
Intelligent Control Agent for

Autonomous UAS

Suradet Tantrairatn

Department of Automatic Control and Systems Engineering

The University of Sheffield

Thesis

submitted to the University of Sheffield

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

July 2016

I would like to dedicate this thesis to my loving parents and wife for

their unconditional love and support.

Acknowledgements

I am grateful to Prof Sandor Veres for introducing me to the topic of

agent supervised autonomous control systems, which now forms the

subject of this thesis containing my investigations and solutions to

the problem of agent supervised learning of autopilots in unmanned

aerial vehicles. I would like to thank for valuable discussions, sug-

gestions and for technical advice given to me by Dr Owen McAree

and Imjith Nagawahatte and postgraduate colleagues and staff at the

Department of Automatic Control and Systems Engineering. Not the

least I am grateful to my parents and my wife for all their support

and belief in me throughout my postgraduate studies.

Abstract

A self reconfiguring autopilot system is presented, which is based on

a rational agent framework that integrates decision making with ab-

stractions of sensing and actions for next generation unmanned aerial

vehicles. The objective of the new intelligent control system is to

provide advanced capabilities of self-tuning control for a new UAS

airframe or adaptation for an old UAS in the presence of failures in

adverse flight conditions. High-level system performance is achieved

through on-board dynamical monitoring and estimation associated

with controller switching and tuning by the agent. The agent can

handle an untuned autopilot or retune the autopilot when dynami-

cal changes occur due to aerodynamic and on-board system changes.

The system integrates dynamical modelling, hybrid adaptive control,

model validation, flight condition diagnosis, control performance eval-

uation through software agent development. An important feature of

the agent is its abstractions from real-time measurements and also

its abstractions from model based on-board simulation. The agent,

while tuning and supervising the autopilot, also performs real-time

evaluations on the effects of its actions.

Contents

Contents iv

List of Figures ix

List of Tables xv

I Background and Literature Review 1

1 Introduction 2

1.1 Structure . 4

1.2 Publications During Work Undertaken 6

1.3 Contributions of the Thesis . 6

2 Flight Control Design for UAS - Literature Review 9

2.1 Classical Control Designs Applied to UAS 9

2.2 Modern Control Theory Applied to UAS 10

2.3 Reconfigurable Control Systems for UAS 11

2.3.1 Gain Scheduling . 12

2.3.2 Nonlinear Dynamic Inversion 12

2.3.3 Parameter Identification for Nonlinear Flight Control Sys-

tems . 13

2.3.4 Neural Network Technology for Reconfiguration Control

System . 15

2.3.5 Model Predictive Control 16

2.3.6 New Trends in UAS Control 17

iv

CONTENTS

2.3.6.1 Adaptive Backstepping Control 17

2.3.6.2 L1 Adaptive Control 17

2.3.6.3 Hybrid Adaptive Control 18

2.4 Intelligent Autonomous Flight Control System 20

2.4.1 Fault-Tolerant Flight Control Systems 21

2.4.2 Agent Technology in Aerospace Systems 26

2.5 Chapter Summary and Thesis Direction 28

2.5.1 Chapter Summary . 28

2.5.2 Chosen Method and Thesis Direction 29

II Mathematical Models 33

3 UAV Dynamics 34

3.1 Reference Frames . 34

3.2 Flight Equations of Motion . 35

3.2.1 Translational and Rotational Dynamics 35

3.2.2 Aerodynamic Modelling 40

3.2.3 Effects of Mass Property Changes Due to Damage 42

3.3 Rotational Kinematic Equations & Navigation Equations 45

4 NDI Control Based Architecture of Autopilot 47

4.1 Inner Loop of Autopilot Laws . 48

4.2 Outer Loop of Autopilot Laws . 51

4.3 Altitude Control Laws . 54

4.4 Guidance Control Laws . 55

4.4.1 Computation of the vertical distance (yL1) 57

4.4.2 Logic for flight path switching 57

4.5 Flight Path Planner . 58

4.6 Chapter Summary . 60

5 Agent Theory 63

5.1 Intelligent Agent . 63

5.2 Agent-Oriented Programming . 66

v

CONTENTS

5.2.0.1 Jason . 66

5.2.0.2 Natural Language Programming 71

5.3 Chapter Summary . 72

III Development of Control Agents for UAVs 73

6 Agents for UAV Autopilot Systems 74

7 UAV State Estimation 80

7.1 Problem Formulation . 80

7.2 Methodology Proposal . 81

7.3 Air Flow Angle and Gravitational Acceleration Estimation Using

Extended Kalman Filtering . 83

7.3.1 Extended Kalman Filtering 84

7.3.2 Application to flight vehicles: Fixed-wing platform 85

7.4 Simulation Results . 87

7.4.1 Aerosonde UAVs . 87

7.4.2 NASA Twin Otto Aircraft 90

7.5 Chapter Summary . 92

8 Control Action of UAV Agents 93

8.1 Indirect Adaptive Control Law Proposal 93

8.2 Model Reference Direct Adaptive Control Laws 98

8.2.1 Inner Loop of Flight Control System 98

8.2.2 Outer Loop of Flight Control System 100

8.3 Simulation Results . 100

8.3.1 Evaluation of Aircraft Parameter Estimation with OLS in

time and frequency domain 100

8.3.1.1 Test 1: Evaluation with Linear regression equation 100

8.3.1.2 Test 2: Evaluation with aircraft system identifi-

cation problem 102

8.3.2 Performance of Direct Adaptive Flight Control for Inner

Loop . 104

vi

CONTENTS

8.3.3 Performance of Hybrid Adaptive Control for Inner Loop . 107

8.3.4 Performance of Hybrid Adaptive Control for Outer Loop . 113

8.4 Chapter Summary . 116

9 Real-Time UAV Agent Perceptual Abstractions 117

9.1 On-line Model Validation for Reconfiguration Proposal 118

9.2 Flight Trim Condition Monitoring 120

9.2.1 Using Wavelet Transform and Multi Resolution Analysis . 120

9.2.2 Using Frequency Dependent Model Validation Approach . 122

9.3 Control Performance Evaluation Approach 122

9.4 Connection with Agent Framework 123

9.5 Simulation Result . 125

9.5.1 Results of Model Validation for Reconfigurable Control . . 125

9.5.2 Results of Flight Trim Condition Monitoring 132

9.5.2.1 Wavelet Transform Analysis Technique 132

9.5.2.2 Frequency Dependent Model Validation Approach 136

9.5.3 Results of Control Performance Evaluation 138

9.6 Chapter Summary . 141

10 Decision Methods for UAV Agents 143

10.1 Agent Development for Reconfiguration 143

10.1.1 Agent Computational Architecture 144

10.1.2 Abstraction using NLPr Implementation 145

10.2 Overall Diagram of Agent Reasoning 148

10.3 UAV Simulation Environment . 158

10.4 Computational Experiments . 161

10.4.1 Case Study I : Insufficient Initial Parameters and First

Flight Tuning . 161

10.4.2 Case Study II : Elevator Failure 164

10.5 Chapter Summary . 166

11 Conclusions and Future Work 167

11.1 Conclusion . 167

11.2 Future Work . 168

vii

CONTENTS

IV Appendices 171

Appendix A: Flight Equation of Motion with Effect of Mass Change172

Appendix B: Air Flow Angle Reconstruction 180

Appendix C: Aircraft Geometry, Mass Properties, and Aerody-

namic Characteristics 182

Appendix D: Source Code in Format of sEnglish Sentences for Agent

Decision 186

Appendix E: Source Code in Format of Jason/AgentSpeak for Agent

Decision 227

Bibliography 268

viii

List of Figures

2.1 Diagram of L1 Flight Adaptive Control 18

2.2 Diagram of Hybrid Flight Adaptive Control Approach 19

2.3 Typical FDD Scheme [81] . 22

2.4 Block diagram of a conceptual modern model-based flight control

system [122]. 23

2.5 Block diagram of fault-tolerant autopilot system in [67]. 25

3.1 Reference Frames. 35

3.2 Center of gravity shifts to reference point. 36

4.1 Autopilot Control Architecture 48

4.2 Hybrid adaptive angular rate control inner loop ASE=aircraft state

estimation; AMI=aerodynamic model identification 49

4.3 Hybrid adaptive Euler angle and sideslip angle control outer loop

ASE=aircraft state estimation; AMI=aerodynamic model identifi-

cation . 52

4.4 Lateral Guidance Law Geometry 56

4.5 Waypoint Tracking . 56

4.6 Step of Generating 2-D Dubins Path 59

4.7 Dubin Curve Path Generating Step 60

4.8 MATLAB Result Example of Dubins’ Curve Path Generating . . 61

5.1 The Jason reasoning cycle [14] . 69

6.1 Concept Diagram for Developing Agent with sEnglish Publication

Software. 74

ix

LIST OF FIGURES

6.2 System Strucute Diagram [74]. 76

6.3 Concept Diagram for Applying Agent-Oriented Approach to Au-

topilot System. 77

7.1 Diagram of Estimator. 81

7.2 Air Flow Angles of Simulated and Estimated Data via the Pro-

posed Method . 88

7.3 Magnitude of Reconstructed Air Flow Angles in Frequency Domain

Between Aerosonde Simulation and The Proposed Estimation . . 89

7.4 Comparison between Simulated and Estimated Gravitational Ac-

celeration Data via Extended Kalman Filtering 89

7.5 Air Flow Angles of Measured and Estimated Data of NASA Twin

Otter aircraft via the Proposed Method 90

7.6 Magnitude of Reconstructed Air Flow Angles in Frequency Domain

Between NASA Twin Otter Aircraft Measuement Data and The

Proposed Estimation . 91

7.7 Simulation Result of Estimated Gravitational Acceleration Data

from NASA Twin Otter Aircraft Flight Data via Extended Kalman

Filtering . 92

8.1 Direct Adaptive Control Architecture [97]. 104

8.2 Control Performance Comparison of Nonlinear Dynamic Inversion

Control with Three Direct Adaptive Control Mechanisms using

estimated parameter from Table 8.5 105

8.3 Control Performance Comparison of Non-linear Dynamic Inversion

Control with Direct Adaptive Control Mechanisms using estimated

parameter from Table 8.5 in case of defining Cmδe of NDI control

missing 50% . 106

8.4 Control Performance Comparison of Non-linear Dynamic Inver-

sion Control with Direct Adaptive Control Method and the OLS

method in the frequency domain in case of a 50% loss of the el-

evator that effects a 50% loss of Cmδe in simulation model (Note:

Adaptive control approach is active at 10 sec.) 108

x

LIST OF FIGURES

8.5 Control Performance Comparison of Non-linear Dynamic Inversion

Control with direct adaptive control method and the OLS approach

in the frequency domain in case of defining insufficient initial aero-

dynamic parameter for NDI control (Adaptive control approach is

active at 10 sec.) . 110

8.6 Control Performance Comparison of Non-linear Dynamic Inver-

sion Control between parameter from time and frequency domain

method and Hybrid Adaptive Control 111

8.7 Tracking Performance of Outer Loop Flight Control System using

initial parameter estimated from Table 8.5 in case of normal flight

and accurate model of NDI . 114

8.8 Tracking Performance of Outer Loop Flight Control System in case

of defining a mistak of pitching moment coefficients depending on

elevator by 50% from Table 8.5 for NDI control 115

9.1 Illustration of perception processes which contribute to the be-

lief base during each reasoning cycle of the BDI agent. These

mathematical functions are utilized for numberical procedure in

the physical engine [Appendix IV]. 124

9.2 Comparison of Pitching Moment Coefficient (Cm) in time and fre-

quency domain in case of accurate model from the estimation . . 126

9.3 The real (Rk) and imaginary (Ik) parts of discrete Fourier trans-

form of residual and normalized magnitude spectrum (M2
k) in case

of aerodynamic parameter from frequency OLS estimation in Table

8.5 . 126

9.4 Comparison of Pitching Moment Coefficient (Cm) in time and fre-

quency domain in case of inaccurate model for NDI control (Cmδe
10% missing). 127

9.5 The real (Rk) and imaginary (Ik) parts of discrete Fourier trans-

form of residual and normalized magnitude spectrum (M2
k) in case

of aerodynamic parameter from frequency OLS estimation in Table

8.5 but with 10% of Cmδe missing 128

xi

LIST OF FIGURES

9.6 Comparison of Pitching Moment Coefficient (Cm) in time and fre-

quency domain in case of inaccurate model for NDI control (Cmδe
20% missing). 129

9.7 The real (Rk) and imaginary (Ik) parts of discrete Fourier trans-

form of residual and normalized magnitude spectrum (M2
k) in case

of aerodynamic parameter from frequency OLS estimation in Table

8.5 but with 20% of Cmδe missing 130

9.8 Comparison of Pitching Moment Coefficient (Cm) in time and fre-

quency domain in case of elevator failure in simulation model (Cmδe
10% loss). 131

9.9 The real (Rk) and imaginary (Ik) parts of discrete Fourier trans-

form of residual and normalized magnitude spectrum (M2
k) with

variance (σ2
ξ = 0.001) in case of elevator failure in Aerosonde sim-

ulation (10% of Cmδe loss) . 131

9.10 The real (Rk) and imaginary (Ik) parts of discrete Fourier trans-

form of residual and normalized magnitude spectrum (M2
k) with

variance (σ2
ξ = 0.002) in case of elevator failure in Aerosonde sim-

ulation (10% of Cmδe loss) . 132

9.11 Flight Trim Condition Monitoring Technique using Bump Wavelet

Transform Analysis with Elevator Deflection Input (δe) 133

9.12 Flight Trim Condition Monitoring Technique using Bump Wavelet

Transform Analysis with Elevator Deflection Input (δe) 134

9.13 Flight Trim Condition Monitoring Technique using Bump Wavelet

Transform Analysis with Pitch Rate Response (q) 135

9.14 Flight Trim Condition Monitoring Technique using Bump Wavelet

Transform Analysis with Pitch Rate Response (q) 136

9.15 Flight Trim Condition Monitoring Technique using Frequency De-

pendent Model Validation with Pitch Rate Response (q) 137

9.16 Pitch Rate Response (q) compared with reference command. At

the beginning, the NDI controller with bad initial aerodynamic pa-

rameter was executed. And then hybrid adaptive controller started

to perform after 40 sec. 139

xii

LIST OF FIGURES

9.17 Tracking Control Performance Technique using Frequency Depen-

dent Model Validation with Error between Pitch Rate Command

and Response (Eq) . 140

9.18 Tracking Control Performance Technique using Frequency Depen-

dent Model Validation with Integration of Error between Pitch

Rate Command and Response (
∫
Eqdt) 141

9.19 Tracking Control Performance Technique with Combination of Two

Status with OR Logical Condition 142

10.1 Jason to MATLAB (J2M) Interface Diagram 144

10.2 Working Diagram of Execute Processes 149

10.3 Diagram of Knowledge Based Rules for Triggering DAC 150

10.4 Diagram of Knowledge Based Rules for Minor Compensation :

MinCom . 152

10.5 Diagram of Knowledge Based Rules for Major Compensation : Ma-

jCom . 153

10.6 Diagram of Knowledge Based Rules for Compensation in Outer

Loop of Autopilot System . 154

10.7 Illustration of the definition of an agent reasoning processes in

format of sEnglish sentences in NLP defined within sEnglish doc-

ument that define the *.sej file, Appendix IV 156

10.8 The Example of Jason/AgentSpeak Language for Abstraction Pro-

cess that define the *.asl file, Appendix IV 157

10.9 Illustration of the definition of an agent reasoning processes in

Jason/AgentSpeak that define the *.asl file, Appendix IV. 157

10.103D Visualization with FlightGear Flight Simulation [1] 158

10.11Real-Time Flight Simulation of the Agent Controlled at 3 Stages

of the Flight with 3D Visualization (FlightGear Flight Simulation

[1]) depicting activation of agent based control system. 159

10.122D Google Map to Illustrate the Desired Flight Path. [1] 160

10.13Example Result of Decision Making based on Jason Reasoning

(Case Study I) . 161

xiii

LIST OF FIGURES

10.14Overall 3D Simulated Result demonstrating operation using agent

based control system (Case I) . 162

10.15Simulated Output of Waypoint Tracking (Case I) 163

10.16Time Histories of Simulated Output States of Altitude Tracking

(Case I) . 163

10.17Overall 3D Simulated Result demonstrating operation using agent

based control system (Case II) . 164

10.18Simulated Output of Waypoint Tracking (Case II) 165

10.19Time Histories of Simulated Output States of Altitude Tracking

(Case II) . 165

11.1 Aircraft models built on our autonomous control laboratory . . . 169

11.2 Concept and Experiment of Hardware-in-the-loop Implementation 170

3 Aerosonde UAV. 182

xiv

List of Tables

8.1 Estimated parameters for Model 1 with fitting structure 101

8.2 Estimated parameters for Model 1 with under-fitting structure by

cutting q state . 101

8.3 Estimated parameters for Model 1 with over-fitting structure by

adding α2 state . 102

8.4 Estimated parameters for Model 2 with parameter estimation in

time domain . 103

8.5 Estimated parameters for Model 2 with parameter estimation in

frequency domain . 103

9.1 Thresholds for Determination of the Trimmed States in [91] . . . 121

2 Aircraft geometry and mass properties 183

3 Performance Comparison of Parameter Estimation with Aerosonde

Simulation in Longitudinal Dynamic. 183

4 Parameter estimates for NASA Twin Otter aircraft measurement

data for lateral maneuver . 184

5 Parameter Estimates for Simulated Data of Aerosonde Model . . . 185

xv

Part I

Background and Literature

Review

1

Chapter 1

Introduction

Modern technology of unmanned aerial system (UAS) relies heavily on sophis-

ticated control systems to enhance capability for reliability, survivability and

safety. A conventional control system for a complicated system may come out

with an unsatisfactory performance or instability, in the situation of malfunctions

in actuators or other aircraft components and unexpected change of aircraft char-

acteristics including de-icing or minor trim component missing. Additionally, the

progressively complex mission requirements for high-level autonomy enforces UAS

to re-tune its control capabilities during flight without external intervention. To

achieve this, a control system with an advanced capability of self-tuning is needed

to cope with different mission and environments, failures, and to address adverse

flight conditions.

Advanced control tools are to support reconfiguration and achieve the afore-

mentioned requirements. In practice, gain-scheduling approaches [121] have been

outstanding solutions to flight control design. However, sometimes it has proved

difficult for gain scheduling controllers to guarantee robust stability and good per-

formance for the full flight envelope and under unexpected operational conditions

[80]. Consequently, there have been a good number of papers published on recon-

figurable control systems to overcome the deficiency of gain scheduling techniques

[80], for example, dynamic inversion control (DIC) [115], back-stepping based on

a Lyapunov function [78], feedback linearization with online parameter identifica-

tion [137], sliding mode control methodology [50], and neural network techniques

for direct adaptive tracking control [16, 71, 112]. Recently, reconfigurable flight

2

1. Introduction

control laws for stability and control recovery of a damaged aircraft have been

investigated such as L1 adaptive control [44] and hybrid adaptive flight control

[96].

Adaptive control, however, is often limited by a fixed controller structure

or switches between a small set of structural options. To enhance reliability,

autonomous systems usually require additional adaptivity for operation, such as

controlling damaged aircraft, flying in variety manoeuvres and manoeuvring in

variable environments [134]. Therefore, issues of how to provide adaptability

through switching and tuning of suitable controllers under uncertain dynamics

are considered in this thesis.

To operate aircraft safely and to permit some autonomy, the US Federal Avi-

ation Administration (FAA) and UK Civil Aviation Authority (CAA), are likely

to permit the application of software of intelligence systems. Intelligent systems

can potentially provide similar “analyze-and-decide” capabilities to human [13].

Therefore, software implementations based on agent-oriented approaches have

been developed in combination with modern control techniques [36]. The advan-

tage of these methodologies is transparent decision making that can be easily

communicated to a human supervisor. Developments and designs of intelligent

agents controlling sophisticated systems have been carried out in several works

reported in [73, 128, 134]. These software techniques not only allow for portable

design but also provide suitable schemes for practical implementation where de-

cision making can also be formally verified [35].

There are several agent architectures available [62, 134, 136] to augment con-

trol systems of aircraft. A well-known agent architecture with considerable ad-

vantages, in term of its ability to combine reactivity with long-term planning,

is the belief-desire-intention (BDI) agent approach, which parallels with decision

making to follow intentions and pursue goals based on beliefs [14, 139]; not a neg-

ligible practical aspect when the agent needs to explain its decisions. Therefore,

this thesis proposes a rational BDI agent system that integrates some decision-

making rules with adaptive feedback controllers for fixed wing UAVs. The agent

is developed in an extension of the AgentSpeak/Jason languages [14] using Natu-

ral Language Programming (NPLr) by sEnglish publication software and makes

decisions using abstractions from flight data and from prediction of the antic-

3

1. Introduction

ipated physical environment. The agent not only performs adaptive control of

flight but also carries out aircraft dynamical identification in the frequency do-

main in a real-time manner. The agent can use a model validation approach in

the frequency domain for flight monitoring and diagnosis of flight dynamics in

order to achieve safety and robust improvement during flight.

This thesis aims to develop an intelligent software agent for control (ISAC)

that is able to record aircraft data, analyse them, develop dynamical models of

various complexity and finally propose robust controllers and flight path planning

systems for the aircraft. The output of the result of this agent is presented in a

format to be useful for other software agents who are parts of the mission man-

agement of the autonomous UAS. The coordinator agent makes decisions using

abstractions from flight data and from prediction of the future physical environ-

ment. Additionally, this control system for small and low-cost UAVs is designed

to work with a limited number of standard UAV actuators and sensors, including

a pressure sensor for measuring airspeed and altitude, GPS, inertial measurement

units (IMUs) and compass and primarily control surfaces, respectively.

The control agent is demonstrated in simulation on a benchmark performance

of an Aerosonde UAV on MATLAB/SIMULINK environment. The intelligent

control system for UAS uses rules-based-reasoning with an ability to abstract

discrete events and evaluate the impact of its actions. This control system brings

improvements upon traditional adaptive or reconfigurable control schemes by

providing more adaptability via dynamical modelling and flight controller tuning

under changing dynamics, including deficiencies in an initial controller and also

in an event of system degradation due to accidental control surface damages.

1.1 Structure

The thesis is organized into four main parts:

Part I contains a literature review relevant to flight control systems already

developed for aircraft and UAS in Chapter 2. Part I concludes with an

overview of the problem to be invested in further chapters.

4

1. Introduction

Part II encompasses mathematical material relating to flight dynamics, autopi-

lot architecture, and agent theory. It does not contain any novel material,

but serves as a foundation for material presented in Part III. In Chapter

3, the nonlinear flight dynamic model used for simulation and control de-

sign is presented. Chapter 4 presents an autopilot architecture including

inner & outer flight control, guidance, and Dubins path planning method-

ologies. Chapter 5 details the design and the implementation of an agent

architecture.

Part III constitutes the main contributions of the thesis, primarily developing

the agent skills of state estimation, control action, model validation, and

decision methods. Part III draws upon information presented in Part I and

II, and is concluded with an analysis of the developed agent skills and a

discourse of considerations relating to agent system design. Chapter 6 de-

scribes the process of how to apply the agent to UAV autopilot system. In

Chapter 7, a new methodology to estimate the air flow angles and gravity

acceleration is proposed. Chapter 8 is dedicated to a hybrid adaptive con-

trol technique that combines indirect and direct adaptive control schemes.

Indirect adaptive control bases on a new parameter selection and estima-

tion technique that modifies the orthogonal least square approach in the

form of discrete Fourier transform to compute in the frequency domain.

Model reference adaptive control is employed for direct adaptive control.

Chapter 9 describes the real-time evaluation of UAV agent abstraction in-

cluding on-line model validation in the frequency domain, flight trim condi-

tion monitoring, and control performance evaluation. Chapter 10 presents

knowledge-based decision making for control agent on Jason. This devel-

opment relies on natural language programming on sEnglish publication

software. Finally, the thesis concludes with an outlook that discusses po-

tential improvement of the method presented and possible future research

development in the area of intelligent control agent systems for UAS.

Part IV contains appendix and other materials relating to the matter.

5

1. Introduction

1.2 Publications During Work Undertaken

During the undertaking of the work presented within this thesis, key components

have been presented at international conferences and in an internationally leading

journal.

Journal publication:

• Tantrairatn, S. and Veres, S. M. (2016). An Intelligent Agent Supervised

Reconfigurable Autopilot System, In Journal of AIAA Guidance, Control

and Dynamic. (Submitted on 5th Dec 2015)

Refereed conference publications:

• Tantrairatn, S. and Veres, S. M. (2015). Onboard System Identification for

Improved Flight Control of UAS, In Proceeding of 8th IFAC Symposium

on Robust Control Design-ROCOND’15., Bratislava, Slovak Republic, July

8-11 ,2015

• Tantrairatn, S. and Veres, S. M. (2015). A Rational Agent Framework for

Adaptive Flight Control of UAVs, In Proceeding of International Conference

on Unmanned Aircraft System 2015-ICUAS’15., Denvor, CO, USA, June

9-12 ,2015

1.3 Contributions of the Thesis

Contributions of the thesis are related to state determination, model validation,

control methodology and decision making. This control system will be imple-

mented with small fixed-wing UAVs that have a limitation of the quantities of

standard sensors and actuators. It means the aircraft will consist of only IMU,

GPS, magnetic compass, pressure sensor and have only primary control surfaces.

6

1. Introduction

State Estimation The state estimation proposed uses a technique to estimate

air flow angles such as Angle-Of-Attack (AOA) and Sideslip Angle (SSA)

of a small fixed-wing UAV and a value of gravitational acceleration during

flight, using only kinematic relationships with an Extended Kalman Filter

(EKF). This method does not need to know aerodynamic models, other

aircraft parameters, airdata sensors, or any extra sensors.

Model Validation A model validation approach called frequency-dependent

model validation is applied, which is calculated in real-time in recursive

or iterative batch formats. This method is to check whether or not the

aerodynamic models are still valid for inner loop NDI control of the autopi-

lot system on the frequency domain. This technique relies on a discrete

Fourier transform and a statistical hypothesis test on a residual as the dif-

ference between the measured output and the estimated model output in a

format called normalised magnitude spectrum for each frequency with χ2

distribution. This algorithm is a key to abstracting the continuous infor-

mation into discrete abstractions for validating the aerodynamic model in

the inner loop of the NDI controller. Furthermore, this technique can not

just eliminate some essential variables such as angular accelerations in the

calculation without any extra sensor or state determination but can also

remove noise by calculating in an interesting frequency range.

Indirect Adaptive Control This new methodology is proposed to select and

estimate the significant aerodynamic parameters of small fixed-wing UAV

from flight data to improve the dynamical qualities of an indirect adap-

tive flight control system. Parameter estimation and selection of significant

aerodynamic parameters are performed on linear regression model struc-

tures with forward Orthogonal Least Square (OLS) and Error Reduction

Ratio (ERR) methods and calculated in the frequency domain. Addition-

ally, this approach, based on recursive Fourier Transform, can also remove

noise and some essential variables such as angular accelerations without any

extra sensors or state determinations.

7

1. Introduction

Human Readable Control Code for Desicion An issue discussed in this the-

sis is to find out how to synchronize or integrate reconfigurable control and

all additional components in the overall structure of control system using

adaptive control, model validation, flight monitoring, and control perfor-

mance evaluation into knowledge based agent architecture. The rational

agent supervises control system in order to provide advanced capabilities

for self-tuning and adaptation in the presence of failure and adverse flight

conditions. This process is to transfer the knowledge of control engineering

from the literature review to agent reasoning with the aid of natural lan-

guage programming (NLPr) in sEnglish Publication software and Agent

Executive Matlab Toolbox. The sEnglish programming that represents

meaningful sentences and conceptual structures allow us to demonstrate

our work in NLPr for interpretation and adoption by development engi-

neers.

8

Chapter 2

Flight Control Design for UAS -

Literature Review

A literature review of methods published on the design of generic flight control

systems for UAVs is presented in this chapter. Classical feedback control is in-

troduced in Section 2.1. Modern control methods are reviewed in Section 2.2.

Reconfigurable flight control approaches are considered in Section 2.3. The in-

telligent flight control issues are reported in Section 2.4. Finally a summary is

provided and the approach taken in this thesis is discussed in Section 2.5.

2.1 Classical Control Designs Applied to UAS

The classical feedback control approach to flight, which is based on linear system

theory, is to design a local controller for a specific trim condition to track the

desired reference command in the presence of external disturbances. One of

the most popular conventional control method is called Proportional-Integral-

Derivative (PID) control design technique. PID has been extensively utilised

and by now is well understood due to its simplicity and ease of implementation.

This method depends on three controller gains to adjust and improve the system

response: a proportional gain (KP) is commonly employed to decrease the rise

time of response or improve a sensitivity of system; an integral gain (KI) is

typically used to to improve the steady state response; and a derivative gain

9

2. Literature Reviews on Flight Control System for UAS

(KD) is useful for increasing damping in the closed-loop system, thereby leading

to a more stable response. Therefore, most commercial autopilot systems, such

as Cloud Cap Piccolo, MicroPilot MP series, Procerus Kestrel autopilot, UNAV

3500, Pixhawk and Ardupilot Mega use this traditional PID control approach.

Tuning of PID controllers is carried out in various loops and layers manually,

mostly based on rule of thumb method [47]. However, this PID control technique

has limitation when it comes to obtaining optimal performance and robustness.

It also requires a certain level of skill and experience from a user of a UAV. Also,

it is sometimes difficult to tune the control loops under some conditions.

Other methods of controller design and tuning are based on an accurate math-

ematical model of flight dynamics. Controller development is carried out in order

to reach more optimal performance according to the design requirements. Jodeh

[56] presented a USAF Stability and Control Digital Datcom program which relies

on estimating basic stability and control derivative coefficients in order to create

a nonlinear simulation model in MATLAB, followed by simulations to determine

a controller. The Athena Vortex Lattice (AVL) software, which is a program for

the aerodynamic and flight-dynamic analysis of rigid aircraft of most configura-

tions, generates the aircraft aerodynamic derivative and control coefficients for

simulation in order to tune the Piccolo autopilot’s gains [12, 43].

Furthermore, an iterative optimization technique [12] to tune gains of the

pseudo-derivative feedback controller, which is similar algorithmic simplicity to

the PID controller while in flight is verified with the simulation built on aerody-

namic coefficient from AVL software and real aircraft of the Trainer 60. However,

this method requires a runtime over 10 minutes to complete the controller tun-

ing test for one flight condition. Moreover, it is hard to define an initial point

to guarantee the global optimisation convergence and implement with the prac-

tical flight limit concerning long flight periods of maintaining stability under a

constant condition.

2.2 Modern Control Theory Applied to UAS

Due to a wider flight envelope and varying aircraft configurations, not the least

due to load variations, system non-linearities, coupling and model uncertain-

10

2. Literature Reviews on Flight Control System for UAS

ties, the classical control approach requires adaptation in flight until the system

performs satisfactory. In practice, this process demands time and money to be

spend on controller tuning. Consequently, modern control methods based on

linear-synthesis were proposed to deal with errors, which occurred from an im-

perfect approximation of the mathematical model and disturbances, without loss

of control performance and stability from the trial and error technique of tun-

ing controller gain by real-time flight observation requiring an expert operator.

Moreover, this method uses the multiple input-output representation of the linear

system to solve the coupling problem.

This modern control approach relies on several methods that are applicable

to aircraft control design. For instance, Nelson [92] demonstrated how to apply

pole placement and Linear Quadratic Regular (LQR) to autopilot systems. In

addition, an eigenstructure assignment technique, which is an extension of pole

placement, was suggested by Patt [103], Shapiro and Chung [110] for modern

flight control systems.

All mathematical models of a physical system suffer from inaccuracies oc-

curring from imprecise measurements or from the general failure to capture all

appearances related to the dynamics of the considered system. Although it is pos-

sible to model a system accurately, the obtained result are often too complex to

support for following analysis including the design of a controller. Consequently,

methods to consider a simple model and a certain error between the simplified

and more complex model are utilised with mathematical analysis such as lin-

ear algebra or optimal theory to solve the mentioned problem. Based on these

principles, AlSwailem [4] and Patt [103] introduced H∞ loop-shaping, based on

H∞ criterion optimisation, for use in flight control systems of aircraft and rotor-

craft. Moreover, Paw [101] used H∞ and µ controller synthesis methods, based

on mathematical models, and applied it to some UAV autopilot systems.

2.3 Reconfigurable Control Systems for UAS

The conventional control approaches in Subsections 2.1 and 2.2 are able to de-

sign local controllers for specific trim/equilibrium conditions using linear system

theory. However, the aircraft needs to perform under various operating condi-

11

2. Literature Reviews on Flight Control System for UAS

tions. Consequently, a controller of a closed-loop system will change when the

operating conditions vary. In addition, the increasing complexity of missions and

requirements on high level of survivability dictate that future UAS work in a

more sophisticated manner. Therefore various approaches have been proposed

for reconfigurable flight control systems as follows.

2.3.1 Gain Scheduling

The local controllers that use the methods mentioned in Section 2.1 and 2.2 are

designed in many different flight operating points for the whole flight envelope

to guarantee a desired performance. Then gain-scheduling is used to provide a

set of linear controllers. For example, Chumalee [30] proposed a gain-scheduled

technique, namely linear parameter-varying control, that depends on robust H∞

control theory to deal with uncertainties and nonlinearities of a UAV.

However, sometimes it proves difficult for gain-schedule controllers to guaran-

tee robust stability and good performance for the full flight envelope and under

unexpected operations conditions [80]. Therefore, control schemes, which have

the capability of self-adjusting the control parameters in real-time, are proposed

in the next section to improve the aircraft flying quality over the gain-scheduling

technique.

2.3.2 Nonlinear Dynamic Inversion

The nonlinear dynamic inversion (NDI) technique relies on a nonlinear model

of aircraft dynamics for the process of designing a control law. This nonlinear

model, which is carefully inverted the input-output model in state-space form,

is transformed to an equivalent linear system, where linear control theory can

then be utilized for synthesis. In other words, NDI is a feedback linearisation

method used to design nonlinear controllers for the full flight envelope without

gain-scheduling.

Dynamic inversion is normally applied to an autopilot system with two time-

scale loops assumption that separates the fast dynamical loop of angular rates

from the slow dynamic loop of bank angles, angle of attack and angle of sideslip

[69]. The dynamic inversion technique requires an accurate nonlinear mathemat-

12

2. Literature Reviews on Flight Control System for UAS

ical model of aircraft for the full flight envelope which has to be estimated as

discussed next.

2.3.3 Parameter Identification for Nonlinear Flight Con-

trol Systems

Aircraft parameter identification (APID) can be applied to estimate aircraft pa-

rameters in real-time in order to synthesise controllers on-line. Due to the re-

quirement of real-time computation, there are a few APID methods that can

be divided into two categories: time-domain based and frequency-domain based

approaches. Time-domain based methodologies consist of recursive least squares

(RLS), RLS with a forgetting factor, modified sequential least squares (MSLS),

real time batch least squares, extended Kalman filter (EKF) [27, 32] and un-

scented Kalman filter [27]. The Fourier transform regression (FTR) [85–88] is

typical for calculations in frequency domain.

Using the time-domain approach, a self-designing flight control system (SD-

FCS), which integrated model-following receding-horizon optimal control with

on-line MSLS PID algorithms was tested with the VISTA/F-16 [54]. The MSLS

is an iterative batch parameter estimation algorithm used with temporal and spa-

tial constraints to identify parameters smoothly, without reducing the ability to

track rapidly varying parameters during periods of low excitation and correlated

inputs. Furthermore, the RLS algorithm was evaluated for real-time application

in flight control and tested by Kamali [61]. This RLS technique, based on the

equation error principle, employed a forgetting factor and a stabilising parameter

in reconfigurable control and online stability margin estimation. Furthermore,

Yu et al. [142] presented application of RLS identification algorithm for an in-

direct adaptive flight controller based on dynamic inversion with simulation of a

six degree-of-freedom (DOF) nonlinear aircraft model.

In addition, Lombaerts et al. [76] proposed a joint aerodynamic model iden-

tification approach, sometimes called a two steps method, to identify a physical

model of damaged aircraft in real time. This model was utilized for a model-

based adaptive mechanism of non-linear dynamic inversion to reconfigure a flight

controller in flight. This method consists of, first, aircraft state estimation and,

13

2. Literature Reviews on Flight Control System for UAS

second, the aerodynamic model identification in order to attend the unfiltered

aircraft state and unknown aerodynamic parameters equally in one single pro-

cess.

Moreover, Lombaerts et al. [77] proposed an adaptive recursive orthogonal

least squares algorithm to select a model structure and also estimate parameters

for indirect fault-tolerant flight control. This procedure is an extension and mod-

ification of the classical recursive orthogonal least-squares procedure with new

steps to produce three crucially different aspects. Firstly, subset selection stop-

ping criterion using the normalize residual sum of square is replaced with other

criterion such as Schwarz criterion or Bayesian information criterion to prevent

over-fitting. Secondly, an additional condition to check the necessary to extend

the size of the sliding time window is applied to the procedure to handle with

collinearity problem between the several regressor. Finally, more criterions are

added in the last routine step of the process to check changes in the dynamics of

the actual system by comparing to the previous situation.

The well-known frequency-domain based approach, called Fourier transform

regression (FTR), has been widely implemented for online APID and consequently

applied to reconfigurable flight control systems [29]. For instance, this algorithm

was used to program an intelligent flight control system (IFCS) [48, 84]. This

method is based on equation error method in frequency domain and it can be

formulated as a standard LS regression problem with complex data in recursive

form of the discrete Fourier transform to estimate non-dimensional stability and

control derivatives in real-time [86, 88]. These methods, presented in [26, 34,

100, 114] have been successfully tested in flight simulation and real flight data

for real-time parameter identification under nominal and structurally damaged

operations.

There are some publications, which can be compared with APID for recon-

figurable flight control [60, 116, 117]. Both time-domain based and frequency-

domain based techniques exist, where RLS and recursive FTR are popular as

applied to reconfigurable flight control to achieve similar results in terms of their

capability of estimating aircraft aerodynamic parameters. RLS is normally sim-

pler and requires less computation time than recursive FTR. Also, the conver-

gence of estimates using RLS is less oscillatory than using recursive FTR during

14

2. Literature Reviews on Flight Control System for UAS

the initial phase of estimation. However, RLS techniques rely on the use of digital

filters that produce time lags to remove the unwanted frequency bands. Other-

wise, there are some advantages of recursive FTR methods, which topple RLS

approach in practice: 1) ability to suppress noise effects and 2) state reduction

for aircraft parameter estimation. These advantages will be further elaborated in

section 8.1.

2.3.4 Neural Network Technology for Reconfiguration Con-

trol System

Neural network has been found in many successful applications of the aerospace

industry such as modelling [3, 89, 106], system identification [49, 105] and control

[17, 18, 58] due to its capabilities in non-linear mapping, learning, and adap-

tation. Especially in control application, neural networks can be employed to

design adaptive control laws that can deal with uncertainties and non-linearities

in system dynamics and the environment without the requirement of modelling

and system identification of the aircraft platform.

Neural network techniques have been successfully implemented to augment

approximated model dynamic inversion controllers for various fixed-wing and ro-

tary wing aircraft by Calise el at [18–20]. In addition, neural network control

techniques has been applied to various aircraft [17, 111] and small UAVs [52, 58].

Furthermore, the above mentioned neural network controllers have been extended

by integrating pseudo-control hedging (PCH) for attitude control of X-33 [57].

As mentioned, adaptive control based on neural networks has been employed

with some success in many applications. However an issue of high-gain control

due to fast adaptation is critical. Fast adaptation is required to improve tracking

performance in the presence of a large source of uncertainties such as aircraft

structural damage that can lead to large changes in aerodynamic derivatives and

physical properties. In these cases tracking error can decrease rapidly through

using a large adaptive gain or learning rate of adaptive control. However fast

adaptation can result in high-frequency oscillations that could adversely affect

the robustness and stability of adaptive control law, especially model reference

adaptive control (MRAC) law [97]. Therefore, issues of balance between stability

15

2. Literature Reviews on Flight Control System for UAS

and adaptation are significantly considered.

Therefore, to increase stability robustness of MRAC by fast adaptation, robust

adaptive laws have been widely developed. Robust adaptation effectively intro-

duces an additional term and mechanism into an adaptive law so as to ensure

that the adapted weights remain bounded. Two well-known robust modification

adaptive laws, which have been utilized extensively in adaptive control, are the

σ modification [51] and ε modification [90] by adding damping term into the

weight update law. Furthermore, an adaptive law based on an optimal control

theory that minimizes the L2 norm of the tracking error bounded away from some

lower bound is introduced by [97] and addressed that optimal control modification

(OCM) adaptive law.

2.3.5 Model Predictive Control

Model predictive control (MPC), sometimes called receding horizon control (RHC),

is a model-based optimal control methodology based on numerical optimization.

The control signals and future plant responses are calculated using the predicted

outputs of the systems relying on a current system model and an assumed control

sequence. The optimal control sequence is determined by optimizing a cost func-

tion that penalizes the deviation between the predicted outputs and the desired

outputs [68].

