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Abstract
The focus of this thesis is on the study of reproduction strategy in the context of

evolutionary and social-evolutionary theory. Much of the hierarchical structure that is

evident in the natural world is due to major evolutionary transitions where individual

subunits that once reproduced individually now reproduce only as part of a larger unit.

Modelling and understanding the processes behind the evolution of this hierarchy can

have applications in both biology and computer science. I argue that to explain the major

transitions it is necessary to understand why an individualwould reduce its reproductive

success to invest instead in a higher reproductive process (i.e., reproduce collectively with

other individuals).

To address this problem, a method for studying reproductionstrategy was developed

and is presented in this thesis. The method takes an abstractphysiological approach to

reproduction. It considers an individual as a quantity of resources and set of genes which

define its reproduction strategy. I then investigate the advantages of different reproduction

strategies and identify which strategies may dominate others. The strategies considered in

my investigations include: an individual reproducing on its own; an individual gambling

its total resources against those of multiple other individuals; or an individual sharing its

reproductive effort with a partner or several other partners.

Starting with individual reproduction, I simply study why an individual might reduce

its reproductive rate when, on the face of it, it seems that maximum fecundity should be

the best option. The model is also motivated in light of current literature on life history

and microbial ecology in particular. The results show how itcan be advantageous for an

individual to hedge its bets and delay reproduction; waiting instead until it has accumu-

lated more resources and is less vulnerable to harsh periods. The results make predictions

that are experimentally verifiable.

Given the model of individual reproduction, I reapply the growth equations to question

whether there is any advantage to sharing reproductive effort through collective reproduc-

tion. This model also shows that it can pay to hedge one’s betsand invest in the less

vulnerable, but slower, collective reproductive strategy. The results show that there is a

mathematical relationship between the number of parents and the up-front cost of repro-

duction spent on creating a new offspring – depending on the extra cost per parent, two

parents may be the best strategy or perhaps many parents.

Looking in more detail at the transition from unicellular organisms to multicellular

organisms, I model the macrocyst stage in the slime mouldDictyostelium. I consider

how the macrocyst stage may be an early example of collectivereproduction in protozoa.

Here individuals aggregate to be ingested by a central cell which produces homogeneous
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offspring. I assume that each individual is gambling on being the central cell and the

model presented reveals under what conditions this is likely to be a good strategy when

compared to individual reproduction. Again, the results show that there is an advantage

to hedging one’s bets and investing in the macrocyst rather than going it alone.

Finally I consider the origin of sexual reproduction in moredetail. The traditional

approach argues that the slower growth rate of sexually reproducing organisms means

that there is a paradox concerning the origins and maintenance of sexual reproduction,

especially when one considers males which do not contributeto their offspring. Extending

the previous model of collective reproduction, I consider how many resources selfish

individuals may contribute to their offspring. The resultsshow that there is a lower bound

to the resources individuals may contribute and that when there is a high amplitude of

resource fluctuation, the sexual strategy can dominate an asexual strategy.

As well as the main body of work on the topic of individual reproduction, some further

background work is also presented. The models use both mathematical and computer

simulation models. These two approaches are compared and contrasted with reference to

their value in generating good scientific explanations of the sorts of phenomena found in

the types of systems I am studying.
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Chapter 1

Introduction

A profound and mysterious theme in nature is the prevalence of hierarchical systems. In

fact, the biota of our planet can be viewed as one large hierarchical system, with proteins

made up of chains of amino acids, cells containing proteins,eukaryotic cells composed of

organelles, multicellular organisms formed from eukaryotic cells, societies of multicellu-

lar organisms, and ecologies consisting of species groups.

Study of our natural history (Maynard Smith and Szathmáry 1995) indicates that (un-

surprisingly) the lower levels of the hierarchy evolved before the higher levels. This

recurring pattern of lower level units forming themselves into higher level units has been

dubbed amajor evolutionary transition(Szathḿary and Maynard Smith 1995). The major

evolutionary transitions are summarised in Table 1.1.

There are still many mysteries around the major evolutionary transitions however

Replicating molecules → Populations of molecules in compartments
Independent replicators → Chromosomes
RNA as gene and enzyme→ DNA + protein (genetic code)
Prokaryotes → Eukaryotes
Asexual clones → Sexual populations
Protists → Animals, plants, fungi (cell differentiation)
Solitary individuals → Colonies (non-reproductive castes)
Primate societies → Human societies (language)

Table 1.1: The major transitions in evolution, in order of occurrence. Taken from the
review by Maynard Smith and Szathmáry (1995).

1
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(Maynard Smith and Szathḿary 1995). Taken separately, none of the transitions can be

said to have a satisfactory individual explanation. Further to this, we lack a more general

theory as to why the transitions occurred over and over againat each of the new levels.

My main topic of interest, in this thesis, is therefore to build models (and modelling ap-

proaches) that work toward a unified theory of the transitions, while at the same time

address each one individually.

The repeating pattern of the major evolutionary transitions indicates that there may

be some common feature in individual sub-units from every level that leads them to form

themselves into larger units. Perhaps there is some kind of social evolutionary force that

binds these units together? I will be investigating this question further in this thesis.

The best place to start is to look for the common features of the transitions. It has

been observed that all of the transitions follow one simple common principle: sub-units

that could previously reproduce on their own can now only reproduce as part of the super-

unit (Buss 1987, Szathḿary and Maynard Smith 1995). There are also common features

shared by the sub-units: they all make copies of themselves which may or may not be

perfect copies and they all compete with other similar individuals over resources. Based

on these core features, the central question of this thesis is thus:

The central question What factors are important for an individual that can reproduce

on its own to evolve into a sub-individual that reproduces as part of a collective?

This question is investigated further by first reviewing background literature in the

next section (Section 1.1). In the following section (Section 1.2) I present the direction

in which I will approach the problem of the major evolutionary transitions. With this in

mind, I review current literature on social evolution in Section 1.3, involving a discussion

on the origins of altruism and its potential role in the majorevolutionary transitions. After

concluding that altruism may not be the answer, I look instead at theories offitness(an

organism’s ability to survive in an environment and produceviable offspring) in more

detail in Section 1.5. The conclusion that the long term fitness of an individual (or an

individual’s lineage) may override its short term fitness leads me to the suggestion that

this may be important in the major evolutionary transitionsand this is the main topic

of this thesis. The aims and results of the thesis are summarised in Section 1.6 and its

contributions are discussed in Section 1.7.
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1.1 Background

Given the central question of this thesis I look, in this section, to its relevance to com-

puter science, evolutionary computation and ALife research. The dream of many ALife

researchers is to employ principles inspired by evolutionary biology to implement com-

puter systems that will use evolution to solve problems without supervision. Therefore,

ALife research is interested in how evolution works over a long period of time – the sorts

of timescales over which new functionality (e.g., vision orintelligence) evolves and over

which several major evolutionary transitions have taken place.

To answer this question, we need to have a clear picture as to how evolution works.

What are the simplest elements needed to generate evolution in a system? Evolution-

ary theory has been rooted in a gradualist perspective sinceDarwin’s original theory on

natural selection (Darwin 1859). Small heritable changes in offspring, combined with

survival of the fittest, mean that individuals will make accretive advances in their func-

tionality. Since the modern synthesis (Fisher 1930, Haldane 1932, Wright 1931), recent

theories [e.g., (Dawkins 1982)] of these increases in individual functionality are based

on natural selection pressure on reproducing individuals that are subject to mutations of

their genetic code. Those mutations that increase an organism’s fitness will proliferate in

the population. This creates a ratchet effect [known as Muller’s ratchet (Muller 1932)]

where beneficial mutations are incrementally added to an organism’s gene pool: there is

no reversal because any organism with a detrimental mutation will not survive.

This approach has been applied with varying success in computer science. Genetic

algorithms are now widely used (Mitchell 1998) for their search and optimisation func-

tionality. A typical genetic algorithm finds optimal solutions by running multiple gener-

ations. Each generation has several solutions which are alldifferent. The best solutions

are picked using afitness function(which scores solutions according to their competence

in solving a problem) and are used for the next generation. However, fitness functions

are very difficult to design to solve any one specified problem. Further, a fitness function

that adapts to unspecified problems is severely challenging. To produce unsupervised new

functionality, the fitness function must constantly change.

An alternative perspective to using genetic algorithms is the simulation of ecosystems

to understand how evolution can drive new functionality within them. Such a simulation

would of course have value within evolutionary biology as well. In fact a thought ex-

periment of Gould (1989) questioned whether there is such aninevitability to evolution.

Furthermore, if there is such an inevitability, what are thefactors that it is contingent

upon? Many proponents of Artificial life (Bonabeau and Theraulaz 1994, Ray 1994,
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Bedau 1998) have argued that simulating evolution on computers can lead to important

insights to this problem.

Attempts to simulate the evolutionary time-line in computer models have not gone

well so far. A common opinion in biological circles (Dawkins1989) is that core evolu-

tionary theory is all we need to explain the evolution of lifeand its astounding complex-

ities. This idea of evolution as a mechanism implies that it may be possible to generate

an unsupervised system which will develop new functionality – perhaps in a computer.

However, attempts to produce ALife computer models (Ray 1996, Adami 2006), which

implement all the main features of evolutionary theory, have not produced much complex-

ity of interest. It seems clear therefore that there is something missing, perhaps important

factors that evolution is contingent upon have been omittedfrom the models that have at-

tempted to recreate some of the complexity of life, or perhaps there is something missing

from the evolutionary theory they are based on.

Perhaps the best thing to focus on is the increase in individual complexity (Szathḿary

and Maynard Smith 1995). By making an individual more complex, but still competi-

tive in an environment, it will develop its repertoire of functionality. However this is also

problematic because there is no accepted measure for individual complexity. The problem

with developing a measure for complexity is that there are atleast three ways of quanti-

fying it: genetic complexity (Adami, Ofria and Collier 2000), morphological complexity

(Carroll 2001) and behavioural complexity (Bonner 1988). Wecurrently lack an accepted

measure for individual complexity (Adami 2002, Szathmáry and Maynard Smith 1995)

that successfully captures all these different attributes.

Some have argued that we should take a neutral perspective onthe adaptive advan-

tages of individual complexity. Gould argues that since there is a lower bound to in-

dividual complexity, random drift would mean that it shouldnaturally increase (Gould

and Eldredge 1993). While this is an attractive point of view,the major evolutionary

transitions show obvious increases in individual complexity – so, any theory explaining

them would run against Gould’s thesis and potentially shed some light on the problem of

open-ended evolution.

Given the need for explanations of the mysteries of the majorevolutionary transitions,

and the desire for theory which demonstrates increases in individual complexity and per-

haps open-ended evolution, I have chosen the major evolutionary transitions as the topic in

this thesis. In the next section I outline the problems of themajor evolutionary transitions

in more detail.
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1.2 The major evolutionary transitions

For the major transitions to occur, this requires that an individual must invest in a higher

reproductive process. I define a higher reproductive process as follows:

Higher reproductive process A process of generating new offspring with two or more

individuals having some genetic stake in, and contributingresources to, the new offspring.

From this perspective, I seek to explain why an individual might evolve to be part of a

higher reproductive process and investigate, based on current data on the evolutionary

transitions, the nature of these higher reproductive processes.

From the perspective of the evolution of complexity, it is this investment in a higher

reproductive process that is important. Rather than explaining the individual transitions

separately, a general theory that explains why an individual would invest in a higher re-

productive process could explain the increase in complexity that is required to take part

in a higher process, and explain the increase in complexity of the individual.

Of course, just explaining an individual’s contribution toa higher reproductive process

does not fully explain the evolutionary transitions – theserequire (Maynard Smith and

Szathḿary 1995) that the sub-individuals may not freely reproduce1 on their own, they

may only reproduce as part of the higher reproductive process. What can be said is that

a stable higher reproductive process is likely to become a permanent one. However, in

some cases (e.g., the evolution of eukaryotes or the evolution of multicellular organisms)

they also require the evolution of a new super-individual, made up from sub-individuals.

Indeed, each transition has different peculiarities (onlytwo are considered in more detail

in this thesis). These are interesting topics, but they are outside the scope of this thesis.

In this thesis I therefore assume that, for a transition to occur, an individual that nor-

mally reproduces on its own must reduce its ability to make copies of itself and contribute

resources instead to a group of individuals performing a higher reproductive process. The

group must also be resistant to selfish individuals that, instead of contributing to the group,

make proliferative copies. In light of this, I review current literature in social evolution in

the next section before considering the plausibility of attempts to apply social evolution-

ary theory to the task of explaining the major transitions and especially to the question of

why an individual might contribute to a higher reproductiveprocess.

1In multicellular organisms, many cells reproduce for the benefit of the super organism, however if they
reproduce freely then they are cancerous
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Outcome for recipient
Positive Negative

Outcome for Positive Mutualism Selfishness
actor Negative Altruism Spite

Table 1.2: The four different outcomes of social behaviour for an actor and a recipient.
The way an outcome is measured is through the change in thefitnessof an individual.
Fitness is here defined as the change in the reproductive success of an individual over its
lifetime.

1.3 Review of Social Evolution

The majority of biological work in social evolution theory applies to the evolution of eu-

social insects (Hamilton 1964, Wilson 1975, Bourke and Franks 1995, Maynard Smith

and Szathḿary 1995, Queller 2000, Wilson and Hölldobler 2005, Foster, Wenseleers and

Ratnieks 2006) and microorganisms (Hudson, Aukema, Rispe and Roze 2002, West, Grif-

fin, Gardner and Diggle 2006). Many social evolution models consider organisms that

show reproductive specialisation: only a few privileged individuals can reproduce and

most are sterile workers which cannot. Social evolution theory makes predictions as to

why such systems are stable to mutations from non-reproducing individuals into repro-

ducing individuals.

In general, social evolution studies the actions that individuals perform which have

consequences on others. It is most simple to consider the case where there is an actor and

a recipient. There are, then, four different outcomes for the behaviour of the actor and its

consequences on the recipient. These are shown in Table 1.2.

The standard way of analysing such a table is to compare like for like. Individuals

that perform an action are compared with individuals that are identical in every other way

except that they do not perform that action. In these cases one can read from the opposite

corner of the table – e.g, not performing a selfish action willhave an altruistic outcome,

or not performing a spiteful action will have a mutualistic outcome.

A naive analysis of Table 1.2 leads to some simple conclusions. Any actor which

repetitively performs actions that have a negative outcomewill lower its own fitness. One

that performs altruistic actions, in particular, will lower its own fitness at the expense of

increasing the fitness of a competitor. Therefore, it seems that any heritable trait which

leads to an altruistic action will be less represented in thenext generation and will even-

tually become extinct.

A famous example of the consequences of selfish behaviour is the tragedy of the

commons (Hardin 1968, Foster 2004). Here an open pasture (a commons) is considered

where herdsmen may graze as many cows as they like. For each herdsman, the best
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strategy is to graze as many cows as they possibly can – a herdsman that grazes his cows

more profits more and can therefore buy more cows. Unfortunately this strategy, when

adopted by many herdsmen, leads to over-grazing and the pasture is ruined. There is a

need for unselfish, or altruistic, behaviour from all the herdsmen for the community to

survive.

Another example is eusocial insects. Consideringhymenoptera, worker bees are per-

forming an altruistic action. These individuals do not lay eggs and therefore have zero

fitness.2 However,prima facie, they can promote their own genes by laying eggs. The

offspring would then be egg-laying themselves and this could the go on to destroy the

collective reproduction mechanism and possible damage thewhole colony, much in the

same way as the herdsmen destroy the commons, or cancer cellsinvade a multicellular

organism. Of course, since bees are quite mobile, a bee from one colony may then invade

other colonies – leading, potentially, to the destruction of eusocial behaviour in the whole

species. There are, however, theories as to why this doesn’thappen: these are outlined in

the next section.

1.3.1 Altruism

Given that a selfish organism will be more likely to reproduceand give birth to other

selfish organisms, it seems unlikely that any altruistic traits can survive. However, there

are various theories that show how altruism can indeed survive in a population (Nowak

2006). These theories do depend on different concepts of altruism [see a recent review by

Kerr, Godfrey-Smith and Feldman (2004)] but the basic principle given in Table 1.2 still

holds. The theories most relevant to the questions looked atin this thesis are kin selection

and green beard theory and these are outlined below. I also consider two-player games

which have also proved useful in understanding how altruismcan survive in a population.

1.3.1.1 Kin selection and inclusive fitness

One theory looks at relatedness between individuals (Hamilton 1964). It has been noted

that individuals in a colony are likely to be related to one another. Looking at human

families as an example, a mother will typically share 1/2 of her genes with her offspring

(the other 1/2 will come from the father who is unlikely to be related to the mother). When

we consider genes that differ from the population average, all of her offspring will also

have 1/2 of their genes in common with each other. Hamilton called this ratiorelatedness

2Actually the correct terminology here isdirect fitness– this is defined as an individual’s reproductive
success against its local neighbours, see Section 1.3.1.1



Chapter 1 8 Introduction

and denoted it by the variabler. Simply put, the basic theory is that when an individual

contributes to a related other, it is effectively promotingthe survival of its own genes.

Hamilton shows that, when an altruistic act has a fitness benefit B to a recipient and a

fitness costC to the actor, then the act will be advantageous whenrB > C. Maynard

Smith (1966) coined the termkin selectionto describe this effect. Groups of kin should

cooperate, or work together, to maximise each others’ fitness.

The way Hamilton approached relatedness was to consider howrelated individuals are

due to ancestral and dependent relations. A more recent approach (Frank 1998) instead

considers gene frequencies in a population. This is based onthe Price equation (Price

1970, Frank 1998) which models how a character trait might change in a population:

w̄∆z̄= Cov(w,z)+E(w∆z) , (1.1)

wherew is fitness andz is a quantitative character trait ( ¯w and z̄ are population means).

The covariance term (Cov(w,z)) in this equation shows how a character trait will change

its frequency in a population due to its correlation with fitness of those that express the

trait. The expectation term (E(w∆z)) covers all the other factors that influence fitness.

The Price equation can be used to encapsulate the notion of a trait that increases the

fitness of an individual according to the frequency of its expression in others around it and

Hamilton’s formula can be derived (Frank 1998). The difference here is that this focuses

on a trait and surrounding individuals that express the trait need not be related by descent.

When the effects of other individuals that have a trait are included in the measurement of

its fitness, this calledinclusive fitness. This can be contrasted withdirect fitness, which is

the way a trait will change in a population without any effects due to its frequency in the

population.

1.3.1.2 Green beard

The ability to recognise altruistic traits in others may well be an explanation for altruis-

tic behaviour. Dawkins (1982) gives the example of the greenbeard. This gene has a

trait which makes a quantifiable difference (such as having agreen beard) to the way an

organism is perceived by, or interacts with, other organisms. The same gene also has a

second cooperative/altruistic trait that means it will be altruistic to those that display the

characteristics of the gene. It is simple to see how such a gene would proliferate through

a population – all those with the gene would be at an advantage. The green beard strategy

is susceptible to cheating behaviour [such as Müllerian mimicry (Müller 1879)] however.
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Opponent’s action
Cooperate Defect

Player’s Cooperate 2 0
action Defect 3 1

Table 1.3: The prisoner’s dilemma payoff matrix – a player’spayoff depends on what
its opponent does. The joint pay-off for cooperator-cooperator is 4, cooperator-defector
is 3 and defector-defector is 2. Cooperate-cooperate is clearly the best joint strategy but
defecting is the best individual strategy whatever the other player is doing.

1.3.1.3 Two-player games

Other abstract theories looking at altruism consider two-player games. The standard form

of a two-player game involves individuals choosing one of two options. According to

which option is chosen, individuals receive some reward from a pay-off matrix. The two

arrangements of the matrix that involve some form of altruism are the prisoner’s dilemma

game and the hawk-dove (or snowdrift) game. These games are interesting and well

studied because they yield to simple analysis (Maynard Smith 1982).

The prisoner’s dilemma game looks at two prisoners which have been caught on some

minor offence. They have both committed a more serious offence and are both in a po-

sition to give evidence against the other prisoner and receive a pardon from the minor

offence. However, if they both do this, they will both be convicted of the major offence.

The game is written in the form of a payoff (where a payoff corresponds to the value of

the outcome of a decision) matrix in Table 1.3. The importantpoint to note is that the joint

pay-off for two cooperators is better than the joint pay-offfor other strategies. However,

an individual’s best strategy is to defect when the other is cooperating.

When the prisoner’s dilemma game is played repetitively, without memory of past

actions, between two opponents (or indeed between random opponents in a group), all

players quickly descend to playing defect each turn. Reading down each column on the

matrix, the best strategy for a player is always to defect – ifthe opponent cooperates,

then it’s best to defect; if the opponent defects, then it’s also best to defect. However, it

has been shown that a ‘Tit-for-tat’ strategy can work quite well between two opponents

when each has a memory of the actions of the previous round (Axelrod 1984). Here, a

player starts by cooperating and then records the opponentsmove each turn and plays the

same move in the next round. This strategy cooperates with other cooperating strategies

and defects with other defecting strategies, and performs well when it encounters itself.

The idea that a viscous group (a group which sticks together)could promote internal

cooperation by playing the game only with each other was alsopresented (Axelrod and

Hamilton 1981, Axelrod 1984). The viscous group theory has been disputed however
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Opponent’s action
Cooperate Defect

Player’s Cooperate 3 1
action Defect 4 0

Table 1.4: The snowdrift (otherwise known as hawk-dove) payoff matrix. The joint pay-
off for cooperator-cooperator is 6, cooperator-defector is 5 and defector-defector is 0.
Cooperate-cooperate is clearly the best joint strategy but it only pays to defect when the
other player is cooperating.

(Marshall and Rowe 2003a, Marshall and Rowe 2003b).

The other game of interest to altruism is the hawk-dove game (Maynard Smith 1982).

This is also known as the snowdrift game as it makes a good story. In this story, two

people driving home in their cars encounter a snowdrift. If neither person gets out of their

car and clears the drift then they will both be stuck. Though one person can clear the drift

on their own, it is better if both help each other. The game is written in the form of a

payoff matrix in Table 1.4.

The difference between this game and the prisoner’s dilemmagame is that if both

players defect, then it pays for one to cooperate. Conversely, if both players cooperate

then it pays for one to defect. So, when a population of competing individuals playing

this game repetitively is considered, this will result in a mixed population of defectors and

cooperators. If there are too many cooperators, then defectors will do well and if there

are too many defectors, then cooperators will do well. The stable ratio of cooperators to

defectors can be predicted (Maynard Smith 1982).

1.3.1.4 Summary of Altruism

I have presented two types of altruism in this section. The first type is inclusive fitness

where an individual will reduce its fitness so that its genes may proliferate through other

related individuals.

The other type is the prisoner’s dilemma game where we don’t assume individuals are

related. When played only once, it would never be a good strategy for an individual to

cooperate, however when played many times (the iterated prisoner’s dilemma) social rules

may emerge (such as Tit-for-tat) which mean that cooperation can be a good strategy.

This said, evidence of the iterated prisoner’s dilemma in biological systems is scarce

(Brembs 1996).

In summary, the models I have presented on altruism in this section have a common

theme. While an individual does in fact do something that is detrimental to their own

reproductive chances, there is always a pay-off – through genetic relatedness or recipro-
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cation. This means that any so-called ‘altruistic’ action is, in fact, a selfish one. In the

next section I present and critique applications of this theory to the problem of the major

evolutionary transitions.

1.4 Explaining the major transitions

Given the preceding outline of the theory of social evolution, I look in this section at its

potential application to the question of why an individual might invest in a higher repro-

ductive process. Essentially there are two styles of approach in the literature; these differ

on whether the cooperative behaviour is affects the reproductive strategy of an individ-

ual or not. First, I consider that individuals may, through non-reproductive cooperative

interactions, form themselves into a unit which will then benefit from a centralised repro-

ductive strategy. The second approach is that the reproductive mechanism is essentially

cooperative in the first place – through sibling relatedness.

1.4.1 Non-reproductive cooperative interactions

Much work on the transition to multicellularity (Wolpert 1990, Michod 1999, Pfeiffer and

Bonhoeffer 2003) assumes that the main benefits of multicellularity are from the division

of labour between cells. Examples of this are cooperative ATP production (Pfeiffer and

Bonhoeffer 2003) or cooperation between reproductive cells and motile cells (Michod

1999). These models require that individuals cooperate when labour is divided. Michod

(1999) gives an explanation of such cooperation through theevolution of policing – there

being a mechanism whereby defecting cells are harmed. The other model (Pfeiffer and

Bonhoeffer 2003) suggests that clustering itself may be good way of both maximising the

benefits of cooperation and reducing the potential of non-cooperators to invade.

Alternatively, there is an argument that, as local relatedness goes up (through repro-

ducing within higher units), so interactions get more cooperative, and these fitter indi-

viduals will dominate (Witting 2002b, Witting 2002a, Witting 2003). Thus, the beneficial

interactions from this greater cooperation can facilitatetransitions from asexual reproduc-

tion to sexual reproduction and eusocial reproduction (Witting 2002b).

One criticism of this approach comes from analysis of cooperative interactions be-

tween kin. Models, and some experimental data, predicts that the benefits of interactions

between kin can be negated from the increased competition between kin caused by an

increased local growth rate (Queller 1994, West, Pen and Griffin 2002). Secondly, if we

accept that cooperation interactions can be so beneficial that a cooperative group may be
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formed, this still leaves open the question as to how, or why,some individuals started to

reproduce on behalf of others.

Models that show differentiation between reproducinggerm-lineindividuals and non-

reproducingsoma individuals require that the population is genetically homogeneous

(Michod 2005, Michod, Viossat, Solari, Hurand and Nedelcu 2006, Michod 2006). The

benefit of this is that labour can be divided between survival(e.g., vegetation) and repro-

ductive effort. Every individual unit must make a trade-offbetween its investment into

survival (v) and its investment into reproductive effort (b) – so the fitness of an individual

is given byw = vb. Given an homogeneous population (and therefore no selection be-

tween groups) Michod (2006) argues that the fitness of the group can be defined by the

mean viability of the group (V) times the mean fecundity of the group (B). The fitness

of the group (W) is therefore greater than the fitness of the average cells when there is a

negative covariance between viability (v) and fecundity (b) at the cell level, or,

W = VB= w̄−Cov[v,b] (1.2)

A negative covariance between fecundity and viability means that cells must specialise

into fecundity (be germ-line cells) or viability (be vegetating soma cells).

So, if we believe that clonal (genetically homogeneous) groups may be formed, then

it makes sense that some individuals can reproduce on behalfof others. However, if the

group is not homogeneous then the group is susceptible from mutant cells which breed for

themselves (and therefore don’t contribute to group fecundity B), but cooperate in every

other way. Group selectionist arguments may explain this, however they have long been

contentious (Maynard Smith 1964, Williams 1966a). In fact,recent work has shown to be

of some promise (Traulsen and Nowak 2006), but requires thatselection within groups to

be very weak – this is not plausible in the case of a mutant replicator. In the next section,

I consider organisms that are not necessarily genetically homogeneous, but are related to

each other in such a way that they will cooperate with a higherreproductive process.

1.4.2 Sibling relatedness

Considering the transition to eusociality, Hamilton’s theory of relatedness (Hamilton

1964) has proved to give important insights into the reproduction strategy of eusocial

insects. This transition is characterised by the evolutionof a differentiation between two

types of female: worker females that cannot reproduce and queens that reproduce on be-

half of the worker individuals. One interesting characteristic of bees is that male bees are

haploid(have only one set of chromosomes) whereas female bees arediploid (having two
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sets of chromosomes). This means that females only give halfof their genes to offspring

(through meiosis) whereas males give all of their genes to offspring.

Given Hamilton’s theory, an explanation can be given as to why worker bees do not lay

their own eggs. A queen that mates once with a male bee, and produces many offspring,

will generate sisters that have a relatedness to each other of 3/4 (Maynard Smith and

Szathḿary 1995) – each sister having half of the queen’s genes and a whole set of the

male bee’s genes. Any sister that then reproduces will stillonly be related at 1/2 to their

own offspring. So, there is a benefit to protecting one’s kin’s offspring over one’s own.

However, this simple application of Hamilton’s relatedness theory to social insects

appears to be flawed (Bourke and Franks 1995, Queller 2000, Wilson and Ḧolldobler

2005, Foster et al. 2006). While sisters in insect colonies are closely related to each other

(3/4), they are also less related to males (1/4). This means that, on average, siblings

have the same relatedness as mothers do to offspring (1/2). It does not seem plausible

that siblings could recognise the difference between malesand females at larval stages

at the origin of eusociality (Maynard Smith and Szathmáry 1995). Another argument

(Grafen 1986) suggests that different sex-ratios at different times may explain why this

strategy might persist. However, if a sister is able to self-fertilise and produce clones as

offspring (relatedness of 1) then this would invade.

Even if we are convinced by the haplodiploid theory, there isstill one more prob-

lem. Termites have similar reproduction mechanisms to the other haplodiploid eusocial

organisms, yet they are not haplodiploid (Maynard Smith andSzathḿary 1995). Since

the haplodiploid perspective does not appear to explain allthe eusocial insects, it may

not be a good general theory for explaining why there is differentiation between worker

organisms and the queen (or reproducing) organisms.

1.4.3 Summary

In this section, I have discussed various theories attempting to explain the origins of major

evolutionary transitions. While kin selection shows that anindividual can invest in the

reproductive success of another that is related to it, Hamilton’s theory predicts that the

benefits must significantly outweigh the costs. When it comes to reproduction itself, the

reason why a mutant individual should choose to invest resources in a higher reproductive

process rather than invest resources in its own (100% related) offspring is still unclear.

There must be some benefit to doing this, and that benefit is notexplained by current

models. To approach this question from a different perspective, I look at fitness in more

detail in the next section.
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1.5 Fitness

In the previous section, I reviewed social evolution, wherean individual may transfer

its direct fitness to others so that its genes may prosper. This approach does not seem

to be appropriate for the major evolutionary transitions. One assumption taken by the

social evolutionary literature is that fitness is defined as the number of adult offspring

(Hamilton 1964) –Hamiltonian fitness. This does not take into account that this may be

dependent on the environment. In this section I review literature concerning how we might

define a measure of fitness, including those definitions that do consider the importance of

the environment.

Historically, agreement on a simple, but empirically applicable, mathematical defini-

tion of fitness has always been a controversial issue. At first, fitness metrics just counted

the number of offspring. However, there are conflicts between the number of offspring

and the viability of the offspring (Williams 1966a, Sober 2001, Michod 2006). Thus an

individual’s reproductive success was seen to be the most significant factor. This can be

represented by the expected number of offspring (Mill and Beatty 1979).

The significance of randomly varying environments was highlighted by the work of

Cohen (Cohen 1966, Cohen 1968). This showed that the arithmeticmean of the pop-

ulation growth rate over variable environments was not the appropriate way to calcu-

late the long-run growth rate. Rather the geometric mean should be used (see Sec-

tion 1.5.1 for more details). The theory was applied to the question of delayed repro-

duction (Tuljapurkar 1989, Tuljapurkar 1990a, Tuljapurkar 1990b). This work shows that

delayed reproduction is advantageous in fluctuating environments through the mechanism

of generating dormant immatures (e.g., seeds) that are invulnerable to the environmental

fluctuations.

In general, this approach is about looking for evolutionaryattractors (Metz, Nisbet

and Geritz 1992) which are the optimal strategy over a range of extrinsic environments.

The approach becomes more difficult however when the environment is also defined by its

residents (Metz, Mylius and Diekmann 1996). A typical approach is that the environment

is defined by the density of the local population (Roughgarden 1971, Roughgarden 1979).

Roughgarden (1971) shows that the direct fitness of a trait can depend on population

density.

Given the significance of the environment, much modelling ismoving away from the

simple ideas of maximisation of Hamiltonian fitness. Under density dependence there is

no population growth – thus it suffices to consider the invasion of mutant types into the

population (Metz et al. 1992, Mylius and Diekmann 1995). Rather than maximising fit-
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ness, relative fitness (or ‘soft selection’) becomes more important (Geritz, Kisdi, Mesźena

and Metz 1998, Meszéna and Gyllenberg 2005) especially when considering models of

speciation or evolutionary branching.

As well as density-dependence, models may also consider frequency-dependent se-

lection (Maynard Smith and Price 1973, Maynard Smith 1982).Here a trait’s fitness will

vary according to its frequency in the population. From thisperspective came the idea of

anEvolutionarily Stable Strategy(ESS) – a strategy (or a community of strategies) which

is stable to invasion from mutant invaders. When models that combine both frequency-

and density-dependence are considered, frequency-dependent selection is at best trivial

when environmental feedback (uni-dimensional feedback environments) is the same for

all traits (Heino, Metz and Kaitala 1998). Multi-dimensional feedback environments,

where individuals have a different response to the environment, are required.

The inclusion of density-dependent selection, and environmental fluctuation, perspec-

tives therefore means that fitness should be calculated overthe long term, not the short

term. In fact, the reproductive success explanation of fitness has been criticised (Beatty

and Finsen 1989, Sober 2001) due to the fact that it only considers fitness over a short

term. As Beatty and Finsen point out (Beatty and Finsen 1989), a strategy that has a high

number of offspring in the short term may actually have a lower number of offspring in

the long term. This is illustrated by the cartoon in Figure 1.1.
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Figure 1.1: A comparison of short and long term strategies. At first, population A is more
successful. However, over a long time period of many generations, population B becomes
the more successful.
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1.5.1 Geometric mean fitness

In order to introduce the importance of the geometric mean fitness, I look at bet-hedging

(Seger and Brockmann 1987). To give an overview of bet-hedging theory, we may imag-

ine a gambler with a sizeable amount of stake money. There arevarious horses in various

races that she may back. If she bets all her money on the best horse she will have the

highestexpected value(the average profit she will make if the race was run several times).

However, if the horse loses she will lose all her stake money.The best long term strategy

is to gamble her money (hedge her bets) on several horses and make a small profit on the

few that win.

In biological terms, bet hedging theory argues that an individual in an unpredictable

environment may reduce its average fitness (i.e., the arithmetic mean of its growth rate

over the different environments) if this also reduces its variance of fitness (Seger and

Brockmann 1987). So, by adopting strategies that may produce fewer offspring under

some circumstances, an individual can increase its offspring over a longer period of time.

The long term growth rate is calculated by considering the geometric mean growth

over variable environments (Cohen 1966, Cohen 1968, Seger andBrockmann 1987). Con-

sider two environments A and B. The population grows with ratesrA andrB respectively

in the two environments. For example, in environment A,

pt+1 = rapt, (1.3)

where p is the size of the population. The geometric mean growth rateover timeT is

given by

rg = (rTA
A rTB

B )1/T , (1.4)

whereTA andTB are the amount of time spent in environments A and B respectively. The

number of environments can be increased by adding extra terms to Equation (1.4). This

also allows us to analyse empirical population growth data to test the theory (Boyce and

Perrins 1987, Wilbur and Rudolf 2006, Venable 2007).

From a modelling perspective, the geometric mean can therefore be used to model

long term growth rates of different strategies under fluctuating environments (Tuljapurkar

1990a, Tuljapurkar, Horvitz and Pascarella 2003). Typically environments extrinsically

fluctuate under some distribution – the environments are notdetermined by the residents.

When we look at modelling fitness under density dependence, the environment is deter-

mined by the population density and thus the distribution ofenvironments is undeter-

mined.
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1.5.2 Summary

To summarise, I outline the various concepts of fitness covered in this section and the

previous section. These are summarised in Table 1.5.

Type of fitness Description
Direct fitness The expected reproductive success of a trait/organism due

to its phenotype
Inclusive fitness The expected reproductive success of a trait/organism due

to its phenotype and the frequency of the trait/related or-
ganisms in the population

Group mean fitness The average fitness over a group
Group fitness The success of a group in making new copies of itself (re-

producing itself)
Arithmetic mean fitness The arithmetic mean of the reproductive success of an or-

ganism over different environments
Geometric mean fitnessThe geometric mean of the reproductive success of an or-

ganism over different environments

Table 1.5: Various measures of fitness found in biological literature. Direct / inclusive
fitness are introduced in (Hamilton 1964, Frank 1998) (see Section 1.3.1.1), group mean /
group fitness are introduced in (Michod 2005) (see Section 1.4), and arithmetic / geomet-
ric mean fitness are introduced in (Seger and Brockmann 1987)(see Section 1.5.1).

The theory presented in this section is interesting and relevant to the topic in this thesis

because it shows how individuals may reduce their reproductive success for some longer

term advantage. It is important to consider fitness over a long term and/or a wide range

of environments – i.e., an ecological perspective.3 By considering reproductive strategy

from this ecological perspective, it may be possible to explain why an individual might

invest in a higher reproductive process.

1.6 The thesis

The central question of this thesis is to study why an individual might contribute to a

higher reproductive process (see Section 1.2). I have therefore developed models ex-

ploring this question. The perspective I have taken has largely been inspired by ALife

modelling (see Section 1.1).

I consider individuals as resource containers which acquire resources (which may rep-

resent energy but may also represent territorial ownership, money and many other things)

3See work by (Coulson, Benton, Lundberg, Dall and Kendall 2006) for more discussion on the impor-
tance of ecology in evolution
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and expend them on maintenance (including growth) and reproduction. The strategies that

an individual might employ to encounter and store resourcesand reproduce depend on its

genes. Since I am interested in reproductive strategy, I compare strategies of individuals

that are basically the same in every way except the way in which they reproduce. The

modes of reproduction I have studied are inspired by the major evolutionary transitions.

My review of fitness in Section 1.5 shows that, through bet hedging, individuals may

produce fewer viable offspring in some seasons so that they may optimise their reproduc-

tive success over many different seasons. Another idea, shown by Figure 1.1 has that an

individual’s fitness over a long term is more important than its fitness over the short term.

The ALife approach is well suited to analysing a very long term perspective of reproduc-

tion strategy. Rather than considering a model of a few seasons, a computer model of

a population can analyse the effects over many generations.Large fluctuations in popu-

lation numbers can be modelled. This gives the potential to study reproduction strategy

over a timescale where it is possible that transitions couldoccur.

As detailed in Section 1.2, the major evolutionary transitions require that an individual

must reduce its direct fitness to contribute to a higher reproductive process. I have argued

that, while inclusive fitness theory may well play a major role in the transitions, it has not

yet provided a simple explanation as to why an individual maydo this. If an individual

may reduce its reproductive success when there is some pay-off in the long term, then

maybe this is a selfish (or at least mutualistic) reason to invest resources for some genetic

stake in a higher reproductive process?

The central questions considered in this work are thereforeas follows. From a method-

ological perspective, see Section 1.5, I look for analytic tools that will allow for compar-

ison of strategies over density dependent environments – i.e., environments where the

availability of resources fluctuates between conditions for growth and decline of the pop-

ulation. Density dependence is likely to be important in themajor evolutionary transitions

because, under growth conditions, Hamiltonian fitness models apply.

The first model covers questions that are applicable to the resource allocation strate-

gies of clonal reproducers. I consider the models of delayedreproduction developed

by Tuljapurkar (1990a). I question whether the results may be reproduced in terms of

resource allocation strategy under resource variation (instead of through dormant imma-

tures). This means that, with analytic tools for comparing strategies under density depen-

dence, I can identify optimal strategies under density dependent conditions.

The second model considers the strategy of an individual allocating resources to re-

production as part of a larger group, rather than allocatingresources to clonal reproduc-

tion. Again, this may be modelled under density dependent conditions. Effectively, this
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model questions whether it is plausible to invest in a higherreproductive process. It also

questions whether unpredictable resource fluctuations therefore a significant factor.

Normally an individual will reproduce when it is healthy andhas accumulated a fair

number of resources. In the third model, I consider if there are other points in an indi-

vidual’s life history where it may reduce it’s chances of survival to increase its chances

of reproduction? When an organism has a low number of resources, its survival is in-

creasingly unlikely. Are there biological examples of social mechanisms showing how an

individual may completely sacrifice its short-term fitness and invest instead with a larger

group of which it has a small long-term stake? What are the consequences of this on the

transition from unicellular organisms to multicellular ones?

Finally, when many individuals are involved in a shared reproductive effort, there is

a need for individuals to cooperate. If one contributes lessresources than the others it

may get some unfair advantage. It is possible that, through invasion of uncooperative

individuals, the benefits of collective reproduction couldbe negated. Considering the

simplest case (where only two parents contribute to offspring), what are the consequences

of this on the transition from individually reproducing organisms to sexually reproducing

organisms?

1.6.1 Thesis overview

After this chapter, I continue the thesis with a discussion of the methodology that I will

use throughout the work. Based on the paper by Bryden and Noble (2006), Chapter 2 con-

siders the two modelling approaches in the work presented here: computer simulation and

mathematical modelling. Much of the mathematical modelling I have done was first done

by computer simulation. Computer simulation has allowed me the freedom to explore

the often complex dynamics of evolutionary systems. I have also derived mathematical

theory which presents an alternative analytic approach.

The modelling chapters of this thesis employ an artificial life perspective [in line with

(Fontana, Wagner and Buss 1994, Judson 1994, Epstein and Axtell 1996, Axelrod 1997,

Kitano, Hamahashi, Kitawaza, Takao and Imai 1997, Stewart 1997, Bedau 1999, Be-

dau, McCaskill, Packard, Rasmussen, Adami, Green, Ikegami,Kaneko and Ray 2000,

Kitano 2002, Wheeler, Bullock, Di Paolo, Noble, Bedau, Husbands, Kirby and Seth 2002,

Di Paolo, Noble and Bullock 2000, Silverman and Bullock 2004)] to the study of re-

production strategy. The results of these studies are then used to address the problems

introduced in Section 1.6. I have endeavoured to produce explanations that address the

important issues, but are minimally simple. All the models therefore use a very similar
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modelling approach which is intended to capture the most important attributes of a system

in which evolution may occur. Individuals are placed in a closed environment of limited

size; they receive resources and may grow and/or reproduce.The input of resources to

the system may be stable or fluctuate. When an individual’s resource levels reach a lower

threshold, the individual will die – thus the models can implement large population fluc-

tuations (as required by the questions in Section 1.6. Giventhis simple setup, I investigate

the optimal reproduction strategies under various scenarios.

The first modelling chapter (Chapter 3) looks exclusively at individual reproduction.

Here individuals receive resources from the environment and, when they reach a thresh-

old, split into two new equal organisms. The model is motivated in light of the literature

on delayed reproduction, resource allocation between growth and reproduction and uni-

cellular reproduction the model is introduced and motivated in this light. The model

studies how an individual may change an upper resource threshold which determines how

many resources it will accumulate before reproduction. By increasing this threshold this

means that the individual is, rather than increasing its direct fitness by reproducing imme-

diately, hedging its bets. The work replicates results fromthe previous models of delayed

reproduction demonstrating that unpredictable resource fluctuations are significant. This

shows that the mechanism of delayed reproduction presentedis a valid one. By saving

resources for later, individuals (or their offspring) are less vulnerable to unpredictable re-

source fluctuations that cause population increases and decreases (like those associated

with density dependence).

Two analytic techniques are employed in the chapter. These are used to consider trade-

offs, under different amplitudes of resource fluctuation, between the threshold at which

an individual may reproduce and two parameters: the upfrontcost of reproduction and the

cost of growth/maintenance. The first analytic technique uses Theorem 2 (in Appendix A)

to show what happens when an individual has a different reproductive success (I actually

consider the lineage growth rate, but this translates into reproductive success) over two

different resource regimes. The theorem is a more generalised version of Corollary 3

which shows that the ratio of an individual’s (or a lineage with the same reproduction

strategy) growth rate over the two regimes defines which individuals are the fittest (see

Figure 1.2 for an example). This theorem, applied through this model, assumes that there

is no trend in the total population and thus allows for analysis of varying growth over

different environments under the assumption of density dependence.

The second type of analysis considers what happens when the population is close to

an equilibrium level and resource levels are dependent on population density. I show how

an individual which has a lower equilibrium resource level will invade a population with a
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Figure 1.2: Two lineages compete with each other. Lineage A has both faster growth and
decline rates compared with lineage B. However, lineage B has a greater ratio of growth to
death rates so, as predicted by Corollary 3 (in Appendix A), will dominate when there is
no overall trend in total population growth. Lineage A: grows at 0.02 births per individual
per timestep, declines at 0.025 deaths per individual per timestep. Lineage B: grows at
0.01, dies at 0.01.
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higher equilibrium resource level (see Figure 3.7 for an explanatory cartoon). The math-

ematical models predict the equilibrium resource levels for similar parameter regimes as

those that were used for comparing growth ratios.

