

 I

Efficient Design and

Implementation of Elliptic

Curve Cryptography on

FPGA

By

Zia Uddin Ahamed Khan

Thesis submitted for the Degree of Doctor of Philosophy

Department of Electronic & Electrical Engineering

The University of Sheffield

October-2015

 I

Abstract

This thesis is concerned with challenging the design space of Elliptic Curve

Cryptography (ECC) over binary Galois Field, GF(2m) in hardware on field-programmable

gate array (FPGA) in terms of area, speed and latency. Novel contributions have been made at

the algorithmic, architectural and implementation levels that produced leading performance

figures in terms of key hardware implementation metrics on FPGA. This demonstrated

performance will enable ECC to be deployed across a range of application requiring public key

security using FPGA technology. The proposed low area ECC implementation outperforms

relevant state of the art in both area-time and area2-time metrics.

The proposed high throughput ECC implementation adopts a new digit serial multiplier

over GF(2m) incorporating a novel pipelining technique along with algorithmic and

architectural level modification to support parallel operations in the arithmetic level. The

resulting throughput/area performance outperforms state of the art designs on FPGA to date.

 The proposed high-speed only implementation utilises a new full-precision multiplier

and smart point multiplication scheduling to reduce the latency. The resulting high speed ECC

design with three multipliers achieves the lowest reported latency figure to date with high speed

(450 clock cycles to get 2.83 µs on Virtex7).

Finally, the proposed low resources scalable ECC implementation is based on very low

latency multiprecision multiplication and low latency multiprecision squaring. The scalable

ECC point multiplication design over all NIST curves consumes very low latency and shows

the best area-time performance on FPGA to date.

 II

Acknowledgements
I am extremely grateful that my supervisor Dr. Mohammed Benaissa offered me a PhD

position in the University of Sheffield. His guidance and expertise in my research field have

been played a central role over the four years of my PhD research. Foremost, my sincere thank

to my supervisor for everything that he did. I truly appreciate him.

I am very pleased with my examiners, Professor Said Boussakta and Dr Jonathan M.

Rigelsford. I honestly thank both of my examiners for their dedication in reading my thesis, for

a friendly viva, and their important suggestions to improve my thesis presentation.

I like to thank my colleagues and friends for their support throughout my PhD. I like to

acknowledge Dr. M. Nabil Hassan and Dr. J. Chu, who were PhD students of my supervisor,

for helping me to start my cryptography research, and Dr. S.Tan, who was a research scholar

in my lab, for his support to develop new algorithms for my multiprecision arithmetic

operation. I am also grateful to Russ Drieberg, a kind colleague for his work in proofreading

my thesis and Sandipan Pal, PhD student, for his support during preparation of my thesis. I

would like to thank Dr. Tim Good, Dr. Luke Seed and Neil Powel for their support in the FPGA

implementations and presentation of the implementation results. I also like to thank Professor

John David, who was head of my department, for supporting me by providing a departmental

scholarship in my PhD. I always appreciate Hilary Levesley, PGR administrator, for her

outstanding support. I am also thankful to Dr. Wei Liu and Dr. Charith Abhayaratne for their

friendly attitude to me.

I would also like to thank my lab mates who became my friends and made my study

enjoyable. I am also thankful to my Bangladeshi friends with whom I relished my PhD time.

Last, but not least, thanks to my wife, Farzana Yousuf Anee (MD in internal medicine)

and our parents for their ultimate sacrifice and support to complete my PhD. I would also like

to thank to my brothers and sisters for their motivation.

To all of you, I am eminently grateful to you. Thank you very much!

Zia Uddin Ahamed Khan

Sheffield

11/06/2016

Tables of Contents

 III

Contents
Abstract ... i

Acknowledgements .. ii

Contents .. iii

Table of Figures .. viii

List of Tables .. x

List of Algorithms ... xi

Glossary .. xii

 Introduction of Thesis ... 1-1

1.1 Overview .. 1-2

1.2 Motivation .. 1-3

1.3 Thesis Main Contributions ... 1-5

1.4 Thesis Outlines ... 1-9

1.5 Published Papers ... 1-10

 Background ... 2-1

2.1 Introduction .. 2-2

2.2 Cryptography Basics .. 2-2

2.3 Cryptography Schemes ... 2-4

2.3.1 Symmetric Key Cryptography ... 2-4

 2.3.2 Public Key Cryptography ... 2-5

2.3.3 Hash Functions... 2-7

2.4 Elliptic Curve Cryptography .. 2-8

2.5 Finite Field Theory ... 2-9

2.5.1 Binary extension field GF(2m) ... 2-11

2.5.2 Representation of Finite Field .. 2-13

2.5.3 Finite field arithmetic over GF(2m) .. 2-13

2.6 Elliptic Curve Arithmetic ... 2-19

2.6.1 Elliptic Curve over Binary Fields .. 2-20

2.6.3 Advantages of Projective Coordinates ... 2-21

2.6.4 The Main Operation of ECC - Point Multiplication .. 2-22

2.7 Koblitz Curve ... 2-27

Tables of Contents

 IV

2.8 Domain Parameters of ECC ... 2-28

2.9 Elliptic Curve Cryptography Protocols .. 2-29

2.9.1 Elliptic Curve Key Generation ... 2-29

2.9.2 Elliptic curve Diffie-Hellman key exchange (ECDH) ... 2-29

2.9.3 ElGamal Elliptic Curve Cryptosystem... 2-30

2.9.4 Elliptic Curve Digital Signature Algorithm (ECDSA) .. 2-30

2.10: Design and Implementation Issues of ECC ... 2-32

2.10.1 Implementation of Point Multiplication... 2-32

2.10.2 Why Hardware design is suitable for the crypto processor? 2-34

2.10.3 Hardware platform-FPGA ... 2-34

2.10.4 Design flow .. 2-36

2.10.5 Design metrics ... 2-37

 Low Area elliptic Curve Cryptography ... 3-1

3.1 Introduction .. 3-2

3.2 Background .. 3-3

3.2.1 Koblitz Curves based ECC .. 3-3

3.2.2 Low Area Multiplier .. 3-5

3.2.3 Low Area Square Circuit ... 3-5

3.2.4 Inversion operation .. 3-5

3.3 Low Area ECC Implementation using Montgomery algorithm 3-7

3.4 Low Area ECC Implementation using Binary Algorithm .. 3-8

3.5 Frobenius Map based Low Area ECC Implementation ... 3-9

3.6 Arithmetic circuit ... 3-10

3.6.1 Frobenius mapping unit: .. 3-11

3.7 Memory unit ... 3-13

3.8 Interface unit ... 3-14

3.9 Control Unit .. 3-15

3.10 Latency of the proposed ECC operation .. 3-16

3.11 FPGA Implementation Results ... 3-17

3.11.1 Analysis of the results .. 3-19

3.12 Conclusions .. 3-25

Tables of Contents

 V

 Implementing High Throughput/Area Elliptic Curve Cryptography 4-1

4.1 Introduction .. 4-2

4.2 Background .. 4-4

4.3 Resource Constrained High Throughput ECC ... 4-5

4.4 Proposed throughput/area Efficient ECC processor ... 4-5

4.4.1 Segmented Pipelining Based Digit Serial Multiplier ... 4-6

4.4.2 Optimized Memory Unit .. 4-8

4.4.3 Scheduling for point operations ... 4-9

4.5 Implementation on FPGA and Results ... 4-10

4.5.1 Analysis of the Results... 4-12

4.6 Conclusion .. 4-15

 Implementing High Speed Elliptic Curve Cryptography 5-1

5.1 Introduction .. 5-2

5.2 Background ... 5-4

5.2.1 High Speed Scalar Point Multiplication .. 5-4

5.2.2 Field Arithmetic over GF(2m) .. 5-6

5.3 Proposed Full-precision Multiplier for High Speed ECC Application 5-6

5.3.1 Multiplier with Segmented Pipelining ... 5-8

5.4 Proposed High Performance ECC (HPECC) for Point Multiplication 5-9

5.4.1 Point Multiplication without Pipelining Delay .. 5-9

5.4.2 Multiplier with Segmented Pipelining for HPECC 5-15

5.4.3 Square Circuit, Memory Unit and Control Unit of HPECC 5-15

5.4.4 Critical path delay and clock cycles of the HPEEC ... 5-17

5.5 Proposed the highest possible frequency based ECC (HFECC) for Point Multiplication

 .. 5-18

5.5.1 Low latency Point Multiplication Shecdualing for HFECC 5-18

5.5.2 Square Circuits, field Inversion operation and coordinates conversion of HFECC ...

... 5-21

5.5.3 Memory Unit and Control Unit of HFECC ... 5-22

5.5.4 Pipelining in the ECC Architecture of HFECC ... 5-22

5.6 Proposed Low Latency ECC (LLECC) Processor for Point Multiplication 5-23

Tables of Contents

 VI

5.6.2 Multiplier with Segmented Pipelining for LLECC .. 5-28

5.6.3 Square Circuit, Memory Unit and Control Unit of LLECC 5-28

5.6.4 Critical path delay and clock cycles of the LLEEC 5-29

5.7 Implementation Results ... 5-30

5.7.1 Analysis of Results .. 5-31

5.7.2 Comparison with state of the art .. 5-34

5.8 Conclusions ... 5-38

 Low Latency Multiprecision Arithmetic Circuit based Scalable ECC over GF(2m)

.. 6-1

6.1 Introduction .. 6-2

6.2 Background .. 6-6

6.2.1 Comba Multiprecision Multiplication over GF(2m) ... 6-8

6.2.2 Multiprecision squaring over GF(2m) ... 6-10

6.2.3 Multiprecision modular reduction over GF(2m).. 6-10

6.2.4 Inversion and Multiprecision Addition over GF(2m) ... 6-11

6.3 Implementing Multiprecision Multiplier over GF(2m) ... 6-11

6.3.1 Preliminary of the Multiprecision Multiplier over GF(2m) 6-11

6.3.2 Proposed Comba Multiprecision Multiplier over GF(2m) 6-13

6.3.3 Implementation of Proposed Comba Multiprecision Multiplier on FPGA 6-17

6.3.4 Implementing Two-and-two GF2MUL based Multiprecision Multiplier on FPGA ...

... 6-18

6.3.5 Implementing Four-and-Four GF2MUL based Multiprecision Multiplier on FPGA

... 6-20

6.3.6 Implementing On-the-fly Reduction Unit for Multiprecision Multiplier on FPGA

... 6-20

6.3.7 Analytical Comparison of multiprecision multipliers on FPGA 6-26

6.4 Implementing Proposed Multiprecision Square Circuit ... 6-31

6.4.1 Novel Architecture of Multiprecision Square Circuit with On-the-Fly Reduction

... 6-31

6.4.2 Repeated Squaring ... 6-35

6.4.3 Comparison with relevant square circuit and discussion 6-36

6.5 Proposed Hardware Architecture of Scalable ECC .. 6-37

Tables of Contents

 VII

6.5.1 Proposed Montgomery Point Multiplication ... 6-39

6.5.2 Careful Scheduling for Point Multiplication.. 6-40

6.5.3 Proposed Scalable Multiprecision Multiplier Circuit .. 6-43

6.5.4 Proposed Scalable Multiprecision Square circuit .. 6-43

6.5.5 SRL16 based Register file ... 6-45

6.6 Implementation Results .. 6-47

6.7 Conclusion .. 6-50

 Conclusions and Future Research Work ... 7-1

7.1 Conclusions .. 7-2

7.1 Future Research Works .. 7-4

References ... - 1 -

Tables of Figures

 VIII

Table of Figures
Figure 2.1 Symmetric key cryptography based communication system 2-4

Figure 2.2 Public key cryptography based communication ... 2-5

Figure 2.3 ECC hierarchy diagram .. 2-9

Figure 2.4 Slice in Spartan 3E FPGA .. 2-36

Figure 3.1 Low area ECC system architecture .. 3-6

Figure 3.2 Finite field multiprecision multiplier over GF(2163) .. 3-11

Figure 3.3 Finite field square circuit over GF(2163 .. 3-11

Figure 3.4 Frobenius mapping unit .. 3-12

Figure 3.5 8xm memory unit ... 3-13

Figure 3.6 8-bit input/output interface ... 3-14

Figure 3.7 FSM based control unit .. 3-15

Figure 3.8 Area vs digit size over GF(2163) in S3 for Montgomery method 3-20

Figure 3.9 Area-time vs digit size over GF(2163) in S3 for Montgomery method 3-20

Figure 3.10 Area vs kP algorithm (2 bit digit serial) over GF(2163) 3-21

Figure 3.11 Latency vs kP algorithm (2-bit digit serial) over GF(2163) 3-21

Figure 3.12 Area-time vs kP algorithm (2-bit digit serial) over GF(2163) 3-22

Figure 3.13 Performance of bit-serial multiplier based ECC over all NIST curves 3-23

Figure 4.1 Proposed throughput/area efficient ECC architecture (for n=2) 4-6

Figure 4.2 Proposed careful scheduling (4 clock cycles/multiplication) 4-9

Figure 4.3 Frequency vs segment size of the ECC over GF(2163) 4-12

Figure 4.4 Area vs segment size of the ECC over GF(2163) .. 4-13

Figure 4.5 Throughput/slices vs segment size of the ECC over GF(2163) 4-13

Figure 5.1 Proposed segmented pipelining based full-precision multiplier over GF(2m) 5-7

Figure 5.2 Proposed high performance ECC architecture ... 5-11

Figure 5.3 Data flow of HPECC for ki+1 = 1, ki = 1 and ki-1 = 1 ... 5-13

Figure 5.4 Data flow of HPECC for ki+1 = 0, ki=1 and ki-1 = 1 ... 5-14

Figure 5.5 Proposed HFECC architecture for the high speed point multiplication 5-19

Figure 5.6 Main loop operations with the ki values, including: a) ki=1 and ki+1 =1 and b) ki=1

and ki+1 = 0 ... 5-20

Figure 5.7 Proposed low latency ECC architecture ... 5-23

Figure 5.8 Data flow of LLECC for ki+1=1, ki=1 and ki-1 =1 .. 5-25

Figure 5.9 Data flow diagram of LLECC for ki+1=1, ki=0 and ki-1 =0 5-26

Figure 5.10 Area vs ECC architecture over GF(2163) .. 5-32

Figure 5.11 Frequency vs ECC architecture over GF(2163) ... 5-32

Figure 5.12 Latency vs ECC architecture over GF(2163) ... 5-33

Figure 5.13 kP time vs ECC architecture over GF(2163) ... 5-33

Figure 5.14 Area-time vs ECC architecture over GF(2163) .. 5-34

Figure 6.1 Row-wise and Column-wise multiprecision multiplication 6-7

file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060031
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060032
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060033
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060034
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060035
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060036
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060037
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060038
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060039
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060040
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060041
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060042
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060043
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060044
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060045
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060046
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060047
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060048
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060049
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060050
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060051
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060052
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060053
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060054
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060055
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060056
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060057
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060058
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060058
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060059
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060060
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060061
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060062
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060063
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060064
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060065
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060066
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060067

Tables of Figures

 IX

Figure 6.2 Proposed Comba multiprecision multiplier over GF(2m) 6-16

Figure 6.3 Proposed two-and-two GF2MUL based Comba multiprecision multiplier over

GF(2m) .. 6-19

Figure 6.4 Proposed four-and-four GF2MUL based Comba multiprecision multiplier over

GF(2m) .. 6-20

Figure 6.5 Reduction unit of multiprecision multiplication... 6-22

Figure 6.6 Scalable multiprecision multiplier reduction over GF(2233) 6-25

Figure 6.7 Area, latency, max. frequency vs proposed multiplier over GF(2163) 6-28

Figure 6.8 Multiprecision square circuit over GF(2163) ... 6-32

Figure 6.9 Multiprecision square circuit over GF(2233) ... 6-34

Figure 6.10 Proposed scalable ECC architecture ... 6-38

Figure 6.11 Data flow graph of the proposed combined Montgomery point multiplication 6-41

Figure 6.12 SRL16 based 8xm memory unit ... 6-46

file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060068
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060069
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060069
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060070
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060070
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060071
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060072
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060073
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060074
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060075
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060076
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060077
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc455060078

List of Tables

 X

List of Tables
Table 2.1 Equivalent key size of AES, ECC and RSA/DH and a comparison of computation

cost [96]. .. 2-6

Table 2.2 Number of field operations for a point addition and a point doubling 2-22

Table 2.3 Total field operations for the point multiplication algorithm 2-27

Table 3.1 Latency of MSB multiplier based ECC for Montgomery point multiplication ... 3-17

Table 3.2 Implementation results of this proposed low area ECC for point multiplication over

GF(2163) after place and route .. 3-18

Table 3.3 Performance of the proposed ECC for different digit-size multipliers over GF(2163)

.. 3-19

Table 3.4 Implementation results of the proposed bit-serial multiplier based ECC over all

NIST curves after place and route ... 3-22

Table 3.5 Comparison of the propsed ECC with the state of the art over GF(2163) after place

and route... 3-24

Table 4.1 Latency, critical path delay and resources of digit serial multipliers over GF(2m) 4-7

Table 4.2 Latency of ECC for ⌈𝑚/𝑤⌉ = 4, mul= M4/M7. add=1. sqr=2 4-10

Table 4.3 Results of our ECC over GF(2163) after place and route 4-11

Table 4.4 FPGA implementation results after place and route in Virtex7........................... 4-12

Table 4.5 Comparison of state of the art after place and route on FPGA 4-14

Table 5.1 Latency, critical path delay (Tmul) and resources of the proposed full-precision

multiplier and a comparison with the relevant multiplier over GF(2m) 5-8

Table 5.2 Critical path delay (TECC) of the proposed ECC .. 5-17

Table 5.3 Latency of the proposed ECC (MUL= M1=1, or M2=2, or M3=3, ADD=1, SQR=1,

and 4SQR =1) .. 5-29

Table 5.4 Comparison of the results of proposed ECC with the state of the art over GF(2m) on

FPGA after place and route.. 5-35

Table 6.1 Lv, Mv, Fv vectors generation over GF(2163) ... 6-22

Table 6.2 Latency of the proposed multiprecision multiplier .. 6-26

Table 6.3 Area and maximum frequency of the proposed multiprecision multiplier over

GF(2163) on FPGA ... 6-26

Table 6.4 Comparison of the proposed multiplier with the relevant multipliars 6-28

Table 6.5 Multiprecision reduction operation over GF(2233) on the 465 bits of square output

(w = 8 bit) .. 6-34

Table 6.6 Comparison of the proposed square circuit with the relevant square circuit 6-35

Table 6.7 Comparison of the proposed scalable ECC with the state of the art on FPGA after

place and route ... 6-49

file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992022
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992022
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992023
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992024
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992025
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992026
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992026
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992027
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992027
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992028
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992028
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992029
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992029
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992030
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992031
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992032
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992033
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992034
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992035
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992035
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992036
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992037
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992037
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992038
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992038
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992039
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992040
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992041
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992041
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992042
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992043
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992043
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992044
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992045
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992045

List of Algorithms

 XI

List of Algorithms
Algorithm 2.1 Addition or subtraction over GF(2m).. 2-14

Algorithm 2.2 MSB field multiplication over GF(2m) ... 2-15

Algorithm 2.3 LSB field multiplication over GF(2m) .. 2-16

Algorithm 2.4 Digit serial multiplier over GF(2m) .. 2-17

Algorithm 2.5 Fermat's little theorem based inversion over GF(2m) (m odd) 2-18

Algorithm 2.6 Left to right binary point multiplication algorithm 2-24

Algorithm 2.7 Binary non-adjacent form method for point multiplication 2-25

Algorithm 2.8 Montgomery point multiplication .. 2-26

Algorithm 2.9 Projective coordinates to affine coordinates conversion 2-27

Algorithm 2.10 Elliptic curve key generation .. 2-29

Algorithm 2.11 Elliptic curve Diffie-Hellman key exchange (ECDH) 2-30

Algorithm 2.12 ElGamal elliptic curve key exchange ... 2-30

Algorithm 2.13 ElGamal elliptic curve decryption .. 2-31

Algorithm 2.14 ECDSA signature generation ... 2-31

Algorithm 2.15 ECDSA signature verification .. 2-32

Algorithm 3.1 Montgomery point multiplication (loop operation) 3-7

Algorithm 3.2 Combined doubling and adding operations of Montgomery algorithm 3-8

Algorithm 3.3 Modified LD mix-coordinates algorithm ... 3-9

Algorithm 3.4 Binary NAF based Frobenius map in the projective coordinates 3-10

Algorithm 3.5 Itoh and Tsujii multiplicative inversion algorithm 3-16

Algorithm 4.1 LD Montgomery point multiplication over GF(2m) 4-3

Algorithm 4.2 Proposed combined loop operation of the LD Montgomery point

multiplication with careful scheduling... 4-8

Algorithm 5.1 LD Montgomery point multiplication over GF(2m) [35] 5-5

Algorithm 5.2 Proposed combined LD Montgomery point multiplication (with each loop for

six clock cycles) ... 5-12

Algorithm 5.3 Proposed combined LD Montgomery point multiplication (main loop)...... 5-19

Algorithm 5.4 Proposed low latency Montgomery point multiplication (with each loop for

two clock cycles).. 5-24

Algorithm 6.1 Comba multiprecision multiplication of binary polynomials 6-8

Algorithm 6.2 Multiprecision squaring over GF(2m)... 6-10

Algorithm 6.3 Proposed parallel Comba multiprecision multiplication of binary polynomials

.. 6-13

Algorithm 6.4 Fast reduction modulo (𝑥) = 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1 (with 𝑊 = 8)) . 6-21

Algorithm 6.5 Proposed fast reduction modulo (𝑥) = 𝑥233 + 𝑥74 + 1 (with 𝑊 = 8) 6-24

Algorithm 6.6 Proposed multiprecision squaring over GF(2163) ... 6-30

file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992114
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992115
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992116
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992117
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992118
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992119
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992120
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992121
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992122
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992123
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992124
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992125
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992126
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992127
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992128
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992129
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992130
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992131
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992132
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992133
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992134
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992135
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992135
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992136
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992137
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992137
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992138
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992139
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992139
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992140
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992141
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992142
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992142
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992143
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992144
file:///C:/Users/user/Documents/Zakfile/Thesis%20Submission/After%20Correction/Thesis_of_Zia_Uddin_Ahamed_Khan.docx%23_Toc454992145

Glossary

 XII

Glossary
AES Advance Encryption Standard

ASIC Application Specific Integrated Circuit

BRAM Block RAM

DLP Discrete Logarithmic Problem

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

FFs Flip-Flops

FF Finite Field

FPGA Field Programmable Gate Arrays

FLT Fermat’s Little Theorem

GF Galois Field

GF2 Galois Field in the field characteristic two

GF2MUL Multiplication in the field characteristic two

HPECC High Performance Elliptic Curve Cryptography

IEEE Institute of Electrical and Electronics Engineers

ISE Integrated Synthesis Environment

LLECC Low Latency Elliptic Curve Cryptography

LSB List Significant Bit

LUT Look Up Table

MD Message Digest

MSB Most Significant Bit

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

PDA Personal Digital Assistants

PKC Public Key Cryptography

Glossary

 XIII

RAM Random Access Memory

RFID Radio Frequency Identification

RSA Rivest-Shamir-Adleman

SHA-1 Secure Hash Algorithm-1

SSL Secure Socket Layer

WSNs Wireless Sensor Nodes

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.

VLSI Very Large Scale Integration

XOR Exclusive OR (logical Operation)

τNAF τ-adic Non-Adjacent Forms

WDDL Wave Dynamic Differential Logic

Chapter 1: Introduction of Thesis

 1-1

 Introduction of

Thesis
This chapter portrays the broad outlines of the thesis that are the general idea on the

research topic, objectives of the thesis, the main contributions in the thesis, thesis structure,

and a list of published and presentable works. In this chapter, the goal of the thesis is an

efficient hardware design and implementation of elliptic curve cryptography is discussed.

Moreover, Advantages of the hardware platform particularly FPGA platform is focused.

Finally, research outlines and list of presentation of research outputs are included in this

chapter.

Chapter 1: Introduction of Thesis

 1-2

1.1 Overview

Our daily life is now increasingly involved with the communications over wired and

wireless networks. In every instant, a big data of many transactions go on in these

communications. The wider applications of the communications mostly deal with sensitive data

that are protected by adopting several functionalities, including confidentiality, identification

and data authentications [1] [2]. These functionalities have been developed based on a scientific

process named cryptography. The cryptography process provides secure communications by

hiding the original message.

Cryptography can be categorised as symmetric key cryptography (also called private key

cryptography) and asymmetric key cryptography (also called public key cryptography). The

symmetric key is a classical method of cryptography based on private key, whereas asymmetric

key cryptography is based on public key (publicly published key) and private key to secure

communications. The symmetric key cryptography requires key management to distribute the

private key before establishing a communication. The key management is a problem in the

communication system that is solved by public key cryptography [3]. The sender in the

asymmetric cryptography knows the public key of the receiver. The sender uses the public key

to encrypt a message at the sender end to send. The receiver uses his private key to decrypts at

the receiver-end to get original message of sender. Thus, untrusted environment can be utilised

to transfer information (i.e. key exchange). The public key cryptography is, thus, widely

adopted in the communications protocol such as the Secure Socket Layer (SSL), signed and

encrypted mail, and single sign-on.

The underlying security of the public key cryptography depends on a mathematical hard

problem [1]. The hard problem is so difficult to solve by current computing systems in a

reasonable given time scale. The hard problem of Elliptic Curve Cryptography (ECC) is

discrete logarithmic problem. The high security level of problem-based cryptography is

attractive and hence, the ECC is increasing popular in many communication systems due to

some advantages over the existing public key cryptography (for example, Rivest, Shamir and

Adleman (RSA), and Diffie-Hellmann (DH)) (page 2-6). The ECC has high security per bit

when ECC is compared with RSA. The ECC based cryptography needs shorter operand than

that of RSA [5]. The computational advantages of the ECC make it suitable for both

constrained (low area) environment and high resources (high-speed) environments.

Chapter 1: Introduction of Thesis

 1-3

Low resource environments such as RFID tags, personal digital assistants (PDA), sensor

networks and smart phones are involved with wireless networks. The problem of the wireless

network is that it is vulnerable to eavesdropping. The resource constrained wireless system has

low resources such as processing capacity, power consumption, and data rate and memory

space. Thus, it is a problem to adopt security in low resources wireless communications [5] [6]

For the security in the low resource applications, on one hand, symmetric key cryptography is

suitable as it requires low computations. But, the problem of key management in symmetric

key cryptography makes it complicated for widespread applications, in particular, in where

highly reliable communication is required. On the other hand, public key cryptography in the

low resources applications has no special requirement of key management as the key is publicly

published. Moreover, public key cryptography is now suitable for encryption and

authentication in low resource wireless communications, however it requires more resources

as its field size is large. Thus, the low end application requires an effective low cost solution

for security. The ECC based cryptography is now feasible to enable high security in the

pervasive devices [5] [6].

