all even holes.

The main part of this work is a decomposition theorem for evele-free graphs us-
ing star cutsetsand 2-joins  This decomposition is analogous to the decomposition of
Berge (i.e. perfect) graphs witkew cutset2-joins and their complements, by Chud-
novsky, Robertson, Seymour and Thomas [7] (note that in phgttaat does not contain
a 4-hole, a skew cutset reduces to a star cutset, and a Zjtie icomplement implies
a star cutset). We also show that the decomposition obtdesets to a fastest known
recognition algorithm for even-hole-free graphs. As a sdamontribution we prove that
every even-hole-free graph has a node whose neighborhoearigulated This implies
that in an even-hole-free graph, withnodes andn edges, there are at most 2m maxi-
mal cliques. As a consequence we obtairQgn’m) algorithm that generate all maximal
cligues of an even-hole-free graph.
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Many interesting classes of graphs can be characterizediag B -free, for some
family .#. In particular, a question that arises in this domain is tdarstand to what
extent forbidding an induced subgraph impacts the glolbatsire of a given graph. The
most famous example in this context is the class of perfeqgtlgs. A graplG is perfect
if for every induced subgrapH of G, x(H) = w(H), wherex (H) denotes thehromatic
numberof H and w(H) denotes the size of a largediqgue The famous Strong Perfect
Graph Theorem (conjectured by Berge [2], and proved by Cbwsky, Robertson, Sey-
mour and Thomas [7]) states that a graph is perfect if and ibitlgloes not contain an
odd hole nor an odd antihole (where amtiholeis a complement of a hole). The graphs
that do not contain an odd hole nor an odd antihole are knovdeagegraphs.

The structure of even-hole-free graphs was first studied bgf@ti, Cornuéjols,
Kapoor and Vuskovic in [13] and [14]. In [13] they obtainadlecomposition theorem
for even-hole-free graphs that uses 2-joins and star, éathl and triple star cutsets (all
these cutsets are defined in Section 2.2.1), and in [14] theg it to obtain a polynomial
time recognition algorithm for even-hole-free graphs. sTis the same paradigm that
was used to obtain recognition algorithms for balanced ioestr[11, 17]. All these
algorithms use “cleaning”, a technique first developed bynfGadi and Rao [18] to
recognize linear balanced matrices. This technique wamnied to make use of strong
cutsets, such as star cutsets, in a decomposition baseghrgoo algorithm. If one is
able to clean the graph for the even-hole-free graph retogrproblem, one can then
make use of not only star cutsets, but also double star gold siar cutsets, and for that
reason all these cutsets were used in the decompositiorenflese-free graphs in [13].
That decomposition gave the first known recognition alpomitfor even-hole-free
graphs, but it was always clear that a stronger decompnghi@orem was possible. At
that time that problem was put aside, since the focus therowgerefect graphs, trying
to prove the Strong Perfect Graph Conjecture and obtainympuoiial time recognition
algorithm for Berge graphs.

Strong Perfect Graph Conjecture was proved by ChudnovsdgeRson, Seymour
and Thomas in [7], by decomposing Berge graphs using skesetsjt2-joins and their
complements. Soon after, the recognition of Berge graplsssivawn to be polynomial
by Chudnovsky, Cornuéjols, Liu, Seymour and VuSkovi@ih

Note that by excluding the 4-hole, one also excludes alhafés of length at least 6.
So if we switch parity, the analogous class to even-hole-iaphs are the Berge graphs,
rather than just thedd-hole-freegraphs. As mentioned above, in a graph that does not
contain a 4-hole, a skew cutset reduces to a star cutset, 2gdiain the complement
implies the star cutset. The decomposition of Berge graptis skew cutsets, 2-joins
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and their complements [7] provided a motivation to beligvat tit is also possible to
decompose even-hole-free graphs with just the star cuas€et2-joins.

As expected, the key to obtaining a polynomial time recogniélgorithm for Berge
graphs [4] was the cleaning. What was surprising, as Chuskymand Seymour observed,
was that once the cleaning is performed, one does not needettemposition based
recognition algorithm, one can simply look for the “bad stue” (in this case an odd
hole) directly. So in [4] two recognition algorithms for Bergraphs are given: afi(n®)
Chudnovsky/Seymour style (that uses the direct methodyighgn, and ano'(n'8) de-
composition based recognition algorithm. (The high comipfeof all of these algorithms
is primarily due to cleaning). Then Zambelli [40] showedtthg using the cleaning with
the direct method, the complexity of the recognition altfon for balanced Gt1 matri-
ces dramatically drops, in comparison with their origiredagnition [11] based on the
decomposition method.

Another twist in the story is the case of the recognition atgm for even-hole-free
graphs. The original algorithm from [14] is of complexityafout&’(n*°). In [6] Chud-
novsky, Kawarabayashi and Seymour obtainzagm3?) recognition algorithm for even-
hole-free graphs, using cleaning with the direct methodthtnsame paper they sketch
another more complicated algorithm that, they claim, rartgme ¢ (n*®). This algorithm
first needs to test for thetas and prisms in that time (thetdgpasms are defined in Sec-
tion 2.2). It turns out that testing for thetas can be donénie ' (n*!) [9]. Detecting
a prism is NP-complete in general [28]. In [6] it is claimea@tlunder the assumption
that the graph does not contain a theta one can use cleantegtttor prisms in time
¢ (n'®). This turns out to be false. Detecting a theta or a prism usie@utlined method
ends up being of complexity (n®°) [5]. In this work we show that our decomposition of
even-hole-free graphs yields @1{n'%) time recognition algorithm. So this is the first ex-
ample in which a decomposition based method performs faseenote that none of these
algorithms are of any practical use, but they are interg$tom a theoretical perspective.

The essence of even-hole-free graphs is actually captyrélder generalization to
signed graphs, called the odd-signable graphs, and infacesults obtained in this thesis
are for the class of graphs that are 4-hole-free odd-signalk introduce odd-signable
graphs in Chapter 2. In Chapter 2 we also review results coimgeeven-hole-free graphs
and outline the decomposition theorem. In Chapter 3 we piloateevery even-hole-free
graph has a node whose neighborhood is triangulated and stim& consequences of
this result. The proof for the decompostion theorem is givein the Chapters 4 and 5.
In Chapter 6 we describe the recognition algorithm for eliete-free graphs.

We now conclude this Chapter with an introduction of relé\@mcepts, terminology



Chapter 1 4 Introduction

and notation of graph theory that will be used throughow thesis.

1.2 Graph theory

We first note that all graphs in this work are finite, simple andirected. We also note
that some concepts already mentioned in Section 1.1 wikpeated here. However, now
they will be formally defined.

1.2.1 Basic concepts

A graph Gis an ordered paifV (G),E(G)) consisting of a nonemptyode set {G) and
edge set EG). SetsV(G) andE(G) are assumed to be finite. We sometimes refer to
the nodes ofG asverticesof G. Because we only consider simple undirected graphs,
we defineE(G) to be a subset of the sé{u,v} : u,v € V(G),u # v}. For simplicity

of notation we denote an edde,v} by uv. If uve E(G), then nodesi andv are said

to be adjacent(or sometimess andv are said to bereighbor3. Forv e V(G), N(v)
denotes the set of nodes adjacent.tdhecomplemenbf G, denoted byG, is the graph
(V(G),{uv:uv¢ E(G)}).

Two graphsG andH areisomorphidf there is a bijectionf : V(G) — V(H) such that
uve E(G) if and only if uve E(H). For a nonempty seéA C V(G), thesubgraph of G
induced by Adenoted byG[A|, is the grapHA, {uv: u,ve Ajuve E(G)}). Such a graph
is called annduced subgrapbf G.

ForSCV(G) andA C E(G), we denote bys\ (SUA) the subgraph o6 obtained by
removing the nodes @& (and all edges with at least one endnod&)iand the edges a.

ForSCV(G), N(S) denotes the set of nodes\i{G) \ Swith at least one neighbor in
SandN[S denotesN(S)US. Forx € V(G), we also use the following notatiofN(x) =
N({x}) andN[x] = N[{x}]. ForV' CV(G), G|V’] denotes the subgraph &finduced by
V'. Forx € V(G), the graphG[N(x)] is called theneighborhoodf x.

Let SCV(G) andx € V(G). Nodex is adjacentto S, if x is adjacent to some node
of S. Nodex is strongly adjacento S, if x is adjacent to at least two nodes®fFor an
induced subgraphl of G, a nodev € V(G) \V(H) is atwin of a nodex € V(H) w.r.t. H,
if N(v)NV(H) =N[x NV (H).

A path Pis a sequence of distinct nodes ..., x,, N > 1, such thak;x;. 1 is an edge,
forall 1 <i < n. These are called trexlgesof a pathP. Nodesx; andx, are theendnodes
of the path. The nodes &f(P) that are not endnodes are called thiermediate nodes
of P. Letx andx be two nodes oP, such that > i. The pathx;,X;.1,...,X is called the
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XX -subpath oP. Let Q be thex;x -subpath oP. We writeP = X1, ..., X _1,Q, X+ 1, .-, Xn.

A cycle Cis a sequence of nodes, ..., Xy, X1, N > 3, such that nodes, ..., x, form a path
andxixp is an edge. The edges of the of the path.., x, together with the edge x, are
called theedgesof C. Thelengthof a pathP (resp. cycleC) is the number of edges A

(resp.C).

Nodesu andv of G are said to beonnectedf there is a path irG whose endnodes
areu andv. LetVi,...,V,, be a partition of the node s&{(G) such that two nodes and
v are connected if and only if they belong to the sameVgetThe induced subgraphs
G|[V1],...,G[Vy] are called theonnected componenfsr simply componentsf G). G is
connectedf G has exactly one connected component, othen@ise said to bediscon-
nected

SUAis acutsetif G\ (SUA) contains more connected components t@arFor an
induced subgrapH of G, we say that a cuts&of G separates Hf there are nodes dfi
in different components d& \ S.

Let A, B be two disjoint node sets such that no nod@as$ adjacent to a node &. A
pathP = Xy, ...,X, connects A and B eithern = 1 andx; has a neighbor ih andB, or
n> 1 and one of the two endnodesPfs adjacent to at least one nodeAmand the other
is adjacent to at least one nodeBnThe pathP is adirect connection between A andfB
in GV (P) UAUBJ no path connecting andB is shorter thar®. The direct connectioR
is said to bdrom A to Bif x; is adjacent to a node ik andx, is adjacent to a node iA.

A cliqueis a graph in which every pair of vertices are adjacent. The af a largest
clique in a graplG is denoted byw(G). Thechromatic numbeof G, denoted by (G), is
the minimum number of colors needed to color the verticeS eb that no two adjacent
vertices receive the same color.

1.2.2 Graph classes and other concepts

Given a path or a cycl® in a graphG, any edge ofs between nodes d that is not
an edge of) is called achordof Q. Q is chordlessf no edge ofG is a chord ofQ. As
mentioned earlier &oleis a chordless cycle of length at least 4. It is callddlzoleif it
hask edges. Ak-hole isevenif kis even, and it iddotherwise.

We say that a grap6 containsa graphF, if F is isomorphic to an induced subgraph
of G. A graphG is F-freeif it does not contairF. Let.# be a (possibly infinite) family
of graphs. A graplt is % -freeif it is F-free, for everyF € ..

A graph iseven-hole-fredresp. odd-hole-freaf it does not contain an even (resp.
odd) hole. A graph i8ergeif it does not contain an odd hole nor the complement of an
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odd hole. A graph isriangulated(also callecchordal) if it does not contain a hole.

A treeis a connected graph that does not contain a cycle. Givenph @aits line
graphL(G) is a graph such that: (i) each vertexldfG) represents an edge &f and (ii)
two vertices ol (G) are adjacent if and only if their corresponding edges shaogranon
endnode irG. A graphG is perfectif for every induced subgrapH of G, x(H) = w(H).

In figures, solid lines represent edges and dotted linegsept paths of length at least
one.

A note on notation: For a graphG, let V(G) denote its node set. For simplicity of
notation we will sometimes writ& instead ofV (G), when it is clear from the context
that we want to refer to the node set@fWe will not distinguish between a node set and
the graph induced by that node set. Also a singletor{setvill sometimes be denoted
with justx. For example, instead oti‘c V(G) \ {x}", we will write “u € G\ X". These
simplifications of notation will take place in the proofs, evbas the statements of results
will use proper notation.
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Even-hole-free graphs

In the last 15 years a number of classes of graphs defined hydaxg a family of induced
subgraphs have been studied, perhaps originally motivstéoe study of perfect graphs.
The kinds of questions this line of research was focused om wlether excluding in-
duced subgraphs affects the global structure of the péaticlass in a way that can be
exploited for putting bounds on parameters sucly @hd w, constructing optimization
algorithms (problems such as finding the size of a largegtelor a minimum coloring)
and recognition algorithms.

A number of these questions were answered by obtaining etstal characterization
of a class through their decomposition. A decompositiootée elucidates the structure
of a class of graphs by showing that every graph in this classefther a prescribed and
relatively simple structure (in this case we often say thatgraph belong tobasicclass)
or one of prescribed cutset, along with it can be decomposed.

This was the paradigm used in the proof of Strong Perfect lGTdq@orem. The idea
was to decompose Berge graphs in a way that the basic grappsidect and the graphs
that are not basic (and hence admit a cutset) cannot be a oimoounterexample to the
conjecture. Other classes of graphs in this context, ashotieHree graphs and balanced
matrices have been studied through decomposition thedfeing5, 17].

Recent works include a decompositionadw-free graphsandbull-free graphsby
Chudnovsky and Seymour (they outline these results in [§i))gia series of cutsets and
operations. The decomposition obtained for these claseésaersible” in the sense that
the theorem gives a receipe to build all graphs in the claggligg basic pieces together.

7
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In [37] Trotignon and Vu3kovic decompose graphs contejmio cycle with a unique
chord (this class generalizes strongly balanceable grag@es[16] for a survey). The
decompostion obtained also work in both directions: th@lgia in the class if and only
if it can be constructed by gluing basic graphs along the positions. Such structure
theorems are less common, but they are stronger and periveps logetter understanding
of the class in a way to construct optimization algorithnog @xample note that in [37],
as a consequence of the decomposition, a recognition #igors obtained as well as
algorithms to find an optimal coloring and maximum clique).

The decomposition we prove in this thesis is not revershale still provides enough
undestanding of the class to lead to a polynomial-time reitimg algorithm. We note
that other known decompositions for related classes, asrtador Berge graphs and and
the one for odd-hole-free graphs are not reversible as well.

2.1 Excluding even-holes

The structure of even-hole-free graphs was first studieddnf@eti, Cornuéjols, Kapoor
and Vuskovic in [13] and [14]. They were focused on showtimt even-hole-free graphs
can be recognized in polynomial time (a problem that at tina¢ tvas not even known
to be in NP), and their primary motivation was to develop teghes which can then be
used in the study of perfect graphs. In [13] they obtainedchgposition theorem for
even-hole-free graphs that uses 2-joins and star, doudteast triple star cutsets (all
these cutsets are defined in Section 2.2.1), and in [14] theg i to obtain a polynomial
time recognition algorithm for even-hole-free graphs. sTaligorithm use “cleaning”, a
technique first developed by Conforti and Rao [18] to recogtinear balanced matri-
ces. This technique was invented to make use of strong sutseth as star cutsets, in a
decomposition based recognition algorithm. If one is abldeéan the graph for the even-
hole-free graph recognition problem, one can then make uset@nly star cutsets, but
also double star and triple star cutsets, and for that realbdinese cutsets were used in
the decomposition of even-hole-free graphs in [13]. Thegemity of this algorithm is
abouto’(n?0). In [6] Chudnovsky, Kawarabayashi and Seymour obtai@ém®!) recog-
nition algorithm for even-hole-free graphs. The algorithlso has a cleaning step, but
after this procedure a “direct approach” (looking dire¢tlyforbidden structures) is used
instead of a decomposition based method. We present in &@@&ptnew decomposition
based algorithm for recognizing even-hole-free graphs dlgorithm is a consequence
of the main decomposition obtained in this thesis. The cemipl of this new algorithm
is 0(n'9).



Chapter 2 9 Even-hole-free graphs

One can find a maximum clique of an even-hole-free graph ipnuwhial time, since
as observed by Farber [20] 4-hole-free graphs la(®) maximal cliques and hence one
can listthem all in polynomial time. In Chapter 3 we show &hatry even-hole-free graph
contains a vertex whose neighborhood is triangulateddoes not contain a hole). This
characterization leads to a faster algorithm for compugimgaximum clique in an even-
hole-free graph. The complexities of finding a maximum iretefent set and an optimal
coloring are not known for even-hole-free graphs. We nod¢ fitr odd-hole-free graphs
the complexities of finding a maximum independent set, am@tcoloring as well as
the recognition problem are also open problems, and thahfire maximum clique for
odd-hole-free graphs is NP-complete (follows from 2-sulsiton [33]).

More recently, Addario-Berry, Chudnovsky, Havet, Reed &egmour [1], settle a
conjecture of Reed, by proving that every even-hole-freplgrcontains disimplicial
vertex(a vertex whose set of neighbors induces a graph that is awfitwo cliques).
This immediately implies that i& is an even-hole-free graph, thenG) < 2w(G) — 1
(observe that it is a bisimplicial vertex of5, then its degree is at most®2G) — 2, and
henceG can be colored with at most#G) — 1 colors). It is interesting that this result
is also obtained using decomposition, although in [1] nbeaén-hole-free graphs are
decomposed, but enough structures are decomposed ustigl sfmible star cutsets to
obtain the desired result.

Another motivation for the study of even-hole-free graphsheir connection t¢-
perfect graphs introduced by Markossian, Gasparian and €. For a graplG, let
0(G) be the minimum degree of a vertex@ Consider the following total order aNG):
order the vertices by repeatedly removing a vertex of mimnuegree in the subgraph
of vertices not yet chosen and placing it after all the reimngirvertices but before all
the vertices already removed. Coloring greedily on thiseorgives the upper bound
X(G) < B(G), wheref(G) =max{d(G') +1: G is an induced subgraph &}. A graph
is B-perfectif for each induced subgrapf of G, x(H) = B(H). Itis easy to see that
B-perfect graphs belong to the class of even-hole-free gragid that this containment
IS proper.

A diamondis a cycle of length 4 that has exactly one chord.cdp is a cycle of
length greater than four that has exactly one chord, ancttiusd forms a triangle with
two edges of the cycle. In [30] it is shown that (even-hol@nabnd, cap)-free graphs
are (3-perfect, and in [21] de Figueiredo and Vuskovi¢ show tteaen-hole, diamond,
cap-on-6-vertices)-free graphs géeperfect. Recently these results were extended by
Kloks, Muller and Vuskovi¢ who show in [27] that (eventapdiamond)-free graphs are
B-perfect. This result is obtained by proving that every (eliele, diamond)-free graph
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contains a simplicial extreme (where a vertegirmaplicial if its neighborhood set induces
a cligue, and it is asimplicial extremef it is either simplicial or of degree 2). And
the existence of simplicial extremes is obtained as a caresexp of a decomposition of
(even-hole, diamond)-free graphs in [27] that uses 2-jailigue cutsets and bisimplicial
cutsets (a special type of a star cutset). We note that thengaasition theorem for
even-hole-free graphs in this thesis uses the one in [27g0yaing the problem to the
diamond-free case.

Since (even-hole, diamond)-free grapiiperfect, this class of graphs can be colored
in polynomial time by coloring greedily on a particular dagsionstructable ordering of
vertices. Note that for every grajih there exists an ordering of its vertices on which the
greedy coloring will give g((G)-coloring of G, the difficulty being in finding this order-
ing. As mentioned before, complexity of finding an optimdbcng in an even-hole-free
graph is an open problem. Also, total characterizatiofi-plerfect graphs remains open,
as well as their recognition.

The fact that (even-hole, diamond)-free graphs have stapkextremes implies that
for such a graplG, x(G) < w(G) + 1 (observe that it is a simplicial extreme 06,
then its degree is at mos#(G), and hences can be colored with at mosb(G) + 1
colors). So this class of graphs, as well as the class of butnfree graphs by the
result in [1], belong to the family of-bounded graphs, introduced by Gyarfas [26] as
a natural extension of the family of perfect graphs: a farofigraphs¥ is x-bounded
with x-binding function fif, for every induced subgrap®’ of Ge ¢4, x(G') < f(w(G)).
Note that perfect graphs arexabounded family of graphs with the-binding function
f(X) =X

The essence of even-hole-free graphs is actually captyrélder generalization to
signed graphs, called the odd-signable graphs, and infactecomposition theorem that
we prove in this thesis is for the class of graphs that areld-fiee odd-signable. Odd-
signable graphs are introduced in Section 2.2, and the deasitron theorem is described
in Section 2.2.1.

2.2 0Odd-signable graphs

We signa graph by assigning, @ weights to its edges. A graphasld-signablef there
exists a signing that makes every triangle odd weight ang/daaee odd weight. To charc-
terize odd-signable graphs in terms of excluded inducedrsyns, we now introduce two
types of3-path configuration§3PC's) and even wheels.

Let x,y be two distinct nodes db. A 3PC(x,y) is a graph induced by three chordless
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xy-paths, such that any two of them induce a hole. We say thaaph@® contains a
3PC(+,-) if it contains a PC(x,y) for somex,y € V(G). 3PC(-,-)’s are also known as
thetas as in [5].

Let X1,X2, X3, Y1, Y2, Y3 be six distinct nodes db such that{xy, X, x3} and{y1,y2,ys}
induce triangles. A BC(x1X2X3,Yy1Y2Y3) is a graph induced by three chordless p&hs
X1,...,Y1, PP =Xo,...,¥o andP; = X3, ...,ys, such that any two of them induce a hole.
We say that a grap@ contains a BC(A,A) if it contains a C(x1xox3, y1Yy2ys) for some
X1,X2,X3,¥1,¥2, Y3 € V(G). 3PC(A,A)’s are also known agrisms as in [5].

A whee| denoted by(H,x), is a graph induced by a hol¢ and a nodex ¢ V(H)
having at least three neighborshh sayx, ..., xn. Such a wheel is also callechawheel
Nodex is thecenterof the wheel. Edgegx, fori € {1,...,n}, are calledspokef the
wheel. A subpath ofi connectingg andx; is asectorif it contains no intermediate node
X, 1 <1 < n. A short sectoiis a sector of length 1, andl@ng sectoris a sector of length
greater than 1. Whe¢H,X) is evenif it has an even number of sectors. See figure 2.1.

It is easy to see that even wheel®Q-,-)'s and FPC(A,A)’s cannot be contained
in even-hole-free graphs. In fact they cannot be containextid-signable graphs. The
following characterization of odd-signable graphs st#tasthe converse also holds, and
it is an easy consequence of a theorem of Truemper [38].

0
/ \
T Y
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|
|

|
|

WV

Figure 2.1: ®C(+,-), 3PC(A,A) and an even wheel.

-

Theorem 2.2.1 [12] A graph is odd-signable if and only if it does not contan even
wheel, a3PC(-,-) nor a3PC(A,A).

This characterization of odd-signable graphs will be usedughout the thesis.

2.2.1 Decomposition theorem

A node setSC V(G) is ak-star cutsetf G if Sis comprised of a cliqu€ of sizek and
nodes with at least one neighborGni.e.C C SC N[C]. We refer toC as thecenterof S
A 1-star is also refered to asséar, a 2-star as double stayand 3-star as #iple star. If
S= N|C], thenSis called afull k-star.
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A graphG has a2-join V4|V,, with special set$A;, Az, B1,By), if the nodes ofG can
be partitioned into set¢; andV, so that the following hold.

() Fori=1,2, A UB; CV;, andA; andB; are nonempty and disjoint.

(i) Every node ofA; is adjacent to every node @b, every node oB; is adjacent to
every node 0B, and these are the only adjacencies betwaeamdVs,.

(ii) Fori=1,2, the graph induced by, G[Vi], contains a path with one endnodefin
and the other if3;. Furthermore(|Vi] is not a chordless path.

We now introduce two classes of graphs that have no startausea 2-join.

Let xq,X%2,X3,y be four distinct nodes o& such thatxy, Xp, X3 induce a triangle. A
3PC(x1x2x3,Y) is a graph induced by three chordless p&hgs= X1, ...,Y, Boy =X2,...,y
and P,y = X3,...,Y, such that any two of them induce a hole. We say that a g@ph
contains a BC(A, ) if it contains a PC(x1x2x3,y) for somexy, x2,x3,y € V(G). Note
that in a~ = 3PC(4, -) at most one of the paths may be of length one. If one of the paths
of Z is of length 1, therX is also a wheel that is calledoaig If all of the paths o are of
length greater than 1, thenis along3PC(A, -). 3PC(A, -)’s are also known agyramids
as in [4]. See Figure 2.2.

Figure 2.2: A long ®C(A, -) and a bug.

We now define nontrivial basic graphs. Uebe the line graph of a tree. Note that
every edge of. belongs to exactly one maximal clique, and every node bélongs to
at most two maximal cliques. The nodeslothat belong to exactly one maximal clique
are calledeaf nodes A clique ofL is big if it is of size at least 3. In the graph obtained
from L by removing all edges in big cliques, the connected compsnae chordless
paths (possibly of length 0). Such a p&tis aninternal segmenf it has its endnodes in
distinct big cliques (whefR is of length O, it is called an internal segment when the node
of P belongs to two big cliques). The other pathsire calledeaf segmentsNote that
one of the endnodes of a leaf segment is a leaf node.

A nontrivial basic graph Rs defined as followsR contains two adjacent nodgsnd
y, called thespecialnodes. The graph induced byR\ {x,y} is the line graph of a tree
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and contains at least two big cliques.Rneach leaf node df is adjacent to exactly one
of the two special nodes, and no other nodé_a$ adjacent to special nodes. The last
condition forR is that no two leaf segments afwith leaf nodes adjacent to the same
special node have their other endnode in the same big clifneinternal segmentsf
R are the internal segments bf and theleaf segmentsf R are the leaf segments bf
together with the node ifix,y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic gr&pwith special nodes and
y. R* is anextended nontrivial basic grapbf G if R* consists ofR and all nodesi €
V(G) \ V(R) such that for some big cliqu€ of Rand for some € {x,y}, N(u)NnV(R) =
V(K)U{z}. We also say thaR* is anextensiorof R. See figure 2.3.

Figure 2.3: An extended nontrivial basic graph.

In [13] even-hole-free graphs are decomposed into cliquass, long ®C(A, -) and
nontrivial basic graphs using 2-joins and star, doubleastdrtriple star cutsets. We obtain
the following strengthening of that result.

A graph isbasicif it is one of the following graphs:

(1) aclique,

(2) ahole,

(3) along PC(A,-), or

(4) an extended nontrivial basic graph.

Theorem 2.2.2 (The Main Decomposition Theorem)A connected 4-hole-free
odd-signable graph is either basic, or it has a star cutsea @rjoin.

Here is a simple restatement of Theorem 2.2.2, that will e=lus the recognition
algorithm in Chapter 6. A graph is @ique treeif each of its maximal 2-connected
components is a clique. A graph is artended clique tret it can be obtained from a
clique tree by adding at most two vertices.
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Corollary 2.2.3 A connected even-hole-free graph is either an extendedectige, or it
has a star cutset or a 2-join.

The key difference in the proof of the decomposition theorefth3] and the one here,
is that in [13] bugs are decomposed with double star cutSatee we are using just star
cutsets, it is not possible to decompose all bugs, and heaceeeded to enlarge the class
of basic (undecomposable) graphs to include the extendimahbasic graphs.

Proof of Theorem 2.2.2 follows from the following three risu

Theorem 2.2.4 [27] A connected 4-hole-free odd-signable graph that dostscontain

a diamond is either basic, or it has a star cutset or a 2-join.

We note that the star cutsets used in [27] to prove Theorem,Zag of very special
type: they either induce a clique or two cliques with exaothg node in common.

A connected diamoni$ a pair(Z,Q), whereZ = 3PC(x1X2X3,y) andQ = q, ..., Ok,
k > 2, is a chordless path disjoint frol such that the only nodes @ that have a
neighbor inX areq; andgk. FurthermoreN(qp) NZ| = [N(a1) N {X1,%2,X3}| = 2, say
N(g1) NZ = {x1,%3}, and one of the following holds:

(i) N(ak) NZ = {vq,vo} whereviv; is an edge o,y \ {X2}, or

(i) N(ok) N = {y,y1,Yya} wherey; (resp.ya) is the neighbor of in Py (resp. Pyy),
andxiy andxgy are not edges.

_ - —————

-~ - - T, —_—— — -

- - -

-~ -

Figure 2.4: Different types of connected diamonds.
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Theorem 2.2.5Let G be a connected 4-hole-free odd-signable graph. If Gaios a
diamond, then G has a star cutset or G contains a connectedafid.

Theorem 2.2.6Let G be a connected 4-hole-free odd-signable graph. If Gaiog a
connected diamond, then G has a star cutset or a 2-join.

Theorem 2.2.5 is proved in Section 4.6 and Theorem 2.2.6a6tid3e5.2.



Chapter 3

Triangulated Neighborhoods

The main result of this Chapter is the following structunalgerty of odd-signable graphs
that do not contain a 4-hole.

Theorem 3.0.7 Every 4-hole-free odd-signable graph has a node whose heitjood is
triangulated.

Parfenoff, Roussel and Rusu in [32] proved exactly the sasaltr for 4-hole-free
Berge graphs. Note that 4-hole-free graphs in general neetlave this property, see
Figure 3.1.

Figure 3.1: A 4-hole-free graph that has no vertex whosehtmighood is triangulated.

16
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A square3PC(-,-) is a graph that consists of three paths between two nodes such
that any two of the paths induce a hole, and at least two of #tlespare of length 2.
In [29] Maffray, Trotignon and VuSkovi¢ show that everyusge-3C(-,-)-free even-
signable graph has a node whose neighborhood does notrtantang hole (where a
long holeis a hole of length greater than 4). This result is used in [@9%btain a
combinatorial algorithm of complexity’(n’) for finding a clique of maximum weight
in square-BC(+,-)-free Berge graphs. Note that this class of graphs genesaliath 4-
hole-free Berge graphs and claw-free Berge graphs (whetavais a graph on nodes
X,a, b, c with three edgesa, xb,xc). We show in this Chapter that key ideas from [29]
extend to 4-hole-free odd-signable graphs.

Using Theorem 3.0.7 one can obtain an efficient algorithngémerating all the max-
imal cliques in 4-hole-free odd-signable graphs (and ini@alar even-hole-free graphs).
This we describe in Section 3.1. Theorem 3.0.7 is proved ati&e3.2.

As mentioned in Chapter 2, recently Addario-Berry, Chudikyy Havet, Reed and
Seymour [1] have proved a stronger property of even-hae-firaphs, namely that every
even-hole-free graph has a bisimplicial vertex (i.e. aesewhose neighborhood parti-
tions into two cliques). This result immediately yieldsttf@ an even-hole-free graB,
X(G) < 2w(G) — 1, wherex(G) is the chromatic number @& and w(G) is the size of
the largest clique i1s (observe that it is a bisimplicial vertex of5, then its degree is at
most 20(G) — 2, and hencé& can be colored with at most¥G) — 1 colors). The two
properties of even-hole-free graphs were discovered endgntly and at about the same
time. The proof in [1] is over 40 pages long. Our weaker prgpisrenough to obtain
an efficient algorithm for generating all maximal cliquesuén-hole-free graphs, and its
proof is very short.

3.1 Generating all the maximal cliques of a 4-hole-free
odd-signable graph

For a graphG let k denote the number of maximal cliques@j n the number of nodes

in G andm the number of edges @. Farber [20] shows that there afn®) maximal
cliques in any 4-hole-free graph. Tsukiyama, Ide, Ariycad Shirakawa [39] give an

0 (nmK) algorithm for generating all maximal cliques of a graph, @miba and Nishizeki

[3] improve this complexity ta7(m*°k). The complexity is further improved for dense
graphs by theZ(M(n)k) algorithm of Makino and Uno [31], wherkl(n) denotes the
time needed to multiply two x n matrices. Note that Coppersmith and Winograd show
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that matrix multiplication can be done i#i(n?37®) time [19]. So one can generate all the
maximal cliques of a 4-hole-free graph in timm!-°n?) or &(n*379),

We now show that Theorem 3.0.7 implies that there are at mas2m maximal
cliques in a 4-hole-free odd-signable graph, and it yieldslgorithm that generates all
the maximal cliques of a 4-hole-free odd-signable grapinie ©’(n°m). In particular, in
a weighted graph, a maximum weight clique can be found in tr@m).

Let ¥ be any class of graphs closed under taking induced subgrapbis that for
everyG in ¢, G has a node whose neighborhood is triangulated. Considéoltbeiing
algorithm for generating all maximal cliques of graph&in

Find a nodex; of G whose neighborhood is triangulated (if no such node exts,
IS not in%’, or in particular,G is not 4-hole-free odd-signable graph by Theorem 3.0.7).
Let G; = G[N[x1]] andG! = G\ {x1}. Every maximal clique of belongs toG; or
G!. Recursively construct triangulated grapBs, ..., G, as follows. Fori > 2, find a
nodex; of G~ whose neighborhood is triangulated and@®t= G[Ngi-1[x]] andG' =
G\ {x} =G\ {xs,...,%}.

Clearly every maximal clique d& belongs to exactly one of the grap@s, ...,Gn. A
triangulated graph on vertices has at most maximal cliques [22]. So for=1,...,n,
graphG; has at most % d(x;) maximal cliques (wherd(x) denotes the degree of vertex
X). It follows that the number of maximal cliques@fis atmost ! ; (1+d(x)) = n+2m.

Checking whether a graph is triangulated can be done in &itfre+ m) (using lexi-
cographic breadth-first search [34]). So finding a vertexwiangulated neighborhood
can be done in time (Y ey () (d(x) + m)) = &(nm). Hence constructing the graphs
Gy, ..., Gy takes timeg (nPm).

Generating all maximal cliques in a triangulated graph @addne in timeZ'(n+m)
(see, for example, [23]). Hence the overall complexity afgating all maximal cliques
in a 4-hole-free odd-signable graph is dominated by the toactson of the sequence
Gy,...,Gp, i.e. itiso(n?m).

Note that this algorithm isobustin Spinrad's sense [36]: given any gragh the
algorithm either verifies thab is not in € (or in particular thatG is not a 4-hole-free
odd-signable graph) or it generates all the maximal cligpi€a Note that, whert is not
in ¥, the algorithm might still generate all the maximal cliqué€.

3.2 Proof of Theorem 3.0.7

In the next three lemmas we assume tBas a 4-hole-free odd-signable grapta node
of G that is not adjacent to every other node®C; a connected component Gf\ N|x],
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andH a hole ofN(x). Note thatH is an odd hole, elsgH, x) is an even wheel.

Lemma 3.2.1 If node u of G has a neighbor in H then u is one of the following two
types:

e Type 1: u has exactly one neighborin H.

e Type 2: u has exactly two neighbors in H, and they are adjacent

Proof: If u has two nonadjecent neighb@sandb in H, then{a, b, u, x} induces a 4-hole.
O

Let T3 be a graph on 3 nodes that has exactly one edge.

Lemma 3.2.2 If H contains a T all of whose nodes have neighbors in then G con-
tains a path P, of length greater than 0, such that A induces a3PC(4,-), and the
nodes of H that have a neighbor in P induce& T

Proof: Let C be a smallest subset of; such that G[C| is connected and
H = hy,...,hn, hy contains ar2 all of whose nodes have neighborsGn W.l.0.g. hy, hy
andh;, 3< i < n, have neighborsi@. LetP = py, ..., pkx be a shortest path & such that
p1 is adjacent tdh; and py is adjacent td,. Note that no intermediate node Bfis
adjacent tdh; or hy. Also possiblyk = 1.

Claim 1: No node of{hg,...,h,_1} has a neighbor iP.

Proof of Claim 1: Suppose not. Then by minimality &, h; has a neighbor if? and
w.l.o.g. no node offhi 1,...,h,_1} has a neighbor ifP. By Lemma 3.2.1,p1, px ¢
N(hi) NP. In particulark > 1.

First suppos&(hy) NP # @. By Lemma 3.2.1hnpk is not an edge. IN(hy) NP = p;
then {x, hy,hy,h1} UP induces an even wheel with center. Soh, has a neighbor in
P\ {p1, px}. If hihy is not an edge, then since alllof, hy, h; have neighbors i\ py, the
minimality of C is contradicted. S&ih, is an edge ofs. But then all ofh;, hy, hy, have
neighbors irP\ p1 and the minimality ofC is contradicted. Sbl(h,) NP = .

Let p; be the node oP with highest index adjacent tg. Let H’ be the hole induced
by {hi,...,hn,h1,hz, px, ..., pr . Since (H’,x) cannot be an even wheel, it follows that
hi,....,hn,h1,hy is an even subpath dfi. Let ps be the node oP with lowest index
adjacent tdy. Then{xhj,...,hy, h1, p1, ..., ps} induces an even wheel with centerThis
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completes the proof of Claim 1.

By Claim 1,h; is not adjacent to a node &f Buth; has a neighbor i€, and sinceC
is connected, leQ = q1, ...,q be a chordless path @ such thaty; is adjacent tdy and
g has a neighbor iR.

Claim 2: No node of{hg,...,hh_1} has a neighbor itPUQ) \ d.

Proof of Claim 2:Suppose that sontg € {hs,...,hn_1} has a neighbor itPUQ) \ ds.
Then all ofhy, hy, h; have neighbors iiPU Q) \ g1, contradicting the minimality o€.
This completes the proof of Claim 2.

Claim 3: q; is of type 1 w.r.t.H.

Proof of Claim 3: By Lemma 3.2.1q; is of type 1 or type 2. Supposg is of type 2.
We now prove thaN(qi) NH is either{hs,hs} or {hn_1,hn}. Assume not. Then; is
adjacent to neithérz norh,. W.I.o.g.N(q1) "H = {hj,hi_1} andi # 4. If N(q) NP # pa,
then(PUQ) \ p1 is connected and all df, h;_1, hy have neighbors in it, contradicting the
minimality of C. SoN(q)NP = p;. If k> 1, then all ofh;, hj_1,h; have neighbors in
(PUQ) \ pk, contradicting the minimality o€. Sok =1, and hence by Lemma 3.2.1,
N(p1)NH = {hs,hy}. SinceH is odd, the two subpaths bf, hy,...,hj_s andh;, ... hy, h;
have different parities. W.l.o.ghy,...,hj_1 is odd, i.e.i is even. By Claim 2, no node
of {hy,...,hh_1} has a neighbor ifPUQ) \ g;. If h3 has no neighbor iQ thenQUP U
{hy,...,hi_1,x} contains an even wheel with centerSohs; must have a neighbor iQ.
But thenh;, hj_1, h3 all have neighbors i@ (note thathsh;_; is not an edge sinde-1 is
odd greater than 3) contradicting the minimality®fSoN(q1) NH is either{hz,hs} or
{hn-1,hn}.

W.I.o.g. N(q1) "H = {hg,hs}. If N(q)NP # px then since all ohy,hs, hs have
neighbors iNPUQ) \ pk, the minimality ofC is contradicted. S&l(q;) NP = py.

If N(h1) NQ # @, then since all ohy, hz, hy have neighbors i®, the minimality ofC
is contradicted. Sbl(h;) NQ = @.

Now suppose tha(h,) NQ # @. If k> 1, then since all ohy, hz, h, have neigh-
bors in (PUQ) \ p1, the minimality of C is contradicted. S& = 1. Letq, be the
neighbor ofh, with highest index. Ifh, does not have neighbor o}, ¢ 1,...,q, then
{Or,Yr+1,-..,q1, P1, 1, h2,hn, X} induces an even wheel with center SoN(h2) NQ # .
But then sincéh,, hz, h, have neighbors iQ, the minimality ofC is contradicted. There-
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fore,N(h,) NQ = @. So, by Claim 2, no node df, ..., hy, h; has a neighbor iQ.

SupposeN(hy) NQ # @. Letq, be the neighbor offi; in Q with lowest index. Then
(H\h3)u{x,q1,...,qr} induces an even wheel with centerThereforeN(h,) NQ = @.
If k> 1, thenQU (H \ hg) U{px, X} induces an even wheel with centerSok = 1. Let
gs be the node o with highest index adjacent to;. Then{pi,0s,...,q, 1, hz,h3, x}
induces an even wheel with center This completes the proof of Claim 3.

Claim 4: N(q;) NP = pz or py.

Proof of Claim 4:Assume not. Thek > 1, and botH{PUQ) \ p; and(PUQ) \ pk are con-
nected.N(h;) N Q = &, else all ofhy, hy, hj have neighbors itPU Q) \ p1, contradicting
the minimality ofC. Similarly, N(h2) NQ = @.

