
Even-hole-free graphs

by

Murilo Vicente Gonçalves da Silva

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds

School of Computing

June 2008

The candidate confirms that the work submitted is his own and that the appropriate

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper

acknowledgement.



Abstract

In this thesis we consider the class of simple graphs defined by excluding even holes

(i.e. chordless cycles of even length). These graphs are known as even-hole-free graphs.

We first prove that every even-hole-free graph has a node whose neighborhood is triangu-

lated. This implies that in an even-hole-free graph, withn nodes andm edges, there are

at mostn+2m maximal cliques. It also yields a fastest known algorithm for computing a

maximum clique in an even-hole-free graph.

Afterwards we prove the main result of this thesis. The result is a decomposition

theorem for even-hole-free graphs, that uses star cutsets and 2-joins. This is a significant

strengthening of the only other previously known decomposition of even-hole-free graphs,

by Conforti, Cornuéjols, Kapoor and Vušković, that uses2-joins and star, double star and

triple star cutsets. It is also analogous to the decomposition of Berge (i.e. perfect) graphs

with skew cutsets, 2-joins and their complements, by Chudnovsky, Robertson, Seymour

and Thomas. In a graph that does not contain a 4-hole, a skew cutset reduces to a star

cutset, and a 2-join in the complement implies a star cutset,so in a way it was expected

that even-hole-free graphs can be decomposed with just the star cutsets and 2-joins.

A consequence of this decomposition theorem is anO(n19) recognition algorithm

for even-hole-free graphs. The recognition of even-hole-free graphs was first shown to

be polynomial by Conforti, Cornuéjols, Kapoor and Vušković. They obtained an al-

gorithm of complexity of aboutO(n40) by first preprocessing the input graph using a

certain “cleaning” procedure, and then constructing a decomposition based recognition

algorithm. The cleaning procedure was also the key to constructing a polynomial time

recognition algorithm for Berge graphs. At that time it was observed by Chudnovsky and

Seymour that once the cleaning is performed, one does not need a decomposition based

algorithm, one can instead just look for the “bad structure”directly. Using this idea, as op-

posed to using the decomposition based approach, one gets significantly faster recognition

algorithms for Berge graphs and balanced 0,±1 matrices. However, this approach yields

anO(n31) recognition algorithm for even-hole-free graphs. So this is the first example of

a decomposition based algorithm being significantly fasterthan the Chudnovsky/Seymour

style algorithm.

The results in this thesis are a joint work with Kristina Vušković.
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Chapter 1

Introduction

1.1 Overview

We say that a graphG containsa graphF, if F is isomorphic to an induced subgraph of

G. A graphG is F-free if it does not containF. Let F be a (possibly infinite) family of

graphs. A graphG is F -free if it is F-free, for everyF ∈ F .

A hole is a chordless cycle of length at least four. A hole iseven(resp. odd) if it

contains even (resp. odd) number of nodes. A hole of lengthn is also called ann-hole. In

this thesis we are concerned with the class ofeven-hole-freegraphs, i.e. graphs that are

F -free whereF denotes the family of all even holes.

The main part of this work is a decomposition theorem for even-hole-free graphs us-

ing star cutsetsand2-joins. This decomposition is analogous to the decomposition of

Berge (i.e. perfect) graphs withskew cutsets, 2-joins and their complements, by Chud-

novsky, Robertson, Seymour and Thomas [7] (note that in a graph that does not contain

a 4-hole, a skew cutset reduces to a star cutset, and a 2-join in the complement implies

a star cutset). We also show that the decomposition obtainedleads to a fastest known

recognition algorithm for even-hole-free graphs. As a second contribution we prove that

every even-hole-free graph has a node whose neighborhood istriangulated. This implies

that in an even-hole-free graph, withn nodes andmedges, there are at mostn+2mmaxi-

mal cliques. As a consequence we obtain anO(n2m) algorithm that generate all maximal

cliques of an even-hole-free graph.
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Chapter 1 2 Introduction

Many interesting classes of graphs can be characterized as being F -free, for some

family F . In particular, a question that arises in this domain is to understand to what

extent forbidding an induced subgraph impacts the global structure of a given graph. The

most famous example in this context is the class of perfect graphs. A graphG is perfect

if for every induced subgraphH of G, χ(H) = ω(H), whereχ(H) denotes thechromatic

numberof H andω(H) denotes the size of a largestclique. The famous Strong Perfect

Graph Theorem (conjectured by Berge [2], and proved by Chudnovsky, Robertson, Sey-

mour and Thomas [7]) states that a graph is perfect if and onlyif it does not contain an

odd hole nor an odd antihole (where anantiholeis a complement of a hole). The graphs

that do not contain an odd hole nor an odd antihole are known asBergegraphs.

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols,

Kapoor and Vušković in [13] and [14]. In [13] they obtaineda decomposition theorem

for even-hole-free graphs that uses 2-joins and star, double star and triple star cutsets (all

these cutsets are defined in Section 2.2.1), and in [14] they used it to obtain a polynomial

time recognition algorithm for even-hole-free graphs. This is the same paradigm that

was used to obtain recognition algorithms for balanced matrices [11, 17]. All these

algorithms use “cleaning”, a technique first developed by Conforti and Rao [18] to

recognize linear balanced matrices. This technique was invented to make use of strong

cutsets, such as star cutsets, in a decomposition based recognition algorithm. If one is

able to clean the graph for the even-hole-free graph recognition problem, one can then

make use of not only star cutsets, but also double star and triple star cutsets, and for that

reason all these cutsets were used in the decomposition of even-hole-free graphs in [13].

That decomposition gave the first known recognition algorithm for even-hole-free

graphs, but it was always clear that a stronger decomposition theorem was possible. At

that time that problem was put aside, since the focus then wason perefect graphs, trying

to prove the Strong Perfect Graph Conjecture and obtain a polynomial time recognition

algorithm for Berge graphs.

Strong Perfect Graph Conjecture was proved by Chudnovsky, Robertson, Seymour

and Thomas in [7], by decomposing Berge graphs using skew cutsets, 2-joins and their

complements. Soon after, the recognition of Berge graphs was shown to be polynomial

by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković in[4].

Note that by excluding the 4-hole, one also excludes all antiholes of length at least 6.

So if we switch parity, the analogous class to even-hole-free graphs are the Berge graphs,

rather than just theodd-hole-freegraphs. As mentioned above, in a graph that does not

contain a 4-hole, a skew cutset reduces to a star cutset, and a2-join in the complement

implies the star cutset. The decomposition of Berge graphs with skew cutsets, 2-joins
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and their complements [7] provided a motivation to believe that it is also possible to

decompose even-hole-free graphs with just the star cutsetsand 2-joins.

As expected, the key to obtaining a polynomial time recognition algorithm for Berge

graphs [4] was the cleaning. What was surprising, as Chudnovsky and Seymour observed,

was that once the cleaning is performed, one does not need thedecomposition based

recognition algorithm, one can simply look for the “bad structure” (in this case an odd

hole) directly. So in [4] two recognition algorithms for Berge graphs are given: anO(n9)

Chudnovsky/Seymour style (that uses the direct method) algorithm, and anO(n18) de-

composition based recognition algorithm. (The high complexity of all of these algorithms

is primarily due to cleaning). Then Zambelli [40] showed that by using the cleaning with

the direct method, the complexity of the recognition algorithm for balanced 0,±1 matri-

ces dramatically drops, in comparison with their original recognition [11] based on the

decomposition method.

Another twist in the story is the case of the recognition algorithm for even-hole-free

graphs. The original algorithm from [14] is of complexity ofaboutO(n40). In [6] Chud-

novsky, Kawarabayashi and Seymour obtain anO(n31) recognition algorithm for even-

hole-free graphs, using cleaning with the direct method. Inthe same paper they sketch

another more complicated algorithm that, they claim, runs in timeO(n15). This algorithm

first needs to test for thetas and prisms in that time (thetas and prisms are defined in Sec-

tion 2.2). It turns out that testing for thetas can be done in time O(n11) [9]. Detecting

a prism is NP-complete in general [28]. In [6] it is claimed that under the assumption

that the graph does not contain a theta one can use cleaning totest for prisms in time

O(n15). This turns out to be false. Detecting a theta or a prism usingthe outlined method

ends up being of complexityO(n35) [5]. In this work we show that our decomposition of

even-hole-free graphs yields anO(n19) time recognition algorithm. So this is the first ex-

ample in which a decomposition based method performs faster. We note that none of these

algorithms are of any practical use, but they are interesting from a theoretical perspective.

The essence of even-hole-free graphs is actually captured by their generalization to

signed graphs, called the odd-signable graphs, and in fact the results obtained in this thesis

are for the class of graphs that are 4-hole-free odd-signable. We introduce odd-signable

graphs in Chapter 2. In Chapter 2 we also review results concerning even-hole-free graphs

and outline the decomposition theorem. In Chapter 3 we provethat every even-hole-free

graph has a node whose neighborhood is triangulated and showsome consequences of

this result. The proof for the decompostion theorem is givenin in the Chapters 4 and 5.

In Chapter 6 we describe the recognition algorithm for even-hole-free graphs.

We now conclude this Chapter with an introduction of relevant concepts, terminology
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and notation of graph theory that will be used throughout this thesis.

1.2 Graph theory

We first note that all graphs in this work are finite, simple andundirected. We also note

that some concepts already mentioned in Section 1.1 will be repeated here. However, now

they will be formally defined.

1.2.1 Basic concepts

A graph Gis an ordered pair(V(G),E(G)) consisting of a nonemptynode set V(G) and

edge set E(G). SetsV(G) andE(G) are assumed to be finite. We sometimes refer to

the nodes ofG as verticesof G. Because we only consider simple undirected graphs,

we defineE(G) to be a subset of the set{{u,v} : u,v ∈ V(G),u 6= v}. For simplicity

of notation we denote an edge{u,v} by uv. If uv∈ E(G), then nodesu andv are said

to be adjacent(or sometimesu and v are said to beneighbors). For v ∈ V(G), N(v)

denotes the set of nodes adjacent tov. Thecomplementof G, denoted byG, is the graph

(V(G),{uv : uv /∈ E(G)}).

Two graphsG andH areisomorphicif there is a bijectionf : V(G) →V(H) such that

uv∈ E(G) if and only if uv∈ E(H). For a nonempty setA ⊆ V(G), thesubgraph of G

induced by A, denoted byG[A], is the graph(A,{uv : u,v∈ A,uv∈ E(G)}). Such a graph

is called aninduced subgraphof G.

ForS⊆V(G) andA⊆ E(G), we denote byG\ (S∪A) the subgraph ofG obtained by

removing the nodes ofS(and all edges with at least one endnode inS) and the edges ofA.

ForS⊆V(G), N(S) denotes the set of nodes inV(G)\Swith at least one neighbor in

SandN[S] denotesN(S)∪S. For x∈V(G), we also use the following notation:N(x) =

N({x}) andN[x] = N[{x}]. ForV ′ ⊆V(G), G[V ′] denotes the subgraph ofG induced by

V ′. Forx∈V(G), the graphG[N(x)] is called theneighborhoodof x.

Let S⊆ V(G) andx ∈ V(G). Nodex is adjacentto S, if x is adjacent to some node

of S. Nodex is strongly adjacentto S, if x is adjacent to at least two nodes ofS. For an

induced subgraphH of G, a nodev∈V(G)\V(H) is atwin of a nodex∈V(H) w.r.t. H,

if N(v)∩V(H) = N[x]∩V(H).

A path Pis a sequence of distinct nodesx1, ...,xn, n≥ 1, such thatxixi+1 is an edge,

for all 1≤ i < n. These are called theedgesof a pathP. Nodesx1 andxn are theendnodes

of the path. The nodes ofV(P) that are not endnodes are called theintermediate nodes

of P. Let xi andxl be two nodes ofP, such thatl ≥ i. The pathxi ,xi+1, ...,xl is called the
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xixl -subpath ofP. Let Q be thexixl -subpath ofP. We writeP = x1, ...,xi−1,Q,xl+1, ...,xn.

A cycle Cis a sequence of nodesx1, ...,xn,x1, n≥ 3, such that nodesx1, ...,xn form a path

andx1xn is an edge. The edges of the of the pathx1, ...,xn together with the edgex1xn are

called theedgesof C. Thelengthof a pathP (resp. cycleC) is the number of edges inP

(resp.C).

Nodesu andv of G are said to beconnectedif there is a path inG whose endnodes

areu andv. Let V1, ...,Vn be a partition of the node setV(G) such that two nodesu and

v are connected if and only if they belong to the same setVi . The induced subgraphs

G[V1], ...,G[Vn] are called theconnected components(or simplycomponentsof G). G is

connectedif G has exactly one connected component, otherwiseG is said to bediscon-

nected.

S∪A is a cutsetif G\ (S∪A) contains more connected components thanG. For an

induced subgraphH of G, we say that a cutsetSof G separates Hif there are nodes ofH

in different components ofG\S.

Let A,B be two disjoint node sets such that no node ofA is adjacent to a node ofB. A

pathP = x1, . . . ,xn connects A and Bif either n = 1 andx1 has a neighbor inA andB, or

n > 1 and one of the two endnodes ofP is adjacent to at least one node inA and the other

is adjacent to at least one node inB. The pathP is adirect connection between A and Bif

in G[V(P)∪A∪B] no path connectingA andB is shorter thanP. The direct connectionP

is said to befrom A to Bif x1 is adjacent to a node inA andxn is adjacent to a node inB.

A clique is a graph in which every pair of vertices are adjacent. The size of a largest

clique in a graphG is denoted byω(G). Thechromatic numberof G, denoted byχ(G), is

the minimum number of colors needed to color the vertices ofG so that no two adjacent

vertices receive the same color.

1.2.2 Graph classes and other concepts

Given a path or a cycleQ in a graphG, any edge ofG between nodes ofQ that is not

an edge ofQ is called achordof Q. Q is chordlessif no edge ofG is a chord ofQ. As

mentioned earlier ahole is a chordless cycle of length at least 4. It is called ak-holeif it

hask edges. Ak-hole isevenif k is even, and it isoddotherwise.

We say that a graphG containsa graphF, if F is isomorphic to an induced subgraph

of G. A graphG is F-free if it does not containF . Let F be a (possibly infinite) family

of graphs. A graphG is F -free if it is F-free, for everyF ∈ F .

A graph iseven-hole-free(resp. odd-hole-freeif it does not contain an even (resp.

odd) hole. A graph isBergeif it does not contain an odd hole nor the complement of an
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odd hole. A graph istriangulated(also calledchordal) if it does not contain a hole.

A tree is a connected graph that does not contain a cycle. Given a graph G, its line

graphL(G) is a graph such that: (i) each vertex ofL(G) represents an edge ofG, and (ii)

two vertices ofL(G) are adjacent if and only if their corresponding edges share acommon

endnode inG. A graphG is perfectif for every induced subgraphH of G, χ(H) = ω(H).

In figures, solid lines represent edges and dotted lines represent paths of length at least

one.

A note on notation: For a graphG, let V(G) denote its node set. For simplicity of

notation we will sometimes writeG instead ofV(G), when it is clear from the context

that we want to refer to the node set ofG. We will not distinguish between a node set and

the graph induced by that node set. Also a singleton set{x} will sometimes be denoted

with just x. For example, instead of “u ∈ V(G) \ {x}”, we will write “ u ∈ G\ x”. These

simplifications of notation will take place in the proofs, whereas the statements of results

will use proper notation.



Chapter 2

Even-hole-free graphs

In the last 15 years a number of classes of graphs defined by excluding a family of induced

subgraphs have been studied, perhaps originally motivatedby the study of perfect graphs.

The kinds of questions this line of research was focused on were whether excluding in-

duced subgraphs affects the global structure of the particular class in a way that can be

exploited for putting bounds on parameters such asχ andω, constructing optimization

algorithms (problems such as finding the size of a largest clique or a minimum coloring)

and recognition algorithms.

A number of these questions were answered by obtaining a structural characterization

of a class through their decomposition. A decomposition theorem elucidates the structure

of a class of graphs by showing that every graph in this class has either a prescribed and

relatively simple structure (in this case we often say that the graph belong to abasicclass)

or one of prescribed cutset, along with it can be decomposed.

This was the paradigm used in the proof of Strong Perfect Graph Theorem. The idea

was to decompose Berge graphs in a way that the basic graphs are perfect and the graphs

that are not basic (and hence admit a cutset) cannot be a minimum counterexample to the

conjecture. Other classes of graphs in this context, as odd-hole-free graphs and balanced

matrices have been studied through decomposition theorems[11,15,17].

Recent works include a decomposition ofclaw-free graphsandbull-free graphsby

Chudnovsky and Seymour (they outline these results in [8]) using a series of cutsets and

operations. The decomposition obtained for these classes are “reversible” in the sense that

the theorem gives a receipe to build all graphs in the class bygluing basic pieces together.

7



Chapter 2 8 Even-hole-free graphs

In [37] Trotignon and Vušković decompose graphs containing no cycle with a unique

chord (this class generalizes strongly balanceable graphs, see [16] for a survey). The

decompostion obtained also work in both directions: the graph is in the class if and only

if it can be constructed by gluing basic graphs along the decompositions. Such structure

theorems are less common, but they are stronger and perhaps give a better understanding

of the class in a way to construct optimization algorithms (for example note that in [37],

as a consequence of the decomposition, a recognition algorithm is obtained as well as

algorithms to find an optimal coloring and maximum clique).

The decomposition we prove in this thesis is not reversible,but still provides enough

undestanding of the class to lead to a polynomial-time recognition algorithm. We note

that other known decompositions for related classes, as theone for Berge graphs and and

the one for odd-hole-free graphs are not reversible as well.

2.1 Excluding even-holes

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor

and Vušković in [13] and [14]. They were focused on showingthat even-hole-free graphs

can be recognized in polynomial time (a problem that at that time was not even known

to be in NP), and their primary motivation was to develop techniques which can then be

used in the study of perfect graphs. In [13] they obtained a decomposition theorem for

even-hole-free graphs that uses 2-joins and star, double star and triple star cutsets (all

these cutsets are defined in Section 2.2.1), and in [14] they used it to obtain a polynomial

time recognition algorithm for even-hole-free graphs. This algorithm use “cleaning”, a

technique first developed by Conforti and Rao [18] to recognize linear balanced matri-

ces. This technique was invented to make use of strong cutsets, such as star cutsets, in a

decomposition based recognition algorithm. If one is able to clean the graph for the even-

hole-free graph recognition problem, one can then make use of not only star cutsets, but

also double star and triple star cutsets, and for that reasonall these cutsets were used in

the decomposition of even-hole-free graphs in [13]. The complexity of this algorithm is

aboutO(n40). In [6] Chudnovsky, Kawarabayashi and Seymour obtain anO(n31) recog-

nition algorithm for even-hole-free graphs. The algorithmalso has a cleaning step, but

after this procedure a “direct approach” (looking directlyfor forbidden structures) is used

instead of a decomposition based method. We present in Chapter 6 a new decomposition

based algorithm for recognizing even-hole-free graphs. The algorithm is a consequence

of the main decomposition obtained in this thesis. The complexity of this new algorithm

is O(n19).
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One can find a maximum clique of an even-hole-free graph in polynomial time, since

as observed by Farber [20] 4-hole-free graphs haveO(n2) maximal cliques and hence one

can list them all in polynomial time. In Chapter 3 we show thatevery even-hole-free graph

contains a vertex whose neighborhood is triangulated (i.e.does not contain a hole). This

characterization leads to a faster algorithm for computinga maximum clique in an even-

hole-free graph. The complexities of finding a maximum independent set and an optimal

coloring are not known for even-hole-free graphs. We note that for odd-hole-free graphs

the complexities of finding a maximum independent set, an optimal coloring as well as

the recognition problem are also open problems, and that finding a maximum clique for

odd-hole-free graphs is NP-complete (follows from 2-subdivision [33]).

More recently, Addario-Berry, Chudnovsky, Havet, Reed andSeymour [1], settle a

conjecture of Reed, by proving that every even-hole-free graph contains abisimplicial

vertex(a vertex whose set of neighbors induces a graph that is a union of two cliques).

This immediately implies that ifG is an even-hole-free graph, thenχ(G) ≤ 2ω(G)−1

(observe that ifv is a bisimplicial vertex ofG, then its degree is at most 2ω(G)−2, and

henceG can be colored with at most 2ω(G)−1 colors). It is interesting that this result

is also obtained using decomposition, although in [1] not all even-hole-free graphs are

decomposed, but enough structures are decomposed using special double star cutsets to

obtain the desired result.

Another motivation for the study of even-hole-free graphs is their connection toβ -

perfect graphs introduced by Markossian, Gasparian and Reed [30]. For a graphG, let

δ (G) be the minimum degree of a vertex inG. Consider the following total order onV(G):

order the vertices by repeatedly removing a vertex of minimum degree in the subgraph

of vertices not yet chosen and placing it after all the remaining vertices but before all

the vertices already removed. Coloring greedily on this order gives the upper bound

χ(G) ≤ β (G), whereβ (G) =max{δ (G′)+1 : G′ is an induced subgraph ofG}. A graph

is β -perfectif for each induced subgraphH of G, χ(H) = β (H). It is easy to see that

β -perfect graphs belong to the class of even-hole-free graphs, and that this containment

is proper.

A diamondis a cycle of length 4 that has exactly one chord. Acap is a cycle of

length greater than four that has exactly one chord, and thischord forms a triangle with

two edges of the cycle. In [30] it is shown that (even-hole, diamond, cap)-free graphs

areβ -perfect, and in [21] de Figueiredo and Vušković show that(even-hole, diamond,

cap-on-6-vertices)-free graphs areβ -perfect. Recently these results were extended by

Kloks, Müller and Vušković who show in [27] that (even-hole, diamond)-free graphs are

β -perfect. This result is obtained by proving that every (even-hole, diamond)-free graph
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contains a simplicial extreme (where a vertex issimplicial if its neighborhood set induces

a clique, and it is asimplicial extremeif it is either simplicial or of degree 2). And

the existence of simplicial extremes is obtained as a consequence of a decomposition of

(even-hole, diamond)-free graphs in [27] that uses 2-joins, clique cutsets and bisimplicial

cutsets (a special type of a star cutset). We note that the decomposition theorem for

even-hole-free graphs in this thesis uses the one in [27] by reducing the problem to the

diamond-free case.

Since (even-hole, diamond)-free graph isβ -perfect, this class of graphs can be colored

in polynomial time by coloring greedily on a particular easily constructable ordering of

vertices. Note that for every graphG, there exists an ordering of its vertices on which the

greedy coloring will give aχ(G)-coloring ofG, the difficulty being in finding this order-

ing. As mentioned before, complexity of finding an optimal coloring in an even-hole-free

graph is an open problem. Also, total characterization ofβ -perfect graphs remains open,

as well as their recognition.

The fact that (even-hole, diamond)-free graphs have simplicial extremes implies that

for such a graphG, χ(G) ≤ ω(G) + 1 (observe that ifv is a simplicial extreme ofG,

then its degree is at mostω(G), and henceG can be colored with at mostω(G) + 1

colors). So this class of graphs, as well as the class of even-hole-free graphs by the

result in [1], belong to the family ofχ-bounded graphs, introduced by Gyárfás [26] as

a natural extension of the family of perfect graphs: a familyof graphsG is χ-bounded

with χ-binding function fif, for every induced subgraphG′ of G∈ G , χ(G′)≤ f (ω(G′)).

Note that perfect graphs are aχ-bounded family of graphs with theχ-binding function

f (x) = x.

The essence of even-hole-free graphs is actually captured by their generalization to

signed graphs, called the odd-signable graphs, and in fact the decomposition theorem that

we prove in this thesis is for the class of graphs that are 4-hole-free odd-signable. Odd-

signable graphs are introduced in Section 2.2, and the decomposition theorem is described

in Section 2.2.1.

2.2 Odd-signable graphs

We signa graph by assigning 0,1 weights to its edges. A graph isodd-signableif there

exists a signing that makes every triangle odd weight and every hole odd weight. To charc-

terize odd-signable graphs in terms of excluded induced subgraphs, we now introduce two

types of3-path configurations(3PC’s) and even wheels.

Let x,y be two distinct nodes ofG. A 3PC(x,y) is a graph induced by three chordless
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xy-paths, such that any two of them induce a hole. We say that a graphG contains a

3PC(·, ·) if it contains a 3PC(x,y) for somex,y ∈ V(G). 3PC(·, ·)’s are also known as

thetas, as in [5].

Let x1,x2,x3,y1,y2,y3 be six distinct nodes ofG such that{x1,x2,x3} and{y1,y2,y3}

induce triangles. A 3PC(x1x2x3,y1y2y3) is a graph induced by three chordless pathsP1 =

x1, . . . ,y1, P2 = x2, . . . ,y2 andP3 = x3, . . . ,y3, such that any two of them induce a hole.

We say that a graphG contains a 3PC(∆,∆) if it contains a 3PC(x1x2x3,y1y2y3) for some

x1,x2,x3,y1,y2,y3 ∈V(G). 3PC(∆,∆)’s are also known asprisms, as in [5].

A wheel, denoted by(H,x), is a graph induced by a holeH and a nodex 6∈ V(H)

having at least three neighbors inH, sayx1, . . . ,xn. Such a wheel is also called an-wheel.

Nodex is thecenterof the wheel. Edgesxxi , for i ∈ {1, . . . ,n}, are calledspokesof the

wheel. A subpath ofH connectingxi andx j is asectorif it contains no intermediate node

xl , 1≤ l ≤ n. A short sectoris a sector of length 1, and along sectoris a sector of length

greater than 1. Wheel(H,x) is evenif it has an even number of sectors. See figure 2.1.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(∆,∆)’s cannot be contained

in even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The

following characterization of odd-signable graphs statesthat the converse also holds, and

it is an easy consequence of a theorem of Truemper [38].

Figure 2.1: 3PC(·, ·), 3PC(∆,∆) and an even wheel.

Theorem 2.2.1 [12] A graph is odd-signable if and only if it does not containan even

wheel, a3PC(·, ·) nor a3PC(∆,∆).

This characterization of odd-signable graphs will be used throughout the thesis.

2.2.1 Decomposition theorem

A node setS⊆ V(G) is ak-star cutsetof G if S is comprised of a cliqueC of sizek and

nodes with at least one neighbor inC, i.e.C⊆ S⊆ N[C]. We refer toC as thecenterof S.

A 1-star is also refered to as astar, a 2-star as adouble star, and 3-star as atriple star. If

S= N[C], thenS is called afull k-star.
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A graphG has a2-join V1|V2, with special sets(A1,A2,B1,B2), if the nodes ofG can

be partitioned into setsV1 andV2 so that the following hold.

(i) For i = 1,2, Ai ∪Bi ⊆Vi , andAi andBi are nonempty and disjoint.

(ii) Every node ofA1 is adjacent to every node ofA2, every node ofB1 is adjacent to

every node ofB2, and these are the only adjacencies betweenV1 andV2.

(iii) For i = 1,2, the graph induced byVi, G[Vi ], contains a path with one endnode inAi

and the other inBi . Furthermore,G[Vi] is not a chordless path.

We now introduce two classes of graphs that have no star cutset nor a 2-join.

Let x1,x2,x3,y be four distinct nodes ofG such thatx1,x2,x3 induce a triangle. A

3PC(x1x2x3,y) is a graph induced by three chordless pathsPx1y = x1, . . . ,y, Px2y = x2, . . . ,y

andPx3y = x3, . . . ,y, such that any two of them induce a hole. We say that a graphG

contains a 3PC(∆, ·) if it contains a 3PC(x1x2x3,y) for somex1,x2,x3,y ∈ V(G). Note

that in aΣ = 3PC(∆, ·) at most one of the paths may be of length one. If one of the paths

of Σ is of length 1, thenΣ is also a wheel that is called abug. If all of the paths ofΣ are of

length greater than 1, thenΣ is a long3PC(∆, ·). 3PC(∆, ·)’s are also known aspyramids,

as in [4]. See Figure 2.2.

Figure 2.2: A long 3PC(∆, ·) and a bug.

We now define nontrivial basic graphs. LetL be the line graph of a tree. Note that

every edge ofL belongs to exactly one maximal clique, and every node ofL belongs to

at most two maximal cliques. The nodes ofL that belong to exactly one maximal clique

are calledleaf nodes. A clique ofL is big if it is of size at least 3. In the graph obtained

from L by removing all edges in big cliques, the connected components are chordless

paths (possibly of length 0). Such a pathP is aninternal segmentif it has its endnodes in

distinct big cliques (whenP is of length 0, it is called an internal segment when the node

of P belongs to two big cliques). The other pathsP are calledleaf segments. Note that

one of the endnodes of a leaf segment is a leaf node.

A nontrivial basic graph Ris defined as follows:Rcontains two adjacent nodesx and

y, called thespecialnodes. The graphL induced byR\ {x,y} is the line graph of a tree
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and contains at least two big cliques. InR, each leaf node ofL is adjacent to exactly one

of the two special nodes, and no other node ofL is adjacent to special nodes. The last

condition forR is that no two leaf segments ofL with leaf nodes adjacent to the same

special node have their other endnode in the same big clique.The internal segmentsof

R are the internal segments ofL, and theleaf segmentsof R are the leaf segments ofL

together with the node in{x,y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graphR with special nodesx and

y. R∗ is anextended nontrivial basic graphof G if R∗ consists ofR and all nodesu ∈

V(G)\V(R) such that for some big cliqueK of Rand for somez∈ {x,y}, N(u)∩V(R) =

V(K)∪{z}. We also say thatR∗ is anextensionof R. See figure 2.3.

x

y

Figure 2.3: An extended nontrivial basic graph.

In [13] even-hole-free graphs are decomposed into cliques,holes, long 3PC(∆, ·) and

nontrivial basic graphs using 2-joins and star, double starand triple star cutsets. We obtain

the following strengthening of that result.

A graph isbasicif it is one of the following graphs:

(1) a clique,

(2) a hole,

(3) a long 3PC(∆, ·), or

(4) an extended nontrivial basic graph.

Theorem 2.2.2 (The Main Decomposition Theorem) A connected 4-hole-free

odd-signable graph is either basic, or it has a star cutset ora 2-join.

Here is a simple restatement of Theorem 2.2.2, that will be used in the recognition

algorithm in Chapter 6. A graph is aclique treeif each of its maximal 2-connected

components is a clique. A graph is anextended clique treeif it can be obtained from a

clique tree by adding at most two vertices.
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Corollary 2.2.3 A connected even-hole-free graph is either an extended clique tree, or it

has a star cutset or a 2-join.

The key difference in the proof of the decomposition theoremin [13] and the one here,

is that in [13] bugs are decomposed with double star cutsets.Since we are using just star

cutsets, it is not possible to decompose all bugs, and hence we needed to enlarge the class

of basic (undecomposable) graphs to include the extend nontrivial basic graphs.

Proof of Theorem 2.2.2 follows from the following three results.

Theorem 2.2.4 [27] A connected 4-hole-free odd-signable graph that does not contain

a diamond is either basic, or it has a star cutset or a 2-join.

We note that the star cutsets used in [27] to prove Theorem 2.2.4, are of very special

type: they either induce a clique or two cliques with exactlyone node in common.

A connected diamondis a pair(Σ,Q), whereΣ = 3PC(x1x2x3,y) andQ = q1, ...,qk,

k ≥ 2, is a chordless path disjoint fromΣ such that the only nodes ofQ that have a

neighbor inΣ areq1 andqk. Furthermore|N(q1)∩Σ| = |N(q1)∩ {x1,x2,x3}| = 2, say

N(q1)∩Σ = {x1,x3}, and one of the following holds:

(i) N(qk)∩Σ = {v1,v2} wherev1v2 is an edge ofPx2y\{x2}, or

(ii) N(qk)∩Σ = {y,y1,y3} wherey1 (resp.y3) is the neighbor ofy in Px1y (resp.Px3y),

andx1y andx3y are not edges.

Figure 2.4: Different types of connected diamonds.
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Theorem 2.2.5 Let G be a connected 4-hole-free odd-signable graph. If G contains a

diamond, then G has a star cutset or G contains a connected diamond.

Theorem 2.2.6 Let G be a connected 4-hole-free odd-signable graph. If G contains a

connected diamond, then G has a star cutset or a 2-join.

Theorem 2.2.5 is proved in Section 4.6 and Theorem 2.2.6 in Section 5.2.



Chapter 3

Triangulated Neighborhoods

The main result of this Chapter is the following structural property of odd-signable graphs

that do not contain a 4-hole.

Theorem 3.0.7 Every 4-hole-free odd-signable graph has a node whose neighborhood is

triangulated.

Parfenoff, Roussel and Rusu in [32] proved exactly the same result for 4-hole-free

Berge graphs. Note that 4-hole-free graphs in general need not have this property, see

Figure 3.1.

Figure 3.1: A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

16
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A square-3PC(·, ·) is a graph that consists of three paths between two nodes such

that any two of the paths induce a hole, and at least two of the paths are of length 2.

In [29] Maffray, Trotignon and Vušković show that every square-3PC(·, ·)-free even-

signable graph has a node whose neighborhood does not contain a long hole (where a

long hole is a hole of length greater than 4). This result is used in [29]to obtain a

combinatorial algorithm of complexityO(n7) for finding a clique of maximum weight

in square-3PC(·, ·)-free Berge graphs. Note that this class of graphs generalizes both 4-

hole-free Berge graphs and claw-free Berge graphs (where aclaw is a graph on nodes

x,a,b,c with three edgesxa,xb,xc). We show in this Chapter that key ideas from [29]

extend to 4-hole-free odd-signable graphs.

Using Theorem 3.0.7 one can obtain an efficient algorithm forgenerating all the max-

imal cliques in 4-hole-free odd-signable graphs (and in particular even-hole-free graphs).

This we describe in Section 3.1. Theorem 3.0.7 is proved in Section 3.2.

As mentioned in Chapter 2, recently Addario-Berry, Chudnovsky, Havet, Reed and

Seymour [1] have proved a stronger property of even-hole-free graphs, namely that every

even-hole-free graph has a bisimplicial vertex (i.e. a vertex whose neighborhood parti-

tions into two cliques). This result immediately yields that for an even-hole-free graphG,

χ(G) ≤ 2ω(G)−1, whereχ(G) is the chromatic number ofG andω(G) is the size of

the largest clique inG (observe that ifv is a bisimplicial vertex ofG, then its degree is at

most 2ω(G)−2, and henceG can be colored with at most 2ω(G)−1 colors). The two

properties of even-hole-free graphs were discovered independently and at about the same

time. The proof in [1] is over 40 pages long. Our weaker property is enough to obtain

an efficient algorithm for generating all maximal cliques ofeven-hole-free graphs, and its

proof is very short.

3.1 Generating all the maximal cliques of a 4-hole-free

odd-signable graph

For a graphG let k denote the number of maximal cliques inG, n the number of nodes

in G andm the number of edges ofG. Farber [20] shows that there areO(n2) maximal

cliques in any 4-hole-free graph. Tsukiyama, Ide, Ariyoshiand Shirakawa [39] give an

O(nmk) algorithm for generating all maximal cliques of a graph, andChiba and Nishizeki

[3] improve this complexity toO(m1.5k). The complexity is further improved for dense

graphs by theO(M(n)k) algorithm of Makino and Uno [31], whereM(n) denotes the

time needed to multiply twon×n matrices. Note that Coppersmith and Winograd show
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that matrix multiplication can be done inO(n2.376) time [19]. So one can generate all the

maximal cliques of a 4-hole-free graph in timeO(m1.5n2) or O(n4.376).

We now show that Theorem 3.0.7 implies that there are at mostn+ 2m maximal

cliques in a 4-hole-free odd-signable graph, and it yields an algorithm that generates all

the maximal cliques of a 4-hole-free odd-signable graph in timeO(n2m). In particular, in

a weighted graph, a maximum weight clique can be found in timeO(n2m).

Let C be any class of graphs closed under taking induced subgraphs, such that for

everyG in C , G has a node whose neighborhood is triangulated. Consider thefollowing

algorithm for generating all maximal cliques of graphs inC .

Find a nodex1 of G whose neighborhood is triangulated (if no such node exists,G

is not inC , or in particular,G is not 4-hole-free odd-signable graph by Theorem 3.0.7).

Let G1 = G[N[x1]] and G1 = G\ {x1}. Every maximal clique ofG belongs toG1 or

G1. Recursively construct triangulated graphsG1, . . . ,Gn as follows. Fori ≥ 2, find a

nodexi of Gi−1 whose neighborhood is triangulated and letGi = G[NGi−1[xi ]] andGi =

Gi−1\{xi} = G\{x1, . . . ,xi}.

Clearly every maximal clique ofG belongs to exactly one of the graphsG1, . . . ,Gn. A

triangulated graph onn vertices has at mostn maximal cliques [22]. So fori = 1, . . . ,n,

graphGi has at most 1+d(xi) maximal cliques (whered(x) denotes the degree of vertex

x). It follows that the number of maximal cliques ofG is at most∑n
i=1(1+d(xi)) = n+2m.

Checking whether a graph is triangulated can be done in timeO(n+m) (using lexi-

cographic breadth-first search [34]). So finding a vertex with triangulated neighborhood

can be done in timeO(∑x∈V(G)(d(x) + m)) = O(nm). Hence constructing the graphs

G1, . . . ,Gn takes timeO(n2m).

Generating all maximal cliques in a triangulated graph can be done in timeO(n+m)

(see, for example, [23]). Hence the overall complexity of generating all maximal cliques

in a 4-hole-free odd-signable graph is dominated by the construction of the sequence

G1, . . . ,Gn, i.e. it isO(n2m).

Note that this algorithm isrobust in Spinrad’s sense [36]: given any graphG, the

algorithm either verifies thatG is not in C (or in particular thatG is not a 4-hole-free

odd-signable graph) or it generates all the maximal cliquesof G. Note that, whenG is not

in C , the algorithm might still generate all the maximal cliquesof G.

3.2 Proof of Theorem 3.0.7

In the next three lemmas we assume thatG is a 4-hole-free odd-signable graph,x a node

of G that is not adjacent to every other node ofG, C1 a connected component ofG\N[x],
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andH a hole ofN(x). Note thatH is an odd hole, else(H,x) is an even wheel.

Lemma 3.2.1 If node u of C1 has a neighbor in H then u is one of the following two

types:

• Type 1: u has exactly one neighbor in H.

• Type 2: u has exactly two neighbors in H, and they are adjacent.

Proof: If u has two nonadjecent neighborsa andb in H, then{a,b,u,x} induces a 4-hole.

2

Let T3 be a graph on 3 nodes that has exactly one edge.

Lemma 3.2.2 If H contains a T3 all of whose nodes have neighbors in C1, then C1 con-

tains a path P, of length greater than 0, such that P∪H induces a3PC(∆, ·), and the

nodes of H that have a neighbor in P induce a T3.

Proof: Let C be a smallest subset ofC1 such that G[C] is connected and

H = h1, . . . ,hn,h1 contains aT3 all of whose nodes have neighbors inC. W.l.o.g. h1,h2

andhi , 3< i < n, have neighbors inC. Let P = p1, ..., pk be a shortest path ofC such that

p1 is adjacent toh1 and pk is adjacent toh2. Note that no intermediate node ofP is

adjacent toh1 or h2. Also possiblyk = 1.

Claim 1: No node of{h4, ...,hn−1} has a neighbor inP.

Proof of Claim 1: Suppose not. Then by minimality ofC, hi has a neighbor inP and

w.l.o.g. no node of{hi+1, ...,hn−1} has a neighbor inP. By Lemma 3.2.1,p1, pk /∈

N(hi)∩P. In particulark > 1.

First supposeN(hn)∩P 6= ∅. By Lemma 3.2.1,hnpk is not an edge. IfN(hn)∩P= p1

then{x,hn,h2,h1}∪P induces an even wheel with centerh1. So hn has a neighbor in

P\{p1, pk}. If hihn is not an edge, then since all ofh1,hn,hi have neighbors inP\ pk, the

minimality of C is contradicted. Sohihn is an edge ofG. But then all ofhi ,hn,h2 have

neighbors inP\ p1 and the minimality ofC is contradicted. SoN(hn)∩P = ∅.

Let pr be the node ofP with highest index adjacent tohi . Let H ′ be the hole induced

by {hi, ...,hn,h1,h2, pk, ..., pr}. Since(H ′,x) cannot be an even wheel, it follows that

hi , ...,hn,h1,h2 is an even subpath ofH. Let ps be the node ofP with lowest index

adjacent tohi. Then{x,hi , ...,hn,h1, p1, ..., ps} induces an even wheel with centerx. This
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completes the proof of Claim 1.

By Claim 1,hi is not adjacent to a node ofP. But hi has a neighbor inC, and sinceC

is connected, letQ = q1, ...,ql be a chordless path inC such thatq1 is adjacent tohi and

ql has a neighbor inP.

Claim 2: No node of{h4, . . . ,hn−1} has a neighbor in(P∪Q)\q1.

Proof of Claim 2:Suppose that someh j ∈ {h4, . . . ,hn−1} has a neighbor in(P∪Q) \q1.

Then all ofh1,h2,h j have neighbors in(P∪Q) \ q1, contradicting the minimality ofC.

This completes the proof of Claim 2.

Claim 3: q1 is of type 1 w.r.t.H.

Proof of Claim 3: By Lemma 3.2.1q1 is of type 1 or type 2. Supposeq1 is of type 2.

We now prove thatN(q1)∩H is either{h3,h4} or {hn−1,hn}. Assume not. Thenq1 is

adjacent to neitherh3 norhn. W.l.o.g.N(q1)∩H = {hi,hi−1} andi 6= 4. If N(ql)∩P 6= p1,

then(P∪Q)\ p1 is connected and all ofhi ,hi−1,h2 have neighbors in it, contradicting the

minimality of C. SoN(ql )∩P = p1. If k > 1, then all ofhi ,hi−1,h1 have neighbors in

(P∪Q) \ pk, contradicting the minimality ofC. Sok = 1, and hence by Lemma 3.2.1,

N(p1)∩H = {h1,h2}. SinceH is odd, the two subpaths ofH, h2, . . . ,hi−1 andhi , . . . ,hn,h1

have different parities. W.l.o.g.h2, . . . ,hi−1 is odd, i.e. i is even. By Claim 2, no node

of {h4, . . . ,hn−1} has a neighbor in(P∪Q)\q1. If h3 has no neighbor inQ thenQ∪P∪

{h2, ...,hi−1,x} contains an even wheel with centerx. Soh3 must have a neighbor inQ.

But thenhi ,hi−1,h3 all have neighbors inQ (note thath3hi−1 is not an edge sincei −1 is

odd greater than 3) contradicting the minimality ofC. SoN(q1)∩H is either{h3,h4} or

{hn−1,hn}.

W.l.o.g. N(q1)∩H = {h3,h4}. If N(ql )∩P 6= pk, then since all ofh1,h3,h4 have

neighbors in(P∪Q)\ pk, the minimality ofC is contradicted. SoN(ql)∩P = pk.

If N(h1)∩Q 6= ∅, then since all ofh1,h3,h4 have neighbors inQ, the minimality ofC

is contradicted. SoN(h1)∩Q = ∅.

Now suppose thatN(hn)∩Q 6= ∅. If k > 1, then since all ofh2,h3,hn have neigh-

bors in (P∪ Q) \ p1, the minimality ofC is contradicted. Sok = 1. Let qr be the

neighbor ofhn with highest index. Ifh2 does not have neighbor inqr ,qr+1, ...,ql , then

{qr ,qr+1, ...,ql , p1,h1,h2,hn,x} induces an even wheel with centerh1. SoN(h2)∩Q 6= ∅.

But then sinceh2,h3,hn have neighbors inQ, the minimality ofC is contradicted. There-
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fore,N(hn)∩Q = ∅. So, by Claim 2, no node ofh5, ...,hn,h1 has a neighbor inQ.

SupposeN(h2)∩Q 6= ∅. Let qr be the neighbor ofh2 in Q with lowest index. Then

(H \h3)∪{x,q1, . . . ,qr} induces an even wheel with centerx. Therefore,N(h2)∩Q= ∅.

If k > 1, thenQ∪ (H \h3)∪{pk,x} induces an even wheel with centerx. Sok = 1. Let

qs be the node ofQ with highest index adjacent toh3. Then{p1,qs, . . . ,ql ,h1,h2,h3,x}

induces an even wheel with centerh2. This completes the proof of Claim 3.

Claim 4: N(ql )∩P = p1 or pk.

Proof of Claim 4:Assume not. Thenk> 1, and both(P∪Q)\ p1 and(P∪Q)\ pk are con-

nected.N(h1)∩Q = ∅, else all ofh1,h2,hi have neighbors in(P∪Q)\ p1, contradicting

the minimality ofC. Similarly,N(h2)∩Q = ∅.

We now show thath3 has no neighbor inP∪Q. Suppose it does. Then by Lemma

3.2.1,h3 has a neighbor in(P∪Q) \ p1. If i 6= 4, then since allh2,h3,hi have neighbors

in (P∪Q) \ p1, the minimality ofC is contradicted. Soi = 4. If N(h3)∩ (P∪Q) 6= pk,

then all ofh1,h3,h4 have neighbors in(P∪Q)\ pk, contradicting the minimality ofC. So

N(h3)∩ (P∪Q) = pk. But thenP∪Q∪{h2,h3,h4,x} contains an even wheel with center

h3. Therefore,h3 has no neighbor inP∪Q, and similarly neither doeshn.

By minimality of C, N(ql )∩P is either a single vertex or two adjacent vertices ofP.

If N(ql ) ∩ P = {a,b}, where ab ∈ E(G), then P ∪ Q ∪ {x,h1,h2,hi} induces a

3PC(qlab,xh1h2). If N(ql )∩P = {a}, thenP∪Q∪{h1,h2, . . . ,hi} induces a 3PC(a,h2).

This completes the proof of Claim 4.

