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Abstract

Graphene is important in the study of 2D systems and has a number of unique properties

and advantages: High charge-carrier mobilities and ballistic transport at room temperature,

high structural stability, relativistic properties and a relatively simple production method.

The potential of a tunable band-gap in graphene nanoribbons suggests that it could become

a leading electrical component. One method that has emerged for modelling nanogaphene

systems is the extended tight-binding model with Hubbard-U. Within a real-space formal-

ism, this model can be easily and efficiently applied to increasingly more complicated sys-

tems, where any number of edge defects, impurities and even patterning can be included,

giving a more realistic description. This thesis investigated methods of structurally perturb-

ing the ideal graphene nanoribbon device and probed the spin-dependent properties that

arose: Random-edge vacancies, asymmetrical notches, uniaxial strain, magnetic inhomogene-

ity, chevron ZGNRs and patterned AGNRs. Random edge-vacancies have been used to

perturb the electronic conductance in order to introduce the conductance gap observed in

experimental results. These studies use the non-interacting tight-binding model, ignoring

coulomb interactions. Introducing coulomb interactions within ideal ZGNRs has been shown

to intrinsically include a conductance gap without edge-vacancies. The work presented in this

thesis investigated the effects of edge-vacancies on the interacting model and demonstrated

that, in general, the non-interacting model is insufficient to describe the physics of disordered

ZGNRs. Controllable, asymmetric perturbations (i.e., notches and magnetic inhomogeneity)

were added to interacting ideal ZGNRs to determine if the spin-dependent properties can

be controlled. Asymmetrical perturbations exhibited spin-dependent conductance. In par-

ticular, magnetic inhomogeneity showed a transition from semi-conductive to half-metallic,

suggesting a possible avenue for spin-filtering in spintronic devices. Finally, bottom-up syn-

thesised GNRs were investigated (chevron ZGNRs and patterned AGNRs) and demonstrated

controllable conductance properties and further work involving these systems was presented.
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4.4 The difference between the ionic positions of a relaxed and nonrelaxed edge-

vacancy defected 12-6-ZGNR at 8.33% edge-vacancy concentration. Trans-

parent yellow(blue) circles denote spin-up(-down) and bold red(blue) circles

denote spin-up(-down) for the relaxed Huang et. al. result and the nonrelaxed

GTB result, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 The difference between the ionic positions of two further relaxed edge-vacancy

defected 12-6-ZGNR at 8.33% edge-vacancy concentrations. Transparent yel-

low(blue) circles denote spin-up(-down) for the relaxed Huang et. al. result

and grey circles denote the relaxed ONETEP ionic positions. . . . . . . . . . 86



LIST OF FIGURES 14

4.6 The effect of systematic edge-vacancies on the local edge-magnetisation of a

relaxed 12-6-ZGNR comparing the GTB with Huang et al.’s DFT LSDA re-

sults. Continuous lines correspond to the relaxed GTB solution obtained using

ONETEP’s relaxed structural input with exponential scaling at 8.33% edge-

vacancy concentration and broken lines correspond to Huang et al.’s results.

The legend in the figure has been based on the one used in Huang et al., corre-

sponding to edge-vacancy concentrations, from top to bottom, of 0%, 8.33%,

16.67% and 33.33%. Within the unit cell approximation, site 1 is equivalent

to site 13 in this system (Figure 4.1). . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Schematic of the ideal 20-5-ZGNR device used as the basis for investigating

the effects of random edge-vacancy disorder. In real-space, the 20-5-ZGNR

device describes a system of width 9.24 Å and length 48.02 Å. . . . . . . . . . 87
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Chapter 1

Introduction

1.1 Abstract

Graphene, a single layer of the carbon allotrope graphite, has been demonstrated, both ex-

perimentally and theoretically, to have properties of interest to condensed matter theory, and

in particular, future device miniaturisation. This literature review gives a general overview

of bulk graphene properties before moving on to the focus of this thesis, graphene nanorib-

bons. This review discusses the mechanisms for gap opening due to quantum confinement

in graphene nanoribbons along with the semi-conducting transport observed in both theo-

retical and experimental results. A brief review into density functional theory and tight-

binding methods of modelling graphene nanoribbons is also carried out. Finally, the effects

of structural perturbations, in particular, random edge-vacancies, asymmetrical patterning

and uniaxial strain are discussed.

1.2 Overview

There is a demand for the trend suggested by Moore’s Law to continue. This law requires

the number of transistors per chip to double every two years [1]. Materials such as silicon, a

fundamental material in the electronics industry, cannot keep up with this growing demand

for miniaturisation [2] due to the silicon oxide insulating layer inside the transistor losing

its insulating behaviour at roughly 5 silicon layers thick, causing a loss of charge [3]. Ini-

tially studies showed that ionised Metal-Oxide-Silicon (MOS) transistors lose their transistor

properties below 50 nm [4]. The lower limit for silicon devices has been improved to 10nm

but there have been significant problems with the cost and reliability of mass production, for

example, issues with gate leakage [5].

One possible material for silicon replacement is graphene [6, 7]. Graphene is a single

atomic layer of graphite as shown in Figure 1.1. Graphite is a honeycomb carbon lattice

structure constructed from a series of hybridised sp-2 bonds, with stacked layers coupled by

25
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Figure 1.1: Graphene’s relationship to graphite. In graphite, each honeycomb layer is sp-2
bonded within the plane of the layers and coupled via Van der Waals forces between layers.
Graphene is a single, independent layer of the graphite structure.

Van der Waals forces [8]. In graphene, the sp-2 bonds create very strong and stable covalent

bonds in-plane, with a single 2p orbital out of plane. It is this out of plane 2p orbital that

gives rise to graphene’s properties as will be discussed in Section 1.3.

1.3 Properties of Bulk Graphene

(a) (b)

Figure 1.2: (a) The real-space unit cell of bulk graphene can be described using a two atom
basis. The square highlights the unit cell. (b) The 2D band structure of bulk graphene
showing the linear dispersion relation between wave vector and energy around two points, K
and K ′, about the Fermi energy. Reproduced from Katsnelson. [9].

The properties of bulk graphene were first formulated using the tight-binding model by

Wallace [10] which modelled the electronic structure and assumed a single 2pz conduction

electron. The band structure of graphene can be approximated using a unit cell of two

carbon atoms as demonstrated in Figure 1.2(a)). This two atom basis is required to fully

map the honeycomb structure. As Figure 1.2(b) shows, this honeycomb structure leads to

a linear dispersion relation around two points in k-space, K and K ′, where the valence and

the conductance bands meet at the Fermi level [9, 10]. These two non-equivalent points in

k-space arise due to the two atom basis [9, 10]. Figure 1.3(a) demonstrates there is also a
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direct mapping of the honeycomb structure to the Brillouin zone of this system. This linear

dispersion relation has been supported by experimental results, for example, the electron and

hole cyclotron masses both have a square root dependence on carrier concentration implying

a linear dispersion relation [7, 11]. The square root dependence implies a linear dispersion

as the effective cyclotron mass is proportional to ∂A
∂EF

, where A is the area within the Fermi

surface, an energy surface within reciprocal space due to the crystal lattice, and EF is the

Fermi energy [12]. ∂A
∂Ef

is proportional to the square root of carrier concentration for massless

Dirac fermions [13]. The solution to the tight-binding model for bulk graphene also predicts

in a zero-gap semiconductor [10, 14]. This means that the valence and conduction bands meet

at a single point at the Fermi level. As Figure 1.3(b) shows, the linear dispersion relation is

only valid within ±1eV of the Fermi level [15].

(a) (b)

Figure 1.3: (a) The hexagonal brillouin zone for graphene. Reproduced from Wallace [10]. (b)
The 1D band structure of bulk graphene showing the linear dispersion relation between wave
vector and energy about the Fermi level. As the image shows, the linear dispersion is only
valid within ±1eV of the Fermi level (0eV) at wave vector = K. Also shown, the difference
between the simple tight-binding model and ab initio Density Functional Theory (DFT)
within the local density approximation (LDA) using the SIESTA package [16]. Reproduced
from Reich et al. [15].

The linear dependence of energy on wave vector suggests that the speed of the electrons

is constant and independent of momentum, analogous to the constant speed of photons [17],

therefore suggesting the electrons are moving relativistically. The low-energy linear dispersion

about K and K ′ can be recreated using the Dirac equation of quantum mechanics [18, 19]:

(βmc2 +

3∑
k=1

αkpkc)ψ(x, t) = i~
∂ψ(x, t)

∂t
(1.1)

Where m is the rest mass of an electron, c is the speed of light, p is the momentum,

x is the space coordinate, t is the time coordinate and ~ = h
2π , where h is the Planck

constant [18, 19]. The importance of the Dirac equation is that it describes relativistic

particles with spin 1/2 as well as predicting anti-particles [9, 18, 19, 20]. To recreate the zero
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gap band structure, massless Dirac fermions are required as normal Dirac fermions lead to a

gap equal to 2mc2 [9, 18, 19, 20]. The Dirac equation maps onto the linear dispersion and

the gapless semiconductor suggesting graphene exhibits relativistic qualities, with the quasi-

particle being a massless, Dirac-like fermion [9, 18, 19, 21]. The zero-gap semiconductor

nature has been confirmed through graphene-based transport experiments [7, 11] and shows

that bulk graphene is still conductive even at extremely low temperatures [22] or in the limit

of zero charge carrier concentration [7].

Figure 1.4: Experimental evidence of the non-zero conductance at very low temperatures (10
k). The conductance is ∼0.1K Ω−1 at this relatively low temperature. Reproduced from
Novoselov et al [7]

.

The crystalline structure, and therefore the Dirac-like fermions, gives rise to the particle

chirality of graphene [9, 17]. When solving the Dirac equation for graphene the two atoms

inside the unit cell must be solved together. The solution to the Hamiltonian of a two atom

unit cell is a two component wavefunction where the components gives the weights on the two

atoms. The two components in the wavefunction give rise to a pseudospin, an extra degree

of freedom due to the two atom basis. These two solutions can be identified by a quantum

index which, within the formalism, is similar to the spin index in quantum electrodynamics

where site A is pseudospin-up and site B is pseudospin-down.

This peusdospin defines the chirality of the particles. When the peusdospin lies parallel

(anti-parallel) to the direction of travel it corresponds to an electron (hole). The transforma-

tion between these two states gives the parity and, due to the Dirac nature of these particles,

the invariance under parity for this system leads to chiral symmetry [23, 24, 25].

Another important property of graphene, particularly for applications, is its high charge-

carrier mobility. The high mobilities together with a high carrier concentration (1011 −

1013cm−2 [7]) provide evidence for the existence of ballistic transport in graphene on the

submicrometre scale at room temperatures [6, 26, 27]. Ballistic transport is an important
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effect as it suggests that the only resistance occurring in graphene devices is from the lead-

device contacts; this has been confirmed experimentally at very low temperatures on a 1µ m

length scale (Figure 1.4) [7, 28, 29, 30].

1.4 Properties of Nanographene

The band-gap of graphene can be opened and then tuned when the material is produced as

a nanoribbon [29, 31, 32]. A graphene nanoribbon (GNR) is a graphene sample that is finite

in one direction and bulk-like in the other. Figure 1.5 demonstrates that the direction of the

finite dimension gives rise to two distinct types of nanoribbon, zig-zag graphene nanoribbon

(ZGNR) and armchair graphene nanoribbon (AGNR).

(a) 13-AGNR (b) 7-ZGNR

Figure 1.5: The two distinct edge-structures of a graphene nanoribbon. (a) 13-AGNR (arm-
chair graphene nanoribbon), (b) 7-ZGNR (zig-zag graphene nanoribbon). The unit cell dis-
tance and ribbon width are represented by a, NA and z, NZ for an AGNR and ZGNR,
respectively [32, 33]. The symbol N in each case give a classification of the GNRs, with
N being the number of dimer lines crossed or zig-zag chains across the ribbon for AGNR
and ZGNR, respectively. These systems are examples of the ideal unit cell defined in this
investigation as the smallest possible unit cell to describe a perfect ribbon. Reproduced from
Hancock el al [33].

The width of a zig-zag and armchair GNR can be described using the following convention.

NA-AGNR describes an armchair ribbon with a width of NA, where NA is defined as the

number of dimer lines that are crossed along the width of the ribbon. NZ-ZGNR describes

a zig-zag ribbon with a width of NZ , with NZ defined as the number of zig-zag chains

across the ribbon width [33]. Figure 1.5 demonstrates the ideal unit cell for both AGNR

and ZGNR. In this work an extra variable, Ua(z), is included to describe the size of the

unit cell for AGNR(ZGNR). The variable Ua(z) describes the number of ideal unit cells used

to approximate the total system. AGNR systems are defined as Ua-NA-AGNR and ZGNR

systems as Uz-Nz-ZGNR such that the full GNRs (including bold and grey sites) in Figure 1.5

can be described as 3-13-AGNR (Figure 1.5(a)) and 5-7-ZGNR (Figure 1.5(b)).
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(a) 12-ZGNR band structure

(b) Three trends of AGNR band structure

Figure 1.6: Comparison between the band structures of two types of edge-structure, (a) ZGNR
and (b) AGNR produced using DFT calculations within the local spin density approximation
(LSDA) using the SIESTA package [16, 32]. Three armchair graphs are used to demonstrate
the three trends shown in Figure 1.8(a). Figure 1.6(a) includes both the direct (∆0

z) and the
indirect (∆1

z) band-gap. Reproduced from Son el al. [32].

1.4.1 Models

This thesis shall discuss two methods of modeling these GNRs. The most accurate of the two

models used is the density functional theory (DFT) ab initio method [34] which attempts to

model the system from first principles. DFT uses functionals to represent the density of elec-

trons and calculates the various internal and external potentials using these functionals [34].

One can calculate the functionals using the local spin-density approximation (LSDA). LSDA

uses the homogeneous electron model, a model that assumes the positive charge from the

nucleus is uniformly distributed throughout the electron gas, to approximate the electron

density for both electron spin types at a specific point in space [35]. Another DFT method is

the generalised gradient approximation, (GGA) [36, 37]. GGA introduces a density gradient

correction into the LSDA approximation [36, 37]. See Ref [37] for a more detailed description

into the GGA approximation. These methods all calculate different results for the sizes of

the band gaps. Dalosto and Levine [38] calculated the difference in band-gap between LSDA

and spin-polarised GGA and found that the LSDA calculates the band-gap to be 1.5 times

smaller with respect to the Perdew-Burke-Ernzerhof GGA [38]. In general both methods are

extremely accurate but computationally expensive. DFT calculations are therefore limited to
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small, ideal systems or small systems containing only a small density of single point defects

and impurities due to the small unit cell limitations of the computationally costly DFT.

Figure 1.7: Example of a mixed-edge system, which was produced by Hancock et al. [33]
to test the generalised tight-binding model. Coloured lattice points demonstrate the spin-
polarisation. Red gives spin down and blue spin up and the radii is proportional to the degree
of spin-localisation.

An alternative method to DFT is the tight-binding model. This model can be solved

with a simple matrix solver and thus is extremely efficient computationally. The parameters

for the model are obtained by fitting the band-gap and band structure solutions to DFT

results. For the parameters, we can use a separate set for ZGNRs and AGNRs, but this

is an issue if we have mixed edge structures, for example notches (Figure 1.7). Hancock et

al. [33] put forward a method that uses a single set of parameters fitted to the band-gap

and band structures of both AGNR and ZGNR, allowing systems with different mixes of the

two edge types to be simulated. There is an issue with both of these fitting methods as any

fundamental errors in the DFT results, when compared to experiments, will be transferred

to the tight-binding results. Unfortunately due to the complexity of experimental structures,

DFT is still the only method used to find the tight-binding parameters.

1.4.2 Band Structure

The properties of graphene nanoribbons are dependent on the edge-structure, which can be

seen by comparing the band structures [32, 39, 40] (Figure 1.6). For ZGNRs, the flat bands,

and therefore very small electron group velocity, close to the Fermi energy (Figure 1.6(a))

suggests a localised edge-state. AGNR does not have a flat band near the band-gap and thus

does not display the same localisation.

In general, the energy band-gaps for both AGNRs and ZGNRs are inversely proportional

to the width of the ribbons [29]. Figure 1.8(a) demonstrates that, for the AGNR system, the

band-gap results split into three separate trends as a function of the nanoribbon width. The

first trend occurs at Na = p ∗ 3, the second at Na = p ∗ 3 + 1, and the third at Na = p ∗ 3 + 2,

where p is > 0 and an integer [32]. Figure 1.8(b) shows that ZGNRs have two key trends,

the direct band-gap trend and the indirect edge band-gap trend at k = π
a . The band-gap

trends in Figure 1.8 are from DFT, LSDA calculations using the SIESTA package [16, 32].
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(a) Band-gap vs ribbon width for AGNRs

(b) Band-gap vs ribbon width for ZGNRs

Figure 1.8: Ab initio calculations for the band-gap vs ribbon width for (a) AGNR, and (b)
ZGNR. The two trends shown in (b), ∆0

z and ∆1
z, are for the direct band and the band at

k = π
a , the band edge, respectively. These calculations were carried out by Son et al. using

DFT, LSDA calculations using the SIESTA package [16, 32]. Reproduced from Son et al. [32].

The band-gap trends are significant as the simple tight-binding model used for bulk systems,

using only 1st nearest-neighbour and no Hubbard-U, does not recreate DFT results. ZGNRs

have semi-metal properties, i.e., conduction and valence bands touch at a single point at

the Fermi energy, when described using the simple tight-binding model [40, 42, 43]. Son et

al. [32] demonstrated this by comparing the simple tight-binding model with ab inito DFT

LSDA calculations using the SIESTA package [16] for AGNRs. They reported that the gap

vs width trends predicted by DFT were not found. Instead two trends, both as a function

of ribbon width, were seen, one inverse trend and one semi-metal trend, Figure 1.9(a). The

two trends as a function of ribbon width within AGNRs is significant as a number of authors

base their predictions on this nearest neighbour tight-binding model [40, 42, 43, 44, 45].

White et al. [46] first demonstrated that single-electron interactions across the ribbon, i.e.,

3rd nearest-neighbour interactions, contribute significantly and will open the semi-metal gap

seen in the simple tight-binding model [46]. Gunlycke and White [41] demonstrated that

edge distortions would also affect the band-gap and would increase the agreement between

the extended tight-binding model and DFT results [41]. In both of these papers, 2nd nearest-

neighbour interactions were ignored. The effect from the third nearest-neighbour hopping was

also demonstrated by Reich et al. [15], however, this paper focused on nanotubes. Yamashiro
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(a) Band-gap vs ribbon width for AGNRs, 1st nearest-neighbour
hopping only

(b) Band-gap vs ribbon width for AGNRs , up to 3rd
nearest-neighbour hopping

Figure 1.9: (a) The three shapes, triangle, square and circle, demonstrate the three trends
predicted for AGNR. Image reproduced from Son et al. [32]. (b) Analytical tight-binding
results for the extended model (stars) compared to numerical first principle local-density-
functional (LDF) results (circles). Image reproduced from Gunlycke and White [41]. Included
as a comparison between a simple tight-binding model and the extended tight-binding model
with up to 3rd nearest-neighbour hopping.

et al. [47] were able to demonstrate the effects of the Hubbard-U term, i.e., the electron-

electron interaction term, on the electronic structure of ZGNRs. This paper did not look

at the effects of the Hubbard-U on band-gap but was however able to to show that the

Hubbard-U term could be applicable to ZGNRs. Fernández-Rossier [48] demonstrated that

the Hubbard-U term opens the semi-metal band-structure predicted by the simplified tight-

binding model. This is in agreement with DFT LSDA results [32]. In Figure 1.10, work by

Hancock et al. [33] demonstrates these effects by introducing the Hubbard-U term and the

extended hopping parameters and comparing the results with DFT LSDA results produced

using the SIESTA package [16]. As Figure 1.10 shows, introducing the Hubbard-U has no

effect on the AGNR system however it opens the gap in ZGNR. The 2nd nearest-neighbour

hopping has a small effect on the band structure of AGNR. The noticeable effect of the 2nd

nearest-neighbour hopping is the breaking of the symmetry seen in the band structure of

the AGNR. Finally the 3rd nearest-neighbour hopping term opens the semi-metal gap seen
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in AGNRs. Hancock et al. uses the same tight-binding parameters for both ZGNR and

AGNR [33].

The band-gap predictions using the LSDA DFT have yet to be shown experimentally in

any great detail and as of yet there has only been a single inverse dependence found [29,

31]. Another issue with these band-gaps is that, when compared to experimental results of

exfoliated samples, the theoretical results are an order of magnitude too small [29]. This

suggests missing physics in even the most fundamental models, for example ab initio DFT

calculations.

The method laid out by Han et al. [29] involves using a mask to protect the ribbon area

before using an oxygen plasma to etch away the unwanted areas. The widths investigated

ranged from 10-100nm and the ribbons were 1-2 µm long. Using this method there is a

relatively large error when attempting to produce widths of specific sizes. Han et al. report

errors in the etched samples to be between 8%-17%.

The band-gaps found using chemically derived nanographene agree with theory [31]. The

chemical synthesis method involves exfoliating the material by heating it for 60s to 1000◦C

in a forming gas of 3% hydrogen in argon. The exfoliated graphite is then dispersed in a 1,2-

dichloroethane solution of poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV)

by sonication for 30 min [31]. Li et al. were able to produce ultrasmooth GNRs smaller than

10nm [31]. Figure 1.12 demonstrates that the trend found by Li et al. agrees with the Son et

al. [32] predictions to a good approximation. The samples tested by Li et al. fall around the

four trends predicted by Son et al., the three for AGNR and the single trend for the direct

band-gap in ZGNR. The samples produced by Li et al. were characterised using transmission

electron microscopy, electron diffraction and Raman spectroscopy and were reported to be of

very good quality, especially when compared to the roughness of the exfoliated ribbons. The

precise edge type of each of the samples were unknown to the group and as such the trend

for ZGNR could not be separated from the one for AGNR [31]. The fact chemically derived

nanographene agrees more directly with theory compared to exfoliated graphene may be due

to the method of synthesis, I.E., bottom up compared to top down, and due to the quality

of the nanographene edges.

Although magnetisation has been theoretically predicted in the case of ZGNRs [32, 49],

there is an issue with its experimental confirmation due to the sensitivity of the magnetisation

on the structural quality of the GNR sample, its purity and the edge structure [50].

1.4.3 Transport

As discussed in Section 1.3, bulk graphene demonstrates ballistic transport. This can be

modeled with the Landauer-Büttiker (LB) formalism [51]. This formalism was developed for

mesocopic systems and assumes ballistic, coherent transport. Mesoscopic systems are larger
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Figure 1.10: Columns: 1, 16-ZGNR band structure. 2, ZGNR band-gap trend. Circles for
direct band-gap, triangles for the band -gap at the band edge. 3, 14-AGNR band structure.
4, ZGNR band-gap trend. For all graphs black gives tight-binding results and grey gives DFT
LSDA results produced using the SIESTA package [16]. Rows: A, Simple tight-binding model
only. B, Simple tight-binding model with Hubbard-U. C, Extended tight-binding model with
up to 2nd nearest-neighbour with Hubbard-U. D, Full extended tight-binding model with
Hubbard-U. Reproduced from Hancock et al. [33]
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Figure 1.11: Experimental results produced by Han et al. demonstrating a single dependence
of band-gap on width observed for these GNR systems. The six systems tested are detailed
in ref [29], P 1-4 are parallel ribbons and D1 and D2 are ribbons with varying orientations
relative to the parallel ribbons. There should be a periodic dependence of the energy gap
on the orientation for GNRs with similar edge-structures. This periodic dependence is not
observed suggesting it is not possible to control the edge-type with this production method
yet [29]. Reproduced from Han et al. [29]

then the microscopic atomic systems but incorporate deviations from Ohm’s law [51].

Areshkin et al. [52] used the simple tight-binding model to show that substrate induced

disorder would not affect the predicted ballistic transport properties in AGNRS due to their

narrow widths leading to energetically isolated bands at the Fermi energy. Edge-disorder,

for example edge-vacancies or edge-impurities, would break the ballistic properties in AGNR

systems [52].

Li et al. [31] measured the conductivity and whilst they did not find values consistent

with ballistic transport they did get values larger than traditional semiconductors [31]. This

could be due to the chemically derived graphene ribbon.

DFT calculations using GGA with the SIESTA [16] package by Dubois et al. [53] and

experimental results by Molitor et al. [54] have been used to find zero transport resulting

from the band-gap predicted for these GNRs [29, 32], Figure 1.13. The system calculated by

Dubois et al., 35-AGNR, would demonstrate a semi-metal band structure if modeled with

the simple tight-binding model, highlighting the limitation of the simplified model. Kim and

Kim [55] also uses DFT calculations to demonstrate the zero conductance in ZGNR ribbons

using the non-equilibrium Greens function method, see ref [55] for more details. They suggest

that either LSDA or GGA can be used but do not go into detail.

Figure 1.14 demonstrates further work by Dubois et al. [53] showing a zero conduction-

gap in the transport results for ZGNR DFT GGA calculations. These results qualitatively

agree with experimental results demonstrating a band-gap [29, 31] and zero conductance [54]

but it must be noted that the experimental results include a voltage bias not included in the

study by Dubois et al. [53].
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Figure 1.12: Experimental results produced by Li et al. [31] The image shows a single de-
pendence observed for these GNR systems as the group were unable to determine the edge
structure of their devices [31]. The black symbols give the experimental data [31], the four
bold lines are the results predicted by Son et al. [32] and the dotted line is fitted to the
experimental results, where Eg = 0.8

W . The Son et al. results are, from the left to the right,
3p+2 AGNR, ZGNR, 3p AGNR, and 3p+1 AGNR, respectively where p is an integer and is
used to define the AGNR trends. Reproduced from Li et al. [31].

1.4.4 Random Edge-Defects

Cresti et al. [56] carried out a review on the effects of edge-disorder, for example edge-

vacancies and edge-impurities, on transport but, even though they showed 3rd nearest-

neighbour hopping has an effect on the band-gaps of AGNR and mention the opening of the

ZGNR gap using spin-polarisation, they did not use the extended model for their transport

measurements. This is a common practice in the literature for GNR transport investiga-

tions [44, 56, 57, 58, 59]. Many researchers apply Anderson localisation [52, 57, 60, 61, 62,

63, 64, 65, 66, 67, 68], to these systems. Anderson localisation applies to metallic systems

and uses random defects and impurities to cause a strong localisation of electrons [69]. This

strong localisation leads to a metallic/insulator transition. These papers suggest Anderson

localisation could be the cause of the zero conductance and band-gap in experimental re-

sults [29, 31, 52, 57, 62, 63, 64, 65, 66, 67, 68]. This ignores evidence that shows that the

extended hopping terms and Coulomb repulsion [32, 33, 46] will open the semi-metal gap

without the need of this Anderson localisation.

Huang et al. [50] have demonstrated using LSDA DFT VASP calculations [70] that re-

moving atoms along the edge of a ZGNR system would reduce the edge-polarisation and thus

edge-magnetisation (Figure 1.15) until the system becomes paramagnetic at 33.33% edge-

vacancy concentration. This investigation is limited by the computational cost of ab initio

calculations and is thus restricted to small systems with systematic defects. A more realis-

tic system would introduce random defects and use a large sample of systems for ensemble
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(a) Dubois et al. [53]

(b) Molitor et al. [54]

Figure 1.13: Comparison between DFT GGA results and experimental results for electronic
transport of GNR devices. (a) Produced using DFT calculations with GGA using the SIESTA
package [16] to model a 35-AGNR. The dotted black line gives the perfect ribbon, red gives a
single defect, i.e., the removal of a two atoms, and blue gives average conductance for a 500
nm long AGNR with 30 defects. The insert demonstrates the edge structure. Reproduced
from Dubois et al. [53]. (b) Produced using experimental techniques. Dimensions for the
experimental system were, W=85 nm and L=500 nm, a bias voltage of 300 µV was used.
There is a lot of noise inside the gap but by tuning the voltage bias [54] (i.e., controlling the
electrical charge at the gate of the device) this noise can be reduced and an accurate gap
found. Reproduced from Molitor et al. [54]. The experimental and the defected theoretical
results have a qualitative agreement of the main features.

averaging. This approach requires a less computationally expensive model, for example, the

extended, interacting tight-binding model. Random edge-defects are of particular interest due

to current production methods, as it is extremely difficult to produce perfect edge structures

using top-down methods [29, 71, 72].

Modelling such edge-defects in realistic systems requires a fast and accurate description

of the properties of nanographene that is not restricted to a specific type of GNR. For this

reason, a more generalised theoretical approach is required to introduce more realistic effects

and thus produce more accurate predictions. Due to the large cells required for realistic edge-

defects, for example edge-vacancies and edge-disorder, a computationally efficient model is
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Figure 1.14: Results produced using DFT GGA calculations in the SIESTA package [16]. The
ZGNR results are for the anti-ferromagnetic system. Graph demonstrates the conduction-gap
in a spin-polarised ZGNR structure. Images reproduced from Dubois et al. [53].

also required. Large unit cells are also required to model the effects of “patterning”, i.e.,

the deliberate introduction of notches and defects rather than introducing them randomly

though production methods.

Edge-vacancies have also been used to perturb the transport properties [52, 54, 56, 58, 59,

62, 63, 64, 65, 66, 67, 68, 73, 74] with Anderson localisation being linked to the decrease in the

overall transport properties [52, 67]. Edge-vacancies are of significance due to the resolution

limits of top down methods leading to highly disordered systems [29, 71, 72] particularly when

compared to bottom up techniques [31, 75, 76, 77, 78]. Huang et al. [50] was able to calculate

the formation energies of edge-vacancies in ZGNR graphene samples and showed that the

energy required for a defect concentration of 0.10Å
−1

was accessible at room temperature.

Evaldsson et al. [79] assumed for AGNR edge-disordered devices that a conductance of

less than 0.01 ∗ 2e2/h was equivalent to zero conductance based on the experimental results

of Han et al. [29]. This criterion was also later applied to 16-ZGNR devices studied by Cresti

and Roche [59]. Areshkin et al. [52] studied 64-ZGNR devices of length 1 µm that had

random edge-vacancies, random edge-disorder (implemented by random variations in the on-

site atomic energies), and variable bond lengths using the STB model. In these studies, the

ballistic conductance of the significantly wide 64-ZGNR systems was determined to be robust

even at a large edge-vacancy concentration of 50% and with an “edge” defined as 4 atoms

deep. In comparison, Cresti and Roche [59] used the STB model to show that a 16-ZGNR

device having a smaller width and length of 500nm exhibited greater sensitivity to the effect

of edge-vacancies with significant perturbation to the conductance at only 7.5% edge-vacancy

concentration. Specifically they demonstrated that the spin-independent conductance in 16-

ZGNR devices would be significantly reduced to below the 0.01 ∗ 2e2/h criterion, thereby

generating the appearance of a conductance gap of ≈ 1.75 eV at lengths greater than 470nm.
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Figure 1.15: Effects of systematic edge-vacancies on the edge-magnetisation of a 12-6-ZGNR
system found using DFT LSDA calculations within VASP [70]. (a)-(c): System map demon-
strating the decrease in edge-magnetisation as the number of edge-defects increase. (d) Value
of the magnetisation at each site along the edge of the system. As vacancies are introduced,
the magnetisation around the vacancy decreases. Note, system is periodic such that site 13
is equal to site 1. Adapted from Huang et al. [50]

The increased robustness of conduction at increased device width compared to the 16-

ZGNR studied by Cresti and Roche [59] has also been demonstrated using the STB model

by Haskins et al. [64] for a 70-ZGNR system with a length of 100 nm. Li and Lu [62]

used the STB model to study ZGNR devices with increasing widths from 5 Å to 55 Å and

demonstrated that, for edge-vacancies with one, two or three edge-atoms, the conductance

remained unperturbed as a function of the increasing device-width. In comparison, AGNR

devices of equivalent widths demonstrated greater relative perturbation to the conductance

compared to ZGNRs having same number of edge-vacancies. ZGNRs in this study became

immune to edge-vacancy perturbation at widths > 30 Å, thereby providing further evidence

of the robustness of ZGNRs against edge-vacancy perturbation.