We now show thahs has no neighbor i?U Q. Suppose it does. Then by Lemma
3.2.1,h3 has a neighbor itPUQ) \ p1. If i # 4, then since alhy, hz, h; have neighbors
in (PUQ) \ p1, the minimality ofC is contradicted. So= 4. If N(h3) N (PUQ) # px,
then all ofhy, hz, hs have neighbors iflPUQ) \ pk, contradicting the minimality of. So
N(h3) N (PUQ) = pk. ButthenPUQU {hy, h3, hs,x} contains an even wheel with center
hs. Thereforehs has no neighbor iRPUQ, and similarly neither dods,.

By minimality of C, N(q;) NP is either a single vertex or two adjacent vertice$of
If N(g)nP = {ab}, where ab € E(G), then PU QU {x,hy,h2,h} induces a
3PC(giab,xhrhy). If N(q) NP = {a}, thenPUQU {hy,hy,... h} induces a BC(a, hy).
This completes the proof of Claim 4.

By Claim 4, w.l.o.g.N(q;) NP = px.
Claim 5: h; does not have a neighbor (RUQ) \ ps.

Proof of Claim 5:If k > 1, the claim follows from the minimality of. Now suppose
k=1andN(h;) NQ# @. If hy has a neighbor i®, then all ofhy, hy, h; have a neighbor
in Q, contradicting the minimality of. Sohy does not have a neighbor @

Supposeh, has a neighbor iQ. Note that by Claim 3, such a neighbor is@\
gi1. Thenhg cannot have a neighbor @, else all ofh,, hi,hs have neighbors irQ,
contradicting the minimality o€. But then(Q\ g1) U (H \ hy) U{x, p1} contains an even
wheel with centek. Soh, does not have a neighbor @

Supposehz has a neighbor . By Claim 3, such a neighbor is iQ\ q;. Then
(Q\ a1) U (H \ hz) Ux contains an even wheel with center So hz does not have a
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neighbor inQ.

Let H' be the hole induced bypi,hy,....,hi} UQ, andH” the hole induced by
{X, p1,h2,hi} UQ. Then either(H’,h;) or (H”,h;) is an even wheel. This completes the
proof of Claim 5.

Claim 6: N(hy) N (PUQ) = @.

Proof of Claim 6: Assume not. Iths has a neighbor if? U Q then, by Claim 3, all of
hp,hs,hy have a neighbor iNfP U Q) \ g1, contradicting the minimality ofC. So
N(hz) N (PUQ) = @. LetR be a shortest path fromm, to h, in the graph induced by
PU(Q\ 1) U{hz,hy}. Then by Claims 2 and RU (H \ hy) Ux induces an even wheel
with centerx. This completes the proof of Claim 6.

Claim 7: N(h3) N (PUQ) = @.

Proof of Claim 7: Assume not. LeR be a shortest path frory to hs in the graph
induced by(PUQ) \ 1. ThenRU (H \ hz) Ux induces an even wheel with centerThis
completes the proof of Claim 7.

If k> 1 then the graph induced BBy U QU py contains a BC(hp, h)). Sok=1. By
symmetry and Claim ), does not have a neighbor @ and henc®UQUH induces a
3PC(A, ). O

Lemma 3.2.3 There exists a node of H that has no neighbor in C

Proof: LetH = hq, ..., hy, h; and suppose that every nodd-bhas a neighbor i€;. Recall
that since(H, x) cannot be an even whedl, is of odd length. Sd{ contains & ® all of

whose nodes have neighborsGn. By Lemma 3.2.2C; contains a patt? = py, ..., Pk

k > 1, such thaPUH induces w.l.o.g. aBC(hihapk,hi), 3<i <n. If i is odd, then
{X,hy,...,hi} UP induces an even wheel with centerSoi is even.

Let Q = qy,...,q be a path inC; defined as follows:q; is adjacent tohj € H \
{h1,h2,hj} where j is odd, q is adjacent to a node d* and no proper subpath &
has this property. We may assume tRandQ are chosen so th# U Q| is minimized.

By the choice ofP and Q, N(qg) NP is either one single vertex or two adjacent
vertices ofP, andh; has no neighbor i@\ g:. Note that since is odd, the two subpaths
of H, hy, ..., hj andh;, ... hy, hy are both of even length, so we may assume w.l.0.g. that
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2<j<l.
Claim 1: At least one node ofhy,...,hj_1} (resp.{hj11,...,hn}) has a neighbor iQ.

Proof of Claim 1: First suppose that no node &f \ {hi,hj} has a neighbor in
Q. Let ps be the node ofP with highest index adjacent tg,. If j > 3, then
{x,ho,...,hj, ps,..., px} U Q induces an even wheel with centgr So j =3. If
N(h1) NQ = @ then{x,hy,hp, h3, ps, ..., pk} U Q induces an even wheel with center.
SoN(h;)) NQ # @. Let g be the node of) with lowest index adjacent th;. Then
(H\ hp) Uu{x,q1,...,0-} induces an even wheel with center So at least one node of
H\ {hy,h;} has a neighbor iQ.

Next suppose that no node i, ..., hj_1} has a neighbor iQ. Let ps be the node of
P with highest index adjacent @. If j > 3 then{x,hy,....hj, ps,..., px} UQ induces an
even wheel with centec Soj = 3. Lethj be the node ofhj1,...,h,} with lowest index
adjacent to a node @. By definition of Q and Lemma 3.2.1j’ is even. Lefy, be the
node ofQ with lowest index adjacent tiay.. If j’ > 4 then{x,hj,...,hj;,q,...,0r} induces
an even wheel with center Soj’ = 4. If N(h;) NQ = @ then{x,hy,hy,hs, ps, ..., pc} UQ
induces an even wheel with center. SoN(h;) NQ # @. In fact, by Lemma 3.2.1,
N(h1) N (Q\ 1) # @. SupposeN(hs) NQ # ¢1. Let R be a shortest path frorhs
to hy in the graph induced byQ\ q1) U{h1,hs}. Then{x, h,....,hs} UR induces an
even wheel with centex. SON(hs) NQ = ;. SupposeéN(q) NP # py ori > 4. Then
{X,h2,h3,ha, ps, ..., pk} UQ induces an even wheel with center SoN(qg;) NP = p; and
i = 4. LetR be a shortest path fromy to hy in the graph induced bQ U {ps1,h;}. Then
PURU {hy,h4,x} induces a BC(py,h1). Therefore at least one node{df, ...,hj_1} has
a neighbor im.

Finally suppose that no node 6ij, 1,...,hn} has a neighbor iQ. Leth; be a node
of h,...,hj_1 such thaiN(h;) N Q # @ and the path front, to h; in the graph induced
by PUQU {hj,h;/} is minimized. By definition ofQ and Lemma 3.2.1j’ is even.
SupposeN(h1) NQ # @. Let R be a shortest path frofm to hy in the graph induced by
QU {hy,hj}. Then(H\ {hy,....,hj_1}) URUX induces an even wheel with center So
N(hy) NQ = . SupposeN(q;) NP # px. Let R be a shortest path frofm to hj in the
graph induced by UQuU {hj,h;/}. Note that by definition oQ andh;; and by Lemma
3.2.1, no node ofhy, ..., hj;_1} has a neighbor iR. Then(H \ {hj.,1,...,hi_1}) URUX
induces an even wheel with centext So N(gq) NP = px But then
(H\{hg,...,hj—1}) UPUQ induces a BC(py, h;). This completes the proof of Claim 1.
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By Claim 1 at least two nodes, sy andh;», of H'\ {hy,h;} have a neighbor Q.
Note that by definition o and Lemma 3.2.1j’ andj” are both even. W.l.o.g/ < j <
j”. LetR=ry,...,ry be a shortest path in the graph induced®whereN(h;;) "NR=r;
andN(hj») NR=r¢. W.l.o.g and by Lemma 3.2.1 no other node fréim {hy,h;} has a
neighbor inR.

If N(hy) NR= @, then(H\ {hj1,...,hj»_1}) URUX induces an even wheel with
centerx. SON(h;) NR# @. Supposg’ # 2. LetR be a shortest path froim_ to hj/ in
the graph induced bRU {hy,hj/}. Then{x hy,...,h;} UR induces an even wheel with
centerx. Thereforej’ = 2.

Suppose thaN(h;) "R =r3. Then by Lemma 3.2.1N(r1) N"H = {hy,hp}. |If
rr = i, then by Lemma 3.2.1N(r¢) "H = {hj,hj;1}, and henceH UR induces a
3PC(hihory, hjyahjry). Sory # qi, and henceN(ry) "H = {hj»}. ThereforeH UR
induces a BC(hihor1,hjr). LetR be a shortest path fromy to a node oRin the graph
induced byQ. Since|RUR/| < |PUQ], the choice oP andQ is contradicted.

SoN(h1)N(R\r1) # @. Letrs be the node oR with highest index adjacent ta.

If hj has no neighbor ims,...,rt, then{x,hy,... hjsrs,...,rt} induces an even wheel
with centerx. Soh; does have a neighbor iy, ...,r¢, i.e. ry = 1. By Lemma 3.2.1,
N(ry) "H = {hj,h;»}, where ]’ = j+1. Note thati > j+1 andrs# ¢. But then
(H\ {ho,...,hj}) UPU{rs,...,rt} induces a BC(hy, h). O

Note that the above lemma does not work if we allow 4-holesnditer the odd-
signable graph in Figure 3.2 (one can see that this graphdssigpghable by assigning 0
to the three bold edges and 1 to all the other edges)HLUe¢ the 5-hole induced by the
neighborhood of node. Then every node dfl has a neighbor in the unique connected
component obtained by removimgx) Ux.

Figure 3.2: An odd-signable graph for which Lemma 3.2.3 dussvork.
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A class.# of graphs satisfieproperty (*) w.r.t. a graph Gif the following holds:
for every nodex of G such thatG \ N[x] # &, and for every connected componéhof
G\N[x], if F € .Z is contained inG[N(x)], then there exists a node Bf that has no
neighbor inC.

The following theorem is proved in [29]. For completenessnatude its proof here.

Theorem 3.2.4 (Maffray, Trotignon and Vuskovic€ [29])et.# be a class of graphs such
that for every Fe .#, no node of F is adjacent to all the other nodes of FAfsatisfies
property (*) w.r.t. a graph G, then G has a node whose neighbod is.# -free.

Proof: Let .# be a class of graphs such that for everg .#, no node ofF is adjacent
to all the other nodes d¥. Assume that# satisfies property (*) w.r.tG, and suppose
that for everyx € V(G), G|N(x)] is not.#-free. ThenG is not a clique (since every graph
of .# contains nonadjacent nodes) and hence it contains a xdtluigt is not adjacent
to all other nodes 06. LetCy,...,Ci be the connected components®f N[x]|, with
IC1| > ... > |Cy|. Choosex so that for every € V(G) the following holds: ifC},...,CY
are the connected components®{ N[y] with [C}| > ... > |C/|, then

e |Ci| >|CY|, Or

o (1l = [C]] and]Cal > I, or

e ...

o [Ci|=IC]l,...,[Ck1| = |C;_4| and|Cx| > |CY], or
o fori=1,...k [C|=|C|andk=]1.

Let N = N(x) andC=CyU...UC. Fori=1,... kK, letN; be the set of nodes i
that have a neighbor iG;.

Claim 1: N; C Ny C ... C N¢ and for everyi = 1,....k— 1, every node of N\ N;) U
(Cit1U...UC) is adjacent to every node df.

Proof of Claim 1: We argue by induction. First we show that every nodéNf N;) U
(CoU...UC) is adjacent to every node df;. Assume notand lgte (N\ Np) U (CoU
...UCx) be such that it is not adjacent ta= N;. Clearlyy has no neighbor i€, butz
does. Sd5\ N[y] contains a connected component that cont@insz, contradicting the
choice ofx.

Now leti > 1 and assume tha; C ... C Ni_1 and every node ofN\ Ni_1) U (G U
...UC) is adjacent to every node bif_;1. Since every node @; is adjacent to every node
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of Ni_1, it follows thatN;_; C N;. Suppose that there exists a ngde (N\ N;) U (Ci+1U
...UC) that is not adjacent to a node= N;. Thenze N;\ Nj_; andz has a neighbor
in G;. Alsoy is adjacent to all nodes iN;_1 and no node o€, U...UGC;. So there exist
connected components@f\N[y],C],....C’ such thaC; =C],....Ci_1 =C’ ; andCjUz
is contained irCY. This contradicts the choice &f This completes the proof of Claim 1.

SinceG|N] is not.# -free, it containd= € .%. By property (*), a nodeg/ of F has no
neighbor inCy. By Claim 1,y is adjacent to every node &, and no node oN \ Nk
has a neighbor i€. So (since every node &f has a non-neighbor iR) F must contain
another node € N \ Ny, nonadjacent tg. But thenC;, ...,Cy are connected components
of G\ N[y|] andzis contained ifG\ N[y]) \ C, soy contradicts the choice of 0

Proof of Theorem 3.0.7Let G be a 4-hole-free odd-signable graph. L%tbe the set of
all holes. By Lemma 3.2.3% satisfies property (*) w.r.tG. So by Theorem 3.2.4 has
a node whose neighborhood%s-free, i.e. triangulated

3.3 Some consequences

In a graphG, for any node, letCy, . ..,Cy be the connected components®f N[x], with
IC1| > ... > |C|, and let the numerical vectdfCy|,...,|Cy|) be associated witk. The
nodes ofG can thus be ordered according to the lexicographic orderiitige numerical
vectors associated with them. Say that a noddex-maximalif the associated numerical
vector is lexicographically maximal over all nodes@f Theorem 3.2.4 actually shows
that for a lex-maximal node, N(x) is .# -free. This implies the following.

Theorem 3.3.1Let G be a 4-hole-free odd-signable graph, and let x be a laximal
node of G. Then the neighborhood of x is triangulated.

Possibly a more efficient algorithm for listing all maximéibjpes can be constructed
by searching for a lex-maximal node.

Lemma 3.2.3 also proves the following decomposition theor@H, x) is auniversal
wheelif x is adjacent to all the nodes Hif.

Theorem 3.3.2Let G be a 4-hole-free odd-signable graph. If G contains aversal
wheel, then G has a star cutset.

Proof: Let (H,x) be a universal wheel d&. If G = N[x|, then for any two nonadjacent
nodesa andb of H, N[x] \ {a,b} is a star cutset o6. So assumé& \ N[x| contains a
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connected compone@y. By Lemma 3.2.3, a nodee< H has no neighbor i€;. But then
N[X] \ ais a star cutset db that separates from C;. 0
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Star cutsets

In this Chapter and in the next one we prove the main deconipoegheorem in this
thesis.

4.1 Appendicesto a hole

In this section we assume th@atis a 4-hole-free odd-signable graph.
Let H be a hole. A chordless path= ps,...,px in G\ H is anappendixof H if no
node ofP\ {p1, px} has a neighbor ik, and one of the following holds:

(i) k=1and(H,p1)isabug N(p1) NV (H) = {u1,uz,u}, such thauyuy is an edge),
or

(i) k> 1, p1 has exactly two neighborg anduy in H, u1u; is an edgepg has a single
neighboruin H, andu ¢ {uy, uz}.

Nodesus, Uy, u are called thattachment®f appendixP to H. We say thauyu, is the
edge-attachmerandu is thenode-attachment

Let Hf (resp.Hp) be theuju-subpath (respusu-subpath) oH that does not contain
uz (resp.up). H5 andHg are called thesectorsof H w.r.t. P.

Let Q be another appendix &1, with edge attachmentv, and node-attachmemt
Appendices? andQ are said to berossingif one sector oH w.r.t. P containsv; andvy,
sayHp does, andr € V(HPE) \ {u}.

28
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Figure 4.1: An appendiR = pq, ..., px of a holeH, with edge-attachmenku, and node-
attachmenu.

Lemma4.1.1 Let P= py,..., px be an appendix of a hole H, with edge-attachmembu
and node-attachment u, whergip adjacent to wand w. Let H; (resp. H5) be the sector
of H w.r.t. P that contains i(resp. y). Let Q= qu,...,q be a chordless path in &H
such that g has a neighbor in B8, g has a neighbor in i, no node of Q {01,q} is
adjacent to a node of H and one of the following holds:

(i) 1 =1, o1 is not adjacent to u, and ifjuresp. v) is the unique neighbor ofign Hp
(resp. Hp), then q is not adjacent to pi(resp. u) nor p;.

(i) 1 >1,N(q1)NV(H) CV(Ha) \{u}, N(a) NV (H) CV(HpR)\ {u}, o1 has a neighbor
in H5\ {u1}, and q has a neighbor in i\ {uz}.

Then Q is also an appendix of H and its node-attachment iscadjeto u. Furthermore,
no node of P is adjacent to or coincident with a node of Q.

Proof: Let u] (resp. u,) be the neighbor ofy; in Hp that is closest tai (resp. up). Let
uj (resp.uy) be the neighbor ofy in HE that is closest ta (resp. up). Note that either
uy # up oruf # up. Let S (resp.S,) be theuju-subpath (respu,u;-subpath) oHp, and
let S] (resp.S)) be theu/u-subpath (respujuy-subpath) oHfj. LetH’ (resp.H”) be the
hole induced byH;, UP (resp.HE UP).

First suppose that= 1. Note thafy; cannot be coincident with a node Bf Suppose
g1 has a neighbor if°. Note thatq; is not adjacent ta, and if q; is adjacent top;,
thenu] # u; anduf # up. But thenPU S, U S/ UQq; contains a BC(qy,u). Soq; has no
neighbor inP. SinceH U g; cannot induce aRC(u,uy), a1 has at least three neighbors
in H. Since(H,q;) cannot be an even wheel, w.l.ogy. has an odd number of neighbors
in H5 and an even number of neighbordHf. SinceH” Uq; cannot induce aRC(uj, u5)
nor an even wheel with centeg, uju; is an edge. Sincel” US, Uq; cannot induce an
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even wheel with centar, nor a PC(pruslz, q1U;Uy), U, is adjacent tai, and the lemma
holds.

Now suppose thdt> 1. Sou] # u; anduj # up. Not botha; andg; can have a single
neighbor inH, since otherwisél UQ induces a BC(u/,u;). W.l.o.g.u] # uj.

Suppose thatuj is not an edge. A node & must be adjacent to or coincident with
a node ofQ, elseH” UQU, contains a BC(q,u). Note that no node ofqi,q} is
coincident with a node of p1, pk}, and if a node of is coincident with a node d?, then
anode ofQ is also adjacent to a node Bf Letq; be the node of with highest index that
has a neighbor iR. (Note thatg; is not coincident with a node ¢). Let p; be the node
of P with highest index adjacent @. If j > 1 andi > 1, thenHU {pj,..., Pk, Gi,.... 0}
contains a BC(q;,u). If i =1, thenS, US/UQU{p;j,..., px} induces a BC(qi,u). So
i >1, and hencg = 1. Ifi < |, thenS{US;UPU{q;,...,q } induces a BC(p1,q). So
i =1. SinceH Uq cannot induce aRC(uj,u;), (H,q)) is a wheel. But then one of the
wheels(H,q;) or (H”,q;) must be even. Thereforguj is an edge.

Suppose that, # u,. Then by symmetry)|u, is an edge, and hené¢¢U Q induces
a FPC(q1ujuy, qujuy). Thereforeu] = U5, i.e. Q is an appendix oH. Note that by
definition of Q, U} ¢ {u1,u}.

Suppose that a node Bfis adjacent to or coincident with a node@f Let g; be the
node ofQ with highest index adjacent to a nodeffand letp; be the node oP with
lowest index adjacent tg. If i > 1 andj <k, thenHU{pa,...,p;j,q,...,q} induces
an even wheel with center, or a PC(piuily, qujuy). If i =1, thenPUQUS US/
contains a BC(q,u). Soi > 1, and hencg = k.

If px has a unique neighbor iQ, thenQU S, U S/ U px induces a BC(q;,u). So py
has more than one neighbor@

Suppose that = 1. Then eitheS,US;UQU p1 or S;US/ UQU p; induces an even
wheel with centep;. Sok > 1.

LetT’ (resp.T”) be the hole induced b US/ UQ (resp.S,US;UQ). If both (T’, py)
and(T”, px) are wheels, then one of them is even. gdas exactly two neighbors Q.
SinceT” U px cannot induce aRC(,-), N(pk) NQ = {q;,qgi—1}. (Note thatg_; is not
coincident with a node d®, sincej = k). If no node ofP\ py has a neighbor iQ, then
T”UP induces a BC(p1uiUy, pkGigi—1). So a node oP\ px has a neighbor iQ. Let p
be such a node with lowest index. Laatbe the node o) with highest index adjacent to
pr. If t #k—1thenHs U {p1,..., P, Pk, Gs, - - -, } induces an even wheel with centgr
or a PC(qujuy, paigi—1). Sot =k—1, i.e. px and py_1 are the only nodes d?® that
have a neighbor iQ. If s# 1 then(H\ S;) UPU{qs, ..., q } induces an even wheel with
centerpy. Sos=1. Ifi > 2, thenS U{q,...,0—1, Pk—1, Px} induces a BC(qy, px). So
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i = 2. Since there is no 4-holgju ¢ E(G). But thenH U {1, px} induces a BC(u}, u).
Therefore, no node d? is adjacent to or coincident with a node@f If Uju is not an
edge, ther{H \ S;) UPUQ induces a BC(u,u). Thereforeuju is an edge. O

Lemma4.1.2 Let P= pg,..., px be an appendix of a hole H, with edge-attachmeubu
and node-attachment u, with pdjacentto y,up. Let Q=qs,...,q be another appendix
of H, with edge-attachmentw and node-attachment v, with @djacent to y,v,. If P
and Q are crossing, then one of the following holds:

(i) uvis an edge,
(i) u € {v1,v2} and g has a neighbor in P, or
(iii) v € {u1,up} and p has a neighborin Q.

Proof: Let H, (resp.Hp) be the sector off w.r.t. P that containgy; (resp.uy). W.l.o.g.
{v1,v2} C Hﬁ, andvy is the neighbor ofy; in Hﬁ, that is closer tal;. ASsumeuvis not an
edge.

By Lemma 4.1.1 eithev, = u or u, =v. W.l.o.g. assume thab = u. LetS; (resp.
S) be theuw-subpath (respuyv-subpath) oH5. A node ofP must be coincident with
or adjacent to a node @}, elseH, U S UPUQ induces a BC(pjusuz, g1viu) or an even
wheel with center;. Note that no node ofqs, g } is coincident with a node ofp1, pk}-
Let g be the node of) with lowest index adjacent tB. (Sog; is not coincident with a
node ofP). Let p; be the node oP with lowest index adjacent tgi. If i =1, then (ii)
holds. So assume thiat- 1.

If j <kandi<I,thenHU{p1,...,pj,q1,...,qi} induces a BC(pzuiuy,giviu) or an
even wheel with centar;. So eitherj =kori=1.

Suppose thaj = k. If N(px) NQ = i, thenS; UQU py induces a BC(u,q;). So pk
has more than one neighbor@ Let T’ (resp.T"”) be the hole induced b$; UQ (resp.
(H\ (S1\Vv)) UQ). Note that(T’, px) is a wheel. If(T”, px) is also a wheel, then one of
these two wheels must be even. §d', px) is not a wheel, and hende> 1 andpy has
exactly two neighbors i®. N(px) N'Q = {q;,qi+1}, elseT” U px induces a BC(-,-). But
thenH, U S UQU py induces a BC(qpvau, pr0iGi+1)-

Soj <k, and hence = 1. In particular,q is the only node of) that has a neighbor
in P. If either j > 1 orv # up, thenS UQU {p;j,..., px} contains a BC(u,q). Soj=1
andv = Uy, and hence (iii) holds. O
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4.2 Proper wheels

A bugis a wheel with three sectors, exactly one of which is shorttwk wheel is a

wheel with exactly two short sectors and one long sectgrroperwheel is a wheel that
is neither a bug nor a twin wheel. A whe@l, x) is auniversalwheel, ifx is adjacent to

all nodes ofH. See figure 4.2.

Figure 4.2: A bug, a twin wheel and a universal wheel with eext

Theorem 4.2.1 [1] Let G be a 4-hole-free odd-signable graph. If G containgraper
wheel that is not a universal wheel, then G has a star cutset.

Theorem 4.2.1 was proved by us and in [1] independently aritieasame time.
Since [1] is about to be published, we do not include our pajofheorem 4.2.1 here.
We also note that in [1], the statement of Theorem 4.2.1 ig¥en-hole-free graphs, but
since in their proof, to obtain the decomposition they ordg the exclusion of 4-holes,
even-wheels,BC(.,.)'s and PC(A,A)’s, they actually prove the above stated version.

Theorems 3.3.2 and 4.2.1 imply the following result.

Theorem 4.2.2 Let G be a 4-hole-free odd-signable graph. If G contains gpravheel,
then G has a star cutset.

4.3 Nodes adjacentto aBC(4,-) and crossings

Throughout this sectioR denotes a BC(x1x2X3,Y). The three paths & are denoted by
Py, Poy @and P,y (WherePyy is the path that containg). Note that at most one of the
paths ofz is of length 1. For = 1,2, 3, we denote the neighbor pin Py by yi. Also let

X = {X]_,Xz,Xg}.

Lemma 4.3.1 Let G be a 4-hole-free odd-signable graph that does not ¢ortgroper
wheel. If ue V(G) \ V(Z) has a neighbor itE, then u is one of the following types.
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pi fori=1,2,3

crosspath

t2

t3

pseudo-twin of a :

node of X

pseudo-twin of y

sl

s2

For some path P oE, N(u) NV (Z) C P and|N(u)NV ()| =1.
Furthermore, if i> 2, then u has two adjacent neighborsan

Node u has exactly three neighbor&.irFor some ie {1,2,3},
u is adjacent to y and the other two neighbors of u i are
contained in Ry, for some je {1,2,3}\ {i}. Furthermore,
V (Pgy) UV (Pyy) U {u} induces a bug with center u.

N(u) NV (Z) € X and|N(u) NV (Z)| = 2.
N(u) NV (Z) = X.
Forsomejj e {1,2,3},i# j, N(u)NV(Z) = {y,vi,yj}.

We define a pseudo-twin of:xN(u) NV (Z) = {x2,X3,Vv1,V2},
where v and v are nodes of . Furthermore, if{x1,y} =
{v1,v2} then %y and xy are not edges. Also ifixt {v1,v»} then
viVo is an edge, and either ¢ {vi,v2} or xpy and xy are not
edges. Pseudo-twins of &and » are defined symmetrically.

Xu) NV (X) = {y,v1,Vv2,v3}, where for i= 1,2,3 v; is a node of
Py \ {y}, atleast two of yy, yw, yw are edges, anfN(u) N X| <
1

> is a bug, where say;xis an edge. Node u is adjacent tgQ x
and for some g {1,2,3}\{i}, the nodes of Ku) N (V(Z) \ {xi})
are contained in By \ {y}. Furthermore, \(Rqy) UV (Ryy) U{u}
induces a twin wheel.

For distinct i j,k € {1,2,3}, X is a bug such that;jy is an edge,
and N(u) NV (2) = {xi,Xj,¥, Yk}

Proof: Fori, j € {1,2,3},i # |, letH;; be the hole induced gy UR,y. We now consider
the following three cases.
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Case 1:IN(u)nX| <1.

If for somei € {1,2,3}, N(u) N C By, thenuis of type p1, p2 or p3, else there is
a 3PC(-,-) or a proper wheel. So assume w.l.0.g th&ias neighbors in botR,,y \ y and
Py \ Y, and that it is not adjacent ta.

Supposeu is not adjacent tg. Note thatP,,y is an appendix oH;,. By Lemma 4.1.1
applied toH1o, P,y andu, nodeu is also an appendix dfi;» and its node-attachment is
w.l.o.g.y1. Furthermore, no node &,y is adjacent tas, and hencei is a crosspath af.

Now assume that is adjacent toy. Then(Hj2,u) must be a bug or a twin wheel.
SupposgHip,u) is a twin wheel. Ifu has no neighbor i,y \y, thenu is of type d.
So assumel has a neighbor ifPy \ y. Then(Hzs,u) is either a bug or a twin wheel,
and hencal is a pseudo-twin of w.r.t. . Suppose now thaHi,u) is a bug. W.l.o.g
N(u) N Pqy = {y,y1} andN(u) N R,y = {y,u1}, whereyy, is not an edge. Iti has no
neighbor inP,y \ vy, thenHxzUu induces a BC(y,ur). Sou has a neighbor il \ y. If
N(u) NPy # {Y,y3}, then(Hzz,u) is a proper wheel. SN(u) NP,y = {y,y3}, and hence
uis a pseudo-twin oy w.r.t. Z.

Case 2:|N(u)nX| = 2.

W.Lo.g. N(u) N X = {xq,X2}. Assumeu is not of type t2. Themnu has a neighbor
in X\ X. First suppose thai does not have a neighbor H2\ {x1,X%2}. Thenu has
a neighbor inPy \ {x3,y}. SinceHi3Uu cannot induce aRC(,-), u has at least two
neighbors iR,y \ {x3,y}. Then(Hy3,u) is a wheel, and hence it must be a bug, and so
is a pseudo-twin ok3 w.r.t. 2.

Now we may assume thathas a neighbor 12\ {x1,%2}. Then(H1,u) is a twin
wheel or a bug. In particulaN(u) "\H12 = {X1,%2,u1 }. W.l.0.g. assume thai € Py \ X1.
Supposey; # y. Thenu cannot have a neighbor Ry, since otherwisé> \ {x;,xs})Uu
contains a BC(u,y). If xpy is not an edge, thefk \ x;) Uu contains a BC(X2,y). Soxpy
is an edge. Ikju; is not an edge, theH;3Uu induces a BC(xy,u;). Soxju; is an edge,
and hence is of type s1.

We may now assume thai =y. Note that at least one afy or xoy is not an edge.
W.l.0.g.xpy is not an edge. Nodemust have a neighbor iy \ y, elseHyzUu induces a
3PC(x2,y). So(Hz3,u) is a wheel, and hence it must be a bug. In particiNau) N P,y =
{y,y3}, and sau is of type s2 or it is a pseudo-twin &g w.r.t. %.

Case 3:N(u)NX =X.

Assumeu is not of type t3. Them has a neighbony in w..0.g. P,y \ X1. So(H12,u)
is a twin wheel or a bug. SimilarlyH13,u) is a twin wheel or a bug. SN(u)NV(Z) =
{X1,%2,%3,U1}. If up #y or xpy andxgy are not edges, thanis a pseudo-twin ok; w.r.t.



Chapter 4 35 Star cutsets

>. So assume thai, =y and w.l.0.g.xoy is an edge. Then is a pseudo-twin oky W.r.t.

Figure 4.3: Different types of nodes adjacent tdPC8x1 xox3, Y).

Remark 4.3.2If a node u is a pseudo-twin of a node of X, say xv.rt. a
2 = 3PC(x1X2x3,Y), then(Z\ {x1}) U{u} contains a2’ = 3PC(uxXs,y). If anode u is a
pseudo-twin of y w.r.z, then(Z\ {y}) U{u} contains a&’' = 3PC(x1X2x3, u). If a node u
is of type p3 w.r.tZ, thenZ U {u} contains a2’ = 3PC(x1Xx3,Yy) that contains u. We say
that in all these case¥ is obtained by substitutinginto .

A nodeu adjacent ta is further classified as follows.

Type p . Nodeuis of type p1, p2 or p3 w.r.z.
Type p3t : Nodeuis of type p3 w.r.tX andN(u) NV (Z) induces a path of length 2.
Type p3b : Nodaiis of type p3 w.r.t.Z andN(u) NV (Z) does not induce a path of

length 2.
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Type dd . Nodeauis of type d w.r.t.Z such that ifz is a bug, themu is not adjacent to
its center.
Type dc . Nodeauis of type d w.r.t.Z, whereZ is a bug andi is adjacent to its center.

|
|
|
|
|
|
|
Itype dd

Figure 4.4: Different versions of a type d node w.r.tRCBA, -).

A crossingof X is a chordless patR = p1,..., pk in G\ Z such that eithek = 1 and
p1 is a crosspath w.r.&; or k=1, 2 is a bug andp; is of type s1 w.r.t.%; ork > 1 and
forsomei, j € {1,2,3},i # j, N(p1) "V (Z) €V (Pgy), N(pk) "V (Z) €V (Py), p1 has a
neighbor inV (Bqy) \ {y}, pk has a neighbor iN (By) \ {y}, and no node oP \ {p1, p«}
has a neighbor iZ.

We now define three special types of crossings.

A crossingP = py, ..., px of Z is called ahatif k > 1, p; and py are both of type p1
w.r.t. Z adjacent to different nodes @k, X2, X3}
LetP = p1,..., px be a crossing ok such that one of the following holds:

(i) k=1 andp; is a crosspath w.r.z, sayp; is adjacent tg; for somei € {1,2,3},
and it has two more neighborsiy,y \ {y}, for somej € {1,2,3}\ {i}.

(i) k=1, is a bug ando; is of type s1 w.r.t.Z, such that for somee {1,2,3} and
for somej € {1,2,3}\ {i}, xiy is an edge andll(p1) N {x1, %2, X3} = {Xi, X }.

(i) k> 1, pyis of type pl andy is of type p2 w.r.t.Z, for somei € {1,2,3}, p; is
adjacent tgj;, and for somg € {1,2,3}\ {i}, N(px) "V (Z) SV (Pqy) \ {Y}-
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Such a patlP is called ay;-crosspathof ~. We also say thaP is acrosspathfrom y; to

Py If sayxsy is an edge, thel induces a bugH, x), wherex = x3 = ys. In this case,
the ys-crosspath (ox-crosspath) ofz, is also called theenter-crosspatiof the bug
(H,x).

Suppose thal is a bug. A crossin of % is anearif k > 1, p; is of type pl w.r.t.z
adjacent to the center of big andp is of type p2 w.r.tZ adjacent tgy.

- -~~~

T~ —_—————

Figure 4.6: Ayi-crosspathP of a 3PC(xix2x3,Y). Whenx; = y1, P is also a center-
crosspath of a bug.

We next prove the following sequence of decompositions. drider in which these
decompositions are obtained is of crucial importance.

Theorem 4.3.3Let G be a 4-hole-free odd-signable graph. If G contains a Wity a
center-crosspath then G has a star cutset. In particulag iias no star cutset, then no
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node is of type s1 w.r.t. 3PC(A, -).

Theorem 4.3.4Let G be a 4-hole-free odd-signable graph. If G contain3RL(A,-)
with a hat, then G has a star cutset.

Theorem 4.3.5Let G be a 4-hole-free odd-signable graph. If G contains a Wit an
ear, then G has a star cutset.

Theorem 4.3.6 Let G be a 4-hole-free odd-signable graph. If G contains a bith a
type s2 node, then G has a star cutset.

We prove Theorems 4.3.3, 4.3.5 and 4.3.6 in Section 4.4. W&edhis section by
proving Theorem 4.3.4. (assuming Theorem 4.3.3 to be tBw)first we provea useful
lemma about crosspaths.

Lemma 4.3.7 Let G be a 4-hole-free odd-signable graph that does not ¢ortgroper
wheel. ¥ = 3PC(x1x2X3,y) of G can have a crosspath from at most one of the nodes

Y1,Y2,Y3.

Proof: Suppose not and ld? = us,...,u, be ay;-crosspath an®@ = vy,...,vy a yo-
crosspath. Let’, u” (resp.V,V’) be adjacent neighbors af, (resp.vi) in Z. Note that by
definition of a crosspatly,does not coincide with any of the nodésu”,V,V’. It suffices
to consider the following three cases.

Case 1:U,U" € B,y andv,V' € Ry.

Note that in this case neithegy nor xoy can be an edge and hence neitbhemor
vi can be of type s1 w.r¥. LetH be the hole induced bi,y U PR,y. ThenP andQ
are crossing appendicestdfand their node-attachments are not adjacent. So by Lemma
4.1.2,w.l.o.gys € {V,V'} andvy, has a neighbor iP.

W.l.o.g. U is the neighbor ofi, in B,y that is closer to. LetR (resp. R’) be the
subpath ofB,,y with endnodesr (resp. u”) andx, (resp.y). Since there is no 4-hole,
m> 1. Nodevy, has a unique neighbor i, else(P,y \ y) UPUR Uvy, induces a proper
wheel with centevy,. The neighbor oy in P is ug, elsePUR’ U {y1,vim} induces a
3PC(y1, ). But thenR,y U P,y UR' UP UV induces an even wheel with centgr

Case 2:U,U" € Byy andv,V' € By.

Note thatxzy is not an edge, and at most onexaf/, xoy is an edge. Suppose there
exists a path frony; toy, in PUQU (Byy \ {X3,¥3,Y}) U{y1,y2}, and letR be a shortest
such path. TheR,,yUP,,yURinduces a BC(y1,y>). So no such path exists. In particular,
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no node ofP is adjacent or coincident with a node@f andxgys is an edge. In particular,
since there is no 4-hol&, cannot be a bug. But theqft UPUQ) \y induces a proper
wheel with centexs.

Case 3:U,U" € By andv, V' € By

Note thatxyy is not an edge and henog is not of type s1 w.r.tZ. LetH be the hole
induced byP,,y UP,,y. LetP’ be the shortest path betwegnandxz in PU (Bgy \ Y) Uyi.
Suppose that; is of type s1 w.r.t.Z. Thenxyy is an edge. Ifv; has no neighbor i,
thenP' U (Pyy \ Y) U {x2,v1} induces an even wheel with center Sov; has a neighbor
in P and letu; be such a neighbor with lowest index. Note that sifieeys, X, y} cannot
induce a 4-holey; is not adjacent t;. But then(H \ x1) U {vy,us,...,u} induces a
3PC(y1,v1). Thereforev; is not of type s1 w.r.t.Z, and hence®’ andQ are crossing
appendices oH. Sincexs does not have a neighbor @, by Lemma 4.1.2 applied to
H, QandP, y1 € {V,V'} andvy, has a neighbor if?. Let H’ be the hole induced by
P'UPqy \ Y. Then(H’,vy) is a wheel, and hence it is a twin wheel or a bugHf, v is
a bug, therPU (Rgy \ X3) U{y1,Y,Vm} contains a BC(y,-). So(H',vm) is a twin wheel.
In particular,u; is the unique neighbor ofy, in P. Since{vm,Y1,Y,Y2} cannot induce a
4-hole,m > 1. But then(X \ x3) UPU vy, contains an even wheel with centgr 0

Proof of Theorem 4.3.4: Assume G contains aX = 3PC(x1X2X3,y) with a hat
P = p1,..., px, but G does not have a star cutset. By Theorems 4.2.2 and 453d8es
not contain a proper wheel nor a bug with center-crosspathi £ 1,2,3, letx be the
neighbor ofx; in Bqy. W.1.0.g. p1 is adjacent to; and py to xp. SinceS= N[x1] \ {p1,x;}
is not a star cutset, there exists a direct connedfieaqy, ...,q fromPto X\ Sin G\ S
We may assume w.l.0.g. thBtandQ are chosen so th&#® U Q| is minimized.

By Lemma 4.3.1 and definition @, and sinc&s does not contain a bug with a center-
crosspathg; is of type p, d, s2 or crosspath w.r&.or it is a pseudo-twin 0k; ory w.r.t.
>

Let pi (resp. pj) be the node oP with lowest (resp. highest) index adjacentgo
Note thatx; has no neighbor i, g, has a neighbor il \ {x1,x2,X3}, and the only nodes
of Z that may have a neighbor IQ\ g arex; andxs. If xo or X3 has a neighbor in
Q\ q;, then letg; be such a neighbor with lowest index. LRbe a chordless path from
X1 to g in G[(Z\ {x2,X3}) Uq] (note that such a path exists singehas a neighbor in

2\ {x1,%2,%3}).

Case 1:i =k.
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Let H be the hole induced bRUPUQ. SinceH Uxz cannot induce aRC(xq, pk)
nor a proper wheelH,x2) must be a bug. In particulaN(x2) N Q = q; andR does not
containx,. Nodexz cannot have a neighbor iQ, since otherwis® U P U {x1,X2, X3}
would contain a 4-wheel with cent&s. In particular,q is not of type s2 w.r.tX nor is
it a pseudo-twin ok w.r.t. Z. If g has a neighbor if.y \ 'y, then(RPgy \y) UPUQU
{x1,%2,X3} contains a 4-wheel with cent&s. Soq, does not have a neighbor Ryy \ .