Chapter 4 describes an abstract model which looks at whether there is a selfish advan-

tage to reproduce as part of a collective. Theorem 2 (from Appendix A) is used to show

parameters where the growth ratio (i.e., the long term fitness) for a collectively reproduc-

ing individual is better than that of a individually reproducing individual. Collectively

reproducing individuals invest less in their offspring so are less vulnerable to periods of

low resources. Different numbers of parents are consideredbut all parents are consid-

ered to be unselfish in this model (i.e., resources are sharedevenly between parents and

offspring, after reproduction).

In light of the results from Chapters 3 and 4, a model of collective reproduction in

slime mould is considered in Chapter 5. This model studies themacrocyst stage of slime

mould which is triggered by harsh environmental conditions(Raper 1984). Starving in-

dividuals may hedge their bets by gambling all their remaining resources, their lives and

their genes on being the genotype of the macrocyst and then surviving the harsh condi-

tions.

Given that parents are unselfish in Chapter 4, Chapter 6 considers a scenario where

parents are selfish and may contribute less resources to offspring. For simplicity only

two parents are considered, so the model is motivated in light of the literature on sexual

reproduction. This chapter uses game theory to model what isthe expected lower bound to

the number of resources a selfish parent may contribute before they start to damage their

own reproduction chances. This is then compared with individual reproduction, using

Corollary 3, to show parameter regimes where sexual reproduction will dominate.

1.7 Contributions

In this section I outline the contributions of the thesis in context of the literature reviewed

in this chapter. The main importance of this work is in the perspective on bet hedging, and

its application to the transitions to higher units. I first consider the scientific contributions

of the work presented here in light of the literature introduced in the introduction before

considering the conceptual contributions.



Chapter 1 23 Introduction

1.7.1 Scientific contributions

The main topic of the thesis is the transition from units thatreproduce on their own to

units that reproduce as part of a larger unit. The approach I have chosen to take here is

to consider abstract models where an individual will reduceits reproductive success and

instead contribute to a higher reproductive process. Chapter 4 shows how, when parents

share resources unselfishly, individuals may contribute toa higher reproductive process.

In fact it shows that, depending on the impact on the upfront cost of reproduction, the

more parents that reproduce, the better.

The main methodological contribution of the work is throughthe development of

Theorem 2 (in Appendix A). This theorem (illustrated in Figure 1.2) assumes that there

is no overall trend in population numbers. By taking this assumption, the theorem is a

useful tool for modelling density dependent systems. When growth is linearly dependent

on the availability of resources, the type of environmentalfluctuations can be abstracted

away from the model – which makes for potentially very simplebut powerful models.

When growth is not linearly dependent, Corollary 3 may still beused to demonstrate

under which strategies may dominate under what fluctuation regimes.

The transition from individual to sexual reproduction is studied in Chapter 6, where

selfish parents (which may vary their own resource contributions to offspring) are intro-

duced. This has important consequences for our understanding of the origins of sexual

reproduction. The traditional explanations of sexual reproduction come from the advan-

tages of genetic mixing [reviews are given by Otto and Lenormand (2002) and Agrawal

(2006), Watson (2006) gives more information on the benefitsof genetic mixing for com-

positional evolution], the approach outlined in this thesis indicates that genetic mixing

may only be of secondary benefit. The primary benefit of sexualreproduction being the

ability of two parents to hedge their bets against future unpredictable fluctuations in re-

source availability.

A more complex major evolutionary transition is that from unicellular organisms to

multicellular organisms. This is studied in more detail in Chapter 5. The model shows

that parameters exist where an individual is prepare to gamble its life, resources and genes

against a reproductive pot. This reproductive pot then produces a colony of homogeneous

organisms. Interestingly, Michod’s work on germ-soma differentiation (Michod 2005,

Michod et al. 2006, Michod 2006) requires a genetically homogeneous population as a

precursor so the combination of the results of Chapter 5 with this model maps a complete

transition from individuals that reproduce on their own to individuals that differentiate

into germ line cells and soma cells.

Considering the life history field the modelling approach in Chapter 3 outlines a novel
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perspective on delayed reproduction. It shows how delayingreproduction by accumulat-

ing more resources can be a mechanism for delaying reproduction (instead of producing

dormant immatures). Trade-offs are demonstrated between this mechanism for delaying

reproduction and changes in the up-front cost of reproduction and the cost of maintenance.

This, more general, result is relevant to microbial ecologyand may inspire experiments

that may be carried out in the laboratory.

1.7.2 Conceptual contributions

Given the applicability of the results to understanding themajor evolutionary transitions,

one of the most important contributions to evolutionary biology and ALife of this thesis

is therefore conceptual. I present models that show how an individual can hedge its re-

productive bets by reproducing as part of a collective, rather than reproducing on its own.

This therefore implies an insight into the major evolutionary transitions: that inclusive

fitness is not needed to explain why an individual might reduce its reproductive success

for the benefit of its group (altruistic explanations of the major evolutionary transitions

have been discussed in detail in Section 1.3.1). This is not to say that inclusive fitness is

not important in the transitions, however the approach of this thesis opens a new line of

enquiry.

The thesis introduces two new analytic techniques which areapplied in Chapters 3, 4

and 6: Theorem 1 (see Appendix A) is used in all three chaptersand the analysis of

equilibrium resource levels is used in Chapter 3. These analytic techniques are likely to

be of value in further extending the work of the thesis and in problems outside the context

of the thesis.

The reusability of the mathematical analysis is an important aspect of this thesis.

Much of the research was done by experimenting with computersimulation models. The

research done actually started with the model in Chapter 5, which has complex dynamics.

The mathematical analysis done, short of reproducing the computer simulation model

with mathematical equations, helps to explain the behaviour of the computer simula-

tion model however. This methodology has been spelled out inmore detail, contrasting

the freedom of computer simulation models with the explanatory power of mathematical

models in Chapter 2. The outlining of the methodology used will hopefully help others to

follow or refine my approach.

One of the initial motivations of the model is to understand how complexity may in-

crease in an individual. All the models provide interestinginsights into this question.

Simply put, I argue that the investment of resources into anything other than fast repro-
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duction will facilitate the increase in individual complexity – through optimised energy

storage (see Chapter 3 for more details) or through investment into social reproduction

(see Chapter 4 for more details).



Chapter 2

Philosophical considerations on the

method

2.1 Introduction

In this chapter I consider some of the philosophical and methodological issues relevant

to the two styles of modelling I have used in this thesis: computational and mathematical

modelling. Much of the research was initially done using computational modelling. As

insights were found from the computational models, mathematical models were gener-

ated. I present an outline of the two modelling approaches and identify key differences

between them.

It seems possible that computer simulation modelling couldbecome the new mod-

elling paradigm in biology. As transparent, tractable, computer simulation models are

developed, their relaxed assumptions will, in comparison with traditional explicit math-

ematical treatments, make for considerably more realisticmodels that are closer to the

data. The ‘Virtual Biology Laboratory’ has been proposed (Kitano et al. 1997) where

a cycle is proposed for the development of computer simulation models and biological

experiments in tandem: the results from each procedure inspiring the direction of the

other. Animals, such asC. elegans, have been well studied using computational models,

e.g., work on locomotion control (Bryden and Cohen 2004, Bryden and Cohen 2008).

Indeed the formation of a complete model of the organism has been identified as a po-

26
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tential grand challenge for computing research (Harel 2002). However, a full exploration

of the relationship between mathematical and computational models in biology has not

yet been achieved. Questions remain: for instance, whetherboth forms of modelling can

peacefully coexist, whether mathematical models should aspire to the complexity of com-

putational models, and conversely whether a computationalmodel can ever be as precise

as a mathematical treatment.

The scope of this chapter is mainly concerned with the scientific modelling (both

computational and mathematical) of biological systems, however I hope that the findings

can be applied more generally. Biological systems are made up of many different sub-

systems. Put simplistically, genes and proteins are made ofmolecules, genes produce

proteins which interact with other proteins, genes and other molecules to form cells; cells

can interact to form multicellular organisms; organisms interact to form ecological com-

munities and societies. ALife models often reside in the interface between one level and

the next and can become extremely complex, especially as entities from any level can

interact with entities from other levels.

The discipline of computer simulation modelling allows modellers previously unheard-

of freedom to build and understand systems of many interacting parts. This new expres-

sive freedom appears to have the potential to become the new modelling paradigm in

science, perhaps overriding traditional techniques whichuse explicit mathematical treat-

ments. However, this freedom does not come without a cost: asmore and more detail is

added computer simulation models can quickly become unwieldy and too complicated to

understand.

How then can computer models contribute to the task of producing scientifically ac-

ceptable explanations? The use of a complex yet poorly understood model may be accept-

able as some sort of loose analogy. However, Di Paolo et al. (2000) have argued that with-

out a proper understanding of the internal workings of a computer simulation model, it

can be impossible to say whether such a model makes a valuablecontribution to the scien-

tific problem it is addressing. They describe such problematic models as ‘opaque thought

experiments’, arguing the need for explanations of the phenomena modelled. They sug-

gest that modellers should use an ‘experimental phase’ in which manipulations are made

to the computer model, the results of these manipulations hopefully generating insights

into the workings of the system. Once the internal mechanisms are understood, the trans-

parent model can then not only give new insights into the system being modelled but can

also become a powerful predictive tool.

I question whether a computer simulation model can, in and ofitself, constitute a

scientific explanation. For example, one might produce a model in which individual or-
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ganisms are explicitly represented and a particular population-level phenomenon appears

to emerge. But this does not constitute an explanation of howentities from one level of

a biological hierarchy produce interesting phenomena at another level. Di Paolo et al.

(2000) argue that some explanation is required above a basicdescription of the model and

the system it represents. In this chapter I look further intowhat an adequate explanation

of a model’s mechanisms should entail. I will compare the account that I construct with

the more basic position, sometimes seen in the artificial life literature, that a bare-bones

description of a biological system with a computer model that qualitatively produces sim-

ilar behaviour – with little or no extra analysis or explanation – can constitute a scientific

explanation of some phenomena.

Given the above concerns regarding computer simulation modelling I must also con-

sider the traditional methodology of explicit mathematical treatment. By explicit math-

ematical treatment I mean a model which is complete and contains no implicit steps. It

must be noted that computer simulation models are fundamentally mathematical construc-

tions. However, given that many of the mathematical steps take place computationally,

these areimplicit rather than theexplicit steps used by formal mathematical models. An

explicit mathematical treatment takes logical axioms and specifies a number of clear ex-

plicit steps that deductively generate some result. In thischapter I compare this traditional

treatment with the new computational approach.

First, I set the context; I look at a framework for scientific modelling. Then, by looking

at two examples of a similar system, I identify some properties that characterise an ex-

plicit mathematical treatment which a computer simulationis unlikely to share. However,

having established that explicit mathematical treatment is the ultimate goal of any mod-

elling enterprise, I look at how computer simulation modelsdo indeed still have value.

I look at how complex and unwieldy computer simulations may be simplified to more

easily generate explicit mathematical treatments – proposing that this can be done by

decomposition into simpler systems. Finally I set out, in anorder of merit, the various

different modelling approaches discussed.

2.2 A framework for scientific modelling

To understand how modelling is important and relevant within scientific investigation, I

present a framework for scientific investigation with the scientific modelling cycle high-

lighted. Figure 2.1 presents a diagram of the framework.

The primary focus of scientific investigation is the building of a goodconceptual

modelof the real world. Explanations of the real world reside in the conceptual mod-
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Modelling Tools

Scientific Corpus

Results Assumptions

Working Model

Conceptual Model

Real World

Empirical
science

Figure 2.1: The cycle of enquiry in scientific modelling within the context of scientific
investigation.

elling area of the framework; these are recorded in thescientific corpus. The basic sci-

entific process involves the submission of concepts to the twin tests ofempirical science

and scientific modelling. The main focus of the framework, however, is on scientific

modelling and the interface between a conceptual model and aworking model.

Both computer simulation models and explicit mathematicaltreatments reside in the

working model area of the framework. I take a working model tobe a deterministic and

completely specified model of a system. (Whereas a conceptualmodel may remain vague

in places, a working model must be completely fleshed out.) Logical processes are applied

to the axioms and the results of this process are recorded. Logical processes can include

mathematical equations, logical deductions and computations. Working models produce

resultswhich are used to refine and update the conceptual model.

Before I specifically look at the sorts of results that can be generated by explicit math-

ematical treatments or computer simulation models, I discuss the types ofassumptions

that can be used to generate a working model. An assumption isessentially an abstraction

from a more complex system. There will be many abstractions from the real world in

the conceptual model (tested by empirical science) and it will normally be necessary to

make further abstractions for ease of modelling. One of the main benefits of computer

simulation modelling (Di Paolo et al. 2000) is that assumptions can be very easily added

to or removed from models to see if they are significant or important. Explicit mathemat-
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ical treatments tend to be more fixed in their assumptions. The types of abstractions used

by either explicit conceptual models or computer simulation models can be divided into

two groups,reductionistandanalogousabstractions. I take inspiration for this distinction

from Bedau’s discussion of ‘unrealistic’ models (Bedau 1999).

In order to highlight the important differences between theuse of computational and

mathematical techniques in building a working model, I mustfirst consider the outcomes

of a successful working model for the broader scientific project. The more valuable re-

sults generated by a working model will form some kind of explanation of why some

phenomenon is present in the conceptual model. Other, less valuable, results include

those that generate predictions. With an explanation generated by a model to hand, an

empirical scientist can easily and quickly generate good empirical experiments to test

whether an explanation is valid or not. A working model may indicate that some factors

are more important than others for a particular phenomenon.This may point empirical

science toward a more fruitful direction. The value of a result can depend not only on

the type of working model used to generate the result, but also the assumptions used to

generate the working model in the first place.

2.3 Competence and performance in scientific modelling

The previous section has set out the tasks necessary before embarking on a modelling

enterprise: Once a conceptual model has been chosen that builds a picture of what is

known about some real-world phenomenon, assumptions are then chosen to simplify this

conceptual picture into logical units and axioms that can bebuilt into a model. Up to

this point everything is quite similar between the two logical modelling styles. Perhaps it

is natural to assume that since both modelling techniques are analytical, the style of the

results will also be quite similar?

To answer this question I must consider a thought experimentbased on a specific

example which can easily be understood and modelled by either a computer simulation

model or an explicit mathematical treatment. The Lotka-Volterra system is a mathemati-

cal treatment of a predator-prey system. Two equations model the dynamics of the system:

dx
dt

= Ax−Bxy (2.1)

dy
dt

= −Cy+Dxy (2.2)

where x is the frequency of prey, y is the frequency of predators andA,B,C,D are con-
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stants. This system of equations has been shown [see, e.g., (Murray 2002)] to generate

oscillations between predator and prey frequencies. The mathematical treatment can be

considered alongside an individual based computer simulation model of the same phe-

nomenon.

An example of a computer simulation model of this system would use an individual

based model. Software objects would represent individual predators and prey using a

variable that represents energy. Prey individuals receiveenergy from the environment and

predators receive energy by encountering prey (predator-prey encounters may be proba-

bilistic, or predators and prey may be placed on a spatial grid and encounters modelled

through distances). Both predator and prey individuals reproduce (make copies of them-

selves in the system) and die based on their internal energy levels.

Without wanting to go into too much detail, I assume, for the purposes of argument,

that the computer simulation of the predator-prey system has very similar dynamics to

the mathematical system. That is, both systems will make thesame predictions about

any particular predator-prey system to which they might be applied. The computational

model can now be compared with the mathematical treatment incontext of the initial

question concerning the nature of the scientific explanation that may be derived from

each modelling enterprise.

To answer that question I draw on a distinction introduced byChomsky betweencom-

petenceandperformance(Chomsky 1986). Chomsky’s approach considers whether the

linguistic corpus can be used as a source of empirical evidence for linguistic enquiry.

He distinguishes between competence (our internal unconscious capacity for language)

and performance (actual instances of language production). Regarding linguistic inquiry,

he argues that we should take this distinction into account when considering models of

linguistic competence above models of linguistic performance.

I use Chomsky’s distinction to shed light on the differing styles of scientific explana-

tion that are likely to follow from the use of computational versus mathematical treatments

of a particular problem. From this point of view, the computer simulation model must

merely be considered as a performance of a scientific explanation, whereas the explicit

mathematical treatment can be considered as having competence (an innate capacity) as

a scientific explanation.

Simulation runs have the same sorts of problems as those Chomsky identifies for lin-

guistic performances. They are subject to faults (in code aswell as in run-time conditions)

and each simulation model is merely a single data point and may not reveal the complete

potential of a system. In a similar way, it is possible to hideflaws in the performance from

the audience. Simulations can be set up so that the data points presented make the best
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possible case for whatever it is the modeller is trying to argue.

Alternatively, explicit mathematical treatments, assuming they are done correctly, are

analytically complete: flaws in the system are immediately obvious. In addition, mathe-

matical treatments are not limited to some narrow range of parameters but provide univer-

sal coverage of all variables included in the model. These two properties were identified

by Chomsky as arguments in favour of looking at linguistic competence over linguistic

performance.

Furthermore, explicit mathematical treatments have more powerful identity condi-

tions than do computational models. By this I mean that one mathematical treatment can

automatically be established as the same as, or different to, another treatment, just by

comparing the logic. Computer simulation runs, on the other hand, may produce sim-

ilar results for the same problem, but have very different underlying explanations. The

opposite can also occur, in that two computer simulations may be driven by the same

underlying process without this being obvious to an observer.

Mathematical treatments are more reusable than computer simulation models. Some

give good clean results which can instantly be applied to systems, others benefit from the

ease with which they can be written down in full and passed on.Such models can then

be used as logical axioms for other models with their competence passed on. In contrast,

although computer models can certainly be transferred fromone author to another their

results are rarely used, in practice, as axioms for other models.

To put this in context with regards to the example of the Lotka-Volterra system, the

mathematical treatment of this system [see Murray (2002) for details] has competence as

an explanation of oscillations between predators and prey.In comparison, only graphs (or

other data visualisations) showing oscillations from performances of simulation runs may

be presented from the computer simulation model, only certain parameters may be tested

and simulations can only be run over a finite length of time.

One might argue at this point that we can distinguish the codefor a computer sim-

ulation model from an individual execution of the code. The argument continues that a

simulation run is merely a performance of the code, the code itself has competence. This

argument can be rejected by stating that if the code has competence then it is basically

a mathematical treatment in itself (or at least part of a mathematical treatment). Re-

turning to the Lotka-Volterra example, the predator-prey oscillations are a macroscopic

phenomenon. There are only two cases possible here. Either,without an execution of

the code these macroscopic phenomena are not deducible fromreading the source code1,

or, if the macroscopic function is deducible from the code, then this deductive process

1Such non-deducible phenomena were described as being emergent by Bedau (Bedau 1997)
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would necessarily form an explicit mathematical treatment. If this deductive process is

impossible, any explanation generated must be teased out byanalysis of simulation runs

and is thus a performance.

At this point, we are left with a conundrum. If computer simulation models are viewed

as mere instances (performances) rather than as systematicexplanations (having compe-

tence), how can they be of use to science? The answer is that there are many areas, iden-

tified especially in the ALife field, which do not yet yield to mathematical modelling but

in which simulation models can already be produced. Such simulation models not only

have scientific power as proofs of concept and for generationof insights for performing

empirical science, but they can also have some explanatory power (Di Paolo et al. 2000).

When considering a complex simulation in which there is no explanation of the effects

produced, some explanation can be deduced by performing experiments on the simulated

system in the same way that one would do for an empirical investigation. In this mode of

enquiry acontrolsimulation is generated in which some important phenomenondoes not

happen. This is normally done through some manipulation of the system. The control sim-

ulation is compared with the untampered system and the results are used as evidence that

the changes made by the manipulations are part of the explanation of the phenomenon.

The above procedure is very similar to the normal mode of empirical science. A

conceptual model can be built of the working model system andthis conceptual model

acts as an explanation. I will now look further into how this form of explanation relates

to an explicit mathematical treatment.

2.3.1 Analytic explanation versus synthetic explanation

To attempt to understand the difference between an explanation generated through the

use of a working model in explicit mathematical form and an explanation generated by

experimental manipulations of a computer simulation model, I consider a distinction used

by the logical positivists – that ofanalyticandsynthetictruths.

According to Frege’s reworking (Frege 1980) of Kant’s original distinction, an ana-

lytic truth is one that can be deduced through logical laws alone. A synthetic truth is one

which needs some other means, generally empirical investigation, to establish its truth or

falsity.

I use this distinction to identify modes of truth for explanations generated by a work-

ing model. As pointed out previously, I assume all working models are using the same

assumptions, i.e., they start from the same set of logical axioms. I distinguish between an

analytic explanation – one which follows logically from theinitial assumptions – and a
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synthetic explanation – one which must be determined by someother means.

Naturally an explicit mathematical treatment is in itself an analytic explanation. How-

ever, empirical experiments done on a computer simulation can only form synthetic ex-

planations. These synthetic explanations require validation in the same way empirical

science must be validated. The evidence backing up these validations relies on measure-

ments taken from performances and is thus open to disconfirmation, reproduction and

revalidation.

There is an ongoing debate about the analytic/synthetic distinction, some arguing that

it is not a black and white distinction but more a question of degree (Quine 1953). While

Quine’s arguments are concerned with statements about the real world rather than state-

ments about a closed set of logical axioms, I agree that our distinctions of explanations

should not be black and white. A working model can, like a biological system, be large

and complex. Some parts of such a system will yield to explicit mathematical treatment,

whereas with other parts I may have to rely on empirical-style experiments of the kind

discussed by Di Paolo et al. The final explanation generated through such a process will

consist of a mixture of analytic and synthetic statements.

In the next section I present an account of how systems can be decomposed into

smaller parts to identify explicit mathematical treatments. Successful mathematical treat-

ments will render the resulting explanations more analyticin the way I have just described.

2.4 Decomposition of systems

A system can become hard to analyse when it is made up from manyinter-dependent

subsystems. In fact, the identification of subsystems is a good first step when tackling

such a complicated system. However, this is rarely simple. When subsystems are inter-

dependent it is not possible to manipulate one subsystem independently without affecting

another: both subsystems, at the same time, affect the overall system. The situation be-

comes increasingly difficult when the subsystem’s components are not mutually exclusive

from each other.

Simon (Simon 1996) describes a ‘nearly decomposable system’ as being one in which

components are independent in the short term, but dependentin the long term. This is

a useful way to divide a system up and this has been expanded further (Watson 2005,

Polani, Dauscher and Uthmann 2005) considering modular dynamical systems. Watson

introduces a concept calledmodular interdependenceto describe a system with modules

that are decomposable but not separable. A hierarchy can be formed from subsystems and

it is easy to see how complex behaviour can be generated. Thishierarchical perspective
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is a valuable decomposition of a complex system. If it is possible to divide up a set of

microscopic entities into subsets this will allow us first totackle the mechanisms of the

subsets, before understanding how they interact with each other.

In the next section I consider a more general perspective fordecomposing systems.

Rather than breaking up the set of microscopic entities intosubsets, I consider a more

arbitrary way of decomposing a system into subsystems that contain a simplified version

of the dynamics of the supersystem.

2.4.1 Mechanistic subsystem

I propose information theoretic definitions of a mechanistic subsystem and interdepen-

dence in mechanistic subsystems. This style of definition has been used by McGregor

and Fernando (2005) to formalisehyperdescriptions. I then go on to discuss how these

definitions relate to our intuitive notions of these concepts before looking at examples in

the next section.

Define a systemSas being a set of mathematical entities, their interactionsand their

parameters. Take a descriptor functiond(S) = M that will map the systemS to a set of

descriptorsM. Define theentropyof a random variableX as

H(X) = − ∑
x∈X

p(x) logp(x) ,

theconditional entropybetween two random variablesX andY as

H(Y|X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) logp(y|x)

and themutual informationas

I(X;Y) = H(Y)−H(Y|X) .

Take a systemS1, such thatd(S1) = M1. Then,S1 is a mechanistic subsystem ofS if

S1 ⊂ S (2.3)

H(M1|M) = 0 (2.4)

I(M1;M) > 0 (2.5)

I(M1;M) < H(M) . (2.6)

The mechanistic subsystemS1 is a constrained version of its supersystemS. The
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constraints can take place in the parameter space, the number of entities, the nature of

the entities, or their interactions. I list the Equations [(2.3) to (2.6)] and describe their

meaning: (2.3)S1 is a subset ofS; (2.4) all information inM1 is predicted byM; (2.5)M1

andM share some information; (2.6) there is information inM that is not predicted by the

information shared byM1 andM.

The information theoretic definition presented includes many of the important con-

cepts of a mechanistic subsystem. However, a useful mechanistic subsystem should have

two further properties. Firstly, it should be transparent,i.e., it is possible to understand

why and how it produces its macroscopic effects. Secondly, its macroscopic effects should

be of interest when compared to the macroscopic effects of the main system. I need to

avoid specifying macroscopic subsystems that are either equally complex to the main sys-

tem with only some negligible reduction, or are so simplistic that they are of no analytic

value.

Following on from this definition of a mechanistic subsystem, I draw on Polani et

al.’s definition (Polani et al. 2005) of a system that is decomposable but not separable to

identify how two mechanistic subsystems can be interdependent. Take a systemS and

two mechanistic subsystemsS1 andS2, the subsystems are interdependent if

0 < I(M1;M2) < min[H(M1),H(M2)] .

The two subsystems are neither independent nor completely dependent.

With this approach identified, It can be seen how it is possible to break up a complex

system of many interacting parts into simpler mechanistic subsystems.

2.4.2 Examples of Mechanistic Subsystems

I consider, as an example, the spatial embedding of reproducing agents. Space has

been shown to be an important factor in the maintenance of cooperation in a population

(Boerlijst and Hogeweg 1991, Di Paolo 2000). The common feature of these models is

that two regimes are considered. The models are considered and analysed in a non-spatial

environment before being placed in a spatial environment. The non-spatial treatment is

a mechanistic subsystem of the spatial treatment. In this treatment agents are thought

to be in a perfectly mixed spatial environment, a special case of the spatial component.

A comparison of the interactions of agents in the spatial andnon-spatial environments

demonstrates how cooperation is increased.

A mechanistic subsystem (the non-spatial model) functioned primarily as a control in

the above experiments. Further to this, the dynamics of mathematical treatments of the
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non-spatial model (Di Paolo 2000) are considered with the final discrete spatial individual

based model. Spatial localities can be considered as non-spatial models. In this way, the

mechanistic subsystem provides insights on the final results.

A different model [see Bryden (2005a) and also in Chapter 5] considers collective

reproduction in amoebae. This non-spatial model demonstrates that cells that reproduce

individually must reproduce more slowly to maintain high energy reserves for periods of

low resources. By reproducing collectively during periodsof low resources, individu-

als can avoid the need to reproduce slowly and can dominate periods of high resources

by reproducing more quickly. The model is complex and it is not easily apparent why

this is occurring. To explain why individuals might reproduce more slowly, I have done a

mathematical treatment (presented in this thesis in Chapter3) which analyses a mechanis-

tic subsystem of the main model only considering individuals that reproduce individually.

This, combined with the insights from the other work in Chapter 4 show that an individual

is actually hedging its bets by reproducing collectively.

A further model (Bryden 2005b) considers the effects of space on the individual re-

production mechanistic subsystem: agents in the model liveand reproduce on a spatial

grid. This model can be broken up into two mechanistic subsystems, firstly a non-spatial

subsystem with individuals reproducing and secondly a spatial subsystem without indi-

viduals reproducing. The results indicate that the spatialeffects increased the frequency

of both periods of high resources and periods of low resources. The mathematical model

has shown that this would increase the tendency for individuals to conserve resources and

reproduce more slowly. This is an example of a system that combines two interdependent

mechanistic subsystems (a spatial and a reproductive system) that interact with each other

to produce a macroscopic phenomenon.

Away from the field of agent based modelling, I consider models based on neural bi-

ological systems. Neural systems have extremely complex dynamics, which are resistant

to mathematical analysis. However, the use of linear stability analysis has proved use-

ful in identifying mechanistic subsystems which can be usedas building blocks within

larger systems. For example, a system of coupled oscillators, based on the FitzHugh-

Nagumo model, has been analysed as a mechanistic subsystem (Buckley, Bullock and

Cohen 2004). This analysis demonstrates how, when the oscillators are linked to a simple

gas net, the system can produce temporally distinct oscillations. Much other work con-

tinues into the identification of simple oscillatory models, such as that done in Central

Pattern Generators (CPGs) (Marder and Bucher 2001). CPGs can work as mechanistic

subsystems within models of animal locomotion systems.

In this section I have demonstrated how a complex system thatdoes not yield to ex-
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plicit mathematical treatment may be simplified into mechanistic subsystems which are

more likely to yield to explicit mathematical treatment. Wecan observe from the exam-

ples chosen that the working models arrived at through such aprocess consist of both

synthetic and analytic explanations.

The process of simplification identified above is not the onlyway of making simpler

models. By choosing different assumptions and approachinga conceptual model from

a different perspective it is also possible to open up a system to explicit mathematical

treatment. With computer simulation it is increasing easy to change the assumptions of

a model and get a feel for how the system changes. This sort of approach is invaluable

as a tool for the sort of lateral thinking needed when generating an explicit mathematical

model.

2.5 Discussion

While this chapter has argued that an explicit mathematical treatment will provide a supe-

rior explanation of a scientific phenomenon to an equivalentcomputer simulation, it must

be made clear that computer simulation is still a crucial part of the modeller’s toolbox.

The overarching goal of the scientific modeller is to build better models. The ease with

which models can be produced with computers is extremely valuable. Furthermore, not

only can these early efforts lead to some important scientific results, but they can also

point towards new directions for mathematical models. I list below, in increasing order

of merit, different styles of working models and explain howvaluable each one is in gen-

erating scientific explanation. By starting with models at the beginning of the list and

progressing up the list, models can become better explanations of scientific phenomenon.

• A description of an opaque computer simulation and some vague rhetorical state-

ments that it consists of an explanation of what it is trying to model. I have argued

that this approach is merely setting down a procedure for producing a performance

of explanation of some phenomenon. However, this approach can still yield a proof

of concept for some topic under debate, or generate insightsfor empirical experi-

ments.

• The same computer simulation as before, but this time complete with well docu-

mented source code, parameters and other data that can easily be tested by other

users and reused in new simulations. While this approach doesnot yet produce a

competent explanation, it allows for more simple reproduction of the model which

will help others develop it further.
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• An opaque computer simulation (with well documented sourcecode) with some

manipulations and simulation runs that demonstrate how various attributes of the

model explain various phenomena. I have argued that this approach can yield a

competent explanation of sorts, but this is merely a synthetic explanation and is not

logically grounded.

• An opaque computer simulation (with well documented sourcecode) that has been

decomposed into mechanistic subsystems. Some subsystems have been treated

mathematically. Such a working model can also yield a competent explanation

of sorts, this explanation is more analytic than in the previous case.

• An explicit mathematical treatment. Such a working model yields a competent fully

analytic scientific explanation.

As set out above, clearly the best option is to produce an explicit mathematical treat-

ment. However, this is rarely simple, and in many cases mathematics is not yet mature

enough to approach this goal. Since we must live in the real world, science must an-

swer questions about systems that cannot be yet modelled by mathematical approaches.

Computer simulation modelling provides us with a working methodology for approaching

these complex or complicated systems and taking important steps toward understanding

them.

Further to this, it is important to note that computer simulation models can extend

already established mathematical treatments. By extending or relaxing the assumptions

made in the purely mathematical treatment, the new model will rely on the mathemati-

cal treatment as a mechanistic subsystem but may also produce new results or important

insights into the mathematical model (Harris and Bullock 2002). Since computer simu-

lation models lend themselves to more accurate, relaxed assumptions, when explanations

become available they are more likely to be of value to the conceptual model under ques-

tion.

What is important is that scientific models progress up the order of merit listed. A

novel modelling approach that identifies a new style of working model may have value

even if it merely provides a performance of some scientific explanation. Such a system

can be experimented with and decomposed into mechanistic subsystems and the standard

of explanation will improve. This is one of the benefits of computer simulation modelling

in that it gives us tools to break down a problem so that we can get closer to an explicit

mathematical treatment through an iterative process. Computer simulation models can be

thought of as providing a sort of sandbox in which imagination and lateral thinking can

be done.
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Modelling delayed reproduction under

density dependence

3.1 Introduction

In this chapter I present a model of individual reproductionstrategy. Within the context

of the thesis, this model has two purposes: first to try to understand what evolutionary

advantage there is in accumulating resources and delaying reproduction within a fluctuat-

ing environment and second to generate a baseline model of reproduction which may be

extended in the later chapters (see Chapters 4 and 6). This baseline model is also rele-

vant to other biological theories of reproduction strategyso the biological background is

reviewed in more detail.

The problem of how much investment a parent might make in its offspring was iden-

tified early in the study of evolutionary biology (Fisher 1930). There is clearly a tension

between the need for an individual to generate the maximum number of offspring as

quickly as possible and the need for those offspring to be successful.

It has long been known that, in the absence of density dependence, populations will

grow at an exponential rate (Malthus 1798). During a period of growth a fast reproducing

individual will increase its frequency in a population relative to one which reproduces

more slowly. In the past there has been an argument about why individuals do not al-

ways reproduce as quickly as they might. It was proposed (Wynne-Edwards 1962) that

this was because fast reproduction was not beneficial to the group (or, in this case, the

whole species). Thisgroup selectionistviewpoint came under a great deal of criticism

(Maynard Smith 1964, Williams 1966a) and the belief that individuals might make adap-

tations for the benefit of the species is now uncommon, with the gene-centric view domi-

nant (Dawkins 1982).

40
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Since we may reject the group selectionist argument, any explanation as to why an

individual might reproduce more slowly must include reasons for the spread amongst a

population of a gene for slow reproduction. An early study looked at the clutch sizes of

birds (Williams 1966b), and argued that birds which lay moreeggs often produce fewer

fledglings because they are unable to feed them properly. Following on from this early

work, much research into reproduction strategy has been done and this is summarised in

the next section.

3.1.1 Background on life history modelling

The analysis of problems related to reproduction strategy is wide ranging and many

different perspectives have been considered. These include parent-offspring conflicts

(Trivers 1974),r/K selection in population ecology modelling (Reznick, Bryant and

Bashey 2002), analysis of age vs. size at maturity (Stearns 2000) and the trade-off be-

tween the lifetime of a mother and the number of her offspring(Stearns 1992).

The development of good general models of life history strategy such as the “general

life history problem” (Schaffer 1983) can prove elusive (Stearns 1992). This would in-

volve the modelling of reproductive strategies favoured bynatural selection which would

give optimal results under various environmental conditions. In this field any prediction

usually relies on many assumptions and there are often exceptions. It is therefore impor-

tant to view life-history theory as a framework for studyingbiological systems rather than

a model of how such systems might work.

Considering ther/K selection approach (MacArthur and Wilson 1967, Pianka 1970,

Reznick et al. 2002), this argues that environmental conditions are important for deter-

mining which reproduction strategy an organism may take. Itlooks at a continuum be-

tween fast-growing individuals that make a big investment in many small offspring and

die young (r-selected) and slow-growing individuals that have a small number of larger

offspring and live longer (K-selected). It is intended as a model of a complete ecosystem

in which different species are located along ther-K continuum. Correlates have been pre-

sented (Pianka 1970) arguing thatr-selected species tend to experience density indepen-

dent growth whileK-selected species experience density dependence. This theory became

unpopular in the early 1980s (Reznick et al. 2002) due mainlyto the lack of concurring

data from experimental studies to test ther/K selection hypothesis (Stearns 1992).

The introduction of age-structured models proved very successful compared with the

traditionalr/K approach (Stearns 2000). Notably, Tuljapurkar (1990a) modelled delayed

reproduction by dividing the population into two age groups– adults and immatures. The
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dormant immatures are not susceptible to environmental fluctuations, but adult fertility is.

As the variance of adult fertility due to environmental fluctuations is increased, there is a

greater proportion of immatures that delay their transition to the adult stage. The calcu-

lation of the geometric mean growth (in line with bet hedgingtheory, see Section 1.5.1)

over varying environments is used as a metric to show how the strategy of keeping some

of the population in reserve can help when fluctuations that may wipe out a significant

proportion of the population are increasingly frequent. When the population is at a fixed

level (i.e., there are no fluctuations), Tuljapurkar’s model does not predict any delayed

reproduction. It also does not consider what happens when there are fluctuations, but the

population is under density dependence (i.e., where there is no long term growth of the

population).

Another relevant question is concerned with the allocationof resources between growth

and reproduction in animals which grow beyond reproductiveevents [see a review by

Heino and Kaitala (1999)]. Modelling approaches measure the population growth of var-

ious strategies when fecundity is a function of size and age (Kozłowski 1991, Kozłowski

1992). These modelling approaches do not consider feedbackfrom the environment how-

ever. Heino and Kaitala (1999) consider this a major theoretical challenge. In light of

this I look at work on microbial ecology, a good example of individuals growing beyond

reproductive events, in the next section

3.1.2 Background on microbial ecology

While age-structured modelling has proved very successful in ecological modelling of

metazoa, this style of modelling is less applicable to microbes which normally reproduce

by splitting into two equal halves. After mitosis there is noobvious parent. There are

therefore difficulties in assessing the age of any individual microbe. Attempts to model

reproduction strategy within microbial population ecology are therefore still very much

based around the traditionalr/K approach (Andrews and Harris 1986, McArthur 2006).

In analysing the reproduction strategy of bacteria, ther/K selection model was in-

voked by Velicer and Lenski (1999). Attempts were made to show that bacteria will adapt

toward either anr-strategy or aK- strategy, depending on which of two growth regimes

they have been exposed to. They exposed bacteria to fast and slow growth regimes. In the

fast regime, the bacteria were constantly placed in fresh medium whenever the medium

was exhausted. In the slow regime, the bacteria were fed in a chemostat with a relatively

low influx of medium, but enough to maintain slow population growth. The intention was

to show that those exposed to one regime were not only better adapted to that regime than
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their ancestors but worse off in the alternative regime thantheir ancestors. This would be

in line with ther/K selection model. Individuals that had undergone selectionwere put

in competition against ancestors in both regimes. The results proved to be at best incon-

clusive and at worst contrary to that theory with the selected individuals out-competing

the ancestors in the alternative regime in 58% of the strainsanalysed (they always did

better than ancestors in the selected regime). These results do not seem to support the

r/K selection model.

As an alternative tor/K selection, other perspectives have been considered regard-

ing the modelling of microbial growth. Much of this centres around application of the

Monod equation (Monod 1942, Monod 1950), which is a simple equation modelling the

density dependent growth of an organism (Smith and Waltman 1995). As with the Ver-

hulst equation (used forr/K selection) there is exponential growth at lower population

density levels and then growth becomes bounded as population density increases. Using

this equation, ecological models can be produced looking atpredator prey interrelations

(Smith and Waltman 1995).

Analysis of bacterial growth rates in fluctuating environments has also been consid-

ered (Vasi, Travisano and Lenski 1994). The work estimates Monod equation parameters

for bacteria cultivated in an environment organised so thatthe population dynamics would

fluctuate between a fast growth phase and a stationary phase.During the fast growth

phase, individuals were simply cultured in a medium. Once the medium was exhausted,

the stationary phase would begin: in this phase the individuals were left to experience a

further period of time with no new medium. This process was iterated, with each new

culture starting with 1% of the bacteria from the previous culture. The results found that,

during the growth phase of the experiment, there was an increase in the growth rate of

the bacteria subjected to this procedure. Interestingly, the ancestral bacteria used showed

marginal growth during the stationary period (when the medium was exhausted). After

selection, the bacteria instead showed marginal declines in numbers during the stationary

period, however the change was negligible (Vasi et al. 1994). This experiment has much

in common with the model of Tuljapurkar (1990a) which is concerned with the effect of a

fluctuating environment on the growth rates of a population.In the next section I outline

a model which considers both strands.

3.1.3 Scope of the models

Two relevant strands were introduced in the previous two sections: delayed reproduction

in life history modelling and experimental studies of microbial ecology. In this section,
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I outline the model I present in this chapter which will address both of the two strands.

In essence the model studies different strategies for resource accumulation and contri-

bution to offspring. Delayed reproduction is achieved by accumulating more resources

before reproduction (rather than producing dormant offspring in Tuljapurkar’s model,

Section 3.1.1). This approach is therefore relevant to single celled organisms (see Sec-

tion 3.1.2) because there is no age structure. The effects ofdensity dependence (called for

in Section 3.1.1) may also be studied because resource accumulation depends on popula-

tion density (in harmony with the theme of density dependence introduced in Section 1.5).

From previous results (see Section 3.1.1), resource fluctuations are expected to be

the cause of reproductive delay. To confirm this, the models consider cases where there

are extrinsic resource fluctuations. They also consider cases where there are no extrinsic

resource fluctuations and resource availability is completely density dependent to investi-

gate what factors may influence delayed reproduction in these circumstances.

Two mathematical modelling approaches are considered here. These differ from the

way an individual may encounter resources – and hence the type of individual they model.

First, I consider an individual that receives resources continuously. This corresponds

with a bacteria absorbing nutrients from the surrounding area – the rate of absorption

depending on the nutrient concentration. The second model considers resources that are

encountered intermittently – in discrete resource units. This corresponds with predatory

organisms that encounter prey.

The simulation models are introduced to relax assumptions taken in the mathematical

models and extend them when useful assumptions are no longerpossible. (The assump-

tions taken are specified in the descriptions of the mathematical models in Section 3.2.)

In summary, the models are therefore designed to answer the following questions:

(i). Is it possible to explain delayed reproduction using models of density dependence?

(ii). Can delayed reproduction be modelled with physiological models of resource ac-

cumulation and investment in offspring?

(iii). What is the role of physiological factors, such as the up-front cost of reproduction

and the cost of maintenance to delayed reproduction?

3.2 Mathematical modelling

In this section I look at two mathematical models of individual reproduction. In the mod-

els, reproduction strategies are genetically determined.Quite simply, an individual has
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a resource threshold above which it will reproduce: i.e., determined by its genes, it will

either reproduce with a lower level of resources or wait until its resources have reached

a higher level. Strategies are passed on to offspring, and therefore are modelled as a

complete lineage.

Both mathematical models derive the lineage growth rate, i.e., the number of new

individuals produced by each individual in the lineage per unit of time. The two mathe-

matical models differ based on whether the resources are continuous or intermittent (see

Section 3.1.3 for more information). The first model is dubbed the deterministic model

which assumes that resources are continuous and set at a static level throughout the life-

times of individuals. The second model is dubbed the stochastic model where resources

are intermittent. In this model, the mean resource uptake throughout the lifetime of an

individual is set as in the deterministic model but there is variance in the resource uptake

within that lifetime.

In the simplest model (the deterministic model), the growthrates are analysed un-

der different amplitudes of resource fluctuation. Since different reproductive strategies

have different growth rates under different resource conditions, I look to Theorem 2 in

Appendix A to predict which strategy will dominate. This theorem considers two pop-

ulations that grow at different rates in two seasons and proves which population will

dominate. Since it does not require a definition of the resource uptake function, the way

resources vary is as unconstrained as possible in the model.However, the one constraint

introduced is that the population is in equilibrium. This means that, while population

levels may fluctuate, there must be no overall positive or negative trend to population lev-

els – the population is effectively under density dependence (see Section 3.1.3 for more

information).

The stochastic model is analysed by looking at the situationwhere the population

converges very quickly to its equilibrium level. I find that different parameters mean that

some lineages have different equilibrium values (this is not shown by the deterministic

model) – and therefore those that are in equilibrium at lowerlevels of resources might

invade those that are in equilibrium at higher levels of resources.

The analysis of both the models is done by first considering individuals that are identi-

cal apart from their reproduction thresholds (which determine the speed of reproduction).