This methodology has also been applied to flight control systems. For in-

stance, Kale and Chipperfield introduced formulations and experimental evalua-

tions of various MPC schemes applied to a full flight envelope with a non-linear

model of a fighter aircraft in [59]. Furthermore, a nonlinear MPC technique that

can be employed to a general nonlinear plant by using Taylor expansion of the

plant output and control in a multi-input-multi-output (MIMO) setting was pre-

sented by Sleger et al. [113] for two UAV systems including parafoil and glider

aircraft. In addition, Richard et al. [108] proposed an adaptive receding horizon

optimal controller to implement and evaluate with Calspan Learjet 3 in-flight

simulator. This single-input-single-output (SISO) controller combined receding

horizon optimal strategy with MSLS to aid with estimating the online model

parameter.

16

2. Literature Reviews on Flight Control System for UAS

2.3.6 New Trends in UAS Control

Recently, the three most popular approaches to UAS control included Adaptive

Backstepping Control [79, 118], L1 Adaptive Control [41, 83, 141], and Hybrid

Adaptive Control [94, 98, 99] have been investigated to modern flight control

design in order to achieve better stability guarantees and improve flying perfor-

mance in case of significant changes such as structural damage of aircraft during

flight.

2.3.6.1 Adaptive Backstepping Control

Back-stepping control is a recursive design method, which is mostly based on a

Lyapunov function construction to synthesize a controller. This control theory

can overcome the problem of nonlinear systems with parametric uncertainties and

wider range of controlled system. Moreover in [118], the author proposed on-line

model parameter estimation in combination with nonlinear backstepping control

design, called adaptive backstepping control, in order to deal with unexpected

faults or changes during flight.

2.3.6.2 L1 Adaptive Control

To begin with, L1 adaptive control, which consists of a state predictor, fast adap-

tive laws and a control law with low pass filter elements (as shown in Figure 2.1),

adapts fast and robustly, leading to desired transient tracking. Its low pass filter

C(s) can aid to prevent high-frequency oscillations in the control signal of the

reference model of other adaptive techniques. This control scheme depends on

system identification for the state predictor, and then the adaptive law will adjust

control parameters from the error signal between estimated states of the system

and the predictor.

There are some publications which investigated the L1 adaptive architecture

for aircraft. For instance, You el at. [141] proposed a technique to employ L1

adaptive control to augment flight control system based on the linear baseline

controller in the presence of flight regime changes during take-off and landing in

order to maintain the robustness of the control performance without the need

for conventional gain scheduling. Furthermore, Gregory el at. [44] evaluated the

17

2. Literature Reviews on Flight Control System for UAS

Figure 2.1: Diagram of L1 Flight Adaptive Control

L1 adaptive control law with rapid prototyping and testing of control laws in

the Airborne Subscale Transport Aircraft Research system at the NASA Langley

Research Center in nominal and damaged aircraft including rudder missing, left

outboard trailing edge flap missing, loss of outboard (approx 25% semispan) left

wing tip, loss of entire elevator from left stabilizer, and loss of entire left stabilizer.

2.3.6.3 Hybrid Adaptive Control

Hybrid adaptive control combines direct and indirect adaptive control with an

NDI based flight control architecture as shown in Figure 2.2. The indirect adap-

tive control part is utilized to compensate the aircraft parameters (including

inertial and aerodynamic terms) of model inversion control with parameter esti-

mation techniques [21, 75] to reduce the model inversion error. This part directly

leads to the decrease of a tracking error. Then, any remaining tracking errors

can be further reduced by the direct adaptive control part that could be manipu-

lated by a neural network. Wherewith the direct adaptive controller can produce

a reinforced reference command signal that depends on the remaining tracking

error. Because the direct adaptive controller only demands to adapt to residual

uncertainty, its adaptive gain can be reduced to improve stability robustness [93].

18

2. Literature Reviews on Flight Control System for UAS

Figure 2.2: Diagram of Hybrid Flight Adaptive Control Approach

Recent studies of aircraft operating in off-nominal flight conditions under dam-

ages and or failures were presented in [96, 99, 144]. Nguyen [93] investigated hy-

brid adaptive control methodology for stability recovery. He proposed a hybrid

adaptive control based on a model inversion flight control architecture for dam-

aged aircraft. Two indirect adaptive laws have been examined: 1) a Lyapunov-

based indirect adaptive law with neural net based model augmentation, and 2)

an RLS indirect adaptive law for online parameter estimation and one neural net

direct adaptive control augmentation with the e-modification adaptive weight

update law. Consequently, hybrid adaptive flight control, especially with RLS in-

direct adaptive law, is able to improve the control performance potentially when

operating in adverse events such as with damages and or failures.

A comparison study of several adaptive control strategies, including direct

adaptive control strategy, indirect adaptive control strategy, combined direct and

indirect (hybrid) adaptive control strategy, L1 adaptive control, output error

feedback strategy, and combinations of strategies was presented by Boskovic and

Knoebel [15]. They utilised Genetic Algorithm to find out the best gains includ-

ing PID controllers and learning rates of the adaptive control methods to min-

imise adaptive control performance metrics criterion (a weighted sum of transient

performance) under constraints by running a large number of simulation. Fur-

19

2. Literature Reviews on Flight Control System for UAS

thermore, these adaptive control algorithms were implemented and evaluated on

the tail-sitter UAV and F/A-18 simulation in cases of nominal, loss-of-effective

actuator failure, cross-coupling effects and time delay. The results demonstrated

that the hybrid adaptive controller with output error feedback can outclass other

algorithms in many cases. For example, in a case of tail-sitter UAV with the

time delay of 0.08 second and actuator failure of 70 percent effective, hybrid

adaptive controller outperforms direct adaptive and L1 adaptive controllers with

a minimum fitness (i.e. the integral of square of the tracking and input errors,

norm of the tracking and input errors, number of oscillations, etc). Moreover,

the results illustrated that hybrid adaptive controllers are robust to actuator fail-

ure, cross-coupling effect, and with time delay and combinations of direct and

indirect adaptive algorithms can achieve excellent overall performance in term of

both transient and steady state response due to the integration of advantages of

each algorithm.

2.4 Intelligent Autonomous Flight Control Sys-

tem

Autonomous control systems are defined as systems that are “designed to perform

well under significant uncertainties in the system and environment for extended

periods of time, and they must be able to compensate for significant system fail-

ures without external intervention”in [7]. Techniques from the field of artificial

intelligence (AI) are applied to such control systems in order to achieve auton-

omy where this control system is called “Intelligent Autonomous Control

System”[6]. Such control systems are developed from conventional control sys-

tems by additional intelligent components which are able to perform a number

of interdisciplinary functions such as compensated control, identification, estima-

tion, communication theory, computer science, especially artificial intelligence,

and operation research in order to achieve autonomy.

For instance, Stengel [120] presented the concept of an intelligent flight control

system with three categories of control functions including declarative, procedural

and reflexive functions. Declarative actions relate to decision making, providing

20

2. Literature Reviews on Flight Control System for UAS

models or system monitoring, goal planning, and system/scenario identification

in the outer loop of the control system. Reflex actions are performed by the

control system’s inner loops which are relevant to control and estimation based

compensation. Procedural actions involve skilled behaviours and responsible in

guidance, navigation, and adaptation in an intermediate level.

2.4.1 Fault-Tolerant Flight Control Systems

Furthermore, one common kind of the intelligent control systems, namely Fault

Tolerant Control System (FTCS), is designed to improve reliability, maintainabil-

ity, and survivability with its capability of tolerating potential faults in the system

[119]. An overview of FTCS usually consists of at least two additional essential

components related to fault detection and diagnosis (FDD) schemes and recon-

figurable control techniques. An FDD scheme consists of three tasks: (1) fault

detection indicates that something is wrong in the system, i.e., the occurrence

of a fault and the time of the fault occurrence; (2) fault isolation determines

the location and the type of the fault (which component has failed); (3) fault

identification determines the magnitude of the fault [145]. Fault isolation and

identification are jointly called fault diagonosis.

Additionally, the FDD approaches can be typically classified into two cate-

gories: (1) data-based (model-free) and (2) model-based schemes. A model-free

approach mostly depends on data to analyse without model requirement accord-

ing to residual evaluation strategies including threshold test on the residuals,

statistical methods (Hypothesis test on whiteness), methods based on fuzzy logic

symptom assessment and neural network pattern classification. On the other

hand, a model-based method relies on a mathematical model to implement FDD

in real-time with state estimation, parameter estimation, or combination tech-

nique [145]. Many methodologies have been proposed to address model-based

FDD. An overview can be found in survey papers [42, 53, 130–132] and a survey

on aerospace systems [81].

A model-based fault diagnosis method [81] is typically worked out by incorpo-

rating a residual generator and a residual evaluation strategy to detect whether

faults have occurred by providing boolean decisions as illustrated in Fig. 2.3.

21

2. Literature Reviews on Flight Control System for UAS

Figure 2.3: Typical FDD Scheme [81]

Residual generation employs a mathematical model of the system where the ac-

tuator control inputs and the system responses that are measured by the sensors

are delivered to predict the behaviour of the system and then compare this pre-

dicted response with the actual behaviour. This procedure aims to calculate

quantitative indices of fault occurrence in a format of the residuals. The residu-

als should converge to zero in a condition of no fault and deviate from zero when

failure occurred. Next, a residual evaluation strategy is required to translate the

time history of residual behaviour into a logic decision function.

In order to design FTCS successfully, the balance among various design objec-

tives and interaction among FDD and reconfigurable control have to be considered

to perform in real-time. Therefore, issues of how to integrate FDD and reconfig-

urable control in FTCS pose significant challenges in practice and deserve further

investigation. An excellent and comprehensive review on the development of fault

tolerant control system was presented in [145], which illustrated the development

trend in the future. However, the literature review in this paper focuses on ap-

plications of FTCS in aerospace research community. Fault tolerant control tech-

22

2. Literature Reviews on Flight Control System for UAS

Figure 2.4: Block diagram of a conceptual modern model-based flight control
system [122].

niques have been designed for flight control systems to meet the increasing safety

requirement in various situations such as sensor & actuator failure [39, 55, 140],

mass value and centre variations & damaged wing [125, 126], or/and emergency

landing [123].

Typically, a fault tolerant flight control system comprises three sub-systems:

(1) a reconfigurable control scheme, (2) an FDD, and (3) a reconfiguration mech-

anism as presented in [39, 140]. One of the strategies, similar to the FTC archi-

tecture for aircraft under adverse flight condition, was studied by Fekih and Pilla

[39]. This flight control system incorporates passive and active control, such as

robust control and adaptive control respectively, to work together according to

a triggering function to achieve the best performance. Controller switching de-

pends on the magnitude of the failure and the impairment severity evaluated by

the FDI subsystem. In addition, Xingjian et al. [140] proposed a fault-tolerant

control approach for civil aircraft under elevator failures. Trimmable horizon-

tal stabilizers (THS) are considered to produce further pitch moments instead

of a faulty elevator. A switching mechanism using performance-improvement-

coefficients is employed to decide when it is suitable to use THS. This control

system relies on LQR control method and model following technique to choose a

suitable controller based switching control strategy.

23

2. Literature Reviews on Flight Control System for UAS

Recently, Sun [122] introduced the increasing complex architecture of a model-

based fault tolerant flight control system. This fault tolerant flight control system

contains six sub-systems: 1) an aerodynamic model identification (AMI) element;

2) an online aerodynamic model element; 3) a reconfigurable control laws element;

4) a control allocation element; 5) a fault detection & isolation (FDI) element;

and 6) an online flight envelope protection to work together. The AMI element

based on physics can provide an accurate aircraft model for an indirect adaptive

controller in a control block and detect failures occurring in the structure of the

control surfaces by monitoring changes in meaningful aerodynamic parameters.

Additionally, the online flight envelope protection element that receives failure

information from FDI element can be used to predict safe flight envelope in case

of failure, and then modify the reference command before feed it to the flight

control law.

Moreover, research studies on FTCS methodology developed for autopilot

system of UAVs can be found in [55, 67, 123]. These methods do not only consid-

ered fault-tolerant control techniques on flight control systems but also developed

reconfiguration mechanisms for guidance control systems combined with a new

simple adaptive path planning algorithm. Suzuki and Yanagida [123] presented

the development of an intelligent flight control systems that could perform adap-

tive control and guide an aircraft in case of emergency situations. This intelligent

control system consists of a fault tolerant control system unit using augmented

neural network technology based on NDI controller and fault tolerant guidance

system using online trajectory optimization to navigate the aircraft to a safety

area in case of emergency.

Additionally, Ducard [55] proposed an autopilot system designed the algo-

rithm modules to compute efficiently. This control system comprises of a non-

linear FDI system module, a control allocation module, a reconfigurable control

module, and an adaptive and reconfigurable guidance module. The FDI module

is based on a multiple model scheme with an auxiliary signal excitation in order

to monitor any suspicious behaviours of the aircraft. An efficient control alloca-

tion module, which relies on the output of an FDI system, takes a responsible

to distribute actuator control actions over the different control effectors available

with some optimal method such as quadratic programming with magnitude and

24

2. Literature Reviews on Flight Control System for UAS

Figure 2.5: Block diagram of fault-tolerant autopilot system in [67].

rate constants on the control effectors. The flight control module depends on a

combined technique of explicit model following, nonlinear dynamic inversion, and

nonlinear transformations of selected state variables and an analysis of the stabil-

ity and robustness in the presence of model parameter and sensor uncertainties.

The novel adaptive and reconfigurable guidance module integrates a nonlinear

guidance control law with a new simple adaptive path planning algorithm. This

guidance system is used to autonomously avoid any known obstacles and calculate

new trajectories online.

In [67], the intelligent flight control system consists of four additional advanced

components and one input switching distributor unit as illustrated in Fig. 2.5.

The four advanced components are: 1) next state estimator component; 2) flight

condition detector component; 3) fault actuator location identifier component;

and 4) flight path generator component. Each component is based on a neural

network. The distributor unit is introduced in this control system to switch

the input distribution matrix by using the outputs of the detector and identifier

25

2. Literature Reviews on Flight Control System for UAS

components. All components and one distribution unit are employed to work

together with the autopilot system in order to discriminate between faults and

natural disturbances. They assess and adapt to the circumstances and a learning-

based systematic methodology is used.

2.4.2 Agent Technology in Aerospace Systems

From the previous literature review, the flight control systems have become to be

intensively a complicated system due to a number of additional subsystems. The

issues of how to integrate all subsystem into the flight control system are signifi-

cant challenges and deserve further research. Furthermore, a recent NASA report

[13] supported that the next generation of aircraft will necessarily combine new

complex algorithms (likely to be artificial intelligent) and non-traditional soft-

ware components with adaptive control algorithms to provide enhanced safety,

autonomy, and robustness under adverse flight conditions. This unmanned air-

craft will operate with intelligent software that performs the high-level decision-

making (“analyze-and-decide”capability) functions similar to human pilots and

engineers.

Consequently, the agent-oriented paradigm is considered as one of the efficient

patterns for large-scale distributed systems to handle dynamic uncertainties in the

environment. Additionally, the agent-oriented methodology possesses the prop-

erties of autonomy, proactiveness, reactiveness and social ability. It means that

the agent can sense its environment or other agents and perform autonomously

actions or plans by independently making a decision in complex situations [139].

An extensive literature survey on applications of agent technology in control en-

gineering applications can be found in [33], which shows that the techniques and

methods in the field of agent and multi-agent systems have been applied to many

aspects of road , railway, and air transportation. Furthermore, there are some

publications to develop and design intelligent agents controlling sophisticated

systems [73, 134], such as satellites [36, 74] and rovers [9].

The problem of a theoretical agent-based framework for adaptive control was

studied by Lincoln et al [73]. This agent framework which is an extension of

Belief-Desire-Intension (BDI) agent integrates rational decision making with real-

26

2. Literature Reviews on Flight Control System for UAS

time evaluation of abstractions on the effect of future actions and planning for

the future of the physical environment. This new framework aims to decrease

the complexity of logical inference of agents controlling autonomous vehicles and

robots. Natural language programming (NLPr) is utilized to facilitate how to

program abstractions and unified system ontology in sEnglish. The motivating

example implementation presented the development of this new agent framework

for satellite control focuses on the need of dynamic adaptivity due to actuator

changes and disturbances.

In addition, Veres and Luo [135] presented a multi-agent scheme on control

systems with a high degree of autonomy. This architecture consists of agents for

various components of the system, including modelling and controller optimiza-

tion, implementation and performance monitoring. This new agent architecture

called cautiously optimistic control agents (COCA) applies new modelling results

with caution for control while using current model settings until a certain thresh-

old exceeded a margin. For implementation, agent-oriented programming (AOP)

which allows actions to be triggered by events was used. COCA is a multilayer

architecture with a central unit acting as a coordinator or supervisor of the entire

system. Plans and tasks are distributed among multiple agents. Agents such

as a physical modeller agent and experimenter agent have specific tasks to com-

plete and must communicate the results to other agents. These results could be

employed as inputs for other agents.

There are, furthermore, some publications on the application of agent ap-

proach for high-level control of aircraft related to mission command control, such

as collision and object avoidance. However, there is still a lack of research study

on agent-oriented approach applied directly to intelligent flight control system.

Details of agent theory will be explained in Chapter 5.

27

2. Literature Reviews on Flight Control System for UAS

2.5 Chapter Summary and Thesis Direction

2.5.1 Chapter Summary

This chapter has presented literature associated with flight control methods for

fixed-wing aircraft and UAVs. The PID algorithm is a popular feedback controller

implementation in both commercial and academic autopilots. But the PID algo-

rithm requires gain tuning, with manual trial and error technique that relies on

the experience of a tuner. Consequently, modern control methods based on lin-

ear synthesis and/or optimisation are considered in aircraft control design to deal

with uncertainties occurring from an imperfect approximation of the mathemat-

ical model and disturbances in order to achieve robust performance and stability

in the presence of bounded modelling errors. However, there are some consid-

erable drawbacks. The satisfying modern controller is not guaranteed in events

of unanticipated or multiple failures, resulting in models outside the stability

bound. Furthermore, suitable model of certain structural failures representing an

uncertainty description is necessary to solve the modern controller. Therefore,

the different reconfigurable control methods including gain-scheduling, NDI, pa-

rameter identification for indirect adaptive control, neural networks, and MPC

have been studied and applied to the flight control system under adverse flight

operating due to a larger flexibility to deal with failures.

Recently, advanced adaptive control schemes such as adaptive back-stepping

control, L1 adaptive control, and hybrid adaptive control have been investigated

for stability and control recovery of a damaged aircraft in order to guarantee the

stability and improve the performance under adverse flight conditions. Further-

more, new generations of flight control systems have not only relied on either one

of the controller, but they will feature complete and integrated systems that re-

configure flight controllers by considering variation of flight operational condition

or fault that might occur in real-time. Therefore, the increasing complex features

of the fault-tolerant flight control schemes were proposed with multiple intelli-

gent subsystems including a reconfigurable control element, a fault detection and

isolation element, an aerodynamic model identification element, a control allo-

cation, a flight path generator and an on-line flight envelope protection in order

28

2. Literature Reviews on Flight Control System for UAS

to meet with the increased performance and demand on reliability, safety, fault

tolerance, and autonomy. The fault-tolerant flight control systems possess the

ability to support failure component automatically by a collaboration of all such

intelligent components to maintain aircraft stability and acceptable performance

in events of failures.

Moreover, an agent-oriented paradigm that possesses a capability of high-level

decision-making and deals with a large-scale distributed system is considered as an

efficient technique to join all various interdisciplinary components of the system

to achieve the ultimate goal. There are several agent architectures available.

A well-known agent architecture with considerable advantages, in term of its

ability to combine reactivity with long-term planning, is the belief-desire-intention

(BDI) agent approach, that parallels with decision making to follow intentions and

pursue goals based on beliefs; which is not a negligible practical aspect when the

agent needs to explain its decisions. Furthermore, the agent can be developed in

an extension of the AgentSpeak/Jason languages with aids of Natural Language

Programming (NPLr) by sEnglish publication software and makes decisions using

abstractions from flight data and from predictions of the anticipated physical

environment.

2.5.2 Chosen Method and Thesis Direction

Adaptive control, which possesses its inherent flexibility to adapt to changes in

system parameters, has been introduced in this research project. More clearly,

the combination of adaptive nonlinear dynamic inversion augmented with a real-

time aerodynamic model identification and neural networks has been chosen here

as a control approach to be followed, which focuses on the use of mathematical

representations based on flight dynamics. Such control, sometimes called hybrid

adaptive control, combines the advantages of three reconfigurable control tech-

niques including NDI (as explained in Section 2.3.2), indirect adaptive control

based on on-line parameter estimation (as explained in Section 2.3.3), and direct

adaptive control based on neural network (as explained in Section 2.3.4).

The ability to handle changes of operating point naturally without the re-

quirement of gain scheduling is a major attraction of NDI control. Additionally,

29

2. Literature Reviews on Flight Control System for UAS

another advantage is its property of decoupling the control axes. It means that no

coupling effects remain between steering control channels and the different degree

of freedom. Furthermore, every quantity and variable appearing in the model has

a physical meaning and thus are interpretable in this method. Therefore, this is

a transparent approach that allows designers and engineers to interpret data in

each step. It is assumed that these physical models will facilitate certification for

real-life applications in the future since monitoring data is more meaningful. For

example, these physical meaning variables can be used to monitor system health

by observing changes in quantities and variables. Satisfactory performance of NDI

depends on an assumption of highly accurate known dynamic model. However,

in practice, the plant dynamics for NDI is not realistic to assume to be accuracy,

not only in the aspect of system uncertainties but also unable to account for

unanticipated failures.

One successful solution to over the weakness of classical NDI, specifically its

sensitivity to modelling errors, is the application of a real-time identification al-

gorithm, which provides updated model information to the dynamic inversion.

The disadvantage of this algorithm is that no formal stability proof can be pro-

vided since it is not based on Lyapunov’s Theorem like adaptive backstepping or

slide mode control. However, relying on the certainty equivalence principle [75],

the stability proof can be implicitly removed in this thesis. Furthermore, neu-

ral networks also have been introduced in the literature to augment the control

signal as compensation for the inverted dynamics, as explained in Section 2.3.4.

An optimal control modification law based on an optimal control formulation

that minimizes the L2 norm of the tracking error bounded away from some lower

bound is considered to be an adaptive law for neural networks control in this

thesis due to the ability to deal with fast adaptation without loss of robustness.

Therefore, the main benefits of hybrid adaptive control approach are 1) to

provide stability guarantee and improve flight control performance in cases of

significant change such as structure damage of aircraft in real-time and 2) to

rely on a mathematical model that provides physical meanings of aerodynamic

stability and control coefficients. L1 adaptive approach that implements with

a low-pass filter on the adaptive control signal effectively can also suppress the

problem of high-frequency oscillations that cause fast adaptation. However, the

30

2. Literature Reviews on Flight Control System for UAS

L1 adaptive method has a limitation in providing a time delay margin bounded

away from zero.

To achieve advanced capability of maintaining aircraft stability and an ac-

ceptable performance in the event of system failure or damage, the issues of how

to integrate control system with increasing intelligent components have been con-

sidered. A BDI agent architecture has been chosen in this thesis due to its ability

to combine reactivity with long-term planning. the BDI agent approach, which

parallels with human decision making to follow intentions and pursue goals based

on beliefs, has a non-negligible practical benefit when the agent needs to explain

its decisions. Furthermore, the agent can be developed in an extension of the

AgentSpeak/Jason languages with the use of Natural Language Programming

(NPLr) by an sEnglish software development platform [124] using abstractions

from flight data and prediction of the anticipated physical environment. A ratio-

nal agent system, which integrates some knowledge based decision-making rules

with hybrid adaptive controllers for small fixed wing UAVs, has been developed

in this thesis. This agent will contain NDI based control with various additional

elements including aircraft dynamic identification, neural networks, model vali-

dation, flight trim condition monitoring, and control performance evaluation in

order to work together under adverse flight conditions.

In this concept, the agent consists of seven main computation components

for perceptions and actions. Frequency Dependent Model Validation (FDMV),

firstly, is chosen in this thesis as one component of the intelligent control system

to find out whether or not the aircraft aerodynamic parameters are good enough

for the inner NDI control of the autopilot system as explain in Chapter 9.1.

This method can check if each spectrum component of the frequency domain

residual has statistical properties of white a noise signal. This advantage of

FDMV is to remove unwanted noise by the calculation in the interesting frequency

range. Secondly, a method monitors the aircraft whether it is in trim condition

from flight data. This method is called the real-time wavelet flight evaluator as

to be explained in Chapter 9.2.1. Thirdly, FDMV is also applied to evaluate

control performance by observing tracking error as explained in Chapter 9.3.

Fourthly, the real-time aircraft parameter estimation component uses a method

called forward OLS in frequency domain in this thesis as explained in Chapter

31

2. Literature Reviews on Flight Control System for UAS

8.1. This approach computes in real-time and reduces the number of states for

estimation such as angular acceleration. Fifthly, this component bases on neural

networks control to augment the control signal for NDI control as explained in

Chapter 8.2. Another component, sixthly, utilizes to calculate guidance control

law that is based on L1 line of sight guidance law as explained in Chapter 4.4.

The final component has the responsibility to generate a flight path following

desired waypoints via Dubins path planing algorithm as explain in Chapter 4.5.

In the beginning, the agent uses NDI controllers to maintain stability and

track the desired waypoints. The agent will perform some actions based on

decision-making rules with discrete perception abstractions (discrete symbols by

filtering continuous flight data) that result from the computation of the model

validation element, the control performance evaluation element, and the flight

monitoring element. The agent will take a responsibility for the five main tasks

to augment the performance of NDI control;

1. indirect adaptive control based on parameter estimation

2. neural networks based direct adaptive control

3. re-identification process to update new aircraft parameters for the inverse

model of the inner flight control loop

4. reset mechanism for adaptive gain adjustment of direct adaptive control

5. hybrid adaptive control of the outer loop flight control

32

Part II

Mathematical Models

33

Chapter 3

UAV Dynamics

3.1 Reference Frames

It is importance to introduce reference frames before studying aircraft dynamic

and flight control. All reference frames [31] are right-handed systems.

Inertial axes. Its origin is the center of the Earth. The Z-axis points to the

North Pole of the Earth. The X-axis steers towards the Vernal Equinox. The

Y-axis is perpendicular to both axes according to the right-hand rule.

Earth axes OXEYEZE . Its origin is at an arbitrary location on the ground. The

OZE axis points towards the center of the Earth. The OXE axis is directed North.

The OYE axis that can be determined by using the right-hand rule points to the

direction of East.

Body axes OXBYBZB . The origin of this body axes is at the center of gravity

(c.g.) of the aircraft. The OXB axis lies in the symmetry plane of the aircraft

and points forward through the nose of the aircraft. The OZB axis also lies in the

symmetry plane, but points downwards. (It is perpendicular to the OXB axis.)

The OYB axis points out towards the right wing according to the right-hand rule.

34

3. UAV Agent Dynamics

Figure 3.1: Reference Frames.

Stability axes OXSYSZS is similar to the body axes. It is rotated by an angle

α about the OYB axis. The α is related to the relative wind vector (Va) and the

body axes. This relative wind vector can be projected onto plane of symmetry

of the aircraft. Then this projection is the direction of the OXS axis. (The OZS

axis still lies in the plane of symmetry. Also, the OYS axis is still equal to the

OYB axis.) So, the relative wind vector lies in the OXSYS plane.

Wind axes OXWYWZW is similar to the stability axes. It is rotated by an angle

β about the OZS axis. This is done, such that the OXW axis points in the direction

of the relative wind vector Va. (So the OXW axis generally does not lie in the

symmetry plane.) The OZW axis is still equal to the OZS axis. The OYW axis can

now be found using the right-hand rule.

3.2 Flight Equations of Motion

3.2.1 Translational and Rotational Dynamics

To consider the effect of c.g. shifting, the general equations of aircraft motion can

be modified to create the effect in the body-fixed reference frame of the aircraft

35

3. UAV Agent Dynamics

Figure 3.2: Center of gravity shifts to reference point.

as shown in translational and rotational forms [96]:

~FB =
d

dt
(mv̄ +mω̄ ×∆r̄)

~MB =
d

dt
(~HB) =

d

dt
(Iω̄ +m∆r̄ × v̄)

(3.1)

where ~FB is the applied force vector in body axes, ~MB is the applied moment

vector in body axes, mv̄ is the linear momentum , ~HB is the angular momentum

vector, I is the inertia tensor, ω̄ is the angular velocity of aircraft, and ∆r =

[xcg ycg zcg]
T is the shifted distance vector of c.g. from the origin of the body

frame as shown in Fig. 3.2.

However, the general motion equations based on Newton’s second law are

valid in an inertial frame where the earth frame system is assumed to be fixed in

inertial space.
d(.)
dt
|I= d(.)

dt
|B + ω̄ × (.) (3.2)

Eq. (3.1) can be transformed from the body-fixed reference frame to the in-

ertial reference frame as

~F = ~FB + ω̄ × (mv̄ +mω̄ ×∆r̄)

~M =
d

dt
(~HB) + ω̄ × ~HB

(3.3)

36

3. UAV Agent Dynamics

Then expanding Eq. (3.3)

~F = m ˙̄v +m ˙̄ω ×∆r +mω̄ ×∆ ˙̄r + ∆ṁ(v̄ + ω̄ ×∆r̄) +mω̄ × (v̄ + ω̄ ×∆r̄)
~M = I ˙̄ω + İω̄ +m∆r̄ × ˙̄v +m∆ ˙̄r × v̄ + ∆ṁ∆r̄ × v̄ + ω̄ × Iω̄ +mω̄ × (∆r̄ × v̄)

(3.4)

When ignore some terms due to time-varying mass, inertia, and c.g. position,

Eq. (3.4) become

~F = m ˙̄v +m ˙̄ω ×∆r +mω̄ × (v̄ + ω̄ ×∆r̄)
~M = I ˙̄ω +m∆r̄ × ˙̄v + ω̄ × Iω̄ +mω̄ × (∆r̄ × v̄)

(3.5)

Therefore, Eq. (3.5) can be expanded into the following force and moment

equations where it can be proved the dynamics of the fixed-wing aircraft can be

described with the following 6-DOF non-linear model as follows:

Force equations:

Fx = m(u̇− vr + wq − xcg(q2 + r2) + ycg(pq − ṙ) + zcg(pr + q̇))

Fy = m(v̇ − wp+ ur − xcg(r2 + p2) + ycg(qr − ṗ) + zcg(qp+ ṙ))

Fz = m(ẇ − uq + vp− xcg(p2 + q2) + ycg(rp− q̇) + zcg(rq + ṗ))

(3.6)

Moment equations:

L = Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy
+m[xcg(vq + wr) + ycg(ẇ − uq)− zcg(v̇ + ur)]

M = Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz
+m[−xcg(ẇ + vp) + ycg(up+ wr) + zcg(u̇− vr)]

N = Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx
+m[xcg(v̇ − wp)− ycg(u̇+ wq) + zcg(up+ qv)]

(3.7)

where:

m Total mass of the aircraft

v̄ = [u v w]T Linear velocities decomposed in the body-frame.

37

3. UAV Agent Dynamics

ω̄ = [p q r]T Angular velocities decomposed in the body-

frame. The angular velocities p, q and r are com-

monly known as roll, pitch and yaw respectively.
~F = [Fx Fy Fz]

T External forces decomposed in the body-frame.

~M = [L M N]T External momentums decomposed in the body-

frame.

∆r̄ = [xcg ycg zcg]
T Shifted position of the centre of gravity in the

body-frame as shown in Fig. 3.2

I =

 Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

 Inertia tensor

The left hand side of Eq. (3.5) represents all the external forces and moments

applied to the aircraft, respectively. In the dynamical model presented in [31, 66],

the external forces and moments vector can be identified as the sum of three

components: aerodynamic (~FA, ~MA), propulsion (~FP , ~MP) and gravity (~FG, ~MG)

:

~F = ~FA + ~FG + ~FP (3.8)

~M = ~MA + ~MG + ~MP (3.9)

The total applied forces and moments in turn can be expressed as:

Fx = q̄SCx(α, β,
pb
2V
, qc̄

2V
, rb

2V
, ...) −mgsinθ +FPx

Fy = q̄SCy(α, β,
pb
2V
, qc̄

2V
, rb

2V
, ...) +mgsinφcosθ +FPy

Fz = q̄S Cz(α, β,
pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic force coefficients
discussed in Section 3.2.2

+mgcosφcosθ +FPz
(3.10)

L = q̄SbCl(α, β,
pb
2V
, qc̄

2V
, rb

2V
, ...) +FPxxe

M = q̄Sc̄Cm(α, β, pb
2V
, qc̄

2V
, rb

2V
, ...) +FPyye

N = q̄SbCn(α, β,
pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic moment coefficients
discussed in Section 3.2.2

+FPzze
(3.11)

38

3. UAV Agent Dynamics

Note that Eqs. (3.6) and (3.7) simplify consistently in case the c.g. shifted

from the origin of the body-frame, or in other words, in case the c.g. is located

at the origin of body-frame , as in that case xcg = ycg = zcg = 0. Furthermore,

it is clear that for a rigid body with symmetry relative to the OXBYBZB in body

axes, therefore we can define that Ixy = Iyx = Iyz = Izy = 0

Force equations:

Fx = m(u̇− vr + wq)

Fy = m(v̇ − wp+ ur)

Fz = m(ẇ − uq + vp)

(3.12)

Moment equations:

L = Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz

M = Iy q̇ + (Ix − Iz)rp+ (p2 − r2)Izx

N = Iz ṙ + (Iy − Ix)pq + (rq − ṗ)Izx
(3.13)

Using Eq. (3.12) and Eq. (3.13) through Eq. (3.10) and Eq. (3.11), the fol-

lowing six differential equations describe the symmetric aircraft motion with as-

sumption that the thrust from the propulsion performs along the x body axis and

through the c.g.

Force equations:

mu̇ = m(vr − wq) + q̄SCx −mg sin θ + T

mv̇ = m(wp− ur) + q̄SCy −mg cos θ sinφ

mẇ = m(uq − vp) + q̄SCz −mg cos θ cosφ

(3.14)

Moment equations:

Ixṗ− Ixz ṙ = q̄SbCl − (Iz − Iy)qr + Ixzqp

Iy q̇ = q̄Sc̄Cm − (Ix − Iz)pr − Ixz(p2 − r2)

Iz ṙ − Ixzṗ = q̄SbCn − (Iy − Ix)pq − Ixzqr

(3.15)

39

3. UAV Agent Dynamics

3.2.2 Aerodynamic Modelling

Before studying aerodynamic modelling, there are significant factors in wind axes

system to investigate which consist of airspeed (V), the angle of attack (α) and

sideslip angle (β) as illustrated in Fig 3.1. Consequently, these variables can be

defined in term of u, v, and w as follows [66]:

V =
√
u2 + v2 + w2

α = tan−1 w
u

β = sin−1 v
V

(3.16)

Aerodynamic model in this thesis relied on quasi-steady flow with time-invariant

parameters. Therefore, this form of the aerodynamic equation can be provided

by a linear Taylar series expansion of the aerodynamic forces and moments about

a reference condition. For simplicity, the aerodynamic model equations represent

use of non-dimensional derivatives of the non-dimensional aerodynamic force and

moment coefficients including CD, CL, CZ , Cl, Cm and Cn. These parameters de-

pend on the reference airspeed and altitude condition [66]. From general aero-

dynamic principle following the literature [65, 77, 109], the regular aerodynamic

forces and moments are not only dependent on the usual linear independent

variables but also reliant on non-linear symmetrical regressor candidates in case

of aggressive manoeuvering. In case of asymmetric aircraft structure damage,

asymmetrical non-linear regressor candidates also require considering the follow-

ing parameter:

• Conventional linear independent variables:

– In longitudinal dynamics: 1, α, qc̄
2V

and δe

– In lateral & directional dynamics: 1, β, pb
2V
, rb

2V
, δa and δr

Therefore, aerodynamic force and moment coefficients in six degree-of-freedom

can be expressed in terms of the mentioned independent variables in linear re-

40

3. UAV Agent Dynamics

gression form as:

CL = CL0 + CLαα + CLq(
qc̄
2V

) + CLδeδe

CD = CD0 + CDαα + CDq(
qc̄
2V

) + CDδeδe

CY = CY0 + CYββ + CYp(
pb
2V

) + CYr(
rb
2V

) + CYδaδa + CYδr δr

Cl = Cl0 + Clββ + Clp(
pb
2V

) + Clr(
rb
2V

) + Clδaδa + Clδr δr

Cm = Cm0 + Cmαα + Cmq(
qc̄
2V

) + Cmδeδe

Cn = Cn0 + Cnββ + Cnp(
pb
2V

) + Cnr(
rb
2V

) + Cnδaδa + Cnδr δr

(3.17)

where
CL = −CZ cosα + CX sinα

CD = −CX cosα− CZ sinα
(3.18)

• Non-linear symmetrical regressor candidates

– In longitudinal dynamic : α2, αm, α qc̄
2V
, αδe m = 3, ..., 8

– In lateral & directional dynamic : αβ, αβ2, α2β, αβ3, α2β3, α pb
2V
, α rb

2V
,

α2 pb
2V
, α2 rb

2V
, βn n = 2, ..., 5

• Asymmetrical non-linear regressor candidates:

– In longitudinal dynamic : β, pb
2V
, rb

2V
, αβ, αβ2, α2β, αβ3, α2β3, α pb

2V
, α rb

2V
,

α2 pb
2V
, α2 rb

2V
, βn n = 2, ..., 5

– In lateral & directional dynamic : 1, α, qc̄
2V
, α2, αm, α qc̄

2V
, αδe m = 3, ..., 8

Note that: For linear regression, aerodynamic modelling functions that can

be linear or nonlinear functions of the regressor candiates are considered at the

trim condition as a specific airspeed and altitude (at one point within the flight

envelope). For large amplitude, rapid excursions, flight profiles with high angle of

attack, and deficiency from aircraft damage about the reference flight condition, it

is essential to extend the linear models by adding nonlinear terms, such as higher

order and coupling terms as above mentioned. It means that only valid models

are obtained in this study. Consequently, to find out the aerodynamic models for

41

3. UAV Agent Dynamics

covering the entire operational envelope of the aircraft, a number of test cases

of flight manoeuvres need to be performed at various velocities (Mach number),

angles of attack and altitudes with multiple local models with crip transitions at

the boundaries between them [66]. An issue To find aerodynamic models which

are locally as well as globally valid over the entire flight envelope, without crisp

transition is outside the scope of the thesis.

3.2.3 Effects of Mass Property Changes Due to Damage

Before studying this section, it is necessary to discuss the translational accelera-

tion measured by accelerometers. The equation for the translational acceleration

is

~a = ˙̄v + ω × v̄ − ~FG
m

(3.19)

In scalar form,

ax = u̇− rv + qw + g sin θ

ay = v̇ − pw + ru− g cos θ sinφ

az = ẇ − qu+ pv − g cos θ cosφ

(3.20)

From Eq. (3.5), the aircraft mass and inertia are assumed to undergo a change

so that

m = m∗ + ∆m (3.21)

I = I∗ + ∆I =

 I∗x + ∆Ix I∗xy + ∆Ixy I∗xz + ∆Ixz

I∗yx + ∆Iyx I∗y + ∆Iy I∗yz + ∆Iyz

I∗zx + ∆Izx I∗zy + ∆Izy I∗z + ∆Iz

 (3.22)

where m∗ is the original mass of the aircraft, ∆m is the negative mass change

due to damage, I∗ is the original inertia matrix of the aircraft, and ∆I is the

42

3. UAV Agent Dynamics

change in the inertia matrix due to damage.