By Claim 4, w.l.o.g.N(ql)∩P = pk.

Claim 5: h1 does not have a neighbor in(P∪Q)\ p1.

Proof of Claim 5: If k > 1, the claim follows from the minimality ofC. Now suppose

k = 1 andN(h1)∩Q 6= ∅. If h2 has a neighbor inQ, then all ofh1,h2,hi have a neighbor

in Q, contradicting the minimality ofC. Soh2 does not have a neighbor inQ.

Supposehn has a neighbor inQ. Note that by Claim 3, such a neighbor is inQ\

q1. Then h3 cannot have a neighbor inQ, else all ofhn,h1,h3 have neighbors inQ,

contradicting the minimality ofC. But then(Q\q1)∪ (H \h1)∪{x, p1} contains an even

wheel with centerx. Sohn does not have a neighbor inQ.

Supposeh3 has a neighbor inQ. By Claim 3, such a neighbor is inQ\ q1. Then

(Q\ q1)∪ (H \ h2)∪ x contains an even wheel with centerx. So h3 does not have a
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neighbor inQ.

Let H ′ be the hole induced by{p1,h2, ...,hi} ∪ Q, and H ′′ the hole induced by

{x, p1,h2,hi}∪Q. Then either(H ′,h1) or (H ′′,h1) is an even wheel. This completes the

proof of Claim 5.

Claim 6: N(hn)∩ (P∪Q) = ∅.

Proof of Claim 6: Assume not. Ifh3 has a neighbor inP∪Q then, by Claim 3, all of

h2,h3,hn have a neighbor in(P∪ Q) \ q1, contradicting the minimality ofC. So

N(h3)∩ (P∪Q) = ∅. Let R be a shortest path fromh2 to hn in the graph induced by

P∪ (Q\q1)∪{h2,hn}. Then by Claims 2 and 3,R∪ (H \h1)∪x induces an even wheel

with centerx. This completes the proof of Claim 6.

Claim 7: N(h3)∩ (P∪Q) = ∅.

Proof of Claim 7: Assume not. LetR be a shortest path fromh1 to h3 in the graph

induced by(P∪Q)\q1. ThenR∪ (H \h2)∪x induces an even wheel with centerx. This

completes the proof of Claim 7.

If k > 1 then the graph induced byH ∪Q∪ pk contains a 3PC(h2,hi). Sok = 1. By

symmetry and Claim 5,h2 does not have a neighbor inQ, and henceP∪Q∪H induces a

3PC(∆, ·). 2

Lemma 3.2.3 There exists a node of H that has no neighbor in C1.

Proof: LetH = h1, ...,hn,h1 and suppose that every node ofH has a neighbor inC1. Recall

that since(H,x) cannot be an even wheel,H is of odd length. SoH contains aT3 all of

whose nodes have neighbors inC1. By Lemma 3.2.2,C1 contains a pathP = p1, ..., pk,

k > 1, such thatP∪H induces w.l.o.g. a 3PC(h1h2pk,hi), 3 < i < n. If i is odd, then

{x,h2, ...,hi}∪P induces an even wheel with centerx. Soi is even.

Let Q = q1, ...,ql be a path inC1 defined as follows:q1 is adjacent toh j ∈ H \

{h1,h2,hi} where j is odd, ql is adjacent to a node ofP and no proper subpath ofQ

has this property. We may assume thatP andQ are chosen so that|P∪Q| is minimized.

By the choice ofP and Q, N(ql )∩ P is either one single vertex or two adjacent

vertices ofP, andh j has no neighbor inQ\q1. Note that sincen is odd, the two subpaths

of H, h2, . . . ,hi andhi, . . . ,hn,h1 are both of even length, so we may assume w.l.o.g. that
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2 < j < i.

Claim 1: At least one node of{h2, ...,h j−1} (resp.{h j+1, ...,hn}) has a neighbor inQ.

Proof of Claim 1: First suppose that no node ofH \ {h1,h j} has a neighbor in

Q. Let ps be the node ofP with highest index adjacent toql . If j > 3, then

{x,h2, ...,h j , ps, ..., pk} ∪ Q induces an even wheel with centerx. So j = 3. If

N(h1)∩Q = ∅ then{x,h1,h2,h3, ps, ..., pk}∪Q induces an even wheel with centerh2.

So N(h1)∩Q 6= ∅. Let qr be the node ofQ with lowest index adjacent toh1. Then

(H \ h2)∪ {x,q1, . . . ,qr} induces an even wheel with centerx. So at least one node of

H \{h1,h j} has a neighbor inQ.

Next suppose that no node of{h2, ...,h j−1} has a neighbor inQ. Let ps be the node of

P with highest index adjacent toql . If j > 3 then{x,h2, ...,h j , ps, ..., pk}∪Q induces an

even wheel with centerx. So j = 3. Leth j ′ be the node of{h j+1, ...,hn} with lowest index

adjacent to a node ofQ. By definition ofQ and Lemma 3.2.1,j ′ is even. Letqr be the

node ofQ with lowest index adjacent toh j ′. If j ′ > 4 then{x,h j , ...,h j ′,q1, ...,qr} induces

an even wheel with centerx. So j ′ = 4. If N(h1)∩Q= ∅ then{x,h1,h2,h3, ps, ..., pk}∪Q

induces an even wheel with centerh2. So N(h1)∩Q 6= ∅. In fact, by Lemma 3.2.1,

N(h1) ∩ (Q\ q1) 6= ∅. SupposeN(h4) ∩ Q 6= q1. Let R be a shortest path fromh4

to h1 in the graph induced by(Q\ q1)∪ {h1,h4}. Then{x,h1, ...,h4} ∪R induces an

even wheel with centerx. SoN(h4)∩Q = q1. SupposeN(ql )∩P 6= p1 or i > 4. Then

{x,h2,h3,h4, ps, ..., pk}∪Q induces an even wheel with centerh3. SoN(ql )∩P = p1 and

i = 4. LetR be a shortest path fromp1 to h1 in the graph induced byQ∪{p1,h1}. Then

P∪R∪{h1,h4,x} induces a 3PC(p1,h1). Therefore at least one node of{h2, ...,h j−1} has

a neighbor inQ.

Finally suppose that no node of{h j+1, ...,hn} has a neighbor inQ. Let h j ′ be a node

of h2, ...,h j−1 such thatN(h j ′)∩Q 6= ∅ and the path fromh j ′ to hi in the graph induced

by P∪ Q∪ {hi ,h j ′} is minimized. By definition ofQ and Lemma 3.2.1,j ′ is even.

SupposeN(h1)∩Q 6= ∅. Let R be a shortest path fromh j to h1 in the graph induced by

Q∪{h1,h j}. Then(H \ {h2, ...,h j−1})∪R∪ x induces an even wheel with centerx. So

N(h1)∩Q = ∅. SupposeN(ql )∩P 6= pk. Let R be a shortest path fromhi to h j ′ in the

graph induced byP∪Q∪{hi ,h j ′}. Note that by definition ofQ andh j ′ and by Lemma

3.2.1, no node of{h2, . . . ,h j ′−1} has a neighbor inR. Then(H \{h j ′+1, ...,hi−1})∪R∪x

induces an even wheel with centerx. So N(ql) ∩ P = pk. But then

(H \{h2, ...,h j−1})∪P∪Q induces a 3PC(pk,hi). This completes the proof of Claim 1.
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By Claim 1 at least two nodes, sayh j ′ andh j ′′, of H \ {h1,h j} have a neighbor inQ.

Note that by definition ofQ and Lemma 3.2.1,j ′ and j ′′ are both even. W.l.o.g.j ′ < j <

j ′′. Let R= r1, ..., rt be a shortest path in the graph induced byQ whereN(h j ′)∩R= r1

andN(h j ′′)∩R= rt . W.l.o.g and by Lemma 3.2.1 no other node fromH \ {h1,h j} has a

neighbor inR.

If N(h1)∩R = ∅, then(H \ {h j ′+1, ...,h j ′′−1})∪R∪ x induces an even wheel with

centerx. SoN(h1)∩R 6= ∅. Supposej ′ 6= 2. Let R′ be a shortest path fromh1 to h j ′ in

the graph induced byR∪{h1,h j ′}. Then{x,h1, ...,h′j}∪R′ induces an even wheel with

centerx. Thereforej ′ = 2.

Suppose thatN(h1) ∩ R = r1. Then by Lemma 3.2.1,N(r1) ∩ H = {h1,h2}. If

rt = q1, then by Lemma 3.2.1,N(rt) ∩ H = {h j ,h j+1}, and henceH ∪ R induces a

3PC(h1h2r1,h j+1h jrt). So rt 6= q1, and henceN(rt) ∩ H = {h j ′′}. ThereforeH ∪ R

induces a 3PC(h1h2r1,h j ′′). Let R′ be a shortest path fromq1 to a node ofR in the graph

induced byQ. Since|R∪R′| < |P∪Q|, the choice ofP andQ is contradicted.

So N(h1)∩ (R\ r1) 6= ∅. Let rs be the node ofR with highest index adjacent toh1.

If h j has no neighbor inrs, . . . , rt , then{x,h1, . . . ,h j ′′, rs, . . . , rt} induces an even wheel

with centerx. So h j does have a neighbor inrs, . . . , rt, i.e. rt = q1. By Lemma 3.2.1,

N(rt)∩H = {h j ,h j ′′}, where j ′′ = j + 1. Note thati ≥ j + 1 and rs 6= ql . But then

(H \{h2, . . . ,h j})∪P∪{rs, . . . , rt} induces a 3PC(h1,hi). 2

Note that the above lemma does not work if we allow 4-holes. Consider the odd-

signable graph in Figure 3.2 (one can see that this graph is odd-signable by assigning 0

to the three bold edges and 1 to all the other edges). LetH be the 5-hole induced by the

neighborhood of nodex. Then every node ofH has a neighbor in the unique connected

component obtained by removingN(x)∪x.

x

Figure 3.2: An odd-signable graph for which Lemma 3.2.3 doesnot work.
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A classF of graphs satisfiesproperty (*) w.r.t. a graph Gif the following holds:

for every nodex of G such thatG\N[x] 6= ∅, and for every connected componentC of

G\N[x], if F ∈ F is contained inG[N(x)], then there exists a node ofF that has no

neighbor inC.

The following theorem is proved in [29]. For completeness weinclude its proof here.

Theorem 3.2.4 (Maffray, Trotignon and Vušković [29])LetF be a class of graphs such

that for every F∈ F , no node of F is adjacent to all the other nodes of F. IfF satisfies

property (*) w.r.t. a graph G, then G has a node whose neighborhood isF -free.

Proof: Let F be a class of graphs such that for everyF ∈ F , no node ofF is adjacent

to all the other nodes ofF. Assume thatF satisfies property (*) w.r.t.G, and suppose

that for everyx∈V(G), G[N(x)] is notF -free. ThenG is not a clique (since every graph

of F contains nonadjacent nodes) and hence it contains a nodex that is not adjacent

to all other nodes ofG. Let C1, . . . ,Ck be the connected components ofG\N[x], with

|C1| ≥ . . . ≥ |Ck|. Choosex so that for everyy∈V(G) the following holds: ifCy
1, . . . ,C

y
l

are the connected components ofG\N[y] with |Cy
1| ≥ . . . ≥ |Cy

l |, then

• |C1| > |Cy
1|, or

• |C1| = |Cy
1| and|C2| > |Cy

2|, or

• . . .

• |C1| = |Cy
1|, . . . , |Ck−1| = |Cy

k−1| and|Ck| > |Cy
k|, or

• for i = 1, . . . ,k, |Ci | = |Cy
i | andk = l .

Let N = N(x) andC = C1∪ . . .∪Ck. For i = 1, . . . ,k, let Ni be the set of nodes ofN

that have a neighbor inCi .

Claim 1: N1 ⊆ N2 ⊆ . . . ⊆ Nk and for everyi = 1, . . . ,k− 1, every node of(N \Ni)∪

(Ci+1∪ . . .∪Ck) is adjacent to every node ofNi .

Proof of Claim 1: We argue by induction. First we show that every node of(N \N1)∪

(C2∪ . . .∪Ck) is adjacent to every node ofN1. Assume not and lety∈ (N \N1)∪ (C2∪

. . .∪Ck) be such that it is not adjacent toz∈ N1. Clearlyy has no neighbor inC1, but z

does. SoG\N[y] contains a connected component that containsC1∪z, contradicting the

choice ofx.

Now let i > 1 and assume thatN1 ⊆ . . . ⊆ Ni−1 and every node of(N \Ni−1)∪ (Ci ∪

. . .∪Ck) is adjacent to every node ofNi−1. Since every node ofCi is adjacent to every node
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of Ni−1, it follows thatNi−1 ⊆ Ni . Suppose that there exists a nodey∈ (N\Ni)∪ (Ci+1∪

. . .∪Ck) that is not adjacent to a nodez∈ Ni. Thenz∈ Ni \Ni−1 andz has a neighbor

in Ci . Also y is adjacent to all nodes inNi−1 and no node ofC1∪ . . .∪Ci . So there exist

connected components ofG\N[y],Cy
1, . . . ,C

y
l such thatC1 =Cy

1, . . . ,Ci−1 =Cy
i−1 andCi∪z

is contained inCy
i . This contradicts the choice ofx. This completes the proof of Claim 1.

SinceG[N] is notF -free, it containsF ∈ F . By property (*), a nodey of F has no

neighbor inCk. By Claim 1,y is adjacent to every node ofNk, and no node ofN \Nk

has a neighbor inC. So (since every node ofF has a non-neighbor inF) F must contain

another nodez∈ N\Nk, nonadjacent toy. But thenC1, . . . ,Ck are connected components

of G\N[y] andz is contained in(G\N[y])\C, soy contradicts the choice ofx. 2

Proof of Theorem 3.0.7:Let G be a 4-hole-free odd-signable graph. LetF be the set of

all holes. By Lemma 3.2.3,F satisfies property (*) w.r.t.G. So by Theorem 3.2.4,G has

a node whose neighborhood isF -free, i.e. triangulated.2

3.3 Some consequences

In a graphG, for any nodex, letC1, . . . ,Ck be the connected components ofG\N[x], with

|C1| ≥ . . . ≥ |Ck|, and let the numerical vector(|C1|, . . . , |Ck|) be associated withx. The

nodes ofG can thus be ordered according to the lexicographic orderingof the numerical

vectors associated with them. Say that a nodex is lex-maximalif the associated numerical

vector is lexicographically maximal over all nodes ofG. Theorem 3.2.4 actually shows

that for a lex-maximal nodex, N(x) is F -free. This implies the following.

Theorem 3.3.1 Let G be a 4-hole-free odd-signable graph, and let x be a lex-maximal

node of G. Then the neighborhood of x is triangulated.

Possibly a more efficient algorithm for listing all maximal cliques can be constructed

by searching for a lex-maximal node.

Lemma 3.2.3 also proves the following decomposition theorem. (H,x) is auniversal

wheelif x is adjacent to all the nodes ofH.

Theorem 3.3.2 Let G be a 4-hole-free odd-signable graph. If G contains a universal

wheel, then G has a star cutset.

Proof: Let (H,x) be a universal wheel ofG. If G = N[x], then for any two nonadjacent

nodesa andb of H, N[x] \ {a,b} is a star cutset ofG. So assumeG\N[x] contains a
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connected componentC1. By Lemma 3.2.3, a nodea∈ H has no neighbor inC1. But then

N[x]\a is a star cutset ofG that separatesa from C1. 2
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Star cutsets

In this Chapter and in the next one we prove the main decomposition theorem in this

thesis.

4.1 Appendices to a hole

In this section we assume thatG is a 4-hole-free odd-signable graph.

Let H be a hole. A chordless pathP = p1, . . . , pk in G\H is anappendixof H if no

node ofP\{p1, pk} has a neighbor inH, and one of the following holds:

(i) k = 1 and(H, p1) is a bug (N(p1)∩V(H) = {u1,u2,u}, such thatu1u2 is an edge),

or

(ii) k > 1, p1 has exactly two neighborsu1 andu2 in H, u1u2 is an edge,pk has a single

neighboru in H, andu 6∈ {u1,u2}.

Nodesu1,u2,u are called theattachmentsof appendixP to H. We say thatu1u2 is the

edge-attachmentandu is thenode-attachment.

Let H ′
P (resp.H ′′

P) be theu1u-subpath (resp.u2u-subpath) ofH that does not contain

u2 (resp.u1). H ′
P andH ′′

P are called thesectorsof H w.r.t. P.

Let Q be another appendix ofH, with edge attachmentv1v2 and node-attachmentv.

AppendicesP andQ are said to becrossingif one sector ofH w.r.t. P containsv1 andv2,

sayH ′
P does, andv∈V(H ′′

P)\{u}.

28
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p1

u1 u2

u

p1

pk

u1 u2

u

Figure 4.1: An appendixP = p1, ..., pk of a holeH, with edge-attachmentu1u2 and node-
attachmentu.

Lemma 4.1.1 Let P= p1, ..., pk be an appendix of a hole H, with edge-attachment u1u2

and node-attachment u, where p1 is adjacent to u1 and u2. Let H′
P (resp. H′′

P) be the sector

of H w.r.t. P that contains u1 (resp. u2). Let Q= q1, . . . ,ql be a chordless path in G\H

such that q1 has a neighbor in H′P, ql has a neighbor in H′′P, no node of Q\ {q1,ql} is

adjacent to a node of H and one of the following holds:

(i) l = 1, q1 is not adjacent to u, and if u1 (resp. u2) is the unique neighbor of q1 in H ′
P

(resp. H′′
P), then q1 is not adjacent to u2 (resp. u1) nor p1.

(ii) l > 1, N(q1)∩V(H)⊆V(H ′
P)\{u}, N(ql )∩V(H)⊆V(H ′′

P)\{u}, q1 has a neighbor

in H ′
P\{u1}, and ql has a neighbor in H′′P \{u2}.

Then Q is also an appendix of H and its node-attachment is adjacent to u. Furthermore,

no node of P is adjacent to or coincident with a node of Q.

Proof: Let u′1 (resp. u′2) be the neighbor ofq1 in H ′
P that is closest tou (resp. u1). Let

u′′1 (resp. u′′2) be the neighbor ofql in H ′′
P that is closest tou (resp.u2). Note that either

u′1 6= u1 or u′′1 6= u2. Let S′1 (resp.S′2) be theu′1u-subpath (resp.u′2u1-subpath) ofH ′
P, and

let S′′1 (resp.S′′2) be theu′′1u-subpath (resp.u′′2u2-subpath) ofH ′′
P. Let H ′ (resp.H ′′) be the

hole induced byH ′
P∪P (resp.H ′′

P ∪P).

First suppose thatl = 1. Note thatq1 cannot be coincident with a node ofP. Suppose

q1 has a neighbor inP. Note thatq1 is not adjacent tou, and if q1 is adjacent top1,

thenu′1 6= u1 andu′′1 6= u2. But thenP∪S′1∪S′′1 ∪q1 contains a 3PC(q1,u). Soq1 has no

neighbor inP. SinceH ∪q1 cannot induce a 3PC(u′1,u
′′
1), q1 has at least three neighbors

in H. Since(H,q1) cannot be an even wheel, w.l.o.g.q1 has an odd number of neighbors

in H ′
P and an even number of neighbors inH ′′

P. SinceH ′′∪q1 cannot induce a 3PC(u′′1,u
′′
2)

nor an even wheel with centerq1, u′′1u′′2 is an edge. SinceH ′′∪S′2∪q1 cannot induce an
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even wheel with centeru2 nor a 3PC(p1u1u2,q1u′′1u′′2), u′2 is adjacent tou, and the lemma

holds.

Now suppose thatl > 1. Sou′1 6= u1 andu′′1 6= u2. Not bothq1 andql can have a single

neighbor inH, since otherwiseH ∪Q induces a 3PC(u′1,u
′′
1). W.l.o.g.u′′1 6= u′′2.

Suppose thatu′′1u′′2 is not an edge. A node ofP must be adjacent to or coincident with

a node ofQ, elseH ′′ ∪Q∪S′1 contains a 3PC(ql ,u). Note that no node of{q1,ql} is

coincident with a node of{p1, pk}, and if a node ofQ is coincident with a node ofP, then

a node ofQ is also adjacent to a node ofP. Letqi be the node ofQ with highest index that

has a neighbor inP. (Note thatqi is not coincident with a node ofP). Let p j be the node

of P with highest index adjacent toqi. If j > 1 andi > 1, thenH ∪{p j , . . . , pk,qi , . . . ,ql}

contains a 3PC(ql ,u). If i = 1, thenS′1∪S′′1 ∪Q∪{p j , . . . , pk} induces a 3PC(q1,u). So

i > 1, and hencej = 1. If i < l , thenS′′1 ∪S′′2 ∪P∪{qi, . . . ,ql} induces a 3PC(p1,ql). So

i = l . SinceH ∪ql cannot induce a 3PC(u′′1,u
′′
2), (H,ql) is a wheel. But then one of the

wheels(H,ql) or (H ′′,ql ) must be even. Thereforeu′′1u′′2 is an edge.

Suppose thatu′1 6= u′2. Then by symmetry,u′1u′2 is an edge, and henceH ∪Q induces

a 3PC(q1u′1u′2,qlu′′1u′′2). Thereforeu′1 = u′2, i.e. Q is an appendix ofH. Note that by

definition ofQ, u′1 /∈ {u1,u}.

Suppose that a node ofP is adjacent to or coincident with a node ofQ. Let qi be the

node ofQ with highest index adjacent to a node ofP, and letp j be the node ofP with

lowest index adjacent toqi . If i > 1 and j < k, thenH ∪{p1, . . . , p j ,qi , . . . ,ql} induces

an even wheel with centeru2 or a 3PC(p1u1u2,qlu′′1u′′2). If i = 1, thenP∪Q∪S′1∪S′′1
contains a 3PC(q1,u). Soi > 1, and hencej = k.

If pk has a unique neighbor inQ, thenQ∪S′1∪S′′1 ∪ pk induces a 3PC(qi,u). So pk

has more than one neighbor inQ.

Suppose thatk = 1. Then eitherS′2∪S′′2 ∪Q∪ p1 or S′1∪S′′1 ∪Q∪ p1 induces an even

wheel with centerp1. Sok > 1.

Let T ′ (resp.T ′′) be the hole induced byS′1∪S′′1∪Q (resp.S′2∪S′′2∪Q). If both (T′, pk)

and(T ′′, pk) are wheels, then one of them is even. Sopk has exactly two neighbors inQ.

SinceT ′′ ∪ pk cannot induce a 3PC(·, ·), N(pk)∩Q = {qi ,qi−1}. (Note thatqi−1 is not

coincident with a node ofP, since j = k). If no node ofP\ pk has a neighbor inQ, then

T ′′∪P induces a 3PC(p1u1u2, pkqiqi−1). So a node ofP\ pk has a neighbor inQ. Let pt

be such a node with lowest index. Letqs be the node ofQ with highest index adjacent to

pt . If t 6= k−1 thenH ′′
P ∪{p1, . . . , pt , pk,qs, . . . ,ql} induces an even wheel with centerql

or a 3PC(qlu′′1u′′2, pkqiqi−1). So t = k−1, i.e. pk and pk−1 are the only nodes ofP that

have a neighbor inQ. If s 6= 1 then(H \S′′2)∪P∪{qs, . . . ,ql} induces an even wheel with

centerpk. Sos= 1. If i > 2, thenS′1∪{q1, . . . ,qi−1, pk−1, pk} induces a 3PC(q1, pk). So
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i = 2. Since there is no 4-hole,u′1u /∈ E(G). But thenH ∪{q1, pk} induces a 3PC(u′1,u).

Therefore, no node ofP is adjacent to or coincident with a node ofQ. If u′1u is not an

edge, then(H \S′′2)∪P∪Q induces a 3PC(u′1,u). Thereforeu′1u is an edge. 2

Lemma 4.1.2 Let P= p1, . . . , pk be an appendix of a hole H, with edge-attachment u1u2

and node-attachment u, with p1 adjacent to u1,u2. Let Q= q1, . . . ,ql be another appendix

of H, with edge-attachment v1v2 and node-attachment v, with q1 adjacent to v1,v2. If P

and Q are crossing, then one of the following holds:

(i) uv is an edge,

(ii) u ∈ {v1,v2} and q1 has a neighbor in P, or

(iii) v ∈ {u1,u2} and p1 has a neighbor in Q.

Proof: Let H ′
P (resp.H ′′

P) be the sector ofH w.r.t. P that containsu1 (resp.u2). W.l.o.g.

{v1,v2} ⊆ H ′
P andv1 is the neighbor ofq1 in H ′

P that is closer tou1. Assumeuv is not an

edge.

By Lemma 4.1.1 eitherv2 = u or u2 = v. W.l.o.g. assume thatv2 = u. Let S1 (resp.

S2) be theuv-subpath (resp.u2v-subpath) ofH ′′
P. A node ofP must be coincident with

or adjacent to a node ofQ, elseH ′
P∪S2∪P∪Q induces a 3PC(p1u1u2,q1v1u) or an even

wheel with centeru1. Note that no node of{q1,ql} is coincident with a node of{p1, pk}.

Let qi be the node ofQ with lowest index adjacent toP. (Soqi is not coincident with a

node ofP). Let p j be the node ofP with lowest index adjacent toqi . If i = 1, then (ii)

holds. So assume thati > 1.

If j < k andi < l , thenH∪{p1, . . . , p j ,q1, . . . ,qi} induces a 3PC(p1u1u2,q1v1u) or an

even wheel with centeru1. So eitherj = k or i = l .

Suppose thatj = k. If N(pk)∩Q = qi , thenS1∪Q∪ pk induces a 3PC(u,qi). So pk

has more than one neighbor inQ. Let T ′ (resp.T ′′) be the hole induced byS1∪Q (resp.

(H \ (S1\ v))∪Q). Note that(T ′, pk) is a wheel. If(T′′, pk) is also a wheel, then one of

these two wheels must be even. So(T ′′, pk) is not a wheel, and hencek > 1 andpk has

exactly two neighbors inQ. N(pk)∩Q = {qi,qi+1}, elseT ′′∪ pk induces a 3PC(·, ·). But

thenH ′
P∪S2∪Q∪ pk induces a 3PC(q1v1u, pkqiqi+1).

So j < k, and hencei = l . In particular,ql is the only node ofQ that has a neighbor

in P. If either j > 1 or v 6= u2, thenS1∪Q∪{p j , . . . , pk} contains a 3PC(u,ql). So j = 1

andv = u2, and hence (iii) holds. 2
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4.2 Proper wheels

A bug is a wheel with three sectors, exactly one of which is short. Atwin wheel is a

wheel with exactly two short sectors and one long sector. Aproperwheel is a wheel that

is neither a bug nor a twin wheel. A wheel(H,x) is auniversalwheel, ifx is adjacent to

all nodes ofH. See figure 4.2.

x x x

Figure 4.2: A bug, a twin wheel and a universal wheel with center x.

Theorem 4.2.1 [1] Let G be a 4-hole-free odd-signable graph. If G contains aproper

wheel that is not a universal wheel, then G has a star cutset.

Theorem 4.2.1 was proved by us and in [1] independently and atthe same time.

Since [1] is about to be published, we do not include our proofof Theorem 4.2.1 here.

We also note that in [1], the statement of Theorem 4.2.1 is foreven-hole-free graphs, but

since in their proof, to obtain the decomposition they only use the exclusion of 4-holes,

even-wheels, 3PC(., .)’s and 3PC(∆,∆)’s, they actually prove the above stated version.

Theorems 3.3.2 and 4.2.1 imply the following result.

Theorem 4.2.2 Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel,

then G has a star cutset.

4.3 Nodes adjacent to a 3PC(∆,·) and crossings

Throughout this sectionΣ denotes a 3PC(x1x2x3,y). The three paths ofΣ are denoted by

Px1y,Px2y andPx3y (wherePxiy is the path that containsxi). Note that at most one of the

paths ofΣ is of length 1. Fori = 1,2,3, we denote the neighbor ofy in Pxiy by yi . Also let

X = {x1,x2,x3}.

Lemma 4.3.1 Let G be a 4-hole-free odd-signable graph that does not contain a proper

wheel. If u∈V(G)\V(Σ) has a neighbor inΣ, then u is one of the following types.
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pi for i=1,2,3 : For some path P ofΣ, N(u)∩V(Σ) ⊆ P and |N(u)∩V(Σ)| = i.

Furthermore, if i≥ 2, then u has two adjacent neighbors inΣ.

crosspath : Node u has exactly three neighbors inΣ. For some i∈ {1,2,3},

u is adjacent to yi , and the other two neighbors of u inΣ are

contained in Px jy, for some j∈ {1,2,3} \ {i}. Furthermore,

V(Pxiy)∪V(Px jy)∪{u} induces a bug with center u.

t2 : N(u)∩V(Σ) ⊆ X and|N(u)∩V(Σ)| = 2.

t3 : N(u)∩V(Σ) = X.

d : For some i, j ∈ {1,2,3}, i 6= j, N(u)∩V(Σ) = {y,yi,y j}.

pseudo-twin of a

node of X

: We define a pseudo-twin of x1: N(u) ∩V(Σ) = {x2,x3,v1,v2},

where v1 and v2 are nodes of Px1y. Furthermore, if{x1,y} =

{v1,v2} then x2y and x3y are not edges. Also if x1 /∈ {v1,v2} then

v1v2 is an edge, and either y/∈ {v1,v2} or x2y and x3y are not

edges. Pseudo-twins of x2 and x3 are defined symmetrically.

pseudo-twin of y : N(u)∩V(Σ) = {y,v1,v2,v3}, where for i= 1,2,3 vi is a node of

Pxiy\{y}, at least two of yv1, yv2, yv3 are edges, and|N(u)∩X| ≤

1.

s1 : Σ is a bug, where say xiy is an edge. Node u is adjacent to xi ,

and for some j∈ {1,2,3}\{i}, the nodes of N(u)∩ (V(Σ)\{xi})

are contained in Px jy\ {y}. Furthermore, V(Pxiy)∪V(Px jy)∪{u}

induces a twin wheel.

s2 : For distinct i, j,k∈ {1,2,3}, Σ is a bug such that xiy is an edge,

and N(u)∩V(Σ) = {xi ,x j ,y,yk}.

Proof: For i, j ∈ {1,2,3}, i 6= j, letHi j be the hole induced byPxiy∪Px jy. We now consider

the following three cases.
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Case 1:|N(u)∩X| ≤ 1.

If for somei ∈ {1,2,3}, N(u)∩Σ ⊆ Pxiy, thenu is of type p1, p2 or p3, else there is

a 3PC(·, ·) or a proper wheel. So assume w.l.o.g thatu has neighbors in bothPx1y\ y and

Px2y\y, and that it is not adjacent tox3.

Supposeu is not adjacent toy. Note thatPx3y is an appendix ofH12. By Lemma 4.1.1

applied toH12, Px3y andu, nodeu is also an appendix ofH12 and its node-attachment is

w.l.o.g.y1. Furthermore, no node ofPx3y is adjacent tou, and henceu is a crosspath ofΣ.

Now assume thatu is adjacent toy. Then(H12,u) must be a bug or a twin wheel.

Suppose(H12,u) is a twin wheel. Ifu has no neighbor inPx3y \ y, thenu is of type d.

So assumeu has a neighbor inPx3y \ y. Then(H23,u) is either a bug or a twin wheel,

and henceu is a pseudo-twin ofy w.r.t. Σ. Suppose now that(H12,u) is a bug. W.l.o.g

N(u)∩Px1y = {y,y1} andN(u)∩Px2y = {y,u1}, whereyu1 is not an edge. Ifu has no

neighbor inPx3y\ y, thenH23∪u induces a 3PC(y,u1). Sou has a neighbor inPx3y\ y. If

N(u)∩Px3y 6= {y,y3}, then(H23,u) is a proper wheel. SoN(u)∩Px3y = {y,y3}, and hence

u is a pseudo-twin ofy w.r.t. Σ.

Case 2:|N(u)∩X| = 2.

W.l.o.g. N(u)∩X = {x1,x2}. Assumeu is not of type t2. Thenu has a neighbor

in Σ \X. First suppose thatu does not have a neighbor inH12\ {x1,x2}. Thenu has

a neighbor inPx3y \ {x3,y}. SinceH13∪u cannot induce a 3PC(·, ·), u has at least two

neighbors inPx3y\{x3,y}. Then(H13,u) is a wheel, and hence it must be a bug, and sou

is a pseudo-twin ofx3 w.r.t. Σ.

Now we may assume thatu has a neighbor inH12\ {x1,x2}. Then(H12,u) is a twin

wheel or a bug. In particular,N(u)∩H12 = {x1,x2,u1}. W.l.o.g. assume thatu1 ∈Px1y\x1.

Supposeu1 6= y. Thenu cannot have a neighbor inPx3y, since otherwise(Σ\{x1,x3})∪u

contains a 3PC(u,y). If x2y is not an edge, then(Σ\x1)∪u contains a 3PC(x2,y). Sox2y

is an edge. Ifx1u1 is not an edge, thenH13∪u induces a 3PC(x1,u1). Sox1u1 is an edge,

and henceu is of type s1.

We may now assume thatu1 = y. Note that at least one ofx1y or x2y is not an edge.

W.l.o.g.x2y is not an edge. Nodeu must have a neighbor inPx3y\y, elseH23∪u induces a

3PC(x2,y). So(H23,u) is a wheel, and hence it must be a bug. In particular,N(u)∩Px3y =

{y,y3}, and sou is of type s2 or it is a pseudo-twin ofx3 w.r.t. Σ.

Case 3:N(u)∩X = X.

Assumeu is not of type t3. Thenu has a neighboru1 in w.l.o.g. Px1y\x1. So(H12,u)

is a twin wheel or a bug. Similarly,(H13,u) is a twin wheel or a bug. SoN(u)∩V(Σ) =

{x1,x2,x3,u1}. If u1 6= y or x2y andx3y are not edges, thenu is a pseudo-twin ofx1 w.r.t.
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Σ. So assume thatu1 = y and w.l.o.g.x2y is an edge. Thenu is a pseudo-twin ofx2 w.r.t.

Σ. 2

x1

x2

x3 y

p1 p2 p3

crosspath

x1

x2
x3

y
d

t2
t3

x1

x2
x3

y

pseudo-twins of a node ofX

x1

x2
x3 y

pseudo-twin ofy

x1 x2

x

y

s1 s2

x1 x2

x

yy1

Figure 4.3: Different types of nodes adjacent to a 3PC(x1x2x3,y).

Remark 4.3.2 If a node u is a pseudo-twin of a node of X, say x1, w.r.t. a

Σ = 3PC(x1x2x3,y), then(Σ\{x1})∪{u} contains aΣ′ = 3PC(ux2x3,y). If a node u is a

pseudo-twin of y w.r.t.Σ, then(Σ\{y})∪{u} contains aΣ′ = 3PC(x1x2x3,u). If a node u

is of type p3 w.r.t.Σ, thenΣ∪{u} contains aΣ′ = 3PC(x1x2x3,y) that contains u. We say

that in all these casesΣ′ is obtained by substitutingu into Σ.

A nodeu adjacent toΣ is further classified as follows.

Type p : Nodeu is of type p1, p2 or p3 w.r.t.Σ.

Type p3t : Nodeu is of type p3 w.r.t.Σ andN(u)∩V(Σ) induces a path of length 2.

Type p3b : Nodeu is of type p3 w.r.t.Σ andN(u)∩V(Σ) does not induce a path of

length 2.
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Type dd : Nodeu is of type d w.r.t.Σ such that ifΣ is a bug, thenu is not adjacent to

its center.

Type dc : Nodeu is of type d w.r.t.Σ, whereΣ is a bug andu is adjacent to its center.

x

type dd

x

type dc

Figure 4.4: Different versions of a type d node w.r.t a 3PC(∆, ·).

A crossingof Σ is a chordless pathP = p1, . . . , pk in G\Σ such that eitherk = 1 and

p1 is a crosspath w.r.t.Σ; or k = 1, Σ is a bug andp1 is of type s1 w.r.t.Σ; or k > 1 and

for somei, j ∈ {1,2,3}, i 6= j, N(p1)∩V(Σ)⊆V(Pxiy), N(pk)∩V(Σ)⊆V(Px jy), p1 has a

neighbor inV(Pxiy)\{y}, pk has a neighbor inV(Px jy)\{y}, and no node ofP\{p1, pk}

has a neighbor inΣ.

We now define three special types of crossings.

A crossingP = p1, . . . , pk of Σ is called ahat if k > 1, p1 andpk are both of type p1

w.r.t. Σ adjacent to different nodes of{x1,x2,x3}.

Let P = p1, . . . , pk be a crossing ofΣ such that one of the following holds:

(i) k = 1 andp1 is a crosspath w.r.t.Σ, sayp1 is adjacent toyi for somei ∈ {1,2,3},

and it has two more neighbors inPx jy\{y}, for somej ∈ {1,2,3}\{i}.

(ii) k = 1, Σ is a bug andp1 is of type s1 w.r.t.Σ, such that for somei ∈ {1,2,3} and

for somej ∈ {1,2,3}\{i}, xiy is an edge andN(p1)∩{x1,x2,x3} = {xi ,x j}.

(iii) k > 1, p1 is of type p1 andpk is of type p2 w.r.t.Σ, for somei ∈ {1,2,3}, p1 is

adjacent toyi , and for somej ∈ {1,2,3}\{i}, N(pk)∩V(Σ) ⊆V(Px jy)\{y}.
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Such a pathP is called ayi-crosspathof Σ. We also say thatP is acrosspathfrom yi to

Px jy. If say x3y is an edge, thenΣ induces a bug(H,x), wherex = x3 = y3. In this case,

the y3-crosspath (orx-crosspath) ofΣ, is also called thecenter-crosspathof the bug

(H,x).

Suppose thatΣ is a bug. A crossingP of Σ is anear if k > 1, p1 is of type p1 w.r.t.Σ
adjacent to the center of bugΣ, andpk is of type p2 w.r.t.Σ adjacent toy.

P
Q

Figure 4.5: A hatP and an earQ of a 3PC(∆, ·).

x1

x3

x2 y

P y1 x1 = y1

x2 x3

yy2 y3

P

x1 = y1

x2 x3

yy2 y3

P

Figure 4.6: Ay1-crosspathP of a 3PC(x1x2x3,y). Whenx1 = y1, P is also a center-
crosspath of a bug.

We next prove the following sequence of decompositions. Theorder in which these

decompositions are obtained is of crucial importance.

Theorem 4.3.3 Let G be a 4-hole-free odd-signable graph. If G contains a bugwith a

center-crosspath then G has a star cutset. In particular, ifG has no star cutset, then no
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node is of type s1 w.r.t. a3PC(∆, ·).

Theorem 4.3.4 Let G be a 4-hole-free odd-signable graph. If G contains a3PC(∆, ·)

with a hat, then G has a star cutset.

Theorem 4.3.5 Let G be a 4-hole-free odd-signable graph. If G contains a bugwith an

ear, then G has a star cutset.

Theorem 4.3.6 Let G be a 4-hole-free odd-signable graph. If G contains a bugwith a

type s2 node, then G has a star cutset.

We prove Theorems 4.3.3, 4.3.5 and 4.3.6 in Section 4.4. We close this section by

proving Theorem 4.3.4. (assuming Theorem 4.3.3 to be true).But first we provea useful

lemma about crosspaths.

Lemma 4.3.7 Let G be a 4-hole-free odd-signable graph that does not contain a proper

wheel. Σ = 3PC(x1x2x3,y) of G can have a crosspath from at most one of the nodes

y1,y2,y3.

Proof: Suppose not and letP = u1, . . . ,un be ay1-crosspath andQ = v1, . . . ,vm a y2-

crosspath. Letu′,u′′ (resp.v′,v′′) be adjacent neighbors ofun (resp.vm) in Σ. Note that by

definition of a crosspath,y does not coincide with any of the nodesu′,u′′,v′,v′′. It suffices

to consider the following three cases.

Case 1:u′,u′′ ∈ Px2y andv′,v′′ ∈ Px1y.

Note that in this case neitherx1y nor x2y can be an edge and hence neitheru1 nor

v1 can be of type s1 w.r.tΣ. Let H be the hole induced byPx1y∪Px2y. ThenP andQ

are crossing appendices ofH and their node-attachments are not adjacent. So by Lemma

4.1.2, w.l.o.g.y1 ∈ {v′,v′′} andvm has a neighbor inP.

W.l.o.g. u′ is the neighbor ofun in Px2y that is closer tox2. Let R′ (resp. R′′) be the

subpath ofPx2y with endnodesu′ (resp. u′′) andx2 (resp. y). Since there is no 4-hole,

m> 1. Nodevm has a unique neighbor inP, else(Px1y\y)∪P∪R′∪vm induces a proper

wheel with centervm. The neighbor ofvm in P is u1, elseP∪R′′ ∪{y1,vm} induces a

3PC(y1, ·). But thenPx1y∪Px3y∪R′′∪P∪vm induces an even wheel with centery1.

Case 2:u′,u′′ ∈ Px3y andv′,v′′ ∈ Px3y.

Note thatx3y is not an edge, and at most one ofx1y,x2y is an edge. Suppose there

exists a path fromy1 to y2 in P∪Q∪ (Px3y\ {x3,y3,y})∪{y1,y2}, and letR be a shortest

such path. ThenPx1y∪Px2y∪R induces a 3PC(y1,y2). So no such path exists. In particular,
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no node ofP is adjacent or coincident with a node ofQ, andx3y3 is an edge. In particular,

since there is no 4-hole,Σ cannot be a bug. But then(Σ∪P∪Q) \ y induces a proper

wheel with centerx3.

Case 3:u′,u′′ ∈ Px3y andv′,v′′ ∈ Px1y.

Note thatx1y is not an edge and henceu1 is not of type s1 w.r.t.Σ. Let H be the hole

induced byPx1y∪Px2y. Let P′ be the shortest path betweeny1 andx3 in P∪ (Px3y\y)∪y1.

Suppose thatv1 is of type s1 w.r.t.Σ. Thenx2y is an edge. Ifv1 has no neighbor inP,

thenP′∪ (Px1y\ y)∪{x2,v1} induces an even wheel with centerx1. Sov1 has a neighbor

in P and letui be such a neighbor with lowest index. Note that since{x1,y1,x2,y} cannot

induce a 4-hole,v1 is not adjacent toy1. But then(H \ x1)∪ {v1,u1, ...,ui} induces a

3PC(y1,v1). Thereforev1 is not of type s1 w.r.t.Σ, and henceP′ andQ are crossing

appendices ofH. Sincex3 does not have a neighbor inQ, by Lemma 4.1.2 applied to

H, Q andP′, y1 ∈ {v′,v′′} andvm has a neighbor inP. Let H ′ be the hole induced by

P′∪Px1y\y. Then(H ′,vm) is a wheel, and hence it is a twin wheel or a bug. If(H ′,vm) is

a bug, thenP∪ (Px3y\x3)∪{y1,y,vm} contains a 3PC(y1, ·). So(H ′,vm) is a twin wheel.

In particular,u1 is the unique neighbor ofvm in P. Since{vm,y1,y,y2} cannot induce a

4-hole,m> 1. But then(Σ\x3)∪P∪vm contains an even wheel with centery1. 2

Proof of Theorem 4.3.4: Assume G contains aΣ = 3PC(x1x2x3,y) with a hat

P = p1, ..., pk, but G does not have a star cutset. By Theorems 4.2.2 and 4.3.3,G does

not contain a proper wheel nor a bug with center-crosspath. For i = 1,2,3, let x′i be the

neighbor ofxi in Pxiy. W.l.o.g. p1 is adjacent tox1 andpk to x2. SinceS= N[x1]\{p1,x′1}

is not a star cutset, there exists a direct connectionQ = q1, ...,ql from P to Σ\S in G\S.

We may assume w.l.o.g. thatP andQ are chosen so that|P∪Q| is minimized.

By Lemma 4.3.1 and definition ofQ, and sinceG does not contain a bug with a center-

crosspath,ql is of type p, d, s2 or crosspath w.r.t.Σ or it is a pseudo-twin ofx1 or y w.r.t.

Σ.

Let pi (resp. p j ) be the node ofP with lowest (resp. highest) index adjacent toq1.

Note thatx1 has no neighbor inQ, ql has a neighbor inΣ\{x1,x2,x3}, and the only nodes

of Σ that may have a neighbor inQ\ ql are x2 and x3. If x2 or x3 has a neighbor in

Q\ql , then letqt be such a neighbor with lowest index. LetR be a chordless path from

x1 to ql in G[(Σ \ {x2,x3})∪ql ] (note that such a path exists sinceql has a neighbor in

Σ\{x1,x2,x3}).

Case 1:i = k.
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Let H be the hole induced byR∪P∪Q. SinceH ∪ x2 cannot induce a 3PC(x1, pk)

nor a proper wheel,(H,x2) must be a bug. In particular,N(x2)∩Q = q1 andR does not

containx′2. Nodex3 cannot have a neighbor inQ, since otherwiseQ∪P∪ {x1,x2,x3}

would contain a 4-wheel with centerx2. In particular,ql is not of type s2 w.r.t.Σ nor is

it a pseudo-twin ofx1 w.r.t. Σ. If ql has a neighbor inPx3y \ y, then(Px3y \ y)∪P∪Q∪

{x1,x2,x3} contains a 4-wheel with centerx2. Soql does not have a neighbor inPx3y\ y.

In particular,ql is not a pseudo-twin ofy w.r.t. Σ. Suppose thatql is of type d or crosspath

w.r.t. Σ. Thenql has a neighbor inPx1y\y and a neighbor inPx2y\y. Hencex1y is not an

edge, since by definition ofQ, x1 cannot be adjacent toql . Let R′ be the chordless path

from ql to x3 in G[(Σ\{x1,x′1,x2)∪ql ]. ThenP∪Q∪R′∪{x1,x2} induces a proper wheel

with centerx2. Soql is not of type d or crosspath w.r.t.Σ, and henceql is of type p w.r.t.