In particular,q; is not a pseudo-twin of w.r.t. Z. Suppose thaj, is of type d or crosspath
w.r.t. . Theng, has a neighbor iR,y \ y and a neighbor i,y \ y. Hencexpy is not an
edge, since by definition d, x; cannot be adjacent ). Let R be the chordless path
from g toxz in G[(Z\ {X1,X],%2) Uq]. ThenPUQUR U {xq, X} induces a proper wheel
with centerxy. Soq is not of type d or crosspath w.rZ, and hence) is of type p w.r.t.
>

Suppose thatyy is an edge. Then the neighborsopin % are contained if,y. Since
R does not contain,, g has a neighbor iR,y \ {x2,X,}. Let P’ be the chordless path
from xz toy in G[(Pey \ %,) UQ]. ThenP’ UR,y Ux; induces a bug with centeq, andP
IS its center-crosspath, a contradiction. Therefasas not an edge.

If N(q)) NZ =X}, thenR,y UP,yUQ induces a BC(x3,x2). Soq, has a neighbor in
2\ {x1,X;}. Let P’ be the chordless path from to x3 in G[(Z\ {x1,X2,X;}) Uq]. Then
PUP U{x1,x%2,X3} induces a 4-wheel with centgs.

Case 2:i < k.

First note that it > 1, then either = j or j =i+ 1, since otherwise the chordless path
from pp to pyin (P\ pi+1) Ugr andQ)\ g; contradict the minimality ofPUQ|. LetH be
the hole induced bRUQU {py, ..., pi}.

Suppose thaky has a neighbor ilQ. SinceH U xp cannot induce aRC(-,-) nor
a proper wheel(H,xy) is a bug. In particular, eithdr> 1 or {xz,x,} C N(q)NXZ C
{x2,%5,x3}. If j =141, thenpj,..., px is a center-crosspath ¢H,x2). Soj #i+1. If
i = j, thenPUQU{xy, X2} contains a BC(Xz, pi). Soj >i-+1. Butthen =1, and hence
{x2,%} € N(q)NZ C {x2,%,x3}. By Lemma 4.3.1 and Theorem 4.318(q;) N X =
{x2,%5}. If X1y is not an edge, theR,y U Py U {X1,01, p1, ..., pi} induces a 4-wheel with
centerxe. Soxpy is an edge. But theh is a bug andy, ..., pi, 01 IS its center-crosspath.
Thereforex; does not have a neighbor@ In particular,qg; is not of type s2 w.r.t%, nor
a pseudo-twin ok w.r.t. Z.

Suppose thats has a neighbor i@\ q;. Then paths, ..., pi,d1, ..., andg+1, ..., d
contradict the minimality ofP U Q|. Soxz does not have a neighbor@\ ;.
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Suppose thatj =i+ 1. If g has a neighbor inX\ {xq,x],x,%}, then
(Z\ {x},%,}) UPUQ contains a BC(q1pi pi+1,X1%2X3). Soq does not have a neighbor
in 2\ {x,X],%,%}. Sinceq is not adjacent tax; nor x, N(q) NZ C {x],%}.
If N(q)NZ=x, then Byy UPBu UQU {p1,...,pi} induces a BC(x1,%;). If
N(g)NZ =X, then By U By, UUQ{pii+1,....,px} induces a BC(x2,X;). So
N(g)NZ={x],x,}. By Lemma 4.3.1g) must be of type p2 w.r.tZ, and hence either
X, =y orx; =Y. But then{xs,x2,X;,%,} induces a 4-hole. Sp=#i+ 1.

Suppose that= j. If g has a neighbor i\ {x1,%2,x3,X }, then(Z\ {X,x3}) UPUQ
contains a BC(pi,x2). Soq is adjacent toc; and it does not have a neighbor an\,
{x1,%2,%3,%; }. Since{x1,x],x3,q } cannot induce a 4-hol&(q) "X =x3. If i # 1, then
Py UPBuy UQU{pi, ..., pk} induces a BC(xp,X;). Soi = 1. But thenP,y UPB,y UPUQ
induces a proper wheel with centar Soi # j. Thereforej > i+ 1, and hencé= 1.

If g1 has a neighbor i \ {x2,x5,x3}, then(Z\ {x,,x3}) U{p1,.... pi, Pj, ---, Pk 1 }
contains a BC(qy,x1). Soq is adjacent tod, and it has no neighbor iB\ {x,,x3}. But
then{xq,x2,%5, p1, .., Pi, Pj, ---, Pk, 01 } induces a BC(qy, xz). O

4.4 Bugs

For abugH,x) we use the following notation in this section. betx,, y be the neighbors
of xin H, such thak;x; is an edge. Lel; (resp.H>) be the sector ofH, x) that contains
y andx; (resp.x2). Lety; (resp.y»>) be the neighbor of in Hy (resp.Hy).

Proof of Theorem 4.3.3By Theorem 4.2.2 we may assume tl&atdoes not contain a
proper wheel. Choose a by, x) and its center-crosspakh= py, ..., px So that{H UP|
IS minimized.

W.l.o.g. p1 is adjacent tax, and letus,u, be the neighbors op, in H. W.l.o.g.
ui, Uz € Ha\ 'y, andus is the neighbor ofyc in H; that is closer toy. We now show that
S= NJ[x] is a star cutset separatifty from Hy.

Assume not and leD = qs, ..., q be a direct connection froid; toH, in G\ S. Note
that no node of) is adjacent tx. So no node of) is of type t3, s1, s2 nor a pseudo-twin
of X1, X2, xoryw.r.t. (H,x). Also by Lemma 4.3.7, no node fis of type crosspath w.r.t.
(H,x). Hence by Lemma 4.3.1, either (i} 1, andqg; andq, are of type p, or (i) =1 and
g: is of type d. Suppose (ii) holds. Note thgtcannot be coincident with a node ef If
g1 does not have a neighborih then(H \ x2) UPU{x,q1 } contains a 4-wheel with center
y. SoN(g1) NP # @. If g1 has more than one neighborfthen(Hx \ xo) UPU{X, 01}
contains a proper wheel with centgr. Soq; has a unique neighbgx in P. Since there
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is no 4-holej > 1. But thenH,U{X,q1, pi, --., Pk} induces either aBC(qyyys, pkuiuyz) or

a 4-wheel with centey,. So (i) holds. Furthermorey has a neighbor ifi1 \ {x1,y} and
q has a neighbor i, \ {x2,y}. Also, the only nodes afl that may have a neighbor in
Q\{a1,q } arexy, x2,y. Since there is no 4-hole, every node®f{{qs, q } has a neighbor
in at most one of the sefxy, x>}, {y}.

Claim 1: At most one of the se{s1,x2} or {y} may have a neighbor in ©{qi,q }.

Proof of Claim 1: Assume not. Then there is a subpghof Q\ {qi,q } such that one
endnode ofY is adjacent tg, the other is adjacent to a node {06, 2}, say toxs, and
no intermediate node @ has a neighbor ifl. ThenH; UQ Ux induces a BC(x1,Y).
This completes the proof of Claim 1.

Claim 2: g1 is not of type p3b.

Proof of Claim 2:Assumeq; is of type p3b, and létl’ be the hole o Uq; that contains
q1,X1,X%2,y. Then(H’,x) is a bug. Ifg; is not adjacent to a node & then(H’,x) andP
contradict the minimality ofH UP|. Soq; is adjacent to a node &f. Let p; be the node
of P with lowest index adjacent tgy. ThenH; U {X,qs, p1,..., pi} contains a BC(qy, X).
This completes the proof of Claim 2.

Let H; (resp.H5) be the subpath dfi; (resp.H2) whose one endnodexs (resp.xp),
the other endnode is adjacentfo(resp.q;), and no intemediate node B (resp.H)) is
adjacent tay; (resp.q). Letvs (resp.v2) be the neighbor of; in H; that is closest tay
(resp.y).

By Lemma 4.1.1 applied tbl, x andQ and Lemma 4.3.7, eithgrhas a neighbor in
Q, or a node of{x1,x2} has a neighbor i®Q\ {q1,q}. We now consider the following
two cases.

Case 1:No node of{x1,x} has a neighbor i@\ {q1,q }.
Theny has a neighbor iQ. Letqg: be the node of) with lowest index adjacent tp
By Claim 2,q; is of type p1, p2 or p3t. We now consider the following two case

Case 1.1:No node ofP is adjacent to or coincident with a node@f

Let R be a chordless path fromp to xin (H2\ {x2,y}) UPU{X,q }.

First suppose that); is of type p3t. Ift # 1, thenH; U {qu,...,q, X} contains a
3PC(qs,Y). Sot =1 and consequentlyp =y. Suppose); is the unique node @ adjacent
toy. If N(q) NHz2 # {y2}, thenq, has a neighbor itz \ {x2,y,y2} (sincexpy, is not an
edge, elséx,y, X2,y } induces a 4-hole) and hen@QeJRUH] Uy induces a BC(q1,X). So
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N(qg) NH2 = {y2}. Butthen(H \y;) UQ induces a BC(qy,y2). SON(y)N(Q\ 1) # 2.

If N(y)N(Q\a1) # {d2} orN(qg)NH C {y,y»}, thenQURUH; U{x,y} induces a proper
wheel with centey. Soq; is the unique neighbor ofin Q\ g; andN(q;) NH is not con-
tained in the node sdt,y,}. But thenQUH;UH; U{x,y} induces a BC(xjx2X, ch02Y).

Soq; is of type pl or p2. Suppose thai is of type pl. Thenf > 1. Nodev; is
adjacent toy, elseH; U {x,q1,...,q} induces a BC(v1,y). But thenH; UQU R induces
a proper wheel with centgr Thereforeg; must be of type p2.

Suppose that; is adjacent ty. ThenH; UQUR must induce a bug with centgrand
hencey, ¢ RandN(y) NQ = . In particulary» ¢ H5. But thenH; UH; U QU x induces
a 3PC(x1x2X, d1yy1). Thereforeq; is not adjacent tg.

SinceH; UQURUYy cannot induce aRC(x, &), it must induce a bug, and hence either
(i) y2 ¢ RandN(y) NQ = {q, Gt+1}, or (i) y2 € Randt =I. If (i) holds, theny, ¢ H,
and hencéd; UH, UQ induces a BC(yq g1, 01v1V2). So (ii) holds. Say is adjacent to
y andy,. Since there is no 4-holg is not adjacent top. If g is of type p3, then there
exists a chordless path frognto xin (Hz\ {x2,y}) UPU{x,q } that does not contaiyp,
contradicting the analysis thus far (that shows that R). Soq is of type p2, and hence
H U Q induces a BC(qiviV2, qyy2).

Case 1.2:A node ofP is adjacent to or coincident with a node@f

Let g; be the node o with lowest index adjacent to a node Bf and letp; (resp.
pj) be the node oP with highest (resp. lowest) index adjacentdgo If i <t, then by
Lemma4.1.1qy,...,0i, Pj,---, Pk IS a crosspath, contradicting Lemma 4.3.7.i Sat.

Supposd = 1. Then, by Claim 2g; is of type p2 or p3t. Supposg is of type
p2. SinceHi U {X,y,qs,...,0i, P1,-.., Py} cannot induce a proper wheel with cenger
a1 is the unique neighbor ofin g, ...,q;. ButthenH U{dq,...,q, pj,-.., Pk} induces
a 3PC(A,A). Soq; is of type p3t. Ifg; is the unique neighbor of in {q,...,q}, then
HiU{as,...,q, P1, ..., Py, y} induces a BC(q,x). Soy has a neighbor ifap,...,q},
and henced; U{qy,...,qi, Py, ..., Py, Y} induces a bug with centgr In particularN(y) N
{a1,...,Gi} = {aq1,02}. Let R be anxaup-subpath oHy. SinceP is a crosspathyu, is not
an edge, and hend¢; URU{qy,...,q;, pj, ..., Pk} induces an even wheel with centgr.
Sot > 1.

HiU{X,Y,d1,...,0i, P1,-.., Py} mustinduce a bug with centgr(since it cannot in-
duce a BC(q,x) nor a proper wheel, and it cannot induce a twin wheel becgisaot
adjacent to any node &fUx;), and hencen ¢ Hy andN(y) N {a,...,qi} = {0, G+1}-
If gy is of type pl or p3, them, U {x,qs,...,0} either induces aBC(vy,y) or con-
tains a C(qy,y). Soaqy is of type p2. Ifi < I then(H\y2)u{qs,...,qi,Pj,---, Pk}
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contains a BC(q1v1Vv2,yq 1) (recall that since® is a crosspathpyg has a neighbor in
H2\ {y,y2}). Soi =1I. If g has a neighbor itz \ {y,y2}, then(H \ y2) UQ contains a
3PC(g1viVv2,Ya+1). Soq does not have a neighbor kfp \ {y,y>}. Suppose +1 = 1.
Let H' be the hole induced by Ux and theyw-subpath oH,. Since(H’,q;) cannot be a
proper wheelj’ = j. Since there is no 4-hol¢,> 1. But then(H \ y,) UPU(Q contains
a FPC(pj,x). Sot+1 < |. In particularN(q) NH = y».

Supposg’ = k and pi is adjacent tgy,. If k=1, then{x, px,Y, Y2} induces a 4-hole.
Sok > 1. But thenHy U {X, g+ 1, --.,q1, P} induces a 4-wheel centgs. So eitherj’ £ k
or py is not adjacent tg,. But then{x,y,y>,01,...,0d, P1,... Py} induces a BC(y,q).

Case 2:A node of{xy,x2} has a neighbor i@\ {g1,q }.

By Claim 1,y has no neighbor i@\ {g1,q }. Letq; be the node ofQ\ g; with lowest
index adjacent to a node @k;,xo}. Note thati < 1.

Suppose thatj is not adjacent te. If gy is of type pl or p3t, thed U{qs,...,qi}
either induces aRC(xy, -) or contains a BC(x2,q;1). Soq; is of type p2. But therx and
di,...,Q are crossing appendices ldf and sincexy is not an edge anil(x) NQ = &,
Lemma 4.1.2 is contradicted. Therefogeis adjacent to;.

Let g be the node of with highest index adjacent tq. Let R be the chordless path
fromq toyin HoUq,. Note thatR does not contaiiy, since by definition o), g has a
neighbor inHz \ {X2,y}. LetH’ be the hole induced bil; URU{qj,...,q }. ThenH Ux
induces a BC(xy,y). O

Lemma 4.4.1 Let G be a 4-hole-free odd-signable graph. If G contains a @#tig«) and
has no star cutset, then G has a path-Rps, ..., px disjoint from V(H) U {x} such that no
node of P is adjacent to x, no node of\Hy} has a neighbor in R {p1, p}, p1 has a
neighbor in H \ {x1,y}, px has a neighbor in B\ {x2,y} and P is one of the following

types.

A: P and x are crossing appendices of H. Node y is adjacentdmtide-attachment
of PinH and Ny)NP = 0.

D: k=1and p is a node of type dd w.r.tH,x).
C: k> 1and one of the following holds.

(i) P is of type C1: nodes jppx are of type p2 not adjacent to y, node y has
precisely one neighbor in P, and that neighbor lies iR fp1, p}-

(i) P is of type C2: nodes jppk are of type p2, exactly one of them, say I8
adjacenttoy, and /) NP = {p1, p2}.
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(iii) P is of type C3: one of p1, pk} is of type p3t adjacent to y and the other is of
type p2. Say pis of type p3t. Then ) NP = ps.

(iv) P is of type C4: k=2, one of{ p1, pk}, is of type p3t and the other is of type
p2. Both p, px are adjacenttoy.

(v) Pis of type C5: k= 2; one of{p1, px} is of type p3b and the other is of type
p2. Both p, px are adjacent to y, sayjas of type p3b. The node-attachment
of ppinH isy.

T. Node y has exactly 3 neighbors in P, that are furthermorseautive in P. Nodes
p1 and p are of type p2 or p3 w.r.t(H,x). If p1 (resp. R) is of type p3, thenitis
adjacenttoy. If p (resp. ) is of type p2, then it is not adjacent toy.

Furthermore, any direct connection from itb H, in G\ N[x] is of type A,D,C or T.

Proof: By Theorems 4.2.2 and 4.3.3 we may assume @&dbes not contain a proper
wheel nor a bug with a center-crosspath. SiNg€ is not a star cutset separatifg from
Hy, letP = py, ..., px be a direct connection frod; to Hz in G\ N[x]. So no node oP is
adjacent tocand hence no node #&fis of type t3, s1, s2, dc w.r.tH, x) nor a pseudo-twin
of x1,X2,xory w.r.t. (H,x). By Theorem 4.3.3, no node & is of type s1 w.r.{H,x). If
k=1, then, by Lemma 4.3.1p; is either of type crosspath w.r.tH,x) not adjacent to
x or of type dd w.r.t.(H,x). SoP is either of type A or D w.r.t.(H,x). So assume that
k> 1.

By Lemma 4.3.1,p; and pi are of type p w.r.t.(H,x). Note that the only nodes
of H that may have a neighbor i\ {p1, px} arexi,xz,y . Also p; has a neighbor in
H1\ {x1,y} andpy has a neighbor ifl; \ {x2,y}.

Claim 1: At most one of the se{s,x2} or {y} may have a neighbor in ©{p1, pk}-

Proof of Claim 1: Assume not and Ie®’ be a shortest subpath Bf\ {p1, px} with the

property that one endnode Bfis adjacent toy and the other endnode Bf is adjacent to
a node of{xy,x2}. W.L.0.g. x is adjacent to an endnode Bf. ThenH; UP’ Ux induces
a 3PC(x1,Y). This completes the proof of Claim 1.

Claim 2: No node of{x1,X%2} has a neighbor in R {p1, p«}-

Proof of Claim 2: Assume not. By symmetry, w.l.0.g we may assume thahas a
neighbor inP\ {p1, p«}. Let p;i be such a neighbor with lowest index. By Claimyl,
does not have a neighborih\ { p1, px}. Let R be the subpath dfl; whose one endnode
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isy, the other endnode is adjacentdg and no intermediate node Bfis adjacent tq;.
ThenH,URU{X, p1, ..., pi} induces a BC(xz,y). This completes the proof of Claim 2.

So by Claim 2, no node dfl \ y has a neighbor iR\ {p1, pk}. If N(y) NP =&, then
by Lemma 4.1.1P is of type A. So we may assume thty) NP # @. Let p; (resp.p;)
be the node ofl(y) NP with lowest (resp. highest) index. Let (resp.v,) be the neighbor
of p1 in H1 that is closest tay (resp.y). LetV, (resp.v,) be the neighbor of in Hz that
is closest to; (resp.y). LetH; (resp.H5) be thexjvi-subpath (respxv;-subpath) oH;
(resp.Hy). LetH’ be the hole induced biyl; UH, UP.

Claim 3: p1 and gk are not of type p1.

Proof of Claim 3:Supposep; is of type pl. Ifv1yis not an edge, theH; U {X, p1,..., pi}
induces a BC(v,y). Sovyy is an edge. Suppose# j. Since there is no proper wheel
and p; is of type p1,(H’,y) must induce a bug. But thenis its center-crosspath. So

i = j. Note thaw] #vy. If V] =y», then(H',y) is either a proper wheel or a bug that has a
center-crosspatk. Sov) # y,. But thenH’ Uy induces a BC(v1, pi). So p; is not of
type pl, and by symmetry neitherpg. This completes the proof of Claim 3.

By Claim 3 it suffices to consider the following two cases.

Case 1:At least one of p1, pk} is of type p3.

Assume w.l.o.g. thap; is of type p3. Ifvp # Yy, thenHy U {X, p1,..., pi} contains a
3PC(p1,Y). Sovp =Y.

Suppose thapy is not of type p2. So, by Claim 3y is of type p3. Then by symmetry
v, =y. If k=2, thenH; UH,UP induces a 4-wheel with centgr;. Sok > 2. If
N(y) N (P\ {p1, p}) = @, thenH'Uy induces a BC(py, pk). SON(y) N (P\ {p1, p}) #
@. Since there is no proper wheéH’,y) is either a bug or a twin wheel. [H',y) is a
bug, therx is its center-crosspath. $81’,y) is a twin wheel and hendeis of type T.

So we may assume thpt is of type p2.

Suppose thap; is of type p3b. IfN(y)n(P\ p1) = &, then(H, py) is a bug and
P\ p1 is its center-crosspath. ¢(y) N (P\ p1) # @. If k=2, then eitherP is of
type C5 or(H, p1) is a bug with a center-crosspagia. Sok > 2. Sincev, =y and
N(y)N(P\ p1) # @, y has at least two neighbors K. In particular,j > 2. Suppose
IN(y) "H'| = 2. If j =2, thenH]; UH2UP induces a BC(p1p2y,V;Vopk). Soj > 2.
But thenH’ Uy induces a BC(py,pj). So|N(y) NH’| > 2. Since there is no proper
wheel andk > 2, (H’,y) must be a bug or a twin wheel. (H,y) is a bug, therx s its
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center-crosspath. S&1’,y) is a twin wheel, and hendeis of type T.

So we may assume thpi is of type p3t. Supposé, =y. If k=2, thenP is of type
C4. So assumk > 2. Since(H’,y) cannot be a proper whe€kl’,y) is a bug. But then
x is its center-crosspath. So we may assumewvhaty. If p; is the unique neighbor of
yin P, thenP is of type C3. So we may assume that 1. If p;j is the unique neighbor
of yin P\ py, then eitheH’ Uy induces a BC(p, pj) (if j > 2) orH; UHUP induces a
3PC(p1p2y, ViVopk) (if j = 2). Soy has at least three neighborsHn. Since(H'.y) is not
a proper wheel nor a bug that has a center-crosspéti',y) is a twin wheel, and hence
Pis of type T.

Case 2:p; andpg are both of type p2.

Suppose thap;, px are not adjacent tg. Soi #1 andj # k. If i = |, thenP is of
type C1. Sad < j. If pipj is an edge, thefl’ U {x,y} induces a BC(x1x2X, pipjy). So
pip;j is not an edge. Ify, p; are the only two neighbors gfin P, thenH’ Uy induces
a 3PC(pi, pj)- Soy has at least three neighborsht. Since(H’,y) cannot be a proper
wheel or a bug that has a center-crosspatfH’,y) is a twin wheel, and hende is of
type T.

Suppose now w.l.0.g thagt; is adjacent toy. Node py is not adjacent tg, since
otherwise (H')y) is a proper wheel. IfN(y)"P = p;, then HUP induces a
3PC(v1vap1,ViVopk). Therefore, sincéH’,y) is not a proper wheel nor a bug that has a
center-crosspatk (H’,y) is a twin wheel and hend¥(y) NP = {p1, p2}. SoP is of type
C2. O

A path described in Lemma 4.4.1 is calletradgeof (H, x).

Proof of Theorem 4.3.5AssumeG does not have a star cutset. Then by Theorems 4.2.2,
4.3.3 and 4.3.4G does not contain a proper wheel, a bug with center-crosspatla
3PC(4,-) with a hat.

Let (H,x) be a bug and® = py, ..., px its ear. W.L.o.gN(px) "H = {y,y2}. LetH’ be
the hole induced byH, \ y) UPUX. Then(H’,y) is a bug andH; \ y its ear.

Claim 1: If u is a node of type p2 or p3 w.r.tH,x) such that{y} C N(u)n(H Ux) C Hy,
then u does not have a neighbor in P. Furthermore, (iilh\n (H Ux) = {y}, then u does
not have a neighbor in R py.

Proof of Claim 1:Let u be one of the types from the statement of the claimu liias a
neighbor inP\ py, then by Lemma 4.3.0 must be of type s1 or crosspath w.(H',y),
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Type T

Figure 4.7: Bridges of a bugH, x).



Chapter 4 49 Star cutsets

and hencelis a center-crosspath @fl’,y), a contradiction. Sa does not have a neighbor
in P\ pk.

Suppose that is of type p2 w.r.t.(H,x) such thalN(u) "H = {y,y1}. If uis adjacent
to px, thenH; UPU {u,x} induces a 4-wheel with centgr Sou cannot have a neighbor
in P.

Now suppose that is of type p3 w.r.t.(H,x) such that{y} € N(u)n(HUXx) C Hj.
Supposeu is adjacent tgpk. If uis of type p3t w.r.t.(H,x), then(H1\ y1) UPU {u,x}
induces a bug with centgr and nodey; is its center-crosspath. Similarly,ufis of type
p3b w.r.t.(H,X) not adjacent tg1, thenH; UP U {u, x} induces a bug with centgrwith
a center-crosspath. So we may assumetufhsbf type p3b w.r.t(H,x) andu is adjacent
toyi. Then(H,u) is a bug angy its center-crosspath. This completes the proof of Claim
1.

Claim 2: There exists a bridge of type D w.r.t. (H,X).

Proof of Claim 2: Assume not. Then by Lemma 4.4.1 there exists a bri@dgeq, ..., q
w.r.t. (H,x) of type A, C or T. W.l.o.g.q; has a neighbor ik, \ y andq, in H\ y. Note
that the only nodes gb1, px, g1 andq, that may coincide arpyx andgq,.

Case 1:Q is of type A.

ThenN(y) NQ = @. First suppose that no node Bfis adjacent to or coincident with
anode ofQ. If N(gq1) "H1 =y3, then(H \ y) UPUQUX induces a BC(A,A) or a 4-wheel
with centerxy. OtherwiseN(qg;) NH2 = y2 and hencéd; UPUQU {x,y2} induces a bug
with centery with a center-crosspath.

So a node oP is adjacent to or coincident with a node@f Let p; be the node oP
with lowest index adjacent to a node Qf and letq; be the node of with lowest index
adjacent tqp;.

Suppose thait < k. If N(q1) "Hy = y1, thenH1 U {X, p1, ..., pi, 01, ...,qj} induces a
3PC(y1,x). OtherwiseN(q) "Hz =vyo. If j <1, then{py,...,pi,q1,...,0;} induces a
center-crosspath of bugd,x). Soj =1. But theng; and(H’,y) contradict Lemma 4.3.1.
Thereforel = k.

If N(g1) "H2 =Y, then(H1\y1) UPU{X,q1,...,q;j} contains a BC(X, px). SON(q1) N
Hi=vyi. If j=1, thenHyU{X px,q} induces a BC(A,A) or a 4-wheel with centeys.
Soj <|I. ButthenHUPU{x,q1, ...,q;} induces a proper wheel with center

Case 2:Qisoftype CorT.
Theny has a neighbor i. First suppose that no node®fs adjacent to or coincident
with a node ofQ. Let Rbe the chordless path frogpto y, in (H2\ {y,x2}) Uq;, and letS
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be the chordless path frogi to x; in (H1\y) Ug:. ThenRUSUQUPU{x,y} induces a
proper wheel with centey.

So a node oP is adjacent to or coincident with a node @f Let p; be the node of
P with lowest index adjacent to a node Qf and letq; be the nod& with lowest index
adjacent tqp;. LetH] be the subpath dfi; whose one endnodexs, the other is adjacent
to g; and no intermediate node bff; is adjacent taj;. We now consider the following 2
cases.

Case 2.1:q; is of type p3 w.r.t(H,X).

Thenqy is adjacent ty. Suppose that< kandj < 1. If no node oftp, ..., gj is adjacent
toy, then(Hy\y1) U{X, p1,...,pi,t1,...,q;} contains a BC(x,q1). Soy is adjacent to a
node ofap, ...,qj, and henc® is a bridge of type T. In particulaN(y) N Q = {01, 02, 03}
By Claim 1, > 3. But thenH] U{X.y, p1,..., pi,th, -..,Q;j} induces a proper wheel with
centery. So eithei =kor j=1.

Suppose that= k. By Claim 1,j > 1. Butthenifj <I, HHUPU{xy,q1,...,qj}
induces a proper wheel with centerSo j = 1. Note that sincg > 1, px andg, cannot
coincide. Ifq is adjacent toy, thenH; UPUQU {x,y} induces a proper wheel with
centery. Soq is not adjacent tg, and hence it is of type p2 w.r.ttH,x). But then
Ho U {X, px,q } induces a BC(A,A) or a 4-wheel with centey,.

So i <k and hencej = 1. Suppose thatg is adjacent toy. Then
HiUQU{X,Y, p1,.... pi} induces a wheel with centgr This wheel must be a bug. In
particularl = 2, i.e. Q is a bridge of type C4 or C5, and henggeis of type p2 w.r.t.
(H,x). LetP’ = py,...,pi,q. ThenP is an ear of H,x) andq; is of type p3 w.r.t.(H,x)
adjacent toy and a node oP’, contradicting Claim 1. Sq; cannot be adjacent to But
then|N(y) N Q| =1 or 3, and hencél; UQU {x,y, p1,..., pi} induces a BC(qy,x) or a
proper wheel with center.

Case 2.2:q; is of type p2 w.r.t(H,X).

First suppose that; is not adjacent ty. Suppose that< kandj < |. If no node of
o, ..., is adjacent toy, then{py, ..., pi,qs, ...,q;} induces a center-crosspath (&f, x).
So a node ofy, ...,q; is adjacent toy. If y has a unique neighbor i, ...,q;, then
HiU{XY,p1,..., Pi,q1,-...q;} induces a BC(x,-). Soy has more than one neighbor in
O2,-.-,0j. In particular,Q is a bridge of type T. By Claim ¥ has three neighbors in
0, ...,q; and hencéd; U {X,y, p1, ..., pi, 01, --.,dj } induces a proper wheel with center
Therefore, either=kor j =1.

Suppose that = k and j < I. If no node ofqp,...,q; is adjacent toy, thenH U
{Px.01,...,q;} induces a BC(A,A). So a node ofy,...,q; is adjacent toy. SoH;jU
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PU{x,q1,...,q;} induces a wheel with centgt This wheel must be a bug. But then
Hi1\ (HUy) is a center-crosspath of this bug.

Suppose that=k and | =I. Thenpy andq, do not coincide. Iig is not adjacent to
y, thenq is of type p2 w.r.t.(H,x) and hencéH, U {x, px,q } induces a BC(A,A) or a
4-wheel with centey,. Soq is adjacent toy. ThenH; UPUQU {x,y} induces a wheel
with centery, which must be a bug, and henlde\ (H; Uy) is its center-crosspath.

Thereforel < kandj =1. If g is of type p3 w.r.t.(H,x), thenq, is adjacent toy and
hence(Hz\ y2) U{X, p1,..., Pi,q } contains a BC(x,q;). Soq is of type p2 w.r.t.(H,X).

If q is not adjacent tg, thenps, ..., pi, q is a center-crosspath @fl,x). Soq, is adjacent
toy, and henc& is a bridge of type C2. In particulaN(y) NQ = {q,q _1}. But then
Hi UQU {X, p1,..., pi} induces a bug with centgrwith a center-crosspath (namely the
path induced by, \ (H; Uy)).

Finally we may assume that is adjacent to). SoQ is a bridge of type C2, C4 or
C5. By Claim 1,q; does not have a neighbor ihand hencg > 1. Suppose thaj; is of
type p3 w.r.t.(H,x). ThenQ is a bridge of type C4 or C5, and in particulae 2 andq
is adjacent tgy. Note thatj =1 = 2, and hencél; UQU {xq, p1,..., pi} induces a proper
wheel with centey. Soq must be of type p2 w.r.t(H,x), and hence is a bridge of
type C2. In particularg, is not adjacent toy and N(y) N Q = {01,02}. But then
HiU{X, p1,..., pi,q1,...,qj} induces a proper wheel with centgr This completes the
proof of Claim 2.

By Claim 2, letu be a bridge ofH,x) of type D. ThenN(u) N (H UX) = {y,y1,Y2}.
By analogous argument applied to b{d’,y) and its eaH; \ 'y, (H’,y) has a bridge of
type D, say. SoN(v) N (H'Uy) = {x, p1,%2}. Nodeu must have a neighbor iR\ p,
elseH; UP U {x,y2,u} contains a proper wheel with centgr By symmetry,v has a
neighbor inH1 \ x;. Since{x,y,u,v} cannot induce a 4-holeyv is not an edge. By
Lemma 4.3.1y is a pseudo-twin ofy w.r.t. (H’,y), and hence it has two neighborskn
But then(H1 \ x1) UPU{u,Vv} contains a 4-wheel with centar O

Proof of Theorem 4.3.6Assume not. Choose a byfl,x) and a type s2 node so that
|[H| is minimized. W.l.0.g.u is adjacent to, x1, Y, Y2. By Theorems 4.2.2 and 4.3.3 we
may assume th& does not contain a proper wheel nor a bug with a center-catis$and
in particular no bug with a type s1 node). By Lemma 4.4.1,ehema direct connection
P = pa,...,px from H; to Hy in G\ N[x] of type A, D, C or T w.r.t.(H,X). Letwvs (resp.
v2) be the node oN(p1) NH; (resp.N(px) NHy) that is closest tog (resp.xz). LetHj
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(resp.H)) be the subpath dfl; (resp.H,) with endnodes; (resp.xp) andv; (resp.v).
We now consider the following cases.

Case 1:P is of type Aw.r.t(H,X).

Suppose that the node-attachmer®af H isy;. Suppose thall(u) NP = @. ThenP
andu are crossing appendicesidf and since/i1x; cannot be an edge (otherwise there is
a 4-hole), Lemma 4.1.2 is contradicted. I$@) NP # @. Let p; be the node oN(u) NP
with lowest index. Thetd; U{pa, ..., pi,u} induces a BC(u,y;). So the node-attachment
of Pin H isy,. But thenH; UPU{x,u,y,y»} induces a proper wheel with center

Case 2:Pistype T w.r.t(H,X).

Let pi_1, pi, pi+1 be the neighbors of in P. Let Z; be the C(xx1xp,y) induced by
HiUH,U{pit1, ..., Pk} andX, be the PC(xxixz,y) induced byH; UH2 U {p1,..., pi—1}-
Sinceu is strongly adjacent t&;, by Lemma 4.3.1IN(u) N {pi+1,..-, Pk} = {Pi+1}- By
Lemma 4.3.1 applied t&,, N(u) N {ps,...,pi_1} = &. Let H’ be the hole induced by
HiUH,UP. If up ¢ E(G), thenH’ Uu induces a BC(xy, pi+1). Soup € E(G) and
hence(H’,u) is a bug. Ifpg is of type p3t, them+ 1 = k andys is of type s1 w.r.t(H’,u),
a contradiction. Suppose thgtis of type p3b w.r.t(H,x). Theni+1=k. LetH” be the
hole contained iffH \ y2) U px. Then(H”,x) andu contradict our choice ofH,x) andu.
So pk is not of type p3 w.r.t(H,x), and hence it is of type p2 w.rtH, x) not adjacent to
y. But thenHz \ (H5UYy) induces a center-crosspath of by, u).

Case 3:Pis of type D w.r.t(H,X).

Sok =1 andp; is a node of type dd w.r.t(H,x). If up; is not an edge, theH; U
{u, p1,y2} induces a 4-wheel with centgr Soup; is an edge.

Since(H, u) is a bug ands does not have a star cutset, by Lemma 4.4.1 there is a path
Q=aqy,...,q oftype A, D, C or T w.r.t.(H,u). W.l.o.g. g1 has a neighbor ik; \ {x1,y}
andq in H2\ {y2,y}. Note thatx is of type s2 w.r.t.(H,u). By symmetry and Cases 1
and 2 applied tgH,u) andQ, pathQ cannot be of type A or T w.r.{{H, u).

Suppose thaf) is of type D w.r.t. (H,u). If xq; is not an edge, theH; U {x, X2, 01}
induces a 4-wheel with centgf. Soxq; is an edge. Sincéqs, p1,X,y} cannot induce a
4-hole,p1q; is not an edge. But thed] U {qi, p1,x,u} induces a 4-wheel with centgy.
SoQ must be of type C w.r.ttH, u).

Note thatp; cannot be coincident with a node @ Let H” be the hole induced by
(H\y)Up;. By Lemma 4.4.1 applied t6H”,u) andQ, no node ofQ\ {qi,q } can be
adjacent tgp;. LetR; (resp.Ry) be the subpath dfl; (resp.H,) whose one endnodeys
the other endnode d?; (resp.Ry) is adjacent tay; (resp.q), and no intermediate node
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of Ry (resp.Ry) is adjacent tay; (resp.q).

SupposeN(x) NQ = &. Suppose that has a neighbor i, \ x2. Theng must in
fact have a neighbor i, \ {x2,y,y2}, and henc&) is a direct connection frorfl; to Hy
in G\ N[x], and hence by Lemma 4.4.1 applied(t$,x) andQ, nodesx; andx, do not
have a neighbor i@\ {g1,q }. Sincex; does not have a neighbor @\ {q1,q }, andQ
is of type C w.r.t.(H,u), Q must be of type C3, C4 or C5 w.r{H,u). Suppose thaD is
of type C4 or C5 w.r.t(H,u). Since we are assuming thgithas a neighbor ifl, \ xp, it
follows thatq is of type p3 w.r.t.(H,u) and hence is of type p2 w.r.t.H,u), and both
gy andq, are adjacent ta;. But then(H,x) andQ contradict Lemma 4.4.1. Therefore
Q must be of type C3 w.r.t(H,u). If g is of type p3t w.r.t.(H,u), then(H,x) andQ
contradict Lemma 4.4.1. Sy is of type p2 w.r.t(H,u) andq; is of type p3tw.r.t.(H,u)
adjacent toc;. But then by Lemma 4.4.1 applied tél,x) andQ, Q is of type C3 w.r.t.
(H,x), a1 is of type p3t w.r.t.(H,x) andq; is adjacent tg. But then{xs,y,X,q:} induces
a4-hole. Sa does not have a neighborli \ X2 and henc& must be of type C2, C4 or
C5w.r.t. (H,u) andN(q)) "H = {x1,%2}. But thenQURy U {Xq, X2, X} is a proper wheel
with centerx;. SON(X) N Q # .

Suppose tha@ is of type C1 or C3 w.r.t.(H,u). Let g be the neighbor ok; in
Q. Suppose thax has a unique neighbor Q. If g; is not adjacent to botk andy,
thenQURy URy; Ux induces a BC(y,-). Soq; is adjacent to botlx andy. If i <,
thenHy U {x1,X,q41,...,qi} induces a 4-wheel with centar Soi =1, and hencej is of
type p3t w.r.t. (H,u) (i.e. q is adjacent to,x, and the neighbor oky in Hp). But
thenHz U {qy,xq,x} induces a 4-wheel with centes. Therefore|N(x) N Q| > 2. If
N(x)N{qs,...,q} # <, thenRy U {qa, ..., di,X1,u,X} induces a proper wheel with center
x. SoN(x)N{as,...,q} = @, and hencegN(x) N {q;,....,a}| > 2, But then(Rx\ y) U
{Gi,...,q,X1,u,x} induces a proper wheel with center

SoQis of type C2, C4 or C5 w.r.t(H,u). SupposeN(q;) NH = {x1,%2}. If N(x) N
Q#q, thenQUR; URyUxinduces a proper wheel with centerSoN(x) N1Q = ¢;. Note
thatp; is not adjacent tq, else{p1,q;,X,y} induces a 4-hole. But thépuU{xz,X,u, p1 }U
(R1\y) contains a proper wheel with center. SON(q) "H # {x1,x2}, and hencey
has a neighbor i, \ {x2,y} andq; is of type p2 w.r.t. (H,u) adjacent tax;. Let g
be the neighbor ok in Q with lowest index. Note thap; cannot be adjacent i, else
{p1,01, %1, u} induces a 4-hole. Alsp; cannot be adjacent ty, else{ p1,q;, X, u} induces
a 4-hole. But thedq;, ..., 0, X1, X,u, p1} U (Ry \ y) induces a proper wheel with centar

Case 4:P is of type C w.r.t(H, x).
Suppose thaP is either of type C1 or C3. Lep; be the neighbor oy in P. Let X
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be the C(x1x2X, p;) contained intH UPUX. Note thatp; cannot be adjacent ta, else
{X1,X,y, pi } induces a 4-hole. Similarlp; is not adjacent top. In particularX is not a
bug. But then since nodeis strongly adjacent t&, Lemma 4.3.1 is contradicted. $o
is of type C2, C4 or C5 w.r.{H,x).

Suppose thal(p1) "H = {y,y1} andpx has a neighbor it \ {y,y2}. LetR be the
subpath oH, \ y whose one endnode g, the other endnode & is adjacent tqy, and
no intermediate node & is adjacent tqy (note that possiblR = y»). If N(u)NP = &,
thenH; URUPUuinduces a proper wheel with centerSoN(u) NP # &. Let p; be the
node ofN(u) NP with lowest index. Ifi > 1, thenH; U {u, p1, ..., pi} induces a 4-wheel
with centery. Soi = 1. If p; is the unique neighbor afin P, thenPURU {y,u} induces
a 4-wheel with centey. So|N(u) NP| > 2. LetH’ be the hole induced bi] UH, UP.
Since(H’,u) cannot be a proper wheel agg+# x1, (H’,u) must be a bug. In particular,
N(u) NP = {p1, p2}. Suppose thapy is of type p3b w.r.t.(H,x). Thenk=2. LetH”
be the hole contained ifH \ y2) U px. Then(H”,x) andu contradict our choice ofH, x)
andu. Sopy is not of type p3b w.r.t(H,x) and hence it is of type p2 or p3t w.r{t4, x).
But thenR is the center-crosspath @fl’, u).