~F = (m∗ + ∆m) ˙̄v + (m∗ + ∆m) ˙̄ω ×∆r + (m∗ + ∆m)ω̄ × (v̄ + ω̄ ×∆r̄)
~M = (I∗ + ∆I) ˙̄ω + (m∗ + ∆m)∆r̄ × ˙̄v + ω̄ × (I∗ + ∆I)ω̄

+(m∗ + ∆m)ω̄ × (∆r̄ × v̄)

(3.23)

From the appendix A, Eq. (3.23) can be expanded as:

Force equations:

m∗(u̇− vr + wq + g sin θ)− F ∗Ax − FPx = ∆FAx −∆FMx

m∗(v̇ − wp+ ur − g cos θ sinφ)− F ∗Ay − FPy = ∆FAy −∆FMy

m∗(ẇ − uq + vp− g cos θ cosφ)− F ∗Az − FPz = ∆FAz −∆FMz

(3.24)

where

∆FMx = ∆max − (m∗ + ∆m)xcgq
2 − (m∗ + ∆m)xcgr

2 + (m∗ + ∆m)ycgpq

−(m∗ + ∆m)ycgṙ + (m∗ + ∆m)zcgpr + (m∗ + ∆m)zcg q̇

= fMx(ax, q̇, ṙ, q
2, r2, pq, pr)

(3.25)

∆FMy = ∆may − (m∗ + ∆m)xcgr
2 − (m∗ + ∆m)xcgp

2 + (m∗ + ∆m)ycgqr

−(m∗ + ∆m)ycgṗ+ (m∗ + ∆m)zcgqp+ (m∗ + ∆m)zcgṙ

= fMy(ay, ṗ, ṙ, p
2, r2, qp, qr)

(3.26)

∆FMz = ∆maz − (m∗ + ∆m)xcgp
2 − (m∗ + ∆m)xcgq

2 + (m∗ + ∆m)ycgrp

−(m∗ + ∆m)ycg q̇ + (m∗ + ∆m)zcgrq + (m∗ + ∆m)zcgṗ

= fMz(az, ṗ, q̇, p
2, q2, rp, rq)

(3.27)

Then Eq. (3.24) can be rearranged in matrix form as:

m∗ ˙̄v +m∗ω̄ × v̄ − ~F
∗
G − ~F

∗
A − ~F

∗
P = ∆~FA −∆~FM (3.28)

43

3. UAV Agent Dynamics

where

∆~FA = fFA(α, β,
pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic force functions
discussed in Section 3.2.2

∆~FM = fFM (ax, ay, az, ṗ, q̇, ṙ, p
2, q2, r2, pq, pr, qp, qr)︸ ︷︷ ︸

mass and inertia force functions
discussed in Equation 3.25, 3.26, and 3.27

(3.29)

Moment equations:

I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy − L∗A = ∆LA −∆LM

I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz = ∆MA −∆MM

I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx = ∆NA −∆NM

(3.30)

where

∆LM = ∆Ixṗ+ (∆Iz −∆Iy)qr − (ṙ + pq)∆Ixz + (r2 − q2)∆Iyz + (pr − q̇)∆Ixy
+(m∗ + ∆m)xcgvq − (m∗ + ∆m)ycgvp+ (m∗ + ∆m)xcgwr

−(m∗ + ∆m)zcgwp+ (m∗ + ∆m)ycgaz − (m∗ + ∆m)zcgay

= fML
(ṗ, q̇, ṙ, q2, r2, pq, pr, qr, vq, vp, wr, wp, ay, az)

(3.31)

∆MM = ∆Iy q̇ + (∆Ix −∆Iz)rp− (ṗ+ qr)∆Ixy + (p2 − r2)∆Izx + (qp− ṙ)∆Iyz
−(m∗ + ∆m)xcgaz + (m∗ + ∆m)ycgup− (m∗ + ∆m)xcguq

+(m∗ + ∆m)ycgwr − (m∗ + ∆m)zcgwq + (m∗ + ∆m)zcgax

= fMM
(ṗ, q̇, ṙ, p2, r2, rp, qr, qp, up, uq, wr, wq, ax, az)

(3.32)

∆NM = ∆Iz ṙ + (∆Iy −∆Ix)pq − (q̇ + rp)∆Iyz + (q2 − p2)∆Ixy + (rq − ṗ)∆Izx
+(m∗ + ∆m)xcgay − (m∗ + ∆m)ycgax + (m∗ + ∆m)zcgup

+(m∗ + ∆m)zcgqv − (m∗ + ∆m)xcgur − (m∗ + ∆m)ycgrv

= fMN
(ṗ, q̇, ṙ, p2, q2, pq, rp, rq, up, qv, ur, rv, ay, az)

(3.33)

44

3. UAV Agent Dynamics

Similarly, Eq. (3.30) can be rearranged in matrix form as:

I∗ ˙̄ω + ω̄ × I∗ω̄ + ~M
∗
A = ∆ ~MA −∆ ~MM

(3.34)

where

∆ ~MA = fMA
(α, β,

pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic moment functions
discussed in Section 3.2.2

∆ ~MM = fMM
(ax, ay, az, ṗ, q̇, ṙ, p

2, q2, r2, pq, pr, qp, qr, up, uq, ur, vp, vq, vr, wp, wq, wr)︸ ︷︷ ︸
mass and inertia moment functions

discussed in Equations 3.31, 3.32, and 3.33

(3.35)

3.3 Rotational Kinematic Equations & Naviga-

tion Equations

Rotational kinematic equations are a relationship between the rate of change of

the Euler angles and the body-axis components of angular velocity. The relation-

ship can be found in [66] as shown in Eq. (3.36)

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r cosφ

ψ̇ = q sinφ+r cosφ
cos θ

(3.36)

The navigation equations [66] can be written by expressing a relationship

between the aircraft velocity components in earth axes and body-axis components

of velocity:

ẋE = u cosψ cos θ + v(cosψ sin θ sinφ− sinψ cosφ)

+w(cosψ sin θ cosφ+ sinψ sinφ)

ẏE = u sinψ cos θ + v(sinψ sin θ sinφ+ cosψ cosφ)

+w(sinψ sin θ cosφ− cosψ sinφ)

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ

(3.37)

45

3. UAV Agent Dynamics

where defining h = altitude (height above the ground).

Since air flow angle sensors base on wind reference system rather than body

axes, the navigation equations can be considered to be related to V , α, and β in

wind reference system by:

u = V cosα cos β

v = V sin β

w = V sinα cos β

(3.38)

Consequently, the navigation equations are

ẋE = V cosα cos β cosψ cos θ + V sin β(cosψ sin θ sinφ− sinψ cosφ)

+V sinα cos β(cosψ sin θ cosφ+ sinψ sinφ)
(3.39)

ẏE = V cosα cos β sinψ cos θ + V sin β(sinψ sin θ sinφ+ cosψ cosφ)

+V sinα cos β(sinψ sin θ cosφ− cosψ sinφ)
(3.40)

ḣ = V cosα cos β sin θ − V sin β cos θ sinφ− V sinα cos β cos θ cosφ (3.41)

46

Chapter 4

NDI Control Based Architecture

of Autopilot

The autopilot system consists of a guidance block and two loops (inner and outer

loop) of flight control system as shown in Fig.4.1. The adaptive control based

inner loop allows rate control in roll, pitch and yaw steering. The outer loop

also adds adaptive control for heading, pitch and sideslip angle. Furthermore,

the guidance system is based on an L1 line of sight guidance law to calculate

roll angle command to track the desired waypoints. The autopilot architecture

is based on NDI control that represents “inversion”of the non-linear model of

flight dynamics. In an sEnglish based encoding of this control scheme, all quanti-

ties and variables that appear in the model have a physical meaning expressed in

professional English and hence are interpretable. This allows designers and main-

tenance engineers to interpret data in each step in order to potentially facilitate

legal certification of these processes.

47

4. Autopilot Architecture for UAV Agent

Figure 4.1: Autopilot Control Architecture

4.1 Inner Loop of Autopilot Laws

From aircraft moment equations (3.15) described by Eqs. (4.1-4.2)

Ixṗ− Ixz ṙ = q̄SbCl − (Iz − Iy)qr + Ixzqp

Iy q̇ = q̄Sc̄Cm − (Ix − Iz)pr − Ixz(p2 − r2)

Iz ṙ − Ixzṗ = q̄SbCn − (Iy − Ix)pq − Ixzqr

(4.1)

where

Cl = Cl0 + Clββ + Clp(
pb
2V

) + Clr(
rb
2V

) + Clδaδa + Clδrδr + . . .

Cm = Cm0 + Cmαα + Cmq(
qc̄
2V

) + Cmδeδe + . . .

Cn = Cn0 + Cnββ + Cnp(
pb
2V

) + Cnr(
rb
2V

) + Cnδaδa + Cnδr δr + . . .

(4.2)

With the body rotational rates ω =
[
p q r

]T
, angular acceleration

[
ṗ q̇ ṙ

]T
,

the moment coefficients CM =
[
Cl Cm Cn

]T
, V as the airspeed, q̄ as the dy-

namic pressure, S as the wing surface area, b as the wing span, c̄ as the mean

48

4. Autopilot Architecture for UAV Agent

Figure 4.2: Hybrid adaptive angular rate control inner loop ASE=aircraft state
estimation; AMI=aerodynamic model identification

49

4. Autopilot Architecture for UAV Agent

aerodynamic chord, α as the angle of attack and β as the side slip angle. I is the

moment of inertial matrix. Eq. (4.1) can be rewritten in matrix form asṗq̇
ṙ

 = I−1

 q̄SbClq̄Sc̄Cm

q̄SbCn

− I−1

pq
r

×
I
pq
r

 (4.3)

where

I =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 (4.4)

Eq. (4.2) can also be rearranged in the matrix form asClCm
Cn

 =

ClstatesCmstates

Cnstates

+

Clδa 0 Clδr
0 Cmδe 0

Cnδa 0 Cnδr

δaδe
δr

 (4.5)

where
Clstates = Cl0 + Clββ + Clp(

pb
2V

) + Clr(
rb
2V

) + . . .

Cmstates = Cm0 + Cmαα + Cmq(
qc̄
2V

) + . . .

Cnstates = Cn0 + Cnββ + Cnp(
pb
2V

) + Cnr(
rb
2V

) + . . .

(4.6)

Inserting Eq. (4.5) into Eq. (4.3) and solving for the control input
[
δa δe δr

]T
,

results in

δaδe
δr

 =

bClδa 0 bClδr
0 c̄Cmδe 0

bCnδa 0 bCnδr

−1

·

 I
1
2
ρV 2S

vpvq
vr

+I−1

pq
r

×I
pq
r

−

 bClstatesc̄Cmstates

bCnstates

(4.7)

where the virtual inputs
[
vp vq vr

]T
are the time derivatives of the rotational

rates of aircraft.

50

4. Autopilot Architecture for UAV Agent

A reference model is defined as a second order dynamics

Xm(s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(4.8)

where the natural frequency of the response can be defined as ωn = 2rad/s and

its damping coefficient ζ = 0.8, for instance [97] suggests that a linear PID

controller can be assigned with ωn and ζ as Kp = 2ζωn and Ki = ω2
n in cascade

with the compensated non-linear dynamics.

Classical NDI’s weakness is its sensitivity to modelling errors which results

in erroneous inversion. However, this possibly unstable result is solved by using

the real-time identified physical model, which has greater accuracy than a priori-

based model, or compensating error signal with an adaptive control mechanism.

Here, the principle of hybrid flight adaptive control has been proposed to ap-

ply in each of the inner and outer loops of control to overcome the problem of

modelling error. The OLS (Orthogonal Least Squares) method is operating and

supplying the real-time identified model parameters, including failure characteris-

tics when relevant. Model reference adaptive control is applied for direct adaptive

control. More details of hybrid adaptive control are described in Chapter 8.

Furthermore, in cases of aircraft structural damage, the aircraft model struc-

ture of NDI changes due to the effect of the center of gravity shifted and the

inertia properties varied as discussed in Eq. 3.34 of Chapter 3. As a result,

the stability and control derivative matrices (∆ ~MA) and the mass and inertia

derivative matrices (∆ ~MM) are usually unknown. Consequently, a flight control

system is required to be able to compensate for the uncertain model dynamics of

the damaged aircraft by using real-time identified physical model that depends

on parameters as mentioned in Section 3.2.2 for aerodynamic terms and in Eq.

3.35 for additional inertia terms. Moreover, these parameters are also used to

construct adaptive control mechanism for directive adaptive control.

4.2 Outer Loop of Autopilot Laws

Non-linear dynamic inversion control is used in the outer loop to regulate Euler

roll (φ), pitch (θ) angle, side slip (β) angles and gravity acceleration (g) response

51

4. Autopilot Architecture for UAV Agent

Figure 4.3: Hybrid adaptive Euler angle and sideslip angle control outer loop
ASE=aircraft state estimation; AMI=aerodynamic model identification

52

4. Autopilot Architecture for UAV Agent

following an input command from the guidance system. From the rotational

kinematic equations (3.36) and the reconstructed equation of sideslip angle are

discussed in Appendix B (IV).

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sin θ

β̇ = psinα− rcosα + g
V

(sinφcosθcosβ + sinθcosαsinβ − cosφcosθsinαsinβ)− ...
ax
V
cosαsinβ + ay

V
cosβ − az

V
sinαsinβ

(4.9)

Rearranging Eq. (4.9) in the matrix form as:φ̇θ̇
β̇

 =

 1 sinφtanθ cosφtanθ

0 cosφ −sinθ
sinα 0 −cosθ

pq
r

+

 0

0

βstates

 (4.10)

where

βstates = g
V

(sinφcosθcosβ + sinθcosαsinβ − cosφcosθsinαsinβ)− ...
ax
V
cosαsinβ + ay

V
cosβ − az

V
sinαsinβ

(4.11)

Solving the angular rate input
[
p q r

]T
in form of inversion results in Eq. (4.12).

pq
r

 =

 1 sinφtanθ cosφtanθ

0 cosφ −sinθ
sinα 0 −cosθ

−1

.

φ̇θ̇
β̇

−
 0

0

βstates

 (4.12)

In a similar way, the reference model in this case is defined to be second order

model in Eq. (4.8). However, this loop has a slower response than the inner loop.

Therefore, ωnθ = 0.4 rad/s, ωnφ , ωnβ = 1 rad/s and ζ = 0.8 are chosen. Linear

controllers can be assigned with Kp = 2ζωn and Ki = ω2
n.

53

4. Autopilot Architecture for UAV Agent

4.3 Altitude Control Laws

Altitude control enables an aircraft to maintain its required altitude. Here the

NDI controller is proposed to send an angle θ demand to the outer flight control

loop. A relation between the flight path angle (γ), the pitch angle (θ), the angle

of attack (α), and the altitude or height (h) is given in Eq. (4.13)

γ = θ − α (4.13)

The navigation equation is derived by expressing the aircraft velocity vector in

earth z axes. The axes relate to body-axis components in Eq. (3.37) is shown in

Eq. (4.14).

ḣ = usinθ − vcosθsinφ− wcosθcosφ (4.14)

in which body-axis velocity components are related to the airspeed (V), the angle

of attack (α) and the sideslip angle (β) by

u = V cosαcosβ

v = V sinβ

w = V sinαcosβ

(4.15)

Inserting Eq. (4.15) into Eq. (4.14) results in the dynamics of altitude.

ḣ = V cosαcosβsinθ − V sinβcosθcosφ− V sinαcosβcosθcosφ (4.16)

Assuming that β and φ = 0, due to turn coordination and considering only θ,

therefore results in Eq. (4.17).

ḣ = V cosαsinθ − V sinαcosθ (4.17)

Assuming that both θ and α are small, the equation can be approximated to

Eq. (4.18).

ḣ = V (θ − α) (4.18)

54

4. Autopilot Architecture for UAV Agent

Rearranging this equation in form of inversion in order to send the theta command

to flight control system results in Eq. (4.19).

θ =
ḣ

V
+ α (4.19)

4.4 Guidance Control Laws

Lateral guidance system for trajectory tracking is based on a regular waypoint

tracking algorithm in [37] to send a roll angle command to the flight control

system. Normally aircraft will perform coordinated turn to minimise undesirable

aerodynamic loading of aircraft structure and payload considerations. Therefore,

the sideslip angle command (β) is commonly defined as zero.

In order to calculate a desired roll command, it is assumed that the aircraft

turns to coordinated. Therefore, the aircraft maintains sufficient lift to balance

its weight, even though banked at an angle φ. This gives

L cosφ = W = mg, L sinφ = malat (4.20)

and

φdes = tan−1
(
alat
g

)
(4.21)

Therefore, the desired roll command (φdes) depends on the lateral acceleration

(alat). This thesis utilizes L1 lateral guidance control law for trajectory tracking

[37] that can be written as

alat =
2V 2

L1

sin η ≈ 2
V

L1

(
˙yL1 + V

L1
yL1

)
(4.22)

where L1 is the segment that binds the center of aircraft (O) to the point P

on the desired path and yL1 is the perpendicular distance between the center of

aircraft (O) and waypoint segment on the desired path as shown in Fig. 4.4.

55

4. Autopilot Architecture for UAV Agent

Figure 4.4: Lateral Guidance Law Geometry

Figure 4.5: Waypoint Tracking

56

4. Autopilot Architecture for UAV Agent

4.4.1 Computation of the vertical distance (yL1)

The position of the center of the aircraft is at (PAE ,PAN) on the north-east plane.

The angle ψseg(k), Υ and λ, and the distance d1, yL1 can be determined with

ψseg(k) = tan−1

(
WP (k + 1)E −WP (k)E
WP (k + 1)N −WP (k)N

)
∈ [−π; π] (4.23)

Υ = tan−1

(
PAE −WP (k)E
PAN −WP (k)N

)
∈ [−π; π]

λ = |ψseg(k)| − |Υ|
d1 =

√
(PAE −WP (k)E)2 + (PAN −WP (k)N)2

yL1 = d1 tanλ

(4.24)

Furthermore, one method to estimate ẏ is to employ a backward finite differ-

ence method

˙yL1 =
yL1 − yL10

ts
(4.25)

where yL10 is the previous distance yL1 and ts is the sampling time. However,

this approach can result in an important error if ts is either too small or too

large. Another method is to utilize them to generate a smooth curve using a

cubic, B-spline,or the polynomial least square method. This curve can be then

differentiated at specific time to determine the derivative value. Also, the value

of distance L1 is a significant factor that acts as the gain of the controller. In this

study, the distance L1 is assigned be equal to 150m by default as follows in [37].

4.4.2 Logic for flight path switching

While the aircraft is flying, the reference point (P) also goes along the desired

trajectory path. To switch the segment, the relationship between L1 and d2 is

considered. In cases where the distance L1 is longer than d2, this means that the

end of the current segment (Segment k) has been reached, and a new reference

point has to be selected for the next segment (Segment k+1).

57

4. Autopilot Architecture for UAV Agent

There are two cases to select L1:

• Case of |λ| > π

2
, then the distance L1 is assigned as L1 = max(L1, d1).

• Case of |λ| < π

2
, firstly, check the distance yL1 = d1 tanλ.

– if yL1 > L1 then the distance L1 is assigned as L1 = yL1 ∗ 1.1.

4.5 Flight Path Planner

There are several planning techniques presented in a comprehensive summary

of existing approaches that can be found in [70]. One of the popular planing

methods applied to UAV is Dubins’ algorithm [5, 23, 38]. 2D Dubins’ curve [38]

have been employed in this work due to simple computation and short calculate

time. Dubins path is constructed with connection among particular part of circle

curves and straight tangent lines having the form:

{L R S}, (4.26)

where L and R is left and right turns (in geometry form of a part of the circum-

ference of a circle) at a bank angle and S is a straight tangent line. The radius

of arcs can be calculated by

Rs,e =
V 2
TAS

g tan(φs,e)
(4.27)

in which Rs,e are the start and nearby radii of the arcs, VTAS is the true airspeed

of aircraft, g is the gravity acceleration constant, and φs,e are the start and nearby

bank angles.

Consider the example illustrated in Fig. 4.6, the UAV is initially located

at Point zs and demanded to arrive at Point ze. In the beginning, two circles

(Crs : R and Cre : R), with the radius from Eq. (4.27), are drawn to be tangent

at Point zs. Next, the similar procedure is repeated at Point ze as illustrated in

Fig. 4.6(a). Then tangent lines are created to join the circumferences of these

circles as shown in Fig. 4.6(b). Consequently, there are four paths (K1, K2, K3,

58

4. Autopilot Architecture for UAV Agent

Figure 4.6: Step of Generating 2-D Dubins Path

59

4. Autopilot Architecture for UAV Agent

Figure 4.7: Dubin Curve Path Generating Step

and K4) to link each circle pairs of center at (zs, ze) on each right side. However,

only one of these paths, here called RSR, is accordant with the start and nearby

headings of UAV [Fig. 4.6(c)]. In a similar process, three other paths (RSL,LSR,

and LSR) can be obtained as demonstrated in Fig. 4.7. In addition, an example

of MATLAB result of Dubins’ curve is depicted in Fig. 4.8. Finally, the optimal

path that considers in term of the shortest distance is selected from paths of

RSR,RSL,LSR, and LSR.

4.6 Chapter Summary

This chapter has presented the fundamental autopilot architecture and mathe-

matical formulations applied to this work. The structure of the attitude controller

comprises the inner-loop and outer-loop design based on dynamic inversion. The

inner-loop control functions to provide body-axis angular rate tracking and the

outer loop portion is designed with commands being in the form of Euler angle

and sideslip angle. Furthermore, L1 lateral guidance system based on a waypoint

60

4. Autopilot Architecture for UAV Agent

Figure 4.8: MATLAB Result Example of Dubins’ Curve Path Generating

61

4. Autopilot Architecture for UAV Agent

tracking is utilized to determine the roll angle command to the outer-loop loop

of flight control system. The altitude control portion is also based on dynamic

inversion in the form of a simplified kinematic equation to provide the pitch angle

command for outer loop control. Moreover, the Dubins’ curve algorithm has been

considered to generate a flight path for guidance loop.

After explaining the detailed NDI set-up with lateral guidance law for au-

topilot control and adaptive control configurations that have been developed to

compensate the inaccuracy of modelling of dynamic inversion will be discussed

in the later chapter in a form of the action plans of an agent.

62

Chapter 5

Agent Theory

5.1 Intelligent Agent

There are various definitions of software agents due to the different aspects of

agents. In this context an agent is a software system installed on a suitable com-

puting hardware in a variable environment, which possesses an ability, through

its sensors and actuators, to act autonomously without human intervention to

achieve its designed goals in its environment [82].

A formal definition of agent [134, 139] is as follows. Let SAG = {s1, s2, . . .}
be the set of states of the environment in which the agent is placed, and AAG =

{a1, a2, . . .} be the set of actions that presents the capability of the agent. For

any set X let X∗ denote the set of all finite sequences of elements in X, and ℘(X)

the set of subsets of X. A common definition of agent is given by a model called

“standard agent”.

action : S∗AG → AAG (5.1)

which maps sequences of environment states to actions. The non-deterministic

behaviour of the environment can be modelled as a function:

env : SAG × AAG → ℘(SAG) (5.2)

which maps the state of the environment and the agent’s actions to a set of states

that could result from the actions.

63

5. Theory of Agent

Therefore, a history sequence of the interaction between agent and environ-

ment can be presented in:

h : s0 –– a0 → s1 –– a1 → s2 –– a2 → s3 . . . (5.3)

Furthermore, the description of this standard agent can be developed by

breaking the action into two functions that include see and act, and by entering a

non-empty set of percepts and action maps sequences of percepts PAG to actions

and a set of states KAG of the agent. Consequently, the agent’s decision can be

modelled as follows:
see : SAG → PAG

next : KAG × PAG → KAG

act : KAG → AAG

(5.4)

There are several agent architectures such as reactive agents, behavioural

agents, logics-based agents, layered architectures and Belief-Desire-Intention (BDI)

agents. They are distinct architectures but not exclusive, as most approaches to

autonomous vehicles development can rely on more than one theme. This work

has considered the BDI agent due to its capability to combine reactivity with

long-term planning. BDI agent approach, which corresponds with decision mak-

ing to serve intentions and pursue goals based on beliefs. The detail of a formal

description of the BDI agent can be found in [139].

Let Bel, Des and Int denote large sets representing all possible beliefs, de-

sires and intentions, respectively in which the agent could take. The state of a

BDI agent can be indicated at any time by a triple (B,D, I), where B ⊆ Bel,

D ⊆ Des and I ⊆ Int.

The beliefs set represents the informational state of the agent (the world includ-

ing itself and other agents). The reasoning cycle of a BDI agent starts with an

update of the belief set by considering a mapping of a belief set and the per-

ception of the environment. This can be expressed with a function called ‘belief

revision function’ (brf):

brf : ℘(Bel)× PAG → ℘(Bel) (5.5)

The next step is an update of the desire set. The desires set denotes the mo-

64

5. Theory of Agent

tivational state of the agent that represents objectives or situations where the

agent would accomplish by taking into account the belief set and the intention

set from a previous cycle. The update is performed by a function called ‘options

generation function’ (options):

options : ℘(Bel)× ℘(Int)→ ℘(Des) (5.6)

Once the agent stores a set of options, the next step is a deliberation process to

decide what to do. The intentions set represents a deliberative set of options

that the agent has decided to work towards. The update of the intentions set is

performed with a ‘filter’ function, which maps all the knowledge from previous

steps in which the agent has at current with the set of intentions:

filter : ℘(Bel)× ℘(Des)× ℘(Int)→ ℘(Int) (5.7)

Finally, the function ‘execute’ is utilized to choose an intention that corresponds

to a directly executable action, and then performs the action:

execute : ℘(Int)→ AAG (5.8)

There is no comprehensive agreement on how to define or measure an intel-

ligent system. For the objective of this study, “intelligence”is defined as “the

ability of a system to act appropriately in a dynamic environment, where an ap-

propriate action is that which increases the probability of achievement and the

achievement is the fulfilment of behavioural sub-goal that supports the system’s

ultimate goal ” [82].

An autonomous aerial vehicle is placed in an urban environment where it has

to deal with unexpected events that might happen, as well as consider highly

complex realities such as aircraft health, and safety. To achieve the capability of

adaptation, the agent designed for flight control systems will consist of a hierarchy

of logic-connected procedures for improving flight performance, reliability and

safety.

65

5. Theory of Agent

5.2 Agent-Oriented Programming

The concept of Agent Oriented Programming (AOP), and for instance the main

characteristics of an AOP Jason programming language, are based on the con-

cepts of the BDI approach to agency. An engineering agent software, fundamen-

tally, can be abstracted into two interacting components: rational agent logic,

or reasoning cycle, and abilities, or skills, that the agent can perform. Skills

refer to particular routines that initiate action in connected subsystems, which

can be either hardware or software based. The key idea of AOP is to program

agents reasoning cycle in high-level terms and mostly with symbolic information

regarding some ontology languages in order to implement the BDI framework.

Some of the most popular AOP languages available are Goal, PRS, and

AgentSpeak/Jason. There is also natural language Programming (NLPr) that

enables users to write code in natural language sentences, for instance, English

sentences, using a predefined ontology. An example of this is sEnglish that is a

part of an agent development environment call Cognitive Agent Toolbox (CAT)

features in sEnglsihTM software that can compile both the agent reasoning and

the skills in different programming languages (MATLAB or C++) to interface

with Jason BDI agent Architecture.

5.2.0.1 Jason

Jason is the extension of AgentSpeak, a logic-based AOP language based on

the BDI agent paradigm. An agent’s architecture is the software structure of

parts and interactions which make it functions. One component of the Jason

architecture is its belief base. The agent can continuously receive perceptions

and communications from the environment and update the belief components

accordingly. Another important element is the agent’s goal set, which is archived

by the execution of plans listed in the Jason program. The agent operates in

reasoning cycles, which can typically run several times per second. And during a

cycle it considers all new beliefs, performs logical implications, decides sub-goals

and intentions, and starts executing some of the pre-written plans if they are

triggered and their context is applicable.

66

5. Theory of Agent

A formal description of the AgentSpeak using Jason (R) based on rational BDI

agent is a tuple:

R = {B,G,M,L,E,A} (5.9)

where

• B is a total atomic belief set, of which Bt ⊂ B is the currently ‘true’ belief

set at any given time t and B0 ⊂ B is the set of initial beliefs. Belief b can

be enhanced with internal variables as b(x, y, . . .) for a richer description.

By the end of each reasoning cycle, the agent associates a value of either

‘true’ or ‘false’ or ‘unknown’ with every predicate b ∈ B.

• G is a total atomic goal set, of which Gt ⊂ G is the current goal set at any

given time t and G0 ⊂ G is a set of initial goals. A goal g can be enhanced

with internal variables as g(x, y, . . .) for a richer description. Goals can be

created or erased during reasoning cycles.

• M is a set of possible messages generated by human supervisors and other

agents as incoming and outgoing communications by the agent. The effect

of messages is interpreted into beliefs in Bt during reasoning cycles.

• L is a set of logic-based implication rules.

• E is an ordered list of executable plans π1, π2, . . .

• A is a set of executable actions, of which AI ⊂ A is the set of initial actions.

Each executable plan πi ∈ E is of the format

triggering event : content→ body

where the plan can be potentially activated by an addition or a deletion of

a triggering predicate bi from the current belief base Bt (namely +bi or −bi) or

gi from the current goal base Gt (namely +!gi or −!gi) , if the context is also

satisfied, which is a propositional logic formula of predicates from B or G . body

is a sequence of actions, predicates (added or taken away from the belief base

using ‘+’ or ‘−’) and goals to be achieved in order to handle the event, i.e. one

67

5. Theory of Agent

of the following actions can stand for an ai in a body of a1, a2, ..., an:

+b(x, y, . . .) where b ∈ B\A , means an addition of a predicate to B.

−b(x, y, . . .) where b ∈ B\A, means an elimination of a predicate from B.

+!g(x, y, . . .) where g ∈ G\A , means an addition of an achievement goal to G.

−!g(x, y, . . .) where g ∈ G\A, means an elimination of an achievement goal from G.

+?g(x, y, . . .) where g ∈ G\A , means an addition of a test goal to G.

−?g(x, y, . . .) where g ∈ G\A, means an elimination of a test goal from G.

The aforementioned reasoning cycle as shown in Fig. 5.1 is executed in 10

main steps as:

1. Perceiving the environment

The first thing that the software agent does within a Jason reasoning cycle

is to sense the environment in order to update its beliefs about the state

of the environment. There is a component in a symbolic form as a list of

literals that contains capability of perceiving the environment in the overall

agent architecture. Each literal is a percept that represents a symbol of a

particular feature of the current state of the environment.

2. Updating the belief base

Once the list of percepts has been achieved, the belief base is updated to

echo perceived changes in the environments using a function called Belief

Update Function (buf).

3. Receiving communication from other agents

At this step, the agent checks for incoming messages from other agents

by checkMail method. Then the message selection function (SM) is used

to select, among all previously obtained messages with prioritisation, then

selects the one that will be processed in current reasoning cycle.

4. Selecting ‘socially acceptable’ messages

Before the messages are processed, they are delivered to a selection process

to determine whether they can be accepted. This step can be done by social

acceptance function (SocAcc).

68

5. Theory of Agent

Figure 5.1: The Jason reasoning cycle [14]

69

5. Theory of Agent

5. Selecting an event

In each reasoning cycle, the interpretor can handle only a single pending

event. Therefore, if there is more than one pending event, a function called

Event Selection Function (SE), that may be customised, will give priority

to certain events to define what it is believed to be more important at the

current time. By default, the queue of events is first-in-first-out (FIFO)

structure.

6. Retrieving all relevant plans

This step is to find a plan that allows the agent to deal with that event. All

plans triggered by the current event are retrieved from the plan library.

7. Determining the applicable plans

From the previous stage, plans have a context part given information of

agent. In this stage, the context of all the relevant plans are checked and

the applicable ones are selected.

8. Selecting one applicable plan

From all applicable plans, a function called applicable plan selection func-

tion (SO) selects the one that the agent intends to execute, which is called

intended means. The plan is stored in the Set of Intentions.

9. Selecting an intention for further execution

At every reasoning cycle, the agent is only able to execute one action of the

intended means stored in the set of intentions. It means that although the

agent intends to perform a plan, it is not able to do it in one reasoning cycle.

At this stage then a function called intention selection function (SI) will

choose one particular intention among those currently ready for execution.

10. Executing one step of an intention

Finally, the agent executes one of the courses of action from the selected

intention, which could be an internal or external action or a message to

send to another agent.

Programming details can be found out in [14]. Furthermore, actions ak can

also be conditioned with logical statements such as:

70

5. Theory of Agent

if X then a1, a2, . . . end

while X then a1, a2, . . . end

where ai can be one of the actions described above and X is a propositional

logic formula of predicates from B and G. Extension by ‘elseif’ is also possible in

the usual manner. In our enhancement of Jason, which we call Jason+, the action

predicates a(x, y, . . .), where a ∈ A , can be of type ‘runOnce’ or ‘runRepeated’.

When using ‘runOnce’, the activated action thread is guaranteed to close itself

after the action is completed and ‘runRepeated’ needs the agent to issue the

following action astop(x, y, . . .) in order to stop the current one. Jason+ also

permits the use of external actions in context formulae [72].

5.2.0.2 Natural Language Programming

Natural Language Programming (NLPr) of agents [72] is a way of programming

using natural human language, e.g. English. sEnglish, which stands for system-

English, is an NLPr language designed to make agent reasoning more anthro-

pomorphic and enable thought sharing processes between agents and humans.

An agent’s reasoning is described in a readable sEnglish document with title,

contents, sections and subsections and references, which compiles into Jason.

sEnglish also allows the definition (i.e. programming) of domain specific agent

skills in MATLAB, which can be compiled into C++ under ROS and other lower

level programming languages.

When a Jason+ program is written in sEnglish language sentences, then

sentences defined with meaning (in terms of executable code) are encapsulated

within square brackets. There are however two types of sEnglish sentences used:

executable actions and mental notes of the agent to itself. The use of sentences

is bound together by the constraint of a single ontology to be defined within the

sEnglish document. The advantages of using this kind of language for program-

ming is that the designers are enforced to write programs in simple and elegant

way which lends itself to easy interpretation by non programmers such as lawyers

investigating autonomous system decision making in the near future. This also

means that even people who are inexperienced in logic programming can under-

stand and perhaps modify a NLPr Jason+ program. The main characteristics

71

5. Theory of Agent

of the simple sEnglish syntax for Jason+ (there is no ”grammar” as there is in

other programming languages), can be described as follows:

• Sentences within square brackets ‘[...]’ represent actions/skills that the

agent can execute. These actions must be clearly defined within the sEnglish

document of the agent.

• Sentences within square brackets preceded by the ‘hat’ operand ‘^[...]’

represent internal literals for Jason+, i.e. mental notes of the agent.

• The ‘tilde’ symbol ‘~’ represents a negation of the sentence that it precedes.

• The symbols ‘+’ and ‘-’ represents an addition or a deletion of a literal from

the belief base.

• Logical rules are defined statements using if, then, implies, and, or, ...

and sentences of mental notes.

The relevance of sEnglish in the context of the topic of this chapter is that pro-

gramming systems like this sEnglish based Jason+ will eventually help to achieve

legal certification of human-equivalent software based intelligent autopilots by

aviation lawyers. This chapter is a precursor to such an effort. More detailed

descriptions of the sEnglish development processes can be found in [72].

5.3 Chapter Summary

This chapter has defined the fundamental terms and theory related to agent

systems, especially BDI agents. It has discussed agent-oriented programming

explained how Jason is based on the BDI agent paradigm with the AgentSpeak

language. In addition, the methodology using the NLPr software sEnglish has

been formally presented. This method aids us to move away from the low-level

programming to a more user-friendly abstraction. sEnglish sentences are used in

Jason programming in a way as described in this chapter.

72

Part III

Development of Control Agents

for UAVs

73

Chapter 6

Agents for UAV Autopilot

Systems

Figure 6.1: Concept Diagram for Developing Agent with sEnglish Publication
Software.

74

6. Agent Application to UAV Autopilot System

A block diagram, which describes the application of an intelligent agent for

UAV supervision using an sEnglish publication software, is illustrated in Fig. 6.1.

The sEnglish publication software enables users or engineers to develop a rational

agent including high abstraction level objects and relationships in the world model

and agent logic reasoning rules in terms of English sentences. The agent can

provide more adaptable behaviours for autopilot systems in complex and adverse

situations, for example, deficiencies in an initial controller and system degradation

due to accidental control surface damage. The programming language paradigm

and procedure in sEnglish publication software splits into three layers. NLPr in

terms of English sentences compiles into embedded MATLAB code that is able

to compile into standard C/C++ for the robot operating system (ROS). At the

top level, abstractions are expressed in natural language programming (sEnglish)

layers to define decision operations in the format of an sEnglish document. Then

the sEnglish document can be used to compile into declarative rational agent

code which runs on a Java-based interpreter that is an extension of AgentSpeak

(Jason).

A functional architecture of the agent in sEnglish, which is implemented in

this thesis, contains a high-level reasoning system connected through an abstrac-

tion layer to low-level sensor and control systems as illustrated in Fig. 6.1. More

precisely, the system structure in sEnglish consists of a physical engine, an ab-

straction layer , a continuous engine, and a reasoning engine as demonstrated in

Fig. 6.2. The physical engine comprises of features that can sense and produce

changes in the environment that may be real or simulated with the real-time

sensing and control processes. The physical engine interfaces with an abstraction

engine. In abstraction layer, perception information, that is sampled from the

physical engine, is filtered for sensing abstraction as the belief based that be-

longs to the reasoning engine. Then the rule-based rational engine is responsible

for dictating processes occurred with the physical engine. The reasoning engine,

which is the highest level layer within the system and stands on traditional BDI

agent (Jason), contains a Sense-Reason-Act loop within itself. Sensing here is

associated with the perception of changes within the belief base modified by the

abstraction layer. Additionally, sensing in the ration engine may lead to reasoning

over new events and result in actions necessitating communication with either the

75

6. Agent Application to UAV Autopilot System

Figure 6.2: System Strucute Diagram [74].

physical engine or the continuous engine. The continuous engine, which supports

the reasoning engine, is employed to execute sophisticated numerical procedures

that may be utilised to support reasoning processes in the rational engine or

produce data required for a physical process within the physical engine. More-

over, a separate connection channel occurring between the physical engine and

the continuous engine is used to enable direct information transferred between

both engines without intervention from the abstraction engine. All actions, which

are executed by the reasoning engine, are transferred into the abstraction engine

for reification. In this structure, the reasoning engine relied on Jason deals with

discrete information. The physical engine and continuous engine are conventional

systems, while the abstraction layer provides the vital interconnection with all

76

6. Agent Application to UAV Autopilot System

these elements via hosting primary communication channels and translating be-

tween continuous and abstract data. The connection between the components in

the architecture is encapsulated by a language independent operational semantics

such as sEnglish language [36, 72, 74].

Figure 6.3: Concept Diagram for Applying Agent-Oriented Approach to Au-
topilot System.

Fig. 6.3 describes a block diagram of a more specific agent application scheme

for an intelligent autopilot. A human operator including pilot or ground control

station can directly command to the control system in manual flight mode or

switch to use an intelligent control agent mode by assigning the desired waypoints

to control agent system. In the intelligent agent mode, the agent cooperates with

a conventional control system based on NDI controller in order to provide the

advanced capability of maintaining stability and acceptable performance in the

event of deficiencies in controllers and system degradation. The agent with multi-

77

6. Agent Application to UAV Autopilot System

threaded execution integrates signal processing, including system identification,

model based indirect adaptive control, direct adaptive control, model validation,

flight state monitoring, and control performance evaluation. The Jason+ based

BDI agent is capable of making decisions using reasoning by logic rules (hence,

it can be described by the adjective “rational”), executing actions as well as

calculating the workload for each of the processes to be executed, way beyond

adaptive/intelligent control schemes used in avionics.

In order to ensure proper adjustment of the control system, the agent performs

a real-time identification/monitoring of abnormal dynamics, where it validates

against the current model and decides whether aircraft aerodynamic parameters

for the NDI controller have changed significantly. It computes non-linear dynamic

inversion control for the autopilot system and then executes a reasoning-based

action to either compensate or update the parameters of a nonlinear dynamic

inversion controller to trigger reconfiguration of the flight controller. Further-

more, the agent has a capability to monitor error signals in angular rates and

angular angle, whether or not the value of the error grows using frequency de-

pendent model validation approach, in order to evaluate the performance of the

flight control system. The agent may then decide, base on rules, to execute a

plan to stabilise the aircraft by triggering a reset mechanism of direct adaptive

control or activating a parameter compensation algorithm for the NDI controller

of both inner and outer loop of flight control in adverse flight conditions as shown

in Fig. 4.2 and 4.3, respectively.

A key aspect to develop the agent is to define suitable discrete abstractions

for sensing and action of the continuous time/value signals of the aircraft dy-

namical system in order to supply discrete abstractions for decision making. The

perceptual abstraction process is to filter any discrete information from the envi-

ronment and on-board system to supply the inference rules in the rational engine.

As shown in Fig 6.2, the perception data, which is sampled from the physical en-

gine, is sent to the abstraction engine. Then the abstraction engine, which might

call on the continuous engine to do calculations by using functions as be explained

in Chapter 9, is responsible for discrete information as the beliefs belonging to the

rational engine. To express statements and decisions for system reconfiguration

in a readable format for development engineers, and also to support real-time

78

6. Agent Application to UAV Autopilot System

reasoning feedback by agents to human supervisors, signal abstractions and de-

cision rules in the rational engine have been developed in terms of sEnglish in

NLPr [72, 133] as described in Chapter 10. Moreover, the rational engine of the

rational agent is a rule-based decision-making process about both the system con-

figuration and its parameters to achieve goals. Based on agent rules, the rational

engine can generate data that are transmitted to the physical engine or also call

the continuous engine (via the abstraction engine) to perform complex numeri-

cal procedures /functions as described in Chapter 8, for instance, reconfigure or

trigger new controllers or can send instructions directly to the physical engine.