Mucciolo et al. [67] introduced edge-disorder to a 40-ZGNR device with length 45 nm

and width of 4.7 nm width that was modelled using the STB model where edge roughness

was defined such that r = (W − W̄ )P/a0, where W̄ is the average ribbon width, W is

the undefected ribbon width, P is the probability of an edge-vacancy and a0 is the lattice

constant. Mucciolo et al. [67] found that the conductance of the 40-ZGNR device was robust

to small edge-roughness (r = 0.01), however, became more sensitive as the edge-roughness

increased (r = 0.50). At which point, the conductance at the Fermi energy dropped by
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approximately four orders of magnitude relative to the undefected device. They were also

able to demonstrate the increased sensitivity of the conductance in ZNGRs with 45 nm

length on edge-roughness as a function of decreasing ribbon-width with the conductance gap

decreasing by half an order of magnitude as the width of the ribbon was increased from

∼ 2.5− 12 nm.

Saloriutta et al. used the TranSIESTA package that employs spin-dependent, non-

equilibrium Green’s function-density functional theory (NEGF-DFT) within the PBE-GGA [80]

to demonstrate that a hydrogen-passivated structural protrusion on the edge of a 12-5-ZGNR

device reduced the transport conduction relative for both spin directions. A significant de-

crease in spin-conduction near the first conductance step within the range of ±1.5 eV along

with a decrease in the conductance spikes either side of the conductance gap was observed.

The largest decrease in spin-conduction was close to 100% at ± 1.4 eV . Saloriutta et al.

also demonstrated a stability in the conductance gap, with the gap staying the same size

independent of the introduction of these protrusions. Such protrusions are relevant to the

work in this thesis as these can occur in random edge-vacancy systems having edge-vacancy

concentrations greater than 50%.

Molitor et al. [54] carried out experimental transport and band gap measurements on

etched GNRs. Similar to Han et al. [29], the edge-type (AGNR or ZGNR) could not be

determined, however, a band gap and conductance gap was measured at all widths. Molitor

et al. [54] use edge-roughness to explain the presence of the measured gaps, however, this

explanation is not in agreement with other experimental studies, for example Li et al. [31],

who measured a band gap in structurally pristine, chemically derived GNRs. As the GTB

model predicts a intrinsic gap [32], edge-vacancies will be incorporated into the GTB model

to test the stability of the transport-gap with the introduction of edge-vacancies in Chapter

4.

1.4.5 Asymmetric Edge-Perturbations

The transport results for ZGNRs are of particular interest due to the strong localisation

and, therefore, spin-polarisation. In an ideal system there is no spin-dependent transport in

either ZGNR or AGNR [55, 81], whereas breaking the structural symmetry of the system,

with structural perturbations like notches, defects or protrusions, can add spin-dependence

into the transport results [33, 74, 82, 83, 84]. Figure 1.16 demonstrates this spin-dependent

transport in two different ZGNR systems through the addition of a notch [82]. Hancock et

al. [82] modeled a 21-16-ZGNR system, a system large enough such that, at the time, the

computational cost for DFT would be high, Figure 1.16(a) [82]. The extended tight-binding

model was used to calculate the transport properties and show a large spin-dependent channel.

This is due to spin-down being suppressed by the notch and thus removing the available
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channel, Figure 1.16(b) [82]. This is of particular interest for spintronic devices as it may

allow the “turning off” of a particular spin channel.

(a) (b)

Figure 1.16: Demonstration of “turning off” a spin by the addition of a large notch. (a) System
map of the notched 21-16-ZGNR system. Blue(red) gives spin up(down) and the radii gives
the relative magnitude of the spin-polarisation. (b) The spin dependent transport. Blue give
spin up and red gives spin down. As we can see the spin down conductance is suppressed by
the notch. System was calculated using the generalised tight-binding model. The Hubbard-U
term is included leading to spin-polarisation. Images reproduced from Hancock et al. [82]

Asymmetric magnetic impurities can be introduced the GTB model though perturbing the

Hubbard-U value relative to the value for carbon in the ZGNR devices, 2.0eV [82]. These

magnetic impurities have been studied in bulk graphene by Hu et al. [85] using quantum

Monte Carlo methods within the STB model. Yang et. al. [86] introduced pertubations

to the Hubbard-U value in bulk graphene via proximity effect to a metallic substrate and

determined an opening of the band-gap. Pedersen and Pedersen [87] introduced B and N

doping into a self-consistent TB model for bulk graphene and determined that a variable

Hubbard-U can be used to describe these impurities.

Power et. al. [88] used both the 1st nearest neighbour Hubbard model along with DFT,

GGA calculations within the SIESTA program to investigate the introduction of single mag-

netic impurities into ZGNR and AGNR devices. Power et. al. [88] determined good agreement

between DFT and using the 1st nearest neighbour Hubbard model for a Mn impurity. Power

et. al. [88] assume that the only non-zero value of U in the device is for the transition

metal impurity. This assumption would lead to zero magnetic properties when applied to a

ZGNR graphene device without impurities. Krychowski et. al. [89] carried out DFT, GGA

calculations within the VASP program for a single Co adatom in 4-ZGNR. The Co adatom

in this investigation is placed on a ‘’hollow site”, i.e., in the middle of a hexagonal ring of

carbon. Mao et. al. [90] introduced K adatoms at various concentrations using GGA-PBE

DFT calculations within the VASP program to 8-ZGNR and found that, 1.56% adatom con-

centration, the device becomes FM instead of AFM. Zhang et. al. [91] introduces regular

Fe adatoms to the ‘’hollow site” both at the edge and in the middle of a 4-ZGNR device.
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GGA-PBE DFT calculations are carried out using the atomistix toolkit (ATK). For regular

Fe atoms along the edge ‘’hollow sites”, there is a decrease in the magnetic moment near to

the Fe adatom, and the introduction of a spin-dependent transport gap.

Chevron GNRs result from self-assembly bottom-up fabrication methods that use small

precursor molecules to construct atomically clean graphene ribbons [78, 92]. 6’11-dibromo-

1,2,3,4-tetraphenyltriphenylene is double annealed on a Au(111) substrate and produces

chevron AGNR samples with alternating N=6 and N=9 widths [78]. These chevron sam-

ples have been investigated using both DFT [93, 94, 95] and TB methods [96], with the

AGNR edged chevron being the focus of most studies [78, 92, 94, 96].

Wang and Wang [94] used DFT, LDA methods to investigate optical properties of AGNR

chevron graphene nanoribbons (CAGNR), and found that there was an overall increase in

the band gap of the chevron GNR compared to the ideal GNR. Fa and Zhou [93] investigated

oxygen terminated ZGNR chevron devices (CZGNR) using DFT, GGA with spin-polarisation

and demonstrated a transition from AFM to FM magnetic properties. Unfortunately, this

paper does not draw any conclusions for ideal chevron ZGNR. Finally Cuong et. al. [95]

investigated 120 degree angled CZGNR structures using DFT LDA methods but ignored

the spin degrees of freedom and determined that the formation energies of these CZGNR

devices was less than that of straight ZGNR structures. This supports the idea that CZGNR

devices would be produced during the bottom-up synthesis of ZGNR devices and that these

would be more energetically favorable than ideal, straight ZGNR devices. Cuong et al [95]

also determined that a band-gap opening would occur but, as spin-degrees of freedom are

ignored, conclusions cannot be drawn until compared to spin-polarised calculations.

In terms of TB calculations, Chen et. al. [96] focuses on thermal properties of CAGNR

devices but they do determine a decrease in conductance compared to ideal AGNR devices

due to the reduction in conductance channels. Girao et al. [97] has investigated both AGNR

and mixed edge ZGNR using the Hubbard-U model in term of band gaps but this work does

not go into detail concerning the spin-dependent properties. The main conclusion drawn

in this study is that different spin-properties lead to different conductance results, but they

do not determine the ground state magnetic state and assume that all magnetic states are

energetically equal.

Patterned AGNR (PAGNR) devices introduce internal patterning to ideal AGNR de-

vices though self-assembly. The self-assembly occurs when smaller ‘’building block” carbon

molecules, tetrabenzathracence and benzene, combine together to form the patterned devices

observed in Figure 1.17. Based on the concentration of these smaller component molecules,

the width and length of the device can be controlled [99]. The band and transport gaps of the

patterned and ideal AGNR devices can be compared using the GTB model as the patterned

devices form with AGNR edges. Experimentally, these patterned devices have been probed
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Figure 1.17: Self assembly example for the formation of the patterned AGNR device. Rib-
bon grows in the direction of the x-x coupling resulting in regular holes along the device.
Reproduced from Gerates et. al. [98]

in depth [99, 100, 101], but with fewer studies into the theoretical electronic properties.

Due to the regular nature of the patterning, along with the shape of the hole, the closest

studies being carried out computationally to those studied here are for graphene antidot

structures. Topsakal et. al. [102] carried out DFT GGA-PAW calculations using the VASP

package on AGNR devices with small antidots. The devices investigated by Topsakal et.

al. [102] assume a single antidot in a wide device and vary the location of the antidot across

the width. The closest approximation to the patterned devices in Figure 6.12 is that of a

antidot in location 1, i.e., the center of the device for the smallest widths investigated by

Topsakal et. al. [102]. For 34- 36- and 38-AGNR devices, there is an increase in band gap

with the introduction of the antidot. Ma et. al. [103] carried out transport calculations on

AGNR and ZGNR devices with two triangular antidots. Ma et. al. [103] used the STB model,

and assumed that the introduction of the two triangular anti-dots opened a conductance gap

in the device. Rosales et. al. [104] carried out STB model transport calculations on antidots

within 11-AGNR devices. The antidots are repeated along the length of the device with



CHAPTER 1. INTRODUCTION 45

period d. Rosales et. al. [104] demonstrated that, as the period of the antidots increases, the

conductance gap decreases, with a large increase in the gap when a small period (d=3) is

examined. Again, Rosales et. al. [104] uses the STB model for the calculations but models a

semi-conductive (within the STB model) AGNR device. This allows easier comparison with

the GTB model compared to a metallic (within the STB model) device.

1.4.6 Uniaxial Strain

The effect of uniaxial strain on the transport properties of graphene structures is another

area that has been studied in depth using both DFT and tight-binding methods. Uni-

axial strain can control the properties of graphene devices in a predictable, controllable

way [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. For example, uniaxial strain

can lead to a metal/semiconductor transition in both bulk and nanographene [110, 111] as

well as provide a controllable way of perturbing the band-gap [106, 110, 111, 114, 115] and

electronic transport [107, 111]. Uniaxial strain can arise due to a lattice mismatch with the

substrate [116, 117, 118] or via direct application [119, 120, 121]. AGNR systems have an

sawtooth like trend for band-gap vs energy [114], whereas ZGNR systems have a more linear

trend [115]. This uniaxial strain can be introduced intrinsically though lattice mismatch

between the graphene sample and the substrate in which it is deposited [116, 117, 118],

as well as directly applied, though the application of uniaxial tensile strain on suspended

samples [120, 121].

Harrison scaling of the parameters in the tight binding model was initially used for uniaxial

strain, in bulk, nano and non-graphene [108, 109, 115, 122] devices. This approach was first

proposed by Harrison in 1980 [123]. Harrison scaling allows general trends to be probed as

uniaxial strain was introduced to various devices. Exponential scaling of the parameters in

the tight binding model was introduced in 1998 [124] and was demonstrated to be a more

accurate description of uniaxial strain in graphene devices [106]. Currently, exponential

scaling is more widely used than Harrison scaling for detailed probing of properties, with

each paper generally using a fitting parameter, A, unique to the system investigated. Due to

the various structural perturbations being studied in this work, the Harrison scaling method

is used.

The linear dependence of electronic conductance gap (which is equivalent to the energy

band gap at zero bias) on unixaial strain has been demonstrated by Li et al. [115] for12-

ZGNR using DFT with GGA via VASP [70] for small uniaxial strain in the x-direction (less

than 10%). A slightly curving linear dependence was also shown for 6-ZGNR by Zhang et

al. [125] with DFT, GGA and HSE06 via VASP [70] between | ± 10%| in the y-direction. Lu

and Guo [126] used the interacting tight-binding model to calculate energy band gaps for 5-,

10-, 16- and 32-ZGNR and found a slightly curved linear dependence between |±15%| in the
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x-direction (Figure 5.12(a)). Lu and Guo [126] parametrised the model using the hopping

and Hubbard-U values found by Gunlycke and White [127], and used Harrison scaling and

used a Poisson ratio of 0.165.

Poetschke et al. uses the STB model to model a 10-ZGNR device under strain but finds

no metallic/semiconductive transition in the ZGNR device. When compared to the DFT

results of Li et al. [115], Zhang et al. [125] and Su et al. [128] it is clear that the STB model

is insufficient to accurately model the effects of strain on a ZGNR system. The lack of an

interacting term is a serious enough deficiency to disregard the STB model for these studies.

1.5 Conclusion

In this chapter we have discussed the fundamental properties of bulk graphene, and thus

demonstrated the advantage of using graphene nanoribbons to open the semi-metallic band-

gap. We have also briefly described the theoretical and experimental evidence of the semi-

conductive band- and conduction-gaps. Structural perturbations were explored and the effects

of random-edge vacancies, asymmetrical patterning and uniaxial strain were covered. Com-

paring the band-structure and band-gaps of density functional theory, tight-binding models

and experimental evidence demonstrates that physics is missing in the commonly used simple

tight-binding model and there are significant results predicted for structural perturbations

that must be reconsidered within the extended, interacting, tight-binding model, as we do in

this thesis. The next Chapter will describe the interacting generalised tight-binding model

used for our calculations along with the Landauer-Büttiker formalism used to calculate the

transport properties.



Chapter 2

Theory

2.1 Abstract

This chapter describes the underlying theory used in this work. The Hartree-Fock mean-

field approximation, second quantisation of fermions and Bloch’s theorem are introduced

as they lay the foundations for the tight-binding formalism and Hubbard model discussed

later in the chapter. The Hubbard model, i.e. the tight-binding model with Hubbard-U

is discussed in detail, with particular attention paid to the effects of the Hubbard-U term.

The stability of the mean-field approximation of the Hubbard-U term is discussed and a

method for reducing the likelihood of calculations becoming trapped in metastable energy

states though an adiabatic Hubbard-U is laid out. The final discussion into the Hubbard

model deals with the mean-field approximation and the predicted lowest-energy state phase

transitions with varying band filling and U/t ratio for both square and hexagonal lattices.

The Landauer-Büttiker (coherent) transport formalism and its solution via the Green’s

function method is introduced and derived, with particular care paid to the discontinuities

in the edge spin-localisation between the device and the leads. The density of states is also

introduced and derived, with a focus on the quasi-2D nature of GNRs. An important tool,

the GRaphene User Interface, is introduced and briefly discussed. Finally, the mathematical

details of density functional theory (DFT) and the local spin-density approximation are laid

out, with a description of the two DFT packages, VASP and ONETEP, that are used in this

work.

2.2 The Hartree-Fock Approximation

For a many electron system, the full many body Schrödinger eigenproblem is [123]:

[− ~2

2m

∑
i

∇2
i +

∑
i

V (ri) +
1

2

∑
i

∑
j 6=i

e2

|ri − rj |
]Ψ(r1, r2, . . . , rN)

= EΨ(r1, r2, . . . , rN) (2.1)

47
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where ~ is the reduced Planck constant, m is the mass of an electron, e is the electronic charge,

ri is a vector describing the location of electron i, ∇2 is the Laplacian operator, V (ri) is the

position-dependent, potential energy operator, which takes into account the interaction of

each electron with the ionic potential at ri, and E is the total energy. |ri−rj | is the distance

between electrons i and j. The left-hand-side of this equation contains three terms: The first

term is the sum of the kinetic energy contributions from each electron; the second term is the

sum of the interaction energies from the ion and electron interactions; and the third term is

the energy associated with the Coulomb interaction between each electron defined at ri and

the other electrons defined at rj in the solid. In addition to these terms, the anti-symmetry

arising from the interchange of two electrons (i.e., indistinguishable particles) must also be

taken into account [123]. The many-body Schroedinger problem cannot be solved exactly

and hence certain approximations need to be made. The Hartree approximation assumes

that the overall Hamiltonian of the of a many-body system can be written as the sum of the

individual electron Hamiltonians [123]:

[− ~2

2m
∇2 + V (r) +

∑
j 6=i

e2

∫
ψ∗j (r

′)ψj(r
′)dτ

|r − r′|
]ψi(r) = εiψi(r) (2.2)

where j is summed over all occupied states except i. Here, ψi is the individual wave function

corresponding to an electron i, ψ∗ is the complex conjugate of this wave function. r and

r′ are the vectors describing the location of electrons i and j respectively and the εi val-

ues are variational parameters in the form of one-electron energy eigenvalues. The Hartree

approximation does not include the anti-symmetry requirement of the wave function as [123]:

Ψ(r1, r2, . . . , rN) =
∑
i

ψi(ri) (2.3)

a Slater determinant of ψs will produce an antisymmetic wavefunction [123, 129]:

Ψ(r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) . . . ψ1(rN )

ψ2(r1) . . . . . . . . .

. . . . . . . . . . . .

ψN (r1) . . . . . . ψN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)

with Ψ giving the total wavefunction, ψ the individual wavefunctions and N the total number

of electrons. Substituting Equation 2.4 into Equation 2.1 leads to the Hartree-Fock equa-
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tion [123]:

[− ~2

2m
∇2 + V (r) +

∑
j

e2

∫
ψ∗j (r

′)ψj(r
′)dτ ′

|r − r′|
]ψi(r)

−
∑
j

e2ψj(r)

∫
ψ∗j (r

′)ψi(r
′)dτ ′

|r − r′|
= εiψi(r) (2.5)

the new term in Equation 2.5 is the fourth term on the left-hand-side, which denotes the

exchange interaction [123].

2.3 Introduction to Second Quantisation for Fermions

The second quantisation of quantum mechanics for fermions (in this example, electrons)

involves replacing individual electron wave functions with operators.

The Pauli exclusion principle states that, for fermions, each state may only contain up to

1 particle [130, 131]. The Fermi statistics that arise from this principle can be enforced by

making the fields anticommute, as demonstrated by Jordan and Wigner [130, 132]1 :

Ψ(r)Ψ†(r′) + Ψ†(r′)Ψ(r) ≡ {Ψ(r),Ψ†(r′)} = δ(r− r′) (2.6)

{Ψ(r),Ψ(r′)} = 0 (2.7)

{Ψ†(r),Ψ†(r′)} = 0 (2.8)

by expanding the wave functions, Ψ(r) and Ψ†(r), in a basis set, φi(r) [130],

Ψ(r) =
∑
i

ciφi(r) (2.9)

Ψ†(r) =
∑
i

c†iφ
∗
i (r), (2.10)

the creation, c†i , and annihilation, ci, operators can be defined. These obey the same anti-

commutation demonstrated by Jordan and Wigner [130, 132]:

{ci, c†i′} = δ(i− i′) (2.11)

{ci, ci′} = 0 (2.12)

{c†i , c
†
i′} = 0 (2.13)

the operators create an electron in state i (c†i ) or annihilate an electron from state i (ci).

1Ref [132] is covered, in English, in ”Selected topics in field quantization” by Pauli [131].
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For example, if state i with zero particles is |0〉i, and state i with 1 particle is |1〉i, then [130]:

ci|1〉i = |0〉i (2.14)

ci|0〉i = 0 (2.15)

c†i |0〉i = |1〉i (2.16)

c†i |1〉i = 0 (2.17)

c†i and ci can be used to construct the number operator for state i, ni, as follows [123, 130]:

ni = c†ici (2.18)

where ni is an eigenvalue equal to one if the state i is occupied [123, 130]:

nic
†
i |0〉i = c†i |0〉i. (2.19)

Finally, the creation and annihilation operators for electrons can be transformed to the

wavevector representation via [123, 133, 134]:

ckσ = N−
1
2

∑
i

e−ik·Riciσ

c†kσ = N−
1
2

∑
i

eik·Ric†iσ (2.20)

where i is the lattice site and Ri is the lattice position within the tight-binding description.

2.4 Bloch’s Theorem and the Tight-Binding Model

2.4.1 Bloch’s Theorem

Bloch’s theorem states that the eigenstates of the one-electron Hamiltonian [12],

H = − ~2

2m
∇2 + U(r), (2.21)

where [12],

U(r) = U(r + R), (2.22)

for all Bravais lattice vectors, R, are such that they are plane waves multiplied by the function

unk(r) which has the periodicity of the Bravais lattice [12]:

ψk(r) = eik·Ruk(r) (2.23)

uk(r) = uk(r + R). (2.24)
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The Bravais lattice specifies the periodicity of the crystal such that the geometry of the

underlying periodic structure is described. A 3D Bravais lattice, for example, consists of all

points with position vectors, R [12]:

R = n1a1 + n2a2 + n3a3 (2.25)

such that the vectors a1,2,3 are not linearly dependent and n1,2,3 can be any set of integers.

The Bloch condition, Equation 2.24 can also be written as:

ψk(r + R) = eik·Rψk(r) (2.26)

2.4.2 Tight Binding Approximation

The tight-binding approximation (TBA) is used to describe the overlap of atomic wavefunc-

tions in systems where the atomic description is still valid but a correction to the isolated

electron model is required [12]. For example, when two sodium atoms are brought within

3.7Å of each other, the overlap of the 3s-level atomic wavefunction is such that the actual

electronic levels are significantly different to the atomic levels [12].

Assuming the ground state of an electron within potential U(r) of an isolated atom is

φ(r), then, if the interaction between two neighbouring atoms is small, the approximate

wavefunction for an electron in the crystal becomes [135]:

ψk(r) =
∑
i

Ckiφ(r−Ri) (2.27)

where the sum is over all lattice points, i, and Ri is the Bravais lattice vector for i. The

function fulfills Bloch’s condition (Equation 2.24) when [135],

Cki = N−
1
2 eik·Ri , (2.28)

where N is the number of lattice points, and therefore [135]:

ψk(r) =
∑
i

N−
1
2 eik·Riφ(r−Ri). (2.29)

The Bloch condition for Equation 2.29 can be confirmed by applying a translation in the
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vector direction, T [135],

ψk(r + T) =
∑
i

N−
1
2 eik·Riφ(r + T−Ri) (2.30)

= eik·T
∑
i

N−
1
2 eik·(Ri−T)φ(r− (Ri −T)) (2.31)

= eik·Tψk(r) (2.32)

where Equation 2.32 is the same as the alternative form of the Bloch condition, Equation 2.26.

Figure 2.1: The real-space unit cell of bulk graphene can be described using a two atom basis.
The rectangle highlights the two atom basis. The red and yellow atoms are labelled A and
B respectively .

The tight-binding approximation was first applied to bulk graphene (Figure 2.1) by Wal-

lace in 1947 [10]. Wallace modelled the normalised 2pz orbital wavefunction, X(r), for an

isolated atom [10] which, within the TBA, has the form:

Ψ = φ1 + λφ2 (2.33)

where [10],

φ1(r) =
∑
A

e2πik·RAX(r −RA), (2.34)

φ2(r) =
∑
B

e2πik·RBX(r −RB), (2.35)

λ is a constant and the sum in Equation 2.34(2.35) is taken over A(B) and all lattice points

generated though Bravais lattice vector (RA(B)) translations. Neglecting the overlap of the
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pz wave functions centred on different atoms by assuming [10],

S =

∫
X(r −RA)X(r −RB)dτ = 0, (2.36)

Equation 2.33 can be inserted into,

HΨ = EΨ, (2.37)

and by following the method detailed in Ref [10], the elements of the matrix Hamiltonian

become [10]:

H11 + λH12 = EN (2.38)

H21 + λH22 = λEN (2.39)

where [10]:

H11 =

∫
φ∗1Hφ1dτ (2.40)

H12 = H∗21 =

∫
φ∗1Hφ2dτ (2.41)

H22 =

∫
φ∗2Hφ2dτ (2.42)

N =

∫
φ∗1φ1dτ =

∫
φ∗2φ2dτ. (2.43)

Eliminating λ gives the secular equation [10]:

∣∣∣∣∣∣ H11 − EN H12

H21 H22 − EN

∣∣∣∣∣∣ = 0 (2.44)

this secular equation is used to find E [10]:

E =
1

2N
[H11 +H22 ± ((H11 −H22)2 + 4H2

12)
1
2 ]. (2.45)

Due to the symmetry of the systems, H11 = H22, a new set of matrix elements can be

defined and thus the energy function can be rewritten [10]:

H ′11 = H ′22 =
1

N
H11 =

1

N
H22 (2.46)

H ′12 =
1

N
H12 (2.47)

∴ E = H ′11 ± |H ′12| (2.48)

As H ′11 = H ′22, the diagonal elements of the matrix are constant. Using this, H ′11 and

H ′22 can be set to zero. In addition, H12 is assumed to be summed over nearest neighbouring

atoms only, for example A(B) atoms only interact with the nearest B(A) atoms [10].
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Now, from Equations 2.34, 2.35, 2.41 and 2.47:

H ′12 = e2πik·(rA−rB)

∫
X∗(r −RA)HX(r −RB)dτ. (2.49)

Now, following the details laid out in Ref [10], |H12|, and therefore ±E, becomes:

|H12| = t

√
1 + 4 cos2(πkya+ 4cos(πkya) cos(πkx

√
3a) (2.50)

where t is the hopping integral within the tight-binding approximation,

t =

∫
X∗(r−AB)HX(r)dτ, (2.51)

a is the magnitude of the fundamental lattice distance, kx(y) is the x(y)-component of k and

A(B) is the lattice vector of site A(B).

Wallace neglected the overlap integral in his initial deviation and thus assumed an or-

thonormal basis [10]. By including overlap integrals, nonorthogonality is introduced. Wannier

functions, introduced next section, can be used tofix this nonorthogonality.

2.5 Extended Tight-Binding Model with Hubbard-U

The Hubbard model within the tight binding approximation was first purposed in 1963 by

J. Hubbard [134]. In this paper, Hubbard studied the narrow 3d bands of transition metals.

For simplicity his method was described as it applies to an s-band. This convention will also

be used in this derivation.

By rewriting the Hartree-Fock approximation, Equation 2.5, in second quantised notation

Hubbard derived the full Hamiltonian for a many-electron system [134]:

H =
∑
k1,σ

εk1c
†
k1,σ

ck1,σ +
1

2

∑
k1,k2,k′1,k

′
2

∑
σ1,σ2

〈k1k2|
1

r
|k′1k′2〉c

†
k1σ1

ck2σ2c
†
k′1σ1

ck′2σ2

−
∑
k1,k′1

∑
σ

{2〈k1k
′
1|

1

r
|k1k

′
1〉 − 〈k1k

′
1|

1

r
|k′1k1〉)υk′1c

†
k1σ
ck′1σ (2.52)

where the summation over k1(2) is across the first Brillouin zone, σ is the electron spin

(σ =↑, ↓), c†i(j) and cj(i) are the creation and annihilation operators respectively and [134]:

〈k1k2|
1

r
|k′1k′2〉 = e2

∫ ψ∗k1(r′)ψk′1(r)ψk2(r)ψ∗k′2
(r′)

|r − r′|
drdr′. (2.53)

The Hamiltonian is comprised of three parts, the first term in Equation 2.52 is the band

energies of the electrons, the second term is the interaction energy of the electrons and the

last term subtracts the potential energy of the electrons in the Hartree-Fock field arising
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from the electrons in the s-band. The term is subtracted to avoid counting the interactions

of the electrons twice, once implicitly from the Hartree-Fock term and once explicitly from

the interaction energy term of the Hamiltonian. vk is the occupation number and its effects

are discussed in more detail in Section 2.6.

The wavefunctions used in the tight-binding approximation, ψk1(2) , are not exact solutions

to the one-electron problem [123, 133, 136]. There is a lack of orthogonality of the atomic

orbitals. The overlap terms are non-zere due to this non-orthogonality and thus a linear

combination of atomic orbitals on different sites must be taken to remove them. This linear

combination can be carried out using the Wannier function [134, 137]:

φ(r) = N−
1
2

∑
k

ψk(r). (2.54)

This can be transformed to obtain the eigenstates in terms of Equation 2.5 [133, 134]:

ψk(r) = N−
1
2

∑
i

eik·Riφ(r −Ri) (2.55)

where the sum is over all atomic positions, Ri. These wavefunctions are in the form of the

tight-binding states but are now exact and orthogonal.

The creation and annihilation operators for electrons with spin ↑, ↓ can be transformed

from the wavevector form to the lattice site form using Equation 2.20 [123, 133, 134]. Equa-

tion 2.52 now becomes [134]:

H =
∑
ij

∑
σ

Tijc
†
iσcjσ +

1

2

∑
ijlm

∑
σσ′

〈ij|1
r
|lm〉c†iσc

†
jσ′cmσ′clσ

−1

2

∑
ijlm

∑
σ

[2〈ij|1
r
|lm〉 − 〈ij|1

r
|ml〉}vjmc†iσclσ (2.56)

where i, j, l and m are at lattice sites Ri, Rj , Rl and Rm [123, 134, 133],

Ti,j = N−1
∑
k

εke
ik·(Ri−Rj), (2.57)

〈ij|1
r
|lml〉 = e2

∫
φ∗(r −Ri)φ(r −Rj)φ

∗(r −Rl)φ(r −Rm)
drdr′

|r − r′|
, (2.58)

vjm = N−1
∑
k

vke
ik·(Rj−Rm), (2.59)

and εk is the energy associated with ψk. The integral 〈ij|1r |lm〉 only gives a significantly large

value when i=j=l=m [134]. This was shown by Hubbard to be correct as I = 〈ii|1/r|ii〉 is of

the order of approximately 20eV whereas the next largest, l=i, m=j, is approximately 2-3eV

due to Coulomb screening [134].
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Now, using the approximation that i=j=l=m, Equation 2.56 becomes [134]:

H =
∑
,j

∑
σ

Tijc
†
iσcjσ +

1

2
I
∑
i

∑
σ 6=σ′

niσniσ′ − I
∑
iσ

viiniσ (2.60)

where niσ = c†iσciσ is the number operator as described in Section 2.2. The third term on the

RHS of Equation 2.60 is a constant for homogeneous systems as vii and I are site dependent.