So p; has a neighbor i1 \ {y,y1} andN(px) "H = {y,y2}. If N(u)NP = &, then
HiUPU{u,y,y»} induces a 4-wheel with centgr SON(u) NP # @. LetH’ be the hole
induced byH; UH, UP. Since(H’,u) cannot be a proper wheel aggl# x,, (H’,u) must
be a bug. SN(u) NP = {pk}.

Since(H,u) is a bug, and> has no star cutset, axds a node of type s2 w.r.tH, u),
by Lemma 4.4.1 and by symmetry, there is a @@tk qy, ..., qy of type C2, C4 or C5 w.r.t.
(H,u), suchthatN(q)) N"H = {x1,%2}, N(x) NQ = {qi }, a1 has a neighbor if1 \ {x1,X; }
(wherex] is the neighbor ok; in Hi) and no neighbor i, \ y. Note that sincep; is of
type p2 or p3 w.r.t(H,x), p1 has a neighbor i1 \ {x1,y}. Similarly, q; has a neighbor
in Hi \ {x1,y}. LetR be the shortest path fromp to px in PUQU (H1 \ {x1,y}). Then
RU (H2\y) U{x,u} induces a BC(qx2X, pxy2u). O

4.5 Attachments

In the section we use the following notation. Bet 3PC(x1X2X3,Yy). The three paths of
2 are denoted?,,y, P,y andPy,y (WherePyy is the path that containg). Fori =1,2,3, we
denote the neighbor of (resp.x) in By by yi (resp.x). Fori, j € {1,2,3},i # j, letH;
be the hole induced bigy U Byy.

Lemma 4.5.1 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.
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Let u be a type pl node w.r.& adjacent to x. Let P= pg,..., px be a chordless path
in G\ X such that p is adjacent to u, phas a neighbor irx \ {x1,X2, X3}, no node of

P\ {p1} is adjacent to u and no node of\R px} has a neighbor irtk. Then R is one of

the following types:

(i) pkis of type p2 with neighbors ing.
(i) pkis of type pl adjacent td;x
(iii) pkis of type d and it has no neighbor i, P\ {y}.

(iv) pkis adjacent to xand it is either of type p3 or d, or it is a pseudo-twin gf xo,
X3 Ory W.r.t. 2, or it is a crosspath w.r.tz adjacent to x,x; and a node ofy»,ys}.

Proof: By Theorems 4.2.2, 4.3.3, 4.3.5 and 4.3.6 we may assumé&ttiaes not contain
a proper wheel, a bug with a center-crosspath, a bug with anagaa FC(A, -) with a
type sl or s2 node. Sing® has a neighbor i \ {x1,x2,X3}, px cannot be of type t2 nor
t3w.r.t. Z. So, for the nodey, it sufices to examine the following remaining possibistie
of Lemma 4.3.1.

Case 1:py is of type p1 w.r.t2.
Let v be the node oN(px) NZ. Note thatv ¢ {x1,X2,x3}. If v#X;, thenZUPUuU
contains a BC(xq,Vv). Sov = x| and hence (ii) holds.

Case 2:py is of type p2 w.r.tz.

If N(px) C Py, then (i) holds. So w.l.o.g. assume tiNitpi) € Py,y. If X1y is not an
edge, therHy3UPUu induces a BC(x1xox3,A) or a 4-wheel with center. Soxzy is an
edge. But them, P is either a center-crosspath or an ear of hug

Case 3:py is of type p3 w.r.t2.
If pkX1 is not an edge, theR U P U u contais a BC(x1, px). S0 pkx1 is an edge and
hence (iv) holds.

Case 4:py is of type crosspath w.r.

Let v (resp.viv2) be the node-attachment (resp. edge-attachmerg) of an appro-
priate hole ofz. Note that since there is no bug with a center-crosspedhyx;, Xo, X3}
Supposev =y;. W.Lo.g. vivo is an edge of,y. ThenHx3UPU {x1,u} induces a
3PC(x1x2X3, pkV1V2) or a 4-wheel with centex,. Sov =y, orv=ys. W.l.o.g. letv = ys.
SupposevVo € Pyy. Let R be the subpath o,y with one endnodes and the other
endnode adjacent fa. ThenP,,y URUPU{u,y>} induces a BC(xy, px). SoviVa € Byy.
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Let Rbe the subpath d%,y with one endnode; and the other endnode adjacenpio If
PkX1 is not an edge, thefP,y \ y) URUPUu induces a BC(xy, px). So pkxq is an edge,
and hence (iv) holds.

Case 5:py is a pseudo-twin 0Ky, Xo Of X3 W.I.t. 2.

Suppose thapy is not adjacent ta;. Thenp, has two adjacent neighborshyy. Let
R be the subpath o,y with one endnode; and the other endnode is adjacentpto
ThenPURU{u,x2} induces a BC(x1, px). Sopk is adjacent to, and hence (iv) holds.

Case 6:py is of type d w.r.t.Z, or it is a pseudo-twin of w.r.t. 2.

W.l.0.g. px has a neighbor iR,y \ y. If pix; is not an edge angy has a neighbor in
Pqy \ Y, then(Z\ P,y) UPUU contains a BC(x1, pk). So eithempyx; is an edge and hence
(iv) holds, orpy does not have a neighbor,y \ y and hence (iii) holds. O

Lemma 4.5.2 Let G be a 4-hole-free odd-signable graph that does not hastarautset.
Let u be a type t2 node w.r.E adjacent to x and ». Let P= py,..., px be a chordless
path in G\ Z such that p is adjacent to u, phas a neighbor irk \ {Xg, %2, %3}, no node
of P\ {pz1} is adjacent to u, and no node of\R px} has a neighbor irE. Then R is one

of the following types:

(i) pxisoftype p2 w.r.tZ and its neighbors ilX are contained in gy.

(i) xgy is an edge andpis of type p1 w.r.tX adjacent to ¥, or xpy is an edge andp
is of type p1 w.r.tX adjacent to .

(i) pk is of type p3 w.r.t.Z, and either px; and xy are edges, or yxz and %y are
edges.

(iv) pkis of type d not adjacent to yand neither %y nor xgy is an edge.

(V) pxis a pseudo-twin of X Xp Or X3 W.r.t. 2.

Proof: By Theorems 4.2.2, 4.3.3 and 4.3.6 we may assumeGhadbes not contain a
proper wheel, a bug with a center-crosspath noP&(3,-) with a type s1 or s2 node.
Sincepy has a neighbor il \ {x1,x2,X3}, pkx cannot be of type t2 nor t3 w.rx.

Claim 1: py is not of type crosspath or a pseudo-twin of y wX.t.

Proof of Claim 1: Suppose thapy is of type crosspath. Let (resp. viv») be the node-
attachment (resp. edge-attachmentppin an appropriate hole df. Supposes =y;.
W.I.0.g. {v1,Vv2} C Py. ThenHysUPUuinduces a BC(uxxs, pkv1v2) or a 4-wheel with
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centerxs. Sov # y;. W.L.o.g. v=ys. Note that sincgy cannot be a center-crosspath of
bugz, y3 # x3. Supposer1Vv; is an edge oP,y. Let R be the subpath d®,, with one
endnode; and the other adjacent . ThenP,y URUPU{u,y3} induces a BC(xz, px).
Sovyv, is an edge oP,,y. Butthen(P\ py) Uuis the center-crosspath of the bikdps, p).
So py is not of type crosspath w.r.E.

Now suppose thay is a pseudo-twin oy w.r.t. Z. Then eithempygxo or pgX3 is not an
edge. W.L.o.g.pkx3 is not an edge. But the(® \ B,y) UPUu contains a BC(x3, k).
This completes the proof of Claim 1.

Suppose that (v) does not hold. Then by Claim 1 and Lemma,43i& of type p or
dw.rt. .

Suppose thapy is of type d. Suppose thaly; € E(G). So w.l.o.g. N(px) NZ =
{Y,y1,¥2}. If X0y ¢ E(G), then(Hi2\y) UPUuU induces a BC(x2, pk). Soxgy € E(G).
But then(Pqy \ Y) UPU{u,x2,x3} induces a 4-wheel with centep. So pyy:s ¢ E(G).
Suppose that one d¢koy, X3y} is an edge (note that by definition dPB(4, -), at most one
of {x2y, X3y} can be an edge). W.l.o.gpy € E(G). But thenH12UPU {u,x3} induces a
proper wheel with centet,. So no on€{xyy, X3y} is an edge, and hence (iv) holds.

Suppose thapy is of type pl. Letv be the neighbor ofy in . Note thatv ¢
{x1,%2,%3}. If v € Pyy, thenHj,UPUuU induces a BC(xp,v). Sov ¢ By. W.Lo.g.
Ve PRyy. If vZ£ X5, thenH12UPUu induces a BC(x2,V). Sov = X,. If xgy is not an edge,
thenH12UPUXz induces a 4-wheel with centgs. Soxzy is an edge and hence (ii) holds.

Suppose thapy is of type p2. Letvs,vo be the nodes oN(px) NX. Suppose that
v1V2 is not an edge oR,,y. W..0.g. v1V» is an edge of,y. ThenHyzUPU U induces a
3PC(uxox3, pkvive) or a 4-wheel with centex,. Sovyvs is an edge oPy,y, and hence (i)
holds.

Suppose thapy is of type p3. IFN(px) NX C By, thenHi2UPU U contains a
3PC(x2, pk). So w.l.o.g. assumi(px) NZ C Py,y. If pkxo is not an edge, thed,UPUU
contains a BC(x2, pk). S0 pkx2 is an edge. ligy is not an edge, theH12, UP U {u, X3}
contains a 4-wheel with centgs. Soxzy is an edge and hence (iii) holds. O

Lemma 4.5.3 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.
Let u be a type t3 node w.rE. Let P= py, ..., px be a chordless path in §X such that
p1 is adjacent to u, phas a neighbor irk \ {x1,X2,X3}, no node of R {p;1} is adjacent
to u, and no node of R{px} has a neighbor irk. Then p is one of the following types:

() pkisoftype pl, p3t, oritis a pseudo-twin aof, %, or Xz W.r.t. Z.
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(i) pkis apseudo-twin of y w.r.&. Furthermore, if Npx) N Z # {y, Y1, Y2, Y3}, then g
is adjacent to a node dfx;, X2, x3} andZ is not a bug.

(i) pkis of type p3b adjacent tq Xor some i {1,2,3}, but not to X

Proof: By Theorems 4.2.2, 4.3.3 and 4.3.6 we may assumeGhdbes not contain a
proper wheel nor a bug with a center-crosspath ndP@(3, -) with a type s1 or s2 node.
Sincepy has a neighbor i \ {x1,x2,X3}, pkx cannot be of type t2 nor t3 w.rx.

Claim 1: py is not of type p2, crosspath nor d w. .

Proof of Claim 1: Suppose thapy is of type p2. W..o.g.N(px) NZ C By. But then
HosUPUuU induces a BC(A, xoxgu) or a 4-wheel with centexs. So py is not of type p2
W.r.t. 2.

Suppose thapy is of type crosspath. W.l.o.(H23, px) is a bug andy, is the node-
attachment ofy in Ho3. Note that sincgy cannot be a center-crosspath2gfy, # xo.
But then(P\ px) Uuis a center-crosspath Qfl>s, pk). Sopk is not of type crosspath w.r.t.
>

Finally suppose thaty is of type d w.r.t.2. W.l.o.g.N(px) N Z = {y,y1,Ys}. But then
Ho3UPUuU induces a BC(uxxs, pkyys) or a 4-wheel with centexrs. This completes the
proof of Claim 1.

Assume (i) does not hold. Then by Claim 1 and Lemma 4 §31s of type p3b oritis
a pseudo-twin of w.r.t. >. Suppose first thaty is of type p3b. W.I.o.gN(px) NZ C Byy.

If X3 is not the node-attachment of in Hys, then(P\ px) Uu is a center-crosspath of
(Hz3, pk). Soxs is the node-attachment pf in Hz3, and hence (iii) holds.

Suppose now thaty is a pseudo-twin of w.r.t. . We may assume that(py) NZ #
{Y,Y1,¥2,y3}, else (ii) holds. W.l.o.g.N(px) N Z = {y,y1,Ys3,V}, wherev is a node of
Poy \ {Y,y2}. If v# x2, then(P\ px) Uu is a center-crosspath 0Hz3, pk). Sov = xo.
Sincepy is a pseudo-twin of w.r.t. Z, [N(px) N {x1,X%2,X3}| < 1 and henc& cannot be a
bug, so (ii) holds. O

4.6 Connected diamonds

In this section we prove Theorem 2.2.5. Recall the definibba connected diamond
(Z,Q) from Section 2.2.1. Note that@ = qy, ..., 0k, thenq, is of type t2 w.r.t.Z andgy
is of type p2 or d w.r.tZ.
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Lemma 4.6.1 Let G be a 4-hole-free odd-signable graph. If G contair8P&(4, -) with
a node of type dd, then either G has a star cutset or G contagmaected diamond.

Proof: Assume not. By Theorems 4.2.2, 4.3.3 and 4.&6&Joes not contain a proper
wheel nor a bug with a center-crosspath noP&€@), -) with a type s1 or s2 node. Let
be atype dd node w.r.t.2a= 3PC(x1X2X3,Y) of G, such that w.l.o.gN(u)NZ = {y,y1,y3}.
Soxyy andxgy are not edges.

SinceS= N[y] \ {u,y2} is not a star cutset separatingrom %\ S, there is a direct
connectiorP = py, ..., pk fromuto Z in G\ S. Sop; is adjacent ta andpy has a neighbor
in 2\ S Note that the only nodes &f that may have a neighbor B\ py arey; andys.
Fori,j € {1,2,3},i # |, letHij be the hole induced by UPy. By Lemma 4.3.1 and
sincepy is not adjacent tg, pk is of type p, t2, t3, crosspath or it is a pseudo-twirxgf
Xo OF X3 W.I.T. 2.

Claim 1: At most one ofy;,y3 has a neighbor iR\ p.

Proof of Claim 1: Suppose botly;,y3 have a neighbor i?\ px. Let R be a shortest
subpath ofP\ px with one endnode adjacent ya@ and the other to/s. ThenHi;3UR
induces a BC(y1,y3). This completes the proof of Claim 1.

We now consider the following cases.
Case 1:py does not have a neighbor i,y \ xo.

Case 1.1:No node of{y1,ys} has a neighbor iR\ p.
Then no node ok has a neighbor i\ py.

Case 1.1.1:pg is of type crosspath w.r.k.

Since px cannot be a center-crosspath of bugpy is not adjacent to. W.l.o.g.
N(px) N Byy = y1 and py has two adjacent neighbors i,y. If k=1, then(Hi3\y)U
{u, p1} induces a 4-wheel with cent@i. Sok > 1. LetR be the shortest path fromto
Pk in (Bey \Y) U{u, p}. ThenPURU{y;} induces a BC(u, py).

Case 1.1.2:px is of type t2, t3 or it is a pseudo-twin a&f, X or X3 w.r.t. Z.

If py is of type t2 adjacent t® andxs, thenZUPUu induces a connected diamond.
Note that sincep, does not have a neighbor i,y \ X2, px cannot be a pseudo-twin &}
w.r.t. . So w.l.o.g.pk is adjacent toxg andxz andN(px) N (Z\ {x1,%2}) € Byy. Recall
that px cannot be adjacent o But thenH;2UPUu induces a BC(uyy, X1 X2 k).

Case 1.1.3:px is of type p w.r.t.2.
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Supposey is of type pl and lep’ be the neighbor ofy in £\ S. If p’ = xp, then
2 UPUuinduces a connected diamof®, Q), whereX' = 3PC(yyiu, x2) andQ = B,y \ .
Sop' # xo. But then(Hy3\y) UPUu induces a BC(u, p’). So py is not of type pl. So
the neighbors ofy in Z\ Slie in eitherP,y or Pyy. W.1.0.9.N(px) NZ C By If py is of
type p2, therH,3UP U u induces either aBC(uyys, A) or a 4-wheel with centeys. So
pk is of type p3. Ifk =1, then(H13\y) U{u, p1} induces a 4-wheel with cent@g. So
k> 1. But then(H13\ y) UPUuU contains a BC(u, py).

Case 1.2:A node of{y1,ys} has a neighbor iR\ p.
By Claim 1, exactly one ofy1,ys} has a neighbor iR\ px. Note thatk > 1.

Case 1.2.1:pg is of type p.

If pxis of type pl adjacent txp, thenZ U P contains a BC(xy,y1) (if y1 has a neighbor
in P\ px) or a PC(xp,y3) (if y3 has a neighbor i\ py). So by symmetry w.l.0.g.
N(pk) NZ C Py \ Y. Letp’ (resp.p”) be the node oN(py) N P,y closest toy; (resp.xs).
Note that ifpy is of type p1, therp’ € By \ {Y,y3}. LetRbe the subpath d¥,, between
p” andxs. LetH be the hole induced big,y UPURUU.

SupposdN(y3) N (P\ pk) # @. Since(H,ys) is not a proper whee]N(y3) NP| =1 and
p’ys is not an edge. Lep; be the unique neighbor @f in P. Note thati < k. If py is of
type p1, therH,3UP contains a BC(ys, p'). Sopk is of type p2 or p3. IN(y3) NP = py,
thenPR,y UPURU {y3,u} induces a 4-wheel with centar Soi > 1. If py is of type p2,
then(H,y3) is a bug and?,y \ (RU {y,ys}) is its center-crosspath. Sw is of type p3.
But thenHy3U {pi, ..., px} contains a BC(ys, pk).

SoN(y3) N (P\ px) = @. HenceN(y1) N (P\ pk) # @. Since(H,y1) is not a proper
wheel,y; has a unique neighbor, sgy, in P. Let R be the subpath d&,, betweenys
andp’. If i =1, thenPUR U{y,y1,u} induces a 4-wheel with center Soi > 1. But
thenPUR U{y1,u} induces a BC(u, pj).

Case 1.2.2:pg is of type t2, t3 or it is a pseudo-twin @i, X2 Or X3 W.r.t. 2.

Supposgy is of type t2 adjacent tg; andxs. By symmetry w.l.o.gN(y3) NP # &
andN(y;) NP = @. LetH be the hole induced big,y UPU {x3,u}. Since(H,ys) is not
a proper wheelxgys is not an edge. But the,3U P contains a BC(x3,y3). So py is not
of type t2 adjacent t@; andxs.

Recall thatpy has no neighbor iy \ Xo. So by symmetry w.l.0.gpx is adjacent to
bothx; andxz andN(px) N (Z\ {x1,%2}) C szy\y. If N(y1) NP =@, thenH12UPUuU
induces a BC(uyys, x1X2pk). SON(y1) N (P\ pk) # @ andN(y3) N (P\ px) = @. LetH
be the hole induced bl,, UPUuU. Since(H,y;) is not a proper whee}; has unique
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neighbor, sayp;, in P.

Supposey is of type t3. Ifi = 1, thenP,y UPU{y1, u} induces a 4-wheel with center
u. Soi > 1. But then(Pgy \ Y) UPU{y1,u} induces a BC(pj, u). Sopy is not of type t3.

Supposqx is of type t2. Ifyx is an edge, then since there is no 4-habe is not an
edge. But themR,y U {pi, ..., Pk, Y1,X%2, X1} induces a 4-wheel centgs. Soyx, is not an
edge. But themdazU {p, ..., P, Y1} induces a BC(y, Xp).

So pk is a pseudo-twin okz w.rt. 2. Let R be the shortest path fromy to y3 in
PwoyU pk. If i =1, thenPURU {yy,Yy,u} induces a 4-wheel with center Soi > 1. But
thenPURU {yj, u} induces a BC(u, p;).

Case 1.2.3:pg is of type crosspath w.r.k.

Sincepg cannot be a center-crosspath of gy is not adjacent tap.

W.1.0.9. N(pk) NPy =Yz andN(px) N (Z\y3) € By \Y. Letp’ (resp.p”) be the node
of N(px) N By closest toy; (resp.x1). LetR (resp.R’) be they; p’-subpath (resp p”-
subpath) ofBy. If N(y3) N (P\ px) # @, thenPUPR,y UR"U{u,ys} induces a proper
wheel with centerz. SoN(y3) N (P\ px) = @ andN(y1) N (P\ px) # @. Let p; be the
node ofN(y1) NP with highest index. Ifi = 1, thenPU {y,y1,ys,u} induces a 4-wheel
with centeru. Soi > 1. LetH be the hole induced b’ UR,y UPUu. If p’ =y, then
(H,y1) is a proper wheel. S@' #y;, and hencéH,y;) is a bug. But thelR' \y; is a
center-crosspath ¢H,y;).

Case 2:py has a neighbor iR,y \ .

Case 2.1:pg is of type p w.r.t.2.

In this caseN(px) NZ C Py,y.

Suppose thaltys,ys3} have no neighbor iR\ pk. If pyis of type p1, thelx UP induces
a connected diamon@’, B,y \ y) (whereX' is the 3C(y1yu, ) induced byR,y U R,y UP).
If pxis of type p2, them;2UPUuUinduces a BC(uyys,A). Sopy is of type p3. LeR be
the chordless path fromto x, in P,y U px that containgo,. ThenPy,y U P,y UPURUU
induces a connected diamoi®’, R,y \ y) (Where' is the 3C(y1yu, px) induced by
P,y URUP). So one of{y1,y3} has a neighbor iR\ py.

Thereforek > 1. By Claim 1, w.l.o.gN(y3) N (P\ px) # @ andN(y1) N (P\ px) = 2.
LetR (resp.R’) be the shortest path B,y U px betweery (resp.x2) andpy. LetH be the
hole induced byR UPUu. Since(H,ys) is not a proper wheeys has a unique neighbor,
saypi, in P. Note thai < k. If pyis of type p1, thetdo3U{ pi, ..., px} induces a BC(ys, ).
If pxis of type p3, thelR UR" UR, U {pi, ..., pk} induces a BC(ys, px). Sopx is of type
p2. Ifi > 1, then(H,ys) is a bug and the path induced B,y \ {y,y3}) U(R’\ px) is its
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center-crosspath. Se= 1. But thenR,y UPUR’ U {ys,u} induces a 4-wheel with center
u.

Case 2.2:pg is of type t2, t3 or it is a pseudo-twin a&f, Xo Or X3 W.r.t. 2.

Thenpy is a pseudo-twin ok, w.r.t. Z. Let ' = 3PC(x1 pkXs,y) obtained by substi-
tuting px into Z. If no node of{yi,ys} has a neighbor i\ px, thenZ’ UPUu induces
a connected diamon@”, Q), whereX” = 3PC(y1yu, px) andQ = By \ Y. So w.l.0.9.y3
has a neighbor if?\ px. Let p; be the node oP with highest index adjacent t&. Note
thati < k. But then(Z'\ (Ryy \Y)) U{pi, ..., px} induces a BC(y3, k).

Case 2.3:py is of type crosspath w.r.E.

SupposeN(pk) N Buy = y2. W.L.o.g. N(px) N (Z\Y2) C Pwy \y and, in particular,
(Hzs, pk) is a bug. IfN(y3) N (P\ px) = @, then(P\ px) Uu induces a center-crosspath
of (Has, pk). SON(y3) N (P\ px) # @ and consequentlly > 1. Letp’ (resp. p”) be the
neighbor ofpy in P,y closest toy; (resp. x3). Let R be the subpath d®,y betweenp”
andxz. LetH be the hole induced by U {u,y,y2}. Since(H,ys) is not a proper wheel,
y3 has a unique neighbor iR\ px and p’ # y3. Let p; be the neighbor of3 in P. If
i =1, thenPy,y URUPU {ys,u} induces a 4-wheel with center Soi > 1. But then
(Pyy \Y) UPURU{u,y3} induces a BC(u, p;). SON(px) N P,y # Ya.

W.1.0.9.N(pk) NPy = y3 andpx has two adjacent neighborsig,y. Let p’ (resp.p”)
be the node oN(px) N P,y closest toy, (resp. xz). LetR (resp.R’) be the subpath of
P,y betweery (resp.xp) andp’ (resp. p”). If k=1, thenP,y UR" U {p1,ys,u} induces
a 4-wheel with centen. Sok > 1. If no node of{y1,ys} has a neighbor i\ pg, then
(Ray \Y) UPUR’U {u,y3} induces a BC(u, px). So by Claim 1, exactly one of,y3
has a neighbor i\ px. Supposey; has a neighbor if?\ px and letp; be the node of
N(y1) NP with highest index. Thek13U{pi,..., px} induces a BC(y1,y3). Soy; does
not have a neighbor iR\ px and henceN(ys) N (P\ px) # @. But thenPUR U {u,ys}
induces a proper wheel with center O

Lemma 4.6.2 Let G be a 4-hole-free odd-signable graph. If G contains aWwiig a type
dc node, then G has a star cutset or G contains a connectedotidm

Proof: Assume not. By Lemma 4.4.1 every b(g,x) has a bridgd®. Choose a bug
(H,x) with a type dc nodel, and a bridgd® = py, ..., px of (H,X) so that the length o
is minimized. Letxs, X2, y be the neighbors of in H such thatx;x; is an edge. LeH;
(resp.Hy) be the sector ofH,x) with endnodey andx; (resp.xp). Lety; (resp.y») be
the neighbor of/ in Hi (resp.Hy). Sou is adjacent tox, y and a node ofys, y»}. W.l.0.g.
p1 has a neighbor ikl \ {x1,y} andpg in Hz\ {x2,y}.
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By Lemma 4.6.1G does not contain aRC(A, -) with a type dd node, and hen&es
not a bridge of type D. Letl’ be the hole of H \ y) UP that contain®. If P is a bridge
of type C2, C4, C5 or T, theH’ U {x,y} induces a a union of aP(x1x2x,y) and a type
dd node w.r.t. this BC, a contradiction.

Suppose thal is a bridge of type C3. W.l.o.gp; is adjacent tg, i.e., p1 is of type
p3tw.r.t.(H,X). Note that sincgxs,X,y, p1} cannot induce a 4-holg,x; is not an edge.
But thenH’ U {x,y} induces a BC(xyx2X, p1) andy; is of type dd w.r.t. it, a contradiction.

Suppose thal is a bridge of type C1. Lep; be the unique neighbor gfin P. Note
that 1< i < k. LetX = 3PC(xyx2X, pi) induced byH' U {x,y}. W.l.0.g.uis adjacent tgs.

If udoes not have a neighborithen(H \ {y1,x2}) UPU{x,u} contains a 4-wheel with
centery. Sou has a neighbor iR. By Lemma 4.3.1 applied t& andu, N(u)NP = {p;},
{pi+1} or {pi—1}. SinceG does not contain a 4-holbl(u)NP = {p;}. LetH] =H'NH;
andH5 = H'NHy. LetH” be the hole induced by UH,U{pi, ..., pk}. Then(H”,x) is
a bug,uis of type dc w.r.t.(H”,x) andP’' = py, ..., pi_1 is a bridge of(H”,x), and hence
(H”.x), uandP’ contradict our choice ofH, x), u andP.

ThereforeP is a bridge of type A. W.l.o.gN(p1) NH1 = y1 and px has two adjacent
neighbors inH, \ y. First suppose thatis adjacent tg. If u does not have a neighbor
in P, then(H \ x2) UPU {u,x} contains a 4-wheel with centgr Sou has a neighbor in
P, and letp; be such a neighbor with highest index. Sidgey1,u, p1} cannot induce a
4-hole,i > 1. But thenH U {u, pj, ..., px} induces a BC(A,A) or a 4-wheel with center
Y.

Sou must be adjacent tg;. If u has a neighbor i, then(Hz \ y2) UPU {u,y1, X}
contains a proper wheel with center So u does not have a neighbor i@ But then
Ho UPU{X,y1} induces a BC(A,y), andu is of type dd w.r.t. it, a contradiction. O

Lemma 4.6.3 Let G be a 4-hole-free odd-signable graph. If G contair8P&(4, -) with
a node of type d, then either G has a star cutset or G contaimaected diamond.

Proof: Follows from Lemmas 4.6.1 and 4.6.2. O

For a twin wheelH, x) we use the following notation. Leg, X2, x3 be the neighbors
of xin H such that;x; andxxz are edges. Let] (resp.xj) be the neighbor of; (resp.
x3) iINH\Xx2. AnodeueV(G)\ (V(H)U{x}) is said to be of type d w.r.{tH, x) if uxis
an edge antl(u) NH is either{xs,x; } or {x3,x5}.

Lemma 4.6.4 Let G be a 4-hole-free odd-signable graph. If G contains a twheel with
a type d node, then either G contains a star cutset or G costaiconnected diamond.
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Proof: Assume not. By Theorem 4.2.2, Theorem 4.3.3 and Lemma 43d)es not
contain a proper wheel, a bug with a center-crosspath, nBC&8 -) with a type d node.
Let u be a type d node w.r.t. a twin whe@l,x) in G. Let X3, X2, X3 be the neighbors of
x in H such thatx;xo andxoxs are edges. Ly = X3, p1, ..., Pk, X1 be the long sector of
(H,x). LetP = py,..., pk-

Note that since there is no 4-hole;> 1. W.l.o.g. N(u)NH = {X3, p1}. SinceS=
N[X] \ X2 is not a star cutset db separating from P, there exists a direct connection
Q=0,...q fromx; to Pin G\'S. Let p; (resp. py) be the node oN(qg;) NP with
lowest (resp. highest) index. Note thatandxs are the only nodes dfl that may have a

neighbor inQ\ q;.

Claim 1: Both u andxs have a neighbor iQ.

Proof of Claim 1: Nu) N Q # &, elseQU {X, X2, X3, U, pP1, ..., P } induces a proper wheel
with centerxs. Now supposeN(x3) NQ = @. Let H’ be the hole induced b@ U
{%2,X3, P1,-.-, Pi}. So(H’,u) is a bug or a twin wheel. IfH’,u) is a bug, therx is a
center-crosspath ¢H’,u). So(H’,u) is a twin wheel, and hende= 1 andN(u)NQ =q.
Since{u,x,X1,q } cannot induce a 4-holegq is not an edge. Sincgu,x3,x2,q} can-
not induce a 4-holel, > 1. Supposé’ = 1. If N(x;) N Q = &, thenH UQ induces a
3PC(x2, p1). SON(x1) NQ # @. Letgs be the node ofN(x;) N Q with highest index.
Then {x,x1,X3, P1,0s, ---,q;, U} induces a 4-wheel with center Soi’ > 1. But then
{u,X1,X2,%3,q1, Pir, ---, Pk, X} induces a 4-wheel with center SON(x3) NQ # @. This
completes the proof of Claim 1.

Claim 2: N(x1) NQ = 2.

Proof of Claim 2:Suppose; does have a neighbor @. By Claim 1,u andxz both have
neighbors iQ. Letgs (resp.q) be the node of with lowest index adjacent te; (resp.
u). If s<t, then{x,x2,X3,Uu,qs,...,q } induces a proper wheel with center Sos>t. In
particulart <1 ands> 1.

If X, has a neighbor i@\ g, then bothx; andu (sincet < |) have a neighbor i@\ g
and hencéQ\ q) UPU{x,u,x1 } contains a BC(x1,u). Sox; does not have a neighbor
inQ\ g, and hencd&(x1) NQ={q }.

Let H' be the hole induced b U {x1,x2}. SinceH’ Uxz cannot induce aRC(-,-),
(H’,x3) is a wheel, and hence it is a twin wheel or a bug. Siscel, (H’,x3) must in
fact be a bug. But theris of type d w.r.t. bugH’,x3), a contradiction. This completes
the proof of Claim 2.
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By Claim 1, letgs (resp.q;) be the node o with lowest index adjacent i (resp.u).
If s=1, then{x,x2,X3,u,0s,...,0} induces a proper wheel with centef a contradiction.
Sos> 1. By Claim 2, the node sQU {x1,X2, py, ---, Pk} induces a hole, say’. Nodexsz
must have at least two neighbors@y elseH’ Uxs induces a BC(x2,0s). So(H',x3) is
a wheel. By our assumptiqiii’, x3) cannot be a proper wheel, and sirsce 1 it cannot
be a twin wheel, hence it is a bug whegedoes not belong to the short sector(bif, x3).
But then nodeis of type d w.r.t.(H’,x3), a contradiction. O

Proof of Theorem 2.2.5Suppose not. By Theorems 4.2.2 and 4.3.3 and Lemmas 4.6.3
and 4.6.4 we may assume ti@atdoes not contain a proper wheel, a bug with a center-
crosspath, aBC(4, -) with a node of type d, nor a twin wheel with a node of type d.

We may assume th& contains a diamond induced by, sdy,v,a, b}, whereab ¢
E(G). LetS= NJ[u]\ {a,b}. SinceS cannot be a star cutset separatafyom b, there
is a direct connectioP = p1,...,px in G\ Sfrom ato b. If v has a neighbor i, then
PuU{a,b,u,v} induces a proper wheel with centerSoN(v) NP = &. LetS = N[u] \ v.
SinceS cannot be a star cutset 6 there is direct connectioQ = gy, ..., q fromvto P.
Let pi (resp.pi’) be the node oN(q; ) NP with lowest (resp. highest) index.

Suppose botta andb have a neighbor iQ\ q. Let R be a shortest path between
a and b in the subgraph induced byQ\ q) U {a,b}. Then PURU {a,b,u}
induces a BC(a,b). So one ofa,b does not have a neighbor @\ q. W.Lo.g.

N(b)n(Q\a) = 2.

Claim 1: N(b)nQ = 2.

Proof of Claim 1: Suppose not. Sbl(b)NQ = q;. Supposd = 1. Since there is no
4-hole,aq is not an edge. SindeuU{v,a,b,q;} cannot induce a proper wheel with center
qi, i =i’. If i =k, thenPU{a,b,u,v} induces a twin wheel with a node of type d. So
i < k. Butthen{ps,..., pi,q1,a,b,u,v} induces a 4-wheel with center Sol > 1.
SupposéN(a)NQ = @. If i =k, thenPUQU {a,b,u,v} induces a bug with centér
with a nodeu of type dc. Sd < k. But thenQuU {px, ..., pi,a,b,v} induces a BC(v,q).
SoN(a)NQ # @.
Suppose has a unique neighbor, say, in Q. If j =1, thenQU {a,b,u,v} induces
a 4-wheel with centev. Soj > 1. But thenQU {a,b,v} induces a BC(v,qj). So
IN(a) NQ| > 2. LetH be the hole induced b® U {v,b}. Since there is no proper wheel,
(H,a) is either a bug or a twin wheel. (H,a) is a bug, them is either its center-crosspath
or a node of type dc. S@H,a) is a twin wheel. But then is a node of type d w.r.tH,a).
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This completes the proof of Claim 1.

SupposdN(a) NQ=@. If i =i’, thenPUQU{a,b,v} induces a BC(v, p;). Soi’ > i.
If pipy is an edge, theRPUQU {a,b,v} induces a BC(q pipi,v) with a node of type
dd. Sopipy is not an edge. If =1, thenPU {a,b,v,q:} induces a proper wheel with
centerg;. Sol > 1. But thenQU {a,b,v, ps,..., pi, P{, ..., Pk} induces a BC(v,q). So
N(a)NQ# 2.

LetH be the hole induced bQ U {b,v, pi, ..., px}. Note that sinca has a neighbor in
Q, it has at least two neighbors . SupposéN(a) "H| = 2 and letV be the neighbor
ofain H\v. If v is an edge, thehl U {a,u} induces a 4-wheel with center SovV is
not an edge. But theH Uainduces a BC(v,V). Therefore, sincéH,a) cannot induce a
proper wheel(H, a) is either a bug or a twin wheel. (H,a) is a bug, then is either its
center-crosspath or a node of type dc.(Boa) is a twin wheel, and henaeis a node of
type d w.r.t.(H,a). O
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Decomposing Connected Diamonds

5.1 2-joins and blocking sequences

In this section we consider an induced subgriipdf G that contains a 2-joiki; |Hz. We
say that a 2-joirH;|H, extendsto G if there exists a 2-join o5, H|H; with Hy C H;
andH, C Hé. We characterize the situation in which the 2-jointbfioes not extend to a
2-join of G.

Definition 5.1.1 A blocking sequenctr a 2-join H;|H, of an induced subgraph H of G
is a sequence of distinct nodes X ., X, in G\ H with the following properties:
(1) (i) Hi|H2UXq is not a 2-join of HU Xy,
(i) H1UxXp[H2 is not a 2-join of HUX,, and
(iii) if n > 1 then, fori=1,...,n—1, Hy UX|H2UXj11 IS not a 2-join of HU
{Xi, %41}
(2) X1,...,% is minimal w.r.t. property (1), in the sense that no sequeqge..,X;j,
with {Xj,,...,Xj, } C {X1,...,%n}, satisfies (1).

Blocking sequences for 2-joins were introduced in [13], wehie following results
are obtained.

LetH be an induced subgraph Gfwith 2-join H1|H, and special setg\;, Ay, B1,B>).
In the following results we leB= X, ..., X, be a blocking sequence for the 2-jdia|Hz
of an induced subgragt of G.

67
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Remark 5.1.2 H1|H2 U u is a 2-join of HUu if and only if Nu) " Hy = @,A; or B;.
Similarly, Hy Uu|Hz is a 2-join of HU u if and only if Nu) "Hz = &, Az or By.

Lemma 5.1.3If n > 1 then, for every nodejxj € {1,...,n—1}, N(xj) "Hx = &,A; or
B>, and for every nodejx j € {2,...,n}, N(xj) N"Hy = @, A or By.

Lemma 5.1.4 Assume n> 1. Nodes x X+ 1, 1 <i <n-—1, are not adjacent if and only if
N(Xi) NHy; = A and N(Xi+1) NHy = Ay, or N(Xi) NH; =By and N(Xi+1) NH; =Bs.

Theorem 5.1.5Let H be an induced subgraph of a graph G that contains a 24hit..
The 2-join H|H, of H extends to a 2-join of G if and only if there exists no biogk
sequence for ifHz in G.

Lemma5.1.6 Forl<i<n, HiU{X1,...,Xi—1}|H2U{Xi+1,...,X} is a 2-join of HU(S\

{xi})-

Lemma5.1.7 If xix, n >k >i+41> 2, is an edge, then either %) H, = A, and
N(x«) "Hy = Aq, or N(x) NHz = Bp and N(x) N Hy = B;.

Lemma 5.1.8 If X; is the node of lowest index adjacent to a node gftHen X, ..., X;
is a chordless path. Similarly, ifj@s the node of highest index adjacent to a node gf H
then x,..., Xy is a chordless path.

Theorem 5.1.9 Let G be a graph and H an induced subgraph of G with a 2-joifH

and special set§A1,A2,B1,By). Let H be an induced subgraph of G with 2-joir{ H>

and special setgA], Ax, B, By) such that ANA; # @ and B NBy # @. If Sis a blocking
sequence for IjH2 and H, N S+# &, then a proper subset of S is a blocking sequence for
H1|Ha.

5.2 Decomposing connected diamonds

In this section we prove Theorem 2.2.6.

Recall that a connected diamond is a gairQ), whereZ = 3PC(x1x2x3,y) andQ =
di,---, Ok, K> 2, is a chordless path disjoint fromsuch that the only nodes §f adjacent
to 2 areq; andqgk. Furthermorey; is of type t2 w.r.t.> adjacent to, say; andxz and one
of the following holds:

(i) qxis of type p2 such thall(g) NV (Z) CV(Ryy) \ {X2} , or

(i) gk is of type d adjacent tg, y1,y3 such thai;y andxsy are not edges.
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Figure 5.1: Different types of connected diamonds.