79

Chapter 7

UAV State Estimation

7.1 Problem Formulation

Air flow angles including the Angle Of Attack (AOA) and Side-Slip Angles (SSA)

are the most relevant variables of the aircraft state vector which are necessary for

aircraft parameter estimation and flight control system. However, AOA and SSA

sensors are usually available for only commercial aircraft or large UAVs which

have enough space and relative size for installation of the angle of attack and

sideslip sensors. AOA and SSA sensors can produce a significant effect on the

dynamics of smaller aircraft. Furthermore, air flow angle sensors require extensive

calibration for good accuracy in practical terms because the air flow angle sensors

cannot be fitted at the center of gravity of an aircraft [8, 22]. Moreover, some

supersonic aircraft are unsuitable to carry air flow angle sensors on their platforms

due to the heat caused by surface friction with the air [63].

From the literature review, some methods have been published to reconstruct

air flow angles from other sensor measurements such as (1) data reconstruction

analysis [66], (2) filtering techniques, and (3) numerical integration of air flow

angle reconstruction equations with small perturbation assumption and high-

pass filtering [87]. However, the methods in (1) and (3) can only be used for

short periods because of the drift in the reconstructed quantities over time due

to the integrated effects as clearly stated in [66]. In (2) the filtering method relies

on various expensive measuring devices for airspeed and tracking radar, inertial

80

7. UAV Agent State Estimation

measurement unit (IMU) and GPS to estimate the airflow angles for supersonic

aircraft [63]. Alternative filtering approach utilizes an Extended Kalman-Filter

(EKF) based on the nonlinear kinematics and measurement model in combination

with an aerodynamic model [24, 25, 107].

Due to the deficiencies of past methods in terms of heavy reliance on sensors,

our objective is to propose a new technique of air flow angle estimation, which is

based on a general dynamical principle from inertial data and using sensors only

for (1) magnetic compass data, (2) GPS data, (3) IMU data and, (4) Euler angle

data from full GPS/INS EKF-based aircraft state estimation [11].

7.2 Methodology Proposal

Figure 7.1: Diagram of Estimator.

This method is presented to estimate AOA and SSA of a fixed-wing UAV using

only kinematic relationships with an Extended Kalman Filter (EKF), but avoid-

ing the requirement to know aerodynamic models or other aircraft parameters as

illustrated in Fig. 7.1. It has the following modules

81

7. UAV Agent State Estimation

• AHRS estimates the attitude (roll, pitch and yaw angles φ, θ, ψ) based on

the kinematic relationships. This could be based on the EKF, e.g. [11, 64]

or non-linear observers, e.g. [46]

• The “Body Frame Velocity Components and Gravitational Acceleration

Estimation Module”estimates the body frame relative aircraft velocity and

gravitational acceleration based on aircraft kinematics relationships equa-

tion in Section 3, see the next section where it is discussed in detail, such

aircraft body frame relative velocity can be input to the computation of

AOA and SSA.

• The AOA and SSA computation module applies with Eq.(7.4).

A diagram depicting the principle of air flow angle estimation is shown in

Fig. 7.1. Inputs include sensor measuring signals, such as linear accelerations,

and angular rates while outputs are ground speed, and Euler angle. Together

they are sent to an air flow angle estimation module in order to estimate body

velocity components and gravity acceleration via extended Kalman filtering using

a general dynamical equation and then use body velocity components to construct

an angle of attack and sideslip angle. It is assumed that the Euler roll, pitch, and

yaw angle can be estimated using state estimation algorithms according to [11].

In our work the estimated angle of attack and sideslip angles will be utilized in

conjunction with control surface deflections, airspeed and inertial data from IMUs

to estimate aircraft aerodynamic stability and control derivatives and coefficients

(e.g. CL0 , CLα ,..., Cnδa , Cnδr) for non-linear aircraft dynamic equations in real

time and also be employed as feedback states for NDI control as descried in the

next chapter.

82

7. UAV Agent State Estimation

7.3 Air Flow Angle and Gravitational Acceler-

ation Estimation Using Extended Kalman

Filtering

This filtering technique is not utilized only for estimating the aircraft states but

also for predicting the desired parameter. Parameter estimation through the

filtering approach is an indirect procedure. The main idea is to transform the

parameter estimation problem into a state estimation problem. Additional state

variables, which are artificially defined with the unknown parameters, is expanded

the system state vector. The generic system dynamics are presented

(Note that such method which utilizes a continuous model for prediction with a

discrete filtering algorithm is known as the continuous-discrete filtering problem)

ẋ(t) = f [x(t), u(t), βp] + Fε(t), x(t0) = x0

y(t) = g[x(t), u(t), βp]

z(k) = y(k) +Gη(k) k = 1, .., N

(7.1)

where

x is the state vector with initial value x0 at time t0.

u is the input vector.

z is the measurement vector.

βp is the unknown system parameters.

f and g are the general non-linear real-valued function.

F and G represent the process and measurement noise matrices.

ε and η are the process and measurement noise vectors (assumed to be zero

mean white Gaussian noise), respectively.

The unknown parameter vectorΘ that consists of unknown system parameters

βp is assumed to be constant. Therefore, the derivative of the unknown parameter

vector is defined as

Θ̇ = 0 (7.2)

83

7. UAV Agent State Estimation

Then, the extended state vector is defined as

xe =

[
x

Θ

]
(7.3)

Consequently, the extended system can be presented as:

ẋe(t) = fe[xe(t), u(t)] + Feεe(t)

=

[
f [x(t), u(t), βp]

0

]
+

[
F 0

0 0

][
ε(t)

0

]
y(t) = ge[xe(t), u(t)]

z(k) = y(k) +Gη(k)

(7.4)

where the extended variables are denoted by subscript e.

7.3.1 Extended Kalman Filtering

The EKF algorithm [28, 45], which can be applied to non-linear problems by

using local linearisation at each iteration to approximate the non-linearities, is

represented in Eq. (7.5) - (7.11) as follows (here the notation ”bar” and ”hat”

to denote the predicted and corrected variables respectively):

Extrapolation:

x̄e(k) = x̂e(k − 1) +

∫ t(k)

t(k−1)

fe[x̂e(t), ū] dt (7.5)

P̄e(k) ≈ Φe(k)P̂e(k − 1)ΦT
e (k) + ∆t.FeF

T
e (7.6)

with the initial conditions

x̄e(1) = xe0, P̄e(1) = Pe0 (7.7)

Ae(k) =
∂fe
∂xe

∣∣∣∣
xe=x̂e(k−1)

=

∂f∂x ∂f

∂Θ
0 0

xe=x̂e(k−1)

(7.8)

84

7. UAV Agent State Estimation

Φe(k) = exp(Ae∆t) (7.9)

Update:

ȳk) = ge[x̄e(k), u(k)]

Ke(k) = P̄e(k)CT
e (k)[Ce(k)P̄e(k)CT

e (k) +GGT]−1

x̂e(k) = x̄e(k) +Ke(k)[z(k)− ȳ(k)]

P̂e(k) = [I −Ke(k)Ce(k)]P̄e(k)

= [I −Ke(k)Ce(k)]P̄e(k)[I −Ke(k)Ce(k)]T +Ke(k)GGTKT
e (k)

(7.10)

where Ce(k) is the linearised measurement matrix as represented

Ce(k) =
∂ge
∂xe

∣∣∣∣
xe=x̂e(k)

=

[
∂g

∂x

∂g

∂Θ

]
xe=x̂e(k)

(7.11)

7.3.2 Application to flight vehicles: Fixed-wing platform

This method bases on the algorithm of [127] to estimate gravitational acceleration

as follows. From the non-linear aircraft kinematics equations:

u̇ = rv − qw +
q̄S

m
CX − g sin θ +

Tx
m

v̇ = pw − ru+
q̄S

m
CY + g cos θ sinφ

ẇ = qu− pv +
q̄S

m
CZ + g cos θ cosφ+

Tz
m

(7.12)

Using v̄ = [u, v, w]T in the dynamical equations for the measurable acceleration

vector ā = [ax, ay, az]
T in the body frame are

ā = ˙̄v + ω̄ × v̄ − F̄G
m

=
1

m
(F̄A + F̄T) (7.13)

85

7. UAV Agent State Estimation

Substituting translational acceleration measurements for the applied forces results

in the translational kinematic equations in body axes as shown in Eq. 3.20:

u̇ = rv − qw − g sin θ + ax

v̇ = pw − ru+ g cos θ sinφ+ ay

ẇ = qu− pv + g cos θ cosφ+ az

(7.14)

From definition in Eq. 3.16, sideslip angle, and angle of attack can be computed

from u, v, and w using

β = sin−1 (
v

V
)

α = tan−1 (
w

u
)

(7.15)

The standard kinematic equations in Section 3.3 are as follows:

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sin θ

ψ̇ = q sinφ sec θ + r cosφ sec θ

(7.16)

Furthermore, gravity (g) is considered as a constant:

ġ = 0 (7.17)

The body axes translational kinematic equations in Eq. (7.14) and kinematic

equations in Eq. (7.16-7.17) defined as fe are applied with filtering technique in

order to estimate a state. The state vector is formed as x = [u, v, w, φ, θ, ψ]T ,

the unknown parameter vector as Θ = [g] and the input vector is defined as u =

[p, q, r, ax, ay, az]
T .

Therefore, the extended state vector presents as

xe = [u v w φ θ ψ g]T (7.18)

86

7. UAV Agent State Estimation

where the observation equations defined as ge[xe(t), u(t)] are:

VN = u cos θ cosψ + v(sinφ sin θ cosψ − cosφ sinψ) + w(cosφ sin θ cosψ + sinφ sinψ)

VE = u cos θ sinψ + v(sinφ sin θ sinψ + cosφ cosψ) + w(cosφ sin θ sinψ − sinφ cosψ)

Vd = −u sin θ + v sinφ cos θ + w cosφ cos θ

φm = φ

θm = θ

ψm = ψ

(7.19)

The Runge-Kutta algorithm can be employed in Eq. (7.5) and the state transi-

tion matrix (Φ(k)) can be approximated using Pade approximation. P0 represents

the confidence in the initial state estimates. The value of P0 can be initialised with

high values in the absence of any priori knowledge. The value of the measurement

noise covariance matrix (GGT) can be specified using laboratory measurements of

sensors in order to ensure good noise filtering. However, the value of the process

noise covariance matrix (FF T) is more difficult to determine and a trial and error

method based on engineering judgement is employed if no other suitable method

is found. Adaptive filtering, which has the capability to adapt to unknown noise

characteristics, is not considered in this work.

7.4 Simulation Results

7.4.1 Aerosonde UAVs

Flight data from a non-linear simulation of the Aerosonde UAVs was used for

real-time aircraft system identification with air flow angle estimators. A 3-2-1-1

sequence input on the elevator, aileron and rudder were applied to the simulation,

and Extended Kalman filter with the translational kinematic equation in body

frame and kinematic equations in (7.14) and (7.16) were employed to estimate

the body axis velocity component using simulated measurement states of the

Aerosonde model. And then the air flow angle data is calculated from (7.15)

87

7. UAV Agent State Estimation

with the velocity component in body frame from the estimation. Furthermore,

in this simulation experiment approximately five percent Gaussian random noise

was inserted to all outputs of Aerosonde simulation.

Figure 7.2 illustrates a comparison between simulated-measured and esti-

mated sideslip angle and angle of attack in the time domain from the Aerosonde

model and extended Kalman filtering, respectively with Gaussian random noise

added to all simulation output.

Figure 7.2: Air Flow Angles of Simulated and Estimated Data via the Proposed
Method

Figure 7.3 demonstrates the comparison of magnitudes of simulated and esti-

mated air flow angles each frequency using flight data with Gaussian random noise

added. The two graphs are very similar, and there is almost no difference which

indicates that good aircraft parameter results could be obtained using frequency

domain system identification.

Figure 7.4 shows the comparison of gravitational acceleration from Aerosonde

simulation and estimation method in the time domain using flight data with

88

7. UAV Agent State Estimation

Figure 7.3: Magnitude of Reconstructed Air Flow Angles in Frequency Domain
Between Aerosonde Simulation and The Proposed Estimation

Figure 7.4: Comparison between Simulated and Estimated Gravitational Accel-
eration Data via Extended Kalman Filtering

89

7. UAV Agent State Estimation

Gaussian noise added. This figure demonstrates that the estimated gravitational

acceleration converges to the simulated value as time progresses.

Therefore, it means that the estimated gravitational acceleration is closer to

the real value of the environment; the air flow angle from the estimation will be

more accurate. This method is suitable for real implementation because the value

of gravitational acceleration is not constant in the atmosphere.

7.4.2 NASA Twin Otto Aircraft

Moreover, this air flow angle estimation method was also verified with flight data

measurements of NASA Twin Otter aircraft. The flight data measurements can

be obtained from an example of the System Identification Program for Aircraft

(SIDPAC) of Klein and Morelli [66].

Figure 7.5: Air Flow Angles of Measured and Estimated Data of NASA Twin
Otter aircraft via the Proposed Method

Figure 7.5 illustrates a comparison between measured and estimated sideslip

90

7. UAV Agent State Estimation

angle and angle of attack in the time domain from the NASA Twin Otter air-

craft and the extended Kalman filtering, respectively with Gaussian random noise

added to all simulation output.

Figure 7.6: Magnitude of Reconstructed Air Flow Angles in Frequency Do-
main Between NASA Twin Otter Aircraft Measuement Data and The Proposed
Estimation

Figure 7.6 demonstrates the comparison of magnitudes of measured and es-

timated air flow angles of NASA Twin Otter aircraft each frequency using flight

data with Gaussian random noise added. The two graphs are also very similar

and there is almost no difference which indicates that good aircraft parameter

results could be obtained using frequency domain system identification.

Figure 7.7 shows the result of estimated gravitational acceleration while NASA

Twin Otter aircraft is operating.The estimated gravitational acceleration remain

near a known constant value (9.80665 m/s2) of the environment.

91

7. UAV Agent State Estimation

Figure 7.7: Simulation Result of Estimated Gravitational Acceleration Data
from NASA Twin Otter Aircraft Flight Data via Extended Kalman Filtering

7.5 Chapter Summary

New techniques have been presented to obtain estimates of light aircraft aerody-

namic parameters without airflow angle sensors. The results demonstrated good

quality estimates of the angles of attack and sideslip using extended Kalman fil-

tering techniques. The new methods are based on general kinematic equations.

Furthermore, the proposed estimation can predict a value of gravitational accel-

eration which leads to an increment in the accuracy of calculation in terms of im-

plementation as the gravitational acceleration is not constant in the atmosphere

and difficult to determine in real-time. Moreover, the estimated gravitational

acceleration will be used to update parameter in the outer loop of flight control

system.

92

Chapter 8

Control Action of UAV Agents

As mentioned in Chapter 4, dynamic inversion control (DIC) is chosen to be the

control laws for inner and outer flight control system of autopilot architecture,

since this method based on a physical model where each parameter can give a

physical meaning of system. However, the performance of DIC technique is sensi-

tive to an accurate mathematical non-linear aircraft model. Consequently, direct,

indirect, or combine adaptive control methodology, which is based on a model in-

version flight control architecture, are proposed as agent plans to compensate the

deficiency of DIC approach.

8.1 Indirect Adaptive Control Law Proposal

The indirect adaptive control law, based on the physical flight dynamic model,

relies on real-time aircraft parameter estimation algorithm in order to calculate

the compensated or new parameters for adapting the inner loop NDI controller

in real time. A method, sometimes called orthogonal-least-square in frequency-

domain [127], is employed here due to the need for real-time computation and

for the ability to easily eliminate noise effects and unnecessary state reduction

such as angular acceleration for aircraft parameter estimation. Furthermore, this

method can also easily select the significant aerodynamic parameters of UAV.

F[f(t)] ≡ f̃(ω) ≡
∫ T

0

f(t)e−jωtdt (8.1)

93

8. UAV Agent Control Action

The equation can be approximated as a discrete term by

f̃(ω) ≈ ∆t
N−1∑
i=0

f(i)e−jωi∆t (8.2)

Therefore, the discrete Fourier transform can be arranged as

A(ω) ≡
N−1∑
i=0

f(i)e−jωi∆t (8.3)

From Eq. (8.2) and Eq. (8.3), the finite Fourier transform can be approximated

as

f̃(ω) ≈ A(ω)∆t (8.4)

Time domain linear regression can be rearranged and transformed into a formu-

lation of a standard complex linear regression problem in the frequency domain

in order to apply the least squares method to estimate unknown parameters. The

general form of the complex linear regression is

Z̃ = X̃Θ + ẽ (8.5)

For example, using the pitching moment equation in Eq. (4.2),

Z̃ =

C̃m(ω1)

C̃m(ω2)
...

C̃m(ωM)

 (8.6)

X̃ =

F[1](ω1) α̃(ω1) q̃(ω1) δ̃e(ω1)

F[1](ω2) α̃(ω2) q̃(ω2) δ̃e(ω2)
...

...
...

...

F[1](ωM) α̃(ωM) q̃(ωM) δ̃e(ωM)

 (8.7)

94

8. UAV Agent Control Action

Θ =

Cm0

Cmα

Cmq

Cmδe

 (8.8)

where

Z̃ = Mx1 vector of transformed dependent variable

Θ = Npx1 vector of unknown parameters

X̃ = MxNp vector of transformed regressors

ẽ = Mx1 vector of complex measurement errors

M = the number of selected frequencies in the frequency band with fixed fre-

quency spacing

Np= the number of unknown parameter elements

The cost function of the least squares computation is

J(Θ) =
1

2
(Z̃ − X̃Θ)†(Z̃ − X̃Θ) (8.9)

and the estimate is

Θ̃ = [Re(X̃†X̃)]−1Re(X̃†Z̃) (8.10)

The covariance matrix of estimated parameter vector is

Cov(Θ̃) ≡ E[(Θ̃−Θ)(Θ̃−Θ)T] = σ2Re(X̃†X̃)]−1 (8.11)

where variance σ2 is approximated as

σ2 =
1

(M −Np)
[(Z̃ − X̃Θ)†(Z̃ − X̃Θ)] (8.12)

Recursive calculation by Fourier transform can be achieved by rearranging the

discrete Fourier transform in Eq. (8.2) and exploiting the relation between times

i∆t and (i− 1)∆t:

Ai(ω) = Ai−1(ω) + α(i)e−jωi∆t (8.13)

95

8. UAV Agent Control Action

where

e−jωi∆t = e−jω∆te−jω(i−1)∆t (8.14)

The quantity of e−jω∆t is constant because a given frequency ω and sampling

time ∆t is fixed. Here we assign a frequency spacing of 0.04 Hz on the interval

[0.0-2.0] Hz so ω1, ω2, ..., ωM = 2π[0.0, 0.04, ..., 2.0] .

Aircraft parameter estimation with this aerodynamic modelling depends on

various states, which can be directly and indirectly measured from sensors in-

cluding airspeed (V : pressure sensor), air flow angles (note α and β estimates

used in this study), translation acceleration (ax, ay and az : accelerometers), an-

gular rate (p, q and r : rate gyro) and (indirectly measured) angular acceleration

(ṗ, q̇ and ṙ). The angular acceleration states are directly unavailable from sen-

sors. However, with properties of Fourier transform, the angular accelerations in

Eq. (8.15) are unnecessary because the derivative term in the frequency domain

can be transformed by multiplying jω to p, q and r. For example, from Eq. (4.2),

the pitching moment coefficient can be calculated as

C̃m(ω) ≡ jωF[
Iyq

q̄Sc̄
] + F[

Ixz(p
2 − r2) + (Ix − Iz)pr]

q̄Sc̄
] (8.15)

Most importantly, however, this method removes the unwanted high-frequency

components of signals by considering only the interested frequency range in the

computations according to the properties of infinite Fourier transform. Generally,

a “good” frequency band of 0.01− 3.0 Hz is used in our calculations for aircraft

dynamics.

The OLS algorithm and the ERR (Error Reduction Ratio) approach [138]

have been extensively studied and widely applied. From Eq. (8.5), assuming

that the regression matrix X̃ is full rank in columns and could be orthogonally

transformed as

X̃ = WT (8.16)

where No is the data length, Mo is the number of estimated parameters, T is an

Mo x Mo unit upper triangular matrix and W is an No x Mo orthogonal matrix

with columns w1, w2, ..., wM , thus W TW is a diagonal matrix (D) which equals

to diag[d1, d2, ..., dM] can show as di = < wi, wi > =
∑N

t=1wi(t)wi(t), where t =

96

8. UAV Agent Control Action

1, ..., No and <,> denotes the inner product of two vectors. Therefore, in OLS,

Eq. (8.5) can be expressed as

Z̃ = (X̃T−1)(TΘ) + ẽ = WG+ ẽ (8.17)

where G = [g1, g2, ..., gM] is an auxiliary parameter vector calculated directly from

Z̃ and W as

gi =
< Z̃,wi >

< wi, wi >
(8.18)

To calculate W and G matrix, they can be solved by using a classical and modified

Gram-Schmidt algorithm. Furthermore, ERR indicates the importance of each

regressor term and can be utilised with forward selection criteria. The ERR is

defined as

ERRi =
g2
i < wi, wi >

< Z̃, Z̃ >
× 100, i = 1, 2, ...,M (8.19)

However, computing ERRi in the frequency domain will result in complex num-

bers, therefore, this can be modified as the ratio of magnitude energy of each

term g2
i < wi, wi > to the magnitude energy of output < Y, Y > illustrated as

ERRi =
abs(g2

i < wi, wi >)

abs(< Z̃, Z̃ >)
× 100, i = 1, 2, ...,M (8.20)

This ratio is an effective indication for searching for the order of significant terms.

The selection criteria can use Eq. (8.21) to stop the procedure.

1−
nr∑
i=1

ERRi < ρi (8.21)

where nr is the number of selected regressor and ρi is the desired tolerance.

97

8. UAV Agent Control Action

8.2 Model Reference Direct Adaptive Control

Laws

8.2.1 Inner Loop of Flight Control System

Assume that a non-linear equation of angular motion of an aircraft can be de-

scribed by

ẋ = f(x, u, z) (8.22)

where, in this section, x =
[
p q r

]T
is the angular rate vector, u =

[
δa δe δr

]T
is the control surface deflection vector, and z =

[
α β δt

]T
is the state vector.

(δt is engine throttle level)

Assuming ẋd is a desired rate;

ẋd = ˙xm +KP (xm − x) +KI

∫ t

0

(xm − x)dτ − uad (8.23)

where uad = W TΦ with Φ =
[
xT uT zT

]T
Assuming that there is uncertainty (ε) in system, then;

ẋd = ẋ+ ε (8.24)

Inserting Eq. (8.24) into Eq. (8.23), and rearranging to compute the acceleration

error yields:

ẋe = KPxe +KI

∫ t

0

xedτ + uad − ε (8.25)

where xe = xm−x,Kp = diag(KP,p, KP,q, KP,r) > 0, andKI = diag(KI,p, KI,q, KI,r) >

0 are matrices of the proportional and integral gain for roll, pitch, and yaw.

98

8. UAV Agent Control Action

Rearranging the Eq. (8.25) into the tracking error equation matrix form:

ė = Ace+ b(uad − ε) (8.26)

where e =

[∫ t
0
xedτ

xe

]
, Ac =

[
0 I

−KI −KP

]
, b =

[
0

I

]

The weight W are updated by an adaptation law with an optimal control modi-

fication according to:

Ẇ = −T(ΦeTPB − LΦΦTWBTPAc
−1B) , L > 0 (8.27)

where the matrix P solves the Lyapunov equation ATP + P TA = Q by defining

Q = 2I, then the solution of the equation is:

P =

[
KI
−1KP +KP

−1(KI + I) KI
−1

KI
−1 KP

−1(I +KI
−1)

]
> 0 (8.28)

Ac
−1 is calculated as

Ac
−1 =

[
−KI

−1KP −KI
−1

I 0

]
(8.29)

Determining the term bTPAc
−1b = −KI

−2 < 0 can be done by applying the term

bTPAc
−1b to the adaptive law in Eq. (8.30), then the weight update law is given

by

Ẇ = −T(ΦeTPB − LΦTWKI
−2) (8.30)

Furthermore, modifying Derivative-Free Adaptive Law [143] with optimal control

modification, the new update weight law can be given by

W (t) = ΩW (t− τ)− T(ΦeTPB − LΦTWKI
−2) (8.31)

99

8. UAV Agent Control Action

8.2.2 Outer Loop of Flight Control System

Similar to the direct adaptive mechanism in Section 8.2.1, assuming that a non-

linear equation Euler angle kinematic equation can be described by

ẋ = f(x, u, z) (8.32)

where, in this section, x =
[
φ θ β

]T
is the Euler angle and sideslip angle vector,

u =
[
p q r

]T
is the angular rate vector, and z =

[
ax ay az

]T
is the linear

acceleration vector. Then the adaptive mechanism procedure is the same process

as in the Section 8.2.1.

8.3 Simulation Results

8.3.1 Evaluation of Aircraft Parameter Estimation with

OLS in time and frequency domain

8.3.1.1 Test 1: Evaluation with Linear regression equation

The performance of OLS was investigated. The pitching moment coefficient model

in linear regression form was simulated for structure selection and parameter

estimation using OLS algorithm in time and frequency domain. The investigated

model was:

Model 1 :

Cm(t) = Cm0 + Cmαα(t) + Cmq(
qc̄

2V
)(t) + Cmδeδe(t) + e(t) (8.33)

where

Cm0 = 0.1, Cmα = −2.75, Cmq = −20.0, Cmδe = −0.75 (8.34)

and e(t) is a random white noise. A sequence of 750 output data points was

collected from the state of Aerosonade Simulation while disturbing with 3-2-1-1

input similar to the data of air flow angle estimation in the previous section.

Then all the mentioned output data points were used to determine the pitch

100

8. UAV Agent Control Action

Table 8.1: Estimated parameters for Model 1 with fitting structure
OLS OLS

in time in frequency
Terms estimated value ERRi estimated value ERRi

Cm0 0.1 0.1464 0.1 1.7923
Cmα -2.75 16.5430 -2.75 35.9476
Cmq -20.0 2.2563 -20.0 8.0643
Cmδe -0.75 81.0544 -0.75 54.1958

sum of ERRi 100.00 sum of ERRi 100.00

Table 8.2: Estimated parameters for Model 1 with under-fitting structure by
cutting q state

OLS OLS
in time in frequency

Terms estimated value ERRi estimated value ERRi

Cm0 0.0860 0.1464 0.0696 1.7923
Cmα -2.2572 16.5430 -1.8553 35.9476
Cmδe -0.5401 65.6706 -0.4471 42.6725

sum of ERRi 82.3599 sum of ERRi 80.4124

moment coefficient in Model 1. The fitting, under-fitting and over-fitting model

structure was defined to depend on coefficient parameters according to Table

8.1-8.3, respectively. The OLS in time and frequency domain were applied to

compute the stability and control pitching moment coefficients according to the

model structure in Table 8.1-8.3 to monitor the ERR indication performance.

The result is summarised in Table 8.1-8.3.

Table 8.1 illustrates that the estimated values of pitching moment stability and

control coefficients which calculated from OLS in time and frequency domain, are

equal in case of fitting structure. The ERR indications computing in the frequency

domain can utilize to prioritize variables similar to the order of significant term

computing in the time domain.

The algorithm is repeated for the Model 1 with under-fitting structure. The

result is summarised in Table 8.2. Both the sum of ERR value in time and

frequency domain are less that 85 percent. It means that the model structure

still lacks some significant variables.

Table 8.3 shows that the estimated parameters using OLS in the frequency

101

8. UAV Agent Control Action

Table 8.3: Estimated parameters for Model 1 with over-fitting structure by
adding α2 state

OLS OLS
in time in frequency

Terms estimated value ERRi estimated value ERRi

Cm0 0.1 0.1464 0.1 1.7923
Cmα -2.75 16.5430 -2.75 35.9476
Cmα2 -4.294e-17 0.0081 -7.442e-16 0.2157
Cmq -20.0 2.2939 -20.0 8.0804
Cmδe -0.75 81.0087 -0.75 53.9640

sum of ERRi 100.00 sum of ERRi 100.00

domain are close to the values using OLS in the time domain. Moreover, the

value of ERR using either OLS approach in time and frequency domain for the

term Cm0 , Cmα , Cmq and Cmδe are significantly higher that the term of Cmα̇ . Thus,

it indicates that frequency OLS approach can select the significant terms of the

model with a slight error.

8.3.1.2 Test 2: Evaluation with aircraft system identification problem

OLS in time and frequency domain were proposed to solve the aircraft system

identification problem according to the equation below as shown in:

Model 2 :

Cm(t) = Cm0 + Cmαα(t) + Cmα̇(
α̇c̄

2V
)(t) + Cmq(

qc̄

2V
)(t) + Cmδeδe(t) + e(t) (8.35)

where

Cm(t) = [˙q(t)Iy + p(t)r(t)(Ix − Iy) + (p(t)2 − r(t)2)Ixz]/ ¯q(t)Sc̄ (8.36)

A sequence of 750 pitching moment coefficients output data was generated

from state input of q̇(t), ṗ(t), ṙ(t) for time domain and p(t), q(t), r(t) for fre-

quency domain as mention in Eq. (8.5). Next, Cm0 , Cmα , Cmα̇ , Cmq and Cmδe
were computed using the least square algorithm and OLS in time and frequency

domain as illustrated in Table 8.4-8.5.

102

8. UAV Agent Control Action

Table 8.4: Estimated parameters for Model 2 with parameter estimation in time
domain

OLS in time Least Square
Terms Estimated value ERRi Estimated value
Cm0 0.1159 1.766e-04 0.1159
Cmα -3.0769 17.7901 -3.0769
Cmα̇ -7.8875 4.5079 -7.8875
Cmq -19.7372 0.1073 -19.7372
Cmδe -0.8072 59.7849 -0.8072

sum of ERRi 82.1904

Table 8.5: Estimated parameters for Model 2 with parameter estimation in
frequency domain

OLS in frequency Least Square
Terms Estimated value ERRi Estimated value
Cm0 0.1061 0.3122 0.1234
Cmα -2.91 28.5571 -3.3070
Cmα̇ -9.1849 28.4477 -16.2841
Cmq -19.7759 6.5876 -23.4229
Cmδe -0.7984 27.8456 -0.8810

sum of ERRi 91.7503

Table 8.4 and 8.5 show that the estimated parameters that were calculated

from OLS in the frequency domain are close to the calculated values from OLS

in the time domain and with the least square algorithm. Furthermore, the ERR

indications using frequency OLS can be employed to rank the significant order of

variables similar to the ERR indications using OLS in the time domain.

103

8. UAV Agent Control Action

8.3.2 Performance of Direct Adaptive Flight Control for

Inner Loop

Figure 8.1: Direct Adaptive Control Architecture [97].

Firstly, the direct adaptive flight control based on NDI control architecture

with a free derivative law, an optimal control modification, and a combined adap-

tive law was performed to evaluate with Aerosonde UAV simulation in the MAT-

LAB/SIMULINK environment. The inner loop adaptive flight control architec-

ture that used this study is shown in Fig. 8.1. This control architecture consists

of: (1) a reference model for desired rate command, (2) a proportional-integral

feedback control, (3) a non-linear dynamic inversion controller for computing ac-

tuator command, and (4) a direct neural networks adaptive augmentation which

is a single-layer sigma-pi neural network with adaptive law such as the free deriva-

tive law, the optimal control modification, and the combination of both adaptive

laws. The inner loop rate feedback control is applied to improve the aircraft

angular rate response.

The reference pitch rate command is stimulated to the simulation with a se-

ries of step input longitudinal stick command doublets by pilot. The tracking

performance of the inner loop adaptive flight controller with three adaptive con-

trol laws is demonstrated in Fig. 8.2 in normal flight condition. An accurate

aircraft aerodynamic parameter model, in this case, obtained from Table. 8.5.

The simulation results show that the inner loop adaptive controller with three

adaptive control laws offers good tracking performance in case of normal flight

and accurate model due to no difference in the aircraft pitch rate response. Thus,

it can be seen that the aircraft aerodynamic parameters in Table. 8.5, which were

104

8. UAV Agent Control Action

calculated with OLS in the frequency domain, are accepted for dynamic inver-

sion controller as it offers good tracking performance. To be clear, the inner loop

adaptive controller with three adaptive control laws has slightly better tracking

performance that the baseline controller (NDI).

Figure 8.2: Control Performance Comparison of Nonlinear Dynamic Inversion
Control with Three Direct Adaptive Control Mechanisms using estimated pa-
rameter from Table 8.5

In addition, a falsity of elevator parameter model configuration corresponding

to a mistake of 50% of a pitching moment coefficient depending on elevator is

selected. The architecture of the inner loop adaptive flight control and input

pattern command of pitch rate are similar to the previous case. The Fig. 8.3

illustrates the tracking control performance of the the inner loop adaptive flight

controller with three direct adaptive control laws in case of the mentioned falsity.

105

8. UAV Agent Control Action

Figure 8.3: Control Performance Comparison of Non-linear Dynamic Inversion
Control with Direct Adaptive Control Mechanisms using estimated parameter
from Table 8.5 in case of defining Cmδe of NDI control missing 50%

It can be seen that the direct adaptive control based on NDI control archi-

tecture with three adaptive control laws invests some degree of improvement in

tracking performance as compared with the baseline NDI control scheme in case of

falsity in elevator parameter model configuration. In contrast, the direct adaptive

control method with free derivative and combined laws seem to perform better

than both the NDI and direct adaptive control approaches with optimal control

modification law. Theoretically, the baseline NDI controller is unable to track the

reference pitch rate commend because the performance of NDI controller relies

on an accuracy of the model as change of aircraft dynamic which is unmatched

106

8. UAV Agent Control Action

with model of NDI. Therefore, the direct adaptive controllers have the ability to

augment the control signal as the compensation for the inverted dynamic model

of baseline NDI controller.

For precisely, the result of the inner loop adaptive flight controller with the

adaptive law combining mechanisms between optimal control modification and

the free derivative law seem to provide trivially better tracking performance than

one with free derivative law. From the result in Fig. 8.3, the optimal modifi-

cation adaptive law offers the best tracking performance and robust adaptation

of with large adaptive gain without high-frequency oscillation problem but it

has high overshot in transient response. Alternatively, the controller with com-

bined adaptive laws has no overshot in transient response due to a combination

of an advantage of both optimal control modification and free derivative laws. It

means that the inner loop adaptive flight controller with combination with the

free derivative law and the optimal modification law offers good tracking control

performance in steady state error and transient state. Therefore, the inner loop

adaptive flight control with the adaptive law combining the free derivative and

optimal modification law has been chosen as a direct adaptive control element of

hybrid adaptive flight control.

8.3.3 Performance of Hybrid Adaptive Control for Inner

Loop

Furthermore, to evaluate the neural network hybrid adaptive flight control with

the OLS method in the frequency domain, the Aerosonde UAV simulation was

performed in the MATLAB/SIMULINK environment. The hybrid adaptive flight

control architecture used in this study is illustrated in Fig 2.2 and 4.2. This con-

trol framework comprise: (1) the reference model, (2) the proportional-integral

feedback control, (3) the non-linear dynamic inversion controller, (4) the direct

neural networks adaptive augmentation being single-layer sigmal-pi neural net-

work with the adaptive control law that combines the free derivative law and the

optimal modification law, and (5) parameter update mechanism (indirect adap-

tive control) using recursive OLS in frequency domain. An elevator damage con-

figuration corresponding to a 50% loss of elevator control surface for Aerosonde

107

8. UAV Agent Control Action

Figure 8.4: Control Performance Comparison of Non-linear Dynamic Inversion
Control with Direct Adaptive Control Method and the OLS method in the fre-
quency domain in case of a 50% loss of the elevator that effects a 50% loss of
Cmδe in simulation model (Note: Adaptive control approach is active at 10 sec.)

UAV model was chosen. Similar to the previous section, a series of step input

longitudinal stick command doublets were applied to the simulation.

The tracking performance comparison of four control methodologies such as

(1) a baseline NDI control, (2) a direct adaptive control based on NDI control

architecture with the adaptive control law combining the free derivative and opti-

108

8. UAV Agent Control Action

mal modification laws, (3) indirect adaptive control with recursive OLS approach

in frequency domain, and (4) hybrid adaptive control schemes as mentioned, is

shown in Figure 8.4.

As presented in Figure 8.4, the three adaptive control methods provide some

degree of betterment in the tracking performance compare with the baseline NDI

control approach with no adaptation. Obviously, simulation results present that

the hybrid adaptive flight control can offer a significant improvement in the track-

ing performance in the pitch channel command over a direct and indirect adaptive

control approaches alone as it provides the best tracking performance in longitu-

dinal channel. Additionally, the tracking performance of direct adaptive control

approach is improving with time as the tracking error reduces notably when time

increases. With indirect adaptive control, the performance of the flight control is

worse than two adaptive schemes as significant overshoot and steady state error

occur due to insufficient input oscillation. Without adaptations, the performance

of the baseline NDI flight control is very poor as large tracking error happen due

to inaccurate model of inverted control.

Moreover, the hybrid adaptive flight control with the OLS method in the

frequency domain was also evaluated in the MATLAB/SIMULINK simulation

environment. In this case, insufficient initial parameter set-up configuration re-

lating to aircraft aerodynamic parameter model for NDI control is considered.

The initial aircraft aerodynamic parameters are provided by digital DATCAOM

software [104] which based on aircraft geometry with numerical computation. In

Figure 8.5, the pitch rate responses during the pitch doublet manoeuvre resulted

from computation by four control schemes as aforementioned. The tracking per-

formance of indirect control scheme is poor as large tracking error because of

insufficient oscillation input. Due to inaccurate model, the worst tracking perfor-

mance was obtained by the baseline NDI control.

The results are similar to the outcomes in the previous case. The hybrid

adaptive flight controller using recursive OLS in the frequency domain can provide

the best improvement in the tracking performance over a direct and indirect

adaptive controller that work alone. With adaptive neural network control, the

performance of the flight control is worse than one using hybrid adaptive control

as significant steady state error but it is better than ones that use the baseline

109

8. UAV Agent Control Action

Figure 8.5: Control Performance Comparison of Non-linear Dynamic Inversion
Control with direct adaptive control method and the OLS approach in the fre-
quency domain in case of defining insufficient initial aerodynamic parameter for
NDI control (Adaptive control approach is active at 10 sec.)

NDI control and indirect adaptive control as smaller steady state error.

Finally, a performance comparison of four control schemes, including two base-

line NDI controls using estimated parameters from OLS in time and frequency

domain (Table 8.4 and 8.5, respectively), indirect adaptive control with recur-

sive OLS in frequency domain, and hybrid adaptive control, is shown in Fig. 8.6.

These control schemes were assessed in the MATLAB/SIMULIN simulation envi-

110

8. UAV Agent Control Action

Figure 8.6: Control Performance Comparison of Non-linear Dynamic Inversion
Control between parameter from time and frequency domain method and Hybrid
Adaptive Control

111

8. UAV Agent Control Action

ronment with Aerosonde UAV model. Similarly, a series of step input longitudinal

stick command doublets was activated to the simulation.

The pitch rate responses implemented with such control approaches are shown

in the Fig. 8.6. Firstly, this result indicates that control performance using pa-

rameters from OSL in frequency domain can attain the same quality of flight

control performance that was obtained by calculating in the time domain. With

indirect adaptation, the performance of flight control is better than two baseline

NDI control scheme in term of faster transient response but wore than the hybrid

adaptive control as larger tracking error. Certainly, the hybrid adaptive control

can give the best tracking performance over three control approaches due to the

advantage of using combination between direct and indirect adaptive control.

Namely, the indirect adaptive control can compensate the aircraft parameters for

NDI control to reduce the model error and any remaining tracking errors can be

handled by direct adaptive control. Therefore, the hybrid adaptive control has

been selected in this thesis to maintain the stability and performance of flight

under adverse flight condition, especially deficiencies of the initial controller and

system degradation due to accidental control surface damages.

For this simulation, actuator dynamics are not included. In this study, the

small UAV only has primary control effectors including aileron, elevator, and

rudder to stabilize and maintain the aircraft. If UAV has more redundancy

control surface inputs, a control allocation strategy can employ other possible

control effectors. But the control allocation is beyond the scope of this study.

Additionally, in this adaptive flight control study, only failure of control input

effectors are considered. However, it is not only occurred in cases of control

surface failure but also in cases of serious damage situations, such as aircraft

structure damages, might happen. Damage effects can present a serious challenge

to the flight control system because a damaged aircraft would no longer function

normally because its stability, control, and inertia parameter characteristics had

changed significantly as mentioned in Section 3.2.3.

Therefore, in case of structural damaged aircraft, several affected variables

from c.g. shifting, mass change, and aerodynamic terms should be considered

in flight dynamic modelling. The inverted modelling of NDI control has to be

changed according to Section 3.2.3 with on-line estimation in order to be able

112

8. UAV Agent Control Action

to provide a significant improvement in the control performance in case of dam-

aged aircraft. Furthermore, number and variable of inputs of the neural network

with learning capability can also be increased following the variables that effect

the damaged aircraft (in Section 3.2.3) to improve flight control performance.

However, this topic is also beyond the scope of this study.