This term can therefore also introduce inhomogeneity into the system if required. Now,

Tij = −tij , (2.61)

1

2
I = U, (2.62)

−Ivii = Ei, (2.63)

where −tij , U and Ei are constants [134]. The convention in Equation 2.61 defines tij as

positive and Equation 2.63 defines Ei as negative. This leads to [134]:

• The tight-binding kinetic energy term [134]:

−
∑
ij

∑
σ

tijc
†
iσcjσ (2.64)

• The Hubbard-U potential term [134]:

∑
i

Uini↑ni↓ (2.65)

• The on-site energy term [134]: ∑
i

∑
σ

Eic
†
iσciσ (2.66)

The overall Hamiltonian is given by [134]:

Hhub = −
∑
ij

∑
σ=↓↑

(tijc
†
iσcjσ +H.c.) +

∑
i

∑
σ=↓↑

Eic
†
iσciσ +

∑
i

Uini↑ni↓. (2.67)

The on-site terms in the Hamiltonian, the on-site energy (second term) and the Hubbard-

U (third term), are site-dependent, which introduces inhomogeneity into the system allowing

for different local properties at each atomic site. All values of Ei are relative to the dominant

atom, which has an on-site energy of Ei=0.

The potential term of the Hamiltonian contains the number operator, ni,σ = c†i,σci,σ = {0..1},

and the site-dependent Hubbard-U term which is the Coulomb interaction energy between

two electrons of opposite spin at the same atomic site, i. With Ui = 0, the Hubbard Hamil-

tonian then reduces to a single-particle extended tight-binding model, which can easily be

solved using matrix algebra to produce the eigenenergy band solutions.
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The introduction of the Hubbard-U term results in a difficult two-body interaction term,

with the Hamiltonian needing to be solved using a full many-body treatment. One method

of approximation to the many-body problem is to use a mean-field method. The method

used in this work involves an average spin-dependent field such that inter-spin interactions

are replaced by interactions between individual spins and the average field of the opposite

spin. This has been shown to be an effective method of finding an approximate solution to

Equation 2.67 [134, 138, 139]. For this we must first linearise the Hamiltonian using [123, 134]:

niσ = niσ − 〈niσ〉+ 〈niσ〉 (2.68)

niσ = δ(niσ) + 〈niσ〉 (2.69)

δ(niσ) = niσ − 〈niσ〉 (2.70)

where niσ is the number operator at site i with spin σ and 〈ni,σ〉 is the value taken within

the quantum average. The Coulomb interaction term can be written as [123, 134]:

H =
∑
i

Ui(〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉) (2.71)

where it is assumed that δ(ni↓)δ(ni↑) is too small to be significant and -
∑

i Ui〈ni↑〉〈ni↓〉 is the

mean-field, Hartree-Fock correction term. The complete Hamiltonian can then be written as

a set of two coupled equations [123, 134]:

Hup = −
∑
ij

tijc
†
i↑cj↑ +

∑
i

Uini↑〈ni↓〉 (2.72)

Hdown = −
∑
ij

tijc
†
i↓cj↓ +

∑
i

Uini↓〈ni↑〉. (2.73)

The total energy can be calculated using Equation 2.74 [123, 134]:

Etotal = Eup + Edown −
∑
i

Ui〈ni↑〉〈ni↓〉 (2.74)

where Eup(down) denotes the total energy of the spin-up(down) eigensolution found though

solving Hup(down)

This gives us a final, mean-field equation of [123, 134]:

Hhub = −
∑
ijσ

(tijc
†
iσcjσ +H.c.) +

∑
iσ

Eic
†
iσciσ (2.75)

+
∑
i

Ui(〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉). (2.76)

Equations 2.72 and 2.73 must be solved self-consistently, initially solving for Equa-

tion 2.72 using a preset texture (for example an antiferromagnetic texture) of 〈ni↑〉, cal-



CHAPTER 2. THEORY 58

culating 〈ni↓〉 then substituting it into Equation 2.73 to find 〈ni↑,new〉. The convergence

criterion between the new value of 〈niσ〉 and the old value in the self-convergence step has

been determined though initial convergence testing to be 0.0001%. This converged value is

generally system independent as it is more closely linked to the machine accuracy. 〈niσ〉 is

calculated by summing up the occupied eigenstates [134]:

〈niσ〉 =

∫ µ

−∞
Diσ(E)dE (2.77)

where Diσ(E) is the spin-dependent density of states and µ is the chemical potential. For a

zero temperature model, the chemical potential is defined as the Fermi level [140].

The Hubbard-U term must be controlled very carefully. The energy landscape of this

model is such that it is very easy to converge into metastable states resulting in an energy

which is larger than the lowest possible energy due to the variational principle [141]. This

states that model wavefunctions , for example Equation 2.76, gives energies such that [141]:

Emodel ≥ Eactual. (2.78)

This is an issue when dealing with systems that do not yet have a well defined ground state.

One solution is the inclusion of an adiabatic Hubbard-U term that is slowly turned on. This

will explore more of the energy landscape and increase the chances of finding the global energy

minima. The initial, antiferromagnetic, texture of the system can also guide the model in

finding the global minima. Both of these methods, when used together, greatly increase the

accuracy and efficiency of the model but can still result in a metastable state. To prevent this,

multiple starting textures, for example antiferromagnetic, ferromagnetic and paramagnetic,

and paths though the landscape must be tested in order to confirm the lowest total energy

found is the actual lowest total energy achievable. U is adiabatically “turned on” by initially

randomly assigning Ui(0) such that:

∑
i

Ui(0)/N = 0 (2.79)

where Ui(0) is the initially randomly assigned, site dependent, U. The random values of Ui(0)

are linearly distributed within a range of 1eV. The model is then self-consistently solved and

a new set of values for Ui are calculated such that Ui(t) is increased over a total number of

steps, T, found though initial tests (T ranging from 1 to 200 depending on the complexity of

the system), with each site converging to the site dependent Ui(T ):

Ui(t) =
t

T
(Ui(T )

√
t/T + Ui(0)[1− t/T ]) (2.80)

where t is the current step number. As each adiabatic U step is carried out, the final Ui(T )
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increases in weighting, while the initial, random, Ui(0) decreases in weighting. This also leads

to the range of random values shrinking until the range is zero at t = T . The weightings in

Equation 2.80,
√
t/T and [1− t/T ], were found though initial tests into different weightings,

for example a linear increase with t, and
√
t/T and [1 − t/T ] were determined to most

consistently avoid a metastable state.

Due to the possible spin-separation in the interacting systems, the degree of polarisation

must be considered. This can be analysed using a spin-distribution diagram. The spin-

polarisation on any site is defined as [82]:

〈ninet〉 = 〈ni↑〉 − 〈ni↓〉. (2.81)

By defining spin-up to be positive and spin-down as negative it is possible to associate

a radius with the magnitude of |nnet| and a color with the sign of 〈ninet〉. Plotting these

radii on their respective atomic site, given by i, a spin-distribution diagram is formed. The

polarisation can also be used to define the ordering of the spin leading to edge-magnetisation.

This edge-magnetisation is defined as:

Medge↑ =
∑
i=edge

θ(〈ninet〉)〈ninet〉

Medge↓ =
∑
i=edge

θ(−〈ninet〉)|〈ninet〉| (2.82)

where θ(x) is the Heaviside step function [142]:

θ(x) =


1 if x > 0

0.5 if x = 0

0 if x < 0

(2.83)

2.6 Hubbard Model

An exact solution of the Hubbard model was investigated by Lieb and Mattis [143] in 1962

and by Lieb and Wu [144] in 1968 for an infinite 1D lattice at half-filling and then by

Hirsch [139] in 1985 for an infinite 2D square lattice using the mean-field approximation.

Lieb and Mattis [143] demonstrated that for an infinite 1D lattice ferromagnetism cannot

occur with only 1st nearest-neighbour hopping. Lieb and Wu [144] demonstrated that in a

1D system for U 6=0 the Mott transition does not occur. The Mott transition is the transition

from a metallic band structure to a insulating structure [145]. Hirsch [139] discussed the

Hartree-Fock phase diagram and used numerical calculations to predict the diagram though

Monte Carlo methods (Figures 2.2 and 2.3). The Hartree-Fock phase diagram (Figure 2.2)

demonstrates the phase transitions from a lowest energy paramagnetic state to a lowest energy
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Figure 2.2: Hartree-Fock phase diagram for a Hubbard model on a 2D square lattice. P,
F and A denotes paramagnetic, ferromagnetic and antiferromagnetic lowest energy states
respectively. U/t is the ratio between the value of Hubbard-U and the nearest-neighbour
hopping parameter and ρ is the band filling. Reproduced from Hirsch [139].

Figure 2.3: Lowest energy-state phase diagram found though numerical calculations by
Hirsch [139]. U/t is the ratio between the value of Hubbard-U and the nearest-neighbour
hopping parameter and ρ is the band filling. Reproduced from Hirsch [139].

antiferromagnetic or ferromagnetic state as the U /t ratio and band filling increases. For this,

U is the Hubbard-U and t is the first nearest-neighbour hopping parameter and the square

lattice is a Mott-insulator [145] for all U 6= 0. Figure 2.2 shows that at half-filling and for

U <<∞ the system is predicted to have an antiferromagnetic lowest energy-state phase [139].

The antiferromagnetic nature will lead to the spin-distribution observed in Figure 2.4. It is not

until U is very large [139] that a ferromagnetic lowest energy-state phase transition occurs at

half-filling, in agreement with the more rigorous solution by Nagaoka [146], who demonstrated

a ferromagnetic lowest energy-state solution when U=∞. This ferromagnetic state is due

to the repositioning of holes though the system giving rise to a linear combination of spin-

configurations and therefore ferromagnetism [146, 147]. This “Nagaoka ferromagnetism” only
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Figure 2.4: Antiferromagnetic spin-distribution diagram for a 2D square lattice grid using a
mean-field Hubbard model at half-filling.

occurs in 2D square lattices when U=∞ and thus it would be of interest to find a system in

which this occurs at finite U and finite density holes [146, 147]. Unfortunately, the numerical

simulations carried out by Hirsch [139] into an exact solution via Monte Carlo methods does

not give the same phase diagram (Figure 2.3) as the Hartree-Fock approximation. Hirsch [139]

carried out Monte Carlo numerical calculations for a half-filled system and various U/t ratios

and for a non-half-filled system with U/t=4 and 8 and used the results to predict the phase

diagram in Figure 2.3. Hirsch [139] was unable to demonstrate a ferromagnetic lowest energy-

state phase regardless of the band filling or U /t ratio. Hirsch [139] concluded that the

Hartree-Fock approximation was therefore a better approximation as Monte Carlo numerical

results do not describe itinerant magnetism as it is an incompetent description of the physics

involved.

Sorella and Tosatti [149] demonstrated in 1992 that, for a hexagonal lattice, there is a

Mott transition between the nonmagentic semi-metal lowest energy state and the antiferro-

magnetic insulator lowest energy state at U/t = 4.5± 0.5, found using quantum Monte Carlo

methods. Peres et al. [148] carried out similar Hartree-Fock phase diagram calculations for

a infinite hexagonal 2D lattice (Figure 2.5), both with 1st nearest-neighbour hopping only

(Figure 2.5(a)) and with 1st and 2nd nearest-neighbour hopping (Figure 2.5(b)). They found

similar lowest energy-state phase transitions, with a large paramagnetic lowest energy-state

phase in the 1st nearest-neighbour hopping only model for n < 0.74 compared to a large

Nagaoka ferromagnetic lowest energy-state phase in the 1st and 2nd nearest-neighbour hop-

ping model for n < 0.9. This is of interest as previously Nagaoka ferromagnetism had only

occurred at infinite U, at least for square lattices. Hanisch et al. [150] have also demonstrated

Nagaoka ferromagnetism in triangular, Kagome and hexagonal lattices. As Figure 2.5 shows,
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(a) (b)

Figure 2.5: Hartree-Fock phase diagram for a 2D Hubbard model of a hexagonal lattice. (a)
1st-nearest neighbour Hubbard model. (b) 1st and 2nd nearest-neighbour Hubbard model.
Reproduced from Peres et al. [148].

at half filling (n=1) and U=2, the bulk hexagonal system is predicted to be paramagnetic for

both the 1st nearest-neighbour hopping only and for 1st and 2nd nearest-neighbour hopping

models. Due to the finite nature of graphene nanoribbons, this prediction cannot be assumed

to be accurate outside of the bulk limit, as demonstrated by Son et al. [32], who predicted a

antiferromagnetic lowest energy state using DFT LSDA calculations.

2.7 Landauer-Büttiker (Coherent) Transport Formalism

The transport calculations are carried out using the Landauer-Büttiker (LB) Formalism [51]:

Gσ(E) =
e2

h
T̄σ(E) (2.84)

where Gσ is the spin-dependent conductance, i.e., the inverse of the resistance of the system.

T̄σ is the spin-dependent transmission function, the probability that an electron with spin

σ from one lead will transmit to the other and not be reflected and e2/h is defined as the

unit of quantum conductance. The LB formalism assumes the system to be ballistic so

that there is no reflection of electrons inside the device and any resistance is due to the

lead-device contacts [51]. Ballistic transport has been experimentally confirmed for bulk

graphene [28, 29]. For this investigation coherent transport is assumed in GNRs. Coherent
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transport ignores electron-electron and electron-phonon interactions [51].

Following Ref [51] it is possible to derive Equation 2.84 from the electrical current from

the electrons in the lead:

IαnE =
e

L

∑
k

Tnσ(E)v(k)f(E − µσ) (2.85)

where v(k) is the group velocity of the electrons, f(E − µα) is the Fermi-Dirac distribution

of the population of the states, with µ the chemical potential of each of the leads, α = 1, 2.

Tnσ is the spin-dependent transmission function for channel n with energy E(k) and spin σ.

By summing the difference in current between the two leads over all quantum channels and

assuming current flows from lead 1 to lead 2, the net current can be found [51]:

I =
∑
n

[I1nE − I2nE ] (2.86)

I =
e

L

∑
nk

Tnσ(E)v(k)(f(E − µ1)− f(E − µ2)) (2.87)

with f(E − µ1(2)) the Fermi-Dirac distribution in lead 1(2). By assuming current from the

lead to the device is positive and [51]:

∑
k

→ L

2π

∫
dk (2.88)

v(k) =
dE

~dk
. (2.89)

Equation 2.87 becomes [51]:

I =
e

h

∑
n

∫
dETnσ(E)(f(E − µ1)− f(E − µ2)). (2.90)

Assuming low temperature and voltage, V, (V e = µ1 − µ2), f(E − µ1) − f(E − µ2) can

be Taylor expanded around the Fermi energy [51]:

f(E − µ1)− f(E − µ2) ≈ δ(E − EF )(µ1 − µ2) (2.91)

where δ is a delta function. Using this and Equation 2.90, the conductance though the system

becomes [51]:

G(EF ) =
I

V
=

e
h

∑
n

∫
dETnσ(E)δ(E − EF )(µ1 − µ2)

V
(2.92)

G(EF ) =
e2

h

∑
n

Tnσ(EF ) =
e2

h
T̄σ(EF ) (2.93)

where T̄σ is the sum of all spin-dependent transmission probabilities.
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To solve Equation 2.84 it is possible to calculate the transmission function using Green’s

functions (following Ref[51]):

[E −H]G(r, r’, E) = δ(r-r’) (2.94)

where H is a Hamiltonian, in this study the GTB Hamiltonian, E is the energy associated

with H and G(r,r’,E), the Green’s function for two points, r and r’. The Green’s function

can be rewritten as an operator [51]:

G(r, r’, E) = 〈r|G(E)|r’〉. (2.95)

When E is not an eigenvalue of the Hamiltonian, H, then the Green’s function is formally

written in terms of the Green’s function operator [51]:

G(E) = [E −H]−1 (2.96)

Green’s functions can describe the effect of an excitation in one lead at the other lead;

The retarded Green’s function, G(E)R, is the solution to the Green’s function such that an

excitation causes an outgoing wavefunction starting at the point of excitation. The advanced

Green’s function, G(E)A, is the solution to the Green’s function such that an excitation

causes an incoming wavefunction disappearing at the point of excitation. The two solutions

can be distinguished by the inclusion of an infinitesimally small imaginary term, η, such that

a positive term gives the retarded solution and the complex conjugate gives the advanced

solution [51]:

G(E)R = G(E)A∗ = [(E + iη)I −H]−1 (2.97)

where I is the identity matrix.

The spin-dependent transmission function, Equation 2.84, can be written in terms of

Green’s function operators using the Fisher-Lee relation[51, 151] such that the spin-dependent

transmission function between two leads (left (l) and right (r)) is [51]:

T̄ (E)σ = Tr[Γ(E)l,σG(E)Rσ Γ(E)r,σG(E)Aσ ] (2.98)

where T̄ (E)σ is the spin-dependent transmission function, Γ(E)l(r),σ is the spin-dependent

Gamma function, describing the coupling of the device to the left(right) lead. This spin-

dependent broadening term can written as [51]:

Γ(E)l(r),σ = i[Σ(E)Rl(r),σ − Σ(E)Al(r),σ] (2.99)

where Σ(E)R(A)l(r),σ is the retarded(advanced) spin-dependent self-energy for the left(right)
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lead. This spin-dependent self-energy describes the interactions between the device and leads.

This can be expressed in terms of the surface Green’s function for the leads and the coupling

between the device and leads [51]:

Σ(E)
R(A)
l(r),σ = V †l(r) sysg(E)

R(A)
l(r) Vl(r) sys (2.100)

Vl(r) gives the coupling between the device region and the left(right) lead, and g(E)R(A) is

the retarded/advanced surface Green’s function for the leads. The self-energy describes the

effect of the semi-infinite leads on the device as these semi-infinite leads cannot be solved

analytically.

Figure 2.6: Diagram to demonstrate the five regions used in the model, the device region,
the left and right device edges, and the left and right leads.

The Hamiltonian in Equation 2.97 can be broken down into its components (Figure 2.6) [152,

153, 51]:

H =


Hleft lead Hleft lead/device 0

Hdevice/left lead Hdevice Hdevice/right lead

0 Hright lead/device Hright lead

 (2.101)

where Hleft lead/right lead is assumed to be zero. If this is not the case, then there are inter-

actions between the two leads in this theoretical approach and the device must be increased

in length such that the two leads are decoupled [152, 153].

The Green’s function associated with the device region is defined as [51, 152]:

GRσ (E) = [(E + iη)I −Hdevice − Σ(E)Rl,σ − Σ(E)Rr,σ]−1 (2.102)

g(E)R/A and therefore, Σ(E)Rl,σ, can be calculated using a decimation method [154]. This is

an iterative method that incorporates the semi-infinite leads into the device.
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Using the decimation method, Equations 2.99 and 2.102, and ΣA
l/r = ΣR∗

l/r, Γ(E)l,σ can be

found and therefore, via Equation 2.98, T̄σ.

2.7.1 Device/Lead Convergence

One important factor that can influence the transport properties in the LB formalism is

discontinuities in the spin-polarisation (Equation 2.81) between the lead and the device.

Disorder can reduce the spin-polarisation of the system, as demonstrated by Huang et al. [50],

but the LB formalism assumes non-defected leads. These non-defected leads are required for

the spin-polarisation to be converged back to the ideal to prevent discontinuities. If there

are discontinuities between the spin-polarisation in the leads and the spin-polarisation in the

device then spin-scattering occurs leading to changes in the LB transport properties. To

prevent artificial spin-scattering, a non-defected region is required in the device of sufficient

length to prevent discontinuities from forming [152]. The convergence was initially carried out

using unstrained notch devices (devices patterned along one edge to include a notch shape)

and a region of 5 atoms was determined to be sufficient [155]. It was discovered that the

introduction of strain greatly increases the distance from the disorder over which the spin-

polarisation is perturbed and therefore requires longer non-defected regions when compared to

unstrained systems. The insufficient ideal region led to artificial back scattering and reduced

the transport gaps more than was physical [155]. To find the relevant non-defected region

required, the spin-polarisation of the edge atoms at the device/lead boundary is converged

to the ideal result with increasing region length.

2.7.2 GRUI

Due to the large number and complexity of the systems studied, the GRaphene User Interface

(GRUI) [156] is used to automate the generation of structures with random edge-disorder,

and to visualise the asymmetrical systems used. The GRUI also allows the superposition

of known structures, either relaxed DFT systems or experimental images, in order to fit

the static tight-binding system to a known result. The GRUI also automatically introduces

Harrison scaling allowing the hopping parameters to be reparameterised depending on the

system.

2.8 Uniaxial Strain

Uniaxial strain is another topic that has been studied in depth using both DFT and tight-

binding methods. Uniaxial strain can control the properties of graphene devices in a pre-

dictable, controllable way [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 122]. For

example, uniaxial strain can lead to a metal/semiconductor transition in both bulk and
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nanographene [110, 111], as well as providing a controllable way of perturbing the band-

gap [106, 110, 111, 114, 115] and coherent electronic transport [107, 111]. Uniaxial strain

can arise due to a lattice mismatch with the substrate [116, 117, 118] or via direct applica-

tion [119, 120, 121].

2.8.1 Harrison Scaling

Uniaxial strain, i.e., uniform strain in one direction, is modelled in the graphene systems

though perturbing the hopping parameters. Harrison scaling [109, 123] is the simplest

method of perturbing the parameters, assuming a 1/r2 dependence on atomic separation.

This method is used as it simplest when compared to methods such as exponential scaling

which requires parametrisation [123]. Harrison scaling perturbs the hopping parameters such

that [123]:

t′ = t(
r0

r
)2 (2.103)

where t(t′) is the unstrained(strained) hopping parameter and r0(r) is the unstrained(strained)

bond length.

Another option for scaling is exponential scaling [124]. This uses exponential decay to

scale the hopping parameters [124],

t′ = t(exp
−A r

r0−1 ) (2.104)

where A is fitted to the particular system. This fitting is system dependent and thus, for

this early exploratory work, the simpler Harrison scaling is used as the interest is in general

trends instead of exact, precise, values.

Harrison scaling was initially used for uniaxial strain in bulk, nano and non-graphene [108,

109, 115, 122] devices and was first proposed by Harrison in 1980 [123]. Harrison scaling allows

general trends to be probed as uniaxial strain was introduced to various devices. Exponential

scaling was introduced in 1998 [124] and was demonstrated to be a more accurate description

of uniaxial strain in graphene devices [106]. Currently, exponential scaling is generally used

in preference to Harrison scaling for detailed probing of properties, with each author/paper

generally using a fitting parameter, A, for each system investigated. Due to the various

structural perturbations being studied in this work, the Harrison scaling method is used.

2.8.2 Poisson Ratio

The Poisson ratio connects the strain in one direction with the compression in the other due

to the Poisson effect [123]. This states that a material compressed in one dimension will

expand in the other two, and vice-versa. As graphene is assumed to be a 2D material, the

Poisson effect does not occur in the out-of-plane direction and thus can be ignored. The
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Poisson ratio relates the uniaxial strain in the x- (εx) and y- (εy) directions by [123],

εx = −Pεy, (2.105)

where P is the Poisson ratio and [123],

εx(y) =
(rx(y) − rx(y)0))

(rx(y)0)
, (2.106)

where rx(y) is the strained bond length in the x(y)-direction and rx(y)0 is the unstrained bond

length in the x(y)-direction. For this investigation, a Poisson ratio of 0.186 was used, taken

from Liu et al. [118], found using DFT LDA calculations with the ABINIT [157, 158] package.

2.9 Density Functional Theory

In order to confirm the accuracy of the generalised tight-binding model, in-house DFT calcu-

lations using the local spin-density approximation (LSDA) were carried out within the Vienna

Ab-initio simulation package (VASP) [70] and the Order-N Electronic Total Energy Package

(ONETEP) [159, 160]. Density functional theory uses functionals to describe the many-body

electron interaction problem and leads to Kohn-Sham potentials [34].

This starts by defining the variational principle [34, 141],

Emodel ≥ Eactual, (2.107)

but defined as a functional of the electron densities [34]:

E[n] = minΨ|n

∫
Ψ∗H̄Ψd3Nr (2.108)

subject to the constraint [34]: ∫
n(r)d3r = N (2.109)

where minΨ|n is the minimum with regards to the many-body wave functions Ψ consistent

with n(r), the density. N, is the number of electrons and H̄ is the total Hamiltonian. The

Born-Oppenheimer approximation [161]2 allows the separation of the Hamiltonian into a

Hamiltonian for the electrons and an external potential due to the ions. This allows us to

separate Equation 2.108 into [161]:

E[n] = minΨ|n

∫
Ψ∗H̄0Ψd3Nr +

∫
Vext(r)n(r)d3r (2.110)

where H̄0 is the Hamiltonian of the electron gas and Vext is the external, ion potential. Kohn

2An English language translation of the original paper can be found at
http://www.ulb.ac.be/cpm/people/scientists/bsutclif/bornopn corr.pdf. Online as of 070214
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and Sham [34] defined the first term of this equation as a functional dependent only on n,

F [n], and thus removed the dependence on external potential. This functional can therefore

be described as a universal functional of the electrons only.

Kohn and Sham [34] separated this unknown universal functional into three components:

F [n] = T [n] +
1

2

∫∫
n(r′)n(r)

|r− r′|
d3r′d3r + Exc[n] (2.111)

where T [n] is the kinetic energy functional of a non-interacting system with density n(r),

the second term is the coulomb repulsion energy, the third term is the exchange-correlation

energy [34] :

Exc = Ex + Ec (2.112)

where Ex is the exchange energy, Ec is the correlation energy and therefore Exc includes all

many-body effects.

The kinetic energy functional is defined as the kinetic energy of a set of non-interacting

electrons with the exact same density as the interacting electrons and thus becomes [34] :

T = −1

2
∇2ψj (2.113)

where ψj are the Kohn-Sham orbitals. Equation 2.108 can now be minimised giving the

Kohn-Sham equations [34]:

(T + Veff )ψj = εjψj (2.114)

n(r) =

N∑
j

|ψj(r)|2 (2.115)

Vxc(r) =
δExc[n(r)]

δn(r)
(2.116)

(2.117)

Where Veff is an effective potential [34],

Veff (r) =

∫
n(r′)

|r− r′|
d3r′ + Vxc(n(r)) + Vext(n(r)), (2.118)

and all unknown terms are contained in Vxc, the exchange correlation potential. If the exact

Exc is used then the Kohn-Sham equations are also exact. The only error in the ground state

energy will be from the error in Exc. The ground state energy is given by [34]:

E0 =
N∑
j

εj −
1

2

∫∫
n(r′)n(r)

|r− r′|
d3r′d3r−

∫
Vxc(r)n(r)dr + Exc[n(r)] (2.119)

where εj and n are found self-consistently.
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The forces can be found using the Hellmann-Feynman theorem [162]:

Fλ = ∇λE0(r) (2.120)

=
∂

∂λ
〈Ψ0(r)|H|Ψ0(r)〉 (2.121)

= 〈Ψ0(r)|∇λH|Ψ0(r)〉 (2.122)

where Ψ0 is the ground state wavefunction, λ the atomic position of an atom at spatial

coordinate, r. The forces acting on atoms at λ are therefore found via the expectation value

of the gradient of H. The expectation value of the gradient of H can be calculated when

n0(r) and thus Ψ0 is known. The forces acting on the atoms at λ can then used to determine

the new value of n0(r). This self-consistent method is iterated until the forces are minimised.

In this thesis, the local spin density approximation (LSDA) is used for the exchange-

correlation functional. The LSDA, developed by Langreth et al. [35] assumes a slowly varying

density such that [35]:

Exc[n↑(r), n↓(r)] =

∫
d3r(n↑ + n↓)ε

unif
xc (n↑(r), n↓(r)) (2.123)

where εunifxc must be parametrised via analytic functions, for example, the exchange-correlation

energy per particle of an uniform electron gas [35].

The Kohn-Sham [34] equations can be solved by expanding the eigenfunction in terms of

the plane-waves [34]:

ϕj(r) =
∑
k

cjkexp(ik.r) (2.124)

where cjk is the plane wave coefficient. Due to the discrete, non-finite, nature of compu-

tational methods, an energy cut off, Ecut, for the plane-wave basis must be specified along

with the resolution of the mesh describing k-space. Analytically, both Ecut and the K-point

grid resolution are infinite but this will not be viable, both in terms of CPU and memory

cost. Therefore, these values must be converged such that a compromise is reached between

accuracy and efficiency. For our results, an energy cut-off of 800eV was used along with a

k-points grid of {1, 1, 14} in the x, y and z direction due to the 1D nature of the ribbon.

The following secular equation is formed from substituting Equation 2.124 into Equa-

tion 2.114 [34]:

∑
k’

(k2δk,k’ + Vhartree(k) + Vxc(k− k’) + Vext(k− k’))cj,k = εjcj,k (2.125)

and thus can be solved via an iterative matrix solver matrix solver. For VASP [70], the

external potentials are described though the projector augmented-wave method (PAW) [163,

164], calculated by Kresse and Joubert [164]. ONETEP [159, 160], on the other hand, limits
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electron-electron interactions to a finite range with interaction outside of a cut-off distance

assumed to be insignificant. For ONETEP to be efficient, the system has to be bigger than the

cut-off distance. In this study, ONETEP is used for systems too large to be computationally

tractable for VASP while still requiring the accuracy required for DFT/GTB comparison.

2.10 Conclusion

This Chapter has has laid out the important theories required by this investigation. In

particular, the GTB model has been derived and the key parameters discussed. The LB

formalism and DOS equations have been presented, along with the details of spin-polarisation

and edge-magnetisation. Finally, the DFT method is derived and the LSDA introduced. The

two DFT packages, VASP and ONETEP, are also discussed. With these theoretical methods

laid out, they must be tested against known results before new results can be calculated

with any confidence. The next Chapter will present these initial tests and the validity of the

methods will be demonstrated.



Chapter 3

Model and Convergence Testing

3.1 Abstract

Before any new implementation of a model is used, it must first be tested against known

results. This chapter compares the band structure and electronic transport of AGNR and

ZGNR systems and the spin-polarisation and density of states of ZGNR systems with pub-

lished work. The effects of 1st, 2nd and 3rd nearest-neighbour hopping and Hubbard-U

parameters are investigated and compared to known results. The main features, including

the band- and conduction- gaps, and edge-states, in both LSDA and GGA DFT, and existing

tight-binding models are reproduced and the accuracy of the model is confirmed.

As previously discussed, the biggest advantage of the mean-field Hubbard model is that

it is an extremely efficient, real-space method of producing the band structures, and other

physical properties, required of the nanographene system. Ab-initio DFT calculations have

previously been performed, but these are extremely inefficient for the size and complexities

of the systems required [70]. In a real-space tight-binding model, one can introduce defects

and impurities, and hence large unit cells, or matrices, can be generated and solved using

an efficient, black-box eigensolver. The program developed for this thesis, uses the ZHEEV

routine from LAPACK [165] to solve the eigenproblem. The flexibility in the tight-binding

model allows us to study interesting effects, such as the role of nanopatterning, for example,

constrictions, impurities, edge defects, mixed edges, on GNRs due to the significantly larger

system sizes accessible.