High-speed communications systems such as web server in the internet require high

security along with faster computation flexibility. ECC provides very high security as

compared to RSA for server end applications for a given key size. Moreover, the faster

calculation and lower bandwidth of ECC makes it superior over RSA for internet based

network security [7].

1.2 Motivation

Elliptic Curve Cryptography is going to play an important role in the public key

cryptography based secure communications system. The standard body, such as the US

National Institute of Standard and Technology (NIST) recommends elliptic curves due to

shorter parameter than classical cryptography such as RSA. The shorter key, compact

bandwidth and high security per bit to enable it to apply in low area and high speed, commercial

and governmental applications, wired and wireless communications. The elliptic curve

cryptography utilise complex mathematical calculation to enable protected communications.

The main computation of ECC is scalar point multiplication on the elliptic curve. The

point multiplication shares the most time of ECC based cryptography protocol processing. The

Chapter 1: Introduction of Thesis

 1-4

point multiplication is the generation of public key Q by multiplying a base point P by a key

(integer) k, hence Q = kP. The point multiplication of ECC is now a highly interested topic in

the academia and industry to make it fit in the performance to apply at the application level.

Based on the applications, the design and implementations of point multiplication can be

categorised such as software, software/hardware and hardware implementations. The software

implementation of the point multiplications consumes high latency due to high frequency

memory operations involved. The software/hardware implementation is an improvement on

software implementations, but still the implementation consumes high latency, as the software

and software-hardware implementation are associated with word level computations.

Nevertheless, the software and software-hardware design consumes very low power, the high

latency thwarts to apply in with both low resources and high performance applications. Thus,

hardware design and implementation of point multiplications consumes much fewer clock

cycles and shows high speed depend on the optimisation techniques. Moreover, the standalone

hardware platform is now an interested topic for both academia and industry as the

advancement of hardware cells technology (i.e. low power and high speed VLSI integration)

offers high security and optimum performance. Thus, hardware implementations will be

ultimate efficient solution of ECC is targeted in the throughout of the thesis.

The hardware platforms such as ASIC and FPGA are considered for the ECC

implementation. The FPGA based hardware implementation is a bridge between software and

ASIC implementations. The advancement of FPGA technology allows FPGA applications

from prototyping to medium scale industrial applications. Moreover, FPGA based hardware

solution is a popular hardware platform in academia and industrial application due to some

advantages over ASIC hardware solutions. The main advantages of the FPGA are, for example,

such as reconfigurability, minor time scale of development, and advances in the cell

integrations and low power technology. Particularly, standalone ECC hardware on the FPGA

are increasing popular in the both academia and industry as the hardware design can show high

performance when high security is a prime concern. In this thesis, the hardware implementation

of the ECC processors in the FPGA is utilised to evaluate thesis contributions.

Many hardware implementations are presented in the literature [9] [10] [37] [45] [48-

51] [53-64] [66] [71-73] [79-82] [90] [91] [93]. The ECC implementations can be two main

spaces of design such as low area ECC and high speed ECC. Each design scheme has its own

Chapter 1: Introduction of Thesis

 1-5

design approach. For example, a low area implementation utilises low resources but high

latency to fit in the target applications. In the case of high-speed design, the speed of the

processing is important. The latency of point multiplication must be reduced to speed up the

ECC by exploiting large resources.

Highly efficient ECC shows high efficiency in the product of area and time for ECC.

There is a lack of high-efficient ECC design in the literature. Most of the hardware

implementations in the ligature are straightforward implementation of an algorithm designed

for software implementation. The design utilises very large area without gaining significant

speed or they consume very low area with very high latency. Thus, there is a requirement of an

optimised design from a hardware perspective. The poor efficiency of ECC prevents to fit in

the target application for a required security. Thus, a high-efficient ECC is the vital issue for a

cryptography system designer.

The main computation of the elliptic curve cryptography is the scalar point

multiplication, Q=kP, where k is an integer (a private key) and P is a base point on the elliptic

curve and the result of point multiplication is Q , the public key. The efficient point

multiplication (kP) design is an important issue in the ECC cryptography. The thesis only

focuses on achieving high efficiency point multiplications. The performance of the point

multiplications depends on the choice of algorithm, algorithmic modifications on top level and

in the low level, arithmetic units. Thus, modifications of algorithm and novel circuit design can

yield a highly efficient ECC.

1.3 Thesis Main Contributions

High efficiency ECC offers several advantages to deploy ECC in the different end of

applications such as low-end applications (i.e. low area or low-power applications) and high-

end applications (i.e. high speed applications). Mainly, the efficient ECC consumes a lower

area to compute faster point multiplication [8] [9]. An efficient ECC architecture can provide

high security and high speed for the given resource. Thus, a high-efficient design can provide

better area-time metric, a standard metric (efficiency) to evaluate the engineering merit of a

system architecture design and implementation.

Chapter 1: Introduction of Thesis

 1-6

Binary curves based ECC are increasingly more popular for hardware implementation

than prime field based ECC. The binary field computation has a simple addition operation due

to free from carry propagation delay. The circuit based on binary field is thus suitable to design

highly efficient ECC. In this thesis, we consider binary curves that are enlisted by the (NIST)

[4].

Hardware implementation for low resource application requires a small area to fit in

battery run low resources applications. The most of the implementation presented in the

literature used either high area along with poor latency or very low area ECC with very high

latency. The high latency may incur a problem for power management. Particularly, the

applications of high security requirement utilises large key size of ECC. The key size increases

latency geometrically that may thwart to apply in low resources applications. We have

developed a low resource friendly ECC that capable of providing high security while utilising

low area. The proposed low area design involves several contributions:

To yield low area ECC:

 We consider very low resources field arithmetic circuits such bit serial multiplier. The bit

serial multiplier takes m clock cycles for a multiplication; the latency is very much lower

than word level computation of the multiplication.

 Projective coordinates is a better choice than affine coordinates due to costly inversion

operation in each iteration of point multiplication. The projective coordinates based point

multiplication need one inversion operation while it is performing projective to affine

coordinates conversion.

 We utilise several point multiplication algorithms (binary, Montgomery, Frobenius Map

based NAF) to show their individual merits. In particular, the Montgomery ladder point

multiplication is an efficient point multiplication algorithm even for low area.

 Field square circuit can be achieved using a multiplier to save area with an overhead of

latency. For a high efficiency ECC, a single clocked based square is considered to reduce

latency by utilising a small extra area. This square circuit accelerates final inversion

operation when a multiplicative inversion is implemented.

 Memory unit is the largest part of a low area ECC. A high performance memory unit can

help to get efficient ECC. The Memory unit can be implemented by using either block

Chapter 1: Introduction of Thesis

 1-7

RAM or distributed RAM. However, block RAM is a popular option, our distributed RAM

based memory unit uses very low area to show very high speed.

 Finite state machine based control unit is considered and allows us to modify point

multiplication algorithm to achieve concurrent field operations. Moreover, the dedicated

finite state machine (FSM) can increase speed by reducing instruction delay during field

operations.

 Our Frobenius map based ECC shows very low latency while utilising a very small area

for conversion and can be fitted for a low resource application in which latency is a primary

concern.

 Binary implementation always takes lower area, but the latency is not fixed. The latency is

changed according to the change of the hamming weight of key.

To yield high throughput ECC:

 High performance (high throughput) ECC for high-speed application, for example, web

server needs high performance multiplier. For high-speed applications, there are many

works presenting large digit serial multiplier. Most of the work contributes in the high

performance ECC by introducing low complexity digit serial multiplier to reduce the

latency of point multiplication. Their digit serial multiplier shows poor clock frequency.

We implement a novel digit serial multiplier to accelerate ECC operation while the ECC is

keeping such area to get the best area time metric. Our novel digit serial multiplier

architecture is suitable for the large digit serial multipliers applications where traditional

multiplier is still beyond to meet the requirement of area and speed.

To yield high speed ECC:

 High-speed ECC implementation where speed is the only main issue needs very large size

multiplier. Moreover, parallel operation of the multiplier reduces latency of the point

multiplication further to speed up. In the literature, there are many high-speed works

presented, targeted to achieve the highest speed by exploiting bit parallel multipliers or

parallel multipliers. Most of the work failed to reach target levels of speed due to poor

performance of the multipliers and data dependency in the point multiplication. There is

also a gap to reach the theoretical limit of the latency due to poor performance of multiplier

and overall ECC architecture. We developed a new full precision multiplier architecture

Chapter 1: Introduction of Thesis

 1-8

along with smart ECC architecture to reach the theoretical latency limit. Thus, our ECC

can manage a new fastest figure of speed to date.

To yield low latency scalable ECC:

 Scalability of security options is a popular property of a crypto processor to change security

while it is required in the future. Moreover, smart devices (smart phone, PDA, RFID tags

and wireless sensor nodes (WSNs)) need low resources scalable processor to meet future

security requirement without replacing the crypto processor. To develop low resource

scalable ECC, there is a requirement of multiprecision multiplication, for example Comba

multiprecision multiplier and multiprecision square operation to include all NIST curves in

a single processor. There are several scalable ECC implementations showing very poor

performance due to high latency in the arithmetic operations with word level operation. We

consider Comba multiprecision multiplier is suitable for highly efficient ECC due to its

inherent parallelism to improve latency.

 We develop modified Comba multiprecision multiplier to reduce latency abruptly with

small overhead of the area. We evaluate the parallelism of Comba by utilising different sets

of parallel multipliers.

 A novel scalable reduction circuit is developed, which can perform reduction operations on

all NIST curves on the fly during multiplication. Thus, the latency of multiplication is

required to accomplish a field multiplication with reduction.

 We also develop very low latency novel multiprecision square circuit. There is no latency

for the reduction operations as like as our proposed multiplication. The square circuit

requires only the latency that is required to access data from memory. The proposed square

circuit takes only three clock cycles delays to get the first word of the square results.

 We propose a repeated squaring circuit that can start new square operation immediately

after a squaring operation is finished. The repeated square operation is flexible for all NIST

curves without incurring extra clock cycles for reduction and load-unload operation of data

from memory. The repeated operation accelerates point multiplication and multiplicative

inversion operation due to low latency and repeated square operation without delay

 The novel multiprecision circuits enable inclusion of all NIST curves in the single ECC

processor. Moreover, a new low cost memory unit and careful scheduling in the point

multiplication is utilised for saving latency to improve the efficiency of the scalable ECC.

Chapter 1: Introduction of Thesis

 1-9

The high efficiency of the scalable processor can enable the provision of high security

without changing the crypto processor in low-end applications.

1.4 Thesis Outlines

 The thesis is organised as follows

Chapter 2 presents necessary preliminaries of the remaining chapters to understand the

novel contribution of those chapters. The Galois field arithmetic, elliptic curve arithmetic and

application, and hardware platform of ECC such as FPGAs are covered in this background

chapter.

In chapter 3, low area elliptic curve cryptography on FPGA is presented. The chapter

includes low resources implementation of popular ECC point multiplication algorithms to

achieve the best area-time metrics targeted in the low end applications.

A novel digit serial multipliers over GF(2m) for curve based cryptography application

is introduced in chapter 4. The chapter describes the best high throughput per area architecture

of ECC based on the digit serial multiplier.

Chapter 5 reports the fastest figure of ECC point multiplications on FPGA over GF(2m).

The pipelining based full-precision multipliers and its parallel operations, and smart pipelined

based ECC architecture are presented. The ECC architecture can manage to reach the

theoretical limit of latency for the point multiplication utilising careful scheduling in the point

operations.

Chapter 6 discusses new modified Comba multiprecision multiplier and new

multiprecision square circuit. A novel multiprecision arithmetic based on the two novel circuits

drastically reduced latency to achieve the best area-time scalable ECC for the low-end

applications.

Finally, the thesis is summarised the main contributions in the conclusions, which is

chapter 7 and a discussion of potential future works are included in there as well.

Chapter 1: Introduction of Thesis

 1-10

1.5 Published Papers

The contribution of the research work presented in this thesis, the following peer-reviewed

academic papers were published/accepted to publish:

1. Z. Khan and M. Benaissa, "Low area ECC implementation on FPGA," in Proc. IEEE

20th Int. Conf. Electronics, Circuits, and Systems, Dec. 8-11, 2013, pp. 581-584.

2. Zia-Uddin-Ahamed Khan and M. Benaissa, “Throughput/Area Efficient ECC

Processor using Montgomery Point Multiplication on FPGA,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 62, no. 11, pp. 1078-1082, Nov. 2015.

3. Zia Khan, M. Benaissa, “ High Speed ECC Implementation of FPGA over GF(2m),”

in IEEE 25th International Conference on Field-programmable Logic and

Applications (FPL), 2-4 Sept. 2015 pp. 1-6.

4. High speed and Low latency ECC implementation on FPGA over GF(2m): (Accepted

to publish in the IEEE Transactions on Very Large Scale Integration Systems)

Chapter 2: Background

 2-1

 Background

This Chapter discusses elliptic curve cryptography application as a public key cryptography.

Again, the chapter explains important terminologies of the Elliptic Curve Cryptography

principle along with the underlying finite field theory of the elliptic curve cryptography.

Finally, the issues involved in the implementation of Elliptic Curve Cryptography for Point

multiplication are demonstrated in the chapter.

Chapter 2: Background

 2-2

2.1 Introduction

Cryptography is a technique to change the original message so that the actual meaning of

the message is difficult to retrieve. The technique of cryptography is underlying hardness of

complex mathematical problem. No one can solve this problem except the target person to get

the actual meaning of the sending message using available computing system in the required

time scale. Modern cryptography involves with complex mathematical algorithm under the

cryptographic protocol to provide authentic communication systems.

In the modern era of cryptography key exchange method, a cryptography algorithm to solve

the problem of private key-based, a new milestone of cryptography became known when

Whitefield Diffie and Martin Helman [3] proposed key management problem. The new

proposed method and its application are termed as public key cryptography (PKC). PKC has

two keys such as public key that is known by all users and private key that is saved in secret

by a respective user. The sensitive data transmission among all users is performed by using

public key. As the transmission is accomplished by using one way function, only the target

person is able to get the transmitted data. Thus, public key becomes the main mechanism to

secure data transmission in the cryptography based secure communications.

2.2 Cryptography Basics

In a communications system, the sensitive information that is transmitted between sender

and receiver is open to access by all. Eavesdroppers can easily get the transmitted information

if there is no protection of information. Thus, there is a requirement of security so that third

parties are not able to retrieve actual information. Cryptography algorithms is associated with

complex algorithms that provide security in the communication system. It is impossible for a

third party to retrieve the original data as there is an exponential time requirement to get the

original information. Modern PKC provides secure communication by ensuring the following

issues [1], [2], [11]:

 Data confidentiality: Confidentiality is a property to secure data so that unauthorised

persons cannot receive the transmitted data. Thus, third person cannot eavesdrop the

data.

Chapter 2: Background

 2-3

 Data Integrity: the receiver checks the data, whether the data is modified by the

eavesdropper (i.e. attacker). In this case, the receiver uses the message to verify the

content of the transmitted data has not been altered.

 Data Origin Authentication: The vital secrecy of the transmitted data is authentication.

Receiver confirms the original sender identity before data transmission is established.

 Entity Authentication: other users, to authenticate the identity of the user, verify the

entity of a user.

 Non-Repudiation: After transmitting data, both sender and receiver cannot reject that

they have involved in the communication or denied the content of data in the future.

Fundamentally, cryptography uses keys to encrypt and decrypt information using mathematical

techniques so that the above goals are achieved. A typical cryptography based communication

system is described below:

Alice (A) wants to send a message (M) is called the plaintext to her friend Bob (B)

through a secure communication channel based on cryptography. A third person, Eve (E) is

interested to retrieve the message by eavesdropping. Alice wants to ensure security by hiding

the plaintext using cryptography tools. The hiding of the plaintext by cryptography tools is

performed through a certain algorithm (called cipher) which involves the use of complex

mathematical operations. The hiding process of the plaintext is called encryption (Ec). The

encrypted plaintext is called chippertext (Ctext). Again, the reverse operation of the encryption

is called decryption (Dc). In the decryption process, similar algorithm (decipher) is utilised but

operations on the ciphertext to retrieve the plaintext. For encryption and decryption process,

the encryption key (Ke) is used for encryption of the plaintext and the decryption key (Kd) is

used for decryption of the ciphertext. The mathematical model of the cryptography is shown

below:

𝐶𝑡𝑒𝑥𝑡 = 𝐸𝑐(𝑀) where the key is Ke (2.1)

 𝑀 = 𝐷𝑐(𝐶𝑡𝑒𝑥𝑡) where the key is Kd (2.2)

To achieve the goal of security, a distributed sequence of steps called cryptographic protocol

is defined precisely in the interactions between two or multiple parties [2].

Chapter 2: Background

 2-4

2.3 Cryptography Schemes

There are mainly three cryptography schemes such as symmetric key cryptography or

private key cryptography, asymmetric key cryptography or public key cryptography and hash

functions or no key algorithms. Eq. (2.1) and Eq. (2.2) can be established using the

cryptographic schemes.

2.3.1 Symmetric Key Cryptography

The symmetric key cryptography algorithm uses the same key for encryption and

decryption process. The symmetric key cryptography is illustrated in Figure 2.1 where Alice

want to send a message (plaintext) to Bob over symmetric key cryptography based secure

communication channel. If Alice uses a key to encrypt the plaintext, then the key must be sent

through a secure channel to Bob. Otherwise, a key exchange is used before encryption and

decryption is processed. There are several popular symmetric curve cryptography available

such as Advance Encryption Standard (AES), A5, and RC5.

Symmetric key cryptography is compact and provides higher security than asymmetric

key per bit. Thus, symmetric key cryptography can be used in low end to high speed

applications. The advantages of symmetric key cryptography cannot be utilised due some

shortcomings [12]. One of the disadvantages of the symmetric key cryptography is the key

distribution problem due to both sender and receiver must have same key. If there are few users,

then the number key for every two users is less and easy to distribute the keys. But, for a large

number of users, the key distribution is not practically suitable. Moreover, the keys are required

to be changed frequently which is another problem for key management. Finally, in some cases,

authentication and non-repudiation goals are not established by using symmetric key

cryptography. The asymmetric key cryptography can overcome the symmetric key

cryptography problems is discussed in the next sub-section.

Figure 2.1 Symmetric key cryptography based communication system

Chapter 2: Background

 2-5

 2.3.2 Public Key Cryptography

Diffie and Hellman proposed public key cryptography. They solved the problem of

symmetric key cryptography, including key distribution problem and key management

problem [3]. In Figure 2.2, Public key cryptography is explained by using a basic protocol

where separate keys are used for encryption (public key, Ke) and decryption (private key, Kd).

The public key of a user is available to every user; hence, it is named public. The private key

is kept in secret so that only the user knows the key. In the Figure 2.2, Alice wants to send a

message (Plaintext) to Bob and Flora. To encrypt the messages, Alice uses the public key of

Bob to send message to Bob and also uses public key of Flora to send a message to Flora. Bob

and Flora can only decrypt their respective message using their own private key; however, both

messages are publicly available. The public key cryptography works in one direction, this

action is called “one way function” due to that the computation in the reverse direction is not

practical. Thus, it is impossible to know (in the target time scale) the private key of a user (i.e.

Bob) by another person (i.e. Flora) from the public key of the user (Bob) except the respective

user (Bob).

The advantages of public key cryptography over symmetric key cryptography such as

key exchange, key management along with confidentiality. The modern public key

cryptography also provides authentication by exploiting digital signature. Thus, public key

cryptography can prove one of the user would be involved to generate a message called non-

repudiation. A notable feature of public key cryptography is to provide sender non-repudiation

that is absent in the symmetric key cryptography scheme. There are several mechanisms

involved in the public key crypto system such as key exchange protocol, digital signature

algorithm and encryption.

Figure 2.2 Public key cryptography based communication

Chapter 2: Background

 2-6

Modern public key cryptography provides all desired goals for a given security protocol

of the communications system (i.e, IP encryption (IKE/IPSEC), web traffic SLL/TLS and

secure electronic mail). For a given security, public key cryptography takes long computation

delay. The large size data are involved in the computation make it lower efficiency than private

key cryptography. Thus, standalone public key cryptography is infeasible for some

computation sensitive applications (low-end applications). In this case, a hybrid cryptosystem

where public key cryptography (for key exchange) and private key cryptography (encryptions)

can be used together to improve performance.

Now, There are several popular public key cryptography that are considered for high-

security communications included: 1. Integer Factorisation Problem (IFL) based RSA (named

from the name of inventors – Rivest, Shamir and Adelman) [13], 2. Discrete Logarithm

Problem (DLP) based Diffie-Helman (DH) key exchange protocol and DH Digital Signature

Algorithm (DSA), and 3. Elliptic Curve Discrete Logarithm Problem (ECDLP) based Elliptic

Curve Diffie-Hellman (ECDH) key exchange protocol and Elliptic Curve Digital Signature

Algorithm (ECDSA) [4]. Comparatively, older public key cryptography such as RSA and

Discrete Logarithm (DL) are involved with a computationally high intensive operation such as

modular exponentiation. The modular operation is exploited large size operand to provide high

security as compared to Elliptic Curve Discrete Logarithm Problem based crypto system.

A comparison of equivalent key sizes AES, RSA and ECC recommended by NIST is

presented in Table 2.1 [5]. The key size of AES is compact to provide high security while

comparing with public key cryptography i.e. RSA, ECC. Key size of conventional encryption

algorithm i.e AES is a measure of security to protect attack. To provide an equivalent security

of 80 bit long key of AES, RSA needs 1024 bit key, whereas ECC needs 163 bits key [1]. For

Table 2.1 Equivalent key size of AES, ECC and RSA/DH and a comparison of computation cost [96].

Symmetric key,

(AES)

ECC key (GF2m) / GF(p) RSA/DH key Ratio of

DH Cost : ECC Cost

80 bit 163 bit / 160 bit 1024 bit 3:1

112 bit 233 bit / 224 bit 2048 bit 6:1

128 bit 283 bit / 256 bit 3072 bit 10:1

192 bit 409 bit / 384 bit 7680 bit 32:1

256 bit 571 bit / 521 bit 15360 bit 64:1

Chapter 2: Background

 2-7

high security, for example, the security equivalent of 256 bit key size of AES, the key size of

RSA increases abruptly as compared to ECC. Thus, ECC offers higher security per bit than

RSA or Diffie-Hellman public key cryptography. The right hand column of Table 2.1

computations cost of between Diffie-Hellman public key cryptography over Elliptic Curve

Cryptography [96]. For a typical protocol such as key exchanges in the DH requires a large

number bit to transmit each way of a communication channel as compared to ECC. Thus, there

is an overhead in bandwidth due to large key size of DH. In this case, ECC is suitable for a

channel-constrained environment than first generation public key crypto systems (RSA and

DH). Thus, ECC is suitable for both low-end applications (i.e. sensor networks, RFID tags,

smart card) and High-speed applications (i.e. Server side).

2.3.3 Hash Functions

The hash function is a cryptography algorithm apart from private key and public key.

The hash function is a one way function also called message digests. The hash function uses a

hash value instead of a key. The hash value is a fixed length that is generated from a given

plaintext [12]. The content of plain text or length of the plaintext is impossible to retrieve from

the hash value. Hash is widely used for message integrity along with other cryptosystems.

There are several hash functions used in the communication system such as SHA1 [14], MD4,

MD5 [15] and the newer one is SHA3 are recommended by NIST [16].

For example, Alice wants to send a message to Bob. She calculates hash value of the

message using a hash function. She then encrypts the hash value using asymmetric

cryptography algorithm which is called a form of digital signature. Alice also creates an

arbitrary session key for symmetric encryption. The key is used for encryption of the message.

The private key is encrypted using public key of Bob using public key cryptography. Now a

digital envelope is formed, including the message and encrypted session key. Alice then sends

the digital envelope and digital signature to Bob. Bob retrieves the session key using his private

key. Finally, the message of Alice is decrypted with the help of symmetric key algorithm using

the session key. Alice also decrypted the hash value using the Alice public key to verify

integrity. Bob uses the decrypted message to generate a hash value using hash algorithm and

compare with the value of decrypted hash value. The hybrid procedure ensures Bob several

goals such private message (symmetric encryption), the message is only for Bob (Bob’s private

Chapter 2: Background

 2-8

key used to decrypt), the message is not be altered (by matching hash value) and Alice sent the

message(Alice public key is used to generate the same hash value).

2.4 Elliptic Curve Cryptography

Elliptic curves have been used as a key tool to solve several problems in mathematics

since the middle of the 19th century. The properties of elliptic curves used to solve that are

factoring integers, proving Fermat’s Theorem, primality testing and currently public key

cryptosystems. Koblitz [17] and Miller [18] proposed elliptic curve cryptography in 1985

independently. Since then, elliptic curve cryptography was slowly adopted in commercial

industry. Now, ECC is taking place of first generation cryptography, RSA as ECC is adopted

by standardizing bodies such as ANSI [19], IEEE [20], ISO [16], and NIST [4].

Elliptic curve cryptography is based on the Discrete Logarithm Problem (DLP). Elliptic

curve cryptosystems are implemented in finite field for a group structure. There is a set of

elements (points) in the group. The special point, ø is a point at infinity is the identity of the

group. The elliptic curve operation in the group is addition of points. The point addition

operation is performed underlying arithmetic operation in the finite field is called field

arithmetic operation. The idea behind the elliptic curve cryptography is to add a point P itself

for k times where k is an integer (scalar) to achieve new point on the elliptic curve , Q= kP is

called scalar point multiplication as presented in (2.3). It is an easy way to obtain Q =kP using

point additions operation. The inverse operation to get the k from the given P and Q is a

mathematical problem, Elliptic Curve Discrete Logarithm Problem (ECDLP). Unlike other

DLP, ECDLP being a harder problem as until now; there is no sub-exponential time algorithm

to solve the ECDLP. In Q= kP, k is called discrete logarithm problem of Q to the base point

P, 𝑘 = log𝑃 𝑄. Thus, Elliptic curve crypto systems provide higher security per bit than that of

RSA. As a result, the communications channel requires lower bandwidth for ECC, along with

the advantage of lower memory requirement than first generation cryptography. For example,

for the symmetric curve key of 256 level security, ECC needs a key of 571 bits as compared

to RSA with a key of 15360 bits.

Q= k.P = P+P+...+ P+P. (2.3)

Chapter 2: Background

 2-9

 The main underlying operation of the ECC is scalar point multiplication. The point

multiplication is consuming most of the computation time during the ECC protocol (encryption

and decryption). Thus, the scalar point multiplication is the main building block to implement

the elliptic curve cryptography processor. The hierarchy of elliptic curve cryptography

operations is shown in Figure 2.3. The point multiplication is achieved using elliptic curve

arithmetic operations that are called point addition and point doubling. The underlying of the

point operation is finite arithmetic operations that are represented in the bottom layer of the

hierarchy diagram.