8.3.4 Performance of Hybrid Adaptive Control for Outer

Loop

The outer loop flight control based on NDI control architecture with adaptive

control law is explained in Section 7.3 and 8.2.2 was implemented to evaluate

with Aerosonde UAV simulation in the MATLAB/SIMULINK environment. This

outer loop hybrid adaptive flight control architecture used in this study is pre-

sented in Fig 4.3. This control framework contents: (1) the reference model, (2)

the proportional-integral feedback control, (3) the non-linear dynamic inversion

controller based in kinematic equations (as clarified in Section 4.2), (4) the di-

rect neural networks adaptive augmentation being single-layer sigmal-pi neural

network with the adaptive control law that combines the free derivative law and

the optimal modification law (as explained in Section 8.2.2), and (5) parameter

update mechanism (indirect adaptive control) to update the quantity of gravi-

tational acceleration as described in Chapter 7. A reference pilot command was

simulated by step input of angle for 5 degree at 5 sec in longitudinal dynamic

and 10 degree at 50 sec for bang manoeuvre.

The tracking performance of the outer loop hybrid adaptive flight control was

demonstrated in Fig. 8.7 in normal flight condition with accurate parameter

model. The figure 8.7 illustrated the Euler roll, pitch angle, and sideslip angle

response for outer loop of hybrid adaptive flight control system based on NDI

architecture. As presented, the outer loop hybrid adaptive flight control provides

a satisfied tracking performance as a slight error in both pitch and bank angle

channel in normal flight condition. The UAV can do a coordinated turn flight at

zero sideslip angle. There are some overshot in pitch and sideslip channel when

aircraft coordinate turn.

113

8. UAV Agent Control Action

Figure 8.7: Tracking Performance of Outer Loop Flight Control System using
initial parameter estimated from Table 8.5 in case of normal flight and accurate
model of NDI

Next, an erroneousness of parameter model configuration relating to a mistake

of a pitch moment coefficient that depends on elevator by 50% for NDI control is

considered. The Euler roll, pitch angle, and sideslip angle response for outer loop

hybrid adaptive flight control system based on NDI architecture were illustrated

in Fig. 8.8. It can be seen that the control performance in this case can reach

114

8. UAV Agent Control Action

Figure 8.8: Tracking Performance of Outer Loop Flight Control System in case
of defining a mistak of pitching moment coefficients depending on elevator by
50% from Table 8.5 for NDI control

the same quality as flight control performance in normal flight condition with

no difference in response pattern. It means that the inner loop hybrid adaptive

flight control can compensate the model error for inner loop NDI control and the

falsity does not effect the outer loop flight control.

115

8. UAV Agent Control Action

8.4 Chapter Summary

For aircraft system identification, OLS algorithm in the frequency domain can be

applied to a linear-regression aircraft-model using estimated air flow angle states

in order to select the model structure and compute aerodynamic coefficients of

a fixed wing aircraft. The advantage of using discrete Fourier transforms is the

ability to filter state signals over a frequency range of interest. Furthermore, the

calculation in the frequency domain can aid to reduce the number of states in

order to identify aircraft aerodynamic parameters via eliminating the derivative

states through properties of the Fourier transform. For on-board implementation,

the discrete Fourier transform can be rearranged in a recursive form in discrete

time as a recursive Fourier transform. Finally, the performance comparison of

the system identification methods shows that the proposed technique can obtain

the same quality of flight performance as OLS in time domain and when airflow

sensors are available. Therefore, for all the above mentioned reasons, this practi-

cal technique can be effectively used to estimate aircraft aerodynamic parameters

in real-time during flight.

Furthermore, OLS in the frequency domain that works in combination with a

direct adaptive control strategy has been applied as indirect adaptive learning for

the neural network hybrid adaptive control scheme. The simulation results illus-

trate that the hybrid frequency OLS adaptive control strategy can contribute the

significant improvement in the tracking performance over the direct and indirect

adaptive control.

116

Chapter 9

Real-Time UAV Agent

Perceptual Abstractions

In the development of intelligent control system operating functionally within

a specified domain and implementing procedures based on declarative, proce-

dural and heterogeneous knowledge, the concise representation and employment

of relevant knowledge in abstraction perception are one important part. The

perception abstraction evaluation is a method to receive a perception stream and

subsequently filter it to generate the belief base that belongs to the rational agent

as aforementioned in Chapter 6.

This study is about the development of system identification of non-linear

aircraft dynamical models and robust control methods in combination with agent

supervised autopilot on-board a UAS. Therefore, this agent-based control system

requires real-time calculations to 1) evaluate a control performance, 2) investigate

whether a set of aerodynamic coefficients is validated for NDI control, and 3)

monitor flight trim condition before performing system re-identification in the

physical engine for perceptual abstraction process. These boolean outcomes of all

these computations are represented by predicates of beliefs in format of sEnglish

as illustrated the relations between boolean outcomes and beliefs in Fig. 9.1.

117

9. Real-Time Evaluations for UAV Agent Abstraction

9.1 On-line Model Validation for Reconfigura-

tion Proposal

This method is used to validate whether or not the aircraft’s aerodynamic param-

eters are required to be updated over a certain frequency range for the inner loop

NDI control of the autopilot system. With this method, the time domain residual

of each dimensionless aerodynamic force and moment coefficients [CL CD CZ Cl

Cm Cn]T are transformed into frequency domain by using discrete Fourier trans-

formation and checking if each spectrum component of the frequency domain

residual has the statistical properties of a white noise signal. The validation

step is based on a hypothesis test applied to each frequency component of the

normalised spectrum with χ2-distribution.

The residual of magnitude of the estimated aerodynamic model in each fre-

quency can be calculated as follows:

∆|Cl(ωi)| = |Cl1(ωi)| − |Cl2(ωi)| (9.1)

in which ∆|Cl(ωi)| is the residual of magnitude of each pair parameter in each

frequency, |Cl1(ωi)| is the example signal data that generates from Eq. (4.1) , and

|Cl2(ωi)| is the example signal data that generates from Eq. (4.2). The faults,

which change the system dynamics, also change the characteristics of ∆|Cl(ωi)|
and make it increase.

Furthermore, the statistical test on the residual in Eqs. (9.1) can be applied

to validate the parameters in order to confirm the parameter and model. This

study proposed the frequency model validation approach [10] for monitoring the

aircraft aerodynamic parameter of model inversion of inner flight control loop.

The frequency model validation procedure is as follows:

1. Calculate the discrete Fourier transform of the residual ξk ≈ ∆|.| as the

difference of the real output in Eq. (4.1) and the model estimated output

in Eq. (4.2). in the window size

2. Decompose each frequency component on its real part and imaginary part

ξk = Rk + jIk

118

9. Real-Time Evaluations for UAV Agent Abstraction

3. Calculate distribution parameters of the Real (Rk) and Imaginary (Ik) part

of each frequency of component k, that is:

• Real part (Rk): Calculate µR0 and σ2
Rk

for k ∈ {0, 1, 2, ..., N − 1}

µRk = µξ
1

N

N−1∑
n=0

cos(Ω0kn) (9.2)

σ2
Rk

= σ2
ξ

1

N

N−1∑
n=0

cos2(Ω0kn) (9.3)

• Imaginary part (Ik): Calculate µI0 and σ2
Ik

for k ∈ {0, 1, 2, ..., N − 1}

µIk = µξ
1

N

N−1∑
n=0

sin(Ω0kn) (9.4)

σ2
Ik

= σ2
ξ

1

N

N−1∑
n=0

sin2(Ω0kn) (9.5)

4. Calculate the normalized magnitude spectrum for each frequency

k ∈ {0, 1, 2, ..., N − 1} as follows:

M2
k = (

Rk − µRk
σRk

)2 + (
Ik − µIk
σIk

)2 (9.6)

5. Perform a hypothesis test over each of the normalized magnitude spectrum

M2
k , indexed by k ∈ {0, 1, 2, ..., N − 1}, as follows:

H0 : M2
k ∈ χ2

2

H1 : M2
k /∈ χ2

2

(9.7)

The probability of rejecting H0 when it is true is set by choosing the confi-

dence limit. For example, if the confidence limit is chosen to be 10.6 then the

99.5 percent of the sample of a χ2
2 distribution fall within the limit. The Boolean

outputs of Eq. (9.7) are represented by predicates of beliefs (sEnglish sentences)

as shown in Fig. 9.1. Therefore, frequency dependent model validation [10] is ap-

plied to the inner loop non-linear dynamic inversion control of an autopilot system

119

9. Real-Time Evaluations for UAV Agent Abstraction

in order to confirm the model. Therefore, this algorithm is a key computation to

abstract the continuous information to discrete abstractions for validating aircraft

aerodynamic parameters in the inner-loop of the NDI controller.

9.2 Flight Trim Condition Monitoring

A dedicated algorithm is used to monitor flight trim conditions from flight data

to detect when and if the agent is ready to perform a re-identification in order

to update the set of aerodynamic parameters for the inner loop NDI controller.

The agent can’t execute a system identification procedure immediately since the

accuracy of the estimated aircraft parameters results hinges on flight conditions

and adequate excitation of motion.

9.2.1 Using Wavelet Transform and Multi Resolution Anal-

ysis

The method called real-time wavelet flight data evaluator [91] was utilized in

this process by monitoring input and output response in the form of Wavelet

transform and multi-resolution analysis.

Wavelet transform has been one of the most important and powerful tools for

signal representation. Wavelet transform, commonly, decomposes a time variant

function s(t) into time-frequency information W(a, b) as follows

W(a, b) ≡
∫ ∞
−∞

s(t)
1√
a
Ψ ∗
(
t− b
a

)
dt (9.8)

where

t is time space.

a is scale parameter, which corresponds to the frequency band.

b is shift parameter, which corresponds to time space

Ψ ∗ is a mother wavelet function, which expresses localized oscillation. (Note:

this study utilizes the Bump wavelets)

120

9. Real-Time Evaluations for UAV Agent Abstraction

Table 9.1: Thresholds for Determination of the Trimmed States in [91]
Item Symbol Threshold(∆trim) Unit

Roll rate p 5× 102 deg2/s2

Pitch rate q 5× 102 deg2/s2

Heading rate r 5× 102 deg2/s2

Elevator Deflection Angle δe 1× 103 deg2

Aileron Deflection Angle δa 1× 103 deg2

Rudder Deflection Angle δr 5× 102 deg2

Furthermore, Multi Resolution Analysis (MRA), which is a chart that shows a

square of transformed values correlated to signal strength W2(a, b) over frequency-

time axis, is a powerful tool to analyse the spectrum and time solution of discrete

data.

The analysis of the flight in the frequency domain (with signal strength ob-

tained by MRA) determines whether the aircraft is operating in trim condition

by checking the following conditions:

∑
a∈a∗zx

W2(a, b1)[zx] < ∆trim,zx (9.9)

∑
a∈a∗zu

W2(a, b1)[zu] < ∆trim,zu (9.10)

where

zx is observed values correlated with state value x. (Note that: zx = p, q, r.)

zu is observed values correlated with inputs u. (Note that: zu = δe, δa, δr.)

∆ represents a threshold to determine whether data is almost settled. (The

threshold values in each state and input illustrate in Table 9.1.)

a∗ is certain frequency bands. (Note that: ranging from 10 Hz to approximate

0.05 Hz.)

121

9. Real-Time Evaluations for UAV Agent Abstraction

9.2.2 Using Frequency Dependent Model Validation Ap-

proach

This method is similar to the one in Section 9.1. The residual is replaced by each

angular rate compared with zero instead of each dimensionless aerodynamic force

and moment coefficients, and then calculated by the frequency model validation

procedure in Section 9.1.

Similar to previous section, the Boolean outcomes of this method are also rep-

resented by predicates of beliefs (sEnglish sentences) as shown in Fig. 9.1. There-

fore, frequency dependent model validation [10] and wavelet transform with multi

resolution analysis [91] have been applied to monitor a flight trim condition state.

Therefore, this approach is an essential computation to abstract the continuous

information to discrete abstractions for observing the flight trim condition state

during a flight.

9.3 Control Performance Evaluation Approach

The main objective of our agent is to maintain control performance in the outer

and inner loop of the flight control system. Firstly, this evaluation approach is

required to assign a quantitative bound to the control system output error under

flight operating conditions. This means that the abstractions of control perfor-

mance is to observe whether or not the tracking error is within bounds in predicate

form. According to [95], this abstraction can be used to trigger a resetting mech-

anism of a direct adaptive controller by a pre-defined threshold of the tracking

error. When this threshold is exceeded, the adaptive gain is re-initialized with a

large suitable value. However, the threshold should be chosen deliberately so that

the trigger would execute appropriately to prevent false triggering. Therefore, the

condition for monitoring control performance is [95]

if (|E| < ∆err) and (|
∫
Edt| < ∆∫

errdt)

then B(Control Performance is Good.)

else if (|E| > ∆err) or (|
∫
Edt| > ∆∫

errdt)

then B(Control Performance is Bad.)

122

9. Real-Time Evaluations for UAV Agent Abstraction

where

E is observed values correlated with error between angular rate (p, q, r)

response and reference command.∫
Edt is observed values correlated with integrated term of error between an-

gular rate (p, q, r) response and reference command.

∆err represents a threshold depended on error to determine whether tracking

performance is good.

∆∫
errdt represents a threshold depended on integration term of error to deter-

mine whether tracking performance is good or not.

B(. . .) represents an updated belief base of the agent.

However, the selection of the proper limits or thresholds is difficult due to

various aircraft characteristics and flight operating conditions. Consequently, the

frequency dependent model validation approach [10] can also be applied to this

problem. Similarly, the computed procedure is similar in Section 9.1. However,

the residual in this case is replaced by the error and the integral term of error of

angular rate (p, q, r) instead of the residuals of each dimensionless aerodynamic

force and moment coefficients (CL, CD, CY , Cl, Cm, Cn). This method has been

chosen in this thesis due to the advantage of reliability by using statistical hy-

pothesis test on a residual in interesting frequency ranges. Furthermore, this

method can remove the unwanted noise by calculating in the interesting frequecy

ranges. Example implementation are illustrated in Fig 9.17-9.19.

Similarly, the Boolean outputs of the control performance evaluation method

are also represented by predicates of beliefs (sEnglish sentences) as shown in Fig.

9.1. Therefore, frequency dependent model validation [10] has also been utilized

to evaluate the performance of the control system during a flight.

9.4 Connection with Agent Framework

As aforementioned in Chapter 6, the perception abstraction process is a process

to discrete a continuous information as predicates of beleifs in format of sEnglish

sentences. The perception stream, which sampled from the physical engine, is

123

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.1: Illustration of perception processes which contribute to the belief
base during each reasoning cycle of the BDI agent. These mathematical functions
are utilized for numberical procedure in the physical engine [Appendix IV].

124

9. Real-Time Evaluations for UAV Agent Abstraction

delivered to the abstraction engine. The abstraction engine, which might call

on the continuous engine to make computation by using calculated funtions as

explained in previous sections.

For implementation, sEnglish sentence can compile into embedded MATLAB

code for computation routine. Lincoln [74] explains that “each sEnglish sentence

is matched with a routine call in MATLAB as well as with a similar looking pred-

icate for logic operations that abstracts away the code based meaning behind the

predicates. Basic predicate abstractions from sentences are applied to both the

world environment and the UAV model in perception abstracton process.”These

abstractions are passed by the physical engine to the abstraction engine. The

information provided to the abstraction engine includes the following as demon-

strated in Fig. 9.1.

9.5 Simulation Result

9.5.1 Results of Model Validation for Reconfigurable Con-

trol

The frequency dependent model validation method was evaluated with Aerosonde

UAV simulation in the MATLAB/SIMULINK environment. Elevator surface

deflection command input is stimulated by a pattern of doublet 3-2-1-1 from

0s. In the first case, the aerodynamic stability and control coefficients from

frequency OLS estimation from Table 8.5 were defined to validate by calculating

pitching moment coefficient Cm with Eq.(3.17) in red colour line illustrated in

Fig. 9.2. And the blue line was computed Cm from Eq.(3.15). Both mentioned

pitch moment coefficients were compared in time and frequency domain as shown

in Figure 9.2. Visually, both signals are similar in all time history and spectrum.

It means the aerodynamic parameters obtained from estimation are sufficient for

aircraft model.

Then the residual of both pitch moment coefficients was calculated by fol-

lowing the procedure described in Section 9.1. Therefore, values of Rk and Ik

in each frequency component calculated with Eq. (9.4) and (9.5) are shown in

Fig. 9.3. And the normalized magnitude spectrum is calculated according to

125

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.2: Comparison of Pitching Moment Coefficient (Cm) in time and fre-
quency domain in case of accurate model from the estimation

Figure 9.3: The real (Rk) and imaginary (Ik) parts of discrete Fourier transform
of residual and normalized magnitude spectrum (M2

k) in case of aerodynamic
parameter from frequency OLS estimation in Table 8.5

126

9. Real-Time Evaluations for UAV Agent Abstraction

Eq. (9.6) with mean (µξ) of 0 and variance (σ2
ξ) of 0.001. It can be seen that

all the magnitude frequency components remain below the confidence limit (the

99.5% confidence limit of the χ2-distribution is between 0 and 10.6). It means

that the aerodynamic parameter is also validated for NDI based inner loop of

flight control system. Therefore, this approach can provide the similar solution

as visual inspection.

Figure 9.4: Comparison of Pitching Moment Coefficient (Cm) in time and fre-
quency domain in case of inaccurate model for NDI control (Cmδe 10% missing).

Similarly, the same flight data used in the first instance was also used for

evaluation in the second case. In this case, the aerodynamic stability and control

coefficients from frequency OLS estimation from Table 8.5 except Cmδe having an

error of 10% were defined to validate by calculating pitching moment coefficient

Cm with Eq.(3.17) in red colour line illustrated in Fig. 9.4. And the blue line was

computed Cm from Eq.(3.15). Both mentioned pitch moment coefficients were

compared in time and frequency domain as shown in Figure 9.4. The magnitude

of the two lines has some differences in some case of time period and the frequency

component due to model errors.

127

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.5: The real (Rk) and imaginary (Ik) parts of discrete Fourier transform
of residual and normalized magnitude spectrum (M2

k) in case of aerodynamic
parameter from frequency OLS estimation in Table 8.5 but with 10% of Cmδe
missing

Then the residual of both pitch moment coefficients were calculated according

to the procedure in Section 9.1. Therefore, values of Rk, Ik, and Mk in each

frequency component calculated with Eq. (9.4), (9.5), and (9.6), respectively

with mean (µξ) of 0 and variance (σ2
ξ) of 0.001 are depicted in Fig. 9.5. It can

be seen that some of the magnitude of low frequency components exceed the

confidence limit (the 99.5% confidence limit of the χ2-distribution is between 0

and 10.6 : red line). It means that the aerodynamic parameter is invalidated for

NDI based inner loop of flight control system. The agent will execute a plan to

compensate the error of the model.

The same flight data in the first case was also implemented to evaluate in

the third case. The estimated aerodynamic stability and control coefficients from

frequency OLS approach in Table 8.5 except Cmδe that has error of 20% were

assigned for model validation like in the first case. Figure 9.6 demonstrated the

magnitude of both pitching moment coefficients in time and frequency domain.

Obviously, the estimated pitching moment coefficient was shifted from the sim-

ulated pitching moment coefficient in the time domain and in the low frequency

128

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.6: Comparison of Pitching Moment Coefficient (Cm) in time and fre-
quency domain in case of inaccurate model for NDI control (Cmδe 20% missing).

component.

Then the residual of both pitch moment coefficients in time domain were

transformed into the frequency domain and then calculated according to the pro-

cedure in Section 9.1. Therefore, values of Rk, Ik, and Mk in each frequency

component calculated with Eq. (9.4), (9.5), and (9.6), respectively with mean

(µξ) of 0 and variance (σ2
ξ) of 0.001 are depicted in Fig. 9.7. It can be seen that

some of the magnitude in the low frequency components exceeds the confidence

limit (the 99.5% confidence limit of the χ2-distribution is between 0 and 10.6 :

red line). All the magnitude in each frequency components grows greater than in

the second case.

Finally, in case of elevator failure which occurred in Aerosonade simulation

(10% of Cmδe loss), the frequency dependent model validation approach was im-

plemented to evaluate the aerodynamic stability and control coefficients in Table

8.5. Figure 9.8 illustrated the magnitude of both pitching moment coefficients in

129

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.7: The real (Rk) and imaginary (Ik) parts of discrete Fourier transform
of residual and normalized magnitude spectrum (M2

k) in case of aerodynamic
parameter from frequency OLS estimation in Table 8.5 but with 20% of Cmδe
missing

time and frequency domain.

Then the residual of both pitch moment coefficients in time domain were

also transformed into the frequency domain and then calculated according to

the procedure defined in Section 9.1. Therefore, values of Rk, Ik, and Mk in

each frequency component calculated with Eq. (9.4), (9.5), and (9.6) with mean

(µξ) of 0 and variance (σ2
ξ) of 0.001 and 0.002 are depicted in Figure 9.9 and

9.10, respectively. These results show that this method can detect the failure

occurred and the difference of variance value can be utilized to compare the level

of failure. For instance, some of the magnitude in low frequency components

exceed the confidence limit as shown in Fig. 9.9 but all the magnitude in low

frequency components remain in the confidence limit as shown in Fig. 9.10. It

means we can use the quantity of variance to observe the quantity of failure.

130

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.8: Comparison of Pitching Moment Coefficient (Cm) in time and fre-
quency domain in case of elevator failure in simulation model (Cmδe 10% loss).

Figure 9.9: The real (Rk) and imaginary (Ik) parts of discrete Fourier transform
of residual and normalized magnitude spectrum (M2

k) with variance (σ2
ξ = 0.001)

in case of elevator failure in Aerosonde simulation (10% of Cmδe loss)

131

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.10: The real (Rk) and imaginary (Ik) parts of discrete Fourier transform
of residual and normalized magnitude spectrum (M2

k) with variance (σ2
ξ = 0.002)

in case of elevator failure in Aerosonde simulation (10% of Cmδe loss)

9.5.2 Results of Flight Trim Condition Monitoring

9.5.2.1 Wavelet Transform Analysis Technique

To evaluate the flight trim condition monitoring approach using wavelet transform

analysis, an 3-2-1-1 doublet elevator deflection input and pitch rate response were

implemented in MATLAB environment as shown in Figure 9.11 to 9.14.

The elevator deflection input signal was transformed to a time-frequency infor-

mation and then calculated with
∑

a∈a∗zδe
W2(a, b1)[δe]. Finally, this summation of

W2(a, b1)[δe] at each specific time was compared with thresholds value (∆trim δe)

in Table 9.1 with condition in Eq. 9.10 to check the flight trim condition status

as shown in Fig. 9.11 and 9.12. With visual inspection, these results shown that

the elevator 3-2-1-1 doublet elevator deflection input was activated from 11 sec

to 15.5 sec as well as no flight trim condition status using this wavelet technique

was active from 11 sec to 15.5 sec.

132

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.11: Flight Trim Condition Monitoring Technique using Bump Wavelet
Transform Analysis with Elevator Deflection Input (δe)

133

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.12: Flight Trim Condition Monitoring Technique using Bump Wavelet
Transform Analysis with Elevator Deflection Input (δe)

134

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.13: Flight Trim Condition Monitoring Technique using Bump Wavelet
Transform Analysis with Pitch Rate Response (q)

Furthermore, the pitch rate response was transformed into a time-frequency

information with the Bump Wavelet transforms and MRA and then calculated

as
∑

a∈a∗zq
W2(a, b1)[zq]. Finally, this summation of W2(a, b1)[zq] at each specific

time was compared with thresholds value (∆trim q) in Table 9.1 with condition in

Eq. 9.9 to check the flight trim condition status as illustrated in Fig. 9.13 and

9.14. Visually, the pitch rate response relied on oscillation of input. Therefore, a

quantity of pitch rate was diverged from zero between 11.0 sec and 16 sec which

corresponded to the status of no flight trim condition happened at the same time

135

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.14: Flight Trim Condition Monitoring Technique using Bump Wavelet
Transform Analysis with Pitch Rate Response (q)

periods.

9.5.2.2 Frequency Dependent Model Validation Approach

The flight trim condition monitoring method using model validation in frequency

domain technique was evaluated here with the pitch rate response as illustrated

in Fig. 9.15. In this implementation, the window moving size is assigned as 1

second in order to compute in real-time. And the variance is equal to 0.0005

rad2/s2. With visual observation, this method can predict the status of no flight

trim condition while the pitch rate response was oscillating. It means that the

136

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.15: Flight Trim Condition Monitoring Technique using Frequency De-
pendent Model Validation with Pitch Rate Response (q)

frequency dependent model validation can also be utilized to monitor that the

aircraft is operating in flight trim condition or not. The key factors of this

technique are the window moving size and the variance.

Furthermore, a comparison between both methods was illustrated in Fig 9.15.

Both methods can be evaluated efficiently with visual inspection. However, the

frequency dependent model validation has a delay about 0.3 sec for monitoring

the flight trim condition. This logic status of flight trim condition is a discrete

predicate as a belief base.

137

9. Real-Time Evaluations for UAV Agent Abstraction

9.5.3 Results of Control Performance Evaluation

Pitch rate response based on feedback control was implemented in the MATLAB

environment to evaluate the control performance evaluation technique with the

frequency dependent model validation approach as shown in Fig. 9.16 to 9.17.

Fig. 9.16 illustrates that this pitch rate response tried to track the reference com-

mand in a form of doublet input where the NDI control with insufficient initial

aerodynamic parameter was performed at the beginning and then the hybrid

adaptive control was activated at 40s, which oscillating transition was experi-

enced.

138

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.16: Pitch Rate Response (q) compared with reference command. At
the beginning, the NDI controller with bad initial aerodynamic parameter was
executed. And then hybrid adaptive controller started to perform after 40 sec.

The error of pitch rate response and reference command was utilized to assess

the tracking performance of the control system with model validation in the

frequency domain as demonstrated in Fig. 9.17 (Note: the window moving size

is 2 second and variance is set to 0.000001). Furthermore, this approach, at the

same condition, was also evaluated with the integration of error as presented in

Fig. 9.18.

139

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.17: Tracking Control Performance Technique using Frequency Depen-
dent Model Validation with Error between Pitch Rate Command and Response
(Eq)

Finally, to consider both errors and errors integration, control performance

status with errors and integration of errors were combined with OR logical con-

dition. The result of combined control performance status displays in Fig. 9.19.

Up to time 50.5 sec control performance is evaluated as unsatisfactory, and af-

ter that it is acceptable. Therefore, the procedure of validating a model in the

frequency domain has been proven for control performance evaluation. And this

status is an updated belief base for an agent to evaluate the control performance.

140

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.18: Tracking Control Performance Technique using Frequency Depen-
dent Model Validation with Integration of Error between Pitch Rate Command
and Response (

∫
Eqdt)

9.6 Chapter Summary

This chapter has presented real-time evaluations for UAV agent abstractions. The

abstraction evaluation method is the approach to filter the continuous perception

to the discrete information in order to update the belief base for the rational

agent. This study has proposed the development of model validation for NDI

control, flight trim condition monitoring, and control performance evaluation.

141

9. Real-Time Evaluations for UAV Agent Abstraction

Figure 9.19: Tracking Control Performance Technique with Combination of Two
Status with OR Logical Condition

The frequency dependent model validation approach based on a discrete Fourier

transform and a hypothesis test of the normalised spectrum with χ2 distribution

have been considered. This algorithm is the key computation to abstract the

continuous information to discrete abstractions for 1) validating aerodynamic

stability and control coefficients in the inner loop of the NDI controller, 2) moni-

toring flight trim condition, and 3) assessing the tracking control performance of

the flight control system. Therefore, the procedure for validating a model in the

frequency domain has been proven in various cases for abstraction evaluation of

UAV autopilot agent.

142

Chapter 10

Decision Methods for UAV

Agents

10.1 Agent Development for Reconfiguration

As mentioned, the intelligent control system is designed to reconfigure automat-

ically in different events including various environments, flight conditions, and

system degradations. It means that the control system is increasingly demanded

to work in the various situations, when the circumstances require a distinct

changes in behaviour and often require to switch to the utilization of alterna-

tive controllers. Thus, this hybrid control system clearly desires to integrate

some decision-making system with the feedback controllers.

Developing autonomous decision making in the hybrid control system can be

simplified by an approach that involves choosing abstractions relating the contin-

uous world with discrete decision states. Subsequently, basic rules of behaviour

are defined by using these abstractions with goals formulated to maintain the

system within constraints and objectives. Therefore, an agent-based approach

where goals, plans, and logical inferences are all captured within a rational agent

is considered in this work.

143

10. UAV Agent Decision Method

Figure 10.1: Jason to MATLAB (J2M) Interface Diagram

10.1.1 Agent Computational Architecture

sEnglish/Jason with AET (Agent Executive Toolbox, [124], based on the Jason+

agent architecture) has been used to program a high-level rational agent to pro-

vide increased capability of intelligent adaptation for the autopilot system. This

rational-agent architecture is shown in Figure 10.1 by analogy of the system out-

lined in [73]. This architecture of the agent consists of three main constituents

including (1) physical engine (Π), (2) continuous engine (Ω) and (3) reasoning

engine (Σ). The physical engine is a process to receive signals from sensors, to

generate signals for actuators and to form symbolic logic abstraction for discrete

event decision making of the agent. A continuous engine is a computational unit

to calculate functions for continuous signal processing of sensing and control and

to abstract symbolic logic expressions for discrete hypothetical events generated

by simulation for a future time horizon. The reasoning engine, finally, is a rule-

based decision making process to decide upon actions for the physical engine in

order to achieve goals, which in this case relates to smooth control of the aircraft

to locations despite the atmospheric disturbances.

Definition. A rational behaviour engine, γ, is a tuple, γ =< W |Mp|Mg|Cs|G >,

which consists of a granulated multi-resolution and multi-domain symbolic world

144

10. UAV Agent Decision Method

model W , abstract physical skills memory Mp, goal achievement memory (prob-

lem solving memory) Mg, abstract formulation of behaviour constraints Cs, ab-

stract formulation of short and long term goals G.

Definition. A continuous engine, Ω, is a tuple, Ω =< M |S|O|B|L >, where

M is a set of approximately continuous models of the world, S is a continuous

time simulator which uses analytical and empirical data based dynamic models to

predict future state of the world, O is an optimizer which can optimize continuous

time planning of actions, B is a Boolean evaluator of propositions in terms of

σ statements and L is a library of useful numerical computations in terms of

continuous variables.

For clarity of development, the process of abstraction design for the agent

system is aided using NLPr in sEnglish to link abstraction of the continuous

phenomena and agent deliberation. Furthermore, this agent architecture is sup-

ported by the Cognitive Agent Toolbox (CAT) [74, 124], which is an integration

tool for autonomous control systems. CAT contains the Agent Executive Toolbox

(AET) for MATLAB/Simulink, which is suitable for developing the continuous

engine for the rational agent. AET acts as a bridge to link MATLAB/Simulink

and Jason based on Belief-Desire-Intention (BDI) agent architecture. All real-

time computations in this chapter are done in MATLAB/SIMULINK and virtual

reality displaying a flight.

10.1.2 Abstraction using NLPr Implementation

The methodological knowledge from publications is formulated regarding human

engineering concepts that are easily expressed in NLPr to aid agent development.

This speeds up the development process and makes the connection between ab-

straction and agent deliberation [133] clear. There are abstractions (σ) of precepts

which are Boolean, and there are objects creating abstractions with reference to

the object by a variable in Jason+, this forms a predicate with an argument which

can be used in logic based reasoning in Jason+ . Each Boolean type abstraction

of perception is monitored during reasoning cycles and is defined by an sEnglish

sentence that returns type boolean result that is its single output.

The abilities (or skills) of an agent are tasks such as data manipulation, feed-

145

10. UAV Agent Decision Method

back control or other interactions with hardware devices in order to achieve a par-

ticular result. In developing agent skills in this manner, abilities are abstracted

into clear functional components thus making subsequent usage of each compo-

nent more intuitive through NLPr text abstractions in the form of sentences in

sEnglish. Then such sentences can be compiled into an executable file (MATLAB

or C++/ROS).

The skill abstractions in this work are divided into three main categories: com-

munication abstractions (γ), open-loop action abstractions (α), and closed-loop

action abstractions (∆). First, some communication abstractions are used in con-

nection with communication externally with another agent system or hardware.

Open-loop control abstraction of an action of type ‘runOnce’ runs the executable

sentence once within the executive cycle. Closed-loop control abstraction is an ac-

tion of type ‘runRepeated’ for which the corresponding process runs continuously

until the agent decides to terminate the action by a command stopRepeated’.

As an illustration, the following tables list some of the σ, γ, α,∆ abstractions

available to our UAV autopilot system in NLPr as produced in sEnglish. The

sentences listed are in fact the sEnglish code that are unambiguously compiled

into MATLAB and ultimately to lower level languages. In our project, we have

used Simulink and FlightGear simulation for 3D visualization and did not yet

compile into C++/ROS, which will be the next stage of our work.

Some communications abstractions (γ) of a UAV control agent:

γ1 Sending message M to ground control station Co.

γ2 Receiving message Mr from ground control station Co.

Some open-loop abstractions (α) of a UAV control agent:

α1 Applying 3-2-1-1 input to elevator of UAV for period T1.

α2 Applying 3-2-1-1 sequence input to aileron and rudder of UAV for period T2.

α3 Updating to new control configuration (update a new aircraft aerodynamic

parameter for the inner NDI loop).

α4 Switching to reset an initial state for adaptive learning rate of direct adaptive

control of inner loop.

146

10. UAV Agent Decision Method

Some closed-loop abstractions (∆) of a UAV control agent:

∆1 Executing a frequency model validation method to monitor aircraft

aerodynamic parameter for inner NDI control.

∆2 Using NDI feedback control to track a required Position Pa.

∆3 Using hybrid adaptive feedback control to track

a required position Pa.

∆4 Using indirect adaptive learning to compensate aircraft parameters in

longitudinal dynamic for inner NDI loop (Minor NDI Compensation).

∆5 Using indirect adaptive learning to compensate aircraft parameters in

lateral dynamic for inner NDI loop (Minor NDI Compensation).

∆6 Using indirect adaptive learning to compensate aircraft parameters in

directional dynamic for inner NDI loop (Minor NDI Compensation).

∆7 Using indirect adaptive learning to compensate aircraft parameters in

all axes dynamic for inner NDI loop (Minor NDI Compensation).

∆8 Estimating new aircraft aerodynamic parameter in longitudinal dynamic for

inner NDI control loop (Major NDI Adjustment).

∆9 Estimating new aircraft aerodynamic parameter in lateral and directional

dynamic for inner NDI control loop (Major NDI Adjustment).

∆10 Executing a monitoring algorithm to check aircraft condition (trim) status

and error indicator.

∆11 Trigger hybrid adaptive feedback control in outer loop

147

10. UAV Agent Decision Method

Some perception abstractions (σ) of a UAV control agent:

σ1 Required to update aircraft aerodynamic parameters in longitudinal

dynamic for inner NDI loop. (Re-identification)

σ2 Required to update aircraft aerodynamic parameters in lateral and

directional dynamic for inner NDI loop. (Re-identification)

σ3 Required to compensate aircraft aerodynamic parameters in longitudinal

dynamic for inner NDI loop. (Minor adjustment of NDI with indirect

adaptive control)

σ4 Required to compensate aircraft aerodynamic parameters in lateral dynamic

for inner NDI loop. (Minor adjustment of NDI with indirect adaptive

control)

σ5 Required to compensate aircraft aerodynamic parameters in directional

dynamic for inner NDI loop. (Minor adjustment of NDI with indirect

adaptive control)

σ6 Required to trigger a direct adaptive control for the inner loop.

σ7 Required to reset an adaptive learning rate mechanism of direct adaptive

control for the inner loop.

σ8 Aircraft manoeuvres in the trim condition.

σ9 Bad Control system performs in the inner loop.

σ10 Bad Control system performs in the outer loop.

10.2 Overall Diagram of Agent Reasoning

The presented agent framework as shown in Figure 6.3 and Figure 10.2 has been

fully developed using the sEnglish Publisher and the AET toolbox [124]. The

rational agent controlling the UAV is assigned to track a sequence of required

waypoints in terms of latitude/longitude/altitude while being able to handle ab-

normal dynamic flight conditions by its reconfigurable UAV control abilities which

relies on system identification, adaptive non-linear control system, model valida-

tion and control performance evaluation to improve flight performance.

Furthermore, MATLAB/SIMULINK has the capability to provide multi-threading

of the physical and continuous engines of our agent. In the implementation, com-

putational workloads in this work were divided into eight executive processes as

148

10. UAV Agent Decision Method

Figure 10.2: Working Diagram of Execute Processes

149

10. UAV Agent Decision Method

Figure 10.3: Diagram of Knowledge Based Rules for Triggering DAC

illustrated in Figure 10.2. An executive process is defined as a Simulink block

with the associated skill item which can also perform perception abstractions

communicated to a Jason belief base or action execution as requested by a Jason

agent. Each executive process is responsible for different calculations or jobs the

agent needs to be able to perform.

Agent programming supports designers or engineers to express decisions in

terms of what the agent wants to achieve and how the agent will deal with any

unusual events. The key feature of deliberation within agent programs permits

the decision making part of the system to adapt intelligently to situations and sys-

tem degradation. To make it more reliable and autonomous, the autopilot system

requires suitable adaptivity for the operation. Therefore, concepts of reasoning

rules of how to provide adaptability through switching and tuning of appropriate

controllers under uncertain dynamics and situations are proposed here:

1) Reasoning for Triggering Direct Adaptive Control in the Inner Loop

Upon activation, our rational agent system based on the NDI control archi-

150

10. UAV Agent Decision Method

tecture in the inner and outer loops achieves its goal of stabilising the aircraft

and tracking specified waypoints smoothly. Meanwhile, each executive process of

the agent system performs real-time tasks of model validation and control per-

formance evaluation in parallel. The executive process of model validation unit

decides whether or not the aircraft aerodynamic parameters are required to be

compensated or updated over a certain frequency range for the inner loop NDI

control of autopilot system. Furthermore, another executive process does the

computation to observe control performance of the autopilot system.

As illustrated in Figure 10.3, in the case that the agent perceives a belief

abstraction of “requiring to trigger direct adaptive control” or “bad control per-

formance in the inner loop” while beliefs of “requiring to trigger DAC” is still

active, the agent system performs DAC to compensate model deficiencies in in-

ner loop NDI control. Then the agent generates a belief base of “performed

DAC” and re-performs the computing task to re-check the control performance

and validate parameters in inner loop NDI control again. If an agent achieves a

goal of “good control performance” that agent will wait to listen to another belief

else, the agent will repeat to perform DAC.

Furthermore, if the agent receives a perception abstraction of “aircraft is flying

in trim flight condition” while agent still perceives beliefs of “requiring to trigger

DAC” and “performed DAC”, the agent will carry out a system identification

procedure to determine new aircraft aerodynamic parameters and then update

them for inner loop NDI control of autopilot system. After that, the agent will

execute model validation and control performance evaluation, respectively. Then

the agent will be back to waiting until hearing any perception abstractions in any

changes.

2) Reasoning for Triggering a Minor Adjustment Mechanism in the Inner Loop

Similarly, as shown in Figure 10.4, while the agent is waiting to listen for

perceptions, if the agent senses belief abstractions of “requiring minor compen-

sation” or “bad control performance in the inner loop” while beliefs of “requiring

minor compensation” and “performed DAC” also activate, the agent system per-

forms a calculating task of indirect adaptive control and reset parameter for direct

adaptive control to reduce tracking error. Then agent defines a belief base of “per-

151

10. UAV Agent Decision Method

Figure 10.4: Diagram of Knowledge Based Rules for Minor Compensation :
MinCom

formed minor compensation” and re-performs the computing task to re-check the

control performance in inner loop NDI control again. If the agent achieves a goal

of “good control performance” that agent will wait to listen to another belief else,

the agent will repeat to perform indirect adaptive control.

In addition, if the agent percepts a perception abstraction of “aircraft is fly-

ing in trim flight condition” while the agent still has abstractions of “requiring

minor compensation” and “performed minor compensation”as beliefs, the agent

will carry out a system identification procedure to determine new aircraft aerody-

namic parameters and then update them for inner loop NDI control of autopilot

system. After that, the agent will execute model validation and control perfor-

mance evaluation, respectively.

3) Reasoning for Triggering a Major Adjustment Mechanism in the Inner Loop

This case is considered as the aircraft is heavily damaged, so the aircraft

aerodynamic parameter changes significantly. The hybrid adaptive control that

152

10. UAV Agent Decision Method

Figure 10.5: Diagram of Knowledge Based Rules for Major Compensation :
MajCom

is possible to decrease the effect of high-gain control is applied to meet a good

tracking performance according to the diagram in Fig. 10.5. In this case, the agent

will perceive perception abstractions of “requiring major compensation ” or “bad

control performance”while the boolean logic of belief abstraction of “requiring

major compensation” is still true. Then the agent will execute a task of hybrid

adaptive control and create a belief base of “performed major compensation”.

Next, the agent will re-perform the computing task to re-check the control per-

formance and validate parameters in inner loop NDI control again. If the agent

attains the goal of “good control performance” , the agent will wait to listen to

another belief or else, the agent will resort to hybrid adaptive control to improve

flight performance.