Σ.

Suppose thatx1y is an edge. Then the neighbors ofql in Σ are contained inPx2y. Since

R does not containx′2, ql has a neighbor inPx2y \ {x2,x′2}. Let P′ be the chordless path

from x2 to y in G[(Px2y\x′2)∪Q]. ThenP′∪Px3y∪x1 induces a bug with centerx1, andP

is its center-crosspath, a contradiction. Thereforex1y is not an edge.

If N(ql )∩Σ = x′1, thenPx1y∪Px2y∪Q induces a 3PC(x′1,x2). Soql has a neighbor in

Σ \ {x1,x′1}. Let P′ be the chordless path fromql to x3 in G[(Σ \ {x1,x2,x′1})∪ql ]. Then

P∪P′∪{x1,x2,x3} induces a 4-wheel with centerx2.

Case 2:i < k.

First note that ifl > 1, then eitheri = j or j = i +1, since otherwise the chordless path

from p1 to pk in (P\ pi+1)∪q1 andQ\q1 contradict the minimality of|P∪Q|. Let H be

the hole induced byR∪Q∪{p1, ..., pi}.

Suppose thatx2 has a neighbor inQ. SinceH ∪ x2 cannot induce a 3PC(·, ·) nor

a proper wheel,(H,x2) is a bug. In particular, eitherl > 1 or {x2,x′2} ⊆ N(ql )∩ Σ ⊆

{x2,x′2,x3}. If j = i + 1, thenp j , ..., pk is a center-crosspath of(H,x2). So j 6= i + 1. If

i = j, thenP∪Q∪{x1,x2} contains a 3PC(x2, pi). So j > i +1. But thenl = 1, and hence

{x2,x′2} ⊆ N(ql )∩Σ ⊆ {x2,x′2,x3}. By Lemma 4.3.1 and Theorem 4.3.3,N(ql)∩Σ =

{x2,x′2}. If x1y is not an edge, thenPx2y∪Px3y∪{x1,q1, p1, ..., pi} induces a 4-wheel with

centerx2. Sox1y is an edge. But thenΣ is a bug andp1, ..., pi,q1 is its center-crosspath.

Thereforex2 does not have a neighbor inQ. In particular,ql is not of type s2 w.r.t.Σ, nor

a pseudo-twin ofx1 w.r.t. Σ.

Suppose thatx3 has a neighbor inQ\ql . Then pathsp1, ..., pi,q1, ...,qt andqt+1, ...,ql

contradict the minimality of|P∪Q|. Sox3 does not have a neighbor inQ\ql .
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Suppose that j = i + 1. If ql has a neighbor inΣ \ {x1,x′1,x2,x′2}, then

(Σ \ {x′1,x
′
2})∪P∪Q contains a 3PC(q1pi pi+1,x1x2x3). Soql does not have a neighbor

in Σ \ {x1,x′1,x2,x′2}. Since ql is not adjacent tox1 nor x2, N(ql ) ∩ Σ ⊆ {x′1,x
′
2}.

If N(ql ) ∩ Σ = x′2, then Px1y ∪ Px2y ∪ Q ∪ {p1, ..., pi} induces a 3PC(x1,x′2). If

N(ql ) ∩ Σ = x′1, then Px1y ∪ Px2y ∪ ∪Q{pi+1, ..., pk} induces a 3PC(x2,x′1). So

N(ql )∩Σ = {x′1,x
′
2}. By Lemma 4.3.1,ql must be of type p2 w.r.t.Σ, and hence either

x′2 = y or x′1 = y. But then{x1,x2,x′1,x
′
2} induces a 4-hole. Soj 6= i +1.

Suppose thati = j. If ql has a neighbor inΣ\{x1,x2,x3,x′1}, then(Σ\{x′1,x3})∪P∪Q

contains a 3PC(pi ,x2). So ql is adjacent tox′1 and it does not have a neighbor inΣ \

{x1,x2,x3,x′1}. Since{x1,x′1,x3,ql} cannot induce a 4-hole,N(ql )∩Σ = x′1. If i 6= 1, then

Px1y∪Px2y∪Q∪{pi , ..., pk} induces a 3PC(x2,x′1). So i = 1. But thenPx1y∪Px2y∪P∪Q

induces a proper wheel with centerx1. Soi 6= j. Thereforej > i +1, and hencel = 1.

If q1 has a neighbor inΣ \ {x2,x′2,x3}, then(Σ \ {x′2,x3})∪ {p1, ..., pi, p j , ..., pk,q1}

contains a 3PC(q1,x1). Soq1 is adjacent tox′2 and it has no neighbor inΣ\{x′2,x3}. But

then{x1,x2,x′2, p1, ..., pi, p j , ..., pk,q1} induces a 3PC(q1,x2). 2

4.4 Bugs

For a bug(H,x) we use the following notation in this section. Letx1,x2,y be the neighbors

of x in H, such thatx1x2 is an edge. LetH1 (resp.H2) be the sector of(H,x) that contains

y andx1 (resp.x2). Let y1 (resp.y2) be the neighbor ofy in H1 (resp.H2).

Proof of Theorem 4.3.3:By Theorem 4.2.2 we may assume thatG does not contain a

proper wheel. Choose a bug(H,x) and its center-crosspathP = p1, . . . , pk so that|H ∪P|

is minimized.

W.l.o.g. p1 is adjacent tox, and letu1,u2 be the neighbors ofpk in H. W.l.o.g.

u1,u2 ∈ H2\ y, andu1 is the neighbor ofpk in H2 that is closer toy. We now show that

S= N[x] is a star cutset separatingH1 from H2.

Assume not and letQ = q1, . . . ,ql be a direct connection fromH1 to H2 in G\S. Note

that no node ofQ is adjacent tox. So no node ofQ is of type t3, s1, s2 nor a pseudo-twin

of x1, x2, x or y w.r.t. (H,x). Also by Lemma 4.3.7, no node ofQ is of type crosspath w.r.t.

(H,x). Hence by Lemma 4.3.1, either (i)l > 1, andq1 andql are of type p, or (ii)l = 1 and

q1 is of type d. Suppose (ii) holds. Note thatq1 cannot be coincident with a node ofP. If

q1 does not have a neighbor inP, then(H \x2)∪P∪{x,q1} contains a 4-wheel with center

y. SoN(q1)∩P 6= ∅. If q1 has more than one neighbor inP, then(H2\ x2)∪P∪{x,q1}

contains a proper wheel with centerq1. Soq1 has a unique neighborpi in P. Since there
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is no 4-hole,i > 1. But thenH2∪{x,q1, pi , ..., pk} induces either a 3PC(q1yy2, pku1u2) or

a 4-wheel with centery2. So (i) holds. Furthermore,q1 has a neighbor inH1\{x1,y} and

ql has a neighbor inH2\ {x2,y}. Also, the only nodes ofH that may have a neighbor in

Q\{q1,ql} arex1,x2,y. Since there is no 4-hole, every node ofQ\{q1,ql} has a neighbor

in at most one of the sets{x1,x2}, {y}.

Claim 1: At most one of the sets{x1,x2} or {y} may have a neighbor in Q\{q1,ql}.

Proof of Claim 1:Assume not. Then there is a subpathQ′ of Q\ {q1,ql} such that one

endnode ofQ′ is adjacent toy, the other is adjacent to a node of{x1,x2}, say tox1, and

no intermediate node ofQ′ has a neighbor inH. ThenH1∪Q′∪x induces a 3PC(x1,y).

This completes the proof of Claim 1.

Claim 2: q1 is not of type p3b.

Proof of Claim 2:Assumeq1 is of type p3b, and letH ′ be the hole ofH∪q1 that contains

q1,x1,x2,y. Then(H ′,x) is a bug. Ifq1 is not adjacent to a node ofP, then(H ′,x) andP

contradict the minimality of|H ∪P|. Soq1 is adjacent to a node ofP. Let pi be the node

of P with lowest index adjacent toq1. ThenH1∪{x,q1, p1, . . . , pi} contains a 3PC(q1,x).

This completes the proof of Claim 2.

Let H ′
1 (resp.H ′

2) be the subpath ofH1 (resp.H2) whose one endnode isx1 (resp.x2),

the other endnode is adjacent toq1 (resp.ql ), and no intemediate node ofH ′
1 (resp.H ′

2) is

adjacent toq1 (resp.ql ). Let v1 (resp.v2) be the neighbor ofq1 in H1 that is closest tox1

(resp.y).

By Lemma 4.1.1 applied toH, x andQ and Lemma 4.3.7, eithery has a neighbor in

Q, or a node of{x1,x2} has a neighbor inQ\ {q1,ql}. We now consider the following

two cases.

Case 1:No node of{x1,x2} has a neighbor inQ\{q1,ql}.

Theny has a neighbor inQ. Let qt be the node ofQ with lowest index adjacent toy.

By Claim 2,q1 is of type p1, p2 or p3t. We now consider the following two cases.

Case 1.1:No node ofP is adjacent to or coincident with a node ofQ.

Let R be a chordless path fromql to x in (H2\{x2,y})∪P∪{x,ql}.

First suppose thatq1 is of type p3t. If t 6= 1, thenH1 ∪ {q1, ...,qt,x} contains a

3PC(q1,y). Sot = 1 and consequentlyv2 = y. Supposeq1 is the unique node ofQadjacent

to y. If N(ql )∩H2 6= {y2}, thenql has a neighbor inH2\ {x2,y,y2} (sincex2y2 is not an

edge, else{x,y,x2,y2} induces a 4-hole) and henceQ∪R∪H ′
1∪y induces a 3PC(q1,x). So
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N(ql )∩H2 = {y2}. But then(H \y1)∪Q induces a 3PC(q1,y2). SoN(y)∩ (Q\q1) 6= ∅.

If N(y)∩(Q\q1) 6= {q2} or N(ql )∩H ⊆ {y,y2}, thenQ∪R∪H ′
1∪{x,y} induces a proper

wheel with centery. Soq2 is the unique neighbor ofy in Q\q1 andN(ql)∩H is not con-

tained in the node set{y,y2}. But thenQ∪H ′
2∪H ′

1∪{x,y} induces a 3PC(x1x2x,q1q2y).

So q1 is of type p1 or p2. Suppose thatq1 is of type p1. Then,t > 1. Nodev1 is

adjacent toy, elseH1∪{x,q1, . . . ,qt} induces a 3PC(v1,y). But thenH1∪Q∪R induces

a proper wheel with centery. Therefore,q1 must be of type p2.

Suppose thatq1 is adjacent toy. ThenH1∪Q∪Rmust induce a bug with centery, and

hencey2 6∈ RandN(y)∩Q = q1. In particular,y2 6∈ H ′
2. But thenH1∪H ′

2∪Q∪x induces

a 3PC(x1x2x,q1yy1). Therefore,q1 is not adjacent toy.

SinceH ′
1∪Q∪R∪y cannot induce a 3PC(x,qt), it must induce a bug, and hence either

(i) y2 6∈ R andN(y)∩Q = {qt ,qt+1}, or (ii) y2 ∈ R andt = l . If (i) holds, theny2 6∈ H ′
2,

and henceH1∪H ′
2∪Q induces a 3PC(yqtqt+1,q1v1v2). So (ii) holds. Soql is adjacent to

y andy2. Since there is no 4-hole,ql is not adjacent tox2. If ql is of type p3, then there

exists a chordless path fromql to x in (H2\{x2,y})∪P∪{x,ql} that does not containy2,

contradicting the analysis thus far (that shows thaty2 ∈ R). Soql is of type p2, and hence

H ∪Q induces a 3PC(q1v1v2,qlyy2).

Case 1.2:A node ofP is adjacent to or coincident with a node ofQ.

Let qi be the node ofQ with lowest index adjacent to a node ofP, and letp j (resp.

p j ′) be the node ofP with highest (resp. lowest) index adjacent toqi. If i < t, then by

Lemma 4.1.1,q1, . . . ,qi , p j , . . . , pk is a crosspath, contradicting Lemma 4.3.7. Soi ≥ t.

Supposet = 1. Then, by Claim 2,q1 is of type p2 or p3t. Supposeq1 is of type

p2. SinceH1∪{x,y,q1, . . . ,qi , p1, . . . , p j ′} cannot induce a proper wheel with centery,

q1 is the unique neighbor ofy in q1, . . . ,qi . But thenH ∪{q1, . . . ,qi, p j , . . . , pk} induces

a 3PC(∆,∆). Soq1 is of type p3t. Ifq1 is the unique neighbor ofy in {q1, . . . ,qi}, then

H ′
1∪ {q1, ...,qi, p1, ..., p j ′,y} induces a 3PC(q1,x). So y has a neighbor in{q2, . . . ,qi},

and henceH ′
1∪{q1, ...,qi, p1, ..., p j ′,y} induces a bug with centery. In particularN(y)∩

{q1, ...,qi} = {q1,q2}. Let R be anx2u2-subpath ofH2. SinceP is a crosspath,yu2 is not

an edge, and henceH1∪R∪{q1, ...,qi, p j , ..., pk} induces an even wheel with centerq1.

Sot > 1.

H ′
1∪{x,y,q1, . . . ,qi, p1, . . . , p j ′} must induce a bug with centery (since it cannot in-

duce a 3PC(qt,x) nor a proper wheel, and it cannot induce a twin wheel becausey is not

adjacent to any node ofP∪x1), and hencey1 /∈ H ′
1 andN(y)∩{q1, . . . ,qi} = {qt,qt+1}.

If q1 is of type p1 or p3, thenH1∪ {x,q1, . . . ,qt} either induces a 3PC(v1,y) or con-

tains a 3PC(q1,y). So q1 is of type p2. If i < l then (H \ y2)∪ {q1, . . . ,qi, p j , . . . , pk}
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contains a 3PC(q1v1v2,yqtqt+1) (recall that sinceP is a crosspath,pk has a neighbor in

H2 \ {y,y2}). So i = l . If ql has a neighbor inH2 \ {y,y2}, then(H \ y2)∪Q contains a

3PC(q1v1v2,yqtqt+1). Soql does not have a neighbor inH2\ {y,y2}. Supposet +1 = l .

Let H ′ be the hole induced byP∪x and theyu1-subpath ofH2. Since(H ′,ql) cannot be a

proper wheel,j ′ = j. Since there is no 4-hole,j > 1. But then(H2\y2)∪P∪ql contains

a 3PC(p j ,x). Sot +1 < l . In particularN(ql)∩H = y2.

Supposej ′ = k andpk is adjacent toy2. If k = 1, then{x, pk,y,y2} induces a 4-hole.

Sok > 1. But thenH2∪{x,qt+1, ...,ql , pk} induces a 4-wheel centery2. So eitherj ′ 6= k

or pk is not adjacent toy2. But then{x,y,y2,qt+1, . . . ,ql , p1, . . . p j ′} induces a 3PC(y,ql).

Case 2:A node of{x1,x2} has a neighbor inQ\{q1,ql}.

By Claim 1,y has no neighbor inQ\{q1,ql}. Let qi be the node ofQ\q1 with lowest

index adjacent to a node of{x1,x2}. Note thati < l .

Suppose thatqi is not adjacent tox1. If q1 is of type p1 or p3t, thenH ∪{q1, . . . ,qi}

either induces a 3PC(x2, ·) or contains a 3PC(x2,q1). Soq1 is of type p2. But thenx and

q1, . . . ,qi are crossing appendices ofH, and sincex2y is not an edge andN(x)∩Q = ∅,

Lemma 4.1.2 is contradicted. Therefore,qi is adjacent tox1.

Let q j be the node ofQ with highest index adjacent tox1. Let R be the chordless path

from ql to y in H2∪ql . Note thatR does not containx2, since by definition ofQ, ql has a

neighbor inH2\{x2,y}. Let H ′ be the hole induced byH1∪R∪{q j , . . . ,ql}. ThenH ′∪x

induces a 3PC(x1,y). 2

Lemma 4.4.1 Let G be a 4-hole-free odd-signable graph. If G contains a bug(H,x) and

has no star cutset, then G has a path P= p1, ..., pk disjoint from V(H)∪{x} such that no

node of P is adjacent to x, no node of H\ {y} has a neighbor in P\ {p1, pk}, p1 has a

neighbor in H1 \ {x1,y}, pk has a neighbor in H2 \ {x2,y} and P is one of the following

types.

A: P and x are crossing appendices of H. Node y is adjacent to the node-attachment

of P in H and N(y)∩P = /0.

D: k = 1 and p1 is a node of type dd w.r.t.(H,x).

C: k > 1 and one of the following holds.

(i) P is of type C1: nodes p1, pk are of type p2 not adjacent to y, node y has

precisely one neighbor in P, and that neighbor lies in P\{p1, pk}.

(ii) P is of type C2: nodes p1, pk are of type p2, exactly one of them, say p1, is

adjacent to y, and N(y)∩P = {p1, p2}.
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(iii) P is of type C3: one of{p1, pk} is of type p3t adjacent to y and the other is of

type p2. Say p1 is of type p3t. Then N(y)∩P = p1.

(iv) P is of type C4: k= 2, one of{p1, pk}, is of type p3t and the other is of type

p2. Both p1, pk are adjacent to y.

(v) P is of type C5: k= 2; one of{p1, pk} is of type p3b and the other is of type

p2. Both p1, pk are adjacent to y, say p1 is of type p3b. The node-attachment

of p1 in H is y.

T: Node y has exactly 3 neighbors in P, that are furthermore consecutive in P. Nodes

p1 and pk are of type p2 or p3 w.r.t.(H,x). If p1 (resp. pk) is of type p3, then it is

adjacent to y. If p1 (resp. pk) is of type p2, then it is not adjacent to y.

Furthermore, any direct connection from H1 to H2 in G\N[x] is of type A,D,C or T.

Proof: By Theorems 4.2.2 and 4.3.3 we may assume thatG does not contain a proper

wheel nor a bug with a center-crosspath. SinceN[x] is not a star cutset separatingH1 from

H2, let P = p1, ..., pk be a direct connection fromH1 to H2 in G\N[x]. So no node ofP is

adjacent tox and hence no node ofP is of type t3, s1, s2, dc w.r.t.(H,x) nor a pseudo-twin

of x1,x2,x or y w.r.t. (H,x). By Theorem 4.3.3, no node ofG is of type s1 w.r.t(H,x). If

k = 1, then, by Lemma 4.3.1,p1 is either of type crosspath w.r.t.(H,x) not adjacent to

x or of type dd w.r.t.(H,x). SoP is either of type A or D w.r.t.(H,x). So assume that

k > 1.

By Lemma 4.3.1,p1 and pk are of type p w.r.t. (H,x). Note that the only nodes

of H that may have a neighbor inP\ {p1, pk} arex1,x2,y . Also p1 has a neighbor in

H1\{x1,y} andpk has a neighbor inH2\{x2,y}.

Claim 1: At most one of the sets{x1,x2} or {y} may have a neighbor in P\{p1, pk}.

Proof of Claim 1: Assume not and letP′ be a shortest subpath ofP\ {p1, pk} with the

property that one endnode ofP′ is adjacent toy and the other endnode ofP′ is adjacent to

a node of{x1,x2}. W.l.o.g. x1 is adjacent to an endnode ofP′ . ThenH1∪P′∪x induces

a 3PC(x1,y). This completes the proof of Claim 1.

Claim 2: No node of{x1,x2} has a neighbor in P\{p1, pk}.

Proof of Claim 2: Assume not. By symmetry, w.l.o.g we may assume thatx2 has a

neighbor inP\ {p1, pk}. Let pi be such a neighbor with lowest index. By Claim 1,y

does not have a neighbor inP\{p1, pk}. Let R be the subpath ofH1 whose one endnode
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is y, the other endnode is adjacent top1, and no intermediate node ofR is adjacent top1.

ThenH2∪R∪{x, p1, ..., pi} induces a 3PC(x2,y). This completes the proof of Claim 2.

So by Claim 2, no node ofH \y has a neighbor inP\{p1, pk}. If N(y)∩P = ∅, then

by Lemma 4.1.1,P is of type A. So we may assume thatN(y)∩P 6= ∅. Let pi (resp.p j )

be the node ofN(y)∩P with lowest (resp. highest) index. Letv1 (resp.v2) be the neighbor

of p1 in H1 that is closest tox1 (resp.y). Let v′1 (resp.v′2) be the neighbor ofpk in H2 that

is closest tox2 (resp.y). Let H ′
1 (resp.H ′

2) be thex1v1-subpath (resp.x2v′1-subpath) ofH1

(resp.H2). Let H ′ be the hole induced byH ′
1∪H ′

2∪P.

Claim 3: p1 and pk are not of type p1.

Proof of Claim 3:Supposep1 is of type p1. Ifv1y is not an edge, thenH1∪{x, p1, ..., pi}

induces a 3PC(v1,y). Sov1y is an edge. Supposei 6= j. Since there is no proper wheel

and p1 is of type p1,(H ′,y) must induce a bug. But thenx is its center-crosspath. So

i = j. Note thatv′1 6= y. If v′1 = y2, then(H ′,y) is either a proper wheel or a bug that has a

center-crosspathx. Sov′1 6= y2. But thenH ′ ∪ y induces a 3PC(v1, pi). So p1 is not of

type p1, and by symmetry neither ispk. This completes the proof of Claim 3.

By Claim 3 it suffices to consider the following two cases.

Case 1:At least one of{p1, pk} is of type p3.

Assume w.l.o.g. thatp1 is of type p3. Ifv2 6= y, thenH1∪{x, p1, ..., pi} contains a

3PC(p1,y). Sov2 = y.

Suppose thatpk is not of type p2. So, by Claim 3,pk is of type p3. Then by symmetry

v′2 = y. If k = 2, thenH1 ∪ H ′
2 ∪ P induces a 4-wheel with centerp1. So k > 2. If

N(y)∩ (P\{p1, pk}) = ∅, thenH ′∪y induces a 3PC(p1, pk). SoN(y)∩ (P\{p1, pk}) 6=

∅. Since there is no proper wheel,(H ′,y) is either a bug or a twin wheel. If(H ′,y) is a

bug, thenx is its center-crosspath. So(H ′,y) is a twin wheel and henceP is of type T.

So we may assume thatpk is of type p2.

Suppose thatp1 is of type p3b. IfN(y)∩ (P\ p1) = ∅, then(H, p1) is a bug and

P\ p1 is its center-crosspath. SoN(y)∩ (P\ p1) 6= ∅. If k = 2, then eitherP is of

type C5 or(H, p1) is a bug with a center-crosspathp2. So k > 2. Sincev2 = y and

N(y)∩ (P\ p1) 6= ∅, y has at least two neighbors inH ′. In particular, j ≥ 2. Suppose

|N(y)∩H ′| = 2. If j = 2, thenH ′
1∪H2∪P induces a 3PC(p1p2y,v′1v′2pk). So j > 2.

But thenH ′ ∪ y induces a 3PC(p1, p j). So |N(y)∩H ′| > 2. Since there is no proper

wheel andk > 2, (H ′,y) must be a bug or a twin wheel. If(H ′,y) is a bug, thenx is its
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center-crosspath. So(H ′,y) is a twin wheel, and henceP is of type T.

So we may assume thatp1 is of type p3t. Supposev′2 = y. If k = 2, thenP is of type

C4. So assumek > 2. Since(H ′,y) cannot be a proper wheel,(H ′,y) is a bug. But then

x is its center-crosspath. So we may assume thatv′2 6= y. If p1 is the unique neighbor of

y in P, thenP is of type C3. So we may assume thatj > 1. If p j is the unique neighbor

of y in P\ p1, then eitherH ′∪y induces a 3PC(p1, p j) (if j > 2) orH ′
1∪H2∪P induces a

3PC(p1p2y,v′1v′2pk) (if j = 2). Soy has at least three neighbors inH ′. Since(H ′,y) is not

a proper wheel nor a bug that has a center-crosspathx, (H ′,y) is a twin wheel, and hence

P is of type T.

Case 2:p1 andpk are both of type p2.

Suppose thatp1, pk are not adjacent toy. So i 6= 1 and j 6= k. If i = j, thenP is of

type C1. Soi < j. If pi p j is an edge, thenH ′∪{x,y} induces a 3PC(x1x2x, pi p jy). So

pi p j is not an edge. Ifpi , p j are the only two neighbors ofy in P, thenH ′ ∪ y induces

a 3PC(pi, p j). Soy has at least three neighbors inH ′. Since(H ′,y) cannot be a proper

wheel or a bug that has a center-crosspathx, (H ′,y) is a twin wheel, and henceP is of

type T.

Suppose now w.l.o.g thatp1 is adjacent toy. Node pk is not adjacent toy, since

otherwise (H ′,y) is a proper wheel. IfN(y) ∩ P = p1, then H ∪ P induces a

3PC(v1v2p1,v′1v′2pk). Therefore, since(H ′,y) is not a proper wheel nor a bug that has a

center-crosspathx, (H ′,y) is a twin wheel and henceN(y)∩P = {p1, p2}. SoP is of type

C2. 2

A path described in Lemma 4.4.1 is called abridgeof (H,x).

Proof of Theorem 4.3.5:AssumeG does not have a star cutset. Then by Theorems 4.2.2,

4.3.3 and 4.3.4,G does not contain a proper wheel, a bug with center-crosspathnor a

3PC(∆, ·) with a hat.

Let (H,x) be a bug andP = p1, ..., pk its ear. W.l.o.g.N(pk)∩H = {y,y2}. Let H ′ be

the hole induced by(H2\y)∪P∪x. Then(H ′,y) is a bug andH1\y its ear.

Claim 1: If u is a node of type p2 or p3 w.r.t.(H,x) such that{y} ⊆ N(u)∩(H∪x) ⊆ H1,

then u does not have a neighbor in P. Furthermore, if N(u)∩ (H ∪x) = {y}, then u does

not have a neighbor in P\ pk.

Proof of Claim 1: Let u be one of the types from the statement of the claim. Ifu has a

neighbor inP\ pk, then by Lemma 4.3.1u must be of type s1 or crosspath w.r.t.(H ′,y),
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Figure 4.7: Bridges of a bug(H,x).
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and henceu is a center-crosspath of(H ′,y), a contradiction. Sou does not have a neighbor

in P\ pk.

Suppose thatu is of type p2 w.r.t.(H,x) such thatN(u)∩H = {y,y1}. If u is adjacent

to pk, thenH1∪P∪{u,x} induces a 4-wheel with centery. Sou cannot have a neighbor

in P.

Now suppose thatu is of type p3 w.r.t.(H,x) such that{y} ⊆ N(u)∩ (H ∪ x) ⊆ H1.

Supposeu is adjacent topk. If u is of type p3t w.r.t.(H,x), then(H1 \ y1)∪P∪{u,x}

induces a bug with centery, and nodey1 is its center-crosspath. Similarly, ifu is of type

p3b w.r.t.(H,x) not adjacent toy1, thenH1∪P∪{u,x} induces a bug with centery with

a center-crosspath. So we may assume thatu is of type p3b w.r.t.(H,x) andu is adjacent

to y1. Then(H,u) is a bug andpk its center-crosspath. This completes the proof of Claim

1.

Claim 2: There exists a bridge of type D w.r.t. (H,x).

Proof of Claim 2:Assume not. Then by Lemma 4.4.1 there exists a bridgeQ = q1, ...,ql

w.r.t. (H,x) of type A, C or T. W.l.o.g.q1 has a neighbor inH1\y andql in H2\y. Note

that the only nodes ofp1, pk,q1 andql that may coincide arepk andql .

Case 1:Q is of type A.

ThenN(y)∩Q = ∅. First suppose that no node ofP is adjacent to or coincident with

a node ofQ. If N(q1)∩H1 = y1, then(H \y)∪P∪Q∪x induces a 3PC(∆,∆) or a 4-wheel

with centerx2. Otherwise,N(ql )∩H2 = y2 and henceH1∪P∪Q∪{x,y2} induces a bug

with centery with a center-crosspath.

So a node ofP is adjacent to or coincident with a node ofQ. Let pi be the node ofP

with lowest index adjacent to a node ofQ, and letq j be the node ofQ with lowest index

adjacent topi .

Suppose thati < k. If N(q1)∩H1 = y1, thenH1∪{x, p1, ..., pi,q1, ...,q j} induces a

3PC(y1,x). OtherwiseN(ql )∩H2 = y2. If j < l , then{p1, ..., pi,q1, ...,q j} induces a

center-crosspath of bug(H,x). So j = l . But thenql and(H ′,y) contradict Lemma 4.3.1.

Thereforei = k.

If N(ql )∩H2 = y2, then(H1\y1)∪P∪{x,q1, ...,q j} contains a 3PC(x, pk). SoN(q1)∩

H1 = y1. If j = l , thenH2∪{x, pk,ql} induces a 3PC(∆,∆) or a 4-wheel with centery2.

So j < l . But thenH1∪P∪{x,q1, ...,q j} induces a proper wheel with centery.

Case 2:Q is of type C or T.

Theny has a neighbor inQ. First suppose that no node ofP is adjacent to or coincident

with a node ofQ. Let Rbe the chordless path fromql to y2 in (H2\{y,x2})∪ql , and letS
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be the chordless path fromq1 to x1 in (H1\y)∪q1. ThenR∪S∪Q∪P∪{x,y} induces a

proper wheel with centery.

So a node ofP is adjacent to or coincident with a node ofQ. Let pi be the node of

P with lowest index adjacent to a node ofQ, and letq j be the nodeQ with lowest index

adjacent topi . Let H ′
1 be the subpath ofH1 whose one endnode isx1, the other is adjacent

to q1 and no intermediate node ofH ′
1 is adjacent toq1. We now consider the following 2

cases.

Case 2.1:q1 is of type p3 w.r.t.(H,x).

Thenq1 is adjacent toy. Suppose thati < k and j < l . If no node ofq2, ...,q j is adjacent

to y, then(H1 \ y1)∪{x, p1, ..., pi,q1, ...,q j} contains a 3PC(x,q1). Soy is adjacent to a

node ofq2, ...,q j, and henceQ is a bridge of type T. In particular,N(y)∩Q = {q1,q2,q3}.

By Claim 1, j > 3. But thenH ′
1∪{x,y, p1, ..., pi,q1, ...,q j} induces a proper wheel with

centery. So eitheri = k or j = l .

Suppose thati = k. By Claim 1, j > 1. But then if j < l , H ′
1∪P∪ {x,y,q1, ...,q j}

induces a proper wheel with centery. So j = l . Note that sincej > 1, pk andql cannot

coincide. If ql is adjacent toy, thenH ′
1∪P∪Q∪ {x,y} induces a proper wheel with

centery. So ql is not adjacent toy, and hence it is of type p2 w.r.t.(H,x). But then

H2∪{x, pk,ql} induces a 3PC(∆,∆) or a 4-wheel with centery2.

So i < k, and hence j = l . Suppose thatql is adjacent to y. Then

H ′
1∪Q∪{x,y, p1, ..., pi} induces a wheel with centery. This wheel must be a bug. In

particular l = 2, i.e. Q is a bridge of type C4 or C5, and henceql is of type p2 w.r.t.

(H,x). Let P′ = p1, ..., pi,ql . ThenP′ is an ear of(H,x) andq1 is of type p3 w.r.t.(H,x)

adjacent toy and a node ofP′, contradicting Claim 1. Soql cannot be adjacent toy. But

then |N(y)∩Q| = 1 or 3, and henceH ′
1∪Q∪{x,y, p1, ..., pi} induces a 3PC(q1,x) or a

proper wheel with centery.

Case 2.2:q1 is of type p2 w.r.t.(H,x).

First suppose thatq1 is not adjacent toy. Suppose thati < k and j < l . If no node of

q2, ...,q j is adjacent toy, then{p1, ..., pi,q1, ...,q j} induces a center-crosspath of(H,x).

So a node ofq2, ...,q j is adjacent toy. If y has a unique neighbor inq2, ...,q j , then

H ′
1∪{x,y, p1, ..., pi,q1, ...,q j} induces a 3PC(x, ·). Soy has more than one neighbor in

q2, ...,q j . In particular,Q is a bridge of type T. By Claim 1y has three neighbors in

q2, ...,q j and henceH ′
1∪{x,y, p1, ..., pi,q1, ...,q j} induces a proper wheel with centery.

Therefore, eitheri = k or j = l .

Suppose thati = k and j < l . If no node ofq2, ...,q j is adjacent toy, then H ∪

{pk,q1, ...,q j} induces a 3PC(∆,∆). So a node ofq2, ...,q j is adjacent toy. So H ′
1∪
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P∪ {x,q1, ...,q j} induces a wheel with centery. This wheel must be a bug. But then

H1\ (H ′
1∪y) is a center-crosspath of this bug.

Suppose thati = k and j = l . Thenpk andql do not coincide. Ifql is not adjacent to

y, thenql is of type p2 w.r.t.(H,x) and henceH2∪{x, pk,ql} induces a 3PC(∆,∆) or a

4-wheel with centery2. Soql is adjacent toy. ThenH ′
1∪P∪Q∪{x,y} induces a wheel

with centery, which must be a bug, and henceH1\ (H ′
1∪y) is its center-crosspath.

Thereforei < k and j = l . If ql is of type p3 w.r.t.(H,x), thenql is adjacent toy and

hence(H2\ y2)∪{x, p1, ..., pi,ql} contains a 3PC(x,ql). Soql is of type p2 w.r.t.(H,x).

If ql is not adjacent toy, thenp1, ..., pi,ql is a center-crosspath of(H,x). Soql is adjacent

to y, and henceQ is a bridge of type C2. In particular,N(y)∩Q = {ql ,ql−1}. But then

H1∪Q∪{x, p1, ..., pi} induces a bug with centery with a center-crosspath (namely the

path induced byH1\ (H ′
1∪y)).

Finally we may assume thatq1 is adjacent toy. SoQ is a bridge of type C2, C4 or

C5. By Claim 1,q1 does not have a neighbor inP and hencej > 1. Suppose thatql is of

type p3 w.r.t.(H,x). ThenQ is a bridge of type C4 or C5, and in particularl = 2 andql

is adjacent toy. Note thatj = l = 2, and henceH1∪Q∪{x1, p1, ..., pi} induces a proper

wheel with centery. Soql must be of type p2 w.r.t.(H,x), and henceQ is a bridge of

type C2. In particular,ql is not adjacent toy and N(y) ∩ Q = {q1,q2}. But then

H1∪ {x, p1, ..., pi,q1, ...,q j} induces a proper wheel with centery. This completes the

proof of Claim 2.

By Claim 2, letu be a bridge of(H,x) of type D. ThenN(u)∩ (H ∪x) = {y,y1,y2}.

By analogous argument applied to bug(H ′,y) and its earH1 \ y, (H ′,y) has a bridge of

type D, sayv. SoN(v)∩ (H ′∪ y) = {x, p1,x2}. Nodeu must have a neighbor inP\ pk,

elseH1 ∪P∪ {x,y2,u} contains a proper wheel with centery. By symmetry,v has a

neighbor inH1 \ x1. Since{x,y,u,v} cannot induce a 4-hole,uv is not an edge. By

Lemma 4.3.1,u is a pseudo-twin ofpk w.r.t. (H ′,y), and hence it has two neighbors inP.

But then(H1\x1)∪P∪{u,v} contains a 4-wheel with centeru. 2

Proof of Theorem 4.3.6:Assume not. Choose a bug(H,x) and a type s2 nodeu so that

|H| is minimized. W.l.o.g.u is adjacent tox, x1, y, y2. By Theorems 4.2.2 and 4.3.3 we

may assume thatG does not contain a proper wheel nor a bug with a center-crosspath (and

in particular no bug with a type s1 node). By Lemma 4.4.1, there is a direct connection

P = p1, ..., pk from H1 to H2 in G\N[x] of type A, D, C or T w.r.t.(H,x). Let v1 (resp.

v2) be the node ofN(p1)∩H1 (resp.N(pk)∩H2) that is closest tox1 (resp.x2). Let H ′
1
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(resp.H ′
2) be the subpath ofH1 (resp.H2) with endnodesx1 (resp.x2) andv1 (resp.v2).

We now consider the following cases.

Case 1:P is of type A w.r.t.(H,x).

Suppose that the node-attachment ofP in H is y1. Suppose thatN(u)∩P= ∅. ThenP

andu are crossing appendices ofH, and sincey1x1 cannot be an edge (otherwise there is

a 4-hole), Lemma 4.1.2 is contradicted. SoN(u)∩P 6= ∅. Let pi be the node ofN(u)∩P

with lowest index. ThenH1∪{p1, ..., pi,u} induces a 3PC(u,y1). So the node-attachment

of P in H is y2. But thenH ′
1∪P∪{x,u,y,y2} induces a proper wheel with centeru.

Case 2:P is type T w.r.t.(H,x).

Let pi−1, pi , pi+1 be the neighbors ofy in P. Let Σ1 be the 3PC(xx1x2,y) induced by

H1∪H ′
2∪{pi+1, ..., pk} andΣ2 be the 3PC(xx1x2,y) induced byH ′

1∪H2∪{p1, ..., pi−1}.

Sinceu is strongly adjacent toΣ1, by Lemma 4.3.1,N(u)∩{pi+1, ..., pk} = {pi+1}. By

Lemma 4.3.1 applied toΣ2, N(u)∩{p1, ..., pi−1} = ∅. Let H ′ be the hole induced by

H ′
1∪H ′

2∪P. If upi /∈ E(G), thenH ′ ∪ u induces a 3PC(x1, pi+1). So upi ∈ E(G) and

hence(H ′,u) is a bug. Ifpk is of type p3t, theni +1 = k andy2 is of type s1 w.r.t.(H ′,u),

a contradiction. Suppose thatpk is of type p3b w.r.t.(H,x). Theni +1= k. LetH ′′ be the

hole contained in(H \y2)∪ pk. Then(H ′′,x) andu contradict our choice of(H,x) andu.

So pk is not of type p3 w.r.t.(H,x), and hence it is of type p2 w.r.t.(H,x) not adjacent to

y. But thenH2\ (H ′
2∪y) induces a center-crosspath of bug(H ′,u).

Case 3:P is of type D w.r.t.(H,x).

So k = 1 andp1 is a node of type dd w.r.t.(H,x). If up1 is not an edge, thenH1∪

{u, p1,y2} induces a 4-wheel with centery. Soup1 is an edge.

Since(H,u) is a bug andG does not have a star cutset, by Lemma 4.4.1 there is a path

Q = q1, ...,ql of type A, D, C or T w.r.t.(H,u). W.l.o.g.q1 has a neighbor inH1\{x1,y}

andql in H2 \ {y2,y}. Note thatx is of type s2 w.r.t.(H,u). By symmetry and Cases 1

and 2 applied to(H,u) andQ, pathQ cannot be of type A or T w.r.t.(H,u).

Suppose thatQ is of type D w.r.t.(H,u). If xq1 is not an edge, thenH1∪{x,x2,q1}

induces a 4-wheel with centerx1. Soxq1 is an edge. Since{q1, p1,x,y} cannot induce a

4-hole,p1q1 is not an edge. But thenH ′
1∪{q1, p1,x,u} induces a 4-wheel with centerx1.

SoQ must be of type C w.r.t.(H,u).

Note thatp1 cannot be coincident with a node ofQ. Let H ′′ be the hole induced by

(H \ y)∪ p1. By Lemma 4.4.1 applied to(H ′′,u) andQ, no node ofQ\ {q1,ql} can be

adjacent top1. Let R1 (resp.R2) be the subpath ofH1 (resp.H2) whose one endnode isy,

the other endnode ofR1 (resp.R2) is adjacent toq1 (resp.ql ), and no intermediate node
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of R1 (resp.R2) is adjacent toq1 (resp.ql ).

SupposeN(x)∩Q = ∅. Suppose thatql has a neighbor inH2 \ x2. Thenql must in

fact have a neighbor inH2\{x2,y,y2}, and henceQ is a direct connection fromH1 to H2

in G\N[x], and hence by Lemma 4.4.1 applied to(H,x) andQ, nodesx1 andx2 do not

have a neighbor inQ\ {q1,ql}. Sincex1 does not have a neighbor inQ\ {q1,ql}, andQ

is of type C w.r.t.(H,u), Q must be of type C3, C4 or C5 w.r.t.(H,u). Suppose thatQ is

of type C4 or C5 w.r.t.(H,u). Since we are assuming thatql has a neighbor inH2\x2, it

follows thatql is of type p3 w.r.t.(H,u) and henceq1 is of type p2 w.r.t.(H,u), and both

q1 andql are adjacent tox1. But then(H,x) andQ contradict Lemma 4.4.1. Therefore

Q must be of type C3 w.r.t.(H,u). If ql is of type p3t w.r.t.(H,u), then(H,x) andQ

contradict Lemma 4.4.1. Soql is of type p2 w.r.t.(H,u) andq1 is of type p3t w.r.t.(H,u)

adjacent tox1. But then by Lemma 4.4.1 applied to(H,x) andQ, Q is of type C3 w.r.t.

(H,x), q1 is of type p3t w.r.t.(H,x) andq1 is adjacent toy. But then{x1,y,x,q1} induces

a 4-hole. Soql does not have a neighbor inH2\x2 and henceQ must be of type C2, C4 or

C5 w.r.t. (H,u) andN(ql )∩H = {x1,x2}. But thenQ∪R1∪{x1,x2,x} is a proper wheel

with centerx1. SoN(x)∩Q 6= ∅.

Suppose thatQ is of type C1 or C3 w.r.t.(H,u). Let qi be the neighbor ofx1 in

Q. Suppose thatx has a unique neighbor inQ. If q1 is not adjacent to bothx andy,

then Q∪R1∪R2 ∪ x induces a 3PC(y, ·). So q1 is adjacent to bothx and y. If i < l ,

thenH2∪{x1,x,q1, ...,qi} induces a 4-wheel with centerx. So i = l , and henceql is of

type p3t w.r.t. (H,u) (i.e. ql is adjacent tox1,x2 and the neighbor ofx2 in H2). But

then H2 ∪ {ql ,x1,x} induces a 4-wheel with centerx2. Therefore|N(x) ∩Q| ≥ 2. If

N(x)∩{q1, ...,qi} 6= ∅, thenR1∪{q1, ...,qi,x1,u,x} induces a proper wheel with center

x. So N(x)∩ {q1, ...,qi} = ∅, and hence|N(x)∩ {qi , ...,ql}| ≥ 2, But then(R2 \ y)∪

{qi, ...,ql ,x1,u,x} induces a proper wheel with centerx.

SoQ is of type C2, C4 or C5 w.r.t.(H,u). SupposeN(ql )∩H = {x1,x2}. If N(x)∩

Q 6= ql , thenQ∪R1∪R2∪x induces a proper wheel with centerx. SoN(x)∩Q= ql . Note

thatp1 is not adjacent toql , else{p1,ql ,x,y} induces a 4-hole. But thenQ∪{x1,x,u, p1}∪

(R1 \ y) contains a proper wheel with centerx1. SoN(ql)∩H 6= {x1,x2}, and henceql

has a neighbor inH2 \ {x2,y} andq1 is of type p2 w.r.t. (H,u) adjacent tox1. Let qi

be the neighbor ofx in Q with lowest index. Note thatp1 cannot be adjacent toq1, else

{p1,q1,x1,u} induces a 4-hole. Alsop1 cannot be adjacent toqi, else{p1,qi,x,u} induces

a 4-hole. But then{q1, ...,qi,x1,x,u, p1}∪ (R1\y) induces a proper wheel with centerx1.

Case 4:P is of type C w.r.t.(H,x).

Suppose thatP is either of type C1 or C3. Letpi be the neighbor ofy in P. Let Σ
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be the 3PC(x1x2x, pi) contained inH ∪P∪x. Note thatpi cannot be adjacent tox1, else

{x1,x,y, pi} induces a 4-hole. Similarlypi is not adjacent tox2. In particularΣ is not a

bug. But then since nodeu is strongly adjacent toΣ, Lemma 4.3.1 is contradicted. SoP

is of type C2, C4 or C5 w.r.t.(H,x).

Suppose thatN(p1)∩H = {y,y1} andpk has a neighbor inH2\ {y,y2}. Let R be the

subpath ofH2\ y whose one endnode isy2, the other endnode ofR is adjacent topk, and

no intermediate node ofR is adjacent topk (note that possiblyR= y2). If N(u)∩P = ∅,

thenH1∪R∪P∪u induces a proper wheel with centery. SoN(u)∩P 6= ∅. Let pi be the

node ofN(u)∩P with lowest index. Ifi > 1, thenH1∪{u, p1, ..., pi} induces a 4-wheel

with centery. Soi = 1. If p1 is the unique neighbor ofu in P, thenP∪R∪{y,u} induces

a 4-wheel with centery. So |N(u)∩P| ≥ 2. Let H ′ be the hole induced byH ′
1∪H ′

2∪P.

Since(H ′,u) cannot be a proper wheel andy1 6= x1, (H ′,u) must be a bug. In particular,

N(u)∩P = {p1, p2}. Suppose thatpk is of type p3b w.r.t.(H,x). Thenk = 2. Let H ′′

be the hole contained in(H \y2)∪ pk. Then(H ′′,x) andu contradict our choice of(H,x)

andu. Sopk is not of type p3b w.r.t.(H,x) and hence it is of type p2 or p3t w.r.t.(H,x).

But thenR is the center-crosspath of(H ′,u).

So p1 has a neighbor inH1 \ {y,y1} andN(pk)∩H = {y,y2}. If N(u)∩P = ∅, then

H ′
1∪P∪{u,y,y2} induces a 4-wheel with centery. SoN(u)∩P 6= ∅. Let H ′ be the hole

induced byH ′
1∪H ′

2∪P. Since(H ′,u) cannot be a proper wheel andy2 6= x2, (H ′,u) must

be a bug. SoN(u)∩P = {pk}.

