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Abstract

The focus of this thesis is on the study of reproduction sgatin the context of
evolutionary and social-evolutionary theory. Much of therarchical structure that is
evident in the natural world is due to major evolutionarynsitions where individual
subunits that once reproduced individually now reproducky as part of a larger unit.
Modelling and understanding the processes behind the tawolof this hierarchy can
have applications in both biology and computer scienceguathat to explain the major
transitions it is necessary to understand why an individeaild reduce its reproductive
success to invest instead in a higher reproductive processréproduce collectively with
other individuals).

To address this problem, a method for studying reproducticategy was developed
and is presented in this thesis. The method takes an abptrgsiplogical approach to
reproduction. It considers an individual as a quantity abrgces and set of genes which
define its reproduction strategy. | then investigate theathges of different reproduction
strategies and identify which strategies may dominatersifihe strategies considered in
my investigations include: an individual reproducing aatvn; an individual gambling
its total resources against those of multiple other indigid; or an individual sharing its
reproductive effort with a partner or several other pargner

Starting with individual reproduction, | simply study why andividual might reduce
its reproductive rate when, on the face of it, it seems thatimam fecundity should be
the best option. The model is also motivated in light of cotrdéerature on life history
and microbial ecology in particular. The results show hoeaih be advantageous for an
individual to hedge its bets and delay reproduction; wgitimstead until it has accumu-
lated more resources and is less vulnerable to harsh perfibgsresults make predictions
that are experimentally verifiable.

Given the model of individual reproduction, | reapply thewth equations to question
whether there is any advantage to sharing reproductivet éfflough collective reproduc-
tion. This model also shows that it can pay to hedge one’s datsinvest in the less
vulnerable, but slower, collective reproductive strate@ipe results show that there is a
mathematical relationship between the number of parermshanup-front cost of repro-
duction spent on creating a new offspring — depending on xtra eost per parent, two
parents may be the best strategy or perhaps many parents.

Looking in more detail at the transition from unicellularganisms to multicellular
organisms, | model the macrocyst stage in the slime m@uiddyostelium | consider
how the macrocyst stage may be an early example of colle@p@duction in protozoa.
Here individuals aggregate to be ingested by a central dettiwproduces homogeneous



offspring. | assume that each individual is gambling on bdime central cell and the
model presented reveals under what conditions this isylitebe a good strategy when
compared to individual reproduction. Again, the resultsvglthat there is an advantage
to hedging one’s bets and investing in the macrocyst rattear going it alone.

Finally | consider the origin of sexual reproduction in maletail. The traditional
approach argues that the slower growth rate of sexuallyodepring organisms means
that there is a paradox concerning the origins and maintenah sexual reproduction,
especially when one considers males which do not contributesir offspring. Extending
the previous model of collective reproduction, | considewhmany resources selfish
individuals may contribute to their offspring. The resudtow that there is a lower bound
to the resources individuals may contribute and that whenretlis a high amplitude of
resource fluctuation, the sexual strategy can dominateexuakstrategy.

As well as the main body of work on the topic of individual reguction, some further
background work is also presented. The models use both matiel and computer
simulation models. These two approaches are compared amchsted with reference to
their value in generating good scientific explanations efgbrts of phenomena found in
the types of systems | am studying.
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Chapter 1

Introduction

A profound and mysterious theme in nature is the prevalehbgéoarchical systems. In

fact, the biota of our planet can be viewed as one large luki@al system, with proteins
made up of chains of amino acids, cells containing prot&unkaryotic cells composed of
organelles, multicellular organisms formed from eukaigyoells, societies of multicellu-

lar organisms, and ecologies consisting of species groups.

Study of our natural history (Maynard Smith and Szatinyril 995) indicates that (un-
surprisingly) the lower levels of the hierarchy evolved dref the higher levels. This
recurring pattern of lower level units forming themselvewihigher level units has been
dubbed anajor evolutionary transitioriSzathnary and Maynard Smith 1995). The major
evolutionary transitions are summarised in Table 1.1.

There are still many mysteries around the major evolutiprieansitions however

Replicating molecules  — Populations of molecules in compartments
Independent replicators — Chromosomes
RNA as gene and enzyme— DNA + protein (genetic code)

Prokaryotes — Eukaryotes

Asexual clones —  Sexual populations

Protists — Animals, plants, fungi (cell differentiation)
Solitary individuals —  Colonies (non-reproductive castes)
Primate societies — Human societies (language)

Table 1.1: The major transitions in evolution, in order otocence. Taken from the
review by Maynard Smith and Szatlany (1995).
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(Maynard Smith and Szathary 1995). Taken separately, none of the transitions can be
said to have a satisfactory individual explanation. Furtbehis, we lack a more general
theory as to why the transitions occurred over and over aga@ach of the new levels.
My main topic of interest, in this thesis, is therefore tol@unodels (and modelling ap-
proaches) that work toward a unified theory of the transgtjonhile at the same time
address each one individually.

The repeating pattern of the major evolutionary transgiamicates that there may
be some common feature in individual sub-units from evevglléhat leads them to form
themselves into larger units. Perhaps there is some kindadilsevolutionary force that
binds these units together? | will be investigating thissjiea further in this thesis.

The best place to start is to look for the common features efttansitions. It has
been observed that all of the transitions follow one simgemon principle: sub-units
that could previously reproduce on their own can now onlyedpce as part of the super-
unit (Buss 1987, Szathany and Maynard Smith 1995). There are also common features
shared by the sub-units: they all make copies of themselV@shwnay or may not be
perfect copies and they all compete with other similar irdiials over resources. Based
on these core features, the central question of this thetss:

The central question What factors are important for an individual that can repume
on its own to evolve into a sub-individual that reproduces ag pf a collective?

This question is investigated further by first reviewing kgound literature in the
next section (Section 1.1). In the following section (Saeti.2) | present the direction
in which | will approach the problem of the major evolutiopdransitions. With this in
mind, | review current literature on social evolution in 8en 1.3, involving a discussion
on the origins of altruism and its potential role in the magwolutionary transitions. After
concluding that altruism may not be the answer, | look indtatatheories ofitness(an
organism’s ability to survive in an environment and prodw@ble offspring) in more
detail in Section 1.5. The conclusion that the long term §ignef an individual (or an
individual's lineage) may override its short term fithesade me to the suggestion that
this may be important in the major evolutionary transiti@msl this is the main topic
of this thesis. The aims and results of the thesis are sursathin Section 1.6 and its
contributions are discussed in Section 1.7.
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1.1 Background

Given the central question of this thesis | look, in this gBttto its relevance to com-
puter science, evolutionary computation and ALife reseafthe dream of many ALife

researchers is to employ principles inspired by evolutigpiaology to implement com-

puter systems that will use evolution to solve problems authsupervision. Therefore,
ALife research is interested in how evolution works overrd@eriod of time — the sorts
of timescales over which new functionality (e.g., visionmelligence) evolves and over
which several major evolutionary transitions have takecel

To answer this question, we need to have a clear picture agwaekiolution works.
What are the simplest elements needed to generate evolatiarsystem? Evolution-
ary theory has been rooted in a gradualist perspective $acein’s original theory on
natural selection (Darwin 1859). Small heritable changesfispring, combined with
survival of the fittest, mean that individuals will make agtore advances in their func-
tionality. Since the modern synthesis (Fisher 1930, HadE®B82, Wright 1931), recent
theories [e.g., (Dawkins 1982)] of these increases in idd&l functionality are based
on natural selection pressure on reproducing individuzs &re subject to mutations of
their genetic code. Those mutations that increase an agémfitness will proliferate in
the population. This creates a ratchet effect [known as é&fsliratchet (Muller 1932)]
where beneficial mutations are incrementally added to aarsg’s gene pool: there is
no reversal because any organism with a detrimental muatatitb not survive.

This approach has been applied with varying success in ctanpaience. Genetic
algorithms are now widely used (Mitchell 1998) for their saand optimisation func-
tionality. A typical genetic algorithm finds optimal solatis by running multiple gener-
ations. Each generation has several solutions which adifidrent. The best solutions
are picked using &tness functiorfwhich scores solutions according to their competence
in solving a problem) and are used for the next generationwé¥er, fitness functions
are very difficult to design to solve any one specified probl€onther, a fithess function
that adapts to unspecified problems is severely challengmgroduce unsupervised new
functionality, the fitness function must constantly change

An alternative perspective to using genetic algorithmbésgimulation of ecosystems
to understand how evolution can drive new functionalityhivitthem. Such a simulation
would of course have value within evolutionary biology adiwén fact a thought ex-
periment of Gould (1989) questioned whether there is sudnantability to evolution.
Furthermore, if there is such an inevitability, what are fhetors that it is contingent
upon? Many proponents of Artificial life (Bonabeau and Thaa 1994, Ray 1994,
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Bedau 1998) have argued that simulating evolution on coemputan lead to important
insights to this problem.

Attempts to simulate the evolutionary time-line in computeodels have not gone
well so far. A common opinion in biological circles (Dawkid889) is that core evolu-
tionary theory is all we need to explain the evolution of kfied its astounding complex-
ities. This idea of evolution as a mechanism implies thatdyrhe possible to generate
an unsupervised system which will develop new functiopatifperhaps in a computer.
However, attempts to produce ALife computer models (Ray612@lami 2006), which
implement all the main features of evolutionary theory,édaat produced much complex-
ity of interest. It seems clear therefore that there is sbmgtmissing, perhaps important
factors that evolution is contingent upon have been omittad the models that have at-
tempted to recreate some of the complexity of life, or pestithpre is something missing
from the evolutionary theory they are based on.

Perhaps the best thing to focus on is the increase in indivichmplexity (Szathrary
and Maynard Smith 1995). By making an individual more complaut still competi-
tive in an environment, it will develop its repertoire of tttionality. However this is also
problematic because there is no accepted measure fordudiMcomplexity. The problem
with developing a measure for complexity is that there ardeadt three ways of quanti-
fying it: genetic complexity (Adami, Ofria and Collier 20QGhorphological complexity
(Carroll 2001) and behavioural complexity (Bonner 1988). aently lack an accepted
measure for individual complexity (Adami 2002, Szatimmand Maynard Smith 1995)
that successfully captures all these different attributes

Some have argued that we should take a neutral perspectitreecadaptive advan-
tages of individual complexity. Gould argues that sinceé¢hs a lower bound to in-
dividual complexity, random drift would mean that it shouddturally increase (Gould
and Eldredge 1993). While this is an attractive point of vigwe major evolutionary
transitions show obvious increases in individual comgexi so, any theory explaining
them would run against Gould’s thesis and potentially stwgdeslight on the problem of
open-ended evolution.

Given the need for explanations of the mysteries of the nejolutionary transitions,
and the desire for theory which demonstrates increasesliimaual complexity and per-
haps open-ended evolution, | have chosen the major evoaridransitions as the topic in
this thesis. In the next section | outline the problems ofittagor evolutionary transitions
in more detail.
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1.2 The major evolutionary transitions

For the major transitions to occur, this requires that anviddal must invest in a higher
reproductive process. | define a higher reproductive pasdollows:

Higher reproductive process A process of generating new offspring with two or more
individuals having some genetic stake in, and contribut@spurces to, the new offspring.

From this perspective, | seek to explain why an individuagimievolve to be part of a
higher reproductive process and investigate, based omrmudata on the evolutionary
transitions, the nature of these higher reproductive gees.

From the perspective of the evolution of complexity, it isstimvestment in a higher
reproductive process that is important. Rather than emjplgithe individual transitions
separately, a general theory that explains why an individiauld invest in a higher re-
productive process could explain the increase in complekdt is required to take part
in a higher process, and explain the increase in complexkitiyeoindividual.

Of course, just explaining an individual’s contributioretbigher reproductive process
does not fully explain the evolutionary transitions — thesguire (Maynard Smith and
Szathnary 1995) that the sub-individuals may not freely reprodume their own, they
may only reproduce as part of the higher reproductive pmc@éghat can be said is that
a stable higher reproductive process is likely to becomermaeent one. However, in
some cases (e.g., the evolution of eukaryotes or the egalofimulticellular organisms)
they also require the evolution of a new super-individuadde up from sub-individuals.
Indeed, each transition has different peculiarities (dwy are considered in more detalil
in this thesis). These are interesting topics, but they atside the scope of this thesis.

In this thesis | therefore assume that, for a transition tugcan individual that nor-
mally reproduces on its own must reduce its ability to mak@e®of itself and contribute
resources instead to a group of individuals performing aéigeproductive process. The
group must also be resistant to selfish individuals thateadsof contributing to the group,
make proliferative copies. In light of this, | review curtditerature in social evolution in
the next section before considering the plausibility o#=mpts to apply social evolution-
ary theory to the task of explaining the major transitiond aspecially to the question of
why an individual might contribute to a higher reproductpecess.

LIn multicellular organisms, many cells reproduce for theddf@ of the super organism, however if they
reproduce freely then they are cancerous
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Outcome for recipient

Positive Negative
Outcome for Positive Mutualism Selfishness
actor Negative Altruism Spite

Table 1.2: The four different outcomes of social behaviaurgn actor and a recipient.
The way an outcome is measured is through the change ifittlessof an individual.
Fitness is here defined as the change in the reproductivessiof an individual over its
lifetime.

1.3 Review of Social Evolution

The majority of biological work in social evolution theorpjalies to the evolution of eu-
social insects (Hamilton 1964, Wilson 1975, Bourke and ksal®95, Maynard Smith
and Szathrary 1995, Queller 2000, Wilson anddHidobler 2005, Foster, Wenseleers and
Ratnieks 2006) and microorganisms (Hudson, Aukema, Risp&aze 2002, West, Grif-
fin, Gardner and Diggle 2006). Many social evolution mode&ssider organisms that
show reproductive specialisation: only a few privilegediiduals can reproduce and
most are sterile workers which cannot. Social evolutiorotil@nakes predictions as to
why such systems are stable to mutations from non-repraduodividuals into repro-
ducing individuals.

In general, social evolution studies the actions that iddi&ls perform which have
consequences on others. It is most simple to consider tleendasre there is an actor and
a recipient. There are, then, four different outcomes fertibhaviour of the actor and its
consequences on the recipient. These are shown in Table 1.2.

The standard way of analysing such a table is to compare dikékie. Individuals
that perform an action are compared with individuals thatidentical in every other way
except that they do not perform that action. In these casesan read from the opposite
corner of the table — e.g, not performing a selfish action aae an altruistic outcome,
or not performing a spiteful action will have a mutualistitcome.

A naive analysis of Table 1.2 leads to some simple conclssigkny actor which
repetitively performs actions that have a negative outcaitidower its own fitness. One
that performs altruistic actions, in particular, will low#s own fitness at the expense of
increasing the fitness of a competitor. Therefore, it sedrasdny heritable trait which
leads to an altruistic action will be less represented imi generation and will even-
tually become extinct.

A famous example of the consequences of selfish behaviolreigragedy of the
commons (Hardin 1968, Foster 2004). Here an open pastu@ngeons) is considered
where herdsmen may graze as many cows as they like. For eadbnten, the best
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strategy is to graze as many cows as they possibly can — anhand$fat grazes his cows
more profits more and can therefore buy more cows. Unforaipndhis strategy, when
adopted by many herdsmen, leads to over-grazing and tharpastruined. There is a
need for unselfish, or altruistic, behaviour from all thedsnen for the community to
survive.

Another example is eusocial insects. Consideligmenopteraworker bees are per-
forming an altruistic action. These individuals do not laggs and therefore have zero
fitness? However,prima facie they can promote their own genes by laying eggs. The
offspring would then be egg-laying themselves and thisddlk go on to destroy the
collective reproduction mechanism and possible damagekizde colony, much in the
same way as the herdsmen destroy the commons, or cancemgallle a multicellular
organism. Of course, since bees are quite mobile, a bee fnrencaony may then invade
other colonies — leading, potentially, to the destructibausocial behaviour in the whole
species. There are, however, theories as to why this doesp(ien: these are outlined in
the next section.

1.3.1 Altruism

Given that a selfish organism will be more likely to reprodaecel give birth to other

selfish organisms, it seems unlikely that any altruistidgrean survive. However, there
are various theories that show how altruism can indeed #iimi a population (Nowak
2006). These theories do depend on different conceptsrafsait [see a recent review by
Kerr, Godfrey-Smith and Feldman (2004)] but the basic ppiecgiven in Table 1.2 still

holds. The theories most relevant to the questions looketthis thesis are kin selection
and green beard theory and these are outlined below. | alssid®r two-player games
which have also proved useful in understanding how altridamsurvive in a population.

1.3.1.1 Kin selection and inclusive fithess

One theory looks at relatedness between individuals (Hamil964). It has been noted
that individuals in a colony are likely to be related to one@ther. Looking at human
families as an example, a mother will typically share 1/2 ef genes with her offspring
(the other 1/2 will come from the father who is unlikely to le¢ated to the mother). When
we consider genes that differ from the population averatyefder offspring will also
have 1/2 of their genes in common with each other. Hamiltdled#his ratiorelatedness

2Actually the correct terminology here direct fitness- this is defined as an individual’s reproductive
success against its local neighbours, see Section 1.3.1.1
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and denoted it by the variabte Simply put, the basic theory is that when an individual
contributes to a related other, it is effectively promotihg survival of its own genes.
Hamilton shows that, when an altruistic act has a fitnessflidBé¢o a recipient and a
fitness cosC to the actor, then the act will be advantageous wign- C. Maynard
Smith (1966) coined the terkin selectionto describe this effect. Groups of kin should
cooperate, or work together, to maximise each others’ fitnes

The way Hamilton approached relatedness was to considerdiated individuals are
due to ancestral and dependent relations. A more recenvagpi(Frank 1998) instead
considers gene frequencies in a population. This is basdatieRrice equation (Price
1970, Frank 1998) which models how a character trait mightge in a population:

WAZ = Cov(w, 2) + E(wWAZ) , (1.1)

wherew is fitness ana is a quantitative character traiv@ndz are population means).
The covariance term (Cow, 2)) in this equation shows how a character trait will change
its frequency in a population due to its correlation withdgs of those that express the
trait. The expectation term (BAz)) covers all the other factors that influence fitness.

The Price equation can be used to encapsulate the notiorrait ¢hit increases the
fitness of an individual according to the frequency of itsresgion in others around it and
Hamilton’s formula can be derived (Frank 1998). The differe here is that this focuses
on a trait and surrounding individuals that express thé teed not be related by descent.
When the effects of other individuals that have a trait aréushed in the measurement of
its fitness, this calledhclusive fitnessThis can be contrasted withirect fithesswhich is
the way a trait will change in a population without any effedue to its frequency in the
population.

1.3.1.2 Green beard

The ability to recognise altruistic traits in others may Wa# an explanation for altruis-
tic behaviour. Dawkins (1982) gives the example of the greeard. This gene has a
trait which makes a quantifiable difference (such as haviggean beard) to the way an
organism is perceived by, or interacts with, other orgasisihfhe same gene also has a
second cooperative/altruistic trait that means it will fteugstic to those that display the
characteristics of the gene. It is simple to see how such a gewld proliferate through

a population — all those with the gene would be at an advan®@uyegreen beard strategy
Is susceptible to cheating behaviour [such agdlgtian mimicry (Miller 1879)] however.
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Opponent’s action

Cooperate Defect
Player's Cooperate 2 0
action  Defect 3 1

Table 1.3: The prisoner’s dilemma payoff matrix — a playex/off depends on what
its opponent does. The joint pay-off for cooperator-coapmris 4, cooperator-defector
is 3 and defector-defector is 2. Cooperate-cooperate islgldae best joint strategy but
defecting is the best individual strategy whatever the oplteeyer is doing.

1.3.1.3 Two-player games

Other abstract theories looking at altruism consider twaygr games. The standard form
of a two-player game involves individuals choosing one ob wptions. According to
which option is chosen, individuals receive some rewarchfeopay-off matrix. The two
arrangements of the matrix that involve some form of altruege the prisoner’s dilemma
game and the hawk-dove (or snowdrift) game. These gamestmesting and well
studied because they yield to simple analysis (MaynardiSh882).

The prisoner’s dilemma game looks at two prisoners whiclelmaen caught on some
minor offence. They have both committed a more serious ofeand are both in a po-
sition to give evidence against the other prisoner and vecaipardon from the minor
offence. However, if they both do this, they will both be cimted of the major offence.
The game is written in the form of a payoff (where a payoff egponds to the value of
the outcome of a decision) matrix in Table 1.3. The imporgenit to note is that the joint
pay-off for two cooperators is better than the joint pay{off other strategies. However,
an individual's best strategy is to defect when the otheoiperating.

When the prisoner’s dilemma game is played repetitivelyhaut memory of past
actions, between two opponents (or indeed between rand@onepts in a group), all
players quickly descend to playing defect each turn. Readown each column on the
matrix, the best strategy for a player is always to defect thef opponent cooperates,
then it’s best to defect; if the opponent defects, then Isg dest to defect. However, it
has been shown that a ‘Tit-for-tat’ strategy can work quitdlwetween two opponents
when each has a memory of the actions of the previous roundl(@xk 1984). Here, a
player starts by cooperating and then records the opponamts each turn and plays the
same move in the next round. This strategy cooperates whikr @boperating strategies
and defects with other defecting strategies, and perforeglswhen it encounters itself.
The idea that a viscous group (a group which sticks togetb@n)d promote internal
cooperation by playing the game only with each other was jaissented (Axelrod and
Hamilton 1981, Axelrod 1984). The viscous group theory hasrbdisputed however
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Opponent’s action

Cooperate Defect
Player's Cooperate 3 1
action  Defect 4 0

Table 1.4: The snowdrift (otherwise known as hawk-dove)offayatrix. The joint pay-
off for cooperator-cooperator is 6, cooperator-defectobiand defector-defector is 0.
Cooperate-cooperate is clearly the best joint strategytharily pays to defect when the
other player is cooperating.

(Marshall and Rowe 2003a, Marshall and Rowe 2003b).

The other game of interest to altruism is the hawk-dove gavis/fiard Smith 1982).
This is also known as the snowdrift game as it makes a goog. starthis story, two
people driving home in their cars encounter a snowdrift eitimer person gets out of their
car and clears the drift then they will both be stuck. Thougé person can clear the drift
on their own, it is better if both help each other. The gamerigtew in the form of a
payoff matrix in Table 1.4.

The difference between this game and the prisoner’s dilemamae is that if both
players defect, then it pays for one to cooperate. Convergddpth players cooperate
then it pays for one to defect. So, when a population of comgendividuals playing
this game repetitively is considered, this will result in exed population of defectors and
cooperators. If there are too many cooperators, then deteutill do well and if there
are too many defectors, then cooperators will do well. Thblstratio of cooperators to
defectors can be predicted (Maynard Smith 1982).

1.3.1.4 Summary of Altruism

| have presented two types of altruism in this section. Tl fype is inclusive fithess
where an individual will reduce its fithess so that its genay proliferate through other
related individuals.

The other type is the prisoner’s dilemma game where we deslime individuals are
related. When played only once, it would never be a good glydi@ an individual to
cooperate, however when played many times (the iteratediper’s dilemma) social rules
may emerge (such as Tit-for-tat) which mean that cooparatem be a good strategy.
This said, evidence of the iterated prisoner’s dilemma widgical systems is scarce
(Brembs 1996).

In summary, the models | have presented on altruism in tlussehave a common
theme. While an individual does in fact do something that simental to their own
reproductive chances, there is always a pay-off — througietyerelatedness or recipro-
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cation. This means that any so-called ‘altruistic’ actisnin fact, a selfish one. In the
next section | present and critique applications of thistieo the problem of the major
evolutionary transitions.

1.4 Explaining the major transitions

Given the preceding outline of the theory of social evolatiblook in this section at its

potential application to the question of why an individuaght invest in a higher repro-

ductive process. Essentially there are two styles of agproathe literature; these differ
on whether the cooperative behaviour is affects the remtddstrategy of an individ-

ual or not. First, | consider that individuals may, througinfreproductive cooperative
interactions, form themselves into a unit which will themb#t from a centralised repro-
ductive strategy. The second approach is that the reprivéuttechanism is essentially
cooperative in the first place — through sibling relatedness

1.4.1 Non-reproductive cooperative interactions

Much work on the transition to multicellularity (Wolpert 20, Michod 1999, Pfeiffer and
Bonhoeffer 2003) assumes that the main benefits of multilegity are from the division
of labour between cells. Examples of this are cooperative Afoduction (Pfeiffer and
Bonhoeffer 2003) or cooperation between reproductivescatid motile cells (Michod
1999). These models require that individuals cooperatenvdigour is divided. Michod
(1999) gives an explanation of such cooperation througlewodution of policing — there
being a mechanism whereby defecting cells are harmed. e otodel (Pfeiffer and
Bonhoeffer 2003) suggests that clustering itself may belgeay of both maximising the
benefits of cooperation and reducing the potential of narpecators to invade.

Alternatively, there is an argument that, as local relagsdngoes up (through repro-
ducing within higher units), so interactions get more coapee, and these fitter indi-
viduals will dominate (Witting 2002b, Witting 2002a, Wiity§ 2003). Thus, the beneficial
interactions from this greater cooperation can facilitea@sitions from asexual reproduc-
tion to sexual reproduction and eusocial reproduction tfijt2002b).

One criticism of this approach comes from analysis of coafes interactions be-
tween kin. Models, and some experimental data, predictghiabenefits of interactions
between kin can be negated from the increased competitibmeke kin caused by an
increased local growth rate (Queller 1994, West, Pen anffitc2002). Secondly, if we
accept that cooperation interactions can be so benefig@ahtbhooperative group may be
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formed, this still leaves open the question as to how, or whge individuals started to
reproduce on behalf of others.

Models that show differentiation between reproduagegm-lineindividuals and non-
reproducingsomaindividuals require that the population is genetically ftmaneous
(Michod 2005, Michod, Viossat, Solari, Hurand and Nedel60& Michod 2006). The
benefit of this is that labour can be divided between sun{waj., vegetation) and repro-
ductive effort. Every individual unit must make a trade-b#tween its investment into
survival () and its investment into reproductive effob) & so the fitness of an individual
is given byw = vb. Given an homogeneous population (and therefore no setebg-
tween groups) Michod (2006) argues that the fitness of thepgoan be defined by the
mean viability of the group\) times the mean fecundity of the grouB)( The fitness
of the group {V) is therefore greater than the fitness of the average ceksiere is a
negative covariance between viability) @nd fecundity I) at the cell level, or,

W =VB=w-CoV]v,b] (1.2)

A negative covariance between fecundity and viability nsetivat cells must specialise
into fecundity (be germ-line cells) or viability (be vegete soma cells).

So, if we believe that clonal (genetically homogeneousygsomay be formed, then
it makes sense that some individuals can reproduce on befhatlfiers. However, if the
group is not homogeneous then the group is susceptible fratanhcells which breed for
themselves (and therefore don’t contribute to group fettyrig), but cooperate in every
other way. Group selectionist arguments may explain tlogdver they have long been
contentious (Maynard Smith 1964, Williams 1966a). In faetent work has shown to be
of some promise (Traulsen and Nowak 2006), but requiresstiattion within groups to
be very weak — this is not plausible in the case of a mutania&olr. In the next section,
| consider organisms that are not necessarily geneticaliydgeneous, but are related to
each other in such a way that they will cooperate with a higlproductive process.

1.4.2 Sibling relatedness

Considering the transition to eusociality, Hamilton’s theof relatedness (Hamilton
1964) has proved to give important insights into the repotida strategy of eusocial
insects. This transition is characterised by the evolutiba differentiation between two
types of female: worker females that cannot reproduce aeémgithat reproduce on be-
half of the worker individuals. One interesting characci of bees is that male bees are
haploid (have only one set of chromosomes) whereas female bedgéwal (having two
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sets of chromosomes). This means that females only giveoh#ikir genes to offspring
(through meiosis) whereas males give all of their genesfspohg.

Given Hamilton’s theory, an explanation can be given as tpwbrker bees do not lay
their own eggs. A queen that mates once with a male bee, addgee many offspring,
will generate sisters that have a relatedness to each otl&d Maynard Smith and
Szathnary 1995) — each sister having half of the queen’s genes ankotevset of the
male bee’s genes. Any sister that then reproduces willastlly be related at 1/2 to their
own offspring. So, there is a benefit to protecting one’skoffspring over one’s own.

However, this simple application of Hamilton’s relatednéiseory to social insects
appears to be flawed (Bourke and Franks 1995, Queller 2008pWand Hlldobler
2005, Foster et al. 2006). While sisters in insect colonieshrsely related to each other
(3/4), they are also less related to males (1/4). This meaais on average, siblings
have the same relatedness as mothers do to offspring (1/dpes not seem plausible
that siblings could recognise the difference between mahesfemales at larval stages
at the origin of eusociality (Maynard Smith and Sza#mnn1995). Another argument
(Grafen 1986) suggests that different sex-ratios at difietimes may explain why this
strategy might persist. However, if a sister is able to &stflise and produce clones as
offspring (relatedness of 1) then this would invade.

Even if we are convinced by the haplodiploid theory, therstit one more prob-
lem. Termites have similar reproduction mechanisms to therchaplodiploid eusocial
organisms, yet they are not haplodiploid (Maynard Smith 8rdthnary 1995). Since
the haplodiploid perspective does not appear to explaithalleusocial insects, it may
not be a good general theory for explaining why there is ckffiéiation between worker
organisms and the queen (or reproducing) organisms.

1.4.3 Summary

In this section, | have discussed various theories attemgpti explain the origins of major
evolutionary transitions. While kin selection shows thatimdividual can invest in the
reproductive success of another that is related to it, Hamig theory predicts that the
benefits must significantly outweigh the costs. When it cormesproduction itself, the
reason why a mutant individual should choose to invest regstin a higher reproductive
process rather than invest resources in its own (100% oBlatéspring is still unclear.

There must be some benefit to doing this, and that benefit iexmained by current
models. To approach this question from a different perspedtlook at fitness in more
detail in the next section.
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1.5 Fitness

In the previous section, | reviewed social evolution, whareindividual may transfer
its direct fitness to others so that its genes may prospers dpproach does not seem
to be appropriate for the major evolutionary transitionsneGssumption taken by the
social evolutionary literature is that fitness is definedtes riumber of adult offspring
(Hamilton 1964) -Hamiltonian fithessThis does not take into account that this may be
dependent on the environment. In this section | reviewdiigne concerning how we might
define a measure of fitness, including those definitions thabdsider the importance of
the environment.

Historically, agreement on a simple, but empirically apghble, mathematical defini-
tion of fitness has always been a controversial issue. At fitrsess metrics just counted
the number of offspring. However, there are conflicts betwiée number of offspring
and the viability of the offspring (Williams 1966a, Sober02Q Michod 2006). Thus an
individual's reproductive success was seen to be the mgsifisiant factor. This can be
represented by the expected number of offspring (Mill andtBel979).

The significance of randomly varying environments was hgitied by the work of
Cohen (Cohen 1966, Cohen 1968). This showed that the arithmetn of the pop-
ulation growth rate over variable environments was not tpprapriate way to calcu-
late the long-run growth rate. Rather the geometric meamlghbe used (see Sec-
tion 1.5.1 for more details). The theory was applied to thestjon of delayed repro-
duction (Tuljapurkar 1989, Tuljapurkar 1990a, Tuljapurk890b). This work shows that
delayed reproduction is advantageous in fluctuating enaients through the mechanism
of generating dormant immatures (e.g., seeds) that aréniekable to the environmental
fluctuations.

In general, this approach is about looking for evolutionatlyactors (Metz, Nisbet
and Geritz 1992) which are the optimal strategy over a rargininsic environments.
The approach becomes more difficult however when the enviemt is also defined by its
residents (Metz, Mylius and Diekmann 1996). A typical agmiois that the environment
is defined by the density of the local population (Roughgadd#71, Roughgarden 1979).
Roughgarden (1971) shows that the direct fithess of a traitdsgpend on population
density.

Given the significance of the environment, much modellingnaving away from the
simple ideas of maximisation of Hamiltonian fitness. Undemgity dependence there is
no population growth — thus it suffices to consider the irmagf mutant types into the
population (Metz et al. 1992, Mylius and Diekmann 1995). feathan maximising fit-
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ness, relative fitness (or ‘soft selection’) becomes mommirtant (Geritz, Kisdi, Mesma
and Metz 1998, Me&mna and Gyllenberg 2005) especially when considering nsoafel
speciation or evolutionary branching.

As well as density-dependence, models may also considgudrey-dependent se-
lection (Maynard Smith and Price 1973, Maynard Smith 198®)e a trait’s fithess will
vary according to its frequency in the population. From fhesspective came the idea of
anEvolutionarily Stable Strateg§eSS) — a strategy (or a community of strategies) which
is stable to invasion from mutant invaders. When models tbatbine both frequency-
and density-dependence are considered, frequency-depieselection is at best trivial
when environmental feedback (uni-dimensional feedbask@mments) is the same for
all traits (Heino, Metz and Kaitala 1998). Multi-dimensabrfeedback environments,
where individuals have a different response to the enviemirare required.

The inclusion of density-dependent selection, and enwiemtal fluctuation, perspec-
tives therefore means that fitness should be calculatedtbedong term, not the short
term. In fact, the reproductive success explanation ofggrteas been criticised (Beatty
and Finsen 1989, Sober 2001) due to the fact that it only dersifitness over a short
term. As Beatty and Finsen point out (Beatty and Finsen 138Sirategy that has a high
number of offspring in the short term may actually have a lomember of offspring in
the long term. This is illustrated by the cartoon in Figurg. 1.

Population size

time

Figure 1.1: A comparison of short and long term strategiddirst, population A is more
successful. However, over a long time period of many gererstpopulation B becomes
the more successful.
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1.5.1 Geometric mean fithess

In order to introduce the importance of the geometric meaesi, | look at bet-hedging
(Seger and Brockmann 1987). To give an overview of bet-hegltfieory, we may imag-
ine a gambler with a sizeable amount of stake money. Thereaai@us horses in various
races that she may back. If she bets all her money on the best kbe will have the
highestexpected valu@he average profit she will make if the race was run sevaradg).
However, if the horse loses she will lose all her stake moig best long term strategy
is to gamble her money (hedge her bets) on several horses @kelarsmall profit on the
few that win.

In biological terms, bet hedging theory argues that an idd&l in an unpredictable
environment may reduce its average fitness (i.e., the agiticnrmean of its growth rate
over the different environments) if this also reduces itdarece of fithess (Seger and
Brockmann 1987). So, by adopting strategies that may pedewer offspring under
some circumstances, an individual can increase its offgmver a longer period of time.

The long term growth rate is calculated by considering thengetric mean growth
over variable environments (Cohen 1966, Cohen 1968, Seg@&racimann 1987). Con-
sider two environments A and B. The population grows witlesat andrg respectively
in the two environments. For example, in environment A,

Pr1 = rapy, (1.3)

wherep is the size of the population. The geometric mean growth oate timeT is
given by
rg=(rrg)MT (1.4)

whereTa andTg are the amount of time spent in environments A and B respagtiThe
number of environments can be increased by adding extrasteymquation (1.4). This
also allows us to analyse empirical population growth datizst the theory (Boyce and
Perrins 1987, Wilbur and Rudolf 2006, Venable 2007).

From a modelling perspective, the geometric mean can therdfe used to model
long term growth rates of different strategies under fluthgaenvironments (Tuljapurkar
1990a, Tuljapurkar, Horvitz and Pascarella 2003). Typycahvironments extrinsically
fluctuate under some distribution — the environments arelaetgrmined by the residents.
When we look at modelling fithess under density dependeneegritiironment is deter-
mined by the population density and thus the distributiorewfironments is undeter-
mined.
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1.5.2 Summary

To summarise, | outline the various concepts of fithess eal/@r this section and the
previous section. These are summarised in Table 1.5.

Type of fitness Description

Direct fitness The expected reproductive success of a trait/organism due
to its phenotype

Inclusive fitness The expected reproductive success of a trait/organism due

to its phenotype and the frequency of the trait/related or-
ganisms in the population

Group mean fitness The average fitness over a group

Group fitness The success of a group in making new copies of itself (re-
producing itself)

Arithmetic mean fitness The arithmetic mean of the reproductive success of an or-
ganism over different environments

Geometric mean fithessThe geometric mean of the reproductive success of an or-
ganism over different environments

Table 1.5: Various measures of fithess found in biologidatditure. Direct / inclusive
fitness are introduced in (Hamilton 1964, Frank 1998) (seti@e1.3.1.1), group mean/
group fitness are introduced in (Michod 2005) (see Sectid)) &nd arithmetic / geomet-
ric mean fitness are introduced in (Seger and Brockmann 1(88@)Section 1.5.1).

The theory presented in this section is interesting andaelgo the topic in this thesis
because it shows how individuals may reduce their repragisticcess for some longer
term advantage. It is important to consider fithess over g term and/or a wide range
of environments — i.e., an ecological perspecfivBy considering reproductive strategy
from this ecological perspective, it may be possible to axplvhy an individual might
invest in a higher reproductive process.

1.6 The thesis

The central question of this thesis is to study why an indigidmight contribute to a
higher reproductive process (see Section 1.2). | have fivereleveloped models ex-
ploring this question. The perspective | have taken haslgrigeen inspired by ALife
modelling (see Section 1.1).

| consider individuals as resource containers which aegeisources (which may rep-
resent energy but may also represent territorial ownershgmey and many other things)

3See work by (Coulson, Benton, Lundberg, Dall and Kendall&}@6r more discussion on the impor-
tance of ecology in evolution
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and expend them on maintenance (including growth) and dejgton. The strategies that
an individual might employ to encounter and store resouacelsreproduce depend on its
genes. Since | am interested in reproductive strategy, lpawenstrategies of individuals
that are basically the same in every way except the way intwtiiey reproduce. The

modes of reproduction | have studied are inspired by the nesjolutionary transitions.

My review of fithess in Section 1.5 shows that, through begivegl individuals may
produce fewer viable offspring in some seasons so that tlagyaptimise their reproduc-
tive success over many different seasons. Another idesyrsby Figure 1.1 has that an
individual's fitness over a long term is more important thigrfitness over the short term.
The ALife approach is well suited to analysing a very longrtererspective of reproduc-
tion strategy. Rather than considering a model of a few seas® computer model of
a population can analyse the effects over many generatlaarge fluctuations in popu-
lation numbers can be modelled. This gives the potentialudysreproduction strategy
over a timescale where it is possible that transitions couatzlr.

As detailed in Section 1.2, the major evolutionary transiti require that an individual
must reduce its direct fitness to contribute to a higher réypective process. | have argued
that, while inclusive fitness theory may well play a majoerol the transitions, it has not
yet provided a simple explanation as to why an individual rdayhis. If an individual
may reduce its reproductive success when there is somefpaytbe long term, then
maybe this is a selfish (or at least mutualistic) reason testkesources for some genetic
stake in a higher reproductive process?

The central questions considered in this work are therefefellows. From a method-
ological perspective, see Section 1.5, | look for analygmlg¢ that will allow for compar-
ison of strategies over density dependent environments.—anvironments where the
availability of resources fluctuates between conditiomgfowth and decline of the pop-
ulation. Density dependence is likely to be important inrttegor evolutionary transitions
because, under growth conditions, Hamiltonian fithess hsaaigply.

The first model covers questions that are applicable to theuree allocation strate-
gies of clonal reproducers. | consider the models of delaygidoduction developed
by Tuljapurkar (1990a). | question whether the results maydproduced in terms of
resource allocation strategy under resource variatiostgad of through dormant imma-
tures). This means that, with analytic tools for comparitigtegies under density depen-
dence, | can identify optimal strategies under density ddpet conditions.

The second model considers the strategy of an individuataling resources to re-
production as part of a larger group, rather than allocatespurces to clonal reproduc-
tion. Again, this may be modelled under density dependendiitons. Effectively, this
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model questions whether it is plausible to invest in a higbproductive process. It also
questions whether unpredictable resource fluctuationsfiie a significant factor.

Normally an individual will reproduce when it is healthy ahds accumulated a fair
number of resources. In the third model, | consider if theeea@her points in an indi-
vidual’s life history where it may reduce it's chances of\sual to increase its chances
of reproduction? When an organism has a low number of ressuitsesurvival is in-
creasingly unlikely. Are there biological examples of sdenechanisms showing how an
individual may completely sacrifice its short-term fitnessl &nvest instead with a larger
group of which it has a small long-term stake? What are theamunsnces of this on the
transition from unicellular organisms to multicellulares?

Finally, when many individuals are involved in a shared oeluctive effort, there is
a need for individuals to cooperate. If one contributes tessurces than the others it
may get some unfair advantage. It is possible that, throngasion of uncooperative
individuals, the benefits of collective reproduction coblel negated. Considering the
simplest case (where only two parents contribute to offgpriwhat are the consequences
of this on the transition from individually reproducing amgysms to sexually reproducing
organisms?

1.6.1 Thesis overview

After this chapter, | continue the thesis with a discussibthe methodology that | will
use throughout the work. Based on the paper by Bryden andaNab06), Chapter 2 con-
siders the two modelling approaches in the work presentesl kemputer simulation and
mathematical modelling. Much of the mathematical modgllihave done was first done
by computer simulation. Computer simulation has allowed heefteedom to explore
the often complex dynamics of evolutionary systems. | hdse derived mathematical
theory which presents an alternative analytic approach.

The modelling chapters of this thesis employ an artificfal ierspective [in line with
(Fontana, Wagner and Buss 1994, Judson 1994, Epstein aetl 2996, Axelrod 1997,
Kitano, Hamahashi, Kitawaza, Takao and Imai 1997, Stew@®9% 1Bedau 1999, Be-
dau, McCaskill, Packard, Rasmussen, Adami, Green, Ikegaangko and Ray 2000,
Kitano 2002, Wheeler, Bullock, Di Paolo, Noble, Bedau, Huslsa Kirby and Seth 2002,
Di Paolo, Noble and Bullock 2000, Silverman and Bullock 2G4 the study of re-
production strategy. The results of these studies are tbed to address the problems
introduced in Section 1.6. | have endeavoured to productaeapons that address the
important issues, but are minimally simple. All the moddisrefore use a very similar
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modelling approach which is intended to capture the mosbmapt attributes of a system
in which evolution may occur. Individuals are placed in aseld environment of limited
size; they receive resources and may grow and/or reprodUice.input of resources to
the system may be stable or fluctuate. When an individualsures levels reach a lower
threshold, the individual will die — thus the models can iempent large population fluc-
tuations (as required by the questions in Section 1.6. Giviersimple setup, | investigate
the optimal reproduction strategies under various scesari

The first modelling chapter (Chapter 3) looks exclusivelynatividual reproduction.
Here individuals receive resources from the environmedt armen they reach a thresh-
old, split into two new equal organisms. The model is mo&dan light of the literature
on delayed reproduction, resource allocation between tirawd reproduction and uni-
cellular reproduction the model is introduced and motidate this light. The model
studies how an individual may change an upper resourceitbieg/hich determines how
many resources it will accumulate before reproduction. myeasing this threshold this
means that the individual is, rather than increasing itsalifitness by reproducing imme-
diately, hedging its bets. The work replicates results ftbenprevious models of delayed
reproduction demonstrating that unpredictable resoutsxufations are significant. This
shows that the mechanism of delayed reproduction preséntdalid one. By saving
resources for later, individuals (or their offspring) aes$ vulnerable to unpredictable re-
source fluctuations that cause population increases andatess (like those associated
with density dependence).