The prediction made by the model, in this scenario, is that the optimal strategy is to

reproduce as slowly as possible. It seems reasonable however that there may be some

physiological costs involved in reproducing more slowly soI have therefore considered

that an individual might encounter an increased cost of reproduction and/or an increased

cost of maintenance (I have assumed that costs of growth are part of costs of maintenance)
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through reproducing more slowly. I therefore analyse the trade-off between the reproduc-

tion threshold and reproduction cost and the trade-off between the reproduction threshold

and maintenance cost.

3.2.1 Model basics

Each individuali is modelled by a resource levelx(i, t). Every individuali belongs to

a lineagej which determines its reproduction thresholdR1( j), its cost of reproduction

Rr( j) and its cost of growth and maintenanceRc( j).

Individual resource levels are modelled by the equation,

dx
dt

= U(i, t)Ru−Rc( j) , (3.1)

whereRu is a positive constant andRc [0 < Rc( j) < Ru] is dependent on the lineage.

Resource uptake(the level of resources received from the environment) is variable and

modelled byU(i, t) ∈ [0,1]. This variable is treated differently in the two models pre-

sented in this chapter. In the deterministic model,U(i, t) is considered to be constant

over the lifetime of the individual (U(i, t) = u), i.e., the individual’s fate is determined by

the value ofu. In the stochastic modelU(i, t) is modelled by white noise depending on

variablesu andδ t. Time is broken up into segments of lengthδ t and for each segment

Pr(U = 1) = u and Pr(U = 0) = 1−u. The average over realisations (< U >= u) is also

constant over an individual’s lifetime.

If an individual’s resource level decreases below the lowerthresholdR0 (fixed for all

individuals) it will die. If an individual’s resource levelincreases above its reproduction

threshold it will reproduce. All individuals pay a cost of reproductionRr( j) (dependent

on their lineage) when they reproduce and share half of the remaining resources with the

new offspring. In the mathematical models all offspring areassumed to be same lineage

as their parents. Therefore, all individuals start their lives at

x(i) =
R1( j)−Rr( j)

2
. (3.2)

As anad hocsimplification,R0 is set to 0. To study different values ofR0, Rc andRr

can be scaled appropriately.

Given this starting position for individuals of lineagej and a specific model for re-

source uptake [U(i, t)] the growth rate of the lineage is approximated using the equation,

G( j,u) = births−deaths
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=
F( j,u)

W( j,u)
−

1−F( j,u)

W( j,u)

=
2F( j,u)−1

W( j,u)
, (3.3)

whereW is the expected generation time (the time taken forx(i) to reachR0 or R1) of

an individual andF is the ratio of individuals that eventually reach the upper threshold

to those that reach the lower threshold. In the deterministic modelF is equal to 1 or 0.

However in the stochastic modelF will take on values between 1 and 0. For simplicity,

this equation therefore assumes that, from the starting position x, the time taken to reach

the upper threshold is equal to the time taken to reach the lower threshold. Whenx is near

to R1 or R0, this equation becomes less accurate1, however the assumption can be relaxed

through simulation modelling (see Section 3.3)

3.2.2 Deterministic model

In this section equations forWd andFd are presented for the deterministic model and a

growth rateGd is derived. The derived growth equation yields to simple analysis which is

also presented.

As outlined above, the individual resource level in the deterministic model is given by

Equation (3.1) withU(i, t) = u. To generate expressions forFd andWd, I first define the

value ofu0 for which dx/dt = 0 [u0( j) = Rc( j)/Ru] and consider the time taken forx to

reachR1 whenu > u0 (F = 1) and the time take to reachR0(= 0) whenu < u0 (F = 0).

The generation timeWd for an individual starting withx resources is given by the number

of resources needed to move to the relevant threshold divided by its rate of change of

resources (dx/dt):

Wd(x,u) =























(R1−x)δ t
uRu−Rc( j)

,u > u0

−
xδ t

uRu−Rc( j)
,u < u0 ,

(3.4)

(asu→ u0,W → ∞).

All individuals are assumed to start just after reproduction as in Equation (3.2). This

value can be put into Equation 3.4, and Equation (3.3) can nowbe used to predict the

1In fact, further modelling work done by Stephen Cornell shows that this approximation is good except
when the bias is high, i.e., the difference betweenRc( j) anduRu is large.
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growth rate of lineagej:

Gd( j,u) =











































2[uRu−Rc( j)]
[R1( j)+Rr( j)]δ t

,u > u0

0 ,u = u0

−
2[uRu−Rc( j)]

[R1( j)−Rr( j)]δ t
,u < u0 .

(3.5)

This equation is analysed in the next section.

3.2.3 Deterministic model analysis

To analyse Equation (3.5), I compare lineages with various different lineage parameters

(R1, Rr andRc) against each other. First, I fixRr andRc and look at whether there are

any advantages to increasingR1. Then I consider what happens whenRr increases asR1

increases. Finally I consider the case whereRc increases asR1 increases.

To look at increasing values ofR1, Equation (3.5) is plotted in Figure 3.1 for two

lineages with differing values ofR1 and all other parameters fixed. There are two regimes

on the plot, to the right ofu = u0 = 0.0909 both lineages grow with the growth rate

(Gd) increasing linearly as a function ofu [approximately,Gd(A) = 0.0169(u−u0) and

Gd(B) = 0.0096(u−u0)]. To the left ofu = 0.0909 both lineages are declining, againGd

is a linear function ofu [approximately,Gd(A) = 0.0314(u−u0) andGd(B) = 0.0129(u−

u0)]. For both lineages the growth rate is lower than the declinerate (the high value ofRr

was chosen to accentuate this on the plot).

The results from the figure can be used to show under what conditions invasion may

occur. Since the linear equations in the above paragraph take the same form as Equations

(A.1) and (A.2), Theorem 2 (in Appendix A) can be used (withinthe scenario considered

by the theorem) to predict when one population is dominant over the other. The ratio of

the slope in the growth region (u > u0) to the slope in the decline region (u < u0) will

determine which lineage will dominate: a lineage with a greater ratio will dominate a

lineage with the lesser ratio. In the example shown in Figure3.1 the ratio of the growth to

decline slopes of lineage A is 0.0169/0.0314= 0.538 and the ratio of growth to decline

slopes of lineage B is 0.0096/0.0129= 0.744, so lineage B is dominant.

Analysis of Equation (3.5) can therefore be done by looking at the ratio of slope in the

positive regime to the negative regime, this is given by (fixingRr andRc for both lineages



Chapter 3 49 Delayed reproduction

0 0.05 0.1 0.15 0.2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Resource uptake (u )

P
op

ul
at

io
n 

gr
ow

th
 r

at
e 

pe
r 

in
di

vi
du

al
 ( 

G
d)

 

 

 G
d
 (A)

 G
d
 (B)

Figure 3.1: Comparison of the growth rates of two lineages A and B with different repro-
duction thresholds. Equation (3.5) is with parametersRc = 0.001,Ru = 0.01, Rr = 0.3,
δ t = 1, R1(A) = 1.0 andR1(B) = 2.0 . For both lineagesu0 = 0.0909.

and takingG′ = dG/du):

Ψ( j) =
G′

u>u0

G′
u<u0

=
R1( j)−Rr

R1( j)+Rr
, (3.6)

which is the derivative (with respect tou) of the growth portion (u > u0) of Equation

(3.5) divided by the derivative of the declining portion (u < u0). As R1( j) increases, soΨ
increases. Theorem 2 shows that, given population levels fluctuating about an equilibrium

value, a greater value ofΨ will dominate all lower values. Therefore, whenRr andRc are

fixed, the optimal value ofR1 = ∞.

In the previous example,Rr( j) is the same for all lineages. I consider the case where

lineages have differing values ofRr( j). Specifically, I first consider the case where

Rr( j) = αR1( j) (α is a variable). Here,

Ψ( j) =
R1( j)−Rr( j)
R1( j)+Rr( j)

=
R1( j)−αR1( j)
R1( j)+αR1( j)

=
1−α
1+α

. (3.7)
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By the theorem, any dominant lineage will have a greater value of Ψ, but Equation (3.7)

shows that whenα is increasing,Ψ is decreasing andvice-versa. Therefore, the lineage

with the lowest value ofα will dominate. In other words, the ratio between an individual’s

reproduction threshold (R1) and its cost of reproduction (Rr) must decrease for there to be

an advantage in increasing the reproduction threshold.

Finally, I consider the cost of growth/maintenanceRc. Figure 3.2 shows plots of the

growth rates for two lineages where all parameters are the same apart fromRc. The extra

cost has shifted the plot of lineage B to the right on the graph. This means that this lineage

has lower growth, and is therefore at a disadvantage, for allvalues ofu.
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Figure 3.2: Comparison of the growth rates of two lineages A and B with different
growth/maintenance costs. Equation (3.5) is with parameters R1 = 1.0, Ru = 0.01,
Rr = 0.3, δ t = 1, Rc(A) = 0.001 andRc(B) = 0.0012.

I also consider the case where lineage B has increased valuesof both the reproduction

threshold (R1) and the cost of growth/maintenance (Rc) compared with lineage A. Figure

3.3 shows plots of the growth rates for the two lineages. As with Figure 3.2, the plot of

lineage B is shifted to the right. If the resource uptake is always bounded withinu= 0.079

(where the plots cross) andu = 0.11 (where lineage B has zero growth), then lineage A is

always dominant.

It is difficult to cleanly analyse the case shown by Figure 3.3because it is not compat-

ible with Equations (A.1) and (A.2), used in Theorem 2 in Appendix A. The two lineages

(A and B) have different values ofRc and therefore different values ofu0. A qualitative
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Figure 3.3: Comparison of the growth rates of two lineages A and B with different
growth/maintenance costs and reproduction thresholds. Lineage C also shown (it is sim-
ilar to lineage B but with an even greater value ofRc) to illustrate further the effect of
increasingRc. Equation (3.5) is with parametersR1(A) = 1.0, R1(B) = 2.0, R1(C) = 2.0,
Ru = 0.01,Rr = 0.3, δ t = 1, Rc(A) = 0.001,Rc(B) = 0.0012 andRc(C) = 0.0014.
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analysis of the figure does however suggest that lineages B and C may be dominant when

the amplitude of resource fluctuations is greater.

To investigate the effect of greater resource fluctuation amplitudes further, I have done

a simulation the two lineages A and B using Equation (3.3). Lineage population levels

are represented by a floating point variableN(t), whereN(t + 1) = GN(t). For each

simulation resource uptake fluctuates between two values (u+ andu−) based on the state

of the system which fluctuates between growth and decline periods. Specifically, when the

combined population of the two lineages (NA + NB) goes below a lower threshold (here

1.0) the system goes into a growth phase andu = u+, and when the combined population

(NA +NB) goes above an upper threshold (here 10.0) the system goes into a decline phase

andu = u−. Time traces for two simulations are shown in Figure 3.4.

The figure shows how, when the amplitude of fluctuations is low, lineage A is domi-

nant (with its lower values ofR1 andRc). Alternatively, when the amplitude of fluctuations

is high, lineage B is dominant (with its higher values ofR1 andRc). To show this pattern

is the case for lineages A and B over a full range of values ofu, I firstly show how the

range ofu in which lineage A is dominant over lineage B will increase asRc(B) increases.

Second, I show that there are still ranges foru where lineage B is still dominant.

To show that the range ofu in which lineage A is dominant over lineage B will increase

asRc(B) increases, I consider Figure 3.3. The value ofu where lineage A crosses lineage

B will decrease because the plot of lineage B has a shallower gradient to the plot of

lineage A [becauseR1(B) > R1(A), see Equation (3.5)]. Ifu stays above this bound then

the growth rate of lineage A will always be above lineage B. Therefore the range ofu in

which lineage A is dominant over lineage B will increase asRc(B) increases.

Second, to show that B may still dominate over A, it is possible to look at the case

whereu oscillates between only two values,u+ where the population grows andu− where

the population declines. For each value foru, the growth ratesGd(u) can be generated.

Corollary 3 in Appendix A shows that if

Gd(B,u+)

−Gd(B,u−)
>

Gd(A,u+)

−Gd(A,u−)
,

then lineage B will dominate. Since all the values in the fractions are positive, this can be

rearranged as,
Gd(B,u+)

Gd(A,u+)
>

Gd(B,u−)

Gd(A,u−)
.
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Figure 3.4: A lineage with an increased value ofR1 andRc may invade when the amplitude
of resource fluctuations is increased. Panels (1a) and (2a) show population numbers and
panels (1b) and (2b) show the corresponding values of resource uptake. Population growth
is given by Equation 3.3. Parameters for populations A and B are as given in Figure 3.3.
Panels (1a) and (1b) useu+ = 0.18 andu− = 0.05, panels (2a) and (2b) useu+ = 0.3 and
u− = 0.02.



Chapter 3 54 Delayed reproduction

In the case shown in Figure 3.3, foru+ > 0.25,

Gd(B,u+)/Gd(A,u+) > 0.516.

Similarly, for u− < 0.021 we have that

Gd(B,u−)/Gd(A,u−) < 0.516.

So if u is outside the range 0.021> u > 0.25, lineage B will dominate. One important

point to note is that these values foru+ andu− were chosen arbitrarily. It is possible to

choose different values foru+ andu− (perhaps increasing or decreasing both of them)

and still see dominance of lineage B. The distance betweenu+ andu− is not fixed either

and how it changes can also depend on the choice of the other parameters. This means

that more general analysis of this case is difficult within this model. What can be said

however, is that the effect of increasing the parameterRc is always the same, so the basic

reasoning that a larger amplitude of resource fluctuations is necessary for increased values

of Rc is applicable over sensible parameter ranges.

The significant results from this section are as follows. First, this model predicts

that, when all other parameters are held equal, the optimal strategy is to maximise the

reproduction thresholdR1. Second, when the value ofRr is linked to the value ofR1 any

increase inR1 may be matched by a corresponding increase inRr as long as the value

of α = R1/Rr decreases. Finally, when a lineage has increased values of both R1 and

Rc, I have shown that a larger amplitude of resource fluctuations can be important its

viability. However, the model does not yield to simple analysis. This means that I will

look to simulations, presented later on in this chapter, to provide further insights into this

scenario.

In this model, all individuals receive a continuous level ofresources. This makes it

very difficult to analyse what will happen when the population is at its carrying capacity.

In the next section, I introduce stochasticity into the model which means I may analyse

the population in this state.

3.2.4 Stochastic model

In this section equations forWs andFs are presented for the stochastic model and a growth

rate Gs is derived. As outlined above, time is broken up into segments of lengthδ t.

Tithe individual resource level in the stochastic model is given by Equation (3.1) with

U(i, t) modelled by white noise with Pr(U = 1) = u and Pr(U = 0) = 1− u for each
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time segment. The same variableu is used as in the deterministic model as the average

per-timestep resource uptake over realisations isuRu – in harmony with the deterministic

model. Figure 3.5 shows the resource level of a typical individual in the stochastic model.
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Figure 3.5: The resources (x) of individuals in the stochastic model perform a random
walk throughout the individual’s lifetime. The individualshown starts its walk after re-
production with half the maximum resource (R1) less a cost of reproduction (Rr). For
each time segment of lengthδ t an individual will expendRc resources and may receive
Ru resources with probabilityu.

For simplicity of modelling a variablem is introduced wherem = Ru/Rc − 1 [so,

Ru = (m+ 1)Rc]. SinceRu > Rc, and both are positive,m is positive. The expected

generation timeWs(x) is modelled using the backward equation (Berg 1993). For an

individual starting with energy valuex:

Ws(x) = δ t +uWs[x+mRc]+ (1−u)Wd(x−Rc) . (3.8)

The equation models the fact that during timeδ t, an individual will have fed and moved

to energyx+mRc with probabilityu or will not have fed and therefore moved to energy

x−Rc with probability 1− u. Here, to harmonise with normal calculus notation, I set

δx = Rc. Dividing Equation (3.8) through byδx and movingWs(x) to the right hand side

gives:

0 =
δ t
δx

+mu
[Ws(x+mδx)−Ws(x)]

mδx
+(1−u)

[Ws(x−δx)−Ws(x)]
δx

. (3.9)

Whenδx is small the first three terms of a Taylor expansion are considered:

Ws(x+mδx) ≃ Ws(x)+mδxWs
′(x)+

(mδx)2

2!
Ws

′′(x)+ ...

Ws(x−δx) ≃ Ws(x)−δxWs
′(x)+

δx2

2!
Ws

′′(x)+ ... . (3.10)
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In the case wheremδx < 1 (or mRc < 1) it is possible to substitute Equations (3.10) into

Equation (3.9) giving a continuous approximation:

0 ≃
δ t
δx

+mp

[

W′
s(x)+

mδx
2

W′′
s (x)

]

+(1−u)

[

−W′
s(x)+

δx
2

W′′
s (x)

]

≃
δ t
δx

+(mu+u−1)W′
s(x)+

δx
2

(

m2u+1−u
)

W′′
s (x) (3.11)

Reverting back to usingRc instead ofδx and setting

λ = (m+1)u−1

µ =
Rc

2
[(m2

−1)u+1] (3.12)

gives

0≃
δ t
Rc

+λ
dWs

dx
+ µ

d2Ws

dx2 . (3.13)

The equation can be solved (by first integrating, then using an integrating factor) with the

boundary conditions [Ws(0) = 0 andWs(R1) = 0] to give the equation:

Ws =
δ t

Rcλ






−x+

R1

(

1−e−
λx
µ
)

1−e−
λR1

µ






. (3.14)

The role ofλ is interesting, it is at zero whenu = 1/(m+ 1) = u0. When lambda is

positive,u > u0, resources are abundant and individuals are more likely to move towards

their upper energy limit (R1). When lambda is negative,u < u0, resources are sparse and

there is a tendency for individuals to move towards their lower energy limit (R0). There

is a special case whenλ = 0,Wd = ∞ in Equation 3.14. To look at the case whereλ = 0,

i.e.,u = u+0 andµ = Rcm/2 , Equation (3.13) is reconsidered:

0≃
δ t
Rc

+
Rcm

2
d2Ws

dx2 . (3.15)

This can be solved with the same boundary conditions as Equation (3.14) giving:

Ws =
δ t

R2
cm

(−x2 +R1x) . (3.16)

When resources are neither abundant nor sparse there is an unbiased random walk. Equa-

tion (3.16) demonstrates that the expected lifetime is still finite. This is one significant

difference from the deterministic model where the expectedlifetime is infinite when re-
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source uptake is close to the threshold for population growth.

The ratioFs of individuals at energyx, which reach the upper thresholdR1 to those

that reach the lower thresholdR0 is given by the backwards equation:

Fs(x) = uFs(x+Ru−Rc)+(1−u)Fs(x−Rc)

= uFs(x+mRc)+(1−u)Fs(x−Rc) . (3.17)

Again an individual either will have fed and moved to energyx+mRc with probabilityu

or will not have fed and therefore moved to energyx−Rc with probability 1−u. Now

moveFd(x) to the right hand side of the equation and replaceRc with δx.

0 = mu
[Fs(x+mδx)−Fs(x)]

mδx
+(1−u)

[Fs(x−δx)−Fs(x)]
δx

. (3.18)

Using an approximation of the first three terms of a Taylor expansion:

0 ≃ mu

[

F ′
s(x)+

mδx
2

F ′′
s (x)

]

+(1−u)

[

−F ′
s(x)+

δx
2

F ′′
s (x)

]

(3.19)

≃ (mu+u−1)F ′
s(x)+

δx
2

(

m2p+1− p
)

F ′′
s (x) . (3.20)

Reverting back to usingRc instead ofδx and using the previous definitions ofλ andµ
gives

0≃ λ
dFs

dx
+ µ

d2Fs

dx2 . (3.21)

The boundary conditions areFs(0) = 0 andFs(R1) = 1. Solving as withWs, gives:

Fs =
1−e−

λx
µ

1−e
−λR1

µ

(3.22)

To derive the growth rate, Equation 3.3 is used giving,

Gs( j) =
2Fs( j)−1

Ws
. (3.23)

The predictions of this equation and Equations (3.14) and (3.22) are compared with the

predictions of the deterministic model in the next section.
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3.2.5 Comparison of stochastic model and deterministic model

The stochastic and deterministic models differ in the way individuals receive resources.

To understand under which parameter regimes the deterministic model is a good approx-

imation of the stochastic model, I compared the growth ratesof the deterministic model

(Gd) and the stochastic model (Gs). These are calculated using Equation (3.5) and Equa-

tion (3.23) over a variety of parameters. The difference between the two (Gd - Gc) is

plotted in Figure 3.6.
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Figure 3.6: A comparison of predicted growth rates [using Equation (3.3)] for the deter-
ministic and stochastic models. The parameters used wereRc = 0.001,Ru = 0.011 and
R1 = 1.0.

In general the deterministic model is a good approximation of the stochastic model,

however when growth is low there are some differences. WithRc = 0.001 andRu = 0.011,

the point where resource uptake per timestep equals resource expenditure in both models

is whereu = u0 = 0.0909. Whenu ≈ u0 andx < 0.5, there is a lower growth rate for

the stochastic model than the deterministic model. There isa higher growth rate when

x > 0.5 (not shown). This is explained by the fact that, atu = u0, the stochastic model

models an unbiased random walk so an individual’s resource level will eventually reach

one of the thresholds. The stochastic individual’s resource level is more likely to reach

the upper threshold whenx > 0.5 and the lower threshold whenx < 0.5. Alternatively,

the growth rate of the deterministic model is zero whenu = u0, hence the difference in

the plot between the deterministic model and stochastic model. This difference was also

apparent when different values ofR1, Rc andRu were tested.
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Whenx is close to the low threshold (x < 0.01) andu≈ u0 or u > u0, the stochastic

model predicts a lower growth rate than the deterministic model. Similarly, whenx is

close to the upper threshold (x> 0.997) andu≈ u0 or u< u0, the stochastic model predicts

a higher growth rate than the deterministic model (not shown). In the stochastic model,

the value ofx may move in both positive and negative directions. Therefore, when the

value ofx is close to one of the thresholds there is a small likelihood that it will cross

that threshold, even if the general trend is for the value to move in the opposite direction.

Again, this effect was noticeable when different values ofR1, Rc andRu were tested.

The scenario considered in this chapter considers the case where individuals start life

at x = [R1−Rr( j)]/2. With x starting from this point, the stochastic model only differs

significantly from the deterministic model whenu≈ u0 (the point where resource uptake

equals consumption). This case is therefore considered in the next section.

3.2.6 Stochastic model analysis

To analyse the stochastic model, I consider the case where the population is close to

equilibrium and there is little or no population growth, i.e., where resource uptake is

approximately equal to resource consumption. I therefore assume that resource uptake (u)

is directly dependent on population density and there are nowild fluctuations. I define a

resource uptake valueue( j), dependent on the lineage, for which there is no growth. Note

that it is not necessary thatue( j) is equal tou0. The value ofue( j) is also the threshold

for population growth so whenu < ue the population level will decrease. Becauseu is

dependent on population density, it will correspondingly increase. Similarly, whenu> ue

the population level will decrease andu will increase. Whenu = ue there will be no

growth. I envisage a scenario where the value ofu will rapidly converge toue and zero

population growth. To compare two lineages with different values ofue, I consider the

cartoon in Figure 3.7.

The cartoon shows how a lineage which has a low value ofue will invade all lineages

which have higher values ofue. This is because the dominant lineage will grow when the

other lineages are at equilibrium and the other lineages will decline when the dominant

lineage is at equilibrium.

To find the value ofue( j), I solve Equation 3.23 forGs( j) = 0. This givesFs = 1/2.

The Equation (3.22) is unfortunately too hard to solve foru, so the only approach is to

find numerical solutions. This is done by iterating through values ofu until Fs is within a

tolerance (10−7) of 0.5.

As with in Section 3.2.3, I first looked at the case where all individuals are identical
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Figure 3.7: The population with the lower value ofue will dominate. Here lineage A
increases more quickly at first, but the increase in overall population density means that
u will decrease. Whenu reachesue(A) population A starts to decline. As lineage B can
continue growing,u must decrease further until it reachesue(B) where lineage B has a
stable population level but lineage A is declining.

apart from their reproduction threshold (R1). The value ofue was calculated for each

value ofR1 and is plotted in Figure 3.8.

As with the deterministic model [see Equation (3.6)], lineages with higher values of

R1 dominate lineages with lower values ofR1. This is shown by the fact that as the value

of R1 increases in the figure, the resource uptake required for population equilibrium

[ue( j)] decreases. Any lineage that needs a higher resource uptakefor equilibrium will

be dominated by those that can survive on a lower resource uptake. There is a very steep

decrease at low values ofR1 < 1, with the gradient becoming shallower asR1 increases.

Varying the parameters (Rr, Ru andRc) did not change the basic shape of the graph. I also

experimented with very large values ofR1: this indicated that asR1 →∞,(u−u0)→ 0+ve.

To look at the situation where there is a trade-off between the value ofRr( j) andR1( j),

I again consider the caseRr( j) = αR1( j). The value ofue was calculated for values ofR1

andRr and is plotted (with bothue andR1 on logarithmic scales) in Figure 3.9.

As with Figure 3.8, the value of resource uptake required forpopulation equilibrium

(ue) decreases as the reproduction threshold (R1) increases, even when the reproduction

cost (Rr) increases as well. Again there is a very steep decrease at low values ofR1 < 1,

with the gradient becoming shallower asR1 increases. As the value ofα was increased,

the steepness of the descent of the curve increased.

Varying the other parameters (Ru andRc) did not change the basic shape of the graph.
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Figure 3.8: The resource uptake required for population equilibrium (ue) decreases asR1

is increased. The value ofu for which Fs = 1/2 is plotted. Other parameters for Equation
(3.22) wereRr = 0.1, Ru = 0.01 andRc = 0.001.
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Figure 3.9: The resource uptake required for population equilibrium (ue) decreases asR1

is increased andRr = αR1. The value ofα is as shown. The value ofu for whichFs = 1/2
is plotted. Parameters for Equation (3.22) wereRu = 0.01 andRc = 0.001.
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Again, very large values ofR1 indicated that, for all values ofα, asR1 → ∞,(u−u0) →

0+ve.

This result is not consistent with the result from the deterministic model [see Equation

(3.7)]. Here, whenα is constant, increasingR1 is advantageous. In the deterministic

model, whenα is constant, there is no advantage to increasing or decreasingR1.

Finally, I consider the scenario whereRc may vary withR1 andRr is fixed:Rc = βR1,

β is a constant. The value ofue was calculated for each value ofR1 andRc and is plotted

in Figure 3.10.
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Figure 3.10: The resource uptake required for population equilibrium (ue) decreases, then
increases, asR1 is increased andRc = βR1. The value ofu for which Fs = 1/2 is plotted.
Hereβ = 0.01, other parameters for Equation (3.22) wereRu = 0.01 andRr = 0.1.

At first, asR1 is increased, there is a steep decrease in the value of resource uptake

required for population equilibrium (ue). The curve reaches its nadir atR1 = 0.131 and

ue = 0.161. After this point the value of resource uptake starts to increase in a linear

fashion approximately tracing the functionue = R1. The value ofR1 at the nadir of the

curve is plotted for different values ofβ in Figure 3.11.

The figure shows how the optimum reproduction threshold decreases as the ratio of

maintenance cost to reproduction threshold increases. Thevalue atβ = 0 is not present

because withRc = 0 no individuals will reach the lower threshold soFs = 1. All values

of β > 0.1 are also not present because withRc > Ru no individuals will reach the upper

threshold. IncreasingRr or Ru increases the value ofR1. The downward slope of the graph

changes approximately proportionally toRr.
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Figure 3.11: As the ratio of maintenance cost to reproduction threshold increases, the
optimum reproduction threshold decreases. The value ofR1 for the minimum value of
ue [calculated using Equation (3.22), see Figure 3.10] is plotted over several values ofβ .
Other parameters for Equation (3.22) wereRu = 0.01 andRr = 0.1.

3.3 Simulations

The simulations are run for two reasons. First, to see how accurate the mathematical

models are, simulation models were performed of the lifetime of individuals and the ra-

tio of individuals that reach the upper threshold to those that reach the lower threshold.

Second, to validate and extend the mathematical analysis, evolutionary simulations were

performed.

The simulations are based on the stochastic model. In all simulations, each individual

is represented as a resource levelx. The evolution ofx is modelled by an Euler approxi-

mation of Equation (3.1):

x(i, t + τ) = x(i, t)+U(i, t)Ru−Rc( j) . (3.24)

As with the stochastic model, see Section 3.2.4,U(i, t) was modelled by white noise: for

each time segment of lengthδ t, Pr(U = 1) = u and Pr(U = 0) = 1−u. Usually the value

τ was set toδ t, but tests were made for the simulation runs with smaller values ofτ to

ensure no artifacts were introduced due to the size ofτ.
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3.3.1 Testing the accuracy of the deterministic/stochastic models

To test the diffusion approximation made for the stochasticmodel equations [Equations

(3.14) and (3.22)], simulations are run of the individual generation cycle. The individual

generation cycle is the period of time while an individual’sresources move from a starting

positionx0 to either the upper (R1) or lower (R0) threshold. Once an individual has reached

the lower threshold (R0) or the upper threshold (R1), which threshold reached and the

time taken to reach it (the generation time) is recorded. Pseudo-code for the simulations

is presented in Figure 3.12. For each simulation run this is done a number of times,

with different random seeds, and mean values are taken. Thisgives a mean value for the

lifetime W̄sim and a mean value for the birth-to-death ratioF̄sim.

0: Requiret = 0
1: for x0 is 0 to 1 in steps of 0.01

2: x =

∣

∣

∣

∣

∣

∣

x0

...
x0

∣

∣

∣

∣

∣

∣

3: while |x| < 0
4: incrementt
5: for x is each element ofx
6: x = x−Rc

7: with probabilityu, x = x+Ru

8: end for
9: Remove elements ofx that are< 0 or> R1,

and record lifetime (=t) and whether at 0 orR1

10: end while
11: Calculate and record mean lifetime and the ratio that reach R1

12: end for

Figure 3.12: Pseudo-code for the simulations to test the diffusion approximation made for
the stochastic model equations [Equations (3.14) and (3.22)].

To test the accuracy of Equations (3.14) and (3.4), simulations were run 1,000 times

for each different value ofx to generate the mean value for the lifetimēWsim. This is

plotted alongside values ofW given by Equations(3.14) and (3.4) in Figure 3.13.

At low to medium values ofm andRc (Rc < 0.01 orm< 100), Equation (3.14) gives

a good approximation to the simulation (Panels A to C of Figure3.13). The deterministic

model is generally a good approximation except whenu ≈ u0 (Panels C and D). Panel

D shows that neither approximation is good with high values of m. Similarly, neither

approximation is good at higher valuesRc (not shown). At the special case whereu = u0,

the accuracy of Equation (3.16) also depends onmand/orRc. Similarly to Equation (3.14),
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Figure 3.13: A comparison of the lifetime simulation results (signified by circles) with
Equations (3.14) (line) and (3.4) (dots). The valuesδ t = 1 andR1 = 1.0 were used in all
Panels. To model a value ofu where the population is growing, the other values used in
Panel A wereRc = 0.001,m= 50 andu = 0.05. Similarly, to model a value ofu where
the population is declining, the other values used in Panel BwereRc = 0.001, m = 50
andu = 0.01. To model a value ofu close tou0 the values used in Panel C areRc = 0.01,
m= 4, u = 0.21 andR1 = 1.0. Finally, whenm is very large, the values used in Panel
D areRc = 0.01, m = 200, u = 0.0051 andR1 = 1.0. Panel D is cropped meaning the
continuous solution is not clearly shown. It decreases fromW = 4000 atx = 0 toW = 0
atx = 1.
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Equation (3.16) is only accurate at low to medium values ofm< 100 andRc < 0.01 (not

shown).

Simulations were also done to test Equation 3.22. Each simulation was run 1,000

times for each different value ofx to generate the mean value for the birth-to-death ratio

F̄sim. This is plotted alongside the value ofF given by Equation (3.22) in Figure 3.14.
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Figure 3.14: A comparison of simulation predictions (signified by circles) with Equation
(3.22) (line) for the birth-to-death ratio. The values usedin Panels A-D are as in Figure
3.13.

At low to medium values ofm andRc (Rc < 0.01 orm< 100), Equation (3.22) gives

a good approximation to the simulation (Panels A to C of Figure3.14). The deterministic

model (not plotted, butF = 1 in Panels A,C and D, andF = 0 in Panel B) is generally

a good approximation except whenu≈ u0 (Panels C and D). Panel D shows that neither

approximation is good with high values ofm. Similarly, neither approximation is good at

higher values ofRc (not shown).

At this point, the predictions of the deterministic lifetime and reproduction models

seem to be quite inaccurate. However, the results given in Section 3.2.5 indicate that the

growth rate (Gd) predictions are quite accurate. When the lifetime is quite high, the popu-



Chapter 3 67 Delayed reproduction

lation growth is likely to be very small. It is therefore possible that when the deterministic

model is used with the population growth equation, Equation(3.3), that the model is quite

accurate. This is shown by the comparison with the stochastic model in Figure 3.6. I will

compare both the deterministic model and the stochastic model with the results from the

simulations in the next section.

3.3.2 Evolutionary simulations

Given the results found by the two mathematical models, simulations are done to con-

sider trade-offs between reproduction threshold (R1), and reproduction cost (Rr) or cost

of growth/maintenance (Rc).

The evolutionary simulation models are based on the stochastic model. To allow evo-

lution to occur, software agents are assigned a digital genewhich is a floating point num-

ber representing the reproduction (or upper) thresholdR1(i) of an agenti. As with the

mathematical models, when the agent’s resource level increases above its reproduction

thresholdR1(i) then it will reproduce, paying the cost of reproductionRr(i), and then

share the remainder of its resources with an offspring. A copy of the digital gene is

passed on to the offspring. There is a probability of 0.1 of a mutation being applied to the

offspring’s gene after reproduction: point mutations are made to the value ofR1(i) over a

Gaussian distribution with standard deviation of 1%.

Simulations were run under two main scenarios. Scenario (i)models a population that

is close to its equilibrium level. This is achieved by givinga static input of resources to

the system: the availability of resources per individual therefore depends on population

density. To model resource fluctuations in scenario (ii), the probability for each individ-

ual to receive resources each timestep is modelled by a system variable. This variable

switches between two levels (higher and lower) when the population level passes outside

one of the two thresholds (respectively, the lower and upperpopulation thresholds).

Tests were done with various upper and lower population thresholds to make sure they

are effective: the thresholds were too close to each other when they were within 33% of

the population size, this had the same effect of reducing thefluctuation coefficient. The

upper threshold was therefore set to 400 and the lower threshold was set to 200 in all

simulations.

In scenario (i), the availability of resources to individuals is dependent on population

density, meaning that the population level will quickly converge to a static equilibrium

level. Just as with Section 3.2.6, when the population is above the equilibrium level there

will not be enough resources in the system to support that number of individuals – and
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the population will decrease. Alternatively, when the population is below the equilibrium

there will be a surplus of resources and the population will increase. Based loosely on

the chemostat, a number of resource units (normally 50, eachof valueRu) are randomly

scattered on a spatial grid (of 50×50 squares) each timestep. Agents located on the grid

move to a random new cell each turn and consume a resource unitif they encounter any

on the square they are on2. Pseudo-code for the simulation can be seen in Figure 3.15.

0: Define agent as having resourcesx and reproduction thresholdR1

1: Initialisex andR1 for new members of the populationagents
2: for t = 1 tosimulationtime
3: Scatter new resources on the grid
4: Move each agent to a random grid-square
5: for each agent (picked in random order) inagents
6: x = x−Rc

7: if there are resources on the grid-square
8: x = x+Ru

9: remove one resource from the grid-square
10: end if
11: if x < 0, remove agent from simulation
12: if x > R1

13: x = x−Rr (pay the cost of reproduction)
14: Create a new agent (the offspring)
15: Share the parents resources (x) evenly between the two agents
16: Mutate the new agent’s value ofR1

17: end if
18: end for
19: end for

Figure 3.15: Pseudo-code for the evolutionary simulationsof scenario (i) where availabil-
ity of resources depends on population density.

In scenario (ii) the agents receive discrete resources [of value Ru] with probability

u. The value ofu depends on the state of the system, which fluctuates between two

states (abundant, usingu= u+, and sparse, usingu= u−), and on theresource fluctuation

coefficientη . When the system is in the abundant state,u+ = ueη . When the system is

in the sparse state,u− = ue/η . The value ofue was chosen for each simulation based

on the results from Section 3.2.6. The system switches between its two states depending

on whether the population level is above an upper threshold or below a lower threshold.

2The results presented by Bryden (2005b) show that agents receive resources with between-resource
intervals on a geometric distribution when they move to random grid squares each timestep. This is equiv-
alent to a population which receives resources with a probability proportional to the ratio of the population
density and the resources in the environment
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When the system in in the sparse state and the population goes below the lower threshold,

the system switches to the abundant state. Conversely, when the system is in the abundant

state and the population goes above the upper threshold, thesystem switches to the sparse

state. Pseudo-code for the simulation can be seen in Figure 3.16.

0: Define agent as having resourcesx and reproduction thresholdR1

1: Initialisex andR1 for new members of the populationagents
2: season= high
3: for t = 1 tosimulationtime
4: if |agents| > upper threshold, season= low
5: if |agents| < lower threshold, season= high
6: for each agent (picked in random order) inagents
7: x = x−Rc

8: if season= high
9: with probabilityu+, x = x+Ru

10: end if
11: if season= low
12: with probabilityu−, x = x+Ru

13: end if
14: if x < 0, remove agent from simulation
15: if x > R1

16: x = x−Rr (pay the cost of reproduction)
17: Create a new agent (the offspring)
18: Share the parents resources (x) evenly between the two agents
19: Mutate the new agent’s value ofR1

20: end if
21: end for
22: end for

Figure 3.16: Pseudo-code for the evolutionary simulationsof scenario (i) where availabil-
ity of resources depends on population density.

3.3.2.1 Varying reproduction cost

The two mathematical models make predictions about the trade-off between reproduction

threshold (R1) and reproduction cost (Rr). The deterministic model predicts that, if the

population level fluctuates about an equilibrium, then an individual with a greater repro-

duction threshold will dominate as long as the relative increase in reproduction threshold

is greater than the corresponding relative increase in reproduction cost [see Equation (3.7)

and accompanying text]. Alternatively, when population levels are static, the stochastic

model predicts that individuals with a greater reproduction threshold will dominate even
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when the relative increase in reproduction threshold is equal to the corresponding relative

increase in reproduction cost.

To test these two predictions, evolutionary simulations were run with the cost of repro-

duction set to be a proportion of the reproduction threshold(Rr = αR1) – hereα is fixed.

All individuals started withR1 = 7.3 Simulations were run under static and fluctuating

conditions [scenarios (i) and (ii)] for 108 timesteps. One simulation was run for each set

of parameters. Time traces for simulations run withη = 1.2 are shown in Figure 3.17
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Figure 3.17: The results of evolutionary simulations run whereR1 is freely allowed to
evolve butRr = αR1 are plotted for different values ofα (shown on the graph). Other
parameters were:Rc = 0.001 andRu = 0.01.

The figure shows that the value ofR1 increases approximately linearly over time.

They were still rising at the end of the simulations. One simulation was run for each set

of parameters. For all simulation runs, the final value ofR1 (at t = 108) was recorded and

the results are plotted in Figure 3.18.

The figure shows how greater values ofR1 will dominate over lesser values ofR1 for

all values ofα. As with those values shown in Figure 3.17, the mean value ofR1 was

rising at the end of the simulation in all cases. The differences observed in the figure

between the different values ofη are due to differences in the rate of increase ofR1. As

the value ofη increases, so does the rate of increase ofR1.

I compare the results in this figure with those produced by themathematical treatment.

3The value ofR1 was set at 7 because, below this value, some populations wereseen to show negative
growth at the value ofu+ – i.e.,ue > u0η
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Figure 3.18: Greater population fluctuations mean a greaterpressure to increase the re-
production threshold (R1). The results of evolutionary simulations run whereR1 is freely
allowed to evolve butRr = αR1 are plotted for different values ofα and different fluctu-
ation coefficients. The two missing points (η = 1.5,α = 0.7 andη = 1.05,α = 0.9) are
due to computer failure. Other parameters were:Rc = 0.001 andRu = 0.01.
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The stochastic model (see Figure 3.9) predicts that greatervalues ofα will increase the

distance betweenue values for two corresponding values ofR1. This indicates that at

greater values ofα, R1 will increase at a greater rate. The figure shows that, at lower

amplitudes of fluctuation, greater values ofα do in fact mean that there is a higher rate

of increase ofR1. Alternatively, at higher amplitudes of fluctuation, greater values ofα
mean a lower rate of increase ofR1.

3.3.2.2 Varying the cost of maintenance

The two mathematical models also make predictions about theimpact of varying the cost

of maintenance. The deterministic model predicts that a lineage that has an increased cost

of maintenance when it increases its value ofR1 needs a corresponding increase in the

amplitude of resource fluctuations to be viable. To explore this, simulation models were

performed as in the previous section, however this time the cost of reproduction was fixed

and the cost of maintenance was variable.

Two models for the cost of maintenance were considered. First the cost of main-

tenance for each individual was dependent on the reproduction threshold[Rc(i) = Rc +

βR1(i)]. 4 The second model considers the case where the cost of maintenance is depen-

dent on the number of resources an individual has:Rc(i,x) = Rc +βx(i).

Simulations were run for both models under static and fluctuating conditions [scenar-

ios (i) and (ii)] for 108 timesteps. One simulation was run for each set of parameters.

Considering the first model, whereRc is static throughout the lives of individuals, time

traces are plotted for simulations run withη = 1.5 in Figure 3.19.

The figure shows that there is a a stable equilibrium positionfor R1. This is dependent

on the value ofβ : for greater values ofβ the value ofR1 is lower. In the cases shown, trace

of R1 takes approximately 2×107 timesteps to reach its equilibrium value. Simulations

were also run forη = 1.05 and with no fluctuations [scenario (i)] and the mean value of

R1 was calculated for all individuals after 4×107 timesteps. One simulation was run for

each set of parameters. The results are plotted in Figure 3.20.

The figure shows that, as predicted by the stochastic model, the equilibrium value of

R1 does indeed decrease as the value ofβ is increased. The deterministic model also indi-

cates that large fluctuations in resource availability are necessary for invasion of lineages

with increased values ofR1 andRc.

Simulations were also run of the second model forRc(i); again under static and fluc-

tuating conditions. The time traces were similar to those show in Figure 3.19, with the

4When the simpler case ofRc(i) = βR1(i) was considered, this led to very low values ofR1 which meant
that population extinction events could easily occur without very large populations.
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Figure 3.19: The results of evolutionary simulations run whereR1 is freely allowed to
evolve butRc(i) = Rc + βR1 are plotted for different values ofβ (shown on the graph).
Other parameters were:Rc = 0.001 andRu = 0.01.

value ofR1 reaching an equilibrium value after approximately 4×107 timesteps. Again,

the mean value ofR1 was calculated for all individuals after 4×107 timesteps. One sim-

ulation was run for each set of parameters. The results are plotted in Figure 3.21

The figure shows how the increased amplitude of fluctuation means an increased level

of the reproduction thresholdR1. In all cases, asβ is increased, so the level ofR1 de-

creases. This is consistent with the results shown in Figure3.20 – where the value ofR1

also converges on a stable value.

3.4 Discussion

This chapter describes the application of a physiological approach to modelling growth

rates of individuals with different reproduction strategies under density dependence. The

results show the significance of different physiological parameters – the resources accu-

mulated at reproduction, the up-front cost of reproductionand the cost of maintenance –

to delayed reproduction. These results outline a differentmechanism for delayed repro-

duction than that presented by Tuljapurkar (1990a) which considers dormant immature

individuals. I also show that delayed reproduction can occur under density dependent

conditions, even when there are minimal extrinsic fluctuations.