2.5 Finite Field Theory

The fundamental theory of cryptography engineering is a finite field theory. To explore

the ideas and contributions of a cryptography processor, there are requirements of in depth

understanding of finite field arithmetic, elliptic curve operations, point multiplications and their

implementation issues. Particularly, as the finite field arithmetic circuit design is the crucial

part of the ECC processor design, an extensive understanding of finite theory and circuits are

the basics for the complete ECC design. Several resources of finite field theory are available

in [1],[18], [22],[23] and [24] to read more details.

Modern finite field theory has developed from Galois field theory since the 19th century.

The French mathematicians Evariste Galois developed the elementary theory, hence, named

Galois field. The finite field has been widely considered for the last decades when algebraic

geometry and algebra are adopted in the coding theory and cryptographic schemes.

Figure 2.3 ECC hierarchy diagram

Chapter 2: Background

 2-10

Some fundamental definitions of finite field theory are presented below which will be

used in finite field arithmetic in this thesis.

Definition 1 In the finite field theory, a finite field, F or a Galois field, GF is an algebraic

structural group of finite numbers. The algebraic operations such as addition , subtraction,

multiplication with and division are performed within elements of the finite field while it is

maintaining algebraic laws such as associative, commutative, distributive, existence of an

additive identity is 0 and a multiplicative identity is 1, additive inverse, and multiplicative

inverse for nonzero elements. The group structure of GF also follows the law is called Group,

for example, a group M. The group, M is called a commutative group or Abelian group.

Modern cryptography systems are based on the Abelian groups [22].

Definition 2 If F is a set of an Abelian group [1] [22]:

 With additive identity, 0 is as identity element.

 With Multiplicative identity element 1.

 Distributive law exists: (a + b)c = ac + bc

Definition 3 If the elements of F is finite, then the field is called finite. The number of elements

is called the order of fields, q [1].

Definition 4 In a finite field, GF(q), the order of GF, the content of q is a prime power is a

form of 𝑞 = 𝑝𝑚 where p is a prime number is called the characteristic of GF and m is an integer

number [22].

In cryptography and coding theory, there are three main fields as shown below:

 If 𝑚 = 1 , then the GF(p) is called prime field

 If 𝑚 ≥ 2, then the GF is called extension field.

o If 𝑝 = 2, 𝑚 > 1 , then the GF(2m) is called a binary extension field or

characteristic 2 field or simply binary field.

o If 𝑝 > 2, 𝑚 > 1, then the GF(pm) is called an optimal extension field.

Chapter 2: Background

 2-11

The binary field is a popular option over the prime field for the hardware design. This thesis

covers all contributions based on GF(2m). Thus, the rest of the thesis is mainly concerned with

the binary field, GF(2m).

 2.5.1 Binary extension field GF(2m)

The field arithmetic operations such as multiplication and addition over a binary

extension field are carry free operations. The carry free operation is suitable in the hardware

platform as compared to software implementation. Moreover, the carry free operation offers

shorter critical path delay and lower resources than a carry based field operation in the hardware

platform. Thus, the binary field arithmetic circuit can achieve faster speed with exploiting low

resource in any hardware platform. Particularly, the addition over characteristic 2 circuit

utilises very simple circuit (exclusive or logic, xor) than an integer arithmetic circuit. It can be

noted that the general purpose computing system is more suitable integer arithmetic than that

of GF(2m). Thus, binary extension field based arithmetic operations are problematic in the

system that is designed for integer arithmetic operations.

In the binary extension field, GF(2m) has 2m-1 non-zero elements for a m length of

binary vectors. The bases of the m length are (𝑎𝑚−1, … , 𝑎1, 𝑎0) as a linear space over GF(2m).

A subtraction is equivalent to addition over GF(2m) is performed bitwise xor operation.

Definition 5 A polynomial A(x) over a binary extension field is an algebraic structure is of the

form 𝑎𝑚𝑥𝑚 + ⋯ + 𝑎1𝑥 + 𝑎0. The coefficients of the polynomial, 𝑎𝑖’s can be integer, real, or

complex [25].

Definition 6 The polynomial algebraic operations over GF(2m) maintains finite field; however

the algebraic operations are same as normal polynomial algebraic operations [25].

Definition 7 If two polynomials 𝐴(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚

𝑖=0 and 𝐵(𝑥) = ∑ 𝑏𝑖𝑥
𝑖𝑚

𝑖=0 over a finite field,

GF(q) [25], then

 The addition : (𝐴(𝑥) + 𝐵(𝑥)) = ∑ (𝑎𝑖 + 𝑏𝑖)𝑥𝑖𝑚
𝑖=0

 The multiplications: (𝐴(𝑥). 𝐵(𝑥)) = ∑ 𝑐𝑙𝑖
𝑥𝑖𝑚+𝑛

𝑙=0 ; where 𝑐𝑙 = ∑ (𝑎𝑖. 𝑏𝑗)𝑖+𝑗

Chapter 2: Background

 2-12

Definition 8 A polynomial f(x) over 𝐺𝐹(𝑞) is called an irreducible polynomial when 𝑓(𝑥) ≠

1 and 𝑓(𝑥) = 𝐴(𝑥). 𝐵(𝑥) where 𝐴(𝑥) or 𝐵(𝑥) must be unit polynomial or constant

polynomial [25].

Definition 9 If an irreducible polynomial is 𝑓(𝑥) ∈ 𝐺𝐹(𝑞) of degree m, then 𝑓(𝑥) is used to

create an extension field of 𝐺𝐹(𝑞). The order of the extension field m is defined in the field by

𝐺𝐹(𝑞𝑚) [25].

Definition 10 There are 𝑞𝑚 elements over the extension field (𝑞𝑚). The element can be

expressed by a polynomial of degree m-1 over a subfield 𝐺𝐹(𝑞).

Definition 11 An absence of proper subfield is denoted as prime field [25].

Definition 12 If 𝐴(𝑎) = 0 over 𝐺𝐹(𝑞), then 𝑎 is a root or zero of a polynomial 𝐴(𝑥) ∈ 𝐺𝐹(𝑞)

Definition 13 For a given irreducible polynomial, 𝑓(𝑥) over subfield 𝐺𝐹(2) of degree m and

for a root, 𝑓(𝑥) is, 𝑓(𝑥) can create a binary extension field, 𝐺𝐹(2𝑚) with a 2𝑚 number of

elements. The elements form a set , (1, 𝑎, 𝑎2, … , 𝑎𝑚−1) with a basis of the field is called a

polynomial basis of the field 𝐺𝐹(2𝑚) [12].

Irreducible polynomials that are used in the ECC having zeros in the most of the

coefficient and the non-zero coefficients are relied in the lower order. Thus, the sparse

irreducible polynomials are suitable for reduction operation in the both hardware and software

platforms. The irreducible polynomial can be trinomial or pentanomial as shown below [19,

20, 26].

Trinomial: 𝑓(𝑥) = 𝑥𝑚 + 𝑥𝑛 + 1 (2.4)

where 𝑚 > 𝑛 > 1.

Pentanomial: 𝑓(𝑥) = 𝑥𝑚 + 𝑥𝑘 + 𝑥𝑙 + 𝑥𝑛 + 1 (2.5)

where 𝑚 > 𝑘 > 𝑙 > 𝑚 > 𝑛 > 1.

Chapter 2: Background

 2-13

2.5.2 Representation of Finite Field

There are three popular basis of the finite field, 𝐺𝐹(𝑞𝑚) that are used for ECC

implementation such as polynomial (also called canonical or standard) basis, normal basis and

dual basis. The polynomial basis is mostly used in the hardware implementation due to carry

free arithmetic operations. The normal basis and dual basis are primarily considered in the

software ECC implementation as they have the advantage of squaring by doing a simple

shifting operation.

Polynomial basis has several advantages such as carry free operation, low complexity

for a larger field size multiplier and even, low complexity for a square circuit in the hardware

platform. In the thesis, the hardware ECC implementation exploits the polynomial basis

operations over 𝐺𝐹(2𝑚). Thus the rest of the thesis will only consider binary extension field

or simply binary field, 𝐺𝐹(2𝑚).

Definition 14 A polynomial basis is formed with a set of elements (1, 𝑎, 𝑎2, … , 𝑎𝑚−1) where

𝑎 is a root of a generator polynomial (also called irreducible polynomial) 𝑓(𝑥) [25].

2.5.3 Finite field arithmetic over GF(2m)

In the thesis, the binary field is considered for the design and implementation of field

arithmetic circuits to exploit some advantages of hardware platform. Binary filed arithmetic

circuits, in particular, allows some flexibility in the hardware design due to carry free arithmetic

operations. Thus, multiplication and addition operations are compact and faster. Moreover,

square operation in the binary field is linear as the addition of even number of ‘1’ is zero. Thus,

square circuit in binary field is a low complexity and faster than multiplier circuit. Again, in

the binary field, polynomial arithmetic operation is regular, hence, suitable for pipelining. The

binary field arithmetic circuits discussed here briefly will be used throughout the rest of the

thesis.

Addition and subtraction

Binary arithmetic field addition and subtraction are same operations. For example, a

and b are two polynomials over GF(2m) with degrees of (m-1). The polynomial a, 𝑎(𝑥) =

 ∑ 𝑎𝑖𝑥
𝑖𝑚

𝑖=0 and the polynomial b, b(𝑥) = ∑ 𝑏𝑖𝑥𝑖𝑚
𝑖=0 where 𝑎𝑖, 𝑏𝑖 ∈ {0,1}. The addition and

Chapter 2: Background

 2-14

subtraction are accomplished bitwise exclusive or, xor operation as shown in algorithm 2.1 [1].

Thus, the area-time complexity is neglected for a binary field addition circuit.

Multiplication over GF(2m)

Binary field multiplication is considered performance-critical arithmetic operation for

the ECC implementation when point multiplication is performed in the projective coordinates

system. In the field multiplication, two m-bit operands (multiplicand and multiplier) are the

two finite elements, for example, 𝑎 and 𝑏 over GF(2m) and an irreducible polynomial, f(x) is

(m+1)-bit length . The product of the multiplication, C’(x) in (2.6) is 2m-1-bit length is required

to reduce to m-bit necessary to maintain the field size m-bit is shown below:

𝑐′(𝑥) = 𝑎(𝑥). 𝑏(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑚−1
𝑖=0 ∑ 𝑏𝑖𝑥

𝑖𝑚−1
𝑖=0 (2.6)

𝑐(𝑥) = 𝑐′(𝑥)𝑀𝑜𝑑𝑓(𝑥) (2.7)

There are several architectural options for carrying out the Eq. (2.7) [1]. The binary

field multiplication architecture can be classified such as a bit serial multiplier, digit serial, bit

parallel multiplier and hybrid. Each of the architectures has different area-time complexities

are considered on the basis of design space. Bit serial multiplier consumes a very low area, but

high latency, whereas bit parallel multiplier has consumed high resources, but very low latency

[27, 28]. The consideration of the type of multiplier in an ECC implementation depends on the

applications, for example, a low resources ECC implementation is usually considered bit serial

or small digit serial, whereas a very high speed ECC implementation may consider large size

digit serial multiplier or bit parallel multiplier [28-31]. Apart from these types of multiplier, a

multiprecision multiplier involved with word level multiplication may consider for a very low

resource applications such as sensor nodes, RFID tag and smart card. Each of the types of

Algorithm 2.1 Addition or subtraction over GF(2m)

Input: 𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚−1

𝑖=0 and 𝑏(𝑥) = ∑ 𝑏𝑖𝑥
𝑖𝑚−1

𝑖=0 over GF(2m)

Output: c(𝑥) = ∑ 𝑐𝑖𝑥
𝑖𝑚

𝑖=0

𝑐(𝑥) = 𝑎(𝑥) 𝑥𝑜𝑟 𝑏(𝑥)

Return 𝑐(𝑥)

Chapter 2: Background

 2-15

multiplier has some merits and demerits can be justified by standard time area metrics when it

is comparable to the state-of-the-art.

Bit serial, digit serial and bit parallel multipliers over GF(2m)

The two operands of a bit serial multiplier over GF(2m) such that one is m bit

multiplicand and another one is 1 bit multiplier. The multiplication operation is accomplished

simple shift and add method. The order of multiplier’s bit can be from least significant bit

(right) to most significant bit (left) of an operand (multiplier) or most significant bit to least

significant bit of an operand (multiplier); thus, named as Least Significant Bit (LSB) multiplier

and Most Significant Bit (MSB) multiplier respectively.

In a bit serial multiplier, the latency for both types of bit serial multiplier is m clock

cycles as each iteration only generates one bit multiplicand and m bit multiplier product’s

results. The algorithms for MSB multiplier and LSB multiplier are shown in the algorithm 2.2

and algorithm 2.3 respectively.

 The area for bit serial multiplier is 0(m) and time complexity is 0(m). Thus, the bit

serial multiplier exploits very low area; however, the bit serial multiplier takes m clock cycles

delay. To improve latency, a digit serial multiplier is used to reduce latency.

 In digit serial multiplier, digit size, d is 1>d>m. In digit serial multiplier, multiple bits

(d digit)of multiplier multiply m size operand in a single clock cycle. Thus, the latency is

Algorithm 2.2 MSB field multiplication over GF(2m)

Input: 𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚−1

𝑖=0 and 𝑏(𝑥) = ∑ 𝑏𝑖𝑥𝑖𝑚−1
𝑖=0 over GF(2m) and irreducible polynomial 𝑓(𝑥) =

𝑥𝑚 + 𝑘(𝑥).

Output: c(𝑥) = ∑ 𝑐𝑖𝑥
𝑖𝑚

𝑖=0 = 𝑎(𝑥). b(𝑥)

Step1 𝑐 ← 0

Step2 For i from m-1 to 0 do

 Step3.1 𝑐 ←leftshift(c) xor 𝑐𝑚−1𝑘.

 Step3.2 𝑐 ← 𝑐 𝑥𝑜𝑟 𝑏𝑖𝑎

 end if;

Return (𝑐).

Chapter 2: Background

 2-16

reduced to m/d clock cycles which is equal to the number digits, s. if an m bit multiplicand is

b and each digit of the multiplicand is B, then, 𝑏 = ∑ 𝐵𝑖𝑥
𝑑𝑖𝑠−1

𝑖=0 . An MSB digit serial multiplier

algorithm is shown in the algorithm 2.4. The product of the multiplier is m+d-1 bit. The process

of multiplications is similar to the bit serial multiplier, but the shifting is for d bit instead of

single bit shifting as a bit serial multiplier. The complexity of area of the digit serial multiplier

is 0(m.d) and time complexity 0(m/d).

The bit parallel multiplier has higher complexity than sequential multiplier (bit serial

or digit serial multiplier). A bit parallel multiplier multiplies m bit multiplicand by m bit

multiplier is a combinational circuit. The product of the multiplier is 2m-1 bit long which takes

1 clock cycle to complete. In the multiplier, the m bit multiplicand multiplies each bit of the m-

bit multiplicand. Thus, a bit parallel multiplier has high area complexity such as 𝑚2 and gates

and m(m-1) xor gates. The whole multiplication is divided into multiply and accumulation. The

multiplying m-bit multiplicand by each bit of the multiplier is accomplished in parallel, thus

the critical path delay for multiplying is one and gate delay and the critical path for

accumulation is contributed by a chain of addition of the partial results using m(m-1) xor gates,

Algorithm 2.3 LSB field multiplication over GF(2m)

Input: : 𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚−1

𝑖=0 and 𝑏(𝑥) = ∑ 𝑏𝑖𝑥
𝑖𝑚−1

𝑖=0 over GF(2m)

Output: c(𝑥) = ∑ 𝑐𝑖𝑥
𝑖𝑚

𝑖=0 = 𝑎(𝑥). b(𝑥)𝑚𝑜𝑑 𝑓(𝑥)

Step1 𝑅(𝑥) ← 0

Step2 𝐼𝑓𝑎0 = ′1′ then

 𝑅(𝑥) ← 𝑏(𝑥) else

 𝑅(𝑥) ← 0

 End if;

Step3 For i from 1 to m-1 do

 Step3.1 𝑏 ← 𝑏. 𝑥 𝑚𝑜𝑑 𝑓(𝑥)

 Step3.2 𝐼𝑓𝑎𝑖 = ′1′ then

 𝑅(𝑥) ← 𝑏(𝑥) 𝑥𝑜𝑟 𝑏

 end if;

Return c(𝑥) = 𝑅(𝑥)

Chapter 2: Background

 2-17

which is equal to log2 𝑚 of xor gate delays. The reduction part of the finite field bit parallel

multiplier is accomplished along with same clock cycles. The area and time complexity of the

reduction part is added to GF(2m) multiplication depending on the non-zero terms of the

irreducible polynomial.

Squaring

Squaring is considered when two inputs of a multiplication are the same due to low cost

operation than multiplier. In the case of fixed irreducible polynomial, square circuit can be

treated to achieve one clocked cycle squaring operation using very low resource. The square

operation, in particular, over GF(2m) is simplified due to 𝑎𝑖𝑎𝑗 𝑥𝑜𝑟 𝑎𝑗𝑎𝑖 = 0 where i and j =

0,1,…,m-1. Particularly, simpler circuit than a multiplier. Thus, interleaving zeros in the

operand are used to perform square operation. The only major work of squaring over GF(2m)

is reduction operations. The reduction part of the square circuit is further simplified due to near

about half of the bits are zeros that are used for reduction. Thus, the area complexity of a square

circuit is lower than multiplier and the complexity depends on the irreducible polynomial. The

requirement of logic gates for a square circuit over GF(2m) might be as much as m/4 xor with

a time complexity either for a trinomial f(x) is one xor gate or for a pentanomial f(x) is 3 xor

gates [1].

Inversion

Algorithm 2.4 Digit serial multiplier over GF(2m)

Input: 𝑎(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚−1

𝑖=0 and 𝑏(𝑥) = ∑ 𝑏𝑖𝑥𝑖𝑚−1
𝑖=0 over GF(2m) and irreducible polynomial 𝑓(𝑥) =

𝑥𝑚 + 𝑘(𝑥).

Output: c= 𝑎. 𝑏

Step1 𝑐 ← 0

Step2 For i from 0 to s-1 do

 Step2.1 𝑐 ←c xor 𝐵𝑖𝑎.

 Step2.2 𝑎 ← 𝑎. 𝑥𝑑 𝑓(𝑥)

 end if;

Return (𝑐 𝑚𝑜𝑑 𝑓(𝑥)).

Chapter 2: Background

 2-18

Inversion is one of the main operation in the point multiplication of the ECC. If a is a

nonzero element over GF(2m), then inversion (𝑎−1 ∈ 𝐺𝐹(2𝑚)) is performed by calculating

unique element such that 𝑎. 𝑎−1 = 1 [1, 12]. A standalone inversion circuit is an area-time

performance critical operation as compared to a field multiplication. The are-time complexity

increases abruptly while the field size of ECC is increasing to enable high security. Thus, the

performance of inversion mostly affects the overall ECC operation. There are two ways to

accomplish the inversion operation such as a dedicated circuit with a typical latency of 2m

clock cycles and multiplicative inversion [1]. The multiplicative inversion involved with many

multiplications and squaring operations contributes higher latency than that of the dedicated

inversion circuit. The point multiplications in the standard affine coordinates utilise inversion

operation in the each loop operation, whereas point multiplication in projective coordinates is

an inversion free point operation with a cost of latency. Thus, there is a trade-off in the area

and delay products for an ECC design as a standalone inversion circuit increases area and

critical path delay. For a highly efficient circuit, the multiplicative inversion circuit is popular

for the projective coordinates based ECC hardware as the existence multiplier and square

circuits perform the only required inversion operation during coordinate conversion. A

multiplicative inversion algorithm based on Fermat’s little theorem is presented in the

algorithm 2.5 [1].

Reduction

Algorithm 2.5 Fermat's little theorem based inversion over GF(2m) (m odd)

Input: nonzero element , 𝑎 over GF(2m) and

Output: 𝑎−1

Step1 Set 𝐴 ← 𝑎2, 𝐵 ← 1, 𝑥 ← (𝑚 − 1)/2

Step2 while (𝑥 ≠ 0) do

 Step2.1 𝐴 ← 𝐴 × 𝐴2𝑥

 Step2.2 if 𝑥 is even then 𝑥 ← 𝑥/2

 Else

 𝐵 ← 𝐵 × 𝐴, 𝐴 ← 𝐴2, 𝑥 ← (𝑥 − 1)/2.

Return (𝐵).

Chapter 2: Background

 2-19

In finite arithmetic, the reduction operation is a part of the each of the arithmetic

operations to confine the length of arithmetic results within finite field. For a binary field

arithmetic, fast reduction algorithm is widely used in the literature. There are several

recommended fast reduction polynomials for ECC over GF(2m) available can be

trinomial, 𝑓(𝑥) = 𝑥𝑚 + 𝑥𝑛 + 1 and pentanomial 𝑓(𝑥) = 𝑥𝑚 + 𝑥𝑘 + 𝑥𝑙 + 𝑥𝑛 + 1 [1]. The

nonzero terms of the reduction polynomial affect the performance of an ECC architecture. If

the nonzero terms are in the lower order, then a large amount of the middle terms are zeros

which is simple to implement. The reduction operation performs on the accumulated result

which is over field size. A shifting and then, addition operation is performed to accomplish the

reduction operation. The shifting operation for the trinomial requires two places, whereas

shifting operation for pentanomial requires four places before performing final addition [1].

2.6 Elliptic Curve Arithmetic

A general form of the Weierstarss equation of an elliptic curve E over finite field (GF)

in the projective is of the form [32]:

𝐸: 𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍2 = 𝑋3 + 𝑎2𝑋2𝑍 + 𝑎4𝑋𝑍2 + 𝑎6𝑍3 (2.11)

Where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 ∈ 𝐺𝐹.

Again, the Weierstarss equation in affine (Euclidean) coordinates is of the form:

𝐸: 𝑦2 + 𝑎1𝑋𝑌 + 𝑎3𝑌 = 𝑋3 + 𝑎2𝑋2 + 𝑎4𝑋 + 𝑎6 (2.12)

Where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 ∈ 𝐺𝐹.

If a point of the elliptic curve with the projective coordinate in (2.11) is (𝑋, 𝑌, 𝑍), then

the relative point in the affine coordinates in (2-12) is (𝑋 𝑍⁄ , 𝑌
𝑍⁄) [32]. Thus, the arithmetic

in both coordinates is interchangeable. The designer can take the advantages to choose a

coordinate system for the point operations on the Elliptic curve.

 As any point on the elliptic curves is (2.11) and (2.12) has no discontinuity, the elliptic

curves also are defined as smooth curves. For a form of 𝑓(𝑋, 𝑌, 𝑍) = 0 for the Eq. (2.11)

and 𝑓(𝑥, 𝑦) = 0 for the Eq. (2.12), the results of partial derivatives (
𝑑𝑓

𝑑𝑋
,

𝑑𝑓

𝑑𝑌
,

𝑑𝑓

𝑑𝑍
) of (2.11) and

Chapter 2: Background

 2-20

(
𝑑𝑓

𝑑𝑥
,

𝑑𝑓

𝑑𝑦
) of (2.12) will not be zero respectively in the case of smooth curves are presented in

[32]. Similarly, the smoothness of a curve is defined by ∆≠ 0 where ∆ is denoted as

discriminant of the curve E [1, 32].

The discriminant is presented as:

∆= −𝑛2
2𝑛8 − 8𝑛4

3 − 27𝑛6
2 + 9𝑛2𝑛4𝑛6

where 𝑛2 = 𝑎1
2 + 4𝑎2, 𝑛4 = 2𝑎4 + 𝑎1𝑎3, 𝑛6 = 𝑎3

2 + 4𝑎6,

 𝑛8 = 𝑎1
2𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3 𝑎4 + 𝑎2𝑎3

2 − 𝑎4
2

and where 𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6 ∈ 𝐺𝐹.

2.6.1 Elliptic Curve over Binary Fields

For elliptic curve cryptography application, non-supersingular binary curves are

considered instead of supersingular binary curves due to prone to attacks. If 𝐸𝑞 where q= 2m ,

then the curve of field characteristic equal to two is of the form (GF(2m)). A simplified form

of the Eq. (2.12) for a non-supersingular elliptic curve over GF(2m) in the affine coordinates is

of the form [1]:

𝐸𝑞: 𝑦2 + 𝑥𝑦 = 𝑥3+ 𝑎𝑥2 + 𝑏 (2.13)

Where a, 𝑏 ∈ 𝐺𝐹(2m) and the discriminant, ∆= 𝑏 ≠ 0.

2.6.2 Group Law over GF(𝟐𝒎)

Here are some properties of the binary curves that represent the Abelian group [1, 32, 33]:

 Identity element ∞ (point at infinity)

If P is a point on the curves 𝐸𝑞, then 𝑃 + ∞ = ∞ + 𝑃 = 𝑃.

 Inverse or negative element (-P)

 If a point on a binary curve, 𝑃 = (𝑥, 𝑦) ∈ 𝐸𝑞, then negative point is

Chapter 2: Background

 2-21

 −𝑃 = (𝑥, 𝑥 + 𝑦) ∈ 𝐸𝑞. Thus , 𝑃 + (−𝑃) = ∞ where (−𝑃)is called the inverse of 𝑃

Or negative of 𝑃.

 Point addition of two points on the binary elliptic curve , 𝑃 and 𝑄

If 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) are two different points (i.e. 𝑃 ≠ ±𝑄)) on the binary

curve and 𝑃 + 𝑄 = (𝑥3, 𝑦3) is the resultant point of addition on that binary curve, then

𝑥3 = 𝛾2 + γ + 𝑥1 + 𝑥2 + 𝑎 (2.14)

𝑦3 = γ(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1 (2.15)

Where γ = (
𝑦2+𝑦1

𝑥2+𝑥1
)

 Point doubling of a point on the binary elliptic curve, 𝑃 then

If 𝑃 = (𝑥1, 𝑦1) a point on the binary curve, where 𝑃 ≠ (−𝑃) and 2𝑃 = (𝑥3, 𝑦3) is the

resultant point of doubling on that binary curve, then

𝑥3 = 𝛾2 + γ + 𝑎 (2.16)

𝑦3 = γ(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1 (2.17)

Where γ = 𝑥1 + (
𝑥1

𝑦1
)

2.6.3 Advantages of Projective Coordinates

Each of the point addition and point doubling equations of the affine coordinates system

presented in (2.14)-(2.17) has one inversion operation. Thus, in affine coordinates, the point

operations involved with two field inversion operation which is a very costlier operation in

terms of resource than the field multiplication. The elliptic curve arithmetic in the projective

coordinates avoid the inversion operation by using extra field multiplication [1]. Thus, the

existence multiplier can be utilised to avoid the complexity of a standalone inversion circuit to

achieve a better area-time trade-off. In elliptic curve point operation, the affine coordinates

system is converted into projective coordinates to do point addition and point doubling

Chapter 2: Background

 2-22

operation. After completing point operation, the projective coordinates result is then converted

to affine coordinate using one inversion operation. The inversion operation is thus achieved by

using multiplicative inversion operation. However, projective coordinates system requires

more field square and field addition operations are considered trivial operation as compared to

field multiplication. The extra cost in the projective coordinates system is the requirement of

extra memory to save intermediate results as compared to affine coordinates is shown in the

Table 2.2. For each of the point addition and doubling, the affine coordinates has two

multiplications such as to calculate γ and γ(𝑥1 + 𝑥3) that are less than the number

multiplication of the respective point operation in projective coordinates.