In the case of a graphene nanoribbon (GNR), the hopping will be taken up to third

nearest-neighbour to allow an acceptable compromise between computational efficiency and

accuracy leading to a minimal model. The value of the hopping parameter will also depend

on the distance between the connected sites.

72
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3.2 Tight-Binding Model Tests

To find the model parameters required for Equation 2.67, i.e., the generalised tight-binding

model (GTB), the band structure and band-gap results of the GTB model are fitted to ab

initio density functional theory (DFT). Previous work by Hancock et al. [33], fitted the GTB

model to both zig-zag graphene nanoribbons (ZGNRs) and armchair graphene nanoribbons

(AGNRs) systems using DFT, local spin-density approximation (LSDA) calculations in the

SIESTA package [16]. This allows a reduced generalised Hubbard model to be defined, which

is applicable to both AGNR and ZGNR systems. Due to the large number of variables, the

fitting was carried out by eye [33].

The parameters determined by Hancock et al. [33] are:

t1 = 2.7eV (3.1)

t2 = 0.2eV (3.2)

t3 = 0.18eV (3.3)

U = 2.0eV (3.4)

Care must be taken when dealing with the result of any calculation as the energy output

may not be the lowest energy obtainable by the model for a particular system. By adiabat-

ically converging the Hubbard-U term, the energy landscape can be explored and therefore

the lowest energy found. Different starting configurations and multiple tests of each system

must be used to make sure the lowest energy state is being explored. Note, due to the varia-

tional principle, the lowest energy found by the model will always be equal to or larger than

the real ground state and therefore we must compare the energy obtained with other models

and experimental results.

The first test carried out with the new version of the GTB model was a rigorous test

of its accuracy. The implementation was tested to ensure that results found for the ideal

ribbons were in agreement with those found in the literature, in particular the GTB model

results calculated by Hancock et al. [33]. For this initial investigation both AGNR and ZGNR

systems were modelled.

3.2.1 Armchair graphene nanoribbons (AGNR)

AGNR systems are affected by the third nearest-neighbour (NN) hopping term, t3 [46]. To

test the accuracy of the model, the effects of the extended hopping terms were tested on

a AGNR system predicted to be half-metal using the 1st NN tight-binding model. It is

possible in the GTB model to turn on the hopping terms and check, for t = t1, t1 + t2, and

t1 + t2 + t3, that the band structure produced agrees with known results for 14-AGNR. As

Figure 3.1 shows, there is a breaking of the symmetry and an opening of the band-gap as t3
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Figure 3.1: Band structure of a 1-14-AGNR system. The x-axis ranges though k space
from 0 to π

a in units of 1
a and the y-axis gives the energy in eV. This energy is shifted

by the Fermi-energy, Ef . (a), (c) and (e) were found using this implantation of the GTB
model (Equation 2.67) and (b), (d) and (f) were reproduced from the Hancock et al. [33]
implementation of the GTB model and include the DFT LSDA results calculated via the
SIESTA [16] package used for the fitting in grey.
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is turned on. The 3rd NN term introduces single-electron interactions across the ribbon, as

first demonstrated by White et al. [46].

3.2.2 Zig-zag graphene nanoribbon (ZGNR)

The ZGNR system, as predicted by theory, has an anti-ferromagnetic spin-structure across

the edges and ferromagnetic spin-alignment along an edge [32], demonstrated in the spin-

distribution diagram (Figure 3.3). As Figure 3.2 shows, going from the first NN hopping,

Figure 3.2(a), to 1st, 2nd and 3rd NN hopping with Hubbard-U, Figure 3.2(g), results in an

opening of the band-gap for 16-ZGNR. Figure 3.2(a) demonstrates the double edge-state at

the Fermi-energy seen in previous published results [40, 42, 43, 44, 45]. Including t1 and the

Hubbard-U, Figure 3.2(c), leads to the conductance and valence bands around the gap being

symmetrical but still includes the open band-gap required. By turning on t2, Figure 3.2(e),

the symmetry of the conductance and valence bands is broken. The band gap opening in

ZGNR devices is due to the increased edge-localisation of the electrons leading to an anti-

ferromagnetic edge-structure. The anti-ferromagnetic nature of ZGNR arises from the flat

bands observed in Figure 3.2 leading to a small group velocity.

These investigations on 1-14-AGNR and 1-16-ZGNR have shown that the increased degree

of freedom allowed by the 2nd and 3rd NN hopping parameters is required to achieve accurate

results but Hancock et al. [33] demonstrated that we only need one set of these extended tight-

binding model parameters for both ribbon types. It has also been shown that t1 and t3 are the

important parameters for AGNR whereas t1, t2 and the Hubbard-U term are the important

parameters for ZGNR.

The final band structure test carried out was on bulk graphene, carried out to confirm

that the model is still accurate in the bulk limit. As Figure 3.4 demonstrates, the GTB model,

Figure 3.4(a), recreates the bulk band structure seen in Figure 3.4(b) between K and Γ. In

addition, Figure 3.4(a) demonstrates the linear dependence of the bands near the Fermi-level

combined with the semi-metal nature of the band structure.

3.3 Transport Tests

Transport tests were performed on non-primitive ZGNR (Figure 3.5) unit cell sizes used

in later investigations. These studies allowed comparisons of the transport properties with

published results and also confirmed that taking these systems to larger unit cells did not

introduce finite size effects. As Figure 3.5 shows, when compared to literature results (Fig-

ure 3.5(b)) there is a qualitative agreement with S.M.-M. Dubois et al. [81]. In particular,

the edge states due to the flat bands in the ZGNR band structure are observed either side of

the band-gap in ZGNR systems and the conduction steps far from the Fermi-energy. There
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Figure 3.2: Band structure of a 1-16-ZGNR system. The x-axis ranges though k space from
0 to π

a and the y-axis gives the energy in eV. This energy is shifted by the Fermi-energy, Ef .
(a), (c), (e) and (g) were found using the GTB model (Equation 2.67) and (b), (d), (f) and
(h) were reproduced from Hancock et al. [33] and include the DFT LSDA results calculated
via the SIESTA [16] package results used for the fitting in grey.
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Figure 3.3: Spin-distribution diagram of the ideal 1-16-ZGNR system used in Figure 3.2(g).
Red gives spin-up and blue spin-down. The radius of the spheres gives the relative magnitude
of |noccupancy| (Equation 2.82). Produced using the GTB model (Equation 2.67).
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Figure 3.4: Band structure of a graphene. The x-axis ranges though k space from 0 to π
a and

the y-axis gives the energy in eV. This energy is shifted by the Fermi-energy, EF . (a) was
found using the GTB model (Equation 2.67) and (b) was reproduced from Reich et al. [15].
Figure 3.4(a) maps the wave vector from K to Γ.

is a slight difference in band gap due to the difference between LSDA and generalised gra-

dient approximation (GGA) DFT scheme. In particular, the edge-states either side of the

conductance gap and the energy steps occurring at asymmetrical intervals either side of the

conductance results are correctly reproduced.

3.4 Conclusion

The chapter has demonstrated the accuracy of the GTB implementation of the tight-binding

model. The model has faithfully recreated previous tight-binding results for the band struc-

tures and has qualitatively recreated DFT GGA results for transport properties, including

band- and conduction-gaps and edge-states in ZGNR systems. The recreation of these results

provides confidence that new work presented in the main body of the thesis is correct and

accurate. Further more, due to a single set of tight-binding parameters being used for both

AGNR and ZGNR, it is possible to investigate the mixed edge structures required in notched

systems as well as edge-disordered systems, investigated in the next chapter. The opening

of the band-gap in ZGNR with the introduction of the Hubbard-U parameter has also been

demonstrated, a key result that will be investigated in the main body of the thesis.
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Figure 3.5: Spin-dependent transport for 20-5-ZGNR. For perfect systems there is no differ-
ence in spin up and spin down transport. (a) was produced using the GTB model (Equa-
tion 2.67) whereas (b) was reproduced from S.M.-M. Dubois et al. [81] using ab inito DFT
calculations under the GGA approximation.
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Figure 3.6: Spin-dependent transport for 20-16-AGNR. For perfect systems there is no dif-
ference in spin up and spin down transport. (a) was produced using the GTB model (Equa-
tion 2.67) whereas (b) was reproduced from S.M.-M. Dubois et al [81] using ab inito DFT
calculations under the GGA approximation



Chapter 4

The Effects of Edge-Vacancies on

the Spin-dependent Properties of

Zig-zag Graphene Nanoribbons

4.1 Abstract

The local magnetisation of 12-6-ZGNRs containing 0%, 8.33%, 16.67% and 33.33% systematic

(regularly spaced) edge-vacancies were calculated using the GTB model. Comparison of these

results to DFT VASP calculations within the LSDA performed by Huang et al. showed

that the GTB model faithfully reproduces the DFT results pertaining to the local magnetic

properties, including the DFT prediction of the loss of magnetism at 33.33% edge-vacancy

concentration. Differences in the edge-magnetism seen in the two models could be attributed

to the GTB model not taking into account ionic relaxation. This was confirmed though

fitting the positions of the atoms in the GTB model to the relaxed positions found though

DFT ONETEP calculations.

Random edge-vacancies, defined as the random removal of carbon atoms along the edges

of the device taken over an ensemble average, were also studied to assess their effect on the

magnetisation. It was found that, in contrast to the systematic defects, antiferromagnetism

was preserved at all edge-vacancy concentrations. This is due to the increased chance of the

system containing 3 ideal zig-zag unit cells in a row, in accordance with Clar’s theory.

The effects of random edge-vacancies taken over an ensemble average were also inves-

tigated to study the spin-dependent coherent transport properties as a function of energy.

The dependence of the coherent transport properties on random edge-vacancies has been

studied in detail using the STB model in previous literature and has been used to explain

the experimental band- and conductance-gaps found in etched GNRs. The issue is that both

pristine GNRs created though chemical synthesis and ideal ZGNR devices modelled with the

80
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GTB model, have been found to also contain a band- and conductance-gap, and therefore

not requiring random edge-vacancies.

The transport properties of 20-5-ZGNR devices with random edge-vacancies were inves-

tigated using the STB, ETB and GTB models to determine if the properties observed in

previous STB studies were due to edge-vacancies or from the approximations used in the

STB model. It was found that outside of the GTB conductance-gap, the three models fol-

low a similar trend implying that the perturbations observed can be approximated using the

non-interacting ETB model. The stability of the GTB conductance gap was also investigated

and found to be unperturbed by the introduction of edge-vacancies implying that, at least

in terms of conductance gap trends, the GTB model is still more accurate for describing the

physics of the system. The differences between the STB model and the ETB and GTB models

were further investigated using the energy dependent localisation lengths. It was found that

the larger degrees of kinetic freedom of the ETB and GTB models increased the localisation

lengths compared to the STB model. For example, at low edge-vacancy concentration (7.5%),

the STB model was shown to be fully within the localisation regime, i.e., the regime in which

the device is considered weakly disordered, whereas the ETB and GTB models are not.

Finally, the effects of increasing device length were also investigated. It was found that,

with increasing device length, there was a exponential decrease in conductance at the Fermi

energy for devices modelled with the ETB and STB devices, in agreement with Anderson

localisation. Using this exponential decrease in conductance at the Fermi energy, an Anderson

localisation length of 47 Å and 49 Å was found for the STB and ETB models respectively.

In addition, the onset of the non-interacting, STB and ETB conductance gap was compared

to that of the interacting, GTB conductance gap and it was found that, above 120 Å, the

trends in conductance gap were similar for all three models.

The results in this Chapter lead to the conclusion that the interacting GTB model is

required for the edge-disordered ZGNRs studied, with the intrinsic gap only being overtaken

by the disorder-induced conductance gap at device lengths > 120 Å. The stability of the

intrinsic conductance gap in the GTB model compared to the disorder-induced conductance

gap of the STB and ETB models suggests that the experimentally observed band-gap can be

attributed to the electron-electron interactions, not the effects of edge-disorder.

4.2 The effect of Systematic Edge-Vacancies on the magnetic

properties of ZGNRs

Huang et al. [50] determined the effect of systematic (regularly spaced) edge-vacancies on

the magnetic properties of ZGNRs using VASP DFT [70, 166] within the LSDA. Figure 4.1

shows Huang et al.’s results for the local magnetic properties of 12-6-ZGNRs having 0%,
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8.33%, 16.67% and 33.33% systematic edge-vacancy concentrations. At 33.33% edge va-

cancy concentration, the 12-6-ZGNR loses its antiferromagnetic spin-structure and becomes

paramagnetic.

The GTB model (Equation 2.67) was applied to these systems and tested against Huang

et al.’s simulations. Similar to the DFT calculations of Huang et.al., the “edge” in the GTB

systems was defined as the first row of carbon atoms along each edge of the ribbon. Thus,

the edge-vacancy concentration has been defined as

Cedge = 100 ∗ Nvacancies

Nedge
, (4.1)

where Cedge is the % edge-vacancy concentration, Nvacancies is the number of edge-vacancies

and Nedge is the total number of edge-atoms in the non-defected system. The local magnetisa-

tion in each structure determined by the GTB model has been calculated using Equation 2.81

(Figure 4.2). Here, the radii of the circles represents the local net-spin 〈ni,〉net, which have

been scaled by 0.5+5∗〈ni〉net to allow ease of visualisation. The GTB spin-distributions show

a decreasing local magnetisation in each system as the number of edge-vacancies increases,

in good qualitative agreement with the results produced by Huang et al.(c.f., Figures 4.1

and 4.2). The GTB result also shows that the system becomes paramagnetic at 33.33%

edge-vacancy concentration, in agreement with Huang et al.’s DFT prediction.

A site-dependent comparison of the edge-magnetisation as a function of the % edge-

vacancy concentration is shown in Figure 4.3 comparing Huang et al.’s DFT results [50] and

the GTB solutions. In general, the GTB results are in good quantitative agreement with

Huang et al.’s calculations. The Huang et al. and GTB solutions both show an overall

decrease in edge-magnetisation as the number of edge-defects increases, with the largest

decreases occurring around the edge-vacancy sites. An increased local edge-magnetisation

compared to the DFT result can be seen in the GTB prediction for all sites at 0% edge-

vacancy concentration, sites 4-10 at 8.33% edge-vacancy concentration and sites 3-5 at 16.67%

edge-vacancy concentration (Figure 4.3). The loss of edge magnetism is found in both sets

of results at 33.33% edge-vacancy concentration (shown previously in Figures 4.1 and 4.2)

to be due to the system becoming paramagnetic.

For the ideal system, the difference between the GTB and DFT results can be attributed to

slight variations in the ionic relaxation between the SIESTA [16] package used by Hancock et

al. for the parametrisation of the GTB model [33] and the VASP [70] package used by Huang

et al. [50]. In addition, the GTB model in this study uses the minimum parametrisation

suggested in Hancock el. al. [33] and thus ignores the hopping perturbation (tedge) along

the edge of the system. For the edge-disordered systems, the differences can most likely

be accounted for by there being no further ionic relaxation in the GTB model with the

introduction of vacancies. Figure 4.4 compares the relaxed DFT result from Huang et. al.
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Figure 4.1: The effect of systematic edge-vacancies on the local magnetisation of a 12-6-ZGNR
as a function of increasing edge-vacancy concentration calculated using DFT VASP within
the LSDA (reproduced from Huang et al. [50]). The results show the decrease in magnitude
of the edge-magnetisation as the number of systematic edge-vacancy defects increases from
(a) 8.33%, (b) 16.67% and (c) 33.33% edge-vacancy concentration. Yellow circles denote net
spin-up and blue circles denote net spin-down. Note, only half of the system is shown in
(a)-(c). In real-space, a 12-6-ZGNR unit cell describes a system of width 11.38 Å and length
28.34 Å.
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Figure 4.2: Spin-distribution of a systematically edge-defected 12-6-ZGNR calculated using
the GTB model (Equation 2.67) within the unit cell approximation. The edge-vacancy con-
centration, from right to left, is 0%, 8.33%, 16.67% and 33.33%, respectively. Net spin-up
circles are blue, net spin-down circles are red and net spin-neutral is green. The radius of
each circle gives the relative magnitude of the net local-spin. As the % concentration of
edge-defects increases, the magnitude of the edge-magnetisation is shown to decrease.

and the unrelaxed GTB result for 8.33% edge-vacancy concentration and demonstrates the

lack of structural relaxation, in particular around the edge-vacancy.

To confirm the effects of further ionic relaxation, ONETEP [159, 160] was used to carry out

DFT LSDA ionic relaxation on the 8.33% systematic edge-vacancy system. Using the relaxed

atomic structure found through ONETEP [159, 160] (Figure 4.5), the input structure of the

relaxed GTB model can be found and the hopping parameters perturbed using exponential

scaling. Exponential scaling is used in this instance due to the increased accuracy of this

scaling method compared to Harrison scaling (Section 2.8). The GTB fitting is carried out

by comparing the relaxed and nonrelaxed LSDA DFT results from ONETEP and scaling

the hopping parameters via Equation 2.104. For exponential scaling (Equation 2.104) a

fitting parameter, A, the value of which was taken as 3.37 from Pereira et. al. [106] derived

from experimental results. The relaxed 8.33% systematic edge-vacancy structure leads to

a decrease in magnetisation (Figure 4.6) far from the defect, in qualitative agreement with

Huang et.al [50]. The decrease occurs due to the reordering of spin-polarisation around

the defect leading to an overall decrease in spin-polarisation far from the defect. Due to

computational constraints, only the relaxed ionic positions were calculated for the 8.33%

edge-vacancy structure with ONETEP.
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Figure 4.3: The effect of systematic edge-vacancies on the local edge-magnetisation of a
12-6-ZGNR comparing the GTB results with Huang et al.’s DFT LSDA simulations [50].
Continuous lines correspond to the GTB solutions and broken lines correspond to Huang et
al.’s results. The legend in the figure has been based on the one used in Huang et al. in
Ref. [50], corresponding to edge-vacancy concentrations, from top to bottom, of 0%, 8.33%,
16.67% and 33.33%. Within the unit cell approximation, site 1 is equivalent to site 13 in this
system (Figure 4.1). In real-space, a 12-6-ZGNR system has a width of 11.38 Å and length
of 28.34 Å.

4.3 The Effects of Random Edge-Vacancy Defects on the Mag-

netic Properties of Zig-zag Graphene Nanoribbons

Systematic edge-vacancy defects, such as those studied in Section 4.2, are not a realistic model

for describing experimental edge-disorder in GNRs. A more realistic approach would entail

the study of randomly distributed edge-vacancy defects, whereby the calculated properties

of the ribbon are determined using ensemble averaging. To investigate the effect of random

edge-vacancy defects in ZGNRs, a representative 20-5-ZGNR device of length 48.02 Å and

width 9.24 Å was chosen (Figure 4.7). The dimensions of this device were chosen as its length

enables a good range of edge-vacancy concentrations to be probed. The size of the device

(length to width) is also computationally tractable with respect to the total number of atoms

against the efficiency of the Hubbard-U convergence in the GTB calculations.

Random edge-disorder was introduced in the 20-5-ZGNR by randomly removing edge-

atoms with equal probability weighting until the required edge-vacancy concentration (Equa-

tion 4.1) was obtained. Klein defects [58, 59, 167, 168, 169], which arise when two neighbour-
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Figure 4.4: The difference between the ionic positions of a relaxed and nonrelaxed edge-
vacancy defected 12-6-ZGNR at 8.33% edge-vacancy concentration. Transparent yellow(blue)
circles denote spin-up(-down) and bold red(blue) circles denote spin-up(-down) for the relaxed
Huang et. al. result [50] and the nonrelaxed GTB result, respectively.

Figure 4.5: The difference between the ionic positions of two further relaxed edge-vacancy
defected 12-6-ZGNR at 8.33% edge-vacancy concentrations. Transparent yellow(blue) circles
denote spin-up(-down) for the relaxed Huang et. al. result [50] and grey circles denote the
relaxed ONETEP ionic positions.
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Figure 4.6: The effect of systematic edge-vacancies on the local edge-magnetisation of a
relaxed 12-6-ZGNR comparing the GTB with Huang et al.’s DFT LSDA results [50]. Con-
tinuous lines correspond to the relaxed GTB solution obtained using ONETEP’s relaxed
structural input with exponential scaling at 8.33% edge-vacancy concentration and broken
lines correspond to Huang et al.’s results. The legend in the figure has been based on the one
used in Huang et al. [50], corresponding to edge-vacancy concentrations, from top to bottom,
of 0%, 8.33%, 16.67% and 33.33%. Within the unit cell approximation, site 1 is equivalent
to site 13 in this system (Figure 4.1).

Figure 4.7: Schematic of the ideal 20-5-ZGNR device used as the basis for investigating the
effects of random edge-vacancy disorder. In real-space, the 20-5-ZGNR device describes a
system of width 9.24 Å and length 48.02 Å.

ing edge-atoms are removed (Figure 4.8(a)), were excluded in the tight-binding simulations.

The exclusion was due to these defects being difficult to model within the tight-binding for-

malism as experimentally the single C-C bond has been observed to vibrate [170] and thus

would introduce time dependent hopping parameters. If a Klein defect did occur during the

edge-atom removal process, then the dangling carbon atom was removed leading to a small

notch (Figure 4.8(b)). Each edge-atom was equally weighted and chosen for removal using a

simple random number generator [171], the details of which can be found in Appendix A. The

inclusion of edge-vacancies in the second layer caused by the notch has led to the definition

of the “edge” in this work being the first two rows of the ZGNR.

In order to calculate the effect of random edge-vacancies on the magnetism, coherent
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(a) (b)

Figure 4.8: Schematic of (a) an edge-vacancy defected portion of a 20-5-ZGNR system used
to demonstrate a Klein defect (circled area), and (b) a notched system with the Klein defect
removed.

transport properties (Equation 2.98) and charge-carrier localisation (Equation 4.7) of the

defected ZGNR devices, an ensemble average must be taken. The ensemble average needs to

include a significant sample size to be representative of the total population of edge-defected

systems for a given % edge-defect concentration, such that,

χ̄ ≈ x̄ =
1

N

N∑
i=1

xi (4.2)

where xi is the property being measured for the ith system in the ensemble, x̄ is the average

value of that property taken over the sample size, N , and χ̄ is the ensemble average for

the entire population [172]. Each system in the ensemble average is equally weighted as the

variation in the total energies associated with these systems is very small (±10−4 eV), hence

any weighting within the ensemble average would be negligible.

As the sample mean only describes the mean of the sample and not the mean of the

population, the confidence in the sample mean must also be stated. The confidence in the

sample mean is taken from the standard error [172],

SE =
σ√
N
, (4.3)

σ =

√√√√ 1

N − 1

N∑
i

(x̄− xi)2 (4.4)

is the standard deviation from the property under consideration. A further source of uncer-

tainty arises from the energy resolution pertaining to the energy dependent quantities. To

minimise this uncertainty, a fine energy-step of 0.008eV was chosen, leading to a systematic

error in energy of ±0.008eV .

To determine the minimum sample size N required to adequately describe the ensemble

as per Equation 4.2, a convergence test pertaining to the standard error associated with the

spin-dependent coherent transport (Equation 2.98) was performed (Figure 4.9). A minimum

of N = 50 samples was deemed to be large enough to ensure adequate accuracy of the en-

semble average spin-dependent coherent transport as determined by the converged maximum
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Figure 4.9: Convergence of the standard error (Equation 4.3) associated with the ensemble
averaged spin-dependent coherent transport (Equations 2.98 and 4.2) for a 7.5% edge-vacancy
defected 20-5-ZGNR calculated using the GTB model (Equation 2.67).

standard error (±0.06e2/h) taken within the calculation between -1.5 eV< E −EF <1.5 eV.

This number of calculations, with a minimum of N = 50, also remains computationally

tractable.

In the following studies, a range of edge-vacancy concentrations from 0% to 100% (the

latter with a total of 80 edge-atoms removed) were investigated, with three edge-vacancy

concentrations at 7.5% (6 atoms removed), 42.5% (34 atoms removed) and 90% (72 atoms

removed) being investigated in more detail. The selection of these three systems was justified

as 7.5%/90% denote the smallest/largest edge-vacancy concentrations examined due to Klein

defects, with 42.5% edge-vacancy concentration representing a significantly edge-disordered

system. Figure 4.10 shows examples of 20-5-ZGNR used within the ensemble average for each

of the edge-vacancy concentrations of interest. N.B., 42.5% was considered significantly edge-

disordered as above 50% edge-vacancy concentration the system becomes more ordered due

to a greater number of edge-vacancies occurring in the second atomic row (cf. Figures 4.10(b)

and 4.10(c)).

4.3.1 Effects of Random Edge-Vacancies on Magnetic Properties of ZGNRs

Huang et al. [50] showed for a 12-6-ZGNR that 33.3% systematic edge-vacancy concentration

was sufficient to lead to a change from an antiferromagnetic to a paramagnetic spin con-

figuration (Section 4.2). As a comparison, Figure 4.11 shows the ensemble-averaged, spin-

polarisation per atom measured over the entire 20-5-ZGNR unit call as a function of increas-
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(a) 7.5%

(b) 42.5%

(c) 90%

Figure 4.10: Example schematics of 20-5-ZGNRs used in the ensemble averages (Equation 4.2)
with (a) 7.5% edge-vacancy defect concentration (6 atoms removed), (b) 42.5% edge-vacancy
defect concentration (34 atoms removed) and (c) 90% edge-vacancy defect concentration
(72 atoms removed). The systems at 42.5% and 90% edge-vacancy concentrations provide
examples of notch formation caused by the removal of a Klein defect. The edge of these
systems is defined as the first two atomic rows.

ing random edge-vacancy concentration determined using the GTB model (Equation 2.82).

With the introduction of random edge-vacancies, the shift from an ensemble-averaged, anti-

ferromagnetic lowest energy spin-configuration to an ensemble-averaged, paramagnetic lowest

energy spin-configuration is not seen to occur—this being despite the decreased width of the

20-5-ZGNR compared to the 12-6-ZGNR examined in the systematic edge-vacancy defect

study. Figure 4.11 therefore demonstrates that for a ZGNR with random edge-vacancies,

the lowest energy-state remains antiferromagnetic in spin-texture independent of the edge-

vacancy concentration.

The difference in the values of the spin-up and spin-down net polarisation results shown

in Figure 4.11 can be explained by the self-consistent method used to solve the GTB model.

The GTB calculations involved the spin-up Hamiltonian being arbitrarily chosen and solved

initially in each coupled spin-up/spin-down iteration cycle within the self-consistent Hubbard-

U procedure. The redistribution of spin in the system, and hence net spin-up magnetism, is

therefore a direct result of the broken spin-symmetry caused by the random edge-vacancies.

The lack of a converged, paramagnetic ensemble-averaged solution can be explained by

the fact that the random edge-vacancies will, over an ensemble average, preserve at least

three ideal ZGNR unit cells in a row. Figure 4.12 shows that even for highly disordered

systems there can still be regions of three or more ideal ZGNR unit cells in a row. These
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Figure 4.11: The effect of random edge-vacancies on the ensemble averaged value of the
spin-polarisation per atom measured over the entire system for a 20-5-ZGNR within the unit
cell approximation (Equation 2.82). Blue denotes spin-up, red denotes spin-down, with the
average value corresponding to the net spin-polarisation per atom. Error bars represent the
calculated standard errors associated with these quantities (Equation 4.3) and lines are added
to guide the eye.

stabilising regions preserve the spin-polarisation in the entire system according to Clar’s

theory [173, 174], thus preventing regions without three ideal ZGNR unit cells in a row from

demagnetising (Figure 4.12).

As a direct check with Huang et. al ’s systematic result, the effect of random edge-

vacancies was investigated by doubling the length of the 12-6-ZGNR unit cell to a 24-6-

ZGNR to allow for multiple configurations within the ensemble that satisfies Clar’s theory

of aromaticity [173, 174] of three carbon edge atoms in a row at 33.3% edge-vacancy concen-

tration. Figure 4.13 shows that systematic edge-vacancies, which are distributed with three

ideal ZGNR edge-atoms preserved also retain overall spin-polarisation even at the theoretical

paramagnetic 33.3% defect concentration. This further emphasises the importance of random

edge-vacancy ensemble averaged results in determining the magnetic properties of defected

ZGNRs.

4.3.2 Effects of Random Edge-Vacancy Defects on the Spin-dependent,

Coherent Transport

To calculate the spin-dependent coherent transport (Equation 2.98) the non-defected (black

highlighted) region (Figure 4.14) must first be added to each end of the ZGNR device to
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Figure 4.12: Local net spin-polarisation for a systematically defected 20-5-ZGNR determined
within the unit cell approximation showing an antiferromagnetic configuration. Blue circles
denote spin-up, red circles denote spin-down, with the radius of the circles corresponding to
the relative magnitude of the net spin-polarisation (Equation 2.82).

Figure 4.13: Local net spin-polarisation for a systematically defected 24-6-ZGNR determined
within the unit cell approximation. Blue circles denote spin-up, red circles denote spin-
down, with the radius of the circles corresponding to the relative magnitude of the net
spin-polarisation (Equation 2.82).

prevent discontinuities in the spin-polarisation between the disordered device and the semi-

infinite ideal leads. The length of the additional non-defected regions was determined such

that the edge spin-polarisation on the atoms connecting to the semi-infinite was converged.

To test this convergence, a 20-5-ZGNR device with 51.25% edge-vacancy concentration was

used. The 51.25% edge-vacancy concentration was chosen as this led to the largest difference

in spin-polarisation between the net spin-up and spin-down values (Figure 4.11). Compared

to other vacancy defect concentrations, this system would require the longest non-defected

region to converge the magnetism into the semi-infinite ideal leads, thus setting the minimum

lead length for all other calculations of 20-5-ZGNR defected devices.

Figure 4.14: A schematic of the set-up used to calculate the coherent transport properties
of the random edge-vacancy defected 20-5-ZGNRs. The first and last eight unit cells (black
background, white atomic sites) remain structurally ideal, whereas the first and last unit cells
(black background, red atomic sites) defines the device-lead boundary. The middle 20 unit
cells of 48.02Å length (white background, black atomic sites) defines the disordered region of
the device.

Figure 4.15 shows the increase in local spin-polarisation on both an edge atom and in-

ternal atom at the device-lead boundary for a 20-5-ZGNR device, with 51.25% edge-vacancy

concentration as a function of increasing the ideal (i.e., non-defected) region of the device.

The local net spin-polarisation of the edge atom at the device-lead boundary is seen to con-
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Figure 4.15: Convergence of the local spin-polarisation on the device-lead edge atoms (Equa-
tion 2.81). The red(purple) curve shows the result for an edge(internal) atom on an ideal
5-ZGNR (convergence criterion). The black(blue) curve corresponds to the local spin-
polarisation on the edge(internal) atom at the device-lead boundary for a 20-5-ZGNR device
with 51.25% edge-vacancy concentration as a function of the increasing non-defected region.
In both of these systems, the internal-atom is an atom that is positioned half way across the
device width. Convergence is shown to occur at an additional non-defected length of eight
5-ZGNR unit cells.

verge to that of an ideal 5-ZGNR system at a non-defected region length of eight 5-ZGNR

unit cells, thus meeting the convergence criterion. The magnitude of the converged net local

spin-polarisation is 0.227 for the spin-up(+ve) and spin-down (-ve) edges. Convergence also

occurs for the net local spin-polarisation on the internal-atom defined as an atom positioned

half way across the width of the device. The device/lead internal-atom converges to the net

spin-polarisation of an ideal 5-ZGNR internal-atom of 0.018 at a non-defected region length

of seven 5-ZGNR unit cells. To ensure lead convergence of the magnetism an additional

length of eight 5-ZGNR unit cells was applied to all edge-disordered 20-5-ZGNRs used in the

following studies.