A simple picture of the model presented is that individuals that wait and accumulate
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Figure 3.20: The amplitude of resource fluctuations effectsthe equilibrium value ofR1

whenRc(i) = Rc +βR1. Other parameters were:Rc = 0.001 andRu = 0.01.
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Figure 3.21: The amplitude of resource fluctuations effectsthe equilibrium value ofR1

whenRc(i,x) = Rc +βx. Other parameters were:Rc = 0.001 andRu = 0.01.
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more resources, before reproducing, can have an advantage when compared with indi-

viduals that reproduce more quickly with less accumulated resources. Naively, the basic

reason behind this is that even though the fast reproducing subpopulation is dominant

during a growth phase, the slow reproducing subpopulation is less vulnerable during the

corresponding decline phase – see Figure 3.1. That said, accumulating more resources

does not come for free and slower reproduction will be at a cost. The models predict that

any advantage of slower reproduction can potentially be traded off against extra costs of

reproduction and extra costs of maintenance which are likely to be incurred.

The work is also relevant to the challenge set down by Heino and Kaitala (1999)

for modelling resource allocation between growth and reproduction under environmental

feedback. The evolutionary models presented here considermutations that change the

number of resources at maturity – and thus the number of resources allocated to growth.

The number of resources allocated to offspring is set at halfof this for this model. In

these terms, I then consider the optimal allocation of resources to growth under vary-

ing environmental conditions. The results concerning the trade-offs between the cost of

reproduction and the costs of maintenance apply. The model may be extended to consid-

ering conditions where allocation of resources to offspring is variable (see Chapter 6 for

an example of such an extension).

The discussion continues with an overview of the model and its results. The results,

and the theorem, are then compared with the previous theories on delayed reproduction

presented in Section 3.1.1 which use the geometric mean to predict the long term growth

rate. The simplicity of the model allows me to consider the significance of the results in

light of the experimental results discussed in Section 3.1.2. I then discuss the importance

of the results in light of the literature onr- andK- selection and group selection. Finally

I look at possible future directions.

3.4.1 Model overview

The two modelling approaches presented in this chapter (mathematical modelling and

computer simulation modelling) contribute in different ways toward the question pre-

sented in Section 3.1.3. The mathematical model gives clearinsights into the questions

posed. Then, the approximations of the mathematical modelsare confirmed in the sim-

ulation models. However, since assumptions of the mathematical models are relaxed in

the simulation models, new results are presented. These in turn raise questions about the

mathematical approach and the insights found through that method. This section therefore

comprises of a technical discussion of the merits of the results generated by the models,
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and their relationship to each other and the topics presented in Section 3.1.3.

The insights of the mathematical model are mainly derived through analysis of the

two growth equations: Equations (3.5) and (3.23). Simple analysis of the deterministic

growth equation (Section 3.2.3) shows that while the growthrate of a fast reproducing

individual is improved, it is also more vulnerable during declining periods. The applica-

tion of Theorem 2 in Section 3.2.3 formalises that analysis and generates a simple rule

which shows how the ratio between an individual’s reproduction threshold (R1) and its

cost of reproduction (Rr) must decrease for there to be an advantage in increasing the

reproduction threshold.

Concerning the importance of fluctuating resources, the mathematical models also

give two insights. First, a simple insight can be seen by looking at the effects of an

increase in the cost of maintenance (see Figure 3.3). At lower amplitudes of resource

fluctuation the faster reproduction model is clearly dominant; but as the amplitude of fluc-

tuations increases, the ratio between the growth to declinerates of the slower population

becomes greater than that of the faster population.

Considering the stochastic model, this considers a case where individuals receive re-

sources intermittently in discrete amounts. A comparison of the two models shows that

the deterministic model has a good approximation of the growth rate of the stochastic

model. This is a little surprising given the comparisons presented in Figures 3.13 and

3.14 where they are also compared with simulations. In fact,both the stochastic and the

deterministic models give accurate approximations of simulations of the stochastic model

under similar parameter ranges forRc, m, R1 andRr. The deterministic model can be a

good approximation of the stochastic model, however, when growth is small, there are

some important differences (see Figure 3.6). These differences are important when the

population is near equilibrium.

The stochastic model considers the case where the population is at equilibrium in

more detail. The analysis broadly agrees with that of the deterministic model, however in

this model the ratio between the reproduction threshold (R1) and the cost of reproduction

(Rr) does not need to decrease for there to be an advantage in increasing the reproduction

threshold when the ration ofR1 to Rc is considered. Analysis, shown in Figure 3.11, shows

howR1 will move to an optimum value which is dependent on its ratio to the maintenance

cost.

The evolutionary simulation models produce similar results to the predictions of the

stochastic and deterministic models. When considering the cost of reproduction, the sim-

ulations agree with the stochastic model – the value ofR1 increases even when its ratio to

Rr stays the same (see Figure 3.18). One interesting point is that at higher amplitudes of
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resource fluctuation, greater values ofα mean that the reproduction threshold increases

more slowly in the simulations. Conversely, at lower amplitudes of resource fluctuation,

greater values ofα mean that the reproduction threshold increases more quickly.

The evolutionary simulation models also look at a scenario not considered in the math-

ematical treatment. This is where the cost of maintenance depends on the number of re-

sources an individual has. The simulations (see Figure 3.21) show that there is an optimal

value of the reproduction threshold. This value increases when the amplitude of resource

fluctuations increases.

The simulation modelling approach relaxes some of the assumptions made in the

mathematical approach. The main assumption relaxed is that, in the simulation mod-

els, individuals can experience changes in resource availability during their lifetimes.

The mathematical models assume that all individuals start their lives at resource level

x = (R1−Rr)/2. In the simulations, individuals that survive declining phases will start

their growth phase from low resource levels.

The other assumption (taken for Equation 3.3) is that, givena number of resources

x at the start, the mean lifetime of individuals that grow to reproduce is the same as

those that die. This assumption is used to generate growth rates for both the stochastic

and deterministic models. The results of the deterministicmodel are qualitatively similar

to those produced by the simulations. The main difference isthat delayed reproduction

is not predicted when theRr( j) = αR1( j), however the simulations do show delayed

reproduction in all the cases shown by the deterministic model. This indicates that the

deterministic model is still valid as an approximation and is therefore instructive as an

explanation for the more general stochastic and computer simulation modelling.

3.4.2 Comparison with geometric mean predictions

The analysis of the deterministic model is done using Theorem 2 from Appendix A. This

theorem states that the ratio of growth to death rates can be used to predict which lineage

will dominate. This contrasts with the geometric mean theory which multiplies the rates

together.

What is important about Theorem 2 is that it models a density dependent population.

When there is a mixed population of two competing phenotypes under density dependence

but in fluctuating environments, one will grow relative to the other. To predict which will

dominate it is necessary to calculate the growth rates. To dothis however, it is necessary

to know the times spent under each growth rate (TA andTB). Instead, by using Theorem 2,

these may be ignored as it shows the relative growth rates areimportant. However this is
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only shown to be valid when the growth rates are linear functions ofu (see Equation A.1).

3.4.3 Comparison with experimental results

The important difference between the results of the models presented here and the exper-

imental results discussed in Section 3.1.2 is the mortalityof the individuals. The bacteria

analysed by Vasi et al. (1994) and Velicer and Lenski (1999) were not selected under

conditions in which they would demonstrate significant population decline. Consider-

ing Figure 3.1, this negligible mortality rate would imply that the bacteria existed in the

regime to the right of the figure (u≥ u0), i.e., they are either in a state of growth or at least

a state of equilibrium. The prediction of my model is that a faster growth rate will always

dominate under such a regime – in line with the experimental results.

Focusing on the work by Velicer and Lenski (1999), the bacteria in the two experi-

ments were selected under either slow or fast growth conditions. They were tested against

ancestors to ascertain whether adaptation to one conditionhampered performance in the

other condition. According to the model presented here, allthe bacteria were selected

under conditions which would promote faster growth. It is therefore unsurprising that

individuals adapted to one condition were not at a disadvantage in the other condition –

in concordance with the results presented by Velicer and Lenski (1999).

In the other set of experiments, bacteria were exposed to fluctuations between fast

growth conditions and conditions with no new resources (zero medium concentration)

(Vasi et al. 1994). As the population was effectively only stationary during the periods of

zero medium concentration, this experiment selected for individuals with a faster growth

rate. One interesting point to consider is the fact that the ancestral bacteria were still

growing during the periods of zero medium concentration. After selection, the numbers

of bacteria decreased in size. As simple analysis of Equation (3.5) shows, decreasing

the threshold of reproductionR1 will lead to an increased growth rate (during growth

conditions,u> u0) but this is also accompanied by a corresponding increase inthe decline

rate (during declining conditionsu < u0). This would correspond to the results presented

by Vasi et al. (1994). The indication from this is that the regime the ancestral bacteria are

adapted to was harsher than the regime in the experiment.

Unfortunately, it is not possible to compare experimental results from either work

(Vasi et al. 1994, Velicer and Lenski 1999) with the prediction of Theorem 2 from Ap-

pendix A. The theorem requires that the population number must start at some value and

eventually return at some point to the same value. In both of the experiments, the bacterial

populations essentially grew exponentially during the experiments, never returning to a
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previous equilibrium point. Any design of an experiment to explicitly test the model pre-

sented here should take that into account. This aspect is also important when the model

is compared with traditional theory ofr- andK- selection in the next subsection.

3.4.4 r- and K- selection

On the face of it, the model presented here has much in common with the dichotomy

presented forr/K selection. There is a comparison between fast and slow growing pop-

ulations in both approaches. However there are two reasons why the approach here is

different fromr/K selection: I discuss these in the following paragraphs.

First, I consider the issue of density dependent growth. Inr/K selection theory,

fast-growingr-selected organisms experience density-independent growth while slow-

growing K- selected organisms experience density-dependent growth. The model pre-

sented here acknowledges that density-independent growthwill yield fast-growing organ-

isms. However, the simulations and analysis also predict that environmental variability is

important – low variability leads to fast growth and high variability leads to slow growth

(see Figures 3.18, 3.20 and 3.21). The model predicts that populations must experience

periods of decline before slow-growth becomes viable. Thisis in contrast tor/K selection

theory which suggests that variable environments, especially with catastrophic mortality,

can lead to fast growth (Pianka 1970).

Second, the model presented here assumes that offspring areof fixed size. Each par-

ent, after paying a cost of reproduction, shares it resources equally with its offspring. No

consideration is given here as to how much or how little a parent should contribute to each

offspring. This is an important consideration forr/K selection theory withr-selected or-

ganisms having many small offspring againstK-selected organisms having few numbers

of large offspring. Further analysis would be needed to see if the amount a parent con-

tributes to its offspring is important in the model presented here.

3.4.5 Group selection

The primary purpose of the toy-model presented in this chapter is to consider why an

individual might choose a reproductive strategy of lower fecundity. This issue was an

important one in the group selection literature discussed in Section 3.1. It was argued by

Williams that individuals would not reduce their fitness forthe benefit of the group. This,

however, does not consider the case where the existence of the group is the reason why

an individual may reproduce more slowly.
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When a population grows it will start to compete within itselffor resources. Such

competition within a population will mean that it will eventually stop growing and may

either equilibrate or start to decline. In the case of a population at equilibrium, the deter-

ministic model and simulations have shown that the best strategy (dependent on the costs

of reproduction and maintenance) can be to reproduce more slowly. When populations

actually start to fluctuate around an equilibrium, the simulations show that these effects

can be more pronounced.

So, in the absence of any other mechanisms for control of population size, population

density will eventually become so great that resources willnot match demand. Therefore,

in this case, the existence of the group explains why individuals reproduce more slowly.

Of course, it is possible that an individual may develop someway of predicting the fu-

ture and adjust its reproductive strategy accordingly. In the case of microbial organisms,

this seems unlikely. It may be possible that individuals maybe able to sense population

density through monitoring pheromone levels – this would bean interesting question to

follow up.

In fact the idea that population pressure is important is very close to Williams’ analysis

of clutches of birds (Williams 1966a). Here a bird that reproduces too quickly generates

too many fledglings which put pressure on its limited resource providing capabilities.

There is a key difference here, Williams presents this adaptation as being the optimal

way an individual can maximise its successful offspring, regardless of the future environ-

ment the offspring find themselves in. The approach presented in this chapter compares

lineages against one another, arguing that since an individual’s lineage must eventually

compete against itself for resources, the slow reproducinglineage may be optimal under

the right conditions.



Chapter 4

Modelling collective reproduction

4.1 Introduction

One of the main threads in Chapter 1 is concerned with the rise in complexity of the in-

dividual. One of the motivations of this chapter is therefore the search for processes or

mechanisms that can increase the complexity of an individual. The hierarchical nature

(see Chapter 1) of biological organisms is a strong inspiration for the search for models

of increasing complexity. The reasoning presented by Maynard Smith and Szathḿary is

that this hierarchical system is a result of multiple transitions from units that reproduce on

their own to sub-units that only reproduce as part of a super-unit (Szathḿary and Maynard

Smith 1995). As outlined in Chapter 1, I am searching for an explanation of why an in-

dividual might contribute to a higher reproductive processin this thesis. Notwithstanding

the value to biology of such an explanatory model, such a model is likely to have value

within the ALife field through providing insights into artificial and open-ended evolution

(Bedau, Snyder and Packard. 1998, Bedau et al. 2000).

The results from Chapter 3 have shown that individuals may achieve a long term

gain from reproducing more slowly. Here I consider whether there is any long term gain

from sharing reproductive effort – contributing to a higherreproductive process (see Sec-

tion 1.2). Here I look at collective reproduction where an individual shares resources, and

genes, with another or others to generate a new offspring. Each parent has an equal stake

in the offspring’s genes.

In order to understand why an individual may share its resources with others, the stan-

dard approach is to consider social evolution (see Section 1.3) – especially the evolution

of altruism (Section 1.3.1). On the face of it, altruism looks like it may be a good ex-

planation as to why an individual may invest in a higher reproductive process. It may

explain why an individual would take a reduction in their ownreproductive success so
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that the reproductive success of the group may increase. It has long been rejected that an

individual may reduce its fitness (lifetime reproductive success) to benefit its local group

(Williams 1966a). However, it has been shown how an individual may take a reduction

in personal fitness to benefit related organisms (Hamilton 1964, Frank 1998) throughkin

selection.

The kin selection perspective has shown some value in explaining the maintenance

of eusociality (social insects), however it is not clear that it (or altruism in general) ex-

plains the origins of this transition (Maynard Smith and Szathmáry 1995, Wilson and

Hölldobler 2005). Indeed one problem with kin selection is that its benefits can be negated

by increased local competition for food (West et al. 2002). One question, considered here,

is therefore whether altruism actually is crucial for explaining the origins of collective re-

production. It may be possible to find explanations that are mutualistic: i.e., the outcome

for both the individual and the group is beneficial (see Table1.2).

A simple biological example of collective reproduction is sex. On the face of it, using

sex as an example of a two parent collective reproductive effort, it looks unlikely that a

mutualistic explanation may be found: there is a cost of sex (Maynard Smith 1976, Bell

1982). Put simply, the cost of sex means that individuals which reproduce sexually will

grow at a slower rate than those that reproduce individually. Rather than directly consid-

ering Maynard Smith’s model of the cost of sex, I illustrate the problem by reformulating

it within the abstract terms used in this chapter. Here, I make a simple comparison of

the growth rates of an individual strategy and a collective reproduction strategy (with two

parents) based on the way resources are allocated to offspring, as shown in Figure 4.1.

Since individuals with the collective strategy share contributions to offspring, they

contribute less than those with the individual strategy. This means that the average level

of resources per individual in the collectively reproducing population will be higher than

those in the individually reproducing population. For a fixed input of resources to the sys-

tem, this means that the collectively reproducing population will grow more slowly than

the individually reproducing population. If we look at cases where there are increasingly

larger numbers of parents, then the same reasoning can be used to show that the growth

rate will be increasingly slower (e.g., when there are 3 parents, this population will have

an average resource level of 3R1/4 after reproduction).

Given this cost of collective reproduction, it seems unlikely that there is any advantage

to collective reproduction. However, this analysis only looks at the growth phase. Any

population that grows will eventually exhaust the resources in its environment and the

population will either decline or reach a static level. Because collectively reproducing

individuals have, on average, greater resources after reproduction they are less vulnerable
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Before
reproduction

After
reproduction

Individual reproduction Collective reproduction

Figure 4.1: Individual reproducers will grow more quickly than collective reproducers.
Individuals are represented as resource containers of sizeR1, with the level of resources
represented by how full the containers are. They are shown just before, and immediately
after reproduction. Each new individual from the sexually reproducing population will
have an average resource level of 2R1/3 so, for the same resource input, this population
will grow more slowly than the individually reproduction population which starts with an
average resource level ofR1/2.

during times of population decline.

4.1.1 Scope of the model

To approach modelling collective reproduction, I take an abstract perspective in order

to produce a toy model. This approach, based on the common factors of the subunits

identified above, simplifies the world to resources, individuals and individual resource

allocation strategies. Individuals accumulate resources, expend resources, make copies

of themselves and share resources with those copies. Given that individuals live within

an environment with factors outside of their control, I assume that they have little control

over the way they accumulate or expend resources. The space of strategies that they may

adopt is therefore concerned with their reproduction strategy.

The model simply approaches the question as to whether it is abetter strategy, for the

individual, to reproduce collectively or to reproduce clonally. By modelling populations

of individuals under density dependence, it questions whether the strategy of sharing re-

sources with other reproducing individuals may dominate the strategy of producing an

offspring alone. In context of the introduction, this wouldprovide an explanation for

collective reproduction that is mutualistic, not altruistic. In the next section I present the

model and its results.
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4.2 The model

Two modelling approaches are taken in this section. After presenting details common to

both approaches, I outline a mathematical model and its predictions. The predictions of

the mathematical model are tested by simulation models in Section 4.2.2.

Here each individuali is modelled as a resource levelx(i, t) by the equation,

dx
dt

= U(i, t)Ru−Rc , (4.1)

whereRu and Rc [0 < Rc < Ru] are positive constants (Ru is the maximum resources

available for uptake andRc is the cost of growth/maintenance .Resource uptake(the level

of resources received from the environment) is variable andmodelled byu(t)∈ [0,1]. The

variableu here is used as a surrogate for competition: population fluctuations will lead to

increasing and declining phases, modelled by changes in thebehaviour ofu. Equation 4.1

can thus be rewritten:
dx
dt

= uRu−Rc , (4.2)

If an individual’s resource level decreases below the lowerthresholdR0 (fixed for all

individuals) it will die. Without losing generality,R0 is set to 0 as anad hocsimplification.

If an individual’s resource level increases above the reproduction threshold (R1) it will

reproduce. All individuals pay a cost of reproductionRr(n) which is dependent on the

number of parentsn.

4.2.1 Mathematical treatment

The mathematical treatment assumes thatu is static over the lifetime of individuals. The

value ofu wheredx/dt = 0 is defined asu0: u0 = Rc/Ru. During reproduction all parents

pay the cost of reproductionRr(n). After this the remaining resources are shared equally

between thenparents and the offspring. All individuals therefore starttheir lives, just after

reproduction, withx = n[R1−Rr(n)]/(n+ 1). Two cases foru can now be considered:

u > u0 andu < u0. In the first case the individual resource level will increase until it

reaches the upper thresholdR1, taking an expected timeW where,

Wu>u0 =

[

R1−
n(R1−Rr(n))

n+1

]

dt
dx

=
[R1 +nRr(n)]

(n+1)

dt
dx

. (4.3)
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In the second case individual resources will decrease untilit reaches the lower threshold

at resource levelR0. The expected timeW is,

Wu<u0 =
n[R1−Rr(n)]

(n+1)

dt
dx

. (4.4)

In both cases, asu→ u0,W → ∞.

The expected population growth rate of a homogeneous population of individuals can

be estimated for the two regimes (u > u0 andu < u0). The expected population growth

rate per individualG is equal to the reciprocal of the time taken for resources to grow

for reproduction during population growth (1/Wu>u0) and reciprocal of the time taken for

resources to decline for death during population decline (1/Wu<u0), or:

G =











































(n+1)

n[R1 +nRr(n)]

dx
dt

,u > u0

0 ,u = u0

(n+1)

n[R1−Rr(n)]

dx
dt

,u < u0 .

substituting Equation (4.2) gives:

G =











































(n+1)(uRu−Rc)

n(R1 +nRr( j))
,u > u0

0 ,u = u0

(n+1)(uRu−Rc)

n(R1−Rr( j))
,u < u0 .

(4.5)

The growth rate (G) is plotted against different values ofu for one [n = 1, Rr(1) = 0.1]

and two [n = 2, Rr(2) = 0.05] parents in Figure 4.2. In this case, the two parents share

the cost of reproduction born by the single parent – i.e., thecost per offspring is the same.

The figure shows that the sexually reproducing population does in fact grow more

slowly during population growth (u > u0). This is in line with the reasoning presented in

Section 4.1 and Figure 4.1. What is also evident from the figureis that the decline rate

of the sexually reproducing population is lower in magnitude than that of the individually

reproducing population. Furthermore, the two graphs diverge more asu gets further from

u0 indicating that fluctuations may be significant; however theratio between the two plots
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Figure 4.2: Growth rates of individually and sexually reproducing populations. The pa-
rameters used were:R1 = 1.0, Rr(1) = 0.1, Rr(2) = 0.05,Rc = 0.001, andRu = 0.01.

stays constant. Indeed, in this example, the growth rate of the sexually reproducing pop-

ulation is 0.75 that of the individually reproducing population. However, the decline rate

of the sexually reproducing population is only 0.71 that of the individually reproducing

population. Interestingly, the sexually reproducing population has a greater advantage

during decline periods than the individual strategy has during growth periods.

This analysis indicates that, similarly to the case in Section 3.2.3, the ratio of the slope

in the growth region (u > u0) to the slope in the decline region (u < u0) will determine

which lineage will dominate. This is given by (takingG′ = dG/du):

Ψ(n) =
G′

u>u0

G′
u<u0

=
R1−Rr(n)

R1 +nRr(n)
. (4.6)

Assuming that the growth equation [Equation (4.5)] is a goodapproximation, Theorem 2

(in Appendix A) shows that, if there are no trends in overall population, then the popula-

tion with a higher value ofΨ will dominate one with a lower value ofΨ. In this model,

the behaviour ofΨ depends on the wayRr(n) is determined.

I look at three scenarios for determiningRr(n). These consider the offspring cost

which is defined as the total reproduction cost spent on each offspring (nRr). The scenarios

are:

(i). The total cost of each offspring is not affected by the number of parents:Rr(n) =
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Rr(1)/n. In this case, Equation (4.6) is increasing (the denominator is constant and

the numerator increases).

(ii). The total cost of each offspring increases linearly with each extra parent:Rr(n) =

Rr(1)[1+c(n−1)]/n (c is a constant).

(iii). In this scenario,Ψ is constant – i.e., there is no advantage or disadvantage to re-

producing with more parents. Simple manipulation of Equation (4.6) shows that if

∀n : Ψ(n) = Ψ(1) then,

Rr(n) =
2Rr(1)R1

R1 +Rr(1)+n[R1−Rr(1)]
. (4.7)

For any multi-parent strategy to dominate individual reproduction, the cost of re-

production must be below this value. That is, ifRr(n) is above this value, then

Ψ(n) < Ψ(1), if Rr(n) is below this value thenΨ(n) > Ψ(1).

The offspring cost is plotted in panel A of Figure 4.3 for different numbers of par-

ents in the three cases. Given the corresponding reproduction costs associated with these

offspring costs, panel B shows the value ofΨ calculated by Equation (4.6).

As expected, the plot in Panel B of the figure shows howΨ increases when the off-

spring cost is not dependent on the number of parents. The difference in values ofΨ is

relatively high when the number of parents is low – the largest increase being the dif-

ference between individual and sexual reproduction. When the offspring cost increases

linearly with the number of parents,Ψ reaches a maximum at 2 parents (sexual reproduc-

tion) and declines thereafter. Considering Panel A of the figure, this indicates that, as the

number of parents increases, the total cost of reproductionspent (the cost per offspring)

may increase. Again, this increases sharply as the number ofparents increase from 1

to about 5 and then levels out. For all graphs, changes in parametersR1 andRr did not

change the shape of the graphs significantly, however, as theratio (R1/Rr) decreases, the

values generated by Equation (4.7) increase (not shown).

4.2.2 Simulation models

The predictions of the mathematical treatment in the previous section indicate two things

that may be tested with simulation models. Firstly whether the value ofΨ is a good pre-

dictor for which strategy is optimal and secondly that fluctuations may also be significant.

Simulations are done with agents modelled as resource levels, based on Equation

(4.1). At each timestep an agent pays a growth/maintenance costRc. When its resources
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Figure 4.3: The behaviour of the growth/decline ratio changes with different functions
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of Rr(n) and panel B shows the corresponding predicted growth to decline ratio. The
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are below zero, an agent will die. Each agent has a reproduction strategy which is defined

by the number of parents (from 1 to 10) the agent will reproduce with. Those with the

same reproduction strategy will reproduce when enough agents (depending on the number

of parents defined by their common strategy) have resource levels that are aboveR1 (re-

source levels may go aboveR1 without penalty). Each parent pays a cost of reproduction

Rr(n) and all parents share their energy with the new offspring. Agents were initialised

with a random level of resources and a random reproduction strategy. The reproduction

strategy was fixed for all agents – there was no mutation in thesimulations.

The simulation models are essentially non-spatial, with individuals located on a grid

but moving to a random new cell each timestep.1 Agents consume a resource unit if they

encounter any on the square they are on. A number of resource units, each of valueRu

are randomly scattered on a spatial grid (of 50×50 squares) each timestep. The number

of units is either static (set to 200) throughout the simulation, or fluctuated between two

values (100 and 200) changing every 1,000 timesteps. Pseudo-code for the simulation can

be seen in Figure 4.4.

The simulations were run with the three scenarios for determining Rr(n) presented in

Section 4.2.1. All scenarios were tested with a static resource input to the system and

fluctuating resources. Each simulation was run ten times, with each run initialised with

a different random seed. After 1,000,000 timesteps I recorded the number of agents with

each reproduction strategy and this was averaged over all the simulations. The results are

plotted in Figure 4.5.

The figure shows that, when the offspring cost does not increase with the number of

parents, reproduction strategies with higher numbers of parents will dominate. In fact,

strategies with less than 7 parents are completely dominated in this scenario with static

resource input. When resource input fluctuated similar results were seen (not shown).

When the cost per offspring increases linearly, the sexual strategy is dominant over the

other strategies (see panel B) – as predicted by the shape ofΨ in Figure 4.3 (panel B,

squares). Again, the results were similar with and without fluctuating resource input.

When the cost per offspring increases in line with the upper limit predicted by Equa-

tion (4.7) (see Figure 4.3, Panel A, crosses), the viabilityof collective reproduction de-

pends on fluctuations in resource availability. With no fluctuations, individual reproduc-

tion is the most frequent (panel C of Figure 4.5), however a range of strategies are found.

When the resources do fluctuate, collective reproduction is dominant (panel D of Fig-

ure 4.5).

1The results presented by Bryden (2005b) showed that agents receive resources with between-resource
intervals on a geometric distribution when they move to random grid squares each timestep
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0: Define agent as having resourcesx and number of co-reproducersn
1: Initialisex andn for new members of the populationagents
2: season= high
3: for t = 1 tosimulationtime
4: if |agents| > upper threshold, season= low
5: if |agents| < lower threshold, season= high
6: if f luctuating resourcesandseason= low
7: Scatter 100 resources on the grid
8: else
9: Scatter 200 resources on the grid
10: end if
11: Move each agent to a random grid-square
12: for each agent (picked in random order) inagents
13: x = x−Rc

14: if there are resources on the grid-square
15: x = x+Ru

16: Remove one resource from the grid-square
17: end if
18: if x < 0, remove agent from simulation
19: end for
20: for i is each number of co-reproducers (1 to 10)
21: pick agents wheren = i andx > R1

22: for each group ofi agents
23: x = x−Rr(i) (pay the cost of reproduction)
24: Create a new agent (the offspring)
25: Share all resources (x) evenly between all (i+1) agents
26: end for
27: # remaining agents do not reproduce this turn
28: end pick
29: end for
30: end for

Figure 4.4: Pseudo-code for the evolutionary simulations.
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Figure 4.5: Collective reproduction depends on offspring cost and resource fluctuations.
Four scenarios were tested: panel A shows scenario (i) with static resource input; panel B
shows scenario (ii) with static resource input; panel C shows scenario (iii) with static re-
source input; and panel D shows scenario (iii) with fluctuating resource input. Each result
is plotted with error bars showing the standard deviation over the simulations. Parameters
for the simulations were:R1 = 1.0, Rr(1) = 0.1, Rc = 0.001, andRu = 0.01.
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4.3 Discussion

The mathematical model and simulations presented in this chapter demonstrate collective

reproduction. Individuals that may reproduce on their own,instead reproduce as part

of a collective. Collective reproduction here is done by sharing resources contributed

to a shared offspring. The modelling work shows that the costof this process (the cost

of reproduction) can affect the viability of agents that reproduce collectively and how

fluctuations in environmental resource levels can be significant. The model also presents

two different scenarios which predict conditions for when sexual reproduction is optimal

and other conditions for when reproduction in larger groupsis optimal: this may help to

explain why sexual reproduction is dominant in some animalsand eusociality is dominant

in others.

It is interesting to consider the results of the model with the types of reproduction

seen amongst the animal kingdom. When the number of parents increases, there is an

additional increase in the amount they may spend per offspring [see Figure 4.3, Panel

A, scenario (iii)]. The largest increase is between one parent and two parents. Perhaps

when there are more than two contributors, the only cost effective strategy (or perhaps

technically possible (Whitfield 2004) that works is to continue to only have two parents –

a male and the queen – but have other kin-related workers which have an indirect genetic

contribution to the offspring. Since each worker barely increases the cost of reproduction,

the larger number of contributors is advantageous [see Figure 4.3, Panel A, scenario (i)]

and the colony will grow.

The mathematical predictions presented in Figure 4.3 are concordant with the results

in Figure 4.5, both predicting when collective reproduction is viable. This includes subtle

effects such as the dominance of individuals that reproducewith one other parent. Since

the results are so similar, the simulation models show thatΨ is good predictor for which

reproduction strategies will competitively exclude others. This indicates that the growth

equation [Equation (4.5)] is a good approximation. The mathematical treatment is there-

fore instructive (in line with Chapter 2) as to why there is a long term growth benefit to

lineages that reproduce in this way: the collectively reproducing individuals have greater

resources and are therefore less vulnerable to resource fluctuations.

The work in this chapter gives some insights into how the complexity of the individual

may increase. First, it demonstrates how collective reproduction can benefit both part-

ners: when more than one parent contributes resources to theproduction of an offspring,

the combined reproductive expenditure can be significantlylarger than with individual

parents (see Figure 4.3 panel A, and corroborating simulation results in Figure 4.5). This
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extra resource is available for the increased complexity needed for the facilitation of col-

lective reproduction.

Indeed, it is plausible that collective reproduction may happen on many levels in the

same class of individual. Some examples of collective reproduction may only be viable

when the conditions are right, so different mechanisms for collective reproduction may

happen under different conditions. Each may have differentoptimal numbers of par-

ents. As well as this, collective reproduction may happen atdifferent levels at the same

time. With some organisms making direct genetic contributions, others making indi-

rect genetic contributions [through kin-relatedness (Hamilton 1964)] and others perhaps

gambling their genetic contribution [see (Bryden 2005a), or Chapter 5, for an example].

There can therefore be many differing mechanisms of collective reproduction taking place

within a population at the same time. As such, this is an accretive process and as new vi-

able mechanisms increase complexity, a rich social fabric should emerge.

Secondly, the model, and its insights, implies a potentially fruitful approach to mod-

elling the major evolutionary transitions. Rather than invoking altruism or group selec-

tion, the model of collective reproduction presented here shows mutual benefits to repro-

ducing collectively: i.e., that it is in an individual’s selfish interest to reproduce collec-

tively. There is no need for the individual to reduce its fitness for the benefit of its kin

or its group. Altruism may therefore not be an essential feature in explaining the major

transitions.

That said, this does not imply that altruism is not importantin collective reproduction.

Altruism can happen and will act as an evolutionary force when appropriate. One major

assumption of the model is that the resources of all parents are shared out equally between

the parents and offspring. Clearly, a parent that does not contribute in this way may be

able to disrupt the process by contributing less resources than other parents. It could be

argued that a parent that doesn’t do this is acting altruistically, however by contributing

less resources it will also be harming its own representation in the collective reproductive

effort.

Study of such cheating behaviour is outside the scope of thischapter, the case where

two individuals are reproducing is discussed in Chapter 6. Further studies considering

cases with more than two individuals will also be of interest.



Chapter 5

Slime mould and the transition to

multicellularity

5.1 Introduction

Given the results in the previous chapter show the viabilityof collective reproduction, I

investigate a biological case study in this chapter. When considering reproduction strat-

egy, one of the most striking cases in evolution is that of thetransition to multicellularity

(Buss 1987, Maynard Smith and Szathmáry 1995). This is a transition between unicel-

lular organisms, that reproduce on their own, to a multicellular organism, in which one

germ-line cell reproduces on behalf of the other cells.

This transition is especially interesting to artificial life research where the quest to

synthesise hierarchical levels of organisation is a significant open problem (Bedau et al.

2000, Stewart 1997). The transition from unicellular to multicellular organisms is a good

example of such hierarchical organisation. A multicellular organism is made up of indi-

vidual cells. Cells are made up of proteins. Proteins are madeup of molecules, and so

on... How, and why, individual cells might come together to form a multicellular organism

is therefore an interesting question.

To put the transition into a paleontological context, fossil evidence (Maynard Smith

and Szathḿary 1995) indicates that multicellular life did not exist for 2,500 million years

after the dawn of life. The first examples found were in the Cambrian period (approxi-

95
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mately 540 million years ago). One interesting fact is that all the multicellular phyla are

represented in the Cambrian fossil evidence (Maynard Smith and Szathḿary 1995). It is

likely that the transition occurred several times (Bonner 1999, Brooke and Holland 2003).

However, phylogenetic evidence (Baldauf, Roger, Wenk-Siefert and Doolittle 2000) sug-

gests that multicellular organisms, especially metazoa, share a common ancestor. If it is

true that only one mechanism was responsible for the transition, then the fact that it took

such a long time to evolve implies that a certain specific set of conditions needed to be

present for it to happen.

For now, we may only speculate on what mechanisms or conditions may well have

led to the transition. This said, modelling can enable us to develop mechanisms that are at

least plausible. Since it is also important to ground such models within current biological

knowledge, such models are often based on specific biological systems. These models

can also aid our understanding of those systems as well as their evolution. This section

therefore introduces background literature on the transition to multicellularity. It then

goes on to discuss how a model organism,Dictyostelium discoideum(commonly known

as slime mould), may shed some light on the transition.

5.1.1 The transition to multicellularity

For the purposes of this chapter it is useful to have definitions of both multicellular or-

ganisms and the transition to multicellularity. I define a multicellular organism as an

aggregation of genetically homogeneous cells. In fact there are more complex processes

in most multicellular organisms. They require gene-regulatory mechanisms for differenti-

ating cells (with differentiations being passed from parent cell to offspring), cell adhesion

and spatial patterning of cells (Maynard Smith and Szathmáry 1995). But to keep things

simple I assume that the most essential requirement is aggregated, genetically homoge-

neous, cells. The transition is therefore from unaggregated genetically heterogeneous

unicellular organisms to aggregated genetically homogeneous multicellular organisms.

This definition raises the question as to why a multicellularorganism must have a

homogeneous genetic code. A great amount of coordination isrequired in a multicellular

organism for all the different processes and organs to function properly. Differences of

foreign, or mutant, cells are therefore most likely to be damaging. Thus, it is best to keep

an organism genetically homogeneous.

What is even more damaging is when these harmful traits are passed on to offspring

through infection of the germ line. To solve this problem, anorganism is generated from

one single germ line cell (Buss 1987). Germ line cells are differentiated and isolated from



Chapter 5 97 The transition to multicellularity

the soma (or body) cells. This means that any damaging mutantor foreign cells do not

have their traits passed on to the next generation.

What is puzzling then, is how differentiation between soma and germ line cells evolved

and has remained stable. Any invasion of these germ line cells by other could potentially

have harmful consequences as the invaders will pass on theircode to all cells in any future

offspring. While cell policing (Michod 1999) and early sequestration (Buss 1987) may be

valid mechanisms in higher metazoa, it is unlikely that these mechanisms evolved at the

same time as germ-line soma differentiation. Any mechanismwhich describes the evo-

lution of germ-line soma differentiation must describe whythe soma cells will cooperate

and not invade the germ-line cells. This can be put another way: it must explain how an

individual that reproduces individually might instead come to start reproducing as part of

a group, with another individual reproducing on its behalf.This question is addressed by

the model in this chapter.

I therefore consider evolutionary mechanisms that will explain a transition between

unicellular organisms, which compete within their populations and compete with preda-

tors and prey, and early multicellular organisms which are clustered together and exhibit

germ-line/soma differentiation. In other words, there is atransition from unicellular or-

ganisms which are optimised to maximise their owndirect fitness to cells that must, on

the other hand, maximise theirinclusivefitness at the expense of their direct fitness (i.e.,

their ability to contribute their fitness to other cells thatare highly related must be more

important than their own replication chances). [See Frank (1998) for precise definitions

of direct andinclusivefitness.]

Many models of the transition argue that an early stage involved cells clustering to-

gether. Wolpert has presented a model where individual cells split to produce a somatic

body cell that sticks to its parent and is unable to reproduce(Wolpert 1990). Other work

(Pfeiffer and Bonhoeffer 2003) presents some benefits to clustering, arguing that the ben-

efits clustered individuals receive from collective metabolisation may outweigh the costs

of increased competition. Another perspective (Michod 1999) argues that the clustered

cells were differentiated and received some benefit from this division of labour. A prob-

lem with such clustering is that local competition can become a problem, specifically

competition over food (Queller 1994, West et al. 2002, Marshall and Rowe 2003b).

While these perspectives may explain why cells might clustertogether, no mecha-

nisms are proposed as to how these clusters may become genetically homogeneous. Fur-

thermore, the presence of clustering does not yield an explanation as to why germ-line

cells are differentiated from soma cells: or, why an individual might stop reproducing so

that another individual may reproduce on its behalf.
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A different perspective considers multicellularity through aggregation (Maynard Smith

and Szathḿary 1995). Here cells either vegetate and reproduce individually, or aggregate

to reproduce collectively. One advantage to this perspective is that, because cells vegetate

individually, this reduces competition between cells for food – one of the problems with

the early models with clustered organisms. A further advantage of this perspective is that

there are model organisms we can study to approach the questions set out above. The

model organism chosen for study in more detail in this chapter is (Dictyostelium) which

is outlined in the next section. If the collective reproduction exhibited by cells that aggre-

gate can identify some kind of differentiation between germline and soma cells then this

may shed some light on the transition to multicellularity.

5.1.2 Biological background onDictyostelium

Dictyostelium(more commonly known as slime mould) is a model organism for mul-

ticellularity through aggregation (Maynard Smith and Szathmáry 1995, Queller 2000).

Individual cells mostly vegetate and reproduce asexually on their own. However, un-

der different environmental conditions they also demonstrate collective reproduction be-

haviour, characterised by individual cells making sacrifices for the benefit of other cells’

reproductive chances. This organism therefore demonstrates both the germ-line/soma

differentiation (Buss 1982) and clustering that is important for the transition. Biological

evidence is now presented concerningD. discoideum, one of the more studied species of

the genus.

When there is a shortage of food andD. discoideumcells begin to starve, they ag-

gregate and one of the two collective reproductive stages commences (Raper 1984). The

more well known reproductive stage ofD. discoideumis shown in Figure 5.1. Here the

cells form a slug which collectively migrates. Once the cells find an advantageous loca-

tion they form afruiting body: cells at the front of the slug (20%) form a stalk and the rest

form spore cells at the top of the stalk which are dispersed bythe wind. Interestingly, the

stalk cells die after the stalk is built. This differentiation between spore and stalk cells is

arguably a germ-line/soma distinction (Buss 1982). Since cells that produce stalks do not

pass on their genetic code, it is hard to see how this trait is selected for and maintained.

Indeed there are examples of slime moulds strains that do notproduce stalks (Buss 1982).

Computer simulations addressing this question (Armstrong 1984) have indicated that high

dispersal of spores can lead to more stability in the stalk producing behaviour.

The second, less well known, collective reproduction stagein D. discoideuminvolves

the formation of themacrocyst(Raper 1984). Again, when the cells are starving they



Chapter 5 99 The transition to multicellularity

Figure 5.1: The asexual and mitotic life cycles ofDictyostelium[data from Raper (1984)].

aggregate. However instead of forming a slug, two cells merge to form a largeZygotecell

which eats other aggregating cells. The resulting giant cell forms a hard cellulose outer

wall and this macrocyst germinates after a few weeks. See Figure 5.2 for a diagram.

The macrocyst stage is thought to be a precursor to the slug/stalk reproductive stage.

Kessin (Kessin 2001) argues that evolution generally occurs in incremental stages. He

notes that the previous stage to macrocyst development would be the microcyst stage

(not observed inD. discoideum), where individuals form outer walls on their own. After

the evolution of chemotaxis, aggregation could occur giving the right conditions for the

evolution of the macrocyst. With added cell adhesion and cell type differentiation into

stalks and spores, fruiting body and slug behaviour would then become plausible.

The genetic makeup of the offspring of the macrocyst is an important question. The

macrocyst is generally accepted to be the sexual phase ofD. discoideum’sdevelopment

(Raper 1984), two differentmating typesare generally seen to aggregate. However, exper-

iments do demonstrate that macrocysts can form from only onemating type (Bozzone and

Bonner 1982). Typically, the progeny of a macrocyst is observed to be of one genotype

(Wallace and Raper 1979). Only one nucleus remains in the zygote (or giant cell) after

other ingested nuclei disappear (Okada, Hirota, Moriyama,Saga and Yanagisawa 1986).

The biological evidence therefore points to a picture showing that the macrocyst stage

contains a differentiation between a germ line cell and somacells. With the germ-line cell
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Figure 5.2: The sexual and mitotic life cycles ofDictyostelium[data from Raper (1984)].

being the zygotic cell which ingests all the other somatic cells. The cells use chemotaxis

to move closer to other aggregating cells. It is unlikely that a cell will have any way of

distinguishing between the zygote and any other cell so it will just aggregate towards it.

The first cells that produce a zygote can stop moving and generate a powerful chemotactic

signal to attract all the other cells. Based on this, the workin this chapter assumes that

the central zygotic cell is chosen at random from all those aggregating.

Given that aggregating cells have a random chance of being the zygote, the point at

which they aggregate is therefore crucial. Recent evidenceimplies that the cell may have

genetic control over this event. Research (Chae, Inazu, Amagai and Maeda 1998, Hirose,

Inazu, Chae and Maeda 2000) identifies genes that can control or delay when or whether

a cell will continue to grow or start aggregation. These findings indicate that the cell is

capable of turning on or off aggregation to the macrocyst stage which can ultimately lead

to cells being eaten by the zygote. This emphasises a need foran explanation as to why

an individual might make the ‘choice’ to aggregate and almost certainly die.

5.1.3 Scope of the model

The model in this chapter is an abstract model of theD. discoideummacrocyst stage. As

with the models in previous chapters, it simplifies the worldto resources, individuals and

individual strategies. Based on the behaviour ofD. discoideum, individuals accumulate

resources, expend resources, make copies of themselves andmay join the macrocyst. The



Chapter 5 101 The transition to multicellularity

macrocyst also expends resources and will germinate when the conditions are right.

The model is intended to approach several questions:

(i). To confirm that individuals that normally reproduce on their own are indeed pre-

pared to gamble their own reproductive chances against the ‘pot’ of reproductive

material contained in the macrocyst.

(ii). To confirm the intuition that fluctuations in food availability are important to the

viability of the macrocyst.

(iii). To question the role individual mitotic split rates might play in the stability of the

macrocyst.

(iv). To make predictions of the effect of different manipulations on the organism.

(v). To speculate on the role the macrocyst might play in the evolution of other altruistic

behaviour (such as stalk/spore differentiation) and collective behaviour.

5.2 Methods

To investigate the questions outlined in the previous Section, I have built a computer sim-

ulation model of the macrocyst stage ofD. discoideum. Assumptions in the model are

based on the biological evidence presented. Notably I have assumed that all the offspring

of a macrocyst are of the same genotype. Since sexual fusion does not seem to be neces-

sary, I chose (on parsimonious as well as biological grounds) to model the macrocyst with

no sexual recombination. Individual vegetative behaviourwas modelled with individuals

having a genetically encoded resource threshold above which they mitotically reproduce.