In this thesis, a projective coordinate system is utilised to design and implement of the

ECC hardware processor to reduce complexity. The standard projective coordinates (X,Y,Z) ,

in particular, is considered in this thesis, which affine coordinates is of the form: x = (X/Z) and

y = (Y/Z).

2.6.4 The Main Operation of ECC - Point Multiplication

Underlying Elliptic curve Cryptography, the main operation of ECC is the scalar

multiplication or commonly, point multiplication [1, 32]. The point multiplication is the

foundation of the ECC based cryptography schemes such as ECDSA, Elliptic curve Diffie-

Hellman, and elliptic curve encryption. In the cryptography schemes, point multiplication

consumes the lion share of the time of the elliptic curve cryptography. Thus, the performance

of the cryptography schemes invariably depends on the performance of the point multiplication

of ECC. The performance improvement of point multiplication is an academic and industrial

interest to evaluate a high efficiency ECC depending on sophisticated research. This thesis

Table 2.2 Number of field operations for a point addition and a point doubling

Coordinates

System

Point

operation

Multiplication Addition Squaring Inversion

Affine Addition 2 8 1 1

Doubling 2 6 1 1

Standard

Projective

Addition 13 7 1 -

Doubling 7 4 5 -

Chapter 2: Background

 2-23

contribution mainly focuses on the highly efficient ECC for the targeted applications (either

for low end or high end applications).

The point multiplication, 𝑄 = 𝑘𝑃 is a multiplication by a scalar, k and a base point, P

on elliptic curves, E. There is no straight forward scalar multiplication in the elliptic curve

arithmetic. The scalar multiplication is thus achieved by performing repeated addition of P to

itself for (k-1) times to get a resultant point on the elliptic curve, Q.

A scalar, k is in binary form : 𝑘 = 2𝑙−1𝑘𝑙−1 + … + 21𝑘1 + 𝑘0 (2.18)

Thus, 𝑄 = 𝑘𝑃 = (2𝑙−1𝑘𝑙−1 + … + 21𝑘1 + 𝑘0)𝑃

 = 2𝑙−1𝑘𝑙−1𝑃 + … + 21𝑘1𝑃 + 𝑘0𝑃 (2.19)

where 𝑙 ≈ 𝑚 and 𝑘𝑙−1 = ′1′.

The point multiplication can be performed using different scalar multiplication algorithms.

The algorithms are divided into unknown base point, P and known base point, P (multiple P is

pre computed) type algorithms. The details of the algorithm are described in [1, 12, 20, 26, 32].

 Unknown base point, P type algorithms:

 Double and Add or Binary Point multiplication algorithm

 Right to left binary point multiplication algorithm

 Left to right binary point multiplication algorithm

 Non-Adjacent Form(NAF) point multiplication algorithm

 Addition and Subtraction point multiplication algorithm

 Windowing Methods

 Sliding window

 NAF window

 Width-w NAF window

 Montgomery Point Multiplication algorithm

 Known or Fixed base point, P type algorithms:

 Fixed-Point windowing point multiplication

 Fixed-Point Comb point multiplication

 Fixed-Point Comb point (with two table) multiplication

Chapter 2: Background

 2-24

The popular point multiplications such as left to right binary point multiplication

algorithm, NAF point multiplication and Montgomery point multiplication algorithms are

considered in the thesis to implement ECC over GF(2m) are discussed below.

Left to Right Binary Point Multiplication

The point multiplication (kP) can be achieved by repeated operations of addition and doubling.

A more common basic point multiplication is left to right binary point multiplication the

algorithm is shown in algorithm 2.6. the inputs of the point multiplication are a base point, P

and a scalar k over GF(2m). For each value of the ith bit of 𝑘, doubling point operation is

performed. If 𝑘𝑖 = 1 , then a point addition is performed along with the point doubling. For an

m-bit binary representation of k, the binary point multiplication takes m iterations of point

doubling and m/2 iterations of point addition, if there is an average hamming weight of k is

used.

There are several algorithms presented to improve the number iteration of point

operation to speed up point multiplication over binary method. Most of them utilised

precomputed points to accelerate point multiplication that are not considered in this thesis.

Algorithm 2.6 Left to right binary point multiplication algorithm

Input: a point, 𝑃 = (𝑥, 𝑦) ∈ 𝐸/𝐺𝐹(2𝑚) and m bit binary scalar of some integer, 𝑘 =

(𝑘𝑙−1, … 𝑘1, 𝑘0).

Output: Q(𝑥3, 𝑦3) = 𝑘. 𝑃

Step1 Set 𝑄 ←∝

Step2 for i in (𝑙 − 1) to 0 do

 Step2.1 𝑄 ← 2𝑄

 Step2.2 if 𝑘𝑖 = 1 then

 Q ← 𝑄 + 𝑃

 End if.

Return 𝑄(𝑥3, 𝑦3).

Chapter 2: Background

 2-25

Non-Adjacent Form (NAF)

To improve binary point multiplication, a signed digit representation 𝑘 =

 ∑ 𝑘𝑖 2𝑖𝑙−1
𝑖 where 𝑘𝑖 ∊ {0, ±1} called non-adjacent form is utilised for binary point

multiplication is shown in algorithm 2.7 [1].

In Non-adjacent form representation, non-zero values are adjacent to each other i.e. 𝑘𝑖 . 𝑘𝑖+1 =

′0′. The negative value of 𝑘𝑖 implies point subtraction is the same cost operation as addition

operation. For example, two points are such that 𝑃1 = (𝑥1, 𝑦1) and 𝑃1 = (𝑥2, 𝑦2) and their

point subtraction, (𝑃1 − 𝑃2) is performed as like as addition of (𝑃1 + (−𝑃2)) where −𝑃2 =

(𝑥2, (𝑥2 + 𝑦2)) [1]. As the ratio of the number of doubling and addition is more than binary

method for a given k, the speed of point multiplication is thus improved.

Montgomery Point Multiplication

Montgomery point multiplication is one of the most popular point multiplication

algorithms in which point addition and point doubling are performed for every bit, (𝑘𝑖) of k.

Lopez and Dahab proposed affine and projective versions of the Montgomery point

multiplication, which [34] is also referred as the Lopez-Dahab Montgomery point

multiplications [35]. In this thesis, the projective version of Montgomery point multiplication

that is widely considered is shown in algorithm 2.8. In the algorithm 2.8, the coordinates X and

Algorithm 2.7 Binary non-adjacent form method for point multiplication

Input: a point, 𝑃 ∈ 𝐸𝑞 and a positive integer, 𝑘 = (𝑘𝑙−1, … 𝑘1, 𝑘0).

Output: (Q(𝑥3, 𝑦3) = 𝑘. 𝑃

Step1 NAF representation of 𝑘 = ∑ 𝑘𝑖 2
𝑖𝑙−1

𝑖 where 𝑘𝑖 ∊ {0, ±1}

Step2 Set 𝑄 ←∝

Step3 for i in (𝑙 − 1) to 0 do

 Step3.1 𝑄 ← 2𝑄.

 Step3.2 if 𝑘𝑖 = 1 then Q ← 𝑄 + 𝑃.

 Step3.3 if 𝑘𝑖 = −1 then Q ← 𝑄 − 𝑃.

 End if.

Return 𝑄(𝑥3, 𝑦3).

Chapter 2: Background

 2-26

Z are used for point multiplication in the projective coordinates after initial operations (affine

to projective conversion). After the end of the point multiplication loop operation, the results

of projective coordinates are used to convert affine coordinates as shown in the algorithm 2.9

[12]. The loop operation is performed without costly inversion operation; however, one

inversion operation is involved when final conversion is performed.

The Montgomery algorithm is increasing popular for both low area and high speed

implementation due to some advantages. One of the advantages of the Montgomery point

multiplications is a low storage requirement due to point operation performed using X and Z

coordinates. Again, point addition and point doubling operation are performed in every

iteration; hence, Montgomery algorithm has a strong resistance against power attack (a side

channel attack) [1, 35]. Finally, Montgomery point multiplication is suitable for parallel

arithmetic operation to accelerate point operations, in particular, for high-speed design.

Algorithm 2.8 Montgomery point multiplication

INPUT: 𝑘 = (𝑘𝑡−1, … , 𝑘1, 𝑘0)2 with 𝑘𝑡−1 = 1, 𝑃 = (𝑥, 𝑦) ∊ 𝐸(𝐹2𝑚)

OUTPUT: 𝑘𝑝

Initial Step: 𝑃(𝑋1, 𝑍1) ← (𝑥, 1), 2𝑃 = 𝑄(𝑋2, 𝑍2) ← (𝑥4 + 𝑏, 𝑥2)

For 𝑖 from 𝑡 − 2 downto 0 do

If 𝑘𝑖 = 1 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) +

 𝑄(𝑋2,𝑍2)

Point Doubling: 𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2)

1. 𝑍1 ← 𝑋2. 𝑍1

2. 𝑋1 ← 𝑋1. 𝑍2

3. 𝑇 ← 𝑋1 + 𝑍1

4. 𝑋1 ← 𝑋1. 𝑍1

5. 𝑍1 ← 𝑇2

6. 𝑇 ← 𝑥. 𝑍1

7. 𝑋1 ← 𝑋1 + 𝑇

8. Return 𝑃(𝑋1, 𝑍1)

1. 𝑍2 ← 𝑍2
2

2. 𝑇 ← 𝑍2
2

3. 𝑇 ← 𝑏. 𝑇

4. 𝑋2 ← 𝑋2
2

5. 𝑍2 ← 𝑋2. 𝑍2

6. 𝑋2 ← 𝑋2
2

7. 𝑋2 ← 𝑋2 + 𝑇

Return 𝑄(𝑋2, 𝑍2)

Conversion Step: 𝑥3 ← 𝑋1/𝑍1 ; 𝑦3 ← (
𝑥+𝑋1

𝑍1
) [(𝑋1 + 𝑥𝑍1)(𝑋2 + 𝑥𝑍2) + (𝑥2 +

𝑦)(𝑍1𝑍2)](x𝑍1𝑍2)−1 + 𝑦.

Chapter 2: Background

 2-27

A comparison of the requirement of field operation for the point multiplication in

projective coordinates is shown in Table 2.3. In the binary method, total latency of the point

multiplication depends on the total number of non- zeros values of 𝑘𝑖 , whereas in

Montgomery, the latency is fixed for a particular field size. Thus, the processing time and

power requirement in the Montgomery based point multiplication implementation can be fixed.

2.7 Koblitz Curve

Here some special elliptic curves are recommended different standard bodies over

binary field are called Koblitz curves [20, 26]. The Koblitz curves were proposed by N. Koblitz

in 1991 [36]. The advantage of Koblitz curves over standard binary curves is that the doubling

point operation can be achieved using another operation called the Frobenius endomorphism

or Frobenius map [12]. In the Frobenius map, point doubling is replaced by a simple field

squaring over point’s coordinates. Thus, the latency for a point multiplication under the

Frobenius map is reduced with an expanse of extra circuit for the mapping.

Table 2.3 Total field operations for the point multiplication algorithm

Algorithm #Multiplication #Addition #Square #Inversion

Binary(Projective) 12m 13m 10m 1

Montgomery(Projective) 6m 3m 5m 1

Algorithm 2.9 Projective coordinates to affine coordinates conversion

INPUT: 𝑄(𝑋1, 𝑍1) 𝑎𝑛𝑑 𝑄(𝑋2, 𝑍2)

OUTPUT: 𝑄(𝑋3, 𝑌3) where 𝑋3 ← 𝑋1/𝑍1 ; 𝑎𝑛𝑑 𝑌3 ← (
𝑥+𝑋1

𝑍1
) [(𝑋1 + 𝑥𝑍1)(𝑋2 + 𝑥𝑍2) +

(𝑥2 + 𝑦)(𝑍1𝑍2)](x𝑍1𝑍2)−1 + 𝑦.

1. 𝑇 ← 𝑍2. 𝑍1

2. 𝑍1 ← 𝑥. 𝑍1

3. 𝑍1 ← 𝑋1 + 𝑍1

4. 𝑍2 ← 𝑥. 𝑍2

5. 𝑋1 ← 𝑋1. 𝑍2

6. 𝑍2 ← 𝑋2 + 𝑍2

7. 𝑋2 ← 𝑍2. 𝑍1

8. 𝑍2 ← 𝑥2

9. 𝑍2 ← 𝑍2 + 𝑦

10. 𝑍2 ← 𝑍2. 𝑇

11. 𝑋2 ← 𝑍2 + 𝑋2

12. 𝑍2 ← 𝑥. 𝑇

13. 𝑍2 ← 𝑍2
−1

14. 𝑍2 ← 𝑋2. 𝑍1

15. 𝑋1 ← 𝑋1. 𝑍1 {=𝑋3}

16. 𝑇 ← 𝑥 + 𝑋1

17. 𝑍1 ← 𝑍2. 𝑇

18. 𝑍1 ← 𝑍1 + 𝑦 {=𝑌3}

Return 𝑄(𝑋3, 𝑍3)

Chapter 2: Background

 2-28

Koblitz curve, E over GF(2m) is a form of binary curve equation in (2.13) [1]:

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3+ 𝑎𝑥2 + 1 2-27

 where 𝑎 ∈ (0,1) and 𝑏 = 1.

The squaring operation under the Frobenius map, 𝜏 for a point, 𝑃 = (𝑥, 𝑦) ∈ Koblitz curve, E

can be represented as

𝜏(𝑥, 𝑦) = (𝑥2, 𝑦2) 𝜏(∞) = ∞

The Frobenius map form is utilised in the Non-adjacent form (NAF) of point

multiplication, also called 𝜏NAF point multiplication or simply Frobenius map is of the form

𝑘. 𝑃 in NAF → 𝜏NAF(k).P.

Thus,

𝜏NAF(k).𝑃 = (∑ 𝑢𝑖
𝑛−1
𝑖=0 𝜏𝑖). 𝑃 = 𝑢0𝑃 + 𝜏𝑢1𝑃 + 𝜏2𝑢1𝑃 + ⋯ + 𝜏𝑛−1𝑢𝑛−1𝑃 (2-30)

where 𝑢𝑖 ∈ (0, ±1); for 𝑖 = 0,1,2, … , (𝑛 − 1), 𝑢𝑛−1 ≠ 0, the successive value of 𝑢𝑖are non-

zero and the length of 𝑛 is equal to the length of 𝜏NAF. In the Frobenius NAF form of the

point multiplication, total latency of the point multiplication includes 𝑛𝜏 mapping or field

coordinates square operation and
𝑛

3
 point additions [1, 37]. Thus, the point multiplication

latency in the Frobenius is substantially lower than that of a standard point multiplication

algorithm.

2.8 Domain Parameters of ECC

 Domain parameters are so designed to protect a cryptosystem from all possible attacks.

There is a set of domain parameters that is used by a group of users or a specific user to secure

communication based on elliptic curve cryptography. The domain parameters over finite fields,

including (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), are classified into prime field domain parameters and binary

field domain parameters [2, 34] where

𝑞 = Order of Field,

𝐹𝑅 = the field representation of any element under 𝐺𝐹(𝑞),

Chapter 2: Background

 2-29

𝑎, 𝑏 = Two field elements define the base point of an elliptic curve over a finite field for a

field characteristic,

𝑃 = A base point (𝑥, 𝑦) ∈ 𝐸/𝐺𝐹(𝑞) where 𝑥, 𝑦 are the coordinates,

𝑛 = A prime number as an order of the 𝑃 or key length of ECC is a significant parameter for

security,

ℎ = Cofactor, #𝐸𝑞/𝑛 where #𝐸𝑞 = 𝑛. ℎ; 𝑛 is a prime number and ℎ =small integers such as

1,2,3,4.

The term, #𝐸𝑞 is chosen a prime or almost prime and 𝑛 ≥ 160 to avoid Pohlig-Silver-Hellman

and Polar-𝜌’s methods based solution of the discrete logarithm problem [32, 38, 39].

2.9 Elliptic Curve Cryptography Protocols

2.9.1 Elliptic Curve Key Generation

There are two keys such as public key and private key in the public key cryptography, which

can be generated from the domain parameter of an elliptic curve. An algorithm of key

generation of the elliptic curve cryptography is presented in algorithm 2.10 for a given set of

domain parameters [1].

2.9.2 Elliptic curve Diffie-Hellman key exchange (ECDH)

The basic public key algorithm which is proposed by Diffie-Hellman allows key

exchange between two users to create a shared key by using Elliptic curve cryptography under

public channel is shown in algorithm 2.11 [1, 19, 20, 26].

Algorithm 2.10 Elliptic curve key generation

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ)

Output: Private key, 𝑘 and Public key, 𝑄

Step1: Consider a random integer number 𝑘 ∈ (1, 𝑛 − 1).

Step2: Calculate a new point, 𝑄 from a base point 𝑃 where 𝑄 = 𝑘𝑃.

Step3: Return the point on elliptic curve, 𝑄 as public key and the integer 𝑘 as private key.

Chapter 2: Background

 2-30

2.9.3 ElGamal Elliptic Curve Cryptosystem

An ECC based encryption/decryption cryptosystem is proposed by ElGamal is shown

in the Algorithms 2.12 and 2.13 [1, 19, 20, 26].

2.9.4 Elliptic Curve Digital Signature Algorithm (ECDSA)

The most popular protocol based on elliptic curve digital signature algorithm (ECDSA)

is an elliptic curve equivalent of a digital signature algorithm. The digital signature protocol is

widely deployed in cryptography based secure communication systems as the protocol has

Algorithm 2.11 Elliptic curve Diffie-Hellman key exchange (ECDH)

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ)

Output: Shared secret, 𝑄 = 𝑘𝑎𝑙𝑖𝑐𝑒𝑘𝑏𝑜𝑏𝑃

Alice end:

Step1: Alice considers a random integer,

𝑘𝑎𝑙𝑖𝑐𝑒 ∈ (1, 𝑛 − 1).

Step2: She calculates a new point,

𝑄𝑎𝑙𝑖𝑐𝑒 = 𝑘𝑎𝑙𝑖𝑐𝑒𝑃, and send the 𝑄𝑎𝑙𝑖𝑐𝑒to Bob.

Step3: Finally, Alice calculates the shared key, 𝑄 =

𝑘𝑎𝑙𝑖𝑐𝑒𝑄𝑏𝑜𝑏 on arrival of 𝑄𝑏𝑜𝑏 .

Return: 𝑄

Bob end:

Step1: Bob considers a random integer,

𝑘𝑏𝑜𝑏 ∈ (1, 𝑛 − 1).

Step2: He calculates a new point,

𝑄𝑏𝑜𝑏 = 𝑘𝑏𝑜𝑏𝑃, and send the 𝑄𝑏𝑜𝑏to Alice.

Step3: Finally, Bob calculates the shared key, 𝑄 =

𝑘𝑏𝑜𝑏𝑄𝑎𝑙𝑖𝑐𝑒 on arrival of 𝑄𝑎𝑙𝑖𝑐𝑒 .

Return: 𝑄

Algorithm 2.12 ElGamal elliptic curve key exchange

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ) , public key 𝑄, and plain text 𝑚

Output: Ciphertext (𝐶1, 𝐶2)

Step1: Represent the plaintext, m as a point M ∈ 𝐸 𝐺𝐹(𝑞)⁄

Step2 Alice selects a random integer number 𝑘𝑎𝑙𝑖𝑐𝑒 ∈ (1, 𝑛 − 1).

Step3: Compute, 𝐶1from a base point 𝑃 where 𝐶1 = 𝑘𝑎𝑙𝑖𝑐𝑒𝑃.

Step4: Compute, 𝐶2 = (𝑀 + 𝑘𝑎𝑙𝑖𝑐𝑒𝑄).

Step5: Return (𝐶1, 𝐶2).

Chapter 2: Background

 2-31

been adopted by several standard bodies such as ANSI X9.62, FIPS 186-2, IEEE 1363-2000

and ISO/IEC 15946-2. The elliptic curve digital signature algorithm based signature generation

and verification are presented in the Algorithms 2.14 and 2.15 [1, 19, 20, 26]. In this algorithm,

a hash function, H is considered as pre-image and collision free.

Alice and Bob are two interested parties to set a secure communication using ECDSA

and a third party, Eve is an eavesdropper or intruder in the communication channel. Alice

wants to send a message with signature to Bob by using Alice’s private key. As Bob knows the

public key of Alice, thus Bob can verify the signature of Alice by using her public key. It is

Algorithm 2.13 ElGamal elliptic curve decryption

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ) , private key 𝑘𝑏𝑜𝑏, and ciphertext (𝐶1, 𝐶2)

Output: Plaintext 𝑚

Step3: Compute 𝑑1 = 𝑘𝑏𝑜𝑏𝐶1.

Step4: Compute 𝑀 = 𝐶2 − 𝑘𝑏𝑜𝑏 𝐶1).

Step3: Extract 𝑚 from 𝑀.

Step5: Return 𝑚

Algorithm 2.14 ECDSA signature generation

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ) , private key 𝑘𝑎𝑙𝑖𝑐𝑒, and message 𝑚

Output: Signature (𝑆1, 𝑆2)

Step1: Select a random integer 𝑘𝑎𝑙𝑖𝑐𝑒 ∈ (1, 𝑛 − 1).

Step2: Calculate new point 𝑘𝑎𝑙𝑖𝑐𝑒𝑃 = (𝑥3, 𝑦3) and then, set 𝑆1 = 𝑥3 (𝑚𝑜𝑑 𝑛) . if 𝑆1 = 0 ,

continue from Step1.

Step3: Compute message digest 𝐻(𝑚) where 𝐻 is a hash function and 𝐻(𝑚) is a value which can be achieved

using hash algorithm i.e. SHA-1.

Step4: Compute 𝑆2 = 𝑘𝑎𝑙𝑖𝑐𝑒
−1(𝐻(𝑚) + 𝑘𝑎𝑙𝑖𝑐𝑒 𝑆1) 𝑚𝑜𝑑 𝑛 , where 𝑘𝑎𝑙𝑖𝑐𝑒 is the private key of Alice. If 𝑆2 = 0,

continue from Step1

Step5: The integers (𝑆1, 𝑆2) are used to verify the signature that is included in the message 𝑚 .

Return(𝑆1, 𝑆2).

Chapter 2: Background

 2-32

difficult for Eve to retrieve the original message without knowing the secret key of Alice. To

retrieve the secret key is the discrete logarithm problem of ECC to solve in the given time scale.

2.10: Design and Implementation Issues of ECC

2.10.1 Implementation of Point Multiplication

The computation dominant operation of the ECC public key cryptography scheme is the

point multiplication (kP). In the thesis, the point multiplication of ECC is designed and

implemented in the hardware platform as hardware aspect of design is increasing popular [36]

The novel contribution of ECC depends on the efficiency in terms of the area-time metric. The

area-time efficient ECC is the product of the resource (area) and the time for the point

multiplications. Thus, the main objective is to increase speed by utilisin a low area. The

contribution to an efficient hardware invariably depends on mainly arithmetic circuits, and

then, point multiplication algorithm, memory unit and control unit. The main strategies for an

efficient ECC are considered in the thesis as follows:

In the arithmetic circuit design:

 Utilising very low resource arithmetic circuits such as MSB digit (1 bit, 2 bit and 4 bit)

serial for low area design.

 Developing a novel high performance digit serial multiplier to achieve a very high

throughput ECC.

 Evaluating the area and speed trade-off for different pipelining techniques in the

proposed digit serial multiplier

Algorithm 2.15 ECDSA signature verification

Input: Domain parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ) , Public key 𝑄𝑎𝑙𝑖𝑐𝑒 , message 𝑚 and signature (𝑆1, 𝑆2)

Output: Accept or reject the signature

Step1: If (𝑆1, 𝑆2) ∈ (1. 𝑛 − 1) else return (reject the signature)

Step2: Compute 𝑆3 = 𝐻(𝑚)

Step3: Compute 𝑇 = 𝑆2
−1𝑚𝑜𝑑 𝑛

Step4: Compute 𝑢 = 𝑆3𝑇 𝑚𝑜𝑑 𝑛 and 𝑣 = 𝑆1𝑇 𝑚𝑜𝑑 𝑛

Step5: Compute (𝑥2, 𝑦2) = 𝑢𝑃 + 𝑣𝑄𝑎𝑙𝑖𝑐𝑒 and set 𝑆4 = 𝑥2𝑚𝑜𝑑 𝑛.

Step6 If 𝑆1 ≡ 𝑆4, return (accept the signature) else return (reject the signature)

Chapter 2: Background

 2-33

 Quantifying a high speed and highly efficient ECC using a single full-precision

multiplier

 Utilising the proposed low latency squaring circuit for concurrent operation during

point multiplication and low latency repeated squaring during multiplicative inversion.

 Developing a new low latency modified Comba multiprecision multiplication

algorithm for the efficient low resources hardware implementation.

 Speeding up the modified multiprecision multiplication by introducing novel

parallelism techniques in the Comba multiplication.

 Proposing a novel low latency multiprecision squaring circuit for all of the NIST curves

to develop low latency scalable ECC.

 Designing novel on the fly reduction circuit for a further reduction in the latency of the

modified multiplications circuit for all of the NIST curves.

In the memory unit design:

 Designing a very flexible and high performance memory unit based on distributed

RAM for the register file.

In the control unit design:

 Considering FSM (finite state machine) based dedicated control unit based on Moore

machine.

In the point multiplication algorithm:

 Modifying the instructions in the point multiplication algorithms to achieve concurrent

operations to reduce the number of clock cycles per loop of the point multiplication.

 Combine point multiplication algorithm in the instructions of the point addition and

point doubling to save an area of storage and thereby, reducing clock cycles.

 Evaluating merits Binary algorithm (for low area), Frobenius map (low latency) and

Montgomery point multiplication algorithms (faster) for low area application by

designing efficient arithmetic unit and their inherent parallelism.

 Tracing a very high speed ECC by using the theoretical limit of latency of Montgomery

point multiplication under projective coordinates. The limit of the latency is formulated

Chapter 2: Background

 2-34

by exploiting parallelism of the Montgomery Point multiplications using different

combinations of high performance full-precision multipliers and concurrent adder and

square operations.

In the ECC architecture:

 Choosing low resource circuitry (arithmetic circuits) and high performance memory

and parallel field operation for low area ECC design.

 Designing a novel pipelined bit parallel multiplier to get the highest possible speed of

the ECC.

 Developing a novel scalable ECC circuit to perform ECC operations under all NIST

curves utilising the proposed novel multiprecision multiplier and novel squaring circuit.

2.10.2 Why Hardware design is suitable for the crypto processor?

The hardware implementation is considered in the state of the art due to several

advantages over general-purpose processor and embedded processor as follows:

 Hardware implementation has high throughput

 Low power consumption due to stand-alone design, in particular, in reconfigurable

hardware.