Since(H,u) is a bug, andG has no star cutset, andx is a node of type s2 w.r.t.(H,u),

by Lemma 4.4.1 and by symmetry, there is a pathQ= q1, ...,ql of type C2, C4 or C5 w.r.t.

(H,u), such thatN(ql )∩H = {x1,x2}, N(x)∩Q = {ql}, q1 has a neighbor inH1\{x1,x′1}

(wherex′1 is the neighbor ofx1 in H1) and no neighbor inH2\ y. Note that sincep1 is of

type p2 or p3 w.r.t.(H,x), p1 has a neighbor inH1\{x1,y}. Similarly,q1 has a neighbor

in H1 \ {x1,y}. Let R be the shortest path fromql to pk in P∪Q∪ (H1 \ {x1,y}). Then

R∪ (H2\y)∪{x,u} induces a 3PC(qlx2x, pky2u). 2

4.5 Attachments

In the section we use the following notation. LetΣ = 3PC(x1x2x3,y). The three paths of

Σ are denotedPx1y,Px2y andPx3y (wherePxiy is the path that containsxi). For i = 1,2,3, we

denote the neighbor ofy (resp.xi) in Pxiy by yi (resp.x′i). For i, j ∈ {1,2,3}, i 6= j, let Hi j

be the hole induced byPxiy∪Px jy.

Lemma 4.5.1 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.
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Let u be a type p1 node w.r.t.Σ adjacent to x1. Let P= p1, ..., pk be a chordless path

in G\Σ such that p1 is adjacent to u, pk has a neighbor inΣ \ {x1,x2,x3}, no node of

P\ {p1} is adjacent to u and no node of P\ {pk} has a neighbor inΣ. Then pk is one of

the following types:

(i) pk is of type p2 with neighbors in Px1y.

(ii) pk is of type p1 adjacent to x′1.

(iii) p k is of type d and it has no neighbor in Px1y\{y}.

(iv) pk is adjacent to x1 and it is either of type p3 or d, or it is a pseudo-twin of x1, x2,

x3 or y w.r.t. Σ, or it is a crosspath w.r.t.Σ adjacent to x1,x′1 and a node of{y2,y3}.

Proof: By Theorems 4.2.2, 4.3.3, 4.3.5 and 4.3.6 we may assume thatG does not contain

a proper wheel, a bug with a center-crosspath, a bug with an ear nor a 3PC(∆, ·) with a

type s1 or s2 node. Sincepk has a neighbor inΣ\{x1,x2,x3}, pk cannot be of type t2 nor

t3 w.r.t. Σ. So, for the nodepk, it sufices to examine the following remaining possibilities

of Lemma 4.3.1.

Case 1:pk is of type p1 w.r.t.Σ.

Let v be the node ofN(pk)∩Σ. Note thatv /∈ {x1,x2,x3}. If v 6= x′1, thenΣ∪P∪u

contains a 3PC(x1,v). Sov = x′1 and hence (ii) holds.

Case 2:pk is of type p2 w.r.t.Σ.

If N(pk) ⊆ Px1y, then (i) holds. So w.l.o.g. assume thatN(pk) ⊆ Px2y. If x1y is not an

edge, thenH23∪P∪u induces a 3PC(x1x2x3,∆) or a 4-wheel with centerx2. Sox1y is an

edge. But thenu,P is either a center-crosspath or an ear of bugΣ.

Case 3:pk is of type p3 w.r.t.Σ.

If pkx1 is not an edge, thenΣ∪P∪u contais a 3PC(x1, pk). So pkx1 is an edge and

hence (iv) holds.

Case 4:pk is of type crosspath w.r.tΣ.

Let v (resp.v1v2) be the node-attachment (resp. edge-attachment) ofpk in an appro-

priate hole ofΣ. Note that since there is no bug with a center-crosspath,v /∈ {x1,x2,x3}.

Supposev = y1. W.l.o.g. v1v2 is an edge ofPx2y. Then H23∪ P∪ {x1,u} induces a

3PC(x1x2x3, pkv1v2) or a 4-wheel with centerx2. Sov = y2 or v = y3. W.l.o.g. letv = y2.

Supposev1v2 ∈ Px3y. Let R be the subpath ofPx3y with one endnodex3 and the other

endnode adjacent topk. ThenPx1y∪R∪P∪{u,y2} induces a 3PC(x1, pk). Sov1v2 ∈ Px1y.
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Let Rbe the subpath ofPx1y with one endnodex1 and the other endnode adjacent topk. If

pkx1 is not an edge, then(Px2y\y)∪R∪P∪u induces a 3PC(x1, pk). So pkx1 is an edge,

and hence (iv) holds.

Case 5:pk is a pseudo-twin ofx1, x2 or x3 w.r.t. Σ.

Suppose thatpk is not adjacent tox1. Thenpk has two adjacent neighbors inPx1y. Let

R be the subpath ofPx1y with one endnodex1 and the other endnode is adjacent topk.

ThenP∪R∪{u,x2} induces a 3PC(x1, pk). Sopk is adjacent tox1, and hence (iv) holds.

Case 6:pk is of type d w.r.t.Σ, or it is a pseudo-twin ofy w.r.t. Σ.

W.l.o.g. pk has a neighbor inPx2y\ y. If pkx1 is not an edge andpk has a neighbor in

Px1y\y, then(Σ\Px3y)∪P∪u contains a 3PC(x1, pk). So eitherpkx1 is an edge and hence

(iv) holds, orpk does not have a neighbor inPx1y\y and hence (iii) holds. 2

Lemma 4.5.2 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let u be a type t2 node w.r.t.Σ adjacent to x2 and x3. Let P= p1, ..., pk be a chordless

path in G\Σ such that p1 is adjacent to u, pk has a neighbor inΣ \ {x1,x2,x3}, no node

of P\{p1} is adjacent to u, and no node of P\{pk} has a neighbor inΣ. Then pk is one

of the following types:

(i) pk is of type p2 w.r.t.Σ and its neighbors inΣ are contained in Px1y.

(ii) x3y is an edge and pk is of type p1 w.r.t.Σ adjacent to x′2, or x2y is an edge and pk
is of type p1 w.r.t.Σ adjacent to x′3.

(iii) p k is of type p3 w.r.t.Σ, and either pkx2 and x3y are edges, or pkx3 and x2y are

edges.

(iv) pk is of type d not adjacent to y1 and neither x2y nor x3y is an edge.

(v) pk is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.

Proof: By Theorems 4.2.2, 4.3.3 and 4.3.6 we may assume thatG does not contain a

proper wheel, a bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node.

Sincepk has a neighbor inΣ\{x1,x2,x3}, pk cannot be of type t2 nor t3 w.r.t.Σ.

Claim 1: pk is not of type crosspath or a pseudo-twin of y w.r.t.Σ.

Proof of Claim 1: Suppose thatpk is of type crosspath. Letv (resp. v1v2) be the node-

attachment (resp. edge-attachment) ofpk in an appropriate hole ofΣ. Supposev = y1.

W.l.o.g.{v1,v2} ⊆ Px3y. ThenH23∪P∪u induces a 3PC(ux2x3, pkv1v2) or a 4-wheel with
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centerx3. Sov 6= y1. W.l.o.g. v = y3. Note that sincepk cannot be a center-crosspath of

bug Σ, y3 6= x3. Supposev1v2 is an edge ofPx1y. Let R be the subpath ofPx1y with one

endnodex1 and the other adjacent topk. ThenPx2y∪R∪P∪{u,y3} induces a 3PC(x2, pk).

Sov1v2 is an edge ofPx2y. But then(P\pk)∪u is the center-crosspath of the bug(H23, pk).

So pk is not of type crosspath w.r.t.Σ.

Now suppose thatpk is a pseudo-twin ofy w.r.t. Σ. Then eitherpkx2 or pkx3 is not an

edge. W.l.o.g.pkx3 is not an edge. But then(Σ \Px2y)∪P∪u contains a 3PC(x3, pk).

This completes the proof of Claim 1.

Suppose that (v) does not hold. Then by Claim 1 and Lemma 4.3.1, pk is of type p or

d w.r.t. Σ.

Suppose thatpk is of type d. Suppose thatpky1 ∈ E(G). So w.l.o.g. N(pk)∩Σ =

{y,y1,y2}. If x2y /∈ E(G), then(H12\ y)∪P∪u induces a 3PC(x2, pk). Sox2y∈ E(G).

But then(Px1y \ y)∪P∪{u,x2,x3} induces a 4-wheel with centerx2. So pky1 /∈ E(G).

Suppose that one of{x2y,x3y} is an edge (note that by definition of 3PC(∆, ·), at most one

of {x2y,x3y} can be an edge). W.l.o.g.x2y∈ E(G). But thenH12∪P∪{u,x3} induces a

proper wheel with centerx2. So no one{x2y,x3y} is an edge, and hence (iv) holds.

Suppose thatpk is of type p1. Letv be the neighbor ofpk in Σ. Note thatv /∈

{x1,x2,x3}. If v ∈ Px1y, thenH12∪P∪ u induces a 3PC(x2,v). So v /∈ Px1y. W.l.o.g.

v∈ Px2y. If v 6= x′2, thenH12∪P∪u induces a 3PC(x2,v). Sov = x′2. If x3y is not an edge,

thenH12∪P∪x3 induces a 4-wheel with centerx2. Sox3y is an edge and hence (ii) holds.

Suppose thatpk is of type p2. Letv1,v2 be the nodes ofN(pk)∩Σ. Suppose that

v1v2 is not an edge ofPx1y. W.l.o.g. v1v2 is an edge ofPx2y. ThenH23∪P∪u induces a

3PC(ux2x3, pkv1v2) or a 4-wheel with centerx2. Sov1v2 is an edge ofPx1y, and hence (i)

holds.

Suppose thatpk is of type p3. If N(pk) ∩ Σ ⊆ Px1y, then H12∪ P∪ u contains a

3PC(x2, pk). So w.l.o.g. assumeN(pk)∩Σ ⊆ Px2y. If pkx2 is not an edge, thenH12∪P∪u

contains a 3PC(x2, pk). So pkx2 is an edge. Ifx3y is not an edge, thenH12∪P∪{u,x3}

contains a 4-wheel with centerx2. Sox3y is an edge and hence (iii) holds. 2

Lemma 4.5.3 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let u be a type t3 node w.r.t.Σ. Let P= p1, ..., pk be a chordless path in G\Σ such that

p1 is adjacent to u, pk has a neighbor inΣ \ {x1,x2,x3}, no node of P\ {p1} is adjacent

to u, and no node of P\{pk} has a neighbor inΣ. Then pk is one of the following types:

(i) pk is of type p1, p3t, or it is a pseudo-twin of x1, x2 or x3 w.r.t. Σ.



Chapter 4 58 Star cutsets

(ii) pk is a pseudo-twin of y w.r.t.Σ. Furthermore, if N(pk)∩Σ 6= {y,y1,y2,y3}, then pk
is adjacent to a node of{x1,x2,x3} andΣ is not a bug.

(iii) p k is of type p3b adjacent to xi , for some i∈ {1,2,3}, but not to x′i .

Proof: By Theorems 4.2.2, 4.3.3 and 4.3.6 we may assume thatG does not contain a

proper wheel nor a bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node.

Sincepk has a neighbor inΣ\{x1,x2,x3}, pk cannot be of type t2 nor t3 w.r.t.Σ.

Claim 1: pk is not of type p2, crosspath nor d w.r.t.Σ.

Proof of Claim 1: Suppose thatpk is of type p2. W.l.o.g.N(pk)∩Σ ⊆ Px3y. But then

H23∪P∪u induces a 3PC(∆,x2x3u) or a 4-wheel with centerx3. So pk is not of type p2

w.r.t. Σ.

Suppose thatpk is of type crosspath. W.l.o.g(H23, pk) is a bug andy2 is the node-

attachment ofpk in H23. Note that sincepk cannot be a center-crosspath ofΣ, y2 6= x2.

But then(P\ pk)∪u is a center-crosspath of(H23, pk). Sopk is not of type crosspath w.r.t.

Σ.

Finally suppose thatpk is of type d w.r.t.Σ. W.l.o.g.N(pk)∩Σ = {y,y1,y3}. But then

H23∪P∪u induces a 3PC(ux2x3, pkyy3) or a 4-wheel with centerx3. This completes the

proof of Claim 1.

Assume (i) does not hold. Then by Claim 1 and Lemma 4.3.1,pk is of type p3b or it is

a pseudo-twin ofy w.r.t. Σ. Suppose first thatpk is of type p3b. W.l.o.g.N(pk)∩Σ ⊆ Px3y.

If x3 is not the node-attachment ofpk in H23, then(P\ pk)∪u is a center-crosspath of

(H23, pk). Sox3 is the node-attachment ofpk in H23, and hence (iii) holds.

Suppose now thatpk is a pseudo-twin ofy w.r.t. Σ. We may assume thatN(pk)∩Σ 6=

{y,y1,y2,y3}, else (ii) holds. W.l.o.g.N(pk)∩ Σ = {y,y1,y3,v}, wherev is a node of

Px2y \ {y,y2}. If v 6= x2, then(P\ pk)∪u is a center-crosspath of(H23, pk). So v = x2.

Sincepk is a pseudo-twin ofy w.r.t. Σ, |N(pk)∩{x1,x2,x3}| ≤ 1 and henceΣ cannot be a

bug, so (ii) holds. 2

4.6 Connected diamonds

In this section we prove Theorem 2.2.5. Recall the definitionof a connected diamond

(Σ,Q) from Section 2.2.1. Note that ifQ = q1, ...,qk, thenq1 is of type t2 w.r.t.Σ andqk

is of type p2 or d w.r.t.Σ.
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Lemma 4.6.1 Let G be a 4-hole-free odd-signable graph. If G contains a3PC(∆, ·) with

a node of type dd, then either G has a star cutset or G contains aconnected diamond.

Proof: Assume not. By Theorems 4.2.2, 4.3.3 and 4.3.6,G does not contain a proper

wheel nor a bug with a center-crosspath nor a 3PC(∆, ·) with a type s1 or s2 node. Letu

be a type dd node w.r.t. aΣ = 3PC(x1x2x3,y) of G, such that w.l.o.g.N(u)∩Σ = {y,y1,y3}.

Sox1y andx3y are not edges.

SinceS= N[y] \ {u,y2} is not a star cutset separatingu from Σ \S, there is a direct

connectionP= p1, ..., pk from u to Σ in G\S. Sop1 is adjacent tou andpk has a neighbor

in Σ \S. Note that the only nodes ofΣ that may have a neighbor inP\ pk arey1 andy3.

For i, j ∈ {1,2,3}, i 6= j, let Hi j be the hole induced byPxiy∪Px jy. By Lemma 4.3.1 and

sincepk is not adjacent toy, pk is of type p, t2, t3, crosspath or it is a pseudo-twin ofx1,

x2 or x3 w.r.t. Σ.

Claim 1: At most one ofy1,y3 has a neighbor inP\ pk.

Proof of Claim 1: Suppose bothy1,y3 have a neighbor inP\ pk. Let R be a shortest

subpath ofP\ pk with one endnode adjacent toy1 and the other toy3. ThenH13∪R

induces a 3PC(y1,y3). This completes the proof of Claim 1.

We now consider the following cases.

Case 1:pk does not have a neighbor inPx2y\x2.

Case 1.1:No node of{y1,y3} has a neighbor inP\ pk.

Then no node ofΣ has a neighbor inP\ pk.

Case 1.1.1:pk is of type crosspath w.r.t.Σ.

Since pk cannot be a center-crosspath of bugΣ, pk is not adjacent tox2. W.l.o.g.

N(pk)∩Px1y = y1 and pk has two adjacent neighbors inPx3y. If k = 1, then(H13\ y)∪

{u, p1} induces a 4-wheel with centerp1. Sok > 1. LetR be the shortest path fromu to

pk in (Px3y\y)∪{u, pk}. ThenP∪R∪{y1} induces a 3PC(u, pk).

Case 1.1.2:pk is of type t2, t3 or it is a pseudo-twin ofx1, x2 or x3 w.r.t. Σ.

If pk is of type t2 adjacent tox1 andx3, thenΣ∪P∪u induces a connected diamond.

Note that sincepk does not have a neighbor inPx2y\x2, pk cannot be a pseudo-twin ofx2

w.r.t. Σ. So w.l.o.g.pk is adjacent tox1 andx2 andN(pk)∩ (Σ \ {x1,x2}) ⊆ Px3y. Recall

that pk cannot be adjacent toy. But thenH12∪P∪u induces a 3PC(uyy1,x1x2pk).

Case 1.1.3:pk is of type p w.r.t.Σ.



Chapter 4 60 Star cutsets

Supposepk is of type p1 and letp′ be the neighbor ofpk in Σ \S. If p′ = x2, then

Σ∪P∪u induces a connected diamond(Σ′,Q), whereΣ′ = 3PC(yy1u,x2) andQ= Px3y\y.

So p′ 6= x2. But then(H13\ y)∪P∪u induces a 3PC(u, p′). So pk is not of type p1. So

the neighbors ofpk in Σ\S lie in eitherPx1y or Px3y. W.l.o.g.N(pk)∩Σ ⊆ Px3y. If pk is of

type p2, thenH23∪P∪u induces either a 3PC(uyy3,∆) or a 4-wheel with centery3. So

pk is of type p3. Ifk = 1, then(H13\ y)∪{u, p1} induces a 4-wheel with centerp1. So

k > 1. But then(H13\y)∪P∪u contains a 3PC(u, pk).

Case 1.2:A node of{y1,y3} has a neighbor inP\ pk.

By Claim 1, exactly one of{y1,y3} has a neighbor inP\ pk. Note thatk > 1.

Case 1.2.1:pk is of type p.

If pk is of type p1 adjacent tox2, thenΣ∪Pcontains a 3PC(x2,y1) (if y1 has a neighbor

in P\ pk) or a 3PC(x2,y3) (if y3 has a neighbor inP\ pk). So by symmetry w.l.o.g.

N(pk)∩Σ ⊆ Px3y\y. Let p′ (resp.p′′) be the node ofN(pk)∩Px3y closest toy3 (resp.x3).

Note that ifpk is of type p1, thenp′ ∈ Px3y\{y,y3}. Let R be the subpath ofPx3y between

p′′ andx3. Let H be the hole induced byPx2y∪P∪R∪u.

SupposeN(y3)∩(P\ pk) 6= ∅. Since(H,y3) is not a proper wheel,|N(y3)∩P|= 1 and

p′′y3 is not an edge. Letpi be the unique neighbor ofy3 in P. Note thati < k. If pk is of

type p1, thenH23∪P contains a 3PC(y3, p′). Sopk is of type p2 or p3. IfN(y3)∩P= p1,

thenPx1y∪P∪R∪{y3,u} induces a 4-wheel with centeru. So i > 1. If pk is of type p2,

then(H,y3) is a bug andPx3y \ (R∪{y,y3}) is its center-crosspath. Sopk is of type p3.

But thenH23∪{pi , ..., pk} contains a 3PC(y3, pk).

SoN(y3)∩ (P\ pk) = ∅. HenceN(y1)∩ (P\ pk) 6= ∅. Since(H,y1) is not a proper

wheel,y1 has a unique neighbor, saypi , in P. Let R′ be the subpath ofPx3y betweeny3

and p′. If i = 1, thenP∪R′ ∪{y,y1,u} induces a 4-wheel with centeru. So i > 1. But

thenP∪R′∪{y1,u} induces a 3PC(u, pi).

Case 1.2.2:pk is of type t2, t3 or it is a pseudo-twin ofx1, x2 or x3 w.r.t. Σ.

Supposepk is of type t2 adjacent tox1 andx3. By symmetry w.l.o.g.N(y3)∩P 6= ∅

andN(y1)∩P = ∅. Let H be the hole induced byPx2y∪P∪{x3,u}. Since(H,y3) is not

a proper wheel,x3y3 is not an edge. But thenH23∪P contains a 3PC(x3,y3). Sopk is not

of type t2 adjacent tox1 andx3.

Recall thatpk has no neighbor inPx2y\ x2. So by symmetry w.l.o.g.pk is adjacent to

bothx1 andx2 andN(pk)∩ (Σ \ {x1,x2}) ⊆ Px3y \ y. If N(y1)∩P = ∅, thenH12∪P∪u

induces a 3PC(uyy1,x1x2pk). SoN(y1)∩ (P\ pk) 6= ∅ andN(y3)∩ (P\ pk) = ∅. Let H

be the hole induced byPx2y∪P∪u. Since(H,y1) is not a proper wheely1 has unique
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neighbor, saypi , in P.

Supposepk is of type t3. Ifi = 1, thenPx3y∪P∪{y1,u} induces a 4-wheel with center

u. So i > 1. But then(Px3y\y)∪P∪{y1,u} induces a 3PC(pi,u). Sopk is not of type t3.

Supposepk is of type t2. Ifyx2 is an edge, then since there is no 4-holey1x1 is not an

edge. But thenPx3y∪{pi , ..., pk,y1,x2,x1} induces a 4-wheel centerx2. Soyx2 is not an

edge. But thenH23∪{pi , ..., pk,y1} induces a 3PC(y,x2).

So pk is a pseudo-twin ofx3 w.r.t. Σ. Let R be the shortest path frompk to y3 in

Px3y∪ pk. If i = 1, thenP∪R∪{y1,y,u} induces a 4-wheel with centeru. So i > 1. But

thenP∪R∪{y1,u} induces a 3PC(u, pi).

Case 1.2.3:pk is of type crosspath w.r.t.Σ.

Sincepk cannot be a center-crosspath of bugΣ, pk is not adjacent tox2.

W.l.o.g.N(pk)∩Px3y = y3 andN(pk)∩(Σ\y3)⊆Px1y\y. Let p′ (resp.p′′) be the node

of N(pk)∩Px1y closest toy1 (resp.x1). Let R′ (resp.R′′) be they1p′-subpath (resp.x1p′′-

subpath) ofPx1y. If N(y3)∩ (P\ pk) 6= ∅, thenP∪Px2y∪R′′ ∪{u,y3} induces a proper

wheel with centery3. SoN(y3)∩ (P\ pk) = ∅ andN(y1)∩ (P\ pk) 6= ∅. Let pi be the

node ofN(y1)∩P with highest index. Ifi = 1, thenP∪{y,y1,y3,u} induces a 4-wheel

with centeru. So i > 1. Let H be the hole induced byR′′∪Px2y∪P∪u. If p′ = y1, then

(H,y1) is a proper wheel. Sop′ 6= y1, and hence(H,y1) is a bug. But thenR′ \ y1 is a

center-crosspath of(H,y1).

Case 2:pk has a neighbor inPx2y\x2.

Case 2.1:pk is of type p w.r.t.Σ.

In this caseN(pk)∩Σ ⊆ Px2y.

Suppose that{y1,y3} have no neighbor inP\ pk. If pk is of type p1, thenΣ∪P induces

a connected diamond(Σ′,Px3y\y) (whereΣ′ is the 3PC(y1yu, ·) induced byPx1y∪Px2y∪P).

If pk is of type p2, thenH12∪P∪u induces a 3PC(uyy1,∆). Sopk is of type p3. LetRbe

the chordless path fromy to x2 in Px2y∪ pk that containspk. ThenPx1y∪Px3y∪P∪R∪u

induces a connected diamond(Σ′,Px3y \ y) (whereΣ′ is the 3PC(y1yu, pk) induced by

Px1y∪R∪P). So one of{y1,y3} has a neighbor inP\ pk.

Thereforek > 1. By Claim 1, w.l.o.g.N(y3)∩ (P\ pk) 6= ∅ andN(y1)∩ (P\ pk) = ∅.

Let R′ (resp.R′′) be the shortest path inPx2y∪ pk betweeny (resp.x2) andpk. LetH be the

hole induced byR′∪P∪u. Since(H,y3) is not a proper wheel,y3 has a unique neighbor,

saypi , in P. Note thati < k. If pk is of type p1, thenH23∪{pi , ..., pk} induces a 3PC(y3, ·).

If pk is of type p3, thenR′∪R′′∪Px3y∪{pi , ..., pk} induces a 3PC(y3, pk). Sopk is of type

p2. If i > 1, then(H,y3) is a bug and the path induced by(Px3y\{y,y3})∪ (R′′ \ pk) is its
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center-crosspath. Soi = 1. But thenPx1y∪P∪R′′∪{y3,u} induces a 4-wheel with center

u.

Case 2.2:pk is of type t2, t3 or it is a pseudo-twin ofx1, x2 or x3 w.r.t. Σ.

Thenpk is a pseudo-twin ofx2 w.r.t. Σ. Let Σ′ = 3PC(x1pkx3,y) obtained by substi-

tuting pk into Σ. If no node of{y1,y3} has a neighbor inP\ pk, thenΣ′∪P∪u induces

a connected diamond(Σ′′,Q), whereΣ′′ = 3PC(y1yu, pk) andQ = Px3y\y. So w.l.o.g.y3

has a neighbor inP\ pk. Let pi be the node ofP with highest index adjacent toy3. Note

that i < k. But then(Σ′ \ (Px1y\y))∪{pi, ..., pk} induces a 3PC(y3, pk).

Case 2.3:pk is of type crosspath w.r.t.Σ.

SupposeN(pk)∩Px2y = y2. W.l.o.g. N(pk)∩ (Σ \ y2) ⊆ Px3y \ y and, in particular,

(H23, pk) is a bug. IfN(y3)∩ (P\ pk) = ∅, then(P\ pk)∪u induces a center-crosspath

of (H23, pk). SoN(y3)∩ (P\ pk) 6= ∅ and consequentlyk > 1. Let p′ (resp. p′′) be the

neighbor ofpk in Px3y closest toy3 (resp. x3). Let R be the subpath ofPx3y betweenp′′

andx3. Let H be the hole induced byP∪{u,y,y2}. Since(H,y3) is not a proper wheel,

y3 has a unique neighbor inP\ pk and p′ 6= y3. Let pi be the neighbor ofy3 in P. If

i = 1, thenPx1y∪R∪P∪ {y3,u} induces a 4-wheel with centeru. So i > 1. But then

(Px1y\y)∪P∪R∪{u,y3} induces a 3PC(u, pi). SoN(pk)∩Px2y 6= y2.

W.l.o.g.N(pk)∩Px3y = y3 andpk has two adjacent neighbors inPx2y. Let p′ (resp.p′′)

be the node ofN(pk)∩Px2y closest toy2 (resp. x2). Let R′ (resp. R′′) be the subpath of

Px2y betweeny (resp.x2) andp′ (resp. p′′). If k = 1, thenPx1y∪R′′∪{p1,y3,u} induces

a 4-wheel with centeru. Sok > 1. If no node of{y1,y3} has a neighbor inP\ pk, then

(Px1y \ y)∪P∪R′′ ∪{u,y3} induces a 3PC(u, pk). So by Claim 1, exactly one ofy1,y3

has a neighbor inP\ pk. Supposey1 has a neighbor inP\ pk and letpi be the node of

N(y1)∩P with highest index. ThenH13∪{pi , ..., pk} induces a 3PC(y1,y3). Soy1 does

not have a neighbor inP\ pk and henceN(y3)∩ (P\ pk) 6= ∅. But thenP∪R′ ∪{u,y3}

induces a proper wheel with centery3. 2

Lemma 4.6.2 Let G be a 4-hole-free odd-signable graph. If G contains a bugwith a type

dc node, then G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Lemma 4.4.1 every bug(H,x) has a bridgeP. Choose a bug

(H,x) with a type dc nodeu, and a bridgeP = p1, ..., pk of (H,x) so that the length ofP

is minimized. Letx1, x2, y be the neighbors ofx in H such thatx1x2 is an edge. LetH1

(resp.H2) be the sector of(H,x) with endnodesy andx1 (resp.x2). Let y1 (resp.y2) be

the neighbor ofy in H1 (resp.H2). Sou is adjacent tox,y and a node of{y1,y2}. W.l.o.g.

p1 has a neighbor inH1\{x1,y} andpk in H2\{x2,y}.
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By Lemma 4.6.1G does not contain a 3PC(∆, ·) with a type dd node, and henceP is

not a bridge of type D. LetH ′ be the hole of(H \ y)∪P that containsP. If P is a bridge

of type C2, C4, C5 or T, thenH ′∪{x,y} induces a a union of a 3PC(x1x2x,y) and a type

dd node w.r.t. this 3PC, a contradiction.

Suppose thatP is a bridge of type C3. W.l.o.g.p1 is adjacent toy, i.e., p1 is of type

p3t w.r.t.(H,x). Note that since{x1,x,y, p1} cannot induce a 4-hole,p1x1 is not an edge.

But thenH ′∪{x,y} induces a 3PC(x1x2x, p1) andy1 is of type dd w.r.t. it, a contradiction.

Suppose thatP is a bridge of type C1. Letpi be the unique neighbor ofy in P. Note

that 1< i < k. Let Σ = 3PC(x1x2x, pi) induced byH ′∪{x,y}. W.l.o.g.u is adjacent toy2.

If u does not have a neighbor inP, then(H \{y1,x2})∪P∪{x,u} contains a 4-wheel with

centery. Sou has a neighbor inP. By Lemma 4.3.1 applied toΣ andu, N(u)∩P = {pi},

{pi+1} or {pi−1}. SinceG does not contain a 4-hole,N(u)∩P = {pi}. Let H ′
1 = H ′∩H1

andH ′
2 = H ′∩H2. Let H ′′ be the hole induced byH1∪H ′

2∪{pi , ..., pk}. Then(H ′′,x) is

a bug,u is of type dc w.r.t.(H ′′,x) andP′ = p1, ..., pi−1 is a bridge of(H ′′,x), and hence

(H ′′,x), u andP′ contradict our choice of(H,x), u andP.

ThereforeP is a bridge of type A. W.l.o.g.N(p1)∩H1 = y1 andpk has two adjacent

neighbors inH2\ y. First suppose thatu is adjacent toy2. If u does not have a neighbor

in P, then(H \ x2)∪P∪{u,x} contains a 4-wheel with centery. Sou has a neighbor in

P, and letpi be such a neighbor with highest index. Since{y,y1,u, p1} cannot induce a

4-hole,i > 1. But thenH ∪{u, pi , ..., pk} induces a 3PC(∆,∆) or a 4-wheel with center

y2.

So u must be adjacent toy1. If u has a neighbor inP, then(H2\ y2)∪P∪{u,y1,x}

contains a proper wheel with centeru. So u does not have a neighbor inP. But then

H2∪P∪{x,y1} induces a 3PC(∆,y), andu is of type dd w.r.t. it, a contradiction. 2

Lemma 4.6.3 Let G be a 4-hole-free odd-signable graph. If G contains a3PC(∆, ·) with

a node of type d, then either G has a star cutset or G contains a connected diamond.

Proof: Follows from Lemmas 4.6.1 and 4.6.2. 2

For a twin wheel(H,x) we use the following notation. Letx1, x2, x3 be the neighbors

of x in H such thatx1x2 andx2x3 are edges. Letx′1 (resp.x′3) be the neighbor ofx1 (resp.

x3) in H \x2. A nodeu∈V(G)\ (V(H)∪{x}) is said to be of type d w.r.t.(H,x) if ux is

an edge andN(u)∩H is either{x1,x′1} or {x3,x′3}.

Lemma 4.6.4 Let G be a 4-hole-free odd-signable graph. If G contains a twin wheel with

a type d node, then either G contains a star cutset or G contains a connected diamond.
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Proof: Assume not. By Theorem 4.2.2, Theorem 4.3.3 and Lemma 4.6.3,G does not

contain a proper wheel, a bug with a center-crosspath, nor a 3PC(∆, ·) with a type d node.

Let u be a type d node w.r.t. a twin wheel(H,x) in G. Let x1,x2,x3 be the neighbors of

x in H such thatx1x2 andx2x3 are edges. LetPH = x3, p1, ..., pk,x1 be the long sector of

(H,x). Let P = p1, ..., pk.

Note that since there is no 4-hole,k > 1. W.l.o.g. N(u)∩H = {x3, p1}. SinceS=

N[x] \ x2 is not a star cutset ofG separatingx2 from P, there exists a direct connection

Q = q1, ...,ql from x2 to P in G\S. Let pi (resp. pi′) be the node ofN(ql)∩P with

lowest (resp. highest) index. Note thatx1 andx3 are the only nodes ofH that may have a

neighbor inQ\ql .

Claim 1: Both u andx3 have a neighbor inQ.

Proof of Claim 1: N(u)∩Q 6= ∅, elseQ∪{x,x2,x3,u, p1, ..., pi} induces a proper wheel

with centerx3. Now supposeN(x3) ∩ Q = ∅. Let H ′ be the hole induced byQ∪

{x2,x3, p1, ..., pi}. So (H ′,u) is a bug or a twin wheel. If(H ′,u) is a bug, thenx is a

center-crosspath of(H ′,u). So(H ′,u) is a twin wheel, and hencei = 1 andN(u)∩Q= ql .

Since{u,x,x1,ql} cannot induce a 4-hole,x1ql is not an edge. Since{u,x3,x2,ql} can-

not induce a 4-hole,l > 1. Supposei′ = 1. If N(x1)∩Q = ∅, thenH ∪Q induces a

3PC(x2, p1). So N(x1)∩Q 6= ∅. Let qs be the node ofN(x1)∩Q with highest index.

Then {x,x1,x3, p1,qs, ...,ql ,u} induces a 4-wheel with centeru. So i′ > 1. But then

{u,x1,x2,x3,ql , pi′, ..., pk,x} induces a 4-wheel with centerx. So N(x3)∩Q 6= ∅. This

completes the proof of Claim 1.

Claim 2: N(x1)∩Q = ∅.

Proof of Claim 2:Supposex1 does have a neighbor inQ. By Claim 1,u andx3 both have

neighbors inQ. Let qs (resp.qt) be the node ofQ with lowest index adjacent tox3 (resp.

u). If s≤ t, then{x,x2,x3,u,q1, ...,qt} induces a proper wheel with centerx3. Sos> t. In

particular,t < l ands> 1.

If x1 has a neighbor inQ\ql , then bothx1 andu (sincet < l ) have a neighbor inQ\ql

and hence(Q\ql)∪P∪{x,u,x1} contains a 3PC(x1,u). Sox1 does not have a neighbor

in Q\ql , and henceN(x1)∩Q = {ql}.

Let H ′ be the hole induced byQ∪{x1,x2}. SinceH ′∪ x3 cannot induce a 3PC(·, ·),

(H ′,x3) is a wheel, and hence it is a twin wheel or a bug. Sinces> 1, (H ′,x3) must in

fact be a bug. But thenx is of type d w.r.t. bug(H ′,x3), a contradiction. This completes

the proof of Claim 2.
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By Claim 1, letqs (resp.qt) be the node ofQ with lowest index adjacent tox3 (resp.u).

If s= 1, then{x,x2,x3,u,q1, ...,qt} induces a proper wheel with centerx3, a contradiction.

Sos> 1. By Claim 2, the node setQ∪{x1,x2, pi′, ..., pk} induces a hole, sayH ′. Nodex3

must have at least two neighbors inQ, elseH ′∪x3 induces a 3PC(x2,qs). So(H ′,x3) is

a wheel. By our assumption(H ′,x3) cannot be a proper wheel, and sinces> 1 it cannot

be a twin wheel, hence it is a bug wherex2 does not belong to the short sector of(H ′,x3).

But then nodex is of type d w.r.t.(H ′,x3), a contradiction. 2

Proof of Theorem 2.2.5:Suppose not. By Theorems 4.2.2 and 4.3.3 and Lemmas 4.6.3

and 4.6.4 we may assume thatG does not contain a proper wheel, a bug with a center-

crosspath, a 3PC(∆, ·) with a node of type d, nor a twin wheel with a node of type d.

We may assume thatG contains a diamond induced by, say,{u,v,a,b}, whereab /∈

E(G). Let S= N[u] \ {a,b}. SinceS cannot be a star cutset separatinga from b, there

is a direct connectionP = p1, ..., pk in G\S from a to b. If v has a neighbor inP, then

P∪{a,b,u,v} induces a proper wheel with centerv. SoN(v)∩P = ∅. Let S′ = N[u]\v.

SinceS′ cannot be a star cutset ofG, there is direct connectionQ = q1, ...,ql from v to P.

Let pi (resp.pi′) be the node ofN(ql )∩P with lowest (resp. highest) index.

Suppose botha andb have a neighbor inQ\ ql . Let R be a shortest path between

a and b in the subgraph induced by(Q \ ql) ∪ {a,b}. Then P ∪ R∪ {a,b,u}

induces a 3PC(a,b). So one ofa,b does not have a neighbor inQ \ ql . W.l.o.g.

N(b)∩ (Q\ql) = ∅.

Claim 1: N(b)∩Q = ∅.

Proof of Claim 1: Suppose not. SoN(b)∩Q = ql . Supposel = 1. Since there is no

4-hole,aql is not an edge. SinceP∪{v,a,b,q1} cannot induce a proper wheel with center

q1, i = i′. If i = k, thenP∪{a,b,u,v} induces a twin wheel with a node of type d. So

i < k. But then{p1, ..., pi,q1,a,b,u,v} induces a 4-wheel with centerv. Sol > 1.

SupposeN(a)∩Q = ∅. If i = k, thenP∪Q∪{a,b,u,v} induces a bug with centerb

with a nodeu of type dc. Soi < k. But thenQ∪{p1, ..., pi,a,b,v} induces a 3PC(v,ql).

SoN(a)∩Q 6= ∅.

Supposea has a unique neighbor, sayq j , in Q. If j = 1, thenQ∪{a,b,u,v} induces

a 4-wheel with centerv. So j > 1. But thenQ∪ {a,b,v} induces a 3PC(v,q j). So

|N(a)∩Q| ≥ 2. LetH be the hole induced byQ∪{v,b}. Since there is no proper wheel,

(H,a) is either a bug or a twin wheel. If(H,a) is a bug, thenu is either its center-crosspath

or a node of type dc. So(H,a) is a twin wheel. But thenu is a node of type d w.r.t.(H,a).
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This completes the proof of Claim 1.

SupposeN(a)∩Q = ∅. If i = i′, thenP∪Q∪{a,b,v} induces a 3PC(v, pi). Soi′ > i.

If pi pi′ is an edge, thenP∪Q∪ {a,b,v} induces a 3PC(ql pi pi′ ,v) with a node of type

dd. Sopi pi′ is not an edge. Ifl = 1, thenP∪{a,b,v,q1} induces a proper wheel with

centerq1. So l > 1. But thenQ∪{a,b,v, p1, ..., pi, p′i , ..., pk} induces a 3PC(v,ql). So

N(a)∩Q 6= ∅.

Let H be the hole induced byQ∪{b,v, pi′, ..., pk}. Note that sincea has a neighbor in

Q, it has at least two neighbors inH. Suppose|N(a)∩H| = 2 and letv′ be the neighbor

of a in H \v. If vv′ is an edge, thenH ∪{a,u} induces a 4-wheel with centerv. Sovv′ is

not an edge. But thenH ∪a induces a 3PC(v,v′). Therefore, since(H,a) cannot induce a

proper wheel,(H,a) is either a bug or a twin wheel. If(H,a) is a bug, thenu is either its

center-crosspath or a node of type dc. So(H,a) is a twin wheel, and henceu is a node of

type d w.r.t.(H,a). 2
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Decomposing Connected Diamonds

5.1 2-joins and blocking sequences

In this section we consider an induced subgraphH of G that contains a 2-joinH1|H2. We

say that a 2-joinH1|H2 extendsto G if there exists a 2-join ofG, H ′
1|H

′
2 with H1 ⊆ H ′

1

andH2 ⊆ H ′
2. We characterize the situation in which the 2-join ofH does not extend to a

2-join of G.

Definition 5.1.1 A blocking sequencefor a 2-join H1|H2 of an induced subgraph H of G

is a sequence of distinct nodes x1, . . . ,xn in G\H with the following properties:

(1) (i) H1|H2∪x1 is not a 2-join of H∪x1,

(ii) H1∪xn|H2 is not a 2-join of H∪xn, and

(iii) if n > 1 then, for i= 1, . . . ,n− 1, H1 ∪ xi |H2∪ xi+1 is not a 2-join of H∪

{xi ,xi+1}.

(2) x1, . . . ,xn is minimal w.r.t. property (1), in the sense that no sequencex j1, . . . ,x jk

with {x j1, . . . ,x jk} ⊂ {x1, . . . ,xn}, satisfies (1).

Blocking sequences for 2-joins were introduced in [13], where the following results

are obtained.

Let H be an induced subgraph ofG with 2-join H1|H2 and special sets(A1,A2,B1,B2).

In the following results we letS= x1, . . . ,xn be a blocking sequence for the 2-joinH1|H2

of an induced subgraphH of G.

67
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Remark 5.1.2 H1|H2∪ u is a 2-join of H∪ u if and only if N(u)∩H1 = ∅,A1 or B1.

Similarly, H1∪u|H2 is a 2-join of H∪u if and only if N(u)∩H2 = ∅,A2 or B2.

Lemma 5.1.3 If n > 1 then, for every node xj , j ∈ {1, . . . ,n−1}, N(x j)∩H2 = ∅,A2 or

B2, and for every node xj , j ∈ {2, . . . ,n}, N(x j)∩H1 = ∅,A1 or B1.

Lemma 5.1.4 Assume n> 1. Nodes xi ,xi+1, 1≤ i ≤ n−1, are not adjacent if and only if

N(xi)∩H2 = A2 and N(xi+1)∩H1 = A1, or N(xi)∩H2 = B2 and N(xi+1)∩H1 = B1.

Theorem 5.1.5 Let H be an induced subgraph of a graph G that contains a 2-joinH1|H2.

The 2-join H1|H2 of H extends to a 2-join of G if and only if there exists no blocking

sequence for H1|H2 in G.

Lemma 5.1.6 For 1< i < n, H1∪{x1, . . . ,xi−1}|H2∪{xi+1, . . . ,xn} is a 2-join of H∪(S\

{xi}).

Lemma 5.1.7 If xixk, n ≥ k > i + 1 ≥ 2, is an edge, then either N(xi)∩H2 = A2 and

N(xk)∩H1 = A1, or N(xi)∩H2 = B2 and N(xk)∩H1 = B1.

Lemma 5.1.8 If x j is the node of lowest index adjacent to a node of H2, then x1, . . . ,x j

is a chordless path. Similarly, if xj is the node of highest index adjacent to a node of H1,

then xj , . . . ,xn is a chordless path.

Theorem 5.1.9 Let G be a graph and H an induced subgraph of G with a 2-join H1|H2

and special sets(A1,A2,B1,B2). Let H′ be an induced subgraph of G with 2-join H′1|H2

and special sets(A′
1,A2,B′

1,B2) such that A′1∩A1 6= ∅ and B′1∩B1 6= ∅. If S is a blocking

sequence for H1|H2 and H′
1∩S 6= ∅, then a proper subset of S is a blocking sequence for

H ′
1|H2.

5.2 Decomposing connected diamonds

In this section we prove Theorem 2.2.6.

Recall that a connected diamond is a pair(Σ,Q), whereΣ = 3PC(x1x2x3,y) andQ =

q1, ...,qk, k≥ 2, is a chordless path disjoint fromΣ such that the only nodes ofQ adjacent

to Σ areq1 andqk. Furthermoreq1 is of type t2 w.r.t.Σ adjacent to, sayx1 andx3 and one

of the following holds:

(i) qk is of type p2 such thatN(qk)∩V(Σ) ⊆V(Px2y)\{x2} , or

(ii) qk is of type d adjacent toy,y1,y3 such thatx1y andx3y are not edges.
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Figure 5.1: Different types of connected diamonds.

We rename some nodes and introduce some additional notation. Leta′1 = qk and leta1

be the closest neighbor ofa′1 to x2 in Px2y. Let b1 = x2, b′1 = q1, b2 = x1 andb′2 = x3. Now

let A1 = {a1,a′1}, A2 = V(Σ)∩N(a′1) \ {a1}, B1 = {b1,b′1} andB2 = {b2,b′2}. Let A =

A1∪A2 andB= B1∪B2. Whena′1 is of type d w.r.t.Σ, A2 has cardinality 2 and leta2 = y1,

a′2 = y3, whereas whena′1 is of type p2,A2 has cardinality 1 and we leta2 = a′2 denote its

unique node. The connected diamond(Σ,Q) is denoted byH(A1,A2,B1,B2). LetRbe the

subpath ofPx2y betweena1 andb1. Now letH1 = R∪Q andH2 = H(A1,A2,B1,B2)\H1.

Let Pa2b2 be the chordless path froma2 to b2 in H2\b′2, and definePa′2b′2
similarly. When

|A2| = 2, Pa2b2 and Pa′2b′2
are node-disjoint paths. When|A2| = 1, these two paths are

identical betweena2 = a′2 andy. In this case, we refer to thea2y-subpath ofPa2b2 asPa2y

path, and theb2y-subpath (resp.b′2y-subpath) ofPa2b2 (resp. Pa′2b′2
) asPb2y (resp. Pb′2y)

path. LetPa1b1 be the chordless path froma1 to b1 in H1\a′1, and definePa′1b′1
similarly.

The two pathsPa1b1 andPa′1b′1
of H1 we call theside-1-paths of Hand the two pathsPa2b2

andPa′2b′2
of H2 we call theside-2-paths of H. We say thatH is shortif out of all connected

diamonds ofG, the two side-2-paths ofH have as few nodes in common as possible, i.e.

there is no connected diamondH ′ of G such that the side-2-paths ofH ′ have fewer nodes

in common that the side-2-paths ofH.