D. discoideumcells are modelled as individuals in a non-spatial environment. Each

individual has an resource levelx. At each time step, a number of individuals (N) are

selected at random, each receives (Ru = 0.5) units of resource (representing food) with

probabilityu. One cycle in the model contains two seasons. The amount and probability

of receiving a resource unit (N andu) changes value according to whether the season is

‘high’ (N = 100,u = 0.6) or ‘low’ (N = 20,u = 0.3). Each season lasts 200 timesteps.

All individuals pay a resource cost (Rc = 0.2) per timestep irrespective of season. If an

individual’s resource level falls below zero (x < 0), it will die.

Each individual cell is modelled with two genes.1 The genes model resource thresh-

olds which determine the behaviour of the cell. Cells will join the macrocyst when

1Genes are represented as floating-point numbers in the simulation, point mutations occur at each
timestep over a Gaussian distribution with standard deviation of 1% of the gene space
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their resource level isbelow the value of the first gene, themacrocyst join threshold

(−2.0< Rjoin < 2.0).2 When a cell’s resource level isabovethe value of the second gene,

thesplit threshold(5.0< Rsplit < 20.0), the cell will pay a resource cost to split mitotically

and produce a new cell (sharing resources equally between itself and its offspring).

In the model, there is only one macrocyst which is assumed to be immobile and there-

fore does not receive resource from the environment. When cells join it, they contribute

their own resources (x) plus a residual resource amount (equal to the cost of splitting,

Rr = 1.0) to the macrocyst’s ‘pot’ (X). Before closing the macrocyst pays a costRm = 0.05

per individual joined every timestep to reflect metabolisation and building of cellulose. If

the macrocyst resource level falls below zero (X < 0) then it (and all its joining cells) will

die. When the macrocyst reaches a predetermined resource threshold (30.0), it closes and

no other cells may join.

The macrocyst will germinate on the first day of the high season. When it germinates,

the resources are divided up into new cells with each cell receivingx= 2.5 resource units.

All new cells will have the same genotype: a complete genotype (no recombination) is

picked at random from all the cells that originally joined the macrocyst.

Simulations were run over 100,000 timesteps. Each simulation started with 100 indi-

viduals, each individual having a random genotype and a random resource level between

0.0 and 5.0. Pseudo-code for the simulations is shown in Figure 5.3.

5.3 Results

To understand how the harshness of the low season can affect the viability of the macro-

cyst, simulations were run varying the probability of receiving resources in the low season.

Interesting population dynamics, with macrocyst offspring out-competing the non-joining

population, were observed and these are presented in this section.

The average percentage of individuals which germinated from the macrocyst is plot-

ted against the probability of receiving resources in the low season in Figure 5.4. When

the probability of receiving resources is higher, few individuals (≈ 20%) join the macro-

cyst. When there is a lower probability of receiving resources, more individuals join the

macrocyst. However the rogue data points at the bottom left of the graph are of interest.

To investigate this disparity with some populations producing macrocysts and others

not, the probability of receiving resources and seed value were selected from one of the

rogue data points. The simulation was run over a longer (150,000) number of timesteps. A

2A negative macrocyst join threshold means that an individual will die before it joins the macrocyst



Chapter 5 103 The transition to multicellularity

0: Define agent as having resourcesx, split thresholdRsplit and join thresholdRjoin
1: Define macrocyst as havingX resources andn agents
2: Initialisex, Rsplit andRjoin for new members of the populationagents
3: season= high
4: for t = 1 tosimulationtime
5: if time sincelast seasonchange= 200
6: if season= high
7: N = 100,u = 0.6, season= low
8: end if
9: if season= low
10: N = 20,u = 0.3, season= high
11: if there is a macrocyst,
12: CreateX/2.5 new agents withx = 2.5 for each agent
13: Remove macrocyst from simulation
14: end if
15: end if
16: end if
17: for macrocyst (if there is one)
18: X = X−nRm

19: if X < 0, remove macrocyst from simulation
20: end for
21: pickN random agents
22: with probabilityu, x = x+Ru

23: end pick
24: for each agent (picked in random order) inagents
25: x = x−Rc

26: if x < 0, remove agent from simulation
27: MutateRsplit andRjoin
28: if x > Rsplit
29: x = x−Rr (pay the cost of reproduction)
30: Create a new agent (the offspring)
31: Share the parents resources (x) evenly between the two agents
32: end if
33: if x < Rjoin
34: if there is no macrocyst, create one (X = 0, n = 0)
35: for macrocyst
36: n = n+1
37: X = X +x+Rr

38: end for
39: end if
40: end for
41: end for

Figure 5.3: Pseudo-code for the macrocyst simulations.
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Figure 5.4: Graph showing the percentage of individuals which germinated from a macro-
cyst at the start of the high season against the probability of receiving resources in the low
season. Each data point (ten data points, each generated with different random seeds, per
resource-probability value) represents an average over a complete simulation run.

histogram was generated for the macrocyst join threshold atthe start of each high season

and the results are shown as a 3D mesh in Figure 5.5.

In the figure, the presence of macrocysts can be seen as spikeson the right hand side.

An early tendency towards macrocyst joining is evident (farright of graph) but these

genotypes die out after≈ 25 cycles. A population which does not produce germinating

macrocysts immediately flourishes. After≈ 150 more cycles there are enough individuals

to successfully produce a germinating macrocyst which survives to the end of the low

season. Interestingly once this has happened the macrocystvery quickly wipes out the

non joiners from the population. The offspring from the macrocyst must have some sort

of competitive advantage over the non-joining population.

A closer look at Figure 5.5 indicates that when there are not enough individuals joining

the macrocysts to make them germinate, there is only a small tendency toward individuals

that will not join the macrocyst when their resource level isvery low. Between cycle

25 and cycle 175, the histogram shows a larger proportion of individuals having a join

threshold below zero; however some still remain with a threshold above zero. There is

clearly little selection pressure against individuals sacrificing small amounts of resources

when near to death.

A second 3D histogram was generated for the split thresholdsof the population at the

start of the high season and can be seen in Figure 5.6. There isa clear disparity of the

split thresholds between the macrocyst joining populationand the non joiners. Again, in
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Figure 5.5: 3D histograms of macrocyst join thresholds of the population at the start of
each high season.

the first few cycles of the simulation (where the macrocyst joiners were predominant in

Figure 5.5), the population has a low split threshold – individuals will split as quickly as

possible. After≈ 25 cycles the macrocysts die out. There is now a clear tendency for

dominance in the population for individuals that split moreslowly. Once the macrocysts

return (after≈ 160 cycles), the split thresholds of the population immediately return to

lower values (< 7).

In the simulation shown, the offspring of the last macrocystof the early period of

macrocyst dominance have a higher split threshold than the rest of the macrocysts. This

was confirmed in all other observed runs, however no experiment has categorically con-

firmed this to always be the case.

Simulations run with all individuals having the same, fixed,split threshold resulted

in either the individuals all dyeing, through starvation inthe low season, or a small per-

centage joining the macrocyst when resources are more plentiful (data not shown). The

competitive advantage of the macrocyst joining populationwas no longer effective and

macrocysts were only formed through enough individuals sacrificing their resources in a

similar way to the non-joining population in Figure 5.5.

Other simulations have been run with variable split thresholds and the low season
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Figure 5.6: 3D histograms of individual split thresholds ofthe population at the start of
each high season.

completely removed to see if parameters exist where a macrocyst can form and dominate

the rest of the population. Simulations were run with varying parameters ofN andu, both

seasons having the same values. While some macrocyst production was observed it was

only at the beginning of simulations where the random starting population allowed for

enough individuals that joined the macrocyst and made it viable for a few cycles (data not

shown).

5.4 Discussion

This chapter presents a novel perspective on the transitionto multicellularity. In Sec-

tion 5.1 I have justified of the need for a model that demonstrates the transition between

individual cells that ordinarily reproduce on their own andcells that become part of a

super-organism, with only one genotype of the participating cells being passed on to fu-

ture generations. The model in this chapter, of the evolution of theD. discoideummacro-

cyst stage, demonstrates a plausible mechanism through which individuals may start to

reproduce as part of a group. I investigate this model now within the context of the above

requirements, and other questions and literature concerning the transition to multicellu-
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larity presented in Section 5.1.

For the macrocyst model to successfully meet the requirements of the transition to

multicellularity, it requires that all individual cells must be able to reproduce on their

own. It also requires that individual cells must be clustered and that only one of the

individual cells reproduces on behalf of the cluster. The model presented meets these

requirements. Simulated cells that have the freedom to evolve a strategy in which they

will not join macrocyst organisations (where their genes are highly likely to be destroyed)

do not evolve this strategy under certain conditions.

The model does however stop short of demonstrating the type of germ-line/soma dif-

ferentiation and clustering apparent in the metazoa where there is permanent clustering

[as in other models, e.g., (Wolpert 1990, Pfeiffer and Bonhoeffer 2003)] and differenti-

ation of the germ line early in development (Michod 1999). The macrocyst’s germ-line

cell is instead chosen at random with little or any predetermination. The macrocyst cells

are only clustered at one point of the life cycle. However, the fact that the macrocyst’s

offspring are of only one genotype and that they out-competeindividuals that do not join

the macrocyst is of some significance.

The fact that the macrocyst produces offspring of a single genotype is important in

three ways. Firstly it has the effect of producing several genetically homogeneous off-

spring which are all ‘pre-programmed’ to join the macrocystat the start of the next low

season. These offspring have a competitive advantage over individuals that do not join

the macrocyst. The macrocyst therefore contributes to its future success. Since microbes

can evolve many ‘policing’ mechanisms (Travisano and Velicer 2004), it is not inconceiv-

able that after several generations, the macrocyst way wellhave become established in the

organism without the need for a harsh low season each cycle.

Secondly, the high relatedness of the offspring can be seen to promote other social

behaviours. Relatedness is crucial for any traits that require many coordinated individuals

or altruism to be successful. The aclonal nature of the macrocyst offspring means that it

is highly likely that the next aggregation event will be aclonal or at least highly related.

If these individuals, perhaps due to some mutation, no longer fuse to form a zygote then

other interesting collective behaviour may occur instead.These behaviours could include

the slug behaviour ofD. discoideumwhich requires many coordinated individuals (Marée,

Panfilov and Hogeweg 1999), and the stalk behaviour ofD. discoideumwhich requires al-

truism from many cells (Armstrong 1984). The combination ofthe macrocyst model with

one of the stalk/spore behaviour [based on the work of Armstrong (1984)] will hopefully

confirm how important the population homogenisation effects of the macrocyst were for

the evolution and maintenance of stalk/spore behaviour inD. discoideum.
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The homogeneous macrocyst offspring are important in a third way. By picking the

genotype of its offspring from one individual at random, this can restrict the potential for

cheating. For example, if an individual were to evolve a cheating trait so that its genes

were most likely to be picked, the next population would all have that same trait - with

no individual having any advantage. That said, it is conceivable that a cheating trait may

in fact be disruptive to the macrocyst. Further modelling isrequired to investigate the

potential effects of disruptive cheating.

To consider how split thresholds are important I analyse a complete cycle (of a high

and a low season). In one cycle of the model presented here there are four phases for non

macrocyst joining amoebae:

(i). Early high season exponential growth;

(ii). Population equilibrium at high season;

(iii). Early low season exponential decimation of the population;

(iv). Population equilibrium at low season.

While it is easy to see that fast (low threshold) splitting amoebae would flourish during

phase (i), these same amoebae will be closer to dying during phase (iii). The results

suggest that a slow (high threshold) splitting strategy is more profitable, not only in phase

(iii) but in phase (iv) as well. In phase (iv) individuals receive food with a low probability,

those with a fast (low) split threshold are less adapted to survive fluctuations in food

availability.

The macrocyst allows individuals to avoid phases (iii) and (iv) and hence fast splitting

individuals that germinate from it at the start of the high season are very well adapted

to phase (i). This ability to perform well during circumstances of diminishing popula-

tions has already been observed as an important feature of early multicellular organisms

(Kerszberg and Wolpert 1998).

While I have attempted to be faithful to biological evidence,the model presented here

has made some assumptions and has some limitations. Furtheranalysis and research is

required into the biological plausibility of the split thresholds in the model. The ques-

tion as to what might happen if individuals have a seasonallyvarying split threshold is

also important. The model is undimensional and therefore lacks spatial effects (though

the way the organisms are fed is set up to mimic a spatial environment): a spatial model

would allow for analysis as to what might happen if individuals could affect their chances

of being the chosen genotype. The mutation rate in the model is unnaturally fast, how-

ever slower mutation rates provided similar results over longer periods. Finally, there is
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only one macrocyst in the current model; future simulationscould model more than one

macrocyst.

The evolution of collective, coordinated and altruistic behaviour is of some signif-

icance within ALife modelling. The homogenisation effectsof the macrocyst and its

likely relevance in the evolution of coordinated and altruistic effects means that this effect

is likely to be of some use in the design of evolutionary algorithms for multi-agent sys-

tems. Further investigation into this stage may well revealits significance in the evolution

of sophisticated collective behaviour in artificial and natural organisms.

The model and results presented in this chapter demonstratethat, given the assump-

tions outlined, theD. discoideummacrocyst stage is plausible under the large fluctuations

in food in the model. The results and analysis lead me to hypothesise that the model of

the macrocyst presented in this chapter, where individualsgamble their genes to become

the germ line of a super-organism, may well have been a crucial stage in the transition to

multicellularity. It must be noted that it is only a stage in the evolution ofD. discoideum

and may only be relevant to this organism. Though mere speculation, it is intriguing to

consider that if the macrocyst was an important stage in the transition to multicellular-

ity, then the harsh and specific environmental conditions needed may explain why the

transition only happened once and took such a long time to arise.
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The origins of sexual reproduction

6.1 Introduction

In Chapter 4 I look at a general model of collective reproduction. That work does not

consider how collective reproduction is affected when individuals cheat by giving less

resources than they should. This is considered in the present chapter, looking specifically

at the origins of sexual reproduction.

The origin of sexual reproduction is an important question in evolutionary biology.

Sexual reproduction is very common amongst multicellular organisms where, in general,

individuals produce gametes that fuse together to form a zygote. In fact there are many

modes of sexual reproduction (Bell 1982, Whitfield 2004); forexample it is also observed

in unicellular organisms where the organism fuses with another organism. For simplicity,

this chapter looks at sexual reproduction from an abstract perspective: two individuals

both contribute genetic material and a proportion of their resources to an offspring. This

is contrasted with asexual reproduction where only one individual contributes genetic

material and resources to its offspring.

Given its prevalence in the animal kingdom, it seems odd thatthere isn’t a simple

explanation of its benefits. In fact many models (Williams 1975, Maynard Smith 1978)

have found that there is a cost to sex. From a population growth rate perspective (Maynard

Smith 1978), production of non-egg-producing male individuals implies a cost in popu-

lation growth – Maynard Smith dubbed this the “two-fold costof sex” (Maynard Smith

1971). At its very extreme, males may contribute no resources toward the production

of its offspring; thus leaving a two-fold cost of producing males that seemingly have

little or no actual benefits. The alternative perspective considers the “cost of meiosis”

(Williams 1975) pointing out that, in meiosis, the diploid zygote only contributes half

its genes to the haploid gamete. Both these cases have been argued to be equivalent

110
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(Bell 1982), basically each sexually reproducing parent will only receive half an offspring

each time it reproduces rather than the whole offspring produced by an asexually repro-

ducing parent. It is therefore argued that an individual which produces asexual offspring

would invade a sexually reproducing population. Sexual reproduction appears to be a

paradox: the question as to how sexual reproduction originated and persists is a puzzle.

I have reformulated the notion of the cost of sex into the abstract terms used within

this chapter. I make a simple comparison of the growth rates of an individual strategy

and a collective reproduction strategy (with two parents) based on the way resources are

allocated to offspring. This is shown by Figure 4.1 (see Chapter 4).

Since individuals with the sexual strategy share contributions to offspring, they con-

tribute less than those with the asexual strategy. This means that the average level of

resources per individual in the sexually reproducing population will be higher than those

in the asexually reproducing population. For a fixed input ofresources to the system, this

means that the sexually reproducing population will grow more slowly than the asexually

reproducing population.

There have been many theories as to the advantages of sexual reproduction. Since

sexual reproduction generally results in two parents contributing half their genes to each

offspring, recombination(genetic mixing) can occur. There are many advantages of ge-

netic mixing including resistance against deleterious mutations (Muller 1964) and the

greater ability to incorporate advantageous mutations (Fisher 1958).

One problem with this approach is that the benefits from this type of reproduction are

generally quite slow to evolve (with an evolutionary time-scale), too slow to counteract

population invasion (with an ecological time-scale) of parthenogenetic mutants (Maynard

Smith 1978). The genetic mixing arguments are therefore open to the same types of

criticism applied to group selection arguments (see Section 3.1 for more information).

Given these criticisms, recent models [see reviews from Otto and Lenormand (2002)

and Agrawal (2006)] still view the cost of sex as problematicand have therefore argued

that genetic mixing could be advantageous enough to explainwhy sexual reproduction

can be maintained in light of the cost of sex. For instance, sexual selection can accen-

tuate the effects of resistance against deleterious mutations(Agrawal 2001), though this

does require a significant mutation rate in a population. Other models consider the advan-

tages that recombination may give as protection against parasites (Hamilton, Axelrod and

Tanase 1990). Recent work (Hakoyama and Iwasa 2003) demonstrates that coexistence

is possible between sexual and unisexual populations when the unisexual population is

more than twice as susceptible to parasites as the sexual population. While these models

do go quite far in explaining the advantages of genetic mixing, the argument for using the
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advantages of genetic mixing to explain sexual reproduction does still raise some ques-

tions.

The main problem with the argument that genetic mixing may explain the cost of sex is

concerned with the type and ubiquity of sexual reproductionseen in nature. Surely if the

parthenogenetic strategy is the better strategy for reproduction, then some other mech-

anism that allows for occasional genetic mixing with parthenogenesis being the norm

should prevail? There are a few examples of androdiecious organisms (Weeks, Benvenuto

and Reed 2006) where the populations consist of males and hermaphrodites, an example

beingC. eleganswhere the males are as rare as 0.1% of the population (Chasnov and

Chow 2002). Interestingly, deleterious mutation rates do not seem to be a likely expla-

nation for difference between the selfing behaviour inC. elegansand the obligately out-

crossing behaviour of anotherCaenorhabditisspecies,Caenorhabditis remanei(Cutter

and Payseur 2003). Perhaps sexual reproduction (as defined earlier) and genetic mixing

are two separate issues and should be explained separately.

In fact, modelling work has been done that does not consider the advantages of ge-

netic mixing (Doncaster, Pound and Cox 2000). This considersthat if a population of

sexually reproducing individuals has a resource uptake advantage (and thus a higher car-

rying capacity) over an asexual population then the two populations may coexist. While

this model is certainly convincing regarding how sex may be maintained, when it comes

to explaining the origins of sex the model is not so convincing. It requires that an advan-

tage (in this case the resource uptake advantage) evolved concurrently to a disadvantage

(in this case, it is assumed that sexual reproduction is at a disadvantage) – this is generally

not thought to be good reasoning (Maynard Smith and Szathmáry 1995).

In contrast, the model I shall present in this chapter does not confer any explicit advan-

tages or differences on either the asexually or sexually reproducing individuals. It takes

the approach that a precursor to sexual reproduction may have existed where two indi-

viduals reproduced collectively, contributing a proportion of their resources to a shared

offspring. I will compare thistwo-parentresource allocation strategy with theone-parent

(i.e., clonal) strategy. I avoid using the terms sexual and asexual to describe these strate-

gies as sexual reproduction includes genetic mixing which is not specifically modelled.

In the two-parent strategy, each parent has an equal stake inthe genetic makeup of the

offspring, whether through one parent being selected as thegenotype by random chance

(with equal probabilities) or there being a mix of the two parents’ genes.

There are quite a few examples in the biological literature [e.g, see (Glesener and

Tilman 1978, Bell 1982)] of related species where one species reproduces sexually and

the other reproduces parthenogenetically. There is a repeating pattern which has been ob-
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served which links geographical characteristics of an areawith the reproduction strategies

of its inhabitants. Sexually reproducing species are more likely to be found in mainland

areas where there is assumed to be a higher level of biotic stress. Conversely, asexual

organisms tend to be found in more extreme conditions where there is assumed to be less

biotic stress but more abiotic stress. The higher biotic stress is due to the greater diversity

shown in the surrounding ecosystem of the areas with lower abiotic stress. It is suggested

that this higher level of biotic stress can lead to greater uncertainty (due to inter-specific

interactions) than abiotic stress (Glesener and Tilman 1978). I therefore consider whether

the amplitude of unpredictable resource fluctuations is an important factor in the model

presented in this chapter.

6.1.1 Scope of the model

To investigate the questions raised in the previous section, the work here reconsiders the

original arguments presented by Maynard Smith and Williams. Rather than consider a

population of males and females being invaded by parthenogenetic individuals I consider

the opposite: a population of clonal (one-parent) reproducers being invaded by two-parent

reproducers. I ask which is the stable strategy and under what conditions.

I approach this question by simplifying the world to resources, individuals and indi-

vidual reproduction strategies. Individuals accumulate resources, expend resources, make

copies of themselves and share resources with those copies.

Given that individuals live within an environment with factors outside of their control,

I assume that they have little control over the way they accumulate or expend resources.

The space of strategies that individuals may adopt is therefore only concerned with their

reproduction strategy. One factor that is important however is the size of the population

will affect the availability of resources. This means that Iam able to compare one- and

two-parent resource allocation strategies under density dependent conditions.

The model is an extension of the one presented in Chapter 4, which also compared

one- and two-parent reproduction. In the previous model, individuals shared their re-

sources equally with their offspring, whereas here individuals may selfishly contribute

differing amounts of resources. In line with the biologicaldata, the individuals are tested

under varying resource availability conditions.

In the next section I outline the methods I used to model the different reproductive

strategies. This includes deriving the growth equations which will allow me to compare

the different reproduction strategies. I also present methods for the simulation models

which will be used to test and expand the mathematical predictions. The results start by
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considering what level of resources an individual may contribute (Section 6.3.1) before

considering whether this level is high enough for the two-parent strategy to dominate an

optimal one-parent strategy. I discuss the results in Section 6.4.

6.2 Methods

The model presented here considers individuals receiving stochastically varying resources

from the environment. When their resource level ascends to a high threshold then they

reproduce either clonally or share the production of an offspring with another parent. All

parents pay a cost of reproduction and then share some of their resources with the new

offspring. The reproduction strategy of individuals is therefore defined by the proportion

of their resources that they will share with their offspringand whether they have a one- or

two-parent strategy for producing offspring.

The amount of resources individuals will give their offspring is important because it

affects the growth rate. The reason I study it in detail here is because there is a selfish ben-

efit for parents to contribute less resources when they produce an offspring with another

parent. Consider a selfish parent that gives less resources toan offspring than an unselfish

parent that shares its resources equally. The selfish parentwill have sufficient resources to

reproduce again more quickly than the unselfish parent. A selfish parent would therefore

be expected to invade a population of parents contributing more resources. This would

result in a population of individuals with the two-parent strategy contributing very little

resources to their offspring.

Two modelling approaches are presented in this section: mathematical modelling and

computer simulation models. The mathematical model presents a tractable approach to

the problem which is instructive to the simulations.

The strategy space for individuals is defined by how many resources they contribute to

their offspring and whether they have a one- or two-parent reproduction strategy. Because

I am studying like-for-like, all individuals have the same interaction with their environ-

ments. In all models, an individual is modelled as having a resource levelx, given by,

dx
dt

= U(i, t)Ru−Rc , (6.1)

During an average timestep of time lengthδ t, the individual will mandatorily useRc

resources.Resource uptake(the level of resources received from the environment) is vari-

able and modelled byU(i, t) ∈ [0,1]. If an individual reaches its lower resource threshold

R0 then it will die. Similarly, if an individual reaches its upper resource thresholdR1



Chapter 6 115 The origins of sexual reproduction

then it will reproduce. In reproduction, each parent pays anupfront cost of reproduction

Rr( j) dependent on its reproduction strategy and contributes a proportion of the remaining

resourcesO toward its offspring.

6.2.1 Mathematical modelling

For the mathematical modelling approach, I derive growth rates for each of the strategies.

Growth rates are calculated by assigning individuals with the one-parent strategy one

offspring and individuals with the two-parent strategy half of an offspring. I use the

growth equations derived in Chapter 3.

In Chapter 3, I considered two different models of growth: a deterministic and a

stochastic model. The model used in this work was the stochastic model (derived in Sec-

tion 3.2.4). This is for two reasons, firstly because this model was shown to be a good

approximation of the simulation results in the case where the resource uptake rate is close

to population equilibrium levels. The second reason is thatit was also shown to be more

accurate whenx is close to the lower threshold. Since selfish parents may contribute low

resource levels to their offspring, this model is needed to give accurate results. The func-

tionU(i, t) [see Equation (6.1)] is thus modelled by white noise depending on a variableu

andδ t. Time is broken up into segments of lengthδ t and for each segment Pr(U = 1) = u

and Pr(U = 0) = 1−u. The average over realisations (< U >= u) is also constant over

an individual’s lifetime.

As anad hocsimplification,R0 is set to 0. We can study different values ofR0 by

scalingRc, Rr andO appropriately.

The resource values of individuals after reproduction are important and will be used

in the model. Thus, directly after one-parent reproduction, the parent’s resource level is

given by:

xparent= (R1−Rr)(1−O) .

Similarly the offspring’s resources are given by:

xoffspring = (R1−Rr)O .

Secondly, after two-parent reproduction, the parents share the cost of reproductionRr and

then each contributes a proportion of its remaining resourcesO(q) towards the offspring.

Thus, directly after two-parent reproduction, the resource level of a parenti is given by:

xparent(i) = (R1−Rr)[1−O(i)] .
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The resource level of the offspring is given by the sum of the resource contributions of

the parents:

xoffspring(i) = (R1−Rr)ΣiO(i) .

The growth rateG for each strategy (in new individuals per individual per time δ t)

is given by the number of births minus the number of deaths perindividual in timeδ t.

The birth rate and death rate are calculated using the equations for the expected genera-

tion timeW (the time taken for an individual starting withx resources to reach either the

upper or lower threshold) and the reproduction probabilityF (the probability of an indi-

vidual, starting withx resources, reaching its upper threshold before it reaches its lower

threshold).

The equation for the expected generation timeW (the time it takes an individual with

resourcesx to reach either its upper or lower resource threshold) has two solutions which

are derived in Section 3.2.4. Again, for simplicity of modelling a variablem is introduced

wherem= Ru/Rc−1 [so,Ru = (m+ 1)Rc]. SinceRu > Rc, and both are positive,m is

positive. I consider the general case where the mean resources uptake level is atu [here

u 6= u0 whereu0 = 1/(m+1)] is given [from Equation (3.14)] by:

Wg =
δ t

Rcλ

[

−x+
R1 [1−exp(−λx/µ)]

1−exp(−λR1/µ)

]

, (6.2)

whereλ = mu+u−1 andµ = Rc(m2u+1−u)/2. The case where an individual receives

on average as many resources as it expends each timestep (u= u0) is given [from Equation

(3.16)] by:

We =
δ t

R2
cm

(−x2 +R1x) . (6.3)

The ratio of individuals that reach the upper threshold to those that reach the lower

thresholdF was also derived in Section 3.2.4. An individual, starting with x resources,

must reach its upper resource threshold (R1) before it reaches the lower resource threshold

(R0). Again there is a general case whereu 6= u0. This is given [from Equation (3.22)] by:

Fg =
1−exp(−λx/µ)

1−exp(−λR1/µ)
(6.4)

The case where an individual receives on average as many resources as it expends each

timestep (u = u0) is given by:

Fe =
x

R1
. (6.5)

To calculate the growth rate I consider new individuals justafter reproduction. In the
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one-parent reproduction model (see Chapter 3) both offspring after reproduction are iden-

tical. In this model they may have different resource levels: after one-parent reproduction

the parent will therefore havexparent resources and the new offspring will havexoffspring

resources. I therefore approximate the growth rate of an average individual as follows.

The average number of births is given by
[

F(xparent)+F(xoffspring)
]

/2 and the average

number of deaths is given by
[

1−F(xparent)+1−F(xoffspring)
]

/2. The average genera-

tion time is given by
[

W(xparent)+W(xoffspring)
]

/2. I therefore approximate the growth

rate as the average number of births per timeδ t minus the average number of deaths per

time δ t, or,

Gone =
F(xparent)+F(xoffspring)

W(xparent)+W(xoffspring)
−

2−F(xparent)+F(xoffspring)

W(xparent)+W(xoffspring)

=
2
[

F(xparent)+F(xoffspring)−1
]

W(xparent)+W(xoffspring)
. (6.6)

The two-parent case considers the parent and its offspring in the same way as the one-

parent case. The difference here is that each parent only gives birth to half an offspring

(so there are 1.5 individuals after reproduction rather than 2). The number of births is

therefore given by the average number of births per individual. This is given by the

average number of reproduction events of the 1.5 individuals divided by 2 (since these

individuals only have half of an offspring):[2F(xparent)/3+F(xoffspring)/3]/2. Similarly,

the number of deaths is given by 2[1−F(xparent)]/3+[1−F(xoffspring)]/3 and the average

generation time is 2W(xparent)/3+W(xoffspring)/3. Again, I approximate the growth rate

as the average number of births per timeδ t minus the average number of deaths per time

δ t, giving a growth equation of,

Gtwo =
3
[

F(xparent)+F(xoffspring)/2−1
]

2W(xparent)+W(xoffspring)
. (6.7)

If the environment is static (u constant), then the strategy that will dominate is the

one which has the larger value ofG from Equations (6.6) and (6.7). On the other hand,

if resources fluctuate between abundant and sparse periods (u varies between two fixed

valuesu+ andu−), the dominant phenotype can be determined by using Corollary 3 in

Appendix A. The corollary states that, if a population is in asteady state (has the same

total size at the beginning and end of a long time period), then the strategy that will

dominate is the one with the largest ratio of growth during abundant periods (u = u+) to
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growth rate during sparse periods (u = u−). TakingΨ as,

Ψ =
G(u+)

−G(u−)
, (6.8)

the two-parent strategy therefore dominates when:

Ψtwo > Ψone . (6.9)

6.2.2 Parental contribution

As identified earlier, when one parent contributes less resources to a shared offspring

than another, it will be ready to reproduce more quickly and is expected to invade the

population. In this section I use the growth equations from the previous section to predict

which offspring contribution strategies will dominate over other offspring contribution

strategies.

To do this I consider two parents of class Pa and Pb which contribute Oa and Ob

resources respectively. The matrix in Table 6.1 shows the resource levels for a parent

and the resulting offspring after two-parent reproductiveencounters with parents of both

classes.

Pa Pb
Pa xparent= (R1−Rr)(1−Oa)

xoffspring = (R1−Rr)2Oa

xparent= (R1−Rr)(1−Oa)
xoffspring = (R1−Rr)(Oa+Ob)

Pb xparent= (R1−Rr)(1−Ob)
xoffspring = (R1−Rr)(Oa+Ob)

xparent= (R1−Rr)(1−Ob)
xoffspring = (R1−Rr)2Ob

Table 6.1: Table showing resources of parents and offspringimmediately after reproduc-
tion, the values forxparentandxoffspring shown are for when the parent on the left column
reproduces with a parent on the top row.

For simplicity, the first case I consider is where resource uptake is static. The growth

rate of each strategy when it reproduces with either parent can then be calculated using

Equation (6.7). For two parental contribution strategies,Pa and Pb giveOa andOb to

offspring respectively, it is useful to be able to predict which strategy will dominate the

other. TakingG(Pa;Pb) to be the growth rate of parent Pa and its half offspring from

a reproductive encounter with parent Pb, I use game theory (Maynard Smith 1982) to

analyse the outcome of competitions between mixed populations of Pa and Pb. This

predicts that ifGPa;Pa> GPb;PaandGPa;Pb> GPb;Pbthen Pa will be monodominant over
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Pb. Alternatively, whenGPb;Pa> GPa;Pa> GPa;Pb> GPb;Pb then there will be a mixed

equilibrium of both Pa and Pb individuals. The hawk-dove model (Maynard Smith 1982)

is used to predict that there is an ESS (Evolutionarily Stable Strategy: one that is not

invaded by alternative strategies). Therefore the stable relative frequency of Pa to Pb,

ρ(Pa,Pb), is given by:

ρ(Pa,Pb) =



















1 ,Pa dominant over Pb
GPa;Pa−GPb;Pb

GPa;Pb+GPb;Pa−GPa;Pa−GPb;Pb
,mixed equilibrium

0 ,Pb dominant over Pa

(6.10)

As with the last section, I consider what happens when the probability of resources

fluctuates between abundant and sparse regimes. As in the previous section, the two

regimes are considered usingu+ for when the population is increasing andu− for when

the population is declining. The respective growth functions areG(u+) andG(u−). For

the two parents Pa and Pb, I consider the growth during regimeu+ relative to the growth

during regimeu−. To give an example, the relative growth of parent Pa and its half

offspring from a reproductive encounter with parent Pb isGPa;Pb(u+)/GPa;Pb(u−). Using

Corollary 3 (in Appendix A) it can be seen that if

ΨPa;Pa> ΨPb;Pa

and

ΨPa;Pb> ΨPb;Pb

then Pa will be monodominant over Pb. I assume, for simplicity that if this is not true,

then Pb will dominate over Pa.1 The stable relative frequency of Pa to Pb is therefore

given by:

ρ∗(Pa,Pb,u+,u−) =

{

1 ,Pa dominant over Pb

0 ,Pa not dominant over Pb.
(6.11)

6.2.3 Simulation modelling

To validate and extend the predictions made by the mathematical approach in the previous

section, simulation models were built. This section details the functional properties of the

simulation models.
1It is not possible to simply follow Maynard Smith’s reasoning (Maynard Smith 1982) to calculate a

figure for the relative frequency of the two strategies when there is a mixed strategy, i.e., neither Pa nor Pb
is predicted to be dominant.
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Copying the mathematical approach, the population is modelled at an individual level

with discrete timesteps of lengthδ t. Each individual is represented by a software agent.

Each software agent maintains a resource level (represented as a floating point number)

and a digital chromosome. Changes in individual resources are given by Equation (6.1)

with U(i, t) modelled by white noise [as with the stochastic model, see Section 6.2,

Pr(U = 1) = u and Pr(U = 0) = 1− u]. Each timestep a mandatory resource costRc

is deducted from each agent’s internal resource level. If anagent’s resource level goes

below R0 then the agent will die and is removed from the simulation. When an agent’s

resource level increases above the reproduction thresholdR1 then it is ready to reproduce.

At the start of all simulations individuals started with a random resource level generated

randomly from a flat distribution betweenR0 andR1.

The digital chromosome contains numerical values that represent genetically deter-

mined factors: the amount of resources an individual contributes to its offspring and

whether it reproduces with a one- or two-parent strategy. The digital chromosome is

simply passed on from the parent to the offspring in the one-parent case. In the two-

parent case, a random parent is selected to pass on the chromosome. Two genes are used

in the chromosome, the first gene represents the resource contribution levelO = [0 : 1].

The second geneS= [0 : 1] determines whether the individual reproduces with a one- or

two-parent strategy. It is also represented as floating point number between 0.0 and 1.0,

with values over 0.5 representing the two-parent strategy.At the start of all simulations

all genes were generated randomly from a flat distribution between 0.0 and 1.0. When

new offspring are generated, point mutations are applied tothe numerical values in the

chromosome. Mutation values were from a flat distribution (between 0.0 and 1.0) and

applied with a probability of 1/100 immediately after a new individual is created.

The contribution of resources from parents to offspring depends on whether the indi-

vidual’s chromosome specifies a one- or two-parent strategy. If it is one-parent reproduc-

tion then it will simply pay a cost of reproductionRr and then contribute a proportion of its

resourcesO to a new offspring. For two-parent reproduction, random pairs of agents are

selected from those that are ready (any leftover agents mustwait for the next timestep).

Each parent pays half the cost of reproductionRr and contributes a proportion of its re-

sources [O(i)] to the new offspring.

The way agents receive resources from the environment is determined by whether I

am considering a population close to equilibrium or a population that experiences large

fluctuations in resource availability. When the population is at equilibrium, a number

of resource units [of valueRu] are randomly scattered on a spatial grid each time step.
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Agents located on the grid move to a random new cell each timestep2.

When individuals are exposed to resource fluctuations, theirresource uptake rates are

dependent on the current state of the system. There are two resource uptake values for

u (calledu+ andu−) which defined by the resource fluctuation coefficientη as follows:

u+ = ueη andu− = ue/η .3 The system switches between its two states depending on the

population level. An upper and a lower population thresholdare defined which trigger the

two states. The system state usingu = u+ is triggered by the lower population threshold

and the system state usingu = u− is triggered by the upper population threshold.

Tests were done with various upper and lower population thresholds to make sure they

are effective: the thresholds were too close to each other when they were within 33% of

the population size, this had the same effect of reducing thefluctuation coefficient (as

the resources started to fluctuate within the generation cycle of individuals). The upper

population threshold was therefore set to 400 and the lower population threshold was set

to 200 in all simulations.

Two simulation scenarios were run depending on whether individuals had fixed off-

spring resource contributions or not. Simulations in Scenario (i) were run with no mu-

tations to the value ofO and with the population close to equilibrium (no fluctuations)

in order to validate the game theoretic approach in Section 6.2.2. Each simulation was

started with an evenly mixed population of agents with two different offspring resource

contribution amounts representing strategies Pa and Pb. All agents used a two-parent

strategy and were similar in all other ways. After a suitableamount of time, the propor-

tion of agents with strategy Pb to strategy Pa was recorded. Pseudo-code for the scenario

is presented in Figure 6.1.

The simulations in Scenario (ii) allowed mutations to the value of O. All agents were

exposed to resource fluctuations. To confirm the predictionsmade by Equations (6.10)

and (6.11) I performed simulations with only two-parent agents. I then ran competitions

between agents with two- and one-parent strategies to confirm the conditions under which

two-parent agents will dominate over one-parent agents. Pseudo-code for the scenario is

presented in Figure 6.2.

2The results in the spatial chapter show that agents receive resources with between-resource intervals on
a geometric distribution when they move to random grid squares each timestep

3An appropriate value ofue was chosen for the simulations based on the predicted value of ue given by
the parameters
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0: Define agent as having resourcesx and resource contributionO
1: Initialisex andO for new members of the populationagents
2: for t = 1 tosimulationtime
3: Scatter new resources on the grid
4: Move each agent to a random grid-square
5: for each agent (picked in random order) inagents
6: x = x−Rc

7: if there are resources on the grid-square
8: x = x+Ru

9: remove one resource from the grid-square
10: end if
11: if x < 0, remove agent from simulation
12: for random pairs of agents (parents) withx > R1

13: for each agentx = x−Rr (pay the cost of reproduction)
14: Create a new agent (the offspring)
15: Both parents contributexO resources to the offspring
16: end if
17: end for
18: if all agents have the same value ofO stop simulation
19: end for

Figure 6.1: Pseudo-code for the evolutionary simulations of scenario (i)

6.3 Results

This section consists of results from the mathematical treatments and from the simula-

tion modelling. The results work toward a comparison of one-and two-parent strategies.

Chapter 4 has already shown that the two-parent strategy may be dominant in the long

term when parents share resources with their offspring. I thus first consider if there is a

stable amount of resources that parents may contribute to their offspring. I then determine

whether the lower resources contributed by selfish parents is too low for the two-parent

strategy to dominate the one-parent strategy.

6.3.1 Stable parental resource contribution

In order to predict what level of resources individuals may contribute to offspring, I first

consider competitions between two parents that contributedifferent amounts of resources.

I then consider whether there is a stable strategy when thereis a fully mixed population.
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0: Define agent as having resourcesx, resource contributionO
and reproduction strategyS

1: Initialisex, O andS for new members of the populationagents
(when population is all two-parent, setS= 1)

2: season= high
3: for t = 1 tosimulationtime
4: if |agents| > upper threshold, season= low
5: if |agents| < lower threshold, season= high
6: for each agent (picked in random order) inagents
7: x = x−Rc

8: if season= high
9: with probabilityu+, x = x+Ru

10: end if
11: if season= low
12: with probabilityu−, x = x+Ru

12: end if
13: if x < 0, remove agent from simulation
14: for random pairs of agents (parents) withx > R1 andS> 0.5
15: for each agentx = x−Rr (pay the cost of reproduction)
16: Create a new agent (the offspring)
17: Both parents contributexO resources to the offspring
18: Mutate the new agent’s value ofO
19: if including one-parent agents, mutate the new agent’s value ofS
20: end if
21: for agents withx > R1 andS<= 0.5
22: x = x−Rr (pay the cost of reproduction)
22: Create a new agent (the offspring)
23: The parent contributesOx resources to the offspring
24: Mutate the new agent’s values ofO andS
25: end for
26: end for
27: end for

Figure 6.2: Pseudo-code for the evolutionary simulations of scenario (ii)
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6.3.1.1 Two player resource contribution competitions

The stable frequency of two parental resource contributionstrategies can be predicted

by the game theory outlined in Section 6.2.2 when resources are not fluctuating. Two

parents Pa and Pb were assigned higher and lower resource contribution valuesOa and

Ob respectively. For each resource contribution value assigned to parent Pb, parent Pa is

assigned a range of higher values (Oa > Ob). The value ofρ(Pa,Pb) is calculated using

Equation (6.10) and is plotted in Figure 6.3.
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Figure 6.3: Plot of the game theoretic predictions, given byEquation (6.10), for the out-
come of mixed populations of individuals with offspring resource contribution strategies
Pa and Pb. Parents Pb donate lower resource contributions and parents Pa donate an extra
contribution. Values used were:Rc = 0.01,R1 = 1, Rr = 0.1, m= 2 andu = u0.

The figure shows three regimes for Pa and Pb. As expected thereis a large regime,

covering most of the figure from the bottom right, where the lower resource contribution

invades the higher one (Pb invades Pa). In the top left of the figure there is a region where

the higher resource contribution is dominant. The rest of the figure shows a mixed strategy

where there is a stable equilibrium between the two strategies – for example, whenOb = 0

andOa = 0.2 there is a 50:50 mix of Pa and Pb..
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One interesting prediction made by the graph is that the highest combined contri-

bution, which is not invaded by a lower value, is a mixed strategy. Indeed, there are

stable mixed equilibria when parents with strategy Pa contribute a large number of their

resources, even as many as 0.6 or beyond.

To test the mathematical predictions, simulation runs weredone starting with mixed

populations of individuals which all had a two-parent strategy. Each simulation run took

a pair of resource contribution values (Oa,Ob) from Figure 6.3 (all other parameters were

the same) with respective individuals from the two halves ofthe population taking one of

the two values at the start of the simulation. There were no mutations to any values in the

simulation. Resource units were scattered on a 100x100 gridat a rate of 100 each timestep

maintaining a population of approximately 300 individuals. The fraction of individuals

with each strategy was recorded at each timestep. Each simulation was run until either one

strategy was completely dominant in the simulation, or 2 million timesteps had elapsed.

The final fraction was recorded and is presented in Figure 6.4.

The figure shows that the results were very similar to those made by the mathematical

prediction. However there are two obvious differences. Firstly at very low extra contribu-

tion values (Oa−Ob < 0.01) the simulations do not show the complete invasion of Pa by

Pb shown by the mathematical prediction. This may be becausethe relative growth rate

was too small for the simulations to converge. The second difference was observed when

Ob = 0: much higher values ofOa were stable to invasion.

6.3.1.2 Evolutionarily stable strategy

The predictions from competitions between two parents fromthe previous section indicate

that there may be a resource contribution strategy which is stable to invasion. There

are two ways of calculating this value. First, one can calculate it by considering the

outcomes of two player competitions between parents of all strategies. The second way

is to use evolutionary simulations of populations of individuals with mutating resource

contribution values.