Due to the lack of an intrinsic conductance gap in the non-interacting tight-binding model,

previous studies that involve the STB model applied to edge-vacancy defected GNRs have

been extensive [52, 56, 59, 62, 64, 66, 67]. These studies have shown that edge-vacancies

suppress the conductance around the Fermi level, thus this is used to explain the conduction

gap seen in experimental results [29, 31, 54, 63]. Evaldsson et al. [79] assumed for AGNR

edge-disordered devices that a conductance of less than 0.01 ∗ 2e2/h was equivalent to zero

conductance based on the experimental results of Han et al. [29]. This criterion was also later
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applied to 16-ZGNR devices studied by Cresti and Roche [59].

Mucciolo et al. [67] introduced edge-disorder to a 40-ZGNR device with length 45 nm

and width of 4.7 nm width that was modelled using the STB model where edge roughness

was defined such that r = (W − W̄ )P/a0, where W̄ is the average ribbon width, W is the

undefected ribbon width, P is the probability of an edge-vacancy and a0 is the lattice constant.

Mucciolo et al. [67] found that the conductance of the 40-ZGNR device was robust to small

edge-roughness (r = 0.01), however, became more sensitive as the edge-roughness increased

(r = 0.50). Specifically the conductance at the Fermi energy dropped by approximately four

orders of magnitude relative to the undefected device. They were also able to demonstrate

the increased sensitivity of the conductance in ZNGRs with 45 nm length on edge-roughness

as a function of decreasing ribbon-width with the conductance gap decreasing by half an

order of magnitude as the width of the ribbon was increased from ∼ 2.5− 12 nm.

Other studies into the conductance of ZGNR devices have found that at larger widths,

the conductance is more stable around the Fermi-level. Areshkin et al. [52] studied 64-ZGNR

devices of length 1 µm that had random edge-vacancies, random edge-disorder (implemented

by random variations in the on-site atomic energies), and variable bond lengths using the

STB model. In these studies, the ballistic conductance of the significantly wide 64-ZGNR

systems was determined to be robust even at a large edge-vacancy concentration of 50% and

with an “edge” defined as 4 atoms deep. In comparison, Cresti and Roche [59] used the

STB model to show that a 16-ZGNR device having a smaller width and length of 500nm

exhibited greater sensitivity to the effect of edge-vacancies with significant perturbation to

the conductance at only 7.5% edge-vacancy concentration. Specifically, they demonstrated

that the spin-independent conductance in 16-ZGNR devices would be significantly reduced

to below the 0.01 ∗ 2e2/h criterion, thereby approximating a conductance gap of ≈ 1.75 eV

at lengths greater than 470nm. This suggests that the intrinsic conduction gap found using

the GTB model is more significant in determining the conduction properties than random

edge-vacancies.

The increased robustness of conduction at increased device width compared to the 16-

ZGNR studied by Cresti and Roche [59] has also been demonstrated using the STB model

by Haskins et al. [64] for a 70-ZGNR system with a length of 100 nm. Li and Lu [62]

used the STB model to study ZGNR devices with increasing widths from 5 Å to 55 Å and

demonstrated that, for edge-vacancies with one, two or three edge-atoms, the conductance

remained unperturbed as a function of the increasing device-width. In comparison, AGNR

devices of equivalent widths demonstrated greater relative perturbation to the conductance

compared to ZGNRs having same number of edge-vacancies. ZGNRs in this study became

immune to edge-vacancy perturbation at widths > 30 Å, thereby providing further evidence

of the robustness of ZGNRs against edge-vacancy perturbation.
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With increasing concentration of edge-vacancies (i.e., greater than 50%) the device re-

sembles a thin ribbon with protrusions instead of a wide ribbon with edge-vacancies (due to

Klein defects). Saloriutta et al. used the TranSIESTA package that employs spin-dependent,

non-equilibrium Green’s function-density functional theory (NEGF-DFT) within the PBE-

GGA [80] to demonstrate that a hydrogen-passivated structural protrusion on the edge of

a 12-5-ZGNR device reduced the transport conduction relative for both spin directions. A

significant decrease in spin-conduction near the first conductance step within the range of

±1.5 eV along with a decrease in the conductance spikes either side of the conductance gap

was observed. The largest decrease in spin-conduction was close to 100% at ± 1.4 eV. Sa-

loriutta et al. also demonstrated a stability in the conductance gap, with the gap staying

the same size independent of the introduction of these protrusions. Such protrusions are

relevant to the work in this thesis as these can occur in random edge-vacancy systems having

edge-vacancy concentrations greater than 50%.

Molitor et al. [54] carried out experimental transport and band gap measurements on

etched GNRs. Similar to Han et al. [29], the edge-type (AGNR or ZGNR) could not be

determined, however, a band gap and conductance gap was measured at all widths. Molitor

et al. [54] use edge-roughness to explain the presence of the measured gaps, however, this

explanation is not in agreement with other experimental studies, for example Li et al. [31],

who measured a band gap in structurally pristine, chemically derived GNRs. As the GTB

model predicts a intrinsic gap [32], edge-vacancies will be incorporated into the GTB model

to test the stability of the transport-gap upon the introduction of edge-vacancies.

As these previous studies show, decreasing the ribbon-width increases the sensitivity of

the device to edge-vacancies, thus the small ribbon-widths used in this thesis should also

be sensitive to the effects of edge-vacancies, thereby the small sizes enhancing any trends

seen. The properties observed in the previous literature were also determined using the spin-

independent STB model, thus this thesis also compares non-interacting system results to those

obtained using the more generalised, spin-dependent GTB model. The results presented in

this chapter were calculated with all three models (STB, ETB and GTB) to determine if the

features and edge-effects observed in the STB model from previous studies in the literature

are universal to all three models, or artefacts caused by the approximations made in the STB

model, i.e, first nearest-neighbour hopping and no Coulomb interactions. In particular, the

stability of the intrinsic conduction gap in the GTB model will also be studied to determine

if the more efficient non-interacting models (STB/ETB) can be used at high edge-disorder.
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4.3.3 Comparison of the conductance for 20-5-ZGNRs with random edge-

vacancy disorder as a function of the model type (STB, ETB and

GTB)

Regardless of the model used (STB, ETB or GTB), a reduction in electronic conductance is

found for the 20-5-ZGNR at each of the random edge-vacancy concentrations (7.5%, 42.5%

and 90%) investigated relative to the ideal 20-5-ZGNR device (Figures 4.16(a), 4.16(b) and

4.16(c)). Tables 4.1, 4.2 and 4.3 contain the largest and smallest relative decreases in con-

ductance for the STB, ETB and GTB models for edge-vacancy concentrations at 7.5% (Ta-

ble 4.1), 42.5% (Table 4.2) and 90% (Table 4.3), respectively, taken between the range -1.5eV

< E − Ef < 1.5eV. The decrease in the overall conductance has been linked in previous

studies on the STB model to reductions in conductance channels and an increased charge

localisation [52, 54, 56, 59, 62, 64, 66, 67, 73]. Within this context, localisation is defined as

an increase in resistivity (and therefore decrease in conductivity) in a semi-conductor [175].

Comparing lightly disordered 20-5-ZGNRs at 7.5% and 90% edge-vacancy concentrations

with the highly disordered 42.5% edge-vacancy concentration 20-5-ZGNR, it is possible to

observe a decrease in the difference between the maximum and minimum relative conduc-

tance compared to an ideal 20-5-ZGNR. For example, the STB model at 7.5% edge-vacancy

concentration has a maximum decrease in conductance of 90±3% and minimum decrease

in conductance of 65±4%, resulting in a net difference of ∼25%. The STB model at 90%

edge-vacancy concentration has a range of values between the largest relative decrease in

conductance of 87±3% and the smallest relative decrease in conductance of 65±4%, resulting

in a net difference of ∼22%. In comparison, the STB model at 42.5% edge-vacancy disorder

exhibits a range of values between the largest relative decrease in conductance of 100±3%

and a minimum suppression in conductance of 87±3%, resulting in a net difference of ∼13%.

Compared to the STB, the ETB model, which has a greater degree of kinetic freedom,

exhibits the largest range of values associated with the relative net difference in conductance

for the low-disorder systems, namely, ∼55% and ∼94% for 7.5%, and 90% random edge-

vacancy concentrations, respectively. For the GTB model at low disorder, the relative net

difference in conductance is spin-independent with∼38% and∼59% at 7.5%, and 90% random

edge-vacancy concentrations, respectively. These values for the GTB model are greater than

the STB values, but however, lower than the ETB values due to the effects of increased

kinetics (i.e., the increased hopping parameters) combined with the localisation effects of the

Hubbard-U . At high edge-vacancy disorder (42.5%), the STB and ETB models show the

same relative net difference in conductance ∼13-14% as increased kinetics in the ETB has no

gain due to the removal of a larger number of conduction channels. The GTB result shows a

similar trend with a ∼18% relative net difference in the spin-independent conductance. The

slight increase in this value against the STB and ETB results can be attributed to the effects
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Model
7.5%

Maximum relative reduction Minimum relative reduction
E (eV) Con. (% red.) E. (eV) Con. (% red.)

STB 1.41±0.01 90±3 0.33±0.01 65±4

ETB 1.36±0.01 95±3 0.01±0.01 40±5

GTB
Spin-Down 1.34±0.01 93±5 0.174±0.008 56±2
Spin-Up 1.41±0.01 94±1 -0.298±0.008 58±5

Table 4.1: Relative decrease in the ensemble-averaged electronic conductance for a 20-5-
ZGNR device with 7.5% random edge-vacancy concentration investigated within the range
−1.5eV < E < 1.5eV (Equations 4.2 and 2.98). The conductance values in the defected
device were taken relative to the ideal 20-5-ZGNR conductance determined for each model.
“E” denotes the energy value at which the reduction occurs and “Con.” denotes the relative
decrease in conductance (% red.). For the GTB model, the maximum and minimum relative
reductions were taken outside of the ideal 20-5-ZGNR conduction gap (±0.165eV) otherwise
the minimum decrease would be zero as the conductance gap is not affected by the addition
of edge-vacancies.

Model
42.5%

Maximum relative reduction Minimum relative reduction
E (eV) Con. (%) E (eV) Con. (%)

STB -0.048±0.008 100±3 1.47±0.01 87±3

ETB -0.042±0.008 100±3 -1.03±0.01 85±1

GTB
Spin-Down 1.40±0.01 99.5±0.1 1.37±0.01 82±1
Spin-Up 1.39±0.01 99.3±0.1 -1.37±0.01 80±4

Table 4.2: Relative decrease in the ensemble-averaged electronic conductance for a 20-5-
ZGNR device with 42.5% random edge-vacancy concentration investigated within the range
−1.5eV < E < 1.5eV (Equations 4.2 and 2.98). The conductance values in the defected
device were taken relative to the ideal 20-5-ZGNR conductance determined for each model.
“E” denotes the energy value at which the reduction occurs and “Con.” denotes the relative
decrease in conductance. For the GTB model, the maximum and minimum relative reduc-
tions were taken outside of the ideal 20-5-ZGNR conduction gap (±0.165eV) otherwise the
minimum decrease would be zero as the conductance gap is not affected by the addition of
edge-vacancies.

Model
90%

Maximum relative reduction Minimum relative reduction
E (eV) Con. (%) E (eV) C (%)

STB 1.50±0.01 87±3 −0.286±0.008 52±4

ETB 1.50±0.01 95±1 0.014±0.008 2±2

GTB
Spin-Down 1.50±0.01 96±1 −0.284±0.008 38±4
Spin-Up 1.50±0.01 96±1 0.176±0.008 36±4

Table 4.3: Relative decrease in the ensemble-averaged electronic conductance for a 20-5-
ZGNR device with 90% random edge-vacancy concentration investigated within −1.5eV <
E < 1.5eV (Equations 4.2 and 2.98). The conductance values in the defected device were
taken relative to the ideal 20-5-ZGNR conductance determined for each model. “E” denotes
the energy value at which the reduction occurs and “Con.” denotes the relative decrease in
conductance. For the GTB model, the maximum and minimum relative reductions were taken
outside of the ideal 20-5-ZGNR conduction gap (±0.165eV) otherwise the minimum decrease
would be zero as the conductance gap is not affected by the addition of edge-vacancies.
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(a) 07.5% (b) 42.5%

(c) 90.0%

Figure 4.16: Ensemble averaged electronic conductance vs. energy relative to the Fermi-
energy for a 20-5-ZGNR device at (a) 7.5%, (b) 42.5% and (c) 90% edge-vacancy con-
centrations. Insert shows a zoom of the conductance around the Fermi energy. For the
non-interacting models (STB and ETB) and for the ideal GTB device, the results are spin-
independent. Green, black, red(blue) corresponds to the disordered STB, ETB, GTB spin-
down(-up) result respectively. Purple, dashed orange and dashed pink gives the ideal 20-5-
ZGNR STB, ETB and GTB result respectively. The energy, E, is taken relative to the Fermi
energy, EF . Standard error (Equation 4.3) not included for clarity. The largest error in the
results is ±0.05e2/h (Equation 4.3).

of the Hubbard-U charge-carrier localisation.

The relative decrease in the overall conductance in the STB, ETB and GTB models

as a function of increasing edge-vacancy disorder observed here is in agreement with the

general trends seen in previous studies [52, 54, 56, 59, 62, 63, 64, 66, 67, 68, 73, 74]. In

particular, the largest relative decrease in conductance occurs close to 1.5 eV (i.e. close to

the first conduction step) at 7.5% and 90% edge-vacancy concentrations (Figures 4.16(a) and

4.16(c)) is in agreement with Li and Lu [62], Areshkin et al. [52], Haskins et al. [64] and

Mucciolo et al. [67], who all demonstrate that the largest decrease in conductance occurs

near the first conduction step for low edge-disorder. At 42.5% edge-vacancy concentration

(Figure 4.16(b)), the conduction is sufficiently suppressed throughout the entire energy range

independent of the STB, ETB or GTB model studied. The large decrease in conductance for

the STB and ETB models near the Fermi energy (∼100%) seen at high (42.5%) edge-vacancy
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concentration is also in agreement with Mucciolo et al. [67] who studied a larger 40-ZGNR

with 45 nm length at high edge-vacancy disorder of 50% edge-vacancy concentration.

Away from the Fermi energy, i.e., outside the GTB conductance gap (±0.2eV), the STB,

ETB and GTB models results for the 20-5-ZGNR show, in general, very similar trends in the

coherent transport results (Figures 4.16(a), 4.16(b) and 4.16(c)). The GTB and ETB results,

in particular, follow the same general trend, with the STB results showing differences due to

the shift in the first conduction steps, which are also observed in the ideal system results. The

conduction trends diverge inside the GTB conductance gap (-0.2 eV< E−EF < 0.2 eV), with

the non-interacting models preserving non-zero conductance at the Fermi energy, whereas the

GTB model gives a conductance gap of 0.328±0.008 eV at all edge-vacancy concentrations

considered, equal, to within error, to the ideal 20-5-ZGNR conduction gap of 0.330±0.008 eV.

The invariance in the intrinsic conductance gap with increasing edge-vacancy concentra-

tion suggests that, for a 20-5-ZGNR device at high edge-vacancy disorder, for example at

42.5% edge-vacancy concentration, the intrinsic conductance gap for the interacting GTB

model is still observed, and, thus, the GTB model, in this case, should be used over the non-

interacting models (Figure 4.16(b)). This may, in general, be of importance for low-width

and short-length ZGNRs where the Hubbard-U effects are stronger, and where the effects of

edge-vacancies are also more pronounced. Having an intrinsic GTB gap in low-width, short-

length ZGNRs also means that edge-vacancy disorder is not necessarily required to open the

conduction gap observed in experimental results [31]. For example, conductance gaps have

been observed in atomically clean experimental GNR devices [31] implying that edge-disorder

is not the only mechanism to open a conductance gap in these systems (Figure 1.12).

To further investigate the effect of random edge-vacancy disorder on 20-5-ZGNRs, the

conductance at the Fermi energy and the integrated conductance results found via the Simp-

son’s rule [172] were determined as a function of increasing edge-vacancy concentration for

the STB, ETB and GTB models within the energy range of -0.5eV< E − EF <0.5eV (Fig-

ures 4.17(a) and (b), respectively). The Simpson’s rule is encapsulated in the following

equation, ∫ a

b
f(x)dx ≈ b− a

6
[f(a) + 4f(

a+ b

2
) + f(b)] (4.5)

where a and b define two points along the x-axis, f(x) is an exact function of x describing

the curve to be integrated, f(a(b)) is the value of the function at x = a(b) and f((a+ b)/2)

is the value of the function between x = a and x = b.

Figure 4.17(b) shows that at the Fermi energy, an overall decrease in the conductance

of 1.21±0.03 e2/h occurs in the STB model as the edge-vacancy concentration approaches

51.25%. After this, the conductance is shown to increase to 0.947±0.03 e2/h as the edge-

vacancy concentration rises from 51.25% to 100%. The increase in conductance after 51.25%

is due to the removal of atomic (i.e., structural) protrusions from the ZGNR that occur in the
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Figure 4.17: The effect of increasing the edge-vacancy concentration on the ensemble-averaged
electronic conductance in a 20-5-ZGNR. Figure (a) shows the conductance at the Fermi
energy, and Figure (b) shows the integrated conductance obtained between -0.5 eV< E −
EF <0.5 eV via the Simpson’s rule for integration. Green, black, red(blue) corresponds
to the disordered STB, ETB, GTB spin-down(-up) results, respectively. Purple, dashed
orange and dashed pink correspond to the ideal 20-5-ZGNR STB, ETB and GTB results,
respectively. For the non-interacting models (STB and ETB) and for the ideal GTB device,
the results are spin-independent. The standard errors associated with the ensemble-averaged
conductance results have not included for clarity. The largest standard error being ±0.05 e2/h
(Equation 4.3).
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first edge-atom layer, thereby resulting in a structurally ideal ZGNR at 100% edge-vacancy

concentration. The STB and ETB non-interacting models follow the same overall trend as

a function of increasing edge-vacancy concentration, and the same exact trend where the

conduction values are in agreement for the two models to within ±0.05 e2/h between 32.5%

and 51.25% edge-vacancy concentration (Figure 4.17(a)). Due to the intrinsic conduction

gap in the GTB, the conductance at the Fermi energy is zero. At no point, as a function

of the edge-vacancy concentration, do the STB and ETB results enter the zero conductance

criterion established by Han et al. and Evaldsson et al. [29] [79] (0.01 ∗ e2/h for single-spin).

The integral of the conductance between −0.5eV <E<0.5eV provides information about

the general trend of the overall conductance of the system (Figure 4.17(b)(b)). In this figure,

the three models are shown to follow the same overall trend at all % edge-vacancy concentra-

tions, with the integral of the conductance following the same exact trend between 32.5% and

51.25% edge-vacancy concentration. Due to the increased kinetic degrees of freedom in the

ETB model and the lack of a conduction-gap compared to the GTB model, the ETB model

is therefore shown to have the largest overall conductance and thus the smallest degree of

charge-carrier localisation.

The trends observed in the decrease in conductance for the STB model compared to

the ETB and GTB models implies that, outside of the GTB conductance gap, the ETB

model can be used to approximate the GTB properties (Figure 4.16). The 1st nearest-

neighbour hopping only approximation of the STB model is insignificant to properly predict

the conductance trends outside of the GTB conductance gap as shown in Figure 4.16. The

stability of the GTB conductance gap and edge-magnetisation even for highly edge-disordered

devices (42.5%) means that the Coulomb interactions cannot be ignored and must be included

in all calculations. The differences between the STB, ETB and GTB models will be further

probed by looking at the localisation lengths in the following section, and later as a function

of the device length in Section 4.3.5.

4.3.4 Effects of Random Edge-Vacancies on Electronic Localisation

4.3.4.1 Localisation Length

The dependence of the charge-carrier conductance on system length within the coherent

transport formalism for a disordered chain consisting of a 1D Fermi gas with non-fixed length

was first described by Landauer in 1970 [176]. Anderson et al. later applied this formalism

to the study of disorder in a 1D wire described by a lattice model [177]. The dependence

of conductance on system length was later confirmed though rigorous analytical analysis by

Johnson and Kunz [178].

At a given energy E, the localisation length, ζ, is related to the conductance due to
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disorder, G′, and the conductance of the ideal system, G, via the relation

G′(L) = G(L)e
−L
ζ (4.6)

where, L denotes the device length [176, 177, 178]. Therefore, at constant L [52]

ζ = (−ln[G/G′]/L)−1, (4.7)

for a single point measurement. For systems studied as a function of L, the localisation length

ζ can be determined from the inverse of the slope of the curve obtained from −ln[G(L)/G′(L)]

vs. L. Anderson localisation [60] occurs when the localisation length, ζ, is smaller than the

device length, L. The weak-scattering limit is defined when ζ is equal to the mean-free path

length [179], which implies that if ζ is smaller than the device then the charge carriers in the

system are localised.

The exponential decay in conductance as a function of GNR device length has been

demonstrated in detail using the STB model [52, 59, 62, 67]. Li and Lu verified the applica-

bility of Equation 4.6 for random edge-disordered 8- and 12-ZGNR devices between 50 Å and

200 Å in length [62]. In this study edge-disorder was introduced by randomly perturbing

the on-site energy of each edge atom by ± V , where V denotes the edge-disorder strength.

The study determined localisation lengths of 59 Å and 51 Å for 12-ZGNRs with random

edge-disorder of V=±0.25 eV and ±1.0 eV, respectively, and 53 Å and 45 Å for 8-ZGNRs

with edge-disorder of V=±0.25 eV and ±1.0 eV, respectively. N.B. Values of V were taken

relative to the onsite energy of graphene in a homogeneous system, 0.0eV. This suggests that

for GNRs, the localisation length increases as the edge-perturbation decreases or if the ribbon

width is increased.

Cresti and Roche studied changes to the STB model calculated conductance as a func-

tion of increasing device length in randomly edge-vacancy defected 16-ZGNR devices using

the STB model [59]. A conductance gap of ∼1.75 eV was found at device lengths greater

than 470 nm, increasing to ∼2.4 eV at 1250 nm [59]. In this study, Cresti and Roche also

demonstrated a decrease in mean-free path length (hence, localisation length) as a function

of increasing edge-vacancy probability suggesting that the localisation length is dependent on

both device length and edge-vacancy concentration. In their study, the edge-vacancy proba-

bility was defined as the probability that each edge-atom is removed. For example, at an edge

vacancy concentration of 7.5%, each edge-atom has a 7.5% probability of being removed.

Areshkin et al. [52] calculated the localisation length for both 52-AGNR and 64-ZGNR

devices using the STB model and found that AGNRs are significantly more sensitive than

ZGNRs to random edge-vacancy perturbation. The 52-AGNR was found to be within the

Anderson localisation regime at 5% edge-vacancy concentration, where the edge-vacancies
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were taken to four atomic edge layers deep. In comparison, the 64-ZGNR device required

edge-vacancies up to eight atomic layers and a higher edge-vacancy concentration of 50%

before the Anderson localisation regime was reached [52]. The localisation length for the

AGNR was determined as being 0.6µm, whereas for the ZGNR the localisation length was

determined to be much larger at 7µm. In general, the fact that the localisation length is found

to be inversely dependent on ribbon width [52, 59, 62, 67], coupled with the insensitivity

of ZGNRs to edge-perturbation at large widths [52, 59], again provides strong supporting

evidence for the choice of thin ZGNRs in this thesis study.

For the 20-5-ZGNR studied in this work, the marked decrease in conductance around

51.25% edge-vacancy concentration can therefore be directly linked to the increased charge-

carrier localisation in the device (Figure 4.17(b)). Figure 4.18 compares the ensemble aver-

aged localisation length vs. energy calculated using the STB, ETB and GTB models for the

20-5-ZGNR at two example edge-vacancy concentrations of 7.5% and 42.5%. The 90% ran-

dom edge-vacancy concentration system was not included here as there is an increase in the

fraction of structurally ideal edge due to the increased number of edge-vacancies that leads

to a similar effect on the conductance as the 7.5% result as per Figure 4.17. Comparison

of Figures 4.18(a) and (b) shows a significant increase in charge-carrier localisation in the

device as the edge-vacancy concentration is increased from 7.5% to 42.5%, independent of

the model used (to within a maximum uncertainty of 3Å(Equation 4.3)).

The results for the STB model show that the 20-5-ZGNR device of length of 48.02 Å is

within the Anderson localisation regime at all energies, and that this occurs even at the low

edge-vacancy concentration of 7.5% (Figure 4.18). These trends are in agreement with Mucci-

olo et al. [67], who concluded for devices with width 4.7 nm that the conduction gap opening

in edge-disordered systems is evidence of Anderson disorder, and Cresti and Roche [59], who

found localisation lengths that were less than the device length (470nm) for edge-vacancies at

>5% concentration for single hexagonal defects or when Klein defects were included. A con-

ductance gap is opened in devices studied by Cresti and Roche [59], and Mucciolo et al. [67],

when the conductance is suppressed significantly (conductance less than 0.01∗2e2/h [29, 79])

due to Anderson localisation. The fact that the STB results demonstrates Anderson locali-

sation implies that at longer device lengths, a conductance gap may form as discussed later

in Subsection 4.3.5.

The increased kinetic degrees of freedom in the ETB and GTB models leads to regions

at -0.450 eV< E − EF <-0.100 eV and -0.060 eV< E − EF <0.030 eV for the ETB model,

and at -0.776 eV< E − EF <-0.296 eV and 0.168 eV< E − EF <0.440 eV for the GTB

model, where the localisation length for the 20-5-ZGNR at 7.5% edge-vacancy concentration

is shown to be outside of the Anderson localisation regime (Figure 4.18(a)). The spin-

dependent GTB results show spin-up having longer localisation lengths compared to spin-
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Figure 4.18: The effect of increasing the edge-vacancy concentration on the ensemble-averaged
localisation length calculated for a 20-5-ZGNR with (a) 7.5%, and (b) 42.5% edge-vacancy
concentration. Green, black, red(blue) denote the STB, ETB, GTB spin-down(-up) results,
respectively, for the edge-vacancy defected 20-5-ZGNR. Purple, dashed orange and dashed
pink denote the ideal 20-5-ZGNR STB, ETB and GTB results, respectively. In (a), a purple
dotted line has been included to signify the overall device length of 48.02 Å. For the non-
interacting models (STB and ETB) and for the ideal GTB device, the results are spin-
independent. The energy, E, is taken relative to the Fermi energy, EF and has an uncertainty
of ±0.008 eV associated with it. The maximum uncertainty associated with the localisation
lengths determined within the ensemble average is 3Å(Equation 4.3)
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down outside of the Anderson localisation regime due to spin-up being the majority spin in

the Hubbard-U convergence (Figure 4.18). Inside the Anderson localisation regime, the trend

is predominantly to exhibit no spin-dependence.

At 42.5% edge-vacancy concentration, the STB, ETB and GTB models are shown to follow

the same general trend, with the calculated localisation lengths being within the Anderson

localisation regime (Figure 4.18(b)). There is no spin-dependence discernible in the GTB

results at 42.5% random edge-vacancy concentration. A limitation of the work in this section

is that only a single length of 48.03 Å was analysed therefore providing only a general indicator

for Anderson localisation. In the next section, the conductance of 7.5%, 42.5% and 90% edge-

vacancy defected 5-ZGNRs will be studied as a function of device length, therefore providing

a more accurate estimation of localisation lengths in these systems.

4.3.5 Effects of Variable Device Length on the Charge-carrier Localisation

Cresti and Roche [59] showed that the charge-carrier localisation in GNRs, and therefore

conductance, is dependent on the system dimensions. As shown in Section 4.3.2 (Fig-

ure 4.17(a)), the charge-carrier conductance at the Fermi energy, which was calculated using

the non-interacting models for random edge-vacancy defected 20-5-ZGNRs (STB and ETB

models), is not suppressed sufficiently at all edge-vacancy concentrations to meet the 0.01 ∗

2e2/h conduction-gap criterion [29, 79]. In this section, the length-dependence associated

with the coherent transport properties of the 5-ZGNR, with lengths, 48.03 Å (20-5-ZGNR),

72.05 Å (30-5-ZGNR), 96.06 Å (40-5-ZGNR), 120.08 Å (50-5-ZGNR) and 144.09 Å (60-5-

ZGNR), is investigated using the STB, ETB and GTB models to better understand the

interplay between length, the kinetics of the model, and Hubbard-U effects.

As an initial investigation, the non-interacting STB and ETB models were compared

(Figure 4.19) to determine if the conductance at the Fermi energy drops below the 0.01∗e2/h

conduction-gap criterion, thus indicating the on-set of a conductance gap as a function of

the increasing system length. For 7.5% and 90% edge-vacancy concentrations, there is an

inverse linear dependence of the conductance at the Fermi energy as a function of increasing

device length. In addition, the conductance at the Fermi energy is shown to be larger for

the ETB model than for the STB model for all device lengths. The trend whereby the ETB

conductance is greater than the STB conductance coincides with previous trends seen in the

conduction results shown in Section 4.3.2.

The inverse linear nature of the trends shown in Figure 4.19 means that Anderson lo-

calisation is not occurring at 7.5% and 90% edge-vacancy concentrations as an exponential

decrease in the conductance would be expected as per Equation 4.6 [177]. These results sup-

port those shown in Section 4.3.4, which demonstrate that the 20-5-ZGNR is not Anderson

localised for all energies considered between -1.5 and 1.5 eV. The study here will therefore fo-
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cus on the 42.5% edge-vacancy defected devices (Figure 4.20), which are Anderson localised,

such that the competition between the Anderson localisation and Hubbard-U effects can be

probed using the GTB model. The importance of the 42.5% edge-vacancy concentration

was also highlighted previously in the study of the 20-5-ZGNR, where this device was shown

to be Anderson localised for all models (STB, ETB and GTB) independent of the energy

considered.

For highly disordered 42.5% edge-vacancy defected 5-ZGNRs, a logarithmic decrease in

conductance at the Fermi energy can be seen between lengths 48.02 Å and 96.06 Å (Fig-

ure 4.20). The logarithmic decrease is in agreement with the general trends reported by Li

and Lu [62] and Mucciolo et al. [67] using the STB model for defected GNR devices that

are Anderson localised. Specifically, Mucciolo et al. [67] results infers a logarithmic decrease

in conductance for a randomly edge-disordered 4.7 nm-wide ZGNR device as a function of

increasing device length, where the Gon/off ratio (i.e., the ratio between the conductance at

the Fermi energy (Goff ) and conductance at the first conductance step (Gon)) is shown to

increase exponentially as the device length increases. Li and Lu [62] studied random edge-

disorder (due to perturbed on-site energies) in 8- and 12-ZGNR devices and demonstrated a

logarithmic decrease in conductance at the Fermi energy above device lengths of 50 Å.