We denote byΣ1 the 3PC(a1a′1a2,b2) induced by H1 ∪ Pa2b2 and by Σ2 the

3PC(a1a′1a′2,b
′
2) induced byH1∪Pa′2b′2

. Σ′ denotes the 3PC(b2b′2b′1,y) when|A2| = 1 and

the 3PC(b2b′2b′1,a
′
1) when |A2| = 2 induced byH \Pa1b1. We denoteva1 (resp. vb1) the

neighbor ofa1 (resp. b1) in Pa1b1, and we defineva′1
, vb′1

, vb2, vb′2
similarly. If |A2| = 2,

then we letva2 (resp. va′2
) be the neighbor ofa2 (resp. a′2) in Pa2b2 (resp. Pa′2b′2

). If
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|A2| = 1 anda2 6= y, then we letva2 be the neighbor ofa2 in Pa2y. Finally, when|A2| = 1,

we letyb2, yb′2
be the neighbor ofy in Pyb2 andPyb′2

respectively. If|A2| = 1 andy 6= a2,

we letya2 denote the neighbor ofy in Pya2.

A segmentof H is a pathP of H whose endnodes are of degree at least 3, whose

intermediate nodes are all of degree 2, andP is not an edge ofG[A] or G[B].

Lemma 5.2.1 Let G be a 4-hole-free odd-signable graph that does not have aproper

wheel, a bug with a center-crosspath nor a bug with type s2 node. Let H(A1,A2,B1,B2)

be a short connected diamond of G. A node u of G\H that has a neighbor in H is one of

the following types.

pi, for i=1,2,3 : For some segment S of H, N(u)∩H ⊆ S and|N(u)∩H|= i. Fur-

thermore, if i≥ 2, then u has two adjacent neighbors in H. Also

if i = 3, |A2| = 1 and S= Pa2y, then N(u)∩H induces a path of

length 2.

A1 : N(u)∩H = A1.

A : N(u)∩H = A.

a : |A2| = 1 and u has two neighbors in H, the node of A2 and one

node of A1.

B : N(u)∩H = B.

B2 : N(u)∩H = B2.

t3 : Node u has three neighbors in H: either two nodes of B2 and one

of B1; or |A2| = 2 and u is adjacent to two nodes of A1 and one

node of A2.

d : |A2| = 1 and u has three neighbors in H: if y= a2, then N(u)∩

H = {y,yb2,yb′2
}, and otherwise the neighbors of u in H are y and

two nodes from{ya2,yb2,yb′2
}.
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Ad : |A2| = 1, y = a2 and u has four neighbors in H: a1,a′1,a2 and

either yb2 or yb′2
.

H1-crossing : Either N(u)∩H = {b1,v1,v2} where v1v2 is an edge of Pa′1b′1
\b′1

or N(u)∩H = {b′1,v1,v2} where v1v2 is an edge of Pa1b1 \b1.

H2-crossing : If |A2| = 1, then either yb2 6= b2 and N(u) ∩ H = {yb2,v1,v2}

where v1v2 is an edge of Pb′2y \ y, or yb′2
6= b′2 and N(u)∩H =

{yb′2
,v1,v2} where v1v2 is an edge of Pb2y \ y. If |A2| = 2, then

N(u)∩H = {a2,v1,v2} where v1v2 is an edge of Pa′2b′2
\ a′2, or

N(u)∩H = {a′2,v1,v2} where v1v2 is an edge of Pa2b2 \a2.

pseudo-twin of a

node of B1

: We define pseudo-twin of b1: N(u)∩H = B2∪{v1,v2}, where v1
and v2 are nodes of Pa1b1. Furthermore, if b1 /∈ {v1,v2}, then v1v2

is an edge. Pseudo-twin of b′
1 is defined symmetrically.

pseudo-twin of a

node of B2

: We define pseudo-twin of b2: N(u)∩H = B∪{v}, where if|A2|=

2, then v is a node of Pa2b2 \b2, and if |A2| = 1, then v is a node

of Pb2y\b2 and not both yb′2 and yu are edges. Pseudo-twin of b′
2

is defined symmetrically.

pseudo-twin of a

node of A1

: We define pseudo-twin of a1: N(u)∩H = A2∪{a′1,v1,v2}, where

v1 and v2 are nodes of Pa1b1. Furthermore, if a1 /∈ {v1,v2}, then

|A2| = 1 and v1v2 is an edge. Pseudo-twin of a′
1 is defined sym-

metrically.

pseudo-twin of a

node of A2

: We define pseudo-twin of a2: If |A2| = 2, then N(u)∩H = A1∪

{v1,v2}, where v1 and v2 are nodes of Pa2b2. Furthermore, if a2 /∈

{v1,v2}, then v1v2 is an edge. If|A2| = 1 and a2 6= y, then N(u)∩

H = A1 ∪ {a2,va2}. If |A2| = 1 and a2 = y, then N(u)∩ H =

A1 ∪ {a2,v1,v2} where v1 ∈ Pb2y \ y, v2 ∈ Pb′2y \ y, at least one

of {v1,v2} is adjacent to y, and u is adjacent to at most one of

{b2,b′2}. Pseudo-twin of a′2 is defined symmetrically.
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pseudo-twin of y : If y= a1 or a2, then pseudo-twin of y is defined as corresponding

pseudo-twins above. So assume|A2|= 1 and a2 6= y. Then N(u)∩

H = {y,ya2,v1,v2} where v1 ∈ Pb2y \ y, v2 ∈ Pb′2y \ y, at least one

of {v1,v2} is adjacent to y, and u is adjacent to at most one of

{b2,b′2}.

s1 : N(u)∩H = {v1,v2}where either v1∈B1 and v2∈B2; or |A2|= 2,

v1 ∈ A1 and v2 ∈ A2.

s2 : |A2| = 1, y 6= a2 and N(u)∩H = {b2,b′2,v1,v2} where v1v2 is an

edge of Pa2y. Furthermore, if y= v1 or v2, then yb2 and yb′2 are

not edges.

s3 : |A2| = 1 and either N(u)∩H = B2∪{a2,a′1,b1} and a2b′2 is not

an edge, or N(u)∩H = B2∪{a2,a1,b′1} and a2b2 is not an edge.

s4 : |A2| = 1, a2b2 and a2b′2 are not edges, and N(u)∩H = A∪B2.

Proof: We first prove the following two claims.

Claim 1: If |A2| = 1, thenN(u)∩H 6= {y,yb2,yb′2
,b1} andN(u)∩H 6= {y,yb2,yb′2

,b′1}.

Proof of Claim 1: Assume not. By symmetry, w.l.o.g. assume that

N(u) ∩ H = {y,yb2,yb′2
,b1}. If yb2 (resp. yb′2) is an edge, then by definition of a

connected diamondyb′2 (resp.yb2) is not an edge,H \Pa′1b′1
induces a bug with centerb2

(resp.b′2) andu is of type s2 w.r.t. this bug, contradicting our assumption.

Soyb2 andyb′2 are not edges, and henceyb2 6= b2 andyb′2
6= b′2. So(H \Pa1b1)∪{b1,u}

induces a connected diamondH ′(A′
1,A

′
2,B1,B2) whereA′

1 = {u,y} andA′
2 = {yb2,yb′2

}.

The two side-2-paths ofH ′ have fewer nodes in common than the two side-2-paths ofH,

contradicting our assumption. This completes the proof of Claim 1.

Claim 2: If |N(u)∩A| ≥ 2 and|N(u)∩B| ≥ 2, thenu is of type s3 or s4 w.r.t.H.

Proof of Claim 2: Assume that|N(u)∩A| ≥ 2 and|N(u)∩B| ≥ 2. We first show that

|A2| = 1. Assume not. First suppose thatN(u)∩B2 = B2. Let H ′ be the hole induced

by Pa2b2 ∪Pa′2b′2
∪ a′1. Since(H ′,u) cannot be a proper wheel,|N(u)∩ (A2∪ a′1)| ≤ 1.
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By symmetry,|N(u)∩ (A2∪a1)| ≤ 1. From these two inequalities, and the assumption

that |N(u)∩A| ≥ 2, it follows thatN(u)∩A = A1. By symmetryN(u)∩B = B2. In

particular,(H ′,u) is a bug and henceN(u)∩H ′ = {a′1,b2,b′2}. By symmetry,N(u)∩

(Pa1b1 ∪Pa2b2 ∪ b2) = {a1,a′1,b2}. In particular,N(u)∩H = A1 ∪B2. But thenΣ and

u contradict Lemma 4.3.1. Therefore,N(u)∩B2 6= B2. By symmetry we may assume

that |N(u)∩B2| ≤ 1 and|N(u)∩A1| ≤ 1. Since{b2,b1,b′1,u} and{b′2,b1,b′1,u} cannot

induce 4-holes,|N(u)∩B2| ≥ 1, and by symmetry|N(u)∩A1| ≥ 1. Hence|N(u)∩B2|= 1

and |N(u)∩A1| = 1. W.l.o.g. N(u)∩B2 = b2. By symmetry we may assume thatu is

adjacent tob1. Since{b′2,b1,b′1,u} cannot induce a 4-hole,N(u)∩B = {b1,b2}. Suppose

thatu is adjacent toa1. Then it is not adjacent toa′1. By Lemma 4.3.1 applied toΣ and

u, N(u)∩Σ = {b1,b2,a1,a′2}. But thenΣ2 andu contradict Lemma 4.3.1. Sou is not

adjacent toa1, and hence it is adjacent toa′1. But thenΣ′ andu contradict Lemma 4.3.1.

Therefore|A2| = 1.

Next we show thatN(u)∩B2 = B2. Assume not, i.e. assume that|N(u)∩B2| ≤ 1.

Since{b2,b1,b′1,u} and{b′2,b1,b′1,u} cannot induce 4-holes,|N(u)∩B2| ≥ 1, and hence

|N(u)∩B2| = 1. W.l.o.g. N(u)∩B2 = b2. By symmetry we may assume w.l.o.g. thatu

is adjacent tob1. Since{b′2,b1,b′1,u} cannot induce a 4-hole, it follows thatN(u)∩B =

{b1,b2}. Since|N(u)∩A| ≥ 2 and|A2| = 1, u is adjacent toa1 or a2. But thenΣ and

u contradict Lemma 4.3.1 (note that by our assumptionG does not contain a bug with a

center-crosspath, and sou cannot be of type s1 w.r.t.Σ). Therefore,N(u)∩B2 = B2.

Suppose thatN(u)∩A1 = A1. SincePa1b1 ∪Pa′1b′1
∪ {b2,u} cannot induce a proper

wheel, N(u)∩ (Pa1b1 ∪Pa′1b′1
) = A1. By Lemma 4.3.1 applied toΣ and u, N(u)∩ Σ =

{b2,b′2,a1,a2}. ThereforeN(u)∩H = B2∪A. If a2b2 is an edge, thenΣ is a bug andu

is of type s2 w.r.t.Σ, a contradiction. Soa2b2 is not an edge, and by symmetry neither is

a2b′2, and thereforeu is of type s4 w.r.t.H.

Now we may assume thatN(u)∩A1 6= A1, and so w.l.o.g.N(u)∩A = {a1,a2}. By

Lemma 4.3.1 applied toΣ andu, N(u)∩Σ = {b2,b′2,a1,a2}. By Lemma 4.3.1 applied to

Σ′ andu, N(u)∩Σ′ = {b2,b′2,b
′
1,a2}. HenceN(u)∩H = B2∪{b′1,a1,a2}. If a2b2 is an

edge, thenΣ is a bug andu is of type s2 w.r.t.Σ, a contradiction. Soa2b2 is not an edge

and henceu is of type s3 w.r.t.H. This completes the proof of Claim 2.

By Claim 2 we may assume that either|N(u)∩A| ≤ 1 or |N(u)∩B| ≤ 1. We may

assume that|N(u)∩H| ≥ 2, since otherwiseu is of type p1 w.r.t.H. Suppose thatu is not

strongly adjacent toΣ nor Σ′. Thenu has exactly one neighbor inPa1b1 and one inPa′1b′1
.

By Lemma 4.3.1 applied toΣ1 andu, N(u)∩Σ1 = A1, and henceu is of typeA1 w.r.t.

H. By symmetry betweenΣ andΣ′ we may now assume thatu is strongly adjacent toΣ.
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SinceG does not contain a bug with center-crosspath,u cannot be of type s1 w.r.t.Σ (nor

any other 3PC(∆, ·)). So by Lemma 4.3.1 it suffices to consider the following cases.

Case 1:u is of type t3 w.r.t.Σ.

By Lemma 4.3.1 applied toΣ1, N(u)∩H = {b1,b2,b′2} or B and henceu is of type t3

or B w.r.t. H.

Case 2:u is of type t2 w.r.t.Σ.

SupposeN(u)∩Σ = {b1,b2} or {b1,b′2}, w.l.o.g. sayN(u)∩Σ = {b1,b2}. Since there

is no 4-hole,ub′1 is not an edge. Then by Lemma 4.3.1 applied toΣ1 andu, N(u)∩Pa′1b′1
=

∅ and henceu is of type s1 w.r.t.H. Suppose now thatN(u)∩Σ = {b2,b′2}. By Lemma

4.3.1 applied toΣ′, u is of typeB2, t3 or a pseudo-twin ofb′1 w.r.t. H.

Case 3:u is a pseudo-twin of a node of{b1,b2,b′2} w.r.t. Σ.

If |N(u)∩{b1,b2,b′2}| = 2, then letv1 andv2 be the two adjacent neighbors ofu in

Σ \ {b1,b2,b′2}. Otherwise letv1 = v2 be the neighbor ofu in Σ \ {b1,b2,b′2}. Since

|N(u)∩B| ≥ 2, by our assumption|N(u)∩A| ≤ 1.

First suppose thatv1,v2 are contained in theb1y-path ofΣ. ThenN(u)∩B2 = B2. If

|A2| = 2, then by Lemma 4.3.1 applied toΣ1 andu, N(u)∩Pa′1b′1
= ∅ and henceu is a

pseudo-twin ofb1 w.r.t. H. So we may assume that|A2| = 1. Since|N(u)∩A| ≤ 1, v1

andv2 are contained in eitherPa1b1 or in Pa2y. If {v1,v2} ⊆ Pa1b1, then by Lemma 4.3.1

applied toΣ1 andu, N(u)∩Pa′1b′1
= ∅ and henceu is a pseudo-twin ofb1 w.r.t. H. So

assume that{v1,v2} ⊆ Pa2y. Suppose thatv1v2 is an edge, i.e.|N(u)∩{b1,b2,b′2}| = 2.

By Lemma 4.3.1 applied toΣ1 andu, N(u)∩Pa′1b′1
= ∅. If y /∈ {v1,v2}, thenu is of type

s2 w.r.t.H. So assume w.l.o.g. thaty = v2. W.l.o.g. yb2 is not an edge, and suppose that

yb′2 is an edge. LetH ′ be the hole induced byPa1b1 ∪Pa2b2. Then(H ′,b′2) is a bug and

u is of type s2 w.r.t.(H ′,b′2). So neitheryb2 nor yb′2 is an edge, and henceu is of type

s2 w.r.t.H. We may now assume thatv1 = v2, i.e. |N(u)∩{b1,b2,b′2}| = 3. Thenub1 is

an edge. Note that by our assumption,u cannot be adjacent to botha′1 anda2, and hence

by Lemma 4.3.1 applied toΣ′ andu, N(u)∩Pa′1b′1
= b′1. If v1 6= y, thenH1∪Pa2b′2

∪u

induces a connected diamondH ′(A1,A2,B1,B′
2) whereB′

2 = {b′2,u}, whose side-2-paths

have fewer nodes in common than the side-2-paths ofH (note that the common nodes of

side-2-paths ofH are the nodes ofPa2y, and the common nodes of side-2-paths ofH ′ are

the nodes of thea2v1-subpath ofPa2y), a contradiction. Hencev1 = y. W.l.o.g. yb′2 is not

an edge, and henceu is a pseudo-twin ofb2 w.r.t. H.

We may now assume thatv1,v2 are contained in theb2y-path ofΣ or theb′2y-path ofΣ.

By symmetry we may assume w.l.o.g. thatv1, v2 are contained in theb2y-path ofΣ. Then
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u is adjacent tob1 andb′2. First suppose that|A2| = 1. If |N(u)∩{b1,b2,b′2}| = 2, then

by Lemma 4.3.1 applied toΣ1 andu, N(u)∩Pa′1b′1
= ∅, and hence(Pa2b2 \ vb2)∪Pa′1b′1

∪

{b1,b′2,u} contains a 4-wheel with centerb′2. So |N(u)∩{b1,b2,b′2}| = 3, i.e. v1 = v2

andub2 is an edge. Note that by the argument in the previous paragraph we may assume

that v1 6= y. By Lemma 4.3.1 applied toΣ′ andu, N(u)∩Pa′1b′1
= b′1, and henceu is a

pseudo-twin ofb2 w.r.t. H.

We may now assume that|A2| = 2. Since|N(u)∩A| ≤ 1, {v1,v2} ⊆ Pa2b2. If |N(u)∩

{b1,b2,b′2}| = 2, then by Lemma 4.3.1 applied toΣ1 and u, N(u) ∩ Pa′1b′1
= ∅, and

hence(Pa2b2 \ vb2)∪Pa′1b′1
∪ {b1,b′2,u} contains a 4-wheel with centerb′2. So |N(u)∩

{b1,b2,b′2}| = 3, i.e. v1 = v2 and ub2 is an edge. Sincev1 ∈ Pa2b2, by Lemma 4.3.1

applied toΣ′ andu, N(u)∩Pa′1b′1
= b′1, and henceu is a pseudo-twin ofb2 w.r.t. H.

Case 4:u is a pseudo-twin ofy w.r.t. Σ.

First suppose that all nodes ofN(u)∩ (Σ \ y) are adjacent toy. If |A2| = 2, then by

Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= a′1 and henceu is a pseudo-twin ofa1 w.r.t.

H. So assume that|A2| = 1. W.l.o.g.yb2 is not an edge. Ifa2 = y, then by Lemma 4.3.1

applied toΣ1, N(u)∩Pa′1b′1
= a′1, and henceu is a pseudo-twin ofa2 w.r.t. H. So we may

assume thata2 6= y. By Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= ∅, and henceu is a

pseudo-twin ofy w.r.t. H.

Now assume that some node ofN(u)∩ (Σ \ y) is not adjacent toy, and letv be such

a node. Suppose|A2| = 2. If v is a node ofPa2b2, then by Lemma 4.3.1 applied toΣ2,

N(u)∩Pa′1b′1
= a′1. But then Lemma 4.3.1 applied toΣ1 andu is contradicted. So, by

symmetry, we may assume thatv is a node ofPa1b1. Then by Lemma 4.3.1 applied toΣ1,

N(u)∩Pa′1b′1
= a′1 and henceu is a pseudo-twin ofa1 w.r.t. H.

Now assume|A2| = 1. If v is a node ofPa1b1, then by Lemma 4.3.1 applied toΣ1,

v = b1 andN(u)∩Pa′1b′1
= ∅, contradicting Claim 1. So we may assume w.l.o.g. thatv is

a node ofPa2b2. Supposey = a2. Thenu is adjacent toa1. By Lemma 4.3.1 applied to

Σ′, N(u)∩Pa′1b′1
= a′1. Since|N(u)∩A| ≥ 2, by our assumption|N(u)∩B| ≤ 1, and sou

cannot be adjacent to bothb2 andb′2. Henceu is a pseudo-twin ofa2 w.r.t. H. So assume

thaty 6= a2. By Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= ∅. Suppose thatu is adjacent

to bothb2 andb′2. Thenyb′2 is an edge andN(u)∩H = {b2,b′2,y,ya2} (since by definition

of connected diamond it is not possible that bothyb2 andyb′2 are edges). But thenΣ is a

bug, andu is of type s2 w.r.t. it, a contradiction. Sou cannot be adjacent to bothb2 and

b′2, and henceu is a pseudo-twin ofy w.r.t. H.

Case 5:u is of type d w.r.t.Σ.

Suppose|A2| = 2. If N(u)∩Σ = {a1,a2,va1}, then by Lemma 4.3.1 applied toΣ1 and
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u, ua′1 is an edge. But then, sinceua′2 is not an edge, Lemma 4.3.1 applied toΣ2 andu

is contradicted. SoN(u)∩Σ 6= {a1,a2,va1}. By symmetryN(u)∩Σ 6= {a1,a′2,va1}. So

N(u)∩Σ = {a1,a2,a′2}. Thenua′1 is an edge, else{u,a2,a′2,a
′
1} induces a 4-hole. By

Lemma 4.3.1 applied toΣ2, u has at most two neighbors inPa′1b′1
. Sou is of type A w.r.t.

H or it is a pseudo-twin ofa′1 w.r.t. H.

Assume now that|A2|= 1. Supposeu is adjacent to bothyb2 andyb′2
. So the neighbors

of u in Σ arey,yb2,yb′2
. By Lemma 4.3.1 applied toΣ2, the only node ofPa′1b′1

that may be

adjacent tou is b′1. Then by Claim 1,ub′1 is not an edge and henceu is of type d w.r.t.H.

So we may assume thatu is not adjacent to one node of{yb2,yb′2
}. Suppose thaty = a2.

Supposeu is adjacent toa1,y,yb2. By Lemma 4.3.1 applied toΣ1, ua′1 is an edge and no

other node ofPa′1b′1
is adjacent tou, and henceu is of type Ad w.r.t.H. Similarly, if u is

adjacent toa1,y,yb′2
, then by Lemma 4.3.1 applied toΣ2, u must be of type Ad w.r.t.H.

Assume now thaty 6= a2. If u is adjacent toy,ya2,yb2 (resp. y,ya2,yb′2
), then by Lemma

4.3.1 applied toΣ1 (resp.Σ2), u is of type d w.r.tH.

Case 6:u is of type p3t w.r.t.Σ.

Suppose thatN(u)∩Σ is contained inPb1a1 or |A2| = 2 and it is contained inPa2b2 or

Pa′2b′2
, or |A2| = 1 and it is contained inPa2y or Pb2y or Pb′2y. Then by Lemma 4.3.1 applied

to Σ1 or Σ2, N(u)∩Pa′1b′1
= ∅, and henceu is of type p3 w.r.t.H. So we may assume

w.l.o.g. thatu is adjacent to botha1 anda2. Then by Lemma 4.3.1 applied toΣ1 or Σ2,

N(u)∩Pa′1b′1
= a′1, and henceu is a pseudo-twin ofa1 or a2 w.r.t. H.

Case 7:u is of type p3b w.r.t.Σ.

Let N(u)∩Σ = {v,v1,v2} such thatv1v2 is an edge. Suppose that|A2| = 2. If v1v2 =

a1a2, then by Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= a′1, and henceu is a pseudo-

twin of a2 w.r.t. H. Similarly, if v1v2 = a1a′2, thenu is a pseudo-twin ofa′2 w.r.t. H. If

{v,v1,v2} ⊆ Pa1b1 or Pa2b2 or Pa′2b′2
, then by Lemma 4.3.1 applied toΣ1 or Σ2 (depending

on which path ofΣ the neighbors ofu are contained in),N(u)∩Pa′1b′1
= ∅ and henceu

is of type p3 w.r.t. H. So we may assume w.l.o.g. thatv = a1 andv1v2 is an edge of

Pa2b2 \a2. By Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= a′1, and henceu is a pseudo-twin

of a2 w.r.t. H.

Suppose now that|A2| = 1. If v1v2 = a1a2, then by Lemma 4.3.1 applied toΣ1,

N(u)∩Pa′1b′1
= a′1. Suppose thatv is contained inPa2y. Note thatva2 /∈ E(G). Then

(H \a2)∪{u} contains a connected diamondH ′(A1,A′
2,B1,B2) whereA′

2 = {u}. Since

va2 is not an edge, the two side-2-paths ofH ′ have fewer nodes in common than the two

side-2-paths ofH, contradicting our assumption. Sov must be contained inPa1b1, and

henceu is a pseudo-twin ofa1 w.r.t. H.
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So we may assume thatv1v2 6= a1a2. Supposev is a node ofPa1b1. If v1v2 is an

edge ofPa1b1, then by Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= ∅ and henceu is of

type p3 w.r.t.H. Assume now thatv1v2 is an edge ofPa2y. By Lemma 4.3.1 applied to

Σ1, v = b1 andN(u)∩Pa′1b′1
= ∅. Sayv2 is the neighbor ofu in Pa2y closer toy. Then

(H \Pa1b1)∪{b1,u} induces a connected diamondH ′(A′
1,A

′
2,B1,B2) whereA′

1 = {v1,u}

andA′
2 = {v2}. The two side-2-paths ofH ′ have fewer nodes in common than the two

side-2-paths ofH, contradicting our assumption.

We may now assume thatv is not inPa1b1. Suppose thatv1v2 is inPa1b1. Sov∈Pa2y. By

Lemma 4.3.1 applied toΣ1, v= y, yb2∈E(G) andN(u)∩Pa′1b′1
= ∅. Sinceyb2∈E(G), by

definition of connected diamondsyb′2 cannot be an edge. ThenPa1b1∪Pa′1b′1
∪Pa2y∪{u,b′2}

induces a 3PC(a1a′1a2,uv1v2) or a 4-wheel with centera1. Sov1v2 is not an edge ofPa1b1,

and hence{v,v1,v2} ⊆ P for someP ∈ {Pa2y,Pyb2,Pyb′2
}. Then by Lemma 4.3.1 applied

to Σ1 or Σ2, N(u)∩H = {v,v1,v2}. If P = Pa2y, thenH ∪u contains a connected diamond

H ′(A1,A2,B1,B2) that containsu and whose side-2-paths have fewer nodes in common

than the side-2-paths ofH, a contradiction. SoP∈ {Pyb2,Pyb′2
}, and henceu is of type p3

w.r.t. H.

Case 8:u is of type p2 w.r.t.Σ.

Let v1v2 be the edge ofN(u)∩Σ. Suppose|A2|= 2. If v1v2 is an edge ofPa1b1, then by

Lemma 4.3.1 applied toΣ1, u is of type p2 or anH1-crossing w.r.t.H. Supposev1v2 is an

edge ofPa2b2 or Pa′2b′2
, w.l.o.g. sayv1v2 is an edge ofPa2b2. Then by Lemma 4.3.1 applied

to Σ1 andu, b′1 is the only node ofPa′1b′1
that may be adjacent tou. If ub′1 is not an edge,

thenu is of type p2 w.r.t.H. So assumeub′1 is an edge. Ifub2 is an edge, thenu is of type

s1 w.r.t.Σ′, contradicting our assumption. Soub2 is not an edge. HenceH2∪{u,b′1,a1}

induces a 3PC(b2b′2b′1,v1v2u). We may now assume w.l.o.g. thatN(u)∩Σ = {a1,a2}. If

u does not have a neighbor inPb′1a′1
, thenu is of type s1 w.r.t.H. So assumeu does have a

neighbor inPb′1a′1
. By Lemma 4.3.1 applied tou andΣ2, and sinceu cannot be of type s1

w.r.t. Σ2, N(u)∩Pa′1b′1
= a′1, and henceu is of type t3 w.r.t.H.

Now assume that|A2| = 1. If v1v2 is an edge ofPa1b1, then by Lemma 4.3.1 applied

to Σ1, u is of type p2 or anH1-crossing w.r.t. H. Supposev1v2 is an edge ofPyb2 or

Pyb′2
, w.l.o.g. sayv1v2 is an edge ofPyb2. Then by Lemma 4.3.1 applied toΣ′ and sinceu

cannot be of type s1 w.r.t.Σ′, eitherN(u)∩Pb′1a′1
= ∅, or y = a2 andN(u)∩Pb′1a′1

= a′1.

In the first caseu is of type p2 w.r.t.H, and in the second case, by Lemma 4.3.1 applied

to Σ1 andu, nodeu is of type s1 w.r.t.Σ1, contradicting our assumption. Now assume

thaty 6= a2 andv1v2 is an edge ofPa2y. By Lemma 4.3.1 applied toΣ1 andu (and since

N(u)∩Σ = {v1,v2}), the only node ofH \{v1,v2} that may be adjacent tou is b′1. If u is
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not adjacent tob′1, thenu is of type p2 w.r.t.H. Suppose thatu is adjacent tob′1. W.l.o.g.

v2 is closer thanv1 to y on Pa2y. So (H \Pa′1b′1
)∪{b′1,u} induces a connected diamond

H ′(A′
1,A

′
2,B1,B2) whereA′

1 = {v1,u} andA′
2 = {v2}. The two side-2-paths ofH ′ have

fewer nodes in common than the two side-2-paths ofH, contradicting our assumption.

Finally suppose thatN(u)∩Σ = {a1,a2}. By Lemma 4.3.1 applied toΣ1, u is of type a,

A or a pseudo-twin ofa′1 w.r.t. H.

Case 9:u is of type crosspath w.r.t.Σ.

Let N(u)∩Σ = {v,v1,v2} such thatv1v2 is an edge. First suppose that|A2| = 2. Note

thatv∈ {a2,a′2,va1}. Suppose thatv = va1. Then by Lemma 4.3.1 applied toΣ1 (in the

case wherev1v2 is an edge ofPa2b2) or Σ2 (in the case wherev1v2 is an edge ofPa′2b′2
),

a1b1 is an edge. But thenu is the center-crosspath of bugΣ. Sov = a2 or a′2, w.l.o.g.

sayv = a2. Supposev1v2 is an edge ofPa1b1. Then by Lemma 4.3.1 applied toΣ1 andu,

eithera2b2 is an edge andN(u)∩Pa′1b′1
= ∅, or N(u)∩Pa′1b′1

= a′1. In the first caseu is

a center-crosspath of bugΣ1, a contradiction. SoN(u)∩Pa′1b′1
= a′1, and henceΣ2 andu

contradict Lemma 4.3.1. Sov1v2 is an edge ofPa′2b′2
. Then by Lemma 4.3.1 applied toΣ′,

u is anH2-crossing w.r.t.H.

Now assume that|A2| = 1. Suppose thatv /∈ {yb2,yb′2
}. So w.l.o.gv1v2 is an edge of

Pyb2. If y = a2, thenv = a1 and by Lemma 4.3.1 applied toΣ1, u is a pseudo-twin ofa2

w.r.t. Σ1, i.e. N(u)∩Pa′1b′1
= a′1. Letv1 be the neighbor ofu in Pa2b2 that is closer tob2, and

let P be theb2v1-subpath ofPa2b2. ThenP∪Pa1b1 ∪Pa′1b′1
∪Pa2b′2

∪u induces a connected

diamondH ′(A1,A′
2,B1,B2), whereA′

2 = {a2,u}. The side-2-paths ofH ′ have fewer nodes

in common than the side-2-paths ofH, contradicting our choice ofH. Soy 6= a2. Then

v = ya2 and by Lemma 4.3.1 applied toΣ1, N(u)∩H = {v,v1,v2}. But then(H \yb2)∪u

contains a connected diamond whose two side-2-paths have fewer nodes in common than

the side-2-paths ofH, contradicting our assumption.

So w.l.o.gv = yb2. Since there is no bug with a center-crosspath,yb2 is not an edge.

Suppose thatv1v2 = a1a2. Then by Lemma 4.3.1 applied toΣ1, N(u)∩Pa′1b′1
= a′1, and

henceN(u)∩H = {a1,a′1,a2,yb2}. Note thatya2 is not an edge, else{y,a2,u,yb2} induces

a 4-hole. So(H \Pa2y)∪ {y,u} induces a connected diamondH ′(A1,A′
2,B1,B2) where

A′
2 = {u}. Sinceya2 is not an edge, the two side-2-paths ofH ′ have fewer nodes in

common that the two side-2-paths ofH, contradicting our assumption. Sov1v2 6= a1a2.

Suppose thatv1v2 is an edge ofPa1b1. Then, by Lemma 4.3.1 applied toΣ1, N(u)∩

Pa′1b′1
= ∅ andv is adjacent tob2. So yb2b2 is an edge. Nodey is not adjacent tob′2,

otherwise{y,yb2,b2,b′2} induces a 4-hole. But thenPa1b1 ∪Pa′1b′1
∪ (Pa2b2 \ b2)∪{u,b′2}

induces a 3PC(a1a′1a2,uv1v2) or a 4-wheel with centera1. So v1v2 is not an edge of
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Pa1b1. Then by Lemma 4.3.1 applied toΣ′, N(u)∩H = {v,v1,v2}. Note that since neither

{u,yb2,y,v1} nor {u,yb2,y,v2} can induce a 4-hole, neitherv1y nor v2y is an edge. If

v1v2 is an edge ofPb′2y, thenu is an H2-crossing w.r.t. H. So assume thatv1v2 is an

edge ofPa2y. Let v1 be the neighbor ofu in Pa2y that is closer toa2, and letP be the

a2v1-subpath ofPa2y. ThenP∪Pa1b1 ∪Pb2y∪Pb′2y∪Pa′1b′1
∪u induces a connected diamond

H ′(A1,A2,B1,B2). Sincev2y is not an edge, the two side-2-paths ofH ′ have fewer nodes

in common than the two side-2-paths ofH, contradicting our assumption. 2

The following three remarks follow from Lemma 5.2.1.

Remark 5.2.2 Let H(A1,A2,B1,B2) be a short connected diamond of G, and let u∈

G\H. If |N(u)∩A| ≥ 2 and|N(u)∩B| ≥ 2, then u is of type s3 or s4 w.r.t. H.

Remark 5.2.3 Let H(A1,A2,B1,B2) be a short connected diamond of G. Let v∈ A∪

B∪{y} and let u be a pseudo-twin of v w.r.t. H. Then(H \ {v})∪{u} contains a short

connected diamond H′ that contains((A∪B∪{y})\{v})∪{u}. We say that H′ is obtained

by substitutingu into H.

Remark 5.2.4 Let H(A1,A2,B1,B2) be a short connected diamond of G. If u is of type p3

w.r.t. H, then H∪u contains a short connected diamond H′(A1,A2,B1,B2) that contains

u. We say that H′ is obtained by substitutingu into H.

We first prove a usefull lemma about paths that connectH1 to H2, and then show that

if there is a node of type s1, s2, s3 or s4 w.r.t.H, then there is a star cutset.

Lemma 5.2.5 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let H(A1,A2,B1,B2) be a short connected diamond of G. Let P= p1, ..., pk, k > 1, be a

chordless path in G\H such that∅ 6= N(p1)∩H ⊆ H1, ∅ 6= N(pk)∩H ⊆ H2, and no

intermediate node of P has a neighbor in H. Then P is one of the following types:

(i) N(p1)∩H = b1 or b′1, and pk is of type B2 w.r.t. H.

(ii) p1 is of type p2 w.r.t. H with neighbors in Pa1b1 or Pa′1b′1
, and pk is of type B2 w.r.t.

H.

(iii) p1 is of type A1 and pk is of type p2 w.r.t. H and the following holds. If|A1| = 1,

then a2 6= y and N(pk) ⊆ Pa2y. If |A2| = 2, then N(pk) ⊆ Pa2b2 or Pa′2b′2
.

(iv) p1 is of type A1 and N(pk)∩H = a2 or a′2.

(v) p1 is of type A1 and pk is of type d w.r.t. H such that N(pk)∩H = {y,yb2,yb′2
}.
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Figure 5.2: Nodes adjacent to a connected diamond.
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Figure 5.5: Nodes adjacent to a connected diamond that lead to star cutsets.

Proof: AssumeG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.3.4, 4.3.5

and 4.3.6,G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·)

with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.

By definition ofP and Lemma 5.2.1, the following hold.

(1) p1 is of type p1, p2, p3,A1, or H1-crossing w.r.t.H.

(2) pk is of type p1, p2, p3, d,B2, s2 orH2-crossing w.r.t.H, or y /∈ {a1,a2} andpk is

a pseudo-twin ofy w.r.t. H.

By (1) we consider the following cases.

Case 1:p1 is of type p1 w.r.t.H.

W.l.o.g. p1 is adjacent to a nodev of Pa1b1. Let R1 (resp.R2) be the subpath ofPa1b1

with one endnodea1 (resp.b1) and the otherv.

Suppose thatpk is of type p1 w.r.t.H. W.l.o.g. pk is adjacent to a node ofPa2b2. Then

eitherP is a hat ofΣ1 (in the case where bothp1a1 andpka2 are edges), orP is a hat ofΣ
(in the case where bothp1b1 andpkb2 are edges), orP∪Pa1b1 ∪Pa2b2 induces a 3PC(·, ·).

Suppose thatpk is of type p3 w.r.t.H, and letH ′(A1,A2,B1,B2) be the short connected

diamond obtained by substitutingpk into H. If k = 2, thenH ′ andp1 contradict Lemma

5.2.1. Sok > 2, and hencepk−1 is of type p1 w.r.t.H ′ and a contradiction is obtained in

the same way as in the previous paragraph.
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Suppose thatpk is of type p2 w.r.t.H. W.l.o.g.N(pk)∩H ⊆ Pa2b2. Let H ′ be the hole

induced byPa2b2 ∪Pa1b1. ThenP andPa′1b′1
are crossing appendices ofH ′, and hence by

Lemma 4.1.2,v= b1. If |A2|= 2, thenH2∪P∪a′1 induces a 3PC(∆,∆) or a 4-wheel with

centerb2. So |A2| = 1. If N(pk)∩H ⊆ Pb2y, thenPb2y∪Pb′2y∪P induces a 3PC(∆,∆) or

a 4-wheel with centerb2. SoN(pk)∩H ⊆ Pa2y. But then(H \ (Pa1b1 \b1))∪P induces

a connected diamond whose side-2-paths have fewer nodes in common than the side-2-

paths ofH, a contradiction.

Suppose thatpk is of type d w.r.t.H. So|A2| = 1. SupposeN(pk)∩H = {y,yb2,yb′2
}.

Let H ′ be the hole induced byPa1b1 ∪Pa2b2. ThenP andPa′1b′1
are crossing appendices of

H ′, and hence by Lemma 4.1.2,v = b1. Suppose one of{yb2,yb′2} is an edge, w.l.o.g.

say yb2 ∈ E(G). ThenP∪Pa2b2 ∪Pa′1b′1
∪ {b1,b′2} induces a proper wheel with center

b2. So bothyb2 andyb′2 are not edges. But thenP∪H2∪Pa′1b′1
∪b1 induces a connected

diamondH ′(A′
1,A

′
2,B1,B2), whereA′

1 = {pk,y}, andA′
2 = {yb2,yb′2

}, and the two side-2-

paths ofH ′ have fewer nodes in common than the two side-2-paths ofH, contradicting

our assumption. So w.l.o.g.N(pk)∩H = {y,ya2,yb2}. But thenP∪Pa1b1 ∪ (Pa2b2 \ y)

induces a 3PC(pk,v).

Suppose thatpk is of type s2 w.r.t.H or y /∈ {a1,a2} andpk is pseudo-twin ofy w.r.t.

H. Thenpk has two nonadjacent neighbors inPa2b2. But thenPa1b1 ∪Pa2b2 ∪P contains a

3PC(pk,v).

Suppose thatpk is anH2-crossing w.r.t.H. First assume that|A2| = 2. W.l.o.g. pk

is adjacent toa2. Let v′ be the neighbor ofpk in Pa′2b′2
that is closer toa′2, and letR be

thev′a′2-subpath ofPa′2b′2
. ThenR∪P∪R1∪a2 induces a 3PC(pk,a1). So |A2| = 1. Let

H ′ be the hole induced byPyb2 ∪Pyb′2
. If either v 6= a1 or y 6= a2, then(H ′, pk) is a bug

andR2 ∪ (P\ pk) induces its center-crosspath or an ear, contradiction our assumption.

So v = a1 andy = a2. W.l.o.g. pkyb2 is an edge, and hencePyb2 ∪Pa1b1 ∪P induces a

3PC(v,yb2).

So pk must be of typeB2 w.r.t. H. If v 6= b1, thenΣ, pk and p1, ..., pk−1 contradict

Lemma 4.5.2. Sov = b1, and hence (i) holds.

Case 2:p1 is anH1-crossing w.r.t.H.

W.l.o.g. p1 is adjacent tob′1. Let R be the shortest subpath ofPa1b1 with one endnode

b1 and the other adjacent top1. If pk is adjacent tob2, thenP∪R∪{b2,b′1} induces a

3PC(p1,b2). If pk is adjacent tob′2, thenP∪R∪{b′2,b
′
1} induces a 3PC(p1,b′2). So neither

pkb2 nor pkb′2 is an edge, and hencepk has a neighbor inH2\{b2,b′2}. By Lemma 4.5.1

applied toΣ′, p1 andP\ p1, |A2| = 1 and the following holds. Nodepk is either of type

p2 w.r.t. H with neighbors contained inPa2y or of type d adjacent to{y,yb2,yb′2
}. But then
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in both casesPa1b1 ∪Pa2b2 ∪P induces a 3PC(∆,∆).

Case 3:p1 is of typeA1 w.r.t. H.

Note that if|A2|= 2, thenpk cannot be adjacent to botha2 anda′2 (else{pk,a2,a′2,a
′
1}

induces a 4-hole). Supose (iv) does not hold. Thenpk has a neighbor inH2 \ {a2,a′2}.

By symmetry, w.l.o.g.N(pk)∩ (Pa2b2 \a2) 6= ∅. By Lemma 4.5.2 applied toΣ1, p1 and

P\ p1, pk is of type p2 w.r.t.Σ1 with neighbors inPa2b2. So by (2),pk is of type p2 or

d w.r.t. H or |A2| = 1 andpk is anH2-crossing w.r.t.H. If pk is anH2-crossing w.r.t.

H, thenΣ2, p1 andP\ p1 contradict Lemma 4.5.2. Suppose thatpk is of type d w.r.t.

H. By Lemma 4.5.2 applied toΣ2, p1 and P\ p1, pk is of type p2 w.r.t. Σ2. Hence

N(pk)∩H = {y,yb2,yb′2
} and so (v) holds. Finally suppose thatpk is of type p2 w.r.t.H.

If |A2| = 2, then (iii) holds. So assume that|A2| = 1. Suppose thaty = a2. If pk is not

adjacent toy, then(H \ yb2)∪P contains a connected diamondH ′(A1,A′
2,B1,B2), where

A′
2 = {a2, p1}, and the side-2-paths ofH ′ have fewer nodes is common than the side-2-

paths ofH, contradicting our assumption. Sopk is adjacent toy and hencePa1b1∪Pa2b2∪P

induces a bug with centera2, andPa2b′2
\a2 is its center-crosspath. Soy 6= a2. Suppose

thatN(pk)∩H ⊆ Pb2y. If pk is adjacent toy, thenΣ2 andP contradict Lemma 4.5.2. Sopk

is not adjacent toy. Then(H \yb2)∪P contains a connected diamondH ′(A1,A′
2,B1,B2),

whereA′
2 = {a2, p1}, and the side-2-paths ofH ′ have fewer nodes in common than the

side-2-paths ofH, contradicting our assumption. SoN(pk)∩H ⊆ Pa2y and hence (iii)

holds.

Case 4:p1 is of type p2 w.r.t.H.

W.l.o.g.N(p1)∩H ⊆ Pa1b1.

Suppose thatpk is of type p1, p2 or p3 w.r.t.H. Then w.l.o.g.N(pk)∩H ⊆ Pa2b2.

Let H ′ be the hole induced byPa1b1 ∪Pa2b2. Note thatPa′1b′1
is an appendix ofH ′ with

node-attachmentb2 and edge-attachmenta1a2. By Lemma 4.1.1 applied toH ′, Pa′1b′1
and

P, one of the following must hold:pk is adjacent tob2 or N(pk)∩H = a2 or N(pk)∩H =

vb2. If N(pk)∩H = a2, thenΣ1, pk andP\ pk contradict Lemma 4.5.1. Suppose that

N(pk)∩H = vb2. Let R be a shortest subpath ofPa1b1 whose one endnode isb1 and the

other is a neighbor ofp1 in Pa1b1. If |A2| = 2, or |A2| = 1 andyb′2 is not an edge, then

Pa2b2 ∪Pa′1b′1
∪P∪R∪b′2 induces a 4-wheel with centerb2. So|A2|= 1 andyb′2 is an edge.

Thenyb2 is not an edge, i.e.vb2 6= y, and since{b2,b′2,y,vb2} cannot induce a 4-hole,vb2y

is not an edge. But thenPa2b2 ∪ (Pa1b1 \b1)∪P∪b′2 contains a 3PC(vb2,y). Thereforepk

must be adjacent tob2. If pk is of type p1 w.r.t.H, thenΣ, pk andP\ pk contradict Lemma

4.5.1. If pk is of type p2 w.r.t.H, thenH ′∪P induces a 3PC(∆,∆). So pk is of type p3

w.r.t. H. Let H ′(A1,A2,B1,B2) be the short connected diamond obtained by substituing
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pk into H. By Lemma 5.2.1 applied toH ′ and p1, k > 2. But nowP\ pk is a path such

thatpk is of type p2 w.r.t.H ′, pk−1 is of type p1 w.r.t.H ′, and we have already shown that

this cannot happen. Sopk cannot be of type p1, p2 nor p3 w.r.t.H.

Suppose thatpk is of type d w.r.t. H. W.l.o.g. pk is adjacent toyb′2
, and hence

P∪Pa1b1 ∪Pa2b2 induces a 3PC(∆,∆). Sopk cannot be of type d w.r.t.H.

Suppose thaty /∈ {a1,a2} and pk is a pseudo-twin ofy w.r.t. H. Then w.l.o.g.pk is

not adjacent tob2. Let H ′ be the hole contained inPa1b1 ∪ (Pa2b2 \y)∪ pk. ThenH ′, Pa′1b′1
andP\ pk contradict Lemma 4.1.2. Sopk cannot be a pseudo-twin ofy w.r.t. H.

If pk is of type s2 w.r.t.H, then(H ′, pk) is a bug, whereH ′ is the hole induced by

Pa1b1 ∪Pa2b2, andP\ pk is its center-crosspath, a contradiction. Sopk cannot be of type s2

w.r.t. H.