 Hardware design can be optimised to meet area –time constraints.

 Hardware implementation can provide high physical security

 ECC over GF(2m) curves can be considered for high speed design due to carry

less operation.

2.10.3 Hardware platform-FPGA

Hardware platform can be an Application Specific Integrated Circuit (ASIC) or field

programmable logic gate array (FPGA). The first one is so designed for a particular operation.

Thus, the computation speed of ASIC based implementation is fast and efficient. The main

drawback of the ASIC based implementation is that the design cannot be altered after

fabrication. To change the design, there are requirements of redesign and re-fabrication. In

particular, to change a small module in a large design is expensive. Moreover, ASIC

development time is longer than an FPGA.

Chapter 2: Background

 2-35

In general, a software implementation in the general purpose processor or embedded

design is more flexible than other platforms. The software programme is very easy and flexible

to alter for a given processor. The main problem of the software implementation is high latency

due to word level computations. Again, there is a set of instructions is used to do all operations.

An FPGA is a reconfigurable devise ready to fill the gap between ASIC and software.

The FPGA implementation can offer flexibility like software implementation and provide high

performance like ASIC. As compared to software, FPGA can be utilised for spatial

computation and for changing data path. Again, the FPGA has an advantage over ASIC in

reconfigurability – change new hardware in the runtime. Thus, hardware in the FPGA can be

exchangeable while it is requiring in the other module. Moreover, FPGA adopts soft processor

along with reconfigurable logic is suitable to implement part of the hardware sensitive part of

a system [41, 42, 43]. However, ASIC is preferable to complex design; new FPGA has high

capacity of reconfigurations, including high density logic block, embedded processors, very

high rate bit serial transceiver, clock managers, A/D converter, large storage capacity, various

functional blocks. Thus, a large and complex system can be implemented on FPGA such as

system on chip (SoC). The advancement of FPGA offers many features and high density logic

block which convinces the academia and industry to choose FPGA for complete solutions. The

FPGA is now not only playing a role in the primitive design, but also final product design in

their own right to meet rapid demands such as both high performance computing and low

resources applications in defence, aerospace, medical and many more.

Many vendors (Xilinx and Altera) offer different FPGA devices based on size, cost,

performance and structure where most of the state of the art is implemented on Xilinx FPGA

platforms [41]. There are two main types of Xilinx FPGA such as low cost FPGA (Spartan

Family) and high performance FPGA (Vertex family). Each FPGA consists of a configurable

logic block (CLB) which comprises “slices”. Each slice consists of four Look Up Tables

(LUTs) or six Look Up Tables depending on the FPGA family. The older FPGA (Spartan3

family and Virtex4 Family) has two 4-input LUTs in a slice , as shown in Figure 2.4, whereas

new FPGA family (Sparatan6 and Virtex5, Virtex7) has two 6-input LUTs in a slice . The six

LUTs based FPGA is faster and highly dense with including advanced features [42]. Again,

Spartan FPGA family is low power applications friendly whereas Virtex FPGA family provides

high frequency operation that is suitable for high performance circuit designs.

Chapter 2: Background

 2-36

The FPGA is built on Configurable Logic Block (CLB) is comprised four slices in

Spartan3E as shown in Figure 2.4. A slice of the FPGA is structured with two storages and

two LUTs. The LUTs are utilised for the combinational circuit design and the storage part can

be used as flip-flops (or latches). Two fabrics in the FPGA such as block RAM and SRL16 are

constructed by using LUTs. Again, several other circuits such arithmetic circuits and wide

combinational logic can be utilised by using the multiplexer and carry logic of the slice in the

FPGA. Thus, a logic function is implemented by utilising several LUTs in between two Flip

Flops (FFs). The chain of LUTs between two FFS in a particular synchronous circuit

contributes critical path delay. To increase the frequency, the design of the circuit should use

shorter chain can be depicted by using EDA tools such as Xilinx EDA [43].

2.10.4 Design flow

Hardware architecture is described in the Register Transfer Level (RTL) using hardware

description language VHDL for FPGA implementation in the thesis. The design and

implementation on FPGA mainly depend on the ingenuity and experience of the hardware

designer and also depends on many iterations of the design cycle to select the best one for a

targeted implementation. The selection of the best circuit may depend on the area, time and

power consumptions.

The performance of a circuit depends on the coding in RTL of a logic function and

utilisation of the tools. The chain of LUTs used between FFs contributes critical path delay.

The chain of LUTs can be breaks using pipelining structure(registers)by expensing a delay

(clock cycles). Moreover, the designer’s coding style and selection of circuit can affect the

performance of the implementations.

Figure 2.4 Slice in Spartan 3E FPGA

Chapter 2: Background

 2-37

In this thesis, an architecture is divided into the structure (logic function) to write in the

RTL coding. The algorithm is implemented as separate logic functions. Data path and control

unit are developed separately to optimise. The Xilinx ISE tools such as the ISE10, ISE11, and

ISE 13.2 1nd ISe14.5 are used for implementation [43]. The target device is implemented in

the FPGA to achieve best area and time performance.

2.10.5 Design metrics

The performance of ECC depends on the performance of the point multiplication. The

performance of point multiplication can be defined based on three aspects that are area, speed

and power. The metrics (index) of the performance point multiplication can be measured by

only speed, or only area, or only power, or area-time, or area2-time. The area is required to

optimise for an area critical application where speed is not the main concern. Similarly, some

application required to meet timing constrained to apply the circuit for a high-speed

application. In this case, the speed is achieved by using large area. The standard metric is the

area-time metric which is a product of area and time. A better area-time metric translates the

merit of design efficiency. Throughput is another version of the efficiency that is also used in

the thesis. The throughput defines the number of operations in a unit of time.

In this thesis, an efficiency FPGA based ECC implementation for point multiplication

will be demonstrated mainly area-time metric for comparing relevant state of the art. Slices,

LUTs and FFs, measure the resource of FPGA implementation. The time per clock cycle is

measured by nanosecond, ns that defines the maximum frequency which is measured by

megahertz, MHz. Total time of the point multiplication is calculated by multiplying the total

latency (clock cycles) by the time per clock cycles. The power for ECC operation in FPGA is

not considered in the thesis due to that the power consumption in FPGA is controlled by the

clock trees. Again, power consumption is less for low area implementation in FPGA; thus, in

this thesis, smaller circuits that consume low power are considered.

In this thesis, the Xilinx tools is utilised to implement ECC in the low cost FPGA such

as Spartan family and high performance FPGA such as Vertex family. The results of the

implementations are addressed after place and route(PAR) using different sets of the synthesis,

map and implementation properties. The global timing constraints are also utilised repeatedly

and change circuits where is possible to meet the time. The Planhead tools for floor planning

Chapter 2: Background

 2-38

is also utilised in the some cases, but the results are not addressed in the thesis due to poor

results.

Chapter 3: Low Area Elliptic Curve Cryptography

 3-1

 Low Area elliptic

Curve Cryptography
In this chapter, a new compact and stand-alone design of an Elliptic Curve Cryptography

(ECC) processor over Galois field GF(2m) is analysed and implemented on FPGA for the three

most popular point multiplication algorithms (the basic binary, Montgomery, and Frobenius

map). This chapter demonstrates new concurrency in point addition and point doubling

together with novel flexible memory and efficient arithmetic units. Area-time and area2-time

performances are investigated by exploiting a very compact bit/digit serial multiplier. A very

low cost 8-bit input-output interface is used that can be embedded with 8-bit processors for

low area applications.

Chapter 3: Low Area Elliptic Curve Cryptography

 3-2

3.1 Introduction

 In many emerging applications with low resource, but acceptable performance, public

key cryptography primitives are key drivers to enable strong security. Elliptic curve

cryptography (ECC) is one of the most promising public key cryptography primitives for its

smaller key size, which makes it suitable for low area applications. Elliptic curve cryptography

was proposed by Koblitz [17] and Miller [18] in 1985 independently, and has been given

standardisation by NIST [1]. There two possible design options for low area ECC such prime

fields (Fp) and binary extension fields (F2m). Prime field is widely used in the software

implementation (such as embedded processor) due to build in carry based multiplier and simple

square operation (by left shifting data). For the hardware implementation, the binary fields tend

to provide faster arithmetic circuits and lower circuit complexity than prime fields mainly due

to avoiding the carry propagation. The square circuit in binary circuit is also simple by using

interleaving zero followed by reducing operation.

 Low-area standalone hardware designed is considered in this work. A standalone

hardware can be suitable for low resources application by using low resources arithmetic

circuits. In general, the main arithmetic part of ECC field operation is the field multiplier. Bit

serial multipliers consume very low area; however, each multiplication takes m clock cycles.

The clock cycles can be improved abruptly by using small digit serial multipliers. Each of the

other arithmetic circuits such as square and adder circuit consumes very low area. For the low

area implementation, the major area of ECC processor is used for memory unit. The base point

coordinates, key input, curve parameters, and temporary results are required to save during the

point multiplication of ECC. Thus, the memory unit consumes more that 50% of the area, in

particular, of the low area architecture of ECC [46]. Thus, the memory unit of ECC is required

to be small but flexible. To reduce memory requirement, some concurrent operations are

required by observing data independence during the point multiplication. Thus, a modification

of point multiplications is required to reduce memory size as well as to reduce clock cycles for

the point operations.

 In this chapter, a hardware design of ECC over GF2163, GF2233, GF2283, GF2409 and

GF2571 using Koblitz curves is analysed for the three important algorithms for point

multiplication (Montgomery, basic binary and Frobenius map). Here, a novel low area

architecture is presented and implemented as a standalone FPGA implementation to investigate

Chapter 3: Low Area Elliptic Curve Cryptography

 3-3

the trade-offs between the area and speed in each case. We investigate these three

implementations using bit serial and digit serial (2-bit and 4-bit) modular multipliers on

different FPGA devices, Spartan(S) (S3 and S6). We compare our results with the relevant

work in the same technology irrespective of low and high speed ECC design. We show our

result in terms of area-time and area2-time metrics. The area2-time metric is considered in order

to depict performance of a low area design while it is comparing with both low area and high

speed implementations. Our unified and parallel steps based Montgomery method with 4bit

digit serial multiplier (msd4) in S6 shows 0.12 in area-time (slice-sec) and 0.063 (slice2-

sec/103) in area2-time metrics; to our knowledge, is the best area2-time performance reported

for ECC on FPGA. To achieve this level of performance a number of original contributions, as

detailed below, were made at the algorithmic level in terms of extracting concurrency, at the

arithmetic level in terms of a more efficient arithmetic and crucially at implementation level in

terms of a flexible memory design that exploits the concurrency extracted, and a dedicated

control design.

3.2 Background

 Standalone low area ECC is faster than the ECC implementation in software or

software and hardware. The hardware base ECC takes very low clock cycles for point

multiplication by avoiding word level computations used in the software-based

implementations. The hardware control units can save the instruction delay and memory

operations. The characteristic two curves, GF(2m) curves based ECC is increasing common for

hardware implementation due to carry free operations. The carry free circuit is not only faster,

but also has consume low area and also flexible to consider large curve for high security for

low resources applications. Moreover, we can consider Koblitz curve for low area

implementation as it has the flexibility for optimisation than binary curve.

3.2.1 Koblitz Curves based ECC

 Koblitz curve (𝐸𝑎) over GF(2m) can be a good option for a low resource application as

it is an anomalous curve.

𝐸𝑎: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥 + 1 (3.1)

Where 𝑎 ∈ {0,1}

Chapter 3: Low Area Elliptic Curve Cryptography

 3-4

Again, the anomalous curve over GF(q) can be mapped called Frobenius endomorphism (map)

𝜏 which can be represented by the following characteristic equation [3,4]:

𝜏2 ± 𝜏 + 𝑞 = 0 (3.2)

For Koblitz curves over GF(2m) denotes 𝑞 = 2; thus the map equation becomes

𝜏2 ± 𝜏 + 2 = 0 (3.3)

If a point, 𝑃(𝑥, 𝑦) , then it can be represented using Frobenius map, 𝜏(𝑥, 𝑦) as follows:

𝜏(𝑥, 𝑦) = 𝜏𝑃 = (𝑥2, 𝑦2) and 𝜏(∞) = ∞ (3.4)

Now, a doubling operation (2P) for the anomalous curve is presented utilising Eq.(3.3) is as

bellow:

𝜏2 ± 𝜏𝑃 + 2𝑃 = 0 (3.5)

the equation in Eq. (3.5) is also represented as bellow:

2𝑃 = 𝜏(𝜏𝑃) + 𝜇. 𝜏𝑃 (3.6)

Where, 𝜇 = (−1)(1−𝑎).

In [4], the Eq. (3.6) translates doubling operation (2P). The doubling operations include twice

𝜏 (Frobenius map operator) of P followed by doing a point addition between two points 𝜏(𝜏𝑃)

and 𝜇. 𝜏𝑃.

From Eq. (3.6), a quadratic equation is formed:

𝜏2 + 2 = 𝜇. 𝜏 (3.7)

The quadratic equation in Eq. (3.7) is also defined as elliptic curve endomorphism [4]. The

solution of Eq. (3.7) makes a relation between a squaring map can equivalent to scalar

multiplication by the complex number in Eq. (3.6). There are two complex numbers of the

quadratic equation and one of the solutions considered is shown below [1]:

Chapter 3: Low Area Elliptic Curve Cryptography

 3-5

 𝜏 =
𝑢+ √−7

2
 (3.8)

Using the solution, squaring map can be included in the scalar point multiplication. The scalar

multiplication on the points on the Koblitz curve can be done by using any element of the ring

𝑍 (𝜏). Thus, a complex multiplication can be achieved on Koblitz by using 𝜏.

3.2.2 Low Area Multiplier

 The low area multiplier circuit can be multiprecision multipliers or bit serial multiplier.

Multiprecision multiplier has high latency to perform a field multiplication than a bit serial

multiplier; however, a multiprecision multiplier circuit consumes lower area. The bit serial

multipliers latency can be improved further by using small digit serial multiplier with small

overhead of the area. If w is digit size, then m/w clock cycles are required for each

multiplications. For a low area implementation, the digit size of w can be 2-bit, 4-bit to reduce

latency. The most significant bit (MSB) first multiplier or least significant bit (LSB) first

multiplier is mostly chosen due to interleave reduction and low area consumption. In the case

of interleave reduction, the partial results are reduced on the fly using left to right (for MSB)

reduction or right to left reduction method.

3.2.3 Low Area Square Circuit

 In low area design, square operation can be considered a special multiplication. As

multiplication consumes high latency, a standalone square circuit is generally utilised. A square

operation with fixed irreducible polynomial, in particular, can be achieved in a single clock

cycle by interleaving zeros followed by reducing operation. The reduction operation is also

simple due to 𝑎𝑖. 𝑎𝑗 = 𝑎𝑗 . 𝑎𝑖 = 0, where 𝑖, 𝑗 = 0,1,2 … (𝑚 − 1) and 𝑎𝑖, 𝑎𝑗 ∈ GF(2m). The

critical path delay of the single clocked cycles based square circuit depends on irreducible

polynomials. The critical path delay for trinomial irreducible bas square circuit is 3∆ xor,

whereas for pentanomial the path delay is 4∆ xor. Thus, the square circuits is suitable for the

multiplicative inversion operation due to single clocked operation.

3.2.4 Inversion operation

 The filed inversion operation is required in every iteration of affine coordinate based

point multiplication. A standalone inversion operation the most costly operation in term of

Chapter 3: Low Area Elliptic Curve Cryptography

 3-6

area-time complexity. Projective coordinates based point operation can be considered to avoid

the inversion. There is one inversion operation which is required during final coordinates

conversion. The one inversion operation can be utilised multiplicative inversion operation. The

multiplicative inversion operation can be achieved by using Fermat’s little theorem (FLT) [1].

In FLT, repeated multiplication and squaring operation are performed for an inversion

operation. Itoh and Tsujii proposed another version of FLT algorithm which is discussed in

section 3.6. The multiplicative inversion which is friendly for low resource ECC design due to

the operation is performed by utilising existing resources (multiplier and square circuits) and

the latency for one inversion is very low as compared to the total latency of the ECC operation.

There are (𝑚 − 1) number of square operations and total number of multiplications are

calculated by ⌊log2 𝑚 − 1⌋ + ℎ(𝑚 − 1) − 1, where ℎ(𝑚 − 1) is the Hamming weight and

⌊ ⌋ is floor function. There is some other inversion operation over GF(2m) is considered in the

literature based on Greatest Common Divisor Algorithm (GCDA) [69]. The GCDA based

Figure 3.1 Low area ECC system architecture

Chapter 3: Low Area Elliptic Curve Cryptography

 3-7

inversion operation is not covered in the thesis as the method is not considered due to poor

area-time performance.

3.2.5 Scalar point multiplication

 The choice of point multiplication algorithm can affect the performance of the ECC. In

this work, three popular point multiplication algorithms such as Lopez- Dahab (LD)

Montgomery algorithm, binary algorithm and Frobenius map are investigated under projective

coordinates.

3.3 Low Area ECC Implementation using Montgomery algorithm

 The proposed ECC architecture is based on projective coordinates as shown in Figure

3.1. The design is aimed at exploiting identified concurrency in the point multiplication

process, exploiting low resources arithmetic circuit and high performance memory unit to

speed up the ECC while the ECC keeping resources low.

 The Montgomery method can be one of the best options in the low area design space as

only x coordinate is used in the point multiplication. The x coordinates based point operation

can save memory requirement and. both point operations of the method are performed for every

Algorithm 3.1 Montgomery point multiplication (loop operation)

Input : 𝑃(𝑋1, 𝑍1) and 𝑄(𝑋2, 𝑍2) where 𝑃 and 𝑄 are points on ECC over F2
m [1]

Output : 𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2) and 𝑃(𝑋1, 𝑍1) = 𝑃(𝑋1, 𝑍1) + 𝑄(𝑋2, 𝑍2).

Point Addition Point Doubling

Step1: 𝑋1 ← 𝑋2. 𝑍1

Step2: 𝑇1 ← 𝑋1. 𝑍2

Step3: 𝑇2 ← 𝑇1. 𝑋1

Step4: 𝑇1 ← 𝑇1 + 𝑋1

Step5: 𝑍1 ← 𝑇1
2

Step6: 𝑋1 ← 𝑥. 𝑍1

Step7: 𝑋1 ← 𝑇1 + 𝑋1

Return(𝑋1, 𝑍1)

Step1: 𝑇1 ← 𝑍2
2

Step2: 𝑇2 ← 𝑋2
2

Step3: 𝑋2 ← 𝑇2
2

Step4: 𝑍2 ← 𝑇1. 𝑇2

Step5: 𝑇2 ← 𝑇1
2

Step6: 𝑇1 ← 𝑏. 𝑇2

Step7: 𝑋2 ← 𝑇1 + 𝑋2

 Return (𝑋2, 𝑍2)

Chapter 3: Low Area Elliptic Curve Cryptography

 3-8

bit of key that is partially resistance to power attack. Moreover, the algorithm offers parallel

field operation that can save latency for point multiplication. A general version of Montgomery

point multiplication algorithm is shown in the algorithm 3.1[68]. In the algorithm 3.1, the steps

are serially performed In this work, steps of the Montgomery method are modified by

extracting dependencies and enabling independent operations to be performed concurrently..

 In the proposed ECC, the high latency field operation is multiplication as compared to

the square and addition operation. Thus, addition and squaring operation can be performed

concurrently by avoiding data dependency. This is achieved by our proposed unified point

doubling and adding (DA) of the Montgomery algorithm as shown in algorithm 3.2 where

1DA, 2DA, 3DA, 4DA and 6DA are parallel operations that contribute to reduce 5 steps in the

algorithm presented in the algorithm 3.1 [68]. The concurrency translates to reducing the

latency of point multiplication. Again, the parallel operation reduces the number of stages in

the finite state machine (FSM) based control unit. Hence, the control unit consumes reduce

area and also increases speed by reducing the stages of FSM.

3.4 Low Area ECC Implementation using Binary Algorithm

In the binary method [1], point doubling is performed in every operation and an additional

point addition is carried out depending on the ith bit of 𝑘, 𝑘𝑖being 1. The total time required

for the point multiplication in (3) depends on the Hamming weight of 𝑘.

Algorithm 3.2 Combined doubling and adding operations of Montgomery algorithm

Input : 𝑃(𝑋1, 𝑍1) and 𝑄(𝑋2, 𝑍2) where 𝑃 and 𝑄 are points on ECC over F2
m [1]

Output : 𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2) and 𝑃(𝑋1, 𝑍1) = 𝑃(𝑋1, 𝑍1) + 𝑄(𝑋2, 𝑍2).

Step1DA: 𝑋1 ← 𝑋1. 𝑍2; 𝑍2 ← 𝑍2
2

Step2DA: 𝑍1 ← 𝑋2. 𝑍1; 𝑇 ← 𝑍2
2

Step3DA : 𝑇 ← 𝑏. 𝑇; 𝑋2 ← 𝑋2
2

Step4DA : 𝑍2 ← 𝑋2. 𝑍2; 𝑋2 ← 𝑋2
2

Step5DA : 𝑋2 ← 𝑋2 + 𝑇

Step6DA: 𝑋1 ← 𝑋1. 𝑍1; 𝑇 ← 𝑋1 + 𝑍1

Step7DA: 𝑍1 ← 𝑇2

Step8DA: 𝑇 ← 𝑥. 𝑍1

Step9DA: 𝑋1 ← 𝑋1 + 𝑇

Step10DA: Return 𝑃(𝑋1, 𝑍1) and 𝑄(𝑋2, 𝑍2).

Chapter 3: Low Area Elliptic Curve Cryptography

 3-9

We consider Lopez-Dahab (LD) mix coordinates based point addition and point doubling

algorithms is shown in algorithm 3.3 [1]. Our architecture offers to exploit parallel operation

in the following steps in the LD algorithms: steps 3 and 4, 11 and 12, 18 and 21, 22 and 20 in

algorithm 3.25 presented in [1] and steps 4 and 5, 11 and 13 in the algorithm 3.24 presented.in

[1] respectively are parallel operations as shown in the proposed algorithm 3.3.

3.5 Frobenius Map based Low Area ECC Implementation

 Koblitz curves are special ECC curves that can be treated using the Frobenius map to

reduce point multiplication time. In this work, Binary NAF point multiplication and

computation of the τNAF (k) of an element in 𝑍[𝜏] have been implemented simultaneously

Algorithm 3.3 Modified LD mix-coordinates algorithm

Point addition:

Input Q(xq,yq,zq) and P(xp,yp) where Q is in

projective coordinate and P is initial point in affine

coordinate on ECC curve over F(2m)

Output: Q (xq,yq,zq)

 =Q(xq,yq,zq) + P(xp,yp)

Step1: if Q = infinity then

 return (P)

Step2: If P= infinity

 then return (xp,yp,1)

Step3: T1 ← xp zq ; T2 ←zq
2

Step4 : xq ← xq + T1

Step5 : T1 ← zq xq

Step6 : zq←T2 yp

Step7 : yq ← yq + zq

Step8 : zq ← T1
2

Step9 : T2 ← T1 yq ; T1 ← T1 + T2

Step10: xq ← xq
2

Step11: xq ← T1 xq ; yq ←yq
2

Step12 : xq ← xq + yq

Step13 : xq ← xq + T2

Step14 : T1← xp zq ; T2 ← T2 + zq

Step15 : T1 ← T1+ xq

Step16:yq←T1T2;T1←zq
2

Step17 : T2 ← xp + yp

Step18 : T1 ← T1T2

Step19 : yq ← T1 + yq

Step20 : return (xq,yq,zq)

Point doubling:

Input : P(xp,yp,zp) where P is a point on ECC curve

over F(2m)

Output: Q(xq,yq,zq) = 2P

Step1: if P = infinity then return(infinity)

Step2 : T1 ←zp
2

Step3 : T2 ← xp
2

Step4 : zq ←T1 T2; xq ←T2
2

Step5 : T2 ←T1
2

Step6 : T1 ← yp
2

Step8 : xq ← xq + T2

Step9 : T1← T1 + zq

Step10 : yq ← T2zq, T1 ← T1 + T2

Step11 : T2 ← xq T1

Step12 : yq ← yq + T2

Step13 : return Q(xq,yq,zq)

Chapter 3: Low Area Elliptic Curve Cryptography

 3-10

which is shown in algorithm 3.4 [45]. In this work, binary nonadjacent form (NAF) point

multiplication and computation of Frobenius map have been implemented simultaneously is

shown in the algorithm 3.4 [44][45]. We design a very compact Frobenius mapping unit to

generate the non-adjacent form to carry out point multiplication will be discuss in the next

section.

3.6 Arithmetic circuit

 A 163 bit data path based finite field arithmetic unit is designed with a multiplier, a

squarer circuit, an adder circuit and a multiplexer. In our low area implementation, we consider

a compact most significant multiplier called bit/digit serial multiplier [1, 46]. A most significant

first based bit serial multiplier is shown in the Figure 3.2. We consider 2 bit and 4 bit multipliers

(msd2 and msd4) [62] to increase performance while it is exploiting very small resources[57].

In our arithmetic unit, a dedicated squaring circuit is utilised which requires only one clock

cycle is shown in Figure 3.3 [1, 46]. The field adder is a simple bit wise xor circuit [1, 46].

Algorithm 3.4 Binary NAF based Frobenius map in the projective coordinates

Input : Q(x,y,z) = α, P(x,y,z) = P(Px, Py, 1) where P(Px, Py, 1) is a initial point , R0 = k, R1 = 0,
where k = R0 + τR1ЄZ , ni = τNAF(k) ;

Output: Q = kP;

While R0≠ 0 or R1≠ 0 loop

if R0(0) = 0 then ni = 0;

else if then R0(1) = R1(0) then ni = 1 ;

 if Q(x,y,z) = α (infinity) then

 Q(x,y,z) = P(x,y,z) ;

else

 Q(x,y,z) = Q(x,y,z) + P(x,y,z);

 end if;

else ni = −1 ;

if Q(x,y,z)= α(infinity) then

 Q(x,y,z) = P(x,x+y,z);

Else

 Q(x,y,z) = Q(x,y,z) + P(x,x+y,z);

end if;

end if;

P(x,y,z) = P(x2,y2,z2) ;

 R0 = R0 − ni ;

T = R0/2 ; R0 = R0 + T ; R1 = − T ;

if (R0 = 0 and R1 = 0) then exit; end loop; Return: Q(x,y,z);

Chapter 3: Low Area Elliptic Curve Cryptography

 3-11

Finally, an inversion operation is required to convert projective to affine coordinates. We use

an efficient inversion algorithm proposed by Itoh and Tsujii is shown in the algorithm 3.5 [65].