For devices longer than 96.06 Å (40-5-ZGNR), the individual spin-conductance drops

below the conductance-gap criterion value of 0.01 ∗ e2/h, within an ensemble averaging un-

certainty of maximum ±0.01 ∗ e2/h for both the STB and ETB models (Figure 4.20). This

result is in general agreement with Cresti and Roche [59], who demonstrated a decrease

in conductance at the Fermi energy for a 7.5% randomly edge-disordered 16-ZGNR up to

a device length of 470 nm, at which point the conductance was shown to fall below the

0.01 ∗ 2e2/h [79, 29] conduction value. A conductance gap of 1.75 eV was showed to form for

this system which increased in size as the device length was increased.

Compared to the minimum gap-opening length of 96.06 Å needed for the 5-ZGNR (Fig-

ure 4.20) at 42.5% edge-vacancy concentration, the significantly larger (2 orders of magnitude)

device length of 470 nm studied by Cresti and Roche for the 16-ZGNR [59] with 7.5% edge-

vacancy concentration was required for the conductance gap to open due to a combination

of the increased device width (leading to a decrease in vacancy sensitivity [52, 62, 67]) and

a decrease in edge-vacancy concentration. The fact that Cresti and Roche [59] demonstrates

both a logarithmic decrease in conductance and the eventual opening of a edge-vacancy gap

suggests that 7.5% edge-vacancy 5-ZGNR devices studied using the STB and ETB models

will eventually enter the Anderson regime at significantly larger device lengths.

To determine the localisation length for the 42.5% random, edge-defected 5-ZGNR, the

Anderson localisation equation (Equation 4.6) was fitted to the conductance at the Fermi

energy vs. length results (Figure 4.20). From these fits, localisation lengths of 47 Å and
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Figure 4.19: Effect of device-length on the charge-carrier conductance measured at the Fermi
energy for random edge-disordered 5-ZGNRs. Light green(black) symbols represents the
STB(ETB) model. Circles, diagonals and squares correspond to 7.5%, 42.5% and 90% edge-
vacancy concentrations, respectively. When the conductance drops below the dark green line
(0.01 ∗ 2e2/h threshold) it is assumed to be zero, indicating a conductance gap as per the
criterion established [29, 79] . In real-space, a 5-ZGNR has a system-width of 9.24 Å.

49 Å having a maximum uncertainties of ± 3 Å (Equation 4.3) were determined for the STB

and ETB models, respectively. These localisation lengths are in agreement with the general

trends discussed previously (Subsection 4.3.4), namely that the STB model demonstrates

greater charge-carrier localisation than the ETB model (Figure 4.18).

Using the criterion in Refs [180, 181, 182], Cresti and Roche [59, 58] were able to demon-

strate the onset of the localisation regime. Using Refs [180, 181, 182], the diffusion regime is

determined to be well established when,

∆G(0)

< G(0) >
< 1 (4.8)

whereas, using Equation 4.6, the localisation regime is well defined when,

∆G(0)

< G(0) >
> 1 (4.9)

and
∆ln(G(0))

< ln(G(0)) >
< 1 (4.10)

where ∆G(0) is the standard error in the ensemble average transport results at the Fermi
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Figure 4.20: Effect of device-length on the charge-carrier conductance measured at the Fermi
energy for 5-ZGNR devices with 42.5% edge-vacancy concentration. Light green(black) sym-
bols correspond to the STB(ETB) model results. When the conductance drops below the
dark green line (0.01 ∗ 2e2/h threshold) it is assumed to be zero, indicating a conductance
gap as per the criterion established [29, 79]. In real-space, a 5-ZGNR has a system-width of
9.24 Å.

energy and < G(0) > is the ensemble average transport at the Fermi energy.

Figure 4.21 shows the effects of device length on the diffusion-localised regimes. For 7.5%

random edge-vacancy concentration (Figure 4.21(a)), there is no transition from the diffusion

regime to the localisation regime, with Equation 4.8 increasing above 1 for both the ETB

and STB models and Equation 4.10 remaining above 1 for all device lengths. The fact that

Equation 4.10 can be below 1 without Equation 4.8 being greater than 1 is in agreement with

Cresti and Roche [58].

The 5-ZGNR with 42.5% edge-vacancy concentration (Figure 4.21(b)), on the other hand,

is within the localisation regime for device lengths greater than 48 Å. This increased localisa-

tion with increased random edge-vacancy concentration is in agreement with both the work

in this document (Figure 4.18) and in the established work discussed above, for example,

Cresti and Roche [59, 58], Mucciolo et al. [67] and Li and Lu [62]. In addition, the approxi-

mate point of transition between diffusion and localised (i.e., between 40 Å and 50 Å) is in

agreement with the Anderson localisation length calculations carried out above (Figure 4.21).

In terms of published literature, Cresti and Roche [59, 58] use the regimes, and thus the

localisation lengths determined from Refs [180, 181, 182] whereas Mucciolo et al. [67] and Li

and Lu [62] determined the localisation lengths from the Anderson localisation equation [176,

177, 178] (Equation 4.6). As demonstrated in this document, these two localisation methods,

the fitting of the Anderson localisation equation and through the statistics of the ensemble

average, are in agreement with each other.
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Figure 4.21: Effect of device-length on Equation 4.8 (light green) and Equation 4.10 (black)
for random edge-disordered 5-ZGNRs with (a) 7.5% and (b) 4.2% edge-vacancy concentration.
Circle(Diamond) symbols represents the STB(ETB) model. Solid horizontal lines denote the
point at which a trend fulfills the regimes criterion (Equation 4.10).



CHAPTER 4. EFFECTS OF EDGE-VACANCIES ON ZGNRS 110

As discussed in subsection 4.3.4, Equation 4.7 had been previously fitted using the 20-5-

ZGNR conductance results, where it was shown that for the GTB, ETB and STB models,

the system was entirely charge-carrier localised at 42.5% edge-vacancy concentration (Fig-

ure 4.18). The fact that both STB and ETB systems fall below the 0.01 ∗ e2/h zero conduc-

tance criterion at the Fermi energy is the equivalent to the onset of a conductance gap. The

edge-vacancy disorder-induced conductance gaps in the non-interacting models can be com-

pared to the interacting GTB conductance gaps. Such a comparison will determine if there

is a point as a function of the system parameters (edge-vacancy concentration and device

length), where the non-interacting, disorder-induced conductance gap could be equivalent to,

or extend beyond the interacting GTB system conductance gap (Figure 4.23).

Figure 4.22: Transport result for a 50-5-ZGNR of length 120.075 Å with 42.5% random edge-
vacancy concentration demonstrating the conductance gaps that are observed. When the
conductance drops below the dark green line (0.01 ∗ 2e2/h) it is assumed to be zero (See
zoomed in insert).

Figure 4.19 showed that only the 50- and 60-5-ZGNR non-interacting devices (120.075 Å

and 144.09 Å, respectively) with 42.5% edge-vacancy disorder have a conductance at the Fermi

energy that is less than the 0.01 ∗ 2e2/h gap forming criterion. To understand these results

within the context of the transport results, Figure 4.22 shows the conductance of a 50-5-ZGNR

device with 42.5% random edge-vacancy concentration. A 50-5-ZGNR device was chosen as it

is the shortest device length investigated to have both non-interacting models (STB & ETB)

below the zero conductance criterion of 0.01 ∗ e2/h (Figure 4.22). The dark green line in this

figure denotes the 0.01 ∗ e2/h conduction criterion, and thus it is possible to see the point at
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Figure 4.23: Effect of device-length on the conductance gap for 42.5% random edge-vacancy
disordered 5-ZGNRs. Light green, black, blue(red) symbols represents the STB, ETB, GTB
spin-up(-down) results, respectively.

which the smallest gap result, namely the spin-up conductance (blue), becomes greater than

the zero conductance criterion of 0.01 ∗ e2/h which occurs at 0.224±0.008 eV.

The ideal system result in Figure 4.22 can be used as a benchmark to demonstrate the

increase in the interacting (GTB) system’s conductance gap due to disorder as a function

of the increasing length compared to the intrinsic ideal gap. Specifically, in comparison

to the GTB result, the non-interacting system conductance gap is shown to increase from

1.292±0.008 eV for the 50-5-ZGNR to 1.784±0.008 eV for the 60-5-ZGNR in the STB model,

and from 1.128±0.008 eV for the 50-5-ZGNR to 1.676±0.008 eV for the 60-5-ZGNR for the

ETB model (Figure 4.23). Note that the interacting GTB model maintains the intrinsic

conductance gap of 0.328±0.008 eV for the 20- and 30-5-ZGNR systems having lengths of

48.03 Å and 72.04 Å, respectively (Figure 4.23). The intrinsic conductance gap caused by the

Hubbard-U starts to open for the 40-5-ZGNR system (96.06 Å length), and shows symmetry-

breaking upon comparison of the results pertaining to the spin-up and spin-down results

(Figure 4.23).

The edge-vacancy induced GTB conductance gap increases in size as the device length in-

creases following a similar trend as the non-interacting models (STB & ETB). For 50-5-ZGNR

length devices and for longer 5-ZGNR device lengths, the largest interacting conductance gap

(in this case, for spin-down) is smaller than the non-interacting conductance gaps, implying

that the non-interacting system is more localised than the interacting one (Figure 4.23). For
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a device length of 40-5-ZGNR and for longer devices, the GTB conductance gaps continue to

increase in size as the device length increases, following a similar trend as the non-interacting

models. For the 40-5-ZGNR device there is a slight increase in the interacting conductance

gaps of 0.412eV for spin-down and 0.368eV for spin-up compared to the intrinsic GTB gap

of 0.33eV. As a function of increasing device length, the edge-vacancy induced gap increases

to 1.08(0.756)eV for spin-down(-up) at 50-5-ZGNR and 1.36(1.20)eV for spin-down(-up) at

60-5-ZGNR (Figure 4.23).

At a fixed device length, more conduction channels are removed with increasing edge-

vacancy concentration leading to a decrease in the charge-carrier conductance within the

-1.5eV< E − EF <1.5eV range. In removing these conductance channels the probability

of charge-carrier scattering becomes greater than the probability of charge-carriers passing

though the device. Increasing the device length for a fixed edge-vacancy concentration does

not change the number of conduction channels though the device. Instead, as the length of

the conduction channels increases for increasing device length, the probability that a single

charge-carrier will encounter a scattering site (i.e., edge-vacancy), and thus get scattered,

increases. When the device length is longer than the charge-carrier localisation length, the

number of charge-carriers scattered become sufficient for Anderson localisation to occur [177].

The non-interacting systems require longer device lengths for edge-vacancy perturbation

effects to appear (i.e., via the opening conduction gap) due to the non-interacting edge-states

being more robust to edge-vacancy perturbations compared to the edge-states in the GTB

interacting system. For example, for 5-ZGNR devices at 42.5% edge-vacancy concentration,

the defect-induced spin-conductance gaps in the GTB results are larger than the intrinsic

GTB gap commencing at a device length of 40-5-ZGNR (c.f. Figure 4.23). In comparison, the

non-interacting models (STB & ETB), show edge-vacancy induced conduction gaps starting

to open at a greater device length of 50-5-ZGNR. The onset of edge-vacancy perturbation

effects at a shorter device length for the GTB model relative to the non-interacting models

is due to the Hubbard-U term in the model introducing competition between the scattering

localisation and the magnetic localisation.

The fact that these systems are Anderson localised even at lengths smaller than 120.075Å,

i.e., the length at which conductance drops below the critical value, means that the conduc-

tance does not need to drop below 0.01 ∗ 2e2/h to be considered localised. The fact that this

localisation can occur at conductance greater than 0.01 ∗ 2e2/h means that it is not suffi-

cient to use the critical value of conductance to determine if a system is localised. Instead,

the localisation length is a more accurate description of the onset of localisation. This is in

agreement with Li and Lu [62], Areshkin et al. [52] and Mucciolo et al. [67]. All three studies

find conductances at the Fermi energy above the zero conductance criterion of 0.01 ∗ 2e2/h

at device lengths greater than the Anderson localisation length.
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Anderson localisation does not depend on the formation of an approximate conductance

gap or a critical reduction in conduction to occur [60]. The condition for Anderson localisation

is that the mean-free path of the charge-carriers is less than that of the system length, and,

thus, there is an increasing probability that charge-carriers will be localised within the device

and not traverse the device [60]. This separates the disorder-induced localisation [59], which

leads to the opening of a conductance gap, from Anderson localisation.

4.4 Conclusion

In this chapter, it was demonstrated that there is an overall decrease in conductance of

GNRs with the introduction of edge-vacancies. In particular, it has been shown that there

is an overall increase in localisation along the ribbon-edge up to a critical edge-vacancy

concentration of 51.25%. When comparing the three models, the simple tight-binding (STB)

model, the extended tight-binding (ETB) model, and the generalised tight-binding (GTB)

model, the general trend of decreasing electronic transport is observed in all three models,

with convergence of the conductance occurring between 32.5% and 51.25% edge-vacancy

concentration. It has also been shown that at 42.5% edge-vacancy all three models are

within the localisation regime, with the STB model being fully within the localisation regime

at low edge-vacancy concentrations (7.5% edge-vacancy concentration). The stability of the

conduction-gap in the GTB model and of the non-zero conductance at the Fermi energy for

the non-interacting models with the introduction of edge-vacancies implies that, even at high

edge-vacancies concentrations, the GTB model is sufficiently different that it should be used

over the simpler, non-interacting, models. When compared to the experimental, chemically

derived nanographene gap there is a better agreement with the GTB model due to the stability

of the model conductance gap. The effect of random edge-vacancies compared to systematic

edge-vacancies was also investigated and it was found that random edge-vacancies stabilise the

edge-polarisation and prevent the antiferromagnetic/paramagnetic transition observed in the

systematic edge-vacancies study, implying that the GTB is preferred over the non-interacting

models to calculate the effects of these edge-defects.

In addition, the effects of increasing device length was probed and Anderson localisation

lengths of 47Å and 49Å were found for the STB and ETB models respectively. The difference

between localisation and Anderson localisation was also discussed, with Anderson localisa-

tion requiring longer devices. Finally, the onset of the non-interacting conductance gap was

investigated, with the conductance gap calculated via the STB and ETB models following

the same trend as the GTB model above 120Å.

The results in this Chapter lead to the conclusion that the interacting GTB model is

required for the edge-disordered ZGNRs studied, with the intrinsic gap only being overtaken

by the disorder-induced conductance gap at device lengths > 120 Å. The stability of the
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intrinsic conductance gap in the GTB model compared to the disorder-induced conductance

gap of the STB and ETB models suggests that the experimentally observed band gap can be

attributed to the electron-electron interactions, not the effects of edge-disorder.



Chapter 5

Effects of Asymmetrical Edge

Perturbations and Uniaxial Strain

on the Spin-dependent, Coherent

Transport of ZGNRs

5.1 Abstract

The effects of asymmetric edge-patterning and uniaxial strain were investigated, with notch

properties investigated. The effects of a square and V-notch in 5-ZGNR devices were calcu-

lated using the GTB model. Both notch types were shown to decrease the overall conductance,

with a decrease of up to 98% between -1.5eV and 1.5eV.

The effects of increasing notch bottom length was also investigated and it was demon-

strated that there is an overall increase in localisation as the notch bottom length increases.

For a three atom long V-notch bottom 5-ZGNR device there is a decrease in the spin-up

conductance gap of 0.7eV and a increase in the spin-down conductance gap of 0.002eV when

compared to the ideal 5-ZGNR device. For a six atom long V-notched bottom 5–ZGNR

device there is a decrease in conductance gap for both spin-directions, 0.048eV and 0.022eV

for spin-up and spin-down, respectively. In particular, there is an increase in the localisation

of spin-up electrons, in agreement with the increase in spin-up localisation sites.

Uniaxial strain was then introduced to both notched and ideal systems, with systems

producing an inverse dependence of spin-independent coherent conductance gap on uniaxial

strain in the y-direction, in agreement with published literature [115, 126, 125].

Finally, the effects of both edge-notches and uniaxial was probed, with the uniaxially

strained notched 5-ZGNR devices demonstrating the same (within error) trends as the ideal

5-ZGNR device, with the spin-dependent conductance gap decreasing from 0.328eV at 0%

115
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uniaxial strain for both spin-directions in the V-notched 5-ZGNR to 0.232eV and 0.236eV

for spin-up and spin-down, respectively, at 20% uniaxial strain.

5.2 Effects of Asymmetrical Notches in ZGNRs on the Spin-

dependent, Coherent Transport

Chapter 4 demonstrated how the transport stops being spin-independent due to random

edge-vacancies, which is an important consideration in the design of future spintronic de-

vices. This chapter will investigate structural asymmetric edge-perturbations, i.e., notches,

in order to probe possible spin-dependent effects. Uniaxial strain is also introduced to these

devices to exploit the direct correlation between strain and band-gap [105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115]. The combination of these two properties (asymmetrical

edge-perturbations and uniaxial strain) may allow the onset and enhancement of the spin-

dependent transport properties. Before these perturbations can be probed in combination,

they must be investigated separately.

Hancock et al. [33], Zhang et al. [83] and Wimmer et al. [84] showed spin-dependent

properties of notched ZGNR devices both in the coherent transport and in the local spin-

distribution of notched ZGNR devices. This section will investigate square notched and

V-notched asymmetric-edge devices, where a square notch combines both ZGNR and AGNR

edge types and a V-notched device contains ZGNR edge-type only. Figure 5.1 shows these

two edge-structures in the notch. The ability to simulate the mixed edge-structure systems

is one of the advantages of the GTB model [33].

Following the method in Chapter 4 (section 4.3.2), an ideal ZGNR region is required

either side of the edge-perturbation (in this case the notch). The ideal region is calculated

for both square and V-notch devices. For the spin-dependent, coherent transport results

(Equation 2.98) the non-defected region must first be added to each end of the device in

order to prevent discontinuities in the spin-polarisation between the asymmetrically notched

device and semi-infinite ideal leads (Figure 5.1). The non-defected regions were converged

for a 5-ZGNR device with a square notch of 4-ZGNR deep (7.39Å) and three unit cells long

(7.38Å) (Figure 5.1(b)). These regions were also converged for a V-shaped notched device

that was 4-ZGNR deep, one unit cell long (2.46Å) at the shortest point and three unit cells

(7.38Å) at the longest point (Figure 5.1(a)). 5-ZGNR was chosen as edge-effects are enhanced

due to it being a narrower system system.

Figure 5.2 shows the increase in spin-polarisation of the device-lead boundary edge-atoms

as the ideal (i.e., non-defected) region at each end of the defected device is increased in length.

The local net spin-polarisation of the edge-atoms at the device-lead boundary approaches that

of the ideal system until they converge at a non-defected region nine atoms long (22.1Å) with
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(a)

(b)

Figure 5.1: Schematic of the systems used for transport calculations (a) a square notched
5-ZGNR device, and (b) a V-notched 5-ZGNR device. The first and last nine (22.14Å) unit
cells (black background, white atomic sites) in the system are ideal, and the middle five
(12.3Å) unit cells (white background, black atomic sites) defines the notched device region.
In real-space, 5-ZGNR has a width of 9.24Å. The entire device length is 34.4Å.
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Figure 5.2: Convergence of the local net spin-polarisation (Equation 2.81) of the device/lead
edge atoms for the two asymmetrical notched 5-ZGNR devices using the GTB model (Equa-
tion 2.67). The red line shows the ideal result for a 5-ZGNR that is required for accurate
and continuous device-lead coupling of the edge-atom. The black(blue) curve corresponds
to the local net-occupancy of the device-lead boundary edge-atom for a square(V-) notched
5-ZGNR device with increasing ideal region.

a net local spin-polarisation of | ± 0.227| for the spin-up(+ve) and spin-down (-ve) edges

for both notch types investigated (square, Figure 5.1(a) and V-notch, Figure 5.1(b)). As

discussed in the previous chapter (Section 4.2) when compared to the DFT LSDA results by

Huang et al. [50], the effects of atomic relaxation around the defect (i.e, the notch in this

situation) are insignificant compared to the effects of the notch and therefore can be ignored.

5.2.1 Square Notched ZGNR

With the introduction of the square notch to the 5-ZGNR device (Figure 5.1(a)), there is an

overall decrease in conductance relative to the ideal device, consistent with the introduction

of edge-vacancies (Figure 5.3). Specifically there is a decrease in conductance of 1.01e2/h
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Figure 5.3: Conductance (Equation 2.98) vs energy relative to the Fermi-energy for the square
notched 5-ZGNR device (Figure 5.1(a)) using the GTB model (Equation 2.67). For the ideal
5-ZGNR device, the result is spin-independent. Red(blue) gives the square notched GTB
spin-down(-up) result. Dashed pink gives the ideal 5-ZGNR GTB result.

from the top of the ideal 5-ZGNR conductance peek and the highest point of the spin-down

conductance peak at E − Ef = -0.167eV, and a decrease of 1.82e2/h from the top of the

ideal 5-ZGNR conductance peek and the lowest point of the spin-down conductance peak at

-0.179eV (Figure 5.3). For the spin-up conductance, the conductance peak between -0.167eV

and -0.179eV decreases less overall relative to the ideal device, with the largest decrease

being 1.08e2/h at -0.171eV and the smallest decrease of 0.965e2/h at -0.255eV. (N.B., errors

in energy (±0.008V) arise due to the width of the energy steps and should be assumed for

all measurements).

The reduction in the conductance is due to the loss of conductance channels in the device,

in particular along the spin-down (notched) edge (Figure 5.1(a)). The decrease in channels

along the spin-down edge leads to the larger decease in conductance about the conductance

gap (Figure 5.1(a)) compared to the spin-up (ideal) edge. The decrease in conductance to

zero near the first conductance step for both spin-directions, in addition to the decrease in

overall size of the top of the conductance step, is in agreement with the effects of random

edge-vacancies where this was also shown (Figure 4.16). The reduction in the conductance

step is more evident in these studies due to the increased number of edge-vacancies in a

notch. Finally, the symmetry of the spin-up and spin-down conductance away from the

electronic conductance gap is broken due to the broken symmetry of the device and thus the

conductance channels. Figure 5.4 shows the decrease in the local net spin-down polarisation

either side of the notch and the slight decrease in local net spin-up polarisation along the

edge opposite to the notch.
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The asymmetrical decrease in spin-dependent conductance is in agreement with work by

Hancock et al. [33] who demonstrated similar peaks and dips in the spin-dependent con-

ductance using the GTB model applied to a square notched 5-ZGNR device with a notch

depth of 4-ZGNR and width of three unit cells. Hancock et al. [33] also compared the square

notched GTB result with DFT, LSDA calculations using the TranSIESTA package [16, 183]

and showed that the GTB model faithfully reproduces the DFT, LSDA results.

Figure 5.4: Spin-distribution of a square notched 5-ZGNR device calculated using the GTB
model (Equation 2.67). Net spin-up circles are blue and net spin-down circles red. The
radius of each circle gives the magnitude of the net local-spin (Equation 2.81). In real-space,
5-ZGNR describes a system of width 9.24Å and the entire device length is 34.4Å.

5.2.2 V-Notched ZGNR
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Figure 5.5: Conductance (Equation 2.98) vs energy relative to the Fermi-energy for a V-
notched 5-ZGNR device (Figure 5.1(a)) calculated using the GTB model (Equation 2.67).
For the ideal 5-ZGNR device, the result is spin-independent. Red(blue) gives the square
notched GTB spin-down(-up) result. Dashed pink gives the ideal 5-ZGNR GTB result.

With the introduction of a V-notch to the 5-ZGNR device (Figure 5.1(b)), a similar overall

decrease to the conductance occurs compared to the square notch result. In particular, the
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smallest decrease relative to the ideal conductance peak for the spin-down conductance is

1.3914e2/h at -0.203eV and the largest decrease is 1.75e2/h at -0.279eV. For the spin-up

conductance, the overall conductance again reduces less relative to the spin-down results, with

the smallest decrease of 0.4753e2/h occurring at -0.175eV and largest of 1.05e2/h occurring

at -0.279eV (Figure 5.5).

The notch removes conductance channels leading to the overall reduction in conductance

for both spin-directions. Figure 5.6 shows the spin-polarisation of the 5-ZGNR V-notch

device, with the decrease in net spin-down polarisation along the notch-edge and an increase

in net spin-up polarisation along the ideal edge. This increase in net spin-up polarisation is

due to there being more than three ZGNR edge-atoms in a row, in agreement with Clar’s

theory [173, 174] as discussed in Chapter 4.

Hancock et al. [82] compared the GTB model and DFT LSDA calculations using the

TranSIESTA [16, 183] package for a 7-ZGNR device with a V-notch 5-ZGNR deep, five unit

cells long at the longest and one unit cell at the shortest. They found faithful agreement

in the conductance results between the GTB and DFT LSDA models. In addition, there is

qualitative agreement between Hancock et al. [82] and the results presented in this section.

The main difference is that lack of a conductance spike between approximately ±1eV and

±1.5eV, observed in Hancock et al. [82] due to the increased relative depth of the notch

(2-ZGNR between the notch and ribbon edge in Hancock et al. [82] compared to 1-ZGNR

in this work). The spin-polarisation also qualitatively agrees with the effects of the V-notch

on spin-polarisation observed by Wimmer et al. [84] for a 10-ZGNR device with a 6-ZGNR

deep random edge-vacancy defected V-notch using the interacting Hubbard model parame-

terized to ZGNR only. In addition, the asymmetrical decrease in conductance in a 5-ZGNR

V-notched system was found by Zhang et al. [83] via DFT calculations using nonequilib-

rium Greens functions (NEGFs) within the ATOMISTIX TOOLKIT [80, 184]1. The zero

conductance between the conductance spikes around the electronic conductance gap and the

conductance steps are also observed in Zhang et al. [83].

Figure 5.6: Spin-distribution of a V-notched 5-ZGNR device calculated using the GTB model
(Equation 2.67). Net spin-up circles are blue, net spin-down circles red. The radius of each
circle gives the relative magnitude of the net local-spin, Equation 2.81. In real-space, 5-ZGNR
describes a system of width 9.24Å and the entire device length is 34.44Å. Only the region
around the notch has been included for clarity.

1See http://quantumwise.com/ for ATOMISTIX TOOLKIT, online as of 100214
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The increased spin-dependence relative to the square notch, both in terms of the spin-

polarisation and spin-conductance, along with the significant decrease in spin-up conductance

on the edge of the electronic conductance gap (Figure 5.5) implies that the V-notched system

might demonstrate peculiar properties with increasing notch base length and thus the pos-

sibility of increased spin-polarisation along the bottom of the notch. Due to computational

restrictions, along with a limit in achievable variation in notch depth at this ribbon width,

means that only the effect of notch length will be investigated in more detail (Figure 5.7).

(a) (b)

(c) (d)

Figure 5.7: Spin-distribution of a series of V-notched 5-ZGNR devices calculated using the
GTB model (Equation 2.67). Net spin-up circles are blue and net spin-down circles red. The
radius of each circle gives the relative magnitude of the net local-spin (Equation 2.81). Only
the region around the notch has been included for clarity.

The devices looked at in the increasing notch length study are shown in Figure 5.7 along

with the local net spin-distribution results. The shortest notch bottom was chosen to be large

enough that Clar’s theory [173, 174] of three ZGNR unit cells in a row is observed both along

the device and notch edge, and within the notch. This should introduce extra localisation

in the spin-down direction, as demonstrated along the bottom of the notch (Figure 5.7(a)).

In terms of the magnetisation per atom, there is an insignificant change in the spin-up and

spin-down system wide magnetisation per atom, with a slight decrease in the spin-down

magnetisation due to the increase in spin-down localisation inside the notch being smaller

than the loss of spin-down localisation with increasing notch size.

Figure 5.8 demonstrates the spin-dependent coherent transport results for a V-notched

device with a three atom long bottom (Figure 5.7(a)) and a six atom long bottom (Fig-

ure 5.7(d)). In the three atom long V-notch bottom device, the spin-up conductance gap

decreases relative to the ideal 5-ZGNR device by 0.7eV, with an increase in the size of the

spin-down gap of 0.002eV consistent with an increased localisation of the spin-up electrons

compared to the spin-down electrons. In the six atom long V-notch bottom device, the rela-

tive change in electronic conductance gaps compared to an ideal 5-ZGNR are -0.048eV and

-0.022eV for spin-up and spin-down, respectively.
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Figure 5.8: Electronic conductance (Equation 2.98) vs energy relative to the Fermi-energy
for a V-notched 5-ZGNR device with (a) a three atom long bottom (Figure 5.7(a)) and (b) a
six atom long bottom (Figure 5.7(d)) calculated using the GTB model (Equation 2.67). For
the ideal 5-ZGNR device (also shown), the result is spin-independent. Red(blue) gives the
V-notched GTB spin-down(-up) result. Dashed pink gives the ideal 5-ZGNR GTB result.
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Figure 5.9 shows the change in integrated conductance as the notch bottom length in-

creases. The integrated conductance, calculated using Simpson’s rule (Equation 4.5) in the

range -1eV< E −Ef <1eV, is shown to initially decrease then increase as the notch bottom

length increases (Figure 5.9). The initial decrease is due to the loss of 2nd and 3rd nearest

neighbour hopping allowed across the notch and the following increase is due to the shifting

position and size of the conductance spikes as previously discussed (Figure 5.8).
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Figure 5.9: Integral of the electronic conductance (Equation 2.98) between -1eV< E −
Ef <1eV vs V-notch bottom length for a V-notched 5-ZGNR device using the GTB model
(Equation 2.67). Red(blue) gives the V-notched GTB spin-down(-up) result. Devices 1,
2, 3, 4 and 5 corresponds to Figure 5.1(b), and Figures 5.7(a), 5.7(b), 5.7(c) and 5.7(d),
respectively.

The integral of the spin-down conductance is smaller than the integral of the spin-up

conductance (Figure 5.9) meaning that, overall, the spin-down electrons are more localised

for all V-notch bottom lengths investigated. This supports the conclusion that the spin-down

electrons are more localised due to the Hubbard-U term and Clar’s theory [173, 174]. As

the length of the bottom of the V-notch increases, the system starts to approach that of a

smaller ribbon between two larger ribbons connected via sloping edges.

The increasing integral of the conductance between -1eV< E − Ef <1eV about the

Fermi level suggests that the conductance channels are becoming less localised (Figure 5.9),

with both the integral of the conductance increasing and the electronic conductance gaps

decreasing. When compared to the general trends for the direct band gap vs ribbon width,

for example in Hancock et al. [33] and Son et al. [32] 2, which shows a decrease in the band

2Note, band gap and electronic conductance gap can be compared in zero bias
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gap for ideal ZGNR devices at very small widths (Figures 1.8(b) and 1.10), it can be argued,

for the ribbon width investigated here, that as the length of the V-notch bottom increases the

system will start to approximate the electronic conductance gap of a small 2-ZGNR device

attached to two large 5-ZGNR leads. Due to the limitations of this investigation, this effect

can not be probed in detail, but it is a potential avenue for future work.