Similar to previous rule concepts, if the agent percepts a perception abstrac-

tion of “aircraft is flying in trim flight condition” while agent still has abstractions

of “requiring major compensation” and “performed major compensation”as be-

liefs, the agent will react system identification procedure to find out new aircraft

aerodynamic parameters and then update them for inner loop NDI control of au-

153

10. UAV Agent Decision Method

Figure 10.6: Diagram of Knowledge Based Rules for Compensation in Outer
Loop of Autopilot System

topilot system. After that, the agent will implement model validation and control

performance evaluation, respectively.

4) Reasoning for Adjustment Mechanism in the Outer Loop

The outer loop NDI flight control architecture, which is based on the dynamic

kinematic equations, does not depend on aircraft parameters. Therefore, the

model validation technique is inessential in this reasoning process. If the agent

perceives a perception abstraction of “bad control performance in the outer loop”,

hybrid adaptive control will be executed in the outer loop of autopilot system

by the agent. Then the agent produces a belief base of “performed trigger of

compensation in outer loop” and act the calculating task to re-check the control

performance in outer loop NDI control. If the agent reaches a goal of good control

performance, then the agent will wait to catch another belief or else, the agent

will repeatedly execute hybrid adaptive control in the outer loop.

154

10. UAV Agent Decision Method

5) Reasoning for Executing a New Plan via Re-Path Planning Algorithm for

Emergency Landing Situation : This is an optional reasoning rule for an emer-

gency situation. Based on this the agent can utilise physical information such as

aerodynamic stability and control coefficient to diagnose the health of the air-

craft. For instance, after the agent selects an appropriate control method for the

autopilot system, the agent will do system re-identification to estimate a new set

of aerodynamic parameters while the aircraft is operating in trim flight condition

or the agent is trying to compensate the aircraft parameter with indirect adaptive

control. The new aircraft parameters can be compared with the old set of aircraft

aerodynamic information and analysed to detect and identify if a failure occurred

[75].

This failure information can be associated with an algorithm to select an

emergency landing site using computer vision [40], which can be used to make a

decision for the agent where to land in case of emergency. Then the agent can

execute a task to generate a new flight path for UAV forced landing [102] and

keep tracking the path to the landing site. However, the details of an emergency

landing are beyond the scope of this thesis and it will be investigated in the

future.

The development of the agent, to select an appropriate control methodology,

depends on NLPr abstractions and ontology developed within sEnglish Publisher

[124, 133]. A single sEnglish document contains high level code for agent rea-

soning in Jason(AgentSpeak) as well as the definitions of all signal processing

and control processes which compile into MATLAB, which is used in Simulink or

ultimately compiled into C++/ROS for embedded systems, is not considered in

this thesis.

Figure 10.7 and 10.8 show a simple example of the use of sEnglish in reasoning

(Figure 10.7) with corresponding Jason code (Figure 10.8). The “invoke()” func-

tion call execute process named “subsystem2” and “utility system” to perform

“validate model in frequency domainV2” and “monitor aircraft status”, respec-

tively. These two functions receive the updated aircraft states to evaluate if the

agent is required to update aircraft aerodynamic parameters in longitudinal dy-

namics for the inner NDI control loop, expressed by the listed σ1 abstraction as

“Requiring to update aircraft aerodynamic parameters in longitudinal dynamics

155

10. UAV Agent Decision Method

Figure 10.7: Illustration of the definition of an agent reasoning processes in
format of sEnglish sentences in NLP defined within sEnglish document that define
the *.sej file, Appendix IV

156

10. UAV Agent Decision Method

Figure 10.8: The Example of Jason/AgentSpeak Language for Abstraction Pro-
cess that define the *.asl file, Appendix IV

Figure 10.9: Illustration of the definition of an agent reasoning processes in
Jason/AgentSpeak that define the *.asl file, Appendix IV.

for inner NDI loop.”. The sub-system then sends the abstraction back to the

execute process named “habitat” with “update percept” function for making a

decision.

In addition, implementation of agent reasoning, for instance, the execution of

an open-loop control-plan, which links to the α1 abstraction “Applying 3-2-1-1

input to elevator of UAV for period T1”,is shown in line 376 of Figure 10.9. The

code example in Figure 10.9 may be read as: given the condition of “Aircraft exe-

cutes a manoeuvre in the trim condition.”, under the condition that it is believed

that the agent requires to update the aircraft aerodynamic parameters in longi-

tudinal dynamics for the inner NDI loop, then do the following: stop monitoring

157

10. UAV Agent Decision Method

Figure 10.10: 3D Visualization with FlightGear Flight Simulation [1]

and closed-loop control. Then set an initial values before re-identification. Next

activate the 3-2-1-1 sequence elevator input and then estimate new aerodynamic

parameters for the inner (longitudinal) NDI control loop. More detail of sEnglish

development and implementation can be found in [133].

10.3 UAV Simulation Environment

Non-linear Aerosonde UAV [129] simulation was used to evaluate agent perfor-

mance in the MATLAB/SIMULINK environment. FlightGear flight simulation

software [1] was employed to aid in 3D visualisation to monitor the aircraft dy-

namics via a UDP communication interface as shown in Figure 10.10. The DAT-

COM [104] or TORNADO [2] software was used to provide numerically calculated

aerodynamic stability and control coefficients from aircraft geometry for the ini-

tial parameter of the inner NDI control Loop.

158

10. UAV Agent Decision Method

Figure 10.11: Real-Time Flight Simulation of the Agent Controlled at 3 Stages
of the Flight with 3D Visualization (FlightGear Flight Simulation [1]) depicting
activation of agent based control system.

159

10. UAV Agent Decision Method

Figure 10.12: 2D Google Map to Illustrate the Desired Flight Path. [1]

160

10. UAV Agent Decision Method

Figure 10.13: Example Result of Decision Making based on Jason Reasoning
(Case Study I)

10.4 Computational Experiments

The agent based methodology presented has been evaluated in a non-linear Aerosonde

simulation environment which belongs to AeroSim Blockset and its decision mak-

ing ability was assessed.

10.4.1 Case Study I : Insufficient Initial Parameters and

First Flight Tuning

In this case study, our agent system was placed in a difficult situation where the

initial controller gains were insufficient to stabilise the aircraft and provide smooth

tracking of the waypoint in order to evaluate its performance. Therefore, our

agent system took over the responsibility to reconfigure the autopilot system by

intelligently tuning and switching the controller of the inner loop of the autopilot

system based on reasoning rules mentioned.

161

10. UAV Agent Decision Method

Figure 10.14: Overall 3D Simulated Result demonstrating operation using agent
based control system (Case I)

The example output of a Jason BDI agent, based on prescribed reasoning un-

der insufficiency of initial parameter accuracy, is demonstrated in Figure 10.13.

The figure shows that the agent triggered a plan for re-identification of the longi-

tudinal dynamics under the belief of needing to update new aircraft aerodynamic

parameters of inner NDI control loop after the agent believes that aircraft ma-

noeuvres in the trim flight condition and it requires updating the aircraft aero-

dynamic parameters in longitudinal dynamics for the inner NDI loop. And then

the agent execute a task to validate aircraft aerodynamic parameters.

Figure 10.14 illustrates an overview of mission in 3D view and aircraft response

states while operating. In addition, Figure 10.15 and 10.16 show the aircraft while

tracking the latitude-longitude waypoints and altitude, respectively. At the be-

ginning of the mission, the agent made a decision to select a hybrid adaptive

flight control mode to stabilise the aircraft for compensating local deficiencies

of initial aerodynamic parameters. In a second decision, the agent activated a

re-identification process, including plane testing, in order to update the aerody-

namic parameters for the inner NDI control-loop in longitudinal axes. Finally, it

generated a decision to re-identify new aerodynamic parameters of the inner NDI

162

10. UAV Agent Decision Method

Figure 10.15: Simulated Output of Waypoint Tracking (Case I)

Figure 10.16: Time Histories of Simulated Output States of Altitude Tracking
(Case I)

163

10. UAV Agent Decision Method

Figure 10.17: Overall 3D Simulated Result demonstrating operation using agent
based control system (Case II)

control-loop in lateral dynamics.

10.4.2 Case Study II : Elevator Failure

To evaluate the reliability and robustness of the system, our agent system was

made to face a problem of control surface impairment while stabilising and

smoothly tracking waypoints. Damage of a control surface was presented in the

simulation as a degradation in the control effectiveness of the aileron by 50%.

The time of fault occurrence in all control channels was set to be 580s. Our agent

system made a decision of tuning and switching the appropriate controller for the

autopilot system in order to continue operating until the end of the mission.

Similarly, Figure 10.17 demonstrates a summation of mission in 3D view and

aircraft position states whilst in flight. In addition, Figure 10.18 and 10.19 show

the aircraft position output of tracking the latitude-longitude waypoints and al-

titude, respectively. At the beginning of the mission, the agent monitored the

control performance to validate a model of the inner NDI control loop while tack-

ling waypoints to complete the mission. Eventually, the agent detected that the

control system performed poorly and believed that the system required updating

of the aircraft aerodynamic parameter in lateral dynamics for inner NDI loop.

The agent made a decision to select a hybrid adaptive flight control mode to sta-

bilise the aircraft and for compensating local deficiencies of initial aerodynamic

164

10. UAV Agent Decision Method

Figure 10.18: Simulated Output of Waypoint Tracking (Case II)

Figure 10.19: Time Histories of Simulated Output States of Altitude Tracking
(Case II)

165

10. UAV Agent Decision Method

parameters. Then, in a second decision, the agent stimulated a re-identification

process, including validation methodology, in order to update the aerodynamic

parameters for the inner NDI control-loop in lateral and directional axes. Fi-

nally, upon stabilizing and tracking the desired waypoints, the agent continued

to monitor the flight system.

Throughout the implementation, the agent reasoning engine performed ac-

tions which were dependent on abstractions formed via the interface of the phys-

ical engine while abstractions were evaluated by complex processes with the con-

tinuous engine. These abstractions were employed with a rational framework to

generated appropriated decisions.

10.5 Chapter Summary

This chapter has presented the implementations of a theoretical agent-based-

framework for an intelligent UAV control system that use rule-based reasoning

with the ability to abstract events. This new framework brings improvements

upon traditional adaptive or reconfigurable control schemes currently in avia-

tion by providing more adaptability via on-board dynamical modelling and flight

controller tuning under changing dynamics. As MATLAB/SIMULINK computa-

tions of the agent were fast enough for the real-time simulation of the flight, the

C/C++ implementation of the agent on-board of a UAS will be even faster.

Deficiencies in an initial controller and system degradation can be detected

due to accidental damage or ageing. In the future, this agent framework can be

augmented to provide an even more capable supervision of UAV’s mission and

to ultimately result in increased operational safety and longer term preservation

of autonomous UAV assets for their operators. sEnglish Publisher was used for

demonstration and to facilitate the compilation of the Jason based supervisor-

agent with SIMULINK-based executive processes for sensing and simulation for

foresight and feedback-control-based action.

166

Chapter 11

Conclusions and Future Work

11.1 Conclusion

This thesis presents an agent-supervised control-systems of UAV autopilots. The

agent consists of rule-based reasoning with the abstractions of events and the

ability to act upon decisions. This agent framework for the intelligent autopilot

system brings an improvement upon traditional adaptive or reconfigurable control

schemes currently used in aviation by providing more adaptability via on-board

dynamical modelling and flight controller tuning under changing dynamics. De-

ficiencies in an initial controller and system degradation can be detected due to

accidental damage or ageing.

The primary focus is on the development of key agent skills, including air-

flow angle estimation, adaptive control, and decision-making methods for control

switching to stabilize and track the desired waypoints. Furthermore, the develop-

ment of real-time abstraction evaluation method results in the ability to receive

a perception stream and subsequently filter it to generate the belief base that

belongs to the rational agent. This study proposes the development of model val-

idation for NDI control, flight trim condition monitoring, and control performance

evaluation.

In terms of integrating agent skills set and agent reasoning development, sEn-

glish Publisher was used for demonstration and to facilitate the compilation of the

Jason based supervisor-agent with Simulink-based executive processes for sensing

and simulation for foresight and feedback-control-based action. The agent with

167

11. Conclusions and Future Work

multi-thread execution integrates signal processing including system identifica-

tion, model based indirect and direct adaptive control, model validation, flight

trim condition status monitoring, and control performance evaluation. The Ja-

son+ based BDI agent makes decisions using reasoning by logic to execute actions

with requirements of intelligent control schemes.

Furthermore, this intelligent control system is considered to be applied on

small and low-cost UAVs that are equipped with a limited number of standard

UAV actuators and sensors such as pressure sensor for measuring airspeed and

altitude, GPS, IMU, and compass. Therefore, airflow angle estimation is devel-

oped instead of airflow angle sensor which requires extensive calibration for good

accuracy in practice.

Additionally, OLS in the frequency domain that works in combination with a

direct adaptive control strategy has been applied as indirect adaptive learning for

the neural network hybrid adaptive control scheme. This hybrid adaptive control

strategy can contribute a significant improvement in tracking performance over

direct and indirect adaptive control. Moreover, this frequency OLS can be utilised

to estimate aircraft aerodynamic parameter for NDI inner loop of flight control

system.

A frequency dependent model validation approach is used, which is based on a

discrete Fourier transform and a hypothesis test of the normalised spectrum with

χ2 distribution. This algorithm is a key procedure to abstract the continuous

information to discrete abstractions for 1) validating aerodynamic stability and

control coefficients in the inner loop of the NDI controller, 2) monitoring flight

trim condition, and 3) assessing tracking control performance of the flight control

system.

11.2 Future Work

In the future, this agent framework can be augmented to provide an even more ca-

pable supervision of UAV’s mission and ultimately result in increased operational

safety and the preservation of the autonomous UAV assets for their operators.

For instance, another problem that should be considered about agent framework

168

11. Conclusions and Future Work

is the issue of structural damaged aircraft. There are various relevant variables

that are affected from c.g. shifting, mass and inertia change, and aerodynamic

characteristics as mentioned in Section 3.2.3. Therefore, in response to this prob-

lem, the agent can perform an action of switching to a suitable structure of direct

and indirect adaptive control by considering the mentioned effect to provide a

significant improvement in the control performance in this case.

Another extension of the current work is to test the designed intelligent control

system in real world experiments. This experiment addresses the issue of verifying

a complete intelligent autopilot agent from a practical point of view. The model

that is used in our work is based on a small aircraft, such as 2.1 meter-wingspan

flying wing and 1.8 meter-wingspan conventional fixed-wing aircraft, built in our

autonomous control laboratory as shown in Figure 11.1.

Figure 11.1: Aircraft models built on our autonomous control laboratory

The aircraft models are equipped with Pixhawk autopilot for low-level pro-

gramming that consists of 32bit Cortex M4 core as processor, 3-axis gyroscope,

3-axis accelerometer, magnetometer, barometer, and pressure sensors to collect all

flight sensor data. Odroid board that is a high performance single computer board

is also equipped on the aircraft for high-level Jason programming. Furthermore,

the developed sEnglish document that contains high-level code for agent reason-

ing in Jason (AgentSpeak) can ultimately compile into C++/ROS for embedded

systems such as Linux-based Odroid board. Before real flight experiment, the

C++/ROS software and (Pixhawk autopilot and Odroid board) can be verified

with X-Plane Flight Simulator where this technique is called “Hardware-in-the-

Loop implementation”as illustrated in Figure 11.2.

169

11. Conclusions and Future Work

Figure 11.2: Concept and Experiment of Hardware-in-the-loop Implementation

170

Part IV

Appendices

171

Appendix A: Flight Equation of

Motion with Effect of Mass

Change

Considering the translational and rotational flight equation of motion from Eq.(3.5)

in Chapter 3.

~F = m ˙̄v +m ˙̄ω ×∆r +mω̄ × (v̄ + ω̄ ×∆r̄)
~M = I ˙̄ω +m∆r̄ × ˙̄v + ω̄ × Iω̄ +mω̄ × (∆r̄ × v̄)

(1)

where:

m Total mass of the aircraft

v̄ = [u v w]T Linear velocities decomposed in the body-frame.

ω̄ = [p q r]T Angular velocities decomposed in the body-

frame. The angular velocities p, q and r are com-

monly known as roll, pitch and yaw respectively.
~F = [Fx Fy Fz]

T External forces decomposed in the body-frame.

~M = [L M N]T External momentums decomposed in the body-

frame.

∆r̄ = [xcg ycg zcg]
T Shifted position of the centre of gravity in the

body-frame as shown in Fig. 3.2

172

I =

 Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

 Inertia tensor

The aircraft mass and inertia are assumed to undergo a change so that

m = m∗ + ∆m (2)

I = I∗ + ∆I =

 I∗x + ∆Ix I∗xy + ∆Ixy I∗xz + ∆Ixz

I∗yx + ∆Iyx I∗y + ∆Iy I∗yz + ∆Iyz

I∗zx + ∆Izx I∗zy + ∆Izy I∗z + ∆Iz

 (3)

where m∗ is the original mass of the aircraft, ∆m is the negative mass change

due to damage, I∗ is the original inertia matrix of the aircraft, and ∆I the change

in the inertia matrix due to damage.

Therefore, the translational equation of Eq. (1) can be expanded into the force

equations as follows:

Fx = (m∗ + ∆m)(u̇− vr + wq − xcg(q2 + r2) + ycg(pq − ṙ) + zcg(pr + q̇))

Fy = (m∗ + ∆m)(v̇ − wp+ ur − xcg(r2 + p2) + ycg(qr − ṗ) + zcg(qp+ ṙ))

Fz = (m∗ + ∆m)(ẇ − uq + vp− xcg(p2 + q2) + ycg(rp− q̇) + zcg(rq + ṗ))

(4)

The left hand side of Eq. (4) represents all the external forces applied to the

aircraft, respectively. In the dynamical model presented in [31, 66], the external

forces vector can be identified as the sum of three components: aerodynamic

(~FA), propulsion (~FP) and gravity (~FG). Then considering aerodynamic forces in

173

each axis as shown:

FAx = (m∗ + ∆m)(u̇− vr + wq − xcg(q2 + r2) + ycg(pq − ṙ) + zcg(pr + q̇)

+g sin θ − FPx
m∗+∆m

)

FAy = (m∗ + ∆m)(v̇ − wp+ ur − xcg(r2 + p2) + ycg(qr − ṗ) + zcg(qp+ ṙ)

−g cos θ sinφ− FPy
m∗+∆m

)

FAz = (m∗ + ∆m)(ẇ − uq + vp− xcg(p2 + q2) + ycg(rp− q̇) + zcg(rq + ṗ)

−g cos θ cosφ− FPz
m∗+∆m

)

(5)

Rewriting Eq. (5),

FAx = m∗(u̇− vr + wq − xcg(q2 + r2) + ycg(pq − ṙ) + zcg(pr + q̇) + g sin θ)

+∆m(u̇− vr + wq − xcg(q2 + r2) + ycg(pq − ṙ) + zcg(pr + q̇) + g sin θ)

−FPx
FAy = m(v̇ − wp+ ur − xcg(r2 + p2) + ycg(qr − ṗ) + zcg(qp+ ṙ)− g cos θ sinφ)

+∆m(v̇ − wp+ ur − xcg(r2 + p2) + ycg(qr − ṗ) + zcg(qp+ ṙ)− g cos θ sinφ)

−FPy
FAz = m∗(ẇ − uq + vp− xcg(p2 + q2) + ycg(rp− q̇) + zcg(rq + ṗ)− g cos θ cosφ)

+∆m(ẇ − uq + vp− xcg(p2 + q2) + ycg(rp− q̇) + zcg(rq + ṗ)− g cos θ cosφ)

−FPz
(6)

Alternatively, rewriting Eq. (6) into simplify form.

F ∗Ax + ∆FAx = m∗(u̇− vr + wq + g sin θ) + ∆FMx − FPx
F ∗Ay + ∆FAy = m∗(v̇ − wp+ ur − g cos θ sinφ) + ∆FMy − FPy
F ∗Az + ∆FAz = m∗(ẇ − uq + vp− g cos θ cosφ) + ∆FMz − FPz

(7)

174

Where

∆FMx = −m∗xcgq2 −m∗xcgr2 +m∗ycgpq −m∗ycgṙ +m∗zcgpr +m∗zcg q̇

+∆mu̇−∆mvr + ∆mwq −∆mxcgq
2 −∆mxcgr

2 + ∆mycgpq −∆mycgṙ

+∆mzcgpr +mzcg q̇ + ∆mg sin θ

∆FMy = −m∗xcgr2 −m∗xcgp2 +m∗ycgqr −m∗ycgṗ+m∗zcgqp+m∗zcgṙ

+∆mv̇ −∆mwp+ ∆mur −∆mxcgr
2 −∆mxcgp

2 + ∆mycgqr −∆mycgṗ

+∆mzcgqp+ ∆mzcgṙ −∆mg cos θ sinφ

∆FMz = −m∗xcgp2 −m∗xcgq2 +m∗ycgrp−m∗ycg q̇ +m∗zcgrq +m∗zcgṗ

+∆mẇ −∆muq + ∆mvp−∆mxcgp
2 −∆mxcgq

2 + ∆mycgrp−∆mycg q̇

+∆mzcgrq + ∆mzcgṗ−∆mg cos θ cosφ

(8)

From the relative equation in Eq. (3.20), Eq. (8) can be rearranged into:

∆FMx = ∆max − (m∗ + ∆m)xcgq
2 − (m∗ + ∆m)xcgr

2 + (m∗ + ∆m)ycgpq

−(m∗ + ∆m)ycgṙ + (m∗ + ∆m)zcgpr + (m∗ + ∆m)zcg q̇

= fMx(ax, q̇, ṙ, q
2, r2, pq, pr)

∆FMy = ∆may − (m∗ + ∆m)xcgr
2 − (m∗ + ∆m)xcgp

2 + (m∗ + ∆m)ycgqr

−(m∗ + ∆m)ycgṗ+ (m∗ + ∆m)zcgqp+ (m∗ + ∆m)zcgṙ

= fMy(ay, ṗ, ṙ, p
2, r2, qp, qr)

∆FMz = ∆maz − (m∗ + ∆m)xcgp
2 − (m∗ + ∆m)xcgq

2 + (m∗ + ∆m)ycgrp

−(m∗ + ∆m)ycg q̇ + (m∗ + ∆m)zcgrq + (m∗ + ∆m)zcgṗ

= fMz(az, ṗ, q̇, p
2, q2, rp, rq)

(9)

Therefore, Eq. (7) can be written:

m∗(u̇− vr + wq + g sin θ)− F ∗Ax − FPx = ∆FAx −∆FMx

m∗(v̇ − wp+ ur − g cos θ sinφ)− F ∗Ay − FPy = ∆FAy −∆FMy

m∗(ẇ − uq + vp− g cos θ cosφ)− F ∗Az − FPz = ∆FAz −∆FMz

(10)

Can be rearranged in matrix form:

m∗ ˙̄v +m∗ω̄ × v̄ − ~F
∗
G − ~F

∗
A − ~F

∗
P = ∆~FA −∆~FM (11)

175

where

∆~FA = fFA(α, β,
pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic force functions
discussed in Section 3.2.2

∆~FM = fFM (ax, ay, az, ṗ, q̇, ṙ, p
2, q2, r2, pq, pr, qp, qr)︸ ︷︷ ︸

aerodynamic force functions
discussed in Equation 9

(12)

Next, the rotational equation of Eq. (1) can be expanded into the moment

equations as follows:

L = I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy
+∆Ixṗ+ (∆Iz −∆Iy)qr − (ṙ + pq)∆Ixz + (r2 − q2)∆Iyz + (pr − q̇)∆Ixy
+m∗[xcg(vq + wr) + ycg(ẇ − uq)− zcg(v̇ + ur)]

+∆m[xcg(vq + wr) + ycg(ẇ − uq)− zcg(v̇ + ur)]

M = I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz
+∆Iy q̇ + (∆Ix −∆Iz)rp− (ṗ+ qr)∆Ixy + (p2 − r2)∆Izx + (qp− ṙ)∆Iyz
+m∗[−xcg(ẇ + vp) + ycg(up+ wr) + zcg(u̇− vr)]
+∆m[−xcg(ẇ + vp) + ycg(up+ wr) + zcg(u̇− vr)]

N = I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx
+∆Iz ṙ + (∆Iy −∆Ix)pq − (q̇ + rp)∆Iyz + (q2 − p2)∆Ixy + (rq − ṗ)∆Izx
+m∗[xcg(v̇ − wp)− ycg(u̇+ wq) + zcg(up+ qv)]

+∆m[xcg(v̇ − wp)− ycg(u̇+ wq) + zcg(up+ qv)]

(13)

Before move on, considering the left hand side of Eq. (1) represents all the external

moments applied to the aircraft, respectively. In the dynamical model presented

in [31, 66], the external moments vector can be identified as the sum of three

components: aerodynamic (~MA), propulsion (~MP) and gravity (~MG). Then

consider the left hand side term only aerodynamic moment term:

~MA = I ˙̄ω +m∆r̄ × ˙̄v + ω̄ × Iω̄ +mω̄ × (∆r̄ × v̄)−∆r × ~FG (14)

176

Then, the rotational equation of Eq. (14) can be expanded into:

LA = I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy
+∆Ixṗ+ (∆Iz −∆Iy)qr − (ṙ + pq)∆Ixz + (r2 − q2)∆Iyz + (pr − q̇)∆Ixy
+m∗[xcg(vq + wr) + ycg(ẇ − uq − g cosφ cos θ)− zcg(v̇ + ur − g sinφ cos θ)]

+∆m[xcg(vq + wr) + ycg(ẇ − uq − g cosφ cos θ)− zcg(v̇ + ur − g sinφ cos θ)]

MA = I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz
+∆Iy q̇ + (∆Ix −∆Iz)rp− (ṗ+ qr)∆Ixy + (p2 − r2)∆Izx + (qp− ṙ)∆Iyz
+m∗[−xcg(ẇ + vp− g cosφ cos θ) + ycg(up+ wr) + zcg(u̇− vr + g sin θ)]

+∆m[−xcg(ẇ + vp− g cosφ cos θ) + ycg(up+ wr) + zcg(u̇− vr + g sin θ)]

NA = I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx
+∆Iz ṙ + (∆Iy −∆Ix)pq − (q̇ + rp)∆Iyz + (q2 − p2)∆Ixy + (rq − ṗ)∆Izx
+m∗[xcg(v̇ − wp− g sinφ cos θ)− ycg(u̇+ wq + g sin θ) + zcg(up+ qv)]

+∆m[xcg(v̇ − wp− g sinφ cos θ)− ycg(u̇+ wq + g sin θ) + zcg(up+ qv)]

(15)

Rewriting Eq. (15) as follows:

LA = I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy
+∆Ixṗ+ (∆Iz −∆Iy)qr − (ṙ + pq)∆Ixz + (r2 − q2)∆Iyz + (pr − q̇)∆Ixy
+(m∗ + ∆m)xcgvq − (m∗ + ∆m)ycgvp+ (m∗ + ∆m)xcgwr

−(m∗ + ∆m)zcgwp+ (m∗ + ∆m)ycgaz − (m∗ + ∆m)zcgay

MA = I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz
+∆Iy q̇ + (∆Ix −∆Iz)rp− (ṗ+ qr)∆Ixy + (p2 − r2)∆Izx + (qp− ṙ)∆Iyz
−(m∗ + ∆m)xcgaz + (m∗ + ∆m)ycgup− (m∗ + ∆m)xcguq

+(m∗ + ∆m)ycgwr − (m∗ + ∆m)zcgwq + (m∗ + ∆m)zcgax

NA = I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx
+∆Iz ṙ + (∆Iy −∆Ix)pq − (q̇ + rp)∆Iyz + (q2 − p2)∆Ixy + (rq − ṗ)∆Izx
+(m∗ + ∆m)xcgay − (m∗ + ∆m)ycgax + (m∗ + ∆m)zcgup

+(m∗ + ∆m)zcgqv − (m∗ + ∆m)xcgur − (m∗ + ∆m)ycgrv

(16)

177

Then, Eq. (16) can be simplified into:

LA = I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy + ∆LM

MA = I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz + ∆MM

NA = I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx + ∆NM

(17)

where

∆LM = ∆Ixṗ+ (∆Iz −∆Iy)qr − (ṙ + pq)∆Ixz + (r2 − q2)∆Iyz + (pr − q̇)∆Ixy
+(m∗ + ∆m)xcgvq − (m∗ + ∆m)ycgvp+ (m∗ + ∆m)xcgwr

−(m∗ + ∆m)zcgwp+ (m∗ + ∆m)ycgaz − (m∗ + ∆m)zcgay

= fML
(ṗ, q̇, ṙ, q2, r2, pq, pr, qr, vq, vp, wr, wp, ay, az)

(18)

∆MM = ∆Iy q̇ + (∆Ix −∆Iz)rp− (ṗ+ qr)∆Ixy + (p2 − r2)∆Izx + (qp− ṙ)∆Iyz
−(m∗ + ∆m)xcgaz + (m∗ + ∆m)ycgup− (m∗ + ∆m)xcguq

+(m∗ + ∆m)ycgwr − (m∗ + ∆m)zcgwq + (m∗ + ∆m)zcgax

= fMM
(ṗ, q̇, ṙ, p2, r2, rp, qr, qp, up, uq, wr, wq, ax, az)

(19)

∆NM = ∆Iz ṙ + (∆Iy −∆Ix)pq − (q̇ + rp)∆Iyz + (q2 − p2)∆Ixy + (rq − ṗ)∆Izx
+(m∗ + ∆m)xcgay − (m∗ + ∆m)ycgax + (m∗ + ∆m)zcgup

+(m∗ + ∆m)zcgqv − (m∗ + ∆m)xcgur − (m∗ + ∆m)ycgrv

= fMN
(ṗ, q̇, ṙ, p2, q2, pq, rp, rq, up, qv, ur, rv, ay, az)

(20)

In addition, Eq. 17 can be rewritten to:

I∗x ṗ+ (I∗z − I∗y)qr − (ṙ + pq)I∗xz + (r2 − q2)I∗yz + (pr − q̇)I∗xy − L∗A = ∆LA −∆LM

I∗y q̇ + (I∗x − I∗z)rp− (ṗ+ qr)I∗xy + (p2 − r2)I∗zx + (qp− ṙ)I∗yz −M∗
A = ∆MA −∆MM

I∗z ṙ + (I∗y − I∗x)pq − (q̇ + rp)I∗yz + (q2 − p2)I∗xy + (rq − ṗ)I∗zx −N∗A = ∆NA −∆NM

(21)

178

Therefore, Eq. (21) Can be rearranged in matrix form:

I∗ ˙̄ω + ω̄ × I∗ω̄ + ~M
∗
A = ∆ ~MA −∆ ~MM

(22)

where

∆ ~MA = fMA
(α, β,

pb

2V
,
qc̄

2V
,
rb

2V
, ...)︸ ︷︷ ︸

aerodynamic moment functions
discussed in Section 3.2.2

∆ ~MM = fMM
(ax, ay, az, ṗ, q̇, ṙ, p

2, q2, r2, pq, pr, qp, qr, up, uq, ur, vp, vq, vr, wp, wq, wr)︸ ︷︷ ︸
aerodynamic moment functions

discussed in Equations 18, 19, and 20

(23)

179

Appendix B: Air Flow Angle

Reconstruction

From the definition of airspeed, angle of attack and side-slipe angle:

V =
√
u2 + v2 + w2

α = tan−1 w

u

β = sin−1 v

V

(24)

Then, differentiating Eqs 24 with respect to time gives

V̇ =
1

V
(uu̇+ vv̇ + wẇ)

α̇ =

(
uẇ − wu̇
u2 + w2

)
β̇ =

(u2 + w2)v̇ − v(uu̇+ wẇ)

v2
√
u2 + w2

(25)

The translational acceleration in Eq. (3.20) can be rearranged to

u̇ = rv − qw − g sin θ + ax

v̇ = pw − ru+ g cos θ sinφ+ ay

ẇ = qu− pv + g cos θ cosφ+ az

(26)

180

The body-axis components are related to V , α, and β in wind axes by

u = V cosα sin β

v = V sin β

w = V sinα cos β

(27)

Substituting in Eqs. 25 for u̇, v̇, and ẇ from Eqs. 26 and for u, v, and w from

Eqs. 27

V̇ = g(cosφ cos θ sinα cos β + sinφ cos θ sin β − sin θ cosα cos β)

+ax cosα cos β + ay sin β + az sinα cos β

α̇ = q − tan β(p cosα + r sinα) +
g

V cos β
(cosφ cos θ cosα + sin θ sinα)

−ax
sinα

V cos β
+ az

cosα

V cos β

β̇ = p sinα− r cosα +
g sin β

V
(cosα sin θ − sinα cosφ cos θ)

+
g

V
cos β sinφ cos θ − ax

cosα sin β

V
+ ay

cos β

V
− az

sinα sin β

V

(28)

181

Appendix C: Aircraft Geometry,

Mass Properties, and

Aerodynamic Characteristics

Figure 3: Aerosonde UAV.

182

Table 2: Aircraft geometry and mass properties
Aerosonde UAV NASA Twin Otter Aircraft

mean chord c̄, m 0.18994 1.9812
wing span b, m 2.8956 19.812
wing area S, m2 0.55 39.252

mass, kgs 13.5 4961.93
Ix, kg-m2 0.8244 28,336.60
Iy, kg-m2 1.135 32,893.50
Iz, kg-m2 1.759 52,156.96
Ixz, kg-m2 0.1204 1,529.36

Table 3: Performance Comparison of Parameter Estimation with Aerosonde Sim-
ulation in Longitudinal Dynamic.
Parameter Aerosonde Least Square Least Square OLS OLS

θ Model in Time in Frequency in Time in Frequency
in Aerosim Domain Domain Domain Domain
Blockset Method Method Method Method

Cmo 0.1350 0.1159 0.1234 0.1159 0.1061
Cmα -2.7397 -3.0769 -3.3070 -3.0769 -2.91
Cmα̇ -10.3796 -7.8875 -16.2841 -7.8875 -9.1849
Cmq -38.2067 -19.7372 -23.4229 -19.7372 -19.7759
Cmδe 0.9918 -0.8072 -0.8810 -0.8072 -0.7984

183

Table 4: Parameter estimates for NASA Twin Otter aircraft measurement data
for lateral maneuver

Parameter Measurement α, β Estimated α, β Publication
θ Real-Time Real-Time [Klein:06]

RFT RFT Output-error
Method Method Method

CYβ -0.8819 -0.89 -0.866
CYr 6.649 -0.777 0.931
CYδr 0.3425 0.346 0.375
Clβ -0.1087 -0.1096 -0.119
Clp -0.5765 -0.5776 -0.584
Clr 0.1736 0.1498 0.188
Clδa -0.2283 -0.2289 -0.228
Clδr -0.0186 0.01904 0.0384
Cnβ 0.08831 0.08932 0.0865
Cnp -0.05613 -0.05422 -0.0639
Cnr -0.0205 -0.1853 -0.192
Cnδa 0.000229 0.0009684 -0.00273
Cnδr -0.1373 -0.1373 -0.136

184

Table 5: Parameter Estimates for Simulated Data of Aerosonde Model
Parameter Simulated α, β Estimated α, β

θ Real-Time Real-Time
Frequency Domain Frequency Domain

Final Value of Ideal Signal Estimated θ̂±σ̂
CL0 0.2999 0.300±0.008
CLα 7.124 6.911±0.194
CLq 9.026 8.520±1.727
CLδe 0.1342 0.073±0.050
CD0 0.03931 0.043±0.0009
CDα 0.2606 0.158±0.0202
CDq 11.16 10.057±0.2638
CDδe 0.06779 0.0895±0.0067
CY0 -0.0001229 -0.0006±0.0018
CYβ -1.13 -1.0742±0.0329
CYp -0.02373 0.2280±0.1009
CYr 0.005276 -0.220±0.0242
CYδa -0.1011 -0.0226±0.0355
CYδr 0.2435 0.252±0.0034
Cl0 -0.001003 -0.00107±0.0002
Clβ -0.1377 -0.1324±0.0036
Clp -0.4824 -0.4563±0.0109
Clr 0.2362 0.2102±0.0033
Clδa -0.1617 -0.1537±0.0038
Clδr -0.001492 -0.000298±0.00037262
Cm0 0.0083 0.08627±0.0002
Cmα -2.3764 -2.385±0.0045
Cmq -26.2375 -26.43±0.0465
Cmδe -0.6513 -0.6714±0.0013
Cn0 1.309e-5 0.000041±0.000114
Cnβ 0.06973 0.066±0.0023
Cnp -0.08816 -0.1047±0.0072
Cnr -0.07067 -0.05648±0.0013
Cnδa 0.004077 -0.0011±0.0025
Cnδr -0.06834 -0.068865±0.0002350

185

Appendix D: Source Code in

Format of sEnglish Sentences for

Agent Decision

INITIAL BELIEFS AND GOALS

-Applied dac auto tunning in longitudinal.

-Applied minor auto tuning in longitudinal.

-Applied dac auto tunning in lateral.

-Applied minor auto tuning in lateral.

-Applied dac auto tunning in directional.

-Applied minor auto tuning in directional.

+Applying hac control.

+First flight.

INITIAL ACTIONS

Apply Force and set the initial parameter of aircraft for

agent.

Calculate Pathpoint using dubin flight path planning from

Aircraft_position , Aircraft_heading , Target_position ,

Finaltarget_direction and Option.

186

Calculate Input for flight control system using line of

sight guidance algorithm from P, V and Required_altitude.

Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m.

if (~ first_flight) {

Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

from State_ndi.

};

Receive Perceptions from environment and other processor

like agent adminssion.

Monitor aircraft manoeuvre condition or status from Altitude

and send back output of NoUtilityFucn.

PERCEPTION PROCESSES

Monitor the following Booleans :

Monitor the following objects :

REASONING

If ~^[First flight .] then +^[Applied revalidation .].

If ~^[Compensate parameter .] then +^[Switch off compensate

parameter .]

EXECUTABLE PLANS

If +^[First flight .] under the condition of ^[True.]

then do the following: +^[Applying minor auto tuning in

lateral .]

187

+^[Applying minor auto tuning in directional .]

+^[Applying minor auto tuning in longitudinal .]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

first flight from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

~^[Applying ndi control .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

+^[Applying hac control .]

+^[Applying minor auto tuning with hac for first flight .]

};

if (applying_hac_control) {

+^[Apply hac control .]

+^[Applying minor auto tuning with hac for first flight .]

};

~^[First flight .].

188

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with hac for first flight .]

then do the following:

[Stopping calculate Theta that is the compensator makeing

use and compensate of model -based adaptive control

routines for first flight from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

[Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

from State_ndi .]

[Monitor aircraft manoeuvre condition or status from

Altitude and send back output of NoUtilityFucn .]

~^[Applying minor auto tuning in lateral .]

~^[Applying minor auto tuning in directional .]

~^[Applying minor auto tuning in longitudinal .]

~^[Applying minor auto tuning with hac for first flight .]

+^[Apply hac control .]

+^[Applied revalidation .]

+^[Applied minor auto tuning in lateral .]

+^[Applied minor auto tuning in longitudinal .]

+^[Applied minor auto tuning in directional .].

If +^[Bad control performance .] under the condition of ^[

Auto tuning .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

189

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying minor auto tuning in lateral .]

+^[Applying minor auto tuning in directional .]

+^[Applying minor auto tuning in longitudinal .]

if (requiring_revalidation_plus_delay) {

~^[Requiring revalidation plus delay.]

[Check Update_state_of_agent in term of model validation for

nonlinear dynamic inversion control in frequency domain

with delayed time from State_ndi .]

[Set speed command back to required airspeed and send

NoTriggerFunc .]

+^[Applied revalidation plus delay.]

};

if (applying_ndi_control) {

-^[Applying ndi control .]

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Set the initial parameter for direct adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

+^[Applying hac control .]

};

if (applying_hac_control) {

190

[Reset adaptive gain adjustment for direct adaptive control

and send back the output of NoTriggerFunc .]

[Set the initial parameter for control compensation using

frequency least square algorithm in bad control

performance condition and send Theta output back.]

[Calculate Theta that is the compensator making use and

compensate of model -based adaptive control routines in

bad control performance from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply hac control .]

+^[Applying minor auto tuning with hac for bad control

performance .]

};

+^[Applied hac with compensation method in bad control

performance .].

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with hac for bad control

performance .]

then do the following:

[Stopping calculate Theta that is the compensator making use

and compensate of model -based adaptive control routines

in bad control performance from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

191

[Monitor aircraft manoeuvre condition or status from

Altitude and send back output of NoUtilityFucn .]

~^[Applying minor auto tuning in lateral .]

~^[Applying minor auto tuning in directional .]

~^[Applying minor auto tuning in longitudinal .]

~^[Applying minor auto tuning with hac for bad control

performance .]

+^[Applied minor auto tuning in lateral .]

+^[Applied minor auto tuning in longitudinal .]

+^[Applied minor auto tuning in directional .]

+^[Requiring revalidation .].

If +^[Control via hac.] under the condition of ~^[Control

via ndi.] & ~^[Auto tuning]

then do the following:

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

~^[Applying ndi control .]