Two analytic techniques are employed in the chapter. Thesesed to consider trade-
offs, under different amplitudes of resource fluctuatioetween the threshold at which
an individual may reproduce and two parameters: the upfrosit of reproduction and the
cost of growth/maintenance. The first analytic techniqesudsheorem 2 (in Appendix A)
to show what happens when an individual has a different ceprtive success (I actually
consider the lineage growth rate, but this translates iepsaductive success) over two
different resource regimes. The theorem is a more genedaligrsion of Corollary 3
which shows that the ratio of an individual’s (or a lineagehathe same reproduction
strategy) growth rate over the two regimes defines whichviddals are the fittest (see
Figure 1.2 for an example). This theorem, applied througgrtiodel, assumes that there
is no trend in the total population and thus allows for analysg varying growth over
different environments under the assumption of densityeddpnce.

The second type of analysis considers what happens wherophggbion is close to
an equilibrium level and resource levels are dependent palption density. | show how
an individual which has a lower equilibrium resource levél invade a population with a
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Figure 1.2: Two lineages compete with each other. Lineaga#\doth faster growth and
decline rates compared with lineage B. However, lineagealgreater ratio of growth to
death rates so, as predicted by Corollary 3 (in Appendix All,daminate when there is
no overall trend in total population growth. Lineage A: gsoat 0.02 births per individual
per timestep, declines at 0.025 deaths per individual peedtep. Lineage B: grows at

0.01, dies at 0.01.
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higher equilibrium resource level (see Figure 3.7 for anl@axatory cartoon). The math-
ematical models predict the equilibrium resource levetssimilar parameter regimes as
those that were used for comparing growth ratios.

Chapter 4 describes an abstract model which looks at whetbes is a selfish advan-
tage to reproduce as part of a collective. Theorem 2 (fromefplx A) is used to show
parameters where the growth ratio (i.e., the long term fghés a collectively reproduc-
ing individual is better than that of a individually reprazng individual. Collectively
reproducing individuals invest less in their offspring se &ss vulnerable to periods of
low resources. Different numbers of parents are considbtgdll parents are consid-
ered to be unselfish in this model (i.e., resources are stexeuly between parents and
offspring, after reproduction).

In light of the results from Chapters 3 and 4, a model of colecteproduction in
slime mould is considered in Chapter 5. This model studiesrtherocyst stage of slime
mould which is triggered by harsh environmental conditiRaper 1984). Starving in-
dividuals may hedge their bets by gambling all their renregmesources, their lives and
their genes on being the genotype of the macrocyst and theivieg the harsh condi-
tions.

Given that parents are unselfish in Chapter 4, Chapter 6 cassadecenario where
parents are selfish and may contribute less resources farioffs For simplicity only
two parents are considered, so the model is motivated in tijthe literature on sexual
reproduction. This chapter uses game theory to model witla¢ isxpected lower bound to
the number of resources a selfish parent may contribute défiey start to damage their
own reproduction chances. This is then compared with idd&i reproduction, using
Corollary 3, to show parameter regimes where sexual reptanuwill dominate.

1.7 Contributions

In this section | outline the contributions of the thesisamtext of the literature reviewed
in this chapter. The main importance of this work is in thespective on bet hedging, and
its application to the transitions to higher units. | firshe@er the scientific contributions
of the work presented here in light of the literature introdd in the introduction before
considering the conceptual contributions.
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1.7.1 Scientific contributions

The main topic of the thesis is the transition from units tleggroduce on their own to
units that reproduce as part of a larger unit. The approacvé lchosen to take here is
to consider abstract models where an individual will rediseeproductive success and
instead contribute to a higher reproductive process. Chdpsaows how, when parents
share resources unselfishly, individuals may contribute higher reproductive process.
In fact it shows that, depending on the impact on the upfrast of reproduction, the
more parents that reproduce, the better.

The main methodological contribution of the work is throuipe development of
Theorem 2 (in Appendix A). This theorem (illustrated in Figl..2) assumes that there
is no overall trend in population numbers. By taking thisumsgtion, the theorem is a
useful tool for modelling density dependent systems. Whewtr is linearly dependent
on the availability of resources, the type of environmefitadtuations can be abstracted
away from the model — which makes for potentially very simplg powerful models.
When growth is not linearly dependent, Corollary 3 may stillus=d to demonstrate
under which strategies may dominate under what fluctuaggmres.

The transition from individual to sexual reproduction isdied in Chapter 6, where
selfish parents (which may vary their own resource contidmstto offspring) are intro-
duced. This has important consequences for our undersiguadithe origins of sexual
reproduction. The traditional explanations of sexual ogjpiction come from the advan-
tages of genetic mixing [reviews are given by Otto and Lerarth(2002) and Agrawal
(2006), Watson (2006) gives more information on the benefiggenetic mixing for com-
positional evolution], the approach outlined in this tlsesidicates that genetic mixing
may only be of secondary benefit. The primary benefit of sesefaioduction being the
ability of two parents to hedge their bets against futureredgtable fluctuations in re-
source availability.

A more complex major evolutionary transition is that fromaetlular organisms to
multicellular organisms. This is studied in more detail inapter 5. The model shows
that parameters exist where an individual is prepare to ¢mitddife, resources and genes
against a reproductive pot. This reproductive pot then pced a colony of homogeneous
organisms. Interestingly, Michod’s work on germ-somaaditiation (Michod 2005,
Michod et al. 2006, Michod 2006) requires a genetically hgameous population as a
precursor so the combination of the results of Chapter 5 wighrhodel maps a complete
transition from individuals that reproduce on their own thalividuals that differentiate
into germ line cells and soma cells.

Considering the life history field the modelling approach ire@ter 3 outlines a novel
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perspective on delayed reproduction. It shows how delaggpgoduction by accumulat-
ing more resources can be a mechanism for delaying repriodughstead of producing
dormant immatures). Trade-offs are demonstrated betwasmtechanism for delaying
reproduction and changes in the up-front cost of reprodacind the cost of maintenance.
This, more general, result is relevant to microbial ecolagg may inspire experiments
that may be carried out in the laboratory.

1.7.2 Conceptual contributions

Given the applicability of the results to understandingrtiggor evolutionary transitions,

one of the most important contributions to evolutionarylbgy and ALife of this thesis

is therefore conceptual. | present models that show how dimidual can hedge its re-
productive bets by reproducing as part of a collective,eathan reproducing on its own.
This therefore implies an insight into the major evolutipn&ransitions: that inclusive

fitness is not needed to explain why an individual might reditg reproductive success
for the benefit of its group (altruistic explanations of thajar evolutionary transitions

have been discussed in detail in Section 1.3.1). This ismsay that inclusive fitness is
not important in the transitions, however the approach isf tiesis opens a new line of
enquiry.

The thesis introduces two new analytic techniques whictappdied in Chapters 3, 4
and 6: Theorem 1 (see Appendix A) is used in all three chaatedsthe analysis of
equilibrium resource levels is used in Chapter 3. These @ndfchniques are likely to
be of value in further extending the work of the thesis androbfems outside the context
of the thesis.

The reusability of the mathematical analysis is an impdrtspect of this thesis.
Much of the research was done by experimenting with commimeunlation models. The
research done actually started with the model in Chapter Ehwas complex dynamics.
The mathematical analysis done, short of reproducing tmepcder simulation model
with mathematical equations, helps to explain the behavidithe computer simula-
tion model however. This methodology has been spelled ontdre detail, contrasting
the freedom of computer simulation models with the explarygpower of mathematical
models in Chapter 2. The outlining of the methodology usetheibefully help others to
follow or refine my approach.

One of the initial motivations of the model is to understaosvitomplexity may in-
crease in an individual. All the models provide interestingights into this question.
Simply put, | argue that the investment of resources intdlang other than fast repro-
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duction will facilitate the increase in individual complgx— through optimised energy
storage (see Chapter 3 for more details) or through investmém social reproduction
(see Chapter 4 for more details).



Chapter 2

Philosophical considerations on the
method

2.1 Introduction

In this chapter | consider some of the philosophical and ouxtlogical issues relevant
to the two styles of modelling | have used in this thesis: cotafional and mathematical
modelling. Much of the research was initially done using pamational modelling. As
insights were found from the computational models, mathimalamodels were gener-
ated. | present an outline of the two modelling approachesidentify key differences
between them.

It seems possible that computer simulation modelling cdadldome the new mod-
elling paradigm in biology. As transparent, tractable, poer simulation models are
developed, their relaxed assumptions will, in comparisah waditional explicit math-
ematical treatments, make for considerably more realmsticiels that are closer to the
data. The ‘Virtual Biology Laboratory’ has been proposedtdko et al. 1997) where
a cycle is proposed for the development of computer simarathodels and biological
experiments in tandem: the results from each proceduraringpghe direction of the
other. Animals, such a8. eleganshave been well studied using computational models,
e.g., work on locomotion control (Bryden and Cohen 2004, Brydnd Cohen 2008).
Indeed the formation of a complete model of the organism lees bdentified as a po-

26
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tential grand challenge for computing research (Harel 208@wever, a full exploration
of the relationship between mathematical and computdtimaels in biology has not
yet been achieved. Questions remain: for instance, whetitarforms of modelling can
peacefully coexist, whether mathematical models shoyldao the complexity of com-
putational models, and conversely whether a computatimoalel can ever be as precise
as a mathematical treatment.

The scope of this chapter is mainly concerned with the siemhodelling (both
computational and mathematical) of biological systemsydwer | hope that the findings
can be applied more generally. Biological systems are madef umnany different sub-
systems. Put simplistically, genes and proteins are maaeotécules, genes produce
proteins which interact with other proteins, genes andratidecules to form cells; cells
can interact to form multicellular organisms; organisnteiiact to form ecological com-
munities and societies. ALife models often reside in therfiaice between one level and
the next and can become extremely complex, especially d@sesrftom any level can
interact with entities from other levels.

The discipline of computer simulation modelling allows netidrs previously unheard-
of freedom to build and understand systems of many interggiarts. This new expres-
sive freedom appears to have the potential to become the raelimg paradigm in
science, perhaps overriding traditional techniques whid explicit mathematical treat-
ments. However, this freedom does not come without a coshae and more detall is
added computer simulation models can quickly become udwighd too complicated to
understand.

How then can computer models contribute to the task of prioguscientifically ac-
ceptable explanations? The use of a complex yet poorly stwimat model may be accept-
able as some sort of loose analogy. However, Di Paolo et@QZhave argued that with-
out a proper understanding of the internal workings of a cat@psimulation model, it
can be impossible to say whether such a model makes a vakitkdution to the scien-
tific problem it is addressing. They describe such probl@mabdels as ‘opaque thought
experiments’, arguing the need for explanations of the phema modelled. They sug-
gest that modellers should use an ‘experimental phase’ inohwhanipulations are made
to the computer model, the results of these manipulatiopefudly generating insights
into the workings of the system. Once the internal mechas@ra understood, the trans-
parent model can then not only give new insights into theesgdieing modelled but can
also become a powerful predictive tool.

I question whether a computer simulation model can, in andseff, constitute a
scientific explanation. For example, one might produce aehwdwhich individual or-
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ganisms are explicitly represented and a particular paioumdevel phenomenon appears
to emerge. But this does not constitute an explanation of étities from one level of
a biological hierarchy produce interesting phenomena atheam level. Di Paolo et al.
(2000) argue that some explanation is required above a Basaription of the model and
the system it represents. In this chapter | look further imt@t an adequate explanation
of a model’s mechanisms should entail. | will compare theoaot that | construct with
the more basic position, sometimes seen in the artificialliiérature, that a bare-bones
description of a biological system with a computer model thalitatively produces sim-
ilar behaviour — with little or no extra analysis or explapat— can constitute a scientific
explanation of some phenomena.

Given the above concerns regarding computer simulationetfing | must also con-
sider the traditional methodology of explicit mathematitaatment. By explicit math-
ematical treatment | mean a model which is complete and oente implicit steps. It
must be noted that computer simulation models are fundathgmathematical construc-
tions. However, given that many of the mathematical steks pdace computationally,
these aremplicit rather than thexplicit steps used by formal mathematical models. An
explicit mathematical treatment takes logical axioms gretgies a number of clear ex-
plicit steps that deductively generate some result. Inaghépter | compare this traditional
treatment with the new computational approach.

First, | set the context; I look at a framework for scientifiodelling. Then, by looking
at two examples of a similar system, | identify some propsrthat characterise an ex-
plicit mathematical treatment which a computer simulatfounlikely to share. However,
having established that explicit mathematical treatmemié ultimate goal of any mod-
elling enterprise, | look at how computer simulation mod#tsindeed still have value.
| look at how complex and unwieldy computer simulations maysbmplified to more
easily generate explicit mathematical treatments — priogothat this can be done by
decomposition into simpler systems. Finally | set out, incather of merit, the various
different modelling approaches discussed.

2.2 A framework for scientific modelling

To understand how modelling is important and relevant witgientific investigation, |
present a framework for scientific investigation with théestific modelling cycle high-
lighted. Figure 2.1 presents a diagram of the framework.

The primary focus of scientific investigation is the builginf a goodconceptual
modelof the real world. Explanations of the real world reside in the conceptual mod
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Figure 2.1: The cycle of enquiry in scientific modelling witlthe context of scientific
investigation.

elling area of the framework; these are recorded ingtientific corpus The basic sci-
entific process involves the submission of concepts to the tests ofempirical science
and scientific modelling. The main focus of the frameworkwhweer, is on scientific
modelling and the interface between a conceptual model avatling model

Both computer simulation models and explicit mathematicsdtments reside in the
working model area of the framework. | take a working modebéoa deterministic and
completely specified model of a system. (Whereas a concapudél may remain vague
in places, a working model must be completely fleshed outgidad processes are applied
to the axioms and the results of this process are recordegichlgprocesses can include
mathematical equations, logical deductions and compunstiWorking models produce
resultswhich are used to refine and update the conceptual model.

Before | specifically look at the sorts of results that can éeegated by explicit math-
ematical treatments or computer simulation models, | disdhe types oassumptions
that can be used to generate a working model. An assumptessentially an abstraction
from a more complex system. There will be many abstractioos) fthe real world in
the conceptual model (tested by empirical science) andlliinermally be necessary to
make further abstractions for ease of modelling. One of térbenefits of computer
simulation modelling (Di Paolo et al. 2000) is that assuonican be very easily added
to or removed from models to see if they are significant or irtgpd. Explicit mathemat-
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ical treatments tend to be more fixed in their assumptions.types of abstractions used
by either explicit conceptual models or computer simulatimodels can be divided into
two groupsyeductionistandanalogousabstractions. | take inspiration for this distinction
from Bedau’s discussion of ‘unrealistic’ models (Bedau 909

In order to highlight the important differences betweenule of computational and
mathematical techniques in building a working model, | nfiist consider the outcomes
of a successful working model for the broader scientific ¢coj The more valuable re-
sults generated by a working model will form some kind of axgltion of why some
phenomenon is present in the conceptual model. Other, Essble, results include
those that generate predictions. With an explanation géeerby a model to hand, an
empirical scientist can easily and quickly generate googieoal experiments to test
whether an explanation is valid or not. A working model magliagate that some factors
are more important than others for a particular phenomeridris may point empirical
science toward a more fruitful direction. The value of a fesan depend not only on
the type of working model used to generate the result, bat thls assumptions used to
generate the working model in the first place.

2.3 Competence and performance in scientific modelling

The previous section has set out the tasks necessary befdrarling on a modelling
enterprise: Once a conceptual model has been chosen thds bupicture of what is
known about some real-world phenomenon, assumptions anectiosen to simplify this
conceptual picture into logical units and axioms that carbiié into a model. Up to
this point everything is quite similar between the two I@jimodelling styles. Perhaps it
Is natural to assume that since both modelling techniguesiaalytical, the style of the
results will also be quite similar?

To answer this question | must consider a thought experirhaséd on a specific
example which can easily be understood and modelled byratisemputer simulation
model or an explicit mathematical treatment. The Lotkat&oh system is a mathemati-
cal treatment of a predator-prey system. Two equations htlbeelynamics of the system:

dx
pri Ax— Bxy (2.1)
% = —Cy+Dxy (2.2)

where X is the frequency of prey, y is the frequency of predasmdA, B,C,D are con-
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stants. This system of equations has been shown [see,Migray 2002)] to generate
oscillations between predator and prey frequencies. Thbenzatical treatment can be
considered alongside an individual based computer simulahodel of the same phe-
nomenon.

An example of a computer simulation model of this system waude an individual
based model. Software objects would represent individoadiggtors and prey using a
variable that represents energy. Prey individuals recamzgy from the environment and
predators receive energy by encountering prey (predasyr-pncounters may be proba-
bilistic, or predators and prey may be placed on a spatidl gnd encounters modelled
through distances). Both predator and prey individualsagpce (make copies of them-
selves in the system) and die based on their internal enevgysl.

Without wanting to go into too much detail, | assume, for thiegoses of argument,
that the computer simulation of the predator-prey systemvsay similar dynamics to
the mathematical system. That is, both systems will makeséime predictions about
any particular predator-prey system to which they might peliad. The computational
model can now be compared with the mathematical treatmeobrext of the initial
guestion concerning the nature of the scientific explanatiat may be derived from
each modelling enterprise.

To answer that question | draw on a distinction introduce€hgmsky betweenom-
petenceandperformancg Chomsky 1986). Chomsky’s approach considers whether the
linguistic corpus can be used as a source of empirical eggldor linguistic enquiry.
He distinguishes between competence (our internal unemmscapacity for language)
and performance (actual instances of language productiegarding linguistic inquiry,
he argues that we should take this distinction into accourgnaconsidering models of
linguistic competence above models of linguistic perfance

| use Chomsky'’s distinction to shed light on the differinglesyof scientific explana-
tion that are likely to follow from the use of computationaksus mathematical treatments
of a particular problem. From this point of view, the compugenulation model must
merely be considered as a performance of a scientific exjptemavhereas the explicit
mathematical treatment can be considered as having congeefan innate capacity) as
a scientific explanation.

Simulation runs have the same sorts of problems as those ®lgadesntifies for lin-
guistic performances. They are subject to faults (in codeadlsas in run-time conditions)
and each simulation model is merely a single data point andmatareveal the complete
potential of a system. In a similar way, it is possible to Hidevs in the performance from
the audience. Simulations can be set up so that the datsspoegented make the best
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possible case for whatever it is the modeller is trying taiatg

Alternatively, explicit mathematical treatments, assugrthey are done correctly, are
analytically complete: flaws in the system are immediatdlyious. In addition, mathe-
matical treatments are not limited to some narrow range @rpaters but provide univer-
sal coverage of all variables included in the model. Thesepwperties were identified
by Chomsky as arguments in favour of looking at linguistic patence over linguistic
performance.

Furthermore, explicit mathematical treatments have mansepful identity condi-
tions than do computational models. By this | mean that onaemaatical treatment can
automatically be established as the same as, or differernther treatment, just by
comparing the logic. Computer simulation runs, on the otlard) may produce sim-
ilar results for the same problem, but have very differerdarntying explanations. The
opposite can also occur, in that two computer simulationg bedriven by the same
underlying process without this being obvious to an obgerve

Mathematical treatments are more reusable than compuetiation models. Some
give good clean results which can instantly be applied ttesys, others benefit from the
ease with which they can be written down in full and passedRuch models can then
be used as logical axioms for other models with their compegassed on. In contrast,
although computer models can certainly be transferred oo author to another their
results are rarely used, in practice, as axioms for otheraisod

To put this in context with regards to the example of the Léiki#terra system, the
mathematical treatment of this system [see Murray (20020 étails] has competence as
an explanation of oscillations between predators and pmeyomparison, only graphs (or
other data visualisations) showing oscillations from perfances of simulation runs may
be presented from the computer simulation model, only cegarameters may be tested
and simulations can only be run over a finite length of time.

One might argue at this point that we can distinguish the doda computer sim-
ulation model from an individual execution of the code. Thguanent continues that a
simulation run is merely a performance of the code, the ctadfihas competence. This
argument can be rejected by stating that if the code has demgeethen it is basically
a mathematical treatment in itself (or at least part of a m@idtical treatment). Re-
turning to the Lotka-Volterra example, the predator-pregitlations are a macroscopic
phenomenon. There are only two cases possible here. Biitbgut an execution of
the code these macroscopic phenomena are not deducibledsating the source cotle
or, if the macroscopic function is deducible from the codnt this deductive process

1Such non-deducible phenomena were described as beingemésgBedau (Bedau 1997)



Chapter 2 33 Philosophy of method

would necessarily form an explicit mathematical treatmedhthis deductive process is
impossible, any explanation generated must be teased arndlysis of simulation runs
and is thus a performance.

At this point, we are left with a conundrum. If computer simibn models are viewed
as mere instances (performances) rather than as systexrplamations (having compe-
tence), how can they be of use to science? The answer is #ratdhe many areas, iden-
tified especially in the ALlife field, which do not yet yield toathematical modelling but
in which simulation models can already be produced. Suchlsition models not only
have scientific power as proofs of concept and for generatfonsights for performing
empirical science, but they can also have some explanatovep(Di Paolo et al. 2000).

When considering a complex simulation in which there is ndaaxgtion of the effects
produced, some explanation can be deduced by performirgriexgnts on the simulated
system in the same way that one would do for an empirical tigeson. In this mode of
enquiry acontrol simulation is generated in which some important phenomeioas not
happen. This is normally done through some manipulatioh@$ystem. The control sim-
ulation is compared with the untampered system and thetsegtd used as evidence that
the changes made by the manipulations are part of the exjgarad the phenomenon.

The above procedure is very similar to the normal mode of eogiscience. A
conceptual model can be built of the working model systemtaislconceptual model
acts as an explanation. | will now look further into how thisrh of explanation relates
to an explicit mathematical treatment.

2.3.1 Analytic explanation versus synthetic explanation

To attempt to understand the difference between an exptengéenerated through the
use of a working model in explicit mathematical form and aplaration generated by
experimental manipulations of a computer simulation mad=nsider a distinction used
by the logical positivists — that analyticandsyntheticruths.

According to Frege’s reworking (Frege 1980) of Kant's oni distinction, an ana-
lytic truth is one that can be deduced through logical lawwsi@l A synthetic truth is one
which needs some other means, generally empirical inagtiy to establish its truth or
falsity.

| use this distinction to identify modes of truth for expléinas generated by a work-
ing model. As pointed out previously, | assume all workingd®ls are using the same
assumptions, i.e., they start from the same set of logidaha | distinguish between an
analytic explanation — one which follows logically from thetial assumptions — and a
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synthetic explanation — one which must be determined by suher means.

Naturally an explicit mathematical treatment is in itselfanalytic explanation. How-
ever, empirical experiments done on a computer simulateonanly form synthetic ex-
planations. These synthetic explanations require vatidah the same way empirical
science must be validated. The evidence backing up thesmtrahs relies on measure-
ments taken from performances and is thus open to discorfomaeproduction and
revalidation.

There is an ongoing debate about the analytic/synthetiimdisn, some arguing that
it is not a black and white distinction but more a questionegrege (Quine 1953). While
Quine’s arguments are concerned with statements aboue#hevorld rather than state-
ments about a closed set of logical axioms, | agree that atindtions of explanations
should not be black and white. A working model can, like adgital system, be large
and complex. Some parts of such a system will yield to expingthematical treatment,
whereas with other parts | may have to rely on empiricalesgiperiments of the kind
discussed by Di Paolo et al. The final explanation generatedigh such a process will
consist of a mixture of analytic and synthetic statements.

In the next section | present an account of how systems carebentposed into
smaller parts to identify explicit mathematical treatnser8uccessful mathematical treat-
ments will render the resulting explanations more analgttbe way | have just described.

2.4 Decomposition of systems

A system can become hard to analyse when it is made up from iméydependent
subsystems. In fact, the identification of subsystems isaal diost step when tackling
such a complicated system. However, this is rarely simplee\8ubsystems are inter-
dependent it is not possible to manipulate one subsysteepertiently without affecting
another: both subsystems, at the same time, affect thelbsgstem. The situation be-
comes increasingly difficult when the subsystem’s comptsare not mutually exclusive
from each other.

Simon (Simon 1996) describes a ‘nearly decomposable syatebeing one in which
components are independent in the short term, but depemdém long term. This is
a useful way to divide a system up and this has been expanddeifjWatson 2005,
Polani, Dauscher and Uthmann 2005) considering modulaamycal systems. Watson
introduces a concept calledodular interdependende describe a system with modules
that are decomposable but not separable. A hierarchy carined from subsystems and
it is easy to see how complex behaviour can be generated.hiéarchical perspective
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is a valuable decomposition of a complex system. If it is mdedo divide up a set of
microscopic entities into subsets this will allow us firstté@kle the mechanisms of the
subsets, before understanding how they interact with etier.o

In the next section | consider a more general perspectiveldoomposing systems.
Rather than breaking up the set of microscopic entities sofiosets, | consider a more
arbitrary way of decomposing a system into subsystems taain a simplified version
of the dynamics of the supersystem.

2.4.1 Mechanistic subsystem

| propose information theoretic definitions of a mechanistibsystem and interdepen-
dence in mechanistic subsystems. This style of definitiabeen used by McGregor
and Fernando (2005) to formalisgperdescriptions| then go on to discuss how these
definitions relate to our intuitive notions of these conedptfore looking at examples in
the next section.

Define a systen$ as being a set of mathematical entities, their interactarstheir
parameters. Take a descriptor functid{®) = M that will map the systen$to a set of
descriptordVl. Define theentropyof a random variablX as

H(X)=- > p(x)logp(x),
2
the conditional entropypetween two random variablésandY as
H(Y[X) == p(x) > p(ylx)logp(ylx)
and themutual informatioras
LOX;Y) =H(Y)—H(Y|X).

Take a systen$;, such thad(S;) = M1. Then,S; is a mechanistic subsystem 9ff

S c S (2.3)
H(MiM) = 0 (2.4)
I(M;M) > 0 (2.5)
(M M) < H(M). (2.6)

The mechanistic subsyste8 is a constrained version of its supersyst&m The
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constraints can take place in the parameter space, the mwhbatities, the nature of
the entities, or their interactions. | list the Equation®.3) to (2.6)] and describe their
meaning: (2.3%; is a subset 0§, (2.4) all information inM1 is predicted byM; (2.5) M1
andM share some information; (2.6) there is informatioMrthat is not predicted by the
information shared biv; andM.

The information theoretic definition presented includeswnaf the important con-
cepts of a mechanistic subsystem. However, a useful mestimsiibsystem should have
two further properties. Firstly, it should be transparem,, it is possible to understand
why and how it produces its macroscopic effects. Secondlyacroscopic effects should
be of interest when compared to the macroscopic effectseofrthin system. | need to
avoid specifying macroscopic subsystems that are eith&llggcomplex to the main sys-
tem with only some negligible reduction, or are so simpdistiat they are of no analytic
value.

Following on from this definition of a mechanistic subsystdndraw on Polani et
al.'s definition (Polani et al. 2005) of a system that is deposable but not separable to
identify how two mechanistic subsystems can be interdegrindTake a syster and
two mechanistic subsyster§g andS,, the subsystems are interdependent if

0 < [(Mg; M) < min[H(My),H(My)] .

The two subsystems are neither independent nor completglgratient.
With this approach identified, It can be seen how it is posdiblbreak up a complex
system of many interacting parts into simpler mechanistixsgstems.

2.4.2 Examples of Mechanistic Subsystems

| consider, as an example, the spatial embedding of repmogllegents. Space has
been shown to be an important factor in the maintenance gferation in a population
(Boerlijst and Hogeweg 1991, Di Paolo 2000). The commorufeadf these models is
that two regimes are considered. The models are considackaralysed in a non-spatial
environment before being placed in a spatial environmeiie fon-spatial treatment is
a mechanistic subsystem of the spatial treatment. In thatrtrent agents are thought
to be in a perfectly mixed spatial environment, a speciaé afsghe spatial component.
A comparison of the interactions of agents in the spatial mml-spatial environments
demonstrates how cooperation is increased.

A mechanistic subsystem (the non-spatial model) functigerénarily as a control in
the above experiments. Further to this, the dynamics of emastical treatments of the
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non-spatial model (Di Paolo 2000) are considered with thed firscrete spatial individual
based model. Spatial localities can be considered as ratrabmodels. In this way, the
mechanistic subsystem provides insights on the final iesult

A different model [see Bryden (2005a) and also in Chapter Sisiters collective
reproduction in amoebae. This non-spatial model demaestthat cells that reproduce
individually must reproduce more slowly to maintain higreegy reserves for periods of
low resources. By reproducing collectively during periaafdow resources, individu-
als can avoid the need to reproduce slowly and can dominaiedgeof high resources
by reproducing more quickly. The model is complex and it i$ @asily apparent why
this is occurring. To explain why individuals might repragumore slowly, | have done a
mathematical treatment (presented in this thesis in Ch&ptehich analyses a mechanis-
tic subsystem of the main model only considering individubht reproduce individually.
This, combined with the insights from the other work in Chagtehow that an individual
is actually hedging its bets by reproducing collectively.

A further model (Bryden 2005b) considers the effects of spac the individual re-
production mechanistic subsystem: agents in the modeblnvereproduce on a spatial
grid. This model can be broken up into two mechanistic suiesys, firstly a non-spatial
subsystem with individuals reproducing and secondly aiglpstibsystem without indi-
viduals reproducing. The results indicate that the spaffelcts increased the frequency
of both periods of high resources and periods of low resaurtae mathematical model
has shown that this would increase the tendency for indal&lto conserve resources and
reproduce more slowly. This is an example of a system thabawes two interdependent
mechanistic subsystems (a spatial and a reproductivensy#tat interact with each other
to produce a macroscopic phenomenon.

Away from the field of agent based modelling, | consider msdiised on neural bi-
ological systems. Neural systems have extremely complagmycs, which are resistant
to mathematical analysis. However, the use of linear stal@halysis has proved use-
ful in identifying mechanistic subsystems which can be useduilding blocks within
larger systems. For example, a system of coupled osci#lattased on the FitzHugh-
Nagumo model, has been analysed as a mechanistic subsyBtekiey, Bullock and
Cohen 2004). This analysis demonstrates how, when theatscdlare linked to a simple
gas net, the system can produce temporally distinct osoilis. Much other work con-
tinues into the identification of simple oscillatory modedsich as that done in Central
Pattern Generators (CPGs) (Marder and Bucher 2001). CPGs @dnas mechanistic
subsystems within models of animal locomotion systems.

In this section | have demonstrated how a complex systenditbes not yield to ex-
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plicit mathematical treatment may be simplified into megbtéa subsystems which are
more likely to yield to explicit mathematical treatment. \6&n observe from the exam-
ples chosen that the working models arrived at through suptoeess consist of both
synthetic and analytic explanations.

The process of simplification identified above is not the améyy of making simpler
models. By choosing different assumptions and approachiognceptual model from
a different perspective it is also possible to open up a systeexplicit mathematical
treatment. With computer simulation it is increasing easgtlange the assumptions of
a model and get a feel for how the system changes. This sogpsbach is invaluable
as a tool for the sort of lateral thinking needed when geiregain explicit mathematical
model.

2.5 Discussion

While this chapter has argued that an explicit mathematieatinent will provide a supe-
rior explanation of a scientific phenomenon to an equivatentputer simulation, it must
be made clear that computer simulation is still a cruciat pathe modeller’s toolbox.

The overarching goal of the scientific modeller is to buildtéemodels. The ease with
which models can be produced with computers is extremelyaldé. Furthermore, not
only can these early efforts lead to some important scientsults, but they can also
point towards new directions for mathematical models. tibslow, in increasing order
of merit, different styles of working models and explain healuable each one is in gen-
erating scientific explanation. By starting with models fa beginning of the list and
progressing up the list, models can become better exptarsatif scientific phenomenon.

e A description of an opaque computer simulation and someevalgetorical state-
ments that it consists of an explanation of what it is tryiagrtodel. | have argued
that this approach is merely setting down a procedure faidyecing a performance
of explanation of some phenomenon. However, this approacisill yield a proof
of concept for some topic under debate, or generate insfghesmpirical experi-
ments.

e The same computer simulation as before, but this time campkh well docu-
mented source code, parameters and other data that cay leasésted by other
users and reused in new simulations. While this approach mloieget produce a
competent explanation, it allows for more simple reprogurcof the model which
will help others develop it further.
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e An opaque computer simulation (with well documented sowade) with some
manipulations and simulation runs that demonstrate hovowsrattributes of the
model explain various phenomena. | have argued that thisoapp can yield a
competent explanation of sorts, but this is merely a syigleaplanation and is not
logically grounded.

e An opaque computer simulation (with well documented sooom®e) that has been
decomposed into mechanistic subsystems. Some subsystemdben treated
mathematically. Such a working model can also yield a coegetxplanation
of sorts, this explanation is more analytic than in the pasicase.

¢ An explicit mathematical treatment. Such a working modelds a competent fully
analytic scientific explanation.

As set out above, clearly the best option is to produce anapiathematical treat-
ment. However, this is rarely simple, and in many cases madlkies is not yet mature
enough to approach this goal. Since we must live in the realdwscience must an-
swer questions about systems that cannot be yet modellechbyematical approaches.
Computer simulation modelling provides us with a working Inoetology for approaching
these complex or complicated systems and taking importapsdoward understanding
them.

Further to this, it is important to note that computer sintiola models can extend
already established mathematical treatments. By extgralimelaxing the assumptions
made in the purely mathematical treatment, the new modélr@ht on the mathemati-
cal treatment as a mechanistic subsystem but may also prasive results or important
insights into the mathematical model (Harris and Bullock20 Since computer simu-
lation models lend themselves to more accurate, relaxedrgdsons, when explanations
become available they are more likely to be of value to theeeptual model under ques-
tion.

What is important is that scientific models progress up thewood merit listed. A
novel modelling approach that identifies a new style of wagkmodel may have value
even if it merely provides a performance of some scientificl@xation. Such a system
can be experimented with and decomposed into mechaniftsystems and the standard
of explanation will improve. This is one of the benefits of qauter simulation modelling
in that it gives us tools to break down a problem so that we @rclpser to an explicit
mathematical treatment through an iterative process. Ctenpimulation models can be
thought of as providing a sort of sandbox in which imagina@md lateral thinking can
be done.



Chapter 3

Modelling delayed reproduction under
density dependence

3.1 Introduction

In this chapter | present a model of individual reproductstrategy. Within the context
of the thesis, this model has two purposes: first to try to tstdad what evolutionary
advantage there is in accumulating resources and delagprgauction within a fluctuat-
ing environment and second to generate a baseline modebmfdection which may be
extended in the later chapters (see Chapters 4 and 6). Theifmsodel is also rele-
vant to other biological theories of reproduction strategythe biological background is
reviewed in more detail.

The problem of how much investment a parent might make infispong was iden-
tified early in the study of evolutionary biology (Fisher 93 There is clearly a tension
between the need for an individual to generate the maximumbieu of offspring as
quickly as possible and the need for those offspring to beessgful.

It has long been known that, in the absence of density depeedeopulations will
grow at an exponential rate (Malthus 1798). During a periogrowth a fast reproducing
individual will increase its frequency in a population ala to one which reproduces
more slowly. In the past there has been an argument about ndiyiduals do not al-
ways reproduce as quickly as they might. It was proposed (@iEdwards 1962) that
this was because fast reproduction was not beneficial tortapgor, in this case, the
whole species). Thigroup selectionisviewpoint came under a great deal of criticism
(Maynard Smith 1964, Williams 1966a) and the belief thatvithials might make adap-
tations for the benefit of the species is now uncommon, wihgéne-centric view domi-
nant (Dawkins 1982).

40
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Since we may reject the group selectionist argument, aniapation as to why an
individual might reproduce more slowly must include reasfor the spread amongst a
population of a gene for slow reproduction. An early studykied at the clutch sizes of
birds (Williams 1966b), and argued that birds which lay meggs often produce fewer
fledglings because they are unable to feed them properlyowdaly on from this early
work, much research into reproduction strategy has been daod this is summarised in
the next section.

3.1.1 Background on life history modelling

The analysis of problems related to reproduction stratesgwide ranging and many
different perspectives have been considered. These mgbadent-offspring conflicts
(Trivers 1974),r /K selection in population ecology modelling (Reznick, Bryamnd
Bashey 2002), analysis of age vs. size at maturity (Stead@i®)2and the trade-off be-
tween the lifetime of a mother and the number of her offsp(®igarns 1992).

The development of good general models of life history sggtsuch as the “general
life history problem” (Schaffer 1983) can prove elusiveg@ns 1992). This would in-
volve the modelling of reproductive strategies favouredhbtural selection which would
give optimal results under various environmental condgioln this field any prediction
usually relies on many assumptions and there are often 8gosplt is therefore impor-
tant to view life-history theory as a framework for studyipiglogical systems rather than
a model of how such systems might work.

Considering the /K selection approach (MacArthur and Wilson 1967, Pianka 1970
Reznick et al. 2002), this argues that environmental canditare important for deter-
mining which reproduction strategy an organism may takdodks at a continuum be-
tween fast-growing individuals that make a big investmeantiiany small offspring and
die young (-selected) and slow-growing individuals that have a smaihber of larger
offspring and live longerk-selected). It is intended as a model of a complete ecosystem
in which different species are located along th€ continuum. Correlates have been pre-
sented (Pianka 1970) arguing thiaselected species tend to experience density indepen-
dent growth whileK -selected species experience density dependence. Toryg thecame
unpopular in the early 1980s (Reznick et al. 2002) due mdmiye lack of concurring
data from experimental studies to test tH& selection hypothesis (Stearns 1992).

The introduction of age-structured models proved very essful compared with the
traditionalr /K approach (Stearns 2000). Notably, Tuljapurkar (1990a)etied delayed
reproduction by dividing the population into two age growfdults and immatures. The
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dormant immatures are not susceptible to environmentalfdions, but adult fertility is.
As the variance of adult fertility due to environmental flu@tions is increased, there is a
greater proportion of immatures that delay their transitio the adult stage. The calcu-
lation of the geometric mean growth (in line with bet hedgihgory, see Section 1.5.1)
over varying environments is used as a metric to show howtthégy of keeping some
of the population in reserve can help when fluctuations they mipe out a significant
proportion of the population are increasingly frequent. Whge population is at a fixed
level (i.e., there are no fluctuations), Tuljapurkar’s modiees not predict any delayed
reproduction. It also does not consider what happens whase tire fluctuations, but the
population is under density dependence (i.e., where tisene long term growth of the
population).

Another relevant question is concerned with the allocadimesources between growth
and reproduction in animals which grow beyond reproducévents [see a review by
Heino and Kaitala (1999)]. Modelling approaches measwgtpulation growth of var-
lous strategies when fecundity is a function of size and &getpwski 1991, Koztowski
1992). These modelling approaches do not consider feedl@uokthe environment how-
ever. Heino and Kaitala (1999) consider this a major thémakthallenge. In light of
this I look at work on microbial ecology, a good example ofiunduals growing beyond
reproductive events, in the next section

3.1.2 Background on microbial ecology

While age-structured modelling has proved very successf@cological modelling of
metazoa, this style of modelling is less applicable to ntiesowhich normally reproduce
by splitting into two equal halves. After mitosis there is olovious parent. There are
therefore difficulties in assessing the age of any indivico@robe. Attempts to model
reproduction strategy within microbial population ecolagre therefore still very much
based around the traditionalK approach (Andrews and Harris 1986, McArthur 2006).
In analysing the reproduction strategy of bacteria, ithi€ selection model was in-
voked by Velicer and Lenski (1999). Attempts were made tastinat bacteria will adapt
toward either anm-strategy or &K- strategy, depending on which of two growth regimes
they have been exposed to. They exposed bacteria to faskbandrewth regimes. In the
fast regime, the bacteria were constantly placed in frestliune whenever the medium
was exhausted. In the slow regime, the bacteria were fed hremostat with a relatively
low influx of medium, but enough to maintain slow populatioowth. The intention was
to show that those exposed to one regime were not only betégted to that regime than
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their ancestors but worse off in the alternative regime thair ancestors. This would be
in line with ther /K selection model. Individuals that had undergone seleatiere put
in competition against ancestors in both regimes. The t®pubved to be at best incon-
clusive and at worst contrary to that theory with the sel@datelividuals out-competing
the ancestors in the alternative regime in 58% of the straimadysed (they always did
better than ancestors in the selected regime). These gatulbhot seem to support the
r/K selection model.

As an alternative ta /K selection, other perspectives have been considered regard
ing the modelling of microbial growth. Much of this centre®and application of the
Monod equation (Monod 1942, Monod 1950), which is a simplea¢éign modelling the
density dependent growth of an organism (Smith and Waltn®®5)L As with the Ver-
hulst equation (used far/K selection) there is exponential growth at lower population
density levels and then growth becomes bounded as populdgiosity increases. Using
this equation, ecological models can be produced lookimgedator prey interrelations
(Smith and Waltman 1995).

Analysis of bacterial growth rates in fluctuating enviromtsehas also been consid-
ered (Vasi, Travisano and Lenski 1994). The work estimateadd equation parameters
for bacteria cultivated in an environment organised sotti@apopulation dynamics would
fluctuate between a fast growth phase and a stationary pHaseng the fast growth
phase, individuals were simply cultured in a medium. Oneentfedium was exhausted,
the stationary phase would begin: in this phase the indalglwere left to experience a
further period of time with no new medium. This process wasaited, with each new
culture starting with 1% of the bacteria from the previoulune. The results found that,
during the growth phase of the experiment, there was anaseré the growth rate of
the bacteria subjected to this procedure. Interestingé/aincestral bacteria used showed
marginal growth during the stationary period (when the mpedivas exhausted). After
selection, the bacteria instead showed marginal declmeambers during the stationary
period, however the change was negligible (Vasi et al. 1994)s experiment has much
in common with the model of Tuljapurkar (1990a) which is cemzd with the effect of a
fluctuating environment on the growth rates of a populatiarthe next section | outline
a model which considers both strands.

3.1.3 Scope of the models

Two relevant strands were introduced in the previous twbd@es: delayed reproduction
in life history modelling and experimental studies of migia ecology. In this section,
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| outline the model | present in this chapter which will adsirdoth of the two strands.
In essence the model studies different strategies for rescaccumulation and contri-
bution to offspring. Delayed reproduction is achieved bgusulating more resources
before reproduction (rather than producing dormant offgpin Tuljapurkar's model,

Section 3.1.1). This approach is therefore relevant tolsinglled organisms (see Sec-
tion 3.1.2) because there is no age structure. The effecksrsity dependence (called for
in Section 3.1.1) may also be studied because resource atation depends on popula-
tion density (in harmony with the theme of density dependenttoduced in Section 1.5).

From previous results (see Section 3.1.1), resource fltiohsaare expected to be
the cause of reproductive delay. To confirm this, the modetsicler cases where there
are extrinsic resource fluctuations. They also considezatere there are no extrinsic
resource fluctuations and resource availability is conghfedensity dependent to investi-
gate what factors may influence delayed reproduction iretk@sumstances.