We rename some nodes and introduce some additional notagoa), = o and leta;
be the closest neighbor af to x; in B,y. Letby = x, b} = a1, by = x1 andb’, = x3. Now
let Ay = {al,a’l}, A=V (Z)N N(a’l) \{a1}, B1 = {bl,bll} andB; = {bp, b’z} LetA=
A1UAz andB = B; UB,. Whena is of type d w.r.t.Z, Ay has cardinality 2 and le, = y1,
a, = ya, Whereas wheg is of type p2 A, has cardinality 1 and we leb = &, denote its
unique node. The connected diamd&dQ) is denoted byH (A, A2, B1,B>). LetRbe the
subpath oP,,y betweera; andb;. Now letH; = RUQ andH, = H (A1, A2,B1,B2) \ H1.
Let P,,p, be the chordless path froes to by in Hz \ b), and definePa/Zb/2 similarly. When
|Ao| = 2, Py,p, and Py, are node-disjoint paths. WheAg| = 1, these two paths are
identical betweem, = &, andy. In this case, we refer to trey-subpath oP,,p, asPa,y
path, and thdyy-subpath (respbly-subpath) 0P, (resp. Paxszz) ash,,y (resp. Pb/zy)
path. LetPyp, be the chordless path froeq to by in Hi\ &}, and definePy; similarly.
The two path$,, andPyy of Hi we call theside-1-paths of Hand the two pathB,b,
andPy , of Hy we call theside-2-paths of HWe say thaH is shortif out of all connected
diamonds ofG, the two side-2-paths ¢l have as few nodes in common as possible, i.e.
there is no connected diamohd of G such that the side-2-pathsldf have fewer nodes
in common that the side-2-pathsldf

We denote byX; the FPC(ajajap,by) induced byH; UP,,, and by X, the
3PC(a1a8,, b,) induced byH; UPyy, . 2’ denotes theBC(byb,b), y) when|Az| = 1 and
the PC(byb,b),a]) when|Ay| = 2 induced byH \ Py, We denotev,, (resp. vy,) the
neighbor ofa; (resp. by) in Pyp,, and we define/axl, Vi, » Vioy» Vi, similarly. If |Ag] =2,
then we letv,, (resp. va/z) be the neighbor ofy (resp. a,) in Py, (resp. Paxszz). If
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|A2| =1 anday #y, then we letvy, be the neighbor oy in Pa,y. Finally, when|As| = 1,
we letyp,, Yb, be the neighbor of in Ry, and R, respectively. If{Ay| = 1 andy # ap,
we lety,, denote the neighbor gfin Rg,.
A segmenbf H is a pathP of H whose endnodes are of degree at least 3, whose
intermediate nodes are all of degree 2, &id not an edge oG[A] or G[B].

Lemma5.2.1 Let G be a 4-hole-free odd-signable graph that does not hapeoper
wheel, a bug with a center-crosspath nor a bug with type sZznaét H A1, A, B1,B>)
be a short connected diamond of G. A node u gfHGthat has a neighbor in H is one of
the following types.

pi, fori=1,2,3 . Forsome segment S of H{INNH C SandN(u)NH| =i. Fur-
thermore, if i> 2, then u has two adjacent neighbors in H. Also
ifi =3, |A2| = 1and S= P,,y, then Nu) NH induces a path of

length 2.

Aq - N (U) NH=A.

A : N(uynH=A.

a : |A2] =1 and u has two neighbors in H, the node of @nd one
node of A.

B : N(uynH =B.

By : N(U) NH = By.

t3 . Node u has three neighbors in H: either two nodes p&Bd one
of By; or |Az| = 2 and u is adjacent to two nodes of And one
node of A.

d : |A2] =1 and u has three neighbors in H: ify ap, then Nu) N

H={y, Yb27yb’2}’ and otherwise the neighbors of uin H are y and
two nodes fron{ya,, Yo, Y }-
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Ad

H1-crossing

H»-crossing

pseudo-twin of a :

node of B

pseudo-twin of a :

node of B

pseudo-twin of a :

node of A

pseudo-twin of a :

node of A

Aol =1, y= a, and u has four neighbors in H:1aa/,a, and
1
either y,, or Yo, -

Either Nu) "H = {bs,v1,Vv>} where ¥V, is an edge of gb& \ by
or N(u) NH = {b,v1,v2} where yv, is an edge of By, \ bs.

If [A2| = 1, then either y, # by, and N(u) "H = {yp,,Vv1,V2}
where V> is an edge of P\ 'y, or y, # b, and Nu)nH =
{ybxz,vl,vz} where vV, is an edge of By \y. If |As] =2, then
N(u)NH = {az,v1,v2} where \v; is an edge of Py, \ &, or
N(u)NH = {a5,v1,vo} where (v, is an edge of By, \ a.

We define pseudo-twin of bN (u) "H = BpU{v1,V»}, where ¥
and v are nodes of By, . Furthermore, if i ¢ {vq,v-}, then v,
is an edge. Pseudo-twin of is defined symmetrically.

We define pseudo-twin ofbN (u)"H = BU{v}, where if|/Az| =

2, then v is a node of B, \ by, and if |A>| = 1, then v is a node
of R,y \ b2 and not both yband yu are edges. Pseudo-twin gf b
is defined symmetrically.

We define pseudo-twin of aN (u) NH = Ay U {a],v1,V2}, where
v1 and v are nodes of By,. Furthermore, if a ¢ {v1,v>}, then
|Az| = 1 and vV, is an edge. Pseudo-twin of & defined sym-
metrically.

We define pseudo-twin opalf |Az| =2, then Nu)nH =AU
{v1,Vv2}, where y and v are nodes of B,. Furthermore, if a ¢
{v1,w2}, then v, is an edge. IfAz] =1and & #y, then Nu) N
H=AiU{azVa}. If |A2]=1and & =y, then NuynH =
ArU {a,v1,Vo} where ¥ € Ry \y, v € Ryy\y, at least one

of {v1,v»} is adjacent to y, and u is adjacent to at most one of
{by,1,}. Pseudo-twin of fis defined symmetrically.
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pseudo-twin ofy : If y=a; or ay, then pseudo-twin of y is defined as corresponding
pseudo-twins above. So assurg = 1and & #y. Then Nu)N

H = {y,Yay,V1,V2} where v € Ry \y, w € Ry, \y, at least one
of {v1,v»} is adjacent to y, and u is adjacent to at most one of

{b2, 10}

sl : N(u)NH ={vy,v2} where eitherye B; and » € By; or |Ag| =2,
vi € Ajand w € As.

s2 . |Agl =1, y#aand Nlu)NH = {by, b, v1,v2} where yvs is an
edge of By. Furthermore, if y=v; or v,, then yb and y3 are
not edges.

s3 . |Az| = 1and either Nu)NH = ByU{ap,a}, b1} and &b, is not

an edge, or Nu)NH = ByU{ap,a1,b}} and ab, is not an edge.

s4 . |Ag| =1, apbp and b, are not edges, and (W) "\H = AUB;.

Proof: We first prove the following two claims.
Claim 1: If [Az| =1, thenN(u) NH # {Y, Yb,, Yy, b1} andN(u) NH # {y,ybz,ybfz,b’l}.

Proof of Claim 1: Assume not. By symmetry, w..0.g. assume that
N(uynH = {y,ybz,yb/z,bl}. If yb, (resp. yb,) is an edge, then by definition of a
connected diamonyl, (resp.yby) is not an edged \Pa’lb’l induces a bug with centés
(resp.b),) andu is of type s2 w.r.t. this bug, contradicting our assumption.

Soyb, andyl, are not edges, and hengg # b, andyy, # b5. So(H \ Pyp,) U{by,u}
induces a connected diamohtd(A, A, By, Bz) whereA; = {u,y} andA; = {yb,, Y, }-
The two side-2-paths df’ have fewer nodes in common than the two side-2-patlh$, of
contradicting our assumption. This completes the prooflaint 1.

Claim 2: If [IN(u)NA| > 2 and|N(u) N B| > 2, thenu is of type s3 or s4 w.r.t.

Proof of Claim 2: Assume thafN(u) NA| > 2 and|N(u) N B| > 2. We first show that
|A2| = 1. Assume not. First suppose thétu) "B, = B,. LetH’ be the hole induced

by Payb, U Pa, Uaj. Since(H’,u) cannot be a proper wheelN(u) N (AU &))| < 1.
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By symmetry,|N(u) N (A2Uag)| < 1. From these two inequalities, and the assumption
that [N(u) NA| > 2, it follows thatN(u) N A = A;. By symmetryN(u)NB = B;. In
particular, (H’,u) is a bug and hencll(u) "H’ = {&],by,b,}. By symmetry,N(u) N
(Pagb, U Payh, Ub2) = {a&1,a],bp}. In particular,N(u)nH = A; UB,. But thenX and

u contradict Lemma 4.3.1. Thereford(u) N B, # B,. By symmetry we may assume
that[N(u) N Bp| < 1 and|N(u) NA1] < 1. Since{by,by,b},u} and{b}, by, b}, u} cannot
induce 4-holesgN(u)NBy| > 1, and by symmetryN(u) NAs| > 1. HenceN(u)NBy| =1
and|N(u) NA;| = 1. W.l.o.g. N(u) "By = bp. By symmetry we may assume thats
adjacent tdy;. Since{b), by, b}, u} cannotinduce a 4-hol®&|(u) "B = {by,b}. Suppose
thatu is adjacent t@;. Then it is not adjacent ta). By Lemma 4.3.1 applied t& and
u, N(u)NX = {by,bp,a1,a,}. But thenX, andu contradict Lemma 4.3.1. Swois not
adjacent tay, and hence it is adjacent &. But thenX’ andu contradict Lemma 4.3.1.
Therefore|Ay| = 1.

Next we show thalN(u) "B, = B,. Assume not, i.e. assume that(u) N By| < 1.
Since{by, b1, b}, u} and{b), by, b}, u} cannot induce 4-holed\(u) NBy| > 1, and hence
IN(u)NBy| = 1. W.l.o.g. N(u) "Bz = bp. By symmetry we may assume w.l.o.g. that
is adjacent tdy;. Since{b,,b1,b},u} cannot induce a 4-hole, it follows thif(u) N\B =
{b1,b2}. Since|N(u)NA| > 2 and|Az| = 1, u is adjacent tay or ap. But thenZ and
u contradict Lemma 4.3.1 (note that by our assump@otioes not contain a bug with a
center-crosspath, and se@annot be of type s1 w.r.E). ThereforeN(u) N B, = By.

Suppose thalN(u) NAy = A;. SincePyp, U Py U {bp,u} cannot induce a proper
wheel, N(u) N (Pyp, U Py, ) = A1. By Lemma 4.3.1 applied t& andu, N(u)NZ =
{b2,b,,a1,87}. ThereforeN(u) NH =By UA. If ayb, is an edge, thel is a bug andi
is of type s2 w.r.tX, a contradiction. Sayb; is not an edge, and by symmetry neither is
aob,, and therefore is of type s4 w.r.tH.

Now we may assume th&t(u) NA; # A1, and so w.l.o.gN(u)NA = {a;,ax}. By
Lemma 4.3.1 applied t& andu, N(u) N Z = {by,b},a;,a2}. By Lemma 4.3.1 applied to
2  andu, N(u) N Y = {by,b,,b},as}. HenceN(u) NH = By U {b),a1,a,}. If axby is an
edge, therk is a bug andu is of type s2 w.r.t.Z, a contradiction. Sayb, is not an edge
and henca is of type s3 w.r.tH. This completes the proof of Claim 2.

By Claim 2 we may assume that eith&(u) NA| <1 or [N(u)NB| < 1. We may
assume thaN(u) NH| > 2, since otherwisa is of type p1 w.r.tH. Suppose that is not
strongly adjacent t& nor X’. Thenu has exactly one neighbor B,,, and one irPa/lul.
By Lemma 4.3.1 applied t&; andu, N(u) N X3 = A4, and hencaui is of type A; w.r.t.
H. By symmetry betweel andX’ we may now assume thatis strongly adjacent ta.
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SinceG does not contain a bug with center-crosspattannot be of type s1 w.r.E (nor
any other PC(A,-)). So by Lemma 4.3.1 it suffices to consider the following sase

Case l:uis of type t3 w.r.t.2.
By Lemma 4.3.1 applied t&1, N(u) NH = {by,by,b,} or B and henceis of type t3
or Bw.rt.H.

Case 2:uis of type t2 w.r.t.2.

SupposdN(u)NX = {by,by} or {by,b5}, w.l.o.g. sayN(u)NZ = {by,by}. Since there
is no 4-holeub; is not an edge. Then by Lemma 4.3.1 applied{@ndu, N(u) N Pajb, =
@ and hencei is of type s1 w.r.tH. Suppose now thad(u) N Z = {by,b,}. By Lemma
4.3.1 applied t&’, uis of typeBy, t3 or a pseudo-twin df} w.r.t. H.

Case 3:uis a pseudo-twin of a node ¢bq, by, b5} w.r.t. 2.

If [N(u) N {bs,bp,b5}| =2, then letv; andv, be the two adjacent neighbors win
2\ {b1,by,b,}. Otherwise letv; = v, be the neighbor ofi in X\ {by,by,b5}. Since
IN(u)NB| > 2, by our assumptiofN(u) NA| < 1.

First suppose thaty, v, are contained in thbyy-path of~. ThenN(u) NB, = By. If
|A2| = 2, then by Lemma 4.3.1 applied & andu, N(u) NPy, = @ and hencei is a
pseudo-twin ofo; w.r.t. H. So we may assume thghy| = 1. Since|N(u)NA| <1,vq
andv, are contained in eithd®yp, or in Pa,y. If {vi,v2} C Pyp,, then by Lemma 4.3.1
applied toX; andu, N(u) NPy, = @ and henceu is a pseudo-twin oby w.r.t. H. So
assume thafvy,vo} C P,,y. Suppose thativs is an edge, i.e|N(u) N {bg,by,b,}| = 2.
By Lemma 4.3.1 applied t&; andu, N(u) NPy = @. If y ¢ {v1,V}, thenuis of type
s2 w.r.t.H. So assume w.l.0.g. thgt= v». W.l.0.g. ybp is not an edge, and suppose that
yb, is an edge. LeH’ be the hole induced bi,,,, U Pa,n,. Then(H’,b)) is a bug and
uis of type s2 w.r.t.(H’,b,). So neithetyb, noryb, is an edge, and henceis of type
s2 w.r.t.H. We may now assume thef = vy, i.e. [N(u) N {bg,b2,b5}| = 3. Thenuby is
an edge. Note that by our assumptiarcannot be adjacent to bo#tj anday, and hence
by Lemma 4.3.1 applied ta" andu, N(u) NPy = by. If vi #y, thenHi UP,,p Uu
induces a connected diamoHRd(Aq, A2, B1, B,) whereB,, = {b,,u}, whose side-2-paths
have fewer nodes in common than the side-2-paths$ @fote that the common nodes of
side-2-paths oH are the nodes d?,,y, and the common nodes of side-2-path$iofare
the nodes of theyvi-subpath ofy,y), a contradiction. Hencey =y. W.L.o.g.yb, is not
an edge, and hencees a pseudo-twin ob, w.r.t. H.

We may now assume thet, v, are contained in thiey-path ofZ or theb,y-path ofZ.
By symmetry we may assume w.l.0.g. thatv, are contained in thieoy-path ofZ. Then
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u is adjacent td; andb’,. First suppose thdfy| = 1. If [N(u) N {by,by,b5}| =2, then
by Lemma 4.3.1 applied tB; andu, N(u) NPy = @, and hencePy,p, \ Vb,) U Py, U
{b1,b5,u} contains a 4-wheel with centéf. So|N(u) N {bs, b, b5} =3, i.e. vi =v,
anduby is an edge. Note that by the argument in the previous paragvepmay assume
thatvy #y. By Lemma 4.3.1 applied t&’ andu, N(u) N Pyy, = b}, and hencei is a
pseudo-twin ob, w.r.t. H.

We may now assume thghy| = 2. Since|N(u) NA| < 1, {vi,V2} C Pyp,. If IN(U)N
{b1,bp,b5}| = 2, then by Lemma 4.3.1 applied @& andu, N(u) N Py, = @, and
hence(Payb, \ Vb,) U Py, U {b1,b5,u} contains a 4-wheel with centéb. So [N(u) N
{b1,bp,b5}| =3, i.e. vi = v, anduby is an edge. Since; € Py,p,, by Lemma 4.3.1
applied to2’ andu, N(u) N Py, = b, and hencei is a pseudo-twin ob, w.r.t. H.

Case 4:uis a pseudo-twin of w.r.t. 2.

First suppose that all nodes Nfu) N (Z\y) are adjacent tg. If |Az| = 2, then by
Lemma 4.3.1 applied t&;, N(u) NPy, = a; and hencau is a pseudo-twin ofy w.r.t.
H. So assume thaf;| = 1. W.l.o.g.yhy is not an edge. 1& =y, then by Lemma 4.3.1
applied toZs, N(u)N Pajp, = aj, and hence is a pseudo-twin oé, w.r.t. H. So we may
assume thaty #y. By Lemma 4.3.1 applied t&;, N(u) N Pyp, = &, and hencelis a
pseudo-twin ofy w.r.t. H.

Now assume that some nodeNfu) N (X y) is not adjacent ty, and letv be such
a node. Suppos@y| = 2. If vis a node ofP,,,, then by Lemma 4.3.1 applied &p,
N(u)N Pajb, = a;. But then Lemma 4.3.1 applied & andu is contradicted. So, by
symmetry, we may assume thais a node oP,,p,. Then by Lemma 4.3.1 applied kg,
N(u) NPy = a; and hence is a pseudo-twin ofy w.r.t. H.

Now assumeAy| = 1. If vis a node ofP,,p,,, then by Lemma 4.3.1 applied &,
v="Db; andN(u)N Py b, = @, contradicting Claim 1. So we may assume w.l.0.g. that
a node ofP,,,. Supposey = a,. Thenu is adjacent ta;. By Lemma 4.3.1 applied to
2, N(un Paby, = aj. Since|N(u) NA| > 2, by our assumptiofN(u) NB| < 1, and sau
cannot be adjacent to both andb/,. Henceu is a pseudo-twin of; w.r.t. H. So assume
thaty # ap. By Lemma 4.3.1 applied tB1, N(u) N Py, = &. Suppose that is adjacent
to bothb, andb),. Thenyb), is an edge antli(u) "H = {by, b}, y,ya, } (since by definition
of connected diamond it is not possible that bgith andyb,, are edges). But thehis a
bug, andu is of type s2 w.r.t. it, a contradiction. Socannot be adjacent to both and

5, and hence is a pseudo-twin of w.r.t. H.

Case 5:uis of type d w.r.t.z.
SupposeAy| = 2. If N(u)NZ = {a1,ap,Vy, }, then by Lemma 4.3.1 applied kg and
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u, ud, is an edge. But then, sines, is not an edge, Lemma 4.3.1 applieddpandu
is contradicted. SN(u) NX # {ag,ap, vy, }. By symmetryN(u) N X # {a1,85,Va, }. SO
N(u)NX = {a,ap,a,}. Thenud, is an edge, els¢u,ay,a,,a;} induces a 4-hole. By
Lemma 4.3.1 applied ta,, u has at most two neighbors m&b’l' Souis of type A w.r.t.
H or it is a pseudo-twin o w.r.t. H.

Assume now thaiy| = 1. Suppose is adjacent to botk, andybxz. So the neighbors
ofuin Z arey, Yoy Yo, - By Lemma 4.3.1 applied thy, the only node OPa’lb’l that may be
adjacent taiis b}. Then by Claim 1ub is not an edge and henaeés of type d w.r.t.H.
So we may assume thatis not adjacent to one node {)ybz,yyz}. Suppose thag = ay.
Supposal is adjacent t@y, Y, yb,. By Lemma 4.3.1 applied t&,, ug is an edge and no
other node OPaiVl is adjacent tas, and hence is of type Ad w.r.t.H. Similarly, if uis
adjacent ta®1, Y, Yo, then by Lemma 4.3.1 applied &, u must be of type Ad w.r.tH.
Assume now thay # ap. If uis adjacent tg/,Ya,,Yn, (resp.y, yaz,ybfz), then by Lemma
4.3.1 applied t&; (resp.Z>), uis of type d w.r.tH.

Case 6:uis of type p3t w.r.tz.

Suppose thal(u) NZ is contained iR, 5, Or |Az| = 2 and it is contained iRy, Or
Payby,» OF |A2| = 1 and itis contained iR,y Or B,y or Fhyy- Then by Lemma 4.3.1 applied
to 21 or 2, N(u)N Pap, = 2, and henca is of type p3 w.r.t.H. So we may assume
w.l.o.g. thatu is adjacent to botla; anda,. Then by Lemma 4.3.1 applied & or 25,

N(u) NPy = aj, and hencel is a pseudo-twin ofy or ap w.r.t. H.

Case 7:uis of type p3b w.r.t2.

Let N(u) N Z = {v,v1,V2} such thatsVv, is an edge. Suppose thab| = 2. If vy, =
ajap, then by Lemma 4.3.1 applied &, N(u)N Py, = aj;, and hencei is a pseudo-
twin of ap w.r.t. H. Similarly, if vivo = a1a,, thenu is a pseudo-twin o, w.r.t. H. If
{V,v1,Vo} C Py, OF Payp, OF Pa’ztfz’ then by Lemma 4.3.1 applied 3 or 2, (depending
on which path ofz the neighbors ofi are contained in)N(u) N Py, = @ and henceu
is of type p3 w.r.t.H. So we may assume w.l.o.g. that a; andviv, is an edge of
Pab, \ @. By Lemma 4.3.1 applied tBy, N(u) N Pajb, = aj, and hencei is a pseudo-twin
of ap w.r.t. H.

Suppose now thad,| = 1. If vyvo = azap, then by Lemma 4.3.1 applied @,
N(u) NPy, = a;. Suppose that is contained inPay. Note thatvay, ¢ E(G). Then
(H\ a2) U{u} contains a connected diamohid(A1, A5, B1,By) whereA, = {u}. Since
vap is not an edge, the two side-2-pathdifhave fewer nodes in common than the two
side-2-paths of, contradicting our assumption. Somust be contained iRyp,, and
henceu is a pseudo-twin ofy w.r.t. H.
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So we may assume thaiv, # ajap. Supposev is a node ofP,p,. If vivo is an
edge ofPyp,, then by Lemma 4.3.1 applied &, N(u) NPy = @ and henceu is of
type p3 w.r.t.H. Assume now that,Vv; is an edge of,,y. By Lemma 4.3.1 applied to
%1, v=Dby andN(u) N Pa’lb'l = @. SayVv, is the neighbor oli in P,,y closer toy. Then
(H \ Pyb,) U{b1,u} induces a connected diamoHd(A}, A, B1, By) whereA] = {v1,u}
andA, = {vo}. The two side-2-paths dfi’ have fewer nodes in common than the two
side-2-paths oH, contradicting our assumption.

We may now assume thats not inP,,,,. Suppose thaty v is in Py p,. SOV € Pa,y. By
Lemma 4.3.1 applied thy, v=y, yb, € E(G) andN(u) NPy = @. Sinceyb, € E(G), by
definition of connected diamongiis, cannot be an edge. Th&p, UPy  UPa,yU{u, b5}
induces a BC(aya)ap, uvivz) or a 4-wheel with centesy. Sovivs is not an edge oy, ,
and hencev,vi, vz} C P for someP € {Pyy, R, Ry, }. Then by Lemma 4.3.1 applied
to X1 or X3, N(u) NH = {v,v1,v2}. If P = P,,y, thenH Uu contains a connected diamond
H’(A1,A2,B1,B>) that containss and whose side-2-paths have fewer nodes in common
than the side-2-paths &f, a contradiction. S® € {R,, Pyuz}, and hencei is of type p3
w.r.t. H.

Case 8:uis of type p2 w.r.ts.

Letvyvo be the edge dfl(u) NX. SupposeAy| = 2. If vivs is an edge oP,,p, , then by
Lemma 4.3.1 applied t&,, u is of type p2 or arH;-crossing w.r.tH. Suppose/;v» is an
edge ofPy,p, Or Pa’zb’z’ w.l.o.g. say1V; is an edge oP,,,,. Then by Lemma 4.3.1 applied
to X1 andu, b is the only node oPaxlbxl that may be adjacent w If ub) is not an edge,
thenu is of type p2 w.r.tH. So assumabj is an edge. Ifib, is an edge, thenis of type
s1 w.r.t. ¥/, contradicting our assumption. $i», is not an edge. Hendd, U {u,b’l,al}
induces a BC(byb,b}, vivou). We may now assume w.l.o.g. tHdfu) N = {a1,a}. If
u does not have a neighborlF@/la/l, thenu is of type s1 w.r.tH. So assuma does have a
neighbor inbelafl. By Lemma 4.3.1 applied to andZ,, and sincau cannot be of type s1
w.r.t. Zp, N(U) NPy, = &, and henceiis of type t3 w.r.tH.

Now assume thdiy| = 1. If vivo is an edge 0Py, , then by Lemma 4.3.1 applied
to 23, uis of type p2 or arH;-crossing w.r.t. H. SupposerV; is an edge oR, or
Pyb&, w.l.o.g. saw1V> is an edge oR,,. Then by Lemma 4.3.1 applied ¥ and sinceu
cannot be of type s1 w.r.&’, eitherN(u) "Ry 5 = @, ory = a; andN(u) N Ry 4 = &.

In the first caseu is of type p2 w.r.t.H, and in the second case, by Lemma 4.3.1 applied
to 2; andu, nodeu is of type s1 w.r.t.21, contradicting our assumption. Now assume
thaty # ap andvyvo is an edge oP,,y. By Lemma 4.3.1 applied t&; andu (and since
N(u)NZ = {vq,v»}), the only node o \ {vq,Vv,} that may be adjacent wis b}. If uis
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not adjacent td}, thenu is of type p2 w.r.tH. Suppose thai is adjacent tdy;. W.l.0.g.

V2 is closer thanv; toy on Pay. So (H \ Pyy ) U {b],u} induces a connected diamond
H'(A], A, B1,B2) whereA] = {vq,u} andA, = {v»}. The two side-2-paths dfi’ have
fewer nodes in common than the two side-2-pathsiptontradicting our assumption.
Finally suppose thatl(u) "X = {a;,a2}. By Lemma 4.3.1 applied t&;, u is of type a,

A or a pseudo-twin ofi] w.r.t. H.

Case 9:uis of type crosspath w.r.k.

Let N(u)NZ = {v,v1,Vv2} such that/;v; is an edge. First suppose thAg| = 2. Note
thatv € {ap,&,,V,, }. Suppose that = v,,. Then by Lemma 4.3.1 applied & (in the
case wherev; is an edge oP,,p,) or 2, (in the case wherg,v; is an edge oPa/zb/z),
aiby is an edge. But then is the center-crosspath of bdg Sov = a, or &, w.l.o.g.
sayVv = ap. SupposeVv; is an edge oPyp,. Then by Lemma 4.3.1 applied kg andu,
eitheragby is an edge ant(u) N Pap, = @, or N(u) N Pab, = a;. In the first case is
a center-crosspath of big, a contradiction. SN(u) NPy, = ay, and henc&, andu
contradict Lemma 4.3.1. Sqv, is an edge oPa/ZUZ. Then by Lemma 4.3.1 applied B,
uis anHy-crossing w.r.tH.

Now assume thg#\;| = 1. Suppose that ¢ {ybz,yb/z}. So w.l.o.gv1v» is an edge of
P,. If y=ap, thenv=a; and by Lemma 4.3.1 applied &, u is a pseudo-twin o&;
w.r.t. 2y, i.e. N(U) NPy, = aj. Letvy be the neighbor afiin Py, that is closer tdy,, and
let P be thebzvi-subpath 0Fy,p,. ThenPU Py p, U Py UP,,p, Uuinduces a connected
diamondH’(Aq, A, By, By), whereA, = {ap,u}. The side-2-paths df’ have fewer nodes
in common than the side-2-pathstdf contradicting our choice dfi. Soy # a,. Then
V=Yg, and by Lemma 4.3.1 applied B, N(u) "H = {v,v,vo}. But then(H \ y,,) Uu
contains a connected diamond whose two side-2-paths haee fe@des in common than
the side-2-paths dfl, contradicting our assumption.

So w.l.o.gv =yj,. Since there is no bug with a center-crosspglty,is not an edge.
Suppose that,v, = ajap. Then by Lemma 4.3.1 applied &y, N(u) N Pallbll = a}, and
henceN(u)NH = {ay,a},a, Yu, }- Note thalya is not an edge, elsfgy, ay, u,yp, } induces
a 4-hole. Sa(H \ P,,y) U {y,u} induces a connected diamo#t(A;, A}, B1,B2) where
A, = {u}. Sinceya is not an edge, the two side-2-pathstdf have fewer nodes in
common that the two side-2-pathstéf contradicting our assumption. Sgv, # aja.

Suppose that;v; is an edge oP,,. Then, by Lemma 4.3.1 applied kg, N(u) N
Pa’lb’l = @ andv is adjacent td;. Soyp,by is an edge. Nodg is not adjacent tdd,
otherwise{y, yn,, b2, 05} induces a 4-hole. But thelfyp, U Py U (Pagh, \ b2) U {u, b5}
induces a BC(ajajap, uvivo) or a 4-wheel with centea;. Sovivs is not an edge of
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P,,b,- Then by Lemma 4.3.1 applied ¥, N(u) "H = {v,v1,v»}. Note that since neither
{U,Yb,,¥,v1} nor {u,yy,,y,V2} can induce a 4-hole, neithegy nor voy is an edge. If
ViVo is an edge on/zy, thenu is anHy-crossing w.r.t. H. So assume that;v, is an
edge ofP,,y. Letvs be the neighbor ofi in P,,y that is closer taap, and letP be the
apv1-subpath oFy,y. ThenPU Py p, U Ry, URy, UPy py Uuinduces a connected diamond
H'(A1,A2,B1,B>). Sincewy is not an edge, the two side-2-pathdifhave fewer nodes
in common than the two side-2-pathshbf contradicting our assumption. O

The following three remarks follow from Lemma 5.2.1.

Remark 5.2.2 Let H(A1,A2,B1,B2) be a short connected diamond of G, and letu
G\ H. If IN(uynA| > 2and|N(u) NB| > 2, then u is of type s3 or s4 w.r.t. H.

Remark 5.2.3 Let H(A1,A2,B1,B7) be a short connected diamond of G. Let AU
BU{y} and let u be a pseudo-twin of v w.rt. H. Thé\ {v})U{u} contains a short
connected diamond’ihat containg (AUBU{y})\ {v})U{u}. We say that His obtained
by substitutingu into H.

Remark 5.2.4 Let H(A1, Az, B1,B2) be a short connected diamond of G. If u is of type p3
w.r.t. H, then HUu contains a short connected diamond Ay, Ay, By, By) that contains
u. We say that His obtained by substitutinginto H.

We first prove a usefull lemma about paths that conkigdb Hy, and then show that
if there is a node of type s1, s2, s3 or s4 whit.then there is a star cutset.

Lemma 5.2.5 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.
Let H(A1,A2,B1,B2) be a short connected diamond of G. LetRs, ..., pk, k> 1, be a
chordless path in GH such thato # N(p1) "H C Hi, @ # N(px) "H € Hp, and no
intermediate node of P has a neighbor in H. Then P is one ofat@ning types:

(i) N(p1)N"H = by or b}, and f is of type B w.r.t. H.

(if) pqis of type p2 w.r.t. H with neighbors infg, or Pab, and [x is of type B w.r.t.
H.

(ii) pyis of type A and g is of type p2 w.r.t. H and the following holds. |[K;| = 1,
then @ #y and N px) C Pay. If [A2] = 2, then N py) C Py,p, OF Py, -
(iv) p1is of type A and N(px) NH = ay or &.

(v) pris of type A and px is of type d w.r.t. H such that () NH = {y, ybz,yblz}.
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Figure 5.2: Nodes adjacent to a connected diamond.
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Figure 5.3: Pseudo-twins of a node/A {y}.
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Figure 5.5: Nodes adjacent to a connected diamond that destdrt cutsets.

Proof: AssumeG does not have a star cutset. Then by Theorems 4.2.2,4.3.3,4.3.5
and 4.3.6G does not contain a proper wheel, a bug with a center-crdssaaPC(4, -)
with a hat, a bug with an ear nor 3(A, -) with a type s2 node.

By definition of P and Lemma 5.2.1, the following hold.

(1) p1isoftype pl, p2, p3A1, or Hi-crossing w.r.tH.

(2) pkis of type pl, p2, p3, Ay, s2 orH,-crossing w.r.tH, ory ¢ {a;,ax} andpy is
a pseudo-twin of w.r.t. H.

By (1) we consider the following cases.

Case 1:p; is of type p1 w.r.tH.

W.l.o.g. p: is adjacent to a nodeof P, p,. LetRy (resp.Ry) be the subpath d?,,p,
with one endnode; (resp.bs1) and the othev.

Suppose thapy is of type p1 w.r.tH. W.l.o.g. py is adjacent to a node &,,. Then
eitherP is a hat ofz; (in the case where botmwa; andpgay are edges), dP is a hat ofz
(in the case where botbyb; and pyb, are edges), dP U P, p, U P,,p, induces a BC(-, -).

Suppose thapy is of type p3 w.r.tH, and letH’(A1, A2, B1, B2) be the short connected
diamond obtained by substitutimy into H. If k= 2, thenH’ and p; contradict Lemma
5.2.1. Sk > 2, and hencey_1 is of type p1 w.r.t.H’ and a contradiction is obtained in
the same way as in the previous paragraph.
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Suppose thapy is of type p2 w.r.tH. W.l.o.g.N(px) "H C Pyp,. LetH’ be the hole
induced byPa,p, UPap,. ThenP and Py p, are crossing appendices ldf, and hence by
Lemma4.1.2y = by. If |Ay] =2, thenH, UPU &) induces a BC(A, A) or a 4-wheel with
centerby. So|Ag| = 1. If N(px) "H C Ry, thenR,,y UR,, UP induces a BC(A,A) or
a 4-wheel with centeby. SON(px) NH C Pay. But then(H \ (Pyyp, \ b1)) UP induces
a connected diamond whose side-2-paths have fewer nodesniman than the side-2-
paths ofH, a contradiction.

Suppose thapy is of type d w.r.t.H. So|Az| = 1. Suppos&(px) "H = {y,ybz,yblz}.
Let H' be the hole induced b§a,p, U Payp,. ThenP andPy, are crossing appendices of
H’, and hence by Lemma 4.1.2= b;. Suppose one ofylp,yb,} is an edge, w.l.o.g.
sayybp € E(G). ThenP U Py, U Py U {by, L} induces a proper wheel with center
b,. So bothyb, andyb, are not edges. But théPUH, U Pa’ltfl Ub; induces a connected
diamondH’(A;, Ay, By, By), whereA] = {px,y}, andA; = {yb,, Yy, }, and the two side-2-
paths ofH’ have fewer nodes in common than the two side-2-path4,afontradicting
our assumption. So w.l.o.gN(px) "H = {V,Ya,,Yb,}. But thenP U Py p, U (Payb, \Y)
induces a BC(py, V).

Suppose thapy is of type s2 w.r.tH ory ¢ {a;,ax} andpy is pseudo-twin of/ w.r.t.
H. Thenpg has two nonadjacent neighborsRgy,. But thenPy,,, U Ps,p, UP contains a
3PC(py, V).

Suppose thapy is anHy-crossing w.r.t.H. First assume thdf,| = 2. W.l.o.g. pk
is adjacent tay. LetV be the neighbor ofy in Py, that is closer ta),, and letR be
theV'a,-subpath oFyy, . ThenRUPURyU&; induces a BC(py,a1). So|Az| =1. Let
H’ be the hole induced bR, U Ry, If eitherv s a; ory # ay, then(H’, py) is a bug
andR; U (P \ px) induces its center-crosspath or an ear, contradiction ssuraption.
Sov=a andy = a;. W.l.o.g. pkyp, is an edge, and hend&y,, U Py p, UP induces a
3PC(V,b,)-

So px must be of typeB, w.r.t. H. If v# by, thenZ, px and pa, ..., px_1 contradict
Lemma 4.5.2. So = b;, and hence (i) holds.

Case 2:p1 is anH;-crossing w.r.tH.

W.l.o.g. p1 is adjacent td;. Let R be the shortest subpath Bf,, with one endnode
b, and the other adjacent fm. If py is adjacent td, thenPURU {by,b}} induces a
3PC(p1,b2). If pxis adjacent td,, thenPURU{b), b} } induces a BC(p1,b’). So neither
pkb2 nor pcb is an edge, and hengg has a neighbor ity \ {by,b,}. By Lemma 4.5.1
applied toZ’, p; andP\ py, |A2| = 1 and the following holds. Nodp is either of type
p2 w.r.t. H with neighbors contained i,y or of type d adjacent tdy, ybz,ybxz}. But then
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in both case®,,,, UP,,n, UP induces a BC(A,A).

Case 3:p; is of typeA; w.r.t. H.

Note that if|Az| = 2, thenpy cannot be adjacent to both anda;, (else{px, az, a5, a; }
induces a 4-hole). Supose (iv) does not hold. Themhas a neighbor ity \ {ag,a}.
By symmetry, w..o.g.N(px) N (Pan, \ @2) # @. By Lemma 4.5.2 applied t&;, p; and
P\ p1, p« is of type p2 w.r.t.Z; with neighbors inP,,,,. So by (2),py is of type p2 or
d w.r.t. H or |A2| =1 andpyg is anHy-crossing w.r.t.H. If py is anHy-crossing w.r.t.
H, thenX,, p; andP\ p; contradict Lemma 4.5.2. Suppose thmtis of type d w.r.t.
H. By Lemma 4.5.2 applied t&,, p1 andP\ p1, px is of type p2 w.r.t. ;. Hence
N(px) "H = {y,ybz,yb/z} and so (v) holds. Finally suppose thatis of type p2 w.r.tH.
If |Ag| = 2, then (iii) holds. So assume th@,| = 1. Suppose that = a,. If py is not
adjacent toy, then(H \ yp,) UP contains a connected diamoRd(A, A, B1,B>), where
A’2 = {ap, p1}, and the side-2-paths &f’ have fewer nodes is common than the side-2-
paths ofH, contradicting our assumption. $pis adjacent ty and hencéy,,p, UPs,p, UP
induces a bug with centen, and Paszz \ @ is its center-crosspath. So# ap,. Suppose
thatN(px) "H C R,,y. If py is adjacent ty, thenZ, andP contradict Lemma 4.5.2. Su
is not adjacent tg. Then(H \ y,,) UP contains a connected diamoHhd(A;, A, B1, By),
whereA, = {ay, p1}, and the side-2-paths &f' have fewer nodes in common than the
side-2-paths oH, contradicting our assumption. 3¢(px) "H C P,,y and hence (jii)
holds.

Case 4:p; is of type p2 w.r.tH.

W.1.0.9.N(p1) NH C Py, .

Suppose thapy is of type p1, p2 or p3 w.r.tH. Then w.l.o.g.N(px) "H C Pap,.
Let H' be the hole induced bR, U Pa,p,. Note thatPyp is an appendix oH’ with
node-attachmerit, and edge-attachmeata,. By Lemma 4.1.1 applied tdl’, Pa’ltfl and
P, one of the following must holdpy is adjacent tdo, or N(px) "H = ax or N(px) NH =
Vi, If N(pk) "H = ap, thenXy, px andP\ py contradict Lemma 4.5.1. Suppose that
N(pk) "H = v,. Let Rbe a shortest subpath Bf,,, whose one endnode g and the
other is a neighbor opy in Pyp,. If |A2| =2, or|Az] = 1 andyb, is not an edge, then
Pagb, UPy p, UPURUD, induces a 4-wheel with centbg. So|Az| = 1 andyb, is an edge.
Thenyb, is not an edge, i.es, # Y, and sincg by, b, y, v, } cannot induce a 4-holey,y
is not an edge. But thePy,p, U (Pyb, \ b1) UPUD, contains a BC(vy,,Y). Thereforepy
must be adjacent top. If py is of type pl w.r.tH, thenZ, px andP\ px contradict Lemma
4.5.1. If pxis of type p2 w.r.t.H, thenH’ UP induces a BC(A,A). Sopy is of type p3
w.r.t. H. Let H'(A1,A2,B1,B>) be the short connected diamond obtained by substituing
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pk into H. By Lemma 5.2.1 applied tbl” and p1, k > 2. But nowP\ py is a path such
thatpy is of type p2 w.r.tH’, px_1 is of type p1 w.r.tH’, and we have already shown that
this cannot happen. So cannot be of type p1, p2 nor p3 w.tH.

Suppose thapy is of type d w.r.t. H. W.L.o.g. pk is adjacent 0, and hence
P U Py p, UPaghy induces a BC(A,A). Sopy cannot be of type d w.r.H.

Suppose thay ¢ {a;,ap} and py is a pseudo-twin of w.r.t. H. Then w.l.0.g.px is
not adjacent tds,. LetH’ be the hole contained b, U (Pab, \ Y) U Pk ThenH’, Py
andP\ px contradict Lemma 4.1.2. Sg cannot be a pseudo-twin gfw.r.t. H.

If pg is of type s2 w.r.t.H, then(H’, py) is a bug, whereH’ is the hole induced by
Pa,b, U Payb,, andP\ py is its center-crosspath, a contradiction. g@annot be of type s2
w.r.t. H.