};

if (applying_trim_force) {

[Stopping hold the Control_surface_input of aircraft with a

previous constant value .]

-^[Applying trim force.]

};

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

192

State_ndi_m .]

+^[Applying hac control .].

If +^[Compensate parameter .] under the condition of ~^[Auto

tuning]

then do the following:

[Set the initial parameter for control compensation using

frequency orthogonal least square algorithm and send

Theta output back.]

[Calculate Theta that is the compensator making use and

compensate of model -based adaptive control routines using

frequency orthogonal least sqaure from State_ndi .].

If +^[Switch off compensate parameter .] under the condition

of ~^[Auto tuning]

then do the following:

[Stopping calculate Theta that is the compensator making use

and compensate of model -based adaptive control routines

using frequency orthogonal least sqaure from State_ndi .].

If +^[Control via ndi.] under the condition of not ^[

Applying ndi control .] & ~^[Auto tuning]

then do the following:

if (applying_hac_control) {

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

~^[Applying hac control .]

};

193

[Set the initial parameter for nonlinear dynamic inversion

control from State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using nonlinear dynamic

inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

+^[Applying ndi control .].

If +^[Validate parameter .] under the condition of ^[True.]

then do the following:

[Set initial parameter for validating model in frequency

domain and send State output back.]

[Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

from State_ndi .].

If +^[Requiring revalidation .] under the condition of ^[True

.]

then do the following:

if (applied_revalidation) {

[Stopping check Update_state_of_model in term of model

validation for nonlinear dynamic inversion control in

frequency domain from State_ndi .]

};

if (applied_revalidation_plus_delay) {

[Stopping check Update_state_of_agent in term of model

validation for nonlinear dynamic inversion control in

frequency domain with delayed time from State_ndi .]

};

[Set initial parameter for validating model in frequency

domain and send State output back.]

194

[Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

with delayed time from State_ndi .]

[Monitor aircraft manoeuvre condition or status from

Altitude and send back output of NoUtilityFucn .]

~^[Applied revalidation plus delay.]

+^[Applied revalidation .]

~^[Requiring revalidation].

If +^[Requiring revalidation plus delay.] under the

condition of ^[True.]

then do the following:

if (applied_revalidation) {

[Stopping check Update_state_of_model in term of model

validation for nonlinear dynamic inversion control in

frequency domain from State_ndi .]

};

if (applied_revalidation_plus_delay) {

[Stopping check Update_state_of_model in term of model

validation for nonlinear dynamic inversion control in

frequency domain with delayed time from State_ndi .]

};

[Set initial parameter for validating model in frequency

domain and send State output back.]

[Monitor aircraft manoeuvre condition or status from

Altitude and send back output of NoUtilityFucn .].

If +^[Altitude in bound.] under the condition of ^[Requiring

revalidation plus delay.]

then do the following:

195

~^[Requiring revalidation plus delay.]

[Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

with delayed time from State_ndi .]

[Set speed command back to required airspeed and send

NoTriggerFunc .]

+^[Applied revalidation plus delay].

If +^[Termination of timer.] under the condition of ^[

Applying major auto tuning with hac in longitudinal .]

then do the following:

[Stopping calculate new aerodynamic parameter of Theta for

model -based adaptive control routines in longitudinal

axes from State_ndi .]

[Stopping apply a 3-2-1-1 sequence input of Force on

elevator .]

[Replace a new aerodynamic parameter for nonlinear dynamic

inversion control routines in longitudinal from

reidentification process and hold Control_surface_input .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying major auto tuning in longitudinal .]

~^[Applying major auto tuning with hac in longitudinal .]

~^[Applied dac auto tuning in longitudinal .]

~^[Applied minor auto tuning in longitudinal .]

196

+^[Applying hac control]

+^[Requiring revalidation plus delay].

If +^[Termination of timer.] under the condition of ^[

Applying major auto tuning with hac in lateral .]

then do the following:

[Stopping calculate new aerodynamic parameter of Theta for

model -based adaptive control routines in lateral axes

from State_ndi .]

[Stopping apply a 3-2-1-1 sequence input of Force on aileron

and rudder repectively .]

[Replace a new aerodynamic parameter for nonlinear dynamic

inversion control routines in lateral from

reidentification process and hold Control_surface_input .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying major auto tuning in lateral .]

~^[Applying major auto tuning with hac in lateral .]

~^[Applied dac auto tuning in lateral .]

~^[Applied minor auto tuning in lateral .]

+^[Applying hac control]

+^[Requiring revalidation plus delay].

If +^[Termination of timer.] under the condition of ^[

Applying major auto tuning with hac in directional .]

197

then do the following:

[Stopping calculate new aerodynamic parameter of Theta for

model -based adaptive control routines in directional axes

from State_ndi .]

[Stopping apply a 3-2-1-1 sequence input of Force on aileron

and rudder repectively .]

[Replace a new aerodynamic parameter for nonlinear dynamic

inversion control routines in directional from

reidentification process and hold Control_surface_input .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying major auto tuning in directional .]

~^[Applying major auto tuning with hac in directional .]

~^[Applied dac auto tuning in directional .]

~^[Applied minor auto tuning in directional .]

+^[Applying hac control]

+^[Requiring revalidation plus delay].

If +^[Termination of timer.] under the condition of ^[

Applying major auto tuning with hac in coupling axes.]

then do the following:

[Stopping calculate new aerodynamic parameter of Theta for

model -based adaptive control routines in both lateral and

directional axes from State_ndi .]

198

[Stopping apply a 3-2-1-1 sequence input of Force on aileron

and rudder repectively .]

[Replace a new aerodynamic parameter for nonlinear dynamic

inversion control routines in both lateral and

directional from reidentification process and hold

Control_surface_input .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying major auto tuning in directional .]

~^[Applying major auto tuning in lateral .]

~^[Applying major auto tuning with hac in coupling axes.]

~^[Applied dac auto tuning in lateral .]

~^[Applied dac auto tuning in directional .]

~^[Applied minor auto tuning in lateral .]

~^[Applied minor auto tuning in directional .]

+^[Applying hac control]

+^[Requiring revalidation plus delay].

If +^[Requiring major adjustment in longitudinal .] under the

condition of ^[Auto tuning .] & ^[Aircraft in trim status

.] & not ^[Applying major auto tuning in longitudinal .] &

not ^[Applying minor auto tuning in longitudinal .] & not

^[Applying dac auto tuning in longitudinal .] & not ^[

Applying major auto tuning in lateral .] & not ^[Applying

minor auto tuning in lateral .] & not ^[Applying dac auto

199

tuning in lateral .] & not ^[Applying major auto tuning in

directional .] & not ^[Applying minor auto tuning in

directional .] & not ^[Applying dac auto tuning in

directional .]

then do the following:

+^[Applying major auto tuning in longitudinal .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of ten second and send output back

with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on elevator .]

[Set an initial value before reidentification process in

pitching moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on elevator .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in longitudinal axes from

State_ndi .]

+^[Applying major auto tuning with hac in longitudinal .]

};

if (applying_hac_control) {

200

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Set the terminated time of ten second and send output back

with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on elevator .]

[Set an initial value before reidentification process in

pitching moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on elevator .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in longitudinal axes from

State_ndi .]

+^[Applying major auto tuning with ndi in longitudinal .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Requiring major adjustment in

longitudinal .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

201

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying major auto tuning in longitudinal .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of ten second and send output back

with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on elevator .]

[Set an initial value before reidentification process in

pitching moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on elevator .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in longitudinal axes from

State_ndi .]

+^[Applying major auto tuning with hac in longitudinal .]

};

if (applying_hac_control) {

202

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Set the terminated time of ten second and send output back

with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on elevator .]

[Set an initial value before reidentification process in

pitching moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on elevator .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in longitudinal axes from

State_ndi .]

+^[Applying major auto tuning with ndi in longitudinal .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Requiring major adjustment in lateral .]

& not ^[Applying major auto tuning in longitudinal .] &

not ^[Applying minor auto tuning in longitudinal .] & not

^[Applying dac auto tuning in longitudinal .] & not ^[

Applying major auto tuning in lateral .] & not ^[Applying

minor auto tuning in lateral .] & not ^[Applying dac auto

203

tuning in lateral .] & not ^[Applying major auto tuning in

directional .] & not ^[Applying minor auto tuning in

directional .] & not ^[Applying dac auto tuning in

directional .]

then do the following:

+^[Applying major auto tuning in lateral .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of twelve second and send output

back with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on aileron and rudder repectively from State_ndi .]

[Set an initial value before reidentification process in

rolling moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on aileron and

rudder repectively .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in lateral axes from

State_ndi .]

+^[Applying major auto tuning with hac in lateral .]

};

+^[Waiting termination .].

204

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Requiring major adjustment in

directional .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying major auto tuning in directional .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of twelve second and send output

back with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on aileron and rudder repectively from State_ndi .]

[Set an initial value before reidentification process in

yawing moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

205

[Apply a 3-2-1-1 sequence input of Force on aileron and

rudder repectively .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in directional axes from

State_ndi .]

+^[Applying major auto tuning with hac in directional .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Applied minor auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying major auto tuning in longitudinal .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

206

[Set the terminated time of ten second and send output back

with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on elevator .]

[Set an initial value before reidentification process in

pitching moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on elevator .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in longitudinal axes from

State_ndi .]

+^[Applying major auto tuning with hac in longitudinal .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Applied minor auto tuning in lateral .]

& not ^[Applied minor auto tuning in directional .] & not

^[Applying major auto tuning in longitudinal .] & not ^[

Applying minor auto tuning in longitudinal .] & not ^[

Applying dac auto tuning in longitudinal .] & not ^[

Applying major auto tuning in lateral .] & not ^[Applying

minor auto tuning in lateral .] & not ^[Applying dac auto

tuning in lateral .] & not ^[Applying major auto tuning in

directional .] & not ^[Applying minor auto tuning in

directional .] & not ^[Applying dac auto tuning in

directional .]

then do the following:

+^[Applying major auto tuning in lateral .]

207

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of twelve second and send output

back with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on aileron and rudder repectively from State_ndi .]

[Set an initial value before reidentification process in

rolling moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on aileron and

rudder repectively .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in lateral axes from

State_ndi .]

+^[Applying major auto tuning with hac in lateral .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Applied minor auto tuning in

directional .] & not ^[Applied minor auto tuning in

lateral .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

208

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying major auto tuning in directional .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of twelve second and send output

back with NoUtilityFunc .]

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on aileron and rudder repectively from State_ndi .]

[Set an initial value before reidentification process in

yawing moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on aileron and

rudder repectively .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in directional axes from

State_ndi .]

209

+^[Applying major auto tuning with hac in directional .]

};

+^[Waiting termination .].

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & ^[Applied minor auto tuning in

directional .] & ^[Applied minor auto tuning in lateral .]

& not ^[Applying major auto tuning in longitudinal .] &

not ^[Applying minor auto tuning in longitudinal .] & not

^[Applying dac auto tuning in longitudinal .] & not ^[

Applying major auto tuning in lateral .] & not ^[Applying

minor auto tuning in lateral .] & not ^[Applying dac auto

tuning in lateral .] & not ^[Applying major auto tuning in

directional .] & not ^[Applying minor auto tuning in

directional .] & not ^[Applying dac auto tuning in

directional .]

then do the following:

+^[Applying major auto tuning in lateral .]

+^[Applying major auto tuning in directional .]

if (applying_hac_control) {

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set a speed command of cruise speed value and send

NoUtilityFunc back.]

[Stopping apply Control_surface_input using hybrid adaptive

control for flight control loop from Input_command ,

State_ndi and State_ndi_m .]

[Set the terminated time of twelve second and send output

back with NoUtilityFunc .]

210

[Set an initial vaule for a 3-2-1-1 sequence input of Force

on aileron and rudder repectively from State_ndi .]

[Set an initial value before reidentification process in

rolling and yawing moment and send Theta output back.]

[Start to record the clock timer and send NoUtilityFunc back

.]

[Apply a 3-2-1-1 sequence input of Force on aileron and

rudder repectively .]

[Calculate new aerodynamic parameter of Theta for model -

based adaptive control routines in both lateral and

directional axes from State_ndi .]

+^[Applying major auto tuning with hac in coupling axes.]

};

+^[Waiting termination .].

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with hac in longitudinal .]

then do the following:

[Stopping calculate Theta that is the compensator makeing

use and compensate of model -based adaptive control

routines for pitching maneuver from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying minor auto tuning in longitudinal .]

~^[Applying minor auto tuning with hac in longitudinal .]

+^[Applying hac control .]

+^[Applied minor auto tuning in longitudinal .]

+^[Requiring revalidation .].

211

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with ndi in longitudinal .]

then do the following:

[Stopping calculate Theta that is the compensator makeing

use and compensate of model -based adaptive control

routines for pitching maneuver from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying minor auto tuning in longitudinal .]

~^[Applying minor auto tuning with ndi in longitudinal .]

+^[Applying ndi control .]

+^[Applied minor auto tuning in longitudinal .]

+^[Requiring revalidation .].

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with hac in lateral .]

then do the following:

[Stopping calculate Theta that is the compensator makeing

use and compensate of model -based adaptive control

routines for rolling maneuver from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying minor auto tuning in lateral .]

~^[Applying minor auto tuning with hac in lateral .]

+^[Applying hac control .]

+^[Applied minor auto tuning in lateral .]

+^[Requiring revalidation .].

If +^[Termination of timer.] under the condition of ^[

Applying minor auto tuning with hac in directional .]

212

then do the following:

[Stopping calculate Theta that is the compensator makeing

use and compensate of model -based adaptive control

routines for yawing maneuver from State_ndi .]

[Stopping start to record the clock timer and send

NoUtilityFunc back.]

~^[Applying minor auto tuning in directional .]

~^[Applying minor auto tuning with hac in directional .]

+^[Applying hac control .]

+^[Applied minor auto tuning in directional .]

+^[Requiring revalidation .].

If +^[Auto tuning .] under the condition of ^[Requiring minor

adjustment in longitudinal .] & ^[Applied dac auto tuning

in longitudinal .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying minor auto tuning in longitudinal .]

if (applying_hac_control) {

[Set the initial parameter for control compensation using

frequency least square algorithm for pitching maneuver

and send Theta output back.]

213

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

pitching maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of sixty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply hac control .]

+^[Applying minor auto tuning with hac in longitudinal .]

};

if (applying_ndi_control) {

[Set the initial parameter for control compensation using

frequency least square algorithm for pitching maneuver

and send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

pitching maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of sixty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply ndi control .]

+^[Applying minor auto tuning with ndi in longitudinal .]

};

+^[Waiting termination .].

214

If +^[Requiring minor adjustment in lateral .] under the

condition of ^[Auto tuning .] & ^[Applied dac auto tuning

in lateral .] & not ^[Applied minor auto tuning in lateral

.] & not ^[Applying major auto tuning in longitudinal .] &

not ^[Applying minor auto tuning in longitudinal .] & not

^[Applying dac auto tuning in longitudinal .] & not ^[

Applying major auto tuning in lateral .] & not ^[Applying

minor auto tuning in lateral .] & not ^[Applying dac auto

tuning in lateral .] & not ^[Applying major auto tuning in

directional .] & not ^[Applying minor auto tuning in

directional .] & not ^[Applying dac auto tuning in

directional .]

then do the following:

+^[Applying minor auto tuning in lateral .]

if (applying_hac_control) {

[Reset adaptive gain adjustment for direct adaptive control

and send back the output of NoTriggerFunc .]

[Set the initial parameter for control compensation using

frequency least square algorithm for rolling maneuver and

send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

rolling maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply hac control .]

215

+^[Applying minor auto tuning with hac in lateral .]

};

if (applying_ndi_control) {

[Set the initial parameter for control compensation using

frequency least square algorithm for rolling maneuver and

send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

rolling maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply ndi control .]

+^[Applying minor auto tuning with ndi in lateral .]

};

+^[Waiting termination .].

If +^[Requiring minor adjustment in directional .] under the

condition of ^[Auto tuning .] & ^[Applied dac auto tuning

in directional .] & not ^[Applied minor auto tuning in

directional .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

216

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying minor auto tuning in directional .]

if (applying_hac_control) {

[Reset adaptive gain adjustment for direct adaptive control

and send back the output of NoTriggerFunc .]

[Set the initial parameter for control compensation using

frequency least square algorithm for yawing maneuver and

send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

yawing maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply hac control .]

+^[Applying minor auto tuning with hac in directional .]

};

if (applying_ndi_control) {

[Set the initial parameter for control compensation using

frequency least square algorithm for yawing maneuver and

send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

yawing maneuver from State_ndi .]

217

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of thirty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply ndi control .]

+^[Applying minor auto tuning with ndi in directional .]

};

+^[Waiting termination .].

If +^[Requiring minor adjustment in longitudinal .] under the

condition of ^[Auto tuning .] & ^[Applied dac auto tuning

in longitudinal .] & not ^[Applied minor auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying minor auto tuning in longitudinal .]

if (applying_hac_control) {

[Reset adaptive gain adjustment for direct adaptive control

and send back the output of NoTriggerFunc .]

[Set the initial parameter for control compensation using

frequency least square algorithm for pitching maneuver

218

and send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

pitching maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of sixty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply hac control .]

+^[Applying minor auto tuning with hac in longitudinal .]

};

if (applying_ndi_control) {

[Set the initial parameter for control compensation using

frequency least square algorithm for pitching maneuver

and send Theta output back.]

[Calculate Theta that is the compensator makeing use and

compensate of model -based adaptive control routines for

pitching maneuver from State_ndi .]

[Stopping monitor aircraft manoeuvre condition or status

from Altitude and send back output of NoUtilityFucn .]

[Set the terminated time of sixty second and send output

back with NoUtilityFunc .]

[Start to record the clock timer and send NoUtilityFunc back

.]

+^[Apply ndi control .]

+^[Applying minor auto tuning with ndi in longitudinal .]

};

+^[Waiting termination .].

219

If +^[Auto tuning .] under the condition of ^[Requiring

direct adaptive in longitudinal .] & not ^[Applied dac

auto tuning in longitudinal .] & not ^[Applying major auto

tuning in longitudinal .] & not ^[Applying minor auto

tuning in longitudinal .] & not ^[Applying dac auto tuning

in longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying dac auto tuning in longitudinal .]

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Clear the compensated parameter and send Theta output .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

~^[Applying ndi control .]

+^[Applying hac control .]

};

+^[Requiring revalidation .]

~^[Applying dac auto tuning in longitudinal .]

+^[Applied dac auto tuning in longitudinal .].

220

If +^[Requiring direct adaptive in lateral .] under the

condition of ^[Auto tuning .] & not ^[Applied dac auto

tuning in lateral .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying dac auto tuning in lateral .]

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Clear the compensated parameter and send Theta output .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

~^[Applying ndi control .]

+^[Applying hac control .]

};

+^[Requiring revalidation .]

~^[Applying dac auto tuning in lateral .]

+^[Applied dac auto tuning in lateral .].

221

If +^[Requiring direct adaptive in directional .] under the

condition of ^[Auto tuning .] & not ^[Applied dac auto

tuning in directional .] & not ^[Applying major auto

tuning in longitudinal .] & not ^[Applying minor auto

tuning in longitudinal .] & not ^[Applying dac auto tuning

in longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying dac auto tuning in directional .]

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Clear the compensated parameter and send Theta output .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

~^[Applying ndi control .]

+^[Applying hac control .]

};

+^[Requiring revalidation .]

~^[Applying dac auto tuning in directional .]

+^[Applied dac auto tuning in directional .].

222

If +^[Requiring direct adaptive in longitudinal .] under the

condition of ^[Auto tuning .] & not ^[Applied dac auto

tuning in longitudinal .] & not ^[Applying major auto

tuning in longitudinal .] & not ^[Applying minor auto

tuning in longitudinal .] & not ^[Applying dac auto tuning

in longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

+^[Applying dac auto tuning in longitudinal .]

if (applying_ndi_control) {

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

[Clear the compensated parameter and send Theta output .]

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

~^[Applying ndi control .]

+^[Applying hac control .]

};

+^[Requiring revalidation .]

~^[Applying dac auto tuning in longitudinal .]

+^[Applied dac auto tuning in longitudinal .].

223

If +^[Aircraft in trim status .] under the condition of ^[

Auto tuning .] & not ^[Applying major auto tuning in

longitudinal .] & not ^[Applying minor auto tuning in

longitudinal .] & not ^[Applying dac auto tuning in

longitudinal .] & not ^[Applying major auto tuning in

lateral .] & not ^[Applying minor auto tuning in lateral .]

& not ^[Applying dac auto tuning in lateral .] & not ^[

Applying major auto tuning in directional .] & not ^[

Applying minor auto tuning in directional .] & not ^[

Applying dac auto tuning in directional .]

then do the following:

if (applied_revalidation){

[Stopping check Update_state_of_model in term of model

validation for nonlinear dynamic inversion control in

frequency domain from State_ndi .]

};

if (applied_revalidation_plus_delay) {

[Stopping check Update_state_of_agent in term of model

validation for nonlinear dynamic inversion control in

frequency domain with delayed time from State_ndi .]

};

[Set initial parameter for validating model in frequency

domain and send State output back.]

[Check Update_state_of_model in term of model validation for

nonlinear dynamic inversion control in frequency domain

from State_ndi .]

~^[Applied revalidation plus delay.]

+^[Applied revalidation .]

~^[Applied dac auto tuning in longitudinal .]

224

~^[Applied minor auto tuning in longitudinal .]

~^[Applied dac auto tuning in lateral .]

~^[Applied minor auto tuning in lateral .]

~^[Applied dac auto tuning in directional .]

~^[Applied minor auto tuning in directional .].

If -^[Control via ndi.] under the condition of ~^[Control

via hac]

then do the following:

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

~^[Applying ndi control .].

If -^[Control via ndi.] under the condition of ^[Applying

ndi control .]

then do the following:

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

~^[Applying ndi control .].

If -^[Control via ndi.] under the condition of ^[Applying

ndi control .] & ^[Control via hac]

then do the following:

[Stopping apply Control_surface_input using nonlinear

dynamic inversion control for flight control loop from

Input_command , State_ndi and State_ndi_m .]

~^[Applying ndi control .]

225

[Set the initial parameter for hybrid adaptive control from

State_ndi and hold Control_surface_input .]

[Apply Control_surface_input using hybrid adaptive control

for flight control loop from Input_command , State_ndi and

State_ndi_m .]

+^[Applying hac control .].

If -^[Validate parameter .] under the condition of ^[True.]

then do the following:

[Stopping check Update_state_of_model in term of model

validation for nonlinear dynamic inversion control in

frequency domain from State_ndi .].

If -^[Auto tuning .] under the condition of ^[True.]

then do the following:

~^[Applying auto tuning .].

226

Appendix E: Source Code in

Format of Jason/AgentSpeak for

Agent Decision

// INITIAL GOAL AND BELIEFS

!configureSystem.

// PERCEPTION PROCESSES

// Note: Perception Boolean tag names have to be identical

to their sentence in lower case.

+! configureSystem:true <-

linkSystems (6253 , control_subsystem ,planning_subsystem ,

guidance_subsystem ,subsystem2 ,habitat ,utility_system ,

subsystem3 ,triggering_subsystem);

!take_initial_actions.

// INITIAL BELIEFS

227

-applied_dac_auto_tunning_in_longitudinal .

-applied_minor_auto_tuning_in_longitudinal .

-applied_dac_auto_tunning_in_lateral .

-applied_minor_auto_tuning_in_lateral .

-applied_dac_auto_tunning_in_directional .

-applied_minor_auto_tuning_in_directional .

+applying_hac_control .

+first_flight .

// INITIAL ACTIONS

+! take_initial_actions <-

invoke(control_subsystem ,runOnce ,initial_parameter_for_agent

,[],["Force"]);

invoke(planning_subsystem ,runRepeated ,plan_flight_path ,["

Aircraft_position","Aircraft_heading","Target_position","

Finaltarget_direction","Option"],["Pathpoint"]);

invoke(guidance_subsystem ,runRepeated ,

apply_guidance_control12 ,["P","V","Required_altitude"],["

Input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

if (~ first_flight) {

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

};

invoke(habitat ,runRepeated ,update_percept ,[]);

invoke(utility_system ,runRepeated ,monitor_aircraft_status ,["

Altitude"],["NoUtilityFucn"]).

228

// UPDATING PERCEPTION

+! linkSystems(complete):true <- checkPercepts.

@cd

!checkPercepts <-

updateSystems(control_subsystem ,planning_subsystem ,

guidance_subsystem ,subsystem2 ,habitat ,utility_system ,

subsystem3 ,triggering_subsystem);

!checkPercepts.

// REASONING

applied_revalidation :- ~first_flight .

switch_off_compensate_parameter :- ~compensate_parameter .

// EXECUTABLE PLANS

// executable plan :

+first_flight :

true <-

+applying_minor_auto_tuning_in_lateral;

+applying_minor_auto_tuning_in_directional;

+applying_minor_auto_tuning_in_longitudinal;

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_first_flight ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

if (applying_ndi_control) { invoke(control_subsystem ,

229

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

~applying_ndi_control;

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

+applying_hac_control;

+applying_minor_auto_tuning_with_hac_for_first_flight;

}; if (applying_hac_control) { +apply_hac_control;

+applying_minor_auto_tuning_with_hac_for_first_flight;

}; ~first_flight .

// executable plan :

+termination_of_timer :

applying_minor_auto_tuning_with_hac_for_first_flight <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_first_flight ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

invoke(utility_system ,runRepeated ,monitor_aircraft_status ,["

Altitude"],["NoUtilityFucn"]);

~applying_minor_auto_tuning_in_lateral;

~applying_minor_auto_tuning_in_directional;

~applying_minor_auto_tuning_in_longitudinal;

230

~applying_minor_auto_tuning_with_hac_for_first_flight;

+apply_hac_control;

+applied_revalidation;

+applied_minor_auto_tuning_in_lateral;

+applied_minor_auto_tuning_in_longitudinal;

+applied_minor_auto_tuning_in_directional .

// executable plan :

+bad_control_performance :

auto_tuning & not applying_major_auto_tuning_in_longitudinal

& not applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_minor_auto_tuning_in_lateral;

+applying_minor_auto_tuning_in_directional;

+applying_minor_auto_tuning_in_longitudinal;

if (requiring_revalidation_plus_delay) { ~

requiring_revalidation_plus_delay;

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_agent"]);

invoke(triggering_subsystem ,runOnce ,

set_speed_command_back_to_required_airspeed ,[],["

NoTriggerFunc"]);

+applied_revalidation_plus_delay;

}; if (applying_ndi_control) { -applying_ndi_control;

231

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_direct_adaptive_control ,["

State_ndi"],["Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

+applying_hac_control;

}; if (applying_hac_control) { invoke(triggering_subsystem ,

runOnce ,reset_adaptive_gain_adjustment ,[],["NoTriggerFunc

"]);

invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_bad_control_condition

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_bad_control_performance

,["State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_hac_control;

+

applying_minor_auto_tuning_with_hac_for_bad_control_performance

;

232

}; +

applied_hac_with_compensation_method_in_bad_control_performance

.

// executable plan :

+termination_of_timer :

applying_minor_auto_tuning_with_hac_for_bad_control_performance

<-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_bad_control_performance

,["State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(utility_system ,runRepeated ,monitor_aircraft_status ,["

Altitude"],["NoUtilityFucn"]);

~applying_minor_auto_tuning_in_lateral;

~applying_minor_auto_tuning_in_directional;

~applying_minor_auto_tuning_in_longitudinal;

~

applying_minor_auto_tuning_with_hac_for_bad_control_performance

;

+applied_minor_auto_tuning_in_lateral;

+applied_minor_auto_tuning_in_longitudinal;

+applied_minor_auto_tuning_in_directional;

+requiring_revalidation .

// executable plan :

+control_via_hac :

~control_via_ndi & ~auto_tuning <-

if (applying_ndi_control) { invoke(control_subsystem ,

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

233

~applying_ndi_control;

}; if (applying_trim_force) { invoke(control_subsystem ,

stopRepeated ,apply_trim_force ,[],["Control_surface_input"

]);

-applying_trim_force;

}; invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

+applying_hac_control .

// executable plan :

+compensate_parameter :

~auto_tuning <-

invoke(subsystem3 ,runOnce ,

set_initial_parameter_of_orthogonal_least_square_for_control_compensation

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_using_orthogonal_least_square_for_ndi

,["State_ndi"],["Theta"]) .

// executable plan :

+switch_off_compensate_parameter :

~auto_tuning <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_using_orthogonal_least_square_for_ndi

,["State_ndi"],["Theta"]) .

// executable plan :

+control_via_ndi :

applying_ndi_control & ~auto_tuning <-

234

if (applying_hac_control) { invoke(control_subsystem ,

stopRepeated ,apply_hac_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

~applying_hac_control;

}; invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_ndi ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

+applying_ndi_control .

// executable plan :

+validate_parameter :

true <-

invoke(subsystem2 ,runOnce ,

set_initial_parameter_for_validating_model_in_frequency_domain

,[],["State"]);

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]) .

// executable plan :

+requiring_revalidation :

true <-

if (applied_revalidation) { invoke(subsystem2 ,stopRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

}; if (applied_revalidation_plus_delay) { invoke(subsystem2 ,

stopRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_agent"]);

235

}; invoke(subsystem2 ,runOnce ,

set_initial_parameter_for_validating_model_in_frequency_domain

,[],["State"]);

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_model"]);

invoke(utility_system ,runRepeated ,monitor_aircraft_status ,["

Altitude"],["NoUtilityFucn"]);

~applied_revalidation_plus_delay;

+applied_revalidation;

~requiring_revalidation .

// executable plan :

+requiring_revalidation_plus_delay :

true <-

if (applied_revalidation) { invoke(subsystem2 ,stopRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

}; if (applied_revalidation_plus_delay) { invoke(subsystem2 ,

stopRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_model"]);

}; invoke(subsystem2 ,runOnce ,

set_initial_parameter_for_validating_model_in_frequency_domain

,[],["State"]);

invoke(utility_system ,runRepeated ,monitor_aircraft_status ,["

Altitude"],["NoUtilityFucn"]) .

// executable plan :

+altitude_in_bound :

requiring_revalidation_plus_delay <-

~requiring_revalidation_plus_delay;

236

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_model"]);

invoke(triggering_subsystem ,runOnce ,

set_speed_command_back_to_required_airspeed ,[],["

NoTriggerFunc"]);

+applied_revalidation_plus_delay .

// executable plan :

+termination_of_timer :

applying_major_auto_tuning_with_hac_in_longitudinal <-

invoke(subsystem3 ,stopRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

,["State_ndi"],["Theta"]);

invoke(control_subsystem ,stopRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(control_subsystem ,runOnce ,

update_new_parameter_from_reidentification_in_longitudinal

,[],["Control_surface_input"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_major_auto_tuning_in_longitudinal;

~applying_major_auto_tuning_with_hac_in_longitudinal;

~applied_dac_auto_tuning_in_longitudinal;

~applied_minor_auto_tuning_in_longitudinal;

237

+applying_hac_control;

+requiring_revalidation_plus_delay .

// executable plan :

+termination_of_timer :

applying_major_auto_tuning_with_hac_in_lateral <-

invoke(subsystem3 ,stopRepeated ,

estimate_new_aircraft_aerodynamic_parameters_for_lateral

,["State_ndi"],["Theta"]);

invoke(control_subsystem ,stopRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(control_subsystem ,runOnce ,

update_new_parameter_from_reidentificaiton_in_lateral

,[],["Control_surface_input"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_major_auto_tuning_in_lateral;

~applying_major_auto_tuning_with_hac_in_lateral;

~applied_dac_auto_tuning_in_lateral;

~applied_minor_auto_tuning_in_lateral;

+applying_hac_control;

+requiring_revalidation_plus_delay .

// executable plan :

+termination_of_timer :

238

applying_major_auto_tuning_with_hac_in_directional <-

invoke(subsystem3 ,stopRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_directional

,["State_ndi"],["Theta"]);

invoke(control_subsystem ,stopRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(control_subsystem ,runOnce ,

update_new_parameter_from_reidentification_in_directional

,[],["Control_surface_input"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_major_auto_tuning_in_directional;

~applying_major_auto_tuning_with_hac_in_directional;

~applied_dac_auto_tuning_in_directional;

~applied_minor_auto_tuning_in_directional;

+applying_hac_control;

+requiring_revalidation_plus_delay .

// executable plan :

+termination_of_timer :

applying_major_auto_tuning_with_hac_in_coupling_axes <-

invoke(subsystem3 ,stopRepeated ,

estimate_new_aircraft_aerodynamic_parameters_for_coupling

,["State_ndi"],["Theta"]);

239

invoke(control_subsystem ,stopRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(control_subsystem ,runOnce ,

update_new_parameter_from_reidentification_in_coupling

,[],["Control_surface_input"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_major_auto_tuning_in_directional;

~applying_major_auto_tuning_in_lateral;

~applying_major_auto_tuning_with_hac_in_coupling_axes;

~applied_dac_auto_tuning_in_lateral;

~applied_dac_auto_tuning_in_directional;

~applied_minor_auto_tuning_in_lateral;

~applied_minor_auto_tuning_in_directional;

+applying_hac_control;

+requiring_revalidation_plus_delay .

// executable plan :

+requiring_major_adjustment_in_longitudinal :

auto_tuning & aircraft_in_trim_status & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

240

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_longitudinal;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_ten_second ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_longitudinal ,[],["

Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_longitudinal

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_longitudinal;

241

}; if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_ten_second ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_longitudinal ,[],["

Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_longitudinal

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_ndi_in_longitudinal;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & requiring_major_adjustment_in_longitudinal &

not applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

242

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_longitudinal;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_ten_second ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_longitudinal ,[],["

Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_longitudinal

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

243

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_longitudinal;

}; if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_ten_second ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_longitudinal ,[],["

Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_longitudinal

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_ndi_in_longitudinal;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & requiring_major_adjustment_in_lateral & not

244

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_lateral;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_twelve_second ,[],["NoUtilityFunc"

]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_lateral_and_directional

,["State_ndi"],["Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_lateral ,[],[

"Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

245

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameters_for_lateral

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_lateral;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & requiring_major_adjustment_in_directional &

not applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_directional;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_twelve_second ,[],["NoUtilityFunc"

246

]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_lateral_and_directional

,["State_ndi"],["Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_directional

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_directional

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_directional;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & applied_minor_auto_tuning_in_longitudinal &

not applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_longitudinal;

247

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_ten_second ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_longitudinal ,[],["

Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_longitudinal

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_pitch_force ,[],["Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_longitudinal

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_longitudinal;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & applied_minor_auto_tuning_in_lateral & not

applied_minor_auto_tuning_in_directional & not

applying_major_auto_tuning_in_longitudinal & not

248

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_lateral;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_twelve_second ,[],["NoUtilityFunc"

]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_lateral_and_directional

,["State_ndi"],["Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_lateral ,[],[

"Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

249

Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameters_for_lateral

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_lateral;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & applied_minor_auto_tuning_in_directional & not

applied_minor_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_major_auto_tuning_in_directional;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_twelve_second ,[],["NoUtilityFunc"

250

]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_lateral_and_directional

,["State_ndi"],["Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_in_directional

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameter_for_directional

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_directional;

}; +waiting_termination .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & applied_minor_auto_tuning_in_directional &

applied_minor_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

251

+applying_major_auto_tuning_in_lateral;

+applying_major_auto_tuning_in_directional;

if (applying_hac_control) { invoke(utility_system ,

stopRepeated ,monitor_aircraft_status ,["Altitude"],["

NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_speed_command_to_cruise_speed ,[],["NoUtilityFunc"]);

invoke(control_subsystem ,stopRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_twelve_second ,[],["NoUtilityFunc"

]);

invoke(control_subsystem ,runOnce ,

set_initial_value_for_3_2_1_1_input_in_lateral_and_directional

,["State_ndi"],["Force"]);

invoke(subsystem3 ,runOnce ,

set_initial_value_before_reidentification_for_coupling

,[],["Theta"]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

invoke(control_subsystem ,runRepeated ,

apply_3_2_1_1_for_lateral_and_directional_force ,[],["

Force"]);

invoke(subsystem3 ,runRepeated ,

estimate_new_aircraft_aerodynamic_parameters_for_coupling

,["State_ndi"],["Theta"]);

+applying_major_auto_tuning_with_hac_in_coupling_axes;

}; +waiting_termination .

// executable plan :

252

+termination_of_timer :

applying_minor_auto_tuning_with_hac_in_longitudinal <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_minor_auto_tuning_in_longitudinal;

~applying_minor_auto_tuning_with_hac_in_longitudinal;

+applying_hac_control;

+applied_minor_auto_tuning_in_longitudinal;

+requiring_revalidation .

// executable plan :

+termination_of_timer :

applying_minor_auto_tuning_with_ndi_in_longitudinal <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_minor_auto_tuning_in_longitudinal;

~applying_minor_auto_tuning_with_ndi_in_longitudinal;

+applying_ndi_control;

+applied_minor_auto_tuning_in_longitudinal;

+requiring_revalidation .

// executable plan :

+termination_of_timer :

applying_minor_auto_tuning_with_hac_in_lateral <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_lateral_axes ,["

253

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_minor_auto_tuning_in_lateral;

~applying_minor_auto_tuning_with_hac_in_lateral;

+applying_hac_control;

+applied_minor_auto_tuning_in_lateral;

+requiring_revalidation .

// executable plan :

+termination_of_timer :

applying_minor_auto_tuning_with_hac_in_directional <-

invoke(subsystem3 ,stopRepeated ,

compensate_aircraft_parameter_v2_for_directional_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

~applying_minor_auto_tuning_in_directional;

~applying_minor_auto_tuning_with_hac_in_directional;

+applying_hac_control;

+applied_minor_auto_tuning_in_directional;

+requiring_revalidation .

// executable plan :

+auto_tuning :

requiring_minor_adjustment_in_longitudinal &

applied_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

254

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_minor_auto_tuning_in_longitudinal;

if (applying_hac_control) { invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_longitudinal

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_sixty_second ,[],["NoUtilityFunc"])

;

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_hac_control;

+applying_minor_auto_tuning_with_hac_in_longitudinal;

}; if (applying_ndi_control) { invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_longitudinal

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_sixty_second ,[],["NoUtilityFunc"])

255

;

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_ndi_control;

+applying_minor_auto_tuning_with_ndi_in_longitudinal;

}; +waiting_termination .

// executable plan :

+requiring_minor_adjustment_in_lateral :

auto_tuning & applied_dac_auto_tuning_in_lateral & not

applied_minor_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_minor_auto_tuning_in_lateral;

if (applying_hac_control) { invoke(triggering_subsystem ,

runOnce ,reset_adaptive_gain_adjustment ,[],["NoTriggerFunc

"]);

invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_lateral

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_lateral_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

256

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_hac_control;

+applying_minor_auto_tuning_with_hac_in_lateral;

}; if (applying_ndi_control) { invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_lateral

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_lateral_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_ndi_control;

+applying_minor_auto_tuning_with_ndi_in_lateral;

}; +waiting_termination .

// executable plan :

+requiring_minor_adjustment_in_directional :

auto_tuning & applied_dac_auto_tuning_in_directional & not

applied_minor_auto_tuning_in_directional & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

257

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_minor_auto_tuning_in_directional;

if (applying_hac_control) { invoke(triggering_subsystem ,

runOnce ,reset_adaptive_gain_adjustment ,[],["NoTriggerFunc

"]);

invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_directional

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_directional_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_hac_control;

+applying_minor_auto_tuning_with_hac_in_directional;

}; if (applying_ndi_control) { invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_directional

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

258

compensate_aircraft_parameter_v2_for_directional_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_thirty_second ,[],["NoUtilityFunc"

]);

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_ndi_control;

+applying_minor_auto_tuning_with_ndi_in_directional;

}; +waiting_termination .

// executable plan :

+requiring_minor_adjustment_in_longitudinal :

auto_tuning & applied_dac_auto_tuning_in_longitudinal & not

applied_minor_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_minor_auto_tuning_in_longitudinal;

if (applying_hac_control) { invoke(triggering_subsystem ,

runOnce ,reset_adaptive_gain_adjustment ,[],["NoTriggerFunc

"]);

invoke(subsystem3 ,runOnce ,

259

set_initial_parameter_for_control_compensation_in_longitudinal

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_sixty_second ,[],["NoUtilityFunc"])

;

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_hac_control;

+applying_minor_auto_tuning_with_hac_in_longitudinal;

}; if (applying_ndi_control) { invoke(subsystem3 ,runOnce ,

set_initial_parameter_for_control_compensation_in_longitudinal

,[],["Theta"]);

invoke(subsystem3 ,runRepeated ,

compensate_aircraft_parameter_v2_for_longitudinal_axes ,["

State_ndi"],["Theta"]);

invoke(utility_system ,stopRepeated ,monitor_aircraft_status ,[

"Altitude"],["NoUtilityFucn"]);

invoke(utility_system ,runOnce ,

set_terminated_time_of_sixty_second ,[],["NoUtilityFunc"])

;

invoke(utility_system ,runRepeated ,reckon_time ,[],["

NoUtilityFunc"]);

+apply_ndi_control;

+applying_minor_auto_tuning_with_ndi_in_longitudinal;

}; +waiting_termination .