Two mathematical modelling approaches are considered Adrese differ from the
way an individual may encounter resources — and hence tieefyipdividual they model.
First, | consider an individual that receives resourcestinoously. This corresponds
with a bacteria absorbing nutrients from the surroundingpar the rate of absorption
depending on the nutrient concentration. The second manteliders resources that are
encountered intermittently — in discrete resource unitsis Torresponds with predatory
organisms that encounter prey.

The simulation models are introduced to relax assumptiakertin the mathematical
models and extend them when useful assumptions are no Ipogsible. (The assump-
tions taken are specified in the descriptions of the matheatahodels in Section 3.2.)

In summary, the models are therefore designed to answeollba/ing questions:

(). Isit possible to explain delayed reproduction usingdels of density dependence?

(ii). Can delayed reproduction be modelled with physiolagimodels of resource ac-
cumulation and investment in offspring?

(ii). What is the role of physiological factors, such as theftont cost of reproduction
and the cost of maintenance to delayed reproduction?

3.2 Mathematical modelling

In this section | look at two mathematical models of indiatiteproduction. In the mod-
els, reproduction strategies are genetically determir@dite simply, an individual has
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a resource threshold above which it will reproduce: i.etedwained by its genes, it will
either reproduce with a lower level of resources or waitlutgiresources have reached
a higher level. Strategies are passed on to offspring, aeckfibre are modelled as a
complete lineage.

Both mathematical models derive the lineage growth rage, the number of new
individuals produced by each individual in the lineage pet of time. The two mathe-
matical models differ based on whether the resources arncauis or intermittent (see
Section 3.1.3 for more information). The first model is dutbltiee deterministic model
which assumes that resources are continuous and set aicdestat throughout the life-
times of individuals. The second model is dubbed the stdchasdel where resources
are intermittent. In this model, the mean resource uptakeutihout the lifetime of an
individual is set as in the deterministic model but thereasance in the resource uptake
within that lifetime.

In the simplest model (the deterministic model), the grovates are analysed un-
der different amplitudes of resource fluctuation. Sincéedent reproductive strategies
have different growth rates under different resource ctimai, | look to Theorem 2 in
Appendix A to predict which strategy will dominate. This ¢nem considers two pop-
ulations that grow at different rates in two seasons andgwavhich population will
dominate. Since it does not require a definition of the resuptake function, the way
resources vary is as unconstrained as possible in the middelever, the one constraint
introduced is that the population is in equilibrium. Thisane that, while population
levels may fluctuate, there must be no overall positive oatieg trend to population lev-
els — the population is effectively under density dependdsee Section 3.1.3 for more
information).

The stochastic model is analysed by looking at the situatrtbere the population
converges very quickly to its equilibrium level. | find thatfdrent parameters mean that
some lineages have different equilibrium values (this isgimwn by the deterministic
model) — and therefore those that are in equilibrium at lolgeels of resources might
invade those that are in equilibrium at higher levels of teses.

The analysis of both the models is done by first consideridiyiduals that are identi-
cal apart from their reproduction thresholds (which deteshe speed of reproduction).
The prediction made by the model, in this scenario, is thatdptimal strategy is to
reproduce as slowly as possible. It seems reasonable howmtethere may be some
physiological costs involved in reproducing more slowlyldtave therefore considered
that an individual might encounter an increased cost ofagypection and/or an increased
cost of maintenance (I have assumed that costs of growttearefirosts of maintenance)
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through reproducing more slowly. | therefore analyse thdéroff between the reproduc-
tion threshold and reproduction cost and the trade-off betwthe reproduction threshold
and maintenance cost.

3.2.1 Model basics

Each individuali is modelled by a resource leve{i,t). Every individuali belongs to
a lineagej which determines its reproduction thresh®( j), its cost of reproduction
R/(j) and its cost of growth and maintenariRg j ).

Individual resource levels are modelled by the equation,

X UOR - R() 61
whereR; is a positive constant an; [0 < R:(j) < Ry] is dependent on the lineage.
Resource uptakéhe level of resources received from the environment) rsalde and
modelled byU (i,t) € [0,1]. This variable is treated differently in the two models pre-
sented in this chapter. In the deterministic modé({j,t) is considered to be constant
over the lifetime of the individual{(i,t) = u), i.e., the individual’s fate is determined by
the value ofu. In the stochastic modél (i,t) is modelled by white noise depending on
variablesu anddt. Time is broken up into segments of lengihand for each segment
Pr(U =1) =uand P(U = 0) = 1—u. The average over realisations  >=u) is also
constant over an individual’s lifetime.

If an individual’s resource level decreases below the lathiersholdR, (fixed for all
individuals) it will die. If an individual’s resource levéhcreases above its reproduction
threshold it will reproduce. All individuals pay a cost ofpreductionR;(j) (dependent
on their lineage) when they reproduce and share half of thai@ng resources with the
new offspring. In the mathematical models all offspring assumed to be same lineage
as their parents. Therefore, all individuals start thewred at

x(i) = f . (3.2)

As anad hocsimplification,Rg is set to 0. To study different values Bf, R; andR;
can be scaled appropriately.

Given this starting position for individuals of lineageand a specific model for re-
source uptake](i,t)] the growth rate of the lineage is approximated using theagqn,

G(j,u) = births—deaths
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F(j,U) o 1—F(j,U)

W(j,u)  W(j,u)

2F(j,u)—1
W(j,u)

(3.3)

whereW is the expected generation time (the time takenxfoy to reachRy or Rp) of

an individual andrF is the ratio of individuals that eventually reach the upgeeshold

to those that reach the lower threshold. In the determiistbdelF is equal to 1 or O.
However in the stochastic modelwill take on values between 1 and 0. For simplicity,
this equation therefore assumes that, from the startingipo, the time taken to reach
the upper threshold is equal to the time taken to reach therltweshold. Wheris near

to Ry or Ry, this equation becomes less accutat®wever the assumption can be relaxed
through simulation modelling (see Section 3.3)

3.2.2 Deterministic model

In this section equations fMyy andFy are presented for the deterministic model and a
growth rateGg is derived. The derived growth equation yields to simpldysiawhich is
also presented.

As outlined above, the individual resource level in the detristic model is given by
Equation (3.1) withJ (i,t) = u. To generate expressions fley andW, | first define the
value ofug for which dx/dt = 0 [up(j) = Re(j)/Ru] and consider the time taken farto
reachR; whenu > up (F = 1) and the time take to read®y(= 0) whenu < up (F = 0).
The generation timeéy for an individual starting withx resources is given by the number
of resources needed to move to the relevant threshold diviigeits rate of change of
resourcesdx/dt):

(Rl —X)5t
WR-R() %
Way(x,u) = (3.4)
_X—ét ,u< an
uR, — Re(j)

(asu — ug, W — ).
All individuals are assumed to start just after reprodut@és in Equation (3.2). This
value can be put into Equation 3.4, and Equation (3.3) can bb®wsed to predict the

Ln fact, further modelling work done by Stephen Cornell shdhat this approximation is good except
when the bias is high, i.e., the difference betw®efyj) anduR,; is large.
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growth rate of lineagg:

(2[R~ Re(})]
R+ R(j)jot 00
Gy(j,u)=< 0 ,u=1ug (3.5)
2[URy — Re(})]
| Ru(D-R(j)]ot "

This equation is analysed in the next section.

3.2.3 Deterministic model analysis

To analyse Equation (3.5), | compare lineages with varioffierdnt lineage parameters
(R1, R andR;) against each other. First, | fiR, andR; and look at whether there are
any advantages to increasiRg. Then | consider what happens whignincreases aR;
increases. Finally | consider the case whiggencreases aR; increases.

To look at increasing values d&?;, Equation (3.5) is plotted in Figure 3.1 for two
lineages with differing values d®; and all other parameters fixed. There are two regimes
on the plot, to the right ofi = ug = 0.0909 both lineages grow with the growth rate
(Gy) increasing linearly as a function of[approximately,G4(A) = 0.0169u — up) and
Gy(B) = 0.0096u— up)]. To the left ofu = 0.0909 both lineages are declining, ag&if
is a linear function ofi [approximatelyGg(A) = 0.0314u— up) andGy(B) = 0.0129u—
Up)]. For both lineages the growth rate is lower than the dectite (the high value dR
was chosen to accentuate this on the plot).

The results from the figure can be used to show under what tonslinvasion may
occur. Since the linear equations in the above paragraghtteksame form as Equations
(A.1) and (A.2), Theorem 2 (in Appendix A) can be used (witthia scenario considered
by the theorem) to predict when one population is dominaet tive other. The ratio of
the slope in the growth regionu (> up) to the slope in the decline region € up) will
determine which lineage will dominate: a lineage with a tgeaatio will dominate a
lineage with the lesser ratio. In the example shown in Fi@uiehe ratio of the growth to
decline slopes of lineage A is@69/0.0314= 0.538 and the ratio of growth to decline
slopes of lineage B is.0096/0.0129= 0.744, so lineage B is dominant.

Analysis of Equation (3.5) can therefore be done by lookirtharatio of slope in the
positive regime to the negative regime, this is given by ffidR, andR; for both lineages
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Figure 3.1: Comparison of the growth rates of two lineages é&Bwvith different repro-
duction thresholds. Equation (3.5) is with paramefys- 0.001,R, = 0.01, R, = 0.3,
ot =1,Ry(A) =1.0 andRy(B) = 2.0 . For both lineagesgy = 0.0909.

and takingG’ = dG/du):

. GiJ>Uo Rl(J) - RI’
W(j) = = ,
(J) GIU<U0 R1(1)+Rr

(3.6)

which is the derivative (with respect 19 of the growth portion § > up) of Equation
(3.5) divided by the derivative of the declining portian< up). AsRy(j) increases, s&
increases. Theorem 2 shows that, given population levalgifiting about an equilibrium
value, a greater value & will dominate all lower values. Therefore, wh&handR; are
fixed, the optimal value dR; = .

In the previous examplé(j) is the same for all lineages. | consider the case where
lineages have differing values & (j). Specifically, | first consider the case where
R (j) = aRy(]) (a is a variable). Here,

o Ru(j)—Re())
YO = R TRG)
_ Rii)—aRu(j)
Ru(J) +aRu(j)

1-a

- : (3.7)
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By the theorem, any dominant lineage will have a greaterevaft¥, but Equation (3.7)
shows that whemr is increasingW¥ is decreasing andice-versa Therefore, the lineage
with the lowest value ofr will dominate. In other words, the ratio between an indidtis
reproduction thresholdR}) and its cost of reproductior{) must decrease for there to be
an advantage in increasing the reproduction threshold.

Finally, | consider the cost of growth/maintenariRe Figure 3.2 shows plots of the
growth rates for two lineages where all parameters are the sgpart fronR.. The extra
cost has shifted the plot of lineage B to the right on the grdjpiis means that this lineage
has lower growth, and is therefore at a disadvantage, foadlles ofu.

x 107
— G,

- G, (®) -

-

Population growth rate per individual (Gd)
|
=

0 0.05 0.1 0.15 0.2
Resource uptake (u)

Figure 3.2: Comparison of the growth rates of two lineages A Bnwith different
growth/maintenance costs. Equation (3.5) is with paramed® = 1.0, R, = 0.01,
R =0.3,0t =1,R;(A) = 0.001 andR;(B) = 0.0012.

| also consider the case where lineage B has increased \@lbeth the reproduction
threshold Ry) and the cost of growth/maintenand&) compared with lineage A. Figure
3.3 shows plots of the growth rates for the two lineages. Ak Wwigure 3.2, the plot of
lineage B is shifted to the right. If the resource uptakevwsaas bounded withion = 0.079
(where the plots cross) and= 0.11 (where lineage B has zero growth), then lineage A is
always dominant.

It is difficult to cleanly analyse the case shown by Figurel#&8ause it is not compat-
ible with Equations (A.1) and (A.2), used in Theorem 2 in Apgix A. The two lineages
(A and B) have different values & and therefore different values af. A qualitative
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Figure 3.3: Comparison of the growth rates of two lineages A Bnwith different
growth/maintenance costs and reproduction thresholdsedge C also shown (it is sim-
ilar to lineage B but with an even greater valueRy) to illustrate further the effect of
increasingR.. Equation (3.5) is with parametelRg(A) = 1.0, R1(B) = 2.0, Ry (C) = 2.0,
R,=0.01,R, =0.3,0t =1,R:(A) = 0.001,R;(B) = 0.0012 and=;(C) = 0.0014.
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analysis of the figure does however suggest that lineagesl B anay be dominant when
the amplitude of resource fluctuations is greater.

To investigate the effect of greater resource fluctuatioplaudes further, | have done
a simulation the two lineages A and B using Equation (3.3pebge population levels
are represented by a floating point variablé&), whereN(t + 1) = GN(t). For each
simulation resource uptake fluctuates between two valuesuidu—) based on the state
of the system which fluctuates between growth and declineg®rSpecifically, when the
combined population of the two lineagesa(+ Ng) goes below a lower threshold (here
1.0) the system goes into a growth phase aadu™, and when the combined population
(Na +Ng) goes above an upper threshold (here 10.0) the system goesdecline phase
andu = u~. Time traces for two simulations are shown in Figure 3.4.

The figure shows how, when the amplitude of fluctuations is loweage A is domi-
nant (with its lower values d®; andR.). Alternatively, when the amplitude of fluctuations
is high, lineage B is dominant (with its higher valuesRafandR.). To show this pattern
is the case for lineages A and B over a full range of values, ¢ffirstly show how the
range ofu in which lineage A is dominant over lineage B will increasdka@) increases.
Second, | show that there are still rangesdarhere lineage B is still dominant.

To show that the range ofin which lineage A is dominant over lineage B will increase
asR:(B) increases, | consider Figure 3.3. The value efhere lineage A crosses lineage
B will decrease because the plot of lineage B has a shallovagtignt to the plot of
lineage A [becausB;(B) > Ri(A), see Equation (3.5)]. lfi stays above this bound then
the growth rate of lineage A will always be above lineage BerEffiore the range af in
which lineage A is dominant over lineage B will increaséRa@) increases.

Second, to show that B may still dominate over A, it is posstol look at the case
whereu oscillates between only two values, where the population grows amnd where
the population declines. For each value fipthe growth rate$54(u) can be generated.
Corollary 3 in Appendix A shows that if

Ga(B.U") _ Ggy(A,u")
—Gd(B,U_) —Gd(A,U_) ’

then lineage B will dominate. Since all the values in thetfoats are positive, this can be
rearranged as,
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Figure 3.4: Alineage with an increased valu&®pfandR. may invade when the amplitude
of resource fluctuations is increased. Panels (1a) and (@&} population numbers and
panels (1b) and (2b) show the corresponding values of resayatake. Population growth
is given by Equation 3.3. Parameters for populations A andeBaa given in Figure 3.3.
Panels (1a) and (1b) usé = 0.18 andu~ = 0.05, panels (2a) and (2b) usé = 0.3 and
u- =0.02.
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In the case shown in Figure 3.3, for > 0.25,
Gg(B,u™)/Gg(A,u") > 0.516.

Similarly, foru~ < 0.021 we have that
Gy(B,u")/Gg(A,u") < 0.516.

So if u is outside the range.021 > u > 0.25, lineage B will dominate. One important
point to note is that these values fof andu~ were chosen arbitrarily. It is possible to
choose different values far® andu~ (perhaps increasing or decreasing both of them)
and still see dominance of lineage B. The distance betwe&eandu™ is not fixed either
and how it changes can also depend on the choice of the othenpters. This means
that more general analysis of this case is difficult withirs ttnodel. What can be said
however, is that the effect of increasing the paramitas always the same, so the basic
reasoning that a larger amplitude of resource fluctuatisnecessary for increased values
of R; is applicable over sensible parameter ranges.

The significant results from this section are as follows. stithis model predicts
that, when all other parameters are held equal, the optitratiegy is to maximise the
reproduction threshol&;. Second, when the value Bf is linked to the value oR; any
increase iRy may be matched by a corresponding increasBias long as the value
of a = Ry1/R; decreases. Finally, when a lineage has increased valuestioRp and
Rc, | have shown that a larger amplitude of resource fluctuaticen be important its
viability. However, the model does not yield to simple as&y This means that | will
look to simulations, presented later on in this chapterréwige further insights into this
scenario.

In this model, all individuals receive a continuous leveke$ources. This makes it
very difficult to analyse what will happen when the populatie at its carrying capacity.
In the next section, | introduce stochasticity into the modeich means | may analyse
the population in this state.

3.2.4 Stochastic model

In this section equations fo¥; andFs are presented for the stochastic model and a growth
rate Gs is derived. As outlined above, time is broken up into segsm@ftlengthdt.
Tithe individual resource level in the stochastic modeliveeg by Equation (3.1) with

U (i,t) modelled by white noise with Fd = 1) = u and PfU = 0) = 1 —u for each
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time segment. The same variahiés used as in the deterministic model as the average
per-timestep resource uptake over realisationdgls— in harmony with the deterministic
model. Figure 3.5 shows the resource level of a typical idial in the stochastic model.

R; 1

— R.on barren periods

N
e

Resourcesx( }—»
ey
|
Py

resources encounter

Ry -
Time —»

Figure 3.5: The resources)(of individuals in the stochastic model perform a random
walk throughout the individual's lifetime. The individuahown starts its walk after re-
production with half the maximum resourcB;] less a cost of reproductiorR(). For
each time segment of lengdt an individual will expendR; resources and may receive
Ry resources with probability.

For simplicity of modelling a variablen is introduced wheran = R,/R; — 1 [so,
R, = (m+1)R;]. SinceR, > R, and both are positivem is positive. The expected
generation timaMs(Xx) is modelled using the backward equation (Berg 1993). For an
individual starting with energy value

Ws(X) = Ot + UVA[X + MR] + (1 — u)Wg(X— Re) - (3.8)

The equation models the fact that during tidte an individual will have fed and moved
to energyx+ mR. with probability u or will not have fed and therefore moved to energy
X — R; with probability 1— u. Here, to harmonise with normal calculus notation, | set
0x = R¢. Dividing Equation (3.8) through bgx and moving/s(x) to the right hand side
gives:

ot [Ws(X+ mdx) —Ws(x)] [Was(X — 0X) —Ws(X)]
0= 5(+mu 5 +(1—-u) 5x . (3.9)
Whendx is small the first three terms of a Taylor expansion are canmneit
2
W5(X+mdx) ~ Wg(X) +mdxWg (x) + @Ws”(x) ¥
2
Wo(x— 8X) ~ Wa(x) — SXWE () + W () + .. (3.10)

2!
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In the case whermdx < 1 (ormR. < 1) it is possible to substitute Equations (3.10) into
Equation (3.9) giving a continuous approximation:

0 =~ % +mp|W(x)+ mT‘Sstqu)] +(1-u) [—ws’<x> + %XWS”OO
5t / 5X 1/
~ o (MUt U= W) + = (mPu+1— u) WY/ (x) (3.11)
Reverting back to usinB. instead ofdx and setting
A = (m+1lu-1
u = %[(mz—l)qul] (3.12)

gives
ot dw,  dAwg
0= _RCHW“JW '

The equation can be solved (by first integrating, then usmigitegrating factor) with the
boundary conditions/J5(0) = 0 andWs(R;) = 0] to give the equation:

(3.13)

_Ax

l1-e *

(3.14)

The role ofA is interesting, it is at zero whem= 1/(m+ 1) = up. When lambda is
positive,u > Ug, resources are abundant and individuals are more likelyaeentowards
their upper energy limitR;). When lambda is negative,< up, resources are sparse and
there is a tendency for individuals to move towards theirdoenergy limit Ry). There

Is a special case when= 0, Wy = o in Equation 3.14. To look at the case whdre- 0,
i.e.,u=u+0andu =R:m/2, Equation (3.13) is reconsidered:

S5t Remd?Wg
0_§+TW' (3.15)
This can be solved with the same boundary conditions as Equg.14) giving:
ot
Ws = Rg—m(—x2+ RiX) . (3.16)

When resources are neither abundant nor sparse there is msedibandom walk. Equa-
tion (3.16) demonstrates that the expected lifetime i fatike. This is one significant
difference from the deterministic model where the expedifetime is infinite when re-
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source uptake is close to the threshold for population drowt
The ratioFs of individuals at energy, which reach the upper threshdRi to those
that reach the lower threshoR} is given by the backwards equation:

Fs(x) = uR(X+Ry—R:)+ (1—u)Rs(Xx—Rc)
= UR(X+mMR)+ (1-u)Rs(x—Re) . (3.17)

Again an individual either will have fed and moved to enexgy mR. with probability u
or will not have fed and therefore moved to energy R. with probability 1— u. Now
moveky(X) to the right hand side of the equation and replRg&vith dx.

[Fs(X+mox) — Fs(x)] [Fs(Xx— 0X) — Fs(X)]

0=mu " +(1—u) 5x (3.18)
Using an approximation of the first three terms of a Tayloramgion:
0 ~ mu Fs’(x)+m75XFs”(x)] +(1-u) {—Fé(x)-l—é—;Fs”(x) (3.19)
ox
~ (mu+u—1)Fs’(x)+7 (MPp+1—p)F(x). (3.20)

Reverting back to usin&. instead ofdx and using the previous definitions #fand u
gives

dFs  d?Fs

ax Hae

The boundary conditions afe(0) = 0 andFs(R;) = 1. Solving as withi\, gives:

0~ A (3.21)

AX

l-e #
Fs= IR
l—e ™

(3.22)

To derive the growth rate, Equation 3.3 is used giving,

_ 2Fs(j) -1

Gall) =

(3.23)

The predictions of this equation and Equations (3.14) ari@R)3are compared with the
predictions of the deterministic model in the next section.
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3.2.5 Comparison of stochastic model and deterministic model

The stochastic and deterministic models differ in the waligluals receive resources.
To understand under which parameter regimes the detetmimedel is a good approx-
imation of the stochastic model, | compared the growth ratedbe deterministic model
(Gq) and the stochastic moddb§). These are calculated using Equation (3.5) and Equa-
tion (3.23) over a variety of parameters. The differenceveen the two Gq - G¢) is
plotted in Figure 3.6.
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Figure 3.6: A comparison of predicted growth rates [usingi&opn (3.3)] for the deter-
ministic and stochastic models. The parameters used Rere0.001, R, = 0.011 and
Ry =1.0.

In general the deterministic model is a good approximatibthe stochastic model,
however when growth is low there are some differences. Wjita 0.001 andr, = 0.011,
the point where resource uptake per timestep equals reseMpenditure in both models
is whereu = ug = 0.0909. Whenu =~ ug andx < 0.5, there is a lower growth rate for
the stochastic model than the deterministic model. Theeehgher growth rate when
x > 0.5 (not shown). This is explained by the fact thatuat up, the stochastic model
models an unbiased random walk so an individual’s resowes Wwill eventually reach
one of the thresholds. The stochastic individual’'s reselegel is more likely to reach
the upper threshold whex> 0.5 and the lower threshold whea< 0.5. Alternatively,
the growth rate of the deterministic model is zero whesa ug, hence the difference in
the plot between the deterministic model and stochasticeindchis difference was also
apparent when different values Bf, R; andR, were tested.
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Whenx is close to the low threshold « 0.01) andu ~ ug or u > ug, the stochastic
model predicts a lower growth rate than the deterministicleho Similarly, whenx is
close to the upper thresholl ¥ 0.997) andu ~ ug or u < ug, the stochastic model predicts
a higher growth rate than the deterministic model (not showmthe stochastic model,
the value ofx may move in both positive and negative directions. Theeefarhen the
value ofx is close to one of the thresholds there is a small likelihdat it will cross
that threshold, even if the general trend is for the value toerin the opposite direction.
Again, this effect was noticeable when different valueRgfR; andR, were tested.

The scenario considered in this chapter considers the daseewndividuals start life
atx = [R; — Ri(])]/2. With x starting from this point, the stochastic model only differs
significantly from the deterministic model wheirx ug (the point where resource uptake
equals consumption). This case is therefore considerdteingxt section.

3.2.6 Stochastic model analysis

To analyse the stochastic model, | consider the case wheredpulation is close to
equilibrium and there is little or no population growth,.j.@here resource uptake is
approximately equal to resource consumption. | therefeseiime that resource uptaksg (
is directly dependent on population density and there areitltbfluctuations. | define a
resource uptake valug(j), dependent on the lineage, for which there is no growth. Note
that it is not necessary thag(j) is equal toup. The value ofue( ) is also the threshold
for population growth so when < ue the population level will decrease. Becauses
dependent on population density, it will correspondinglgrease. Similarly, whea> ue
the population level will decrease andwill increase. Wheru = ue there will be no
growth. | envisage a scenario where the value ofill rapidly converge toue and zero
population growth. To compare two lineages with differeales ofue, | consider the
cartoon in Figure 3.7.

The cartoon shows how a lineage which has a low valug @fill invade all lineages
which have higher values @f. This is because the dominant lineage will grow when the
other lineages are at equilibrium and the other lineagelsdsiline when the dominant
lineage is at equilibrium.

To find the value ofi(j), | solve Equation 3.23 foBs(j) = 0. This givesks = 1/2.
The Equation (3.22) is unfortunately too hard to solveudpso the only approach is to
find numerical solutions. This is done by iterating througliues ofu until Fs is within a
tolerance (107) of 0.5.

As with in Section 3.2.3, | first looked at the case where aividuals are identical
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Figure 3.7: The population with the lower value wf will dominate. Here lineage A
increases more quickly at first, but the increase in oveigtiytation density means that
u will decrease. When reachesig(A) population A starts to decline. As lineage B can
continue growingu must decrease further until it reachegB) where lineage B has a
stable population level but lineage A is declining.

apart from their reproduction threshol&,). The value ofue was calculated for each
value ofR; and is plotted in Figure 3.8.

As with the deterministic model [see Equation (3.6)], ligesa with higher values of
R; dominate lineages with lower valuesR{. This is shown by the fact that as the value
of Ry increases in the figure, the resource uptake required foulptipn equilibrium
[ue(])] decreases. Any lineage that needs a higher resource ufatiakquilibrium will
be dominated by those that can survive on a lower resourekepThere is a very steep
decrease at low values B < 1, with the gradient becoming shallowerRsincreases.
Varying the parameter$(, R, andR;) did not change the basic shape of the graph. | also
experimented with very large valuesR{: this indicated that aR; — oo, (u—up) — 0.

To look at the situation where there is a trade-off betweervitiue ofR(j) andRy(j),
| again consider the ca$®(j) = aRy(j). The value olue was calculated for values &
andR; and is plotted (with botlie andR; on logarithmic scales) in Figure 3.9.

As with Figure 3.8, the value of resource uptake requiredpfgulation equilibrium
(ue) decreases as the reproduction threshBg (ncreases, even when the reproduction
cost ) increases as well. Again there is a very steep decreasw atlloes ofR; < 1,
with the gradient becoming shallower Bs increases. As the value of was increased,
the steepness of the descent of the curve increased.

Varying the other parameterB( andR;) did not change the basic shape of the graph.
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Figure 3.8: The resource uptake required for populationliégum (ue) decreases d3;
is increased. The value affor which Fs = 1/2 is plotted. Other parameters for Equation
(3.22) wereR, = 0.1, R, = 0.01 andR; = 0.001.
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Figure 3.9: The resource uptake required for populationliégum (ue) decreases d3;
isincreased anB; = aR;. The value ofx is as shown. The value affor whichFs=1/2
is plotted. Parameters for Equation (3.22) wBge= 0.01 andR; = 0.001.
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Again, very large values d®; indicated that, for all values af, asR; — o, (U— ug) —
O-I—ve.

This result is not consistent with the result from the detarstic model [see Equation
(3.7)]. Here, whero is constant, increasing; is advantageous. In the deterministic
model, wher is constant, there is no advantage to increasing or deoggBsi

Finally, | consider the scenario whelRg may vary withR; andR; is fixed: R = SRy,

B is a constant. The value ag was calculated for each value Bf andR; and is plotted
in Figure 3.10.
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Resource uptake at population equilibrium u

1 1
0.1 0.15 0.2 0. 0.4 0.45 0.5

025 0.3 5
Reproduction threshold R,

Figure 3.10: The resource uptake required for populatianliégium (ue) decreases, then
increases, aR is increased anB; = BR;. The value olu for which Fs = 1/2 is plotted.
Here = 0.01, other parameters for Equation (3.22) wBre= 0.01 andR; = 0.1.

At first, asR; is increased, there is a steep decrease in the value of cesoptake
required for population equilibriumug). The curve reaches its nadir@t = 0.131 and
Ue = 0.161. After this point the value of resource uptake startstweaase in a linear
fashion approximately tracing the functiog = R;. The value ofR; at the nadir of the
curve is plotted for different values @ in Figure 3.11.

The figure shows how the optimum reproduction threshold eleses as the ratio of
maintenance cost to reproduction threshold increases.vdloe at = 0 is not present
because witlR; = 0 no individuals will reach the lower threshold Bg= 1. All values
of B > 0.1 are also not present because Wt R, no individuals will reach the upper
threshold. IncreasinB; or R, increases the value &. The downward slope of the graph
changes approximately proportionally Rp.
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Figure 3.11: As the ratio of maintenance cost to reproduactizeshold increases, the
optimum reproduction threshold decreases. The value, dbr the minimum value of
Ue [calculated using Equation (3.22), see Figure 3.10] istptbover several values @f.
Other parameters for Equation (3.22) w&ge= 0.01 andR, = 0.1.

3.3 Simulations

The simulations are run for two reasons. First, to see howrate the mathematical
models are, simulation models were performed of the lifetmhindividuals and the ra-
tio of individuals that reach the upper threshold to thos# thach the lower threshold.
Second, to validate and extend the mathematical analy&ljt®nary simulations were
performed.

The simulations are based on the stochastic model. In alllairons, each individual
is represented as a resource lexelThe evolution oix is modelled by an Euler approxi-
mation of Equation (3.1):

X(i,t+ 1) = x(i,t) + U (i,t)Ru— Re(j) - (3.24)

As with the stochastic model, see Section 3.R.4,t) was modelled by white noise: for
each time segment of lengét, Pr(U = 1) = uand PfU = 0) = 1— u. Usually the value
T was set tadt, but tests were made for the simulation runs with smallenesloft to
ensure no artifacts were introduced due to the size of
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3.3.1 Testing the accuracy of the deterministic/stochastic models

To test the diffusion approximation made for the stochastclel equations [Equations
(3.14) and (3.22)], simulations are run of the individuahgetion cycle. The individual
generation cycle is the period of time while an individuadsources move from a starting
positionxg to either the uppeRy) or lower (Ry) threshold. Once an individual has reached
the lower thresholdRp) or the upper thresholdRy), which threshold reached and the
time taken to reach it (the generation time) is recordeduéseode for the simulations
is presented in Figure 3.12. For each simulation run thisoiseda number of times,
with different random seeds, and mean values are taken.gilgs a mean value for the
lifetime Wajm and a mean value for the birth-to-death reig,.

0: Requiret =0
1: forxpisOto 1 in steps of 0.01
X0
2: X=1 ..
Xo
3 while [x| < 0
4 increment
5: for xis each element of
6: X=X—R:
7 with probabilityu, x = x+ Ry
8 end for
9 Remove elements afthat are< 0 or > Ry,
and record lifetime (5 and whether at 0 dR;
10: end while
11: Calculate and record mean lifetime and the ratio thatré&ac
12: end for

Figure 3.12: Pseudo-code for the simulations to test tiegidn approximation made for
the stochastic model equations [Equations (3.14) and )[3.22

To test the accuracy of Equations (3.14) and (3.4), simarlatiwvere run 1,000 times
for each different value ok to generate the mean value for the lifetiMgi,. This is
plotted alongside values ¥ given by Equations(3.14) and (3.4) in Figure 3.13.

At low to medium values omandR; (R; < 0.01 orm < 100), Equation (3.14) gives
a good approximation to the simulation (Panels A to C of Fe@ut3). The deterministic
model is generally a good approximation except when uy (Panels C and D). Panel
D shows that neither approximation is good with high valuesno Similarly, neither
approximation is good at higher valuBs (not shown). At the special case where- ug,
the accuracy of Equation (3.16) also dependsm@md/orR;. Similarly to Equation (3.14),
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Figure 3.13: A comparison of the lifetime simulation resuignified by circles) with
Equations (3.14) (line) and (3.4) (dots). The valdés= 1 andR; = 1.0 were used in all
Panels. To model a value afwhere the population is growing, the other values used in
Panel A wereR; = 0.001, m= 50 andu = 0.05. Similarly, to model a value af where

the population is declining, the other values used in PaneeB: R; = 0.001, m = 50
andu = 0.01. To model a value af close toug the values used in Panel C &= 0.01,

m= 4, u= 0.21 andR; = 1.0. Finally, whenm is very large, the values used in Panel
D areR; = 0.01, m= 200,u = 0.0051 andR; = 1.0. Panel D is cropped meaning the

continuous solution is not clearly shown. It decreases Wém 4000 atx =0 toW =0
atx=1.
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Equation (3.16) is only accurate at low to medium valuesiaf 100 andR; < 0.01 (not
shown).

Simulations were also done to test Equation 3.22. Each aiionl was run 1,000
times for each different value ofto generate the mean value for the birth-to-death ratio
Fsim- This is plotted alongside the valueBfgiven by Equation (3.22) in Figure 3.14.
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Figure 3.14: A comparison of simulation predictions (sfggd by circles) with Equation
(3.22) (line) for the birth-to-death ratio. The values use®anels A-D are as in Figure
3.13.

At low to medium values omandR; (R: < 0.01 orm < 100), Equation (3.22) gives
a good approximation to the simulation (Panels A to C of Fegut4). The deterministic
model (not plotted, buF = 1 in Panels A,C and D, and = 0 in Panel B) is generally
a good approximation except wherx ug (Panels C and D). Panel D shows that neither
approximation is good with high values ot Similarly, neither approximation is good at
higher values oR; (not shown).

At this point, the predictions of the deterministic lifetnand reproduction models
seem to be quite inaccurate. However, the results givenctidde3.2.5 indicate that the
growth rate (¢) predictions are quite accurate. When the lifetime is quigé fthe popu-
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lation growth is likely to be very small. It is therefore pdde that when the deterministic
model is used with the population growth equation, Equai8o8), that the model is quite
accurate. This is shown by the comparison with the stoahastidel in Figure 3.6. | will
compare both the deterministic model and the stochasticehwith the results from the
simulations in the next section.

3.3.2 Evolutionary simulations

Given the results found by the two mathematical models, kitiins are done to con-
sider trade-offs between reproduction threshdtg)( and reproduction cosi) or cost
of growth/maintenanceR;).

The evolutionary simulation models are based on the stticlrasdel. To allow evo-
lution to occur, software agents are assigned a digital gdmneh is a floating point num-
ber representing the reproduction (or upper) threstild) of an ageni. As with the
mathematical models, when the agent’s resource levelaseseabove its reproduction
thresholdRy (i) then it will reproduce, paying the cost of reproductiBy(i), and then
share the remainder of its resources with an offspring. Aycobthe digital gene is
passed on to the offspring. There is a probability of 0.1 ofiaation being applied to the
offspring’s gene after reproduction: point mutations adento the value dRy(i) over a
Gaussian distribution with standard deviation of 1%.

Simulations were run under two main scenarios. Scenariodiels a population that
is close to its equilibrium level. This is achieved by giviagtatic input of resources to
the system: the availability of resources per individuaréiore depends on population
density. To model resource fluctuations in scenario (i, pnobability for each individ-
ual to receive resources each timestep is modelled by amsyseable. This variable
switches between two levels (higher and lower) when the |adijpn level passes outside
one of the two thresholds (respectively, the lower and uppeulation thresholds).

Tests were done with various upper and lower populatiorstiokls to make sure they
are effective: the thresholds were too close to each othenwithey were within 33% of
the population size, this had the same effect of reducindltictuation coefficient. The
upper threshold was therefore set to 400 and the lower thléskas set to 200 in all
simulations.

In scenario (i), the availability of resources to individkigs dependent on population
density, meaning that the population level will quickly gerge to a static equilibrium
level. Just as with Section 3.2.6, when the population ivaliee equilibrium level there
will not be enough resources in the system to support thatoeurof individuals — and
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the population will decrease. Alternatively, when the pagian is below the equilibrium
there will be a surplus of resources and the population wdtease. Based loosely on
the chemostat, a number of resource units (normally 50, ebehlueR,) are randomly
scattered on a spatial grid (of 560 squares) each timestep. Agents located on the grid
move to a random new cell each turn and consume a resourc# i@y encounter any

on the square they are firPseudo-code for the simulation can be seen in Figure 3.15.

0: Define agent as having resourseand reproduction thresholgy
1: Initialisex andR; for new members of the populati@yents

2: fort =1 tosimulationtime

3 Scatter new resources on the grid

4. Move each agent to a random grid-square

5 for each agent (picked in random ordergigents

6

7

8

X=X—R¢
if there are resources on the grid-square
: X=X+Ry
9: remove one resource from the grid-square
10: end if
11: if X < 0, remove agent from simulation
12: if x> Ry
13: x = X— Ry (pay the cost of reproduction)
14: Create a new agent (the offspring)
15: Share the parents resourcesgvenly between the two agents
16: Mutate the new agent’s value I&f
17: end if
18: endfor
19: end for

Figure 3.15: Pseudo-code for the evolutionary simulat@frscenario (i) where availabil-
ity of resources depends on population density.

In scenario (ii) the agents receive discrete resources gafeR,] with probability
u. The value ofu depends on the state of the system, which fluctuates betweaen t
states (abundant, using= u™, and sparse, using= u~), and on theesource fluctuation
coefficient). When the system is in the abundant state= uenp. When the system is
in the sparse state,” = ue/n. The value ofus was chosen for each simulation based
on the results from Section 3.2.6. The system switches legtiis two states depending
on whether the population level is above an upper thresholklow a lower threshold.

2The results presented by Bryden (2005b) show that agentsveetesources with between-resource
intervals on a geometric distribution when they move to mandyrid squares each timestep. This is equiv-
alent to a population which receives resources with a pritibaproportional to the ratio of the population
density and the resources in the environment
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When the system in in the sparse state and the population gtms the lower threshold,
the system switches to the abundant state. Conversely, Wheaystem is in the abundant
state and the population goes above the upper thresholslyskem switches to the sparse
state. Pseudo-code for the simulation can be seen in Figlée 3

0: Define agent as having resourseand reproduction threshokg
1: Initialisex andR; for new members of the populati@yents
2. seasor= high

3: fort =1 tosimulationtime

4: if |lagentg > upperthreshold season= low

5: if |]agents < lower_threshold season= high

6: for each agent (picked in random ordergigents

7: X=X—R:

8: if season= high

9: with probabilityu™, x = x+ Ry

10: end if

11: if season= low

12: with probabilityu=, x = x+ Ry,

13: end if

14. if X < 0, remove agent from simulation

15: ifx>Ry

16: X = X— R; (pay the cost of reproduction)

17: Create a new agent (the offspring)

18: Share the parents resourcesdvenly between the two agents
19: Mutate the new agent’s value I&f

20: end if

21. end for

22: end for

Figure 3.16: Pseudo-code for the evolutionary simulatafrscenario (i) where availabil-
ity of resources depends on population density.

3.3.2.1 Varying reproduction cost

The two mathematical models make predictions about thetodidbetween reproduction
threshold R;) and reproduction cosR). The deterministic model predicts that, if the
population level fluctuates about an equilibrium, then atmidual with a greater repro-
duction threshold will dominate as long as the relativeéase in reproduction threshold
is greater than the corresponding relative increase irodption cost [see Equation (3.7)
and accompanying text]. Alternatively, when populatiovele are static, the stochastic
model predicts that individuals with a greater reproduttioreshold will dominate even
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when the relative increase in reproduction threshold isaetpthe corresponding relative
increase in reproduction cost.

To test these two predictions, evolutionary simulationsavan with the cost of repro-
duction set to be a proportion of the reproduction thresliBld= aR;) — herea is fixed.
All individuals started withR; = 7.3 Simulations were run under static and fluctuating
conditions [scenarios (i) and (ii)] for faimesteps. One simulation was run for each set
of parameters. Time traces for simulations run wjtk- 1.2 are shown in Figure 3.17

100 w
—a=0.1
a=04

3 80,***(}:0.7 i
-—a=0.9

H ]
o o
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o

Mean reproduction threshold < R_>

Time (t) 7

Figure 3.17: The results of evolutionary simulations rureveR; is freely allowed to
evolve butR, = aR; are plotted for different values af (shown on the graph). Other
parameters werd®. = 0.001 andRr, = 0.01.

The figure shows that the value & increases approximately linearly over time.
They were still rising at the end of the simulations. One dation was run for each set
of parameters. For all simulation runs, the final valu®pfatt = 10°) was recorded and
the results are plotted in Figure 3.18.

The figure shows how greater valuesRafwill dominate over lesser values Bf for
all values ofa. As with those values shown in Figure 3.17, the mean valug;ofas
rising at the end of the simulation in all cases. The diffeemnobserved in the figure
between the different values gfare due to differences in the rate of increas&of As
the value ofn increases, so does the rate of increasi;of

| compare the results in this figure with those produced byrtathematical treatment.

3The value ofR; was set at 7 because, below this value, some populationsssereto show negative
growth at the value ofi* —i.e.,Ue > Ugn
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Figure 3.18: Greater population fluctuations mean a grgagssure to increase the re-
production thresholdR;). The results of evolutionary simulations run wh&gis freely
allowed to evolve buR, = aR; are plotted for different values af and different fluctu-
ation coefficients. The two missing pointg € 1.5,a = 0.7 andn = 1.05,a = 0.9) are
due to computer failure. Other parameters wé&e= 0.001 andR, = 0.01.
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The stochastic model (see Figure 3.9) predicts that greataes ofa will increase the
distance betweene values for two corresponding values Bf. This indicates that at
greater values ofr, Ry will increase at a greater rate. The figure shows that, atdowe
amplitudes of fluctuation, greater valuesafdo in fact mean that there is a higher rate
of increase oR;. Alternatively, at higher amplitudes of fluctuation, greavalues ofa
mean a lower rate of increase gf.

3.3.2.2 Varying the cost of maintenance

The two mathematical models also make predictions abouirthact of varying the cost
of maintenance. The deterministic model predicts thateslye that has an increased cost
of maintenance when it increases its valueRpfneeds a corresponding increase in the
amplitude of resource fluctuations to be viable. To explbrg, tsimulation models were
performed as in the previous section, however this time ¢is¢ af reproduction was fixed
and the cost of maintenance was variable.

Two models for the cost of maintenance were considered.t fiescost of main-
tenance for each individual was dependent on the repramuthiresholdR:(i) = R. +
BRy(i)]. # The second model considers the case where the cost of maiueis depen-
dent on the number of resources an individual i, x) = Rc + BX(i).

Simulations were run for both models under static and fluetgaconditions [scenar-
ios (i) and (ii)] for 1 timesteps. One simulation was run for each set of parameters
Considering the first model, whef is static throughout the lives of individuals, time
traces are plotted for simulations run wijh= 1.5 in Figure 3.19.