3.6.1 Frobenius mapping unit:

 A compact architecture for the Frobenius mapping circuit is shown in Figure 3.4 In this

circuit, we have considered a very low area integer addition (164 bit) circuit called ripple carry

Figure 3.2 Finite field multiprecision multiplier over GF(2163)

Figure 3.3 Finite field square circuit over GF(2163

Chapter 3: Low Area Elliptic Curve Cryptography

 3-12

adder. Integer subtraction is accomplished with two’s complement. In order to do the two’s

complement of a particular data, we use modular adder circuit (i.e. xor circuit) for one’s

complement followed by adding 1 in the ripple carry adder. Thus, we do not use dedicated

subtractor to save the area. Again, we use one location of our memory unit for R1, and we use

a dedicated 163 bit shift register for R0 which is in the same data path of integer adder.

 To control Frobenius point multiplication, we utilise the last two bits of R0 which are

considered ki_1 and ki_0, and the last bit R1 that is provided by the memory unit. The Frobenius

point multiplication operation is performed along with mapping as shown in the algorithm 3.4.

After each set of control unit bit generation, a loop operation of the point multiplication is

accomplished. In the algorithm 3.4. the operation of R0=R1-1or R0=R1+1 or R0=R1+0 can be

done by using b_bus for R1 and by using add_mod signal to select 1 or -1 or 0. As a division

over binary number is simple, we get R0/2 by using the right shift of the shift register.

 In this mapping unit, we save area by utilizing serial data path; however, the serial

operation takes some extra clock cycles. For example, to do R0=R0+T, any one of the input

data is required to store in the shift register. After then, the b_bus of the memory unit and output

of the shift register are used for integer addition followed by saving in the shift register. To

check zero, the content of the shift register is checked for zero on the fly. If the content is zero,

then the status flag will be 1. We store new value of R0 and R1 in the shift register to check R0

= 0 and R1 = 0 in serial.

Figure 3.4 Frobenius mapping unit

Chapter 3: Low Area Elliptic Curve Cryptography

 3-13

3.7 Memory unit

 In this implementation, a generic behavioral 8xm memory unit is implemented with an

independent one input (c_bus) and two outputs (a_bus, and b_bus) as shown in Figure 3.6. We

include more flexibility in the memory than conventional block RAM. Specially, data can be

written or shifted in any location (we_adr) using we_en and shift signals. The output data from

any two addresses of rd_a_adr and rd_b_adr can be accessed using their respective enable

signals rd_a_en and rd_b_en. The shifted outputs (bi and ki) are single bit or digit depending

on implementation (i.e. bit serial and digit serial). The bi and a_bus are inputs to the field

multiplier. The unused b_bus can be used either to add with a_bus or to square during

multiplication. Thus, concurrent operation can be utilized. Again, the ki output is used to check

the ith bit of the key. For the digit serial implementation, the ki is digit. We save the digit in a

digit size register to complete loop operation for each bit of the digit. To access output from

the memory unit, the output from the memory is loaded in register and followed by delivering

it to the output port. The register increases speed as it is used as a pipelining stage.

Figure 3.5 8xm memory unit

Chapter 3: Low Area Elliptic Curve Cryptography

 3-14

3.8 Interface unit
 A compact 8 bit interface is adopted in our ECC as shown in Figure 3.6. In this interface

circuit, we use shifting and addition using existing hardware i.e. the memory unit is used as

registers as well as shifter, the modular addition circuit is used for bit wise xor and counter is

used for 8 bit shifting. The two signals we and rd are used for handshaking for embedding with

different speeds.

 Initially, ECC sends we = 1 to sender. If we = 1 , then sender sends 1st 8 bit data, and

also sets rd signal as high. If rd signal is high, ECC saves the data in the least 8 bits position of

target location and also sends busy signal , we= 0, to sender. During the busy time, the 8 bits

block is shifted left by 8 positions with leaving zeros in the least 8 bit position of the target

location. If we= 0, then the sender changes rd =0 as it has already sent 1st data, and it prepares

next data to send. After arranging next data, the sender sets rd=1 and waits for we = 1.

 After saving first data, ECC again sends we =1 and it waits for next data. If ECC gets

rd= 1, then the next 8 bit block is stored in the least 8-bit positions of any one of the free

memory locations (temporary location). Now, the new data of temporary location are added

with data of target location using modular addition. In this addition, shifted 8 bits data of

targeted location are added with zeros in the respective position of temporary locations; thus,

we get 16 bit data in the target location. After addition, the target location again is shifted left

for 8 bits. Again, new 8 bit data are stored in the temporary register to xor (addition) with

Figure 3.6 8-bit input/output interface

Chapter 3: Low Area Elliptic Curve Cryptography

 3-15

zeroes of the least 8 bits of target location. In this process, we can save m size data in the

memory using very low cost interfacing circuit.

3.9 Control Unit
 Finally, we design a control unit with a dedicated Finite State Machine (FSM),

including all control signals in the same entity.In this architecture, a dedicated Finite State

Machine (FSM) is used, as shown in Figure 3.7. The FSM is implemented based on Moore

type machine. As soon as, start signal (start) and reset (rst) are initiated, control unit resets

ECC, and it goes to idle state. If load =1, then control unit loads affine coordinates (x and y)

and key, k with the help of address (adr) and handshaking signals (we and rd). After loading

inputs, the control unit initiates projective coordinates to start the point multiplication. The loop

operation is controlled by taking inputs ki value (values for Frobenius) and key counter,

K_counter outputs.

Figure 3.7 FSM based control unit

Chapter 3: Low Area Elliptic Curve Cryptography

 3-16

After the loop operation, the point multiplication in projective coordinates is performed. The

result of point multiplication in projective coordinates is converted to affine coordinates by

using conversion step. The conversion involved with one multiplicative inversion. The control

circuit implements multiplication algorithm proposed by Itoh-Tsujii algorithm is shown in

algorithm 3.5. In this method, the total number of multiplications are calculated by

⌊log2 𝑚 − 1⌋ + ℎ(𝑚 − 1) − 1, where ℎ(𝑚 − 1) is the Hamming weight and ⌊ ⌋ is a floor

function. The total number of squaring operations is (𝑚 − 1) . For GF(2163), the number

multiplications are ⌊log2 163 − 1⌋ + ℎ(163 − 1) − 1 = 7 + 3 − 1 = 9 and 162 square

operations. At the end conversion, FSM generates a done signal to update the status of

completing point multiplication and it holds itself in the idle state. If read=1, then the output

control unit starts to deliver data from a specific location. The output operation is accomplished

with the help of shifting and handshaking signals such as we and rd.

3.10 Latency of the proposed ECC operation

Latency of the proposed MSB based ECC for point multiplication is the total latency of the

load operation, initialisation, point multiplication in the projective coordinates, and affine

coordinates conversion. In the load operation, each word takes 8 clock cycles. The load

Algorithm 3.5 Itoh and Tsujii multiplicative inversion algorithm

Input : X є F2163 and irreducible polynomial f(α).

Output : Z ← X−1 mod f(α) = x2**(m) -1 where m= 163 , [note :** =to the power]

Step 1: Z ← X2 [1 square]

Step 2: T← Z.X [1 Multiplication]

Step 3: Z ← T2**2 [2 square]

Step 4: T ← Z.T [1 multiplication]

Step 5: Z← T2 [1 square]

Step 6: T← Z.X [1 Multiplication]

Step 7: Z ← T2**5 [5 square]

Step 8: T ← Z.T [1 multiplication]

Step 9: Z ← T2**10 [10 square]

Step 10: T ← Z.T [1 multiplication]

Step 11: Z ← T2**20 [20 square]

Step 12: T ← Z.T [1 multiplication]

Step 13: Z ← T2**40 [40 square]

Step 14: T ← Z.T [1 multiplication]

Step 15: Z← T2 [1 square]

Step 16: T← Z.X [1 Multiplication]

Step 17: Z ← T2**81 [81 square]

Step 18: T ← Z.T [1 multiplication]

Step 19: Z← T2 [1 square]

Step 20: Return Z

Chapter 3: Low Area Elliptic Curve Cryptography

 3-17

operation takes the equivalent latency to input of the three m bit inputs, and the output operation

takes the latency for two m bit outputs. The initialisation takes 10 clock cycles. The bit serial

multiplication takes (m+2) clock cycles. Each of the squares, addition and k-counter update

operation takes 2 clock cycles. Thus, in each loop. The three operations (2 add and 1 square)

takes 10 clock cycles. The conversion operation has 10 multiplications and 1 inversion

operation apart from some other low cost operations (addition and square). The inversion has

the multiplications of ⌊log2 𝑚 − 1⌋ + ℎ(𝑚 − 1) − 1, where ℎ(𝑚 − 1) is the Hamming weight

with (m-2) square operations. The total latency for bit serial multiplier based ECC for the

Montgomery point multiplication is shown in the Table 3.1.

3.11 FPGA Implementation Results

Our proposed ECC is implemented in a distributed RAM style mainly in the low cost family

(XC3S200-5) of Spartan3 (S3). We also implemented the design in the Spartan6 (S6), an

advance low cost technology to compare with relevant work. The results of our proposed ECC

implementation are shown in Table 3.2, and Table 3.4 after it has been synthesized, mapped,

placed and routed in different FPGA technology with successfully using Xilinx ISE 10.1 and

11.4 and 14.5. A worst case key (most hamming weight), k = 011…1 is used in the binary and

k = 10…0 is used in the Frobenius version. Our emphasis is on an area optimised ECC as logic

power, signal power and clock power depend on the area (slices) of an FPGA design [67]. We

introduce the area2-time metric to compare with any design (low area and high speed) as a

fairer metric for the low area design space. An area2-time metric indicates a prediction of

performance while it is considering to implement in the comparable level (i.e. in the high speed

level). A smaller value of the metric corresponds to a better performance.

Table 3.1 Latency of MSB multiplier based ECC for Montgomery point multiplication

Load 8x(m/8)x3

Initialisation 10

Projective coordinates based point multiplication 5(m-1)(m+2) +10(m-1)

Projective to affine conversion (12 + #mul for inversion)(m+2)

Output 8x(m/8)x2

#mul for inversion = ⌊log2 𝑚 − 1⌋ + ℎ(𝑚 − 1) − 1, where ℎ(𝑚 − 1) is the Hamming weight.

Chapter 3: Low Area Elliptic Curve Cryptography

 3-18

 In Table 3.2, our proposed Montgomery implementation outperforms in both area and time

the binary and Frobenius based similar implementations. The implementations in Spartan6

shows excellent metrics results as that is a newer technology platform with 6 input LUT. Thus,

the Spartan6 device consumes very low resources than that of previous Spartan family. In the

case of bit serial implementations, our Montgomery and Binary implementation in Spartan3

consume 1111 slices and 1077 slices respectively, and their times for point multiplication are

1.94 ms and 0.99 ms respectively. Again, our Montgomery with msd4 in Spartan 3 and Spartan6

utilises only 1293 slices of area with 0.26 ms and 545 slices of area with 0.21 ms for point

multiplication respectively. Our Frobenius Map based implementation takes fewer clock cycles

Table 3.2 Implementation results of this proposed low area ECC for point multiplication over GF(2163) after

place and route

After Place and

Route (distributed

ram)

Frq

(MHz)

Kilo

clock

Cycles

Kp

Time

(ms)

Area-Time

(Slice x sec)

Area2-Time

(Slice2 x sec)/103

FPGA

Slices LUTs

 Binary algorithm with Bit Serial mul (bsl)

1077 1869 155 301 1.94 2.089 2.250 S3

 Binary Algorithm with msd2

1165 2052 160 158 0.99 1.153 1.344 S3

 Montgomery algorithm with Bit serial mul (bsl)

1111 1878 142 140 0.99 1.100 1.222 S3

 Montgomery algorithm with msd2 mul

1237 2057 146 73 0.50 0.619 0.765 S3

 Montgomery algorithm with msd4 mul

1293 2216 146

38

0.26 0.336 0.435 S3

545 1872 181 0.21 0.115 0.062 S6

 Frobenius map with bit serial mul

1918 3540 60 88 1.39 2.666 5.113 S3

 Frobenius map with msd2 mul

1918 3566 61 49 0.81 1.554 2.980 S3

LUTs-Look-Up Tables, mul- multiplier, kp - point multiplication, S3- Spartan3, S6-Spartan6

Chapter 3: Low Area Elliptic Curve Cryptography

 3-19

for point multiplications; however, the clock frequency is lower as we use a ripple carry adder.

The Frobenius map with msd2 in Spartan 3 takes 1918 slices of area and 0.8 millisecond (ms).

 3.11.1 Analysis of the results

 Low power ECC is considered for the applications of a battery run low power device(such

as wireless sensor nodes and RFID tags). A low area FPGA implementation can meet the

constraint as the lower area design consumes low power. In particular, the power, including

logic power, signal power and clock power depend on the area (slices) of an FPGA design [67].

 To quantify the results, we have shown our results in terms of area-time and area2-time

metrics. The area-time metric is a standard metric that gives an idea about the optimisation of

both area and time of a system. The area-time metric is suitable when a system performance is

compared with the performance of a work of same space deign. For example, a low area design

can fairly compare with a relevant low area design using the area-time metric. Crucially, the

area-time metric of a low area design cannot be compared with the same metric of a high- speed

design. Again the speed of a low area design can be increased by using a very few slices. To

compare of the performances of the different space designs, the area2-time metric is a farer

metric. The area2-time metric of a low area design can perform better when the low-area design

will be implemented to upgrade in the high-speed design by considering large arithmetic circuit

with small overhead of the area. Thus, Area2-time metric is a suitable index to compare the

performance of a low area with the performance of a high-speed design. To show fair

comparison, we prefer to compare our results by using both area-time and area2-time metrices

of each of the low area and the high-speed design. The smaller the value of the metric translates

the best performance.

Table 3.3 Performance of the proposed ECC for different digit-size multipliers over GF(2163)

Improvement from (for the

case of Montgomery

Algorithm)

% of Improvement in Area x time % of Improvement in Area2x

time

Bit Serial to MSD2 (1.09 -0.62)/1.09=43% (1.22-0.76)/1.22=37.7%

MSD2 to MSD4 (0.62-0.34)/0.62=45% (0.76-.43)/0.76=43%

Overall Bit Serial to MSD4 (1.09-0.34)/1.09=68.8% (1.22-0.43)/1.22=64.75%

Chapter 3: Low Area Elliptic Curve Cryptography

 3-20

 The proposed digit serial based implementations show superior performance to bit serial

implementations by using a small area overhead. In the case of Montgomery point

multiplication, our proposed msd4 based ECC shows 68.8% of area-time and 64.75% of area2-

time metrices better than that of our bit serial implementation is shown in the Table 3.3. The

performance of the digit serial implantation increases abruptly due to small area consumption

is shown in the Figure 3.8.Thus, small digit serial multiplier improve performance abruptly

without increasing significant area (slices). In the Figure 3.9, the area-time performance of the

proposed ECC increases linearly due to decrease latency (clock cycles) of point multiplication

with an increase of digit size without significantly affecting area and frequency of the proposed

ECC.

Figure 3.9 Area-time vs digit size over GF(2163) in S3 for Montgomery method

1.09

0.62

0.34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bit serial 2 bit digit serial 4 bit digit serial

A
re

ax
T

im
e

(S
li

ce
-S

ec
.)

Digit Size

Area-Time vs Digit Size

Figure 3.8 Area vs digit size over GF(2163) in S3 for Montgomery method

1111
1237

1293

0

200

400

600

800

1000

1200

1400

1600

Bit serial 2 bit digit serial 4 bit digit serial

A
re

a
(S

li
ce

s)

Digit Size

Area vs Digit size

Chapter 3: Low Area Elliptic Curve Cryptography

 3-21

The proposed ECC is investigated with three point multiplication algorithms. Each of the

algorithms shows different advantages. Binary algorithm based ECC consumes the lowest area

than others is shown in Figure 3.10. Again, In Figure 3.11, the Frobenius map based ECC

shows very low latency. Notably, the Montgomery based ECC shows the best area- time metric

than others algorithm is shown in the Figure 3.12. Thus, binary algorithm based ECC can be

suitable for a very area-constraints application and Frobenius map based ECC can be fit for

very low latency application and finally, Montgomery algorithm can be preferable for area-

time optimised based applications.

We have implemented MSB multiplier based ECC for Montgomery point multiplication

over all NIST curves such as GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571) is shown

the Table 3.4.The proposed ECC consumes a very low area to compute fast point

multiplication. In general, the lowest field size shows lower complexity when it is comparable

Figure 3.10 Latency vs kP algorithm (2-bit digit serial) over GF(2163)

73

158

49

0

50

100

150

200

250

Montgomery(2 bit digit) Binary (2 bit digit) Frobenius (2 bit digit)

k
P

 L
at

en
cy

 (
C

lo
ck

 c
y
cl

es
)

kP Algorithm

kP Latency vs kP Algorithm

Figure 3.11 Area vs kP algorithm (2 bit digit serial) over GF(2163)

1237 1165

1918

0

500

1000

1500

2000

2500

Montgomery(2 bit digit) Binary (2 bit digit) Frobenius (2 bit digit)

A
re

a
(S

li
ce

s)

kP Algorithm

Area vs Kp Algorithm

Chapter 3: Low Area Elliptic Curve Cryptography

 3-22

to the high field size curve. The performance of all NIST curves is shown in the Figure 3.13.

The area-time product increases abruptly as compared to the point multiplication time as shown

in the Figure 3.13. As the latency increases exponentially with the increase of field size, the

high field shows a poor area-time performances. For example, the point multiplication over

GF(2571) takes 15.42 ms with an area-time product of 47.73, and the point multiplication over

GF(2163) consumes 0.99 ms with 1.09 area-time product. The performance of the ECC can be

improved by utilising very low cost digit serial multiplier.

Table 3.4 Implementation results of the proposed bit-serial multiplier based ECC over all NIST curves after

place and route

Field

size, m

Slices LUTs FFs Kilo

Clock

cycles

Freq.

,

MHz

 kP

Time,

ms

Area x time,

Slices-sec

Area2-Time

(Slice2-sec/103)

FPGA: Spartan3

163 1111 1878 777 140 142 0.99 1.09 1.22

233 1463 2473 1095 281 126 2.23 3.26 4.77

283 1781 3217 1240 410 117 3.50 6.23 11.10

409 2366 4173 1677 852 114 7.45 17.63 41.71

571 3095 5863 2110 1656 107 15.42 47.73 147.71

FPGA: Spartan6

571 3246 6013 6553 1656 132 12.60 40.90 132.76

LUTs-Look-Up Tables, FFs- Flip Flops, kp - point multiplication

Figure 3.12 Area-time vs kP algorithm (2-bit digit serial) over GF(2163)

0.62

1.15
1.55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Montgomery(2 bit digit) Binary (2 bit digit) Frobenius (2 bit digit)

A
re

a
x
 T

im
e(

S
li

ce
s

x
 S

ec
.)

kP Algorithm

Area-Time vs kP Algorithm

Chapter 3: Low Area Elliptic Curve Cryptography

 3-23

We have reported FPGA based works to date irrespective of design choice, for example,

low area and high speed hardware, hardware-software designs, and scalable and non-scalable

as shown in Table 3.5. It is difficult to compare among the reported works as there are different

design choices and optimisation goals. Again, some of the reported area (slices) does not reflect

the actual area of the presented work as the block RAM equivalent slices are not included. The

block RAM is used for the memory unit of ECC, but it consumes a major area (about 50% -

60% area depending on the architecture) of an ECC design. Again, some of the reported latency

is not included the clock cycles for the input-output and conversion operations. For a fair

comparison, the total clock cycles of our memory free design are included the clock cycles for

point multiplication, input-output interface and projective to affine conversion.

 The figures reported in [50], [51], [54], and [66] do not include the block ram equivalent

slices. We compare our low cost Spartan FPGA results with relevant work implementation in

the different technology to evaluate the merit of the work, however, the Virtex based ECC is

considered for the high-speed design. In the case of low area designs, our ECC clearly

outperforms in both area-time and area2-time metrics the works reported in [45],[49]-[51],[55],

and [63]. In the high speed design, our implementation demonstrates the best area2-time metric.

So far, our the area-time metric of msd4 based ECC implemented in the Spartan 3 shows even

a better index than the high speed design in [37], [48],[54], [56-58], [62], [64], [66]. Again, the

Figure 3.13 Performance of bit-serial multiplier based ECC over all NIST curves

0.99 2.23 3.5
7.45

15.42

1.09 3.26
6.23

17.63

47.73

0

10

20

30

40

50

60

F163 F233 F283 F409 F571

P
er

fo
rm

an
ce

ECC Curves over GF(2^m)

Performance of the MSB multiplier based NIST ECC

kP time, ms Area x time, Slice-sec

Chapter 3: Low Area Elliptic Curve Cryptography

 3-24

high speed design is generally implemented in the Virtex devices to achieve higher frequency

than that of Spartan FPGA. Our proposed low area design is targeted for a low cost FPGA

Table 3.5 Comparison of the propsed ECC with the state of the art over GF(2163) after place and route

Ref. AL FPGA Area[slices+

BRAM (b)]

Freq(MHz) Kp

time

(ms)

Area-

Time(Slice-

sec)

Area2-Time

(Slice2-

sec/103)

[56] M Ve 9,754e 66.5 0.1444 1.41 13.74

[57] M Ve 12,882e 68.9 0.0480 0.618 7.965

[37] B Ve 5,008 66 0.075 0.38 1.88

[58] M Ve 15,020 77 0.0367 0.55 8.26

[10] M Ve 15,368 91.1 0.0330 0.507 7.79

[61] M Ve 6432 124 0.0465 0.29 1.92

[66] B Ve 2856 +18b 44 0.964 2.753b 7.86 b

[51] M Ve 1,101+7b 82 2.460 2.71b 2.98b

[55] M Ve 9,432 49 0.292 2.754 25.98

[49] B Ve 3,324 100 2.09 6.95 23.09

[59] M V2p 3,416 100 0.041 0.140 0.478

[47] B V2p 8,769 153 0.667 5.85 51.29

[50] M V2p 1,832+9b 108 29.83 54.65b 100b

[62] B V2p 4,749 100 0.488 2.32 11.00

[54] M V2p 8,954+6b 100 0.84 7.52b 67.35b

[48] M V2 18,079 90.2 0.106 1.92 34.65

[52] M V2 11,395 133 1.1 12.5 156

[59] M V4 4,080 197 0.0206 0.084 0.34

[60] M V4 20,807 185 0.0077 0.16 3.33

[49] B V4 3,528 100 1.07 3.78 13.32

[51] M V4 1,095+2b 150 1.345 1.473b 1.613b

[66] B V4 2,431+8b 155 0.273 0.664b 1.613b

[53] M V4 24,363 143 0.010 0.24 5.94

[10] - V4 16,209 154 0.020 0.32 5.14

[55] M V4 10,488 99 0.144 1.510 15.84

[61] M V5 2,448 357 0.0161 0.039 0.096

[64] B V5 1,368e 170 --- --- ---

[55] M S3 10,379 44 0.325 3.37 35.01

[63] M S3 723e 76.4 17.2 12.44 8.99

[66] B S3 2,220+8b 93 0.456 1.012b 2.247 b

[45] M S3 3,265 130 1.00 3.27 10.66

8bitsl M S3 1,111 142 0.99 1.09 1.22

8msd2 M S3 1,237 146 0.50 0.620 0.760

8msd4 M S3 1,293 146 0.26 0.34 0.43

8msd4 M S6 545 181 0.21 0.12 0.063

[45] B S3 2,396 125 1.25 3.00 7.18

8bitsl B S3 1,077 155 1.94 2.09 2.23

8msd2 B S3 1,165 160 0.99 1.15 1.34

[45] F S3 2,933 100 0.6 1.76 5.16

8bitsl F S3 1,918 60 1.39 2.67 5.12

8msd2 F S3 1,918 49 0.81 1.55 2.97
b area of BRAM is not included in the area-time and area2-time metrics, e equivalent area, S(3,6) - Sapartan

(3,6),V(E,2,2P,4,5)- Virtex (E,2,2P,4,5), Al-Algorithm, Freq-Frequency, M- Montgomery, B- Binary, F-

Frobenius, LUTs-Look-Up Tables, FFs- Flip Flops, kP- point multiplication

Chapter 3: Low Area Elliptic Curve Cryptography

 3-25

platform such as Xilinx Spartan family. Again, the ECC in the Spartan 6 shows outperform in

the both metrics. The Spartan 6 based ECC shows better area2-time result than very high speed

work presented in [10], [53], [59-61].

3.12 Conclusions

We have implemented Montgomery, binary and Frobenius Map algorithms to investigate

area-time and area2-time performance for ECC over all NIST curves on FPGA. Our

Montgomery implementation shows a better area-time and area2-time metric than that of

relevant works reported to date. Specially, we have modified the steps involved in point

addition and doubling algorithms as per data independency. Moreover, an area-speed trade-off

arithmetic unit, asynchronous accessible memory unit, dedicated FSM based control unit

enable it as an optimised ECC. In addition, our ECC offers more flexibility as it is independent

of the FPGA fabric and incorporates a small hardware 8-bit I/O interface. We compare our

results with relevant works on different Spartan FPGAs (Spartan 3 and Spartan 6). Our

Montgomery implementation on Spartan 6 shows the best result achieving 0.21 ms for an ECC

point multiplication with only 545 slices of the area. To our knowledge, the proposed

architecture achieves the best area2-time metric performance of the low area FPGA to date.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-1

 Implementing

High Throughput/Area

Elliptic Curve Cryptography
High speed ECC consumes large hardware resources that prohibit its use in resource-

constrained applications. Thus, high throughput while it is maintaining low resource is a key

issue for Elliptic Curve Cryptography (ECC) hardware implementations in many applications.

In this chapter, an ECC processor architecture over Galois Fields is presented that achieves

the best reported throughput/area performance on FPGA to date. A novel segmented

pipelining digit serial multiplier is developed to speed up ECC point multiplication. To achieve

low latency, a new combined algorithm is developed for point addition and point doubling with

careful scheduling. A compact and flexible distributed RAM based memory unit design is

developed to increase speed while keeping area low. Further optimisations were made via

timing constraints and logic level modifications at the implementation level.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-2

4.1 Introduction
Public key based information security networks use cryptography algorithms such as

Elliptic Curve Cryptography (ECC) and RSA. ECC has emerged recently as an attractive

replacement to the established RSA due to its superior strength-per-bit and reduced cost for

equivalent security [39].

High speed ECC is a requirement for matching real-time information security, however,

in many applications the hardware resource implications may be prohibitive and the required

high speed performance would need to be achieved within a restricted resource performance.

FPGA based Hardware acceleration of ECC has seen a surge of interest recently. There

are several state of the art FPGA implementations aimed at the high speed end of the design

space [10], [53], [59-61], [71, 72]. Most of these however use increased hardware resource to

achieve the speed improvements sacrificing overall efficiency in terms of the throughput/area

metric; such efficiency is desirable in many emerging low resource applications in particular

in wireless communications. Area optimised high speed ECC design is challenging; there are

requirements of algorithmic optimisation, careful scheduling to reduce clock cycles, size of

multiplier, critical delay of the logic, and pipelining issues [10], [59].