Since I am only looking for the value of resource contribution which is stable to inva-

sion, I do not need to be able to predict mixed strategies. This means I am able to con-

sider the case where resources are fluctuating [Equation (6.11) doesn’t give a prediction

for mixed strategies]. Again, two parents Pa and Pb were assigned resource contribution

valuesOa andOb. Equation (6.11) can be used to calculate whether population Pa will

dominate Pb over the values ofu+ andu−. The value ofρ∗ is calculated over various

values ofOa andOb and the results are shown in Figure 6.5.

The figure shows that there is one value ofO that is stable to invasion from other
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Figure 6.4: Plot of simulations to test the game theoretic predictions, given by Equation
(6.10), for the outcome of mixed populations of individualswith offspring resource con-
tribution strategies Pa and Pb. Parents Pb donate lower resource contributions and parents
Pa donate an extra contribution. Values used were:Rc = 0.01, R1 = 1, Rr = 0.1 and,
m= 2.

values, I dub this valueOess. When a population has a value ofO which is lower thanOess

(to the right ofOesson the graph), it is invaded by individuals with higher values of O.

Similarly, when a population has a value ofO which is higher than this value (to the left of

Oesson the graph) it is invaded by individuals with lower values of O. Tests over a broad

range of parameters confirmed that there was a stable value ofOessfor each parameter set

tested. However this method is quite slow so an exhaustive test was not done.

I use a faster algorithm for predictingOess which can then be compared with the

results from evolutionary simulations. This scans along the graph from right to left until

it reachesOess. To do this I iterate through progressively larger values ofO (in steps

of δO = 0.001). Each value ofO is compared using Equation (6.11) with the previous

value until the higher value is no longer predicted to invadethe lower value. The largest

value ofO to invadeO− δO is the predicted value ofOess. The predictions made were
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predictions of Equation (6.11) are plotted for varying values ofOa andOb. Values used
were:Rc = 0.001,R1 = 1,Rr = 0.1,m= 7, u+ = 0.1375 andu− = 0.1136.

compared with evolutionary simulations using different parameter values ofRc,Rr andm,

over differently fluctuating resources.

Each simulation started with a population of 300 two-parentreproducing agents, the

sparse resource level (u = u−) was triggered by a population level above 400 and the

abundant resource level (u = u+) was triggered by population levels below 200. There

was no one-parent reproduction at all in these simulations.Ten simulations were each run

over 20 million timesteps. Two values ofRc were tested, Figure 6.6 plots the predicted

value ofOesstogether with the mean value of parental resource contribution O (averaged

over all simulations) for various different values ofmand resource fluctuation coefficients

for Rc = 0.001 and Figure 6.7 plots the same forRc = 0.005.

With this range of parameters, both figures show thatOess is not always accurate as

a predictor for the mean value ofO in the simulated population. However the value of

Oessis generally a good lower bound for the parental resource contribution. In Figure 6.6,

out of the 55 points plotted, the mean value ofO from the simulation runs was less than

Oessat only 6 points. A further 25 simulations run on each of thesepoints showed that

the erroneous simulation values were within the bounds of stochastic error. With the
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Figure 6.6: Parental resource contributions to offspring over different values of resource
uptake units (m) and different resource fluctuation coefficients. Mesha (dashed lines)
shows the predicted value ofOessusing Equation (6.11), meshb shows the corresponding
values found by the simulation runs. Other values used were:Rc = 0.001,R1 = 1 and
Rr = 0.1.

greater value ofRc, Figure 6.7 shows thatOess is still a good minimum value for the

parental resource contribution at higher values of resource fluctuation. At lower values of

resource fluctuation (< 3%) and higher values ofm the simulation runs show markedly

lower contribution levels.

Several simulations (normally 10) were run for each point inboth of the figures and

the standard deviation was calculated over these simulations for each point. The mean

standard deviation for Figure 6.6 was 0.0057. The mean standard deviation for Figure 6.7

was 0.0076. Generally, the standard deviation was below 0.01 for all of the points, except

when the resource fluctuation coefficient was atη = 1.01. For this case, the standard

deviation was below 0.016 in Figure 6.6 and below 0.03 in Figure 6.7.

Within the simulations, the distribution (and the mean) of individuals with different

resource contribution strategies depended on the mutationrate. With a higher mutation

rate the mean increased. This was due to there being a fixed boundary atO = 0 so all

perturbations increased the mean. Inspection of a histogram of the values ofO of indi-

viduals from many simulations (with different random seeds) of the same parameter set
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Figure 6.7: Parental resource contributions to offspring over different values of resource
uptake units (m) and different resource fluctuation coefficients. Mesha (dashed lines)
shows the predicted value ofOessusing Equation (6.11), meshb shows the corresponding
values found by the simulation runs. Other values used were:Rc = 0.005,R1 = 1 and
Rr = 0.1.

(Rc = 0.001,Rr = 0.1, m= 5, η = 1.3) revealed an exponential distribution (not shown).

While the mathematical prediction gives a good minimum value, when resource unit

size is at a lower value (m< 5 in Figure 6.6 andm< 2 in Figure 6.7) and resource fluctua-

tions are relatively high (> 10%) then the simulations give significantly greater values. To

check this wasn’t due to the simulations taking a long time toconverge, simulations were

run on sample points over much longer time periods. These simulations showed little or

no difference indicating that the values shown had fully converged.

Considering the impact of resource fluctuations both figures give similar results. The

values ofOess generated through mathematical prediction (mesha in Figure 6.6) are

higher when the amplitude of resource fluctuation is lower and decrease as the ampli-

tude of resource fluctuation increases: the mean contribution in (over allm) decreases

from 0.038 at low fluctuation values to 0.0074 at high fluctuation values. In the simula-

tions the decrease ofOessis evident as fluctuations increase, unless the value ofm is low

(as already discussed).
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6.3.2 One vs two-parent competitions

In the previous section I have outlined a method for predicting the stable amount of re-

sources (Oess) that parents may contribute to offspring. In this section Iwill look more

closely at the number of resources a population with the two-parent strategy must con-

tribute to offspring to dominate an optimal population withthe one-parent strategy (which

shares all its resources with its offspring).

6.3.2.1 Stable resources

To show how the growth rates of both populations are affectedby changed values of

O, I consider the growth rates of monomorphic one- and two-parent populations with

different values ofO under stable environmental conditions. Considering the one-parent

population, Equation (6.6) was used to generate populationgrowth rates for different

parental resource contributions. I look at the case where the population is close to its

equilibrium level, i.e.,u = u0, so I use Equations (6.3) and (6.5). Different values ofO

are plotted in Figure 6.8.
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Figure 6.8: The growth rate of the one-parent strategy depends on the resource contri-
bution factorO. The graph shows plots of the expected population growth rate G for
clonally [Equations (6.6)] reproducing individuals with varying resource contributions.
The maximum growth rate of the one-parent population is marked asA. Parameters used
were:Rc = 0.01,R1 = 1, Rr = 0.1 andm= 2.
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The ESS for the one-parent population is the maximum growth rate (O = 0.5). This

is marked as pointA (G = −8.08×10−5) on the figure. Any two-parent population that

has higher growth than this value will dominate a one-parentpopulation. To understand

how the growth rate of the two-parent population changes with different values ofO, I

plot the growth rate predicted by Equation (6.7) [again using Equations (6.3) and (6.5)] in

Figure 6.9.
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Figure 6.9: The growth rate of the two-parent strategy also depends on the resource con-
tribution factorO. The graphs show plots of the expected population growth rate G for
two-parent [Equation (6.7)] reproducing individuals withvarying resource contributions.
The maximum growth rate of the two-parent population is at point B and the maximum
one-parent growth rate is shown to enable comparison between the two strategies. The
two-parent population can dominate if its resource contribution is greater thanC and less
thanD. Parameters used were:Rc = 0.01,R1 = 1, Rr = 0.1 andm= 2.

The figure shows that the two-parent population will have a greater growth rate than

any one-parent population, provided its resource contribution lies between pointsC (G =

−8.08× 10−5, O = 0.0882) andD (G = −8.08× 10−5, O = 0.5784). The two-parent

growth rate function [Equation (6.7)] is only shown betweenO = 0.0 andO = 0.68. For

values ofO > 0.68 the total resources contributed to new offspring is greater thanR1.

At the value ofu used to generate the growth rates in Figures 6.9 and 6.8 all growth
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rates are below zero. While individuals receive as many resources per timestep as they

expend on living cost (Rc), this does not account for the cost of reproduction occasionally

expended when an individual reaches its upper threshold. Different values ofu were tested

using Equations (6.2) and (6.4). Similar results were obtained, however as the value of

u was increased the value ofO at pointC (the point above which the individuals with

the two-parent strategy must donate to dominate a one-parent population) shifted to the

right. When the value ofu was decreased, the value ofO at pointC decreased. Since

variations inu are important, in the next section I consider how one- and two-parent

strategies perform under fluctuating resource conditions.

6.3.2.2 Fluctuating resources

The results in the previous section indicate that dominanceof the two-parent strategy may

be determined by the value ofOess, but this depends on the level of resource availability.

When resource availability fluctuates between two values (u+ where the population grows

andu− where the population declines), Corollary 3 from Appendix A can be used to show

which strategy will dominate. The two-parent strategy willdominate when

Ψtwo > Ψone .

The value ofΨtwo is calculated using the value ofOess (see Section 6.3.1.2) and this is

compared with the maximum value ofΨone (tested over various values ofO from 0 to 1

in steps of 0.01) in Figure 6.10.

The figure shows that the two-parent strategy will dominate when the amplitude of

resource fluctuations is high enough. In this case, the resource fluctuation coefficient

must be higher than 1.1 (where the line for the two-parent strategy crosses the line of the

one-parent strategy). This indicates that there is a minimum value of resource fluctuations

needed for dominance of the two-parent strategy.

To confirm this prediction that higher levels of resource fluctuations are necessary for

dominance of the two-parent strategy I have tested it over a wide variety of parameters

with both the mathematical analysis used in Figure 6.10 and simulation runs of mixed

populations of individuals with the one- and two-parent strategies.

Each simulation started with a population of 300 agents. Theresources introduced into

the environment flipped between two states: the sparse resource state (u = u−) was trig-

gered when the population level went above 400 and the abundant resource state (u= u+)

was triggered when the population levels went above 200. Allindividuals started with a

random resource level generated from a flat distribution between 0 andR1. The repro-
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Figure 6.10: As the amplitude of resource fluctuations increases, the two-parent strategy
starts to dominate the one-parent strategy. Parameter values used were:Rc = 0.001,R1 =
1,Rr = 0.1 andm= 7.

duction strategy of individuals (the resource contribution O and whether the individual

reproduced with the one- or two-parent strategy) was definedby its digital chromosome

as outlined in Section 6.2.3. At each time step the fraction of individuals which repro-

duce with another parent to those which reproduce alone was recorded. The simulation

was stopped when the population was dominated completely byone of the reproduction

strategies, or 10 million timesteps had elapsed. The final fraction of individuals with the

two-parent strategy was recorded for 10 simulations run with the same parameters but

with different random seeds.

Simulations were run over varying values ofRr andm. The resource fluctuation co-

efficient (η) was set at one of the values: [1.0010 1.0200 1.0394 1.0592 1.0793 1.0998].

The results all showed that the one-parent strategy was dominant at lower resource fluctu-

ation amplitudes and the two-parent strategy was dominant at higher resource fluctuation

amplitudes.

Mathematical predictions were also made by using Equation 6.9 over the same range

of values ofη . As with the single case of Figure 6.10, the value ofΨtwo was calculated us-

ing the value ofOess, see Section 6.3.1.2. This was compared with the maximum value of

Ψone, calculated over a range of values ofO from 0 to 1 in steps of 0.01. In harmony with

the results from the simulations, the mathematical model demonstrated that the one-parent

strategy would dominate at lower values ofη while the two-parent strategy dominated at
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higher values.

To compare the results of the mathematical treatment with the results of the simula-

tions, I calculate the minimum resource fluctuation amplitude required for dominance of

the two-parent strategy – I dub this parameterηmin. For the mathematical treatment this

is the smallest value ofη whereΨtwo > Ψone (calculated over a range of values ofη from

1.0001 to 2.0 incremented by 0.0001). For each simulation run, ηmin is the smallest value

of η where the fraction of individuals with the two-parent strategy was greater than 0.9.

Mean values ofηmin are plotted in Figure 6.11 for the different values ofm (each mean

is over a range of values ofRr). Similarly, mean values ofηmin are plotted in Figure 6.12

for the different values ofRr (each mean is over a range of values ofm)
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Figure 6.11: Plot of the minimum resource fluctuation coefficient (ηmin) required for dom-
inance of the two-parent strategy over the one-parent strategy. Each point is an average
over a range of values ofRr, the standard error is shown in the error bars. The cost per
timestepRc was 0.001.

The results from both the mathematical predictions, and thesimulations, show similar

trends. The value ofηmin is positively correlated with the value ofm in both the math-

ematical predictions and the simulations (Figure 6.11). The value ofηmin is negatively

correlated with the value ofRr in both the mathematical predictions and the simulations



Chapter 6 135 The origins of sexual reproduction

0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.02

1.04

1.06

1.08

1.1

1.12

Cost of reproduction  R
r

M
in

im
um

 r
es

ou
rc

e 
flu

ct
ua

tio
n 

re
qu

ire
d 

fo
r 

do
m

in
an

ce
 o

f t
w

o−
pa

re
nt

s 
 η

m
in

 

 

Simulated results
Mathematical prediction

Figure 6.12: Plot of the minimum resource fluctuation coefficient (ηmin) required for dom-
inance of the two-parent strategy over the one-parent strategy. Each point is an average
over a range of values ofm, the standard error is shown in the error bars. The cost per
timestepRc was 0.001.

(Figure 6.12). The results from the mathematical treatmentdiverge strongly from the

simulations at higher values ofm(> 7) and lower values ofRr(< 0.15).

6.4 Discussion

The contribution, toward explaining the origins of sexual reproduction, of the model pre-

sented in this chapter is that it demonstrates the plausibility of the theory that two-parent

reproduction may dominate due to the way parents allocate resources to their offspring.

The model is a simple one, merely considering the most basic aspects of reproduction –

individuals take up resources from the environment, produce offspring and share some

of their resources with their offspring. The model does not require any other secondary

benefits of sexual reproduction such as genetic mixing or division of labour. It compares

like for like with all individuals being the same in every respect except for the way they

reproduce.
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The model presented in this chapter compares the two-parentreproductive strategy

with the one-parent reproductive strategy. It demonstrates, in line with arguments based

on that evidence from the biological literature (see Section 6.1), that unpredictable re-

source fluctuations (due to biotic stress) are significant indetermining whether an indi-

vidual should reproduce with another parent or not. If a two-parent strategy will domi-

nate the one-parent strategy then this should explain why hermaphrodites will not invade

a population of individuals that selfishly contribute resources to offspring. Why there is

an imbalance in resource contributions between males and females is therefore a separate

question, but is unlikely to be explained by simple consequences of two-parent reproduc-

tion such as genetic mixing.

In the next section I give a summary of the model and its results. I then review the

results in light of the argument concerning the cost of sex. The following section includes

a discussion of the application and relevance of the model within biology and other fields.

Finally, I outline some of the limitations of the model.

6.4.1 Summary of the model and results

While the major result of this work does show that the two-parent strategy can dominate,

the results also predict that several factors are significant. These are:

(i). Resource fluctuations.

(ii). The cost of reproduction (Rr).

(iii). Constraints on resource contributions to offspring;(iv) the value of the resource

uptake unit (m) .

(iv). The amount of resources used in one timestep (Rc).

In this section I consider these factors in more detail.

The first factor identified by the model as significant is resource fluctuations. To

explain why they are significant, I turn to Figure 6.10. This demonstrates that the one-

parent strategy is more vulnerable to increases in the amplitude of resource fluctuations

increases than the two-parent strategy. Since individualswith the two-parent strategy

contribute less resources to offspring, they maintain a higher internal level of resources

and are less vulnerable to periods of low resources. These mathematical predictions give

qualitatively similar results to those generated by simulations (see Figures 6.11 and 6.12).

The cost of reproduction (Rr) is an important factor as shown by Figure 6.12. As the

cost of reproduction increases, collective reproduction becomes increasingly viable. This
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is not surprising as one of the main features of the model is that, in two-parent reproduc-

tion, the two parents can share the cost of reproduction. I have considered the introduction

of an extra cost of collective reproduction in Chapter 4. Thisindicates that two parents

may still dominate even when the upfront cost of sexual reproduction is greater than the

up-front cost of one-parent reproduction. Further modelling will confirm if this is still the

case when two parents contribute less resources to their offspring.

The value of the resource uptake unit from the environment (m) was shown to be sig-

nificant in the simulations (see Figures 6.6, 6.7 and 6.11). Since, in this model, resources

are encountered in discrete units, in one timestep an individual will either increase its re-

sources by a fixed amount or decrease by a smaller amount. The ratio between these two

values is set bym. Assuming that the mean level of resources over realisations is the same,

a higher value ofm will mean there is a greater variance over realisations. This means

that strategies that have very low levels of resource are especially vulnerable over a short

time-scale. As the value ofm is increased, two-parent reproduction therefore becomes

less viable (see Figure 6.11).

As far as parental contributions are concerned, the effect of increasingm can mean

that resource contributions from two parents can increase (see Figure 6.7). Higher values

of mmean that there is an increased variance of resource supply (over a short time-scale)

and therefore a harsher environment. This harsher environment means that parents must

contribute more to offspring. When the resource fluctuation coefficient (η) is at a higher

value and resource availability fluctuates over a longer time-scale, the opposite is true:

lower values ofmmean that parents contribute more to their offspring, especially when the

cost of maintenance is low (see Figure 6.6). Perhaps when theamplitude of fluctuations

is higher, the high variance can be beneficial. Since all offspring are vulnerable, a higher

variance of resources over the offspring can mean that one ofthe offspring may survive –

so the higher value ofmcan make these conditions less harsh. Further analysis should be

done to investigate this further.

The final factor of importance was the resources used per timestep (Rc). This was

shown to be significant in comparisons between the mathematical treatment and simula-

tions in Chapter 3. It effectively describes how discrete or continuous the model is. Only

two different values were used in the simulations presentedin this chapter – one that is

known to be accurate with the ranges ofm used (Rc = 0.001 andRc = 0.005). Further

investigations are needed to simulate over many different values ofRc to fully understand

the role of this parameter.
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6.4.2 The cost of sex?

The traditional argument concerning the cost of sex can be considered in light of the

results presented here. The argument, as presented in the introduction, states that each

sexually reproducing parent will only receive half an offspring each time it reproduces

rather than the whole offspring produced by an asexually reproducing parent. This is re-

flected in the model in this work, however the model here goes further in that it analyses

growth rates during abundant and sparse resource periods. As with the model in the pre-

vious chapter, the growth rate of individuals with a one-parent strategy is faster than those

with a two-parent strategy during abundant resource periods. However, when resources

are sparse, the one-parent strategy declines at a slower rate. The model predicts that, un-

der some circumstances, this slower rate of decline means that the two-parent strategy is

advantageous over the one-parent strategy.

At the very least, the model indicates that the traditional arguments concerning the cost

of sex need reviewing. The original cost of sex argument is simple. The model presented

here takes the same original premise that sexually reproducing individuals receive half as

many offspring as asexually reproducing individuals. Equation 6.9 (along with Theorem 2

in Appendix A) can be used to predict when the slower reproducing two-parent reproduc-

tive strategy is more advantageous. It shows, by simply analysing population flux rates

over both growth and declining phases, that there are benefits to reproducing collectively

even when one only receives half of an offspring. This indicates that sexual reproduction

may not be that problematic (or even paradoxical) to explain.

The extreme variant of the cost of sex argument argues that when males contribute

almost no resources to their offspring, there is an obvious cost to the population to pro-

ducing them with no obvious benefits. While such cases are not analysed in any detail in

this work, two points can still be made. Firstly, the model predicts that the valueOess is

a lower limit to the number of resources individual can contribute. When all individuals

contributeOess, the lineage of an individual that contributes less resources will be inferior.

This indicates that since males contribute their genes to offspring, it must be worthwhile

for them to contribute resources as well. The model predictsthat in most cases males

should make some contribution. The second point is to note that there may be a stable

strategy with males that contribute very little but in general the two parents contribute

enough to survive: inspection of Figure 6.3 shows that such astrategy may be plausible.

One explanation of the origin of males concentrates on the relative sizes of gametes

(Parker, Baker and Smith 1972, Randerson and Hurst 2001). This argues that anisogamy

(where gametes are of different sizes) may be explained because there are two extremes

for fitness of gametes. There are opposing selection pressures between producing a large



Chapter 6 139 The origins of sexual reproduction

number of small vulnerable gametes or a small number of largegametes which have

increased chances of survival. Unfortunately, the models of parental contribution in Sec-

tion 6.3.1.1 showed an exponential distribution for resource contribution levels. For the

model to show different selection pressures for large and small gametes, one would ex-

pect two humps in the distribution. Further investigationsare needed to develop a model

which might reflect better the development of gametes.

Finally, I consider the case where a colony of females that produce non-contributing

males (i.e.,O = 0) has an inferior strategy to an parthenogenetic female. Ifthis colony is

being invaded by hermaphrodites, a female that produces contributing males (O = Oess)

will resist such an invasion. The contributing males, spreading this ‘contributing’ gene.

Further

While the model does show that it is plausible that two-parentreproduction of the type

modelled may well have been significant in the origins of sexual reproduction, there are

some caveats and further issues that must be addressed. The model is abstract and does

not currently capture many of the features of biological systems, e.g., sexes. Furthermore,

it does not show that sexual reproduction is always optimal;the conditions in which it is

and is not optimal are discussed in more detail in the next section.

6.4.3 Biological applications of the model

The most appropriate biological analogue to the model is sexual reproduction in metazoa.

The model is less appropriate for analysing sexual reproduction in protozoa or plants.

Protozoa are single celled organisms which, when they sexually reproduce, fuse them-

selves with their sexual partner. Sexual reproduction in plants is also difficult to explain

because it is practically impossible for a male flower to contribute anything more than a

small amount of DNA to offspring produced with a female plant. Further modelling is

necessary to investigate these two interesting problem domains.

The work identifies several important factors that are significant for the dominance of

a two-parent strategy over a one-parent strategy. These arelisted in Section 6.4.1. These

factors are now discussed in order, with metazoan reproduction in mind.

The causes of resource fluctuations in biological systems are varied. The two general

reasons outlined in the introduction are down to biotic and abiotic stress. Abiotic stress

is generally caused by environmental conditions such as daily and seasonal cycles. Biotic

stress is caused by changes in the environment of prey and competitors. It has been

hypothesised (Glesener and Tilman 1978) that biotic stresses are more unpredictable than

abiotic stresses and will be more likely to cause periods of abundance and starvation for
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the organisms. It is not possible to develop simple behavioural strategies to minimise

the effects of unpredictable resources due to biotic stress. This can lead to population

increases and declines such as those modelled in the work in this chapter. In line with

the biological data outlined in Section 6.1 the model (see Figures 6.10, 6.11 and 6.12)

predicts that stresses that can cause large population increases and decreases can lead to

two-parent reproduction being an optimal strategy. However, when unpredictable stresses

are low, parthenogenesis is more likely to be observed.

The upfront cost of reproduction was found to be a significantfactor in the model – a

greater upfront cost of reproduction means that two-parentreproduction (where the costs

can be shared to some extent) will be more likely to dominate.For a metazoan the cost of

reproduction is not merely the cost of producing gametes andfusing them however. The

cost of reproduction must include all resources expended toward making that offspring

a fully functioning copy of the parents and able to fend for itself. With single celled

organisms this process is relatively simple but for multicellular organisms it is complex

and costly. Further research is needed to consider whether the cost of reproduction is

indeed significant in many sexually reproducing metazoan systems.

In my model, an individual may contribute further resources, on top of the upfront cost

of reproduction, toward its offspring. Looking at biological examples, it is hard to see how

many metazoa, especially egg laying metazoa, can really finda way to make much extra

contribution however. Metazoa generally cannot split their whole body or body parts into

two halves in the way single celled organisms can. It is also time consuming and danger-

ous for parents to spend too long nursing offspring. Therefore, constraints to the levels

of resource contributions to offspring seem reasonable. However, further investigation is

required to see if this factor is actually important in the origins and maintenance of sex.

The values of the resource uptake unit (m) are also shown to be significant. As outlined

in Section 6.4.1, this variable affects the variance of resource uptake on a short timescale

(within the lifetimes of individuals). The predictions arethat parental resource contribu-

tion is generally greater when variance is higher, except when there are large fluctuations

on a long timescale (outside the lifetimes of individuals).These predictions should be

compared with empirical data.

6.4.4 Limitations of the model

One limitation of the model is the fact that it does not consider what happens when there is

an increased cost of two-parent reproduction. This might represent the costs of mating and

locating partners. In fact the relationship between an extra up-front cost of reproduction
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and the viability of reproduction between two parents was discussed in Chapter 4. The

analysis in that chapter showed that two-parent reproduction can still be viable when this

extra cost is as much as 1/3 of the total cost of reproduction.Further work is needed to

incorporate an extra upfront cost of reproduction into the model presented in this chapter.

The model does also contain some biologically unrealistic assumptions regarding the

life histories of individuals which may be significant. Specifically, the model does not

include aging, and reproduction happens instantaneously.Aging individuals might con-

tribute more resources to offspring (since investment in itself has a lower payoff). Con-

versely, an individual running low on resources may stop a reproductive effort, or restrict

resource contributions to offspring. Both of these factorscould be considered in future

modelling work.
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Conclusions

The main topic of this thesis is the explanation of the major evolutionary transitions. I ask

why an individual that reproduces on its own might evolve to one that reproduces as part

of a larger group. Rather than following the dominant current theoretical approach (for at

least the later transitions), inclusive fitness, the modelsI have presented (in Chapters 3, 4,

5 and 6) show the potential of an alternative theory. This is that an individual placed in an

unpredictable and finite environment may hedge its reproductive output by investing in a

higher reproductive process.

This principle of hedging one’s reproductive output is demonstrated in several models

in the thesis. First, in the simplest model, I look at individual reproduction in Chapter 3.

This shows how an individual may sacrifice its fecundity (andso reduce its direct fitness)

so that it is less vulnerable to fluctuations in resource availability. This recreates results

from another model (Tuljapurkar 1990a) using a different mechanism which is relevant

to questions concerning the allocation of resources to offspring in variable environments.

The chapter shows how there is a trade-off between extra costs of maintenance and repro-

duction which may be incurred from maintaining higher resource levels.

The model in Chapter 3 is not directly relevant to the major evolutionary transitions,

however the basic principle that an individual should reduce its fecundity to make itself

less vulnerable is shown to be relevant to the transitions tomulticellularity and eusociality

in the next chapter, Chapter 4. This shows how an individual can be less vulnerable if it

reproduces collectively rather than reproducing on its own. The chapter shows how there

is a trade-off between the number of parents and the collective up-front cost of producing

new offspring – this may be important in explaining why most multicellular animals are

sexual while a few are eusocial.

Most importantly, Chapter 4 provides a proof of concept showing how an individual

may benefit from investing in a higher reproductive process.In fact, regarding the dis-
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cussion on the increase in individual complexity in Section1.1, I have argued that such

investment is accretive (see Section 4.3) as investment in ahigher reproductive process

can happen in many different ways. Thus, the models indicatethat there may be more

than just random drift (as proposed by Gould) at play in the evolution of the complex

individual.

The transition to multicellularity is discussed in more detail in Chapter 5. Based on

the behaviour of the slime mouldD. Discoideum, the chapter considers the case where

individuals have very low resources and are close to dying. They may then hedge their

last few resources by gambling them against a large reproductive pot. Since the off-

spring are genetically homogeneous, this model shows how there can be a transition from

non-aggregating genetically heterogeneous organisms into aggregating genetically homo-

geneous organisms – I argue that this is an important first step in the transition to multi-

cellularity.

Finally, I consider the case where individuals may be more selfish in the amount of

resources they contribute to their offspring. Based on the model in Chapter 4, the model

in Chapter 6 addresses the transition to sexual reproductionin more detail. It relaxes

the assumption requiring individuals to share resources equally with their offspring. The

sexual reproduction strategy is still viable when the amplitude of resource fluctuations is

increased.

7.1 Social evolution

In this section, I consider how the work I have presented contributes to social evolutionary

theory. In general terms, the models presented here all demonstrate cases where individ-

uals hedge their direct fitness for some later benefit. I dub this hedged fitness. Since an

individual must reduce its fitness, this is a social, or cooperative, act. Table 7.1 has a sum-

mary of the models presented in this thesis demonstrating how they can be interpreted in

terms of cooperation.

Given that the models here have shown the potential of hedging of reproductive bets,

I suggest that social evolutionary modellers should consider whether the more general

fitness hedging is an important factor in their models. Further to this, I suggest that the

comparison of growth/decline rates using Theorem 2 in Appendix A may be applicable

in future models.

Theorem 2 and the more simple Corollary 3 in Appendix A (and illustrated in Fig-

ure 1.2) encapsulate the basic principles of hedged fitness.Basically they show that,

given that there is no overall growth in population, a lineage with cooperative genes will
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Chapter Uncooperative individuals Cooperative benefits
3 Reproduce more quickly

(and monopolise resources)
Reserve resources so less vulnerable to low
resource periods

4 Reproduce on their own Save resources through sharing reproduc-
tive investments, also less vulnerable

5 Doesn’t join the macrocyst Avoids harsh season and has a better chance
of reproducing

6 Very low resources invested
in offspring

Increased investment is a better individual
strategy when total investment is very low

Table 7.1: Non cooperative behaviour in the models in this thesis and the advantages of
cooperating.

dominate if the ratio of its growth rate to decline rate is greater than that of individuals

with uncooperative genes. Thus, an investment in a social institution may be profitable

if there is some later payback – even outside the lifetime of the organism making the in-

vestment. In the next section I compare the idea of hedged fitness with the current social

evolutionary theory of inclusive fitness and the current bethedging theory.

7.2 Comparison with other theory

Two important modelling directions outlined in Chapter 1 were inclusive fitness theory

and bet hedging theory. In this section I compare the conceptof hedged fitness presented

here with those other perspectives.

In inclusive fitness theory (see Section 1.3.1.1), an individual will reduce its (Hamil-

tonian) fitness if it will benefit another related individualin the same population. As

outlined in Section 1.4.3, it seems unlikely that this theory will explain why an individ-

ual will invest resources in a related individual’s offspring and not its own 100% related

offspring. The benefit would have to far outweigh the costs. Conversely, in the hedged

fitness models presented in Chapters 4, 5 and 6, individuals don’t reduce their fitness so

that another individual in the population will benefit. Instead I have shown that if they

invest indirectly in their own offspring through a higher reproductive process, then this

strategy can be better than reproducing individually.

The perspective outlined in Section 1.5 advocates a different approach to fitness. Since

fitness must be calculated over a variety of different environments, it is the geometric

mean growth rate over these many environments that is important. Interestingly, this rate

can be seen as the fitness of a complete lineage. Thus, lineages should be compared with

each other through measuring invasion fitness, not through measuring the growth rate of



Chapter 7 145 Conclusions

individuals in one environment.

From this perspective, combined with the theory put forwardin this thesis, we can

see how one lineage may dominate another, but yet always havea lower fecundity. If

we term describe lineages as groups, this is effectively demonstrates how group selection

can work in circumstances position that has long been arguedagainst [e.g., by Williams

(1966a)]. The best lineages/groups are selected for based on their performance in many

environments.

The long-run growth rate, outlined in Section 1.5.1, of an organism can be calculated

by using the geometric mean. Theorem 2 (and Corollary 3) in Appendix A is compared

with the geometric mean approach in Section 3.4.2. Essentially the key difference is that

Theorem 2 models the population under density dependence – which can have greater

biological realism, including when considering the conditions under which the major evo-

lutionary transitions occurred. This means that, rather than picking growth rates from a

distribution and multiplying them together, Theorem 2 predicts with certainty that one

lineage may dominate another when both are under density dependence.

7.3 Future directions

The discussion in the previous section of the differences between hedged fitness and in-

clusive fitness does not show that the two theories are incompatible. Hedged fitness is

concerned with the transfer of fitness to copies of one’s genes in the future and inclusive

fitness is concerned with the transfer of fitness to copies of genes in the present. Hedged

fitness demonstrates why one may invest in a higher reproductive process. A plausible

higher reproductive process is investment in a related individual’s offspring. Investiga-

tions into this would require some unification of inclusive and hedged fitness. It may give

important new insights into the origins and maintenance of eusociality and multicellular-

ity and perhaps some of the other major evolutionary transitions.

The discussion of social evolution in Section 7.1 implies that fitness hedging (per-

haps allied with inclusive fitness) may have significance in the transition to society (see

Table 1.1). It seems plausible that there may be some benefit to investing in social institu-

tions which pay off in the long term. A systems perspective tothe modelling of societies

has been advocated (Epstein and Axtell 1996, Silverman and Bryden 2007). It was argued

that by studying artificially grown societies (in silico), we may be able to understand our

own social systems better. Fitness hedging may give some important insights into the

methods we may require to successfully grow societiesin silico.

Extensions to the modelling work on individual reproduction in Chapter 3 mainly in-
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volve making the models more biologically realistic. This might involve making models

of the growth of single celled organisms, perhaps in a chemostat. An obvious further

extension would be to investigate the fecundity of multicellular organisms, applying the

sexual growth equations from Chapter 6 (and analysing the effect of changing the repro-

ductive thresholdR1). Such models would lend themselves well to the inspirationfor,

analysis of, and comparisons with empirical investigations.

The purpose of Chapter 4 was to show the viability of a model of collective reproduc-

tion. To develop this approach, it would be interesting to model how artificial organisms

may reproduce collectively and what increases in complexity may be gained from doing

this. It may be possible to show a major evolutionary transition in silico – where individ-

ually reproducing agents come together to form a larger unitand reproduce as part of this

larger unit.

One problem with the work modellingD. Discoideumin Chapter 5 is that the whole

system may collapse due to cheating individuals which, while they broadcast cAMP, do

not aggregate and instead wait for others to join. An investigation of this would improve

the model. Slime mould is not the only organism to form macrocysts, perhaps a similar

modelling approach may be used to investigate the formationof biofilms in bacteria.

The most obvious extension to the work on modelling sexual reproduction (in Chap-

ter 6) is the inclusion of a model of two different sexes. Thiswould question if there

was any advantage to having two different mating types whichinvest different amounts

of resources in their offspring. Further to that, I have not investigated, in detail, the case

where an asexual parent has an upper limit to the amount of resources it may contribute

to its offspring. It is likely that limiting the resources asexual parents may contribute will

mean that the sexual strategy is more likely to dominate.

The model of sexual reproduction I have presented is focusedmainly on the origin

of sex in metazoa. Another interesting extension would be toconsider the origins and

maintenance of sex in plants and unicellular organisms. Theorigins of sex in unicellular

organisms is close to the macrocyst formation in Chapter 5 – perhaps such a model could

resolve why multiple individuals come together to form a macrocyst rather than forming

individual microcysts.

7.4 Conclusion

For this thesis I set out to develop models that would explainthe major evolutionary

transitions. While I have fallen short of this extremely ambitious goal, the work I present

here does take some important steps. At its core, the work addresses what I have argued
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to be a central problem of the major evolutionary transitions – why might an individual

contribute toward a higher reproductive process, rather than invest in its own immediate

reproductive success?

The answer I have given to that question is that an individualcan increase its long term

fitness by hedging its short term fitness through investing ina higher reproductive process.

I have studied the transitions to sex and multicellularity in more detail here, showing that

the collective strategy can be beneficial – especially when fluctuating conditions mean

populations can rise and fall.

While I have only considered two transitions in biological detail, it looks promising

(see Section 7.3) that this theory may well be applicable to other major evolutionary

transitions. Furthermore, this theory may well be of use in the development of computer

models that demonstrate artificial transitions.
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Appendix A

Hedged fitness theorem

Take two positive functionsa(t) andb(t), a,b∈ ℜ+. These depend on a continuous, but

not necessarily differentiable, stochastic function of timeu(t) (the dynamic characteristics

of u are purposefully left unknown) according to the equations:

da
dt

=











(u−u0)g+
a a ,u > u0

0 ,u = u0

(u−u0)g−a a ,u < u0

(A.1)

db
dt

=











(u−u0)g
+
b b ,u > u0

0 ,u = u0

(u−u0)g
−

b b ,u < u0 .

(A.2)

Whereu0, g+
a , g−a , g+

b , g−b are constants (g+
a , g−a , g+

b , g−b > 0).

I assume thata andb are not constant (i.e., there is a period of time whereu 6= u0)

but thata+ b has no overall positive or negative trend. This means that, over time, any

increase ina+ b will be matched by a corresponding decrease at some later point (and

vice versa). Theorem 1 shows that ifg+
b /g−b is greater thang+

a /g−a then, for each time

period whereb+ a starts and finishes at the same level, the ratio ofb to a will increase.

Theorem 2 shows that, ifg+
b /g−b is greater thang+

a /g−a then, as the length of time the

functionsa andb are dynamic tends to infinity,b/(a+b) → 1.

There is a simpler case where the system simply fluctuates between two regimes with

fixed rate of change, a growth regime and a decline regime. Take two positive functions

a∗(t) andb∗(t), a∗,b∗ ∈ ℜ+.

da∗

dt
=

{

g+
a a∗ ,growth regime

−g−a a∗ ,decline regime
(A.3)
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db∗

dt
=

{

g+
b b∗ ,growth regime

−g−b b∗ ,decline regime.
(A.4)

How the system fluctuates is between the two regimes is not determined but I take that

a∗ + b∗ has no overall positive or negative trend. Corollary 3 shows that if g+
b /g−b is

greater thang+
a /g−a then, as the length of time the functionsa∗ andb∗ are dynamic tends

to infinity, b∗/(a∗ +b∗) → 1.

To prove the theorems a lemma is required. In Lemma 1 two phases are considered

which may or may not be connected (see FigureA.1): an increasing phase where botha

andb are increasing (u(t) > u0) and a decreasing phase where botha andb are decreasing

(u(t) < u0). It doesn’t matter which phase comes first, but there are three other conditions:

(i) the value ofa+b at the beginning of the primary phase is equal to the value ofa+b

at the end of the secondary phase; (ii) the value ofa+b at the end of the primary phase

must be equal to the value ofa+b at the beginnning of the secondary phase; (iii) at the

beginning of the secondary phase the ratio ofb to a must not be less than its value at

the end of the primary phase. Lemma 1 states that ifg+
b /g−b is greater thang+

a /g−a then

the ratio ofb to a at the end of the secondary phase will be greater than it’s value at the

beginning of the primary phase.

Theorem 1 shows that for each time period whereb+a starts and finishes at the same

level, the ratio ofb to a will increase. This is done by specifying an algorithm for analysis

of a time series ofa+b. The time series is broken up into segments and subsegments as

illustrated by Figure A.2. Each segment has an increasing and a decreasing phase. The

theorem shows that all segments ultimately contain subsegments where the end point of

the primary phase is the same as the start point of the secondary phase. By recursion, and

Lemma 1, it is shown thatb must increase relative toa for all segments.

Using similar logic to Theorem 1, Theorem 2 extends the algorithm from Theorem 1

so that the dynamic portion of the time series is covered by aninfinite number of segments.

Sinceb increases relative toa in each segment, I therefore only need to prove that the only

upper bound tob/(a+b) is 1.

Lemma 1 Firstly consider the increasing phase, u(t) > u0. At the beginning of the in-

creasing phase assume a= ai and b= bi. At the end of the increasing phase, assume both

variables have increased to a= aj and b= bj (i.e., aj > ai and bj > bi). Secondly, consider

the decreasing phase, u(t) < u0. At the beginning of the decreasing phase assume a= aα

and b= bα . At the end of the decreasing phase, assume both variables have decreased to

a = aβ and b= bβ (i.e., aα > aβ and bα > bβ ). By condition (i), ai +bi = aβ +bβ . By

condition (ii), aj +bj = aα +bα . If g+
b /g−b > g+

a /g−a then,
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0 T

Time

a+
b

a  + b
1 1

2

a  + b

a  + b
3 3

44

Decreasing

phase

Increasing
primary

secondary
phase

a  + b
2

Figure A.1: A trace ofa+b showing two phases. The two phases are between the dashed
vertical lines shown on the trace. The primary phase is matched by a corresponding poste-
rior secondary phase moving in the opposite direction. The two phases are not connected.
In line with conditions (i) and (ii) of Lemma 1,a1 +b1 = a4 +b4 anda2 +b2 = a3 +b3.
Condition (iii) for Lemma 1 requires thatb3/a3 ≥ b2/a2.

Case 1.Wwhere the increasing phase is before the decreasing phase:(bj/aj) ≤ (bα/aα)

implies(bβ /aβ ) > (bi/ai) and

Case 2.Where the decreasing phase is before the increasing phase:(bβ /aβ ) ≤ (bi/ai)

implies(bj/aj) > (bα/aα).

(The proposition in both cases corresponds to condition (iii).)

Proof Dividing Equation (A.1) by Equation (A.2) gives:

da
db

=



























ag+
a

bg+
b

,u > u0

ag−a
bg−b

,u < u0

(A.5)

First consider the increasing phase where variablesa andb start fromai andbi and in-

crease toaj andbj (u > u0). Integrating Equation (A.5) forai ≤ a ≤ aj andbi ≤ b ≤ bj
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1

2
a  + b

1 1

a  + b
22

0 T

Time

a+
b

a  + b

a  + b
3 3

44

4

6

5

3

Figure A.2: A trace ofa+ b broken up into segments with each segment having two
phases. Both phases are between the same two horizontal lines. Each primary phase is
matched by a corresponding posterior secondary phase moving in the opposite direction.
The dashed line shows the value of(a+b)t1. Segments are numbered 1-6, segment 2 is a
subsegment of 1,segments 3 & 4 are subsegments of 2, and segment 5 is a subsegment of
3. The four points of segment 2 are marked: the increasing phase froma1 +b1 to a2 +b2

is matched by the decreasing phase froma3 +b3 to a4 +b4.

gives

∫ ai

aj

1

g+
a a

da =
∫ bi

bj

1

g+
b b

db

1

g+
a

ln(aj/ai) =
1

g+
b

ln(bj/bi) . (A.6)

Secondly consider the decreasing phase where variablesa andb start fromaα andbα

and decrease toaβ andbβ (u < u0). Integrating Equation (A.5) foraα ≤ a ≤ aβ and

bα ≤ b≤ bβ gives

1

g−a
ln(aβ /aα) =

1

g−b
ln(bβ /bα) . (A.7)

Multiplying Equation A.6 byg+
b and Equation A.7 byg−b , adding them together and
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rearranging (using the property that lnφ/ψ = lnφ - lnψ) gives:

ln

(

bj

bα

)

+ ln

(

bβ

bi

)

=
g+

b

g+
a

ln

(

aj

ai

)

−
g−b
g−a

ln

(

aα
aβ

)

. (A.8)

To prove each case of the lemma, it is assumed that each conclusion is false and

then shown that there is a contradiction. The negation of theconclusion of Case 1 is the

proposition of Case 2 and vice versa. Therefore, it is only necessary to assume(bβ /aβ )≤

(bi/ai) and (bj/aj) ≤ (bα/aα) and prove there is a contradiction. To prove there is a

contradiction I show that, given these assumptions, the left hand side of Equation (A.8)

must be less than or equal zero and the right hand side must be greater than zero.

Consideringbβ /aβ ≤ bi/ai , all the variables are positive, so multiplying both sides by

aiaβ /bibβ gives:

ai/bi ≤ aβ /bβ

Adding one to both sides of the equation and then multiplyingboth sides bybibβ gives:

bibβ (ai/bi +1) ≤ bibβ (aβ /bβ +1)

bβ (ai +bi) ≤ bi(aβ +bβ )

But, by definition,ai +bi = aβ +bβ , so:

bβ ≤ bi

bβ /bi ≤ 1

ln(bβ /bi) ≤ 0 (A.9)

Similarly, consider(bj/aj)≤ (bα/aα). Again, all the variables are positive, so multiplying

both sides byaαaj/bαbj gives:

aα/bα ≤ aj/bj .