The figure shows that there is a a stable equilibrium posfooR;. This is dependent
on the value of3: for greater values g8 the value oR; is lower. In the cases shown, trace
of Ry takes approximately 10’ timesteps to reach its equilibrium value. Simulations
were also run for) = 1.05 and with no fluctuations [scenario (i)] and the mean value o
R; was calculated for all individuals after410’ timesteps. One simulation was run for
each set of parameters. The results are plotted in Figue 3.2

The figure shows that, as predicted by the stochastic mdaekduilibrium value of
R1 does indeed decrease as the valuB i&fincreased. The deterministic model also indi-
cates that large fluctuations in resource availability areassary for invasion of lineages
with increased values d&®; andR..

Simulations were also run of the second modelRg(i); again under static and fluc-
tuating conditions. The time traces were similar to thosaasin Figure 3.19, with the

“When the simpler case 8 (i) = BRy(i) was considered, this led to very low valuesRafwhich meant
that population extinction events could easily occur witheery large populations.
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Figure 3.19: The results of evolutionary simulations rureveR; is freely allowed to
evolve butR:(i) = R. + BRy are plotted for different values @ (shown on the graph).
Other parameters wer&. = 0.001 andr, = 0.01.

value ofR; reaching an equilibrium value after approximately 40’ timesteps. Again,
the mean value dR; was calculated for all individuals after410’ timesteps. One sim-
ulation was run for each set of parameters. The results ateedlin Figure 3.21

The figure shows how the increased amplitude of fluctuatioans@n increased level
of the reproduction threshol®;. In all cases, a@ is increased, so the level & de-
creases. This is consistent with the results shown in Figug@ — where the value @i,
also converges on a stable value.

3.4 Discussion

This chapter describes the application of a physiologipgreach to modelling growth
rates of individuals with different reproduction strategiunder density dependence. The
results show the significance of different physiologicalgpaeters — the resources accu-
mulated at reproduction, the up-front cost of reproductiod the cost of maintenance —
to delayed reproduction. These results outline a diffeneathanism for delayed repro-
duction than that presented by Tuljapurkar (1990a) whiams@ers dormant immature
individuals. | also show that delayed reproduction can ocmder density dependent
conditions, even when there are minimal extrinsic fluctuai

A simple picture of the model presented is that individulkst twait and accumulate
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more resources, before reproducing, can have an advantage eompared with indi-

viduals that reproduce more quickly with less accumulagsburces. Naively, the basic
reason behind this is that even though the fast reproduceibgapulation is dominant

during a growth phase, the slow reproducing subpopulasdess vulnerable during the
corresponding decline phase — see Figure 3.1. That saidjmadating more resources
does not come for free and slower reproduction will be at & cdse models predict that
any advantage of slower reproduction can potentially béewleoff against extra costs of
reproduction and extra costs of maintenance which areylilcebe incurred.

The work is also relevant to the challenge set down by Heirm kaaitala (1999)
for modelling resource allocation between growth and rdpotion under environmental
feedback. The evolutionary models presented here considé&ations that change the
number of resources at maturity — and thus the number of regswallocated to growth.
The number of resources allocated to offspring is set at dfathis for this model. In
these terms, | then consider the optimal allocation of resemsito growth under vary-
ing environmental conditions. The results concerning thdd-offs between the cost of
reproduction and the costs of maintenance apply. The modglbe extended to consid-
ering conditions where allocation of resources to offspisvariable (see Chapter 6 for
an example of such an extension).

The discussion continues with an overview of the model amdesults. The results,
and the theorem, are then compared with the previous trseeonealelayed reproduction
presented in Section 3.1.1 which use the geometric mearetbgdbthe long term growth
rate. The simplicity of the model allows me to consider tigngicance of the results in
light of the experimental results discussed in Sectior23 [lthen discuss the importance
of the results in light of the literature an andK- selection and group selection. Finally
I look at possible future directions.

3.4.1 Model overview

The two modelling approaches presented in this chaptern@nadtical modelling and
computer simulation modelling) contribute in different wygatoward the question pre-
sented in Section 3.1.3. The mathematical model gives ateayhts into the questions
posed. Then, the approximations of the mathematical madelsonfirmed in the sim-
ulation models. However, since assumptions of the matheatahodels are relaxed in
the simulation models, new results are presented. Thesendise questions about the
mathematical approach and the insights found through te#toad. This section therefore
comprises of a technical discussion of the merits of theltegenerated by the models,
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and their relationship to each other and the topics predent8ection 3.1.3.

The insights of the mathematical model are mainly derivedubh analysis of the
two growth equations: Equations (3.5) and (3.23). Simpkdyais of the deterministic
growth equation (Section 3.2.3) shows that while the gromate of a fast reproducing
individual is improved, it is also more vulnerable during:-tieing periods. The applica-
tion of Theorem 2 in Section 3.2.3 formalises that analysi$ generates a simple rule
which shows how the ratio between an individual’s repromuncthreshold R;) and its
cost of reproductionR;) must decrease for there to be an advantage in increasing the
reproduction threshold.

Concerning the importance of fluctuating resources, the emastical models also
give two insights. First, a simple insight can be seen by ilnplat the effects of an
increase in the cost of maintenance (see Figure 3.3). Atrlanelitudes of resource
fluctuation the faster reproduction model is clearly dominaut as the amplitude of fluc-
tuations increases, the ratio between the growth to deddites of the slower population
becomes greater than that of the faster population.

Considering the stochastic model, this considers a caseavitnéividuals receive re-
sources intermittently in discrete amounts. A comparisbthe two models shows that
the deterministic model has a good approximation of the fgraate of the stochastic
model. This is a little surprising given the comparisonsspreed in Figures 3.13 and
3.14 where they are also compared with simulations. In taait) the stochastic and the
deterministic models give accurate approximations of stnns of the stochastic model
under similar parameter ranges &, m, R; andR.. The deterministic model can be a
good approximation of the stochastic model, however, whewth is small, there are
some important differences (see Figure 3.6). These diftm® are important when the
population is near equilibrium.

The stochastic model considers the case where the populiatiat equilibrium in
more detail. The analysis broadly agrees with that of therdahistic model, however in
this model the ratio between the reproduction threshBid &nd the cost of reproduction
(Ry) does not need to decrease for there to be an advantage éagneg the reproduction
threshold when the ration & to R; is considered. Analysis, shown in Figure 3.11, shows
how R; will move to an optimum value which is dependent on its ratithie maintenance
cost.

The evolutionary simulation models produce similar restdtthe predictions of the
stochastic and deterministic models. When consideringdbkeaf reproduction, the sim-
ulations agree with the stochastic model — the value;ahcreases even when its ratio to
R, stays the same (see Figure 3.18). One interesting poinaisathigher amplitudes of
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resource fluctuation, greater valuesaimean that the reproduction threshold increases
more slowly in the simulations. Conversely, at lower amplés of resource fluctuation,
greater values aff mean that the reproduction threshold increases more quickl

The evolutionary simulation models also look at a scenast@wansidered in the math-
ematical treatment. This is where the cost of maintenanpertis on the number of re-
sources an individual has. The simulations (see Figure) 3t&iw that there is an optimal
value of the reproduction threshold. This value increadesnithe amplitude of resource
fluctuations increases.

The simulation modelling approach relaxes some of the aggans made in the
mathematical approach. The main assumption relaxed is ithdéihe simulation mod-
els, individuals can experience changes in resource &v#tyaduring their lifetimes.
The mathematical models assume that all individuals dtait tives at resource level
X = (Rt —R)/2. In the simulations, individuals that survive decliningages will start
their growth phase from low resource levels.

The other assumption (taken for Equation 3.3) is that, gwetumber of resources
x at the start, the mean lifetime of individuals that grow tprogluce is the same as
those that die. This assumption is used to generate growgh far both the stochastic
and deterministic models. The results of the determinmstciel are qualitatively similar
to those produced by the simulations. The main differend¢bads delayed reproduction
is not predicted when th&(j) = aRy(j), however the simulations do show delayed
reproduction in all the cases shown by the deterministic eho@his indicates that the
deterministic model is still valid as an approximation asdherefore instructive as an
explanation for the more general stochastic and computailation modelling.

3.4.2 Comparison with geometric mean predictions

The analysis of the deterministic model is done using Thaddérom Appendix A. This
theorem states that the ratio of growth to death rates caséa to predict which lineage
will dominate. This contrasts with the geometric mean thie@nich multiplies the rates
together.

What is important about Theorem 2 is that it models a densipeddent population.
When there is a mixed population of two competing phenotypeeudensity dependence
but in fluctuating environments, one will grow relative t@tbther. To predict which will
dominate it is necessary to calculate the growth rates. Tiniddowever, it is necessary
to know the times spent under each growth rdjedndTg). Instead, by using Theorem 2,
these may be ignored as it shows the relative growth ratessmgrertant. However this is
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only shown to be valid when the growth rates are linear fumstiofu (see Equation A.1).

3.4.3 Comparison with experimental results

The important difference between the results of the modelsgnted here and the exper-
imental results discussed in Section 3.1.2 is the mortafithe individuals. The bacteria
analysed by Vasi et al. (1994) and Velicer and Lenski (1998)ewnot selected under
conditions in which they would demonstrate significant dapan decline. Consider-
ing Figure 3.1, this negligible mortality rate would implyat the bacteria existed in the
regime to the right of the figurai> up), i.e., they are either in a state of growth or at least
a state of equilibrium. The prediction of my model is that stéa growth rate will always
dominate under such a regime — in line with the experimeetlits.

Focusing on the work by Velicer and Lenski (1999), the baater the two experi-
ments were selected under either slow or fast growth cantitiThey were tested against
ancestors to ascertain whether adaptation to one conditiorpered performance in the
other condition. According to the model presented herethalbacteria were selected
under conditions which would promote faster growth. It isrdfore unsurprising that
individuals adapted to one condition were not at a disadgtn the other condition —
in concordance with the results presented by Velicer angkigi999).

In the other set of experiments, bacteria were exposed ttufitions between fast
growth conditions and conditions with no new resourcesgzeedium concentration)
(Vasi et al. 1994). As the population was effectively ongtgtnary during the periods of
zero medium concentration, this experiment selected ftividuals with a faster growth
rate. One interesting point to consider is the fact that theeatral bacteria were still
growing during the periods of zero medium concentrationteAgelection, the numbers
of bacteria decreased in size. As simple analysis of EqugBdb) shows, decreasing
the threshold of reproductioR; will lead to an increased growth rate (during growth
conditionsy > Up) but this is also accompanied by a corresponding increabeidecline
rate (during declining conditions < ug). This would correspond to the results presented
by Vasi et al. (1994). The indication from this is that theineg the ancestral bacteria are
adapted to was harsher than the regime in the experiment.

Unfortunately, it is not possible to compare experimengsuits from either work
(Vasi et al. 1994, Velicer and Lenski 1999) with the predintof Theorem 2 from Ap-
pendix A. The theorem requires that the population numbestrstart at some value and
eventually return at some point to the same value. In botheé&kperiments, the bacterial
populations essentially grew exponentially during theezipents, never returning to a
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previous equilibrium point. Any design of an experiment xplecitly test the model pre-
sented here should take that into account. This aspectdsmafsortant when the model
is compared with traditional theory of andK- selection in the next subsection.

3.4.4 r-andK- selection

On the face of it, the model presented here has much in comniihntiwe dichotomy
presented for /K selection. There is a comparison between fast and slow goppop-
ulations in both approaches. However there are two reastwystine approach here is
different fromr /K selection: | discuss these in the following paragraphs.

First, | consider the issue of density dependent growth.r /lk selection theory,
fast-growingr-selected organisms experience density-independenttigratvile slow-
growing K- selected organisms experience density-dependent groWik model pre-
sented here acknowledges that density-independent gmitheld fast-growing organ-
isms. However, the simulations and analysis also predattehvironmental variability is
important — low variability leads to fast growth and high iedility leads to slow growth
(see Figures 3.18, 3.20 and 3.21). The model predicts thatlations must experience
periods of decline before slow-growth becomes viable. &is contrast ta /K selection
theory which suggests that variable environments, esipewrdh catastrophic mortality,
can lead to fast growth (Pianka 1970).

Second, the model presented here assumes that offsprimd @&ed size. Each par-
ent, after paying a cost of reproduction, shares it resauecgially with its offspring. No
consideration is given here as to how much or how little ampeskould contribute to each
offspring. This is an important consideration fgiK selection theory with-selected or-
ganisms having many small offspring agaiKsselected organisms having few numbers
of large offspring. Further analysis would be needed to S&&eiamount a parent con-
tributes to its offspring is important in the model presetere.

3.4.5 Group selection

The primary purpose of the toy-model presented in this araistto consider why an

individual might choose a reproductive strategy of lowesuiedity. This issue was an
important one in the group selection literature discusaesidction 3.1. It was argued by
Williams that individuals would not reduce their fitness fioe benefit of the group. This,
however, does not consider the case where the existence grdhip is the reason why
an individual may reproduce more slowly.
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When a population grows it will start to compete within its&f resources. Such
competition within a population will mean that it will everally stop growing and may
either equilibrate or start to decline. In the case of a pafpah at equilibrium, the deter-
ministic model and simulations have shown that the bedegfya(dependent on the costs
of reproduction and maintenance) can be to reproduce movdysl When populations
actually start to fluctuate around an equilibrium, the sitiohs show that these effects
can be more pronounced.

So, in the absence of any other mechanisms for control oflptipa size, population
density will eventually become so great that resourcesneillmatch demand. Therefore,
in this case, the existence of the group explains why ind&isl reproduce more slowly.
Of course, it is possible that an individual may develop sevag of predicting the fu-
ture and adjust its reproductive strategy accordinglyhkd¢ase of microbial organisms,
this seems unlikely. It may be possible that individuals rhayable to sense population
density through monitoring pheromone levels — this wouldabenteresting question to
follow up.

In fact the idea that population pressure is important ig ese to Williams’ analysis
of clutches of birds (Williams 1966a). Here a bird that rearces too quickly generates
too many fledglings which put pressure on its limited reseysooviding capabilities.
There is a key difference here, Williams presents this adagt as being the optimal
way an individual can maximise its successful offspringarelless of the future environ-
ment the offspring find themselves in. The approach predantthis chapter compares
lineages against one another, arguing that since an indiVglineage must eventually
compete against itself for resources, the slow reproduloiegge may be optimal under
the right conditions.
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Modelling collective reproduction

4.1 Introduction

One of the main threads in Chapter 1 is concerned with themiseimplexity of the in-
dividual. One of the motivations of this chapter is thereftine search for processes or
mechanisms that can increase the complexity of an individllae hierarchical nature
(see Chapter 1) of biological organisms is a strong inspinator the search for models
of increasing complexity. The reasoning presented by Mal/&mith and Szathary is
that this hierarchical system is a result of multiple tréinsis from units that reproduce on
their own to sub-units that only reproduce as part of a supér¢Szathrary and Maynard
Smith 1995). As outlined in Chapter 1, | am searching for arlangttion of why an in-
dividual might contribute to a higher reproductive procesthis thesis. Notwithstanding
the value to biology of such an explanatory model, such a inediely to have value
within the ALife field through providing insights into artifial and open-ended evolution
(Bedau, Snyder and Packard. 1998, Bedau et al. 2000).

The results from Chapter 3 have shown that individuals mayeseha long term
gain from reproducing more slowly. Here | consider whetlere is any long term gain
from sharing reproductive effort — contributing to a higheproductive process (see Sec-
tion 1.2). Here | look at collective reproduction where adiwdual shares resources, and
genes, with another or others to generate a new offspringh garent has an equal stake
in the offspring’s genes.

In order to understand why an individual may share its resegiwith others, the stan-
dard approach is to consider social evolution (see Secti®n-lespecially the evolution
of altruism (Section 1.3.1). On the face of it, altruism ledike it may be a good ex-
planation as to why an individual may invest in a higher reljpiciive process. It may
explain why an individual would take a reduction in their ovaproductive success so

82



Chapter 4 83 Modelling collective reproduction

that the reproductive success of the group may increasaslidmg been rejected that an
individual may reduce its fitness (lifetime reproductivesess) to benefit its local group
(Williams 1966a). However, it has been shown how an indialduay take a reduction
in personal fitness to benefit related organisms (Hamilt@# 18rank 1998) througkin
selection

The kin selection perspective has shown some value in exptpithe maintenance
of eusociality (social insects), however it is not clearttihgor altruism in general) ex-
plains the origins of this transition (Maynard Smith and tBeaary 1995, Wilson and
Holldobler 2005). Indeed one problem with kin selection &tfiks benefits can be negated
by increased local competition for food (West et al. 2002)e@Question, considered here,
is therefore whether altruism actually is crucial for expiag the origins of collective re-
production. It may be possible to find explanations that aueuatistic: i.e., the outcome
for both the individual and the group is beneficial (see Tdhh.

A simple biological example of collective reproduction exsOn the face of it, using
sex as an example of a two parent collective reproductivarteft looks unlikely that a
mutualistic explanation may be found: there is a cost of 8&&yhard Smith 1976, Bell
1982). Put simply, the cost of sex means that individualtvineproduce sexually will
grow at a slower rate than those that reproduce individu&bther than directly consid-
ering Maynard Smith’s model of the cost of sex, | illustrdte problem by reformulating
it within the abstract terms used in this chapter. Here, | enalsimple comparison of
the growth rates of an individual strategy and a collectegroduction strategy (with two
parents) based on the way resources are allocated to offsis shown in Figure 4.1.

Since individuals with the collective strategy share cittions to offspring, they
contribute less than those with the individual strategyisTheans that the average level
of resources per individual in the collectively reprodugpopulation will be higher than
those in the individually reproducing population. For a fixeput of resources to the sys-
tem, this means that the collectively reproducing popaiatwill grow more slowly than
the individually reproducing population. If we look at casehere there are increasingly
larger numbers of parents, then the same reasoning can deaisbow that the growth
rate will be increasingly slower (e.g., when there are 3 pethis population will have
an average resource level dk¥4 after reproduction).

Given this cost of collective reproduction, it seems urfikbat there is any advantage
to collective reproduction. However, this analysis onlgke at the growth phase. Any
population that grows will eventually exhaust the resosnreits environment and the
population will either decline or reach a static level. Besma collectively reproducing
individuals have, on average, greater resources afteodeption they are less vulnerable
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Figure 4.1: Individual reproducers will grow more quicklyan collective reproducers.
Individuals are represented as resource containers oRsizeith the level of resources
represented by how full the containers are. They are shostrbgfore, and immediately
after reproduction. Each new individual from the sexuaépnoducing population will
have an average resource level 823 so, for the same resource input, this population
will grow more slowly than the individually reproduction polation which starts with an
average resource level B /2.

during times of population decline.

4.1.1 Scope of the model

To approach modelling collective reproduction, | take astedrt perspective in order
to produce a toy model. This approach, based on the commdorsaaf the subunits
identified above, simplifies the world to resources, indml$ and individual resource
allocation strategies. Individuals accumulate resoyregpend resources, make copies
of themselves and share resources with those copies. Gre¢mndividuals live within
an environment with factors outside of their control, | assuthat they have little control
over the way they accumulate or expend resources. The spatrategies that they may
adopt is therefore concerned with their reproduction sgat

The model simply approaches the question as to whether hhéstar strategy, for the
individual, to reproduce collectively or to reproduce cdiy. By modelling populations
of individuals under density dependence, it questions drahe strategy of sharing re-
sources with other reproducing individuals may dominate strategy of producing an
offspring alone. In context of the introduction, this woyldovide an explanation for
collective reproduction that is mutualistic, not altrigstin the next section | present the
model and its results.
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4.2 The model

Two modelling approaches are taken in this section. Aftesenting details common to
both approaches, | outline a mathematical model and itsgireds. The predictions of
the mathematical model are tested by simulation modelsati®@e4.2.2.

Here each individualis modelled as a resource lewél, t) by the equation,

dx .

whereR; andR; [0 < R; < Ry] are positive constantsR(, is the maximum resources
available for uptake anB; is the cost of growth/maintenanc&esource uptakghe level
of resources received from the environment) is variableraadelled byu(t) € [0,1]. The
variableu here is used as a surrogate for competition: populationuirins will lead to
increasing and declining phases, modelled by changes eth@viour ofu. Equation 4.1

can thus be rewritten:
% =UuR,—Rg, (4.2)

If an individual's resource level decreases below the latheFsholdR, (fixed for all
individuals) it will die. Without losing generalityyg is set to 0 as aad hocsimplification.
If an individual's resource level increases above the répction thresholdRy) it will
reproduce. All individuals pay a cost of reproductiBn) which is dependent on the

number of parenta.

4.2.1 Mathematical treatment

The mathematical treatment assumes thigtstatic over the lifetime of individuals. The
value ofu wheredx/dt = 0 is defined asip: up = R;/Ry. During reproduction all parents
pay the cost of reproductioR(n). After this the remaining resources are shared equally
between tha parents and the offspring. All individuals therefore sthdir lives, just after
reproduction, withx = n[R; — R((n)]/(n+1). Two cases fou can now be considered:
u> up andu < uUg. In the first case the individual resource level will increastil it
reaches the upper threshdtg, taking an expected tim& where,

~ N(RL—R())] dt

n+1 dx
[R1+nR(n)] dt
(n+1) dx’

Wu> U — Rl

(4.3)
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In the second case individual resources will decrease tinéiches the lower threshold
at resource leveRy. The expected tim@/ is,

n[Ry — R (n)] dt

W<y = (n+1) dx’

(4.4)
In both cases, as— ug, W — oo,

The expected population growth rate of a homogeneous popuiaf individuals can
be estimated for the two regimes £ up andu < ug). The expected population growth
rate per individualG is equal to the reciprocal of the time taken for resourcesrtovg
for reproduction during population growth (@,-,) and reciprocal of the time taken for
resources to decline for death during population declin®{,,), or:

(__(n+D) dx u>u
nRi+nR(n)dt =~ °
G=< 0 U= Up
—(I’H—l) 9( U< Up
{ N[RL—R(n)]dt ~’
substituting Equation (4.2) gives:
(((n+D(UR —Re)
nREIR() O
G=<¢ 0 ,U=Ug (4.5)
(n+1)(UR —Re)
[ nR-RG) T

The growth rate @) is plotted against different values offor one n =1, R(1) = 0.1]

and two h = 2, R(2) = 0.05] parents in Figure 4.2. In this case, the two parents share

the cost of reproduction born by the single parent —i.e.ctist per offspring is the same.
The figure shows that the sexually reproducing populatioesda fact grow more

slowly during population growthu> up). This is in line with the reasoning presented in

Section 4.1 and Figure 4.1. What is also evident from the figaithat the decline rate

of the sexually reproducing population is lower in magnéulan that of the individually

reproducing population. Furthermore, the two graphs dieenore asi gets further from

Up indicating that fluctuations may be significant; howevertte between the two plots



Chapter 4 87 Modelling collective reproduction

x107°

= One parent
| = ==Two parents

N

=
a

[EnY
T

o
a1
T

o

|
o
a

-1.5¢

Population growth rate per individual ( G)

0 0.05 0.1 0.15 0.2
Uptake rate (u)

Figure 4.2: Growth rates of individually and sexually regwoing populations. The pa-
rameters used wer&®; = 1.0, R (1) = 0.1, R(2) = 0.05,R; = 0.001, andR, = 0.01.

stays constant. Indeed, in this example, the growth rateeo$éxually reproducing pop-
ulation is 0.75 that of the individually reproducing popida. However, the decline rate
of the sexually reproducing population is only 0.71 thathed tndividually reproducing
population. Interestingly, the sexually reproducing pagon has a greater advantage
during decline periods than the individual strategy hasmugrowth periods.

This analysis indicates that, similarly to the case in $&c8.2.3, the ratio of the slope
in the growth regiony > up) to the slope in the decline region & up) will determine
which lineage will dominate. This is given by (taki®j = dG/du):

W(n) = G{J>Uo - Ri —Re(n)

— = . 4.6
G RLENR(N (4.6)

Assuming that the growth equation [Equation (4.5)] is a gapgroximation, Theorem 2
(in Appendix A) shows that, if there are no trends in overalpplation, then the popula-
tion with a higher value o® will dominate one with a lower value dP. In this model,
the behaviour of¥ depends on the waly;(n) is determined.

| look at three scenarios for determinifigy(n). These consider the offspring cost
which is defined as the total reproduction cost spent on effgprimg (hR,). The scenarios
are:

(). The total cost of each offspring is not affected by thenfber of parentsR,(n) =
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R:(1)/n. In this case, Equation (4.6) is increasing (the denomiriatconstant and
the numerator increases).

(i). The total cost of each offspring increases linearlyhwéach extra parent.(n) =
R(1)[1+c(n—1)]/n(cis a constant).

(ii). In this scenario,W is constant — i.e., there is no advantage or disadvantage to r
producing with more parents. Simple manipulation of Equat4.6) shows that if
vn:W(n) =W¥(1) then,

_ 2R (1R
Ri+R(1)+n[Ri—R(1)]

R:(n) 4.7)
For any multi-parent strategy to dominate individual refuation, the cost of re-
production must be below this value. That isRf(n) is above this value, then
W(n) < W(1), if R(n) is below this value thek(n) > W(1).

The offspring cost is plotted in panel A of Figure 4.3 for diftnt numbers of par-
ents in the three cases. Given the corresponding repranfuctists associated with these
offspring costs, panel B shows the valuedétalculated by Equation (4.6).

As expected, the plot in Panel B of the figure shows l¥uncreases when the off-
spring cost is not dependent on the number of parents. Therelice in values a¥ is
relatively high when the number of parents is low — the largesrease being the dif-
ference between individual and sexual reproduction. Wheroffspring cost increases
linearly with the number of parent¥) reaches a maximum at 2 parents (sexual reproduc-
tion) and declines thereafter. Considering Panel A of thedéiginis indicates that, as the
number of parents increases, the total cost of reproduspemt (the cost per offspring)
may increase. Again, this increases sharply as the numbparents increase from 1
to about 5 and then levels out. For all graphs, changes impaeasR; andR; did not
change the shape of the graphs significantly, however, asitioeR; /R;) decreases, the
values generated by Equation (4.7) increase (not shown).

4.2.2 Simulation models

The predictions of the mathematical treatment in the prevgection indicate two things
that may be tested with simulation models. Firstly whethervalue of¥ is a good pre-
dictor for which strategy is optimal and secondly that flations may also be significant.
Simulations are done with agents modelled as resourcesleldased on Equation
(4.1). At each timestep an agent pays a growth/maintenargi®e When its resources
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parameters used werB; = 1.0,R(1) = 0.1, R; = 0.001,R, = 0.01, andc = 0.3.
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are below zero, an agent will die. Each agent has a repraustiategy which is defined
by the number of parents (from 1 to 10) the agent will repredwith. Those with the
same reproduction strategy will reproduce when enoughtagdapending on the number
of parents defined by their common strategy) have resouvedsi¢hat are abovR; (re-
source levels may go abo® without penalty). Each parent pays a cost of reproduction
R:(n) and all parents share their energy with the new offspringertg were initialised
with a random level of resources and a random reproductiatesfy. The reproduction
strategy was fixed for all agents — there was no mutation irsitinelations.

The simulation models are essentially non-spatial, withviduals located on a grid
but moving to a random new cell each timestefsgents consume a resource unit if they
encounter any on the square they are on. A number of resouite aach of valu&,
are randomly scattered on a spatial grid (of&<&D squares) each timestep. The number
of units is either static (set to 200) throughout the simaitgtor fluctuated between two
values (100 and 200) changing every 1,000 timesteps. Psmdiofor the simulation can
be seen in Figure 4.4.

The simulations were run with the three scenarios for daténg R;(n) presented in
Section 4.2.1. All scenarios were tested with a static resinput to the system and
fluctuating resources. Each simulation was run ten timety @ach run initialised with
a different random seed. After 1,000,000 timesteps | rezbitie number of agents with
each reproduction strategy and this was averaged overeadlithulations. The results are
plotted in Figure 4.5.

The figure shows that, when the offspring cost does not iser@ath the number of
parents, reproduction strategies with higher numbers ofrga will dominate. In fact,
strategies with less than 7 parents are completely dondnatthis scenario with static
resource input. When resource input fluctuated similar tesuére seen (not shown).
When the cost per offspring increases linearly, the sexuategfy is dominant over the
other strategies (see panel B) — as predicted by the shayeimfFigure 4.3 (panel B,
squares). Again, the results were similar with and withauttfiating resource input.

When the cost per offspring increases in line with the uppeit Ipredicted by Equa-
tion (4.7) (see Figure 4.3, Panel A, crosses), the viahilftgollective reproduction de-
pends on fluctuations in resource availability. With no flations, individual reproduc-
tion is the most frequent (panel C of Figure 4.5), howevemgesof strategies are found.
When the resources do fluctuate, collective reproductioromidant (panel D of Fig-
ure 4.5).

1The results presented by Bryden (2005b) showed that ageces/e resources with between-resource
intervals on a geometric distribution when they move to mndjrid squares each timestep
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Define agent as having resourceand number of co-reproducemns
Initialisex andn for new members of the populati@yents
season= high
fort = 1 to simulationtime
if |agents > upperthreshold season= low
if |agentsg < lower_threshold season= high
if fluctuatingresourcesandseason= low
Scatter 100 resources on the grid
else
Scatter 200 resources on the grid
10:  endif
11: Move each agent to a random grid-square
12: for each agent (picked in random orderpments

13: X=X—R:

14: if there are resources on the grid-square

15: X=X+Ry,

16: Remove one resource from the grid-square
17: end if

18: If X < 0, remove agent from simulation

19: endfor

20: foriis each number of co-reproducers (1 to 10)

21: pick agents where=i andx > R;

22: for each group of agents

23: x=X—R(i) (pay the cost of reproduction)
24:. Create a new agent (the offspring)

25: Share all resourceg)(evenly between all (i+1) agents
26: end for

27: # remaining agents do not reproduce this turn
28: end pick

29: end for

30: end for

Figure 4.4: Pseudo-code for the evolutionary simulations.
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4.3 Discussion

The mathematical model and simulations presented in tlgpteln demonstrate collective
reproduction. Individuals that may reproduce on their omstead reproduce as part
of a collective. Collective reproduction here is done by sitaresources contributed
to a shared offspring. The modelling work shows that the obshis process (the cost
of reproduction) can affect the viability of agents thatrepuce collectively and how
fluctuations in environmental resource levels can be siamti The model also presents
two different scenarios which predict conditions for whemsal reproduction is optimal
and other conditions for when reproduction in larger groigpsptimal: this may help to
explain why sexual reproduction is dominant in some aniraatseusociality is dominant
in others.

It is interesting to consider the results of the model with tiipes of reproduction
seen amongst the animal kingdom. When the number of parerrsases, there is an
additional increase in the amount they may spend per offgdsee Figure 4.3, Panel
A, scenario (iii)]. The largest increase is between onegamed two parents. Perhaps
when there are more than two contributors, the only costtie strategy (or perhaps
technically possible (Whitfield 2004) that works is to contrto only have two parents —
a male and the queen — but have other kin-related workerdwizice an indirect genetic
contribution to the offspring. Since each worker barely@ases the cost of reproduction,
the larger number of contributors is advantageous [seer&igLB, Panel A, scenario (i)]
and the colony will grow.

The mathematical predictions presented in Figure 4.3 aneardant with the results
in Figure 4.5, both predicting when collective reprodustis viable. This includes subtle
effects such as the dominance of individuals that reprogitteone other parent. Since
the results are so similar, the simulation models show'thest good predictor for which
reproduction strategies will competitively exclude otherhis indicates that the growth
equation [Equation (4.5)] is a good approximation. The raeatatical treatment is there-
fore instructive (in line with Chapter 2) as to why there is agderm growth benefit to
lineages that reproduce in this way: the collectively relo@ng individuals have greater
resources and are therefore less vulnerable to resourt¢adtians.

The work in this chapter gives some insights into how the derity of the individual
may increase. First, it demonstrates how collective reypetdn can benefit both part-
ners: when more than one parent contributes resources fwdlkection of an offspring,
the combined reproductive expenditure can be significdatiyer than with individual
parents (see Figure 4.3 panel A, and corroborating sinragsults in Figure 4.5). This
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extra resource is available for the increased complexigded for the facilitation of col-
lective reproduction.

Indeed, it is plausible that collective reproduction mapen on many levels in the
same class of individual. Some examples of collective pcton may only be viable
when the conditions are right, so different mechanisms &dlective reproduction may
happen under different conditions. Each may have diffeogritmal numbers of par-
ents. As well as this, collective reproduction may happedifédrent levels at the same
time. With some organisms making direct genetic contrdngj others making indi-
rect genetic contributions [through kin-relatedness (Hiam 1964)] and others perhaps
gambling their genetic contribution [see (Bryden 2005a)Cbapter 5, for an example].
There can therefore be many differing mechanisms of colleceéproduction taking place
within a population at the same time. As such, this is an &igerprocess and as new vi-
able mechanisms increase complexity, a rich social falwcikl emerge.

Secondly, the model, and its insights, implies a potentiallitful approach to mod-
elling the major evolutionary transitions. Rather thanoikwmg altruism or group selec-
tion, the model of collective reproduction presented héms mutual benefits to repro-
ducing collectively: i.e., that it is in an individual’s $ish interest to reproduce collec-
tively. There is no need for the individual to reduce its fi#ador the benefit of its kin
or its group. Altruism may therefore not be an essentialuieain explaining the major
transitions.

That said, this does not imply that altruism is not imporiardollective reproduction.
Altruism can happen and will act as an evolutionary force nvappropriate. One major
assumption of the model is that the resources of all pareatshered out equally between
the parents and offspring. Clearly, a parent that does ndtibate in this way may be
able to disrupt the process by contributing less resoulttas other parents. It could be
argued that a parent that doesn’t do this is acting altaayi, however by contributing
less resources it will also be harming its own represematighe collective reproductive
effort.

Study of such cheating behaviour is outside the scope ottiapter, the case where
two individuals are reproducing is discussed in Chapter 6ithiéun studies considering
cases with more than two individuals will also be of interest
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Slime mould and the transition to
multicellularity

5.1 Introduction

Given the results in the previous chapter show the viabditgollective reproduction, |
investigate a biological case study in this chapter. Whersidening reproduction strat-
egy, one of the most striking cases in evolution is that oftthesition to multicellularity
(Buss 1987, Maynard Smith and Sza#lmyn 1995). This is a transition between unicel-
lular organisms, that reproduce on their own, to a multidatl organism, in which one
germ-line cell reproduces on behalf of the other cells.

This transition is especially interesting to artificialdifesearch where the quest to
synthesise hierarchical levels of organisation is a sigaifi open problem (Bedau et al.
2000, Stewart 1997). The transition from unicellular to timélllular organisms is a good
example of such hierarchical organisation. A multicelfildeganism is made up of indi-
vidual cells. Cells are made up of proteins. Proteins are nu@def molecules, and so
on... How, and why, individual cells might come togetherdmi a multicellular organism
is therefore an interesting question.

To put the transition into a paleontological context, fbesidence (Maynard Smith
and Szathrary 1995) indicates that multicellular life did not exist #5500 million years
after the dawn of life. The first examples found were in the Caanbperiod (approxi-
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mately 540 million years ago). One interesting fact is thiath& multicellular phyla are
represented in the Cambrian fossil evidence (Maynard SmithSzathrary 1995). It is
likely that the transition occurred several times (Bonr@994, Brooke and Holland 2003).
However, phylogenetic evidence (Baldauf, Roger, WenkeBi@and Doolittle 2000) sug-
gests that multicellular organisms, especially metazibaresa common ancestor. If it is
true that only one mechanism was responsible for the tiansithen the fact that it took
such a long time to evolve implies that a certain specific $ebaditions needed to be
present for it to happen.

For now, we may only speculate on what mechanisms or conditivay well have
led to the transition. This said, modelling can enable ustetbp mechanisms that are at
least plausible. Since it is also important to ground sucldefwithin current biological
knowledge, such models are often based on specific biologyséems. These models
can also aid our understanding of those systems as well mstirdution. This section
therefore introduces background literature on the traorsito multicellularity. It then
goes on to discuss how a model organifictyostelium discoideurfcommonly known
as slime mould), may shed some light on the transition.

5.1.1 The transition to multicellularity

For the purposes of this chapter it is useful to have defimstiof both multicellular or-
ganisms and the transition to multicellularity. | define altieellular organism as an
aggregation of genetically homogeneous cells. In facttlage more complex processes
in most multicellular organisms. They require gene-reguiamechanisms for differenti-
ating cells (with differentiations being passed from parsil to offspring), cell adhesion
and spatial patterning of cells (Maynard Smith and Szattymd995). But to keep things
simple | assume that the most essential requirement is gajige genetically homoge-
neous, cells. The transition is therefore from unaggrebgenetically heterogeneous
unicellular organisms to aggregated genetically homogesenulticellular organisms.

This definition raises the question as to why a multicelldeganism must have a
homogeneous genetic code. A great amount of coordinatiayisred in a multicellular
organism for all the different processes and organs to fongiroperly. Differences of
foreign, or mutant, cells are therefore most likely to be dging. Thus, it is best to keep
an organism genetically homogeneous.

What is even more damaging is when these harmful traits aisegamn to offspring
through infection of the germ line. To solve this problem caganism is generated from
one single germ line cell (Buss 1987). Germ line cells areddhtiated and isolated from
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the soma (or body) cells. This means that any damaging mataoteign cells do not
have their traits passed on to the next generation.

What is puzzling then, is how differentiation between sontgerm line cells evolved
and has remained stable. Any invasion of these germ line bglbther could potentially
have harmful consequences as the invaders will pass orctiarto all cells in any future
offspring. While cell policing (Michod 1999) and early segtration (Buss 1987) may be
valid mechanisms in higher metazoa, it is unlikely that éhesechanisms evolved at the
same time as germ-line soma differentiation. Any mechamwidnch describes the evo-
lution of germ-line soma differentiation must describe whg soma cells will cooperate
and not invade the germ-line cells. This can be put anothgr wanust explain how an
individual that reproduces individually might instead aoto start reproducing as part of
a group, with another individual reproducing on its behatiis question is addressed by
the model in this chapter.

| therefore consider evolutionary mechanisms that willlakpa transition between
unicellular organisms, which compete within their popuas and compete with preda-
tors and prey, and early multicellular organisms which dostered together and exhibit
germ-line/soma differentiation. In other words, there igaasition from unicellular or-
ganisms which are optimised to maximise their aghrect fitness to cells that must, on
the other hand, maximise theirclusivefitness at the expense of their direct fitness (i.e.,
their ability to contribute their fithess to other cells tlaae highly related must be more
important than their own replication chances). [See Frd®#98) for precise definitions
of directandinclusivefitness.]

Many models of the transition argue that an early stage wegkells clustering to-
gether. Wolpert has presented a model where individuas sgllit to produce a somatic
body cell that sticks to its parent and is unable to reprodudapert 1990). Other work
(Pfeiffer and Bonhoeffer 2003) presents some benefits &ialung, arguing that the ben-
efits clustered individuals receive from collective meteagion may outweigh the costs
of increased competition. Another perspective (Michod)%rgues that the clustered
cells were differentiated and received some benefit from division of labour. A prob-
lem with such clustering is that local competition can beeamproblem, specifically
competition over food (Queller 1994, West et al. 2002, Malistnd Rowe 2003b).

While these perspectives may explain why cells might clusigether, no mecha-
nisms are proposed as to how these clusters may becomeaggdigdiomogeneous. Fur-
thermore, the presence of clustering does not yield an eafitan as to why germ-line
cells are differentiated from soma cells: or, why an indiatimight stop reproducing so
that another individual may reproduce on its behalf.
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A different perspective considers multicellularity thghuaggregation (Maynard Smith
and Szathrary 1995). Here cells either vegetate and reproduce ingialig or aggregate
to reproduce collectively. One advantage to this perspetithat, because cells vegetate
individually, this reduces competition between cells food — one of the problems with
the early models with clustered organisms. A further advgatof this perspective is that
there are model organisms we can study to approach the gogestet out above. The
model organism chosen for study in more detail in this chaigtéDictyostelium which
is outlined in the next section. If the collective reprodactexhibited by cells that aggre-
gate can identify some kind of differentiation between géna and soma cells then this
may shed some light on the transition to multicellularity.

5.1.2 Biological background onDictyostelium

Dictyostelium(more commonly known as slime mould) is a model organism fat-m
ticellularity through aggregation (Maynard Smith and ®nadry 1995, Queller 2000).
Individual cells mostly vegetate and reproduce asexuallytheir own. However, un-
der different environmental conditions they also demaistcollective reproduction be-
haviour, characterised by individual cells making sacesifor the benefit of other cells’
reproductive chances. This organism therefore demoestiadvth the germ-line/soma
differentiation (Buss 1982) and clustering that is impottr the transition. Biological
evidence is now presented concernidgdiscoideumone of the more studied species of
the genus.

When there is a shortage of food abd discoideuncells begin to starve, they ag-
gregate and one of the two collective reproductive stagesmences (Raper 1984). The
more well known reproductive stage Df discoideunis shown in Figure 5.1. Here the
cells form a slug which collectively migrates. Once the £élhd an advantageous loca-
tion they form afruiting body. cells at the front of the slug (20%) form a stalk and the rest
form spore cells at the top of the stalk which are dispersetheyvind. Interestingly, the
stalk cells die after the stalk is built. This different@iibetween spore and stalk cells is
arguably a germ-line/soma distinction (Buss 1982). Siratks that produce stalks do not
pass on their genetic code, it is hard to see how this traglected for and maintained.
Indeed there are examples of slime moulds strains that dprodtice stalks (Buss 1982).
Computer simulations addressing this question (Armstr@&jftLhave indicated that high
dispersal of spores can lead to more stability in the stadklpcing behaviour.

The second, less well known, collective reproduction stadge discoideumnvolves
the formation of themacrocyst(Raper 1984). Again, when the cells are starving they



Chapter 5 99 The transition to multicellularity

Hatching amoeba

| Vegetative amoebae |

X = C@E
\i j‘cAMP
Pulsing
4h é
E éﬁ Chemotaxis, cell
adhesion

6h

Tipped aggregate

First finger Migrating slug (Grex)

Figure 5.1: The asexual and mitotic life cycledmétyosteliumdata from Raper (1984)].

aggregate. However instead of forming a slug, two cells m&vdorm a largeZygotecell
which eats other aggregating cells. The resulting giaritfoghs a hard cellulose outer
wall and this macrocyst germinates after a few weeks. Sea &2 for a diagram.

The macrocyst stage is thought to be a precursor to the shligfeproductive stage.
Kessin (Kessin 2001) argues that evolution generally acouincremental stages. He
notes that the previous stage to macrocyst developmentdwmailthe microcyst stage
(not observed iD. discoideuny where individuals form outer walls on their own. After
the evolution of chemotaxis, aggregation could occur gjuime right conditions for the
evolution of the macrocyst. With added cell adhesion anttgpé differentiation into
stalks and spores, fruiting body and slug behaviour wouddh thecome plausible.

The genetic makeup of the offspring of the macrocyst is aromamt question. The
macrocyst is generally accepted to be the sexual phaBe discoideum’development
(Raper 1984), two differemhating typesire generally seen to aggregate. However, exper-
iments do demonstrate that macrocysts can form from onlyhaténg type (Bozzone and
Bonner 1982). Typically, the progeny of a macrocyst is obseto be of one genotype
(Wallace and Raper 1979). Only one nucleus remains in thetey@r giant cell) after
other ingested nuclei disappear (Okada, Hirota, Moriyg®ama and Yanagisawa 1986).