Suppose thapy is anHz-crossing w.r.t.H. If |Az| = 2, then w.l.0.9.p is adjacent
to ap, and hence, px andP\ px contradict Lemma 4.5.1. Sé,| = 1. LetH’ be the
hole induced byR;p, URy . Then(H’, px) is a bug, and the path from,_1 to by in the
graph induced byP\ px) U (Pyb, \ &1) is its center-crosspath or ear, a contradiction. So
pk cannot be amH»-crossing w.r.t.H. Therefore by (2)pk is of typeB, w.r.t. H, and
hence (ii) holds.

Case 5:pz is of type p3 w.r.tH .

LetH’(A1,A2,B1,By) be the short connected diamond obtained by substitykimgto
H. If k> 2, thenp, is of type p1 w.r.tH” and it is not adjacent tb, norb’;, and we obtain
a contradiction as in Case 1. 8e- 2. But then by (2)p, andH’ contradict Lemma5.2.1.

Figure 5.6: Paths from Lemma 5.2.5.

Lemma 5.2.6 Let G be a 4-hole-free odd-signable graph that does not hastarecutset.
Let H(A1,A2,B1,B>) be a short connected diamond of G. Then no node\dfiG of type
slw.rt H.
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Proof: AssumeG does not have a star cutset. Then by Theorems 4.2.2,4.3.3,4.3.5
and 4.3.6G does not contain a proper wheel, a bug with a center-crdsspaPC(4, -)
with a hat, a bug with an ear, nor 3(4A, -) with a type s2 node.

Assume that the lemma does not hold. By symmetry we may asthahéhere is a
nodeu that is of type s1 w.r.tH, adjacent td,. Then the second neighbor ofin H
is eitherby or b]. Let S= N[by] \ vp,. SinceSis not a star cutset, there exists a direct
connectiorP = py, ..., pxin G\ SfromutoH \ S. We may assume w.l.0.g. thidt u and
P are chosen so th@®| is minimized. Note thapy has a neighbor il \ Sand the only
nodes oH that may have a neighbor P\ py arebs, b, andby.

So if a node o\ px has a neighbor if, then it is either not strongly adjacentltb
or by Lemma 5.2.1 it is of type s1 w.rH adjacent td,. In fact, by the choice off, u
andP, no node ofP \ px can be of type s1 w.r.t4. So nodes oP \ pi are not strongly
adjacent tdH.

We may assume w.l.0.g. thii(u) "H = {b, b/ }.

Claim 1: pxis of type pl, p2, A A, a, sl (with neighbors in A), t3 (with neighbors in A),
d, Ad, H-crossing or HB-crossing w.r.t. H.

Proof of Claim 1:Sincepy has a neighbor il \ S, it cannot be of type s1 w.r.H with
neighbors iB. Sincepy is not adjacent td,, nodepx cannot be of type B, B2, t3 (with
neighbors iB), s2, s3 nor s4 w.r.H, nor a pseudo-twin of a node Bfw.r.t. H.

Suppose thapy is of type p3 w.r.t. H, and letH’ be the short connected diamond
obtained by substitutingy into H. By Lemma 5.2.1 applied tél’ andu, k > 1, and
henceH’, uandP\ px contradict our choice dfl, uandP. Sopy is not of type p3 w.r.t.
H.

Suppose thapy is a pseudo-twin of a node #fUy w.r.t. H, and letH’ be the short
connected diamond obtained by substitutmjgnto H. By Lemma 5.2.1 applied tbl’
andu, k> 1, and hencél’, uandP\ px contradict our choice dfi, uandP. Sopy is not
a pseudo-twin of a node &Uy w.r.t. H. Now by Lemma 5.2.1, the proof of Claim 1 is
complete.

We now consider the following two cases.

Case 1:A node ofP\ py has a neighbor iH.

Recall that fori <k, N(p;) "H C {by,b/,b5} and|N(pi) "H| < 1. Letp; (resp.pj)
be a node oP\ py with lowest (resp. highest) index that has a neighbdt ifNodep; is
not adjacent td;, since otherwise, p1, ..., pi is a hat ofX. Sop; is adjacent tdy} or b,.
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If there are two distinct nodes ¢by, b, b/ } that have a neighbor iR\ py, then a subpath
of P\ pxis a hat ofZ or ¥’. So eithetb] or b, is the only node oH that has a neighbor in

P\ px.

Case 1.1:b] is the only node oH that has a neighbor iR\ p.

By definition ofSand Lemma 5.2.5 applied té andpj, ..., px, nodep, must have a
neighbor inH;. In particular,px cannot be of type d nor at,-crossing w.r.tH.

Suppose thapy is anHj-crossing w.r.tH. If pyis adjacent tdy; then(Pyp, \ a1) U
PU{u,b},b,} contains a proper wheel with centdr. So py is adjacent td;. But then
(Paby \ @) U{b5, by, pj, ..., pi} contains a BC(by, pi). So pk is not anHa-crossing w.r.t.
H.

If py is of type A orA; w.r.t. H, thenZ,u andP contradict Lemma 4.5.1.

If pxis of type a w.r.t.H, then by Lemma 4.5.1 applied iy u andP, N(px) "H =
{a},a}, y = ap andyb), is an edge. But thel;, px andpj, ..., pk—1 contradict Lemma
4.5.2.

If px is of type s1 w.r.tH, thenZX, b} andp;, ..., px contradict Lemma 4.5.2.

Suppose thapy is of type t3 w.r.t. H. If N(px) NH = {a1,8},a,} thenX’, p; and
Pj+1, .-, Pk contradict Lemma 4.5.1. ¥(px) "H = {ay,a},ax}, and henc&,u andP
contradict Lemma 4.5.1. Therefopg is not of type t3 w.r.tH.

If px is of type Ad w.r.t.H, thenZ', p; andpj,1,..., px contradict Lemma 4.5.1.

So by Claim 1,pg is of type pl or p2 w.r.tH, and sincepy must have a neighbor in
H1, N(px) "H € Hy. If N(pk) "H C Pyyp,, thenX, u andP contradict Lemma 4.5.1. So
N(px) "H C Py - If |Az| = 2, thenPyayp, U Py, UPU {u,b,} contains a proper wheel
with centerb). So|Az| = 1. LetRbe the chordless path from to & in PU (Pypy, \ b).
ThenZ,uandR contradict Lemma 4.5.1.

Case 1.2, is the only node oH that has a neighbor iR\ p.

By Lemma 5.2.5 applied tbl andpj, ..., px, nodep, must have a neighbor iH,. In
particular,py is not anH;-crossing w.r.tH.

If py is of type t3,Aq, A, sl (adjacent t@;) or a (adjacent t@;) w.r.t. H, then
Pab, UPU{u, by, b}, b,} induces a proper wheel with centdy. If py is adjacent ta)
and itis of type a or s1 w.r.t. H, thé®y,p, U Py U{b5, pj, ..., pc} induces a BC(b), a)).
Sopy is not of type t3A4, A, s1 noraw.r.tH.

Suppose thapg is of type Ad w.r.t. H. If py is adjacent 0y, and Yo, # b, then
Z,pj andpj1, ..., px contradict Lemma 4.5.1. I, is adjacent 0y, andyb/2 = b}, then
Py p, UPU {b5,u} induces a proper wheel with centgy. So py is adjacent toy,. Note
that by definition ofS, py is not adjacent th,. But thenP,,,, UPU{u, by, b}, b} contains
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a proper wheel with centdy,. Sop is not of type Ad w.r.tH.

If pyis of type d w.r.t.H, then by Lemma 4.5.1 applied ¥y pj andpj1, ..., P, either
N(pk) "H = {Y,Ya,, Yo, } OF Pk is adjacent td,. In the first cas® U (P, \ y) U{u, b}, b5}
induces a proper wheel with centgj. So py is adjacent tdd,, and hence® U R,y U
{u,b], by} induces a proper wheel with centgy. Similarly, if px is anHy-crossing w.r.t.
H, then eithePU (P, \ y) U{u,b], b5} (if |Az| = 1) orPUPayp, U {u, b}, b5} (if |Az] =2)
contains a proper wheel with centgy.

So by Claim 1,pg is of type pl or p2 w.r.tH, and sincey must have a neighbor in
Ho, N(px) "H C Ha.

By Lemma 4.5.1 applied th, p; andpj1, ..., Pk, if |A2| =2, thenN(px) NH C Payb,»
and if |Ao| = 1, thenN(px) NH C Ryy. If |Ag| = 2, thenPyp, U Py, UPU {b), by, u}
contains a proper wheel with cent§, and if |Az| = 1, thenRy,y U Ry, UP U {u,b}}
contains a proper wheel with centgy.

Case 2:No node ofP\ px has a neighbor i .

Supposey is anH;-crossing w.r.tH. If py is adjacent tdo;, thenP is hat ofZ. So pg
is adjacent tdo}. But thenZ, u andP contradict Lemma 4.5.1. Su is not anH;-crossing
w.r.t. H.

If pxis of typeAy, t3, A, or Ad w.rt. H, thenPyp, UPU {u,by, b}, b5} induces a
proper wheel with centdy, (recall that by definition o, py is not adjacent td,).

If pxis of type a w.r.t.H, thenX’, u andP contradict Lemma 4.5.2. Sp is not of
type aw.r.t.H.

Suppose thatpg is of type sl w.rtH. If px is adjacent toa;, then
Pab, UPU{u, by, by, b5} induces a 4-wheel with cente. So py is adjacent ta). By
Lemma 4.5.1 applied t8,u andP, N(px) "H = {&},a5}. But thenX’, u andP contradict
Lemma 4.5.2. Sy is not of type s1 w.r.tH.

Suppose thapy is of type d w.r.t.H. By Lemma 4.5.2 applied t&', u andP, N(px) N
H= {y,yaz,yblz} andyy, # b,. But thenZ,u andP contradict Lemma 4.5.1. Spy is not
of type d w.r.t.H.

If px is anHy-crossing w.r.tH, thenX’, u andP contradict Lemma 4.5.2.

So by Claim 1,py is of type p1 or p2 w.r.tH. If N(px) "H C Pyp,, thenZ,u andP
contradict Lemma 4.5.1. N(px) NH C Py, thenZ,u andR contradict Lemma 4.5.1,
whereR is the chordless path from, to a; in PU (Pyp \ by). SoN(p) NH C Ha.
If [A| =2, then by Lemma 4.5.1 applied Byu andP, N(px) "H C Py, and hence
Payb, U Py, UPU {u,bp, by} contains a proper wheel with cente. So|Az| =1. By
Lemma 4.5.1 applied t&,u andP, N(px) "H C Py,y- But thenZ’, u andP contradict
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Lemma 4.5.2. O

Lemma 5.2.7 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.
Let H(Aq,A2,B1,B>) be a short connected diamond of G. Then no node\dfiG of type
s2 w.r.t. H.

Proof: Assume thaG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.
4.3.5 and 4.3.65 does not contain a proper wheel, a bug with a center-crdsspat
3PC(4, ) with a hat, a bug with an ear nor #3(4A, -) with a type s2 node.

Assume thaG has a node of type s2 w.r.t.H. Letv; andv, be the neighbors ai
in Py,y, so thatvy is closer toa; on Py,y. Let R,y (resp. Pa,y,) be thevoy-subpath (resp.
apvi-subpath) oP,,y. We chooséd and such a nodeso that the length d®,y is shortest
possible. Note that sinaeis of type s2 w.r.tH, |Az| = 1 and ify = vy, thenyb, andyl,
are not edges.

Let S= N[u] \ v1, and letP = pq,..., px be a direct connection frorly U Pa,y, to
Ho \ (Pav, U{V2,b2,b5}) in G\ S Sop; has a neighbor ity U Payy,, Pk in Ha \ (Pagy, U
{v2,b2,b,}), and the only nodes df that may have a neighbor B\ {p1, px} arevo, b,
andb),. Subject to the previous choice Bf andu, we chooseH, u andP so that|P| is
minimized.

Claim 1: Node p is of type p1, p2, B, A, a, t3 (with neighbors in B), s2 (withgihiors
contained in BU (Pa,y, \ V1)), s3 or s4 w.r.t. H. Node gis of type p1, p2, d or an #
crossing w.r.t. H. Furthermore if pis of type d w.r.t. H, thens not adjacenttoy. In
particular, N(p1) "H = {v1,v2} or N(p1) "\H C H1 U Pa,v, UB2, N(pk) "H C Hz\ Paov;
and k> 1.

Proof of Claim 1: Since|Ay| = 1, no node ofG is of type t3 (with neighbors i) w.r.t.
H. Sincey = ap, no node is of type Ad w.r.tH. By Lemma 5.2.6 no node is of type s1
w.r.t. H.

Suppose thap; is a pseudo-twin of a node &, and letH’ be the short connected
diamond obtained by substituting into H. ThenH’,uandP\ p; contradict our choice
of H, uandP. So no node oP is a pseudo-twin of a node & w.r.t. H. By analogous
argument no node d? is a pseudo-twin of a node &§ w.r.t. H.

Suppose thap; is a pseudo-twin of a node &, w.r.t. H, and letH’ be the short
connected diamond obtained by substitutmginto H. Recall that ifv, =y, thenyb,
andyl, are not edges, and hene&annot be of type d w.r.t4’. SoH’ andu contradict
Lemma 5.2.1. So no node Bfis a pseudo-twin of a node & w.r.t. H.
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Suppose thap;, i € {1,k}, is of type p3 w.r.t.H, and letH’ be the short connected
diamond obtained by substituting into H. If N(p;) "H C H1 UP4,y,, theni =1 and
henceH’, uandP\ p; contradict our choice dfl, u andP. A contradiction is obtained
by analogous argumentM(pj) "H C R,y U Py URLy- SoN(pi) "H C Py,y andp; has
a neighbor in bottP,,, andR,y. HenceN(p;) NH induces a path of length 2, i.ep
is a twin w.r.t. H of a nodev € P,,y. Sincep; has a neighbor in botR,,, andR,,y,

v e {v1,Vv2}, and hencéd’ andu contradict Lemma 5.2.1 (recall that by definitionSfp;
IS not adjacent to). Therefore no node d? is of type p3 w.r.tH.

Suppose thap; is a pseudo-twin of, w.r.t. H, and letH’ be the short connected
diamond obtained by substitutinmg into H. Note that sinceyp #y, N(p1) "H = AU Vy,.

If v # ap, thenH’, uandP\ p; contradict our choice ofl, uandP. Sov; = ap, and
henceH’ andu contradict Lemma 5.2.1. So no nodePis a pseudo-twin o, w.r.t. H.

Suppose thapy is a pseudo-twin of w.r.t. H. Note thatpy is adjacent to/,,. Let
H’ be the short connected diamond obtained by substitygirigto H. If v # ya,, then
k> 1 and hencél’, u andP\ px contradict our choice ofl, u andP. Sov; = ya,, and
henceH’ andu contradict Lemma 5.2.1. So no nodePis a pseudo-twin of w.r.t. H.

Suppose thap; is of typeA; or Hi-crossing w.r.t.H. Let p; be the node oP\ p;
with lowest index adjacent to a nodeld$. Note thatN(p;) "H € Hy andN(pij) NH C
H,. By Lemma 5.2.5 applied tbl and py, ..., pj, nodep; is of type A; w.r.t. H and
pi is either of type p2 w.r.t.H andN(pj) "H C Pa,y, or of type d w.r.t. H such that
N(pi) "H ={Y,Yb,, Y, }- Infact, since # 1,i = kand hencé(pi) "H € R,y U {Yb,, Y, }-
In particular, no node dfi has a neighbor ifP\ {p1, px}. LetH’ be the hole induced by
Pab, U Payb,. Note thatu andP are appendices ¢i’ that contradict Lemma 4.1.1. So no
node ofP is of typeA; nor Hy-crossing w.r.tH.

So by Lemma 5.2.1, nodes Bfare of type p1, p2, A, BBy, a, d, t3 (with neighbors
in B), s2, s3, s4 oH,-crossing w.r.tH. By definition of P, p; and px are not of typeB,
w.r.t. H. Suppose that a nodg of P is of type s2 w.r.t. H. Then by the choice o,
N(pi) N Pay € Pay, UVa. Since{u, pi, b, v} and{u, pi,b2,v2} cannot induce 4-holes,
N(pi) N Pay € Pay, \ V1. In particular,i = 1 andk > 1. Suppose tha; is of type d w.r.t.
H. Theni = k. If py is adjacent tovg, thenvo =y and w.l.0.g.N(px) "H = {V, Ya,, Yo, }
and hencdy,,y U {U,Ya,, Pk} induces a 4-wheel with centgr So py is not adjacent to,
and hencé > 1. This completes the proof of Claim 1.

Claim 2: Node y does not have a neighbor in\R p1, pk}. In particular, fori=2,...k—1,
N(pi) "H C Ba.
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Proof of Claim 2:Suppose that, has neighbor i\ {p1, pk}. We first show that no node
of Bz has a neighbor if?\ {p1, px}. Assume it does. Then there is a minimal subpgth
of P\ {p1, px} such that one endnode Bfis adjacent ta, and the other to a node 8.
W.l.o.g. by is adjacent to an endnode Bf. By minimality of P/, by, P’, v, is a chordless
path, and hencB,,y UR,yUP Uuinduces a BC(by,v») (recall that ify = vy, thenyby, is
not an edge). So no node Bf has a neighbor iR\ {p1, pk}-

Let p; be the node oP\ { p1, pk} with lowestindex adjacent te. If N(p1)NH C Hj,
thenH andp;, ..., pi contradict Lemma 5.2.5. Sm has a neighbor if,,,. LetH’ be the
hole induced byP,,p, UPysp,. Then(H’,u) is a bug. IfN(p1) "H = vy, thenpy,...,piis a
hat of (H’,u). SON(p1) NH # vs.

Suppose thal(p;) "H = {v1,vz}. By Claim 1 and definition oP, w.l.0.g. px has a
neighbor in(R,y URy,y) \ V2. Let P’ be the chordless path fropk to by in ((Re,y U Rb,y) \
Vo) U pk. Note that by Claim 1p is not adjacent tay, and hencd® UPU {u,v1,V,}
induces a proper wheel with center SoN(p1) NH # {vi,Vv2}.

Thereforep; has a neighbor iH1 U (Pa,y, \ v1). W.Lo.g. p1 has a neighbor in
Pab, U (Payy, \ V1) @and if py is of type t3 w.r.t.H, then it is adjacent tb,. LetH’ be the
hole induced byPs,p, UPsb,.- Then(H’,u) is a bug, and by Claim 1(H’,u), p; and
P1,-.., Pi_1 contradict Lemma 4.5.1. This completes the proof of Claim 2.

We now consider the following cases.

Case 1:A node ofH has a neighbor if?\ {p1, p«}-
Let p; be such a neighbor with highest index. By Claim\Zp;) "H C B,. W.l.o.g.
it suffices to consider the following two cases.

Case 1.1:p; is of typeB, w.r.t. H.
Note that by definition oP, px has a neighbor ix \ {by,b,,b1}. By Claim 1 and
Lemma 4.5.2 applied t&, p; andpj.1, ..., px one of the following holds:

(@) pis of type d w.rtH , N(pi) NH = {y,Yb,, Vi, } Yb, 7 b2 andyy, # b5,
(b) w.l.o.g.yby is an edge antli(px) "H = Vi, » OF
(c) pkis of type p2 w.r.tH andN(px) "H C Ry.

If (@) or (c) holds, ther{H \ Py,p,) U{pi,..., Pk} induces a connected diamond whose
side-2-paths have fewer nodes in common than the sideH&paH, contradicting our
choice ofH. So (b) must hold, and heng#, andyu are not edges. L&’ be a chordless
path fromp; toy in Hy UPs,y U p1, and letH’ be the hole induced by’ UPU (Ry, \ b3).
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SinceH’ Ub, cannot induce aRC(pi,vy,), (H',b;) is a wheel. Sincey, pi is not an
edge,(H’,b,) cannot be a twin wheel, and hence it is a bugH!fcontains bottv; and
Vo, thenu is a center-crosspath ¢H’,b,). SoH’ does not contain botty andv,. By
Claim 1 and definition oP it follows thatN(p1) "H = {vy,v>}. But thenPa/lb/1 U Pa,y, IS
a center-crosspath ¢H’,b,).

Case 1.2:N(p;) "H =D,
As before,p has a neighbor i \ {by,b,,b;}. By Claim 1 and Lemma 4.5.1 applied
toZ, pi andpj,1,-.., px one of the following holds:

(2) N(p) NH = vy,
(b) pkis of type p2 w.r.tH andN(px) NH C Pb’zY’

(c) pkis of type d w.r.t.H and eithemN(px) "H = {Y, Vn,,Ya, } OF Pk is adjacent tdd,
or

(d) pxis anHy-crossing w.r.tH andN(px) "H = {b/27Vb'27yb2}-

Let P’ be a chordless path fromy toy in Hi U Pa,y U p1. Suppose that (a) holds. Let
H’ be the hole induced by’ UPU (R, \ b,). SinceH’ Ub; cannot induce aRC(y,, pi),
(H’,b,) is a wheel, and hence it must be a bugHIfcontains both/; andv,, thenu is
a center-crosspath ¢H’,b,). SoH’ does not contain botty andv,. By Claim 1 and
definition of P it follows thatN(p1) "H = {vi,v2}. ButthenPy UPs,, is a center-
crosspath ofH’, b5).

Suppose that (b) holds. f is not adjacent tb,, then(H \Vb/2) u{pi,..., Pk} contains
a short connected diamortd (A1, A2, B1,B2) andH’,u and pg, ..., pi_1 contradict our
choice ofH’,u andP. So py is adjacent tdd,. Let H' be the hole induced b’ U
PU (Ryy \ b5). Since(H',b;) cannot be a proper wheel(bs) NH' = {pi, pi, Vi, }. I
particular,b), is not adjacent tgs, and hence by Claim 1y is not adjacent tg;. Also
H’ does not contaifd; nor b}. If by has a neighbor i\ {p1, pc}, then a subpath of
P\ {p1, pk} is a hat ofZ. Sob, has no neighbor . Sinceb, andb), are not adjacent
to p1, by Claim 1,p; is of type p1, p2, A or aw.r.tH. SinceH’ does not contaib; nor
b}, N(p1) NH # by norbj. In particularp; has a neighbor in w.l.o.g\ {by, b5, b;}. But
thenZ, p; andpy, ..., pi_1 contradict Lemma 4.5.1.

Suppose that (c) holds. First assume thgd) "H = {y, ¥b,,Ya, }. Then(H \(Pb/zy\
b5)) U{pi, ..., px} induces a short connected diamditiA;, Az, B1,B3). By Claim 1,u
is of type s2 w.r.tH’, and hencéd’, u andp;, ..., pi_1 contradict our choice dfl, uand
P. Sopyx must be adjacent td,, soyb, is an edge. Suppose thatp) "H = {y, b5, yn, }.
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Let H’ be the hole induced by’ UP. Since{y, px, pi} € N(b5)NH’, (H’,b,) is a twin
wheel or a bug, i.eN(b,) "H' = {y, px, pi}. In particular,b), is not adjacent tg;, and
hence by Claim 1b, is not adjacent tq;. Also H' does not contai; nor bj. If by
has a neighbor i\ {p1, px}, then a subpath d?\ {p1, pk} is a hat ofZ. Sob, has
no neighbor inP. Sinceb, andb), are not adjacent tp;, by Claim 1, p; is of type p1,
p2, A or a w.r.t. H. SinceH’ does not contaitp, nor by, N(p1) NH # by norbj. In
particular,p1 has a neighbor in w.l.o.gZ\ {bp,b5,b1}. But thenZ, p; and py, ..., pi_1
contradicts Lemma 4.5.1. Therefdépy) "H = {y,b),ya,}. Sinceyb, is an edgeyh,
is not. Suppose thati(pi1) NH is not contained in{vy,v2}. Then by Claim 1,p; is
not adjacent ta, and p; has a neighbor i1 U (Pa,y, \ V1). Let P” be a chordless path
from p; to by in Hy U (Pay, \ V1) U{p1,..., pi,b2}, and letH” be the hole induced by
P"U (Ryy \Y) U{U, pi+1,.-.,px}. Note thatb), is adjacent tdy,u, pi and px, and hence
(H”,b,) is a proper wheel, a contradiction. Therefdtép;) "H C {v1,v,}, and hence
p: is adjacent ta;. But thenPa/lb/1 U Pay, U{U, p1,..., pi,b5} contains a BC(b),v1).

So (d) must hold. Themy, # b, andvy, # Y, and hence® UP U (Pay \ b5) U Y,
induces a BC(px,Y)-

Case 2:No node ofH has a neighbor i\ {p1, pk}-
By Claim 1 it suffices to consider the following cases.

Case 2.1:p; is of type pl or p2 w.r.tH.

By Claim 1,N(px) "H C Ha. If N(p1) "H C Hy, thenH andP contradict Lemma
5.2.5. SAN(p1) NH C Py, UVa.

First suppose thap, is not strongly adjacent tbl, and letv be its neighbor irH.
By definition of P, v € P,,y,. Note that by Claim 1py is not adjacent ta;. W.l.0.Q.
pk has a neighbor i,y U (R,y \ v2). Let P’ be the chordless path fromy to by in
Foy U (Ryy \ V2) U pk. ThenP UPU Py, UPay, Uuinduces a BC(by,v). Thereforep;
is of type p2 w.r.tH.

LetH’ (resp.H”) be the hole induced biy,,pn, U Pa;b, (resp. Pay, UPy ). If piis of
type p2, d oH,-crossing w.r.t.H, then eitheH’ UP or H” UP induces a BC(A,A) or
a 4-wheel with centev,. So by Claim 1,pg is not strongly adjacent thl. Letv be the
neighbor ofpc in H. W.l.o.g.v € (Ry,yUR,y) \ {b2,v2}. Recall that ify = v, thenyb, and
yb, are not edges, and hengd’, u) is a bug. IfN(p1) "H = {v1,v2}, then bug(H’, u),
p1 andP\ p; contradict Lemma 4.5.2. S§(p1) NH C Py,,. By Lemma 4.1.1 applied
to H’, uandP, v = v;,,. By Lemma 4.1.1 applied tbl”, u andPU (R,,y \ b), yb, is an
edge. Hencey, # y and since{by, ’Z,y,vtyz} cannot induce a 4-holey,y is not an edge.
But then(Py,p, UP,,1p, UP) \ & contains a BC(vp,, Y).
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Case 2.2:pp is of type B or t3 w.r.tH.

W.l.o.g. p1 is adjacent td;. By definition ofP, py has a neighbor i \ {by, b5, b1},
and by Claim 1py is of type p1, p2, d or crosspath (in the case whris anH»-crossing
w.r.t. H) w.rt. . By Lemma 4.5.3 applied t&, p; andP\ py, it follows that py is not
strongly adjacent t&, and hence it is not strongly adjacenHo Letv be the neighbor of
pxinH.

Suppose that € Ry, \ b,. If byy is not an edge, theRy,,y UR,y U (Ryy \ b)) UPUU
contains a BC(b,y). Sobyy is an edge and henee #y. LetH' be the hole contained
iN Payby U (Pay, \ 05) UP that containd,p, UP. Then(H’, by) is a bug andiis its center-
crosspath. Su ¢ Ry, \ b’.

Suppose that € Ry, \ {bp,y}. Let H' be the hole induced by, p, U Ps,y UP to-
gether with thevy-subpath ofR,,,. If byv is not an edge, thefl’ U Payb, induces a
3PC(bob1p1,@jaraz). Sobyvis an edge, and hengkl’, by) is a bug andDa/lb/l its center-
crosspath, a contradiction.

Thereforev € R,y \ {v2,y}. But thenP,,, UP Uu together with theayv-subpath of
Pa,y induces a BC(bibopy, viuw).

Case 2.3:ppis of type Aoraw.r.tH.

W.l.o.g. p1 is adjacent t@] . If p; is not adjacent tay, then by Claim 1, eitheX, p;
andP\ p1 or 2, p1 andP\ p; contradict Lemma 4.5.2. S is adjacent t@;. W.l.0.g.
pk has a neighbor iR,y U Pb/zy) \ {b5,v2}. By Claim 1 and Lemma 4.5.3 applied ¥9,
p1 andP\ p1, nodepy is not strongly adjacent t@,. Letv be the unique neighbor of
Pk in 2. By our assumptiow € (Ry,y URyy) \ {b5,v2}. If Vb, is not an edge, then the
hole induced byPy 1y UP, 1, and pathas andP contradict Lemma 4.1.1. Sdd, is an
edge. Sinceby,b), p, v} cannot induce a 4-holgy is not adjacent td,. If yb, is not
an edge, theP, , \ b)) U Py p, UPU{u,by} induces a BC(uvivz, a1a2p1) or a 4-wheel
with centeray. Soyb, is an edge, and hent;/bf2 IS not. Since{bz,b’z,v, y} cannot induce
a 4-hole,vyis not an edge. If follows by Claim 1 th&t(px) "H = v, and hencéd, UP
induces a BC(v,y).

Case 2.4:p;1 is of type s2, s3 or s4 w.r.H.

If p1 is of type s3 we may assume w.l.0.g. tipats adjacent t@;. LetH’ be the hole
induced byPy iy, UP,,p,. Then(H', p1) is a bug such thd, is the node-attachment pf
toH’.

Suppose thapy is not strongly adjacent tbl, and letv be its neighbor irH. Then

contains a BC(py,v). Sov e R,y \ {b2,y}, and hence they-subpath ofR,,, together
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with Pa,y U Pb’sz P contains a BC(p1,y). Therefore px must be strongly adjacent k.

Suppose thapy is of type p2 w.r.tH. If N(px) NH C Ry U (Ryy \ b%), thenpy, ..., p«
is a center-crosspath ¢H’, p1). If py is adjacent td,, thenR,,y U Pb/zyu P induces a
4-wheel with centeb,. So py is not adjacent td,, and hencéN(px) "H C B,,y. Note
thatp; is not adjacent tg, and hencg¢H \ (HyUby)) UP contains a BC(p1,y). Sopk is
not of type p2 w.r.tH.

Suppose thapy is of type d w.r.t.H. First suppose thgi is not adjacent td,. Then
N(px) "H = {y,yaz,yblz}, elsepy, ..., px is a center-crosspath ¢H’, p;). If k > 2, then
PU(H\ (H1UR,,y)) contains a BC(py, px). Sok =2, and henc¢H’\ y) UP induces a
a 4-wheel with centep;. Thereforepy is adjacent tdy,. If py is not adjacenyy,, then
R,y U Ry, UP induces a 4-wheel with centbf. Sopy is adjacent tgy,. Sinceyt, is an
edgeyhy is not an edge, i.eyp, # b2. S0Py b, UP,,6, U P1 induces a bug with centgrn
andP\ p; is its center-crosspath. Therefopg,is not of type d w.r.tH.

So by Claim 1,py is anH»-crossing w.r.t.H. First suppose thalN(px) N Pb/2y| =2.
Then pyyp, is an edge angl,, # by. If eitherk > 2 or pkb, is not an edge, theR\ p; is
either a center-crosspath or an ear(ldf, p;). Sok =2 andpkb, is an edge. But then
Pa,b, U P contains a BC(p1,Yy,). Therefore|N(px) N Pb/zy\ = 1, and hencexyy, is an
edgeyy, # b, and|N(px) N Py,y| = 2. But thenPy,p, UP contains a BC(py, Yy, )- O

Lemma 5.2.8 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.
Let H(Aq,A2,B1,B>) be a short connected diamond of G. Then no node'\dfiG of type
s3 ors4w.rt. H.

Proof: Assume thaG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.
4.3.5 and 4.3.65 does not contain a proper wheel, a bug with a center-crdsspat
3PC(4A, ) with a hat, a bug with an ear nor #3(A, -) with a type s2 node.

Assume thaG has a node of type s3 or s4 w.r.tH. Then|Ay| =1, and ifuis of type
s4, therapb, andaphy, are not edges. L&= N[u]\ (A1UB1). SinceSis not a star cutset,
there exists a direct connectiéh= py, ..., px from Hy to Hy \ {ap,b,b5} in G\ S So
p1 has a neighbor i1, py in Ha \ {az, b2, b5}, and the only nodes df that may have a
neighbor inP\ { p1, px} areay, by andb),. We chooséd, uandP so that/P| is minimized.

Claim 1. No node of P is of type Ad w.r.t. H, nor a pseudo-twin w.r.t. Haafode of
BoUay. In particular, k> 1.

Proof of Claim 1:By Lemma 5.2.1k = 1 if and only if p; is of type Ad w.r.t.H, or it
is a pseudo-twin w.r.tH of a node ofB, Uay. We now show that none of these types of
nodes can occur.
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Suppose thap; is of type Ad w.r.t. H. Thena, =y and w.l.o.g. P1Yy, is an edge.
If uis adjacent taay, thenP, 5, U {u,a1, p1} induces a 4-wheel with centep. Sou is
not adjacent t@y, and hencéN(u) NH = {by, by, b5, a7, a>}. But thenP,,p, U{u,a;, p1}
induces a 4-wheel with centas.

Suppose thap; is a pseudo-twin of a node 8 w.r.t. H. W.l.0.g. p; is a pseudo-twin
of b,. LetH’ be the short connected diamond obtained by substitytingto H. Sinceu
is not adjacent tg,, u cannot be of type s3 or s4 w.ril’, so by Remark 5.2.2 (applied
to H’ andu), [N(u) N {bs,b},b,, p1}| < 1. Souis of type s4 w.r.tH, and henceyb, and
aoh), are not edges. But thett’ andu contradict Lemma 5.2.1.

Finally suppose thap; is a pseudo-twin of, w.r.t. H, and letH’ be the short
connected diamond obtained by substitutpagnto H. Sinceu is not adjacent tqs, it
follows thatH’ andu contradict Lemma 5.2.1. This completes the proof of Claim 1.

Claim 2: Node p is of type p1, p2, B, A A, a, t3 (with neighbors in B) or Hcrossing
w.r.t. H, and g is of type p1, p2, d or bcrossing w.r.t. H.

Proof of Claim 2:By Lemmas 5.2.6 and 5.2.7 no node is of type s1 nor s2 \Mr.Since
{az,b2,u, pi} cannot induce a 4-hole, no node Pfis of type s3 nor s4 w.r.tH. Since
|A2| =1, no node is of type t3 (with neighborsA) w.r.t. H.

Suppose thapy is a pseudo-twin of w.r.t. H in the casea, # y, and letH’ be the
short connected diamond obtained by substituppgnto H. Note thatu is of the same
type w.r.t.H asitis w.r.t.H, and hencél’, uandP)\ px contradict our choice dfi,uand
P. So no node oP is a pseudo-twin oy w.r.t. H in the case, # .

By analogous argument, no nodepbis of type p3 w.r.tH.

Suppose thap; is a pseudo-twin w.r.tH of a node ofA; UB; and letH’ be the short
connected diamond obtained by substitugpagnto H. By Lemma 5.2.1uis of the same
type w.r.t.H asitis w.r.t.H, and hencél’,uandP\ p; contradict our choice dfl,u and
P. So no node oP is a pseudo-twin w.r.td of a node ofA; UB;.

By Claim 1, no node oP is a pseudo-twin w.r.tH of a node ofB, U ay, nor of type
Ad w.r.t. H. By definition ofP, p; andpy cannot be of typ&, w.r.t. H. By Lemma5.2.1,
the proof of Claim 2 is complete.

Claim 3: At most one of the node sets & {ap} may have a neighbor in P{p1, pk}-
So, if a node pe P\ {p1, px} has a neighbor in H, then either; {5 of type B w.r.t. H or
it is not strongly adjacent to H with a neighbor {ib,, b}, a,}.

Proof of Claim 3:Sinceby, b, anda, are the only nodes ¢f that may have a neighbor in
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P\ {p1, P}, by Lemma5.2.1 ify; € P\ {p1, px} has a neighbor ii, thenp; is either of
typeBy w.r.t. H or it is not strongly adjacent td with a neighbor in{by,b,,a,}. Suppose
that botha, and a node 0B, have a neighbor i#\ {p1, px}. Then there is a subpath
P’ of P\ {p1, px} of length at least 1, whose one endnode is adjacea,tthe other to
a node ofB,, w.l.o.g. say tdy,, and no intermediate node Bf has a neighbor ii. If
aghy is not an edge, thely,,, U P’ U Py, induces a BC(ap, by). Soagb; is an edge, and
hence by definition of type s3 and s4 nodes wH.tN(u) "H = By U{ap,a],b1}. Then
agb), is not an edge.

Suppose thal), has a neighbor i\ {p1, px}. Then there exists a minimal subpath
P” of P\ {p1, px} such that one endnode Bf is adjacent tay, the other tdy, and no
intermediate node d?” has a neighbor it \ b,. But thenPyp, UP,,p, UP” induces a
3PC(ay,b,). Sob), has no neighbor if?\ {p1, pk}-

Sinceayb, is an edgepy cannot be ard,-crossing w.r.t.H. So by Claim 2,py is of
type p1, p2 or d w.r.tH. Note that since, =y if py is of type d w.r.t.H, N(px) "H =
{b2,y, ybxz}. By definition of P, if py is of type p1 or p2 w.r.tH, thenN(px) "H C Pagb,
andpy has a neighbor in the interior &%, .

Let p; (resp.p;j) be the node o\ { p1, px} with highest (resp. lowest) index adjacent
to a node oH. Suppose thapy is of type d w.r.t.H, i.e. N(px) "H = {bz,y,ybxz}. If p1
is of type B or t3 w.r.t.H, then(PazU2 \ a2) UPUbgy induces a proper wheel with center
by. If p1is of typeAs, Aoraw.r.t.H, then eithePaflb/l U Pazb/2 UP (if pyis adjacent t@))
OF Py, U Py, UP (if p1 is not adjacent t@)) induces a proper wheel with center. So
by Claim 1,p; must be of type p1, p2 di;-crossing w.r.tH. Thenpg, ..., p; contradicts
Lemma 5.2.5. Thereforpx cannot be of type d w.r.H.

So by Claim 2,py is of type pl or p2 w.r.tH, and hence by definition d¢¥, N(px) N
H C P,,p, andpy has a neighbor i, \ {az,b,}. Letvy (resp.vo) be the neighbor of
Pk in Pazyz that is closer td), (resp.a). Let bezvl (resp.R,,3,) be theb,vs-subpath (resp.
Voap-subpath) oPaZb/Z. If pi is adjacent td,, thenZ, p; andp;. 1, ..., Pk contradict Lemma
4.5.1. Sop; is adjacent tay.

Suppose thaN(p;) "H € Hy. Then by Lemma 5.2.5 applied t8 and py, ..., pj,
nodep; is of typeA; w.r.t. H and pj is adjacent ta,. In particular,a; has at least two
neighbors inP\ {p1, pc}. Note that sincéy, has a neighbor i\ {p1, px}, j # i and
j #1+1. Butthenky y URy,, UPUaz induces a proper wheel with cengs. Therefore
N(p1) NH is not contained ifH;.

Suppose thap; is of type A or a w.r.t.H. If p; is not adjacent t@;, then Pa’lﬂl U
Pb/z\,1 UPU{a1,a} induces a proper wheel with ceni@r. So p; is adjacent ta, and
Pa’ltfl U Pb/z\,1 UPUay induces a wheel with centag, and hencey has exactly one neighbor
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in P\ {p1, px} anday does not have a neighbor ngfz\,l. Let p; be the neighbor o, in
P\ {p1, px} with highest index. Thety,, U {p1s---s P, A2, b2} induces a BC(by, pi).
Therefore p; is not of type A nor a w.r.tH.

So by Claim 2,p; is of type B or t3 w.r.t.H. PU Pblz\,l U by induces a wheel with
centerby, and hence (since this wheel cannot be propgbp) NP = {p1,p/}. Let p; be
the neighbor ofay in {p11,...,pi} with lowest index. Ifay has no neighbor in
{p2,..., p-1}, thenPy,p U{bz, p1,..., pr} induces a proper wheel with centex. Soa,
has a neighbor igp,,..., p_1}, and letpj; be such a neighbor with highest index. Then
{pj/,...,pr,az,by} induces a BC(py,az). This completes the proof of Claim 3.

By Claim 2, it suffices to consider the following cases.

Case 1:p; is of type pl, p2A; or Hi-crossing w.r.tH.

ThenN(p1) "H C Hj. Let p; be the node oP with lowest index that has a neighbor
in Hy. By Claim 2N(p;j) "H € Hz and no node of p, ..., pi—1} has a neighbor iil. By
Lemma 5.2.5 applied tbl and py, ..., pi, and by symmetry w.l.0.g. one of the following
holds:

(@) N(p1) "H = A and p; is either of type p2 w.r.t.H with neighbors inP,,y or
N(pl) NH= {yaYb27Yb’2}a

(b) N(p1)N"H =A; andN(pj) "H = ay,
(c) N(pi) NH =By andp; is of type p2 w.r.tH with neighbors irPyp, , or
(d) N(pi)"H =B andN(p1)NH = by.