Adding one to both sides of the equation and then multiplyingboth sides bybαbj gives:

bαbj(aα/bα +1) ≤ bαbj(aj/bj +1)

bj(aα +bα) ≤ bα(aj +bj)

Again, by definition,aj +bj = aα +bα , so:

bj ≤ bα
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bj/bα ≤ 1

ln(bj/bα) ≤ 0 . (A.10)

Equations (A.9) and (A.10) therefore show that the left handside of Equation (A.8) is less

than or equal to zero.

To show that the right hand side of Equation (A.8) is greater than zero, I show that

the first term is larger than the second term. Consideringbβ /aβ ≤ bi/ai , add one to both

sides of the equation and multiply both sides byaiaβ . This gives:

aiaβ (bβ /aβ +1) ≤ aiaβ (bi/ai +1)

ai(bβ +aβ ) ≤ aβ (bi +ai)

ai ≤ aβ , (A.11)

using the fact thatai +bi = aβ +bβ . Similarly, consider(bj/aj) ≤ (bα/aα). Adding one

to both sides of the equation and multiplying both sides byajaα gives:

ajaα(bj/aj +1) ≤ ajaα(bα/aα +1)

aα(bj +aj) ≤ aj(bα +aα)

aα ≤ aj , (A.12)

using the fact thataj +bj = aα +bα . Dividing Equation (A.11) byaα (aα > 0) gives:

ai/aα ≤ aβ /aα

aα/ai ≥ aα/aβ . (A.13)

Also, dividing Equation (A.12) byai (ai > 0) and reversing it gives:

aj/ai ≥ aα/ai

which can be combined with Equation (A.13),

aj/ai ≥ aα/aβ

ln(aj/ai) ≥ ln(aα/aβ ) . (A.14)
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By defintiong+
b /g−b > g+

a /g−a . Since all these variables are positive this can be written:

g+
b

g+
a

>
g−b
g−a

. (A.15)

Combining Equation (A.14) with Equation (A.15) (by definition aj > ai andaα > aβ , so

both terms in Equation (A.14) are greater than zero) gives:

g+
b

g+
a

ln(aj/ai) >
g−b
g−a

ln(aα/aβ ) .

This shows that the right hand side of Equation (A.8) is positive. Since the left hand side

is less than or equal to zero, there is a contradiction. Therefore, the lemma is proved.

The theorems can now be proved.

Theorem 1 Over an arbitrary period of time of length T ,[t1 : t2], it is assumed that a and

b are not constant (i.e.,∃tx, ty ∈ [t1 : t2] : u(t) = u0, t ∈ [tx : ty]) and that there is no overall

change in their sum, i.e.,(a+b)t1 = (a+b)t2. If g+
b /g−b > g+

a /g−a , then(b/a)t2 > (b/a)t1.

Proof The time series is broken up into segments by considering a time trace plot ofa+b

and specifying horizontal lines on the trace. A horizontal line is added at each point the

direction ofa+b in the time series changes, i.e. when d(a+b)/dt changes between one

of three regimes (+ve, 0, -ve) to another. Each segment will have an increasing phase and

a decreasing phase.

Segments are formed by following the time series of(a+b) through increasing time.

The time series is continuous and the value of(a+b) at the start of the time series is equal

to the value of(a+b) at the end. Therefore, for every period of time where the timeseries

moves from one horizontal line to another adjacent line there will be a corresponding

posterior period of time where the time series moves in the opposite direction from the

second horizontal line to the first. Segments are defined by two phases, a primary and a

secondary phase. The primary phase of each segment is the first period of time the time

series moves between horizontal lines and the secondary phase is defined by the second

period of time the time series moves (in the opposite direction) between horizontal lines.

In harmony with the conditions of Lemma 1, the value ofa+ b at the start point of the

primary phase is equal to the value at the end point of the secondary phase. The same is

true for the values ofa+b at the end point of the primary phase and the start point of the

secondary phase.
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The segments are then organised into a tree structure – each segment being a node

in the tree. Sub-nodes are formed from segments between horizontal lines progressively

further away from the starting horizontal line. Sub-nodes are defined by two conditions.

1. Sub-node segments must have their primary and secondary phases within the time

period between the inner points of the node segment (i.e, posterior to the end point

of the primary phase and prior to the start point of the secondary phase).

2. The value ofa+b at the start point of the primary phase of all sub-node segments

must be equal to the value at the end point of the primary phaseof the node segment.

The base node of the tree has a zero length primary phase whichstarts and finishes att1
and a zero length secondary phase which starts and finishes att2.

Because the time series is continuous and returns to its initial value, all dynamic por-

tions of the time series must be covered by segments and each segment covers a unique

part of the time series. This is because every time the time series moves from one hor-

izontal line to another, there must be a corresponding move in the opposite direction (if

the time series were to change direction, another line wouldbe added) – forming a unique

segment. The theorem can therefore be proved by first showingthat if b increases relative

to a in all sub-node segments thenb must increase relative toa in the node segment; and

secondly showing thatb increases relative toa in all leaves of the tree (nodes without

subnodes).

All segments (apart from the base node segment) must be sub-nodes of other segments

in the tree – and ultimately sub-nodes of the base node. For a segment not to be a subnode

of another node the time series would have to have a discontinuity. If b increases relative

to a in the time period within the primary and secondary phases ofa segment then Lemma

1 states thatb will increase relative toa over the segment. Since by definition all dynamic

portions of a segment are covered by sub-node segments, andb will not change relative

to a while a+b is static1, if b increases relative toa in all sub-node segments thenb must

increase relative toa in the node segment.

Finally, to prove the theorem, it must be proved thatb must increase relative toa in

all leaves of the tree. Sincea+b is static in the inner period of any leaf node,b will not

change relative toa (from footnote 1). Therefore, from Lemma 1b must increase relative

to a in all leaves of the tree. Therefore,b must increase relative toa in all segments

including the base node segment. Therefore, the theorem is proved.

1 Forb to change relative toa while a+b is static, one would have to increase while the other decreases.
But, Equations (A.1) and (A.2) require that ifa increases,b must also increase and also that ifa decreases,
b must also decrease. Therefore it is not possible forb to change relative toa while a+b is static.
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Theorem 2 Consider a period of time of length T with the same conditions asdescibed

in Theorem 1: a and b are not constant and that there is no overall change in their sum.

DefineΘ ≤ T as the length of time where u6= u0. If g+
b /g−b > g+

a /g−a , then, asT, Θ and

t → ∞, b/(a+b) → 1.

Proof Again, the time series is broken up into segments which form nodes in a tree as

specified in Theorem 1. Here,n is the number of nodes. As already shown by Theorem

1, b must increase relative toa in all nodes of the tree and completely cover the dynamic

portions of the time series.

New sub-nodes are added by repeating the following procedure:

1. Choose a parent node in the tree: this node has the maximum difference between

a+b at the start and end of the primary phase (and, therefore, thestart and end of

the secondary phase).

2. Insert a new sub-node in the tree below the node: this new sub-node inherits all the

sub-nodes of the parent node.

3. The start of the segment of this sub-node is at the point where the value ofa+b is

half-way between its values at the start and the end of the primary phase. Likewise,

the end of the new segment is wherea+b is at the same value between the start and

the end of the secondary phase.

4. The parent node’s primary and secondary phases are shortened accordingly.

New sub-nodes are added with this procedure so thatn→ ∞. SinceΘ → ∞, no new

node can be added where the change ofa+ b between the start and end of the primary

phase (and, therefore, the start and end of the secondary phase) is zero. Given Item 2

above,b must increase relative toa in all children of the new sub-node. Therefore, as

shown by Lemma 1, as each new sub-node is added,b must increase relative toa in that

sub-node and its parent node.

I have now specified an infinite number of nodes for whichb must increase relative to

a. The segments in these nodes completely cover the dynamic portions of the time series.

Therefore,b/(a+b) must increase at the end of each segement. I look for an upper bound

to whichb/(a+b) may tend. Any upper bound must be a stationary point, i.e.,

da
db

= 0 .

Equation (A.5) shows that this is only true whena= 0, orb/(a+b) = 1. Becausea,b are

both positive,b/(a+b) ≤ 1. Therefore, the theorem is proved.
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I can now show Corollary 3 by choosing appropriate values foru.

Corollary 3 Consider a period of time of length T with the same conditions asdescibed

in Theorem 2: a∗ and b∗ are not constant and that there is no overall change in their sum.

DefineΘ ≤ T as the length of time where u6= u0. If g+
b /g−b > g+

a /g−a , then, asT, Θ and

t → ∞, b∗/(a∗ +b∗) → 1.

Proof Define a functionu∗ so that it isu0+1 during the growth regime andu0−1 during

the decline regime. Settingu = u∗, gives that [using Equations (A.3) and (A.1)]a∗ = a

and [using Equations (A.4) and (A.2)]b∗ = b.

From Theorem 2 the corollary is shown.



Appendix B

Sample code listing

Sample code is included for simulations done in Chapter 6.

B.1 File: sero.cpp

# inc lude ” s e ro . h ”

# inc lude ” env i ronment . h ”

# inc lude ” t ime . h ”

# inc lude ” s t a n d a r d d e v i a t i o n . h ”

# inc lude ” random . h”

# inc lude < l i s t >

us ing namespace s t d ;

CS imu la t ion : : CS imu la t ion ( REnvironment env )

: env ( env )

{

f ood InEnv i ronment = 0 ;

numSteps = env−>i n t P a ra m s . e n t r y ( ” NumSteps ” ) ;

ha l fT imeS tep =

env−>i n t P a ra m s . e n t r y ( ” Ha l fT imeStep ” ) ? 1 : 0 ;

samp leP er i od = env−>i n t P a ra m s . e n t r y ( ” SamplePer iod ” ) ;

numFood = env−>i n t P a ra m s . e n t r y ( ”NumFood” ) ;
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m u t a t e A t B i r t h = env−>i n t P a ra m s . e n t r y ( ” M u ta teA tB i r t h ” ) ;

r e s o u r c e U n i t =

env−>doub leParams . e n t r y ( ” ResourceUn i t ” ) ;

re p ro d u c e C o s t =

env−>doub leParams . e n t r y ( ” ReproduceCost ” ) ;

ma in tenanceCos t =

env−>doub leParams . e n t r y ( ” Ma in tenanceCos t ” ) ;

re p ro d u c e L e v e l =

env−>doub leParams . e n t r y ( ” ReproduceLeve l ” ) ;

m u t a t i o n P r o b a b i l i t y =

env−>doub leParams . e n t r y ( ” M u t a t i o n P r o b a b i l i t y ” ) ;

mutat ionAmount =

env−>doub leParams . e n t r y ( ” Mutat ionAmount ” ) ;

b a s e F o o d P r o b a b i l i t y =

env−>doub leParams . e n t r y ( ” B a s e F o o d P ro b a b i l i t y ” ) ;

f l u c t u a t i o n C o e f f i c i e n t =

env−>doub leParams . e n t r y ( ” F l u c t u a t i o n C o e f f i c i e n t ” ) ;

i n c l u d e A s e x u a l = env−>i n t P a ra m s . e n t r y ( ” I n c l u d e A s e x u a l ” ) ;

i f ( ha l fT imeS tep ) {

r e s o u r c e U n i t = r e s o u r c e U n i t / 2 . 0 ;

ma in tenanceCos t = ma in tenanceCos t / 2 . 0 ;

}

c o n t r i b u t i o n H i s t o g r a m =

new C3DHistogram (10000 , 0 , 1 ,f a l s e ) ;

}

vo id CSimu la t ion : : runSim ( s t r i n g s u f f i x )

{

/ / c r e a t e a g e n t s
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a g e n t s . c l e a r ( ) ;

a g e n t s . r e s e r v e ( env−>i n t P a ra m s [ ” S t a r t A g e n t s ” ] ) ;

f o r ( i n t i = 0 ; i <env−>i n t P a ra m s [ ” S t a r t A g e n t s ” ] ; i ++){

RAgent a g e n t =new CAgent ( ) ;

agent−>energy = ra n d v a l ( re p ro d u c e L e v e l ) ;

agent−>c o n t r i b u t i o n = ra n d v a l ( 1 . 0 ) ;

agent−>r e p ro d u c e S e x u a l l y = ra n d v a l ( 1 . 0 ) ;

agent−>prev iousT imeStep =−1;

a g e n t s . pushback ( a g e n t ) ;

}

RAgent debugAgent = a g e n t s [ 0 ] ;

bool h ighSeason =1;

s t r i n g d a t a f i l e n a m e = ” d a t a ” + s u f f i x + ” .m” ;

os t ream & d a t a o u t = env−>d a t a f i l e s [ d a t a f i l e n a m e ] ;

f o r ( t = 0 ; t<numSteps ; t ++){

i f ( a g e n t s . s i z e ( )> 400)

h ighSeason = 0 ;

e l s e i f ( a g e n t s . s i z e ( )< 200)

h ighSeason = 1 ;

double p ro b a b i l i t y O f F o o d = h ighSeason ?

b a s e F o o d P r o b a b i l i t y∗ f l u c t u a t i o n C o e f f i c i e n t :

b a s e F o o d P r o b a b i l i t y / f l u c t u a t i o n C o e f f i c i e n t ;

a g e n t s . s h u f f l e ( ) ;
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/ / FIRST MUTATE AGENTS

i f ( ! m u t a t e A t B i r t h )

f o r ( i n t i = 0 ; i <( i n t ) a g e n t s . s i z e ( ) ; i ++) {

RAgent a g e n t = a g e n t s [ i ] ;

i f ( r a n d v a l (1 .0)< m u t a t i o n P r o b a b i l i t y ) {

agent−>muta te ( ) ;

}

}

s a f e V e c t o r <RAgent> : : i t e r a t o r a i = a g e n t s . beg in ( ) ;

f o r ( ; a i != a g e n t s . end ( ) ; a i ++){

RAgent a g e n t =∗ a i ;

i f ( ha l fT imeS tep ) {

i f ( agent−>prev iousT imeStep ==−1) {

i f ( r a n d v a l (1 .0)< p ro b a b i l i t y O f F o o d ) {

agent−>energy += r e s o u r c e U n i t ;

agent−>prev iousT imeStep = 1 ;

}

e l s e {

agent−>prev iousT imeStep = 0 ;

}

}

e l s e {

i f ( agent−>prev iousT imeStep == 1){

agent−>energy += r e s o u r c e U n i t ;

}

agent−>prev iousT imeStep =−1;

}

}

e l s e {

i f ( r a n d v a l (1 .0)< p ro b a b i l i t y O f F o o d ) {

agent−>energy += r e s o u r c e U n i t ;
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}

}

}

s a f e V e c t o r <RAgent> newAgentsL is t ;

newAgentsL is t . r e s e r v e ( a g e n t s . s i z e ( )∗ 2 ) ;

s a f e V e c t o r <RAgent> s e x L i s t ;

s e x L i s t . r e s e r v e ( a g e n t s . s i z e ( ) ) ;

s a f e V e c t o r <RAgent> a s e x L i s t ;

a s e x L i s t . r e s e r v e ( a g e n t s . s i z e ( ) ) ;

s a f e V e c t o r <RAgent> b i r t h L i s t ;

f o r ( s a f e V e c t o r <RAgent> : : i t e r a t o r a i = a g e n t s . beg in ( ) ;

a i != a g e n t s . end ( ) ; a i ++){

RAgent a g e n t =∗ a i ;

agent−>energy −= ma in tenanceCos t ;

i f ( agent−>energy > 0) {

i f ( agent−>energy > re p ro d u c e L e v e l ) {

i f ( agent−>re p ro d u c e S e x u a l l y>0.5 | | ! i n c l u d e A s e x u a l )

s e x L i s t . pushback ( a g e n t ) ;

e l s e

a s e x L i s t . pushback ( a g e n t ) ;

}

newAgentsL is t . pushback ( a g e n t ) ;

}

}

i n t numnewkids = s e x L i s t . s i z e ( ) / 2 ;

f o r ( i n t i = 0 ; i < numnewkids ∗ 2 ; i +=2){

/ / p i c k a random p a r e n t t o pass on i t s genes

i n t p a r e n t = i r a n d ( 2 ) ;

RAgent newAgent =new CAgent ;
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newAgent−>energy =

s e x L i s t [ i ]−> c o n t r i b u t e ( re p ro d u c e C o s t / 2 . 0 ) +

s e x L i s t [ i +1]−> c o n t r i b u t e ( re p ro d u c e C o s t / 2 . 0 ) ;

newAgent−>c o n t r i b u t i o n =

s e x L i s t [ i + p a r e n t ]−> c o n t r i b u t i o n ;

newAgent−>r e p ro d u c e S e x u a l l y =

s e x L i s t [ i + p a r e n t ]−> r e p ro d u c e S e x u a l l y ;

newAgent−>prev iousT imeStep =−1;

newAgentsL is t . pushback ( newAgent ) ;

b i r t h L i s t . push back ( newAgent ) ;

}

f o r ( unsigned i n t i = 0 ; i < a s e x L i s t . s i z e ( ) ; i ++) {

RAgent newAgent =new CAgent ;

newAgent−>energy =

a s e x L i s t [ i ]−> c o n t r i b u t e ( re p ro d u c e C o s t ) ;

newAgent−>c o n t r i b u t i o n =

a s e x L i s t [ i ]−> c o n t r i b u t i o n ;

newAgent−>r e p ro d u c e S e x u a l l y =

a s e x L i s t [ i ]−> r e p ro d u c e S e x u a l l y ;

newAgentsL is t . pushback ( newAgent ) ;

b i r t h L i s t . push back ( newAgent ) ;

}

i f ( m u t a t e A t B i r t h )

f o r ( i n t i = 0 ; i <( i n t ) b i r t h L i s t . s i z e ( ) ; i ++) {

RAgent a g e n t = b i r t h L i s t [ i ] ;

i f ( r a n d v a l (1 .0)< m u t a t i o n P r o b a b i l i t y ) {

agent−>muta te ( ) ;

}

}

a g e n t s = newAgentsL is t ;
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i f ( t%samp leP er i od == 0){

i f ( i n c l u d e A s e x u a l ) {

c a l c u l a t e S e x A s e x R a t i o ( ) ;

d a t a o u t << t

<< ” \ t ” << p ro b a b i l i t y O f F o o d

<< ” \ t ” << a g e n t s . s i z e ( )

<< ” \ t ” << numAsexual

<< ” \ t ” << numSexual

<< ” \ t ” << ( double ) numSexual /

( double ) ( numAsexual + numSexual )

<< end l ;

}

e l s e {

c a l c u l a t e C o n t r i b u t i o n S t a t s ( ) ;

d a t a o u t << t

<< ” \ t ” << p ro b a b i l i t y O f F o o d

<< ” \ t ” << a g e n t s . s i z e ( )

<< ” \ t ” << c o n t r i b u t i o n S t a t s . mean

<< ” \ t ” << c o n t r i b u t i o n S t a t s . s tDev

<< end l ;

}

}

}

s t r i n g c o n t f i l e n a m e = ” c o n t H i s t ” + s u f f i x + ” .m” ;

os t ream & c o n t o u t = env−>d a t a f i l e s [ c o n t f i l e n a m e ] ;

c o n t r i b u t i o n H i s t o g r a m−>o u t p u t M a t r i x ( c o n t o u t ) ;

}
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vo id CSimu la t ion : : c a l c u l a t e S e x A s e x R a t i o ( )

{

numSexual = 0 ;

numAsexual = 0 ;

f o r ( i n t i = 0 ; i <( i n t ) a g e n t s . s i z e ( ) ; i ++) {

RAgent a g e n t = a g e n t s [ i ] ;

i f ( agent−>r e p ro d u c e S e x u a l l y ) numSexual ++;

e l s e numAsexual ++;

}

}

vo id CSimu la t ion : : c a l c u l a t e C o n t r i b u t i o n S t a t s ( )

{

s a f e V e c t o r<double> c o n t r i b u t i o n s ( a g e n t s . s i z e ( ) , 0 . 0 ) ;

f o r ( i n t i = 0 ; i <( i n t ) a g e n t s . s i z e ( ) ; i ++) {

RAgent a g e n t = a g e n t s [ i ] ;

c o n t r i b u t i o n s [ i ] = agent−>c o n t r i b u t i o n ;

}

c o n t r i b u t i o n S t a t s =

g e t S t a n d a r d D e v i a t i o n S t a t s ( c o n t r i b u t i o n s ) ;

c o n t r i b u t i o n H i s t o g r a m−>addDataRow ( t , c o n t r i b u t i o n s ) ;

}

i n t main ( i n t argc , char ∗∗ argv )

{

i n t seed = 0 ;

i f ( argc>1)
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s s c a n f ( a rgv [ 1 ] , ”%d” , &seed ) ;

r s e e d (& seed ) ;

REnvironment env =new CEnvironment ( ” params . xml ” ) ;

CS imu la t ion sim ( env ) ;

t i m e t c u r r = t ime ( 0 ) ;

cou t << ” S i m u l a t i o n s t a r t e d : ” << c t ime (& c u r r ) << end l

<< ” Seed = ” << seed << end l

<< end l

<< ” Params : ” << end l ;

f o r ( s t r i ngmap<double > : : i t e r a t o r smi =

env−>doub leParams . beg in ( ) ;

smi != env−>doub leParams . end ( ) ; smi ++){

cou t << smi−> f i r s t << ” = ” << smi−>second<< end l ;

}

s t r i n g s t r e a m s u f f i x ;

s u f f i x << seed ;

sim . runSim ( s u f f i x . s t r ( ) ) ;

c u r r = t ime ( 0 ) ;

cou t << ” S i m u l a t i o n comple ted : ” << c t ime (& c u r r ) << end l ;

}
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B.2 File: sero.h

# i f n d e f SEROH

# d e f i n e SEROH 1

# inc lude ” coun ted . h ”

# inc lude ” env i ronment . h ”

# inc lude ” s t a n d a r d d e v i a t i o n . h ”

# inc lude ” h i s t o g ra m . h ”

c l a s s CAgent : pub l i c PCountedHeapObject

{

pub l i c :

double energy ;

double c o n t r i b u t i o n ;

double r e p ro d u c e S e x u a l l y ;

i n t prev iousT imeStep ;

double c o n t r i b u t e (double re p ro d u c e C o s t ){

energy −= re p ro d u c e C o s t ;

double con t r i bu teAmoun t = energy∗ c o n t r i b u t i o n ;

energy −= con t r i bu teAmoun t ;

re turn ( con t r i bu teAmoun t ) ;

}

vo id muta teGuass ian (double SD) {

double r = ( gauss rand<double> ( ) ∗SD ) ;

double newcnt = c o n t r i b u t i o n + r ;

i f ( newcnt >0.0 && newcnt < 1 . 0 ) {

c o n t r i b u t i o n = newcnt ;

}

r e p ro d u c e S e x u a l l y = ra n d v a l ( 1 . 0 ) ;
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}

vo id muta te ( ) {

r e p ro d u c e S e x u a l l y = ra n d v a l ( 1 . 0 ) ;

c o n t r i b u t i o n = ra n d v a l ( 1 . 0 ) ;

}

} ;

t ypede f PCountedHolder<CAgent> RAgent ;

c l a s s CSimu la t ion : pub l i c PCountedHeapObject

{

pub l i c :

CS imu la t ion ( REnvironment env ) ;

REnvironment env ;

i n t t ;

i n t samp leP er i od ;

s a f e V e c t o r <RAgent> a g e n t s ;

i n t f ood InEnv i ronment ;

i n t numSteps ;

bool ha l fT imeS tep ;

i n t numFood ;

bool m u t a t e A t B i r t h ;

double r e s o u r c e U n i t ;
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double re p ro d u c e C o s t ;

double main tenanceCos t ;

double re p ro d u c e L e v e l ;

double m u t a t i o n P r o b a b i l i t y ;

double mutat ionAmount ;

double b a s e F o o d P r o b a b i l i t y ;

double f l u c t u a t i o n C o e f f i c i e n t ;

bool i n c l u d e A s e x u a l ;

s t a n d a r d D e v i a t i o n S t a t s c o n t r i b u t i o n S t a t s ;

R3DHistogram c o n t r i b u t i o n H i s t o g r a m ;

i n t numSexual , numAsexual ;

vo id runSim ( s t r i n g s u f f i x ) ;

vo id c a l c u l a t e S e x A s e x R a t i o ( ) ;

vo id c a l c u l a t e C o n t r i b u t i o n S t a t s ( ) ;

} ;

# end i f
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Slime mould and the transition to
multicellularity: the role of the macrocyst stage

John Bryden

School of Computing, University of Leeds, Leeds LS2 9JT
johnb@comp.leeds.ac.uk

Abstract. The transition from unicellular to multicellular organisms is
one of the mysteries of evolutionary biology. Individual cells must give
up their rights to reproduction and reproduce instead as part of a whole.
I review and model the macrocyst stage in slime mould (Dictyostelium)
evolution to investigate why an organism might have something to gain
from joining a collective reproduction strategy. The macrocyst is a repro-
ductive cartel where individual cells aggregate and form a large zygotic
cell which then eats the other aggregating cells. The offspring all have
the same genetic code. The model is a steady state genetic algorithm
at an individual cellular level. An individual’s genetic code determines
a threshold above which it will reproduce and a threshold below which
it will join a macrocyst. I find that cycles in food availability can play
an important role in an organism’s likelihood of joining the macrocyst.
The results also demonstrate how the macrocyst may be an important
precursor to other cooperative behaviours.

1 Introduction

The quest to synthesise hierarchical levels of organisation in artificial life is a
significant open problem [3, 23]. To provide a deeper understanding into how we
may be able to use evolutionary algorithms to generate and optimise hierarchi-
cal behaviour, we can study the major transitions in evolution [16]. This work
focusses on the transition to multicellularity which appears to be one of the most
difficult ‘bridges’ evolution has had to cross. It is unclear whether the transition
only occurred once, or several times [4]. Phylogenetic evidence [2] suggests that
multicellular organisms, especially metazoa, share a common ancestor. Further-
more, fossil evidence [16] indicates that multicellular life did not exist for 2,500
million years until the Cambrian period (approximately 540 million years ago)
where all the multicellular phyla are represented.

Multicellular organisms essentially consist of clusters of individual cells with
all cells expressing the same genotype. They therefore require gene-regulatory
mechanisms for differentiating cells (with differentiations being passed from par-
ent cell to offspring), cell adhesion and spatial patterning of cells [16]. One par-
ticularly crucial cell differentiation stands out: The organism must separate its
reproductive (germ-line) cells from its body (soma) cells [7].



The requirement for isolation of the germ line from the soma was first argued
to be necessary by August Weismann [7]. To identify why, we can distinguish
the two types of reproduction that are present in metazoan multicellular life
and look at the conflicts that arise between them. Firstly, intra-organism repro-
duction happens when cells replicate within the super-organism, for the good
of the super-organism. Conflicts can occur with cells reproducing on their own
behalf [17]: mutant cells can disrupt and compete with the super-organism. By
generating a whole organism from one initial germ-line cell, it is clear that the
vast majority of selfish mutations that disrupt super-organism-level processes
will only survive one generation [7]. Therefore, secondly, to solve this problem
super-organism reproduction involves the replication of the complete organism
through the selection of a germ line cell to reproduce on behalf of the super-
organism. However, there is still a conflict over which cell is to be the germ
line since selfish mutations that disrupt the super-organism reproductive pro-
cess will be passed onto the next generation. A stable, policed, germ-line/soma
differentiation mechanism must have evolved at some point.

It is unclear where in the evolution of a multicellular lineage, stable, well po-
liced, germ-line/soma differentiation and germ line isolation should occur. How-
ever, given the above problems faced with intra-organism conflicts[17], it seems
likely that the germ-line/soma differentiation evolved early [7]. Thus, we con-
sider evolutionary mechanisms that will explain a transition between unicellular
organisms, which compete within their populations and compete with predators
and prey, and early multicellular organisms which are clustered together and
exhibit germ-line/soma differentiation. In other words, there is a transition from
unicellular organisms which are optimised to maximise their own direct fitness
to cells that must, on the other hand, maximise their inclusive fitness at the ex-
pense of their direct fitness (i.e., their ability to contribute their fitness to other
cells that are highly related must be more important than their own replication
chances). (See [10] for precise definitions of direct and inclusive fitness.)

Whether the evolutionary transition described above, of organisms clustering
and differentiating a germ line, happened in one stage is unclear. Wolpert has
presented a model where individual cells may split to produce a somatic body
cell that sticks to its parent and is unable to reproduce [27]. What the benefits,
through inclusive fitness, are to individual cells and their lineages from doing
this is unclear. There is a debate on this subject with some arguing that size
is an important reason for multicellularity [4] with undifferentiated population
clustering, as modelled in [19] without a germ-line/soma differentiation, being an
important first step. Others point out that local competition over food will negate
the value of cooperation through relatedness [21, 26, 15]. For this reason Di Paolo
warns against relatedness being used as an explanation for cooperative behaviour
[9]. There therefore appears to be something of a paradox if we attempt to try to
understand the transition to multicellularity with such models of clustering cells.
Individuals that cluster compete with each other and may negate the benefits of
cooperation through relatedness, yet both clustering and cooperation are needed
for the transition to early multicellularity.



A different perspective considers multicellularity through aggregation [16].
Here cells either vegetate and reproduce individually, or aggregate to reproduce
collectively. This presents a sort of half way house between the individual and
early multicellular behaviour identified above. Dictyostelium (more commonly
known as slime mould) is a model organism for multicellularity through aggre-
gation [16, 20]. Individual cells can either vegetate and reproduce asexually on
their own, or under different environmental conditions they also demonstrate
collective reproduction behaviour, characterised by individual cells making sac-
rifices for the benefit of other cells’ reproductive chances. This organism therefore
demonstrates both the germ-line/soma differentiation [6] and clustering that is
important for the transition. Biological evidence is now presented concerning
Dictyostelium discoideum, one of the more studied species of the genus.

When there is a shortage of food and D. discoideum cells begin to starve,
they aggregate and one of the two collective reproductive stages commences [22].
The more well known reproductive stage of D. discoideum sees the cells form a
slug which collectively migrates. Once the cells find an advantageous location
they form a fruiting body : cells at the front of the slug (20%) form a stalk and
the rest form spore cells at the top of the stalk which are dispersed by the
wind. Interestingly, the stalk cells die after the stalk is built. This differentiation
between spore and stalk cells is arguably a germ-line/soma distinction [6]. Since
cells that produce stalks do not pass on their genetic code, it is hard to see
how this trait is selected for and maintained. Indeed there are examples of slime
moulds strains that do not produce stalks [6]. Computer simulations addressing
this question [1] have indicated that high dispersal of spores can lead to more
stability in the stalk producing behaviour.

The second, less well known, collective reproduction stage in D. discoideum
involves the formation of the macrocyst [22]. Again, when the cells are starving
they aggregate. However instead of forming a slug, two cells merge to form a large
Zygote cell which eats other aggregating cells. The resulting giant cell forms a
hard cellulose outer wall and this macrocyst germinates after a few weeks. See
Fig. 1 for a diagram.

The macrocyst stage is thought to be a precursor to the slug/stalk repro-
ductive stage. Kessin [13] argues that evolution generally occurs in incremental
stages. He notes that the previous stage to macrocyst development would be the
microcyst stage (not observed in D. discoideum), where individuals form outer
walls on their own. After the evolution of chemotaxis, aggregation could occur
and the macrocyst evolved. With added cell adhesion and cell type differentia-
tion into stalks and spores, fruiting body and slug behaviour would then become
plausible.

The genetic makeup of the offspring of the macrocyst is an important ques-
tion. The macrocyst is generally accepted to be the sexual phase of D. dis-
coideum’s development [22]. However experiments do demonstrate that Macro-
cysts can form from only one mating type [5]. The progeny of one macrocyst is
observed to be of one genotype [25]. Only one nucleus remains in the zygote (or
giant cell) after other ingested nucleii disappear [18].



Fig. 1. The sexual and mitotic life cycles of Dictyostelium (based on [22]).

From Fig. 1 it is clear that differentiation in D. discoideum cells occurs when
it starts to aggregate. Recent evidence implies that the cell may have genetic
control over this event. Research [8, 11] suggests genes that can control or delay
when or whether a cell will continue to grow or start aggregation. These findings
indicate that the cell is capable of turning on or off aggregation to the macrocyst
stage which can ultimately lead to cells being eaten by the zygote. This empha-
sises a need for an explanation as to why an individual might make the ‘choice’
to aggregate and almost certainly die.

I have produced a model of the D. discoideum macrocyst stage for several
reasons: (i) to confirm that individuals that normally reproduce on their own
are indeed prepared to gamble their own reproductive chances against the ‘pot’
of reproductive material contained in the macrocyst; (ii) to confirm my intu-
ition that fluctuations in food availability are important to the viability of the
macrocyst; (iii) to question the role individual mitotic split rates might play in
the stability of the macrocyst; and (iv) to speculate on the role the macrocyst
might play in the evolution of other altruistic behaviour (such as stalk/spore
differentiation) and collective behaviour.

2 Methods

To investigate the questions in Section 1 I have built a computer simulation
model of the macrocyst stage of D. discoideum. Assumptions in the model are
based on the biological evidence presented. Notably I have assumed that all the
offspring of a macrocyst are of the same genotype. Since sexual fusion does not
seem to be necessary, I chose (on parsimonious as well as biological grounds)
to model the macrocyst with no sexual recombination. Individual vegetative



behaviour was modelled with individuals having a genetically encoded energy
threshold above which they mitotically reproduce.

D. discoideum cells are modelled as individuals in a non-spatial environment.
At each time step, a number of individuals (N) are selected at random, each
receives a 0.5 units of energy (representing food) with probability p. One cycle
in the model contains two seasons. The amount and probability of food (N and
p) changes value according to whether the season is ‘high’ (N = 100, p = 0.6)
or ‘low’ (N = 20, p = 0.3). Each season lasts 200 turns. All individuals pay a
daily energy cost (Ec = 1.0) irrespective of season. If an individual’s energy falls
below zero (x < 0), it will die.

Each individual cell is modelled with two genes1. The genes model energy
thresholds which determine the behaviour of the cell. Cells will join the macro-
cyst when their energy level is below the first gene, the macrocyst join threshold
(−2.0 < Gjoin < 2.0). When a cell’s energy level is above the second gene, the
split threshold (5.0 < Gsplit < 20.0), the cell will pay an energy cost to split
mitotically (see Fig. 1) and produce a new cell (sharing energy equally between
itself and its offspring).

There is only one macrocyst in the model it is assumed to be immobile and
therefore does not receive food from the environment. When cells join it, they
contribute their own energy (x) plus a residual energy amount (equal to the cost
of splitting) to the macrocyst’s ‘pot’ (X). Before closing the macrocyst pays a
cost Em per individual joined every turn to reflect metabolisation and building
of cellulose. If the macrocyst energy falls below zero (X < 0) then it (and all
its joining cells) will die. When the macrocyst reaches a predetermined energy
threshold (30.0), it closes and no other cells may join.

The macrocyst will germinate on the first turn of the high season. When it
germinates, the energy is divided up into new cells with each cell receiving 2.5
energy units. All new cells will have the same genotype: a complete genotype
(no recombination) is picked at random from all the cells that originally joined
the macrocyst.

Simulations were run over 100,000 turns. Each simulation started with 100
individuals, each individual having a random genotype and a random energy
between 0.0 and 5.0.

3 Results

To understand how the harshness of the low season can effect the viability of
the macrocyst, simulations were run varying the probability of food in the low
season. Interesting population dynamics, with macrocyst offspring outcompeting
the non-joining population, were observed and these are presented in this section.

The average percentage of individuals which germinated from the macrocyst
is plotted against the probability of food in the low season in Fig. 2. When
1 Genes are represented as floating-point numbers in the simulation, point mutations

occur at each time step over a gaussian distribution with standard deviation of 1%
of the gene space



Fig. 2. Graph showing the percentage of individuals which germinated from a macro-
cyst at the start of the high season against the probability of food in the low season.
Each data point (ten data points, each generated with different random seeds, per
food-probability value) represents an average over a complete simulation run.

the probability of receiving energy is higher, few individuals (≈ 20%) join the
macrocyst. When there is a lower probability of food, more individuals join the
macrocyst. However the rogue data points at the bottom left of the graph are
of interest.

To investigate this disparity with some populations producing macrocysts
and others not, the probability of food and seed value were selected from one of
the rogue data points. The simulation was run over a longer (150,000) number of
turns. A histogram was generated for the macrocyst join threshold at the start
of each high season and the results are shown as a 3D mesh in Fig. 3A.

In the figure, the presence of macrocysts can be seen as spikes on the right
hand side. An early tendency towards macrocyst joining is evident (far right
of graph) but these genotypes die out after ≈ 25 cycles. A population which
does not produce germinating macrocysts immediately flourishes. After ≈ 150
more cycles there are enough individuals to successfully produce a germinating
macrocyst which survives to the end of the low season. Interestingly once this
has happened the macrocyst very quickly wipes out the non joiners from the
population. The offspring from the macrocyst must have some sort of competitive
advantage over the non-joining population.

A closer look at Fig. 3A indicates that when there are not enough individuals
joining the macrocysts to make them germinate, there is only a small tendency
toward individuals that will not join the macrocyst when their energy is very
low. Between cycle 25 and cycle 175, the histogram shows a larger proportion of
individuals having a join threshold below zero, however some still remain with a
threshold above zero. There is clearly little selection pressure against individuals
sacrificing small amounts of energy when near to death.



Fig. 3. 3D histograms of macrocyst join thresholds (A) and individual split thresholds
(B) of the population at the start of each high season.

A second 3D histogram was generated for the split thresholds of the pop-
ulation at the start of the high season and can be seen in Fig. 3B. There is a
clear disparity of the split thresholds between the macrocyst joining population
and the non joiners. Again, in the first few cycles of the simulation (where the
macrocyst joiners were predominant in Fig. 3A), the population has a low split
threshold – individuals will split as quickly as possible. After ≈ 25 cycles the
macrocysts die out. There is now a clear tendency for dominance in the popu-
lation for individuals that split more slowly. Once the macrocysts return (after
≈ 160 cycles), the split thresholds of the population immediately return to lower
values (< 7).

Simulations run with all individuals having the same, fixed, split threshold
resulted in either the individuals all dieing, through starvation in the low season,
or a small percentage joining the macrocyst when food is more plentiful (data
not shown). The competitive advantage of the macrocyst joining population was
no longer effective and macrocysts were only formed through enough individuals
sacrificing their energy in a similar way to the non-joining population in Fig.
3A.

Other simulations have been run with variable split thesholds and the low
season completely removed to see if parameters exist where a macrocyst can
form and dominate the rest of the population. Simulations were run with vary-



ing parameters of N and p, both seasons having the same values. While some
macrocyst production was observed it was only at the beginning of simulations
where the random starting population allowed for enough individuals that joined
the macrocyst and made it viable for a few cycles (data not shown).

4 Discussion

In Section 1 I have argued of the need for a model that demonstrates the transi-
tion between individual cells that ordinarily reproduce on their own to cells that
become part of a super-organism, with only one genotype of the participating
cells being passed on to future generations. For the macrocyst model to succes-
fully meet the requirements of this transition, it requires that all individual cells
must be able to reproduce on their own. It also requires that individual cells
must be clustered and that only one of the individual cells reproduces on behalf
of the cluster. The model presented meets these requirements. Simulated cells
that have the freedom to evolve a strategy in which they will not join macrocyst
organisations (where their genes are highly likely to be destroyed) do not evolve
this strategy under fluctuating environmental conditions.

The model does however stop short of demonstrating the type of germ-
line/soma differentiation and clustering apparent in the metazoa where there
is differentiation of the germ line early in development [17] and permanent clus-
tering (as in other models, e.g., [27, 19]). The macrocyst’s germ-line cell is the
zygote which is not differentiated from any other cells in the super-organism.
Also, the macrocyst cells are only clustered at one point of the life cycle. How-
ever, the fact that the macrocyst’s offspring are of only one genotype and that
they outcompete individuals that do not join the macrocyst is of some signifi-
cance.

The fact that the macrocyst produces offspring of a single genotype is im-
portant in three ways. Firstly it has the effect of producing several homogenous
offpsring which are all ‘preprogrammed’ to join the macrocyst at the start of the
next low season. These offspring have a competitive advantage over individuals
that do not join the macrocyst. The macrocyst therefore contributes to its future
success. Since microbes can evolve many ‘policing’ mechanisms [24], it is not in-
conceivable that after several generations, the macrocyst way well have become
established in the organism without the need for a harsh low season each cycle.

Secondly, the high relatedness of the offspring can be seen to promote other
social behaviours. Relatedness is crucial for any traits that require many co-
ordinated individuals or altruism to be successful. The aclonal nature of the
macrocyst offspring means that it is highly likely that the next aggregation
event will also be aclonal or at least highly related. If these individuals have
the same mutation which means (perhaps under certain environmental condi-
tions) they no longer fuse to form a zygote then other interesting collective
behaviour may occur instead. These behaviours could include, but are not lim-
ited to, the slug behaviour of D. discoideum which requires many coordinated
individuals [14], and the stalk behaviour of D. discoideum which requires altru-



ism from many cells [1]. The macrocyst has been argued to be a precursor of
these behaviours [13]. The combination of the macrocyst model with one of the
stalk/spore behaviour (based on [1]) will hopefully confirm how important the
population homogenisation effects of the macrocyst were for the evolution and
maintenance of stalk/spore behaviour in D. discoideum.

The homogeneous macrocyst offspring are important in a third way: By pick-
ing the genotype of its offpsring from one individual at random, the macrocyst
stage eradicates the potential for cheating: If an individual were to evolve a
‘cheating’ trait so that its genes were most likely to be picked, the next popula-
tion would all have that same trait - with no individual having any advantage.

To consider how split thresholds are important I analyse a complete cycle.
In one cycle of the model presented here there are four phases for non macro-
cyst joining amoebae: (i) Early high season exponential growth; (ii) Population
equilibrium at high season; (iii) Early low season exponential decimation of the
population; (iv) Population equilibrium at low season. While it is easy to see that
fast (low threshold) splitting amoebae would flourish during phase (i), these same
amoebae will be closer to dying during phase (iii). The results suggest that a slow
(high threshold) splitting strategy is more profitable, not only in phase (iii) but
in phase (iv) as well. In phase (iv) individuals receive food with a low probability,
those with a fast (low) split threshold are less adapted to survive fluctuations
in food availability. The macrocyst allows individuals to avoid phases (iii) and
(iv) and hence fast splitting individuals that germinate from it at the start of
the high season are very well adapted to phase (i). This ability to perform well
during circumstances of diminishing populations has already been observed as
an important feature of early multicellular organisms [12].

While I have attempted to be faithful to biological evidence, the model pre-
sented here has made some assumptions and has some limitations. Further anal-
ysis and research is required into the biological plausibility of the split thresholds
in the model. The question as to what might happen if individuals have a sea-
sonally varying split threshold is also important. The model is undimensional
and therefore lacks spatial effects (though the way the organisms are fed is set
up to mimic a spatial environment): a spatial model would allow us to analyse
what might happen if individuals could effect their chances of being the chosen
genotype. The mutation rate in the model is unnaturally fast, however slower
mutation rates provided similar results over longer periods. Finally there is only
one macrocyst in the current model, future simulations will model more than
one macrocyst.

The model and results presented in this paper demonstrate that, given the
assumptions outlined, the D. discoideum macrocyst stage is plausible under the
large fluctuations in food in the model. The results and analysis lead me to
hypothesise that the model of the macrocyst presented in this paper, where in-
dividuals gamble their genes to become the germ line of a super-organism, may
well have been a crucial stage in the transition to multicellularity. It must be
noted that it is only a stage in the evolution of D. discoideum and may be rel-
evant only to this organism. However, the facts that the slug behaviour of D.



discoideum is reminiscent of other metazoa and that their phylogeny implies a
common ancestor imply that slime mould may give some important clues into
the evolution of the metazoa and perhaps other multicellular organisms.