Suppose thatpk is anH2-crossing w.r.t.H. If |A2| = 2, then w.l.o.g.pk is adjacent

to a2, and henceΣ1, pk andP\ pk contradict Lemma 4.5.1. So|A2| = 1. Let H ′ be the

hole induced byPyb2 ∪Pyb′2
. Then(H ′, pk) is a bug, and the path frompk−1 to b1 in the

graph induced by(P\ pk)∪ (Pa1b1 \a1) is its center-crosspath or ear, a contradiction. So

pk cannot be anH2-crossing w.r.t.H. Therefore by (2),pk is of typeB2 w.r.t. H, and

hence (ii) holds.

Case 5:p1 is of type p3 w.r.t.H .

Let H ′(A1,A2,B1,B2) be the short connected diamond obtained by substitutingp1 into

H. If k> 2, thenp2 is of type p1 w.r.t.H ′ and it is not adjacent tob1 norb′1, and we obtain

a contradiction as in Case 1. Sok= 2. But then by (2),p2 andH ′ contradict Lemma 5.2.1.

2
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a′1
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Figure 5.6: Paths from Lemma 5.2.5.

Lemma 5.2.6 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let H(A1,A2,B1,B2) be a short connected diamond of G. Then no node of G\H is of type

s1 w.r.t. H.
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Proof: AssumeG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.3.4, 4.3.5

and 4.3.6G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(∆, ·)

with a hat, a bug with an ear, nor a 3PC(∆, ·) with a type s2 node.

Assume that the lemma does not hold. By symmetry we may assumethat there is a

nodeu that is of type s1 w.r.t.H, adjacent tob′2. Then the second neighbor ofu in H

is eitherb1 or b′1. Let S= N[b2] \ vb2. SinceS is not a star cutset, there exists a direct

connectionP = p1, ..., pk in G\S from u to H \S. We may assume w.l.o.g. thatH, u and

P are chosen so that|P| is minimized. Note thatpk has a neighbor inH \Sand the only

nodes ofH that may have a neighbor inP\ pk areb1, b′2 andb′1.

So if a node ofP\ pk has a neighbor inH, then it is either not strongly adjacent toH

or by Lemma 5.2.1 it is of type s1 w.r.t.H adjacent tob′2. In fact, by the choice ofH, u

andP, no node ofP\ pk can be of type s1 w.r.t.H. So nodes ofP\ pk are not strongly

adjacent toH.

We may assume w.l.o.g. thatN(u)∩H = {b′2,b
′
1}.

Claim 1: pk is of type p1, p2, A1, A, a, s1 (with neighbors in A), t3 (with neighbors in A),

d, Ad, H1-crossing or H2-crossing w.r.t. H.

Proof of Claim 1:Sincepk has a neighbor inH \S, it cannot be of type s1 w.r.t.H with

neighbors inB. Sincepk is not adjacent tob2, nodepk cannot be of type B, B2, t3 (with

neighbors inB), s2, s3 nor s4 w.r.t.H, nor a pseudo-twin of a node ofB w.r.t. H.

Suppose thatpk is of type p3 w.r.t. H, and letH ′ be the short connected diamond

obtained by substitutingpk into H. By Lemma 5.2.1 applied toH ′ andu, k > 1, and

henceH ′, u andP\ pk contradict our choice ofH, u andP. So pk is not of type p3 w.r.t.

H.

Suppose thatpk is a pseudo-twin of a node ofA∪y w.r.t. H, and letH ′ be the short

connected diamond obtained by substitutingpk into H. By Lemma 5.2.1 applied toH ′

andu, k > 1, and henceH ′, u andP\ pk contradict our choice ofH, u andP. Sopk is not

a pseudo-twin of a node ofA∪y w.r.t. H. Now by Lemma 5.2.1, the proof of Claim 1 is

complete.

We now consider the following two cases.

Case 1:A node ofP\ pk has a neighbor inH.

Recall that fori < k, N(pi)∩H ⊆ {b1,b′1,b
′
2} and|N(pi)∩H| ≤ 1. Let pi (resp. p j )

be a node ofP\ pk with lowest (resp. highest) index that has a neighbor inH. Nodepi is

not adjacent tob1, since otherwiseu, p1, ..., pi is a hat ofΣ. So pi is adjacent tob′1 or b′2.
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If there are two distinct nodes of{b1,b′2,b
′
1} that have a neighbor inP\ pk, then a subpath

of P\ pk is a hat ofΣ or Σ′. So eitherb′1 or b′2 is the only node ofH that has a neighbor in

P\ pk.

Case 1.1:b′1 is the only node ofH that has a neighbor inP\ pk.

By definition ofSand Lemma 5.2.5 applied toH andp j , ..., pk, nodepk must have a

neighbor inH1. In particular,pk cannot be of type d nor anH2-crossing w.r.t.H.

Suppose thatpk is anH1-crossing w.r.t.H. If pk is adjacent tob′1 then(Pa1b1 \a1)∪

P∪{u,b′1,b
′
2} contains a proper wheel with centerb′1. So pk is adjacent tob1. But then

(Pa′1b′1
\a′1)∪{b′2,b1, p j , ..., pk} contains a 3PC(b′1, pk). Sopk is not anH1-crossing w.r.t.

H.

If pk is of type A orA1 w.r.t. H, thenΣ,u andP contradict Lemma 4.5.1.

If pk is of type a w.r.t.H, then by Lemma 4.5.1 applied toΣ, u andP, N(pk)∩H =

{a′1,a2}, y = a2 andyb′2 is an edge. But thenΣ1, pk and p j , ..., pk−1 contradict Lemma

4.5.2.

If pk is of type s1 w.r.t.H, thenΣ, b′1 andp j , ..., pk contradict Lemma 4.5.2.

Suppose thatpk is of type t3 w.r.t. H. If N(pk)∩H = {a1,a′1,a
′
2} thenΣ′, p j and

p j+1, ..., pk contradict Lemma 4.5.1. SoN(pk)∩H = {a1,a′1,a2}, and henceΣ,u andP

contradict Lemma 4.5.1. Thereforepk is not of type t3 w.r.t.H.

If pk is of type Ad w.r.t.H, thenΣ′, p j andp j+1, ..., pk contradict Lemma 4.5.1.

So by Claim 1,pk is of type p1 or p2 w.r.t.H, and sincepk must have a neighbor in

H1, N(pk)∩H ⊆ H1. If N(pk)∩H ⊆ Pa1b1, thenΣ,u andP contradict Lemma 4.5.1. So

N(pk)∩H ⊆ Pa′1b′1
. If |A2| = 2, thenPa2b2 ∪Pa′1b′1

∪P∪{u,b′2} contains a proper wheel

with centerb′1. So|A2| = 1. LetR be the chordless path fromp1 to a′1 in P∪ (Pa′1b′1
\b′1).

ThenΣ,u andRcontradict Lemma 4.5.1.

Case 1.2:b′2 is the only node ofH that has a neighbor inP\ pk.

By Lemma 5.2.5 applied toH andp j , ..., pk, nodepk must have a neighbor inH2. In

particular,pk is not anH1-crossing w.r.t.H.

If pk is of type t3,A1, A, s1 (adjacent toa1) or a (adjacent toa1) w.r.t. H, then

Pa1b1 ∪P∪{u,b2,b′1,b
′
2} induces a proper wheel with centerb′2. If pk is adjacent toa′1

and it is of type a or s1 w.r.t. H, thenPa1b1 ∪Pa′1b′1
∪{b′2, p j , ..., pk} induces a 3PC(b′2,a

′
1).

So pk is not of type t3,A1, A, s1 nor a w.r.t.H.

Suppose thatpk is of type Ad w.r.t. H. If pk is adjacent toyb′2
andyb′2

6= b′2, then

Σ, p j andp j+1, ..., pk contradict Lemma 4.5.1. Ifpk is adjacent toyb′2
andyb′2

= b′2, then

Pa′1b′1
∪P∪{b′2,u} induces a proper wheel with centerb′2. So pk is adjacent toyb2. Note

that by definition ofS, pk is not adjacent tob2. But thenPa1b1 ∪P∪{u,b2,b′1,b
′
2} contains
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a proper wheel with centerb′2. Sopk is not of type Ad w.r.t.H.

If pk is of type d w.r.t.H, then by Lemma 4.5.1 applied toΣ, p j andp j+1, ..., pk, either

N(pk)∩H = {y,ya2,yb2} or pk is adjacent tob′2. In the first caseP∪(Pb2y\y)∪{u,b′1,b
′
2}

induces a proper wheel with centerb′2. So pk is adjacent tob′2, and henceP∪Pb2y ∪

{u,b′1,b2} induces a proper wheel with centerb′2. Similarly, if pk is anH2-crossing w.r.t.

H, then eitherP∪(Pb2y\y)∪{u,b′1,b
′
2} (if |A2|= 1) orP∪Pa2b2 ∪{u,b′1,b

′
2} (if |A2|= 2)

contains a proper wheel with centerb′2.

So by Claim 1,pk is of type p1 or p2 w.r.t.H, and sincepk must have a neighbor in

H2, N(pk)∩H ⊆ H2.

By Lemma 4.5.1 applied toΣ, p j andp j+1, ..., pk, if |A2|= 2, thenN(pk)∩H ⊆ Pa′2b′2
,

and if |A2| = 1, thenN(pk)∩H ⊆ Pb′2y. If |A2| = 2, thenPa1b1 ∪Pa′2b′2
∪P∪ {b′1,b2,u}

contains a proper wheel with centerb′2, and if |A2| = 1, thenPb2y ∪Pb′2y ∪P∪ {u,b′1}

contains a proper wheel with centerb′2.

Case 2:No node ofP\ pk has a neighbor inH.

Supposepk is anH1-crossing w.r.t.H. If pk is adjacent tob1, thenP is hat ofΣ. Sopk

is adjacent tob′1. But thenΣ,u andP contradict Lemma 4.5.1. Sopk is not anH1-crossing

w.r.t. H.

If pk is of typeA1, t3, A, or Ad w.r.t. H, thenPa1b1 ∪P∪ {u,b2,b′1,b
′
2} induces a

proper wheel with centerb′2 (recall that by definition ofS, pk is not adjacent tob2).

If pk is of type a w.r.t.H, thenΣ′, u andP contradict Lemma 4.5.2. Sopk is not of

type a w.r.t.H.

Suppose thatpk is of type s1 w.r.t H. If pk is adjacent to a1, then

Pa1b1 ∪P∪{u,b2,b′1,b
′
2} induces a 4-wheel with centerb′2. So pk is adjacent toa′1. By

Lemma 4.5.1 applied toΣ,u andP, N(pk)∩H = {a′1,a
′
2}. But thenΣ′,u andP contradict

Lemma 4.5.2. Sopk is not of type s1 w.r.t.H.

Suppose thatpk is of type d w.r.t.H. By Lemma 4.5.2 applied toΣ′,u andP, N(pk)∩

H = {y,ya2,yb′2
} andyb′2

6= b′2. But thenΣ,u andP contradict Lemma 4.5.1. Sopk is not

of type d w.r.t.H.

If pk is anH2-crossing w.r.t.H, thenΣ′,u andP contradict Lemma 4.5.2.

So by Claim 1,pk is of type p1 or p2 w.r.t.H. If N(pk)∩H ⊆ Pa1b1, thenΣ,u andP

contradict Lemma 4.5.1. IfN(pk)∩H ⊆ Pa′1b′1
, thenΣ,u andR contradict Lemma 4.5.1,

whereR is the chordless path fromp1 to a′1 in P∪ (Pa′1b′1
\ b′1). So N(pk)∩H ⊆ H2.

If |A2| = 2, then by Lemma 4.5.1 applied toΣ,u andP, N(pk)∩H ⊆ Pa′2b′2
, and hence

Pa1b1 ∪Pa′2b′2
∪P∪{u,b2,b′1} contains a proper wheel with centerb′2. So |A2| = 1. By

Lemma 4.5.1 applied toΣ,u andP, N(pk)∩H ⊆ Pb′2y. But thenΣ′, u andP contradict
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Lemma 4.5.2. 2

Lemma 5.2.7 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let H(A1,A2,B1,B2) be a short connected diamond of G. Then no node of G\H is of type

s2 w.r.t. H.

Proof: Assume thatG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.3.4,

4.3.5 and 4.3.6G does not contain a proper wheel, a bug with a center-crosspath, a

3PC(∆, ·) with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.

Assume thatG has a nodeu of type s2 w.r.t.H. Let v1 andv2 be the neighbors ofu

in Pa2y, so thatv1 is closer toa2 on Pa2y. Let Pv2y (resp. Pa2v1) be thev2y-subpath (resp.

a2v1-subpath) ofPa2y. We chooseH and such a nodeu so that the length ofPv2y is shortest

possible. Note that sinceu is of type s2 w.r.t.H, |A2| = 1 and ify = v2, thenyb2 andyb′2
are not edges.

Let S= N[u] \ v1, and letP = p1, ..., pk be a direct connection fromH1∪ Pa2v1 to

H2\ (Pa2v1 ∪{v2,b2,b′2}) in G\S. So p1 has a neighbor inH1∪Pa2v1, pk in H2\ (Pa2v1 ∪

{v2,b2,b′2}), and the only nodes ofH that may have a neighbor inP\ {p1, pk} arev2,b2

andb′2. Subject to the previous choice ofH andu, we chooseH, u andP so that|P| is

minimized.

Claim 1: Node p1 is of type p1, p2, B, A, a, t3 (with neighbors in B), s2 (with neighbors

contained in B2∪ (Pa2v1 \ v1)), s3 or s4 w.r.t. H. Node pk is of type p1, p2, d or an H2-

crossing w.r.t. H. Furthermore if pk is of type d w.r.t. H, then pk is not adjacent to v1. In

particular, N(p1)∩H = {v1,v2} or N(p1)∩H ⊆ H1∪Pa2v1 ∪B2, N(pk)∩H ⊆ H2\Pa2v1

and k> 1.

Proof of Claim 1:Since|A2| = 1, no node ofG is of type t3 (with neighbors inA) w.r.t.

H. Sincey 6= a2, no node is of type Ad w.r.t.H. By Lemma 5.2.6 no node is of type s1

w.r.t. H.

Suppose thatp1 is a pseudo-twin of a node ofB1, and letH ′ be the short connected

diamond obtained by substitutingp1 into H. ThenH ′,u andP\ p1 contradict our choice

of H, u andP. So no node ofP is a pseudo-twin of a node ofB1 w.r.t. H. By analogous

argument no node ofP is a pseudo-twin of a node ofA1 w.r.t. H.

Suppose thatp1 is a pseudo-twin of a node ofB2 w.r.t. H, and letH ′ be the short

connected diamond obtained by substitutingp1 into H. Recall that ifv2 = y, thenyb2

andyb′2 are not edges, and henceu cannot be of type d w.r.t.H ′. SoH ′ andu contradict

Lemma 5.2.1. So no node ofP is a pseudo-twin of a node ofB2 w.r.t. H.
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Suppose thatpi , i ∈ {1,k}, is of type p3 w.r.t.H, and letH ′ be the short connected

diamond obtained by substitutingpi into H. If N(pi)∩H ⊆ H1∪Pa2v1, then i = 1 and

henceH ′, u andP\ p1 contradict our choice ofH, u andP. A contradiction is obtained

by analogous argument ifN(pi)∩H ⊆ Pb2y∪Pb′2y∪Pv2y. SoN(pi)∩H ⊆ Pa2y andpi has

a neighbor in bothPa2v1 andPv2y. HenceN(pi)∩H induces a path of length 2, i.e.pi

is a twin w.r.t. H of a nodev ∈ Pa2y. Sincepi has a neighbor in bothPa2v1 andPv2y,

v∈ {v1,v2}, and henceH ′ andu contradict Lemma 5.2.1 (recall that by definition ofS, pi

is not adjacent tou). Therefore no node ofP is of type p3 w.r.t.H.

Suppose thatp1 is a pseudo-twin ofa2 w.r.t. H, and letH ′ be the short connected

diamond obtained by substitutingp1 into H. Note that sincea2 6= y, N(p1)∩H = A∪va2.

If v1 6= a2, thenH ′, u andP\ p1 contradict our choice ofH, u andP. Sov1 = a2, and

henceH ′ andu contradict Lemma 5.2.1. So no node ofP is a pseudo-twin ofa2 w.r.t. H.

Suppose thatpk is a pseudo-twin ofy w.r.t. H. Note thatpk is adjacent toya2. Let

H ′ be the short connected diamond obtained by substitutingpk into H. If v1 6= ya2, then

k > 1 and henceH ′, u andP\ pk contradict our choice ofH, u andP. Sov1 = ya2, and

henceH ′ andu contradict Lemma 5.2.1. So no node ofP is a pseudo-twin ofy w.r.t. H.

Suppose thatp1 is of typeA1 or H1-crossing w.r.t.H. Let pi be the node ofP\ p1

with lowest index adjacent to a node ofH2. Note thatN(p1)∩H ⊆ H1 andN(pi)∩H ⊆

H2. By Lemma 5.2.5 applied toH and p1, ..., pi, nodep1 is of type A1 w.r.t. H and

pi is either of type p2 w.r.t.H andN(pi)∩H ⊆ Pa2y, or of type d w.r.t. H such that

N(pi)∩H = {y,yb2,yb′2
}. In fact, sincei 6= 1, i = k and henceN(pk)∩H ⊆Pv2y∪{yb2,yb′2

}.

In particular, no node ofH has a neighbor inP\{p1, pk}. Let H ′ be the hole induced by

Pa1b1 ∪Pa2b2. Note thatu andP are appendices ofH ′ that contradict Lemma 4.1.1. So no

node ofP is of typeA1 norH1-crossing w.r.t.H.

So by Lemma 5.2.1, nodes ofP are of type p1, p2, A, B,B2, a, d, t3 (with neighbors

in B), s2, s3, s4 orH2-crossing w.r.t.H. By definition ofP, p1 andpk are not of typeB2

w.r.t. H. Suppose that a nodepi of P is of type s2 w.r.t.H. Then by the choice ofu,

N(pi)∩Pa2y ⊆ Pa2v1 ∪ v2. Since{u, pi,b2,v1} and{u, pi ,b2,v2} cannot induce 4-holes,

N(pi)∩Pa2y ⊆ Pa2v1 \v1. In particular,i = 1 andk > 1. Suppose thatpi is of type d w.r.t.

H. Theni = k. If pk is adjacent tov1, thenv2 = y and w.l.o.g.N(pk)∩H = {y,ya2,yb2},

and hencePb2y∪{u,ya2, pk} induces a 4-wheel with centery. Sopk is not adjacent tov1,

and hencek > 1. This completes the proof of Claim 1.

Claim 2: Node v2 does not have a neighbor in P\{p1, pk}. In particular, for i= 2, ..,k−1,

N(pi)∩H ⊆ B2.
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Proof of Claim 2:Suppose thatv2 has neighbor inP\{p1, pk}. We first show that no node

of B2 has a neighbor inP\{p1, pk}. Assume it does. Then there is a minimal subpathP′

of P\{p1, pk} such that one endnode ofP′ is adjacent tov2 and the other to a node ofB2.

W.l.o.g. b2 is adjacent to an endnode ofP′. By minimality of P′, b2,P′,v2 is a chordless

path, and hencePb2y∪Pv2y∪P′∪u induces a 3PC(b2,v2) (recall that ify = v2, thenyb2 is

not an edge). So no node ofB2 has a neighbor inP\{p1, pk}.

Let pi be the node ofP\{p1, pk} with lowest index adjacent tov2. If N(p1)∩H ⊆H1,

thenH andp1, ..., pi contradict Lemma 5.2.5. Sop1 has a neighbor inPa2v1. LetH ′ be the

hole induced byPa2b2 ∪Pa1b1. Then(H ′,u) is a bug. IfN(p1)∩H = v1, thenp1, ..., pi is a

hat of(H ′,u). SoN(p1)∩H 6= v1.

Suppose thatN(p1)∩H = {v1,v2}. By Claim 1 and definition ofP, w.l.o.g. pk has a

neighbor in(Pv2y∪Pb2y)\v2. Let P′ be the chordless path frompk to b2 in ((Pv2y∪Pb2y)\

v2)∪ pk. Note that by Claim 1,pk is not adjacent tov1, and henceP′ ∪P∪ {u,v1,v2}

induces a proper wheel with centerv2. SoN(p1)∩H 6= {v1,v2}.

Thereforep1 has a neighbor inH1 ∪ (Pa2v1 \ v1). W.l.o.g. p1 has a neighbor in

Pa1b1 ∪ (Pa2v1 \ v1) and if p1 is of type t3 w.r.t.H, then it is adjacent tob1. Let H ′ be the

hole induced byPa1b1 ∪Pa2b2. Then (H ′,u) is a bug, and by Claim 1,(H ′,u), pi and

p1, ..., pi−1 contradict Lemma 4.5.1. This completes the proof of Claim 2.

We now consider the following cases.

Case 1:A node ofH has a neighbor inP\{p1, pk}.

Let pi be such a neighbor with highest index. By Claim 2,N(pi)∩H ⊆ B2. W.l.o.g.

it suffices to consider the following two cases.

Case 1.1:pi is of typeB2 w.r.t. H.

Note that by definition ofP, pk has a neighbor inΣ \ {b2,b′2,b1}. By Claim 1 and

Lemma 4.5.2 applied toΣ, pi andpi+1, ..., pk one of the following holds:

(a) pk is of type d w.r.t.H , N(pk)∩H = {y,yb2,yb′2
}, yb2 6= b2 andyb′2

6= b′2,

(b) w.l.o.g.yb2 is an edge andN(pk)∩H = vb′2
, or

(c) pk is of type p2 w.r.t.H andN(pk)∩H ⊆ Pv2y.

If (a) or (c) holds, then(H \Pa1b1)∪{pi, ..., pk} induces a connected diamond whose

side-2-paths have fewer nodes in common than the side-2-paths ofH, contradicting our

choice ofH. So (b) must hold, and henceyb′2 andyu are not edges. LetP′ be a chordless

path fromp1 to y in H1∪Pa2y∪ p1, and letH ′ be the hole induced byP′∪P∪ (Pb′2y\b′2).
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SinceH ′ ∪ b′2 cannot induce a 3PC(pi,vb′2
), (H ′,b′2) is a wheel. Sincevb′2

pi is not an

edge,(H ′,b′2) cannot be a twin wheel, and hence it is a bug. IfH ′ contains bothv1 and

v2, thenu is a center-crosspath of(H ′,b′2). SoH ′ does not contain bothv1 andv2. By

Claim 1 and definition ofP it follows thatN(p1)∩H = {v1,v2}. But thenPa′1b′1
∪Pa2v1 is

a center-crosspath of(H ′,b′2).

Case 1.2:N(pi)∩H = b′2.

As before,pk has a neighbor inΣ\{b2,b′2,b1}. By Claim 1 and Lemma 4.5.1 applied

to Σ, pi andpi+1, ..., pk one of the following holds:

(a) N(pk)∩H = vb′2
,

(b) pk is of type p2 w.r.t.H andN(pk)∩H ⊆ Pb′2y,

(c) pk is of type d w.r.t.H and eitherN(pk)∩H = {y,yb2,ya2} or pk is adjacent tob′2,

or

(d) pk is anH2-crossing w.r.t.H andN(pk)∩H = {b′2,vb′2
,yb2}.

Let P′ be a chordless path fromp1 to y in H1∪Pa2y∪ p1. Suppose that (a) holds. Let

H ′ be the hole induced byP′∪P∪(Pb′2y\b′2). SinceH ′∪b′2 cannot induce a 3PC(vb′2
, pi),

(H ′,b′2) is a wheel, and hence it must be a bug. IfH ′ contains bothv1 andv2, thenu is

a center-crosspath of(H ′,b′2). SoH ′ does not contain bothv1 andv2. By Claim 1 and

definition of P it follows that N(p1)∩H = {v1,v2}. But thenPa′1b′1
∪Pa2v1 is a center-

crosspath of(H ′,b′2).

Suppose that (b) holds. Ifpk is not adjacent tob′2, then(H \vb′2
)∪{pi , ..., pk} contains

a short connected diamondH ′(A1,A2,B1,B2) and H ′,u and p1, ..., pi−1 contradict our

choice ofH ′,u and P. So pk is adjacent tob′2. Let H ′ be the hole induced byP′ ∪

P∪ (Pb′2y \ b′2). Since(H ′,b′2) cannot be a proper wheel,N(b′2)∩H ′ = {pi , pk,vb′2
}. In

particular,b′2 is not adjacent top1, and hence by Claim 1,b2 is not adjacent top1. Also

H ′ does not containb1 nor b′1. If b2 has a neighbor inP\ {p1, pk}, then a subpath of

P\ {p1, pk} is a hat ofΣ. Sob2 has no neighbor inP. Sinceb2 andb′2 are not adjacent

to p1, by Claim 1,p1 is of type p1, p2, A or a w.r.t.H. SinceH ′ does not containb1 nor

b′1, N(p1)∩H 6= b1 norb′1. In particularp1 has a neighbor in w.l.o.g.Σ\{b2,b′2,b1}. But

thenΣ, pi andp1, ..., pi−1 contradict Lemma 4.5.1.

Suppose that (c) holds. First assume thatN(pk)∩H = {y,yb2,ya2}. Then(H \ (Pb′2y\

b′2))∪{pi , ..., pk} induces a short connected diamondH ′(A1,A2,B1,B2). By Claim 1,u

is of type s2 w.r.t.H ′, and henceH ′, u andp1, ..., pi−1 contradict our choice ofH, u and

P. Sopk must be adjacent tob′2, soyb′2 is an edge. Suppose thatN(pk)∩H = {y,b′2,yb2}.
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Let H ′ be the hole induced byP′ ∪P. Since{y, pk, pi} ⊆ N(b′2)∩H ′, (H ′,b′2) is a twin

wheel or a bug, i.e.N(b′2)∩H ′ = {y, pk, pi}. In particular,b′2 is not adjacent top1, and

hence by Claim 1,b2 is not adjacent top1. Also H ′ does not containb1 nor b′1. If b2

has a neighbor inP\ {p1, pk}, then a subpath ofP\ {p1, pk} is a hat ofΣ. So b2 has

no neighbor inP. Sinceb2 andb′2 are not adjacent top1, by Claim 1,p1 is of type p1,

p2, A or a w.r.t. H. SinceH ′ does not containb1 nor b′1, N(p1)∩H 6= b1 nor b′1. In

particular,p1 has a neighbor in w.l.o.g.Σ \ {b2,b′2,b1}. But thenΣ, pi and p1, ..., pi−1

contradicts Lemma 4.5.1. ThereforeN(pk)∩H = {y,b′2,ya2}. Sinceyb′2 is an edge,yb2

is not. Suppose thatN(p1)∩H is not contained in{v1,v2}. Then by Claim 1,p1 is

not adjacent tov2 andp1 has a neighbor inH1∪ (Pa2v1 \ v1). Let P′′ be a chordless path

from pi to b2 in H1 ∪ (Pa2v1 \ v1)∪ {p1, ..., pi,b2}, and letH ′′ be the hole induced by

P′′∪ (Pv2y \ y)∪{u, pi+1, . . . , pk}. Note thatb′2 is adjacent tob2,u, pi and pk, and hence

(H ′′,b′2) is a proper wheel, a contradiction. ThereforeN(p1)∩H ⊆ {v1,v2}, and hence

p1 is adjacent tov1. But thenPa′1b′1
∪Pa2v1 ∪{u, p1, . . . , pi ,b′2} contains a 3PC(b′2,v1).

So (d) must hold. Thenyb2 6= b2 and vb′2
6= y, and henceP′ ∪P∪ (Pb′2y \ b′2)∪ yb2

induces a 3PC(pk,y).

Case 2:No node ofH has a neighbor inP\{p1, pk}.

By Claim 1 it suffices to consider the following cases.

Case 2.1:p1 is of type p1 or p2 w.r.t.H.

By Claim 1,N(pk)∩H ⊆ H2. If N(p1)∩H ⊆ H1, thenH andP contradict Lemma

5.2.5. SoN(p1)∩H ⊆ Pa2v1 ∪v2.

First suppose thatp1 is not strongly adjacent toH, and letv be its neighbor inH.

By definition of P, v ∈ Pa2v1. Note that by Claim 1,pk is not adjacent tov1. W.l.o.g.

pk has a neighbor inPb2y ∪ (Pv2y \ v2). Let P′ be the chordless path frompk to b2 in

Pb2y∪ (Pv2y\ v2)∪ pk. ThenP′∪P∪Pa1b1 ∪Pa2v1 ∪u induces a 3PC(b2,v). Thereforep1

is of type p2 w.r.t.H.

Let H ′ (resp.H ′′) be the hole induced byPa2b2 ∪Pa1b1 (resp.Pa2b′2
∪Pa′1b′1

). If pk is of

type p2, d orH2-crossing w.r.t.H, then eitherH ′ ∪P or H ′′∪P induces a 3PC(∆,∆) or

a 4-wheel with centerv2. So by Claim 1,pk is not strongly adjacent toH. Let v be the

neighbor ofpk in H. W.l.o.g.v∈ (Pb2y∪Pv2y)\{b2,v2}. Recall that ify= v2 thenyb2 and

yb′2 are not edges, and hence(H ′,u) is a bug. IfN(p1)∩H = {v1,v2}, then bug(H ′,u),

p1 andP\ p1 contradict Lemma 4.5.2. SoN(p1)∩H ⊆ Pa2v1. By Lemma 4.1.1 applied

to H ′, u andP, v = vb2. By Lemma 4.1.1 applied toH ′′, u andP∪ (Pb2y \b2), yb′2 is an

edge. Hencevb2 6= y and since{b2,b′2,y,vb′2
} cannot induce a 4-hole,vb2y is not an edge.

But then(Pa2b2 ∪Pa2b′2
∪P)\a2 contains a 3PC(vb2,y).
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Case 2.2:p1 is of type B or t3 w.r.t.H.

W.l.o.g. p1 is adjacent tob1. By definition ofP, pk has a neighbor inΣ\{b2,b′2,b1},

and by Claim 1,pk is of type p1, p2, d or crosspath (in the case wherepk is anH2-crossing

w.r.t. H) w.r.t. Σ. By Lemma 4.5.3 applied toΣ, p1 andP\ p1, it follows that pk is not

strongly adjacent toΣ, and hence it is not strongly adjacent toH. Let v be the neighbor of

pk in H.

Suppose thatv∈ Pb′2y\b′2. If b2y is not an edge, thenPb2y∪Pv2y∪ (Pb′2y \b′2)∪P∪u

contains a 3PC(b2,y). Sob2y is an edge and hencev2 6= y. Let H ′ be the hole contained

in Pa1b1 ∪ (Pa2b′2
\b′2)∪P that containsPa1b1 ∪P. Then(H ′,b2) is a bug andu is its center-

crosspath. Sov /∈ Pb′2y\b′2.

Suppose thatv ∈ Pb2y \ {b2,y}. Let H ′ be the hole induced byPa1b1 ∪Pa2y∪P to-

gether with thevy-subpath ofPb2y. If b2v is not an edge, thenH ′ ∪ Pa′1b′1
induces a

3PC(b2b1p1,a′1a1a2). Sob2v is an edge, and hence(H ′,b2) is a bug andPa′1b′1
its center-

crosspath, a contradiction.

Thereforev ∈ Pv2y \ {v2,y}. But thenPa1b1 ∪P∪u together with thea2v-subpath of

Pa2y induces a 3PC(b1b2p1,v1uv2).

Case 2.3:p1 is of type A or a w.r.t.H.

W.l.o.g. p1 is adjacent toa′1. If p1 is not adjacent toa1, then by Claim 1, eitherΣ1, p1

andP\ p1 or Σ2, p1 andP\ p1 contradict Lemma 4.5.2. Sop1 is adjacent toa1. W.l.o.g.

pk has a neighbor in(Pv2y∪Pb′2y) \ {b′2,v2}. By Claim 1 and Lemma 4.5.3 applied toΣ2,

p1 andP\ p1, nodepk is not strongly adjacent toΣ2. Let v be the unique neighbor of

pk in Σ2. By our assumptionv ∈ (Pv2y∪Pb′2y) \ {b′2,v2}. If vb′2 is not an edge, then the

hole induced byPa′1b′1
∪Pa2b′2

and pathsu andP contradict Lemma 4.1.1. Sovb′2 is an

edge. Since{b2,b′2, pk,v} cannot induce a 4-hole,pk is not adjacent tob2. If yb2 is not

an edge, then(Pa2b′2
\b′2)∪Pa1b1 ∪P∪{u,b2} induces a 3PC(uv1v2,a1a2p1) or a 4-wheel

with centera2. Soyb2 is an edge, and henceyb′2 is not. Since{b2,b′2,v,y} cannot induce

a 4-hole,vy is not an edge. If follows by Claim 1 thatN(pk)∩H = v, and henceH2∪P

induces a 3PC(v,y).

Case 2.4:p1 is of type s2, s3 or s4 w.r.t.H.

If p1 is of type s3 we may assume w.l.o.g. thatp1 is adjacent toa′1. Let H ′ be the hole

induced byPa′1b′1
∪Pa2b′2

. Then(H ′, p1) is a bug such thatb′2 is the node-attachment ofp1

to H ′.

Suppose thatpk is not strongly adjacent toH, and letv be its neighbor inH. Then

v ∈ (Pb2y∪Pb′2y ∪Pv2y) \ {b2,b′2,v2}. If v ∈ (Pb′2y∪Pv2y) \ {b′2,v2}, thenPb′2y∪Pa2y∪P

contains a 3PC(p1,v). So v ∈ Pb2y \ {b2,y}, and hence thevy-subpath ofPb2y together
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with Pa2y∪Pb′2y∪P contains a 3PC(p1,y). Therefore,pk must be strongly adjacent toH.

Suppose thatpk is of type p2 w.r.t.H. If N(pk)∩H ⊆ Pv2y∪ (Pb′2y\b′2), thenp2, ..., pk

is a center-crosspath of(H ′, p1). If pk is adjacent tob′2, thenPb2y∪Pb′2y∪P induces a

4-wheel with centerb′2. So pk is not adjacent tob′2, and henceN(pk)∩H ⊆ Pb2y. Note

that p1 is not adjacent toy, and hence(H \ (H1∪b2))∪P contains a 3PC(p1,y). Sopk is

not of type p2 w.r.t.H.

Suppose thatpk is of type d w.r.t.H. First suppose thatpk is not adjacent tob′2. Then

N(pk)∩H = {y,ya2,yb′2
}, elsep2, ..., pk is a center-crosspath of(H ′, p1). If k > 2, then

P∪ (H \ (H1∪Pb2y)) contains a 3PC(p1, pk). Sok = 2, and hence(H ′ \ y)∪P induces a

a 4-wheel with centerp1. Thereforepk is adjacent tob′2. If pk is not adjacentyb2, then

Pb2y∪Pb′2y∪P induces a 4-wheel with centerb′2. Sopk is adjacent toyb2. Sinceyb′2 is an

edge,yb2 is not an edge, i.e.yb2 6= b2. SoPa1b1 ∪Pa2b2 ∪ p1 induces a bug with centerp1

andP\ p1 is its center-crosspath. Therefore,pk is not of type d w.r.t.H.

So by Claim 1,pk is anH2-crossing w.r.t.H. First suppose that|N(pk)∩Pb′2y| = 2.

Thenpkyb2 is an edge andyb2 6= b2. If eitherk > 2 or pkb′2 is not an edge, thenP\ p1 is

either a center-crosspath or an ear of(H ′, p1). Sok = 2 andpkb′2 is an edge. But then

Pa2b2 ∪P contains a 3PC(p1,yb2). Therefore|N(pk)∩Pb′2y| = 1, and hencepkyb′2
is an

edge,yb′2
6= b′2 and|N(pk)∩Pb2y| = 2. But thenPa2b′2

∪P contains a 3PC(p1,yb′2
). 2

Lemma 5.2.8 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let H(A1,A2,B1,B2) be a short connected diamond of G. Then no node of G\H is of type

s3 or s4 w.r.t. H.

Proof: Assume thatG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.3.4,

4.3.5 and 4.3.6G does not contain a proper wheel, a bug with a center-crosspath, a

3PC(∆, ·) with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.

Assume thatG has a nodeu of type s3 or s4 w.r.t.H. Then|A2|= 1, and ifu is of type

s4, thena2b2 anda2b′2 are not edges. LetS= N[u]\ (A1∪B1). SinceS is not a star cutset,

there exists a direct connectionP = p1, ..., pk from H1 to H2 \ {a2,b2,b′2} in G\S. So

p1 has a neighbor inH1, pk in H2\{a2,b2,b′2}, and the only nodes ofH that may have a

neighbor inP\{p1, pk} area2, b2 andb′2. We chooseH, u andP so that|P| is minimized.

Claim 1: No node of P is of type Ad w.r.t. H, nor a pseudo-twin w.r.t. H ofa node of

B2∪a2. In particular, k> 1.

Proof of Claim 1:By Lemma 5.2.1,k = 1 if and only if p1 is of type Ad w.r.t.H, or it

is a pseudo-twin w.r.t.H of a node ofB2∪a2. We now show that none of these types of

nodes can occur.
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Suppose thatp1 is of type Ad w.r.t. H. Thena2 = y and w.l.o.g. p1yb′2
is an edge.

If u is adjacent toa1, thenPa2b′2
∪{u,a1, p1} induces a 4-wheel with centera2. Sou is

not adjacent toa1, and henceN(u)∩H = {b1,b2,b′2,a
′
1,a2}. But thenPa2b′2

∪{u,a′1, p1}

induces a 4-wheel with centera2.

Suppose thatp1 is a pseudo-twin of a node ofB2 w.r.t. H. W.l.o.g. p1 is a pseudo-twin

of b2. Let H ′ be the short connected diamond obtained by substitutingp1 into H. Sinceu

is not adjacent top1, u cannot be of type s3 or s4 w.r.t.H ′, so by Remark 5.2.2 (applied

to H ′ andu), |N(u)∩{b1,b′1,b
′
2, p1}| ≤ 1. Sou is of type s4 w.r.t.H, and hencea2b2 and

a2b′2 are not edges. But thenH ′ andu contradict Lemma 5.2.1.

Finally suppose thatp1 is a pseudo-twin ofa2 w.r.t. H, and letH ′ be the short

connected diamond obtained by substitutingp1 into H. Sinceu is not adjacent top1, it

follows thatH ′ andu contradict Lemma 5.2.1. This completes the proof of Claim 1.

Claim 2: Node p1 is of type p1, p2, B, A1, A, a, t3 (with neighbors in B) or H1-crossing

w.r.t. H, and pk is of type p1, p2, d or H2-crossing w.r.t. H.

Proof of Claim 2:By Lemmas 5.2.6 and 5.2.7 no node is of type s1 nor s2 w.r.t.H. Since

{a2,b2,u, pi} cannot induce a 4-hole, no node ofP is of type s3 nor s4 w.r.t.H. Since

|A2| = 1, no node is of type t3 (with neighbors inA) w.r.t. H.

Suppose thatpk is a pseudo-twin ofy w.r.t. H in the casea2 6= y, and letH ′ be the

short connected diamond obtained by substitutingpk into H. Note thatu is of the same

type w.r.t.H ′ as it is w.r.t.H, and henceH ′, u andP\ pk contradict our choice ofH,u and

P. So no node ofP is a pseudo-twin ofy w.r.t. H in the casea2 6= y.

By analogous argument, no node ofP is of type p3 w.r.t.H.

Suppose thatp1 is a pseudo-twin w.r.t.H of a node ofA1∪B1 and letH ′ be the short

connected diamond obtained by substitutingp1 into H. By Lemma 5.2.1u is of the same

type w.r.t.H ′ as it is w.r.t.H, and henceH ′,u andP\ p1 contradict our choice ofH,u and

P. So no node ofP is a pseudo-twin w.r.t.H of a node ofA1∪B1.

By Claim 1, no node ofP is a pseudo-twin w.r.t.H of a node ofB2∪a2, nor of type

Ad w.r.t. H. By definition ofP, p1 andpk cannot be of typeB2 w.r.t. H. By Lemma 5.2.1,

the proof of Claim 2 is complete.

Claim 3: At most one of the node sets B2 or {a2} may have a neighbor in P\ {p1, pk}.

So, if a node pi ∈ P\{p1, pk} has a neighbor in H, then either pi is of type B2 w.r.t. H or

it is not strongly adjacent to H with a neighbor in{b2,b′2,a2}.

Proof of Claim 3:Sinceb2,b′2 anda2 are the only nodes ofH that may have a neighbor in
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P\{p1, pk}, by Lemma 5.2.1 ifpi ∈ P\{p1, pk} has a neighbor inH, thenpi is either of

typeB2 w.r.t. H or it is not strongly adjacent toH with a neighbor in{b2,b′2,a2}. Suppose

that botha2 and a node ofB2 have a neighbor inP\ {p1, pk}. Then there is a subpath

P′ of P\ {p1, pk} of length at least 1, whose one endnode is adjacent toa2, the other to

a node ofB2, w.l.o.g. say tob2, and no intermediate node ofP′ has a neighbor inH. If

a2b2 is not an edge, thenPa1b1 ∪P′∪Pa2b2 induces a 3PC(a2,b2). Soa2b2 is an edge, and

hence by definition of type s3 and s4 nodes w.r.t.H, N(u)∩H = B2∪{a2,a′1,b1}. Then

a2b′2 is not an edge.

Suppose thatb′2 has a neighbor inP\ {p1, pk}. Then there exists a minimal subpath

P′′ of P\ {p1, pk} such that one endnode ofP′′ is adjacent toa2, the other tob′2 and no

intermediate node ofP′′ has a neighbor inH \b2. But thenPa1b1 ∪Pa2b′2
∪P′′ induces a

3PC(a2,b′2). Sob′2 has no neighbor inP\{p1, pk}.

Sincea2b2 is an edge,pk cannot be anH2-crossing w.r.t.H. So by Claim 2,pk is of

type p1, p2 or d w.r.t.H. Note that sincea2 = y if pk is of type d w.r.t.H, N(pk)∩H =

{b2,y,yb′2
}. By definition ofP, if pk is of type p1 or p2 w.r.t.H, thenN(pk)∩H ⊆ Pa2b′2

andpk has a neighbor in the interior ofPa2b′2
.

Let pi (resp.p j ) be the node ofP\{p1, pk} with highest (resp. lowest) index adjacent

to a node ofH. Suppose thatpk is of type d w.r.t.H, i.e. N(pk)∩H = {b2,y,yb′2
}. If p1

is of type B or t3 w.r.t.H, then(Pa2b′2
\a2)∪P∪b2 induces a proper wheel with center

b2. If p1 is of typeA1, A or a w.r.t.H, then eitherPa′1b′1
∪Pa2b′2

∪P (if p1 is adjacent toa′1)

or Pa1b1 ∪Pa2b′2
∪P (if p1 is not adjacent toa′1) induces a proper wheel with centera2. So

by Claim 1,p1 must be of type p1, p2 orH1-crossing w.r.t.H. Thenp1, ..., p j contradicts

Lemma 5.2.5. Thereforepk cannot be of type d w.r.t.H.

So by Claim 2,pk is of type p1 or p2 w.r.t.H, and hence by definition ofP, N(pk)∩

H ⊆ Pa2b′2
andpk has a neighbor inPa2b′2

\ {a2,b′2}. Let v1 (resp.v2) be the neighbor of

pk in Pa2b′2
that is closer tob′2 (resp.a2). Let Pb′2v1

(resp.Pv2a2) be theb′2v1-subpath (resp.

v2a2-subpath) ofPa2b′2
. If pi is adjacent tob2, thenΣ, pi andpi+1, ..., pk contradict Lemma

4.5.1. Sopi is adjacent toa2.

Suppose thatN(p1)∩H ⊆ H1. Then by Lemma 5.2.5 applied toH and p1, ..., p j ,

nodep1 is of typeA1 w.r.t. H andp j is adjacent toa2. In particular,a2 has at least two

neighbors inP\ {p1, pk}. Note that sinceb2 has a neighbor inP\ {p1, pk}, j 6= i and

j 6= i +1. But thenPa′1b′1
∪Pb′2v1

∪P∪a2 induces a proper wheel with centera2. Therefore

N(p1)∩H is not contained inH1.

Suppose thatp1 is of type A or a w.r.t.H. If p1 is not adjacent toa′1, thenPa′1b′1
∪

Pb′2v1
∪P∪{a1,a2} induces a proper wheel with centera2. So p1 is adjacent toa′1, and

Pa′1b′1
∪Pb′2v1

∪P∪a2 induces a wheel with centera2, and hencea2 has exactly one neighbor
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in P\ {p1, pk} anda2 does not have a neighbor inPb′2v1
. Let pl be the neighbor ofb2 in

P\ {p1, pk} with highest index. ThenPb′2v1
∪ {pl , ..., pk,a2,b2} induces a 3PC(b2, pi).

Therefore,p1 is not of type A nor a w.r.t.H.

So by Claim 2,p1 is of type B or t3 w.r.t.H. P∪Pb′2v1
∪ b2 induces a wheel with

centerb2, and hence (since this wheel cannot be proper)N(b2)∩P = {p1, pl}. Let pi′ be

the neighbor ofa2 in {pl+1, . . . , pi} with lowest index. If a2 has no neighbor in

{p2, . . . , pl−1}, thenPa2b′2
∪{b2, p1, . . . , pi′} induces a proper wheel with centerb2. Soa2

has a neighbor in{p2, . . . , pl−1}, and letp j ′ be such a neighbor with highest index. Then

{p j ′, . . . , pi′,a2,b2} induces a 3PC(pl ,a2). This completes the proof of Claim 3.

By Claim 2, it suffices to consider the following cases.

Case 1:p1 is of type p1, p2,A1 or H1-crossing w.r.t.H.