Suppose that (a) holds. W.l.0.g.is adjacent ta]. ThenPyy U (Py,p, \az) UPUuU
contains a BC(b), a}).

Suppose that (c) holds. Thehl \ by) U{ps,..., pi} contains a short connected dia-
mondH’(Aq, A2, B}, B2) whereB) = {b}, pi}. By Lemma 5.2.1uis of type s3 or s4 w.r.t.
H’, and hencéd’,uandpi, 1, ..., px contradict our choice dfl, u andP.

Suppose that (d) holds. By Claim & does not have a neighbor P\ px. Let P’
be a chordless path fromy to a; in (H2\ B2) U pk, and letH’ be the hole induced by
P"UP UP. SinceH’ Ul cannot induce aRC(b), pi), (H',b3) is a bug. Ifuis adjacent
to &), thenu is a center-crosspath ¢H’,b,). Sou is not adjacent ta@/, and hence it is
adjacent td. But thenH’ Uu induces a BC(ap,b}).

So (b) must hold. By Claim 3, andb’, do not have neighbors iR\ px. W.l.o.g. u

is adjacent tay. If px andby are connected iB[(Hz \ {az,b5}) U py], then letP’ be a
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chordless path fronpg to by in G[(Hz \ {az,b,}) U pi]. ThenPy,p, UPUP Uu induces
a 3PC(ay,by). Sopy andb, are not connected i6[(Hz \ {az,b5}) U pyl, i.e. ap =y and
N(p«) NH C Py,p,. Let P’ be a chordless path fropy to b} in G[(Py,p, \ 82) U pi]. Then
Pa,b, UPUP Uuinduces a BC(ay, b).

Case 2:py is of type A or a w.r.tH.

W.l.o.g. we may assume thai is adjacent ta; anday. First we show thab, and
b, cannot have a neighbor iR\ px. Assume otherwise, and Ig be the node oP
with lowest index adjacent to a node Bf. By Claim 3, a, does not have a neighbor
in P\ {p1, px}- If pi is not of typeBy,, thenX and py, ..., pi contradict Lemma 4.5.1. So
N(pi) "H = By, and hence by Lemma 4.5.2 applied®oand ps, ..., pi, N(p1) "H = A.
Let H'(A},A2,B],By) whereA] = {p1,a;} and B} = {b}, pi}, be the short connected
diamond induced byH \ Pyp,) U{p1,...,pi}. ThenH’ andu contradict Lemma 5.2.1.
Therefore, no node d@; has a neighbor iR\ py.

First suppose that eithep # y, or a, = y and px has a neighbor if,,p, \ az. Let P’
be the chordless path fromy to by in (Hz\ {b5,a2}) U px. If uis adjacent tay, then
Py, UP"UPUuUINduces a BC(by,a1). Souis not adjacent t@y, and hencéN(u) NH =
{b1,bp,b.a,ax}. If p1 is not adjacent ta, thenP’ UPUAUu induces a proper wheel
whith centerap. So p; is adjacent tog;. But thenP,,,, UPUP U {a},u} induces a
3PC(ubyby,aja1p1). Thereforea, =y and px does not have a neighbor Bp, \ .
So by Claim 2,py is of type pl or p2 w.r.t.H andN(px) N"H C Paby- 1N particular,
agb), is not an edge. I, is not adjacent t@; thenXy, p; andP\ p; contradict Lemma
4.5.2. Sop; is adjacent t@, and henc¢H \ ap) UP contains a short connected diamond
H'(A1,A,, B1,B2) whereA, = {p1}. But thenH’ andu contradict Lemma 5.2.1.

Case 3:py is of type B or t3 (with neighbors iB) w.r.t. H.

W.l.o.g. we may assume thpt is adjacent td;. Suppose thad, has a neighbor in
P\ px, and letp; be such a neighbor with lowest index. By Claimi3,andb’, do not
have neighbors i\ {p1, px}. If @by is not an edge, theRy,p, U {u, p1,..., pi} induces
a 3PC(ap,by). Soazby, is an edge, and henegb), is not. But therPazty2 u{u,p1,...,pi}
induces a BC(ap, b),). Thereforea, does not have a neighbor i\ py.

Suppose that a node Bf has a neighbor i\ { p1, pk}, and letp; be such a neighbor
with highest index. W.l.0.gp; is adjacent tdo,. Let P’ be the chordless path fropy to
a in (H2\ B2) U px and letH’ be the hole induced by UPUP,p,. Then(H’,by) is a
twin wheel or a bug. In particulapy is not adjacent td,, ash, is not an edge anHi’
does not contaimy,, i.e. px has a neighbor ik, \ (BoU vy, ).

Suppose thap; is of typeB, w.r.t. H. Then by symmetryayb, is not an edgetH’
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does not contaiyy, i.e. pk has a neighbor il \ (B2 U {Vp,, iy, }). So by Claim 3 and
Lemma 4.5.2 applied t&, p; andpi1, ..., Pk, Nodepy is either of type p2 w.r.tH with
neihgbors contained iR,,y, or px is of type d w.r.t.H adjacent toy, Yby s b, - In both cases

(H\ Payp,) U{Pi,..., P} induces a connected diamond whose side-2-paths have fewer
nodes in common than the side-2-pathgiof

ThereforeN(p;j) "H = by. Sincepy is not adjacent tdo, and it has a neighbor in
H2\ (B2UW, ), by Claim 2 and by Lemma 4.5.1 appliedXop; andpi;1, ..., Pk, it follows
that eitherpy is of type p2 w.r.t.H andN(px) NH C R,y \ by, or py is of type d w.r.t.H
andN(px) NH =y, yaz,ybxz} (in particularay # y). In both casegH \ v,) U{pi,..., Pk}
contains a short connected diamaddt{A;, A2, B1,B>) that containgp;, ..., px. But then
H’,uandps, ..., pi_1 contradict our choice dfl,u andP.

Therefore no node dfl has a neighbor i\ {p1, pc}. Note that by definition oP,
Pk has a neighbor ix \ {by,b),b;}. By Lemma 4.5.3 applied t&, p; andP\ p1, node
px cannot be of type p2, d ndi,-crossing w.r.tH. Hence by Claim 2py is not strongly
adjacent tdH. Letv be the neighbor opy in H.

Suppose thap;b] is not an edge. Then by Lemma 4.5.2 applied’top; andP\ py,
either axb, is an edge and = Vi, OF azb’2 is an edge and# = vy,. In the first case
Pajby U Py,py, U P induces a bug with centdy, and Py p, is its center-crosspath. In the
second casky; b, U Pa,b, UP induces a bug with centép andPy y, is its center-crosspath.
Thereforep;b; is an edge.

W.l.o.g. uis adjacent t@;, and hence by definition of type s3 and s4 nodes Writ.
is not adjacent th; andayby is not an edge. Le?’ be the chordless path fropy to az in
(H2\ B2) U pk. If V# vy, thenP UPUPyp, U{u, by} induces a BC(bibypy, ajuap). So
V= Vy,. LetH’ be the hole induced b§P,,p, \ b2) UP,,p, UP. Then(H’,by) is a bug and
u its center-crosspath. O

Lemma 5.2.9 Let G be a 4-hole-free odd-signable graph that does not hastaracutset.

Let H(A1,A2,B1,Bz) be a short connected diamond of G. If a node u is of type a, t3, p3
w.r.t. H oritis a pseudo-twin of a node ofUBA; w.r.t. H, or a pseudo-twin of y w.r.t. H
when y¢ {a;,ay}, or it is a pseudo-twin of a node obAv.r.t. H when|Az| = 2, then there
exists a short connected diamondstich that one of the following holds:

() H2 CH’, ue H] = H’\ Hy, Hi|H2 is a 2-join of H with special sets A Ay, B], By
such that AnA; # @ and B NB; # @.

(i) H1 € H" and ue H5 = H’\ Hy, H1|H is a 2-join of H with special sets A A,, By,
B, such that ANA; # @ and B,NB; # &.
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Proof: Assume thaG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.
4.3.5 and 4.3.65 does not contain a proper wheel, a bug with a center-crdsspat
3PC(4A,-) with a hat, a bug with an ear nor &G3(4,-) with a type s2 node. We con-
sider the following cases.

Case 1l:uis of type p3 w.r.t.H or it is a pseudo-twin w.r.tH as in the statement of the
lemma.

LetH’ be the short connected diamond obtained by substitutinp H. Then clearly
H’ satisfies (i) or (ii).

Case 2:Nodeu is of type aw.r.tH.

Then|Ay| =1 and w.l.o.gN(u)NH = {a;,ay}. LetS= (N[ap] \ (HUU)) UA. Since
Scannot be a star cutset, there exists a direct conneltiomp;, ..., px fromuto H \ Sin
G\ 'S Sops is adjacent tai, p to a node oH \ S, anda; anda] are the only nodes df
that may have a neighbor B\ py.

(1) pk is of type pl, p2, p3, d, BBy, t3 (with neighbors iB), Hi-crossing orHo-
crossing w.r.t.H, or it is a pseudo-twin w.r.tH of a node ofB, ory wheny # a,.
In particular,pg is adjacent to at most one nodeAf

Proof of (1): By Lemmas 5.2.6, 5.2.7 and 5.2.8, no node is of type s1, s20is84nw.r.t.
H. Since|Az| = 1, px is not adjacent ta, and it has a neighbor iH \ S, px cannot be of
typeAs, A, a, t3 (with neighbors i), Ad nor a pseudo-twin of a node éfw.r.t. H. So
the result follows by Lemma 5.2.1. This proves (1).

(2) a1 cannot have a neighbor I\ py.

Proof of (2): Suppose it does. L& be a chordless path froy to az in (H \ A1) U px,
and letH’ be the hole induced bRUPUu. Since(H’,a;) cannot be a proper wheel;
has exactly one neighb@; in P andj < k.

Suppose tha#] does not have a neighbor i\ px. By Lemma 5.2.5 applied tbl
and pj, ..., px, node px must have a neighbor iR;. So by (1), px has a neighbor in
H1\ A1. Recall that by definition of a connected diamond at leastafreby, asb, is
not an edge. W.l.o.g. assume tlaab’, is not an edge. LeT be a chordless path from
Pk to & in (H1\a1) U{pkb,}. Recall that no node dP is adjacent taa, and hence
T UPU{a,az,u} induces a proper wheel with center. Soa; has a neighbor i\ py.

If & is not adjacent t@;, then a subpath d?\ py is a hat of2;, a contradiction. So
a; is adjacent topj. If a; does not have a neighbor ips,...,pj—1, then
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{p1,..., Pj,u,a1,a,a; } induces a proper wheel with cent@r. Soa; has a neighbor in
P1, ..., Pj—1. So(H’,a1) and(H’,a)) are both bugs. In particulaN(a;) NP = p; and
N(ay) NP = {pj, pj-1}-

Suppose thail(px) "H € Hp. Then by Lemma 5.2.5 applied kbandpj, ..., pk, node
pk is either of type p2 w.r.t.H with neighbors inPs,y or of type d w.r.t. H such that
N(pk) "H = {y, sz,ywz}- In both case®,,p, UPa,p, UPUUINduces a bugH’,a;) with a
center-crosspath, a contradiction.

Sopg has a neighbor ifl;, and hence by (1), it has a neighboHR\ A;1. By (1) px has
at most one neighbor iA and hence by Lemma 4.5.2 applieditg p; and pj1,..., Pk
N(pk) NZ1 = {bp, by, b }. But thenP,,p, UP,,p, UPUuInduces a bugH’, a1 ) with center-
crosspattPyp, \ a1, a contradiction. This proves (2).

We now consider the following two cases.

Case 2.1:a) has a neighbor iR\ py.

Let p; be such a neighbor with highest index pifis of type d,By, B, H>-crossing, a
pseudo-twin ofy wheny # a,, or a pseudo-twin of a node & Ub, w.r.t. H, then,, p;
andpj1, ..., Pk contradict Lemma 4.5.1.

Suppose thapy is a pseudo-twin oy w.r.t. H. Then by (2) H, UP,,, UPUuUinduces
a short connected diamoit/ (A7, A2, B}, Bo) whereA] = {a1,u} andB] = {by, px} and
H’ satisfies (i). So we may assume tipgtis not a pseudo-twin dfy w.r.t. H.

If pis anHi-crossingw.r.tH, then by Lemma 4.5.1 applied &, pj andpj,1, ..., Pk
nodepy is adjacent td; anda;, and hencé iy UP,n, UPUU Induces a proper wheel
with centera).

So by (1), pk is of type pl, p2, p3 or t3 (with neighbors B) w.r.t. H. If
N(px) "H C Py, then by (2),(H \ a}) U(PUu) contains a short connected diamond
H'(A],A2,B1,B2), whereA; = {a,u}, that satisfies (i). So we may assume thahas a
neighbor inH \ Pa'lb'l- But then by Lemma 4.5.1 applied @, path pj1,...,px and
either; or X, nodepx must be of type t3 w.r.tH such thatN(px) "H = {b], by, b}.
But then by (2) H2 U Py,p, UPUU induces a short connected diamdfadA’, Az, B}, By),
whereA] = {a;,u} andB] = {by, px}, and hence (i) holds.

Case 2.2:@) does not have a neighborh\ py.

So by (2), no node ofl has a neighbor i\ px. If px does not have a neighbor in
21\ {a1,a},a}, then it has a neighbor i, \ {a1,a},a>} and hence (sincpy is adjacent
to at most one node dfay, &}, az} by (1)) 2o, uandP contradict Lemma 4.5.2. Su has
a neighbor i1 \ {a1,a},a}. By Lemma 4.5.2 applied t&;, u andP, and since by (1)
Pk is adjacent to at most one node{af;, a},a,}, one of the following holds:
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(&) N(pk) NZ1 = {by, b} }.

(b) N(px) NZ1 = {v1,Vv2} whereviv, is an edge OPa'lb'l-

(€) N(px) NZ1 = {bg, b2, W, }.

(d) agby is an edge antll(px) V%1 = {va, }.

(e) aghy is an edgepy is of type p3 w.r.t.Z; andpy is adjacent t@;.

By (1) in fact (c) cannot happen. Suppose that (b) holds. Tygl), pk is of type p2
w.r.t. H, and hencéH \ &) UPUu contains a short connected diamd#idA}, A>, B1, By),
whereA] = {u,a; }, that satisfies (i).

Suppose that (a) holds. By Lemma 4.5.2 appliediou andP, and since by (1jpk is
adjacent to at most one ¢&1,a;, a2}, N(px) N2 = {b, b} }. SON(px) "H = {b}, by, b}
and hencéd, U Py, UPUUInduces a connected diamoHA(A7, Az, B}, By), whereA] =
{u,a1} andB] = {by, p}, that satisfies (i).

Suppose that (d) holds. Then by (N(pk) "H = {va, }. Sinceazb, is an edgeayb,
is not an edge, and heneg UPU {ay, b5, u} induces a 4-wheel with centey.

Suppose that (e) holds. Then by (p),is of type p3 w.r.t.H. Sinceayb, is an edge,
agb), is not an edge, and hen¢H \ v5, ) UP U {ay, b}, u} induces a 4-wheel with center
az.

Case 3:Nodeu is of type t3 w.r.tH.
W.l.o.g. we may assume thil{u) "H = {by, by, b }. Assume that the result does not
hold.

(1) Let § = (N[bo] \ (HUu))UB, and let P= py, ..., px be a direct connection from u
toH\ S in G\ S. Then k=1and p is an H-crossing w.r.t. H adjacent tojb In
particular, there exists a node that is an+{drossing w.r.t. H adjacent tojband u.

Proof of (1): SinceG does not have a star cutset, there exists a direct conndefarn
statement of (1), so we just need to show tkat 1 andp; is anH;-crossing w.r.t.H
adjacent td;. By definition of P, nodep; is adjacent ta, px to a node oH \ S, and the
only nodes oH that may have a neighbor P\ py areb,, b, andb.

(1.1) px is of type p1l, p2, p3,AA, a, d, Ad, t3 (with neighbors in A),jFtrossing, H-
crossing w.r.t. H or a pseudo-twin of a node oA w.r.t. H. In particular, g is
adjacent to at most one node of B.
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Proof of (1.1): By Lemmas 5.2.6, 5.2.7 and 5.248, cannot be of type s1, s2, s3 nor s4
w.r.t. H. Sincepy is not adjacent td,, it cannot be of type BBy, t3 (with neighbors
in B) nor a pseudo-twin of a node &w.r.t. H. By Lemma 5.2.1, the proof of (1.1) is
complete.

(1.2) No node of H\ {b1,b},b,} has a neighbor in R px and at most one node of
{by,b7,b5} has a neighbor in R py.

Proof of (1.2): We have already established that no nodeHof {b;,b},b,} has a
neighbor inP\ px. By Lemma 5.2.1 and Lemma 5.2.6, no nodePof py is adjacent to
more than one node dh;, b}, b,}. If at least two nodes ofby, b}, b} have a neighbor
in P\ p«, then a subpath d?\ py is a hat ofz or ¥, a contradiction. This proves (1.2).

If a node of {by,b},b5} has a neighbor i\ py, then letp; (resp. pi) be such a
neighbor with highest (resp. lowest) index.

(1.3) by does not have a neighbor in\Rpy.

Proof of (1.3): Assume it does. Then by (1.8 U {u, p1, ..., pi,b2} induces a bug with
centerby, andP,,p, \ b2 is its center-crosspath, a contradiction. This proves)(1.3

(1.4) by does not have a neighbor in\Rp.

Proof of (1.4): Assume it does. By (1.2) no node df\ b; has a neighbor i\ px. By
(1.1) px is adjacent to at most one node®fand hence iN(px) "H C Hy, thenH and
Pj,---, Pk contradict Lemma 5.2.5. Sg has a neighbor iitl;. In particular,py is not of
type d,H-crossing nor a pseudo-twin gfwheny ¢ {a;,az} w.r.tH.

Suppose thapy is of type Ay w.rt. H. By Lemma 4.5.1 applied t&, p; and
Pj+1,---» P, 211 is an edge. But theRy,,, U Py,p, UPU U induces a proper wheel with
centerb;. Sopy is not of typeA; w.r.t. H.

Supposqy is of type a w.r.tH. So|Az| =1 andN(px) NH = {ap,a}} or {ag,a1}. In
the first case&, p; and pj1, ..., Pk contradict Lemma 4.5.1, and in the second cHsa
andP contradict Lemma 4.5.2. Su is not of type a w.r.tH.

Suppose thapy is of type A or it is a pseudo-twin of a node Af w.r.t. H. If px has a
neighbor inPy 1 \ &, thenZ’, uandP contradict Lemma 4.5.2. 39(pi) NH € AUPyp,
But then(H \ Py,p,) UPU U induces a short connected diamdrt{A7, Ay, B, By) where
A] = {a}, px} andB] = {b/,u}, andH’ satisfies (i), contradicting our assumption. [%o
is not of type A nor a pseudo-twin of a nodeAf w.r.t. H.
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Suppose thapy is of type t3 w.r.t. H. Then by (1.1)|A2] =2 andN(px) "H =
{an,a},85} or{ay,a],ax}. In the first cas&, p; andpj,1, ..., px contradict Lemma 4.5.1,
and in the second ca&é,u andP contradict Lemma 4.5.2. S is not of type t3 w.r.t.
H.

Nodep is not of type Ad nor a pseudo-twin of a nodeAfw.r.t. H, since otherwise
2, pj andpj41, ..., Pk contradict Lemma 4.5.1.

Suppose thapy is anHj-crossing w.r.tH. If py is adjacent tdy}, then(Pyp, \ a1) U
{b},b5, pj,..., px} contains a BC(by, px). Sopy is adjacent td;. But then(Pa/lul\a’l) U
PU{b),by,u} contains a proper wheel with center. So py is not anH;-crossing w.r.t
H.

By (1.1) pk is of type p1, p2 or p3 w.r.tH. Sincepg has a neighbor i, it follows
thatN(px) "H C Pap, or Py, . By definition of P, p has a neighbor ifis \ {b, i If
N(px) "H C Py, thenZ, pj andpj1, ..., pc contradict Lemma 4.5.1. SW(px) "H C
Pyb,- But then(H \ by) UPUu contains a short connected diamadf{A1, Az, B}, B>)
whereB) = {u,b/ }, andH’ satisfies (i), contradicting our assumption. This prove4)(1

(1.5) b, does not have a neighbor in\Rp.

Proof of (1.5): Assume it does. By (1.2) no node Hf\ b, has a neighbor i\ py. If
N(px) "H C Hy, thenH andpj, ..., px contradict Lemma 5.2.5. Sgc has a neighbor in
H». In particular,pg is not of typeA; nor Hy-crossing w.r.tH.

Node pg is not of type A nor a pseudo-twin of a nodeAf w.r.t. H, since otherwise
Y’ pj andpj1, ..., Pk contradict Lemma 4.5.1.

Suppose thapy is of type a w.r.t. H. Then by Lemma 4.5.1 applied &, p; and
Pj+1,-.-» Pk, Y = a2 andyl, is an edge. But theR,,,, UPU{u,b,} induces a proper wheel
with centerb),. Sopy is not of type a w.r.tH.

Suppose thapy is of type t3 (with neighbors i), Ad or a pseudo-twin of a node of
A; w.rt. H. SoN(px) NHy = {a1,a)}. By definition of P, py is not adjacent td,, and
henceH, UP U {u,by} induces a BC(bibyou, a;a) p«). Sopy is not of type type t3 (with
neighbors iM), Ad nor a pseudo-twin of a node 8 w.r.t. H.

Suppose thapy is of type d or a pseudo-twin of wheny ¢ {a;,ax} w.rt. H. Let
H’ be the hole contained iRy, U Pa,y UP U that containg,,,, UPUU. Note that ifH’
containsy, thenpy has a neighbor if,,y \ y. Since by definition oP, b, is not adjacent
to any node ofP, it follows thatN(bz) N"H' = {u,bi}. But thenH" U Py induces a
3PC(b1bou,aiajaz). Sopy is not of type d nor a pseudo-twin gfvheny ¢ {a;,a} w.r.t.
H.
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Suppose thapy is anHp-crossing w.r.t. H. By Lemma 4.5.1 applied t&’, pj and
Pj+1,---» Pk, NOdepy is adjacent tdd,. LetH’ be the hole contained iRy, UP U u that
containsPU {u,by}. Then(H’,b,) is a proper wheel. Spy is not anH,-crossing w.r.t.
H.

So by (1.1) and sincek has a neighbor iz, N(px) "H € Hz and py is of type p1,
p2 or p3 w.r.t.H. By definition of P, p has a neighbor ikl; \ {by,b,}. By Lemma 4.5.1
applied to ¥',pj and pji1,...,pk, either [Ay] = 2 and N(px) NH C Papy, OF
[Ao] =1 and N(px) NH C Ryy. If |Ag] = 2, thenHy U (Pyp, \ b5) UP U {u,by}
contains a BC(bibou,a1aja,). So |Ay] = 1. Let H' be the hole contained in
Payby U (P, \ b5) UP U U that containsPyp, UPU UL If yby is not an edge, then
H' UP b Ub2 induces a BC(bibou,ai@jay). Soyby, is an edge, and hengel’.by) is a

&
bug. But therPyy, is either a center-crosspath or an eaftdf, by). This proves (1.5).

By (1.2), (1.3), (1.4) and (1.5), no nodeldfhas a neighbor i\ py.

Node px cannot be of typd\, A, t3 (with neighbors imA), Ad nor a pseudo-twin of a
node ofA, w.r.t. H, since otherwis®&(px) N"H1 = A1 and sincepy is not adjacent tdoy,
H1UPU{u,by} induces a BC(bibou, a;a] px).

Suppose thay is of type a or a pseudo-twin of a nodeffw.r.t. H. If pxis adjacent
to a; andap, and it does not have a neighboRgy, \ a1, thenP,,p, UP,,p, UPUUInduces
a 3PC(b1bou, ajaxpi). Otherwise(H \ Pyp, ) UPUU induces a short connected diamond
H'(A],A2,B},B2) whereA| = {a}, px} andB] = {u,b}}, and satisfies (i), contradicting
our assumption. Sp is not of type a nor a pseudo-twin of a nodefqfw.r.t. H.

Suppose thapy is of type d w.r.t.H. By Lemma 4.5.2 applied t&', u andP, N(px) N
H= {y,ybz,yb/z}, Yo, 7 b2 andyb/2 # b),. But then(H \ Py, ) UPUu induces a connected
diamond whose side-2-paths have fewer nodes in common lieaside-2-paths dfl, a
contradiction. Sq@y is not of type d w.r.tH.

Node py cannot be arid,-crossing nor a pseudo-twin gfwheny ¢ {a;,ax} w.r.t. H,
since otherwis&’, u andP contradict Lemma 4.5.2.

Suppose thapy is of type pl, p2 or p3 w.r.td. Note that by definition oP, px has a
neighbor inH \ B. If N(px) "H C Py, then(H \ by) UPUuU contains a short connected
diamondH’(A1, A2, B],Bz) whereB) = {u,b]}, that containdd, U Px andH’ satisfies
(i), contradicting our assumption. $Q has a neighbor i’ \ B. By Lemma 4.5.2 applied
to 2, uandP w.l.o.g. one of the following holds: (af2| = 1, byy is an edge, and either
N(px) "H = {bez} or py is of type p3 w.r.t.H adjacent tdd,, (b) px is of type p2 w.r.t.
H and its neighbors are containedrgy, , or (c) |A2| = 1, pk is of type p2 w.r.t.H, and
N(px) "H C Py,y. If (8) holds, therPyp, U Py, UPU U contains a bug with centdy,,
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and Pa’lb’l is its center-crosspath or an ear. If (b) holds, thiruP U {u, by} induces a
3PC(b1bou,A). So (c) holds. But thel,u andP contradict Lemma 4.5.3. Sux is not of
type p1, p2 or p3 w.r.tH.

Therefore, by (1.1pg is anHi-crossing w.r.tH. By Lemma 4.5.3 applied tb, u and
P, nodepx must be adjacent tby. If k> 1, thenH; UPU {u,by} induces a bug with
centerpg with an ear. S& = 1. This proves (1).

Let S = (N[b1]\ (HUu))U{bs,by,b,}. SinceS; cannot be a star cutset, there exists
a direct connectio® = py, ..., px fromutoH\ S in G\ $. Sop; is adjacent ta, px to a
node ofH \ S, and the only nodes ¢ that may have a neighbor P\ py areb, andb,.
By (1) there exists a nodeadjacent tai that is anH;-crossing w.r.tH adjacent td;.

(2) px has a neighbor in H B.

Proof of (2): Suppose thatl(px) "H C B. By definition of P, px must be adjacent to.
By Lemma 5.2.6 p; cannot be of type s1 w.r.td. N(px) NH # {b}} nor {b],by, b},
since otherwiséd; UP U {u,v} induces a proper wheel with center Since py is not
adjacent tdb; and it is adjacent tt, it follows that px cannot be of typd, nor B w.r.t.
H, and if it is of type t3 w.r.tH then its neighbors ii are contained i\. Hence,px has
a neighbor irH \ B. This proves (2).

(3) p« is either not strongly adjacent to H or it is of type p1, p2, 3, A, a, d, Ad, t3
(with neighbors in A), Htcrossing (adjacent to’}), Ho-crossing or a pseudo-twin
of a node of AJB; Uy w.r.t. H.

Proof of (3): By Lemmas 5.2.6, 5.2.7 and 5.2.8, cannot be of type s1, s2, s3 nor s4
w.rt H. By (2) px cannot be of typd3,; nor B w.r.tH, and if it is of type t3 w.r.t.H,
then its neighbors il are contained i\. Sincepy is not adjacent tdy, it cannot be a
pseudo-twin of a node @&, w.r.t. H, and if it is anH;-crossing w.r.tH, then it is adjacent
to b). The result follows from Lemma 5.2.1. This proves (3).

(4) If by does not have a neighbor in\Ry, then [ is adjacent to b and it is of type
p2, p3, d, Ad, H-crossing, a pseudo-twin of a node of BA; or a pseudo-twin of
y when y¢ {a;,ax} w.rt. H.

Proof of (4): Assume thab, does not have a neighborih\ px. By (2) px has a neighbor
in H\ B. If pyis not adjacent tby,, thenP is a direct connection fromtoH\ S in G\ S,
and hence by (1) is adjacent tdo,, a contradiction. S@y is adjacent td,. In particular,
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px cannot be of typé\;, A, a, t3 (with neighbors i), Hi-crossing nor a pseudo-twin of
a node ofA; w.r.t. H. Also sincepy is adjacent tdx, and it has a neighbor iH \ S, px
must be strongly adjacent k. The result now follows from (3). This proves (4).

(5) b, does not have a neighbor in\Rp.

Proof of (5): Assume it does. Lep; be the node oP\ px with highest index adjacent
to a node oH. By (2), px has a neighbor ifd \ B and hence in the graph induced by
(H\ B) U {bs, px} there is a chordless path frolm to py, and this path together with
PUu induces a holdd’. Sinceb, has at least three neighborsHt, (H’,by) must be a
twin wheel or a bug, i.eb> has a unique neighbor ia and this neighbor is contained in
P\ pk. Since(H’,b)) cannot be a proper whed, has at most one neighbor i If p;
is not adjacent tdy,, then a subpath d?\ py is a hat of>. Sop; is adjacent td,. Also
N(b5) NP C {pj, px}, else a subpath &¥\ px is a hat ofz.

Next we show thav does not have a neighbor B Assume it does. ThefH’,v)
is a wheel, and hence it must be a twin wheel or a bug. In p&aticuhas exactly one
neighborp; in P. Let H” be the hole induced by th p;-subpath ofP together with
bi,by andv. If i =1 or j =1 then(H”,u) is a proper wheel. Sb# 1 andj # 1. But
then(H”\ b1) U{u, p1,..., pi} induces a BC(u, pj) if i < j and a $C(u, pj) otherwise.
Thereforey does not have a neighborih

Next we show thapx does not have a neighbor iy. Assume it does. Suppose that
N(pk) NHy = Vi, - Then by (3),N(pk) N (H]_U bz) =V, and hencéd U {bz, Pj, - pk}
induces a BC(b,vy,, ). So px has a neighbor i1 \ vp,, and hence by (2) and (3) and
sincepy is not adjacent thy, px has a neighbor i1\ {vy,,b1,0}}. LetP’ be a chordless
path frompy tovin (H1\ {b1,b}, vy, }) U{v, px}. If j # 1, thenPUP' U {u,b,} induces a
3PC(u, pj). Soj = 1. But thenPUP U {u,by,b,} induces a proper wheel with center
Thereforepx does not have a neighbor k.

If N(px) "H = Vp,, thenPy,p, UP,,p, UPUU induces a proper wheel with centey.
So py has a neighbor il \ vy,. It follows, by (2) and sincey does not have a neighbor
in HyUby, thatpy has a neighbor ikl \ {vy,,b2,05}. LetP’ be a chordless path fropy
tovin (Hz\ {Vy,,b2,b5}) U (Pa’lb’l \ b)) U{v,pc}. If j #1, thenP UPU{u,by} induces
a 3PC(u, pj). Soj = 1. But thenP’ UPU{by, by} induces a 4-wheel with center This
proves (5).

(6) b, does not have a neighbor in\Rp.

Proof of (6): Assume it does. Lep; be the node oP\ p, with highest index adjacent to
b5. By (5) no node oH \ b}, has a neighbor i\ px. By (4) pk is adjacent td,. Since
PU{u,by,b,} cannot induce a proper wheel with certtgrN(b,) NP = p;.
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Next we show thav does not have a neighbor ih Assume it does. By (2 has a
neighbor inH \ B and hence irfH \ B) U {by, pk} there is a chordless path from to p,
and this path together witAUu induces a holél’. Since(H’,v) cannot be a proper wheel,
N(v) NP = p; for somei € {1,...,k}. LetH” be the hole induced by thgp;-subpath of
P together withby, b, andv. Since(H”,u) cannot be a 4-wheeil# 1 andj # 1. But then
(H”\b1) U{u, p1,..., pi} induces a BC(u, pj) if i < j or 3PC(u, p;) otherwise. Therefore
v does not have a neighborih

Suppose thapy has a neighbor il \ (BUw,). LetP’ be a chordless path fropy to
vin (H\ (BUw,))U{pkVv}. ThenP’UPU{u,by} induces a BC(py,u). Therefore
N(pk) "H € BUwy,, and hence by (2 is adjacent tan,. But thenPy,,, U Ps,p, UPUU
induces a 4-wheel with centbs. This proves (6).

By (5) and (6) no node dfl has a neighbor i\ px. By (4) pk is adjacent td,.

Supposep is of type p2, d, AdH»-crossing or a pseudo-twin of a node/&f ory
wheny ¢ {a;,a»} w.r.t. H. Sincepy is adjacent tdy, it follows thatX’,u andP contradict
Lemma 4.5.2. Thereforpk cannot be any of these types, and hence byg4$ either of
type p3 w.r.t.H or it is a pseudo-twin of a node & w.r.t. H.

Suppose thapy is of type p3 w.r.t. H. Sincepy is adjacent tdo,, by Lemma 4.5.2
applied toX’,u andP, it follows that|A| = 1 andbby is an edge. Letv be the neighbor
of px in Ry,y that is closest ty. Let P’ be thewy-subpath of,,y, and letH’ be the hole
induced byPUP’ UPs,y U Pyp, Uu. Then(H’,b) is a bug andPy its center-crosspath
or ear, a contradiction.

So pk is a pseudo-twin of a node &, w.r.t. H. Suppose thapy is not adjacent
to a node ofB;. If k # 1, thenH; UPU {u,b,} induces a bug with centq with an
ear (where the ear is the path induced(By\ px) Uu). Sok = 1. Since{ps,V,bs, by}
cannot induce a 4-holg,Vv is not an edge. Note that boti andv have a neighbor in
Hi\ {b1,b},w, }. LetP’ be a chordless path fromy tovin (Hy\ {by,b}, vy, }) U{p1,V}.
ThenP'U{u,v, by, by} induces a 4-wheel with centar So px must be adjacent to a node
of Bi.

By definition of P, py is not adjacent td;, and hence it is adjacent bj. Therefore,
Pk is @ pseudo-twin ob] w.r.t. H. Suppose that does not have a neighbor ih Let P/
be the path fronpy to vin (Pyy, \ by) U{pk,v}. If k> 1, thenP"UPU{u,b5} induces
a 3PC(px,u). Sok=1, and hencé® UPU {u,by,b,} induces a 4-wheel with center
Thereforev has a neighbor if. Let P’ be the chordless path fropx to by in (H1\ by) U
pk- SinceP’ UPU{by,u,v} cannotinduce a proper wheel with centeN(v) N (P'UP) =
pi for somei € {1,...,k}. But thenP’ U{p;, ..., px, b2, v} induces BC(by, p«). 0
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Proof of Theorem 2.2.6AssumeG does not have a star cutset. Then by Theorems 4.2.2,
4.3.3, 4.3.4, 4.3.5 and 4.3® does not contain a proper wheel, a bug with a center-
crosspath, aBC(A, -) with a hat, a bug with an ear nor #3(4, -) with a type s2 node.
We prove that for some connected diamahaf G, the 2-joinH;|H, of H extends to a
2-join of G. Assume not. Then by Theorem 5.1.5 every connected diarHooldG has
a blocking sequence fatl1|H,. Consider all short connected diamordilsand amongst
them choose aH with a shortest blocking sequen8e-= xi, ..., X, for Hy |H>.

By Lemmas 5.2.1, 5.2.6, 5.2.7 and 5.2.8 the following holds:

(1) If anode ofG\ H has a neighbor i, then it is of type p1, p2, p3, A, B, By,
a, t3, d, Ad,H1-crossingH»-crossing w.r.t.H or it is a pseudo-twin of a node of
AUBUyw.r.t. H.

By (1), Lemma 5.2.9, Theorem 5.1.9 and our choicélandS, the following holds:

(2) If a node ofS has a neighbor i, then it is of type pl, p2As, A, B, By, d, Ad,
H1-crossing oH,-crossing w.r.tH, or [Az| = 1 and it is a pseudo-twin @, w.r.t.
H.

So by Remark 5.1.2 and since neitliHo Ux; nor Hp Uxa|Hz is a 2-join,N(x1) N
Hi # @,A1,B1 andN(xn) NH2 # @, Az, B and hence by (2) the following hold:

3) n>1.
(4) x1 has a neighbor iil1, and it is of type p1l, p2 df;-crossing w.r.tH.

(5) xn has a neighbor ikl,, and it is of type p1, p2, d, Ad{,-crossing w.r.tH, or itis
a pseudo-twin oéy w.r.t. H when|Ay| = 1.

Letx be the node oSwith lowest index adjacent to a nodetds. By (4),N(x1)"H C
Hi and hencé > 1. By Lemma 5.1.8y, ..., X is a chordless path. Leg be the node of
S\ x; with lowest index that has a neighborkh Clearly j <| and hencex,...,x; is a
chordless path. Note that nodes...,x;_1 have no neighbors iAl. Furthermore by (2),
(5) and Lemma 5.1.3, the following holds:

(6) Eitherj =nandx; is one of the types in (5), or < n andx; is of typeA;, A, B or
Bo w.r.t. H.

LetC (resp.C’) be the hole induced big,,,, U Py, U D2 (resp.Payp, UPyp U by).

Claim 1: x; is not an H-crossing w.r.t. H.
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Proof of Claim 1: Assume it is. W.l.o.gx; is adjacent td;. Then(C,x;) and(C’,x3)
are both bugs. Ik; is of typeA;, A, Ad or a pseudo-twin of, when|Ay| = 1 w.r.t. H,
thenx; is not adjacent to at least onelwf, b, and hencex, ..., X; is a center-crosspath of
(C,x1) or (C',x1), a contradiction. I¥; is of typeBy w.r.t. H, then(C\ A) U {xq,...,X;}
contains a BC(bg, x1).

Suppose thax; is of type B w.r.t. H. If j =2, then bug(C,x;) andx, contradict
Lemma4.3.1. S¢ > 2 and henc¢C\ A1) U{xy,...,x;} contains a BC(xy, Xj). So by (6),
Xj has a neighbor i, and it is of type p1, p2, d df>-crossing w.r.t.H. In particular,
N(x1) "H C Hy andN(xj) NH C Hp, and hencéd andxg, ..., x; contradict Lemma 5.2.5.
This completes the proof of Claim 1.

Claim 2: xq is not of type p2 w.r.t. H.

Proof of Claim 2:Assume it is. W.l.0.g. the neighbors xf in H are contained ifs,p, -
If x; is of typeAq, A, Ad or a pseudo-twin ok, when |Ay| =1 w.r.t. H, thenx; is
not adjacent to at least one bf, b, and hence eithe2 U {xy,...,xj} orC'U {xq,...,Xj}
induces a BC(A,A) or a 4-wheel with centea; .

Nodex; cannot be of type B, p2, d ndt,-crossing w.r.t.H, since otherwise either
Payb, U Paxzyz or Py, U P4, induces a BC(A, A) or a 4-wheel with centdo;.

Suppose that; is of typeB, w.r.t. H. Let P be the chordless path fror to a; in
G[Pxyb, U{X1,....Xj}]. LetH" be the short connected diamond inducedPyPy iy UH2.
Then by Theorem 5.1.9 applied tf andS, our choice oH is contradicted.

So by (6),N(xj) "H =r andr € Hy. But thenH andxg, ..., x; contradict Lemma 5.2.5.
This completes the proof of Claim 2.

Claim 3: If N(xq) " H = by, then there exists a chordless path=Ppy, ..., px in G\ H
such that p is adjacent to x, no node of R p; is adjacent to x, no node of R px has a
neighbor in H and one of the following holds:

() N(pc)"H = vy, or

(i) pkis of type p2 w.r.t. H and its neighbors in H are contained 51%’1'3
Proof of Claim 3:Let S= N[by] \ {x1, W, }. SinceScannot be a star cutset, there exists a
direct connectio® = py, ..., px from x; toH in G\ S. Sop; is adjacent tog, no node of

P\ p1 is adjacent to¢g, px has a neighbor i \ {b1, by, b5} and it is not adjacent tby,
and the only nodes df that may have a neighbor P\ py areb, andby,.

Case 1:by andb), do not have neighbors iR\ py.
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Case 1.1:py has a neighbor i \ {b, b} .

By Lemma 4.5.1 applied t&, x; andP, and since no node &f is adjacent td;, one
of the following holds: (aN(px) NZ = Wy, ; (b) pk is of type p2 w.r.t> with neighbors in
P,y path ofZ; or (c) py is of type d w.r.t.Z and it has no neighbor iR,y \ y.