In ECC, scalar point multiplication (PM) is the main operation. The PM can be

implemented over either prime fields, GF(p) or binary extension fields, GF(2m) adopting either

projective coordinates or affine coordinates. Binary extension fields also called finite fields

(FFs) are more suited to hardware implementation due to their lower complexity FF multipliers,

simple FF adder and single clocked FF squaring circuits. Projective coordinates are suited to

throughput/area efficient ECC designs, where the costly inversion operation is avoided and

the inversion operation required to convert projective into affine coordinates can be achieved

by multiplicative inversion [1], [65].

ECC computations in the projective coordinates system are based on large operand

finite field operations of which multiplication is the most frequently performed. The high speed

performance of ECC designs therefore would depend mainly on the performance of the FF

multipliers. Digit serial FF multipliers are often used to reduce latency; popular multipliers

here include the direct method based multipliers and Karatsuba [59], [10]. If the field size is m

and the digit size is w of a digit serial multiplier, then the number of clock cycles for each FF

multiplication is s + c, where s = m/w, and c is for clock cycles due to data read-write operations.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-3

Thus, large digit multipliers can reduce clock cycles (latency) with increasing complexities of

area and critical path delay. The critical path delay can be reduced using pipelining with some

extra latency [10].

In this chapter, we present an area-time (throughput/slice) efficient ECC processor over

binary fields in projective coordinates on FPGA. We implement the Lopez-Dahab (LD)

modified Montgomery algorithm for fast PM. We demonstrate a new “no idle cycle” [59]

combined point operations (point addition and point doubling) algorithm to remove idle clock

cycles in between two successive point operations. We schedule point operations very carefully

to avoid the idle clock cycles due to data dependency, read-write operations, and pipelining. In

addition, our efficient arithmetic circuit includes a digit serial multiplier, an adder and a square

circuit. The presented arithmetic unit can support on- the-fly addition and square operations

while it is performing FF multiplication. Moreover, we present an improved Most Significant

Digit (MSD) serial multiplier utilizing segmented pipelining similar to the Least Significant

Digit (LSD) multiplier presented in [1], [29]. We develop an optimized distributed RAM based

memory unit for flexible data access to support reduced data dependency in the arithmetic

operations. We adopt the Itoh-Tsujii inversion algorithm for inversion to save area [65], [70].

Finally, we use a dedicated finite state machine based control unit to speed up the control

Algorithm 4.1 LD Montgomery point multiplication over GF(2m)

INPUT: 𝑘 = (𝑘𝑡−1, … , 𝑘1, 𝑘0)2 with 𝑘𝑡−1 = 1, 𝑃 = (𝑥, 𝑦) ∊ 𝐸(𝐹2𝑚)
OUTPUT: 𝑘𝑝

Initial Step: 𝑃(𝑋1, 𝑍1) ← (𝑥, 1), 2𝑃 = 𝑄(𝑋2, 𝑍2) ← (𝑥4 + 𝑏, 𝑥2)
For 𝑖 from 𝑡 − 2 downto 0 do
If 𝑘𝑖 = 1 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) +

 𝑄(𝑋2,𝑍2)

Point Doubling: 𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2)

𝑍1 ← 𝑋2. 𝑍1
𝑋1 ← 𝑋1. 𝑍2
𝑇 ← 𝑋1 + 𝑍1
𝑋1 ← 𝑋1. 𝑍1
𝑍1 ← 𝑇2
𝑇 ← 𝑥. 𝑍1
𝑋1 ← 𝑋1 + 𝑇
Return 𝑃(𝑋1, 𝑍1)

𝑍2 ← 𝑍2
2

𝑇 ← 𝑍2
2

𝑇 ← 𝑏. 𝑇
𝑋2 ← 𝑋2

2
𝑍2 ← 𝑋2. 𝑍2
𝑋2 ← 𝑋2

2
𝑋2 ← 𝑋2 + 𝑇
Return 𝑄(𝑋2, 𝑍2)

Conversion Step: 𝑥3 ← 𝑋1/𝑍1 ; 𝑦3 ← (
𝑥+𝑋1

𝑍1
) [(𝑋1 + 𝑥𝑍1)(𝑋2 + 𝑥𝑍2) + (𝑥2 +

𝑦)(𝑍1𝑍2)](x𝑍1𝑍2)−1 + 𝑦.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-4

operations. The proposed architecture is implemented on different FPGA technologies, Virtex4

(V4), Virtex5 (V5) and Virtex7 (V7), and compared to state of the art in terms of a

throughput/slices metric. The throughput/area performance in (1x106/s)/(slices) of our

proposed design (19.65 on V4, 65.30 onV5 and 64.70 on V7) outperforms state of the art

designs on FPGA to date.

The rest of the chapter is organized as follows. Section 4.2 discusses preliminaries of

PM, and the Lopez-Dahab modified Montgomery point multiplication in projective

coordinates. Section 4.3 reviews resource constraints in high throughput ECC. Section 4.4

illustrates the proposed design. Section 4.5 presents the results of the FPGA implementation

and a comparison with recently published state of the art designs on FPGAs, followed by

conclusions in section 4.6.

4.2 Background

Elliptic Curve Cryptography over a binary extension field (2m) is suitable for hardware

implementation. The main operation of the ECC is scalar point multiplication 𝑄 = 𝑘. 𝑃, where

𝑘 is a scalar (integer), 𝑃 is a point on the elliptic curve, and 𝑄 is a new point of the curve after

𝑘. 𝑃 [2]. The Lopez-Dahab (LD) Montgomery algorithm is widely considered in the high

performance ECC implementation as shown in algorithm 4.1[10], [53], [59-61], [71,72]. The

algorithm has six field multiplication, three addition and five square operations that can be

modified for parallel operation. A modified Montgomery point multiplication algorithm, as

shown in algorithm 4.2 (page 4-8), has been adopted by many designs in the high performance

ECC design [10], [53], [59-61], [71,72] space due to its speed, partial resistance of power

attack(due to performing both point operations for every bit of k), suitability of parallelisation

and low resource friendly.

To enable highly efficient ECC, the implementation requires an optimum balance

among latency, frequency and area. The constraints of targeted ECC are low latency, high

operating frequency (it is called maximum frequency on FPGA), and lower area. The

constraints of the efficient ECC depend on the performance of the point multiplication

scheduling and field multipliers. The Montgomery algorithm is widely considered for the

friendly point multiplication scheduling. Again, the Montgomery point multiplication depends

on the efficient operation of the field multiplier.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-5

The field multiplier can be bit-parallel, digit serial and bit serial. The bit parallel

multiplier has high complexity and poor maximum frequency, whereas bit serial multiplier

consumes very high latency. Thus, digit serial multiplier is a popular option to design an

efficient ECC for the point multiplication. In the literature, digit serial multiplication

accomplished by using some multiplication algorithms such as Karatsuba algorithm [59][71]

and schoolbook multiplication [61]. The multipliers targeted to reduce the latency and

complexity of the multiplier for a high performance ECC architecture. Thus, the underlying

success of the efficient design depends on highly efficient digit serial multiplier design. In this

chapter, we demonstrate a high performance digit-serial multiplier that accelerates the

Montgomery point multiplication algorithm.

4.3 Resource Constrained High Throughput ECC

For a high throughput ECC implementation in the low area end of the design space,

there are requirements of optimization of the critical path of the logic, the area of the design,

and number of clock cycles (latency) for the point multiplication. Throughput is usually

improved via the adoption of large digit size multiplication and parallel operation of

multiplications to decrease the latency. However, these steps result in an increased area and

critical path delay and therefore affect the throughput per area metric figure. The critical path

delay can be minimised via pipelining [10] at the expense of an increase in area and number of

clock cycles with the number of pipeline stages inserted in the design. Also, the pipeline stages

can generate idle cycles in the data dependable field operations [59]. The number of pipeline

stages is an important consideration for area optimized high speed design often requiring a

latency versus clock frequency trade-off. The latency due to pipelining can affect the merits of

the use of a large digit size multiplier and the parallelisation of multiplication. In general, the

area complexity of a high speed ECC design would depend on the digit size of the multipliers

used and the level of parallelism adopted, on the size and sophistication of the memory unit,

and on the control unit.

4.4 Proposed throughput/area Efficient ECC processor

Our proposed area optimized high throughput architecture is presented in Figure 4.1.

The design consists of an efficient arithmetic unit, an optimised memory unit and a dedicated

control unit.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-6

4.4.1 Segmented Pipelining Based Digit Serial Multiplier

The arithmetic unit design consists of a novel most MSD serial multiplier, a square and adder

circuit as shown in Figure 4.1.

The performance of ECC depends mainly on the performance of the Digit serial multiplier in

particular the speed of the multiplier for a targeted level of latency. Digit serial multiplication

for the high speed ECC implementation end tended to be either in direct form (i.e. MSD serial

Multiplier) [61] or in bit parallel form (i.e. Karatsuba multiplier) [10], [71]. There are some

advantages of Karatsuba multiplication over MSD multiplication. A Karatsuba FF

multiplication takes s-1 cycles, where s = m/w, and is suitable for pipelining. An MSD FF

multiplication takes m + 1 cycles where the extra clock cycle delay is due to the reduction

register [1], [10] [61], and [70]. However, a pipelined Karatsuba multiplier based ECC

implementation has been shown to achieve a lower clock frequency than a direct digit serial

multiplier based implementation [59], [61], [71].

For large MSD digit serial based ECC, pipelining is required which can affect latency

in the point multiplications. In this work, we apply segmented pipelining to improve

performance in MSD multiplication. In the segmented pipelining approach, a w bit multiplier

and m bit multiplicand based digit serial multiplication is broken into sub digit serial

Figure 4.1 Proposed throughput/area efficient ECC architecture (for n=2)

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-7

multiplications called segmented multiplications w1xm, w2xm,...,wnxm, where w=w1+w2+ …+

wn. The segmented multiplication product is first saved in the register (Reg) before reduction

into m bits using an interleaved reduction similar to that in the bit serial multiplier in [1]. The

reduced m bit output of the reduction unit is saved in another Reg to use in the next cycles

reduction or output. Thus, the proposed multiplication takes s +2 clock cycles where 1 extra

clock cycle is due to the segmented pipelining, and the other additional clock cycle for

pipelining after the reduction unit. A new input of the multiplier is inputted in every s clock

cycles. Thus, a real time reset is required in every s cycles. We use multiplexers to select zero

for reset and save one clock cycle for the FF multiplication. Finally, the segmented pipelined

multiplier takes one clock cycle for n segmentations without increasing area (slices) on the

FPGA. The unused flip-flops (FFs) in the combinational circuit of the multiplier are utilized in

the pipelining [71].

To evaluate our proposed segmented multiplier, resources and latency complexity

analysis is performed and presented in Table 4.1 which also includes comparison to state of the

art digit serial multipliers reported in [74-76]. For 𝑠 = 4 or less, our proposed multiplier shows

same or better latency using similar or less resources. However, a key advantage of our

proposed architecture is that we are able to achieve higher speed for the same (or less) area and

the same (or less) latency; this is because the number of segmentations (n) with extra FFs can

modulate the critical path delay. The value of n defines the critical path delay of the multiplier.

The path delay is either 𝑇𝐴 + (log2(
𝑑

𝑛
)) 𝑇𝑋 for the multiplication part (M) over GF(2m)

Table 4.1 Latency, critical path delay and resources of digit serial multipliers over GF(2m)

Ref Latency,

cc

Critical path delay #XOR #AND #FFs #Mux

[15] 2𝐶 (2 + log2 𝑑) 𝑇𝑋 𝑚 + 𝐶(2𝑑 + 𝑆1 + 𝑆3) + 𝑑 + 𝑆2 C𝑆3 (𝐶
+ 2)𝑚
+ 𝐶𝑆3

[16] 𝑚log4 2 𝑇𝐴 + (2
+ 3log4 𝑚) 𝑇𝑋

69

20
𝑚log4 6 − 2𝑚 −

1

4
 𝑚log4 2 −

1

5
+ 2𝑚 − 2

𝑚log4 6 --- ---

 [17] 2𝐶 𝑇𝐴 + (log2 𝑑) 𝑇𝑋 𝑑(𝐶(𝑑 + 𝑚) + 3) 𝐶𝑑𝑚 --- ---

Ours ⌈
𝑚

𝑑
⌉ 𝑇𝐴 + (log2(

𝑑

𝑛
)) 𝑇𝑋 or

 𝑇𝑀𝑈𝑋 + (log2(𝑛 +
𝑘)) 𝑇𝑋

M part:𝑑𝑚 +Rd part:(𝑛𝑚 +
𝑘𝑑),M=GF2MUL, Rd=Reduction

Unit, and k is the second higher

order of irreducible polynomial

M part:

𝑑𝑚

M part:

n(m+d-

1)+Rd

part: m,

Rd

part:

m

𝑛 = 𝑠 = #segments, d= digit size, 𝑆1 = ⌈
𝑚

𝑑
⌉ (2.5 𝑑log2 3 − 3𝑑 + 0.5) + 𝑑log2 3 − 𝑑, 𝑆2 = ⌈

𝑚

𝑑
⌉ (2 𝑑log2 3 −

2𝑑), 𝑆3 = ⌈
𝑚

𝑑
⌉ (2 𝑑log2 3), 𝐶 = ⌈√

𝑚

𝑑
⌉. 𝑇𝑀𝑈𝑋 = 2𝑥1 Mux delay. FFs: Flip-Flops

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-8

(GF2MUL) or 𝑇𝑀𝑈𝑋 + (log2(𝑛 + 𝑘)) 𝑇𝑋 for the reduction part (Rd). Thus, our critical path

delay can be optimised (to achieve the desirable high speed) by choosing an optimum number

of segmentations (n). To generalise, from Table 4.1, the best figure latency for a field

multiplication [74, 76] is 2⌈√
𝑚

𝑑
⌉ where ⌈ ⌉ is a floor function, our multiplier’s latency is ⌈

𝑚

𝑑
⌉.

As a rule of thumb, therefore as long as m<4d, our multiplier would achieve comparable or

better latency figure. But, what is crucial is that for comparable (less or higher) latency say and

same digit size, our design can achieves improved critical path delay 𝑇𝐴 + (log2(
𝑑

𝑛
)) 𝑇𝑋 in our

case (due to the critical path delay of GF2MUL) compared to 𝑇𝐴 + (log2 𝑑) 𝑇𝑋 in [74, 76]

using an optimum segment size without increasing the latency of the multiplier. Thus, utilising

similar area, our multiplier can achieve higher speed. At the extreme, the use a full precision

multiplier (𝑑 = 𝑚) with an optimised segmentation would thus lead to the highest speed.

4.4.2 Optimized Memory Unit

High speed and flexible design for the memory unit can improve performance. We

consider an optimised distributed RAM based memory unit. There is an 8xm size register file

in a unit, one m bit register (accumulator) and one shift register (Shiftreg). The 8xm register

file consists of one m bit input that can load data in any location of the register file, two m bit

output buses (A_bus and B_bus) that can access data from any location of the register file. The

shift register can store data from any location of the register file to provide w size digit (bi)

Algorithm 4.2 Proposed combined loop operation of the LD Montgomery point multiplication with careful

scheduling

For 𝑖 from 𝑡 − 2 down to 0 do If 𝑘𝑖 = 1 then

If 𝑘𝑖−1 = 1 then If 𝑘𝑖−1 = 0 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) + 𝑄(𝑋2,𝑍2) and Point Doubling:

𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2).

St1: 𝑍1 ← 𝑋2. 𝑍1.

St2: 𝑋1 ← 𝑋1. 𝑍2, 𝑍2 ← 𝑍2
2, 𝑇 ←

𝑍2
4.

St1: 𝑍2 ← 𝑋1. 𝑍2, 𝑍2 ← 𝑍2
2, 𝑇 ← 𝑍2

4.

St2: 𝑋2 ← 𝑋2. 𝑍1.

St3: 𝑋2 ← 𝑏. 𝑇 + 𝑋2
4, 𝑋2 ← 𝑋2

2. St4: 𝑍2 ← 𝑋2. 𝑍2.

St5: 𝑋1 ← 𝑋1. 𝑍1, 𝑇 ← (𝑋1 + 𝑍1)2, 𝑍1 ← 𝑇. St6: 𝑋1 ← 𝑥. 𝑇 + 𝑋1.

Conversion Step: same as Algorithm 1.

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-9

multiplier for the FF multiplication. The accumulator can save a result from the arithmetic unit

or new data from the register file to do a square operation. The accumulator and square circuit

are connected such that repeated squaring can be done without saving in the register file. The

repeated squaring improves latency of multiplicative inversion as proposed in [65]. The

memory unit is smartly accessible to write, read shifting operation in any location. The easy

accessibility of the memory reduces the number of temporary registers for the PM. The memory

unit consumes very low area to provide high-speed data access.

4.4.3 Scheduling for point operations

In this section, we propose a new scheduling in the combined LD Montgomery point

multiplication as shown in algorithm 4.2.

To schedule for no idle cycles, we combine the point addition and point doubling

algorithms for the current value of 𝑘𝑖 = 1 as shown in algorithm 4.2. We observe that the

product of the last multiplication is 𝑋1 if 𝑘𝑖 = 1 or 𝑋2 if 𝑘𝑖 = 0. Thus, the first multiplication

of the loop should be independent of the last multiplication. For example, if the last product is

𝑋1, then the next operands of multiplication are 𝑋2 and 𝑍1. Otherwise, the next operands will

be 𝑋1 and 𝑍2. Thus, the first multiplication depends on the last 𝑘𝑖 which means the 𝑘𝑖+1 bit as

shown in algorithm 4.2.

Figure 4.2 Proposed careful scheduling (4 clock cycles/multiplication)

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-10

Figure 4.2 illustrate the proposed no idle state schedule using a 41-bit digit size FF

multiplier. The 41 bit digit size FF multiplier takes M = 4 cycles for actual multiplication, and

c = 4, with 2 clock cycles for pipelining and 2 clock cycles for unloading from and loading to

the memory unit. In a loop, the point operation in the projective coordinates system requires 6

multiplications. To ensure no idle state in the multiplication, a new multiplication is started

every 4 clock cycles. Thus, two consequent but independent multiplications are overlapping

each other as shown in Figure 4.2 for 𝑘𝑖 = 1 and 𝑘𝑖−1 = 1.

Again, the adder circuit placed in the common data path is capable of doing addition

concurrently. The square operation takes three cycles with 1 cycle to save in the accumulator,

1 clock cycle for squaring, and 1 clock cycle for loading. Repeated squaring can be done

without storing in the register file. Thus, double squaring takes 4 clock cycles. Total Latency

of the ECC is shown in the Table 4.2.

4.5 Implementation on FPGA and Results

Our proposed efficient ECC processor is implemented over GF(2163), GF(2233),

GF(2283), GF(2409), and GF(2571), on different FPGA technologies namely Virtex4 (LX25_12

for f163, and LX100_12 for f233 to f571), Virtex5 (XC5VLX50_3 for f163), and Virtex7

(Vx550T_3 for f163, and V585_T for f233 to f571) using Xilinx tools versions 13.2 and 14.5

respectively. The design was implemented on Virtex4 and Virtex5 technologies to allow for a

fair comparison to most relevant works, and on the Virtex7 to evaluate the performance on the

newer technology. Where feasible the designs have been implemented in each Virtex family.

The FPGA size selected was the smallest in the family that could accommodate the design in

terms of area and pin count. We present the implementation results after place and route in

Table 4.3 and Table 4.4. The Xilinx tools were used to set high-speed properties and put

Table 4.2 Latency of ECC for ⌈𝑚/𝑤⌉ = 4, mul= M4/M7. add=1. sqr=2

Algorithm Initial + point operations + Conversion GF(2163)

 [2] 5 + (6𝑀7 + 13)(𝑚 − 1) + (10𝑀7 + Inv) 9211

Algorithm2 5 + (6𝑀4(𝑚 − 1) + (7𝑀4 + 3𝑀7 + Inv) 4168

𝑀4 = 4 , 𝑀7 = 7, Inversion (Inv) = (#Mul for Inversion × 𝑀7 + 𝑚)

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-11

subsequent timing constraints to improve the area-time product. Table 4.5 also includes area-

time performance and comparison to state of the art.

As shown in Table 4.3, the main contribution of the segmentation in the multiplier is

an increase in the clock frequency while it is utilizing very small resources (FFs). The clock

frequency for 3 segmented (3 Seg.) pipelined multipliers based ECC design is 290 MHz on the

Virtex4- that is 38 MHz- more than the respective implementation of non-segmented (No Seg.)

multiplier based ECC. Again, the 2 segmented (2 Seg.) pipelined multiplier based ECC shows

the best throughput per slice (65.30) is implemented on Virtex5 and the 3 segmented multiplier

based ECC on Virtex7 shows the highest performance (only 10.51 µs for an ECC point

multiplication). The optimum size of the segments is subject to a trial-error method to achieve

high throughput.

Table 4.3 Results of our ECC over GF(2163) after place and route

segmentation Slices

(Sls)

LUTs FFs Max.

Freq.,

MHz

Total kP

Time, µs

(106/s)

/Sls

In virtex4

No.Seg (41x1) 3623 6793 1348 252 16.51 16.71

2 Seg.(21x2) 3444 6516 1701 276 15.08 19.25

3 Seg.(14x3) 3536 6672 1870 290 14.39 19.65

In virtex5

No.Seg.(41x1) 1150 3960 1146 286 14.58 59.66

2 Seg. (21x2) 1089 3958 1522 296 14.06 65.30

3 Seg. (14x3) 1185 4027 1701 301 13.85 60.95

In Vertex7

No.Seg.(41x1) 1341 4406 1300 361 11.56 64.52

2 Seg. (21x2) 1351 4513 1703 364 11.44 64.70

3 Seg. (14x3) 1476 4721 1886 397 10.51 64.48

 LUTs-Look-Up Tables, FFs- Flip Flops, kP- point multiplication

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-12

4.5.1 Analysis of the Results

We present our results of ECC for different segmentations such as non-segmented

pipelining multiplier, two-segmented pipelining multiplier and three-segmented pipelining

multiplier on the FPGAs as shown in the Table 4.3 after place and route. The segmentation

pipelining technique offers a resource free improvement of the performance of multiplier. The

main contribution of the segmentation in the multiplier is an increase in the clock frequency by

utilizing very small resource (mainly Flip-flops). The clock frequencies for three-segmented

pipelined multiplier based ECC are 290 MHz, 301 MHz, and 397 MHz in the Virtex4, Virtex5,

and Virtex7 respectively is shown in the Figure 4.3. The frequency of the segmented pipelining

based ECC increases by 38 MHz, 15 MHz and 36 MHz more than the respective frequency of

non-segmented multiplier based ECC. The critical path for the case 41 bit digit without

segmentation has long critical path delay than same digit with segmentation. In the Figure 4.4,

Figure 4.3 Frequency vs segment size of the ECC over GF(2163)

252

276

290

230

240

250

260

270

280

290

300

41 bit (no-segment) 21 bit (2 segments) 14 bit (3 Segments)

M
ax

.
F

re
q

u
en

cy
,

M
H

z

Segment Size

Frequency vs Segment Size over GF(2m)

Table 4.4 FPGA implementation results after place and route in Virtex7

m(segments

size)

Slices

(Sls)

LUTs FFs Fq.,M

Hz

kP Time,

µs

(106/s)

/Sls

163(3x14) 1476 4721 1886 397 10.51 65

233(4x14+3) 2647 7895 2832 370 16.01 24

283(5x14+1) 3728 11593 3973 345 20.96 13

409(7x14+5) 6888 20881 6038 316 32.72 4.4

571(10x14+1) 12965 38547 10066 250 57.61 1.3

LUTs-Look-Up Tables, FFs- Flip Flops, kP- point multiplication

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-13

the increase in the segmentation consumes low slices as the pipelining stage consumes the

unused flip-flops in the combinational circuit based multiplier. The tool can able to optimize

the area of the two- segment based ECC than that of the others ECC as shown in the Figure

4.4. Thus, the optimum number of segmentation is a matter of trial and error method. For

example, the two-segmented pipelined multiplier based ECC shows the best throughput per

slices (65.30 as shown in Table 4.3) that is implemented in Virtex5. The performance of the

proposed ECC increases with the increase of the number segmentation is shown in the Figure

4.5. In particular, the three-segmented multiplier based ECC in Virtex7 shows high

performance (10.51 µs for point multiplication as shown in the Table 4.3) thank to the new

technology.

Table 4.5 shows comparisons with the relevant high performance ECC designs on

FPGAs in term of efficiency metric throughput/area (1x106/s)/slices (that is a typical area-time

Figure 4.5 Throughput/slices vs segment size of the ECC over GF(2163)

16.71

19.25
19.65

15

16

17

18

19

20

21

41 bit (no -segment) 21 bit (2seg) 14 bit (3seg)

T
h
ro

u
g
h
p

u
t/

S
li

ce
s

Segment Size

Throughput/Slices vs Segment Size

Figure 4.4 Area vs segment size of the ECC over GF(2163)

3623

3444

3536

3350

3400

3450

3500

3550

3600

3650

41 bit (no -segment) 21 bit (2seg) 14 bit (3seg)

A
re

a,
 S

li
ce

s

Segment Size

Area (Slices) vs Segment Size

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-14

efficiency) over GF(2163) and GF(2571). Notably, area2xtime metric is not considered as only

high speed state-of-art are considered to compare. For GF(2163), the previous best optimised

work was reported in [59] where one 41bit pseudo-pipelined Karatsuba multiplier was used

with a so called “no-idle cycles” point multiplication approach to achieve 11.92

throughput/area figure on Virtex4. Our no-segment based ECC design consumes less area

Table 4.5 Comparison of state of the art after place and route on FPGA

Ref.

(n, FPGA)

Slices

(Sls)

LUTs, FFs Clk Cs.,Fq.

 (MHz)

kP time

(µs)

(106/s)

/Sls

GF163

[7](V4) 4080 7719, 1502 4050, 197 20.56 11.92

[8](V4) 8095 14507,- 1414, 131 10.70 11.55

[9](V4) 16209 26364,7962 3010, 154 19.55 3.16

[11](V4) 20807 -, - 1428, 185 7.72 6.23

[12](V4) 24363 -, - 1446, 143 10.00 4.11

[13](V4) 14203 26557, - 3404, 263 11.60 6.07

[14](V4) 12834 22815, 6683 3379, 196 17.20 4.53

Ours(no, V4) 3623 6793,1348 4168, 252 16.51 16.71

Ours(2, V4) 3444 6516,1701 4168, 276 15.08 19.25

Ours(3, V4) 3536 6672, 1870 4168, 290 14.39 19.65

[10] (V5) 6150 22936, - 1371, 250 5.48 29.67

[8] (V5) 3513 10195, - 1414, 147 9.50 29.96

[14] (V5) 6536 17305, 4075 3379, 262 12.90 11.86

Ours(2, V5) 1089 3958, 1522 4168, 296 14.06 65.30

Ours(3, V7) 1476 4721, 1886 4168, 397 10.51 64.48

GF571

[7](V4) 34892 66594,6445 14250,107 133 0.22

[10] (V5) 11640 324332,- 44047,127 348 0.25

Ours(11, V4) 35195 61673,10692 14396, 180 79.80 0.36

LUTs: Look_Up_Tables, FFs: Flip-Flops, kp: point multiplication

Chapter 4: Implementing High Throughput/Area Elliptic Curve Cryptography

 4-15

(3623 slices) and achieves higher clock frequency (252 MHz) than [59] (4080 slices, 197 MHz)

and therefore has a 40% higher throughput/area efficiency.