The biological evidence therefore points to a picture shgwhat the macrocyst stage
contains a differentiation between a germ line cell and soetla. With the germ-line cell
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Figure 5.2: The sexual and mitotic life cyclesbictyosteliumdata from Raper (1984)].

being the zygotic cell which ingests all the other somatitsc&he cells use chemotaxis
to move closer to other aggregating cells. It is unlikelytthaell will have any way of
distinguishing between the zygote and any other cell solitjugt aggregate towards it.
The first cells that produce a zygote can stop moving and gémarmpowerful chemotactic
signal to attract all the other cells. Based on this, the worthis chapter assumes that
the central zygotic cell is chosen at random from all thosgregating.

Given that aggregating cells have a random chance of bemgyote, the point at
which they aggregate is therefore crucial. Recent evidenpées that the cell may have
genetic control over this event. Research (Chae, Inazu, Anzagl Maeda 1998, Hirose,
Inazu, Chae and Maeda 2000) identifies genes that can conttelay when or whether
a cell will continue to grow or start aggregation. These fiigdi indicate that the cell is
capable of turning on or off aggregation to the macrocysgiestahich can ultimately lead
to cells being eaten by the zygote. This emphasises a need fexplanation as to why
an individual might make the ‘choice’ to aggregate and alnegainly die.

5.1.3 Scope of the model

The model in this chapter is an abstract model offtheliscoideummacrocyst stage. As
with the models in previous chapters, it simplifies the waddesources, individuals and
individual strategies. Based on the behavioubDofdiscoideumindividuals accumulate
resources, expend resources, make copies of themselvesagrjdin the macrocyst. The
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macrocyst also expends resources and will germinate wieeoathditions are right.
The model is intended to approach several questions:

(). To confirm that individuals that normally reproduce dreir own are indeed pre-
pared to gamble their own reproductive chances againstpibite 6f reproductive
material contained in the macrocyst.

(i). To confirm the intuition that fluctuations in food avaldility are important to the
viability of the macrocyst.

(ii). To question the role individual mitotic split ratesigit play in the stability of the
macrocyst.

(iv). To make predictions of the effect of different manigtibns on the organism.

(v). To speculate on the role the macrocyst might play in tredugion of other altruistic
behaviour (such as stalk/spore differentiation) and ctilte behaviour.

5.2 Methods

To investigate the questions outlined in the previous 8actihave built a computer sim-
ulation model of the macrocyst stage Df discoideum Assumptions in the model are
based on the biological evidence presented. Notably | hestenaed that all the offspring
of a macrocyst are of the same genotype. Since sexual fuses bt seem to be neces-
sary, | chose (on parsimonious as well as biological groptmisiodel the macrocyst with
no sexual recombination. Individual vegetative behavieas modelled with individuals
having a genetically encoded resource threshold abovewthey mitotically reproduce.

D. discoideuntells are modelled as individuals in a non-spatial envirentn Each
individual has an resource level At each time step, a number of individuaN)(are
selected at random, each receivBg £ 0.5) units of resource (representing food) with
probabilityu. One cycle in the model contains two seasons. The amountrabdlplity
of receiving a resource unitN(andu) changes value according to whether the season is
‘high’ (N = 100 u = 0.6) or ‘low’ (N = 20,u= 0.3). Each season lasts 200 timesteps.
All individuals pay a resource cosR{ = 0.2) per timestep irrespective of season. If an
individual's resource level falls below zerg £ 0), it will die.

Each individual cell is modelled with two gen&sThe genes model resource thresh-
olds which determine the behaviour of the cell. Cells willnjdhe macrocyst when

1Genes are represented as floating-point numbers in the atioml point mutations occur at each
timestep over a Gaussian distribution with standard deviaif 1% of the gene space
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their resource level idelow the value of the first gene, th@acrocyst join threshold
(—2.0<Roin < 2.0).> When a cell’s resource level &ovethe value of the second gene,
thesplit threshold(5.0 < Rspiit < 20.0), the cell will pay a resource cost to split mitotically
and produce a new cell (sharing resources equally betwselh @nd its offspring).

In the model, there is only one macrocyst which is assumed tommobile and there-
fore does not receive resource from the environment. Whdsa joéh it, they contribute
their own resourcesx] plus a residual resource amount (equal to the cost of isijtt
R, = 1.0) to the macrocyst’s ‘pot’X). Before closing the macrocyst pays a dagt= 0.05
per individual joined every timestep to reflect metabol@atnd building of cellulose. If
the macrocyst resource level falls below zexo< 0) then it (and all its joining cells) will
die. When the macrocyst reaches a predetermined resoueshtid (30.0), it closes and
no other cells may join.

The macrocyst will germinate on the first day of the high sea¥@hen it germinates,
the resources are divided up into new cells with each cedlivény x = 2.5 resource units.
All new cells will have the same genotype: a complete ger®{y recombination) is
picked at random from all the cells that originally joine tmacrocyst.

Simulations were run over 100,000 timesteps. Each sinmnatiarted with 100 indi-
viduals, each individual having a random genotype and aalanesource level between
0.0 and 5.0. Pseudo-code for the simulations is shown inr€&igL3.

5.3 Results

To understand how the harshness of the low season can diéeciatbility of the macro-
cyst, simulations were run varying the probability of redeg resources in the low season.
Interesting population dynamics, with macrocyst offsgrut-competing the non-joining
population, were observed and these are presented in ttierse

The average percentage of individuals which germinateah fitee macrocyst is plot-
ted against the probability of receiving resources in tive $eason in Figure 5.4. When
the probability of receiving resources is higher, few indials & 20%) join the macro-
cyst. When there is a lower probability of receiving resosraeore individuals join the
macrocyst. However the rogue data points at the bottom tefteograph are of interest.

To investigate this disparity with some populations pradganacrocysts and others
not, the probability of receiving resources and seed valeeewgelected from one of the
rogue data points. The simulation was run over a longer (&) ,number of timesteps. A

2A negative macrocyst join threshold means that an individilhdie before it joins the macrocyst
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0: Define agent as having resourogsplit thresholdRspit and join thresholdRigin
1. Define macrocyst as havingresources and agents

2: Initialisex, Rspiit andRyoin for new members of the populati@yents
3: season= high

4. fort =1 tosimulationtime

5: if time_sincelast_seasonchange= 200

6: if seasor= high

7 N = 100,u = 0.6, seasor~ low

8: end if

9: if seasor= low

10: N = 20,u= 0.3, seasorr high

11: if there is a macrocyst,

12: CreateX /2.5 new agents witlkk = 2.5 for each agent
13: Remove macrocyst from simulation

14: end if

15: end if

16: endif

17:  for macrocyst (if there is one)

18: X =X—-nRnp

19: if X < 0, remove macrocyst from simulation

20: end for

21: pickN random agents

22: with probabilityu, x = x+ R,

23: end pick

24:  for each agent (picked in random orderpments

25: X=X—R:

26: if X < 0, remove agent from simulation

27: MutateRspjit andRipin

28: if X > Rsplit

29: X = X— R (pay the cost of reproduction)

30: Create a new agent (the offspring)

31: Share the parents resourcesgvenly between the two agents
32: end if

33: if X < Rioin

34: if there is no macrocyst, create one£ 0,n=0)
35: for macrocyst

36: n=n+1

37: X=X+x+R

38: end for

39: end if

40: end for

41: end for

Figure 5.3: Pseudo-code for the macrocyst simulations.
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Figure 5.4: Graph showing the percentage of individualsWvigerminated from a macro-
cyst at the start of the high season against the probabiligomiving resources in the low
season. Each data point (ten data points, each generatedifferent random seeds, per
resource-probability value) represents an average ovenglete simulation run.

histogram was generated for the macrocyst join threshdldeastart of each high season
and the results are shown as a 3D mesh in Figure 5.5.

In the figure, the presence of macrocysts can be seen as spiltes right hand side.
An early tendency towards macrocyst joining is evident (fght of graph) but these
genotypes die out aftex 25 cycles. A population which does not produce germinating
macrocysts immediately flourishes. Afterl50 more cycles there are enough individuals
to successfully produce a germinating macrocyst whichigesvto the end of the low
season. Interestingly once this has happened the macnmysguickly wipes out the
non joiners from the population. The offspring from the nuayst must have some sort
of competitive advantage over the non-joining population.

A closer look at Figure 5.5 indicates that when there are notigh individuals joining
the macrocysts to make them germinate, there is only a semaleincy toward individuals
that will not join the macrocyst when their resource level/esy low. Between cycle
25 and cycle 175, the histogram shows a larger proportiomdividuals having a join
threshold below zero; however some still remain with a thoéd above zero. There is
clearly little selection pressure against individualsrgming small amounts of resources
when near to death.

A second 3D histogram was generated for the split thresladlttse population at the
start of the high season and can be seen in Figure 5.6. Thareléar disparity of the
split thresholds between the macrocyst joining populagind the non joiners. Again, in
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Figure 5.5: 3D histograms of macrocyst join thresholds efplopulation at the start of
each high season.

the first few cycles of the simulation (where the macrocysigos were predominant in
Figure 5.5), the population has a low split threshold — irdimls will split as quickly as
possible. After~ 25 cycles the macrocysts die out. There is now a clear tedenc
dominance in the population for individuals that split metewly. Once the macrocysts
return (after~ 160 cycles), the split thresholds of the population immesdyareturn to
lower values & 7).

In the simulation shown, the offspring of the last macroaysthe early period of
macrocyst dominance have a higher split threshold thanesteaf the macrocysts. This
was confirmed in all other observed runs, however no experiras categorically con-
firmed this to always be the case.

Simulations run with all individuals having the same, fixseglit threshold resulted
in either the individuals all dyeing, through starvatiortlie low season, or a small per-
centage joining the macrocyst when resources are moreifplegfulata not shown). The
competitive advantage of the macrocyst joining populati@s no longer effective and
macrocysts were only formed through enough individualsieiag their resources in a
similar way to the non-joining population in Figure 5.5.

Other simulations have been run with variable split thrédd@nd the low season
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Figure 5.6: 3D histograms of individual split thresholdstloé population at the start of
each high season.

completely removed to see if parameters exist where a mggtroan form and dominate
the rest of the population. Simulations were run with vagymarameters dil andu, both
seasons having the same values. While some macrocyst piaduets observed it was
only at the beginning of simulations where the random stgrpopulation allowed for
enough individuals that joined the macrocyst and made [ilgitor a few cycles (data not
shown).

5.4 Discussion

This chapter presents a novel perspective on the trandibionulticellularity. In Sec-
tion 5.1 | have justified of the need for a model that demotetrehe transition between
individual cells that ordinarily reproduce on their own acells that become part of a
super-organism, with only one genotype of the particigatalls being passed on to fu-
ture generations. The model in this chapter, of the evahuiictheD. discoideunmacro-
cyst stage, demonstrates a plausible mechanism througihwidividuals may start to
reproduce as part of a group. | investigate this model nowiwithe context of the above
requirements, and other questions and literature conugthie transition to multicellu-
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larity presented in Section 5.1.

For the macrocyst model to successfully meet the requirésnainthe transition to
multicellularity, it requires that all individual cells nstibe able to reproduce on their
own. It also requires that individual cells must be clusteamd that only one of the
individual cells reproduces on behalf of the cluster. Thedel@resented meets these
requirements. Simulated cells that have the freedom tovevalstrategy in which they
will not join macrocyst organisations (where their genestaghly likely to be destroyed)
do not evolve this strategy under certain conditions.

The model does however stop short of demonstrating the tiygerm-line/soma dif-
ferentiation and clustering apparent in the metazoa wheseetis permanent clustering
[as in other models, e.g., (Wolpert 1990, Pfeiffer and Baffews 2003)] and differenti-
ation of the germ line early in development (Michod 1999).eThacrocyst’'s germ-line
cell is instead chosen at random with little or any predeteation. The macrocyst cells
are only clustered at one point of the life cycle. Howeveg fhct that the macrocyst’s
offspring are of only one genotype and that they out-competiziduals that do not join
the macrocyst is of some significance.

The fact that the macrocyst produces offspring of a singleogge is important in
three ways. Firstly it has the effect of producing severalegieally homogeneous off-
spring which are all ‘pre-programmed’ to join the macrocgsthe start of the next low
season. These offspring have a competitive advantage mdiiduals that do not join
the macrocyst. The macrocyst therefore contributes taittgé success. Since microbes
can evolve many ‘policing’ mechanisms (Travisano and \é&l2004), it is not inconceiv-
able that after several generations, the macrocyst wayhae# become established in the
organism without the need for a harsh low season each cycle.

Secondly, the high relatedness of the offspring can be se@noimote other social
behaviours. Relatedness is crucial for any traits thatireguoany coordinated individuals
or altruism to be successful. The aclonal nature of the nwgstaffspring means that it
is highly likely that the next aggregation event will be awbor at least highly related.
If these individuals, perhaps due to some mutation, no lofgge to form a zygote then
other interesting collective behaviour may occur instédtese behaviours could include
the slug behaviour d. discoideunwhich requires many coordinated individuals (Mar
Panfilov and Hogeweg 1999), and the stalk behaviolr.afiscoideunwhich requires al-
truism from many cells (Armstrong 1984). The combinationh@ macrocyst model with
one of the stalk/spore behaviour [based on the work of Aromgfr(1984)] will hopefully
confirm how important the population homogenisation effexftthe macrocyst were for
the evolution and maintenance of stalk/spore behavioDr. idiscoideum
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The homogeneous macrocyst offspring are important in a thay. By picking the
genotype of its offspring from one individual at randomstban restrict the potential for
cheating. For example, if an individual were to evolve a tingatrait so that its genes
were most likely to be picked, the next population would a@Vé that same trait - with
no individual having any advantage. That said, it is coradai® that a cheating trait may
in fact be disruptive to the macrocyst. Further modellingeguired to investigate the
potential effects of disruptive cheating.

To consider how split thresholds are important | analyseraptete cycle (of a high
and a low season). In one cycle of the model presented hexedhefour phases for non
macrocyst joining amoebae:

(). Early high season exponential growth;

(i). Population equilibrium at high season;
(ii). Early low season exponential decimation of the p@piain;
(iv). Population equilibrium at low season.

While it is easy to see that fast (low threshold) splitting aimae would flourish during
phase (i), these same amoebae will be closer to dying dutwagep (iii). The results
suggest that a slow (high threshold) splitting strategyasenprofitable, not only in phase
(i) but in phase (iv) as well. In phase (iv) individuals ezee food with a low probability,
those with a fast (low) split threshold are less adapted twivg fluctuations in food
availability.

The macrocyst allows individuals to avoid phases (iii) aafignd hence fast splitting
individuals that germinate from it at the start of the higlasen are very well adapted
to phase (i). This ability to perform well during circumstas of diminishing popula-
tions has already been observed as an important featurelpfmealticellular organisms
(Kerszberg and Wolpert 1998).

While | have attempted to be faithful to biological eviderites model presented here
has made some assumptions and has some limitations. Farthlysis and research is
required into the biological plausibility of the split theleolds in the model. The ques-
tion as to what might happen if individuals have a seasonatying split threshold is
also important. The model is undimensional and therefarkslapatial effects (though
the way the organisms are fed is set up to mimic a spatial @mvient): a spatial model
would allow for analysis as to what might happen if indivithueould affect their chances
of being the chosen genotype. The mutation rate in the msdehmaturally fast, how-
ever slower mutation rates provided similar results ovegkr periods. Finally, there is
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only one macrocyst in the current model; future simulatioasld model more than one
macrocyst.

The evolution of collective, coordinated and altruistidhbeiour is of some signif-
icance within ALife modelling. The homogenisation effedfsthe macrocyst and its
likely relevance in the evolution of coordinated and aktigi effects means that this effect
is likely to be of some use in the design of evolutionary alhons for multi-agent sys-
tems. Further investigation into this stage may well reusaignificance in the evolution
of sophisticated collective behaviour in artificial andurat organisms.

The model and results presented in this chapter demonsitiategiven the assump-
tions outlined, thd®. discoideumnmacrocyst stage is plausible under the large fluctuations
in food in the model. The results and analysis lead me to lngside that the model of
the macrocyst presented in this chapter, where individgafsble their genes to become
the germ line of a super-organism, may well have been a drsigige in the transition to
multicellularity. It must be noted that it is only a stage e tevolution ofD. discoideum
and may only be relevant to this organism. Though mere sp#oql| it is intriguing to
consider that if the macrocyst was an important stage inrdgsition to multicellular-
ity, then the harsh and specific environmental conditioreded may explain why the
transition only happened once and took such a long time se ari



Chapter 6

The origins of sexual reproduction

6.1 Introduction

In Chapter 4 | look at a general model of collective reproducti That work does not
consider how collective reproduction is affected whenvidlials cheat by giving less
resources than they should. This is considered in the prekapter, looking specifically
at the origins of sexual reproduction.

The origin of sexual reproduction is an important questiorevolutionary biology.
Sexual reproduction is very common amongst multicellutgaaisms where, in general,
individuals produce gametes that fuse together to form ateygin fact there are many
modes of sexual reproduction (Bell 1982, Whitfield 2004);dwample it is also observed
in unicellular organisms where the organism fuses with la@oorganism. For simplicity,
this chapter looks at sexual reproduction from an abstractgective: two individuals
both contribute genetic material and a proportion of thegaurces to an offspring. This
Is contrasted with asexual reproduction where only oneviddal contributes genetic
material and resources to its offspring.

Given its prevalence in the animal kingdom, it seems odd tthate isn't a simple
explanation of its benefits. In fact many models (Williamg39Maynard Smith 1978)
have found that there is a cost to sex. From a population groate perspective (Maynard
Smith 1978), production of non-egg-producing male indixt$ implies a cost in popu-
lation growth — Maynard Smith dubbed this the “two-fold cossex” (Maynard Smith
1971). At its very extreme, males may contribute no resaitoevard the production
of its offspring; thus leaving a two-fold cost of producingalas that seemingly have
little or no actual benefits. The alternative perspectivesaders the “cost of meiosis”
(Williams 1975) pointing out that, in meiosis, the diploiggote only contributes half
its genes to the haploid gamete. Both these cases have lpesdan be equivalent

110
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(Bell 1982), basically each sexually reproducing paretitanly receive half an offspring
each time it reproduces rather than the whole offspring peced by an asexually repro-
ducing parent. It is therefore argued that an individualchtproduces asexual offspring
would invade a sexually reproducing population. Sexuaftaepction appears to be a
paradox: the question as to how sexual reproduction origthand persists is a puzzle.

I have reformulated the notion of the cost of sex into theralesterms used within
this chapter. | make a simple comparison of the growth ratemandividual strategy
and a collective reproduction strategy (with two parentsydal on the way resources are
allocated to offspring. This is shown by Figure 4.1 (see Cérag).

Since individuals with the sexual strategy share contidimst to offspring, they con-
tribute less than those with the asexual strategy. This m#aat the average level of
resources per individual in the sexually reproducing papah will be higher than those
in the asexually reproducing population. For a fixed inputesiources to the system, this
means that the sexually reproducing population will grow@slowly than the asexually
reproducing population.

There have been many theories as to the advantages of sepwatluction. Since
sexual reproduction generally results in two parents douning half their genes to each
offspring, recombination(genetic mixing) can occur. There are many advantages of ge-
netic mixing including resistance against deleteriousatiohs (Muller 1964) and the
greater ability to incorporate advantageous mutationshii 1958).

One problem with this approach is that the benefits from tfps bf reproduction are
generally quite slow to evolve (with an evolutionary timeake), too slow to counteract
population invasion (with an ecological time-scale) ofthanogenetic mutants (Maynard
Smith 1978). The genetic mixing arguments are thereforendpethe same types of
criticism applied to group selection arguments (see Se@&it for more information).

Given these criticisms, recent models [see reviews fror @tid Lenormand (2002)
and Agrawal (2006)] still view the cost of sex as problemaiticl have therefore argued
that genetic mixing could be advantageous enough to explhinsexual reproduction
can be maintained in light of the cost of sex. For instanceyaeselection can accen-
tuate the effects of resistance against deleterious mut\grawal 2001), though this
does require a significant mutation rate in a population e©thodels consider the advan-
tages that recombination may give as protection againasfas (Hamilton, Axelrod and
Tanase 1990). Recent work (Hakoyama and Ilwasa 2003) deratassthat coexistence
is possible between sexual and unisexual populations wienrisexual population is
more than twice as susceptible to parasites as the sexualgbiop. While these models
do go quite far in explaining the advantages of genetic ngixihe argument for using the
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advantages of genetic mixing to explain sexual reprodoatioes still raise some ques-
tions.

The main problem with the argument that genetic mixing mapjar the cost of sex is
concerned with the type and ubiquity of sexual reproducsiean in nature. Surely if the
parthenogenetic strategy is the better strategy for repiah, then some other mech-
anism that allows for occasional genetic mixing with panthgenesis being the norm
should prevail? There are a few examples of androdieciayssms (Weeks, Benvenuto
and Reed 2006) where the populations consist of males antapérodites, an example
being C. eleganswvhere the males are as rare as 0.1% of the population (Chasubv a
Chow 2002). Interestingly, deleterious mutation rates doseem to be a likely expla-
nation for difference between the selfing behaviou€Cirelegansand the obligately out-
crossing behaviour of anoth€aenorhabditisspeciesCaenorhabditis remangiCutter
and Payseur 2003). Perhaps sexual reproduction (as defnkzh)eand genetic mixing
are two separate issues and should be explained separately.

In fact, modelling work has been done that does not consideativantages of ge-
netic mixing (Doncaster, Pound and Cox 2000). This consitteasif a population of
sexually reproducing individuals has a resource uptakamstdge (and thus a higher car-
rying capacity) over an asexual population then the two fadfmns may coexist. While
this model is certainly convincing regarding how sex may lz@ntained, when it comes
to explaining the origins of sex the model is not so convigciti requires that an advan-
tage (in this case the resource uptake advantage) evolvedicently to a disadvantage
(in this case, it is assumed that sexual reproduction is esealdantage) — this is generally
not thought to be good reasoning (Maynard Smith and Szathi995).

In contrast, the model | shall present in this chapter doésartfer any explicit advan-
tages or differences on either the asexually or sexuallyodzring individuals. It takes
the approach that a precursor to sexual reproduction mag basted where two indi-
viduals reproduced collectively, contributing a propontiof their resources to a shared
offspring. | will compare thigwo-parentresource allocation strategy with tbae-parent
(i.e., clonal) strategy. | avoid using the terms sexual ssekaal to describe these strate-
gies as sexual reproduction includes genetic mixing whschat specifically modelled.
In the two-parent strategy, each parent has an equal stake igenetic makeup of the
offspring, whether through one parent being selected age¢hetype by random chance
(with equal probabilities) or there being a mix of the twoguas’ genes.

There are quite a few examples in the biological literatwey,[ see (Glesener and
Tilman 1978, Bell 1982)] of related species where one sga@produces sexually and
the other reproduces parthenogenetically. There is a tieygaattern which has been ob-
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served which links geographical characteristics of an ati#athe reproduction strategies
of its inhabitants. Sexually reproducing species are mi&eyi to be found in mainland
areas where there is assumed to be a higher level of biogssstrConversely, asexual
organisms tend to be found in more extreme conditions whenetis assumed to be less
biotic stress but more abiotic stress. The higher biotiesstis due to the greater diversity
shown in the surrounding ecosystem of the areas with lowetialstress. It is suggested
that this higher level of biotic stress can lead to greateeuainty (due to inter-specific
interactions) than abiotic stress (Glesener and Tilmam8)L9herefore consider whether
the amplitude of unpredictable resource fluctuations isngportant factor in the model
presented in this chapter.

6.1.1 Scope of the model

To investigate the questions raised in the previous sedii@work here reconsiders the
original arguments presented by Maynard Smith and WilliarRather than consider a
population of males and females being invaded by parthereigendividuals | consider
the opposite: a population of clonal (one-parent) repredsibeing invaded by two-parent
reproducers. | ask which is the stable strategy and under edmalitions.

| approach this question by simplifying the world to res@scindividuals and indi-
vidual reproduction strategies. Individuals accumulasources, expend resources, make
copies of themselves and share resources with those copies.

Given that individuals live within an environment with facs outside of their control,
| assume that they have little control over the way they aeadate or expend resources.
The space of strategies that individuals may adopt is thexednly concerned with their
reproduction strategy. One factor that is important howevé¢he size of the population
will affect the availability of resources. This means thainh able to compare one- and
two-parent resource allocation strategies under densieddent conditions.

The model is an extension of the one presented in Chapter £hvellso compared
one- and two-parent reproduction. In the previous modaelividuals shared their re-
sources equally with their offspring, whereas here indraid may selfishly contribute
differing amounts of resources. In line with the biologidaka, the individuals are tested
under varying resource availability conditions.

In the next section | outline the methods | used to model tiferdnt reproductive
strategies. This includes deriving the growth equationEwkill allow me to compare
the different reproduction strategies. | also present puthfor the simulation models
which will be used to test and expand the mathematical ptied& The results start by
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considering what level of resources an individual may dbuate (Section 6.3.1) before
considering whether this level is high enough for the twoepastrategy to dominate an
optimal one-parent strategy. | discuss the results in Se&id.

6.2 Methods

The model presented here considers individuals receitouhastically varying resources
from the environment. When their resource level ascends tglathreshold then they
reproduce either clonally or share the production of anpoifey with another parent. All
parents pay a cost of reproduction and then share some ofréseiurces with the new
offspring. The reproduction strategy of individuals isréfere defined by the proportion
of their resources that they will share with their offsprieagd whether they have a one- or
two-parent strategy for producing offspring.

The amount of resources individuals will give their offsayiis important because it
affects the growth rate. The reason I study it in detail heteeicause there is a selfish ben-
efit for parents to contribute less resources when they m®dn offspring with another
parent. Consider a selfish parent that gives less resoureesaffspring than an unselfish
parent that shares its resources equally. The selfish paikhtive sufficient resources to
reproduce again more quickly than the unselfish parent. #iskgbarent would therefore
be expected to invade a population of parents contributiogemesources. This would
result in a population of individuals with the two-parentaségy contributing very little
resources to their offspring.

Two modelling approaches are presented in this sectiorhenadtical modelling and
computer simulation models. The mathematical model ptesetractable approach to
the problem which is instructive to the simulations.

The strategy space for individuals is defined by how manyuess they contribute to
their offspring and whether they have a one- or two-paregmiag@uction strategy. Because
| am studying like-for-like, all individuals have the sanmgaraction with their environ-
ments. In all models, an individual is modelled as havingsauece levek, given by,

%zu(i,t)Ru—Rc, (6.1)
During an average timestep of time lenglh the individual will mandatorily usdR.
resourcesResource uptakihe level of resources received from the environment) is va
able and modelled by (i,t) € [0,1]. If an individual reaches its lower resource threshold
Ro then it will die. Similarly, if an individual reaches its uppresource threshol®;
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then it will reproduce. In reproduction, each parent paysi@inont cost of reproduction
R:(j) dependent on its reproduction strategy and contributesgoption of the remaining
resource® toward its offspring.

6.2.1 Mathematical modelling

For the mathematical modelling approach, | derive growtegdor each of the strategies.
Growth rates are calculated by assigning individuals with tne-parent strategy one
offspring and individuals with the two-parent strategyfhafl an offspring. | use the
growth equations derived in Chapter 3.

In Chapter 3, | considered two different models of growth: &duinistic and a
stochastic model. The model used in this work was the sttichrasdel (derived in Sec-
tion 3.2.4). This is for two reasons, firstly because this eladas shown to be a good
approximation of the simulation results in the case whesagéisource uptake rate is close
to population equilibrium levels. The second reason isithaas also shown to be more
accurate whemn is close to the lower threshold. Since selfish parents mairibate low
resource levels to their offspring, this model is needed\e gccurate results. The func-
tionU (i,t) [see Equation (6.1)] is thus modelled by white noise dependn a variable
anddt. Time is broken up into segments of lendgthand for each segment®r=1) =u
and PfU = 0) = 1—u. The average over realisations U >= u) is also constant over
an individual’s lifetime.

As anad hocsimplification, Ry is set to 0. We can study different valuesRy by
scalingR;, R andO appropriately.

The resource values of individuals after reproduction arpartant and will be used
in the model. Thus, directly after one-parent reproductibe parent’s resource level is
given by:

Xparent— (Ri—R)(1-0).

Similarly the offspring’s resources are given by:
Xoffspring = (Ri—R)O.

Secondly, after two-parent reproduction, the parentsesties cost of reproductioR; and
then each contributes a proportion of its remaining resea@q) towards the offspring.
Thus, directly after two-parent reproduction, the reseuevel of a parentis given by:

Xparen{i) = (R1 — Rr)[1—O(i)] .
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The resource level of the offspring is given by the sum of #source contributions of
the parents:

Xoffspring(i) = (R1 — R)ZiO(i) )

The growth rateG for each strategy (in new individuals per individual per ¢idt)
is given by the number of births minus the number of deathsmvidual in time ot.
The birth rate and death rate are calculated using the ensaftor the expected genera-
tion timeW (the time taken for an individual starting wiresources to reach either the
upper or lower threshold) and the reproduction probabHit{the probability of an indi-
vidual, starting withx resources, reaching its upper threshold before it reatchdswer
threshold).

The equation for the expected generation tiMéthe time it takes an individual with
resourcex to reach either its upper or lower resource threshold) hassmutions which
are derived in Section 3.2.4. Again, for simplicity of mddej a variablemis introduced
wherem=R,/R: — 1 [s0,R, = (m+ 1)R;]. SinceR, > R;, and both are positiven is
positive. | consider the general case where the mean respuptake level is at [here
u # up whereup = 1/(m+ 1)] is given [from Equation (3.14)] by:

_ St[ . Rull-exp-Ax/)]
"R 1-exH-AR/H) |

Wy (6.2)
whereA = mu+u— 1 andu = R;(mPu+1—u)/2. The case where an individual receives

on average as many resources as it expends each timestep)is given [from Equation

(3.16)] by:
ot

~ Rém

The ratio of individuals that reach the upper threshold wséhthat reach the lower
thresholdF was also derived in Section 3.2.4. An individual, startinghvx resources,
must reach its upper resource thresh®g) pefore it reaches the lower resource threshold
(Ro). Again there is a general case wherg ug. This is given [from Equation (3.22)] by:
1—exp(—Ax/u)

Fo= 1—exp(—ARy/p) (6.4)

We (—x? +RyX) . (6.3)

The case where an individual receives on average as manyreesoas it expends each

timestep ¢ = up) is given by:
X

To calculate the growth rate | consider new individuals pfggér reproduction. In the

Fo (6.5)



Chapter 6 117 The origins of sexual reproduction

one-parent reproduction model (see Chapter 3) both offg@iter reproduction are iden-
tical. In this model they may have different resource levafter one-parent reproduction
the parent will therefore havgarentresources and the new offspring will haXgspring
resources. | therefore approximate the growth rate of anageeindividual as follows.
The average number of births is given I@?(Xparem) + F(xoﬁspring)} /2 and the average
number of deaths is given b[y.— F (Xpareny + 1 — F(Xoffspring>] /2. The average genera-
tion time is given by[W (Xparen) +W (Xoffspring) | /2. | therefore approximate the growth
rate as the average number of births per tibbeninus the average number of deaths per
time ot, or,

F (Xpareny + F (Xoftspring) B 2 — F (Xpareny + F (Xoffspring)
W (Xpareny +W (Xoffspring) W (Xpareny +W (Xoffspring)
2 [F (Xpareny + F (Xoffspring) — 1}

W (Xparen) +W (Xoffspring)

Gone =

(6.6)

The two-parent case considers the parent and its offsprmitigeisame way as the one-
parent case. The difference here is that each parent ordyg @ivth to half an offspring
(so there are 1.5 individuals after reproduction rathentB@a The number of births is
therefore given by the average number of births per ind&duThis is given by the
average number of reproduction events of the 1.5 indivildalided by 2 (since these
individuals only have half of an offspring)2F (Xparen /3 + F (Xoftspring) /3] /2. Similarly,
the number of deaths is given bji2- F (Xpareny] /34 [1 — F (Xoftspring)| /3 @nd the average
generation time iS\&(Xpareny /3 +W (Xoftspring) /3. Again, | approximate the growth rate
as the average number of births per tidteminus the average number of deaths per time
ot, giving a growth equation of,

3 [F (Xparent) +F (Xoffspring)/z B 1}
Z\N(Xparen{) —i—W(Xoffspring) .

C':‘two = (6-7)

If the environment is staticu(constant), then the strategy that will dominate is the
one which has the larger value Gffrom Equations (6.6) and (6.7). On the other hand,
if resources fluctuate between abundant and sparse petio@siés between two fixed
valuesu® andu™), the dominant phenotype can be determined by using CoydBlan
Appendix A. The corollary states that, if a population is istaady state (has the same
total size at the beginning and end of a long time period)n tte strategy that will
dominate is the one with the largest ratio of growth duringradant periodsy= u™*) to
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growth rate during sparse periods=€ u~). TakingW¥ as,

G(u™)

W — 6.8
et (6.8)

the two-parent strategy therefore dominates when:
Wiwo > Wone- (6.9)

6.2.2 Parental contribution

As identified earlier, when one parent contributes lessuess to a shared offspring
than another, it will be ready to reproduce more quickly am@xpected to invade the
population. In this section | use the growth equations frbenfirevious section to predict
which offspring contribution strategies will dominate owgher offspring contribution
strategies.

To do this | consider two parents of class Pa and Pb which ibotérO, and Oy
resources respectively. The matrix in Table 6.1 shows teeuree levels for a parent
and the resulting offspring after two-parent reproducéweounters with parents of both
classes.

Pa Pb
Pa Xparent= (R1 —Rr)(1—Og) Xparent= (R1 — Rr)(1—Og)
Xoffspring = (R1—R)20, Xoffspring = (Rt —R)(Oa+0p)

Pb Xparent= (Rl — Rr) (1 — Ob) Xparent= (Rl - Rr) (1 - Ob)
Xoffspring = (Rt —Rr)(Oa+Op) Xoffspring = (R1 —R)20p

Table 6.1: Table showing resources of parents and offspmmgediately after reproduc-
tion, the values foKparentandXoftspring Shown are for when the parent on the left column
reproduces with a parent on the top row.

For simplicity, the first case | consider is where resourcek®is static. The growth
rate of each strategy when it reproduces with either parenttieen be calculated using
Equation (6.7). For two parental contribution strategiea,and Pb giv®, and Oy to
offspring respectively, it is useful to be able to predictievhstrategy will dominate the
other. TakingG(Pa;Pb) to be the growth rate of parent Pa and its half offgpifiom
a reproductive encounter with parent Pb, | use game theogy(lelrd Smith 1982) to
analyse the outcome of competitions between mixed populsatof Pa and Pb. This
predicts that ifGpa:pa> Gpp.paandGpa:pn> Gpp:ppthen Pa will be monodominant over
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Pb. Alternatively, wherGpp:.pa> Gpa:pa> Gpa:pb> Gpp:ppthen there will be a mixed
equilibrium of both Pa and Pb individuals. The hawk-dove ei¢iaynard Smith 1982)
is used to predict that there is an ESS (Evolutionarily &atrategy: one that is not
invaded by alternative strategies). Therefore the statikive frequency of Pa to Pb,
p(Pa,Pb), is given by:

1 ,Pa dominant over Pb
Gpa;pa— Gpb:Pb

Gpa;pbt Gpb;pa— Gpa;pa— Gpb;pb

0 ,Pb dominant over Pa

p(PaPb) = ,mixed equilibrium (6.10)

As with the last section, | consider what happens when thbglmtity of resources
fluctuates between abundant and sparse regimes. As in thl®ysesection, the two
regimes are considered usiog for when the population is increasing and for when
the population is declining. The respective growth funtsiareG(u™) andG(u~). For
the two parents Pa and Pb, | consider the growth during regimelative to the growth
during regimeu~. To give an example, the relative growth of parent Pa andaté h
offspring from a reproductive encounter with parent PBig.pgu™)/Gpa.pdu~). Using
Corollary 3 (in Appendix A) it can be seen that if

Wpa:pa> Wpb:pa

and
Wpa;pb> Wrb;pb

then Pa will be monodominant over Pb. | assume, for simglitiat if this is not true,
then Pb will dominate over Pa.The stable relative frequency of Pa to Pb is therefore
given by:

1 ,Padominant over Pb

‘(PaPhu’,u7) = 6.11
oParn ) {0 ,Pa not dominant over Pb (6.11)

6.2.3 Simulation modelling

To validate and extend the predictions made by the matheatagpproach in the previous
section, simulation models were built. This section dstiie functional properties of the
simulation models.

Lt is not possible to simply follow Maynard Smith’s reasogitMaynard Smith 1982) to calculate a
figure for the relative frequency of the two strategies wheare is a mixed strategy, i.e., neither Pa nor Pb
is predicted to be dominant.
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Copying the mathematical approach, the population is medeit an individual level
with discrete timesteps of lengtht. Each individual is represented by a software agent.
Each software agent maintains a resource level (reprasasta floating point number)
and a digital chromosome. Changes in individual resourcegi&en by Equation (6.1)
with U (i,t) modelled by white noise [as with the stochastic model, sei@e6.2,
PrlU =1) =u and P(U = 0) = 1—u]. Each timestep a mandatory resource d@st
is deducted from each agent’s internal resource level. lagent’s resource level goes
below Ry then the agent will die and is removed from the simulation. YWae agent’s
resource level increases above the reproduction threghdluen it is ready to reproduce.
At the start of all simulations individuals started with adam resource level generated
randomly from a flat distribution betwed® andR;.

The digital chromosome contains numerical values thatesgt genetically deter-
mined factors: the amount of resources an individual cbutes to its offspring and
whether it reproduces with a one- or two-parent strategye digital chromosome is
simply passed on from the parent to the offspring in the careut case. In the two-
parent case, a random parent is selected to pass on the doomoTwo genes are used
in the chromosome, the first gene represents the resourtebeion levelO = [0 : 1].
The second gen8= [0 : 1] determines whether the individual reproduces with a one- or
two-parent strategy. It is also represented as floatingtpnimber between 0.0 and 1.0,
with values over 0.5 representing the two-parent stratégythe start of all simulations
all genes were generated randomly from a flat distributiomvben 0.0 and 1.0. When
new offspring are generated, point mutations are appligtiéanumerical values in the
chromosome. Mutation values were from a flat distributioat@een 0.0 and 1.0) and
applied with a probability of 1/100 immediately after a newdividual is created.

The contribution of resources from parents to offspringetets on whether the indi-
vidual's chromosome specifies a one- or two-parent stralégyis one-parent reproduc-
tion then it will simply pay a cost of reproductidd and then contribute a proportion of its
resource® to a new offspring. For two-parent reproduction, randonraf agents are
selected from those that are ready (any leftover agents waistfor the next timestep).
Each parent pays half the cost of reproductigrand contributes a proportion of its re-
sources Q(i)] to the new offspring.

The way agents receive resources from the environment &rdated by whether |
am considering a population close to equilibrium or a popartathat experiences large
fluctuations in resource availability. When the populatisrat equilibrium, a number
of resource units [of valu&,] are randomly scattered on a spatial grid each time step.
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Agents located on the grid move to a random new cell each tepes

When individuals are exposed to resource fluctuations, theource uptake rates are
dependent on the current state of the system. There are seonee uptake values for
u (calledu™ andu~) which defined by the resource fluctuation coefficignas follows:
Ut = uen andu™ = ug/n.2 The system switches between its two states depending on the
population level. An upper and a lower population threslaskldefined which trigger the
two states. The system state using u™ is triggered by the lower population threshold
and the system state using= u~ is triggered by the upper population threshold.

Tests were done with various upper and lower populatiorstiokels to make sure they
are effective: the thresholds were too close to each othenwihey were within 33% of
the population size, this had the same effect of reducindltftuation coefficient (as
the resources started to fluctuate within the generatioteayfcindividuals). The upper
population threshold was therefore set to 400 and the lowpulation threshold was set
to 200 in all simulations.

Two simulation scenarios were run depending on whetheviiddals had fixed off-
spring resource contributions or not. Simulations in Scen@ were run with no mu-
tations to the value oD and with the population close to equilibrium (no fluctuaspn
in order to validate the game theoretic approach in Secti@r26 Each simulation was
started with an evenly mixed population of agents with twifedént offspring resource
contribution amounts representing strategies Pa and Pbag&hts used a two-parent
strategy and were similar in all other ways. After a suitadneount of time, the propor-
tion of agents with strategy Pb to strategy Pa was recordeeld®-code for the scenario
is presented in Figure 6.1.

The simulations in Scenario (ii) allowed mutations to theigaof O. All agents were
exposed to resource fluctuations. To confirm the predictroade by Equations (6.10)
and (6.11) | performed simulations with only two-parentmge | then ran competitions
between agents with two- and one-parent strategies to ootifee conditions under which
two-parent agents will dominate over one-parent agentsudRscode for the scenario is
presented in Figure 6.2.

2The results in the spatial chapter show that agents receserirces with between-resource intervals on
a geometric distribution when they move to random grid sesi@ach timestep

3An appropriate value afi, was chosen for the simulations based on the predicted véluggiven by
the parameters
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0: Define agent as having resourseand resource contributio®
1: Initialisex andO for new members of the populati@yents

2: fort =1 tosimulationtime

3: Scatter new resources on the grid

4. Move each agent to a random grid-square

5: for each agent (picked in random order)gigents

6: X=X—R:

7. if there are resources on the grid-square

8: X=X+R,

9: remove one resource from the grid-square

10: end if

11: if x < 0, remove agent from simulation

12: for random pairs of agents (parents) witly Ry

13: for each agent= x— R, (pay the cost of reproduction)
14: Create a new agent (the offspring)

15: Both parents contributeO resources to the offspring
16: end if

17: end for

18: if all agents have the same valuestop simulation

19: end for

Figure 6.1: Pseudo-code for the evolutionary simulatidrecenario (i)

6.3 Results

This section consists of results from the mathematicatimeats and from the simula-
tion modelling. The results work toward a comparison of cared two-parent strategies.
Chapter 4 has already shown that the two-parent strategy malpiminant in the long

term when parents share resources with their offspringus first consider if there is a
stable amount of resources that parents may contributetodfispring. | then determine
whether the lower resources contributed by selfish parsnisoi low for the two-parent

strategy to dominate the one-parent strategy.

6.3.1 Stable parental resource contribution

In order to predict what level of resources individuals mantcibute to offspring, I first
consider competitions between two parents that contrithiffierent amounts of resources.
| then consider whether there is a stable strategy when tharéully mixed population.