Suppose that (a) holds. By (1) eitig(pc) "H = vy, and hence (i) holds, @by is
an edge antll(pc) "H = {a;,a} }. The second case cannot hold, since thgg U Pa,b, U
PU{x1,d]} induces a 4-wheel with cente;.

Suppose that (b) holds. First suppose tNapx) N~ C Pyp,. Then by (1),px is
of type p2 orHj-crossing w.r.t. H. If py is anHj-crossing w.r.t. H, then (Pyp, \
a1) UPU {xq,bp,b}} contains a BC(by, px). So px is of type p2 w.r.t. H. Note that
Pk is not adjacent td;, and hencgH \ v, ) UPUX; contains a short connected dia-
mondH’(A1,Az,B1,By) that contains¢, and hence by Theorem 5.1.9 our choice-of
andSis contradicted. Thereforl(px) N is not contained irPyp,, and henceAy| =
1. Suppose tha(pg) N % C Pay. So by (1), pk is of type p2 w.r.t. H. But then
(H\ (Pyp, \ b1)) UPUX; contains a connected diamond whose side-2-paths have fewer
nodes in common than the side-2-pathdHofcontradicting our choice dfi. Therefore
N(pk) NZ = {a1,a2}. By (1) p« is of type a, A or it is a pseudo-twin @, w.r.t. H. By
Lemma 4.5.2 applied t&’, b; and pathx;, P, nodepy must in fact be of type A w.r.tH.
But then(H \ (Pyp, \ b1)) UPUX4 induces a short connected diamd#fA7, A2, By, By)
whereA] = {a], pk} that containsg. But then by Theorem 5.1.9 our choiceldfandS
is contradicted.

So we may now assume that (c) holds. Suppose|fat=2. ThenN(px) NZ =
{a1,a2,85} and so by (1)px is of type A or it is a pseudo-twin oy w.r.t. H. If pyis a
pseudo-twin oy w.r.t. H, thenPyp, U (Pyp \ &) UPU {x1,b5} contains a BC(by, py).
SoN(px) "H = A. LetH’ be the short connected diamond inducedy, UPUHU
{xq,b1}. Then by Theorem 5.1.9 applied it andS, our choice oH is contradicted. So
|A2| =1, and henc®(px) NZ = {Y,Yb,, Y, }- By (1), N(px) "H = {¥. ¥b,, Y, }. Suppose
that px is not adjacent to a node &. Let H’ be the connected diamond induced by
(H\ (Pap, \ b1)) UPUX;. Then the two side-2-paths bf have fewer nodes in common
than the two side-2-paths bf, contradicting our choice dfl. Sopy is adjacent to a node
of By, w.l.0.g. say it is adjacent to,. Thenbyy is an edge, and henégy is not an edge.
But thenPU Py py U Payy U {X1, b2, b5} induces a proper wheel with centey.

Case 1.2:py has no neighbor i \ {by,b’}.
ThenN(px) NH C Py, UBo. So by (1) eitheN(px) NH € Py or py is of type t3
w.r.t. H (adjacent td;) or px is a pseudo-twin ob} w.r.t. H. If py is a pseudo-twin
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of by w.r.t. H, thenP,p, U (Pag \ by) UPU {xq,by} contains a BC(b, px). If pxis of
type t3 w.r.t.H, thenH; UPU {x,bo} induces a bug with centép, andP,,p, \ b2 is its
center-crosspath. S9(pi) NH € Py If N(p) NH = b}, thenCUPUX, induces a
3PC(by,b}). Sopk has a neighbor i’ \ {by,b,,b}}. Note thatb; is of type t2 w.r.t.".
By Lemma 4.5.2 applied t&', b; andP, (ii) holds.

Case 2:by or b, has a neighbor i\ py.

Let p; be the node o\ px with highest index that has a neighborimp, b5 }. W.l.0.g.
we may assume thagi is adjacent tdo,.

Suppose thapy does not have a neighbor b\ {b,,b5}. Thenpx has a neighbor
in Pa’lb’l- Let C be the hole contained iH; UPUX; that containd, p, UPUX;. Since
CUb, cannot induce aRC(by, pi), (C,by) is a wheel and hence it must be a bug. But
thenP,,p, \ b2 is its center-crosspath. Therefguehas a neighbor i\ {by, b5 }. We now
consider the following cases.

Case 2.1:N(p;) "H = by.

Since px is not adjacent td; and it has a neighbor i\ {bp,b}, it cannot be of
type B, By nor a pseudo-twin of a node & Ub] w.r.t. H. If pyis of typeAq, A, a,
Hi-crossing, a pseudo-twin of a nodeAfw.r.t. H or a pseudo-twin of, when|Ay| = 2
w.r.t. H, thenZ, p; andpj.1, ..., px contradict Lemma 4.5.1.

Suppose thapy is of type d or it is a pseudo-twin of wheny ¢ {a;,ax} w.r.t. H.
Note that|Az| = 1. By Lemma 4.5.1 applied t&, p; and pj;1, ..., Pk, Nodep is either
adjacent tdy; or N(px) NH = {y,yyz,yaz}. Let P’ be the chordless path fropk to a; in
G[Pa,yU pk] and letC be the hole induced by UPUP,,p, Ux;. SinceCUb, cannot induce
a3PC(by, pi), (C,by) is awheel, and hence itis a bug. But ﬂ%{b'l is a center-crosspath
of bug (C, by).

Suppose thapy is of type t3, Ad or it is a pseudo-twin @ w.r.t. H. Note that ifpy
is of type t3 w.r.t.H, then sincepy has a neighbor i \ {by,b,}, N(px) "H C A. So in
all three case\(px) "H1 = Aq. LetC be the hole induced bigy,p, UPUX;. SinceCUby
cannot induce aRC(by, pi), (C,by) is a wheel, and hence it is a bug. But then, is a
center-crosspath of bue, by).

Suppose thapg is anHy-crossing w.r.t. H. First suppose thath,| = 2. If py is
adjacent taay (resp. &,), then letC be the hole induced b, UPU {a,x1} (resp.
Pyb, UPU{8&,,x1}). SinceCU by cannot induce aRC(pi,b1), (C,by) is a wheel and
hence it must be a bug. But théhy, is its center-crosspath. S8,| = 1. LetP’ be
the chordless path frompy to a in G[(Pay,n, \ b2) U py], and letC be the hole induced by
P"UPUX;. Then agair(C, by) is a bug andPy py, is its center-crosspath.
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Suppose thapg is a pseudo-twin ob; w.r.t. H. Sincepy is not adjacent tdy,,
N(pk) NH = {b2,b},v1,v2} wherevyv; is an edge 0Py, \ b1. Let P’ be the chordless
path frompy to by in G[Pap, U pk], and letC be the hole induced b’ UPUX;. Then
(C,b2) must be a bug, and heneg UP U {by,x;} induces a budC, b,) and its center-
crosspath.

Therefore by (1),px is of type pl, p2 or p3 w.rtH. By Lemma 4.5.1 applied to
Z, pi andpii1, ..., P N(px) "H C Pyp,. Let P’ be the chordless path fropy to a; in
GJ[(Payb, \ b2) U py], and letC be the hole induced by’ UPUXx;. SinceCUb;, cannot be a
3PC(bs, pi), (C,by) must be a bug, and henBg, is its center-crosspath.

Case 2.2:N(p;) NH = {by,b}}.

Since pi is not adjacent tdo; and it has a neighbor it \ {bp,b}, it cannot be of
type B, B; nor a pseudo-twin of a node 8, Ubj. If py is of typeA;, Ad, Hp-crossing
or a pseudo-twin of a node @6 U {a,y} w.r.t. H, thenZ, p; and pi1, ..., px contradict
Lemma 4.5.2.

Suppose thapy is of type A w.r.t. H. LetC be the hole induced bl UPUX;.
SinceC U by cannot induce aRC(by, pi), (C,b2) is a wheel, and hence it is a bug. But
then Pa, is its center-crosspath.

If pg is of type a w.r.t. H, then by Lemma 4.5.2 applied @ p; and pi+1, ..., Pk
N(pk) "H = {a1,ay}. ButthenHy U {pj, ..., pk, b2} induces a BC(ay, by).

Suppose thapy is of type t3 w.r.t. H. Since pg is not adjacent td; and it has a
neighbor inX \ {by, b5}, N(px) "H C A. But thenZ, p; andpi1, ..., px contradict Lemma
4.5.2.

Suppose thaby if of type dw.r.t.H. By Lemma 4.5.2 applied tg, p; andpj1, ..., Pk
N(px) "H = {y,ybz,ybxz} and py is not adjacent td, andb,. But then(H \ Py, ) U
{pi,-.-, px} induces a connected diamond whose side-2-paths have fedesin com-
mon than the side-2-paths Hf, contradicting our choice df.

If pxis anHji-crossing w.r.tH, then it must be adjacent 1y, and hencéPy,p, \ a1) U
{pi,...p, b}, b2} contains a BC(by, py).

If px is a pseudo-twin oB; w.rt. H, then(Hi\a})U{pi...,px, b2} contains a
3PC(b2, pk).

Suppose thapy is of type pl w.rt. H. By Lemma 4.5.2 applied t@, p; and
Pi+1,---, Pk, |A2] = 1 and eithelby, is an edge angy is adjacent t0/y,, OF yb, is an edge
and py is adjacent tos,. In the first casgH \ (Pyp, U b5)) UPUxs induces a proper
wheel with centeby. In the second cas®,,p, U Ps,n, UPUX; induces a proper wheel
with centerb,.



Chapter 5 116 Decomposing Connected Diamonds

Suppose thapg is a pseudo-twin ob; w.r.t. H. Sincepy is not adjacent tdy,,
N(pk) NH = {b2,b},v1,v2} wherevyv; is an edge 0Py, \ b1. Let P’ be the chordless
path frompy to by in G[Pap, U pk], and letC be the hole induced b’ UPUX;. Then
(C,b2) must be a bug, and heneg UP U {by,x;} induces a budC, b,) and its center-
crosspath.

Suppose thapy is of type p3 w.r.t. H. By Lemma 4.5.2 applied t@, p; and
Pit1,---, Pk |A2| = 1 andpg is adjacent tdd, or b, w.l.o.g. say tob,. Let P’ be the
chordless path fronp, to y in G[(Ry,y \ b2) U pk], and letC be the hole induced by
P'UP U Pa,y UPyp, Ux1. Then(C,by) must be a bug anky py, is its center-crosspath.

Therefore by (1),pk is of type p2 w.r.t. H. By Lemma 4.5.2 applied t&, p; and
Pit1,---, Pk, €itherN(px) "H C Pyp,, or |Az] = 1 andN(px) NH C P,,y. Let P’ be the
chordless path frory to by in G[Pyp, U (Pa,b, \ b2) U pk], and letC be the hole induced by
P"UPUX;. SinceCUb, cannot induce aRC(by, pi), (C,b) is a wheel, and hence itis a
bug. IfN(p) NH C Payy, thenPy yy is a center-crosspath (&, bz). SON(pyx) MH € Pyyp, -
But thenH; UP U {by,x1} induces a bugC, b,) and its center-crosspath. This completes
the proof of Claim 3.

Claim 4: If N(xq) "H = a;, then there exists a chordless path-Ppy, ..., px in G\ H
such that p is adjacent to x, no node of R p; is adjacent to x, no node of R px has a
neighbor in H and Np) "H = va,.

Proof of Claim 4:Let S= N[ay] \ {X1,Va, }. SinceScannot be a star cutset, there exists
a direct connectio® = pq, ..., px from x; toH in G\ S. Sop; is adjacent to;, ho node
of P\ p; is adjacent to, px has a neighbor i \ A and it is not adjacent ta;, and the
only nodes oH that may have a neighbor P\ py areay, &, anda.

Sincepy is not adjacent ta; and it has a neighbor iH \ A, px cannot be of typé\,
A, a, Ad, t3 (with neighbors i®), nor a pseudo-twin of a node 86U a; w.r.t. H. So by
(1) the following holds.

(4.1) pkis not adjacent tay, and it is of type p1, p2, p3, B>, t3 (with neighbors irB),
d, Hy-crossingH,-crossing or a pseudo-twin 8Ua; ory wheny ¢ {a;,ax} w.r.t.
H.

Case 1:ap anda; do not have a neighbor iR\ p.

Thena, is the only node oH that may have a neighbor B\ px. If & has a neighbor
in P\ px, then(P\ px) Ux; contains a hat ok, a contradiction. So no node bf has a
neighbor inP\ py.
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If pg is of typeB,, B, d, Hi-crossingHp-crossing or it is a pseudo-twin of a node of
BuUajg orywheny ¢ {a;,a} w.r.t. H, then sinceyy is not adjacent t@;, Lemma 4.5.1
applied to21,x; andP is contradicted.

Suppose thapy is anHy-crossing w.r.t.H. If |Ay| =1 or py is adjacent ta,, then
>,x1 andP contradict Lemma 4.5.1. Séy| = 2 andpy is adjacent tay. But thenx;, P
is a hat ofZ1.

Suppose thapy is of type t3 (with neighbors iB) w.r.t. H. By Lemma 4.5.1 applied
to X1, x; and P, N(px) "H = {by,b,,b1}. But thenH \ (Pyp, \ @) UPUX; induces
a short connected diamortdf (A1, A>, B}, B2) whereB) = {px,b}}, which by Theorem
5.1.9 contradicts our choice #f.

So by (4.1),pk is of type pl, p2 or p3 w.r.t.H. W.l.o.g. N(px) "H C Z;. By
Lemma 4.5.1 applied t&1, x; andP, N(px) "H = va,, or px is of type p2 w.r.t.H and
N(px) "H C Pyp,. Suppose thap is of type p2 w.r.tH. Then, sincey is not adjacent to
a1, (H\ va, ) UPUX contains a short connected diamdidAg, A2, By, By) that contains
x1, and hence by Theorem 5.1.9 our choicédat contradicted. S&l(px) "H = v, and
the result holds.

Case 2:ay or & has a neighbor i\ py.

Let p; (resp. p;) be the node oP\ px with lowest (resp. highest) index adjacent to a
node of{ap,a;}. Sincexy, py, ..., pi cannot be a hat afy, p; is adjacent to botlay, and
a;. Then by (1),p; is of type aw.r.tH. In particular,|Az| = 1. W.L.o.g. px has a neighbor
in Z]_\A.

First suppose that is adjacent tay but nota;. Thenl > i. By Lemma 4.5.1 applied
to X1, pr andpj11, ..., Pk, Nodepy has a neighbor iiPy;p, UPah,) \ {a1,a2}. LetP’ be a
chordless path fronpy to a1 in G[Pa,b, U (Payb, \ @2) U pi, and letC be the hole induced
by PUPUX;. Then(C,ap) is a wheel, and hence it must be a bug, I.esi + 1. Sopk
is not adjacent tay. If py is adjacent ta, then by (4.1)px is anHi-crossing w.r.t.H
adjacent tdo; or a pseudo-twin ob} w.r.t. H. But thenZ;, p; andpy1, ..., px contradict
Lemma 4.5.1. S@y is not adjacent ta), and henc€ Ua&] induces ®C(ay, pi).

Now suppose that, is adjacent t@j, but notay. Thenl >i. By Lemma 4.5.1 applied
to X1, pandpiiy, ..., Pk, Nodepy has a neighbor i(Payp, UPy ) \ {a1, 83 }) Uby. Let P’
be a chordless path fropk to a; in G[Pap, U (Pyp, \ aj) U{pk, bz}, and letC be the hole
induced byP UPUX;. Then(C, &) is a wheel, and hence it must be a bug, li..i+ 1.
So px is not adjacent t@y. If py is adjacent tay, then by (4.1) py is of type d w.r.t.H
or it is a pseudo-twin of a node & ory wheny ¢ {a;,ax} w.r.t. H. But thenZs, p; and
Pi+1,-.., Pk contradict Lemma 4.5.1. S is not adjacent tap, and henc€ Uay induces
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a SPC(al, pi).

Therefore,p; must be adjacent to botly anda), and hencep, is of type t2 w.r.t.Z;.
If px is of typeBy, B, d, H1-crossingH,-crossing or a pseudo-twin of a nodeByfU by
orywheny ¢ {a;,ap} w.r.t. H, thenZ, p, andp, .1, ..., px contradict Lemma 4.5.2.

Suppose thapyg is of type p3 w.r.t. H. By Lemma 4.5.2 applied t&,, p and
Pi+1,-- -, Pk, @b is an edge angby is adjacent taa). Thenagb), is not an edge. Let
P’ be the chordless path frop to b in G[(Py, \ a;) U pi], and letC be the hole induced
by P'UPyp, U{b), a2, 1, ..., pk}- Then(C, &) is a 4-wheel.

If pgis of type t3 w.r.t. H with neighbors inB, then by Lemma 4.5.1 applied &3,
prandpiia,..., Pk N(px) NH = {bo, b5, b1 }. If pyis of type p2 w.r.tH, then by Lemma
4.5.2 applied ta1, py and p41, ..., Pk, N(px) "H C Py, In both cases lef’ be the
chordless path frory to a; in G[Py,p, U pk], and letC be the hole induced by’ UPUX;.
SinceCUa] cannot induce aRC(ay, py), (C,a}) is a wheel and hence it must be a bug.
But thenH; UP U {xq, by} induces a budC, a;) with its center-crosspath. Therefopg
cannot be of type p2 nor t3 (with neighborsBhw.r.t. H.

Suppose thapy is a pseudo-twin ab; w.r.t. H. By Lemma 4.5.2 applied tB;, p; and
Pi+1, .-, Pk, Nodepy is adjacent ta). LetC be the hole induced bl p, UPU {x1,b2}.
Then (C,a;) must be a bug, and hen¢e- | andk =1+ 1. But thenCUa, induces a
3PC(ay, p), or a proper wheel with centep (in the case whenyh, is an edge).

Supposepg is a pseudo-twin oy w.r.t. H. Note that sincgy is not adjacent to
a1, N(px) "H = {ap,a},v1,v2} wherevyv, is an edge ofyp, \ ai. Let C be the hole
contained inPy,p, \ b1) UPUX;. Then(C,a;) must be a bug, and heneg UPU {by, x1 }
induces a bugC, &)) and its center-crosspath.

Therefore by (4.1)py is of type p1 w.r.t.H. By Lemma 4.5.2 applied t&;, p; and
P41, -5 Pk, @202 is an edge andll(px) NH = vy . But thenH; UPU {bz,x;} induces a
proper wheel with cente}. This completes the proof of Claim 4.

By (4) and Claims 1 and N(x;) N"H =r wherer € H;. W.l.o.g.1 € Pyp,. By (6) it
suffices to consider the following cases.

Case 1:xj is of type p1, p2, d oH>-crossing w.r.tH.
ThenN(xj) N"H C Hp, andH andxy, ..., x; contradict Lemma 5.2.5.

Case 2:xj is of type Ad or a pseudo-twin @b when|Ay| =1 w.r.t. H.

Suppose that # a;. If Xj has a neighbor ifP,,p, \ @2, then (Pap, \ 82) U Pap, U
{x1,...,xj} contains a BC(r,x;j). Otherwise(Pyy, \ a,) U Py, U {X1,....,Xj} contains a
3PC(r,Xj). Sor = a.
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Let P be the path from Claim 4. If no node &fis adjacent to or coincident with
a node of{Xz,...,Xj}, thenPyp, UPyy UPU {x1,...,Xj} together with eitheb, or b,
induces a 4-wheel with centai. So a node oP is adjacent to or coincident with a node
of {xo,...,Xj}. Let p; be the node o with highestindex that has a neighbofip, ..., x; },
and letx be the node ofxy, ..., x; } with highest index adjacent fo. If x; has a neighbor
iN P, \ @2, thenPy b, U (Payb, \ @2) U{pi, ..., Pk, Xi, -, Xj } contains a BC(va,,Xj). SO
X; does not have a neighbor B,p, \ @, and hence; is of type Ad w.r.t. H, |As| = 1,
y=azandN(xj)H = {a},a1, a2, Yy, }. ButthenPyp, U (Py,p, \a2) U{pi; .., P, Xi, -, X}
contains a BC(Vy,, Xj).

Case 3:xj is of typeA; w.r.t. H.

If r # ay, thenXy,Xj andxy,...,Xj_1 contradict Lemma 4.5.2. So=a;. LetP be
the path from Claim 4. TheRyp, U Pa,p, UPU{X1,...,X;} contains a proper wheel with
centera;.

Case 4:xj is of type Aw.r.t.H.

First suppose that# a;. LetP be the chordless path frorp to by in G[(Payp, \ a1) U
{X1,...,Xj}]. ThenHUPU Py, induces a short connected diamdtrdvhich by Theorem
5.1.9 contradicts our choice éf. Sor = a;. Let P be the path from Claim 4. L&? be
the chordless path fromy to by in G[(Pyyp, \ @1) UPU{xq,...,Xj}]. ThenHUP'U Payb,
induces a short connected diamd#dwhich by Theorem 5.1.9 contradicts our choice of
H.

Case 5:xj is of typeB, w.r.t. H.

By Lemma 5.2.5 applied tbl andxy, ...,xj, r = b;. LetP be the path from Claim 3.
Suppose thaP satisfies (i) of Claim 3. LeP’ be a chordless path from to a; in
G[(Payb, \ b1) UPU{Xq,...,Xj}]. ThenH UP'U Py, induces a short connected diamond

H’ which by Theorem 5.1.9 contradicts our choice-of

SoP satisfies (ii) of Claim 3. If no node d? is adjacent to or coincident with a node
of {Xz,...,xj }, then(Py, \ 8;) UPU{by,b5,x1, ..., X} } contains a BC(b, x1). Otherwise,
there exists a chordless pahfrom x; toaj in G[(Py; \ b}) UPU{Xz, ..., Xj}], and hence
HoUP' UPy,p, induces a short connected diamdtidwhich by Theorem 5.1.9 contradicts
our choice oH.

Case 6:xj is of type B w.r.t.H.

If r 5 by, thenPyp, UPyp U{X4,...,xj} induces a BC(r,x;). Sor = b;. LetP be the
path from Claim 3. Suppose thBtsatisfies (i) of Claim 3. If no node d® is adjacent
to or coincident with a node dfx, ..., X}, thenPyp, UPsp, UPU{X1,...,X;} induces a
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4-wheel with centeb;. Otherwise Py b, U Py UPU{Xz,...,Xj} contains a BC(x;, p, ).
SoP must satisfy (ii) of Claim 3.

If a node ofP is adjacent to or coincident with a node pfy, ..., x;}, thenPyp, U
(Papy \ b}) U Pap, UPU{Xo,...,Xj} contains a BC(xjbiby,a;aja2). So no node oP
is adjacent to or coincident with a node p, ...,x;}. If j =2, then(Pallb/l\a’l) UPU
{b1,02,%1,...,Xj} contains a 4-wheel with centgf. Soj > 2. But then(Py \ aj) UPU
{b1,X1,...,Xj} contains a BC(xy,X;j). O



Chapter 6

Recognition Algorithm

In this section we give a new recognition algorithm for everte-free graphs. As already
discussed in Sections 1.1 and 2.1, two different recognaigorithms are given in [14]
and [6].

6.1 Cleaning algorithm

LetH be a hole, ang € V(G) \ V(H). We say thav is major w.r.t. H if there exist three
of its neighbors irH that are parwise nonadjacent. This is the terminology frén [

Let H be a smallest even hole of a gra@h We say thaH is cleanif no vertex ofG
IS major w.r.t.H.

Let H be a smallest even hole &. Letue G\ H. We say thau is of type gi, for
i=1,2,3,if IN(uynV(H)| =iandN(u) NV (H) induces a path onnodes. We say that
is of type b1 ifV(H) U {u} induces a BC(-,-); uis of type b2 if(H,u) is a 4-wheel that
has exactly two long sectors and these two long sectors dbavata node in common;
andu is of type b3 if(H,u) is a 4-wheel that has exactly two long sectors and these two
long sectors have a node in common. This is the terminolagy {14].

Let H be a smallest even hole &. Letu be a type g3 node w.r.t4, with neigh-
borsus, up, uz in H such thatu,up, anduyus are edges. Let’ be the hole induced by
(V(H)\ {uz}) U{u}. We say thaH’ is obtained fromH by atype-g3-node-substitution
Let 4c(H) be the set of all holes obtained frarhthrough a sequence of type-g3-node-
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substitutions.

A graphG is cleanif it is either even-hole-free or it contains a smallest eliete H
such that all holes o (H) are clean.

A short 4-wheeis a 4-wheel(H,x) such that either exactly three of the four sector
are of length 1, or exactly two of the four sectors are of larigand they do not have a
common endnode and one of the sectors is of length 3.

In both [14] and [6] a “cleaning procedure” is given, thatdalan input grapks and
produces a clean graji that is even-hole-free if and only @ is even-hole-free. In [14]
a smallest even hole is “cleaned” in the sense that all mades are eliminated but also
the type bl, b2 and b3 nodes. Here we give the cleaning frorthf]cleans just the
major nodes, and hence has better complexity.

Theorem 6.1.1 [6] There exists an algorithm with following specifications
Input . AgraphG.

Output : A sequence of subsetg X,X; of V(G) with r < [V(G)|® such that for
every smallest even hole H of G, one ¢f X, X; is disjoint from(H) and
includes all major vertices for H.

Running :  O(|V(G)|*9).
Time

Lemma 6.1.2 Let H be a smallest even hole of G. KX/ (G) \ V(H) has an odd number
of neighbors in H, then x is of type g1 or g3 w.r.t. H.

Proof: Assume thak has an odd number of neighborsHn and that it is not of type g1 or
g3 w.r.t. H. Then(H,x) is a wheel. IfSis any sector ofH,x), thenV(S) U {x} induces
either a triangle or a hole that is of length smaller tivanSo every sector ofH,Xx) is
of odd length, and sincéH,x) has an odd number of sectors, it follows thkats of odd
length, a contradiction. O

Lemma 6.1.3 Assume that G does not contain a short 4-wheel nor a smallest leole
with a type b3 node. Let H be a smallest even hole of G. If H scléhen all holes in
%c(H) are clean.
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Proof: Assume thaH is clean. Leu be a node that is of type g3 w.rH., with neighbors
U1, Uz, Uz in H such that;up anduyus are edges. Letl” be the hole induced by (H) \
{uz}) U{u}. To prove the result, it suffices to show thétis clean.

Suppose that there exists a vertethat is major w.r.t.H’. Sincev cannot be major
w.r.t. H, it follows thatv is adjacent ta, it has at least two nonadjacent neighborslin
and it is not adjacent ta,.

Sincev is major w.r.t.H’, by Lemma 6.1.% has an even number of neighborsHh
Sov has an odd number of neighborshh Sincev has at least two neighbors kh, by
Lemma 6.1.2y is of type g3 w.r.tH. But then eithe(H’,v) is a short 4-wheel ov is of
type b3 w.r.t.H’, a contradiction. O

Lemma 6.1.4 [14] Let G be a graph that does not contain a 4-hole nor a shevilel.
Let H be a smallest even hole of G, and suppose that node uyp®bi w.r.t. H. Let
N(u)NV(H) = {u1,up, U3, us} such that yu, and wus are edges. If vis major w.r.t. H,
then N\v) N {uz,us,u} # @.

Theorem 6.1.5 There exists an algorithm with following specifications:
Input A graph G that does not contain a 4-hole, nor a shortlfeel.

Output : Afamily.Z of induced subgraphs of G such that if G contains an even hole,
then for some smallest even hole H of G and sofme &, G’ contains H
and all holes i (H) are clean. Furthermord,Z | is 0(|V(G)|°).

Running :  ¢(|V(G)|).
Time

Proof: Consider the following algorithm:
Step 1: Set.Z = {G}.

Step 2: For every(Py, P>, u), whereP; = Xg, X2, X3 andP, = y1, Yo, y3 are disjoint chordless
paths inG andu € N(x2) "N(y2), add to.Z the graph obtained frof@ by removing
the node sel({x2,y2,u})\ (V(PL) UV (P)).

Step 3: Apply the algorithm from Theorem 6.1.1 6, and letXy,..., X, be the output
sequence of subsets¥fG). Fori = 1,...,r add to.Z the graph obtained frorG
by removingX;.
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Clearly this algorithm runs in time&(|V(G)|'?), and|.Z| is O(|V(G)|®). Suppose
thatG contains an even hole.

First suppose thab contains a smallest even hdté with a type b3 nodai. Let
N(u) "V (H) = {ug,up, u3,us} such thatuu, andupus are edges. Letr; (resp. uj) be
the neighbor otl, in the sector of whedH, u) whose endnodes atg andug (resp.us).
Let G’ be the graph obtained fro® by removing the node sé({uz,us,u})\ V(H).
Clearly G’ containsH and is one of the graphs added.f6 in Step 2. LetH’ be any
hole of ¢/ (H). By construction of5’ and sinceG does not contain a 4-hole|’ contains
U1, Up, Ug, U3, Us, U; and henceu is of type b3 w.r.t.H'. So by Lemma 6.1.4 and since no
node ofG' is adjacent to any of the nodes ff, us, u}, it follow that no node ofG’ is
major w.r.t.H’. Thereforetw (H) is clean, proving the theorem.

Now we may assume th&does not contain a smallest even hole with a type b3 node.
Let H be any smallest even hole 6f By Theorem 6.1.1, for some grag@i added ta¥
in Step 3,G’ containsH andH is clean inG'. By Lemma 6.1.3, all holes itz (H) are
clean, and the theorem holds. O

6.2 Star decomposition

In this section we decompose clean graphs with star cutsets.

Let S= N|[x] be a full star cutset of a grapB, and letCy,...,C, be the connected
components o6\ S. Theblocks of decompositionf G by Sare graph€;, ..., Gn, where
G; is the subgraph dB induced by (C)) US.

Lemma 6.2.1 Assume that G is a graph that does not contain a theta, a shottekel
nor a 4-hole. If H is a smallest even hole of G and it is clean, thehdéntains two
nodes that are at distance at least 3 in G.

Proof: SinceG does not contain a 4-holkl* is of length at least 6, and hence it contains
two nodeau andv that are at distance 3 iH*. Suppose thai andv are not at distance 3
in G. Then there exists a nodec G\ H* that is adjacent to both andv. SinceG does
not contain a thetay has at least 3 neighbors k*. By Lemma 6.1.2w has at least 4
neighbors irH*. SinceG does not contain a 4-hole nor a short 4-wheel, it follows that
is major w.r.t.H*, contradicting the assumption that is clean. O

We note that for the result of the above lemma to hold it is maicessary to exclude
thetas, there is a way to just deal with type b1l nodes as in fii#]since thetas can be
recognized in time7 (|V (G)|*Y) [9], for simplicity of the argument we exclude them here.

We say thati is dominatedoy v if u is adjacent tov andN(u) C N|v].
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Lemma 6.2.2 Let G be a clean graph such that for some smallest even holef I8, all
holes ofés(H*) are clean. Assume that G does not contain a short 4-wheehdé mi is
dominated by node v, then\u} contains a hole o¥g(H").

Proof: Assume thatH* containsu, and letu; andu, be the neighbors af in H*. Since
uis dominated by, nodev is adjacent tai;, up andu. SinceH* is clean ands does not
contain a short 4-wheel,is of type g3 w.r.tH*. But then(H*\ u)Uvis in ¢g(H*) and
in G\ u. O

A 4-wheel(H,x) is decomposition detectabler.t. a full star cutseSif S= N|x], X is
of type b2 w.r.t.H and the interior nodes of the two long sectorgldfx) are contained
in different connected components®fi S.

Lemma 6.2.3 Let G be a clean graph such that for some smallest even holefHs,

all holes of g(H*) are clean. Assume that G does not contain a short 4-wheel nor a
theta. When decomposing G with a full star cutset S, theermestbme hole ir6g(H*) is
entirely contained in one of the blocks of decompositiorthere exists a decomposition
detectable 4-wheel w.r.t. S.

Proof: Let S= N[x] and suppose that nodesldf are contained in different connected
components o5\ S Thenx ¢ H* andx has at least two nonadjacent neighborgiin
SinceG does not contain a thetahas at least three neighborsHii.

First suppose thathas an odd number of neighborsHi. Then by Lemma 6.1.%
is of type g3 w.r.t.H*. LetH be the hole obtained by substitutirgnto H*. ThenH is
contained inég(H*) and in one of the blocks of decomposition &y

So we may now assume thatas an even number of neighborsHri, and hence
IN(x) "H*| > 4. SinceG does not contain a short 4-wheel, andannot be major w.r.t.
H*, it follows thatx is of type b2 w.r.tH*. But then(H*,x) is a decomposition detectable
4-wheel w.r.t.S. O

Theorem 6.2.4 There exists an algorithm with the following specifications

Input : A connected graph G that does not contain a short 4elyteetheta, nor a
4-hole.
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Output : Either G is identified as not being even-hole-freea dist .# of induced
subgraphs of G with the following properties.

(1) The graphs inZ do not have a star cutset.

(2) If G contains a smallest even hol€ duch that all holes o&g(H*)
are clean, then one of the graphs.##i contains a hole ir6g(H").

(3) The number of graphs i is &(|V(G)|?).

Running :  ¢(|V(G)|%).
Time

Proof: The algorithm is as follows. Initialize# = @ and.¥¢’ = {G}, and perform the
following iterative step. 1f¢’ = &, then stop. Otherwise, remove a grdpfrom .#’. If
the distance between every pair of vertice$-af strictly less than 3 i, then discard
F and iterate. IfF contains a dominated node then addF \ u to ¢’ and iterate. IfF
does not have a full star cutset, then &dtb .# and iterate. Otherwise, I&be a full star
cutset off. If there is a decomposition detectable 4-wheel wS.then output thaG is
not even-hole-free and stop. Otherwise construct the Blotklecomposition by, add
them to.#”’ and iterate.

Note that if a 4-wheel is found, then cleaf®yis not even-hole-free. (1) holds by the
construction of the algorithm (note that, as was first obsgdyy Chvatal [10], a graph
has a star cutset if and only if it has a dominated node or afatlcutset). (2) holds by
Lemma6.2.1, 6.2.2 and 6.2.3.

We prove (3) by showing that the number of graphsAnis bounded by the number
of pairs of vertices at distance at least 3dnLet Sbe a full star cutset of a gragh, and
let Fy, ..., Fm be the blocks of decomposition. Letandv be two vertices of that are at
distance at least 3 i@ (and hence irF). The pair of verticegu, v} cannot be contained
in two different blocks of decompostion, since otherwiseytivould both have to be in
S but sinceSis a star, all vertices of are at distance at most 2. Therefore, no pair of
vertices that are at distance at least &inan be contained in different graphs .

Finding a dominated node, or finding a full star cutset andstrating blocks of de-
composition can be done in tim&(|V(G)|3). For a given full star cutse® = N[x],
checking whether there exists a decomposition detectabibetl can be done in time
O(IV(G)[®) as follows: letCy,...,Cy be the connected components®f, S; for every
4-tuple (x1,X2,X3,Xa), Where{x1,x2,X3,Xa} C N(x) andG[{x1,X2,X3,X4}] consists of ex-
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actly two edgesxix, andxsxs; and for every 2-tupl¢C;,C;), wherei, j € {1,...,k} and

I # J; check whetheg; andxs both have a neighbor in the same connected component of
Ci\ (N(x2) UN(x3)), and whethek, andxs both have a neighbor in the same connected
component o€\ (N(x1) UN(x4)). All this is performed at mosf (|V (G)|?) times, giving
O(|V(G)|*9) time complexity. m

6.3 2-join decomposition

In this section we decompose a clean graph that has no ssmt aiging 2-join decompo-
sitions, without creating any new star cutsets.

Let V1|V be a 2-join with special setdA;,Az,B1,Bp). Fori = 1,2, let & be the
family of chordless pathB = x1,...,x, wherex; € A, X, € Bj andx; € Vi \ (A UB;) for
2<j<n-1.

Theblocks of a 2-join decompositiare graph$5; andG; defined as follows. Block
G consists of the subgraph &induced by node s&t plus amarker path P=ap,...,by
that is chordless and satisfies the following propertiesddNp is adjacent to all nodes in
A1, nodebs, is adjacent to all nodes iB; and these are the only adjacencies betwen
and the nodes of;. Furthermore, 1eQ € &%,. The marker patlf, has length 3 ifQ is of
odd length, and length 4 otherwise. BloGk is defined similarly.

Theorem 6.3.1 [14] Let G be a graph that does not contain a 4-hole. Letddd & be
the blocks of a 2-join decomposition of G. G is even-hole-frand only if G and &
are even-hole-free. Furthermore, if G does not have a steatuthen neither do zand
Go.

Theorem 6.3.2 There exists an algorithm with the following specifications

Input : A connected graph G that does not have a 4-hole norlacsiizet.
Output : Either an even hole of G, or a list’ of graphs with the following proper-
ties:

(1) The graphs inZ do not contain a 4-hole, a star cutset nor a 2-join.
(2) Giseven-hole-free if and only if all graphs.if are even-hole-free.

(3) The number of graphs i’ is O (|V (G)|).
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Running :  O(|V(G)?).
Time

Proof: The algorithm is as follows. Initialize# = @ and.¥’ = {G}, and perform the
following iterative step. 1f¢’ = &, then stop. Otherwise, remove a grdplrom .¢". If

F does not have a 2-join, then afido .# and iterate. Otherwise, |84 |V, be a 2-join of

F. Construct the blocks of the 2-join decompositiorFofsayF; andF,. Fori =12, if

|Vi| <7, then check directly wheth& contains an even hole. If it does, output this result
and stop, and otherwise discdd If |Vi| > 7, addF; to .#’, and iterate.

By constructing blocks of decomposition we do not createdhyles, and by Theo-
rem 6.3.1 we do not create any star cutsets. So by the constrag the algorithm, (1)
holds. (2) holds by Theorem 6.3.1.

In [4] and [14] it is shown how with this construction of theyatithm (3) holds.

Finding a 2-join takes time& (|V(G)|’) using the crude implementation in [14], and
this algorithm is applied at most'(|V(G)|) times, yielding an overall complexity of
o(V(G)°). O

6.4 Recognition algorithm for even-hole-free graphs

Theorem 6.4.1 There exists an algorithm with the following specifications
Input . AgraphG.

Output : EVEN-HOLE-FREE when G is even-hole-free, and NOENEYIOLE-
FREE otherwise.

Running :  O(|V(G)|*9).
Time

Proof: Consider the following algorithm:

Step 1: Test whethelG contains a short 4-wheel, a theta, or a 4-hole. If it does) the
output NOT EVEN-HOLE-FREE and stop.

Step 2: Apply algorithm from Theorem 6.1.5, and |&f; be the output family of graphs.
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Step 3: Let.%, = @. For every graph inZ3, apply the algorithm from Theorem 6.2.4. If
the graph is identified as not being even-hole-free, theputuhe same and stop.
Otherwise merge the output family of graphs witt.

Step 4: Let £3 = &. For every graph inz>, apply the algorithm from Theorem 6.3.2. If
the graph is identified as not being even-hole-free, theputuhe same and stop.
Otherwise merge the output family of graphs witf.

Step 5: Check whether every graph iff3 is an extended clique tree. If some is not then
output NOT EVEN-HOLE-FREE. Otherwise, for each graph#h check whether
it contains an even hole. If some does, then output NOT EVEN-B-FREE, and
otherwise output EVEN-HOLE-FREE.

The correctness of the algorithm follows from Corollary .3.2 Testing whether a
graph contain a short 4-wheel or a 4-hole can be done by twute in timed'(|V (G)|°).
Testing whether a graph contains a theta can be done indiff\&G)|%) [9]. So Step 1
can be implemented to run in tin@(|V (G)|11).

By Theorem 6.1.5, Step 2 can be implemented to run in 6t (G)|19) and|.Z1| =
0(IV(G)|®). By Theorem 6.2.4 and sindez1| = ¢(|V(G)|®), Step 3 can be imple-
mented to run in timeZ([V(G)|*®) and |.%| = ¢(|V(G)|*!). By Theorem 6.3.2 and
since|.%,| = O(|V(G)|'') Step 4 can be implemented to run in tind|V (G)|*°) and
5 = G(V(G)*).

It is easy to see that in a clique tree there is at most one [Essrgpath between any
pair of vertices. So iG\ xis a clique tree, then to determine whetlecontains an even
hole we need only test for every pair of neighbors wthether the chordless path between
them inG\ x contains no other neighbor gfand is of even length. Similarly one can test
whether an extended clique tree contains an even hole. 1&® |s¥3| = 0(|V(G)[*?),
Step 5 can be implemented to run in tin®&|V (G)|1"). Therefore the overall running
time iso(|V(G)|19). m
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