ThenN(p1)∩H ⊆ H1. Let pi be the node ofP with lowest index that has a neighbor

in H2. By Claim 2N(pi)∩H ⊆ H2 and no node of{p2, ..., pi−1} has a neighbor inH. By

Lemma 5.2.5 applied toH andp1, ..., pi, and by symmetry w.l.o.g. one of the following

holds:

(a) N(p1)∩H = A1 and pi is either of type p2 w.r.t.H with neighbors inPa2y or

N(pi)∩H = {y,yb2,yb′2
},

(b) N(p1)∩H = A1 andN(pi)∩H = a2,

(c) N(pi)∩H = B2 andp1 is of type p2 w.r.t.H with neighbors inPa1b1, or

(d) N(pi)∩H = B2 andN(p1)∩H = b′1.

Suppose that (a) holds. W.l.o.g.u is adjacent toa′1. ThenPa′1b′1
∪ (Pa2b′2

\a2)∪P∪u

contains a 3PC(b′2,a
′
1).

Suppose that (c) holds. Then(H \ b1)∪{p1, ..., pi} contains a short connected dia-

mondH ′(A1,A2,B′
1,B2) whereB′

1 = {b′1, pi}. By Lemma 5.2.1,u is of type s3 or s4 w.r.t.

H ′, and henceH ′,u andpi+1, ..., pk contradict our choice ofH, u andP.

Suppose that (d) holds. By Claim 3,a2 does not have a neighbor inP\ pk. Let P′

be a chordless path frompk to a2 in (H2 \B2)∪ pk, and letH ′ be the hole induced by

P′∪Pa′1b′1
∪P. SinceH ′∪b′2 cannot induce a 3PC(b′1, pi), (H ′,b′2) is a bug. Ifu is adjacent

to a′1, thenu is a center-crosspath of(H ′,b′2). Sou is not adjacent toa′1, and hence it is

adjacent tob′1. But thenH ′∪u induces a 3PC(a2,b′1).

So (b) must hold. By Claim 3,b2 andb′2 do not have neighbors inP\ pk. W.l.o.g. u

is adjacent toa1. If pk andb2 are connected inG[(H2\ {a2,b′2})∪ pk], then letP′ be a
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chordless path frompk to b2 in G[(H2\ {a2,b′2})∪ pk]. ThenPa1b1 ∪P∪P′ ∪u induces

a 3PC(a1,b2). So pk andb2 are not connected inG[(H2\ {a2,b′2})∪ pk], i.e. a2 = y and

N(pk)∩H ⊆ Pa2b′2
. Let P′ be a chordless path frompk to b′2 in G[(Pa2b′2

\a2)∪ pk]. Then

Pa1b1 ∪P∪P′∪u induces a 3PC(a1,b′2).

Case 2:p1 is of type A or a w.r.t.H.

W.l.o.g. we may assume thatp1 is adjacent toa1 anda2. First we show thatb2 and

b′2 cannot have a neighbor inP\ pk. Assume otherwise, and letpi be the node ofP

with lowest index adjacent to a node ofB2. By Claim 3, a2 does not have a neighbor

in P\ {p1, pk}. If pi is not of typeB2, thenΣ andp1, ..., pi contradict Lemma 4.5.1. So

N(pi)∩H = B2, and hence by Lemma 4.5.2 applied toΣ′ andp1, ..., pi, N(p1)∩H = A.

Let H ′(A′
1,A2,B′

1,B2) whereA′
1 = {p1,a′1} and B′

1 = {b′1, pi}, be the short connected

diamond induced by(H \Pa1b1)∪{p1, ..., pi}. ThenH ′ andu contradict Lemma 5.2.1.

Therefore, no node ofB2 has a neighbor inP\ pk.

First suppose that eithera2 6= y, or a2 = y andpk has a neighbor inPa2b2 \a2. Let P′

be the chordless path frompk to b2 in (H2 \ {b′2,a2})∪ pk. If u is adjacent toa1, then

Pa1b1 ∪P′∪P∪u induces a 3PC(b2,a1). Sou is not adjacent toa1, and henceN(u)∩H =

{b1,b2,b′2,a
′
1,a2}. If p1 is not adjacent toa′1, thenP′∪P∪A∪u induces a proper wheel

whith centera2. So p1 is adjacent toa′1. But thenPa1b1 ∪P∪P′ ∪ {a′1,u} induces a

3PC(ub1b2,a′1a1p1). Thereforea2 = y and pk does not have a neighbor inPa2b2 \ a2.

So by Claim 2,pk is of type p1 or p2 w.r.t.H andN(pk)∩H ⊆ Pa2b′2
. In particular,

a2b′2 is not an edge. Ifp1 is not adjacent toa′1 thenΣ2, p1 andP\ p1 contradict Lemma

4.5.2. Sop1 is adjacent toa′1, and hence(H \a2)∪P contains a short connected diamond

H ′(A1,A′
2,B1,B2) whereA′

2 = {p1}. But thenH ′ andu contradict Lemma 5.2.1.

Case 3:p1 is of type B or t3 (with neighbors inB) w.r.t. H.

W.l.o.g. we may assume thatp1 is adjacent tob1. Suppose thata2 has a neighbor in

P\ pk, and letpi be such a neighbor with lowest index. By Claim 3,b2 andb′2 do not

have neighbors inP\ {p1, pk}. If a2b2 is not an edge, thenPa2b2 ∪{u, p1, ..., pi} induces

a 3PC(a2,b2). Soa2b2 is an edge, and hencea2b′2 is not. But thenPa2b′2
∪{u, p1, ..., pi}

induces a 3PC(a2,b′2). Therefore,a2 does not have a neighbor inP\ pk.

Suppose that a node ofB2 has a neighbor inP\{p1, pk}, and letpi be such a neighbor

with highest index. W.l.o.g.pi is adjacent tob2. Let P′ be the chordless path frompk to

a2 in (H2 \B2)∪ pk and letH ′ be the hole induced byP′∪P∪Pa1b1. Then(H ′,b2) is a

twin wheel or a bug. In particular,pk is not adjacent tob2, a2b2 is not an edge andH ′

does not containvb2, i.e. pk has a neighbor inH2\ (B2∪vb2).

Suppose thatpi is of typeB2 w.r.t. H. Then by symmetry,a2b′2 is not an edge,H ′
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does not containvb′2
, i.e. pk has a neighbor inH2\ (B2∪{vb2,vb′2

}). So by Claim 3 and

Lemma 4.5.2 applied toΣ, pi andpi+1, ..., pk, nodepk is either of type p2 w.r.t.H with

neihgbors contained inPa2y, or pk is of type d w.r.t.H adjacent toy,yb2,yb′2
. In both cases

(H \Pa1b1)∪ {pi , ..., pk} induces a connected diamond whose side-2-paths have fewer

nodes in common than the side-2-paths ofH.

ThereforeN(pi)∩H = b2. Sincepk is not adjacent tob2, and it has a neighbor in

H2\(B2∪vb2), by Claim 2 and by Lemma 4.5.1 applied toΣ, pi andpi+1, ..., pk, it follows

that eitherpk is of type p2 w.r.t.H andN(pk)∩H ⊆ Pb2y\b2, or pk is of type d w.r.t.H

andN(pk)∩H = {y,ya2,yb′2
} (in particulara2 6= y). In both cases(H \ vb2)∪{pi, ..., pk}

contains a short connected diamondH ′(A1,A2,B1,B2) that containspi , ..., pk. But then

H ′,u andp1, ..., pi−1 contradict our choice ofH,u andP.

Therefore no node ofH has a neighbor inP\ {p1, pk}. Note that by definition ofP,

pk has a neighbor inΣ \ {b2,b′2,b1}. By Lemma 4.5.3 applied toΣ, p1 andP\ p1, node

pk cannot be of type p2, d norH2-crossing w.r.t.H. Hence by Claim 2,pk is not strongly

adjacent toH. Let v be the neighbor ofpk in H.

Suppose thatp1b′1 is not an edge. Then by Lemma 4.5.2 applied toΣ′, p1 andP\ p1,

either a2b2 is an edge andv = vb′2
, or a2b′2 is an edge andv = vb2. In the first case

Pa1b1 ∪Pa2b′2
∪P induces a bug with centerb′2 andPa′1b′1

is its center-crosspath. In the

second casePa1b1 ∪Pa2b2 ∪P induces a bug with centerb2 andPa′1b′1
is its center-crosspath.

Thereforep1b′1 is an edge.

W.l.o.g.u is adjacent toa1, and hence by definition of type s3 and s4 nodes w.r.t.H it

is not adjacent tob1 anda2b2 is not an edge. LetP′ be the chordless path frompk to a2 in

(H2\B2)∪ pk. If v 6= vb2, thenP′∪P∪Pa1b1 ∪{u,b2} induces a 3PC(b1b2p1,a1ua2). So

v = vb2. Let H ′ be the hole induced by(Pa2b2 \b2)∪Pa1b1 ∪P. Then(H ′,b2) is a bug and

u its center-crosspath. 2

Lemma 5.2.9 Let G be a 4-hole-free odd-signable graph that does not have astar cutset.

Let H(A1,A2,B1,B2) be a short connected diamond of G. If a node u is of type a, t3, p3

w.r.t. H or it is a pseudo-twin of a node of B∪A1 w.r.t. H, or a pseudo-twin of y w.r.t. H

when y/∈ {a1,a2}, or it is a pseudo-twin of a node of A2 w.r.t. H when|A2|= 2, then there

exists a short connected diamond H′ such that one of the following holds:

(i) H2 ⊆ H ′, u∈ H ′
1 = H ′ \H2, H′

1|H2 is a 2-join of H′ with special sets A′1, A2, B′
1, B2

such that A′1∩A1 6= ∅ and B′1∩B1 6= ∅.

(ii) H1 ⊆ H ′ and u∈ H ′
2 = H ′ \H1, H1|H ′

2 is a 2-join of H′ with special sets A1, A′
2, B1,

B′
2 such that A′2∩A2 6= ∅ and B′2∩B2 6= ∅.
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Proof: Assume thatG does not have a star cutset. Then by Theorems 4.2.2, 4.3.3, 4.3.4,

4.3.5 and 4.3.6G does not contain a proper wheel, a bug with a center-crosspath, a

3PC(∆, ·) with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node. We con-

sider the following cases.

Case 1:u is of type p3 w.r.t.H or it is a pseudo-twin w.r.t.H as in the statement of the

lemma.

Let H ′ be the short connected diamond obtained by substitutingu into H. Then clearly

H ′ satisfies (i) or (ii).

Case 2:Nodeu is of type a w.r.t.H.

Then|A2| = 1 and w.l.o.g.N(u)∩H = {a1,a2}. Let S= (N[a2]\ (H ∪u))∪A. Since

Scannot be a star cutset, there exists a direct connectionP = p1, ..., pk from u to H \S in

G\S. Sop1 is adjacent tou, pk to a node ofH \S, anda1 anda′1 are the only nodes ofH

that may have a neighbor inP\ pk.

(1) pk is of type p1, p2, p3, d, B,B2, t3 (with neighbors inB), H1-crossing orH2-

crossing w.r.t.H, or it is a pseudo-twin w.r.t.H of a node ofB, or y wheny 6= a2.

In particular,pk is adjacent to at most one node ofA.

Proof of (1): By Lemmas 5.2.6, 5.2.7 and 5.2.8, no node is of type s1, s2, s3 nor s4 w.r.t.

H. Since|A2| = 1, pk is not adjacent toa2 and it has a neighbor inH \S, pk cannot be of

typeA1, A, a, t3 (with neighbors inA), Ad nor a pseudo-twin of a node ofA w.r.t. H. So

the result follows by Lemma 5.2.1. This proves (1).

(2) a1 cannot have a neighbor inP\ pk.

Proof of (2): Suppose it does. LetR be a chordless path frompk to a2 in (H \A1)∪ pk,

and letH ′ be the hole induced byR∪P∪u. Since(H ′,a1) cannot be a proper wheel,a1

has exactly one neighborp j in P and j < k.

Suppose thata′1 does not have a neighbor inP\ pk. By Lemma 5.2.5 applied toH

and p j , ..., pk, node pk must have a neighbor inH1. So by (1), pk has a neighbor in

H1 \A1. Recall that by definition of a connected diamond at least oneof a2b2,a2b′2 is

not an edge. W.l.o.g. assume thata2b′2 is not an edge. LetT be a chordless path from

pk to a′1 in (H1 \ a1)∪ {pk,b′2}. Recall that no node ofP is adjacent toa2 and hence

T ∪P∪{a1,a2,u} induces a proper wheel with centera1. Soa′1 has a neighbor inP\ pk.

If a′1 is not adjacent top j , then a subpath ofP\ pk is a hat ofΣ1, a contradiction. So

a′1 is adjacent to p j . If a′1 does not have a neighbor inp1, ..., p j−1, then
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{p1, ..., p j ,u,a1,a2,a′1} induces a proper wheel with centera1. Soa′1 has a neighbor in

p1, ..., p j−1. So (H ′,a1) and (H ′,a′1) are both bugs. In particular,N(a1)∩P = p j and

N(a′1)∩P = {p j , p j−1}.

Suppose thatN(pk)∩H ⊆ H2. Then by Lemma 5.2.5 applied toH andp j , ..., pk, node

pk is either of type p2 w.r.t.H with neighbors inPa2y or of type d w.r.t. H such that

N(pk)∩H = {y,yb2,yb′2
}. In both casesPa1b1 ∪Pa2b2 ∪P∪u induces a bug(H ′,a1) with a

center-crosspath, a contradiction.

Sopk has a neighbor inH1, and hence by (1), it has a neighbor inH1\A1. By (1) pk has

at most one neighbor inA and hence by Lemma 4.5.2 applied toΣ1, p j andp j+1, ..., pk,

N(pk)∩Σ1 = {b2,b1,b′1}. But thenPa1b1∪Pa2b2∪P∪u induces a bug(H ′,a1) with center-

crosspathPa1b1 \a1, a contradiction. This proves (2).

We now consider the following two cases.

Case 2.1:a′1 has a neighbor inP\ pk.

Let p j be such a neighbor with highest index. Ifpk is of type d,B2, B, H2-crossing, a

pseudo-twin ofy wheny 6= a2, or a pseudo-twin of a node ofB2∪b1 w.r.t. H, thenΣ1, p j

andp j+1, ..., pk contradict Lemma 4.5.1.

Suppose thatpk is a pseudo-twin ofb′1 w.r.t. H. Then by (2),H2∪Pa1b1∪P∪u induces

a short connected diamondH ′(A′
1,A2,B′

1,B2) whereA′
1 = {a1,u} andB′

1 = {b1, pk} and

H ′ satisfies (i). So we may assume thatpk is not a pseudo-twin ofb′1 w.r.t. H.

If pk is anH1-crossing w.r.t.H, then by Lemma 4.5.1 applied toΣ1, p j andp j+1, ..., pk,

nodepk is adjacent tob1 anda′1, and hencePa′1b′1
∪Pa2b′2

∪P∪u induces a proper wheel

with centera′1.

So by (1), pk is of type p1, p2, p3 or t3 (with neighbors inB) w.r.t. H. If

N(pk)∩H ⊆ Pa′1b′1
, then by (2),(H \ a′1)∪ (P∪u) contains a short connected diamond

H ′(A′
1,A2,B1,B2), whereA′

1 = {a1,u}, that satisfies (i). So we may assume thatpk has a

neighbor inH \Pa′1b′1
. But then by Lemma 4.5.1 applied top j , path p j+1, ..., pk and

eitherΣ1 or Σ2, nodepk must be of type t3 w.r.t.H such thatN(pk)∩H = {b′1,b2,b′2}.

But then by (2),H2∪Pa1b1 ∪P∪u induces a short connected diamondH ′(A′
1,A2,B′

1,B2),

whereA′
1 = {a1,u} andB′

1 = {b1, pk}, and hence (i) holds.

Case 2.2:a′1 does not have a neighbor inP\ pk.

So by (2), no node ofH has a neighbor inP\ pk. If pk does not have a neighbor in

Σ1\{a1,a′1,a2}, then it has a neighbor inΣ2\{a1,a′1,a2} and hence (sincepk is adjacent

to at most one node of{a1,a′1,a2} by (1)) Σ2, u andP contradict Lemma 4.5.2. Sopk has

a neighbor inΣ1\ {a1,a′1,a2}. By Lemma 4.5.2 applied toΣ1, u andP, and since by (1)

pk is adjacent to at most one node of{a1,a′1,a2}, one of the following holds:
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(a) N(pk)∩Σ1 = {b2,b′1}.

(b) N(pk)∩Σ1 = {v1,v2} wherev1v2 is an edge ofPa′1b′1
.

(c) N(pk)∩Σ1 = {b1,b2,vb2}.

(d) a2b2 is an edge andN(pk)∩Σ1 = {va1}.

(e) a2b2 is an edge,pk is of type p3 w.r.t.Σ1 andpk is adjacent toa1.

By (1) in fact (c) cannot happen. Suppose that (b) holds. Thenby (1), pk is of type p2

w.r.t. H, and hence(H \a′1)∪P∪u contains a short connected diamondH ′(A′
1,A2,B1,B2),

whereA′
1 = {u,a1}, that satisfies (i).

Suppose that (a) holds. By Lemma 4.5.2 applied toΣ2, u andP, and since by (1)pk is

adjacent to at most one of{a1,a′1,a2}, N(pk)∩Σ2 = {b′2,b
′
1}. SoN(pk)∩H = {b′1,b2,b′2}

and henceH2∪Pa1b1 ∪P∪u induces a connected diamondH ′(A′
1,A2,B′

1,B2), whereA′
1 =

{u,a1} andB′
1 = {b1, pk}, that satisfies (i).

Suppose that (d) holds. Then by (1),N(pk)∩H = {va1}. Sincea2b2 is an edge,a2b′2
is not an edge, and henceH1∪P∪{a2,b′2,u} induces a 4-wheel with centera1.

Suppose that (e) holds. Then by (1),pk is of type p3 w.r.t.H. Sincea2b2 is an edge,

a2b′2 is not an edge, and hence(H1\ va1)∪P∪{a2,b′2,u} induces a 4-wheel with center

a1.

Case 3:Nodeu is of type t3 w.r.tH.

W.l.o.g. we may assume thatN(u)∩H = {b1,b2,b′2}. Assume that the result does not

hold.

(1) Let S1 = (N[b2] \ (H∪u))∪B, and let P= p1, ..., pk be a direct connection from u

to H \S1 in G\S1. Then k= 1 and p1 is an H1-crossing w.r.t. H adjacent to b1. In

particular, there exists a node that is an H1-crossing w.r.t. H adjacent to b1 and u.

Proof of (1): SinceG does not have a star cutset, there exists a direct connectionP as in

statement of (1), so we just need to show thatk = 1 andp1 is anH1-crossing w.r.t.H

adjacent tob1. By definition ofP, nodep1 is adjacent tou, pk to a node ofH \S1, and the

only nodes ofH that may have a neighbor inP\ pk areb1, b′2 andb′1.

(1.1) pk is of type p1, p2, p3, A1, A, a, d, Ad, t3 (with neighbors in A), H1-crossing, H2-

crossing w.r.t. H or a pseudo-twin of a node of A∪y w.r.t. H. In particular, pk is

adjacent to at most one node of B.



Chapter 5 105 Decomposing Connected Diamonds

Proof of (1.1):By Lemmas 5.2.6, 5.2.7 and 5.2.8,pk cannot be of type s1, s2, s3 nor s4

w.r.t. H. Sincepk is not adjacent tob2, it cannot be of type B,B2, t3 (with neighbors

in B) nor a pseudo-twin of a node ofB w.r.t. H. By Lemma 5.2.1, the proof of (1.1) is

complete.

(1.2) No node of H\ {b1,b′1,b
′
2} has a neighbor in P\ pk and at most one node of

{b1,b′1,b
′
2} has a neighbor in P\ pk.

Proof of (1.2): We have already established that no node ofH \ {b1,b′1,b
′
2} has a

neighbor inP\ pk. By Lemma 5.2.1 and Lemma 5.2.6, no node ofP\ pk is adjacent to

more than one node of{b1,b′1,b
′
2}. If at least two nodes of{b1,b′1,b

′
2} have a neighbor

in P\ pk, then a subpath ofP\ pk is a hat ofΣ or Σ′, a contradiction. This proves (1.2).

If a node of{b1,b′1,b
′
2} has a neighbor inP\ pk, then letp j (resp. pi) be such a

neighbor with highest (resp. lowest) index.

(1.3) b′1 does not have a neighbor in P\ pk.

Proof of (1.3):Assume it does. Then by (1.2)H1∪{u, p1, ..., pi,b2} induces a bug with

centerb2, andPa2b2 \b2 is its center-crosspath, a contradiction. This proves (1.3).

(1.4) b1 does not have a neighbor in P\ pk.

Proof of (1.4):Assume it does. By (1.2) no node ofH \b1 has a neighbor inP\ pk. By

(1.1) pk is adjacent to at most one node ofB, and hence ifN(pk)∩H ⊆ H2, thenH and

p j , ..., pk contradict Lemma 5.2.5. Sopk has a neighbor inH1. In particular,pk is not of

type d,H2-crossing nor a pseudo-twin ofy wheny /∈ {a1,a2} w.r.t H.

Suppose thatpk is of type A1 w.r.t. H. By Lemma 4.5.1 applied toΣ, p j and

p j+1, ..., pk, a1b1 is an edge. But thenPa1b1 ∪Pa2b2 ∪P∪u induces a proper wheel with

centerb1. Sopk is not of typeA1 w.r.t. H.

Supposepk is of type a w.r.t.H. So|A2| = 1 andN(pk)∩H = {a2,a′1} or {a2,a1}. In

the first caseΣ, p j and p j+1, ..., pk contradict Lemma 4.5.1, and in the second caseΣ′,u

andP contradict Lemma 4.5.2. Sopk is not of type a w.r.t.H.

Suppose thatpk is of type A or it is a pseudo-twin of a node ofA1 w.r.t. H. If pk has a

neighbor inPa′1b′1
\a′1, thenΣ′,u andP contradict Lemma 4.5.2. SoN(pk)∩H ⊆ A∪Pa1b1.

But then(H \Pa1b1)∪P∪u induces a short connected diamondH ′(A′
1,A2,B′

1,B2) where

A′
1 = {a′1, pk} andB′

1 = {b′1,u}, andH ′ satisfies (i), contradicting our assumption. Sopk

is not of type A nor a pseudo-twin of a node ofA1 w.r.t. H.
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Suppose thatpk is of type t3 w.r.t. H. Then by (1.1)|A2| = 2 andN(pk)∩H =

{a1,a′1,a
′
2} or {a1,a′1,a2}. In the first caseΣ, p j andp j+1, ..., pk contradict Lemma 4.5.1,

and in the second caseΣ′,u andP contradict Lemma 4.5.2. Sopk is not of type t3 w.r.t.

H.

Nodepk is not of type Ad nor a pseudo-twin of a node ofA2 w.r.t. H, since otherwise

Σ, p j andp j+1, ..., pk contradict Lemma 4.5.1.

Suppose thatpk is anH1-crossing w.r.t.H. If pk is adjacent tob′1, then(Pa1b1 \a1)∪

{b′1,b
′
2, p j , ..., pk} contains a 3PC(b1, pk). Sopk is adjacent tob1. But then(Pa′1b′1

\a′1)∪

P∪{b′2,b1,u} contains a proper wheel with centerb1. So pk is not anH1-crossing w.r.t

H.

By (1.1) pk is of type p1, p2 or p3 w.r.t.H. Sincepk has a neighbor inH1, it follows

thatN(pk)∩H ⊆ Pa1b1 or Pa′1b′1
. By definition ofP, pk has a neighbor inH1\{b1,b′1}. If

N(pk)∩H ⊆ Pa′1b′1
, thenΣ, p j andp j+1, ..., pk contradict Lemma 4.5.1. SoN(pk)∩H ⊆

Pa1b1. But then(H \ b1)∪P∪ u contains a short connected diamondH ′(A1,A2,B′
1,B2)

whereB′
1 = {u,b′1}, andH ′ satisfies (i), contradicting our assumption. This proves (1.4).

(1.5) b′2 does not have a neighbor in P\ pk.

Proof of (1.5): Assume it does. By (1.2) no node ofH \b′2 has a neighbor inP\ pk. If

N(pk)∩H ⊆ H1, thenH andp j , ..., pk contradict Lemma 5.2.5. Sopk has a neighbor in

H2. In particular,pk is not of typeA1 norH1-crossing w.r.t.H.

Nodepk is not of type A nor a pseudo-twin of a node ofA1 w.r.t. H, since otherwise

Σ′, p j andp j+1, ..., pk contradict Lemma 4.5.1.

Suppose thatpk is of type a w.r.t. H. Then by Lemma 4.5.1 applied toΣ′, p j and

p j+1, ..., pk, y= a2 andyb′2 is an edge. But thenPa2b2 ∪P∪{u,b′2} induces a proper wheel

with centerb′2. Sopk is not of type a w.r.t.H.

Suppose thatpk is of type t3 (with neighbors inA), Ad or a pseudo-twin of a node of

A2 w.r.t. H. SoN(pk)∩H1 = {a1,a′1}. By definition ofP, pk is not adjacent tob2, and

henceH1∪P∪{u,b2} induces a 3PC(b1b2u,a1a′1pk). So pk is not of type type t3 (with

neighbors inA), Ad nor a pseudo-twin of a node ofA2 w.r.t. H.

Suppose thatpk is of type d or a pseudo-twin ofy wheny /∈ {a1,a2} w.r.t. H. Let

H ′ be the hole contained inPa1b1 ∪Pa2y∪P∪u that containsPa1b1 ∪P∪u. Note that ifH ′

containsy, thenpk has a neighbor inPb2y\ y. Since by definition ofP, b2 is not adjacent

to any node ofP, it follows that N(b2)∩H ′ = {u,b1}. But thenH ′ ∪Pa′1b′1
induces a

3PC(b1b2u,a1a′1a2). Sopk is not of type d nor a pseudo-twin ofy wheny /∈ {a1,a2} w.r.t.

H.
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Suppose thatpk is anH2-crossing w.r.t.H. By Lemma 4.5.1 applied toΣ′, p j and

p j+1, ..., pk, nodepk is adjacent tob′2. Let H ′ be the hole contained inPa2b2 ∪P∪u that

containsP∪{u,b2}. Then(H ′,b′2) is a proper wheel. Sopk is not anH2-crossing w.r.t.

H.

So by (1.1) and sincepk has a neighbor inH2, N(pk)∩H ⊆ H2 andpk is of type p1,

p2 or p3 w.r.t.H. By definition ofP, pk has a neighbor inH2\{b2,b′2}. By Lemma 4.5.1

applied to Σ′, p j and p j+1, ..., pk, either |A2| = 2 and N(pk) ∩ H ⊆ Pa′2b′2
, or

|A2| = 1 and N(pk) ∩ H ⊆ Pb′2y. If |A2| = 2, then H1 ∪ (Pa′2b′2
\ b′2) ∪ P∪ {u,b2}

contains a 3PC(b1b2u,a1a′1a′2). So |A2| = 1. Let H ′ be the hole contained in

Pa1b1 ∪ (Pa2b′2
\ b′2) ∪ P∪ u that containsPa1b1 ∪ P∪ u. If yb2 is not an edge, then

H ′∪Pa′1b′1
∪b2 induces a 3PC(b1b2u,a1a′1a2). Soyb2 is an edge, and hence(H ′,b2) is a

bug. But thenPa′1b′1
is either a center-crosspath or an ear of(H ′,b2). This proves (1.5).

By (1.2), (1.3), (1.4) and (1.5), no node ofH has a neighbor inP\ pk.

Nodepk cannot be of typeA1, A, t3 (with neighbors inA), Ad nor a pseudo-twin of a

node ofA2 w.r.t. H, since otherwiseN(pk)∩H1 = A1 and sincepk is not adjacent tob2,

H1∪P∪{u,b2} induces a 3PC(b1b2u,a1a′1pk).

Suppose thatpk is of type a or a pseudo-twin of a node ofA1 w.r.t. H. If pk is adjacent

to a1 anda2, and it does not have a neighbor inPa1b1 \a1, thenPa2b2 ∪Pa1b1∪P∪u induces

a 3PC(b1b2u,a1a2pk). Otherwise(H \Pa1b1)∪P∪u induces a short connected diamond

H ′(A′
1,A2,B′

1,B2) whereA′
1 = {a′1, pk} andB′

1 = {u,b′1}, and satisfies (i), contradicting

our assumption. Sopk is not of type a nor a pseudo-twin of a node ofA1 w.r.t. H.

Suppose thatpk is of type d w.r.t.H. By Lemma 4.5.2 applied toΣ′,u andP, N(pk)∩

H = {y,yb2,yb′2
}, yb2 6= b2 andyb′2

6= b′2. But then(H \Pa1b1)∪P∪u induces a connected

diamond whose side-2-paths have fewer nodes in common than the side-2-paths ofH, a

contradiction. Sopk is not of type d w.r.t.H.

Nodepk cannot be anH2-crossing nor a pseudo-twin ofy wheny /∈ {a1,a2} w.r.t. H,

since otherwiseΣ′,u andP contradict Lemma 4.5.2.

Suppose thatpk is of type p1, p2 or p3 w.r.t.H. Note that by definition ofP, pk has a

neighbor inH \B. If N(pk)∩H ⊆ Pa1b1 then(H \b1)∪P∪u contains a short connected

diamondH ′(A1,A2,B′
1,B2) whereB′

1 = {u,b′1}, that containsH2∪Pa′1b′1
, andH ′ satisfies

(i), contradicting our assumption. Sopk has a neighbor inΣ′ \B. By Lemma 4.5.2 applied

to Σ′,u andP w.l.o.g. one of the following holds: (a)|A2| = 1, b2y is an edge, and either

N(pk)∩H = {vb′2
} or pk is of type p3 w.r.t.H adjacent tob′2, (b) pk is of type p2 w.r.t.

H and its neighbors are contained inPa′1b′1
, or (c) |A2| = 1, pk is of type p2 w.r.t.H, and

N(pk)∩H ⊆ Pa2y. If (a) holds, thenPa1b1 ∪Pa2b′2
∪P∪u contains a bug with centerb′2,
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andPa′1b′1
is its center-crosspath or an ear. If (b) holds, thenH1∪P∪{u,b2} induces a

3PC(b1b2u,∆). So (c) holds. But thenΣ,u andP contradict Lemma 4.5.3. Sopk is not of

type p1, p2 or p3 w.r.t.H.

Therefore, by (1.1)pk is anH1-crossing w.r.t.H. By Lemma 4.5.3 applied toΣ,u and

P, nodepk must be adjacent tob1. If k > 1, thenH1∪P∪ {u,b2} induces a bug with

centerpk with an ear. Sok = 1. This proves (1).

Let S2 = (N[b1]\ (H ∪u))∪{b1,b2,b′2}. SinceS2 cannot be a star cutset, there exists

a direct connectionP = p1, ..., pk from u to H \S2 in G\S2. Sop1 is adjacent tou, pk to a

node ofH \S2, and the only nodes ofH that may have a neighbor inP\ pk areb2 andb′2.

By (1) there exists a nodev adjacent tou that is anH1-crossing w.r.t.H adjacent tob1.

(2) pk has a neighbor in H\B.

Proof of (2): Suppose thatN(pk)∩H ⊆ B. By definition ofP, pk must be adjacent tob′1.

By Lemma 5.2.6,pk cannot be of type s1 w.r.t.H. N(pk)∩H 6= {b′1} nor {b′1,b2,b′2},

since otherwiseH1∪P∪ {u,v} induces a proper wheel with centerv. Sincepk is not

adjacent tob1 and it is adjacent tob′1, it follows thatpk cannot be of typeB2 nor B w.r.t.

H, and if it is of type t3 w.r.t.H then its neighbors inH are contained inA. Hence,pk has

a neighbor inH \B. This proves (2).

(3) pk is either not strongly adjacent to H or it is of type p1, p2, p3,A1, A, a, d, Ad, t3

(with neighbors in A), H1-crossing (adjacent to b′1), H2-crossing or a pseudo-twin

of a node of A∪B1∪y w.r.t. H.

Proof of (3): By Lemmas 5.2.6, 5.2.7 and 5.2.8,pk cannot be of type s1, s2, s3 nor s4

w.r.t H. By (2) pk cannot be of typeB2 nor B w.r.t H, and if it is of type t3 w.r.t.H,

then its neighbors inH are contained inA. Sincepk is not adjacent tob1, it cannot be a

pseudo-twin of a node ofB2 w.r.t. H, and if it is anH1-crossing w.r.t.H, then it is adjacent

to b′1. The result follows from Lemma 5.2.1. This proves (3).

(4) If b2 does not have a neighbor in P\ pk, then pk is adjacent to b2 and it is of type

p2, p3, d, Ad, H2-crossing, a pseudo-twin of a node of B1∪A2 or a pseudo-twin of

y when y/∈ {a1,a2} w.r.t. H.

Proof of (4): Assume thatb2 does not have a neighbor inP\ pk. By (2) pk has a neighbor

in H \B. If pk is not adjacent tob2, thenP is a direct connection fromu to H \S1 in G\S1,

and hence by (1)pk is adjacent tob1, a contradiction. Sopk is adjacent tob2. In particular,
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pk cannot be of typeA1, A, a, t3 (with neighbors inA), H1-crossing nor a pseudo-twin of

a node ofA1 w.r.t. H. Also sincepk is adjacent tob2 and it has a neighbor inH \S2, pk

must be strongly adjacent toH. The result now follows from (3). This proves (4).

(5) b2 does not have a neighbor in P\ pk.

Proof of (5): Assume it does. Letp j be the node ofP\ pk with highest index adjacent

to a node ofH. By (2), pk has a neighbor inH \B and hence in the graph induced by

(H \B)∪ {b1, pk} there is a chordless path fromb1 to pk, and this path together with

P∪u induces a holeH ′. Sinceb2 has at least three neighbors inH ′, (H ′,b2) must be a

twin wheel or a bug, i.e.b2 has a unique neighbor inP and this neighbor is contained in

P\ pk. Since(H ′,b′2) cannot be a proper wheel,b′2 has at most one neighbor inP. If p j

is not adjacent tob2, then a subpath ofP\ pk is a hat ofΣ. So p j is adjacent tob2. Also

N(b′2)∩P⊆ {p j , pk}, else a subpath ofP\ pk is a hat ofΣ.

Next we show thatv does not have a neighbor inP. Assume it does. Then(H ′,v)

is a wheel, and hence it must be a twin wheel or a bug. In particular, v has exactly one

neighborpi in P. Let H ′′ be the hole induced by thepi p j -subpath ofP together with

b1,b2 andv. If i = 1 or j = 1 then(H ′′,u) is a proper wheel. Soi 6= 1 and j 6= 1. But

then(H ′′ \b1)∪{u, p1, ..., pi} induces a 3PC(u, pi) if i < j and a 3PC(u, p j) otherwise.

Therefore,v does not have a neighbor inP.

Next we show thatpk does not have a neighbor inH1. Assume it does. Suppose that

N(pk)∩H1 = vb1. Then by (3),N(pk)∩ (H1∪b2) = vb1, and henceH1∪{b2, p j , ..., pk}

induces a 3PC(b2,vb1). So pk has a neighbor inH1 \ vb1, and hence by (2) and (3) and

sincepk is not adjacent tob1, pk has a neighbor inH1\{vb1,b1,b′1}. LetP′ be a chordless

path frompk to v in (H1\{b1,b′1,vb1})∪{v, pk}. If j 6= 1, thenP∪P′∪{u,b2} induces a

3PC(u, p j). So j = 1. But thenP∪P′∪{u,b1,b2} induces a proper wheel with centeru.

Thereforepk does not have a neighbor inH1.

If N(pk)∩H = vb2, thenPa1b1 ∪Pa2b2 ∪P∪u induces a proper wheel with centerb2.

So pk has a neighbor inH \ vb2. It follows, by (2) and sincepk does not have a neighbor

in H1∪b2, thatpk has a neighbor inH2\{vb2,b2,b′2}. Let P′ be a chordless path frompk

to v in (H2\ {vb2,b2,b′2})∪ (Pa′1b′1
\b′1)∪{v, pk}. If j 6= 1, thenP′∪P∪{u,b2} induces

a 3PC(u, p j). So j = 1. But thenP′∪P∪{b1,b2} induces a 4-wheel with centeru. This

proves (5).

(6) b′2 does not have a neighbor in P\ pk.

Proof of (6): Assume it does. Letp j be the node ofP\ pk with highest index adjacent to

b′2. By (5) no node ofH \b′2 has a neighbor inP\ pk. By (4) pk is adjacent tob2. Since

P∪{u,b2,b′2} cannot induce a proper wheel with centerb′2, N(b′2)∩P = p j .
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Next we show thatv does not have a neighbor inP. Assume it does. By (2)pk has a

neighbor inH \B and hence in(H \B)∪{b1, pk} there is a chordless path fromb1 to pk,

and this path together withP∪u induces a holeH ′. Since(H ′,v) cannot be a proper wheel,

N(v)∩P = pi for somei ∈ {1, . . . ,k}. Let H ′′ be the hole induced by thepi p j -subpath of

P together withb1,b′2 andv. Since(H ′′,u) cannot be a 4-wheel,i 6= 1 and j 6= 1. But then

(H ′′ \b1)∪{u, p1, ..., pi} induces a 3PC(u, pi) if i < j or 3PC(u, p j) otherwise. Therefore

v does not have a neighbor inP.

Suppose thatpk has a neighbor inH \ (B∪vb2). Let P′ be a chordless path frompk to

v in (H \ (B∪ vb2))∪ {pk,v}. ThenP′ ∪P∪ {u,b2} induces a 3PC(pk,u). Therefore

N(pk)∩H ⊆ B∪vb2, and hence by (2)pk is adjacent tovb2. But thenPa1b1 ∪Pa2b2 ∪P∪u

induces a 4-wheel with centerb2. This proves (6).

By (5) and (6) no node ofH has a neighbor inP\ pk. By (4) pk is adjacent tob2.

Supposepk is of type p2, d, Ad,H2-crossing or a pseudo-twin of a node ofA2 or y

wheny /∈ {a1,a2} w.r.t. H. Sincepk is adjacent tob2, it follows thatΣ′,u andP contradict

Lemma 4.5.2. Thereforepk cannot be any of these types, and hence by (4)pk is either of

type p3 w.r.t.H or it is a pseudo-twin of a node ofB1 w.r.t. H.

Suppose thatpk is of type p3 w.r.t.H. Sincepk is adjacent tob2, by Lemma 4.5.2

applied toΣ′,u andP, it follows that |A2| = 1 andb′2y is an edge. Letw be the neighbor

of pk in Pb2y that is closest toy. Let P′ be thewy-subpath ofPb2y, and letH ′ be the hole

induced byP∪P′∪Pa2y∪Pa1b1 ∪u. Then(H ′,b′2) is a bug andPa′1b′1
its center-crosspath

or ear, a contradiction.

So pk is a pseudo-twin of a node ofB2 w.r.t. H. Suppose thatpk is not adjacent

to a node ofB1. If k 6= 1, thenH1∪P∪ {u,b′2} induces a bug with centerpk with an

ear (where the ear is the path induced by(P\ pk)∪ u). So k = 1. Since{p1,v,b1,b2}

cannot induce a 4-hole,p1v is not an edge. Note that bothp1 andv have a neighbor in

H1\{b1,b′1,vb1}. Let P′ be a chordless path fromp1 to v in (H1\{b1,b′1,vb1})∪{p1,v}.

ThenP′∪{u,v,b1,b2} induces a 4-wheel with centeru. Sopk must be adjacent to a node

of B1.

By definition ofP, pk is not adjacent tob1, and hence it is adjacent tob′1. Therefore,

pk is a pseudo-twin ofb′1 w.r.t. H. Suppose thatv does not have a neighbor inP. Let P′

be the path frompk to v in (Pa′1b′1
\b′1)∪{pk,v}. If k > 1, thenP′∪P∪{u,b′2} induces

a 3PC(pk,u). Sok = 1, and henceP′ ∪P∪{u,b1,b′2} induces a 4-wheel with centeru.

Thereforev has a neighbor inP. Let P′ be the chordless path frompk to b1 in (H1\b′1)∪

pk. SinceP′∪P∪{b1,u,v} cannot induce a proper wheel with centerv, N(v)∩(P′∪P) =

pi for somei ∈ {1, ...,k}. But thenP′∪{pi , ..., pk,b2,v} induces 3PC(b1, pk). 2



Chapter 5 111 Decomposing Connected Diamonds

Proof of Theorem 2.2.6:AssumeG does not have a star cutset. Then by Theorems 4.2.2,

4.3.3, 4.3.4, 4.3.5 and 4.3.6G does not contain a proper wheel, a bug with a center-

crosspath, a 3PC(∆, ·) with a hat, a bug with an ear nor a 3PC(∆, ·) with a type s2 node.

We prove that for some connected diamondH of G, the 2-joinH1|H2 of H extends to a

2-join of G. Assume not. Then by Theorem 5.1.5 every connected diamondH of G has

a blocking sequence forH1|H2. Consider all short connected diamondsH, and amongst

them choose anH with a shortest blocking sequenceS= x1, ...,xn for H1|H2.

By Lemmas 5.2.1, 5.2.6, 5.2.7 and 5.2.8 the following holds:

(1) If a node ofG\H has a neighbor inH, then it is of type p1, p2, p3,A1, A, B, B2,

a, t3, d, Ad,H1-crossing,H2-crossing w.r.t.H or it is a pseudo-twin of a node of

A∪B∪y w.r.t. H.

By (1), Lemma 5.2.9, Theorem 5.1.9 and our choice ofH andS, the following holds:

(2) If a node ofS has a neighbor inH, then it is of type p1, p2,A1, A, B, B2, d, Ad,

H1-crossing orH2-crossing w.r.t.H, or |A2| = 1 and it is a pseudo-twin ofa2 w.r.t.

H.

So by Remark 5.1.2 and since neitherH1|H2∪x1 nor H1∪xn|H2 is a 2-join,N(x1)∩

H1 6= ∅,A1,B1 andN(xn)∩H2 6= ∅,A2,B2 and hence by (2) the following hold:

(3) n > 1.

(4) x1 has a neighbor inH1, and it is of type p1, p2 orH1-crossing w.r.t.H.

(5) xn has a neighbor inH2, and it is of type p1, p2, d, Ad,H2-crossing w.r.t.H, or it is

a pseudo-twin ofa2 w.r.t. H when|A2| = 1.

Let xl be the node ofSwith lowest index adjacent to a node ofH2. By (4),N(x1)∩H ⊆

H1 and hencel > 1. By Lemma 5.1.8,x1, ...,xl is a chordless path. Letx j be the node of

S\ x1 with lowest index that has a neighbor inH. Clearly j ≤ l and hencex1, ...,x j is a

chordless path. Note that nodesx2, ...,x j−1 have no neighbors inH. Furthermore by (2),

(5) and Lemma 5.1.3, the following holds:

(6) Either j = n andx j is one of the types in (5), orj < n andx j is of typeA1, A, B or

B2 w.r.t. H.

Let C (resp.C′) be the hole induced byPa1b1 ∪Pa′1b′1
∪b2 (resp.Pa1b1 ∪Pa′1b′1

∪b′2).

Claim 1: x1 is not an H1-crossing w.r.t. H.
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Proof of Claim 1: Assume it is. W.l.o.g.x1 is adjacent tob1. Then(C,x1) and(C′,x1)

are both bugs. Ifx j is of typeA1, A, Ad or a pseudo-twin ofa2 when|A2| = 1 w.r.t. H,

thenx j is not adjacent to at least one ofb2, b′2 and hencex2, ...,x j is a center-crosspath of

(C,x1) or (C′,x1), a contradiction. Ifx j is of typeB2 w.r.t. H, then(C\A1)∪{x1, ...,x j}

contains a 3PC(b2,x1).

Suppose thatx j is of type B w.r.t. H. If j = 2, then bug(C,x1) andx2 contradict

Lemma 4.3.1. Soj > 2 and hence(C\A1)∪{x1, ...,x j} contains a 3PC(x1,x j). So by (6),

x j has a neighbor inH2 and it is of type p1, p2, d orH2-crossing w.r.t.H. In particular,

N(x1)∩H ⊆ H1 andN(x j)∩H ⊆ H2, and henceH andx1, ...,x j contradict Lemma 5.2.5.

This completes the proof of Claim 1.

Claim 2: x1 is not of type p2 w.r.t. H.

Proof of Claim 2:Assume it is. W.l.o.g. the neighbors ofx1 in H are contained inPa1b1.

If x j is of type A1, A, Ad or a pseudo-twin ofa2 when |A2| = 1 w.r.t. H, thenx j is

not adjacent to at least one ofb2,b′2, and hence eitherC∪{x1, ...,x j} or C′∪{x1, ...,x j}

induces a 3PC(∆,∆) or a 4-wheel with centera1.

Nodex j cannot be of type B, p2, d norH2-crossing w.r.t.H, since otherwise either

Pa1b1 ∪Pa′2b′2
or Pa1b1 ∪Pa2b2 induces a 3PC(∆,∆) or a 4-wheel with centerb1.

Suppose thatx j is of typeB2 w.r.t. H. Let P be the chordless path fromx j to a1 in

G[Pa1b1 ∪{x1, ...,x j}]. Let H ′ be the short connected diamond induced byP∪Pa′1b′1
∪H2.

Then by Theorem 5.1.9 applied toH ′ andS, our choice ofH is contradicted.

So by (6),N(x j)∩H = r andr ∈H2. But thenH andx1, ...,x j contradict Lemma 5.2.5.

This completes the proof of Claim 2.

Claim 3: If N(x1)∩H = b1, then there exists a chordless path P= p1, ..., pk in G\H

such that p1 is adjacent to x1, no node of P\ p1 is adjacent to x1, no node of P\ pk has a

neighbor in H and one of the following holds:

(i) N(pk)∩H = vb1, or

(ii) pk is of type p2 w.r.t. H and its neighbors in H are contained in Pa′1b′1
.