Chapter 6 123 The origins of sexual reproduction

0: Define agent as having resoursesesource contributio®
and reproduction stratedy
1: Initialisex, O andSfor new members of the populati@yents
(when population is all two-parent, s&t 1)
2: season= high
3: fort =1 tosimulationtime
4: if |]agentsd > upperthreshold season= low
5: if |]agents < lower_threshold season= high
6: for each agent (picked in random orderpgigents
7. X=X—R:
8: if season= high
9: with probabilityu™, x = x+ Ry
10: end if
11: if season= low
12: with probabilityu—, x=x+ Ry
12: end if
13: if X < 0, remove agent from simulation
14. for random pairs of agents (parents) with R; andS> 0.5
15: for each agent= x— R; (pay the cost of reproduction)
16: Create a new agent (the offspring)
17: Both parents contributeO resources to the offspring
18: Mutate the new agent’s value Of
19: if including one-parent agents, mutate the new ageatisevofS
20: end if
21: for agents withx > Ry andS<= 0.5
22: X =X— R, (pay the cost of reproduction)
22: Create a new agent (the offspring)
23: The parent contributég3x resources to the offspring
24. Mutate the new agent’s values@fandS
25: end for
26: end for
27: end for

Figure 6.2: Pseudo-code for the evolutionary simulatidrscenario (ii)
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6.3.1.1 Two player resource contribution competitions

The stable frequency of two parental resource contribusivategies can be predicted
by the game theory outlined in Section 6.2.2 when resourcesat fluctuating. Two
parents Pa and Pb were assigned higher and lower resourtrédoaban valuesO, and
Oy, respectively. For each resource contribution value assiga parent Pb, parent Pa is
assigned a range of higher valu€¥; (> Op). The value ofo(Pa,Pb) is calculated using
Equation (6.10) and is plotted in Figure 6.3.

Higher invades
Mixed strategy

Lower invades
/ TR
e Y W : S e? N \\\\\\\

Higher/Lower ratio, p(Pa,Pb)

0.7

Extra contribution, Oa - Ob

Figure 6.3: Plot of the game theoretic predictions, giverElyation (6.10), for the out-
come of mixed populations of individuals with offspring oesce contribution strategies
Pa and Pb. Parents Pb donate lower resource contributidnsegients Pa donate an extra
contribution. Values used wer®: = 0.01,R; =1, R, = 0.1, m= 2 andu = up.

The figure shows three regimes for Pa and Pb. As expectedithararge regime,
covering most of the figure from the bottom right, where the@doresource contribution
invades the higher one (Pb invades Pa). In the top left of thedithere is a region where
the higher resource contribution is dominant. The restefidure shows a mixed strategy
where there is a stable equilibrium between the two strategfor example, whe@, =0
andO,; = 0.2 there is a 50:50 mix of Pa and Pb..
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One interesting prediction made by the graph is that thedsglombined contri-
bution, which is not invaded by a lower value, is a mixed sggt Indeed, there are
stable mixed equilibria when parents with strategy Pa douiie a large number of their
resources, even as many as 0.6 or beyond.

To test the mathematical predictions, simulation runs vaenee starting with mixed
populations of individuals which all had a two-parent stggt Each simulation run took
a pair of resource contribution values4, Oy) from Figure 6.3 (all other parameters were
the same) with respective individuals from the two halvethefpopulation taking one of
the two values at the start of the simulation. There were ntatimns to any values in the
simulation. Resource units were scattered on a 100x10@&gadate of 100 each timestep
maintaining a population of approximately 300 individuakhe fraction of individuals
with each strategy was recorded at each timestep. Eachatiotulvas run until either one
strategy was completely dominant in the simulation, or diamltimesteps had elapsed.
The final fraction was recorded and is presented in Figure 6.4

The figure shows that the results were very similar to thosgengy the mathematical
prediction. However there are two obvious differencessthirat very low extra contribu-
tion values Q5 — Op < 0.01) the simulations do not show the complete invasion of Pa by
Pb shown by the mathematical prediction. This may be bedheseslative growth rate
was too small for the simulations to converge. The secoridrdifice was observed when
Op = 0: much higher values @D, were stable to invasion.

6.3.1.2 Evolutionarily stable strategy

The predictions from competitions between two parents fiftoerprevious section indicate
that there may be a resource contribution strategy whichable to invasion. There
are two ways of calculating this value. First, one can cal®uit by considering the
outcomes of two player competitions between parents ofti@tegies. The second way
IS to use evolutionary simulations of populations of indiéls with mutating resource
contribution values.

Since | am only looking for the value of resource contribotwhich is stable to inva-
sion, |1 do not need to be able to predict mixed strategiess fifgans | am able to con-
sider the case where resources are fluctuating [Equatidd ) @oesn’t give a prediction
for mixed strategies]. Again, two parents Pa and Pb wergasdiresource contribution
valuesO; andOp. Equation (6.11) can be used to calculate whether popual&awill
dominate Pb over the values of andu~. The value ofp* is calculated over various
values ofO, andOy, and the results are shown in Figure 6.5.

The figure shows that there is one valuetfhat is stable to invasion from other
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Mixed strategy

Higher invades

Lower invades
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Higher/Lower ratio
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Lower contribution, O 02 ¢ Extra contribution, O_ - O,

Figure 6.4: Plot of simulations to test the game theoretadlmtions, given by Equation
(6.10), for the outcome of mixed populations of individuaish offspring resource con-
tribution strategies Pa and Pb. Parents Pb donate lowearnesoontributions and parents
Pa donate an extra contribution. Values used w&ge= 0.01,R; =1, R = 0.1 and,
m= 2.

values, | dub this valu®sss When a population has a value®@fwhich is lower tharOgss
(to the right ofOgsson the graph), it is invaded by individuals with higher vaud O.
Similarly, when a population has a value@iwvhich is higher than this value (to the left of
OessOn the graph) it is invaded by individuals with lower valué<®b Tests over a broad
range of parameters confirmed that there was a stable valDg;gfbr each parameter set
tested. However this method is quite slow so an exhauststevas not done.

| use a faster algorithm for predictin@ess Which can then be compared with the
results from evolutionary simulations. This scans alorgghaph from right to left until
it reachesOgss TO do this | iterate through progressively larger valueOofin steps
of 80 = 0.001). Each value oD is compared using Equation (6.11) with the previous
value until the higher value is no longer predicted to invddelower value. The largest
value ofO to invadeO — 40 is the predicted value dDess The predictions made were
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Figure 6.5: There is a stable resource contribution styatégalueOgss= 0.0220. The
predictions of Equation (6.11) are plotted for varying \edwfO, andOy. Values used
were:R. =0.00LR; =1,R =0.1,m=7,u" =0.1375 andu™ = 0.1136.

compared with evolutionary simulations using differentgmaeter values dR., R, andm,
over differently fluctuating resources.

Each simulation started with a population of 300 two-pareptoducing agents, the
sparse resource levall & u~) was triggered by a population level above 400 and the
abundant resource leval & u™) was triggered by population levels below 200. There
was no one-parent reproduction at all in these simulatides.simulations were each run
over 20 million timesteps. Two values Bf were tested, Figure 6.6 plots the predicted
value ofOggstogether with the mean value of parental resource contabu@® (averaged
over all simulations) for various different valuesrofand resource fluctuation coefficients
for R; = 0.001 and Figure 6.7 plots the same Ry= 0.005.

With this range of parameters, both figures show thajis not always accurate as
a predictor for the mean value @ in the simulated population. However the value of
Oessis generally a good lower bound for the parental resourcérittion. In Figure 6.6,
out of the 55 points plotted, the mean value®from the simulation runs was less than
Oessat only 6 points. A further 25 simulations run on each of thesmts showed that
the erroneous simulation values were within the bounds adhststic error. With the
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Figure 6.6: Parental resource contributions to offspringraifferent values of resource
uptake units i) and different resource fluctuation coefficients. Mes{dashed lines)
shows the predicted value Gssusing Equation (6.11), meghshows the corresponding
values found by the simulation runs. Other values used wigge= 0.00LR; = 1 and
R =0.1.

greater value oR;, Figure 6.7 shows thaDessis still a good minimum value for the
parental resource contribution at higher values of resfluctuation. At lower values of
resource fluctuation< 3%) and higher values af the simulation runs show markedly
lower contribution levels.

Several simulations (normally 10) were run for each poinbath of the figures and
the standard deviation was calculated over these simokafiar each point. The mean
standard deviation for Figure 6.6 was 0.0057. The mean atdrakviation for Figure 6.7
was 0.0076. Generally, the standard deviation was belotvforGall of the points, except
when the resource fluctuation coefficient wasjat 1.01. For this case, the standard
deviation was below 0.016 in Figure 6.6 and below 0.03 in Fadu7.

Within the simulations, the distribution (and the mean)rafividuals with different
resource contribution strategies depended on the mutedien With a higher mutation
rate the mean increased. This was due to there being a fixetlhpuatO = 0 so all
perturbations increased the mean. Inspection of a histogifethe values oD of indi-
viduals from many simulations (with different random s@eafsthe same parameter set
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Figure 6.7: Parental resource contributions to offspringralifferent values of resource
uptake units ifn) and different resource fluctuation coefficients. Mes{dashed lines)
shows the predicted value Gfssusing Equation (6.11), meghshows the corresponding
values found by the simulation runs. Other values used wigge= 0.005R; = 1 and
R =0.1.

(Rc =0.001,R, =0.1,m=5,n = 1.3) revealed an exponential distribution (not shown).

While the mathematical prediction gives a good minimum valigen resource unit
size is at a lower valuen{< 5 in Figure 6.6 anan < 2 in Figure 6.7) and resource fluctua-
tions are relatively high% 10%) then the simulations give significantly greater valt&s
check this wasn’t due to the simulations taking a long timeaverge, simulations were
run on sample points over much longer time periods. Thesalatrons showed little or
no difference indicating that the values shown had fullywesged.

Considering the impact of resource fluctuations both figunes gimilar results. The
values ofOegs generated through mathematical prediction (mash Figure 6.6) are
higher when the amplitude of resource fluctuation is lowet dacrease as the ampli-
tude of resource fluctuation increases: the mean contoibuti (over allm) decreases
from 0.038 at low fluctuation values to 0.0074 at high fluatwavalues. In the simula-
tions the decrease @essis evident as fluctuations increase, unless the valum isflow
(as already discussed).
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6.3.2 One vs two-parent competitions

In the previous section | have outlined a method for predicthe stable amount of re-
sources Qgs9 that parents may contribute to offspring. In this sectiomill look more
closely at the number of resources a population with the parent strategy must con-
tribute to offspring to dominate an optimal population witle one-parent strategy (which
shares all its resources with its offspring).

6.3.2.1 Stable resources

To show how the growth rates of both populations are affebigathanged values of
O, I consider the growth rates of monomorphic one- and tweiptapopulations with
different values ofO under stable environmental conditions. Considering theparent

population, Equation (6.6) was used to generate popularowth rates for different
parental resource contributions. | look at the case whesepthpulation is close to its
equilibrium level, i.e.,u = up, so | use Equations (6.3) and (6.5). Different value©of
are plotted in Figure 6.8.

G - Growth rate (new individuals/individual/t)

0.2 0.4 0.6 0.8 1
O - Proportion of resources given by parent

Figure 6.8: The growth rate of the one-parent strategy dépem the resource contri-
bution factorO. The graph shows plots of the expected population growtn @Gator
clonally [Equations (6.6)] reproducing individuals witlarying resource contributions.
The maximum growth rate of the one-parent population is e@dksA. Parameters used
were:R.=0.01,R; =1,R =0.1 andm= 2.
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The ESS for the one-parent population is the maximum groatd © = 0.5). This
is marked as poinA (G = —8.08 x 107°) on the figure. Any two-parent population that
has higher growth than this value will dominate a one-papepulation. To understand
how the growth rate of the two-parent population changeh ditferent values of, |
plot the growth rate predicted by Equation (6.7) [again gdtiguations (6.3) and (6.5)] in
Figure 6.9.

G - Growth rate (new individuals/individual/t)

—— Two—parent strategy
- Maximum one—parent growth rate
! I -

| |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
O - Proportion of resources given by each parent

Figure 6.9: The growth rate of the two-parent strategy akgwethds on the resource con-
tribution factorO. The graphs show plots of the expected population growtnhGafior
two-parent [Equation (6.7)] reproducing individuals withrying resource contributions.
The maximum growth rate of the two-parent population is ahpB and the maximum
one-parent growth rate is shown to enable comparison bettvexetwo strategies. The
two-parent population can dominate if its resource couatrdn is greater tha€ and less
thanD. Parameters used werng; = 0.01,R; =1, R, = 0.1 andm= 2.

The figure shows that the two-parent population will haveeatgr growth rate than
any one-parent population, provided its resource contiohuies between point€ (G =
—8.08x 107°, O = 0.0882) andD (G = —8.08x 107>, O = 0.5784). The two-parent
growth rate function [Equation (6.7)] is only shown betwé2s- 0.0 andO = 0.68. For
values ofO > 0.68 the total resources contributed to new offspring is gnedianR;.

At the value ofu used to generate the growth rates in Figures 6.9 and 6.8alitlyr
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rates are below zero. While individuals receive as many messuper timestep as they
expend on living costR.), this does not account for the cost of reproduction occesip
expended when an individual reaches its upper threshofterBint values oti were tested
using Equations (6.2) and (6.4). Similar results were olgdj however as the value of
u was increased the value @f at pointC (the point above which the individuals with
the two-parent strategy must donate to dominate a one-ppoguilation) shifted to the
right. When the value ofi was decreased, the value ©fat pointC decreased. Since
variations inu are important, in the next section | consider how one- andpes@nt
strategies perform under fluctuating resource conditions.

6.3.2.2 Fluctuating resources

The results in the previous section indicate that dominahtee two-parent strategy may
be determined by the value Gfss but this depends on the level of resource availability.
When resource availability fluctuates between two valuésahere the population grows
andu~ where the population declines), Corollary 3 from Appendixah®de used to show
which strategy will dominate. The two-parent strategy wdiminate when

Wowo > Wone-

The value ofWy,, is calculated using the value Qfss(see Section 6.3.1.2) and this is
compared with the maximum value Bf,,¢ (tested over various values @ffrom O to 1
in steps of 0.01) in Figure 6.10.

The figure shows that the two-parent strategy will dominakervthe amplitude of
resource fluctuations is high enough. In this case, the resdiuctuation coefficient
must be higher than 1.1 (where the line for the two-pareatetyy crosses the line of the
one-parent strategy). This indicates that there is a mimmalue of resource fluctuations
needed for dominance of the two-parent strategy.

To confirm this prediction that higher levels of resourcetilations are necessary for
dominance of the two-parent strategy | have tested it oveida wariety of parameters
with both the mathematical analysis used in Figure 6.10 amdlation runs of mixed
populations of individuals with the one- and two-parendtggies.

Each simulation started with a population of 300 agents.rékeurces introduced into
the environment flipped between two states: the sparsenasstate = u~) was trig-
gered when the population level went above 400 and the abtinglsource stateu= u™)
was triggered when the population levels went above 200indlividuals started with a
random resource level generated from a flat distributionvbet 0 andr;. The repro-
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Figure 6.10: As the amplitude of resource fluctuations iases, the two-parent strategy
starts to dominate the one-parent strategy. Parametezs/aked wereR; = 0.00L R; =
1R =0.1andm=7.

duction strategy of individuals (the resource contribat® and whether the individual
reproduced with the one- or two-parent strategy) was defioyeits digital chromosome
as outlined in Section 6.2.3. At each time step the fractiomaividuals which repro-
duce with another parent to those which reproduce alone aawded. The simulation
was stopped when the population was dominated completebnbyof the reproduction
strategies, or 10 million timesteps had elapsed. The fiaatitvn of individuals with the
two-parent strategy was recorded for 10 simulations rur whe same parameters but
with different random seeds.

Simulations were run over varying valuesifandm. The resource fluctuation co-
efficient (7) was set at one of the values: [1.0010 1.0200 1.0394 1.0%983.1.0998].
The results all showed that the one-parent strategy wasrdornat lower resource fluctu-
ation amplitudes and the two-parent strategy was domirtdngher resource fluctuation
amplitudes.

Mathematical predictions were also made by using Equati®méer the same range
of values ofr}. As with the single case of Figure 6.10, the valu&gf, was calculated us-
ing the value 0f0gss See Section 6.3.1.2. This was compared with the maximuoe\a
Wone Calculated over a range of values@from 0 to 1 in steps of 0.01. In harmony with
the results from the simulations, the mathematical modalatestrated that the one-parent
strategy would dominate at lower valuesrpfvhile the two-parent strategy dominated at
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higher values.

To compare the results of the mathematical treatment wehreélsults of the simula-
tions, | calculate the minimum resource fluctuation ampgkituwequired for dominance of
the two-parent strategy — | dub this parameijgy,. For the mathematical treatment this
Is the smallest value af whereWy,, > Wone (Calculated over a range of valuesrpfrom
1.0001 to 2.0 incremented by 0.0001). For each simulationmin is the smallest value
of n where the fraction of individuals with the two-parent ségyt was greater than 0.9.
Mean values ofj)in are plotted in Figure 6.11 for the different valuesnofeach mean
is over a range of values &). Similarly, mean values afmin are plotted in Figure 6.12
for the different values oR, (each mean is over a range of valuesmf

min

1.09

T
O Simulated results
x Mathematical prediction
1.081- -

1.07+ -

1.061 i

1.05- i

1.04+ * % % -
}

1.03F i

1.021 -

1.01- N

Minimum resource fluctuation required for dominance of two—parents n .

1 | | | | |
5 .
Value of resource unit m

Figure 6.11: Plot of the minimum resource fluctuation cogffit(Nmin) required for dom-
inance of the two-parent strategy over the one-parentegfyatEach point is an average
over a range of values &, the standard error is shown in the error bars. The cost per
timestepR; was 0.001.

The results from both the mathematical predictions, andithelations, show similar
trends. The value ofjmin is positively correlated with the value af in both the math-
ematical predictions and the simulations (Figure 6.11)e Value ofnm, is negatively
correlated with the value dR®; in both the mathematical predictions and the simulations
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min

112 . 1
O Simulated results

x Mathematical prediction
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1.08- N
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1.04- N
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! ! ! ! ! !
0.3 0.35

Minimum resource fluctuation required for dominance of two—parents n__

0.2 0,25
Cost of reproduction Rr

Figure 6.12: Plot of the minimum resource fluctuation cogffit(min) required for dom-
inance of the two-parent strategy over the one-parentegfyatEach point is an average
over a range of values o, the standard error is shown in the error bars. The cost per
timestepR; was 0.001.

(Figure 6.12). The results from the mathematical treatnuitverge strongly from the
simulations at higher values aof(> 7) and lower values oR(< 0.15).

6.4 Discussion

The contribution, toward explaining the origins of sexwggnoduction, of the model pre-
sented in this chapter is that it demonstrates the plattgibil the theory that two-parent

reproduction may dominate due to the way parents allocat@urees to their offspring.

The model is a simple one, merely considering the most bagieds of reproduction —
individuals take up resources from the environment, predoitspring and share some
of their resources with their offspring. The model does majuire any other secondary
benefits of sexual reproduction such as genetic mixing asidn of labour. It compares

like for like with all individuals being the same in every pext except for the way they
reproduce.
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The model presented in this chapter compares the two-pagprductive strategy
with the one-parent reproductive strategy. It demonsitateline with arguments based
on that evidence from the biological literature (see Sec6dl), that unpredictable re-
source fluctuations (due to biotic stress) are significamtatermining whether an indi-
vidual should reproduce with another parent or not. If a pewment strategy will domi-
nate the one-parent strategy then this should explain whmdygghrodites will not invade
a population of individuals that selfishly contribute resms to offspring. Why there is
an imbalance in resource contributions between males andlés is therefore a separate
guestion, but is unlikely to be explained by simple consegas of two-parent reproduc-
tion such as genetic mixing.

In the next section | give a summary of the model and its resulthen review the
results in light of the argument concerning the cost of sére fbllowing section includes
a discussion of the application and relevance of the modéeimbiology and other fields.
Finally, | outline some of the limitations of the model.

6.4.1 Summary of the model and results

While the major result of this work does show that the two-pastrategy can dominate,
the results also predict that several factors are signifiCEmese are:

(). Resource fluctuations.
(ii). The cost of reproductionR;).

(ii). Constraints on resource contributions to offsprifgy;) the value of the resource
uptake unitn) .

(iv). The amount of resources used in one timesgy. (

In this section | consider these factors in more detalil.

The first factor identified by the model as significant is reseufluctuations. To
explain why they are significant, | turn to Figure 6.10. The&bnstrates that the one-
parent strategy is more vulnerable to increases in the &mdpliof resource fluctuations
increases than the two-parent strategy. Since individwéls the two-parent strategy
contribute less resources to offspring, they maintain &évgnternal level of resources
and are less vulnerable to periods of low resources. Thetigematical predictions give
gualitatively similar results to those generated by siriote (see Figures 6.11 and 6.12).

The cost of reproductiorR) is an important factor as shown by Figure 6.12. As the
cost of reproduction increases, collective reproductieadmes increasingly viable. This
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IS not surprising as one of the main features of the modelas th two-parent reproduc-
tion, the two parents can share the cost of reproductionve hansidered the introduction
of an extra cost of collective reproduction in Chapter 4. Tihdlicates that two parents
may still dominate even when the upfront cost of sexual répection is greater than the
up-front cost of one-parent reproduction. Further modglivill confirm if this is still the
case when two parents contribute less resources to theproff.

The value of the resource uptake unit from the environmefias shown to be sig-
nificant in the simulations (see Figures 6.6, 6.7 and 6.1ihceS in this model, resources
are encountered in discrete units, in one timestep an ithgaliwill either increase its re-
sources by a fixed amount or decrease by a smaller amountalibéetween these two
values is set byn. Assuming that the mean level of resources over realisaitsthne same,
a higher value ofn will mean there is a greater variance over realisations.s Tineans
that strategies that have very low levels of resource are@ally vulnerable over a short
time-scale. As the value aoh is increased, two-parent reproduction therefore becomes
less viable (see Figure 6.11).

As far as parental contributions are concerned, the effestareasingm can mean
that resource contributions from two parents can incresse Figure 6.7). Higher values
of mmean that there is an increased variance of resource sup@y & short time-scale)
and therefore a harsher environment. This harsher envieahmeans that parents must
contribute more to offspring. When the resource fluctuatiogfiicient (7) is at a higher
value and resource availability fluctuates over a longeetsuoale, the opposite is true:
lower values ommean that parents contribute more to their offspring, eisfigevhen the
cost of maintenance is low (see Figure 6.6). Perhaps wheantpditude of fluctuations
is higher, the high variance can be beneficial. Since alpoiffig are vulnerable, a higher
variance of resources over the offspring can mean that otteea#ffspring may survive —
so the higher value ah can make these conditions less harsh. Further analysisdsheu
done to investigate this further.

The final factor of importance was the resources used peistapeR;). This was
shown to be significant in comparisons between the matheatdteatment and simula-
tions in Chapter 3. It effectively describes how discreteantmuous the model is. Only
two different values were used in the simulations presemtabis chapter — one that is
known to be accurate with the rangesmfused R. = 0.001 andR; = 0.005). Further
investigations are needed to simulate over many differalies ofR; to fully understand
the role of this parameter.
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6.4.2 The cost of sex?

The traditional argument concerning the cost of sex can Imsidered in light of the
results presented here. The argument, as presented inttbduation, states that each
sexually reproducing parent will only receive half an offeg each time it reproduces
rather than the whole offspring produced by an asexuallyoeiycing parent. This is re-
flected in the model in this work, however the model here gagbér in that it analyses
growth rates during abundant and sparse resource pericwithA the model in the pre-
vious chapter, the growth rate of individuals with a onegpésstrategy is faster than those
with a two-parent strategy during abundant resource psribtbwever, when resources
are sparse, the one-parent strategy declines at a slowerTia¢ model predicts that, un-
der some circumstances, this slower rate of decline meatgstb two-parent strategy is
advantageous over the one-parent strategy.

Atthe very least, the model indicates that the traditiomgiienents concerning the cost
of sex need reviewing. The original cost of sex argumentrgpte. The model presented
here takes the same original premise that sexually repmguadividuals receive half as
many offspring as asexually reproducing individuals. Emune6.9 (along with Theorem 2
in Appendix A) can be used to predict when the slower reprodptwo-parent reproduc-
tive strategy is more advantageous. It shows, by simplyyaira population flux rates
over both growth and declining phases, that there are bsnefieproducing collectively
even when one only receives half of an offspring. This intdisahat sexual reproduction
may not be that problematic (or even paradoxical) to explain

The extreme variant of the cost of sex argument argues thahwiales contribute
almost no resources to their offspring, there is an obvimst to the population to pro-
ducing them with no obvious benefits. While such cases arenabysed in any detail in
this work, two points can still be made. Firstly, the modedgicts that the valu®essis
a lower limit to the number of resources individual can cimite. When all individuals
contributeOgss the lineage of an individual that contributes less resesivill be inferior.
This indicates that since males contribute their genesfapoig, it must be worthwhile
for them to contribute resources as well. The model prediws in most cases males
should make some contribution. The second point is to natethere may be a stable
strategy with males that contribute very little but in gealeéhe two parents contribute
enough to survive: inspection of Figure 6.3 shows that susthedegy may be plausible.

One explanation of the origin of males concentrates on tladive sizes of gametes
(Parker, Baker and Smith 1972, Randerson and Hurst 20013.afgues that anisogamy
(where gametes are of different sizes) may be explainedusedhere are two extremes
for fitness of gametes. There are opposing selection prest@tween producing a large
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number of small vulnerable gametes or a small number of lgayaetes which have
increased chances of survival. Unfortunately, the moditmoental contribution in Sec-
tion 6.3.1.1 showed an exponential distribution for resewontribution levels. For the
model to show different selection pressures for large andllsgametes, one would ex-
pect two humps in the distribution. Further investigatians needed to develop a model
which might reflect better the development of gametes.

Finally, | consider the case where a colony of females thadlpce non-contributing
males (i.e.O = 0) has an inferior strategy to an parthenogenetic femakhidfcolony is
being invaded by hermaphrodites, a female that producetsilooting males Q = Ogsd
will resist such an invasion. The contributing males, sgieg this ‘contributing’ gene.
Further

While the model does show that it is plausible that two-pargmtoduction of the type
modelled may well have been significant in the origins of séxeproduction, there are
some caveats and further issues that must be addressed. oble imiabstract and does
not currently capture many of the features of biologicateyss, e.g., sexes. Furthermore,
it does not show that sexual reproduction is always optitiha,conditions in which it is
and is not optimal are discussed in more detail in the nexisec

6.4.3 Biological applications of the model

The most appropriate biological analogue to the model is&eeproduction in metazoa.
The model is less appropriate for analysing sexual reprboluén protozoa or plants.
Protozoa are single celled organisms which, when they dgxegoroduce, fuse them-
selves with their sexual partner. Sexual reproduction anfd is also difficult to explain
because it is practically impossible for a male flower to gbnte anything more than a
small amount of DNA to offspring produced with a female plaRurther modelling is

necessary to investigate these two interesting problenagden

The work identifies several important factors that are sigant for the dominance of
a two-parent strategy over a one-parent strategy. Thedestee in Section 6.4.1. These
factors are now discussed in order, with metazoan repraziust mind.

The causes of resource fluctuations in biological systemsaed. The two general
reasons outlined in the introduction are down to biotic abitec stress. Abiotic stress
is generally caused by environmental conditions such dg dad seasonal cycles. Biotic
stress is caused by changes in the environment of prey angeatdars. It has been
hypothesised (Glesener and Tilman 1978) that biotic stsease more unpredictable than
abiotic stresses and will be more likely to cause periodsbahdance and starvation for
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the organisms. It is not possible to develop simple behaslatrategies to minimise
the effects of unpredictable resources due to biotic str@$ss can lead to population
increases and declines such as those modelled in the wolksirchapter. In line with
the biological data outlined in Section 6.1 the model (sepiies 6.10, 6.11 and 6.12)
predicts that stresses that can cause large populatiosaises and decreases can lead to
two-parent reproduction being an optimal strategy. Howevken unpredictable stresses
are low, parthenogenesis is more likely to be observed.

The upfront cost of reproduction was found to be a signifi¢acior in the model — a
greater upfront cost of reproduction means that two-pargmoduction (where the costs
can be shared to some extent) will be more likely to dominate.a metazoan the cost of
reproduction is not merely the cost of producing gametesfasidg them however. The
cost of reproduction must include all resources expendedr making that offspring
a fully functioning copy of the parents and able to fend feelf. With single celled
organisms this process is relatively simple but for multidar organisms it is complex
and costly. Further research is needed to consider whetlkeetdst of reproduction is
indeed significant in many sexually reproducing metazoatesys.

In my model, an individual may contribute further resoura@stop of the upfront cost
of reproduction, toward its offspring. Looking at biologlexamples, itis hard to see how
many metazoa, especially egg laying metazoa, can reallyafindy to make much extra
contribution however. Metazoa generally cannot splitritisiole body or body parts into
two halves in the way single celled organisms can. It is alee tonsuming and danger-
ous for parents to spend too long nursing offspring. Theegfoonstraints to the levels
of resource contributions to offspring seem reasonablevéyer, further investigation is
required to see if this factor is actually important in thegors and maintenance of sex.

The values of the resource uptake umy ére also shown to be significant. As outlined
in Section 6.4.1, this variable affects the variance of uese uptake on a short timescale
(within the lifetimes of individuals). The predictions dteat parental resource contribu-
tion is generally greater when variance is higher, excemmithere are large fluctuations
on a long timescale (outside the lifetimes of individual$hese predictions should be
compared with empirical data.

6.4.4 Limitations of the model

One limitation of the model is the fact that it does not coasighat happens when there is
an increased cost of two-parent reproduction. This mightagent the costs of mating and
locating partners. In fact the relationship between anaexp-front cost of reproduction
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and the viability of reproduction between two parents wasuassed in Chapter 4. The
analysis in that chapter showed that two-parent reprodndan still be viable when this
extra cost is as much as 1/3 of the total cost of reproductiamther work is needed to
incorporate an extra upfront cost of reproduction into tredel presented in this chapter.

The model does also contain some biologically unrealigsumptions regarding the
life histories of individuals which may be significant. Speally, the model does not
include aging, and reproduction happens instantaneoAgiyng individuals might con-
tribute more resources to offspring (since investmentgglithas a lower payoff). Con-
versely, an individual running low on resources may stoppaa@uctive effort, or restrict
resource contributions to offspring. Both of these factwald be considered in future
modelling work.



Chapter 7
Conclusions

The main topic of this thesis is the explanation of the mayofionary transitions. | ask
why an individual that reproduces on its own might evolve he that reproduces as part
of a larger group. Rather than following the dominant curtbeoretical approach (for at
least the later transitions), inclusive fitness, the motieés/e presented (in Chapters 3, 4,
5 and 6) show the potential of an alternative theory. Thibas &n individual placed in an
unpredictable and finite environment may hedge its repriekioutput by investing in a
higher reproductive process.

This principle of hedging one’s reproductive output is destoated in several models
in the thesis. First, in the simplest model, | look at indivadl reproduction in Chapter 3.
This shows how an individual may sacrifice its fecundity (andeduce its direct fithess)
so that it is less vulnerable to fluctuations in resourcelaldity. This recreates results
from another model (Tuljapurkar 1990a) using a differenthanism which is relevant
to questions concerning the allocation of resources t@aofig in variable environments.
The chapter shows how there is a trade-off between extra obstaintenance and repro-
duction which may be incurred from maintaining higher resedevels.

The model in Chapter 3 is not directly relevant to the majod@voenary transitions,
however the basic principle that an individual should rediis fecundity to make itself
less vulnerable is shown to be relevant to the transitiomstiticellularity and eusociality
in the next chapter, Chapter 4. This shows how an individuallzaless vulnerable if it
reproduces collectively rather than reproducing on its owme chapter shows how there
is a trade-off between the number of parents and the coleap-front cost of producing
new offspring — this may be important in explaining why mostlieellular animals are
sexual while a few are eusocial.

Most importantly, Chapter 4 provides a proof of concept simgwiow an individual
may benefit from investing in a higher reproductive procdsstact, regarding the dis-
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cussion on the increase in individual complexity in Sectloh, | have argued that such
investment is accretive (see Section 4.3) as investmentigleer reproductive process
can happen in many different ways. Thus, the models inditetethere may be more
than just random drift (as proposed by Gould) at play in thelwion of the complex
individual.

The transition to multicellularity is discussed in morealein Chapter 5. Based on
the behaviour of the slime mould. Discoideum the chapter considers the case where
individuals have very low resources and are close to dyingeyTmay then hedge their
last few resources by gambling them against a large reptgupot. Since the off-
spring are genetically homogeneous, this model shows hexe ttan be a transition from
non-aggregating genetically heterogeneous organismsggregating genetically homo-
geneous organisms — | argue that this is an important firptistéhe transition to multi-
cellularity.

Finally, | consider the case where individuals may be moliskein the amount of
resources they contribute to their offspring. Based on tbdehin Chapter 4, the model
in Chapter 6 addresses the transition to sexual reproduationore detail. It relaxes
the assumption requiring individuals to share resourceslggwith their offspring. The
sexual reproduction strategy is still viable when the atade of resource fluctuations is
increased.

7.1 Social evolution

In this section, | consider how the work | have presentedrdmutes to social evolutionary
theory. In general terms, the models presented here all dsinade cases where individ-
uals hedge their direct fitness for some later benefit. | disbhtdged fithessSince an
individual must reduce its fitness, this is a social, or coagree, act. Table 7.1 has a sum-
mary of the models presented in this thesis demonstratingthey can be interpreted in
terms of cooperation.

Given that the models here have shown the potential of hgdgfineproductive bets,
| suggest that social evolutionary modellers should carswhether the more general
fitness hedging is an important factor in their models. Fertb this, | suggest that the
comparison of growth/decline rates using Theorem 2 in AgpeA may be applicable
in future models.

Theorem 2 and the more simple Corollary 3 in Appendix A (anasiifated in Fig-
ure 1.2) encapsulate the basic principles of hedged fitnBssically they show that,
given that there is no overall growth in population, a lineagth cooperative genes will



Chapter 7 144 Conclusions

Chapter| Uncooperative individuals | Cooperative benefits
3 Reproduce more quickly Reserve resources so less vulnerable to low
(and monopolise resources) resource periods
4 Reproduce on their own Save resources through sharing reproduc-
tive investments, also less vulnerable
5 Doesn't join the macrocyst | Avoids harsh season and has a better chance
of reproducing
6 Very low resources investedincreased investment is a better individual
in offspring strategy when total investment is very low

Table 7.1: Non cooperative behaviour in the models in thesihand the advantages of
cooperating.

dominate if the ratio of its growth rate to decline rate isajez than that of individuals
with uncooperative genes. Thus, an investment in a socséitution may be profitable
if there is some later payback — even outside the lifetimédnefdrganism making the in-
vestment. In the next section | compare the idea of hedgeskftwith the current social
evolutionary theory of inclusive fitness and the currenthestging theory.

7.2 Comparison with other theory

Two important modelling directions outlined in Chapter 1 eanclusive fitness theory
and bet hedging theory. In this section | compare the corufdmdged fithess presented
here with those other perspectives.

In inclusive fitness theory (see Section 1.3.1.1), an inldial will reduce its (Hamil-
tonian) fitness if it will benefit another related individual the same population. As
outlined in Section 1.4.3, it seems unlikely that this tlyewrll explain why an individ-
ual will invest resources in a related individual’s offsggiand not its own 100% related
offspring. The benefit would have to far outweigh the costsnvecsely, in the hedged
fithness models presented in Chapters 4, 5 and 6, individual$ kkmluce their fithess so
that another individual in the population will benefit. leatl | have shown that if they
invest indirectly in their own offspring through a highepreductive process, then this
strategy can be better than reproducing individually.

The perspective outlined in Section 1.5 advocates a diffeypproach to fitness. Since
fithness must be calculated over a variety of different emnments, it is the geometric
mean growth rate over these many environments that is impbrinterestingly, this rate
can be seen as the fitness of a complete lineage. Thus, I;ehgeld be compared with
each other through measuring invasion fitness, not througgisoring the growth rate of
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individuals in one environment.

From this perspective, combined with the theory put forwardhis thesis, we can
see how one lineage may dominate another, but yet alwaysaéwser fecundity. If
we term describe lineages as groups, this is effectivelyatestnates how group selection
can work in circumstances position that has long been arggadhst [e.g., by Williams
(1966a)]. The best lineages/groups are selected for bas#tkeo performance in many
environments.

The long-run growth rate, outlined in Section 1.5.1, of agamism can be calculated
by using the geometric mean. Theorem 2 (and Corollary 3) ineflyoix A is compared
with the geometric mean approach in Section 3.4.2. Esdigriti@ key difference is that
Theorem 2 models the population under density dependendachwan have greater
biological realism, including when considering the coiwatis under which the major evo-
lutionary transitions occurred. This means that, rathantpicking growth rates from a
distribution and multiplying them together, Theorem 2 peexiwith certainty that one
lineage may dominate another when both are under densigndemnce.

7.3 Future directions

The discussion in the previous section of the differencéaden hedged fithess and in-
clusive fitness does not show that the two theories are inatibip. Hedged fitness is
concerned with the transfer of fithess to copies of one’s gaméhe future and inclusive
fitness is concerned with the transfer of fithess to copiesagg in the present. Hedged
fithess demonstrates why one may invest in a higher reprivéugtocess. A plausible
higher reproductive process is investment in a relatedviddal’s offspring. Investiga-
tions into this would require some unification of inclusivedehedged fitness. It may give
important new insights into the origins and maintenanceusbeiality and multicellular-
ity and perhaps some of the other major evolutionary transst

The discussion of social evolution in Section 7.1 implieat tlithess hedging (per-
haps allied with inclusive fitness) may have significancehmtransition to society (see
Table 1.1). It seems plausible that there may be some beméfitdsting in social institu-
tions which pay off in the long term. A systems perspectivthtomodelling of societies
has been advocated (Epstein and Axtell 1996, Silverman ayaeB 2007). It was argued
that by studying artificially grown societies(silico), we may be able to understand our
own social systems better. Fitness hedging may give somertarg insights into the
methods we may require to successfully grow societieslico.

Extensions to the modelling work on individual reproduntio Chapter 3 mainly in-



Chapter 7 146 Conclusions

volve making the models more biologically realistic. Thigyht involve making models
of the growth of single celled organisms, perhaps in a ché&mos\n obvious further
extension would be to investigate the fecundity of multidar organisms, applying the
sexual growth equations from Chapter 6 (and analysing tleeedf changing the repro-
ductive threshold?;). Such models would lend themselves well to the inspiratan
analysis of, and comparisons with empirical investigation

The purpose of Chapter 4 was to show the viability of a modebdéctive reproduc-
tion. To develop this approach, it would be interesting tadeldow artificial organisms
may reproduce collectively and what increases in compjariay be gained from doing
this. It may be possible to show a major evolutionary tramsiin silico — where individ-
ually reproducing agents come together to form a largeramdgtreproduce as part of this
larger unit.

One problem with the work modellinD. Discoideumn Chapter 5 is that the whole
system may collapse due to cheating individuals which, evthiey broadcast cAMP, do
not aggregate and instead wait for others to join. An ingaston of this would improve
the model. Slime mould is not the only organism to form magsts, perhaps a similar
modelling approach may be used to investigate the formatidamofilms in bacteria.

The most obvious extension to the work on modelling sexyaioguction (in Chap-
ter 6) is the inclusion of a model of two different sexes. Twisuld question if there
was any advantage to having two different mating types wiieast different amounts
of resources in their offspring. Further to that, | have mveistigated, in detail, the case
where an asexual parent has an upper limit to the amount ofiress it may contribute
to its offspring. It is likely that limiting the resourceseagial parents may contribute will
mean that the sexual strategy is more likely to dominate.

The model of sexual reproduction | have presented is focusa&dly on the origin
of sex in metazoa. Another interesting extension would beotwsider the origins and
maintenance of sex in plants and unicellular organisms. dffggns of sex in unicellular
organisms is close to the macrocyst formation in Chapter Shaps such a model could
resolve why multiple individuals come together to form a noagst rather than forming
individual microcysts.

7.4 Conclusion

For this thesis | set out to develop models that would expllhérmajor evolutionary
transitions. While | have fallen short of this extremely atitis goal, the work | present
here does take some important steps. At its core, the worteases what | have argued
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to be a central problem of the major evolutionary transgierwhy might an individual
contribute toward a higher reproductive process, rathan thvest in its own immediate
reproductive success?

The answer | have given to that question is that an individaalincrease its long term
fitness by hedging its short term fitness through investireghigher reproductive process.
| have studied the transitions to sex and multicellulanityriore detail here, showing that
the collective strategy can be beneficial — especially wheetifbting conditions mean
populations can rise and fall.

While | have only considered two transitions in biologicataik it looks promising
(see Section 7.3) that this theory may well be applicabletb@romajor evolutionary
transitions. Furthermore, this theory may well be of uséhimdevelopment of computer
models that demonstrate artificial transitions.
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Appendix A

Hedged fitness theorem

Take two positive functiona(t) andb(t), a,b € 0. These depend on a continuous, but
not necessarily differentiable, stochastic function wfeu(t) (the dynamic characteristics
of u are purposefully left unknown) according to the equations:

(

(U—ug)gza ,u>up
da
rFri 0 ,U=Up (A1)
[ (U—Up)gza ,u<ug
db [ (u—ug)gib ,u>ug
G =10 U= (A.2)
[ (U—Ug)gyb ,u<up.

Whereuo, g, 9z, 97, g, are constantsyf, gz, g, g > 0).

| assume thah andb are not constant (i.e., there is a period of time wheté ug)
but thata+ b has no overall positive or negative trend. This means theg; tme, any
increase i+ b will be matched by a corresponding decrease at some latat (aoid
vice versa). Theorem 1 shows thag'[f /9y is greater thamy} /g, then, for each time
period whereb + a starts and finishes at the same level, the ratib tuf a will increase.
Theorem 2 shows that, &) /g, is greater tharg /g, then, as the length of time the
functionsa andb are dynamic tends to infinitya/(a+b) — 1.

There is a simpler case where the system simply fluctuateseleattwo regimes with
fixed rate of change, a growth regime and a decline regimee fa& positive functions
a*(t) andb*(t),a*,b* e O™ .

(A.3)

da* gia* ,growth regime
dt —gza* ,decline regime
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db* {ggb* ,growth regime (Ad)

dt —g, b* ,decline regime.

How the system fluctuates is between the two regimes is netrdated but | take that
a" + b* has no overall positive or negative trend. Corollary 3 shoat if gg/gg is
greater tharmyZ /g; then, as the length of time the functioasandb* are dynamic tends
to infinity, b*/(a* 4+ b*) — 1.

To prove the theorems a lemma is required. In Lemma 1 two ghaseconsidered
which may or may not be connected (see FigureA.1): an incrggdhase where both
andb are increasingy(t) > up) and a decreasing phase where be#ndb are decreasing
(u(t) < ug). Itdoesn’t matter which phase comes first, but there aeetbther conditions:

(i) the value ofa+ b at the beginning of the primary phase is equal to the valwe-fob

at the end of the secondary phase; (ii) the valua-6fb at the end of the primary phase
must be equal to the value aft- b at the beginnning of the secondary phase; (iii) at the
beginning of the secondary phase the ratidoab a must not be less than its value at
the end of the primary phase. Lemma 1 states thg;,fjfgg is greater tham; /g; then

the ratio ofb to a at the end of the secondary phase will be greater than itisevat the
beginning of the primary phase.