5.3 Effects of Uniaxial Strain in ZGNRs on the Spin-dependent,

Coherent Transport

To investigate the effects of uniaxial strain, three ZGNR devices were modelled; 2-6-ZGNR

(Figure 5.10(a)), 2-7-ZGNR (Figure 5.10(b)) and 2-8-ZGNR (Figure 5.10(c)) with unstrained

widths 11.1Å, 12.9Å and 14.7Å respectively and unstrained length of 4.92Å. These widths

were chosen to give a range of values to to test the sensitivity of ribbon width as a function

of uniaxial strain. Uniaxial strain is applied in the y(x)- direction (perpendicular(along)) the

ribbon length and with values from -50% to 50%. Negative values of uniaxial strain in the

y-direction is equivalent to positive strain in the x-direction due to the Poisson effect [123]

(Equation 2.106). ±50% was chosen to investigate strain exceeding the physical extremes of

uniaxial strain.

(a) 2-6-ZGNR
(b) 2-7-ZGNR

(c) 2-8-ZGNR

Figure 5.10: Schematic of the system used for transport (Equation 2.98) calculations of (a) 2-
6-ZGNR device, (b) 2-7-ZGNR device, (c) 2-8-ZGNR device. In real-space, 6-ZGNR, 7-ZGNR
and 8-ZGNR describes a device of unstrained widths 11.1Å, 12.9Å and 14.7Å respectively,
and the entire unperturbed device length is 4.92Å for all ZGNR ribbons.

Figure 5.11(a) demonstrates the effects of uniaxial strain on the coherent conductance

gap relative to the unstrained, ideal, device (0% uniaxial strain). As uniaxial strain in the

y-direction decreases from 0% to -50%, the conductance gap increases by 1.1eV, 1.12eV and

1.14eV for 6-ZGNR (11.088Å), 7-ZGNR (12.936Å) and 8-ZGNR (14.784Å) respectively. As

the strain approaches -50%, the coherent conductance gaps converge to 1.41e2/h for all three

ribbon widths. As uniaxial strain in the y-direction increase from 0% to 50%, the coherent

conductance gap decreases for all ribbon widths investigated. These conductance gaps are
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within error of each other and thus, as the conductance gaps do not converge to a single value

at 50% for all three widths, the gaps decrease by the same relative amount. The difference

in conductance gap between the three widths does decrease with increasing strain (0.036eV

at 0% uniaxial strain in the y-direction compared to 0.02eV at 50% uniaxial strain in the

y-direction) suggesting that the three widths will converge at a % uniaxial strain in the

y-direction at a large, and thus extremely unrealistic, amount of uniaxial stain.

For strain in the x-direction (Figure 5.11(a), a trend which is inverse to the y-direction

trend is observed between -20% and 20% uniaxial strain. For uniaxial strain greater than

| ± 20%| the inverse agreement breaks down. This can be seen more clearly in Figure 5.11(b)

where the x-axis for the y-direction uniaxial strain graph has been reversed. This shows clearly

a good inverse agreement between uniaxial strain in the x-direction and uniaxial strain in the

y-direction between -20% and 20%. This inverse agreement is expected as compression in the

x-direction (negative uniaxial strain) is equivalent to expansion in the y-direction (positive

uniaxial strain) due to the Poisson ratio [123] (Equation 2.106). For strain in both directions,

there is a slight linear dependence of electronic conductance on uniaxial strain within |±10%|,

with a the linear dependence curving as it approaches | ± 10%|. Figure 5.11(b) is limited to

−20% < strain < 20% due to the break down in agreement in between uniaxial strain in the

x-direction and y-direction. In addition, 10-ZGNR, 12-ZGNR, 14-ZGNR and 16-ZGNR have

been included for completeness and to compare with DFT results later in the Section.

The change in electronic conductance gap with varying uniaxial strain is due to the vari-

ation in distances between atoms and thus perturbations in the hopping parameters (Equa-

tion 2.103). As the system is strained in the y-direction, the atoms are compressed in the

x-direction (and thus the conductance direction) due to the Poisson ratio (Equation 2.106).

This compression in the conductance direction will increase the number of energetically favor-

able conductance channels and thus decrease the conductance gap. Similarly, if the system

is compressed in the perpendicular y-direction, the atomic sites will move further apart in

the conductance direction lowering the number of energetically favorable channels and thus

increasing the conductance gap.

The linear dependence of the electronic conductance gap (which is equivalent to the

energy band gap at zero bias) on unixaial strain has been demonstrated by Li et al. [115]

for12-ZGNR using DFT with GGA via VASP [70] for small uniaxial strain in the x-direction

(less than 10%). The slightly curving linear dependence was also shown for 6-ZGNR by Zhang

et al. [125] with DFT, GGA and HSE06 via VASP [70] between | ± 10%| in the y-direction.

Lu and Guo [126] used the interacting tight-binding model to calculate energy band gaps for

5-, 10-, 16- and 32-ZGNR and found a slightly curved linear dependence between | ± 15%| in

the x-direction (Figure 5.12(a)). Lu and Guo [126] parametrised the model using the hopping

and Hubbard-U values found by Gunlycke and White [127], thus leading to a slight difference
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Figure 5.11: Electronic conductance gap (Equation 2.98) vs uniaxial strain (Equation 2.103)
calculated using the GTB model (Equation 2.67). Solid(dashed) lines gives uniaxial strain
perpendicular(parallel) to the ribbon width (y(x)-direction) for three different ribbons widths,
6-ZGNR (black circle), 7-ZGNR (red square) and 8-ZGNR (blue diamond). The entire un-
perturbed device length is 4.92Å for all ribbons. In (b), the x-axis for uniaxial strain in the
y-direction has been reveresed to compare the inverse relationship between uniaxial strain in
the x- and y-directions.
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between the conductance gaps found here and the energy gaps found by Lu and Guo [126].

Lu and Guo [126] used Harrison scaling and a Poisson ratio of 0.165. It must be noted that

energy gaps and transport gaps are equivalent under zero voltage bias.

(a)

Figure 5.12: Energy gaps calculated by Lu and Guo [126] via the interacting tight-binding
model, using Gunlycke and White [127] parameters for a 5-, 10- 16- and 32-ZGNR device.
Insert demonstrates the normalised energy band gap. Note, in zero voltage bias, energy and
electronic conductance gaps are equivalent.

Poetschke et al. uses the STB model to model a 10-ZGNR device under strain but finds

no metallic/semiconductive transition in the ZGNR device. When compared to the DFT

results of Li et al. [115], Zhang et al. [125] and Su et al. [128] it is clear to see that the STB

model is insufficient to accurately model the effects of strain on a ZGNR system. The lack of

an interacting term is sufficient enough that is possible to disregard the STB model for these

studies.

The change in conductance gap implies a change in conductance around the conductance

gap. Figure 5.13 demonstrates an increase in the Simpson’s rule integral of the conductance

(Equation 4.5) with increasing uniaxial strain in the y-direction. The increasing Simpson’s

rule integral of the conductance is in agreement with the decreasing conductance gap, as a

smaller conductance gap implies more conductance around the gap. Again, the increased con-

ductance as the uniaxial strain increases in the y-direction is due to the relative compression

in the electronic conductance direction.

This section has demonstrated the spin-dependent transport of notched devices and the

predictable control of the conductance using uniaxial strain. The ability to control the spin-

dependent transport predictably would be extremely powerful in spintronic devices (i.e. de-

vices that use the intrinsic spin of electrons). Therefore the combination of asymmetrical
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Figure 5.13: Integral of the electronic conductance (Equation 2.98) between ±1eV vs uniaxial
strain (Equation 2.103) in the y-direction calculated using the GTB model (Equation 2.67).
Uniaxial strain is perpendicular to the ribbon width (y-direction) for 7 different ribbons
widths, 6-ZGNR, 7-ZGNR, 8-ZGNR, 10-ZGNR, 12-ZGNR, 14-ZGNR and 16-ZGNR. The
entire unperturbed device length is 4.92Å for all ribbons.

notches and uniaxial strain is investigated, focusing on positive strain in the y-direction

(due to the decreasing trend in coherent conductance gap and thus the possibility of a spin-

dependent semi-conductor in one spin-direction and insulator in the other) and maximum

strain of 20% (due to the theoretical critical strain predicted in Su et al. [128]).

5.4 Effects of Strain on Notched ZGNRs

In this section, V-notched and square notched devices are perturbed using uniaxial strain

and the conductance results compared to ideal results. Due to the physical limits in these

devices, strain will be limited to 0-20% in the y-direction. This range is used both due to

the physical limits of the uniaxial strain in GNRs, along with the fact that the trends in

conductance are consistent between -20-20% and thus only 0-20% can be considered.

Similar to Section 5.2, the non-defected region, the black highlighted region in Figure 5.14,

must first be added to each end of the device to converge the edge-magnetism of the lead-

device boundary. The non-defected region, defined as the region of ideal ribbon between the

asymmetrically notched device and the semi-infinite lead, was converged using a device with

a square notch (Figure 5.14(a)) and a device with a V-shaped notch (Figure 5.14(b)) with



CHAPTER 5. ASYMMETRICAL EDGE PERTURBATIONS & UNIAXIAL STRAIN 129

20% uniaxial strain in the y-direction.

(a)

(b)

Figure 5.14: Schematic of the systems used for transport calculations of (a) a square notched
5-ZGNR device and (b) a V-notched 5-ZGNR device. The first and last 14 (34.4Å) unit
cells (black background, white atomic sites) in the system are kept ideal, and the middle
five (12.3Å) unit cells (white background, black atomic sites) defines the notched 5-ZGNR
devices. In real-space, 5-ZGNR describes a system of width 9.24Å and the entire device
length is 46.7Å.
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Figure 5.15: Convergence of the local net-polarisation (Equation 2.81) of the device/lead edge
atoms for two asymmetrical notches in 5-ZGNR with 20% uniaxial strain in the y-direction
calculated using the GTB model (Equation 2.67). The red curve shows the ideal result for a
5-ZGNR that is required for accurate and continuous device-lead coupling for the edge-atom.
The black(blue) curve corresponds to the local net-occupancy of the device-lead boundary
edge-atom for a square(V-) notched 5-ZGNR device with increasing non-defected region.

Figure 5.15 shows the increase in spin-polarisation of the device-lead boundary edge-atoms

as the ideal (i.e., non-defected) region at each end of the uniaxial strained notched devices is

increased. As the non-defected region increases in length, the local net spin-polarisation of

the edge-atoms at the device-lead boundary approaches that of the ideal system until they

converge at a non-defected region of 14 atoms long (34.4Å) with a net local spin-polarisation

of |±0.164| for the spin-up(+ve) and spin-down (-ve) edges for both notch types investigated

(V-notched, Figure 5.14(a) and square, Figure 5.14(b)). It must be noted that the uniaxial

strained notched systems are not relaxed after uniaxial strain is introduced.
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Figure 5.16: Electronic conductance gap (Equation 2.98) vs uniaxial strain (Equation 2.103)
calculated using the GTB model (Equation 2.67) for two different notch types, V-notched
5-ZGNR device (black) and square notched 5-ZGNR device (red). Spin-up(-down) is
full(dashed) line with circle(square) and full(dashed) line with triangle down(up) for V-notch
and square notch respectively. The result for an ideal 5-ZGNR ribbon is in blue with crosses.
In real-space, 5-ZGNR describes a system of width 9.24Å and the entire device length is
46.7Å.

Figure 5.16 presents the same trend in the decrease of the spin-dependent coherent con-

ductance gap for the ideal 5-ZGNR, V-notched 5-ZGNR and square notched 5-ZGNR devices

within error. For example, the spin-up coherent conductance gap for the V-notched sys-

tem decreases from 0.328eV for 0% uniaxial strain to 0.232eV for 20% uniaxial strain and

the spin-down coherent conductance gap decreases from 0.328eV for 0% uniaxial strain to

0.236eV for 20% uniaxial strain. Again, the two spin-directions follow the same trend for all

three systems within error. N.B. error in energy (±0.008eV) is due to the resolution of the

energy step and is constant throughout this study.

The fact that there is an agreement within error between the notched and ideal trend

with varying strain means that the only effect influencing the conductance gap is the uniaxial

strain. This suggests that asymmetrical notches will not introduce spin-dependent coherent

transport gaps without additional inhomogeneity. Figure 5.17 gives examples of the decrease

in local net spin-polarisation as the uniaxial strain in the y-direction increases from 0% to 20%

for a V-notched 5-ZGNR (Figures 5.17(a) and 5.17(b), respectively) and a square notched

5-ZGNR (Figures 5.17(c) and 5.17(d), respectively). For both notched 5-ZGNRs, there is a

decrease in the overall net spin-polarisation from 0% to 20% uniaxial strain in the y-direction.

The range over which the notch has an effect on the spin-polarisation around the notch is also

increased with the introduction of strain (as demonstrated by the lead/device convergence

length, Figure 5.15). The sensitivity of spin-polarisation to strain suggests that magnetic

inhomogeneities may also effect the coherent transport properties of the device. These mag-
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netic inhomogeneities can be introduced by perturbing the site dependent Hubbard-U, using

a similar method to perturbing the onsite energy to introduce impurities as discussed in

Chapter 6.

5.5 Conclusion

This Chapter has demonstrated that structural inhomogeneities can break the spin-independence

of the coherent conductance of GNRs. In particular, it is possible to increase both the degree

of spin-dependence and create a spin-dependent conductance gap by increasing the length of

the bottom of the notch. Unixaxial strain is also shown to controllably and predictably per-

turb the conductance gap in both ideal and notched devices. In terms of introducing notches

to the strained device, the only real effect of notches is to remove conduction channels and

reduce the overall conductance by up to 98% close to the Fermi level. Due to the degree of

spin-dependence in both the overall conductance and the conductance gap, being dependent

on notch bottom length, a length that would be hard to control in top-down synthesis, notches

should not be relied on for spintronic devices and inhomogeneous magnetic impurities are a

better option.

Next Chapter will probe three different methods of perturbing the conductance via struc-

ture, both using bottom-down and top-up synthesis methods.
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(a) V-notch, 0%

(b) V-notch, 20%

(c) Square notch, 0%

(d) Square notch, 20%

Figure 5.17: Spin-distribution of notched 5-ZGNR devices calculated using the GTB model
(Equation 2.67) under uniaxial strain (Equation 2.103). (a) V-notched 5-ZGNR device with
0% uniaxial strain (b) V-notched 5-ZGNR device with 20% uniaxial strain (c) square notched
5-ZGNR device with 0% uniaxial strain (b) square notched 5-ZGNR device with 20% uniaxial
strain. Net spin-up circles are blue, net spin-down circles red. The radius of each circle gives
the relative magnitude of the net local-spin, Equation 2.81. In real-space, 5-ZGNR describes
a system of width 9.24Å and the entire device length is 46.7Å. Image length has been cropped
for clarity.



Chapter 6

Feasibility Studies into Structural

Perturbations

6.1 Abstract

Three methods of perturbing the structure of a graphene nanoribbon device were probed in

order to investigate the potential of these structures as electronic devices.

Asymmetrical magnetic inhomogeneities were first introduced, with one edge containing

a magnetic inhomogeneity though perturbations to the Hubbard-U along the edge of the

device. Using this method of perturbation, it was possible to demonstrate a significant spin-

dependence in the conductance gap of these devices, with the device transitioning from semi-

conductive to half-metallic to metallic with increasing strain, width and edge-perturbation

strength.

In addition, the structure produced via two bottom-up synthesis methods was probed.

These feasibility studies demonstrate that controllable properties can be predicted, i.e., the

spin-localisation, overall spin-dependent conductance and spin-independent conductance gap.

Chevron devices demonstrate a dependence on spin-dependent and spin-independent con-

ductance with chevron length. In addition, it is possible to control the spin-dependent con-

ductance gap with varying lead width.

Patterned devices demonstrate a strong dependence of the conductance gap with length-

/width ratio. Compared to the ideal device dependence on just width, a dependence on

just length/width ratio allows devices to be constructed without need for angstroms precise

dimensions.

133
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6.2 Effects of Asymmetrical Inhomogeneities and Uniaxial strain

in ZGNRs on the Spin-dependent, Coherent Transport

6.2.1 Introduction and Background

Magnetic inhomogeneities can be introduced into the GTB model by perturbing site-specific

Hubbard-U values in ZGNR devices relative to the value for carbon atoms, which is set

at 2.0eV [82]. This section investigates asymmetrical magnetic inhomogeneities by perturb-

ing the Hubbard-U of an ideal ZGNR ribbon and with the introduction of uniaxial strain

(Equation 2.103) to this system. Widths of 3-ZGNR (5.54Å), 7-ZGNR (12.9Å) and 9-ZGNR

(16.63Å) were probed to determine the effects of ribbon width on the spin-dependent prop-

erties and to investigate a range of devices from large to small edge-atom to internal-atom

ratio. In particular, transitions from metallic to half-metallic and from half-metallic to semi-

conductive states were studied and the spin-polarisation associated with these transitions was

also investigated.

Magnetic inhomogeneity has been studied in bulk graphene that has magnetic impuri-

ties by Hu et al. [85] using quantum Monte Carlo methods within the STB model. Hu et

al. [85] found that the magnetic moment of the impurity atom could be controlled through

an applied chemical potential via an electric field. Yang et. al. [86] introduced perturbations

to the Hubbard-U value in bulk graphene via a proximity effect to a metallic substrate and

calculated an opening of the band-gap of 98meV and 134meV for spin-down and -up re-

spectively. Pedersen and Pedersen [87] introduced B and N doping into a self-consistent TB

model for bulk graphene and determined that an on-site Hubbard-U can be used to describe

these impurities, with U equal to 7.8eV, 9.7eV and 11.5eV for B, C, and N respectively (N.B.

The Pedersen and Pedersen [87] Hubbard-U value for C is different from the one used in

this study as the Hubbard-U is fitted directly to the system investigated). This supports the

approximation used in this study that magnetic inhomogeneities can be added to ZGNRs via

perturbations to the local atomic Hubbard-U values.

In nanographene, Power et. al. [88] explored magnetic inhomogeneities using a first near-

est neighbour Hubbard model and DFT, GGA calculations within the SIESTA program to

investigate the introduction of single magnetic impurity into ZGNR and AGNR systems. In

this work, a good agreement of the segregation function between DFT for a Mn impurity and

the first nearest neighbour Hubbard model for a defected 6-ZGNR was made. In addition,

Power et. al. [88] showed that it is energetically favorable for magnetic impurities to be ab-

sorbed along the edge of the GNR system, not the middle. Power et. al. [88] assumed that the

only non-zero value of U in the device is for the transition metal impurity. This assumption

would, however, lead to zero magnetic properties when applied to a ZGNR system without

impurities.
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Krychowski et. al. [89] carried out DFT, GGA calculations within the VASP program for

a single Co adatom in 4-ZGNR. The Co adatom in this investigation is placed on a “hollow

site”, i.e., in the middle of a hexagonal ring of carbon. Mao et. al. [90] introduced K adatoms

at various concentrations using GGA-PBE DFT calculations within the VASP program to

8-ZGNR and found that, at 1.56% adatom concentration, the device becomes FM instead

of AFM. Zhang et. al. [91] introduces regular Fe adatoms to the “hollow site” both at the

edge and in the middle of a 4-ZGNR device. GGA-PBE DFT calculations are carried out

using the atomistix toolkit (ATK). For regular Fe atoms along the edge “hollow sites”, there

is a decrease in the magnetic moment near to the Fe adatom, and the introduction of a

spin-dependent transport gap.

Aryasetiawan et. al. [185] used random phase approximation and LDA DFT first prin-

ciples calculations to determine the Hubbard-U values of 3d metals, including Fe and Co.

Aryasetiawan et. al. found Hubbard-U values of 4.0eV and 4.1eV for Fe and Co respectively.

In addition, Aryasetiawan et. al. demonstrated that all 3d transition metals have Hubbard-U

values greater than 2.0eV (i.e., the Hubbard-U value of nanographene). This result was also

found by Nakamura et. al.[186], Gunnersson [187] and, Soloveyev and Dederichs [188] using

DFT LSDA methods. Soloveyev and Dederichs [188] also determined screened Hubbard-U

values from 2.4eV for Ta to 4.4eV for Pd for 5d and 4d impurities. Fukushima et. al. [189]

calculated the Hubbard-U value for a Mn impurity within GaN of between 3.30 and 3.77eV

using LDA+U DFT methods. It must be noted these are calculated for the LDA+U first

principle approximation and thus may not be applicable to the GTB model. Cox et. al. [190]

determined the Hubbard-U values for the TB model via the fitting of the d electron eigen-

values giving values between 1.35eV for scandium to 3.3 for nickel, with Fe falling within

this range. The values calculated by Cox et. al. are smaller than the values calculated via

the LDA-U approach (3.0eV compared to 4.0eV for Fe) which may be due to the fact Cox

et. al. assumed 100% screening between neighboring sites. Anisimov and Gunnarsson [191]

investigated the screening in Fe and found only 5̃0% screening between neighboring Fe sites

and thus calculated a value of U of 6.0eV. Anisimov and Gunnarsson [191] determined that,

in general, the screening was very efficient.

6.2.2 Results and Discussion

Asymmetrical magnetic inhomogeneities have been introduced by perturbing the on-site

Hubbard-U value at the edge (Uedge) in small-width ZGNRs (N.B. small-widths are chosen

due to computational expense). For a 7-ZGNR there are interesting trends in the conduc-

tance gap with increasing Uedge value (Figure 6.1). Below Uedge=0.8 eV, the transport-gap

is spin-independent, between 0.8eV < Uedge < 1.4eV the system is half metallic or metallic,

and between 1.4eV < Uedge < 3.7eV there is a linear decrease in the spin-up transport gap
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and a non-linear increase in the spin-down transport gap. Above Uedge=3.7eV the transport

gap becomes spin-independent again. For 2.0eV< Uedge < 3.7eV there is a qualitatively

similar, but opposite, trend in results compared to the 1.4eV< Uedge < 2.0eV range, which

implies that magnetic inhomogeneities that increase the Uedge value would be more useful for

allowing control over the conductance gap. The trends for Uedge greater than 2.0eV observed

in Figure 6.1 are consistent with published literature, with Zhang et. al. [91] and Krychowski

et. al. [89] finding spin-dependent electronic transport gaps with the introduction of Fe

(Hubbard-U = 4.0eV [185]) and Co (Hubbard-U value of 4.1eV [185]) respectively.
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Figure 6.1: Spin-dependent conductance gap (Equation 2.98) vs. Uedge value calculated using
the GTB model (Equation 2.67) for a 7-ZGNR device with magnetic-edge inhomogeneity.
Spin-up(-down) is blue(red) line with circle(square). The dotted line is kBT=0.026 eV.

A 7-ZGNR device with an inhomogeneous Uedge of 1.47eV (Figure 6.2(a)) is first probed

due to the transition from a spin-dependent transport gap to a spin-independent metallic

state observed at this point in Figure 6.1. The spin-up coherent conductance gap for this

system at 0% uniaxial strain is 0.002eV, which is less than KBT (0.026eV), where KB is the

Boltzmann constant and T is room temperature (300K) (Figure 6.2(d)). Thus this system

can be assumed to be conducting in the spin-down channel.

The decrease in the spin-down conductance gap of 0.29eV at 0% uniaxial strain is sig-

nificant relative to the conductance gap of the ideal 7-ZGNR device. The spin-up coherent

conductance gap, however, has increased in size by 0.056eV to 0.348eV relative to the ideal

7-ZGNR. With the introduction of a small amount of uniaxial strain in the y-direction (5%),
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the inhomogeneous system becomes conducting for both spins (Figure 6.2(d)). In addition,

the system transitions from a lowest energy antiferromagnetic state at 0% uniaxial strain

(Figure 6.2(b)) to a lowest energy ferromagnetic state at 5% uniaxial strain (Figure 6.2(c)).

At 0% uniaxial strain in the y-direction, a decrease in the total local net spin (Equation 2.82)

occurs on the edge atoms, from 0.24µb for the homogeneous 7-ZGNR device to 0.22µb and

0.23µb for net spin-down and spin-up respectively.

The decrease in local net spin on the edge atoms is due to an increase in charge-carrier

itinerancy, which also introduces non-zero spin-dependent conductance within KBT . The

introduction of uniaxial strain in the y-direction to this device closes the conductance gap

for both spin-directions due to the decrease in Hubbard-U effects through the separation of

the edges and a decrease in the site separation in the conducting direction (Poisson effect).

The 7-ZGNR inhomogeneous device demonstrates a transition from a single-spin conduc-

tor to a spin-independent conductor allowing the control of the spin-conductance with just

the uniaxial strain and thus providing a new method of turning on or off spin-dependent

properties.

Unlike Mao et. al. [90], who demonstrated using GGA-PBE DFT an AFM to FM tran-

sition of the opposite edges with the introduction of 1.56% K impurities, the AFM to FM

transition occurs in the 7-ZGNR device with the introduction of both uniaxial strain and

impurities. By adding the larger K atom to the device and relaxing the structure as nor-

mal in DFT studies, strain will occur from the addition of the adatom, suggesting that the

transition occurring in Mao et. al. [90] is due to the combined interaction between the strain

and K adatoms. The sensitivity of the transition in this study (i.e., between 0% and 5%)

supports this conclusion. Compared to Zhang et. al. [91], the agreement is very good, with

the spin-dependent conductance gap predicted by Zhang et. al. for a 4-ZGNR device with

the introduction of Fe adatoms [91] observed in this study (Figure 6.2).

Reducing the device-width to a 3-ZGNR (Figure 6.3(a)) requires a smaller Uedge of 1.40 eV

to overcome the increased quantum confinement. At 0% uniaxial strain, the system is anti-

ferromagnetic with spin-up localised along the inhomogeneous edge, whereas at 5% uniaxial

strain in the y-direction, the system is paramagnetic (Figure 6.3(c)). The change to a para-

magnetic state corresponds to the formation of the spin-down coherent conductance gap and

a decrease in the spin-up conductance gap from 0.21 eV to 0.06 eV (Figure 6.3(d)). As the

uniaxial strain in the y-direction increases from 5% to 20%, the spin-independent conduction

gap increases from 0.06 eV to 0.08 eV. The conduction gaps at all values of uniaxial strain

are smaller than the homogeneous conduction gap suggesting an increase in charge-carrier

itinerancy. The large quantum confinement found in uniaxially strained 3-ZGNR also means

that, due to the lowest-energy paramagnetic state, that Pauli Exclusion effects are dominat-

ing. Compared to the 7-ZGNR devices with Uedge perturbation the 3-ZGNR device allows for
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Figure 6.2: The effects of Uedge = 1.47eV, on the magnetic properties and spin-dependent
coherent transport gap of a 7-ZGNR device under uniaxial strain. (a) Spin-distribution for
the device. Net spin-up(-down) circles are blue(red). The radius of each circle gives the
relative magnitude of the net local-spin. (b) Spin-distribution for the 7-ZGNR device with
5% uniaxial strain. (c) Dependence of the spin-dependent conductance gap as a function
of uniaxial strain. Where red(blue) denotes spin-up(-down) results for the inhomogeneous
device, and black denotes the spin-independent results for an ideal 7-ZGNR device. The
dotted line is KBT=0.026 eV.
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switching from a single-spin conductor to a spin-independent semiconductor state as a func-

tion of increasing uniaxial strain. Such tuneability implies that ZGNRs of different widths

and Uedge perturbations can be used for different types of spin-conductance switching.

The formation of a spin-dependent conductance gap with the initial introduction of edge-

adatoms (i.e., Uedge perturbations) to the 3-ZGNR device is in agreement with the GGA-PBE

DFT calculations of Zhang et. al. [91]. Zhang et. al. [91] calculated a spin-dependent band

gap with the introduction of Fe adatoms. In comparison with this study, Zhang et. al. [91]

added a single Fe adatom to the device and found a decrease in magnetic moment around the

adatom. This conclusion is in agreement with both work carried out by Huang et al. and with

work presented in Chapter 4 of this thesis. Huang et al. added B adatoms to both sides of a

6-ZGNR device and found a paramagnetic state forming at impurity concentration of 33.33%.

Huang et al. carries out DFT LSDA calculations and, similar to Mao et. al. [90],introduces

strain though the introduction of the smaller B atoms. Zhang et. al. [91] introduces adaoms

above the “hollow” sites at the edge of the ribbon and thus strain will not be introduced

though their addition.

The 9-ZGNR inhomogeneous device with Uedge=1.60eV (Figure 6.4(a)) has a lowest en-

ergy antiferromagnetic state for uniaxial strain of 0% to 15% applied in the y-direction

(Figure 6.4(d)). Due to the increased width, and therefore decreased quantum confinement,

a smaller decrease in Uedge is required when compared to a 7-ZGNR device (1.60eV compared

to 1.47eV) for a semi-metal to metallic state transition. In addition, a larger strain (20%)

is needed before the increased charge carrier itinerancy and decreased quantum confinement

becomes significant for a ferromagnetic change in the lowest-energy state (Figure 6.4(c)). The

inhomogeneous 9-ZGNR device shows a similar type of spin-dependent switching as the 7-

ZGNR (Figure 6.2), with the system changing from a spin-dependent semiconductor state at

0% uniaxial strain, to a single-spin conductor at 5% uniaxial strain (Spin-down conductance

gap = 0.016eV) and finally to a spin-independent conductor at 20% uniaxial strain.

The inhomogeneous 9-ZGNR study has similarities to both Mao et. al. [90] and Zhang

et. al. [91]. As strain is increased in the device, a spin-dependent conductance gap is formed,

with a decrease in spin-localisation along the perturbed edge in agreement with Zhang et.

al. [91]. Similar to 3-ZGNR, strain is not required to introduce a spin-dependent conductance

gap in these devices, but strain does increase the spin-dependence of the conductance gap.

As the uniaxial strain increases to 20%, the device becomes FM, in agreement with Mao et.

al. [90]. Like the 7-ZGNR device, uniaxial strain is required to create the results found by

Mao et. al. [90]. The increased strain required supports the idea that the 8-ZGNR device

with K adatoms requires the strain introduced by the adatoms in addition to the impurity.

The 3D colour plot (Figure 6.5) provides more information into the strain effects. The

angled transition between 60% and 80% in the spin-down results with increasing uniaxial
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Figure 6.3: The effects of Uedge = 1.40eV, on the magnetic properties and spin-dependent
coherent transport gap of a 3-ZGNR device under uniaxial strain. (a) Spin-distribution for
the device. Net spin-up(-down) circles are blue(red). The radius of each circle gives the
relative magnitude of the net local-spin. (b) Spin-distribution for the 3-ZGNR device with
5% uniaxial strain. Purple circles are net paramagnetic (c) Dependence of the spin-dependent
conductance gap as a function of uniaxial strain. Where red(blue) denotes spin-up(-down)
results for the inhomogeneous device, and black denotes the spin-independent results for an
ideal 3-ZGNR device. The dotted line is KBT=0.026 eV.
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Figure 6.4: The effects of Uedge = 1.60eV, on the magnetic properties and spin-dependent
coherent transport gap of a 9-ZGNR device under uniaxial strain. (a) Spin-distribution for
the device. Net spin-up(-down) circles are blue(red). The radius of each circle gives the
relative magnitude of the net local-spin. (b) Spin-distribution for the 9-ZGNR device with
20% uniaxial strain. (c) Dependence of the spin-dependent conductance gap as a function
of uniaxial strain. Where red(blue) denotes spin-up(-down) results for the inhomogeneous
device, and black denotes the spin-independent results for an ideal 9-ZGNR device. The
dotted line is KBT=0.026 eV.
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(a)

(b)

Figure 6.5: Spin-dependent conductance gap (Equation 2.98) vs. uniaxial strain (Equa-
tion 2.103) and Uedge (relative to the homogeneous ZGNR value of 2.0eV) calculated using
the GTB model (Equation 2.67) for a 7-ZGNR device. (a) Spin-down result, (b) spin-up
result. Colour of the graph indicates the size of the spin-dependent conductance gap.

strain demonstrates a strain dependent transition from metallic to half metallic (compared

to the spin-down result). The strain-dependent transition occurs due to the slight alteration

in the width due to the strain. The fact a metallic/half-metallic transition occurs is of interest

as it would allow a strain sensor to be developed, with the conductance turning on at a certain

strain.