Acknowledgements: Thanks to Jason Noble and Richard Watson.
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Computational modelling, explicit mathematical treatments,
and scientific explanation

John Bryden and Jason Noble
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Abstract

A computer simulation model, can produce some interesting
and surprising results which one would not expect from ini-
tial analysis of the algorithm and data. We question however,
whether the description of such a computer simulation mod-
elling procedure (data + algorithm + results) can constitute
an explanation as to why the algorithm produces such an ef-
fect. Specifically, in the field of theoretical biology, can such
a procedure constitute real scientific explanation of biological
phenomena? We compare computer simulation modelling to
explicit mathematical treatment concluding that there are fun-
damental differences between the two. Since computer simu-
lations can model systems that mathematical models can not,
we look at ways of improving explanatory power of com-
puter simulations through empirical style study and mecha-
nistic decomposition.

Introduction
It seems possible that computer simulation modelling could
become the new modelling paradigm in biology. As mod-
ellers build transparent, tractable, computer simulation mod-
els their relaxed assumptions will, in comparison with tra-
ditional explicit mathematical treatments, make for con-
siderably more realistic models that are close to the data.
The ‘Virtual Biology Laboratory’ is proposed (Kitano et al.,
1997) where a cycle is applied through comparing computer
models with empirical evidence: the results from each pro-
cedure inspiring the direction of the other. Animals, such
as C. elegans, have been well studied using computational
models, e.g., (Bryden and Cohen, 2004). Indeed the forma-
tion of a complete model of the organism has been identi-
fied as a potential grand challenge for computing research
(Harel, 2002). However, a full exploration of the rela-
tionship between mathematical and computational models
in biology has not yet been achieved. Questions remain:
for instance, whether both forms of modelling can peace-
fully coexist, whether mathematical models should aspire
to the complexity of computational models, and conversely
whether computational models can ever be as precise as a
mathematical treatment.

In this paper we are mainly concerned with the scientific
modelling of biological systems, however we hope that the

findings can be applied more generally. Biological systems
are made up of many different subsystems at different levels.
Alife models often reside in the interface from one level to
the next and can become extremely complex, especially as
entities from any level can interact with entities from other
levels.

The discipline of computer simulation modelling allows
modellers previously unheard-of freedom to build and un-
derstand systems of many interacting parts. This new ex-
pressive freedom appears to have the potential to become
the new modelling paradigm in science, perhaps overriding
traditional techniques which use explicit mathematical treat-
ments. However, this freedom does not come without a cost:
as more and more detail is added computer simulation mod-
els can quickly become unwieldy and too complicated to un-
derstand.

How then can computer models contribute to the task of
producing scientifically acceptable explanations? The use
of a complex yet poorly understood model may be accept-
able as some sort of loose analogy. However, Di Paolo et al.
(2000) have argued that without a proper understanding of
the internal workings of a computer simulation model, it can
be impossible to say whether such a model makes a valuable
contribution to the scientific problem it is addressing. They
describe such problematic models as ‘opaque thought exper-
iments’, arguing the need for explanations of the phenomena
modelled. They suggest that modellers should use an ‘ex-
perimental phase’ in which manipulations are made to the
computer model, the results of these manipulations hope-
fully generating insights into the workings of the system.
Once the internal mechanisms are understood, the transpar-
ent model can then not only give new insights into the sys-
tem being modelled but can also become a powerful predic-
tive tool.

We question whether a computer simulation model can, in
and of itself, constitute a scientific explanation. For exam-
ple, one might produce a model in which individual organ-
isms are explicitly represented and a particular population-
level phenomenon appears to emerge. But this does not con-
stitute an explanation of how entities from one level of a bio-



logical hierarchy produce interesting phenomena at another
level. Di Paolo et al. (2000) argue that some explanation is
required above a basic description of the model and the sys-
tem it represents. In this paper we look further into what an
adequate explanation of a model’s mechanisms should en-
tail. We will compare the account that we construct with the
more basic position, sometimes seen in the artificial life lit-
erature, that a bare-bones description of a biological system
with a computer model that qualitatively produces similar
behaviour—with little or no extra analysis or explanation—
can constitute a scientific explanation of some phenomena.

Given the above picture we must also consider the tradi-
tional methodology of explicit mathematical treatment. By
explicit mathematical treatment we mean a model which is
complete and contains no implicit steps, the steps can be
logical statements and do not need to be formally written
using mathematical symbols. While computer simulation
models are fundamentally mathematical constructions, they,
in the way they are reported, contain implicit mathematical
steps rather than the explicit steps used by formal mathe-
matical models. An explicit mathematical treatment takes
logical axioms and specifies a number of clear explicit steps
that deductively generate some result. In this paper we com-
pare this traditional treatment with the new computational
approach.

Firstly we set the context, we look at a framework for
scientific modelling. Then, by looking at two examples of
a similar system, we identify some properties that charac-
terise an explicit mathematical treatment and which a com-
puter simulation is unlikely to share. Having established that
explicit mathematical treatment is the ultimate goal of any
modelling enterprise, we look at how computer simulation
models do indeed still have value. We look at how com-
plex and unwieldy computer simulations may be simplified
to more easily generate explicit mathematical treatments—
proposing that this can be done by decomposition into sim-
pler systems. Finally we set out, in an order of merit, the
various different modelling approaches discussed.

A framework for scientific modelling
To understand how modelling is important and relevant
within scientific investigation, we present a framework for
scientific investigation with the scientific modelling cycle
highlighted. Figure 1 presents a diagram of the framework.

The primary focus of scientific investigation is the build-
ing of a good conceptual model of the real world. Expla-
nations of the real world reside in the conceptual modelling
area of the framework, these are recorded in the scientific
corpus. The basic scientific process involves the submission
of concepts to the twin tests of empirical science and scien-
tific modelling. The main focus of the framework, however,
is on scientific modelling and the interface between a con-
ceptual model and a working model.

Both computer simulation models and explicit mathe-

Modelling Tools

Scientific Corpus

Results Assumptions

Working Model

Conceptual Model

Real World

Empirical
science

Figure 1: The cycle of enquiry in scientific modelling within
the context of scientific investigation.

matical treatments reside in the working model area of the
framework. We take a working model to be a determinis-
tic and completely specified model of a system. (Whereas
a conceptual model may remain vague in places, a working
model must be completely fleshed out.) Logical processes
are applied to the axioms and the results of this process are
recorded. Logical processes can include mathematical equa-
tions, logical deductions and computations. Working mod-
els produce results which are used to refine and update the
conceptual model.

Before we specifically look at the sorts of results that can
be generated by explicit mathematical treatments or com-
puter simulation models, we discuss the types of assump-
tions that can be used to generate a working model. An as-
sumption is essentially an abstraction from a more complex
system. There will be many abstractions from the real world
in the conceptual model (tested by empirical science) and
it will normally be necessary to make further abstractions
for ease of modelling. One of the main benefits of com-
puter simulation modelling (Di Paolo et al., 2000) is that
assumptions can be very easily added to or removed from
models to see if they are significant or important. Explicit
mathematical treatments tend to be more fixed in their as-
sumptions. The types of abstractions used by either explicit
conceptual models or computer simulation models can be
distinguished into two groups, reductionist and analogous
abstractions. We take inspiration for this distinction from
Bedau’s discussion of ‘unrealistic’ models (Bedau, 1999).

In order to highlight the important differences between
the use of computational and mathematical techniques in
building a working model, we must first consider the out-
comes of a successful working model for the broader scien-
tific project. The more valuable results generated by a work-
ing model will form some kind of explanation of why some
phenomenon is present in the conceptual model. Other,
less valuable, results include those that generate predictions.
With an explanation generated by a model to hand, an empir-
ical scientist can easily and quickly generate good empirical



experiments to test whether an explanation is valid or not. A
working model may indicate that some factors are more im-
portant than others for a particular phenomena. This may di-
rect empirical science toward a more fruitful direction. The
value of a result can depend not only on the type of working
model used to generate the result, but also the assumptions
used to generate the working model in the first place.

Competence and performance in scientific
modelling

The previous section has set out the tasks necessary before
embarking on a modelling enterprise: Once a conceptual
model has been chosen that builds a picture of what is known
about some real-world phenomenon, assumptions are then
chosen to simplify this conceptual picture into logical units
and axioms that can be built into a model. Up to this point
everything is quite similar between the two logical mod-
elling styles. Perhaps it is natural to assume that since both
modelling techniques are analytical, the style of the results
will also be quite similar?

To answer this question we must consider a thought ex-
periment based on a specific example which can easily be
understood and modelled by either a computer simulation
model or an explicit mathematical treatment. The Lotka-
Volterra system is a mathematical treatment of a predator-
prey system. Two equations model the dynamics of the sys-
tem:

dx
dt

= Ax−Bxy (1)

dy
dt

= −Cy+Dxy (2)

where x is the prey, y is the predator and A,B,C,D are con-
stants. This system famously generates oscillations between
the predator and prey populations. This mathematical treat-
ment can be considered alongside an individual based com-
puter simulation model of the same phenomenon.

A typical example system might be as follows. In a com-
puter simulation model, individuals may have a location on a
spatial grid moving at random each turn. If a prey individual
encounters some food in its square it will receive an energy
bonus, if it encounters a predator it will be eaten with the
predator receiving an energy bonus. If either a predator or
prey individual’s energy level goes above a threshold then
it will reproduce, and if any individual’s energy level goes
below a threshold, it will die.

Without wanting to go into too much detail, we assume,
for the purposes of argument, that the computer simulation
has very similar dynamics to the mathematical system. That
is, both systems will make the same predictions about any
particular predator-prey system to which they might be ap-
plied. The two systems can now be compared against each
other and we can review our initial question concerning the

nature of the scientific explanation that may be derived from
each modelling enterprise.

To answer that question we draw on a distinction intro-
duced by Chomsky between competence and performance
(Chomsky, 1986). Chomsky’s approach considers whether
the linguistic corpus can be used as a source of empirical evi-
dence for linguistic enquiry. He distinguishes between com-
petence (our internal unconscious capacity for language) and
performance (actual instances of language production). Re-
garding linguistic inquiry, he argues that we should take
this distinction into account considering models of linguistic
competence above models of linguistic performance.

We use Chomsky’s distinction to shed light on the differ-
ing styles of scientific explanation that are likely to follow
from the use of computational versus mathematical treat-
ments of a particular problem. From this point of view, the
computer simulation model must merely be considered as a
performance of a scientific explanation, whereas the explicit
mathematical treatment can be considered as having compe-
tence (an innate capacity) as a scientific explanation.

Simulation runs have the same sorts of problems as those
Chomsky identifies for linguistic performances. They are
subject to faults (in code as well as in run-time conditions)
and each simulation model is merely a single data point and
may not reveal the complete potential of a system. In a sim-
ilar way, it is possible to hide flaws in the performance from
the audience. Simulations can be set up so that the data
points presented make the best possible case for whatever
it is the modeller is trying to argue.

Alternatively, explicit mathematical treatments, assuming
they are done correctly, are analytically complete: flaws in
the system are immediately obvious. In addition, mathe-
matical treatments are not limited to some narrow range of
parameters but provide universal coverage of all variables
included in the model. These two properties were identified
by Chomsky as arguments in favour of looking at linguistic
competence over linguistic performance.

Furthermore, explicit mathematical treatments have more
powerful identity conditions than do computational models.
By this we mean that one mathematical treatment can au-
tomatically be established as the same as, or different to,
another treatment, just by comparing the logic. Computer
simulation runs, on the other hand, may produce similar re-
sults for the same problem, but have very different underly-
ing explanations. The opposite can also occur, in that two
computer simulations may be driven by the same underlying
process without this being obvious to an observer.

Mathematical treatments are more reusable than computer
simulation models. Some give good clean results which can
instantly be applied to systems, others benefit from the ease
with which they can be written down in full and passed on.
Such models can then be used as logical axioms for other
models with their competence passed on. In contrast, al-
though computer models can certainly be transferred from



one author to another their results are rarely used, in prac-
tice, as axioms for other models.

One might argue at this point that we can distinguish
the code for a computer simulation model from an indi-
vidual execution of the code. The argument continues
that a simulation run is merely a performance of the code,
the code itself has competence. To answer this point we
look at the style of computer model chosen in the Lotka-
Volterra example above. It was chosen specifically so that
the code would demonstrate an emergent phenomenon (Be-
dau, 1997). There are only two cases possible here. Either,
without an execution of the code its macroscopic function
is opaque, or, if the macroscopic function is deducible from
the code, then this deductive process would necessarily form
an explicit mathematical treatment. If this deductive process
is impossible, any explanation generated must be teased out
by analysis of simulation runs.

At this point, we are left with a conundrum. If com-
puter simulation models are viewed as mere instances (per-
formances) rather than as systematic explanations (having
competence), how can they be of use to science? The answer
is that there are many areas, identified especially in the AL-
ife field, which do not yet yield to mathematical modelling
but in which simulation models can already be produced.
Such simulation models not only have scientific power as
proofs of concept and for generation of insights for perform-
ing empirical science, but they can also have some explana-
tory power (Di Paolo et al., 2000).

When considering a complex simulation in which there
is no explanation of the effects produced, some explanation
can be deduced by performing experiments on the simulated
system in the same way that one would do for an empirical
investigation. In this mode of enquiry a control simulation
is generated in which some important phenomenon does not
happen. This is normally done through some manipulation
of the system. The control simulation is compared with the
untampered system and the results are used as evidence that
the changes made by the manipulations are part of the ex-
planation of the phenomenon.

The above procedure is very similar to the normal mode
of empirical science. A conceptual model can be built of the
working model system and this conceptual model acts as an
explanation. We will now look further into how this form of
explanation relates to an explicit mathematical treatment.

Analytic explanation versus synthetic explanation
To attempt to understand the difference between an explana-
tion generated through the use of a working model in explicit
mathematical form and an explanation generated by exper-
imental manipulations of a computer simulation model, we
consider a distinction used by the logical positivists—that of
analytic and synthetic truths.

According to Frege’s reworking (Frege, 1980) of Kant’s
original distinction, an analytic truth is one that can be de-

duced through logical laws alone. A synthetic truth is one
which needs some other means, generally empirical investi-
gation, to establish its truth or falsity.

We use this distinction to identify modes of truth for
explanations generated by a working model. As pointed
out previously, we assume all working models are using
the same assumptions, i.e., they start from the same set
of logical axioms. We distinguish between an analytic
explanation—one which follows logically from the initial
assumptions—and a synthetic explanation—one which must
be determined by some other means.

Naturally an explicit mathematical treatment is in itself an
analytic explanation. However, empirical experiments done
on a computer simulation can only form synthetic explana-
tions. These synthetic explanations require validation in the
same way empirical science must be validated. The evidence
backing up these validations relies on measurements taken
from performances and is thus open to disconfirmation, re-
production and revalidation.

There is an ongoing debate about the analytic/synthetic
distinction, some arguing that it is not a black and white dis-
tinction but more a question of degree (Quine, 1953). While
Quine’s arguments are concerned with statements about the
real world rather than statements about a closed set of log-
ical axioms, we agree that our distinctions of explanations
should not be black and white. A working model can, like
a biological system, be large and complex. Some parts of
such a system will yield to explicit mathematical treatment,
whereas with other parts we may have to rely on empirical-
style experiments of the kind discussed by Di Paolo et al.
The final explanation generated through such a process will
consist of a mixture of analytic and synthetic statements.

In the next section we present an account of how systems
can be decomposed into smaller parts to identify explicit
mathematical treatments. Successful mathematical treat-
ments will render the resulting explanations more analytic
in the way we have just described.

Decomposition of systems
A system can become hard to analyse when it is made up
from many inter-dependent subsystems. In fact, the identifi-
cation of subsystems is a good first step when tackling such
a complicated system. However, this is rarely simple. When
subsystems are inter-dependent it is not possible to manipu-
late one subsystem independently without affecting another:
both subsystems, at the same time, affect the overall system.
The situation becomes increasingly difficult when the sub-
system’s components are not mutually exclusive from each
other.

Simon (Simon, 1996) describes a ‘nearly decomposable
system’ as being one in which components are independent
in the short term, but dependent in the long term. This is a
useful way to divide a system up and this has been expanded
further (Watson, 2005; Polani et al., 2005) considering mod-



ular dynamical systems. Watson introduces a concept called
modular interdependence to describe a system with modules
that are decomposable but not separable. A hierarchy can be
formed from subsystems and it is easy to see how complex
behaviour can be generated. This hierarchical perspective is
a valuable decomposition of a complex system. If it is possi-
ble to divide up a set of microscopic entities into subsets this
will allow us first to tackle the mechanisms of the subsets,
before understanding how they interact with each other.

In the next section we consider a more general perspec-
tive for decomposing systems. Rather than breaking up the
set of microscopic entities into subsets, we consider a more
arbitrary way of decomposing a system into subsystems that
contain a simplified version of the dynamics of the supersys-
tem.

Mechanistic subsystem
We propose information theoretic definitions of a mechanis-
tic subsystem and interdependence in mechanistic subsys-
tems. This style of definition has been used in (McGregor
and Fernando, 2005) to formalise hyperdescriptions. We
then go on to discuss how these definitions relate to our in-
tuitive notions of these concepts before looking at examples
in the next section.

Define a system S as being a set of mathematical en-
tities, their interactions and their parameters. Take a de-
scriptor function d(S) = M that will map the system S
to a set of descriptors M. Define the entropy of a ran-
dom variable X as H(X) = −

∑
x∈X p(x) log p(x), the con-

ditional entropy between two random variables X and Y as
H(Y |X) = −

∑
x∈X p(x)

∑
y∈Y p(y|x) log p(y|x) and the mu-

tual information as I(X ;Y ) = H(Y )−H(Y |X).
Take a system S1, such that d(S1) = M1. Then, S1 is a

mechanistic subsystem of S if

S1 ⊂ S (3)
H(M1|M) = 0 (4)
I(M1;M) > 0 (5)
I(M1;M) < H(M) . (6)

The mechanistic subsystem S1 is a constrained version of
its supersystem S. The constraints can take place in the pa-
rameter space, the number of entities, the nature of the enti-
ties, or their interactions. We list the Equations [(3) to (6)]
and describe their meaning: (3) S1 is a subset of S; (4) all
information in M1 is predicted by M; (5) M1 and M share
some information; (6) there is infomation in M that is not
predicted by the information shared by M1 and M.

The information theoretic definition presented includes
many of the important concepts of a mechanistic subsystem.
However a useful mechanistic subsystem should have two
further properties. Firstly, it should be transparent, i.e., it is
possible to understand why and how it produces its macro-
scopic effects. Secondly, its macroscopic effects should be

of interest when compared to the macroscopic effects of the
main system. We need to avoid specifying macroscopic sub-
systems that are either equally complex to the main system
with only some neglible reduction, or are so simplistic that
they are of no analytic value.

Following on from this definition of a mechanistic sub-
system, we draw on Polani et al.’s definition (Polani et al.,
2005) of a system that is decomposable but not separa-
ble to identify how two mechanistic subsystems can be in-
terdependent. Take a system S and two mechanistic sub-
systems S1 and S2, the subsystems are interdependent if
0 < I(M1;M2) < min [H(M1),H(M2)]. The two subsystems
are neither independent nor completely dependent.

With this approach identified, we can see how it is possi-
ble to break up a complex system of many interacting parts
into simpler mechanistic subsystems.

Examples of Mechanistic Subsystems
We consider, as an example, the spatial embedding of repro-
ducing agents. Space has been shown to be an important fac-
tor in the maintenance of cooperation in a population (Boer-
lijst and Hogeweg, 1991; Di Paolo, 2000). The common
feature of these models is that two regimes are considered.
The models are considered and analysed in a non-spatial en-
vironment before being placed in a spatial environment. The
non-spatial treatment is a mechanistic subsystem of the spa-
tial treatment. In this treatment agents are thought to be
in a perfectly mixed spatial environment, a special case of
the spatial component. A comparison of the interactions of
agents in the spatial and non-spatial environments demon-
strates how cooperation is increased. The mechanistic sub-
system (the non-spatial model) functions primarily as a con-
trol in these experiments.

A different model (Bryden, 2005b) considers collective
reproduction in amoebae. This non-spatial model demon-
strates that cells that reproduce individually must reproduce
more slowly to maintain high energy reserves for periods of
low resources. By reproducing collectively during periods
of low resources, individuals can avoid the need to repro-
duce slowly and can dominate periods of high resources by
reproducing more quickly. The model is complex and it is
not easily apparent why this is occurring. A mathematical
treatment (Bryden, 2005a) analyses a mechanistic subsys-
tem of the main model only considering individuals that re-
produce individually. This treatment shows that, when there
is a greater cost to individual reproduction, the rate of dec-
imation, at times of low resources, will be proportionately
greater than the rate of growth at times of high resources.
Reproducing more slowly will decrease the cost of repro-
duction, and so the mathematical analysis explains why this
occurs in the full model.

A further model (Bryden, 2005c) considers the effects of
space on the individual reproduction mechanistic subsys-
tem: agents in the model live and reproduce on a spatial



grid. This model can be broken up into two mechanistic
subsystems, firstly a non-spatial subsystem with individuals
reproducing [as treated by (Bryden, 2005a)] and secondly a
spatial subsystem without individuals reproducing. Results
indicate that the spatial effects increased the frequency of
both periods of high resources and periods of low resources.
The mathematical model has shown that this would increase
the tendency for individuals to conserve resources and repro-
duce more slowly. This is an example of a system that com-
bines two interdependent mechanistic subsystems (a spatial
and a reproductive system) that interact with each other to
produce a macroscopic phenomenon.

Away from the field of agent based modelling, we con-
sider models based on neural biological systems. Neural
systems have extremely complex dynamics, which are re-
sistant to mathematical analysis. However, the use of linear
stability analysis has proved useful in identifying mechanis-
tic subsystems which can be used as building blocks within
larger systems. For example, a system of coupled oscilla-
tors, based on the FitzHugh-Nagumo model, has been anal-
ysed as a mechanistic subsystem (Buckley et al., 2004). This
analysis demonstates how, when the oscillators are linked to
a simple gas net, the system can produce temporally distinct
oscillations. Much other work continues into the identifica-
tion of simple oscillatory models, such as that done in Cen-
tral Pattern Generators (CPGs) (Marder and Bucher, 2001).
CPGs can work as mechanistic subsystems within models of
animal locomotion systems.

In this section we have demonstrated how a complex sys-
tem that does not yield to explicit mathematical treatment
may be simplified into mechanistic subsystems which are
more likely to yield to explicit mathematical treatment. We
can observe from the examples chosen that the working
models arrived at through such a process consist of both syn-
thetic and analytic explanations.

The process of simplification identified above is not the
only way of making simpler models. By choosing differ-
ent assumptions and approaching a conceptual model from a
different perspective it is also possible to open up a system to
explicit mathematical treatment. With computer simulation
it is increasing easy to change the assumptions of a model
and get a feel for how the system changes. This sort of ap-
proach is invaluable as a tool for the sort of lateral thinking
needed when generating an explicit mathematical model.

Discussion
While this paper has argued that an explicit mathematical
treatment will provide a superior explanation of a scientific
phenomenon to an equivalent computer simulation, it must
be made clear that the overrarching goal of the scientific
modeller is to build better models which explain important
phenomena which are not as yet understood. To this extent
computer simulation is still a crucial part of the modellers
toolbox. The ease with which models can be produced with

computers is extremely valuable. Furthermore, not only can
these early efforts lead to some important scientific results,
but they can also point towards new directions for mathe-
matical models. We list below, in increasing order of merit,
different styles of working models and explain how valuable
each one is in generating scientific explanation. By starting
with models at the beginning of the list and progressing up
the list, models can become better explanations of scientific
phenomenon.

• A description of an opaque computer simulation and some
vague rhetorical statements that it consists of an explana-
tion of what it is trying to model. We have argued that this
approach is merely setting down a procedure for produc-
ing a performance of explanation of some phenomenon.
However, this approach can still yield a proof of concept
for some topic under debate, or generate insights for em-
pirical experiments.

• The same computer simulation as before, but this time
complete with well documented source code, parameters
and other data that can easily be tested by other users and
reused in new simulations. While this approach does not
yet produce a competent explanation, it allows for more
simple reproduction of the model which will help others
develop it further.

• An opaque computer simulation (with well documented
source code) with some manipulations and simulation
runs that demonstrate how various attributes of the model
explain various phenomena. We have argued that this ap-
proach can yield a competent explanation of sorts, but
this is merely a synthetic explanation and is not logically
grounded.

• An opaque computer simulation (with well documented
source code) that has been decomposed into mechanistic
subsystems. Some subsystems have been treated mathe-
matically. Such a working model can also yield a compe-
tent explanation of sorts, this explanation is more analytic
than in the previous case.

• An explicit mathematical treatment. Such a working
model yields a competent fully analytic scientific expla-
nation.

As set out above, clearly the best option is to produce an
explicit mathematical treatment. However this is rarely sim-
ple, and in many cases mathematics is not yet mature enough
to approach this goal. Since we must live in the real world,
science must answer questions about systems that cannot be
yet modelled by mathematical approaches. Computer simu-
lation modelling provides us a working methodology for ap-
proaching these complex or complicated systems and mak-
ing important steps toward understanding them.

Further to this, it is important to note that computer sim-
ulation models can extend already established mathematical



treatments. By extending or relaxing the assumptions made
in the purely mathematical treatment, the new model will
rely on the mathematical treatment as a mechanistic subsys-
tem but may produce new results or important insights on
the mathematical model (Harris and Bullock, 2002). Since
computer simulation models lend themselves to more accu-
rate, relaxed assumptions, when explanations become avail-
able they are more likely to be of value to the conceptual
model under question.

What is important is that scientific models progress up the
order of merit listed. A novel modelling approach that iden-
tifies a new style of working model may have value even
if it merely provides a performance of some scientific ex-
planation. Such a system can be experimented with and
decomposed into mechanistic subsystems and the standard
of explanation will improve. This is one of the benefits of
computer simulation modelling in that it gives us tools to
break down a problem so that we can get closer to an ex-
plicit mathematical treatment through an iterative process.
Computer simulation models can be thought of as provid-
ing tools for developing imagination and lateral thinking in
modelling approaches.
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Abstract. To look for an answer to the puzzle of why complexity may
increase, this paper looks to the major evolutionary transitions – a re-
curring pattern where individuals give up their rights to reproduce in-
dividually and instead reproduce as part of a super-organism. A simple
model of collective reproduction is presented and discussed in light of
this topic. The model finds that collective reproduction is actually to
the benefit of the individual, not to the group. The cost of reproduction
is shown to be an important factor and different scenarios are presented
which show individual, sexual reproduction and collective reproduction
(with larger numbers of parents) as optimal.

1 Introduction

One of the most striking features of our evolutionary past is the rise of the
complex individual. As we replay the timeline of natural history [1], the most
complex species has become increasingly more complex. One of the major goals
of Artificial life has therefore been to recreate such increases in individual com-
plexity in-silico [2]: i.e., within a computer.

The common opinion in biological circles [3] is that core evolutionary theory
is all we need to explain the evolution of life and its astounding complexities.
However, this does not seem so hopeful when attempts to reproduce such effects
in ALife computer models, which implement all the main features of evolutionary
theory, have not produced much complexity of interest whatsoever [4]. It seems
clear therefore that there is something missing, perhaps just from the models
that have attempted to recreate some of the complexity of life, or perhaps even
from the evolutionary theory they are based on. This paper looks for a process
(or processes) that can increase the complexity of an individual.

A profound theme observed in nature is the hierarchical structures (units
made up from sub-units) that can be found [1]. These hierarchical structures
are a recurring pattern, and can be seen at all levels of biology. The important
feature at every level of these hierarchies is that units are made up of sub-units:
proteins are made of chains of amino acids, cells/organelles are made of proteins,
eukaryotic cells are made up of organelles, multicellular organisms are made up
of eukaryotic cells, and societies are made up of multicellular organisms. Each
unit is of greater complexity than each sub-unit.

This repeating pattern implies that there may be some common feature in
individual sub-units from every level that leads them to form themselves into



larger units: an evolutionary force that binds these units together. Or, put an-
other way, a mode of interraction that is common to sub-units at every level. In
fact, these sub-units have common features at every level. They all make copies
of themselves, which may or may not be perfect copies, and they all compete
with other similar individuals over resources.

One other feature has been highlighted and is seen in the literature studying
the evolution of new super-units from sub-units. These evolutionary steps have
been dubbed major evolutionary transitions [1]. It has been observed that all
of the transitions are characterised by one simple common paradigm: sub-units
that could previously reproduce on their own can now only reproduce as part of
the super-unit [5]. Since each of the transitions involves an increase in individual
complexity, I look for a general model of the transitions which can illuminate
processes for increase in individual complexity.

A common approach to explaining some of the individual transitions is to look
to altruism and social evolution. The central thesis, here, is that any individual
involved in collective reproduction is performing an altruistic act. I.e., taking a
reduction in their own reproductive success so that the reproductive success of
the group may increase. It has long been rejected that an individual may reduce
its fitness (lifetime reproductive success) to benefit its local group [6]. However,
it has been shown how an individual may take a reduction in personal fitness to
benefit related organisms [7, 8] through kin selection.

The kin selection perspective has shown some value in explaining the main-
tenance of eusociality (social insects), however it is not clear that it (or altruism
in general) explains the origins of this transition [1, 9]. Indeed one problem with
kin selection is that its benefits can be negated by increased local competition
for food [10]. One question, considered here, is therefore whether altruism ac-
tually is crucial for explaining the origins of collective reproduction. It may be
possible to find explanations that are mutualistic: i.e., the outcome for both the
individual and the group is beneficial.

On the face of it, given the literature on the cost of sex (e.g., [11, 12]), it looks
unlikely that a mutualistic explanation may be found for collective reproduction.
Put simply, the cost of sex means that individuals which reproduce sexually
will grow at a slower rate than those that reproduce individually. Rather than
directly considering Maynard Smith’s model of the cost of sex, I illustrate the
problem by reformulating it within the abstract terms used in this paper. Here,
I make a simple comparison of the growth rates of an individual strategy and a
collective reproduction strategy (with two parents) based on the way resources
are allocated to offspring, as shown in Fig. 1.

Since individuals with the collective strategy share contributions to offspring,
they contribute less than those with the individual strategy. This means that the
average level of resources per individual in the collectively reproducing popula-
tion will be higher than those in the individually reproducing population. For
a fixed input of resources to the system, this means that the collectively re-
producing population will grow more slowly than the individually reproducing
population. If we look at cases where there are increasingly larger numbers of
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Fig. 1. Individual reproducers will grow more quickly than collective reproducers. In-
dividuals are represented as resource containers of size R1, with the level of resources
represented by how full the containers are. They are shown just before, and immediately
after reproduction. Each new individual from the sexually reproducing population will
have an average resource level of 2R1/3 so, for the same resource input, this population
will grow more slowly than the individually reproduction population which starts with
an average resource level of R1/2.

parents, then the same reasoning can be used to show that the growth rate will
be increasingly slower (e.g., when there are 3 parents, this population will have
an average resource level of 3R1/4 after reproduction).

Given this cost of collective reproduction, it seems unlikely that there is any
advantage to collective reproduction. However, this analysis only looks at the
growth phase. Any population that grows will eventually exhaust the resources
in its environment and the population will either decline or reach a static level.
Because collectively reproducing individuals have, on average, greater resources
after reproduction they are less vulnerable during times of population decline.

To approach modelling the major evolutionary transitions, I take an abstract
perspective in order to produce a toy model. This approach, based on the com-
mon factors of the subunits identified above, simplifies the world to resources,
individuals and individual strategies. Individuals accumulate resources, expend
resources, make copies of themselves and share resources with those copies. Given
that an individual lives within an environment with factors outside of its control,
I assume that they have little control over the way they accumulate or expend
resources. The space of strategies that they may adopt is therefore concerned
with their reproduction strategy.

The model simply approaches the question as to whether it is a better strat-
egy, for the individual, to reproduce collectively or to reproduce individually.
It is looking for an explanation for collective reproduction that is not based on
altruism. In the next section I present the model and its results.

2 The model

Two modelling approaches are taken in this section. After presenting details
common to both approaches, I outline a mathematical model and its predictions.



The predictions of the mathematical model are tested by simulation models in
Section 2.2.

Here each individual i is modelled as a resource level x(i, t) by the equation,

x(i, t + δt) = x(i, t) + u(t)Ru − Rc , (1)

where δt, Ru and Rc [0 < Rc < Ru] are positive constants (Ru is the maximum
resources available for uptake and Rc is the cost of growth/maintenance each
timestep of length δt). Resource uptake (the level of resources received from
the environment) is variable and modelled by u(t) ∈ [0 : 1]. The variable u
here is used as a surrogate for competition: population fluctuations will lead to
increasing and declining phases, modelled by changes in the behaviour of u.

If an individual’s resource level decreases below the lower threshold R0 (fixed
for all individuals) it will die. Without losing generality, R0 is set to 0 as an ad hoc

simplification. If an individual’s resource level increases above the reproduction
threshold (R1) it will reproduce. All individuals pay a cost of reproduction Rr(n)
which is dependent on the number of parents n.

2.1 Mathematical treatment

The mathematical treatment assumes that u is static over the lifetime of in-
dividuals. The resource change δx over a discrete time interval δt is therefore
modelled as:

δx = uRu − Rc . (2)

The value of u where δx = 0 is defined as u0: u0 = Rc/Ru.
During reproduction all parents pay the cost of reproduction Rr(n). After

this the remaining resources are shared equally between the n parents and the
offspring. All individuals therefore start their lives, just after reproduction, with
x = n(R1 − Rr)/(n + 1). Two cases for u can now be considered: u > u0 and
u < u0. In the first case the individual resource level will increase until it reaches
the upper threshold R1, taking an expected time W where,

Wu>u0
=

[

R1 −
n (R1 − Rr)

n + 1

]

δt

δx

=
(R1 + nRr) δt

(n + 1)δx
. (3)

In the second case individual resources will decrease until it reaches the lower
threshold at resource level R0. The expected time W is,

Wu<u0
=

n (R1 − Rr) δt

(n + 1)δx
. (4)

In both cases, as u → u0,W → ∞.
The expected population growth rate of a homogeneous population of in-

dividuals can be estimated for the two regimes (u > u0 and u < u0). The



expected population growth rate per individual G is equal to the reciprocal of
the time taken for resources to grow for reproduction during population growth
(1/Wu>u0

) and reciprocal of the time taken for resources to decline for death
during population decline (1/Wu<u0

), or [substituting Equation (2) into Equa-
tions (3) and (4)]:

G =




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
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
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







(n + 1)(uRu − Rc)

n (R1 + nRr) δt
, u > u0

0 , u = u0

(n + 1)(uRu − Rc)

n (R1 − Rr) δt
, u < u0 .

(5)

The growth rate (G) is plotted against different values of u for one [n = 1,
Rr(1) = 0.1] and two [n = 2, Rr(2) = 0.05] parents in Fig. 2. In this case, the
two parents share the cost of reproduction born by the single parent – i.e., the
cost per offspring is the same.
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Fig. 2. Growth rates of individually and sexually reproducing populations. The pa-
rameters used were: R1 = 1.0, Rr(1) = 0.1, Rr(2) = 0.05, Rc = 0.001, and Ru = 0.01.

The figure shows that the sexually reproducing population does in fact grow
more slowly during population growth (u > u0). This is in line with the reason-
ing presented in Section 1 and Fig. 1. What is also evident from the figure is
that the decline rate of the sexually reproducing population is lower in magni-
tude than that of the individually reproducing population. Furthermore, the two
graphs diverge more as u gets further from u0 indicating that fluctuations may
be important, however the ratio between the two plots stays constant. Indeed,
in this example, the growth rate of the sexually reproducing population is 0.75



that of the individually reproducing population. However, the decline rate of the
sexually reproducing population is only 0.71 that of the individually reproduc-
ing population. Interestingly, the sexually reproducing population has a greater
advantage during decline periods than the individual strategy has during growth
periods.

This analysis therefore indicates that the ratio of growth and decline rates is
important and that fluctuations might also be significant. Simple mathematical
analysis can be done on the relative growth to decline rates for populations with
different numbers of parents, this is given by:

Ψ(n) =
Gu>u0

Gu<u0

=
R1 − Rr(n)

R1 + nRr(n)
. (6)

It seems very likely that populations with larger values of Ψ will competitively
exclude populations with lower values: this is tested with simulations in Section
2.2. In this model, the behaviour of Ψ depends on the way Rr(n) is determined.

I look at three scenarios for determining Rr(n). These consider the offspring
cost which is defined as the total reproduction cost spent on each offpring (nRr).
In scenario (i), I consider the case where the total cost of each offspring is static:
Rr(n) = Rr(1)/n. In this case, Equation (6) is increasing (the denominator is
constant and the numerator increases). Scenario (ii) looks at the case where
the cost of total cost of each offspring increases linearly with each extra parent:
Rr(n) = Rr(1)[1+c(n−1)]/n (c is a constant). Finally, in scenario (iii) I consider
the case where Ψ is constant – i.e. when there is no advantage or disadvantage
to reproducing with more parents. Simple manipulation of Equation (6) shows
that if ∀n : Ψ(n) = Ψ(1) then,

Rr(n) =
2Rr(1)R1

R1 + Rr(1) + n[R1 − Rr(1)]
. (7)

This sets an upper limit for the reproduction cost: if Rr(n) is above this value,
then Ψ(n) < Ψ(1), if Rr(n) is below this value then Ψ(n) > Ψ(1).

The offspring cost is plotted in panel A of Fig. 3 for different numbers of
parents in the three cases. Given the corresponding reproduction costs associated
with these offspring costs, panel B shows the value of Ψ calculated by Equation
(6).

As expected, the plot in Panel B of the figure shows how Ψ increases when
the offspring cost is not dependent on the number of parents. The difference in
values of Ψ is relatively high when the number of parents is low – the largest
increase being the difference between individual and sexual reproduction. When
the offspring cost increases linearly with the number of parents, Ψ reaches a
maximum at 2 parents (sexual reproduction) and declines thereafter. Considering
Panel A of the figure, this indicates that, as the number of parents increases,
the total cost of reproduction spent (the cost per offspring) may increase. Again,
this increases sharply as the number of parents increase from 1 to about 5 and
then levels out. For all graphs, changes in parameters R1 and Rr did not change
the shape of the graphs significantly, however, as the ratio (R1/Rr) decreases,
the values generated by Equation (7) increase (not shown).
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Fig. 3. The behaviour of the growth/decline ratio changes with different functions for
Rr(n). Panel A shows the cost per offspring generated by the three different functions
of Rr(n) and panel B shows the corresponding predicted growth to decline ratio. The
parameters used were: R1 = 1.0, Rr(1) = 0.1, Rc = 0.001, Ru = 0.01, and c = 0.3.

2.2 Simulation models

The predictions of the mathematical treatment in the previous section indicate
two things that may be tested with simulation models. Firstly whether the value
of Ψ is a good predictor for which strategy is optimal and secondly that fluctu-
ations may also be significant.

Simulations are done with agents modelled as resource levels, based on Equa-
tion (1). At each timestep an agent pays a growth/maintenance cost Rc. When
its resources are below zero, an agent will die. Each agent has a reproduction
strategy which is defined by the number of parents (from 1 to 10) the agent will
reproduce with. Those with the same reproduction strategy will reproduce when
enough agents (depending on the number of parents defined by their common
strategy) have resource levels that are above R1 (resource levels may go above
R1 without penalty). Each parent pays a cost of reproduction Rr(n) and all
parents share their energy with the new offspring.

The simulation models are essentially non-spatial, with individuals located
on a grid but moving to a random new cell each timestep.1 Agents consume
a resource unit if they encounter any on the square they are on. A number
of resource units, each of value Ru are randomly scattered on a spatial grid
(of 50×50 squares) each time step. The number of units is either static (set to
200) throughout the simulation, or fluctuated between two values (100 and 200)
changing every 1,000 timesteps.

1 The results in [13] showed that agents receive resources with between-resource inter-
vals on a geometric distribution when they move to random grid squares each time
step



The simulations were run with the three scenarios for determining Rr(n)
presented in Section 2.1. All scenarios were tested with a static resource input
to the system and fluctuating resources. The scenarios were run ten times, with
each run initialised with a different random seed. After 1,000,000 timesteps the
number of agents with each reproduction strategy was averaged over all ten runs.
The results are plotted in Fig. 4.
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Fig. 4. Collective reproduction depends on offspring cost and resource fluctuations.
Parameters for the simulations were: R1 = 1.0, Rr(1) = 0.1, Rc = 0.001, and Ru = 0.01.

The figure shows that, when the offpring cost does not increase with the
number of parents, reproduction strategies with higher numbers of parents will
dominate. In fact any strategy with less than 7 parents has been completely
eradicated from the simulations of this scenario. When fluctuations were also
introduced, similar results were seen (not shown). When the cost per offspring
increases linearly, the sexual strategy is dominant over the other strategies –
as predicted by the shape of Ψ in Fig. 3. Again, the results were similar with
and without fluctuations. When the cost per offspring increases in line with the
upper limit predicted by Equation (7) (see Fig. 3, Panel A), the viability of
collective reproduction depends on fluctuations in resource availablity. With no
fluctuations, individual reproduction is dominant, but when the resources do
fluctuate, collective reproduction is dominant.

3 Discussion

The mathematical model and simulations presented in this paper demonstrate
collective reproduction. Individuals that may reproduce on their own, instead



reproduce as part of a collective. Collective reproduction here is done by sharing
resources contributed to a shared offspring. The modelling work shows that the
cost of this process (the cost of reproduction) is important and fluctuations
in environmental resource levels can be significant. The model also presents
two different scenarios which predict conditions for when sexual reproduction is
optimal and other conditions for when reproduction in larger groups is optimal:
this may help to explain why sexual reproduction is dominant in some animals
and eusociality is dominant in others.

The mathematical predictions presented in Fig. 3 are concordant with the
results in Fig. 4, both predicting when collective reproduction is viable. This
includes subtle effects such as the dominance of sexually reproducing individuals.
Since the results are so similar, the simulation models show that Ψ is good
predictor for which reproduction strategies will competitively exclude others.
The mathematical treatment is therefore instructive (in line with [14]) as to why
there is a long term growth benefit to lineages that reproduce in this way: the
collectively reproducing individuals have greater resources and are therefore less
vulnerable to resource fluctuations.

The work contributes to explaining the rise in the complexity of the individual
in two ways. Firstly, it demonstrates how collective reproduction can benefit both
partners: when more than one parent contributes resources to the production of
an offspring, the combined reproductive expenditure can be significantly larger
than with individual parents (see Fig. 3 panel A, and corroborating simulation
results in Fig. 4). This extra resource is available for the increased complexity
needed for the facilitation of collective reproduction.

Indeed, it is plausible that collective reproduction may happen on many
levels in the same class of individual. Some examples of collective reproduction
may only be viable when the conditions are right, so different mechanisms for
collective reproduction may happen under different conditions. Each may have
different optimal numbers of parents. As well as this, collective reproduction may
happen at different levels at the same time. With some organisms making direct
genetic contributions, others making indirect genetic contributions (through kin-
relatedness [7]) and others perhaps gambling their genetic contribution (see [15]
for an example). There can therefore be many differing mechanisms of collective
reproduction taking place within a population at the same time. As new viable
mechanisms increase complexity, a rich social fabric should emerge.

Secondly, the model, and its insights, implies a potentially fruitful approach
to modelling the major evolutionary transitions. Rather than invoking altruism
or group selection, the model of collective reproduction presented here shows
mutual benefits to reproducing collectively: i.e., that it is in an individual’s
selfish interest to reproduce collectively. There is no need for the individual to
reduce its fitness for the benefit of its kin or its group. Altruism may therefore
not be an essential feature in explaining the major transitions.

That said, this does not imply that altruism is not important in collective
reproduction. Altruism can happen and will act as an evolutionary force when
appropriate. One major assumption of the model is that the resources of all



parents are shared out equally between the parents and offspring. Clearly a
parent that does not contribute in this way may be able to disrupt the process by
contributing less resources than other parents. It could be argued that a parent
that doesn’t do this is acting altruistically, however by contributing less resources
it will also be harming its own representation in the collective reproductive effort.

Study of such cheating behaviour is outside the scope of this paper but can be
addressed in future work. Other future work could also address each of the major
evolutionary transitions in more detail. It is to be hoped that the application of
the style and approach of modelling in this paper will yield interesting results.

Acknowledgments: Thanks to Stephen Cornell, Jason Noble, Richard Watson
and the Biosystems group at the University of Leeds.

References
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