Theorem 1 shows that for each time period whetea starts and finishes at the same
level, the ratio ob to a will increase. This is done by specifying an algorithm foabysis
of a time series oA+ b. The time series is broken up into segments and subsegnsents a
illustrated by Figure A.2. Each segment has an increasidgaatiecreasing phase. The
theorem shows that all segments ultimately contain subsetgwhere the end point of
the primary phase is the same as the start point of the segoplklase. By recursion, and
Lemma 1, it is shown thdi must increase relative @for all segments.

Using similar logic to Theorem 1, Theorem 2 extends the aigar from Theorem 1
so that the dynamic portion of the time series is covered bgfarite number of segments.
Sincebincreases relative tain each segment, | therefore only need to prove that the only
upper bound td/(a+b) is 1.

Lemma 1 Firstly consider the increasing phase(tu> up. At the beginning of the in-
creasing phase assume-ag; and b= b;. At the end of the increasing phase, assume both
variables have increased to-aa; and b= bj (i.e., g > & and h > b;). Secondly, consider
the decreasing phase(ty < up. At the beginning of the decreasing phase assumeaga

and b= by. At the end of the decreasing phase, assume both variablesderreased to
a=ag and b=bg (i.e., & > ag and ky > bg). By condition (i), a+ bj = ag + bg. By
condition (ii), § +bj = aq +bqa. If g /g5 > 04 /9 then,
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Figure A.1: A trace ofi+ b showing two phases. The two phases are between the dashed
vertical lines shown on the trace. The primary phase is neattly a corresponding poste-

rior secondary phase moving in the opposite direction. Wreghases are not connected.

In line with conditions (i) and (ii) of Lemma 181 + by = a4 + b4 anday + by = az + bs.
Condition (i) for Lemma 1 requires thd/az > by/a;.

Case 1.Wwhere the increasing phase is before the decreasing plibge;) < (by/aq)
implies(bg/ag) > (bj/g) and

Case 2.Where the decreasing phase is before the increasing phag¢ag) < (bi/a)
implies (bj/a) > (b /q).

(The proposition in both cases corresponds to conditiah)(ii

Proof Dividing Equation (A.1) by Equation (A.2) gives:

(zi{ .U > Up
da_ ] % (A5)
db a0~ '
&i , U< Up
| bg;

First consider the increasing phase where variablaadb start froma; andb; and in-
crease tay andb; (u> Up). Integrating Equation (A.5) foa; < a < a andb; < b < b
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a+b

TiMe —p»

Figure A.2: A trace ofa-+ b broken up into segments with each segment having two
phases. Both phases are between the same two horizontal Baeh primary phase is
matched by a corresponding posterior secondary phase movihe opposite direction.
The dashed line shows the value(aftb),. Segments are numbered 1-6, segment 2 is a
subsegment of 1,segments 3 & 4 are subsegments of 2, andraggima subsegment of

3. The four points of segment 2 are marked: the increasinggpframa; + by toax + by

is matched by the decreasing phase fi@ym- bz to ag + by.

gives

8 1 b 1
~ da = / — db
/a,- gia b gyb

1

b
éln(a,—/ai) = éln(bj/bi) . (A.6)
Oa 9

Secondly consider the decreasing phase where variabdesl b start froma, andbg,
and decrease tag andbg (u < Up). Integrating Equation (A.5) foay, < a < ag and
by <b < bg gives

2 In(ag/aq) = — In(bg /ba) (A7)
Oa Oy

Multiplying Equation A.6 bygg and Equation A.7 by, , adding them together and
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rearranging (using the property thatdfy = Ing - Iny) gives:

b‘ b g+ . g—
In (i) +ln (f) _ g—gln (%) _ g—gln (2'—;) . (A.8)

To prove each case of the lemma, it is assumed that each swmrclis false and
then shown that there is a contradiction. The negation ottimelusion of Case 1 is the
proposition of Case 2 and vice versa. Therefore, it is onlyasary to assum@g/ag) <
(bi/a) and (bj/a) < (by/ag) and prove there is a contradiction. To prove there is a
contradiction | show that, given these assumptions, thehbafid side of Equation (A.8)
must be less than or equal zero and the right hand side musebategthan zero.

Consideringdg/ag < bj/a;, all the variables are positive, so multiplying both sidgs b
aag/bibg gives:

ai/bi <ag/bp

Adding one to both sides of the equation and then multiplyiath sides byojbg gives:

bg(ai+bi) < bi(ag+bg)

But, by definition,a; + by = ag + bg, so:

bg
bg/bi <
In(bg/bi)) < O (A.9)

IN
o

Similarly, considekb;j/a;) < (bq /aq). Again, all the variables are positive, so multiplying
both sides by, a; /by b gives:
Ao /ba < 3/by .

Adding one to both sides of the equation and then multiplyiath sides by, by gives:

babj(ag/bg +1) < bgbj(a/bj+1)
bj(aq +ba) < bg(a+by)

Again, by definitiong; +bj = aq +bg, so:

by < bq
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bj/ba
In(bj/bg) < O. (A.10)

IN

Equations (A.9) and (A.10) therefore show that the left hside of Equation (A.8) is less
than or equal to zero.

To show that the right hand side of Equation (A.8) is gredtantzero, | show that
the first term is larger than the second term. Consideofgg < bi /a;, add one to both
sides of the equation and multiply both sidesabgg. This gives:

a;aﬁ(bg/a[;—i—l) < aqaﬁ(b|/ai+1)
g(bg+ag) < ag(bi+q)
a < ag, (A.11)

using the fact thad; +b; = ag + bg. Similarly, consider(bj/a;) < (by/a4). Adding one
to both sides of the equation and multiplying both sidesyay gives:

gag(bj/g+1) < gag(ba/ag+1)
ag(bj+a) < a(bg+aq)
g q (A.12)

IN

using the fact thad +- by = a4 + bg. Dividing Equation (A.11) byay (ag > 0) gives:

g/ag < ag/ag
aq/a > ag/ag. (A.13)

Also, dividing Equation (A.12) by (g > 0) and reversing it gives:
&/ > aq/a;
which can be combined with Equation (A.13),

a/q > ag/ag
In(aj/a) > In(aq/ag) . (A.14)



Chapter A 167 Hedged fitness theorem

By defintiongb+ /9, > 94 /9, - Since all these variables are positive this can be written:

+ —
% % (A.15)

i Oa

Combining Equation (A.14) with Equation (A.15) (by definitig; > g anday > ag, SO
both terms in Equation (A.14) are greater than zero) gives:

"
g—E’LIn(a,-/ai) > S—Eln(aa/aﬁ).

Oa

This shows that the right hand side of Equation (A.8) is pasitSince the left hand side
is less than or equal to zero, there is a contradiction. Toerethe lemma is proved. |

The theorems can now be proved.

Theorem 1 Over an arbitrary period of time of length Tt; : t5], it is assumed that a and
b are not constant (i.eJty,ty € [ty : to] 1 u(t) = up,t € [tk : ty]) and that there is no overall
change in their sum, i.e(a+b)y, = (a+b)y,. If g /g, > 04 /9a, then(b/a), > (b/a),.

Proof The time series is broken up into segments by consideringattiace plot od+b
and specifying horizontal lines on the trace. A horizonita is added at each point the
direction ofa+ b in the time series changes, i.e. whea¢{(b)/dt changes between one
of three regimes (+ve, 0, -ve) to another. Each segment aiélan increasing phase and
a decreasing phase.

Segments are formed by following the time seriegaf b) through increasing time.
The time series is continuous and the valuésof b) at the start of the time series is equal
to the value ofa+ b) at the end. Therefore, for every period of time where the Serges
moves from one horizontal line to another adjacent linegheill be a corresponding
posterior period of time where the time series moves in thgosjte direction from the
second horizontal line to the first. Segments are defined byptmases, a primary and a
secondary phase. The primary phase of each segment is theefiied of time the time
series moves between horizontal lines and the secondasepsaefined by the second
period of time the time series moves (in the opposite dioagtbetween horizontal lines.
In harmony with the conditions of Lemma 1, the valueaof b at the start point of the
primary phase is equal to the value at the end point of thenslzoy phase. The same is
true for the values o&+ b at the end point of the primary phase and the start point of the
secondary phase.
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The segments are then organised into a tree structure — egaotest being a node
in the tree. Sub-nodes are formed from segments betweerontal lines progressively
further away from the starting horizontal line. Sub-nodesdefined by two conditions.

1. Sub-node segments must have their primary and seconbasgg within the time
period between the inner points of the node segment (i.¢eposto the end point
of the primary phase and prior to the start point of the seaonghase).

2. The value ot+ b at the start point of the primary phase of all sub-node seggnen
must be equal to the value at the end point of the primary pbictbe node segment.

The base node of the tree has a zero length primary phase wsfaith and finishes &t
and a zero length secondary phase which starts and finishes at

Because the time series is continuous and returns to italiaélue, all dynamic por-
tions of the time series must be covered by segments and egafest covers a unique
part of the time series. This is because every time the timessenoves from one hor-
izontal line to another, there must be a corresponding moke opposite direction (if
the time series were to change direction, another line wbelddded) — forming a unique
segment. The theorem can therefore be proved by first shawaigf b increases relative
to ain all sub-node segments thermust increase relative @in the node segment; and
secondly showing thdt increases relative ta in all leaves of the tree (nodes without
subnodes).

All segments (apart from the base node segment) must bealgsof other segments
in the tree — and ultimately sub-nodes of the base node. Fegraent not to be a subnode
of another node the time series would have to have a disaotytirif b increases relative
to ain the time period within the primary and secondary phasessefigment then Lemma
1 states thab will increase relative t@ over the segment. Since by definition all dynamic
portions of a segment are covered by sub-node segments ailidnot change relative
to awhile a+bis statid, if b increases relative tain all sub-node segments themust
increase relative ta in the node segment.

Finally, to prove the theorem, it must be proved thahust increase relative @in
all leaves of the tree. Sin@e+ b is static in the inner period of any leaf nodewill not
change relative ta (from footnote 1). Therefore, from Lemmablmust increase relative
to a in all leaves of the tree. Thereforb,must increase relative ta in all segments
including the base node segment. Therefore, the theoreroveg@. |

1 Forbto change relative tawhile a+ b is static, one would have to increase while the other deegeas
But, Equations (A.1) and (A.2) require thatdfincreasesh must also increase and also that iflecreases,
b must also decrease. Therefore it is not possibldfirchange relative ta while a+ b is static.
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Theorem 2 Consider a period of time of length T with the same conditiondesibed
in Theorem 1: a and b are not constant and that there is no dvelnange in their sum.
Define® < T as the length of time whereztiuo. If g\ /g, > 94 /s, then, asT, © and

t — o, b/(a+b)— 1

Proof Again, the time series is broken up into segments which fooaes in a tree as
specified in Theorem 1. Hera,is the number of nodes. As already shown by Theorem
1, b must increase relative @in all nodes of the tree and completely cover the dynamic
portions of the time series.

New sub-nodes are added by repeating the following proesdur

1. Choose a parent node in the tree: this node has the maxinfteredce between
a+ b at the start and end of the primary phase (and, thereforesténeand end of
the secondary phase).

2. Insert a new sub-node in the tree below the node: this nbwede inherits all the
sub-nodes of the parent node.

3. The start of the segment of this sub-node is at the pointeviiie value o+ b is
half-way between its values at the start and the end of timegoyi phase. Likewise,
the end of the new segment is where b is at the same value between the start and
the end of the secondary phase.

4. The parent node’s primary and secondary phases are sadraéecordingly.

New sub-nodes are added with this procedure sorthateo. Since® — o, no new
node can be added where the changea #fb between the start and end of the primary
phase (and, therefore, the start and end of the secondasgplsazero. Given Item 2
above,b must increase relative ta in all children of the new sub-node. Therefore, as
shown by Lemma 1, as each new sub-node is addladjst increase relative @in that
sub-node and its parent node.

| have now specified an infinite number of nodes for whighust increase relative to
a. The segments in these nodes completely cover the dynamtiomoof the time series.
Thereforep/(a+b) must increase at the end of each segement. | look for an uppedb
to whichb/(a+ b) may tend. Any upper bound must be a stationary point, i.e.,

da

Equation (A.5) shows that this is only true whenr- 0, orb/(a+b) = 1. Becausea,b are
both positivep/(a+b) < 1. Therefore, the theorem is proved. |
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I can now show Corollary 3 by choosing appropriate valuesifor

Corollary 3 Consider a period of time of length T with the same conditiondessibed
in Theorem 2: &and b are not constant and that there is no overall change in theins
Define® < T as the length of time wheres4uo. If g /g, > g4 /9, then, asT, © and
t — oo, b*/(a*+b*) — 1.

Proof Define a functioru® so that it isup+ 1 during the growth regime ang— 1 during
the decline regime. Setting= ux, gives that [using Equations (A.3) and (A.H] = a
and [using Equations (A.4) and (A.23)] = b.

From Theorem 2 the corollary is shown. |
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Sample code listing

Sample code is included for simulations done in Chapter 6.

B.1 File: sero.cpp

#include "sero.h”

#include "environment.h”
#include "time.h”

#include "standarddeviation.h”
#include "random.h”

#include <list >

using namespacestd;

CSimulation:: CSimulation (REnvironmentenv)
env(_env)

foodInEnvironment = O0;
numSteps = env>intParams. entry ("NumSteps”);
halfTimeStep =

env—intParams.entry ("HalfTimeStep”) ? 1 : O;

samplePeriod = env>intParams.entry(”SamplePeriod”);

numFood = enwv>intParams. entry ("NumFood”);

171
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mutateAtBirth = env>intParams.entry ("MutateAtBirth”);

resourceUnit =
env—doubleParams. entry ("ResourceUnit”);
reproduceCost =
env—doubleParams.entry ("ReproduceCost”);
maintenanceCost =
env—doubleParams. entry ("MaintenanceCost”);
reproducelLevel =
env—doubleParams. entry ("ReproducelLevel”);
mutationProbability =
env—doubleParams. entry ("MutationProbability”);
mutationAmount =
env—doubleParams. entry ("MutationAmount”);
baseFoodProbability =
env—doubleParams . entry ("BaseFoodProbability”);
fluctuationCoefficient =
env—doubleParams. entry ("FluctuationCoefficient”);

includeAsexual = enwv>intParams.entry(’IncludeAsexual”);
if (halfTimeStep){

resourceUnit = resourceUnit/2.0;
maintenanceCost = maintenanceCost/2.0;

contributionHistogram =
new C3DHistogram (10000, 0, 1. false);

void CSimulation::runSim (string suffix)

I/l create agents
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agents.clear ();
agents.reserve (emwintParams[”StartAgents”]);

for (int i = 0; i<env—intParams|[”StartAgents”]; i++){
RAgent agent =new CAgent ();
agent—>energy = randval (reproducelLevel);
agent—>contribution = randval (1.0);
agent>reproduceSexually = randval (1.0);
agent—>previousTimeStep =-1,
agents.pushback(agent);

}

RAgent debugAgent = agents[0];

bool highSeason=1;

string datafilename = "data” + suffix + ".m";

ostream & dataout emy>datafiles[datafilename ];

for (t = 0; t<numSteps; t++){

if (agents.size ()> 400)
highSeason = O0;

else if (agents.size ()< 200)
highSeason = 1;

double probabilityOfFood = highSeason ?

baseFoodProbabilityx fluctuationCoefficient
baseFoodProbability / fluctuationCoefficient;

agents.shuffle ();
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Il FIRST MUTATE AGENTS
if (!mutateAtBirth)
for (int i = 0; i<(int)agents.size(); i++) {
RAgent agent = agents|[i];
if (randval(1.0x mutationProbability) {
agent>mutate ();

safeVector<RAgent>::iterator ai = agents.begin();
for (; ail'=agents.end(); ai++){
RAgent agent =xai;

if (halfTimeStep) {
if (agent>previousTimeStep ==-1) {
if (randval (1.0kx probabilityOfFood) {
agent—>energy += resourceUnit;
agent—>previousTimeStep = 1;

}
else {
agent>previousTimeStep = O;
}
}
else {
if (agent>previousTimeStep == 1){
agent—>energy += resourceUnit;
}
agent—>previousTimeStep =-1;
}
}
else {

if (randval (1.0x probabilityOfFood) {
agent>energy += resourceUnit;
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safeVector<RAgent- newAgentsList;
newAgentsList.reserve (agents.sizeQ);

safeVector<RAgent- sexList;
sexList.reserve (agents.size ());

safeVector<RAgent- asexList;
asexList.reserve (agents.size ());

safeVector<RAgent- birthList;

for (safeVector<RAgent>::iterator ai = agents.begin();
ai != agents.end(); ai++){
RAgent agent =xai;
agent—>energy —= maintenanceCost;

if (agent>energy > 0) {
if (agent—>energy > reproducelLevel){
if (agent>reproduceSexually-0.5 || !includeAsexual)
sexList.pushback (agent);
else
asexList.pushback (agent);

}

newAgentsList. pushback (agent);

int numnewkids = sexList.size ()/2;

for (int i = 0; i < numnewkidsx 2; i+=2){
/I pick a random parent to pass on its genes
int parent = irand (2);

RAgent newAgent =new CAgent;
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newAgent>energy =
sexList[i]->contribute (reproduceCost/2.0) +
sexList[i+l]->contribute (reproduceCost/2.0);
newAgent>contribution =
sexList[i+parent}>contribution;
newAgent>reproduceSexually =
sexList[i+parent}>reproduceSexually;
newAgent>previousTimeStep =-1;

newAgentsList. pushback (newAgent);
birthList.pushback (newAgent);

for (unsigned int i = 0; i< asexList.size(); i++){
RAgent newAgent =new CAgent;
newAgent>energy =
asexList[i}->contribute (reproduceCost);
newAgent>contribution =
asexList[i}->contribution;
newAgent>reproduceSexually =
asexList[i}l->reproduceSexually;
newAgentsList. pushback (newAgent);
birthList.pushback (newAgent);

if (mutateAtBirth)
for (int i = 0; i<(int)birthList.size(); i++) {
RAgent agent = birthList[i];
if (randval(1.0x mutationProbability) {
agent—>mutate ();

agents = newAgentsList;
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if (t%samplePeriod == 0)

if (includeAsexual){

calculateSexAsexRatio ();

dataout<< t
<< "\t” << probabilityOfFood
<< "\t” << agents.size ()
<< "\t” << numAsexual
<< "\t” << numSexual
<< "\t” << (double)numSexual /

(double)(numAsexual + numSexual)

<< endl;

}
else {
calculateContributionStats ();
dataout<< t
<< "\t” << probabilityOfFood
<< "\t” << agents.size ()
<< "\t” << contributionStats .mean
<< "\t” << contributionStats.stDev
<< endl;
}
}
}
string contfilename = "contHist” + suffix + ".m";

ostream & contout = envdatafiles[contfilename];
contributionHistogram—>outputMatrix (contout);
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void CSimulation:: calculateSexAsexRatio ()

{
numSexual = 0;
numAsexual = 0;
for (int i = 0; i<(int)agents.size (); i++) {
RAgent agent = agents|[i];
if (agent—>reproduceSexually) numSexual ++;
else numAsexual ++;
}
}

void CSimulation:: calculateContributionStats ()

{
safeVectokdouble> contributions (agents.size(), 0.0);
for (int i = 0; i<(int)agents.size (); i++) {

RAgent agent = agents|[i];
contributions[i] = agent>contribution;

contributionStats =
getStandardDeviationStats (contributions);

contributionHistogram—>addDataRow (t, contributions);

int main (int argc, char xx argv)

{
int seed = 0;

if (argc>1)
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sscanf (argv[1l], "%d”, &seed);
rseed (&seed);
REnvironment env =new CEnvironment ("params.xml”);
CSimulation sim (env);

time_t curr=time (0);
cout << "Simulation.started .

<< ctime(&curr) << endl
<< "Seed.=.” << seed<< endl

<< endl

<< "Params:” << endl;

for (stringmap<double>::iterator smi =
env—doubleParams . begin ();
smi!= env—>doubleParams.end (); smi++]

cout << smi—>first << "_.=." << smi—>second<< endl;

stringstream suffix;
suffix << seed;

sim.runSim (suffix.str());

curr=time (0);
cout << "Simulation.completed *

<< ctime(&curr) << endl;
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Sample code listing

B.2 File: sero.h

#ifndef _SERQH
#define _SERQOH 1

#include "counted.h”
#include "environment.h”
#include "standarddeviation.h”
#include "histogram.h”
class CAgent : public PCountedHeapObject
{
public:
double energy;
double contribution;
double reproduceSexually;

int previousTimeStep;

double contribute (double reproduceCost){
energy —= reproduceCost;

double contributeAmount = energyx contribution;

energy —= contributeAmount;
return (contributeAmount);

void mutateGuassian double SD) {
double r = (gaussraneidouble> ()xSD);
double newcnt = contribution + r;
if (newcnt >0.0 & newcnt < 1.0) {
contribution = newcnt;

}

reproduceSexually = randval (1.0);
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Sample code listing

typedef PCountedHolder<CAgent- RAgent;

class CSimulation

{

void mutate () {

reproduceSexually = randval
contribution = randval (1.0);

public :

CSimulation (REnvironment env);

REnvironment env;

int t;

int samplePeriod;
safeVector<RAgent- agents;
int foodInEnvironment;

int numSteps;

bool halfTimeStep;

int numFood;

bool mutateAtBirth;

double resourceUnit;

. public PCountedHeapObject
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double reproduceCost;
double maintenanceCost;
double reproducelLevel;
double mutationProbability;
double mutationAmount;

double baseFoodProbability;
double fluctuationCoefficient;

bool includeAsexual:

standardDeviationStats contributionStats;
R3DHistogram contributionHistogram,;

int numSexual, numAsexual;
void runSim(string suffix);

void calculateSexAsexRatio ();
void calculateContributionStats ();

b

#endif
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Publications

The following publications, produced from the work in thesls, are included.

J. Bryden, “Slime mould and the transition to multicellularity: thele of the macrocyst stage”,
In M. S. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnsod, J. Timmis, edi-
tors,Advances in Artificial Life: 8th European Conference, ECALZ@anterbury, UK,
September 5-9, 2005. Proceedin(fZ005) 551-561.

J. Bryden and J. Noble “Computational modelling, explicit mathematical treatrtee and
scientific explanation”Artificial Life X. (2006) 520-526.

J. Bryden, “The role of collective reproduction in evolution”, In: BRlmeida e Costa, L. M.
Rocha, E. Costa, I. Harvey, and A. Coutinho, editgkdyances in Atrtificial Life, 9th
European Conference, ECAL 2007. Proceedirfg807) 645—654.
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Slime mould and the transition to
multicellularity: the role of the macrocyst stage

John Bryden

School of Computing, University of Leeds, Leeds L.S2 9JT
johnb@comp.leeds.ac.uk

Abstract. The transition from unicellular to multicellular organisms is
one of the mysteries of evolutionary biology. Individual cells must give
up their rights to reproduction and reproduce instead as part of a whole.
I review and model the macrocyst stage in slime mould (Dictyostelium)
evolution to investigate why an organism might have something to gain
from joining a collective reproduction strategy. The macrocyst is a repro-
ductive cartel where individual cells aggregate and form a large zygotic
cell which then eats the other aggregating cells. The offspring all have
the same genetic code. The model is a steady state genetic algorithm
at an individual cellular level. An individual’s genetic code determines
a threshold above which it will reproduce and a threshold below which
it will join a macrocyst. I find that cycles in food availability can play
an important role in an organism’s likelihood of joining the macrocyst.
The results also demonstrate how the macrocyst may be an important
precursor to other cooperative behaviours.

1 Introduction

The quest to synthesise hierarchical levels of organisation in artificial life is a
significant open problem [3, 23]. To provide a deeper understanding into how we
may be able to use evolutionary algorithms to generate and optimise hierarchi-
cal behaviour, we can study the major transitions in evolution [16]. This work
focusses on the transition to multicellularity which appears to be one of the most
difficult ‘bridges’ evolution has had to cross. It is unclear whether the transition
only occurred once, or several times [4]. Phylogenetic evidence [2] suggests that
multicellular organisms, especially metazoa, share a common ancestor. Further-
more, fossil evidence [16] indicates that multicellular life did not exist for 2,500
million years until the Cambrian period (approximately 540 million years ago)
where all the multicellular phyla are represented.

Multicellular organisms essentially consist of clusters of individual cells with
all cells expressing the same genotype. They therefore require gene-regulatory
mechanisms for differentiating cells (with differentiations being passed from par-
ent cell to offspring), cell adhesion and spatial patterning of cells [16]. One par-
ticularly crucial cell differentiation stands out: The organism must separate its
reproductive (germ-line) cells from its body (soma) cells [7].



The requirement for isolation of the germ line from the soma was first argued
to be necessary by August Weismann [7]. To identify why, we can distinguish
the two types of reproduction that are present in metazoan multicellular life
and look at the conflicts that arise between them. Firstly, intra-organism repro-
duction happens when cells replicate within the super-organism, for the good
of the super-organism. Conflicts can occur with cells reproducing on their own
behalf [17]: mutant cells can disrupt and compete with the super-organism. By
generating a whole organism from one initial germ-line cell, it is clear that the
vast majority of selfish mutations that disrupt super-organism-level processes
will only survive one generation [7]. Therefore, secondly, to solve this problem
super-organism reproduction involves the replication of the complete organism
through the selection of a germ line cell to reproduce on behalf of the super-
organism. However, there is still a conflict over which cell is to be the germ
line since selfish mutations that disrupt the super-organism reproductive pro-
cess will be passed onto the next generation. A stable, policed, germ-line/soma
differentiation mechanism must have evolved at some point.

It is unclear where in the evolution of a multicellular lineage, stable, well po-
liced, germ-line/soma differentiation and germ line isolation should occur. How-
ever, given the above problems faced with intra-organism conflicts[17], it seems
likely that the germ-line/soma differentiation evolved early [7]. Thus, we con-
sider evolutionary mechanisms that will explain a transition between unicellular
organisms, which compete within their populations and compete with predators
and prey, and early multicellular organisms which are clustered together and
exhibit germ-line/soma differentiation. In other words, there is a transition from
unicellular organisms which are optimised to maximise their own direct fitness
to cells that must, on the other hand, maximise their inclusive fitness at the ex-
pense of their direct fitness (i.e., their ability to contribute their fitness to other
cells that are highly related must be more important than their own replication
chances). (See [10] for precise definitions of direct and inclusive fitness.)

Whether the evolutionary transition described above, of organisms clustering
and differentiating a germ line, happened in one stage is unclear. Wolpert has
presented a model where individual cells may split to produce a somatic body
cell that sticks to its parent and is unable to reproduce [27]. What the benefits,
through inclusive fitness, are to individual cells and their lineages from doing
this is unclear. There is a debate on this subject with some arguing that size
is an important reason for multicellularity [4] with undifferentiated population
clustering, as modelled in [19] without a germ-line/soma differentiation, being an
important first step. Others point out that local competition over food will negate
the value of cooperation through relatedness [21, 26, 15]. For this reason Di Paolo
warns against relatedness being used as an explanation for cooperative behaviour
[9]. There therefore appears to be something of a paradox if we attempt to try to
understand the transition to multicellularity with such models of clustering cells.
Individuals that cluster compete with each other and may negate the benefits of
cooperation through relatedness, yet both clustering and cooperation are needed
for the transition to early multicellularity.



A different perspective considers multicellularity through aggregation [16].
Here cells either vegetate and reproduce individually, or aggregate to reproduce
collectively. This presents a sort of half way house between the individual and
early multicellular behaviour identified above. Dictyostelium (more commonly
known as slime mould) is a model organism for multicellularity through aggre-
gation [16,20]. Individual cells can either vegetate and reproduce asexually on
their own, or under different environmental conditions they also demonstrate
collective reproduction behaviour, characterised by individual cells making sac-
rifices for the benefit of other cells’ reproductive chances. This organism therefore
demonstrates both the germ-line/soma differentiation [6] and clustering that is
important for the transition. Biological evidence is now presented concerning
Dictyostelium discoideum, one of the more studied species of the genus.

When there is a shortage of food and D. discoideum cells begin to starve,
they aggregate and one of the two collective reproductive stages commences [22].
The more well known reproductive stage of D. discoideum sees the cells form a
slug which collectively migrates. Once the cells find an advantageous location
they form a fruiting body: cells at the front of the slug (20%) form a stalk and
the rest form spore cells at the top of the stalk which are dispersed by the
wind. Interestingly, the stalk cells die after the stalk is built. This differentiation
between spore and stalk cells is arguably a germ-line/soma distinction [6]. Since
cells that produce stalks do not pass on their genetic code, it is hard to see
how this trait is selected for and maintained. Indeed there are examples of slime
moulds strains that do not produce stalks [6]. Computer simulations addressing
this question [1] have indicated that high dispersal of spores can lead to more
stability in the stalk producing behaviour.

The second, less well known, collective reproduction stage in D. discoideum
involves the formation of the macrocyst [22]. Again, when the cells are starving
they aggregate. However instead of forming a slug, two cells merge to form a large
Zygote cell which eats other aggregating cells. The resulting giant cell forms a
hard cellulose outer wall and this macrocyst germinates after a few weeks. See
Fig. 1 for a diagram.

The macrocyst stage is thought to be a precursor to the slug/stalk repro-
ductive stage. Kessin [13] argues that evolution generally occurs in incremental
stages. He notes that the previous stage to macrocyst development would be the
microcyst stage (not observed in D. discoideum), where individuals form outer
walls on their own. After the evolution of chemotaxis, aggregation could occur
and the macrocyst evolved. With added cell adhesion and cell type differentia-
tion into stalks and spores, fruiting body and slug behaviour would then become
plausible.

The genetic makeup of the offspring of the macrocyst is an important ques-
tion. The macrocyst is generally accepted to be the sexual phase of D. dis-
coideum’s development [22]. However experiments do demonstrate that Macro-
cysts can form from only one mating type [5]. The progeny of one macrocyst is
observed to be of one genotype [25]. Only one nucleus remains in the zygote (or
giant cell) after other ingested nucleii disappear [18].
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Fig. 1. The sexual and mitotic life cycles of Dictyostelium (based on [22]).

From Fig. 1 it is clear that differentiation in D. discoideum cells occurs when
it starts to aggregate. Recent evidence implies that the cell may have genetic
control over this event. Research [8, 11] suggests genes that can control or delay
when or whether a cell will continue to grow or start aggregation. These findings
indicate that the cell is capable of turning on or off aggregation to the macrocyst
stage which can ultimately lead to cells being eaten by the zygote. This empha-
sises a need for an explanation as to why an individual might make the ‘choice’
to aggregate and almost certainly die.

I have produced a model of the D. discoideum macrocyst stage for several
reasons: (i) to confirm that individuals that normally reproduce on their own
are indeed prepared to gamble their own reproductive chances against the ‘pot’
of reproductive material contained in the macrocyst; (ii) to confirm my intu-
ition that fluctuations in food availability are important to the viability of the
macrocyst; (iii) to question the role individual mitotic split rates might play in
the stability of the macrocyst; and (iv) to speculate on the role the macrocyst
might play in the evolution of other altruistic behaviour (such as stalk/spore
differentiation) and collective behaviour.

2 Methods

To investigate the questions in Section 1 I have built a computer simulation
model of the macrocyst stage of D. discoideum. Assumptions in the model are
based on the biological evidence presented. Notably I have assumed that all the
offspring of a macrocyst are of the same genotype. Since sexual fusion does not
seem to be necessary, I chose (on parsimonious as well as biological grounds)
to model the macrocyst with no sexual recombination. Individual vegetative



behaviour was modelled with individuals having a genetically encoded energy
threshold above which they mitotically reproduce.

D. discoideum cells are modelled as individuals in a non-spatial environment.
At each time step, a number of individuals (N) are selected at random, each
receives a 0.5 units of energy (representing food) with probability p. One cycle
in the model contains two seasons. The amount and probability of food (N and
p) changes value according to whether the season is ‘high’ (N = 100,p = 0.6)
or ‘low’ (N = 20,p = 0.3). Each season lasts 200 turns. All individuals pay a
daily energy cost (E. = 1.0) irrespective of season. If an individual’s energy falls
below zero (x < 0), it will die.

Each individual cell is modelled with two genes'. The genes model energy
thresholds which determine the behaviour of the cell. Cells will join the macro-
cyst when their energy level is below the first gene, the macrocyst join threshold
(—2.0 < Gjjoin < 2.0). When a cell’s energy level is above the second gene, the
split threshold (5.0 < Ggpiiy < 20.0), the cell will pay an energy cost to split
mitotically (see Fig. 1) and produce a new cell (sharing energy equally between
itself and its offspring).

There is only one macrocyst in the model it is assumed to be immobile and
therefore does not receive food from the environment. When cells join it, they
contribute their own energy (z) plus a residual energy amount (equal to the cost
of splitting) to the macrocyst’s ‘pot’ (X). Before closing the macrocyst pays a
cost Ey, per individual joined every turn to reflect metabolisation and building
of cellulose. If the macrocyst energy falls below zero (X < 0) then it (and all
its joining cells) will die. When the macrocyst reaches a predetermined energy
threshold (30.0), it closes and no other cells may join.

The macrocyst will germinate on the first turn of the high season. When it
germinates, the energy is divided up into new cells with each cell receiving 2.5
energy units. All new cells will have the same genotype: a complete genotype
(no recombination) is picked at random from all the cells that originally joined
the macrocyst.

Simulations were run over 100,000 turns. Each simulation started with 100
individuals, each individual having a random genotype and a random energy
between 0.0 and 5.0.

3 Results

To understand how the harshness of the low season can effect the viability of
the macrocyst, simulations were run varying the probability of food in the low
season. Interesting population dynamics, with macrocyst offspring outcompeting
the non-joining population, were observed and these are presented in this section.

The average percentage of individuals which germinated from the macrocyst
is plotted against the probability of food in the low season in Fig. 2. When

! Genes are represented as floating-point numbers in the simulation, point mutations
occur at each time step over a gaussian distribution with standard deviation of 1%
of the gene space
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Fig. 2. Graph showing the percentage of individuals which germinated from a macro-
cyst at the start of the high season against the probability of food in the low season.
Each data point (ten data points, each generated with different random seeds, per
food-probability value) represents an average over a complete simulation run.

the probability of receiving energy is higher, few individuals (= 20%) join the
macrocyst. When there is a lower probability of food, more individuals join the
macrocyst. However the rogue data points at the bottom left of the graph are
of interest.

To investigate this disparity with some populations producing macrocysts
and others not, the probability of food and seed value were selected from one of
the rogue data points. The simulation was run over a longer (150,000) number of
turns. A histogram was generated for the macrocyst join threshold at the start
of each high season and the results are shown as a 3D mesh in Fig. 3A.

In the figure, the presence of macrocysts can be seen as spikes on the right
hand side. An early tendency towards macrocyst joining is evident (far right
of graph) but these genotypes die out after ~ 25 cycles. A population which
does not produce germinating macrocysts immediately flourishes. After ~ 150
more cycles there are enough individuals to successfully produce a germinating
macrocyst which survives to the end of the low season. Interestingly once this
has happened the macrocyst very quickly wipes out the non joiners from the
population. The offspring from the macrocyst must have some sort of competitive
advantage over the non-joining population.

A closer look at Fig. 3A indicates that when there are not enough individuals
joining the macrocysts to make them germinate, there is only a small tendency
toward individuals that will not join the macrocyst when their energy is very
low. Between cycle 25 and cycle 175, the histogram shows a larger proportion of
individuals having a join threshold below zero, however some still remain with a
threshold above zero. There is clearly little selection pressure against individuals
sacrificing small amounts of energy when near to death.
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Fig. 3. 3D histograms of macrocyst join thresholds (A) and individual split thresholds
(B) of the population at the start of each high season.

A second 3D histogram was generated for the split thresholds of the pop-
ulation at the start of the high season and can be seen in Fig. 3B. There is a
clear disparity of the split thresholds between the macrocyst joining population
and the non joiners. Again, in the first few cycles of the simulation (where the
macrocyst joiners were predominant in Fig. 3A), the population has a low split
threshold — individuals will split as quickly as possible. After ~ 25 cycles the
macrocysts die out. There is now a clear tendency for dominance in the popu-
lation for individuals that split more slowly. Once the macrocysts return (after
/2 160 cycles), the split thresholds of the population immediately return to lower
values (< 7).

Simulations run with all individuals having the same, fixed, split threshold
resulted in either the individuals all dieing, through starvation in the low season,
or a small percentage joining the macrocyst when food is more plentiful (data
not shown). The competitive advantage of the macrocyst joining population was
no longer effective and macrocysts were only formed through enough individuals
sacrificing their energy in a similar way to the non-joining population in Fig.
3A.

Other simulations have been run with variable split thesholds and the low
season completely removed to see if parameters exist where a macrocyst can
form and dominate the rest of the population. Simulations were run with vary-



ing parameters of N and p, both seasons having the same values. While some
macrocyst production was observed it was only at the beginning of simulations
where the random starting population allowed for enough individuals that joined
the macrocyst and made it viable for a few cycles (data not shown).

4 Discussion

In Section 1 I have argued of the need for a model that demonstrates the transi-
tion between individual cells that ordinarily reproduce on their own to cells that
become part of a super-organism, with only one genotype of the participating
cells being passed on to future generations. For the macrocyst model to succes-
fully meet the requirements of this transition, it requires that all individual cells
must be able to reproduce on their own. It also requires that individual cells
must be clustered and that only one of the individual cells reproduces on behalf
of the cluster. The model presented meets these requirements. Simulated cells
that have the freedom to evolve a strategy in which they will not join macrocyst
organisations (where their genes are highly likely to be destroyed) do not evolve
this strategy under fluctuating environmental conditions.

The model does however stop short of demonstrating the type of germ-
line/soma differentiation and clustering apparent in the metazoa where there
is differentiation of the germ line early in development [17] and permanent clus-
tering (as in other models, e.g., [27,19]). The macrocyst’s germ-line cell is the
zygote which is not differentiated from any other cells in the super-organism.
Also, the macrocyst cells are only clustered at one point of the life cycle. How-
ever, the fact that the macrocyst’s offspring are of only one genotype and that
they outcompete individuals that do not join the macrocyst is of some signifi-
cance.

The fact that the macrocyst produces offspring of a single genotype is im-
portant in three ways. Firstly it has the effect of producing several homogenous
offpsring which are all ‘preprogrammed’ to join the macrocyst at the start of the
next low season. These offspring have a competitive advantage over individuals
that do not join the macrocyst. The macrocyst therefore contributes to its future
success. Since microbes can evolve many ‘policing’ mechanisms [24], it is not in-
conceivable that after several generations, the macrocyst way well have become
established in the organism without the need for a harsh low season each cycle.

Secondly, the high relatedness of the offspring can be seen to promote other
social behaviours. Relatedness is crucial for any traits that require many co-
ordinated individuals or altruism to be successful. The aclonal nature of the
macrocyst offspring means that it is highly likely that the next aggregation
event will also be aclonal or at least highly related. If these individuals have
the same mutation which means (perhaps under certain environmental condi-
tions) they no longer fuse to form a zygote then other interesting collective
behaviour may occur instead. These behaviours could include, but are not lim-
ited to, the slug behaviour of D. discoideuwm which requires many coordinated
individuals [14], and the stalk behaviour of D. discoidewm which requires altru-



ism from many cells [1]. The macrocyst has been argued to be a precursor of
these behaviours [13]. The combination of the macrocyst model with one of the
stalk /spore behaviour (based on [1]) will hopefully confirm how important the
population homogenisation effects of the macrocyst were for the evolution and
maintenance of stalk/spore behaviour in D. discoideum.

The homogeneous macrocyst offspring are important in a third way: By pick-
ing the genotype of its offpsring from one individual at random, the macrocyst
stage eradicates the potential for cheating: If an individual were to evolve a
‘cheating’ trait so that its genes were most likely to be picked, the next popula-
tion would all have that same trait - with no individual having any advantage.

To consider how split thresholds are important I analyse a complete cycle.
In one cycle of the model presented here there are four phases for non macro-
cyst joining amoebae: (i) Early high season exponential growth; (ii) Population
equilibrium at high season; (iii) Early low season exponential decimation of the
population; (iv) Population equilibrium at low season. While it is easy to see that
fast (low threshold) splitting amoebae would flourish during phase (i), these same
amoebae will be closer to dying during phase (iii). The results suggest that a slow
(high threshold) splitting strategy is more profitable, not only in phase (iii) but
in phase (iv) as well. In phase (iv) individuals receive food with a low probability,
those with a fast (low) split threshold are less adapted to survive fluctuations
in food availability. The macrocyst allows individuals to avoid phases (iii) and
(iv) and hence fast splitting individuals that germinate from it at the start of
the high season are very well adapted to phase (i). This ability to perform well
during circumstances of diminishing populations has already been observed as
an important feature of early multicellular organisms [12].

While I have attempted to be faithful to biological evidence, the model pre-
sented here has made some assumptions and has some limitations. Further anal-
ysis and research is required into the biological plausibility of the split thresholds
in the model. The question as to what might happen if individuals have a sea-
sonally varying split threshold is also important. The model is undimensional
and therefore lacks spatial effects (though the way the organisms are fed is set
up to mimic a spatial environment): a spatial model would allow us to analyse
what might happen if individuals could effect their chances of being the chosen
genotype. The mutation rate in the model is unnaturally fast, however slower
mutation rates provided similar results over longer periods. Finally there is only
one macrocyst in the current model, future simulations will model more than
one macrocyst.

The model and results presented in this paper demonstrate that, given the
assumptions outlined, the D. discoideum macrocyst stage is plausible under the
large fluctuations in food in the model. The results and analysis lead me to
hypothesise that the model of the macrocyst presented in this paper, where in-
dividuals gamble their genes to become the germ line of a super-organism, may
well have been a crucial stage in the transition to multicellularity. It must be
noted that it is only a stage in the evolution of D. discoideum and may be rel-
evant only to this organism. However, the facts that the slug behaviour of D.



discoideum is reminiscent of other metazoa and that their phylogeny implies a
common ancestor imply that slime mould may give some important clues into
the evolution of the metazoa and perhaps other multicellular organisms.

Acknowledgements: Thanks to Jason Noble and Richard Watson.
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Abstract

A computer simulation model, can produce some interesting
and surprising results which one would not expect from ini-
tial analysis of the algorithm and data. We question however,
whether the description of such a computer simulation mod-
elling procedure (data + algorithm + results) can constitute
an explanation as to why the algorithm produces such an ef-
fect. Specifically, in the field of theoretical biology, can such
a procedure constitute real scientific explanation of biological
phenomena? We compare computer simulation modelling to
explicit mathematical treatment concluding that there are fun-
damental differences between the two. Since computer simu-
lations can model systems that mathematical models can not,
we look at ways of improving explanatory power of com-
puter simulations through empirical style study and mecha-
nistic decomposition.