Proof of Claim 3:Let S= N[b1]\{x1,vb1}. SinceScannot be a star cutset, there exists a

direct connectionP = p1, ..., pk from x1 to H in G\S. Sop1 is adjacent tox1, no node of

P\ p1 is adjacent tox1, pk has a neighbor inH \ {b1,b2,b′2} and it is not adjacent tob1,

and the only nodes ofH that may have a neighbor inP\ pk areb2 andb′2.

Case 1:b2 andb′2 do not have neighbors inP\ pk.
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Case 1.1:pk has a neighbor inΣ\{b2,b′2}.

By Lemma 4.5.1 applied toΣ, x1 andP, and since no node ofP is adjacent tob1, one

of the following holds: (a)N(pk)∩Σ = vb1; (b) pk is of type p2 w.r.t.Σ with neighbors in

Pb1y path ofΣ; or (c) pk is of type d w.r.t.Σ and it has no neighbor inPb1y\y.

Suppose that (a) holds. By (1) eitherN(pk)∩H = vb1 and hence (i) holds, ora1b1 is

an edge andN(pk)∩H = {a1,a′1}. The second case cannot hold, since thenPa1b1∪Pa2b2 ∪

P∪{x1,a′1} induces a 4-wheel with centera1.

Suppose that (b) holds. First suppose thatN(pk)∩ Σ ⊆ Pa1b1. Then by (1),pk is

of type p2 orH1-crossing w.r.t. H. If pk is an H1-crossing w.r.t. H, then (Pa1b1 \

a1)∪P∪ {x1,b2,b′1} contains a 3PC(b1, pk). So pk is of type p2 w.r.t. H. Note that

pk is not adjacent tob1, and hence(H \ vb1)∪P∪ x1 contains a short connected dia-

mondH ′(A1,A2,B1,B2) that containsx1, and hence by Theorem 5.1.9 our choice ofH

andS is contradicted. ThereforeN(pk)∩Σ is not contained inPa1b1, and hence|A2| =

1. Suppose thatN(pk) ∩ Σ ⊆ Pa2y. So by (1), pk is of type p2 w.r.t. H. But then

(H \ (Pa1b1 \b1))∪P∪ x1 contains a connected diamond whose side-2-paths have fewer

nodes in common than the side-2-paths ofH, contradicting our choice ofH. Therefore

N(pk)∩Σ = {a1,a2}. By (1) pk is of type a, A or it is a pseudo-twin ofa′1 w.r.t. H. By

Lemma 4.5.2 applied toΣ′, b1 and pathx1,P, nodepk must in fact be of type A w.r.t.H.

But then(H \ (Pa1b1 \b1))∪P∪x1 induces a short connected diamondH ′(A′
1,A2,B1,B2)

whereA′
1 = {a′1, pk} that containsx1. But then by Theorem 5.1.9 our choice ofH andS

is contradicted.

So we may now assume that (c) holds. Suppose that|A2| = 2. ThenN(pk)∩Σ =

{a1,a2,a′2} and so by (1)pk is of type A or it is a pseudo-twin ofa′1 w.r.t. H. If pk is a

pseudo-twin ofa′1 w.r.t. H, thenPa1b1 ∪ (Pa′1b′1
\a′1)∪P∪{x1,b′2} contains a 3PC(b1, pk).

SoN(pk)∩H = A. Let H ′ be the short connected diamond induced byPa′1b′1
∪P∪H2∪

{x1,b1}. Then by Theorem 5.1.9 applied toH ′ andS, our choice ofH is contradicted. So

|A2| = 1, and henceN(pk)∩Σ = {y,yb2,yb′2
}. By (1), N(pk)∩H = {y,yb2,yb′2

}. Suppose

that pk is not adjacent to a node ofB2. Let H ′ be the connected diamond induced by

(H \ (Pa1b1 \b1))∪P∪x1. Then the two side-2-paths ofH ′ have fewer nodes in common

than the two side-2-paths ofH, contradicting our choice ofH. Sopk is adjacent to a node

of B2, w.l.o.g. say it is adjacent tob2. Thenb2y is an edge, and henceb′2y is not an edge.

But thenP∪Pa′1b′1
∪Pa2y∪{x1,b2,b′2} induces a proper wheel with centerb2.

Case 1.2:pk has no neighbor inΣ\{b2,b′2}.

ThenN(pk)∩H ⊆ Pa′1b′1
∪B2. So by (1) eitherN(pk)∩H ⊆ Pa′1b′1

or pk is of type t3

w.r.t. H (adjacent tob′1) or pk is a pseudo-twin ofb′1 w.r.t. H. If pk is a pseudo-twin
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of b′1 w.r.t. H, thenPa1b1 ∪ (Pa′1b′1
\b′1)∪P∪{x1,b2} contains a 3PC(b1, pk). If pk is of

type t3 w.r.t.H, thenH1∪P∪{x1,b2} induces a bug with centerb2, andPa2b2 \b2 is its

center-crosspath. SoN(pk)∩H ⊆ Pa′1b′1
. If N(pk)∩H = b′1, thenC∪P∪ x1, induces a

3PC(b1,b′1). So pk has a neighbor inΣ′ \ {b2,b′2,b
′
1}. Note thatb1 is of type t2 w.r.t.Σ′.

By Lemma 4.5.2 applied toΣ′, b1 andP, (ii) holds.

Case 2:b2 or b′2 has a neighbor inP\ pk.

Let pi be the node ofP\ pk with highest index that has a neighbor in{b2,b′2}. W.l.o.g.

we may assume thatpi is adjacent tob2.

Suppose thatpk does not have a neighbor inΣ \ {b2,b′2}. Then pk has a neighbor

in Pa′1b′1
. Let C be the hole contained inH1∪P∪ x1 that containsPa1b1 ∪P∪ x1. Since

C∪b2 cannot induce a 3PC(b1, pi), (C,b2) is a wheel and hence it must be a bug. But

thenPa2b2 \b2 is its center-crosspath. Thereforepk has a neighbor inΣ\{b2,b′2}. We now

consider the following cases.

Case 2.1:N(pi)∩H = b2.

Since pk is not adjacent tob1 and it has a neighbor inΣ \ {b2,b′2}, it cannot be of

type B, B2 nor a pseudo-twin of a node ofB2∪b′1 w.r.t. H. If pk is of typeA1, A, a,

H1-crossing, a pseudo-twin of a node ofA1 w.r.t. H or a pseudo-twin ofa′2 when|A2| = 2

w.r.t. H, thenΣ, pi andpi+1, ..., pk contradict Lemma 4.5.1.

Suppose thatpk is of type d or it is a pseudo-twin ofy wheny /∈ {a1,a2} w.r.t. H.

Note that|A2| = 1. By Lemma 4.5.1 applied toΣ, pi and pi+1, ..., pk, nodepk is either

adjacent tob2 or N(pk)∩H = {y,yb′2
,ya2}. Let P′ be the chordless path frompk to a2 in

G[Pa2y∪pk] and letC be the hole induced byP′∪P∪Pa1b1∪x1. SinceC∪b2 cannot induce

a 3PC(b1, pi), (C,b2) is a wheel, and hence it is a bug. But thenPa′1b′1
is a center-crosspath

of bug(C,b2).

Suppose thatpk is of type t3, Ad or it is a pseudo-twin ofa2 w.r.t. H. Note that ifpk

is of type t3 w.r.t.H, then sincepk has a neighbor inΣ \ {b2,b′2}, N(pk)∩H ⊆ A. So in

all three cases,N(pk)∩H1 = A1. LetC be the hole induced byPa1b1 ∪P∪x1. SinceC∪b2

cannot induce a 3PC(b1, pi), (C,b2) is a wheel, and hence it is a bug. But thenPa′1b′1
is a

center-crosspath of bug(C,b2).

Suppose thatpk is an H2-crossing w.r.t. H. First suppose that|A2| = 2. If pk is

adjacent toa2 (resp. a′2), then letC be the hole induced byPa1b1 ∪P∪ {a2,x1} (resp.

Pa1b1 ∪P∪ {a′2,x1}). SinceC∪ b2 cannot induce a 3PC(pi,b1), (C,b2) is a wheel and

hence it must be a bug. But thenPa′1b′1
is its center-crosspath. So|A2| = 1. Let P′ be

the chordless path frompk to a2 in G[(Pa2b2 \b2)∪ pk], and letC be the hole induced by

P′∪P∪x1. Then again(C,b2) is a bug andPa′1b′1
is its center-crosspath.
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Suppose thatpk is a pseudo-twin ofb1 w.r.t. H. Since pk is not adjacent tob1,

N(pk)∩H = {b2,b′2,v1,v2} wherev1v2 is an edge ofPa1b1 \b1. Let P′ be the chordless

path frompk to b1 in G[Pa1b1 ∪ pk], and letC be the hole induced byP′∪P∪ x1. Then

(C,b2) must be a bug, and henceH1∪P∪{b2,x1} induces a bug(C,b2) and its center-

crosspath.

Therefore by (1),pk is of type p1, p2 or p3 w.r.t.H. By Lemma 4.5.1 applied to

Σ, pi and pi+1, ..., pk, N(pk)∩H ⊆ Pa2b2. Let P′ be the chordless path frompk to a2 in

G[(Pa2b2 \b2)∪ pk], and letC be the hole induced byP′∪P∪x1. SinceC∪b2 cannot be a

3PC(b1, pi), (C,b2) must be a bug, and hencePa′1b′1
is its center-crosspath.

Case 2.2:N(pi)∩H = {b2,b′2}.

Since pk is not adjacent tob1 and it has a neighbor inΣ \ {b2,b′2}, it cannot be of

type B,B2 nor a pseudo-twin of a node ofB2∪b′1. If pk is of typeA1, Ad, H2-crossing

or a pseudo-twin of a node ofA2∪{a1,y} w.r.t. H, thenΣ, pi andpi+1, ..., pk contradict

Lemma 4.5.2.

Suppose thatpk is of type A w.r.t. H. Let C be the hole induced byPa1b1 ∪P∪ x1.

SinceC∪b2 cannot induce a 3PC(b1, pi), (C,b2) is a wheel, and hence it is a bug. But

thenPa′1b′1
is its center-crosspath.

If pk is of type a w.r.t. H, then by Lemma 4.5.2 applied toΣ, pi and pi+1, ..., pk,

N(pk)∩H = {a1,a2}. But thenH1∪{pi , ..., pk,b2} induces a 3PC(a1,b2).

Suppose thatpk is of type t3 w.r.t. H. Sincepk is not adjacent tob1 and it has a

neighbor inΣ\{b2,b′2}, N(pk)∩H ⊆ A. But thenΣ, pi andpi+1, ..., pk contradict Lemma

4.5.2.

Suppose thatpk if of type d w.r.t.H. By Lemma 4.5.2 applied toΣ, pi andpi+1, ..., pk,

N(pk)∩H = {y,yb2,yb′2
} and pk is not adjacent tob2 and b′2. But then(H \Pa1b1)∪

{pi , ..., pk} induces a connected diamond whose side-2-paths have fewer nodes in com-

mon than the side-2-paths ofH, contradicting our choice ofH.

If pk is anH1-crossing w.r.t.H, then it must be adjacent tob′1, and hence(Pa1b1 \a1)∪

{pi , ...pk,b′1,b2} contains a 3PC(b2, pk).

If pk is a pseudo-twin ofa′1 w.r.t. H, then (H1 \ a′1) ∪ {pi , ..., pk,b2} contains a

3PC(b2, pk).

Suppose thatpk is of type p1 w.r.t. H. By Lemma 4.5.2 applied toΣ, pi and

pi+1, ..., pk, |A2| = 1 and eitheryb2 is an edge andpk is adjacent tovb′2
, or yb′2 is an edge

and pk is adjacent tovb2. In the first case(H \ (Pa′1b′1
∪ b′2))∪P∪ x1 induces a proper

wheel with centerb2. In the second case,Pa1b1 ∪Pa2b2 ∪P∪ x1 induces a proper wheel

with centerb2.
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Suppose thatpk is a pseudo-twin ofb1 w.r.t. H. Since pk is not adjacent tob1,

N(pk)∩H = {b2,b′2,v1,v2} wherev1v2 is an edge ofPa1b1 \b1. Let P′ be the chordless

path frompk to b1 in G[Pa1b1 ∪ pk], and letC be the hole induced byP′∪P∪ x1. Then

(C,b2) must be a bug, and henceH1∪P∪{b2,x1} induces a bug(C,b2) and its center-

crosspath.

Suppose thatpk is of type p3 w.r.t. H. By Lemma 4.5.2 applied toΣ, pi and

pi+1, . . . , pk, |A2| = 1 and pk is adjacent tob2 or b′2, w.l.o.g. say tob2. Let P′ be the

chordless path frompk to y in G[(Pb2y \ b2) ∪ pk], and letC be the hole induced by

P′∪P∪Pa2y∪Pa1b1 ∪x1. Then(C,b2) must be a bug andPa′1b′1
is its center-crosspath.

Therefore by (1),pk is of type p2 w.r.t. H. By Lemma 4.5.2 applied toΣ, pi and

pi+1, ..., pk, eitherN(pk)∩H ⊆ Pa1b1, or |A2| = 1 andN(pk)∩H ⊆ Pa2y. Let P′ be the

chordless path frompk tob1 in G[Pa1b1∪(Pa2b2 \b2)∪pk], and letC be the hole induced by

P′∪P∪x1. SinceC∪b2 cannot induce a 3PC(b1, pi), (C,b2) is a wheel, and hence it is a

bug. IfN(pk)∩H ⊆Pa2y, thenPa′1b′1
is a center-crosspath of(C,b2). SoN(pk)∩H ⊆Pa1b1.

But thenH1∪P∪{b2,x1} induces a bug(C,b2) and its center-crosspath. This completes

the proof of Claim 3.

Claim 4: If N(x1)∩H = a1, then there exists a chordless path P= p1, ..., pk in G\H

such that p1 is adjacent to x1, no node of P\ p1 is adjacent to x1, no node of P\ pk has a

neighbor in H and N(pk)∩H = va1.

Proof of Claim 4:Let S= N[a1] \ {x1,va1}. SinceScannot be a star cutset, there exists

a direct connectionP = p1, ..., pk from x1 to H in G\S. So p1 is adjacent tox1, no node

of P\ p1 is adjacent tox1, pk has a neighbor inH \A and it is not adjacent toa1, and the

only nodes ofH that may have a neighbor inP\ pk area2, a′2 anda′1.

Sincepk is not adjacent toa1 and it has a neighbor inH \A, pk cannot be of typeA1,

A, a, Ad, t3 (with neighbors inA), nor a pseudo-twin of a node ofA2∪a′1 w.r.t. H. So by

(1) the following holds.

(4.1) pk is not adjacent toa1, and it is of type p1, p2, p3, B,B2, t3 (with neighbors inB),

d, H1-crossing,H2-crossing or a pseudo-twin ofB∪a1 or y wheny /∈ {a1,a2} w.r.t.

H.

Case 1:a2 anda′1 do not have a neighbor inP\ pk.

Thena′2 is the only node ofH that may have a neighbor inP\ pk. If a′2 has a neighbor

in P\ pk, then(P\ pk)∪x1 contains a hat ofΣ2, a contradiction. So no node ofH has a

neighbor inP\ pk.
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If pk is of typeB2, B, d, H1-crossing,H2-crossing or it is a pseudo-twin of a node of

B∪a1 or y wheny /∈ {a1,a2} w.r.t. H, then sincepk is not adjacent toa1, Lemma 4.5.1

applied toΣ1,x1 andP is contradicted.

Suppose thatpk is anH2-crossing w.r.t.H. If |A2| = 1 or pk is adjacent toa′2, then

Σ,x1 andP contradict Lemma 4.5.1. So|A2| = 2 andpk is adjacent toa2. But thenx1,P

is a hat ofΣ1.

Suppose thatpk is of type t3 (with neighbors inB) w.r.t. H. By Lemma 4.5.1 applied

to Σ1, x1 and P, N(pk)∩ H = {b2,b′2,b1}. But thenH \ (Pa1b1 \ a1)∪P∪ x1 induces

a short connected diamondH ′(A1,A2,B′
1,B2) whereB′

1 = {pk,b′1}, which by Theorem

5.1.9 contradicts our choice ofH.

So by (4.1),pk is of type p1, p2 or p3 w.r.t.H. W.l.o.g. N(pk)∩H ⊆ Σ1. By

Lemma 4.5.1 applied toΣ1, x1 andP, N(pk)∩H = va1, or pk is of type p2 w.r.t.H and

N(pk)∩H ⊆Pa1b1. Suppose thatpk is of type p2 w.r.t.H. Then, sincepk is not adjacent to

a1, (H \va1)∪P∪x1 contains a short connected diamondH ′(A1,A2,B1,B2) that contains

x1, and hence by Theorem 5.1.9 our choice ofH is contradicted. SoN(pk)∩H = va1 and

the result holds.

Case 2:a2 or a′1 has a neighbor inP\ pk.

Let pi (resp. pl ) be the node ofP\ pk with lowest (resp. highest) index adjacent to a

node of{a2,a′1}. Sincex1, p1, ..., pi cannot be a hat ofΣ1, pi is adjacent to botha2 and

a′1. Then by (1),pi is of type a w.r.t.H. In particular,|A2| = 1. W.l.o.g.pk has a neighbor

in Σ1\A.

First suppose thatpl is adjacent toa2 but nota′1. Thenl > i. By Lemma 4.5.1 applied

to Σ1, pl andpl+1, ..., pk, nodepk has a neighbor in(Pa1b2 ∪Pa2b2)\{a1,a2}. Let P′ be a

chordless path frompk to a1 in G[Pa1b1 ∪ (Pa2b2 \a2)∪ pk], and letC be the hole induced

by P′∪P∪x1. Then(C,a2) is a wheel, and hence it must be a bug, i.e.l = i +1. Sopk

is not adjacent toa2. If pk is adjacent toa′1, then by (4.1),pk is anH1-crossing w.r.t.H

adjacent tob1 or a pseudo-twin ofb′1 w.r.t. H. But thenΣ1, pl andpl+1, ..., pk contradict

Lemma 4.5.1. Sopk is not adjacent toa′1, and henceC∪a′1 induces 3PC(a1, pi).

Now suppose thatpl is adjacent toa′1, but nota2. Thenl > i. By Lemma 4.5.1 applied

to Σ1, pl andpl+1, ..., pk, nodepk has a neighbor in((Pa1b1 ∪Pa′1b′1
)\{a1,a′1})∪b2. Let P′

be a chordless path frompk to a1 in G[Pa1b1 ∪(Pa′1b′1
\a′1)∪{pk,b2}], and letC be the hole

induced byP′∪P∪x1. Then(C,a′1) is a wheel, and hence it must be a bug, i.e.l = i +1.

So pk is not adjacent toa′1. If pk is adjacent toa2, then by (4.1),pk is of type d w.r.t.H

or it is a pseudo-twin of a node ofB2 or y wheny /∈ {a1,a2} w.r.t. H. But thenΣ1, pl and

pl+1, ..., pk contradict Lemma 4.5.1. Sopk is not adjacent toa2, and henceC∪a2 induces
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a 3PC(a1, pi).

Therefore,pl must be adjacent to botha2 anda′1, and hencepl is of type t2 w.r.t.Σ1.

If pk is of typeB2, B, d, H1-crossing,H2-crossing or a pseudo-twin of a node ofB2∪b1

or y wheny /∈ {a1,a2} w.r.t. H, thenΣ1, pl andpl+1, ..., pk contradict Lemma 4.5.2.

Suppose thatpk is of type p3 w.r.t. H. By Lemma 4.5.2 applied toΣ1, pl and

pl+1, . . . , pk, a2b2 is an edge andpk is adjacent toa′1. Thena2b′2 is not an edge. Let

P′ be the chordless path frompk to b′1 in G[(Pa′1b′1
\a′1)∪ pk], and letC be the hole induced

by P′∪Pa1b1 ∪{b′2,a2, pl , . . . , pk}. Then(C,a′1) is a 4-wheel.

If pk is of type t3 w.r.t.H with neighbors inB, then by Lemma 4.5.1 applied toΣ1,

pl andpl+1, ..., pk, N(pk)∩H = {b2,b′2,b1}. If pk is of type p2 w.r.t.H, then by Lemma

4.5.2 applied toΣ1, pl and pl+1, ..., pk, N(pk)∩H ⊆ Pa1b1. In both cases letP′ be the

chordless path frompk to a1 in G[Pa1b1 ∪ pk], and letC be the hole induced byP′∪P∪x1.

SinceC∪a′1 cannot induce a 3PC(a1, pl), (C,a′1) is a wheel and hence it must be a bug.

But thenH1∪P∪{x1,b2} induces a bug(C,a′1) with its center-crosspath. Thereforepk

cannot be of type p2 nor t3 (with neighbors inB) w.r.t. H.

Suppose thatpk is a pseudo-twin ofb′1 w.r.t. H. By Lemma 4.5.2 applied toΣ1, pl and

pl+1, ..., pk, nodepk is adjacent toa′1. Let C be the hole induced byPa1b1 ∪P∪{x1,b2}.

Then(C,a′1) must be a bug, and hencei = l andk = l + 1. But thenC∪ a2 induces a

3PC(a1, pl ), or a proper wheel with centera2 (in the case whena2b2 is an edge).

Supposepk is a pseudo-twin ofa1 w.r.t. H. Note that sincepk is not adjacent to

a1, N(pk)∩H = {a2,a′1,v1,v2} wherev1v2 is an edge ofPa1b1 \ a1. Let C be the hole

contained in(Pa1b1 \b1)∪P∪x1. Then(C,a′1) must be a bug, and henceH1∪P∪{b2,x1}

induces a bug(C,a′1) and its center-crosspath.

Therefore by (4.1),pk is of type p1 w.r.t.H. By Lemma 4.5.2 applied toΣ1, pl and

pl+1, ..., pk, a2b2 is an edge andN(pk)∩H = va′1
. But thenH1∪P∪{b2,x1} induces a

proper wheel with centera′1. This completes the proof of Claim 4.

By (4) and Claims 1 and 2,N(x1)∩H = r wherer ∈ H1. W.l.o.g. r ∈ Pa1b1. By (6) it

suffices to consider the following cases.

Case 1:x j is of type p1, p2, d orH2-crossing w.r.t.H.

ThenN(x j)∩H ⊆ H2, andH andx1, ...,x j contradict Lemma 5.2.5.

Case 2:x j is of type Ad or a pseudo-twin ofa2 when|A2| = 1 w.r.t. H.

Suppose thatr 6= a1. If x j has a neighbor inPa2b2 \ a2, then (Pa2b2 \ a2)∪Pa1b1 ∪

{x1, ...,x j} contains a 3PC(r,x j). Otherwise(Pa′2b′2
\ a′2)∪Pa′1b′1

∪{x1, ...,x j} contains a

3PC(r,x j). Sor = a1.
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Let P be the path from Claim 4. If no node ofP is adjacent to or coincident with

a node of{x2, ...,x j}, thenPa1b1 ∪Pa′1b′1
∪P∪ {x1, ...,x j} together with eitherb2 or b′2

induces a 4-wheel with centera1. So a node ofP is adjacent to or coincident with a node

of {x2, ...,x j}. Let pi be the node ofPwith highest index that has a neighbor in{x2, ...,x j},

and letxl be the node of{x2, ...,x j} with highest index adjacent topi . If x j has a neighbor

in Pa2b2 \ a2, thenPa1b1 ∪ (Pa2b2 \ a2)∪{pi , ..., pk,xl , ...,x j} contains a 3PC(va1,x j). So

x j does not have a neighbor inPa2b2 \a2, and hencex j is of type Ad w.r.t. H, |A2| = 1,

y= a2 andN(x j)∩H = {a′1,a1,a2,yb′2
}. But thenPa1b1∪(Pa2b′2

\a2)∪{pi , ..., pk,xl , ...,x j}

contains a 3PC(va1,x j).

Case 3:x j is of typeA1 w.r.t. H.

If r 6= a1, thenΣ1,x j andx1, ...,x j−1 contradict Lemma 4.5.2. Sor = a1. Let P be

the path from Claim 4. ThenPa1b1 ∪Pa2b2 ∪P∪{x1, ...,x j} contains a proper wheel with

centera1.

Case 4:x j is of type A w.r.t.H.

First suppose thatr 6= a1. Let P be the chordless path fromx j to b1 in G[(Pa1b1 \a1)∪

{x1, ...,x j}]. ThenH2∪P∪Pa′1b′1
induces a short connected diamondH ′ which by Theorem

5.1.9 contradicts our choice ofH. Sor = a1. Let P be the path from Claim 4. LetP′ be

the chordless path fromx j to b1 in G[(Pa1b1 \a1)∪P∪{x1, ...,x j}]. ThenH2∪P′∪Pa′1b′1
induces a short connected diamondH ′ which by Theorem 5.1.9 contradicts our choice of

H.

Case 5:x j is of typeB2 w.r.t. H.

By Lemma 5.2.5 applied toH andx1, ...,x j , r = b1. Let P be the path from Claim 3.

Suppose thatP satisfies (i) of Claim 3. LetP′ be a chordless path fromx j to a1 in

G[(Pa1b1 \b1)∪P∪{x1, ...,x j}]. ThenH2∪P′∪Pa′1b′1
induces a short connected diamond

H ′ which by Theorem 5.1.9 contradicts our choice ofH.

SoP satisfies (ii) of Claim 3. If no node ofP is adjacent to or coincident with a node

of {x2, ...,x j}, then(Pa′1b′1
\a′1)∪P∪{b1,b′2,x1, ...,x j} contains a 3PC(b′2,x1). Otherwise,

there exists a chordless pathP′ from x j to a′1 in G[(Pa′1b′1
\b′1)∪P∪{x2, ...,x j}], and hence

H2∪P′∪Pa1b1 induces a short connected diamondH ′ which by Theorem 5.1.9 contradicts

our choice ofH.

Case 6:x j is of type B w.r.t.H.

If r 6= b1, thenPa1b1 ∪Pa′1b′1
∪{x1, ...,x j} induces a 3PC(r,x j). Sor = b1. Let P be the

path from Claim 3. Suppose thatP satisfies (i) of Claim 3. If no node ofP is adjacent

to or coincident with a node of{x2, ...,x j}, thenPa1b1 ∪Pa2b2 ∪P∪{x1, ...,x j} induces a
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4-wheel with centerb1. Otherwise,Pa1b1 ∪Pa′1b′1
∪P∪{x2, ...,x j} contains a 3PC(x j ,vb1).

SoP must satisfy (ii) of Claim 3.

If a node ofP is adjacent to or coincident with a node of{x2, ...,x j}, thenPa1b1 ∪

(Pa′1b′1
\ b′1)∪Pa2b2 ∪P∪ {x2, ...,x j} contains a 3PC(x jb1b2,a1a′1a2). So no node ofP

is adjacent to or coincident with a node of{x2, ...,x j}. If j = 2, then(Pa′1b′1
\ a′1)∪P∪

{b1,b2,x1, ...,x j} contains a 4-wheel with centerx j . So j > 2. But then(Pa′1b′1
\a′1)∪P∪

{b1,x1, ...,x j} contains a 3PC(x1,x j). 2



Chapter 6

Recognition Algorithm

In this section we give a new recognition algorithm for even-hole-free graphs. As already

discussed in Sections 1.1 and 2.1, two different recognition algorithms are given in [14]

and [6].

6.1 Cleaning algorithm

Let H be a hole, andv∈V(G)\V(H). We say thatv is major w.r.t. H if there exist three

of its neighbors inH that are parwise nonadjacent. This is the terminology from [6].

Let H be a smallest even hole of a graphG. We say thatH is cleanif no vertex ofG

is major w.r.t.H.

Let H be a smallest even hole ofG. Let u ∈ G\H. We say thatu is of type gi, for

i = 1,2,3, if |N(u)∩V(H)|= i andN(u)∩V(H) induces a path oni nodes. We say thatu

is of type b1 ifV(H)∪{u} induces a 3PC(·, ·); u is of type b2 if(H,u) is a 4-wheel that

has exactly two long sectors and these two long sectors do nothave a node in common;

andu is of type b3 if(H,u) is a 4-wheel that has exactly two long sectors and these two

long sectors have a node in common. This is the terminology from [14].

Let H be a smallest even hole ofG. Let u be a type g3 node w.r.t.H, with neigh-

borsu1, u2, u3 in H such thatu1u2 andu2u3 are edges. LetH ′ be the hole induced by

(V(H) \ {u2})∪{u}. We say thatH ′ is obtained fromH by a type-g3-node-substitution.

Let CG(H) be the set of all holes obtained fromH through a sequence of type-g3-node-
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substitutions.

A graphG is cleanif it is either even-hole-free or it contains a smallest evenholeH

such that all holes ofCG(H) are clean.

A short 4-wheelis a 4-wheel(H,x) such that either exactly three of the four sector

are of length 1, or exactly two of the four sectors are of length 1 and they do not have a

common endnode and one of the sectors is of length 3.

In both [14] and [6] a “cleaning procedure” is given, that takes an input graphG and

produces a clean graphG′ that is even-hole-free if and only ifG is even-hole-free. In [14]

a smallest even hole is “cleaned” in the sense that all major nodes are eliminated but also

the type b1, b2 and b3 nodes. Here we give the cleaning from [6]that cleans just the

major nodes, and hence has better complexity.

Theorem 6.1.1 [6] There exists an algorithm with following specifications:

Input : A graph G.

Output : A sequence of subsets X1, ...,Xr of V(G) with r ≤ |V(G)|9 such that for

every smallest even hole H of G, one of X1, ...,Xr is disjoint from V(H) and

includes all major vertices for H.

Running

Time

: O(|V(G)|10).

Lemma 6.1.2 Let H be a smallest even hole of G. If x∈V(G)\V(H) has an odd number

of neighbors in H, then x is of type g1 or g3 w.r.t. H.

Proof: Assume thatx has an odd number of neighbors inH, and that it is not of type g1 or

g3 w.r.t. H. Then(H,x) is a wheel. IfS is any sector of(H,x), thenV(S)∪{x} induces

either a triangle or a hole that is of length smaller thanH. So every sector of(H,x) is

of odd length, and since(H,x) has an odd number of sectors, it follows thatH is of odd

length, a contradiction. 2

Lemma 6.1.3 Assume that G does not contain a short 4-wheel nor a smallest even hole

with a type b3 node. Let H be a smallest even hole of G. If H is clean, then all holes in

CG(H) are clean.
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Proof: Assume thatH is clean. Letu be a node that is of type g3 w.r.t.H, with neighbors

u1,u2,u3 in H such thatu1u2 andu2u3 are edges. LetH ′ be the hole induced by(V(H)\

{u2})∪{u}. To prove the result, it suffices to show thatH ′ is clean.

Suppose that there exists a vertexv that is major w.r.t.H ′. Sincev cannot be major

w.r.t. H, it follows thatv is adjacent tou, it has at least two nonadjacent neighbors inH,

and it is not adjacent tou2.

Sincev is major w.r.t.H ′, by Lemma 6.1.2v has an even number of neighbors inH ′.

Sov has an odd number of neighbors inH. Sincev has at least two neighbors inH, by

Lemma 6.1.2,v is of type g3 w.r.t.H. But then either(H ′,v) is a short 4-wheel orv is of

type b3 w.r.t.H ′, a contradiction. 2

Lemma 6.1.4 [14] Let G be a graph that does not contain a 4-hole nor a short 4-wheel.

Let H be a smallest even hole of G, and suppose that node u is of type b3 w.r.t. H. Let

N(u)∩V(H) = {u1,u2,u3,u4} such that u1u2 and u2u3 are edges. If v is major w.r.t. H,

then N(v)∩{u2,u4,u} 6= ∅.

Theorem 6.1.5 There exists an algorithm with following specifications:

Input : A graph G that does not contain a 4-hole, nor a short 4-wheel.

Output : A familyL of induced subgraphs of G such that if G contains an even hole,

then for some smallest even hole H of G and some G′ ∈ L , G′ contains H

and all holes inCG′(H) are clean. Furthermore,|L | is O(|V(G)|9).

Running

Time

: O(|V(G)|10).

Proof: Consider the following algorithm:

Step 1: SetL = {G}.

Step 2: For every(P1,P2,u), whereP1 = x1,x2,x3 andP2 = y1,y2,y3 are disjoint chordless

paths inG andu∈N(x2)∩N(y2), add toL the graph obtained fromG by removing

the node setN({x2,y2,u})\ (V(P1)∪V(P2)).

Step 3: Apply the algorithm from Theorem 6.1.1 toG, and letX1, ...,Xr be the output

sequence of subsets ofV(G). For i = 1, ..., r add toL the graph obtained fromG

by removingXi.
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Clearly this algorithm runs in timeO(|V(G)|10), and |L | is O(|V(G)|9). Suppose

thatG contains an even hole.

First suppose thatG contains a smallest even holeH with a type b3 nodeu. Let

N(u)∩V(H) = {u1,u2,u3,u4} such thatu1u2 andu2u3 are edges. Letu′3 (resp. u′1) be

the neighbor ofu4 in the sector of wheel(H,u) whose endnodes areu4 andu3 (resp.u1).

Let G′ be the graph obtained fromG by removing the node setN({u2,u4,u}) \V(H).

Clearly G′ containsH and is one of the graphs added toL in Step 2. LetH ′ be any

hole ofCG′(H). By construction ofG′ and sinceG does not contain a 4-hole,H ′ contains

u1,u2,u3,u′3,u4,u′1 and henceu is of type b3 w.r.t.H ′. So by Lemma 6.1.4 and since no

node ofG′ is adjacent to any of the nodes of{u2,u4,u}, it follow that no node ofG′ is

major w.r.t.H ′. ThereforeCG′(H) is clean, proving the theorem.

Now we may assume thatG does not contain a smallest even hole with a type b3 node.

Let H be any smallest even hole ofG. By Theorem 6.1.1, for some graphG′ added toL

in Step 3,G′ containsH andH is clean inG′. By Lemma 6.1.3, all holes inCG′(H) are

clean, and the theorem holds. 2

6.2 Star decomposition

In this section we decompose clean graphs with star cutsets.

Let S= N[x] be a full star cutset of a graphG, and letC1, ...,Cn be the connected

components ofG\S. Theblocks of decompositionof G by Sare graphsG1, ...,Gn, where

Gi is the subgraph ofG induced byV(Ci)∪S.

Lemma 6.2.1 Assume that G is a graph that does not contain a theta, a short 4-wheel

nor a 4-hole. If H∗ is a smallest even hole of G and it is clean, then H∗ contains two

nodes that are at distance at least 3 in G.

Proof: SinceG does not contain a 4-hole,H∗ is of length at least 6, and hence it contains

two nodesu andv that are at distance 3 inH∗. Suppose thatu andv are not at distance 3

in G. Then there exists a nodew∈ G\H∗ that is adjacent to bothu andv. SinceG does

not contain a theta,w has at least 3 neighbors inH∗. By Lemma 6.1.2,w has at least 4

neighbors inH∗. SinceG does not contain a 4-hole nor a short 4-wheel, it follows thatw

is major w.r.t.H∗, contradicting the assumption thatH∗ is clean. 2

We note that for the result of the above lemma to hold it is not neccessary to exclude

thetas, there is a way to just deal with type b1 nodes as in [14], but since thetas can be

recognized in timeO(|V(G)|11) [9], for simplicity of the argument we exclude them here.

We say thatu is dominatedby v if u is adjacent tov andN(u) ⊆ N[v].
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Lemma 6.2.2 Let G be a clean graph such that for some smallest even hole H∗ of G, all

holes ofCG(H∗) are clean. Assume that G does not contain a short 4-wheel. If node u is

dominated by node v, then G\{u} contains a hole ofCG(H∗).

Proof: Assume thatH∗ containsu, and letu1 andu2 be the neighbors ofu in H∗. Since

u is dominated byv, nodev is adjacent tou1, u2 andu. SinceH∗ is clean andG does not

contain a short 4-wheel,v is of type g3 w.r.t.H∗. But then(H∗ \u)∪v is in CG(H∗) and

in G\u. 2

A 4-wheel(H,x) is decomposition detectablew.r.t. a full star cutsetS if S= N[x], x is

of type b2 w.r.t.H and the interior nodes of the two long sectors of(H,x) are contained

in different connected components ofG\S.

Lemma 6.2.3 Let G be a clean graph such that for some smallest even hole H∗ of G,

all holes ofCG(H∗) are clean. Assume that G does not contain a short 4-wheel nor a

theta. When decomposing G with a full star cutset S, then either some hole inCG(H∗) is

entirely contained in one of the blocks of decomposition, orthere exists a decomposition

detectable 4-wheel w.r.t. S.

Proof: Let S= N[x] and suppose that nodes ofH∗ are contained in different connected

components ofG\S. Thenx /∈ H∗ andx has at least two nonadjacent neighbors inH∗.

SinceG does not contain a theta,x has at least three neighbors inH∗.

First suppose thatx has an odd number of neighbors inH∗. Then by Lemma 6.1.2,x

is of type g3 w.r.t.H∗. Let H be the hole obtained by substitutingx into H∗. ThenH is

contained inCG(H∗) and in one of the blocks of decomposition byS.

So we may now assume thatx has an even number of neighbors inH∗, and hence

|N(x)∩H∗| ≥ 4. SinceG does not contain a short 4-wheel, andx cannot be major w.r.t.

H∗, it follows thatx is of type b2 w.r.t.H∗. But then(H∗,x) is a decomposition detectable

4-wheel w.r.t.S. 2

Theorem 6.2.4 There exists an algorithm with the following specifications:

Input : A connected graph G that does not contain a short 4-wheel, a theta, nor a

4-hole.
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Output : Either G is identified as not being even-hole-free, or a list L of induced

subgraphs of G with the following properties.

(1) The graphs inL do not have a star cutset.

(2) If G contains a smallest even hole H∗ such that all holes ofCG(H∗)

are clean, then one of the graphs inL contains a hole inCG(H∗).

(3) The number of graphs inL is O(|V(G)|2).

Running

Time

: O(|V(G)|10).

Proof: The algorithm is as follows. InitializeL = ∅ andL ′ = {G}, and perform the

following iterative step. IfL ′ = ∅, then stop. Otherwise, remove a graphF from L ′. If

the distance between every pair of vertices ofF is strictly less than 3 inG, then discard

F and iterate. IfF contains a dominated nodeu, then addF \u to L ′ and iterate. IfF

does not have a full star cutset, then addF to L and iterate. Otherwise, letSbe a full star

cutset ofF. If there is a decomposition detectable 4-wheel w.r.t.S, then output thatG is

not even-hole-free and stop. Otherwise construct the blocks of decomposition byS, add

them toL ′ and iterate.

Note that if a 4-wheel is found, then clearlyG is not even-hole-free. (1) holds by the

construction of the algorithm (note that, as was first observed by Chvátal [10], a graph

has a star cutset if and only if it has a dominated node or a fullstar cutset). (2) holds by

Lemma 6.2.1, 6.2.2 and 6.2.3.

We prove (3) by showing that the number of graphs inL is bounded by the number

of pairs of vertices at distance at least 3 inG. Let Sbe a full star cutset of a graphF , and

let F1, ...,Fm be the blocks of decomposition. Letu andv be two vertices ofF that are at

distance at least 3 inG (and hence inF). The pair of vertices{u,v} cannot be contained

in two different blocks of decompostion, since otherwise they would both have to be in

S, but sinceS is a star, all vertices ofS are at distance at most 2. Therefore, no pair of

vertices that are at distance at least 3 inG can be contained in different graphs inL .

Finding a dominated node, or finding a full star cutset and construting blocks of de-

composition can be done in timeO(|V(G)|3). For a given full star cutsetS = N[x],

checking whether there exists a decomposition detectable 4-wheel can be done in time

O(|V(G)|8) as follows: letC1, . . . ,Ck be the connected components ofG\S; for every

4-tuple(x1,x2,x3,x4), where{x1,x2,x3,x4} ⊆ N(x) andG[{x1,x2,x3,x4}] consists of ex-
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actly two edges,x1x2 andx3x4; and for every 2-tuple(Ci ,Cj), wherei, j ∈ {1, . . . ,k} and

i 6= j; check whetherx1 andx4 both have a neighbor in the same connected component of

Ci \ (N(x2)∪N(x3)), and whetherx2 andx3 both have a neighbor in the same connected

component ofCi \(N(x1)∪N(x4)). All this is performed at mostO(|V(G)|2) times, giving

O(|V(G)|10) time complexity. 2

6.3 2-join decomposition

In this section we decompose a clean graph that has no star cutset using 2-join decompo-

sitions, without creating any new star cutsets.

Let V1|V2 be a 2-join with special sets(A1,A2,B1,B2). For i = 1,2, let Pi be the

family of chordless pathsP = x1, ...,xn wherex1 ∈ Ai , xn ∈ Bi andx j ∈ Vi \ (Ai ∪Bi) for

2≤ j ≤ n−1.

Theblocks of a 2-join decompositionare graphsG1 andG2 defined as follows. Block

G1 consists of the subgraph ofG induced by node setV1 plus amarker path P2 = a2, ...,b2

that is chordless and satisfies the following properties. Nodea2 is adjacent to all nodes in

A1, nodeb2 is adjacent to all nodes inB1 and these are the only adjacencies betweenP2

and the nodes ofV1. Furthermore, letQ∈ P2. The marker pathP2 has length 3 ifQ is of

odd length, and length 4 otherwise. BlockG2 is defined similarly.

Theorem 6.3.1 [14] Let G be a graph that does not contain a 4-hole. Let G1 and G2 be

the blocks of a 2-join decomposition of G. G is even-hole-free if and only if G1 and G2

are even-hole-free. Furthermore, if G does not have a star cutset, then neither do G1 and

G2.

Theorem 6.3.2 There exists an algorithm with the following specifications:

Input : A connected graph G that does not have a 4-hole nor a star cutset.

Output : Either an even hole of G, or a listL of graphs with the following proper-

ties:

(1) The graphs inL do not contain a 4-hole, a star cutset nor a 2-join.

(2) G is even-hole-free if and only if all graphs inL are even-hole-free.

(3) The number of graphs inL is O(|V(G)|).
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Running

Time

: O(|V(G)|8).

Proof: The algorithm is as follows. InitializeL = ∅ andL ′ = {G}, and perform the

following iterative step. IfL ′ = ∅, then stop. Otherwise, remove a graphF from L ′. If

F does not have a 2-join, then addF to L and iterate. Otherwise, letV1|V2 be a 2-join of

F. Construct the blocks of the 2-join decomposition ofF, sayF1 andF2. For i = 1,2, if

|Vi| ≤ 7, then check directly whetherFi contains an even hole. If it does, output this result

and stop, and otherwise discardFi . If |Vi| > 7, addFi to L ′, and iterate.

By constructing blocks of decomposition we do not create any4-holes, and by Theo-

rem 6.3.1 we do not create any star cutsets. So by the construction of the algorithm, (1)

holds. (2) holds by Theorem 6.3.1.

In [4] and [14] it is shown how with this construction of the algorithm (3) holds.

Finding a 2-join takes timeO(|V(G)|7) using the crude implementation in [14], and

this algorithm is applied at mostO(|V(G)|) times, yielding an overall complexity of

O(|V(G)|8). 2

6.4 Recognition algorithm for even-hole-free graphs

Theorem 6.4.1 There exists an algorithm with the following specifications:

Input : A graph G.

Output : EVEN-HOLE-FREE when G is even-hole-free, and NOT EVEN-HOLE-

FREE otherwise.

Running

Time

: O(|V(G)|19).

Proof: Consider the following algorithm:

Step 1: Test whetherG contains a short 4-wheel, a theta, or a 4-hole. If it does, then

output NOT EVEN-HOLE-FREE and stop.

Step 2: Apply algorithm from Theorem 6.1.5, and letL1 be the output family of graphs.
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Step 3: Let L2 = ∅. For every graph inL1, apply the algorithm from Theorem 6.2.4. If

the graph is identified as not being even-hole-free, then output the same and stop.

Otherwise merge the output family of graphs withL2.

Step 4: Let L3 = ∅. For every graph inL2, apply the algorithm from Theorem 6.3.2. If

the graph is identified as not being even-hole-free, then output the same and stop.

Otherwise merge the output family of graphs withL3.

Step 5: Check whether every graph inL3 is an extended clique tree. If some is not then

output NOT EVEN-HOLE-FREE. Otherwise, for each graph inL3 check whether

it contains an even hole. If some does, then output NOT EVEN-HOLE-FREE, and

otherwise output EVEN-HOLE-FREE.

The correctness of the algorithm follows from Corollary 2.2.3. Testing whether a

graph contain a short 4-wheel or a 4-hole can be done by brute force in timeO(|V(G)|9).

Testing whether a graph contains a theta can be done in timeO(|V(G)|11) [9]. So Step 1

can be implemented to run in timeO(|V(G)|11).

By Theorem 6.1.5, Step 2 can be implemented to run in timeO(|V(G)|10) and|L1|=

O(|V(G)|9). By Theorem 6.2.4 and since|L1| = O(|V(G)|9), Step 3 can be imple-

mented to run in timeO(|V(G)|19) and |L2| = O(|V(G)|11). By Theorem 6.3.2 and

since|L2| = O(|V(G)|11) Step 4 can be implemented to run in timeO(|V(G)|19) and

|L3| = O(|V(G)|12).

It is easy to see that in a clique tree there is at most one chordless path between any

pair of vertices. So ifG\x is a clique tree, then to determine whetherG contains an even

hole we need only test for every pair of neighbors ofx whether the chordless path between

them inG\x contains no other neighbor ofx and is of even length. Similarly one can test

whether an extended clique tree contains an even hole. So, since |L3| = O(|V(G)|12),

Step 5 can be implemented to run in timeO(|V(G)|17). Therefore the overall running

time isO(|V(G)|19). 2
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[10] V. Chvátal,Star-cutsets and perfect graphs, Journal of Combinatorial Theory B 39

(1985) 189-199.
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