6.2.3 Summary

The effects of magnetic adatoms observed in this section are consistent with DFT calulcations

carried out by Mao et. al. [90] and Zhang et. al. [91]. Figures 6.2(c) and 6.4(c) show a

transition from AFM to FM ground state, similar to Mao et. al. [90]. It must be noted that

for this work, the transition is brought on by the increase in strain, but the strain in this

investigation acts as a fine tuning effect that allows one to carefully probe certain effects.

In the case of the AFM-FM transition, it can be argued that the addition of K adatoms

would cause the strain in the device required for the AFM-FM transition. The transport
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properties also demonstrate similar results to those of Zhang et. al. [91]. In particular, the

spin-dependent transport and transport-gap observed throughout this section, was predicted

though DFT calculations by Zhang et. al. [91]. Again, Zhang et. al. [91] assumes Fe adatoms

above the ‘’hollow sites” along the edge of the ZGNR device, but it seems like there is fair

agreement between Zhang et. al. [91] and the approximations made in this section.

6.3 Chevron Device

6.3.1 Introduction and Background

Chevron GNRs (C-GNRs) (Figure 6.6) are grown using chemical self-assembly methods

(bottom-up fabrication) from small precursor hydrocarbon molecules to construct atomically

clean systems [78, 92]. 6’11-dibromo-1,2,3,4-tetraphenyltriphenylene, for example, is double

annealed on a Au(111) substrate to produce chevron AGNR (C-AGNR) with alternating

N=6 and N=9 widths [78], where N is defined at the number of dimer lines crossed. C-GNRs

have been investigated using both DFT [93, 94, 95] and TB methods [96], with AGNR edged

chevrons being the focus of most theoretical studies [92, 94, 78, 96].

The section probes the effects of various shapes of C-ZGNR and uses the GTB model to

calculate the spin-dependent properties such as conductance and magnetisation. C-ZGNR

devices require a detailed nomenclature to describe the various lengths and widths that

are investigated. A and B (Figure 6.6) describes the lead and chevron widths, respectively,

which are defined by the number of zig-zag chains. C to G denote the chevron length, chevron

depth, length between lead and first chevron peak, length between neighboring chevron peaks,

and length of chevron peak respectively and is the number of ideal ZGNR unit cells that

required for these lengths. Following this convention, the device in Figure 6.6 is described as

a 8/4/16/6/4/8/2 C-ZGNR.

Wang and Wang [94] used DFT, LDA methods to investigate optical properties of C-

AGNR, and found that there as an overall increase in the band gap of the chevron GNR

compared to the ideal GNR. Fa and Zhou [93] investigated oxygen terminated ZGNR chevron

devices (C-ZGNR) using DFT, GGA with spin-polarisation and demonstrated a transition

from AFM to FM spin-localisation. Unfortunately, this paper does not draw any conclusions

for ideal chevron ZGNR. Finally, Cuong et. al. [95] investigated 120 degree angled C-ZGNR

devices using DFT LDA methods but ignored the spin degrees of freedom and determined that

the formation energies of these C-ZGNR devices was less than that of straight ZGNR devices.

This supports the idea that C-ZGNR devices would occur during the bottom-up synthesis of

ZGNR devices and that it would be more energetically favorable than ideal, straight ZGNR

devices. Cuong et. al. [95] also determined that a band-gap opening would occur but, as spin-

degrees of freedom are ignored, conclusions can not be drawn until compared to spin-polarised
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calculations.

In terms of TB calculations, Chen et. al. [96] focuses on thermal properties of CAGNR

devices but they do determine a decrease in conductance compared to ideal AGNR devices due

to the reduction in conductance channels. Girao et. al. [97] has investigated both AGNR and

mixed edge ZGNR using the Hubbard-U model in term of band gaps and magnetic structure.

The main conclusion drawn in this study is that different spin-properties demonstrate different

conductance results, with various AFM and FM magnetic orders probed: (i) In the AFM case,

a large spin-independent conductance gap, (ii) for the FM case, spin-dependent conductance

and (iii) in the PM case, metallic conductance. Girao et al. [97] probes two C-ZGNR devices,

a (5Z , 8Z) Zig-zag/Zig-zag graphene-nanowiggle and a (5Z , 13A) Zig-zag/Armchair graphene-

nanowiggle and one CAGNR devices, a (11A, 6Z) Armchair/Zig-zag graphene-nanowiggle.

This study puts forward possible structural perturbations for Zig-zag/Zig-zag C-ZGNRs and

defines various dimensions that can be varied. In addition, Girao et. al. [97] does not compare

C-ZGNRs with the ideal ribbon. The groundwork layed out by Girao et al. [97] is built upon

in this work and further structural perturbations are probed.

A

B

C

D
E

F G

Figure 6.6: Schematic of the C-ZGNR device used in this investigation. The distances defined
are: A - width of the lead. B - width of the chevron. C - length of the chevron region. D-
depth of the chevron. E - length between the lead and first chevron peak. F - length between
neighboring chevron peaks. G - length of the chevron peak. The naming convention for the
above device is A/B/C/D/E/F/G = 8/4/16/6/4/8/2 C-ZGNR.
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6.3.2 Results and Discussion

Figure 6.7: Electronic conductance (Equation 2.98) vs. energy relative to the Fermi-energy for
a 6/4/14/5/5/7/2 C-ZGNR device (insert) calculated using the GTB model (Equation 2.67).
Red(blue) denotes the spin-down(-up) results. Insert: Spin-distribution diagram for the
6/4/14/5/5/7/2 C-ZGNR device. Net spin-up circles are blue, and net spin-down circles red
where the radius of each circle is the relative magnitude of the net local-spin (Equation 2.81).

Figure 6.7 shows the electronic conductance of a 6/4/14/5/5/7/2 C-ZGNR device. The

electronic conductance properties of this system are spin-independent with discrete conduc-

tance spikes implying a loss of conductance channels resulting in charge-carrier localisation.

As the depth of the chevron (D) is increased from 5 to 9 atoms (Figure 6.8), the number of

conductance spikes either side of the electronic conductance gap has doubled, however the

conductance result remains spin-independent. The introduction of conductance spikes is in

agreement in general literature on edge-defected GNRs, for example Girao et al. [97], who

investigated the coherent transport properties of both mixed edge AGNR and ZGNR devices.

A further increase to the depth of the chevron to 10 atoms (Figure 6.9) results in a similar

trend previously observed such that the overall number of conductance spikes increases. Also

observed is that the wide conductance spike on the negative side of the electronic conductance

gap is decreasing in size and becoming more discrete, as well as an increase in asymmetry

above the conductance gap. This carries on the trend seen in Figures 6.7 and 6.8 which implies

that the charge carriers are significantly localised with the increasing depth of chevron due

to increasing number of atoms occurring in the isolated regions of the chevron. The spin-

independence, seen in other systems (Figures 6.7 and 6.8 ) is also broken most likely due to

the fact that the depth has an even number of atoms, compared to the odd number of atoms

in Figures 6.7 and 6.8.

Table 6.1 summaries a quantitative comparison of the electronic conductance gaps and
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Figure 6.8: Electronic conductance (Equation 2.98) vs. energy relative to the Fermi-energy for
a 6/4/21/9/9/11/2 C-ZGNR device (insert) calculated using the GTB model (Equation 2.67).
Red(blue) denotes the spin-down(-up) results. Insert: Spin-distribution diagram for the
6/4/21/9/9/11/2 C-ZGNRdevice. Net spin-up circles are blue, and net spin-down circles red
where the radius of each circle is the relative magnitude of the net local-spin (Equation 2.81).

Figure 6.9: Electronic conductance (Equation 2.98) vs. energy relative to the Fermi-energy
for a 6/4/24/10/10/12/2 C-ZGNR device (insert) calculated using the GTB model (Equa-
tion 2.67). Red(blue) denotes the spin-down(-up) results. Insert: Spin-distribution diagram
for the 6/4/24/10/10/12/2 C-ZGNR device. Net spin-up circles are blue, and net spin-down
circles red where the radius of each circle is the relative magnitude of the net local-spin
(Equation 2.81).



CHAPTER 6. FEASIBILITY STUDIES INTO STRUCTURAL PERTURBATIONS 147

the Simpson’s rule integrated conductance (Equation 4.5) between -1eV< E − EF <1eV for

the C-ZGNRS (Figure 6.7, 6.8 and 6.9.

Device
Electronic Conductance Integral of the

Gap (eV) Conductance (e2/h)
Spin-Up Spin-Down Spin-Up Spin-Down

6/4/14/5/5/7/2 C-ZGNR 0.32 0.32 0.426 0.426

6/4/21/9/9/11/2 C-ZGNR 0.328 0.328 0.335 0.335

6/4/24/10/10/12/2 C-ZGNR 0.34 0.336 0.301 0.315

Table 6.1: Change in electronic conductance gap and the Simpson’s rule integrated conduc-
tance (Equation 4.5) between −1eV < E < 1eV .

As the depth of the chevron increases (D), the electronic conductance gap increases and

the integral of the conductance decreases. This implies that the path through the device

is becoming more difficult with the decreasing number of channels. The large drop in the

integral in the conductance from 6/4/14/5/5/7/2 C-ZGNR to 6/4/21/9/9/11/2 C-ZGNR

can be explained by the 6/4/14/5/5/7/2 C-ZGNR having an almost direct conductance

path from one lead to the other via energetically favorable first nearest neighbour hopping.

The path from one lead to the other for the other two devices via first nearest neighbour

hopping is significantly longer and thus increases the probability that the charge carrier will

be scattered. This conclusion is in agreement with Chen et. al. [96], who determined a

decrease in overall conductance in C-AGNR devices compared to ideal AGNR devices. Chen

et. al. [96] compares chevron devices to ideal devices, but as the devices in this study are

becoming increasingly chevron like with increasing depth, a comparison can be made.

The electronic conductance gap arises due to the Hubbard-U term and thus will be less

affected by the specific path of the conductance. This is observed in the previous sections,

both in notched ZGNR devices (Figure 5.5) and in low edge-disordered devices (Figure 4.16)

which show a stability in the electronic conductance gap as a function of various structural

edge-perturbations. The most significant change in electronic conduction gap is between the

6/4/21/9/9/11/2 C-ZGNR and the 6/4/24/10/10/12/2 C-ZGNR, which also corresponds

with a breaking of the spin-symmetry. The breaking of the spin-symmetry means that the

spin-distribution is also asymmetric (Insert of Figure 6.9), possibly also leading to the increase

in the magnitude of the spin-dependent electronic conductance gaps (Table 6.1). The slight

increase in electronic conductance gap with increasing chevron depth is consistent with Wang

and Wang [94] and Cuong et. al. [95], with both papers calculating an increase in conductance

and band gap relative to the ideal system with the introduction of chevron perturbations.

Finally, the width of the lead (width A in Figure 6.6) is varied. At this point, there are

two devices to compare, a relatively thin 4/4/16/6/9/8/2 C-ZGNR (Figure 6.10) and a wider

8/4/16/6/4/8/2 C-ZGNR (Figure 6.11). It must be noted that by varying A, the dimension

E is also varied.
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Figure 6.10: Electronic conductance (Equation 2.98) vs. energy relative to the Fermi-energy
for a 4/4/16/6/9/8/2 C-ZGNR device (insert) calculated using the GTB model (Equa-
tion 2.67). Red(blue) denotes the spin-down(-up) results. Insert: Spin-distribution diagram
for the 4/4/16/6/9/8/2 C-ZGNR device. Net spin-up circles are blue, and net spin-down
circles red where the radius of each circle is the relative magnitude of the net local-spin
(Equation 2.81).

Figure 6.11: Electronic conductance (Equation 2.98) vs. energy relative to the Fermi-energy
for a 8/4/16/6/4/8/2 C-ZGNR device (insert) calculated using the GTB model (Equa-
tion 2.67). Red(blue) denotes the spin-down(-up) results. Insert: Spin-distribution diagram
for the 8/4/16/6/4/8/2 C-ZGNR device. Net spin-up circles are blue, and net spin-down
circles red where the radius of each circle is the relative magnitude of the net local-spin
(Equation 2.81).
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Figure 6.10 shows a system with a relatively narrow (4-ZGNR) lead, i.e., the same width

as the chevron (width B in Figure 6.6). The conductance spikes between the electronic

conductance gap and the first conductance step are observed, similar to previous systems, for

example the 6/4/14/5/5/7/2 C-ZGNR (Figure 6.7). In addition, the spin-independence of

the electronic conductance is observed, similar to the 6/4/14/5/5/7/2 C-ZGNR (Figure 6.7)

and the 6/4/21/9/9/11/2 C-ZGNR (Figure 6.8), again supporting the evidence that the spin-

independence is due to an even value for the dimension D rather than being dependent on

the lengths of C or F.

The 8/4/16/6/4/8/2 C-ZGNR device (Figure 6.11) demonstrates similar conductance

spike features up to ±1eV with the conductance stabilising at E−EF < -1eV and E−EF >

1eV with the conductance no longer trending to zero. The conductance spikes are also wider

and taller leading to increased integral conductance compared to other systems (Table 6.2).

Device
Electronic Conductance Integral of the

Gap (eV) Conductance (e2/h)
Spin-Up Spin-Down Spin-Up Spin-Down

4/4/16/6/9/8/2 C-ZGNR 0.356 0.348 0.425 0.477

8/4/16/6/4/8/2 C-ZGNR 0.356 0.332 0.692 0.656

Table 6.2: Change in electronic conductance gap and the Simpson’s rule integral of the con-
ductance (Equation 4.5) -1eV< E−EF <1eV. Device nomenclature explained in Figure 6.6.

As the width of the lead increases from A=4 (Figure 6.10) to A=8 (Figure 6.11) (Ta-

ble 6.2), the Simpson’s rule integral of the conductance (Equation 4.5) increases significantly

(i.e., by 0.27 e2/h). The 8/4/16/6/4/8/2 C-ZGNR has a more direct conductance path though

the device and thus an increase in conductance occurs about the electronic conductance gap.

This is in keeping with the results from Figure 6.7 where the 6/4/14/5/5/7/2 C-ZGNR had a

direct conductance path with a smaller lead and chevron depths. In addition, systems in Ta-

ble 6.2 have a slight differences in the spin-down dependent electronic conductance gap, which

is consistent with the trends in Table 6.1 being due to the change in spin-polarisation along

length E. As the lead increases in these devices, length E decreases. This reduces the degree

of spin-down localisation along the edge and thus shrinks the spin-down electronic conduc-

tance gap. As there are no changes in the degree of spin-up localisation, the spin-dependent

spin-up gap stays the same.

6.3.3 Summary

The general trends seen here are in agreement with Girao et al. [97] who investigated differ-

ent types of chevron using the GTB model, mainly mixed armchair and zig-zag edge-types.

Building on the work by Girao et al. [97] this work has suggested possible avenues of investi-

gation into C-GNRs, in particular, demonstrating the dependent and independent dimensions

within the C-ZGNR device. The overall decrease in conductance compared to ideal ZGNR
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devices in in agreement with conclusions drawn by Chen et. al. [96] with regards to CAGNR

devices.

6.4 Patterned Graphene Nanoribbon

6.4.1 Introduction and Background

Patterned AGNR (P-AGNR) devices are internally patterned AGNRs with atomic-precision

patterning that can be made by chemical self-assembly. One possible route to making a

P-AGNR would be to combine Tetrabenzathracence and benzene molecules, to form the

patterned devices in Figure 6.12. Based on the relative coupling strength (X-X and Y-

Z), the width and length of the P-AGNR can be controlled [99]. The band and transport

gaps of P-AGNRs are compared to ideal AGNRs using the GTB model. Due to the lack

of long ZGNR edges within the P-AGNRs, magnetic properties are not predicted due to

Clar’s theory [173, 174] and thus only the spin-independent band and transport gaps are

investigated.

Experimentally, patterned devices have been probed in depth [99, 100, 101], but with

fewer studies into the theoretical electronic properties. Geraets et. al. has carried out

preliminary kinetic self-assembly modeling into the energy-gap and transport properties of

these patterned devices, with the key results discussed in this section [98].

Due to the regular nature of the patterning, along with the shape of the hole, the closest

studies being carried out computationally to those studied here are antidots. Due to the size

of the devices probed in this section, large scale anti-dots will not sufficiently describe the

finite size effects investigated in this work. Topsakal et. al. [102] carried out DFT GGA-PAW

calculations using the VASP package on AGNR systems with small antidots. The devices

investigated by Topsakal et. al. [102] assume a single antidot in a wide device and with the

location of the anti-dot being varied throughout the width. The closest approximation to the

P-AGNR in Figure 6.12 is that of a antidot in location 1, i.e., the center of the device for the

smallest widths investigated by Topsakal et. al. [102]. For 34- 36- and 38-AGNR devices, an

increase in band gap is observed with the introduction of the antidot [102].

Ma et. al. [103] carried out transport calculations on AGNR and ZGNR devices with two

triangular antidots. Ma et. al. [103] used the STB model, and assumed that the introduction

of the two triangular anti-dots opened a conductance gap in the device. Rosales et. al. [104]

carried out STB model transport calculations on antidots within 11-AGNR devices. The

antidots are repeated along the length of the device with period d. Rosales et. al. [104]

showed that, as the period of the antidots increased, the conductance gap decreased, with

there being a large increase in the gap for the small period (d=3) system. Again, Rosales et.

al. [104] used the STB model for their calculations, modelling a semi-conductive (within the
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STB model) AGNR device. This allows easier comparison with the GTB model compared to

a metallic (within the STB model) device.

6.4.2 Results and Discussion

The first investigation for P-AGNRs is to determine the width dependence of the band gap

calculated using the GTB model and compares this to the ideal AGNR results of the same

width (Figure 6.13). The results show that the band gap for the ideal AGNR decreases

inversely, however, only a single ideal AGNR trend is observed due to the reduced set of

results that are calculated. The band gap for the P-AGNR is significantly larger compared

to the ideal AGNRs (1.6eV compared to 0.7eV at a width of 9.8Å). In addition the P-AGNR

band gap is independent of device width suggesting that the band gap in these devices is

dominated by the single X-X coupling bond observed in Figure 6.12. The increase in band

gap with the introduction of patterning is in agreement with Topsakal et. al. [102] and

Rosales et. al. [104], with both demonstrating an increase in band/conduction gap with the

introduction of antidots in 34- 36- and 38-AGNR devices, and 11-AGNR devices, respectively.

The effect of width with constant device length (Figure 6.14) and length to width ratio

on the transport gap is also examined (Figure 6.15). For these devices, an ideal AGNR lead

is attached to each end of the device (i.e., at the X-X coupling sites, Figure 6.12). Due to

the lack of spin-polarisation in these devices, only a single ideal AGNR unit cell is required

to approximate for the leads. As the length of the P-AGNR devices increases, the width at

which the transport gap becomes metallic increases (Figure 6.14). In addition, a step occurs,

similar to that in the length/width ratio graph (Figure 6.15) where the transport gap for the

P-AGNR drops by an order of magnitude for 32.7 Å and 49.8 Å length devices. The order

of magnitude drop for 32.7 Å is shown in more detail in the zoomed insert (Figure 6.14).

In comparison, the transport gap for the ideal AGNR never drops to zero in the widths

examined.

The decrease in transport gap and eventual semi-conductive/metal transition in P-AGNR

occurs due to the loss of third NN hopping within the device due to the patterned holes. In

terms of pathways though the device in the direction of the leads, the only path is via the X-X

coupling which includes 1st and 2nd NN hopping terms. As demonstrated for ideal AGNR,

it is the 3rd NN hopping parameter that opens the metallic AGNR gap (Chapter 3). Finally,

the fact that longer devices stay semi-conductive for larger widths is due to longer devices

including more possible 3rd NN hopping sites (i.e., within the building block molecule). Thus

a longer device is required for the 3rd NN hopping to become insignificant and thus close the

gap.

The steps in the conduction gaps are due to additional channels forming as the width of the

devices increases (Figure 6.14). For each length, there is a certain width that is required for
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Figure 6.12: Self assembly example for the formation of the patterned AGNR device. Rib-
bon grows in the direction of the x-x coupling resulting in regular holes along the device.
Reproduced from Gerates et. al. [98]
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Figure 6.13: Width dependence of the band gap for P-AGNR (circles) compared to ideal
AGNRs (squares) calculated using the ETB model (Equation 2.67).

this “new” conductance channel to form via increasing the number of X-X pathways through

the device as a function of increasing width. The fact that the conductance gap decreases

with increasing width is in agreement with Topsakal et. al. [102], who showed that as the

width increases from 36-AGNR to 60-AGNR, there is a decrease in the conductance gap. This

alone would not be significant as the general trend for AGNRs is that the band gap decreases

with increasing width. Topsakal et. al. [102], however, also demonstrated that when the

width increased from 36-AGNR to 60-AGNR, the introduction of the antidot increased the

band gap for 36-AGNR but decreased it for 60-AGNR. This agrees with Figure 6.14, which

demonstrates a point at which the conductance gap for the ideal AGNR becomes bigger

than that of a P-AGNR device of length 49.8Å. The initial increase is due to the removal

of conductance channels though the device leading to less conductance occurring though the

system. As the width increases, the fact that there is a reduction in 3rd NN hopping leads

to a decrease in conductance gap.

As the length to width ratio increases, so does the conductance gap (Figure 6.15). The

strong dependence of the conductance gap on the length to width ratio shows that it would

be possible to fine tune the transport properties of these devices using this parameter. In

addition, as the trend in the transport gap is based on length to width ratio, it removes

the preciseness required in ideal AGNRs for a certain transport gap leading to increased

tune-ability for P-AGNRs compared to AGNRs . For example, if a gap of 0.6eV is required,

a length width ratio of 1.67 is needed, instead of a length and width of precise dimension.
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Figure 6.14: Width dependence of the electronic transport gap for P-AGNR calculated using
the ETB model (Equation 2.67). Insert demonstrates the none-zero value if the L=32.7
ÅP-AGNR device.

Finally, as the length/width ratio increases, the transport gap converges to the band gap of

the infinitely long patterned device (Figure 6.15).

6.5 Conclusion

This Chapter has demonstrated that the three types of edge perturbation investigated here,

asymmetrical magnetic inhomogeneities, chevron GNRs and patterned AGNRs, each have a

potential in future device designs.

Asymmetrical magnetic inhomogeneities demonstrate a controllable method of transition-

ing from semi-conductive, to half-metallic, to metallic via edge-perturbation strength, width

and uniaxial strain. In addition, a transition from antiferromagnetic, to ferromagnetic, to

paramagnetic is also observed.

Chevron devices have been shown to transition from spin-dependent to spin-independent

transport properties via chevron length. In addition the spin-dependent conductance gap is

shown to be dependent on the lead width. This study also outlines potential avenues to take

this work further.

Finally, the conductance gap in patterned AGNR devices is shown to be dependent on

length/width ratio, with the band gap independent of width. This suggests that for a suffi-

ciently long device, the conductance gap would also be width independent. The dependence

of conductance gap on length/width ratio removes the need for Angstroms precise measure-
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Figure 6.15: Length/Width dependence of the electronic transport gap for patterned AGNR
devices calculated with the GTB model (Equation 2.67)

ment of the width when determining the conductance gap. Instead, a certain conductance

gap can be requested and a device of a certain length/width ratio produced.

It must be noted that the work presented in this Chapter is preliminary work only.

This preliminary work lays out the potential of the GTB model in predicting and designing

potential new devices. Further probing the effects of edge-inhomogeneity and varying different

chevron dimensions has potential for further work.



Chapter 7

Conclusion

In Chapter 4, it was demonstrated that there is an overall decrease in conductance of GNRs

with the introduction of edge-vacancies. In particular, it was shown that there is an over-

all increase in localisation along the ribbon-edge up to a critical edge-vacancy concentration

of 51.25%. When comparing the three models, the simple tight-binding (STB) model, the

extended tight-binding (ETB) model, and the generalised tight-binding (GTB) model, the

general trend of decreasing electronic transport is observed in all three models, with conver-

gence of the conductance occurring between 32.5% and 51.25% edge-vacancy concentration.

It has also been shown that at 42.5% edge-vacancy all three models are within the localisation

regime, with the STB model being fully within the localisation regime at low edge-vacancy

concentrations (7.5% edge-vacancy concentration). The stability of the conduction-gap in

the GTB model and of the non-zero conductance at the Fermi energy for the non-interacting

models with the introduction of edge-vacancies implies that, even at high edge-vacancies con-

centrations, the GTB model is sufficiently different that it should be used over the simpler,

non-interacting, models. The effect of random edge-vacancies compared to systematic edge-

vacancies was also investigated and it was found that random edge-vacancies stabilise the

edge-polarisation and prevent the antiferromagnetic/paramagnetic transition observed in the

systematic edge-vacancies study, implying that the GTB is preferred over the non-interacting

models to calculate the effects of these edge-defects.

In addition, the effects of increasing device length was probed and Anderson localisation

lengths of 47 Å and 49 Å were found for the STB and ETB models respectively. The

difference between localisation and Anderson localisation was also discussed, with Anderson

localisation requiring longer devices. Finally, the onset of the non-interacting conductance

gap was investigated, with the conductance gap calculated via the STB and ETB models

following the same trend as the GTB model above 120Å.

The results in Chapter 4 lead to the conclusion that the interacting GTB model is required

for the edge-disordered ZGNRs studied, with the intrinsic gap only being overtaken by the

disorder-induced conductance gap at device lengths > 120 Å. The stability of the intrinsic

156
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conductance gap in the GTB model compared to the disorder-induced conductance gap of the

STB and ETB models suggests that the experimentally observed band gap can be attributed

to the electron-electron interactions, not the effects of edge-disorder.

Chapter 5 demonstrated that structural inhomogeneities can break the spin-independence

of the coherent conductance of GNRs. In particular, it is possible to increase both the degree

of spin-dependence and create a spin-dependent conductance gap by increasing the length

of the bottom of the notch. Unixaxial strain is also shown to controllably and predictably

perturb the conductance gap in both ideal and notched devices. In terms of introducing

notches to the strained device, the only real effect of notches is to remove conduction channels

and reduce the overall conductance by up to 98% close to the Fermi level. Due to the degree of

spin-dependence in both the overall conductance and the conductance gap, being dependent

on notch bottom length, a length that would be hard to control in top-down synthesis, notches

should not be relied on for spintronic devices and inhomogeneous magnetic impurities are a

better option.

Chapter 6 demonstrated that the three types of edge perturbation investigated, asymmet-

rical magnetic inhomogeneities, chevron GNRs and patterned AGNRs, each have a potential

in future device designs.

Asymmetrical magnetic inhomogeneities demonstrate a controllable method of transi-

tioning from semi-conductive, to half-metallic, to metallic conductance via edge-perturbation

strength. The same trend can also be observed by varying the device width while keeping

the edge-perturbation strength constant. Applied uniaxial strain can also be used to fine

tune the width allowing more control over the onset of the observed transitions. In general,

these transitions in the conduction properties are linked to a similar transition from antifer-

romagnetic, to ferromagnetic, to paramagnetic states. The antiferromagnetic state generally

occurs with the spin-dependent semi-conductive and half-metal regimes, the ferromagnetic

state generally occurs with the spin-independent metallic regime and the paramagnetic state

generally occurs with the spin-independent semi-conductive regime in the systems probed.

Further work needs to be carried out to probe more devices to confirm these trends.

Chevron devices have been shown to transition from spin-dependent to spin-independent

transport properties via chevron length. In addition the spin-dependent conductance gap is

shown to be dependent on the lead width. This study also outlines potential avenues to take

this work further.

Finally, the conductance gap in patterned AGNR devices is shown to be dependent on

length/width ratio, with the band gap independent of width. This suggests that for a suffi-

ciently long device, the conductance gap would also be width independent. The dependence

of conductance gap on length/width ratio removes the need for Angstrom precise measure-

ment of the width when determining the conductance gap. Instead, a certain conductance
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gap can be requested and a device of a certain length/width ratio produced.
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 (Equation 4.1)   

Set required edge-vacancy concentration (x)
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Start

Reset system

Yes

Yes

Yes

Yes

No

No

No

Appendix A



List of References

[1] Schaller R. Moore’s law: past, present and future. IEEE spectrum. 1997;34(6):52–59.

[2] Hassan S, Humaira, Asghar M. Limitation of Silicon Based Computation and Fu-

ture Prospects. In: Communication Software and Networks, 2010. ICCSN ’10. Second

International Conference on; 2010. p. 559 –561.

[3] Schulz M. The end of the road for silicon. Nature. 1999;399(6738):729–730.

[4] Savio A, Monfray S, Charbuillet C, Skotnicki T. On the Limitations of Silicon for I-MOS

Integration. Electron Devices, IEEE Transactions on. 2009 may;56(5):1110 –1117.

[5] Ieong M, Doris B, Kedzierski J, Rim K, Yang M. Silicon Device Scaling to the Sub-10-

nm Regime. Science. 2004;306(5704):2057–2060.

[6] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, et al. Electric field

effect in atomically thin carbon films. Science. 2004;306(5696):666.

[7] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al. Two-

Dimensional Gas of Massless Dirac Fermions in Graphene. Nature. 2005;438:197.

[8] Sirdeshmukh DB, Sirdeshmukh L, Subhadra K. Atomistic Properties of Solids. vol.

147. Springer Verlag; 2011.

[9] Katsnelson MI. Graphene: carbon in two dimensions. Materials today. 2007;10(1-2):20–

27.

[10] Wallace PR. The Band Theory of Graphite. Phys Rev. 1947 May;71:622–634.

[11] Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum

Hall effect and Berry’s phase in graphene. Nature(London). 2005;438(7065):201–204.

[12] Ashcroft NW, Mermin ND. Solid State Physics. Holt, Rinehart and Winston, New

York, 1976; 1976.

[13] Vonsovskiæi S. Quantum solid-state physics. Springer-Verlag (Berlin and New York);

1989.

161



LIST OF REFERENCES 162

[14] Slonczewski JC, Weiss PR. Band Structure of Graphite. Phys Rev. 1958 Jan;109:272–

279.

[15] Reich S, Maultzsch J, Thomsen C, Ordejón P. Tight-binding description of graphene.

Phys Rev B. 2002 Jul;66(3):035412.
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