Introduction

It seems possible that computer simulation modelling could
become the new modelling paradigm in biology. As mod-
ellers build transparent, tractable, computer simulation mod-
els their relaxed assumptions will, in comparison with tra-
ditional explicit mathematical treatments, make for con-
siderably more realistic models that are close to the data.
The “Virtual Biology Laboratory’ is proposed (Kitano et al.,
1997) where a cycle is applied through comparing computer
models with empirical evidence: the results from each pro-
cedure inspiring the direction of the other. Animals, such
as C. elegans, have been well studied using computational
models, e.g., (Bryden and Cohen, 2004). Indeed the forma-
tion of a complete model of the organism has been identi-
fied as a potential grand challenge for computing research
(Harel, 2002). However, a full exploration of the rela-
tionship between mathematical and computational models
in biology has not yet been achieved. Questions remain:
for instance, whether both forms of modelling can peace-
fully coexist, whether mathematical models should aspire
to the complexity of computational models, and conversely
whether computational models can ever be as precise as a
mathematical treatment.

In this paper we are mainly concerned with the scientific
modelling of biological systems, however we hope that the

findings can be applied more generally. Biological systems
are made up of many different subsystems at different levels.
Alife models often reside in the interface from one level to
the next and can become extremely complex, especially as
entities from any level can interact with entities from other
levels.

The discipline of computer simulation modelling allows
modellers previously unheard-of freedom to build and un-
derstand systems of many interacting parts. This new ex-
pressive freedom appears to have the potential to become
the new modelling paradigm in science, perhaps overriding
traditional techniques which use explicit mathematical treat-
ments. However, this freedom does not come without a cost:
as more and more detail is added computer simulation mod-
els can quickly become unwieldy and too complicated to un-
derstand.

How then can computer models contribute to the task of
producing scientifically acceptable explanations? The use
of a complex yet poorly understood model may be accept-
able as some sort of loose analogy. However, Di Paolo et al.
(2000) have argued that without a proper understanding of
the internal workings of a computer simulation model, it can
be impossible to say whether such a model makes a valuable
contribution to the scientific problem it is addressing. They
describe such problematic models as ‘opaque thought exper-
iments’, arguing the need for explanations of the phenomena
modelled. They suggest that modellers should use an ‘ex-
perimental phase’ in which manipulations are made to the
computer model, the results of these manipulations hope-
fully generating insights into the workings of the system.
Once the internal mechanisms are understood, the transpar-
ent model can then not only give new insights into the sys-
tem being modelled but can also become a powerful predic-
tive tool.

We question whether a computer simulation model can, in
and of itself, constitute a scientific explanation. For exam-
ple, one might produce a model in which individual organ-
isms are explicitly represented and a particular population-
level phenomenon appears to emerge. But this does not con-
stitute an explanation of how entities from one level of a bio-



logical hierarchy produce interesting phenomena at another
level. Di Paolo et al. (2000) argue that some explanation is
required above a basic description of the model and the sys-
tem it represents. In this paper we look further into what an
adequate explanation of a model’s mechanisms should en-
tail. We will compare the account that we construct with the
more basic position, sometimes seen in the artificial life lit-
erature, that a bare-bones description of a biological system
with a computer model that qualitatively produces similar
behaviour—with little or no extra analysis or explanation—
can constitute a scientific explanation of some phenomena.

Given the above picture we must also consider the tradi-
tional methodology of explicit mathematical treatment. By
explicit mathematical treatment we mean a model which is
complete and contains no implicit steps, the steps can be
logical statements and do not need to be formally written
using mathematical symbols. While computer simulation
models are fundamentally mathematical constructions, they,
in the way they are reported, contain implicit mathematical
steps rather than the explicit steps used by formal mathe-
matical models. An explicit mathematical treatment takes
logical axioms and specifies a number of clear explicit steps
that deductively generate some result. In this paper we com-
pare this traditional treatment with the new computational
approach.

Firstly we set the context, we look at a framework for
scientific modelling. Then, by looking at two examples of
a similar system, we identify some properties that charac-
terise an explicit mathematical treatment and which a com-
puter simulation is unlikely to share. Having established that
explicit mathematical treatment is the ultimate goal of any
modelling enterprise, we look at how computer simulation
models do indeed still have value. We look at how com-
plex and unwieldy computer simulations may be simplified
to more easily generate explicit mathematical treatments—
proposing that this can be done by decomposition into sim-
pler systems. Finally we set out, in an order of merit, the
various different modelling approaches discussed.

A framework for scientific modelling

To understand how modelling is important and relevant
within scientific investigation, we present a framework for
scientific investigation with the scientific modelling cycle
highlighted. Figure 1 presents a diagram of the framework.

The primary focus of scientific investigation is the build-
ing of a good conceptual model of the real world. Expla-
nations of the real world reside in the conceptual modelling
area of the framework, these are recorded in the scientific
corpus. The basic scientific process involves the submission
of concepts to the twin tests of empirical science and scien-
tific modelling. The main focus of the framework, however,
is on scientific modelling and the interface between a con-
ceptual model and a working model.

Both computer simulation models and explicit mathe-

Real World
A

Empirical 3

science !
Y

Conceptual Model

Scientific Corpus

Results Assumptions

Working Model
Modelling Tools

Figure 1: The cycle of enquiry in scientific modelling within
the context of scientific investigation.

matical treatments reside in the working model area of the
framework. We take a working model to be a determinis-
tic and completely specified model of a system. (Whereas
a conceptual model may remain vague in places, a working
model must be completely fleshed out.) Logical processes
are applied to the axioms and the results of this process are
recorded. Logical processes can include mathematical equa-
tions, logical deductions and computations. Working mod-
els produce results which are used to refine and update the
conceptual model.

Before we specifically look at the sorts of results that can
be generated by explicit mathematical treatments or com-
puter simulation models, we discuss the types of assump-
tions that can be used to generate a working model. An as-
sumption is essentially an abstraction from a more complex
system. There will be many abstractions from the real world
in the conceptual model (tested by empirical science) and
it will normally be necessary to make further abstractions
for ease of modelling. One of the main benefits of com-
puter simulation modelling (Di Paolo et al., 2000) is that
assumptions can be very easily added to or removed from
models to see if they are significant or important. Explicit
mathematical treatments tend to be more fixed in their as-
sumptions. The types of abstractions used by either explicit
conceptual models or computer simulation models can be
distinguished into two groups, reductionist and analogous
abstractions. We take inspiration for this distinction from
Bedau’s discussion of ‘unrealistic’ models (Bedau, 1999).

In order to highlight the important differences between
the use of computational and mathematical techniques in
building a working model, we must first consider the out-
comes of a successful working model for the broader scien-
tific project. The more valuable results generated by a work-
ing model will form some kind of explanation of why some
phenomenon is present in the conceptual model. Other,
less valuable, results include those that generate predictions.
With an explanation generated by a model to hand, an empir-
ical scientist can easily and quickly generate good empirical



experiments to test whether an explanation is valid or not. A
working model may indicate that some factors are more im-
portant than others for a particular phenomena. This may di-
rect empirical science toward a more fruitful direction. The
value of a result can depend not only on the type of working
model used to generate the result, but also the assumptions
used to generate the working model in the first place.

Competence and performance in scientific
modelling

The previous section has set out the tasks necessary before
embarking on a modelling enterprise: Once a conceptual
model has been chosen that builds a picture of what is known
about some real-world phenomenon, assumptions are then
chosen to simplify this conceptual picture into logical units
and axioms that can be built into a model. Up to this point
everything is quite similar between the two logical mod-
elling styles. Perhaps it is natural to assume that since both
modelling techniques are analytical, the style of the results
will also be quite similar?

To answer this question we must consider a thought ex-
periment based on a specific example which can easily be
understood and modelled by either a computer simulation
model or an explicit mathematical treatment. The Lotka-
Volterra system is a mathematical treatment of a predator-
prey system. Two equations model the dynamics of the sys-
tem:

dx
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I Xy (D
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where x is the prey, y is the predator and A, B,C, D are con-
stants. This system famously generates oscillations between
the predator and prey populations. This mathematical treat-
ment can be considered alongside an individual based com-
puter simulation model of the same phenomenon.

A typical example system might be as follows. In a com-
puter simulation model, individuals may have a location on a
spatial grid moving at random each turn. If a prey individual
encounters some food in its square it will receive an energy
bonus, if it encounters a predator it will be eaten with the
predator receiving an energy bonus. If either a predator or
prey individual’s energy level goes above a threshold then
it will reproduce, and if any individual’s energy level goes
below a threshold, it will die.

Without wanting to go into too much detail, we assume,
for the purposes of argument, that the computer simulation
has very similar dynamics to the mathematical system. That
is, both systems will make the same predictions about any
particular predator-prey system to which they might be ap-
plied. The two systems can now be compared against each
other and we can review our initial question concerning the

nature of the scientific explanation that may be derived from
each modelling enterprise.

To answer that question we draw on a distinction intro-
duced by Chomsky between competence and performance
(Chomsky, 1986). Chomsky’s approach considers whether
the linguistic corpus can be used as a source of empirical evi-
dence for linguistic enquiry. He distinguishes between com-
petence (our internal unconscious capacity for language) and
performance (actual instances of language production). Re-
garding linguistic inquiry, he argues that we should take
this distinction into account considering models of linguistic
competence above models of linguistic performance.

We use Chomsky’s distinction to shed light on the differ-
ing styles of scientific explanation that are likely to follow
from the use of computational versus mathematical treat-
ments of a particular problem. From this point of view, the
computer simulation model must merely be considered as a
performance of a scientific explanation, whereas the explicit
mathematical treatment can be considered as having compe-
tence (an innate capacity) as a scientific explanation.

Simulation runs have the same sorts of problems as those
Chomsky identifies for linguistic performances. They are
subject to faults (in code as well as in run-time conditions)
and each simulation model is merely a single data point and
may not reveal the complete potential of a system. In a sim-
ilar way, it is possible to hide flaws in the performance from
the audience. Simulations can be set up so that the data
points presented make the best possible case for whatever
it is the modeller is trying to argue.

Alternatively, explicit mathematical treatments, assuming
they are done correctly, are analytically complete: flaws in
the system are immediately obvious. In addition, mathe-
matical treatments are not limited to some narrow range of
parameters but provide universal coverage of all variables
included in the model. These two properties were identified
by Chomsky as arguments in favour of looking at linguistic
competence over linguistic performance.

Furthermore, explicit mathematical treatments have more
powerful identity conditions than do computational models.
By this we mean that one mathematical treatment can au-
tomatically be established as the same as, or different to,
another treatment, just by comparing the logic. Computer
simulation runs, on the other hand, may produce similar re-
sults for the same problem, but have very different underly-
ing explanations. The opposite can also occur, in that two
computer simulations may be driven by the same underlying
process without this being obvious to an observer.

Mathematical treatments are more reusable than computer
simulation models. Some give good clean results which can
instantly be applied to systems, others benefit from the ease
with which they can be written down in full and passed on.
Such models can then be used as logical axioms for other
models with their competence passed on. In contrast, al-
though computer models can certainly be transferred from



one author to another their results are rarely used, in prac-
tice, as axioms for other models.

One might argue at this point that we can distinguish
the code for a computer simulation model from an indi-
vidual execution of the code. The argument continues
that a simulation run is merely a performance of the code,
the code itself has competence. To answer this point we
look at the style of computer model chosen in the Lotka-
Volterra example above. It was chosen specifically so that
the code would demonstrate an emergent phenomenon (Be-
dau, 1997). There are only two cases possible here. Either,
without an execution of the code its macroscopic function
is opaque, or, if the macroscopic function is deducible from
the code, then this deductive process would necessarily form
an explicit mathematical treatment. If this deductive process
is impossible, any explanation generated must be teased out
by analysis of simulation runs.

At this point, we are left with a conundrum. If com-
puter simulation models are viewed as mere instances (per-
formances) rather than as systematic explanations (having
competence), how can they be of use to science? The answer
is that there are many areas, identified especially in the AL-
ife field, which do not yet yield to mathematical modelling
but in which simulation models can already be produced.
Such simulation models not only have scientific power as
proofs of concept and for generation of insights for perform-
ing empirical science, but they can also have some explana-
tory power (Di Paolo et al., 2000).

When considering a complex simulation in which there
is no explanation of the effects produced, some explanation
can be deduced by performing experiments on the simulated
system in the same way that one would do for an empirical
investigation. In this mode of enquiry a control simulation
is generated in which some important phenomenon does not
happen. This is normally done through some manipulation
of the system. The control simulation is compared with the
untampered system and the results are used as evidence that
the changes made by the manipulations are part of the ex-
planation of the phenomenon.

The above procedure is very similar to the normal mode
of empirical science. A conceptual model can be built of the
working model system and this conceptual model acts as an
explanation. We will now look further into how this form of
explanation relates to an explicit mathematical treatment.

Analytic explanation versus synthetic explanation

To attempt to understand the difference between an explana-
tion generated through the use of a working model in explicit
mathematical form and an explanation generated by exper-
imental manipulations of a computer simulation model, we
consider a distinction used by the logical positivists—that of
analytic and synthetic truths.

According to Frege’s reworking (Frege, 1980) of Kant’s
original distinction, an analytic truth is one that can be de-

duced through logical laws alone. A synthetic truth is one
which needs some other means, generally empirical investi-
gation, to establish its truth or falsity.

We use this distinction to identify modes of truth for
explanations generated by a working model. As pointed
out previously, we assume all working models are using
the same assumptions, i.e., they start from the same set
of logical axioms. We distinguish between an analytic
explanation—one which follows logically from the initial
assumptions—and a synthetic explanation—one which must
be determined by some other means.

Naturally an explicit mathematical treatment is in itself an
analytic explanation. However, empirical experiments done
on a computer simulation can only form synthetic explana-
tions. These synthetic explanations require validation in the
same way empirical science must be validated. The evidence
backing up these validations relies on measurements taken
from performances and is thus open to disconfirmation, re-
production and revalidation.

There is an ongoing debate about the analytic/synthetic
distinction, some arguing that it is not a black and white dis-
tinction but more a question of degree (Quine, 1953). While
Quine’s arguments are concerned with statements about the
real world rather than statements about a closed set of log-
ical axioms, we agree that our distinctions of explanations
should not be black and white. A working model can, like
a biological system, be large and complex. Some parts of
such a system will yield to explicit mathematical treatment,
whereas with other parts we may have to rely on empirical-
style experiments of the kind discussed by Di Paolo et al.
The final explanation generated through such a process will
consist of a mixture of analytic and synthetic statements.

In the next section we present an account of how systems
can be decomposed into smaller parts to identify explicit
mathematical treatments. Successful mathematical treat-
ments will render the resulting explanations more analytic
in the way we have just described.

Decomposition of systems

A system can become hard to analyse when it is made up
from many inter-dependent subsystems. In fact, the identifi-
cation of subsystems is a good first step when tackling such
a complicated system. However, this is rarely simple. When
subsystems are inter-dependent it is not possible to manipu-
late one subsystem independently without affecting another:
both subsystems, at the same time, affect the overall system.
The situation becomes increasingly difficult when the sub-
system’s components are not mutually exclusive from each
other.

Simon (Simon, 1996) describes a ‘nearly decomposable
system’ as being one in which components are independent
in the short term, but dependent in the long term. This is a
useful way to divide a system up and this has been expanded
further (Watson, 2005; Polani et al., 2005) considering mod-



ular dynamical systems. Watson introduces a concept called
modular interdependence to describe a system with modules
that are decomposable but not separable. A hierarchy can be
formed from subsystems and it is easy to see how complex
behaviour can be generated. This hierarchical perspective is
a valuable decomposition of a complex system. If it is possi-
ble to divide up a set of microscopic entities into subsets this
will allow us first to tackle the mechanisms of the subsets,
before understanding how they interact with each other.

In the next section we consider a more general perspec-
tive for decomposing systems. Rather than breaking up the
set of microscopic entities into subsets, we consider a more
arbitrary way of decomposing a system into subsystems that
contain a simplified version of the dynamics of the supersys-
tem.

Mechanistic subsystem

We propose information theoretic definitions of a mechanis-
tic subsystem and interdependence in mechanistic subsys-
tems. This style of definition has been used in (McGregor
and Fernando, 2005) to formalise hyperdescriptions. We
then go on to discuss how these definitions relate to our in-
tuitive notions of these concepts before looking at examples
in the next section.

Define a system S as being a set of mathematical en-
tities, their interactions and their parameters. Take a de-
scriptor function d(S) = M that will map the system S
to a set of descriptors M. Define the entropy of a ran-
dom variable X as H(X) = — > .y p(x)logp(x), the con-
ditional entropy between two random variables X and Y as
H(Y[X) = =3 1ex P(x) X yey P(ylx) log p(y|x) and the mu-
tual information as [(X;Y) = H(Y) — H(Y|X).

Take a system Sy, such that d(S;) = M;. Then, S is a
mechanistic subsystem of S if

S ¢ S 3)
HMM) = 0 4)
IMi:M) > 0 )
I(M;M) < H(M). (6)

The mechanistic subsystem S is a constrained version of
its supersystem S. The constraints can take place in the pa-
rameter space, the number of entities, the nature of the enti-
ties, or their interactions. We list the Equations [(3) to (6)]
and describe their meaning: (3) S is a subset of S; (4) all
information in M, is predicted by M; (5) M| and M share
some information; (6) there is infomation in M that is not
predicted by the information shared by M and M.

The information theoretic definition presented includes
many of the important concepts of a mechanistic subsystem.
However a useful mechanistic subsystem should have two
further properties. Firstly, it should be transparent, i.e., it is
possible to understand why and how it produces its macro-
scopic effects. Secondly, its macroscopic effects should be

of interest when compared to the macroscopic effects of the
main system. We need to avoid specifying macroscopic sub-
systems that are either equally complex to the main system
with only some neglible reduction, or are so simplistic that
they are of no analytic value.

Following on from this definition of a mechanistic sub-
system, we draw on Polani et al.’s definition (Polani et al.,
2005) of a system that is decomposable but not separa-
ble to identify how two mechanistic subsystems can be in-
terdependent. Take a system S and two mechanistic sub-
systems S; and S, the subsystems are interdependent if
0 <I(M;M>) <min[H(M,),H(M,)]. The two subsystems
are neither independent nor completely dependent.

With this approach identified, we can see how it is possi-
ble to break up a complex system of many interacting parts
into simpler mechanistic subsystems.

Examples of Mechanistic Subsystems

We consider, as an example, the spatial embedding of repro-
ducing agents. Space has been shown to be an important fac-
tor in the maintenance of cooperation in a population (Boer-
lijst and Hogeweg, 1991; Di Paolo, 2000). The common
feature of these models is that two regimes are considered.
The models are considered and analysed in a non-spatial en-
vironment before being placed in a spatial environment. The
non-spatial treatment is a mechanistic subsystem of the spa-
tial treatment. In this treatment agents are thought to be
in a perfectly mixed spatial environment, a special case of
the spatial component. A comparison of the interactions of
agents in the spatial and non-spatial environments demon-
strates how cooperation is increased. The mechanistic sub-
system (the non-spatial model) functions primarily as a con-
trol in these experiments.

A different model (Bryden, 2005b) considers collective
reproduction in amoebae. This non-spatial model demon-
strates that cells that reproduce individually must reproduce
more slowly to maintain high energy reserves for periods of
low resources. By reproducing collectively during periods
of low resources, individuals can avoid the need to repro-
duce slowly and can dominate periods of high resources by
reproducing more quickly. The model is complex and it is
not easily apparent why this is occurring. A mathematical
treatment (Bryden, 2005a) analyses a mechanistic subsys-
tem of the main model only considering individuals that re-
produce individually. This treatment shows that, when there
is a greater cost to individual reproduction, the rate of dec-
imation, at times of low resources, will be proportionately
greater than the rate of growth at times of high resources.
Reproducing more slowly will decrease the cost of repro-
duction, and so the mathematical analysis explains why this
occurs in the full model.

A further model (Bryden, 2005¢) considers the effects of
space on the individual reproduction mechanistic subsys-
tem: agents in the model live and reproduce on a spatial



grid. This model can be broken up into two mechanistic
subsystems, firstly a non-spatial subsystem with individuals
reproducing [as treated by (Bryden, 2005a)] and secondly a
spatial subsystem without individuals reproducing. Results
indicate that the spatial effects increased the frequency of
both periods of high resources and periods of low resources.
The mathematical model has shown that this would increase
the tendency for individuals to conserve resources and repro-
duce more slowly. This is an example of a system that com-
bines two interdependent mechanistic subsystems (a spatial
and a reproductive system) that interact with each other to
produce a macroscopic phenomenon.

Away from the field of agent based modelling, we con-
sider models based on neural biological systems. Neural
systems have extremely complex dynamics, which are re-
sistant to mathematical analysis. However, the use of linear
stability analysis has proved useful in identifying mechanis-
tic subsystems which can be used as building blocks within
larger systems. For example, a system of coupled oscilla-
tors, based on the FitzHugh-Nagumo model, has been anal-
ysed as a mechanistic subsystem (Buckley et al., 2004). This
analysis demonstates how, when the oscillators are linked to
a simple gas net, the system can produce temporally distinct
oscillations. Much other work continues into the identifica-
tion of simple oscillatory models, such as that done in Cen-
tral Pattern Generators (CPGs) (Marder and Bucher, 2001).
CPGs can work as mechanistic subsystems within models of
animal locomotion systems.

In this section we have demonstrated how a complex sys-
tem that does not yield to explicit mathematical treatment
may be simplified into mechanistic subsystems which are
more likely to yield to explicit mathematical treatment. We
can observe from the examples chosen that the working
models arrived at through such a process consist of both syn-
thetic and analytic explanations.

The process of simplification identified above is not the
only way of making simpler models. By choosing differ-
ent assumptions and approaching a conceptual model from a
different perspective it is also possible to open up a system to
explicit mathematical treatment. With computer simulation
it is increasing easy to change the assumptions of a model
and get a feel for how the system changes. This sort of ap-
proach is invaluable as a tool for the sort of lateral thinking
needed when generating an explicit mathematical model.

Discussion

While this paper has argued that an explicit mathematical
treatment will provide a superior explanation of a scientific
phenomenon to an equivalent computer simulation, it must
be made clear that the overrarching goal of the scientific
modeller is to build better models which explain important
phenomena which are not as yet understood. To this extent
computer simulation is still a crucial part of the modellers
toolbox. The ease with which models can be produced with

computers is extremely valuable. Furthermore, not only can
these early efforts lead to some important scientific results,
but they can also point towards new directions for mathe-
matical models. We list below, in increasing order of merit,
different styles of working models and explain how valuable
each one is in generating scientific explanation. By starting
with models at the beginning of the list and progressing up
the list, models can become better explanations of scientific
phenomenon.

e A description of an opaque computer simulation and some
vague rhetorical statements that it consists of an explana-
tion of what it is trying to model. We have argued that this
approach is merely setting down a procedure for produc-
ing a performance of explanation of some phenomenon.
However, this approach can still yield a proof of concept
for some topic under debate, or generate insights for em-
pirical experiments.

e The same computer simulation as before, but this time
complete with well documented source code, parameters
and other data that can easily be tested by other users and
reused in new simulations. While this approach does not
yet produce a competent explanation, it allows for more
simple reproduction of the model which will help others
develop it further.

e An opaque computer simulation (with well documented
source code) with some manipulations and simulation
runs that demonstrate how various attributes of the model
explain various phenomena. We have argued that this ap-
proach can yield a competent explanation of sorts, but
this is merely a synthetic explanation and is not logically
grounded.

e An opaque computer simulation (with well documented
source code) that has been decomposed into mechanistic
subsystems. Some subsystems have been treated mathe-
matically. Such a working model can also yield a compe-
tent explanation of sorts, this explanation is more analytic
than in the previous case.

e An explicit mathematical treatment. Such a working
model yields a competent fully analytic scientific expla-
nation.

As set out above, clearly the best option is to produce an
explicit mathematical treatment. However this is rarely sim-
ple, and in many cases mathematics is not yet mature enough
to approach this goal. Since we must live in the real world,
science must answer questions about systems that cannot be
yet modelled by mathematical approaches. Computer simu-
lation modelling provides us a working methodology for ap-
proaching these complex or complicated systems and mak-
ing important steps toward understanding them.

Further to this, it is important to note that computer sim-
ulation models can extend already established mathematical



treatments. By extending or relaxing the assumptions made
in the purely mathematical treatment, the new model will
rely on the mathematical treatment as a mechanistic subsys-
tem but may produce new results or important insights on
the mathematical model (Harris and Bullock, 2002). Since
computer simulation models lend themselves to more accu-
rate, relaxed assumptions, when explanations become avail-
able they are more likely to be of value to the conceptual
model under question.

What is important is that scientific models progress up the
order of merit listed. A novel modelling approach that iden-
tifies a new style of working model may have value even
if it merely provides a performance of some scientific ex-
planation. Such a system can be experimented with and
decomposed into mechanistic subsystems and the standard
of explanation will improve. This is one of the benefits of
computer simulation modelling in that it gives us tools to
break down a problem so that we can get closer to an ex-
plicit mathematical treatment through an iterative process.
Computer simulation models can be thought of as provid-
ing tools for developing imagination and lateral thinking in
modelling approaches.
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Abstract. To look for an answer to the puzzle of why complexity may
increase, this paper looks to the major evolutionary transitions — a re-
curring pattern where individuals give up their rights to reproduce in-
dividually and instead reproduce as part of a super-organism. A simple
model of collective reproduction is presented and discussed in light of
this topic. The model finds that collective reproduction is actually to
the benefit of the individual, not to the group. The cost of reproduction
is shown to be an important factor and different scenarios are presented
which show individual, sexual reproduction and collective reproduction
(with larger numbers of parents) as optimal.

1 Introduction

One of the most striking features of our evolutionary past is the rise of the
complex individual. As we replay the timeline of natural history [1], the most
complex species has become increasingly more complex. One of the major goals
of Artificial life has therefore been to recreate such increases in individual com-
plexity in-silico [2]: i.e., within a computer.

The common opinion in biological circles [3] is that core evolutionary theory
is all we need to explain the evolution of life and its astounding complexities.
However, this does not seem so hopeful when attempts to reproduce such effects
in ALife computer models, which implement all the main features of evolutionary
theory, have not produced much complexity of interest whatsoever [4]. It seems
clear therefore that there is something missing, perhaps just from the models
that have attempted to recreate some of the complexity of life, or perhaps even
from the evolutionary theory they are based on. This paper looks for a process
(or processes) that can increase the complexity of an individual.

A profound theme observed in nature is the hierarchical structures (units
made up from sub-units) that can be found [1]. These hierarchical structures
are a recurring pattern, and can be seen at all levels of biology. The important
feature at every level of these hierarchies is that units are made up of sub-units:
proteins are made of chains of amino acids, cells/organelles are made of proteins,
eukaryotic cells are made up of organelles, multicellular organisms are made up
of eukaryotic cells, and societies are made up of multicellular organisms. Each
unit is of greater complexity than each sub-unit.

This repeating pattern implies that there may be some common feature in
individual sub-units from every level that leads them to form themselves into



larger units: an evolutionary force that binds these units together. Or, put an-
other way, a mode of interraction that is common to sub-units at every level. In
fact, these sub-units have common features at every level. They all make copies
of themselves, which may or may not be perfect copies, and they all compete
with other similar individuals over resources.

One other feature has been highlighted and is seen in the literature studying
the evolution of new super-units from sub-units. These evolutionary steps have
been dubbed major evolutionary transitions [1]. It has been observed that all
of the transitions are characterised by one simple common paradigm: sub-units
that could previously reproduce on their own can now only reproduce as part of
the super-unit [5]. Since each of the transitions involves an increase in individual
complexity, I look for a general model of the transitions which can illuminate
processes for increase in individual complexity.

A common approach to explaining some of the individual transitions is to look
to altruism and social evolution. The central thesis, here, is that any individual
involved in collective reproduction is performing an altruistic act. L.e., taking a
reduction in their own reproductive success so that the reproductive success of
the group may increase. It has long been rejected that an individual may reduce
its fitness (lifetime reproductive success) to benefit its local group [6]. However,
it has been shown how an individual may take a reduction in personal fitness to
benefit related organisms [7, 8] through kin selection.

The kin selection perspective has shown some value in explaining the main-
tenance of eusociality (social insects), however it is not clear that it (or altruism
in general) explains the origins of this transition [1,9]. Indeed one problem with
kin selection is that its benefits can be negated by increased local competition
for food [10]. One question, considered here, is therefore whether altruism ac-
tually is crucial for explaining the origins of collective reproduction. It may be
possible to find explanations that are mutualistic: i.e., the outcome for both the
individual and the group is beneficial.

On the face of it, given the literature on the cost of sex (e.g., [11,12]), it looks
unlikely that a mutualistic explanation may be found for collective reproduction.
Put simply, the cost of sex means that individuals which reproduce sexually
will grow at a slower rate than those that reproduce individually. Rather than
directly considering Maynard Smith’s model of the cost of sex, I illustrate the
problem by reformulating it within the abstract terms used in this paper. Here,
I make a simple comparison of the growth rates of an individual strategy and a
collective reproduction strategy (with two parents) based on the way resources
are allocated to offspring, as shown in Fig. 1.

Since individuals with the collective strategy share contributions to offspring,
they contribute less than those with the individual strategy. This means that the
average level of resources per individual in the collectively reproducing popula-
tion will be higher than those in the individually reproducing population. For
a fixed input of resources to the system, this means that the collectively re-
producing population will grow more slowly than the individually reproducing
population. If we look at cases where there are increasingly larger numbers of



Individual reproduction  Collective reproduction

Before
reproduction

/\

l RN l
After
reproduction

Fig. 1. Individual reproducers will grow more quickly than collective reproducers. In-
dividuals are represented as resource containers of size Ri, with the level of resources
represented by how full the containers are. They are shown just before, and immediately
after reproduction. Each new individual from the sexually reproducing population will
have an average resource level of 2R, /3 so, for the same resource input, this population
will grow more slowly than the individually reproduction population which starts with
an average resource level of Ri/2.

parents, then the same reasoning can be used to show that the growth rate will
be increasingly slower (e.g., when there are 3 parents, this population will have
an average resource level of 3R; /4 after reproduction).

Given this cost of collective reproduction, it seems unlikely that there is any
advantage to collective reproduction. However, this analysis only looks at the
growth phase. Any population that grows will eventually exhaust the resources
in its environment and the population will either decline or reach a static level.
Because collectively reproducing individuals have, on average, greater resources
after reproduction they are less vulnerable during times of population decline.

To approach modelling the major evolutionary transitions, I take an abstract
perspective in order to produce a toy model. This approach, based on the com-
mon factors of the subunits identified above, simplifies the world to resources,
individuals and individual strategies. Individuals accumulate resources, expend
resources, make copies of themselves and share resources with those copies. Given
that an individual lives within an environment with factors outside of its control,
I assume that they have little control over the way they accumulate or expend
resources. The space of strategies that they may adopt is therefore concerned
with their reproduction strategy.

The model simply approaches the question as to whether it is a better strat-
egy, for the individual, to reproduce collectively or to reproduce individually.
It is looking for an explanation for collective reproduction that is not based on
altruism. In the next section I present the model and its results.

2 The model

Two modelling approaches are taken in this section. After presenting details
common to both approaches, I outline a mathematical model and its predictions.



The predictions of the mathematical model are tested by simulation models in
Section 2.2.
Here each individual ¢ is modelled as a resource level x(i, t) by the equation,

x(i,t + 0t) = x(i,t) + u(t)Ry — Re , (1)

where dt, R, and R, [0 < R. < R,] are positive constants (R, is the maximum
resources available for uptake and R. is the cost of growth/maintenance each
timestep of length dt). Resource uptake (the level of resources received from
the environment) is variable and modelled by u(¢) € [0 : 1]. The variable u
here is used as a surrogate for competition: population fluctuations will lead to
increasing and declining phases, modelled by changes in the behaviour of w.

If an individual’s resource level decreases below the lower threshold Ry (fixed
for all individuals) it will die. Without losing generality, Ry is set to 0 as an ad hoc
simplification. If an individual’s resource level increases above the reproduction
threshold (R;) it will reproduce. All individuals pay a cost of reproduction R, (n)
which is dependent on the number of parents n.

2.1 Mathematical treatment

The mathematical treatment assumes that w is static over the lifetime of in-
dividuals. The resource change dx over a discrete time interval 0t is therefore
modelled as:

0r =uRy, — R. . (2)

The value of u where dx = 0 is defined as ug: ug = Re/Ry.

During reproduction all parents pay the cost of reproduction R.(n). After
this the remaining resources are shared equally between the n parents and the
offspring. All individuals therefore start their lives, just after reproduction, with
x =n(Ry — Ry)/(n+ 1). Two cases for u can now be considered: u > uy and
u < ug. In the first case the individual resource level will increase until it reaches
the upper threshold R, taking an expected time W where,

- n (Rl — Rr) ot
Wysu, = |R1 — il |5z
. (R1 + ’I’LRr) ot
- (n+1éz ®)

In the second case individual resources will decrease until it reaches the lower
threshold at resource level Ry. The expected time W is,

n (Rl — Rr) ot

Wacus = (n+1)ox

(4)
In both cases, as u — ug, W — oo.

The expected population growth rate of a homogeneous population of in-
dividuals can be estimated for the two regimes (v > wg and u < wug). The



expected population growth rate per individual G is equal to the reciprocal of
the time taken for resources to grow for reproduction during population growth
(1/Wysu,) and reciprocal of the time taken for resources to decline for death
during population decline (1/Wy<., ), or [substituting Equation (2) into Equa-
tions (3) and (4)]:

(n+1)(uRy — Re¢) .
n(Ry +nR,) 0t 0
G=10 LU= U (5)
(n+1)(uRy — Re)
n(Ri—R)ot vt

The growth rate (G) is plotted against different values of u for one [n = 1,
R,(1) = 0.1] and two [n = 2, R;(2) = 0.05] parents in Fig. 2. In this case, the
two parents share the cost of reproduction born by the single parent — i.e., the
cost per offspring is the same.

x10~°

= One parent
1.5} = ==Two parents

2

Population growth rate per individual ( G)

0.15 0.2

0 0.05

0.1
Uptake rate (u)

Fig. 2. Growth rates of individually and sexually reproducing populations. The pa-
rameters used were: Ry = 1.0, R,(1) = 0.1, R,(2) = 0.05, R; = 0.001, and R, = 0.01.

The figure shows that the sexually reproducing population does in fact grow
more slowly during population growth (u > ug). This is in line with the reason-
ing presented in Section 1 and Fig. 1. What is also evident from the figure is
that the decline rate of the sexually reproducing population is lower in magni-
tude than that of the individually reproducing population. Furthermore, the two
graphs diverge more as u gets further from wug indicating that fluctuations may
be important, however the ratio between the two plots stays constant. Indeed,
in this example, the growth rate of the sexually reproducing population is 0.75



that of the individually reproducing population. However, the decline rate of the
sexually reproducing population is only 0.71 that of the individually reproduc-
ing population. Interestingly, the sexually reproducing population has a greater
advantage during decline periods than the individual strategy has during growth
periods.

This analysis therefore indicates that the ratio of growth and decline rates is
important and that fluctuations might also be significant. Simple mathematical
analysis can be done on the relative growth to decline rates for populations with
different numbers of parents, this is given by:

Gu>u Rl - Rr (TL)
v = 0 = .
) = Gz~ o Tl (n) ©)

It seems very likely that populations with larger values of ¥ will competitively
exclude populations with lower values: this is tested with simulations in Section
2.2. In this model, the behaviour of ¥ depends on the way R.(n) is determined.

I look at three scenarios for determining R, (n). These consider the offspring
cost which is defined as the total reproduction cost spent on each offpring (nR;).
In scenario (i), I consider the case where the total cost of each offspring is static:
R.(n) = R,(1)/n. In this case, Equation (6) is increasing (the denominator is
constant and the numerator increases). Scenario (ii) looks at the case where
the cost of total cost of each offspring increases linearly with each extra parent:
R.(n) = R:(1)[1+c¢(n—1)]/n (cis a constant). Finally, in scenario (iii) I consider
the case where ¥ is constant — i.e. when there is no advantage or disadvantage
to reproducing with more parents. Simple manipulation of Equation (6) shows
that if Vn : ¥(n) = ¥(1) then,

o 2Rr(1)R1
T Ry + R(1)+n[R, — R.(D)]

This sets an upper limit for the reproduction cost: if R.(n) is above this value,
then ¥(n) < ¥(1), if Ry(n) is below this value then ¥(n) > ¥(1).

The offspring cost is plotted in panel A of Fig. 3 for different numbers of
parents in the three cases. Given the corresponding reproduction costs associated
with these offspring costs, panel B shows the value of ¥ calculated by Equation
(6).

As expected, the plot in Panel B of the figure shows how ¥ increases when
the offspring cost is not dependent on the number of parents. The difference in
values of ¥ is relatively high when the number of parents is low — the largest
increase being the difference between individual and sexual reproduction. When
the offspring cost increases linearly with the number of parents, ¥ reaches a
maximum at 2 parents (sexual reproduction) and declines thereafter. Considering
Panel A of the figure, this indicates that, as the number of parents increases,
the total cost of reproduction spent (the cost per offspring) may increase. Again,
this increases sharply as the number of parents increase from 1 to about 5 and
then levels out. For all graphs, changes in parameters R; and R, did not change
the shape of the graphs significantly, however, as the ratio (R;/R;) decreases,
the values generated by Equation (7) increase (not shown).

R, (”) (7)
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Fig. 3. The behaviour of the growth/decline ratio changes with different functions for
R.(n). Panel A shows the cost per offspring generated by the three different functions
of R:(n) and panel B shows the corresponding predicted growth to decline ratio. The
parameters used were: R; = 1.0, R:(1) = 0.1, R. = 0.001, R, = 0.01, and ¢ = 0.3.

2.2 Simulation models

The predictions of the mathematical treatment in the previous section indicate
two things that may be tested with simulation models. Firstly whether the value
of ¥ is a good predictor for which strategy is optimal and secondly that fluctu-
ations may also be significant.

Simulations are done with agents modelled as resource levels, based on Equa-
tion (1). At each timestep an agent pays a growth/maintenance cost R.. When
its resources are below zero, an agent will die. Each agent has a reproduction
strategy which is defined by the number of parents (from 1 to 10) the agent will
reproduce with. Those with the same reproduction strategy will reproduce when
enough agents (depending on the number of parents defined by their common
strategy) have resource levels that are above Ry (resource levels may go above
R; without penalty). Each parent pays a cost of reproduction R,(n) and all
parents share their energy with the new offspring.

The simulation models are essentially non-spatial, with individuals located
on a grid but moving to a random new cell each timestep.! Agents consume
a resource unit if they encounter any on the square they are on. A number
of resource units, each of value R, are randomly scattered on a spatial grid
(of 50x50 squares) each time step. The number of units is either static (set to
200) throughout the simulation, or fluctuated between two values (100 and 200)
changing every 1,000 timesteps.

! The results in [13] showed that agents receive resources with between-resource inter-
vals on a geometric distribution when they move to random grid squares each time
step



The simulations were run with the three scenarios for determining R, (n)
presented in Section 2.1. All scenarios were tested with a static resource input
to the system and fluctuating resources. The scenarios were run ten times, with
each run initialised with a different random seed. After 1,000,000 timesteps the
number of agents with each reproduction strategy was averaged over all ten runs.
The results are plotted in Fig. 4.
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Fig. 4. Collective reproduction depends on offspring cost and resource fluctuations.
Parameters for the simulations were: R; = 1.0, R:(1) = 0.1, R. = 0.001, and R, = 0.01.

The figure shows that, when the offpring cost does not increase with the
number of parents, reproduction strategies with higher numbers of parents will
dominate. In fact any strategy with less than 7 parents has been completely
eradicated from the simulations of this scenario. When fluctuations were also
introduced, similar results were seen (not shown). When the cost per offspring
increases linearly, the sexual strategy is dominant over the other strategies —
as predicted by the shape of ¥ in Fig. 3. Again, the results were similar with
and without fluctuations. When the cost per offspring increases in line with the
upper limit predicted by Equation (7) (see Fig. 3, Panel A), the viability of
collective reproduction depends on fluctuations in resource availablity. With no
fluctuations, individual reproduction is dominant, but when the resources do
fluctuate, collective reproduction is dominant.

3 Discussion

The mathematical model and simulations presented in this paper demonstrate
collective reproduction. Individuals that may reproduce on their own, instead



reproduce as part of a collective. Collective reproduction here is done by sharing
resources contributed to a shared offspring. The modelling work shows that the
cost of this process (the cost of reproduction) is important and fluctuations
in environmental resource levels can be significant. The model also presents
two different scenarios which predict conditions for when sexual reproduction is
optimal and other conditions for when reproduction in larger groups is optimal:
this may help to explain why sexual reproduction is dominant in some animals
and eusociality is dominant in others.

The mathematical predictions presented in Fig. 3 are concordant with the
results in Fig. 4, both predicting when collective reproduction is viable. This
includes subtle effects such as the dominance of sexually reproducing individuals.
Since the results are so similar, the simulation models show that ¥ is good
predictor for which reproduction strategies will competitively exclude others.
The mathematical treatment is therefore instructive (in line with [14]) as to why
there is a long term growth benefit to lineages that reproduce in this way: the
collectively reproducing individuals have greater resources and are therefore less
vulnerable to resource fluctuations.

The work contributes to explaining the rise in the complexity of the individual
in two ways. Firstly, it demonstrates how collective reproduction can benefit both
partners: when more than one parent contributes resources to the production of
an offspring, the combined reproductive expenditure can be significantly larger
than with individual parents (see Fig. 3 panel A, and corroborating simulation
results in Fig. 4). This extra resource is available for the increased complexity
needed for the facilitation of collective reproduction.

Indeed, it is plausible that collective reproduction may happen on many
levels in the same class of individual. Some examples of collective reproduction
may only be viable when the conditions are right, so different mechanisms for
collective reproduction may happen under different conditions. Each may have
different optimal numbers of parents. As well as this, collective reproduction may
happen at different levels at the same time. With some organisms making direct
genetic contributions, others making indirect genetic contributions (through kin-
relatedness [7]) and others perhaps gambling their genetic contribution (see [15]
for an example). There can therefore be many differing mechanisms of collective
reproduction taking place within a population at the same time. As new viable
mechanisms increase complexity, a rich social fabric should emerge.

Secondly, the model, and its insights, implies a potentially fruitful approach
to modelling the major evolutionary transitions. Rather than invoking altruism
or group selection, the model of collective reproduction presented here shows
mutual benefits to reproducing collectively: i.e., that it is in an individual’s
selfish interest to reproduce collectively. There is no need for the individual to
reduce its fitness for the benefit of its kin or its group. Altruism may therefore
not be an essential feature in explaining the major transitions.

That said, this does not imply that altruism is not important in collective
reproduction. Altruism can happen and will act as an evolutionary force when
appropriate. One major assumption of the model is that the resources of all



parents are shared out equally between the parents and offspring. Clearly a
parent that does not contribute in this way may be able to disrupt the process by
contributing less resources than other parents. It could be argued that a parent
that doesn’t do this is acting altruistically, however by contributing less resources
it will also be harming its own representation in the collective reproductive effort.
Study of such cheating behaviour is outside the scope of this paper but can be
addressed in future work. Other future work could also address each of the major
evolutionary transitions in more detail. It is to be hoped that the application of
the style and approach of modelling in this paper will yield interesting results.
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