260

// executable plan :

+auto_tuning :

requiring_direct_adaptive_in_longitudinal & not

applied_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_dac_auto_tuning_in_longitudinal;

if (applying_ndi_control) { invoke(control_subsystem ,

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

invoke(subsystem3 ,runOnce ,clear_the_compensated_parameter

,[],["Theta"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control;

+applying_hac_control;

}; +requiring_revalidation;

~applying_dac_auto_tuning_in_longitudinal;

+applied_dac_auto_tuning_in_longitudinal .

261

// executable plan :

+requiring_direct_adaptive_in_lateral :

auto_tuning & not applied_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_dac_auto_tuning_in_lateral;

if (applying_ndi_control) { invoke(control_subsystem ,

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

invoke(subsystem3 ,runOnce ,clear_the_compensated_parameter

,[],["Theta"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control;

+applying_hac_control;

}; +requiring_revalidation;

~applying_dac_auto_tuning_in_lateral;

+applied_dac_auto_tuning_in_lateral .

// executable plan :

262

+requiring_direct_adaptive_in_directional :

auto_tuning & not applied_dac_auto_tuning_in_directional &

not applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_dac_auto_tuning_in_directional;

if (applying_ndi_control) { invoke(control_subsystem ,

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

invoke(subsystem3 ,runOnce ,clear_the_compensated_parameter

,[],["Theta"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control;

+applying_hac_control;

}; +requiring_revalidation;

~applying_dac_auto_tuning_in_directional;

+applied_dac_auto_tuning_in_directional .

// executable plan :

+requiring_direct_adaptive_in_longitudinal :

263

auto_tuning & not applied_dac_auto_tuning_in_longitudinal &

not applying_major_auto_tuning_in_longitudinal & not

applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

+applying_dac_auto_tuning_in_longitudinal;

if (applying_ndi_control) { invoke(control_subsystem ,

stopRepeated ,apply_ndi_control ,["Input_command","

State_ndi","State_ndi_m"],["Control_surface_input"]);

invoke(subsystem3 ,runOnce ,clear_the_compensated_parameter

,[],["Theta"]);

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control;

+applying_hac_control;

}; +requiring_revalidation;

~applying_dac_auto_tuning_in_longitudinal;

+applied_dac_auto_tuning_in_longitudinal .

// executable plan :

+aircraft_in_trim_status :

auto_tuning & not applying_major_auto_tuning_in_longitudinal

264

& not applying_minor_auto_tuning_in_longitudinal & not

applying_dac_auto_tuning_in_longitudinal & not

applying_major_auto_tuning_in_lateral & not

applying_minor_auto_tuning_in_lateral & not

applying_dac_auto_tuning_in_lateral & not

applying_major_auto_tuning_in_directional & not

applying_minor_auto_tuning_in_directional & not

applying_dac_auto_tuning_in_directional <-

if (applied_revalidation){ invoke(subsystem2 ,stopRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

}; if (applied_revalidation_plus_delay) { invoke(subsystem2 ,

stopRepeated ,

validate_model_in_frequency_domain_plus_delay_v2 ,["

State_ndi"],["Update_state_of_agent"]);

}; invoke(subsystem2 ,runOnce ,

set_initial_parameter_for_validating_model_in_frequency_domain

,[],["State"]);

invoke(subsystem2 ,runRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]);

~applied_revalidation_plus_delay;

+applied_revalidation;

~applied_dac_auto_tuning_in_longitudinal;

~applied_minor_auto_tuning_in_longitudinal;

~applied_dac_auto_tuning_in_lateral;

~applied_minor_auto_tuning_in_lateral;

~applied_dac_auto_tuning_in_directional;

~applied_minor_auto_tuning_in_directional .

// executable plan :

265

+control_via_ndi :

~control_via_hac <-

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control .

// executable plan :

+control_via_ndi :

applying_ndi_control <-

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control .

// executable plan :

+control_via_ndi :

applying_ndi_control & control_via_hac <-

invoke(control_subsystem ,stopRepeated ,apply_ndi_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

~applying_ndi_control;

invoke(control_subsystem ,runOnce ,

set_initial_parameter_for_hac ,["State_ndi"],["

Control_surface_input"]);

invoke(control_subsystem ,runRepeated ,apply_hac_control ,["

Input_command","State_ndi","State_ndi_m"],["

Control_surface_input"]);

+applying_hac_control .

// executable plan :

+validate_parameter :

true <-

266

invoke(subsystem2 ,stopRepeated ,

validate_model_in_frequency_domainv2 ,["State_ndi"],["

Update_state_of_model"]) .

// executable plan :

+auto_tuning :

true <-

~applying_auto_tuning .

267

Bibliography

[1] FlightGear Flight Simulation. [Online] Available from

http://www.flightgear.org/. xiii, 158, 159, 160

[2] Tornado: A Vortex Lattice Method Implemented in MATLAB. [Online].

Available from http://tornado.redhammer.se/index.php. 158

[3] M. J. Allen and R. P. Dibley. Modeling aircraft wing loads from flight

data using neural networks. Technical Report NASA/TM-2003-212032,

NASA Dryden Flight Research Center, Septempber 2003. 15

[4] S. I. AlSwailem. Application of Robust Control in Unmanned Vehicle

Flight Control System Design. PhD thesis, College of Aeronautics, Cranfield

University, 2004. 11

[5] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, A. Pironti,

and M. Virgilio. Algorithms for 3d uav path generation and tracking.

In In Proceeding of 45th IEEE Conference on Decision & Control, pages

pp.5275–5280, San Diego, CA, 2006. 58

[6] P. J. Antsaklis, K. M. Passino, and S. J. Wang. Towards intelligent

autonomous control systems : Architecture and fundamental issues. Journal

of Intelligent and Robotic Systems, 1:315–342, 1989. 20

[7] P. J. Antsaklis, K. M. Passino, and S. J. Wang. An introduction to

autonomous control systems. Journal and Magazines of Control Systems,

IEEE, 11[4]:5–13, June 1991. 20

268

BIBLIOGRAPHY

[8] J. P. Appel. Online System Identification for Fault Tolerant Control of

Unmanned Aerial Vehicles. Master’s thesis, Stellenbosch University, 2013.

80

[9] B. A. Bakar. Autonomous Multi-agent Reconfigurable Control System.

PhD thesis, University of Southampton, March 2013. 26

[10] P Balaguer and R Vilanova. A new frequency dependent approach

to model validation. Frontiers in Adaptive Control, 2009. Shuang Cong,

InTech. 118, 119, 122, 123

[11] J. D. Barton. Fundamentals of small unmanned aircraft flight. Journal

of Johns Hopkins APL Technical Digest, 31:pp. 132–149, 2012. 81, 82

[12] M. Bennett. Development of Technologies for Low-Cost Oceanographic

Unmanned Aeronautical Vehicle. PhD thesis, School of Electronics and

Computer Science, 2009. 10

[13] S. Bhattacharyya, D. Cofer, D. J. Musliner, J. Mueller, and

E. Engstrom. Certification considerations for adaptive systems. Technical

report, NASA Langley Research Center, March 2015. 3, 26

[14] R. H. Bordini, J. F. Hbner, and M. Wooldridge. Programming

Multi-Agent Systems in AgentSpeak using Jason. Wiley, Chichester, 2007.

ix, 3, 69, 70

[15] J. D. Boskovic and N. Knoebel. A comparison study of several adap-

tive control strategies for resilient flight control. In AIAA Guidance, Navi-

gation, and Control Conference, Chicago, Illinois, August 2009. 19

[16] J. T. BoswJohn and P. S. Willliams-Hayes. Flight test results from

the nf-15b intelligent flight control system (ifcs) project with adaptation

to a simulated stabilator failure. Technical report, NASA Dryden Flight

Research Center, Edwards, California, USA, Decempber 2007. 2

[17] J. J. Burken, P. Williams-Hayes, J. T. Kaneshige, and S. J.

Stachowiak. Adaptive control using neural network augmentation for a

269

BIBLIOGRAPHY

modified f-15 aircraft. In Control and Automation, 2006. MED ’06. 14th

Mediterranean Conference on, pages 1–6, 2006. 15

[18] A. J. Calise, S. Lee, and M. Sharma. Direct adaptive reconfigurable

control of a tailless fighter aircraft. In Proceeding of the AIAA Guidance,

Navigation, and Control Conference, pages 88–97, 1998. 15

[19] A. J. Calise and R. T. Rysdyk. Adaptive model inversion flight control

for tiltrotor aircraft. In Proceeding of AIAA Guidance, Navigation and

Control Conference, pages 1633–1639, 1997.

[20] A. J. Calise and R. T. Rysdyk. Nonlinear adaptive flight control using

neural networks. Journal of Control Systems, IEEE, 18[6]:14–25, December

1998. 15

[21] S. F. Campbell, N. T. Nguyen, J. Kaneshige, and K. Krishnaku-

mar. Parameter estimation for a hybrid adaptive flight controller. In AIAA

Infotech@Aerospace Conference, Seatle, Washington, April 2009. 18

[22] X. Q. Chen, Q. Ou, D. R. Wong, Y. J. Li, M. Sinclair, and

A. Marburg. Flight Dynamics Modelling and Experimental Validation

for Unmanned Aerial Vehicles. Sate of the Art in Land, Sea, Air, and

Collaborative Missions. InTech, 2009. ISBN: 978-953-307-001-8. 80

[23] H. Chitsaz and S. LaValle. Time-optimal paths for a dubins airplane.

In In proceeding of 46th IEEE Conference on Decision and Control, pages

pp.2379–2384, New Orleans, LA, December 2007. 58

[24] A. Cho, Y. S. Kang, B. J. Park, and C. S. Yoo. Airflow angle

and wind estimation using gps/ins navigation data and airspeed. In In

Proceeding of 13th International Conference of Control Automation and

System (ICCAS), Gwangja, Korea, 2013. 81

[25] A. Cho, J. Kim, S. Lee, and C. Kee. Wind estimation and airspeed

calibration using a uav with a single-antenna gps receiver and pitot tube.

Journal of IEEE Transactions on Aeorspace and Electronic Systems, 47:pp.

109–117, 2011. 81

270

BIBLIOGRAPHY

[26] G. Chowdhary, W. M. DeBusk, and E. N. Johnson. Real-time

system identification of a small multi-engine aircraft with structure damage.

In AIAA Infotech@Aerospace 2010, Atlanta, Georgia, 20-22 April 2010. 14

[27] G. Chowdhary and R. Jategaonkar. Aerodynamic parameter esti-

mation from flight data applying extended and unscented kalman fiter. In

Proceeding of AIAA Atmospheric Flight Mechanics Conference and Exhibit,

Keystone, Colorado, 2006. 13

[28] G. Chowdhary and R. Jategaonkar. Aerodynamic parameter esti-

mation from flight data applying extended and unscented kalman filter.

Journal of Aerospace Science and Technology, 14:pp. 106–117, 2010. 84

[29] G. Chowdhary and E. Johnson. Recursive updated least squares based

modification term for adaptive control. In 2010 American Control Confer-

ence, Marriott Waterfront, Baltimore, MD, USA, June 30 - July 2 2010.

14

[30] S. Chumalee. Robust Gain-Scheduled H-infinity Control for Unmanned

Aerial Vehicles. PhD thesis, School of Engineering, Cranfield University,

2010. 12

[31] M. V. Cook. Flight Dynamic Principles. Elsevier Ltd., Oxford, 2007. 34,

38, 173, 176

[32] M. Curvo. Estimation of aircraft aerodynamic derivatives using extended

kalman filter. Journal of the Brazilian Society of Mechanical Sciences,

22(2):133–148, 2000. 13

[33] F. Daneshfar and H. Bevrani. Multi-agent systems in control

engineering: A survey. Journal of Control Science and Engineering,

2009[531080]:pp. 1–12, 2009. 26

[34] W. M. DeBusk, G. Chowdhary, and E. N. Johnson. Real-time

system identification of a small multi-engine aircraft. In Proceeding of the

AIAA Atmosheric Flight Mechanics Conference, pages 1–15, 2009. 14

271

BIBLIOGRAPHY

[35] L. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and S. M. Veres.

Practical verification of decision-making in agent-based autonomous sys-

tems. Automated Software Engineering, 2014. 3

[36] L. Dennis, M. Fisher, A. Lisitsa, N. Lincoln, and S. M. Veres.

Satellite control using rational agent programming. IEEE Intelligent Sys-

tems, 25[3], April 2010. 3, 26, 77

[37] G. Ducard, K. C. Kulling, and H. P. Geering. A simple and

adaptive on-line path planing system for a uav. In Proceeding of the 15th

Mediterranean Conference on Control and Automation, Athen, Greece, July

2007. 55, 57

[38] P. Eng, L. Mejias, R. Walker, and D. Fitzgerald. Guided chaos

- path planning and control for a uav-forced landing. IEEE Robotics &

Automation Magazine, 17[2]:90–98, June 2010. 58

[39] A. Fekih and P. Pilla. A new fault tolerant control strategy for aircraft

systems under adverse flying conditions. Jounrnal of Automation & Systems

Engineering, 3[2]:1–15, 2009. 23

[40] D. L. Fitzgerald. Landing Site Selection for UAV Forced Landing using

Machine Vision. PhD thesis, Queensland University of Technology, 2007.

155

[41] L. Gao and S. Zhou. Application of L1 adaptive control augmentation

to the flying wing unmanned aerial vehicle. In Knowledge Acquisition and

Modeling (KAM), 2011 Fourth International Symposium on, pages 222–225,

2011. 17

[42] Z. Gao, C. Cecati, and S. X. Ding. A survey of fault diagnosis

and fault-tolerant techniques part i: Fault diagnosis with model based and

signal-based approaches. Journal of IEEE Transactions on Industrial Elec-

tronics, 62[6]:pp. 3757–3767, 2015. 21

[43] E. G. Gracia and J. Becker. Uav stability derivatives estimation for

hardware-in-the-loop simulation of piccolo autopilot by qualitative flight

272

BIBLIOGRAPHY

testing. In in 1st Latin American UAV Conference, Panama, August 2007.

10

[44] I. M. Gregory, C. Cao, E. Xargay, N. Havakimyan, and X. Zou.

L1 adaptive control design for nasa airstar flight test vehicle. In AIAA

Guidance, Navigation, and Control Conference, Chicago, Ilinois, USA, Au-

gust 2010. 3, 17

[45] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and

Practice. John Wiley and Sons, New York, USA, 2001. 84

[46] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi. Nonliear

observer for gnss-aided inertial navigation with quaternion-based attitude

estimation. In In Proceeding of American Control Conference, Washington

DC, 2013. 82

[47] Y. Cao H. Chao and Y. Chen. Autopilots for small unmanned aerial

vehicles: A survey. International Journal of Control, Automation, and

Systems, 8[1]:36–44, 2010. 10

[48] J. J. Hageman, M. S. Smith, and S. Stachowiak. Integration of

online parameter identification and neural network for in-flight adaptive

control. Technical Report NASA/TM-2003-212028, NASA Dryden Flight

Research Center, October, 2003. 14

[49] J. J. Hageman, M. S. Smith, and S. Stachowiak. Integration of

online parameter identification and neural network for in-flight adaptive

control. Technical Report NASA/TM-2003-212028, NASA Dryden Flight

Research Center, October 2003. 15

[50] R. A. Hess and S. R. Wells. Sliding mode control applied to reconfig-

urable flight control design. Journal of Guidance, Control, and Dynamics,

26[3]:452–462, 2003. 2

[51] P. A. Ioannou and P. V. Kokotovic. Instability analysis and im-

provement of robust of adaptive control. Automatica, 20[5]:583–594, 1984.

16

273

BIBLIOGRAPHY

[52] C. Ippolito, Y. H. Yeh, and J. Kaneshige. Neural adaptive flight

control testing on an unmanned experimental aerial vehicle. In AIAA In-

fotech@Aerospace 2007 Conference and Exhibit, Rohner Park, Califonia,

May 2007. 15

[53] R. Isermann. Model-based fault-detection and dianosis - status and ap-

plications. Journal of Annual Reviews in Control, 29:pp. 71–85, 2005. 21

[54] D. Ward J. Monaco and R. Bird. Implementation and flight test

assessment of an adaptive, reconfigurable flight control system. In Pro-

ceeding of the AIAA Guidance, Navigation, and Control Conference, pages

1443–1454, 1997. 13

[55] G. Jacques and J. Ducard. Fault-Tolerant Flight Control and Guidance

Systems for a Small Unmanned Aerial Vehicle. PhD thesis, ETH ZURICH,

2007. 23, 24

[56] N. M. Jodeh. Development of Autonomous Unmanned Aerial Vehicle

Platform: Modeling, Simulating, and Flight Testing. Master’s thesis, De-

partment of the Air Force Air University, Air Force Institute of Technology,

2006. 10

[57] E. N. Johnson, A. J. Calise, H. A. El-Shirbiny, and R. T. Rysdyk.

Feedback linearilinear with neural network augmentation applied to x-33

attitude control. In Proceeding of the AIAA Guidance, Navigation, and

Control Conference, pages 1–11, 2000. 15

[58] A. D. Kahn. Adaptive control for small fixed-wing unmanned air vehicles.

In AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario

Cannada, August 2010. 15

[59] M. M. Kale and A. J. Chipperfield. Robust and stabilized mpc

formulation for fault tolerant and reconfigurable flight control. In Proceeding

of the IEEE International Symposium on Intelligent Control, pages 222–

227, 2004. 16

274

BIBLIOGRAPHY

[60] C. Kamali., A. A. Pashikar, and J. R. Raol. Real-time parameter

estimation for reconfigureable control of unstable aircraft. Defence Science

Journal, 57[4]:381–391, July 2007. 14

[61] C. Kamali, A. A. Pashikar, and J. R. Raol. Evaluation of recursive

least square algorithm for parameter estimation in aircraft real time appli-

cation. Journal of Aerospace Science and Technology, 15:165–174, 2011.

13

[62] R. Kamyar and E. Taheri. Aircraft optimal terrain/threat-based tra-

jectory planning and control. Journal of Guidance, Control, and Dynamics,

37[2]:466–483, 2014. doi: 10.2514/1.61339. 3

[63] C. D. Karlgaard, P. V. Tartabini, R. C. Blanchard, M. Kirsch,

and M. D. Toniolo. Hyper-x post-flight trajectory reconstruction.

Journal of Spacecraft and Rockets, 43[1]:pp. 105–115, 2006. DOI:

10.2514/1.12733. 80, 81

[64] D. B. Kingston and R. W. Beard. Real-time attitude and posi-

tion estimation for small uavs using low-cost sensors. In In Proceeding

of AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and

Exhibit, Chicago, Illinois, September 2004. 82

[65] V. Klein, J. Batterson, and P. Murphy. Determination of airplane

model structure from flight data by using modified stepwise regression.

Technical Report NASA TP 1916, October 1981. 40

[66] V. Klein and E. A. Morelli. Aircraft System Identification Theory and

Pratice. AIAA (American Institute of Aeronautics & Astronautics), 2006.

38, 40, 42, 45, 80, 90, 173, 176

[67] Y. Kobayashi and M. Takahashi. Design of Intelligent Fault-Tolerant

Flight Control System for Unmanned Aerial Vehicles. Number ISBN:978-

953-307-218-0. InTech, 2011. ix, 24, 25

275

BIBLIOGRAPHY

[68] W. H. Kwon and S. Han. Receding Horizon Control : Model Prodictive

Control for State Models. Springer London Ltd, 2005. ISBN: 1846280249.

16

[69] S. H. Lane and R. F. Stengel. Flight control design using nonlinear

inverse dynamics. In In Proceeding of American Control Conference, pages

587–596, Seattle, WA, USA, June 1986. 12

[70] S. M. Lavalle. Planning Algorithms. New York: Cambridge Univ. Press,

2006. 58

[71] J. Leitner, A. Calise, and J. V. R. Prasad. Analysis of adaptive

neural networks for helicopter flight control. Journal of Guidance, Control,

and Dynamics, 20[5]:972–979, 1997. doi: 10.2514/2.4142. 2

[72] N. K. Lincoln and S. M. Veres. Natural language programming of

complex robotic bdi agents. Journal of Intelligent and Robotic Systems,

71[2]:211–230, 2013. 71, 72, 77, 79

[73] N. K. Lincoln, S. M. Veres, L. Dennis, M. Fisher, and A. Lisitsa.

An agent based framework for adaptive control and decision making of

autonomous vehicles. In Proceeding of IFAC Workshop on Adaptation and

Learning in Control and Signal Processing (ALCOSP), 2010. 3, 26, 144

[74] N. K. Lincoln, S. M. Veres, L. Dennis, M. Fisher, and A. Lisitsa.

Autonomous asteroid exploration by rational agents. IEEE Computational

Intelligence Magazine, 8[4]:25–38, 2013. x, 26, 76, 77, 125, 145

[75] T. J. J. Lombaerts. Fault Tolerant Flight Control A Physical Model

Approach. PhD thesis, Technische Unversiteit Delft, 2010. 18, 30, 155

[76] T. J. J. Lombaerts, H. O. Huisman, Q. P. Chu, J. A. Mulder,

and D. A. Joosten. Nonlinear reconfiguring flight control based on online

physical model identification. Journal of Guidance, Control, and Dynamics,

32[3]:727–748, 2009. 13

276

BIBLIOGRAPHY

[77] T. J. J. Lombaerts, E. R. van Oort, Q. P. Chu, J. A. Mulder,

and D. A. Joosten. Online aerodynamic model structure selection and

parameter estimation for fault-tolerant control. Journal of Guidance, Con-

trol, and Dynamics, 33[3]:707–723, 2010. DOI: 10.2514/1.47256. 14, 40

[78] M. Lungu. Stabilization and control of a uav flight attitude angles using

the backstepping method. Jounal of World Academy of Science, Engineer-

ing and Technology, 61:290–297, 2012. 2

[79] M. Lungu and R. Lungu. Adaptive backstepping flight control for a

mini-uav. International Journal of Adaptive Control and Signal Processing,

27:635–650, August 2013. 17

[80] X. Lv, B. Jiang, R. Qi, and J. Zhao. Survey on nonlinear recon-

figurable flight control. Journal of Systems Engineering and Electronics,

24[6], December 2013. 2, 12

[81] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter.

Model-based fault diagnosis for aerospace systems: a survey. In Proceeding

of the Institution of Mechanical Engineers, Part G: Journal of Aerosapce

Engineering, 226[10]:pp. 1329–1360, January 2012. ix, 21, 22

[82] A. Meystel and J. Albus. Intelligent System: architecture, design and

control. Wiley, 2002. 63, 65

[83] B. Michini and J. P. Howy. L1 adaptive control for indoor autonomous

vehicles: Design process and flight testing. In AIAA Guidance, Navigation,

and Control Conference, Chicago, Illinois, August 2009. AIAA 2009-5754.

17

[84] T. R. Moes, M. S. Smith, and E. A. Morelli. Flight investigation

of prescribed simultaneous independent surface excitations for real-time

parameter identification. Nasa/tm-2003-212029, NASA Dryden Flight Re-

search Center and NASA Langley Research Center, October 2003. 14

[85] E. A. Morelli. In-flight system identification. In AIAA Atmospheric

Flight Mechanics Conference, Boston, Massachusette, August 1998. 13

277

BIBLIOGRAPHY

[86] E. A. Morelli. Real-time parameter estimation in the frequency domain.

Journal of Guidance, Control, and Dynamics, 23[5]:812–818, 2000. 14

[87] E. A. Morelli. Real-time aerodynamic parameter estimation witwith

air flow angle measurements. In AIAA Guidance, Navigation, and Control

Conference and Exhibit, number AIAA-2010-7951, Toronto, August 2010.

80

[88] E. A. Morelli and M. S. Smith. Real-time dynamic modmodel:

Data information requirements and flight-test results. Journal of Aircraft,

46(6):1894–1904, 2009. 13, 14

[89] R. S. M. Munoz, C. Rossi, and A. B. Cruz. Modelling and iden-

tification of Flight Dynamics in Mini-Helicopters using Neural Networks.

Number ISBN:978-953-7619-41-1. InTech, 2009. 15

[90] K. S. Narendra and A. M. Annaswamy. A new adaptive law for

robust adaptation without persistent excitation. IEEE Transactions on

Automatic Control, AC-32[2]:134–145, February 1987. 16

[91] M Nauroka. Real-time wavelet flight data evaluation for system iden-

tification of flight characteristics. In 28th International Congress of the

Aeronautical Sciences, pages 23–28, Brisbane, AUS, September 2012. xv,

120, 121, 122

[92] R. C. Nelson. Flight Stability and Automatic Control. McGRAW-Hill

companies, Inc, 1998. 11

[93] N. Nguyen. Hybrid adaptive flight control with model inversion adapta-

tion. Advances in Flight Control Systems, ISBN: 978-953-307-218-0 2011.

18, 19

[94] N. Nguyen. Hybrid Adaptive Flight Control with Model Inversion Adapta-

tion, Advances in Flight Control Systems, chapter 3, pages 53–76. InTech,

2011. ISBN 978-953-307-218-0. 17

278

BIBLIOGRAPHY

[95] N. Nguyen, J. Burken, and C. Hanson. Optimal control modification

adaptive law with covariance adaptive gain adjustment and normalization.

In In Proceeding of AIAA Guidance, Navigation, and Control Conference,

2011. 122

[96] N. Nguyen, K. Krishnakumar, J. Kaneshige, and P. Nespeca.

Flight dynamics and hybrid adaptive control of damaged aircraft. Journal

of Guidance, Control, and Dynamics, 31[3]:751–764, May-June 2008. 3, 19,

36

[97] N. T. Nguyen. Optimal control modification for robust adaptive control

with large adaptive gain. Journal of System & Control Letters, 61:485–494,

2012. x, 15, 16, 51, 104

[98] N. T. Nguyen, M. Bakhtiari-Nejad, and Y. Huang. Hybrid adap-

tive flight control with bounded linear stability analysis. In Proceeding of

AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton

Head, South Carolina, August 2007. 17

[99] N. T. Nguyen and J. D. Boskovic. Bounded linear stability margin

analysis of nonlinear hybrid adaptive control. In American Control Con-

ference, Seattle, Washington, USA, June 2008. 17, 19

[100] W. J. Park, E. T. Kim, Y. K. Song, and B. J. Ko. A study on the

real-time parameter estimation of durumi-ii for control surface fault using

flight test data (longitudinal motion). International Journal of Control,

Automation, and Systems, 5[4]:410–418, August 2007. 14

[101] Y. C. Paw. Synthesis and Validation of Flight Control for UAV. PhD

thesis, The University of Minnesota, 2009. 11

[102] C S. Pillar. Path Planning , Guidance and Control for a UAV Forced

Landing. PhD thesis, Queensland University of Technology, 2011. 155

[103] R. W. Pratt, editor. FLIGHT CONTROL SYSTEMS: Practical Issues

in Design and Implementation. Series 57. IEE Control Engineering, 2000.

11

279

BIBLIOGRAPHY

[104] Public Domain Computer Programs for the Aeronautical Engineer., [On-

line]. Available from http://www.pdas.com/datcom.html. Digital Datcom.

109, 158

[105] V. Puttige and S. Anavatti. Real-time system identification of un-

manned aerial vehicles: A multi-network approach. Journal of Computers,

3[7]:31–38, July 2008. 15

[106] V. R. Puttige and S. G. Anavatti. Comparison of real-time online

and offline neural network mmodel for a uav. In Proceeding of International

Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-

17 2007. 15

[107] C. Ramprasadh and H. Arya. Multi-stage fusion algorithm for estima-

tion of aerodynamic angles in mini aerial vehicle. In In Proceeding of 49th

AIAA Aerospace Science Meeting, Orlando, Florida, 2011. 81

[108] N. D. Richards, R. J. Adams, D. H. Klyde, and B. Cogan. Flight

test evaluation of an adaptive controller for flying qualites specification and

protection. Journal of Guidance, Control, and Dynamics, 38[12]:2241–2256,

December 2015. 16

[109] G. Shah. Aerodynamic effects and modeling of damage to transport air-

craft. In In proceedinf of AIAA Atmospheric Flight Mechanics Conference

and Exhibit, Honolulu, Hawaii, 2008. 40

[110] E. Y. Shapiro and J. C. Chung. Flight control system synthesis using

eigenstructure assignment. Journal of Optimization Theory and Applica-

tion, 43[3]:415–429, 1984. 11

[111] Y. Shin, A. J. Calise, and M. D. Johnson. Adaptive control of

advanced fighter aircraft in nonlinear flight regimes. Journal of Guidance,

Control, and Dynamics, 31[5]:1464–1477, September-October 2008. 15

[112] Y. Shin, A. J. Calise, and M. A. Motter. Application of adaptive

autopilot designs for an unmmaned aerial vehicle. In In proceeding of AIAA

280

BIBLIOGRAPHY

Guidance, Navigation, and Control Conference and Exhibit, San Francisco,

California, USA, August 2005. 2

[113] N. Slegers, J. Kyle, and M. Costello. Nonlinear model predictive

control technique for unmanned air vehicles. Journal of Guidance, Control,

and Dynamics, 29[6]:1179–1188, September-October 2006. 16

[114] M. S. Smith, T. R. Moes, and E. A. Morelli. Real-time stability

and control derivative extraction from f-15 flight data. Technical Report

NASA/TM-2003-212027, NASA Dryden Flight Research Center and NASA

Langley Research Center, September 2003. 14

[115] S. A Snell, D. F. Nns, and W. L. Arrard. Nonlinear inversion flight

control for a supermaneuverable aircraft. Journal of Guidance, Control,

and Dynamics, 15[4]:976–984, 1992. doi: 10.2514/3.20932. 2

[116] Y. Song, G. Campa, M. Napolitano, B. Seanor, and M. G. Per-

hinschi. Online parameter estimation techniques comparison within a fault

tolerant flight control system. Journal of Guidance, Control, and Dynamics,

25[3]:528–537, May-June 2002. 14

[117] Y. Song, B. Song, B. Seanor, and M. R. Napolitano. On-line

aircraft parameter identification using fourier transform regression with an

application to nasa f/a-18 harv flight data. KSME International Journal,

16[3]:327–337, 2002. 14

[118] L. Sonneveldt. Adaptive Backstepping Flight Control for Modern Fighter

Aircraft. Wohrmann Print Service, 2010. ISBN 978-90-8570-573-4. 17

[119] R. F. Stengel. Intelligent failure tolerant control. Journal and Magazines

of Control Systems, IEEE, 11[4]:14–23, June 1991. 21

[120] R. F. Stengel. Toward intelligent flight control. IEEE Transactions

on Systems, Man and Cybernetics, 23[6]:1699–1717, Novermber/December

1993. 20

281

BIBLIOGRAPHY

[121] D. J. Stilwell. State-space interpolation for a gain-scheduled autopilot.

Journal of Guidance, Control, and Dynamics, 24[3]:460–465, 2001. doi:

10.2514/2.4766. 2

[122] L. G. Sun. Model and Sensor Based Nonlinear Adaptive Flight Control with

Online System Identification. PhD thesis, Delft University of Technology,

2014. ix, 23, 24

[123] S. Suzuki and A. Yanagida. Research and development for fault tolerant

flight control system - part 1. intelligent flight control system. In 26th

International Congress of the Aeronautical Sciences (ICAS2008), pages 1–

7, 2008. 23, 24

[124] SysBrain Ltd, [Online]. Available from

http://www.sysbrain.com/cognitive agent toolbox. sEnglish Publiser.

31, 144, 145, 148, 155

[125] Y. Tang. Fault Tolerant Control for Nonlinear Aircraft based on Feedback

Linearization. PhD thesis, University of Hull, 2013. 23

[126] Y. Tang and R. J. Patton. Fault-tolerant flight control for nonlinear-

uav. In 2012 20th Mediterranean Conference on Control & Automation

(MED), 2012. 23

[127] S. Tantrairatn and S. M. Veres. Onboard system identification for

improved flight control of uas. In In Proceeding of 8th IFAC Symposium

on Robust Control Design (ROCOND’15), 48, pages 368–375, Bratislava,

Slovak Republic, July 2015. 85, 93

[128] D. Thakur, S. Hernandez, and M. R. Akella. Space swarm

finite-thrust cooperative control for common orbit convergence. Jour-

nal of Guidance, Control, and Dynamics, 38[3]:478–488, 2015. doi:

10.2514/1.G000621. 3

[129] Unmanned Dynamic, [Online]. Available from http://www.u-

dynamics.com/aerosim/default.htm. AereSim Aeronautical Simulation

Blockset. 158

282

BIBLIOGRAPHY

[130] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri. A

review of process fault dectection and diagnosis: Part ii: Qualitative models

and search strategies. Journal of Computers and Chemical Engineering,

27[3]:pp. 313–326, March 2003. 21

[131] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and

K. Yin. A review of process fault dectection and diagnosis: Part iii: Process

history based methods. Journal of Computers and Chemical Engineering,

27[3]:pp. 327–346, March 2003.

[132] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N.

Kavuri. A review of process fault detection and diagnosis: Part i: Quan-

titative model-based methods. Journal of Computers and Chemical Engi-

neering, 27[3]:pp. 293–311, 2003. 21

[133] S. M. Veres. Natural language programming of agents and robotic de-

vices. SysBrain, 2008. 79, 145, 155, 158

[134] S. M. Veres. Knowledge of machines: Review and forward look. Journal

of Systems and Control Engineering, 225, April 2011. 3, 26, 63

[135] S. M. Veres and J. Luo. A class of bdi agent architecture for autonomous

control. In In proceeding of IEEE Conference on Decision and Control, 5,

pages pp. 4746–4751, December 2004. 27

[136] X. Wang and N. Hovakimyan. Predicting the performance of uncertain

multi-agent system using event-triggering and L1 adaptation. In Proceed-

ing of AIAA Guidance, Navigation, and Control Conference, pages 1–15,

Toronto, Ontarlo, Canada, August 2010. 3

[137] D G. Ward, R L. Barron, M P. Carley, and T J. Curtis. Real-time

parameter identification for self-designing flight control. In In Proceeding

of National Aerospace and Electronics Conference (NAECON 1994), pages

526–531, May 1994. 2

283

BIBLIOGRAPHY

[138] H L. Wei, S A. Billings, and J Liu. Term and variable selection for

nonlinear system identification. International Journal of Control, 77[1]:86–

110, 2004. 96

[139] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

3, 26, 63, 64

[140] W. Xingjian, W. Shaoping, Y. Zhongwei, and Z. Chao. Active

fault-tolerant control strategy of large civil aircraft under elevator failures.

Chinese Journal of Aeronautics, 28[6]:1658–1666, 2015. 23

[141] D. I. You, Y. D. Jung, and S. W. Cho. A guidance and control law

design for precision automatic take-off and landing of fixed-wing uavs. In

AIAA Guidance, Navigation, and Control Conference, Minneapolis, Min-

nesota, August 2012. AIAA 2012-4674. 17

[142] Z. Yu, G. Fan, and J. Yi. Indirect adaptive flight control based on non-

linear inversion. In Proceeding of the 2009 IEEE International Conference

on Mechatronics and Automation, Changchun, China, August 2009. 13

[143] T. Yucelen. Advances in Adaptive Control Theory: Gradient and

Derivative-Free Approaches. PhD thesis, Aerospace Engineering, Georgia

Institute of Technology, May 2012. 99

[144] J. Zhang, L. Yang, and G. Shen. New hybrid adaptive control approach

for aircraft with centre of gravity variation. Journal of IET Control Theory

and Applications, 6[14]:2179–2187, 2012. 19

[145] Y. Zhang and J. Jiang. Bibliogapproach reviw on reconfigurable fault-

tolerant control systems. Journal of Annual Reviews in Control, 32:229–

252, 2008. 21, 22

284

	Contents
	List of Figures
	List of Tables
	I Background and Literature Review
	1 Introduction
	1.1 Structure
	1.2 Publications During Work Undertaken
	1.3 Contributions of the Thesis

	2 Flight Control Design for UAS - Literature Review
	2.1 Classical Control Designs Applied to UAS
	2.2 Modern Control Theory Applied to UAS
	2.3 Reconfigurable Control Systems for UAS
	2.3.1 Gain Scheduling
	2.3.2 Nonlinear Dynamic Inversion
	2.3.3 Parameter Identification for Nonlinear Flight Control Systems
	2.3.4 Neural Network Technology for Reconfiguration Control System
	2.3.5 Model Predictive Control
	2.3.6 New Trends in UAS Control
	2.3.6.1 Adaptive Backstepping Control
	2.3.6.2 L1 Adaptive Control
	2.3.6.3 Hybrid Adaptive Control

	2.4 Intelligent Autonomous Flight Control System
	2.4.1 Fault-Tolerant Flight Control Systems
	2.4.2 Agent Technology in Aerospace Systems

	2.5 Chapter Summary and Thesis Direction
	2.5.1 Chapter Summary
	2.5.2 Chosen Method and Thesis Direction

	II Mathematical Models
	3 UAV Dynamics
	3.1 Reference Frames
	3.2 Flight Equations of Motion
	3.2.1 Translational and Rotational Dynamics
	3.2.2 Aerodynamic Modelling
	3.2.3 Effects of Mass Property Changes Due to Damage

	3.3 Rotational Kinematic Equations & Navigation Equations

	4 NDI Control Based Architecture of Autopilot
	4.1 Inner Loop of Autopilot Laws
	4.2 Outer Loop of Autopilot Laws
	4.3 Altitude Control Laws
	4.4 Guidance Control Laws
	4.4.1 Computation of the vertical distance (yL1)
	4.4.2 Logic for flight path switching

	4.5 Flight Path Planner
	4.6 Chapter Summary

	5 Agent Theory
	5.1 Intelligent Agent
	5.2 Agent-Oriented Programming
	5.2.0.1 Jason
	5.2.0.2 Natural Language Programming

	5.3 Chapter Summary

	III Development of Control Agents for UAVs
	6 Agents for UAV Autopilot Systems
	7 UAV State Estimation
	7.1 Problem Formulation
	7.2 Methodology Proposal
	7.3 Air Flow Angle and Gravitational Acceleration Estimation Using Extended Kalman Filtering
	7.3.1 Extended Kalman Filtering
	7.3.2 Application to flight vehicles: Fixed-wing platform

	7.4 Simulation Results
	7.4.1 Aerosonde UAVs
	7.4.2 NASA Twin Otto Aircraft

	7.5 Chapter Summary

	8 Control Action of UAV Agents
	8.1 Indirect Adaptive Control Law Proposal
	8.2 Model Reference Direct Adaptive Control Laws
	8.2.1 Inner Loop of Flight Control System
	8.2.2 Outer Loop of Flight Control System

	8.3 Simulation Results
	8.3.1 Evaluation of Aircraft Parameter Estimation with OLS in time and frequency domain
	8.3.1.1 Test 1: Evaluation with Linear regression equation
	8.3.1.2 Test 2: Evaluation with aircraft system identification problem

	8.3.2 Performance of Direct Adaptive Flight Control for Inner Loop
	8.3.3 Performance of Hybrid Adaptive Control for Inner Loop
	8.3.4 Performance of Hybrid Adaptive Control for Outer Loop

	8.4 Chapter Summary

	9 Real-Time UAV Agent Perceptual Abstractions
	9.1 On-line Model Validation for Reconfiguration Proposal
	9.2 Flight Trim Condition Monitoring
	9.2.1 Using Wavelet Transform and Multi Resolution Analysis
	9.2.2 Using Frequency Dependent Model Validation Approach

	9.3 Control Performance Evaluation Approach
	9.4 Connection with Agent Framework
	9.5 Simulation Result
	9.5.1 Results of Model Validation for Reconfigurable Control
	9.5.2 Results of Flight Trim Condition Monitoring
	9.5.2.1 Wavelet Transform Analysis Technique
	9.5.2.2 Frequency Dependent Model Validation Approach

	9.5.3 Results of Control Performance Evaluation

	9.6 Chapter Summary

	10 Decision Methods for UAV Agents
	10.1 Agent Development for Reconfiguration
	10.1.1 Agent Computational Architecture
	10.1.2 Abstraction using NLPr Implementation

	10.2 Overall Diagram of Agent Reasoning
	10.3 UAV Simulation Environment
	10.4 Computational Experiments
	10.4.1 Case Study I : Insufficient Initial Parameters and First Flight Tuning
	10.4.2 Case Study II : Elevator Failure

	10.5 Chapter Summary

	11 Conclusions and Future Work
	11.1 Conclusion
	11.2 Future Work

	IV Appendices
	Appendix A: Flight Equation of Motion with Effect of Mass Change
	Appendix B: Air Flow Angle Reconstruction
	Appendix C: Aircraft Geometry, Mass Properties, and Aerodynamic Characteristics
	Appendix D: Source Code in Format of sEnglish Sentences for Agent Decision
	Appendix E: Source Code in Format of Jason/AgentSpeak for Agent Decision
	Bibliography