Particularly, our three-segmented based design shows 65% better efficiency than the

efficiency of [59] as shown in Table 4.5. Our f571 achieves 180 MHz speed, whereas the work

in [59] operates at a max speed of 107 MHz. One potential option of improving the area

performance of [59] is to deploy an area efficient Karatsuba multiplier [75]; however, this

would be at the expense of increased critical path delay. Another optimized ECC in [71] used

full length (164 bit) word serial Karatsuba multiplier with pipelining and implemented on

Virtex4 and Virtex5. The work in [71] uses four times bigger multiplier than ours to achieve

11.55 and 29.96 throughput/area on Virtex4 and Virtex5, respectively. Our 3 segmented 41 bit

multiplier based design on virtex4 is 70% and the 2 segmented 41 bit multiplier based design

on Virtex5 is 118% better than [71]. In [61], the reported best throughput/area efficiency is

based on three 33 bit multipliers based ECC on Virtex5 shows 9.86 in throughput/LUTs

((1x106/s)/LUTs). Our 2 segmented multiplier based ECC shows 17.9 in (1x106/s)/LUTs is

82% better than the reported most efficient design in [61]. The hardware results presented in

[53], [60], [72], and [73] use parallel multipliers to speed up their ECC designs show poor

throughput/area efficiency due to the large area consumed. Finally, our single multiplier (41

bit) based ECC implementation on Virtex7 takes 10.51 µs for point multiplication is faster than

the reported high speed work in [10], [59], [72], [73], and the work on the Virtex4 reported in

[71], and is comparable to the work in [53] while of course using much lower resources.

4.6 Conclusion
We propose a highly efficient FPGA ECC processor design for high speed applications

over GF(2m). Key contributions include a novel high performance segmented pipelining MSD

multiplication, a smart no-idle state scheduling that enables the clock cycles for loop operations

in the point multiplication to depend only on the actual clock cycles of the FF multiplications,

and a highly optimized memory unit design.

To our knowledge, our design achieves the best throughput/area efficiency figure on

FPGA reported to date. The best throughput/area design achieved a figure of 65.30

(1x106/s)/(slices) that is performing an ECC point multiplication in 14.06 µs time whilst

utilising only 1089 slices of area. The fastest design achieved is 10.51 µs for a point

multiplication using only 1476 slices.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-1

 Implementing

High Speed Elliptic Curve

Cryptography
High speed hardware implementation of Elliptic Curve cryptography (ECC) is vital for

cryptography system design. In this chapter, a novel high speed ECC implementation for point

multiplication on Field Programmable Gate Array (FPGA) is proposed. A new segmented

pipelined full-precision multiplier is used to reduce the latency and the Lopez-Dahab (LD)

Montgomery point multiplication algorithm is modified for careful scheduling to avoid data

dependency resulting in a drastic reduction in the number of clock cycles required. The area-

time performance of the full-precision multiplier based ECC is evaluated for different

combinations of parallelization of the multiplier. The chapter presents novel high speed of

ECC, targeting server end applications where speed is a prime concern.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-2

5.1 Introduction

Elliptic curve cryptography (ECC) was proposed by Koblitz [17] and Miller [18] in

1985 individually. Public key cryptography based on ECC provides higher security per bit than

its RSA counterpart [39]. ECC has some additional advantages such as a more compact

structure, a lower bandwidth, and faster computation that all make ECC usable in both high

speed and low resource applications. The National Institute of Standards and Technology

(NIST), US has proposed a number of standard Elliptic curves over binary fields 𝐺𝐹(2m) [77].

Binary field curves are suitable for hardware implementation as field arithmetic operations are

carry free in the field with characteristics 2. FPGA based ECC hardware design is increasingly

popular because of its flexibility, shorter development time scale, easy debugging and continual

improvement of the technology (i.e. lower power and higher performance FPGAs).

 Many high performance ECC implementations on FPGA have been reported in the

literature. Most relevant high performance ECC implementations on FPGA are presented in

[10], [53], [59], [60], [61], [71], [72], [73], [79], [80], [81], and [82]. The common optimizing

technique of high speed designs is the reduction of latency (number of clock cycles) of a point

multiplication. To achieve low latency for a point multiplication, these works adopted either

parallel multipliers or large size multipliers at the expense of additional area complexity.

Pipelining stages are also often used to increase clock frequency at the expense of few extra

clock cycles and area overheads [10, 59]. In addition, the pipelining stages in the multipliers

create idle cycles at the point multiplication level if there is data dependency in the instructions.

As a result, careful scheduling is required to take full advantage of pipelining. Indeed, recently

we have reported the highest throughput and highest speed ECC designs on FPGA in [83, 84]

by using novel digit-serial and bit parallel multipliers together with efficient scheduling and

pipelining techniques.

The motivation of the work of this chapter is based on our successful contribution in the

digit serial multiplier based ECC in [83] to yield the best area-time metric ECC design on

FPGA to date. Secondly, we report an even faster ECC design with the lowest ever latency

(clock cycles) that achieves the performance of the theoretical limit. These are achieved via a

novel pipelining technique that enables high clock frequencies to be attained and via a thorough

investigation of the different combinations of the field multipliers to evaluate the performance

limits of ECC for high speed applications. Below is a list the key contributions to the results:

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-3

 We propose a full precision multiplier with segmented pipelining to reduce both latency

and area.

 We propose a one multiplier-based architecture for the ECC design targeted at high

performance but with low area (fastest ECC with best area and time complexities).

 We propose a three multipliers-based architecture for the ECC design aimed at the

highest possible speed.

 We modify the Montgomery point multiplication algorithm to avoid extra latency due

to our two-stage pipelining in the field multiplier and use careful point multiplication

scheduling to reduce latency.

 A Moore finite state machine (FSM) based control unit is designed to avoid data

dependency in the arithmetic operations. The instruction in the FSM is delayed by 1

clock cycle which delays the Start of data access from memory. This delay is utilised

for controlling local field operations.

 Smart pipelining is adopted to shorten critical path delay in the ECC architecture.

 Data is tapped from different pipeline stages to localize some arithmetic operations and

avoid memory input-output operations.

 We propose a repeated square over square circuit (capable to perform a 4-square or

quad square operation in a single clock cycle) to reduce latency for the multiplicative

inversion operation based on Itoh-Tsujii algorithm [65].

 Finally, we use Xilinx ISE timing closure techniques to achieve the best possible high

performance results.

Our proposed high performance one multiplier based architecture takes six cycles for a loop

of the Montgomery point multiplication in the projective coordinates without any pipelining

delay. By applying the same method, our 2 multipliers based ECC that shows low latency while

it is keeping high frequency takes 4 clock cycles for a loop of point multiplication, whereas our

low latency ECC (3-multiplier based) takes only two clock cycles. The architectures have been

implemented (placed and routed) on Xilinx Virtex4, Virtex5 and Virtex7 FPGA families

resulting in the fastest reported implementations to date. Notably, we consider Virtex FPGA

family instead of low cost Spartan family because of high performance FPGA.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-4

On the Virtex4, our ECC point multiplication over GF(2163) takes 5.32 µs with 13418

slices - is faster than the fastest previously reported Virtex 4 design [60] and also faster than

the fastest reported design to date (5.48 µs) which was on a Virtex 5 [61]. On Virtex5, our

design over GF(2163) is not only even faster at 4.91 µs but also smaller than that of [61] by

1757 slices. Our implementation on the new Virtex7 FPGA technology achieves the best area-

time performance with the highest speed to date; an ECC implementation takes only 3.18 µs

using 4150 slices. To evaluate scalability of our contributions, we also implemented the

proposed one multiplier based architecture over GF(2571), the highest security curve in the

NIST standard [77], on Virtex 7. This is to our knowledge, the first reported implementation

that can complete a point multiplication by taking only 37.54 µs.

A key advantage of our proposed two full-precision multipliers based ECC design is its

very low latency whilst enabling high operating frequency; for example, over GF(2163) the

design requires only 780 clock cycles for an ECC point multiplication. Our FPGA

implementation over GF(2163) results both on Virtex5 (5.1 µs) and on Virtex7 (3.56 µs)

achieve the fastest reported ECC point multiplication on FPGA to date when it is compared

with previous works.

Our parallel three multipliers based ECC design is the first reported full-precision

parallel architecture which shows the highest speed (2.83 µs) for the point multiplication over

GF(2163) with the lowest latency (450 clock cycles) on FPGA to date.

The rest of this chapter is organized as follows: Section 2 presents the background of

High speed ECC design. In Section 3, the proposed ECC for point multiplication is described

where the point multiplication without pipelining delay, the Multiplier with segmented

pipelining and other supporting circuits of ECC are discussed. The implementation results are

presented, and compared to the state of the art in Section 4. Finally, this chapter is concluded

in Section 5.

5.2 Background

5.2.1 High Speed Scalar Point Multiplication

The discrete logarithm problem based elliptic curve cryptography is becoming

increasing more popular for public key cryptography in practice than RSA due to its improved

security per bit and reduced implementation overheads for both high speed and resource

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-5

constrained applications. The main operation in ECC is called scalar point multiplication, Q=

𝑘𝑃 , where 𝑘 is a private key (integer), 𝑄 is a public key and 𝑃 is a base point on an elliptic

curve, 𝐸 . The point multiplication, 𝑘𝑃 is achieved by using scalar point multiplication

algorithms utilizing point addition and point doubling depending on the ith value of 𝑘, 𝑘𝑖 [1].

Scalar point multiplication can be affine coordinates based or projective coordinates

based. Because of the expensive inversion operation involved in affine coordinates based

algorithms, projective coordinates based point multiplication is a more common choice for

ECC hardware implementation.

There are several point multiplication algorithms available using to speedup point

multiplications such as Montgomery ladder and NAF. The idea behind the speedup is to reduce

latency of the point multiplication by exploiting parallelism (Montgomery) or inherent

properties of the curve (Koblitz curve in chapter 3). The favourite point multiplication in the

literature is the Montgomery method.

 In this chapter, the Lopez–Dahab Montgomery (LD) point multiplication is considered.

This algorithm, requires 6 field multiplications, 5 field squares and four additions as shown in

algorithm 5.1 [35]. The LD algorithm is generally faster to implement, and leads to improved

parallelism and resistance to side channel power attack. A parallel operation of Montgomery

Algorithm 5.1 LD Montgomery point multiplication over GF(2m) [35]

INPUT: 𝑘 = (𝑘𝑡−1, … , 𝑘1, 𝑘0)2 with 𝑘𝑡−1 = 1, 𝑃 = (𝑥, 𝑦) ∊ 𝐸(𝐹2𝑚)

OUTPUT: 𝑘𝑝

Initial Step: 𝑃(𝑋1, 𝑍1) ← (𝑥, 1), 2𝑃 = 𝑄(𝑋2, 𝑍2) ← (𝑥4 + 𝑏, 𝑥2)

For 𝑖 from 𝑡 − 2 downto 0 do

If 𝑘𝑖 = 1 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) +

 𝑄(𝑋2,𝑍2)

Point Doubling: 𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2)

𝑍1 ← 𝑋2. 𝑍1

𝑋1 ← 𝑋1. 𝑍2

𝑇 ← 𝑋1 + 𝑍1

𝑋1 ← 𝑋1. 𝑍1

𝑍1 ← 𝑇2

𝑇 ← 𝑥. 𝑍1

𝑋1 ← 𝑋1 + 𝑇

Return 𝑃(𝑋1, 𝑍1)

𝑍2 ← 𝑍2
2

𝑇 ← 𝑍2
2

𝑇 ← 𝑏. 𝑇

𝑋2 ← 𝑋2
2

𝑍2 ← 𝑋2. 𝑍2

𝑋2 ← 𝑋2
2

𝑋2 ← 𝑋2 + 𝑇

Return 𝑄(𝑋2, 𝑍2)

Conversion Step: 𝑥3 ← 𝑋1/𝑍1 ; 𝑦3 ← ((𝑥 + 𝑋1) 𝑍1⁄)[(𝑋1 + 𝑥𝑍1)(𝑋2 + 𝑥𝑍2) + (𝑥2 +
𝑦)(𝑍1𝑍2)](x𝑍1𝑍2)−1 + 𝑦.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-6

point multiplication can be achieved using either two multipliers or three multipliers. The

parallel operations can reduce latency with the overhead of the area. For the bit parallel

multipliers based ECC [71], achieved poor frequency due to area complexity and lack of

provision of using pipelining. If the number of pipelining is increased, then idle clock cycles

may be created due to data dependency in the point multiplications. Thus, both a high

performance multiplier and a careful scheduling are very important to speed up point

multiplications.

5.2.2 Field Arithmetic over GF(2m)

Field multiplication, field squaring, field addition and field inversion operations are

involved in a point operation. Addition and subtraction are equivalent over GF(2m), which are

very simple bitwise xor operations.

Field inversion is very costly in term of hardware and delay. In projective coordinates, an

inversion operation is used for the projective to affine coordinates conversion which can be

achieved with multiplicative inversion. The Itoh-Tsujii algorithm is selected in this work where

multiplication and repeated squaring operations are used [65]. In projective coordinates based

implementations, overall performance depends on the performance of the field multipliers.

5.3 Proposed Full-precision Multiplier for High Speed ECC

Application

For high speed ECC application, the field multiplier is the main part of the arithmetic unit

compared to the field squaring and field addition circuits due to the high area and time

complexities of the multiplier. The performance of the multiplier affects the overall

performance of the ECC implementation. The performance of the multiplier depends mainly

on the size of the multiplier. A larger size multiplier reduces latency to speed up the point

operation; however, the critical path delay is increased. Thus, pipelining is often adopted to

shorten the critical path delay. Moreover, some multiplication algorithms (such as Karatshuba)

are used to improve area and time complexity [59, 71, 82]. For the high-speed end of the ECC

design space, large digit serial multipliers or bit parallel multipliers are often used. The bit

parallel multiplier takes one clock cycle latency, which can be an attractive option to speed up

the point multiplication.

The field multiplication for ECC over GF2m is divided into two parts: the Galois Field

characteristic 2 (GF2) multiplication part (GF2MUL) and the reduction part. For a large size

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-7

multiplier, the GF2MUL part is costly compared to the reduction part [31]. Thus, the main

optimization of the large multiplier is concentrated on the GF2MUL part due to long critical

path delay. There are several high performance bit parallel multipliers in the literature [71],

[78], and [79]. The complexity of a bit parallel multiplier can be quadratic or subquadratic [31].

A quadratic multiplier achieves higher speed by consuming higher area than that of a

subquardratic multiplier. Subquadratic multipliers are mostly based on the Karatsuba algorithm

to reduce the area complexity at the expense of a lower clock frequency. The performance of

the Karatsuba based bit parallel multiplier is improved by adopting pipelining techniques [71].

In this section, we present a novel high performance full-precision multiplier (i.e. schoolbook

multiplier) with segmented pipelining.

Figure 5.1 Proposed segmented pipelining based full-precision multiplier over GF(2m)

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-8

5.3.1 Multiplier with Segmented Pipelining

The proposed full-precision field multiplier with segmented pipelining is shown in Figure

5.1 and consists of two stages pipelining to improve clock frequency. The first stage pipelining

is the proposed segmented pipelining to break the critical path delay of the GF2MUL part,

which is similar to the presented work in [29]. In the segmented pipelining, we divide the m bit

multiplier operand (m in in the Figure 5.1) into n number of w bit long digit multiplier operands.

Then, we multiply the m bit multiplicand by each of the w bit multipliers. The results of the w

digit size multiplier is m+w bit long. We save each of the results in the m+w size pipelining

register. Here, we save n multiplications results in the n number of m+w size registers. The

outputs of the m+w sizes registers are aligned by shifting (logically) w bits from each other

followed by doing xor operation (addition). The result of the addition is 2m-1 bit long is then

reduced to m-1 bit in the reduction unit. In the reduction unit, we reduce 2m-1 bit to m-1 bit

multiplier output using a fast irreducible reduction polynomial [1][77]. The output of the

reduction unit is applied to the second stage pipelining register. Thus, there are two pipelining

stages and hence, the proposed multiplier consumes only 2 clock cycles as an initial delay to

perform multiplication.

The two stages pipelining is adopted in our proposed one multiplier based high

performance ECC (HPECC). The pipelining of the multiplier divides the total critical path

delay into two parts: the critical path delay of GF2MUL, 𝑇𝐴 + (log2(𝑚 𝑤⁄)) 𝑇𝑋 and the critical

path delay of the reduction part, (log2((𝑛 + 𝑘)) 𝑇𝑋 as shown in Table 5.1. Both critical path

delays depend on the size of the segment, w. Thus, any one of the two critical paths can be the

Table 5.1 Latency, critical path delay (Tmul) and resources of the proposed full-precision multiplier and a

comparison with the relevant multiplier over GF(2m)

Ref Type #XOR #AND #FFs Critical path delay(Tmul)

[78] Quadratic 𝑚2 − 1 𝑚2 - 𝑇𝐴 + (1 + log2(𝑚))𝑇𝑋

[78] Subquadratic 5.5𝑚log2(3) − 3𝑚 + 0.5 𝑚log2(3) - 𝑇𝐴 + (2 log2(𝑚) + 3) 𝑇𝑋

[79] Pipelined-Quadratic 𝑚2 + 3𝑚 𝑚2 40m 𝑇𝐴 + ((𝑚 𝑝)⁄ + log2(𝑚))𝑇𝑋

MUL. 2-Stage

Pipelining

Fullprecision

(Segmented pipelined)

𝑚2 + 𝑛𝑚 + 3𝑚 𝑚2 n(m+w)+m 𝑇𝐴 + (log2(𝑚
𝑤⁄)) 𝑇𝑋

or (log2((𝑛 + 𝑘)) 𝑇𝑋

MUL. 1-Stage

Pipelining

Fullprecision

(Segmented pipelined)

𝑚2 + 𝑛𝑚 + 3𝑚 𝑚2 n(m+w) 𝑇𝐴 + (log2(𝑚
𝑤⁄ + 𝑛 + 𝑘)) 𝑇𝑋

𝑤 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒, 𝑛, #Segments =𝑚
𝑤⁄ , d= digit size, k is the second higher order of irreducible

polynomial. 𝑇𝐴 𝑎𝑛𝑑 𝑇𝑋 are AND and XOR gates delays respectively. p = # pipelining stages; #FFs=#Flip-

flop.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-9

critical path of the multiplier. The optimum critical path can be defined by the optimum size

of w which can be determined by a trial and error method.

In our proposed low latency ECC (LLECC) architecture (as shown in Figure 5.3), we

consider only one stage pipelining (segmented pipelining) to achieve 1 clock cycle delay. The

critical path delay of the multiplier is the combination of the GF2MUL and the reduction part,

which is 𝑇𝐴 + (log2(𝑚 𝑤⁄ + 𝑛 + 𝑘)). Again, the critical path delay can be modulated by

changing the size of the segment of the multiplier. The optimum size of the segment of the

multiplier can be also achieved by using a trial and error method. In Table 5.1, we present space

and time complexities of our proposed multipliers and we compare these with quadratic and

subquadratic multipliers reported in [78], and [79]. In the theoretical analysis of the quadratic

and subquadratic multipliers, the quadratic multiplier has twice as high speed as the speed of

the subquadratic, but, the quardratic multiplier consumes 2.56 times more area [78]. Moreover,

the authors in [78] compare the implementation results of the two multipliers where they show

the ratio (Quadratic/Subquadratic) of area is 1.5 and the ratio of delay is 0.625. Their

implementation results depict that the bit parallel multiplier can achieve higher speed, however,

the area-time product of the subquadratic multiplier outperforms the quadratic multiplier by

only 6.65 %. Thus, a quadratic multiplier is a better option for high speed ECC implementation.

As shown in Table 5.1, our proposed multiplier has a very short critical path compared to the

reported parallel multipliers; hence, our multiplier can show better area-time performance due

to its high speed advantage. For the case of space complexity, our proposed multiplier

consumes the same resources of XOR and AND gates as that of the quadratic bit parallel

multiplier and uses flip flops (FFs) to reduce the critical path delay.

5.4 Proposed High Performance ECC (HPECC) for Point

Multiplication

In this section, we present a careful scheduling in the point addition and point doubling

operations, a novel pipelined full-precision multiplier and other supporting units to achieve

high speed, low latency while optimizing area complexity.

5.4.1 Point Multiplication without Pipelining Delay

In general, the Montgomery point addition and point doubling in the projective

coordinates requires six field multiplications, five field squares and four field-addition

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-10

operations equivalent latency if implemented serially according to algorithm 1 [35]. If the field

squaring and field addition operations can be operated concurrently with multiplication, then

the point operations latency will be equivalent to the latency of the six field multiplications.

The six multiplications can for example be computed in two steps by using three multipliers or

in three steps by using two multipliers or in six steps by serial multiplications using one

multiplier [59], [61] and [73]. Again, the digit size can affect the performance of ECC; for

example, a bit serial implementation takes m cycles, a digit (𝑤 bits) serial one takes (𝑚 / 𝑤)

cycles and a bit parallel implementation takes a single clock cycle [10], [70] and [71]. In the

case of high speed design, digit serial multipliers are considered to reduce latency. The

disadvantage of large digit serial multipliers is lower clock frequency. Thus, pipelining stages

are applied to improve clock frequency [10]. The clock frequency can be improved with the

increase of the number of pipelining stages in breaking the critical path delay. The main

disadvantages of increasing the number of pipelining stages in the high-speed end of the design

space are the increase in the number of clock cycles per multiplication and overcoming data

dependency [10]. To avoid pipelining delay, optimal scheduling of the field operations of the

point multiplication is necessary.

 Our first proposed ECC architecture is shown in igure 5.2 over 𝐺𝐹(2m). It comprises a full-

precision m bit multiplier with two stages pipelining, one squaring circuit, one quad squaring

circuit and two additions circuits in order to accomplish point operations (point addition and

point doubling) within six clock cycles. To achieve six clock cycles based point operations, we

include some strategies in the point operations of the Montgomery point multiplication

algorithm as shown in algorithm 2 [83].

In the proposed algorithm, we combine point addition and point doubling to avoid data

dependency. In the point multiplication, a particular loop is overlapped with its next loop by 2

clock cycles due to two stages pipelining. Thus, state1 (st1) and state2 (st2) depend on the

previous key bit, 𝑘𝑖+1. For example, if previous bit, 𝑘𝑖+1 = 1, then the last output will be 𝑋1

otherwise 𝑋2. The last output of a loop decides the sequence of st1 and st2 in the next loop.

The rest of the states depend on the current bit of 𝑘, 𝑘𝑖. To support a six clock cycle based

algorithm, we apply a squarer or double square (Quad Square) or both operations in parallel

along with the multiplication. Again, one of the field adders is placed in the common data path

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-11

to add on the fly. The second adder is used to add the two outputs of the multiplier as shown

in Figure 5.2. Both adder circuits can add two of their inputs or can transfer either of the inputs,

if we need either. Moreover, we can save some intermediate results of field operations in the

local registers (R1, R2, M and accumulator, A) to avoid loading/unloading to the main memory.

As a result, we can avoid idle clock cycles due to the memory input-output operations.

 A data flow diagram is shown in Figure 5.3 to demonstrate the proposed combined point

operations. In this diagram, we explain point operations for 𝑘𝑖+1 = 1 , 𝑘𝑖 = 1 and 𝑘𝑖−1 = 1

where 𝑘𝑖 the current bit is, 𝑘𝑖+1 is the previous bit and 𝑘𝑖−1 is the next bit of key (𝑘). In this

data flow diagram, we show the loop operation of the point multiplication in projective

coordinates. In our implementation, a multiplication takes three clock cycles due to two stages

pipelining and a square operation takes two clock cycles where one clock cycle is used to load

in the accumulator (A) register. The addition operation is realized in the common data path and

accomplished in the same clock cycles. As we used two stage pipelining and there is a data

Figure 5.2 Proposed high performance ECC architecture

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-12

dependency in between two loops, we use careful scheduling. In this scheduling, the present

loop operation of point multiplication is overlapped with the next loop operations.

 We see, the starting state, st1 of a particular loop depends on the hamming weight of

previous bit of , 𝑘𝑖+1. If the previous bit, 𝑘𝑖+1 = 1 means 𝑋1 is not ready, then, we start

from state1 (st1) with the multiplication between 𝑋2 and 𝑍1 instead of 𝑋1 and 𝑍2. In

this case, The state2 (st2) is the multiplication in between 𝑋1 and 𝑍2.

 The 𝑋1 operand of the st2 is calculated by addition of two outputs (Mula_out and

Mulb_out as in Figure 5.2) of the multipliers where one output(from Mula_out) is

tapped after the reduction unit (dotted arrow) and the other one from the multiplier

output(Mulb_out). The other operand of st2 is 𝑍2 which is already saved in the memory

in st1 to use in st2. Here, the delay of the memory operation (accessing 𝑍2) is utilized

to calculate 𝑋1; again, as 𝑘𝑖 = 1, we need the square and quad square of 𝑍2. Thus, we

save 𝑍2 in the memory and accumulator simultaneously in st1 to achieve the squaring

operations of 𝑍2 in the st2. The output of the square circuit (𝐴2 = 𝑍2
2) is saved in the

Algorithm 5.2 Proposed combined LD Montgomery point multiplication (with each loop for six clock

cycles)

For 𝑖 from 𝑡 − 2 down to 0 do

If 𝑘𝑖 = 1 then

If 𝑘𝑖+1 = 1 then If 𝑘𝑖+1 = 0 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) + 𝑄(𝑋2,𝑍2) and Point Doubling:

𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2)

St1: 𝑍1 ← 𝑋2. 𝑍1; 𝐴 ← 𝑍2

St2: 𝑋1 ← 𝑋1. 𝑍2, 𝑍2 ← 𝐴2 ;

 𝑅2 ← 𝐴4 ; 𝐴 ← 𝑋2

St1: 𝑍2 ← 𝑋1. 𝑍2; 𝐴 ← 𝑍2

St2: 𝑋2 ← 𝑋2. 𝑍1; 𝑍2 ← 𝐴2;

 𝑅2 ← 𝐴4 ; 𝐴 ← 𝑋2

St3: 𝑋2 ← 𝑏. 𝑅2 + 𝐴4 ; 𝑅1 ← 𝐴2

 St4: 𝑍2 ← 𝑅1. 𝑍2, 𝐴 ← 𝑋1 + 𝑍1

St5: 𝑋1 ← 𝑋1. 𝑍1, 𝑍1 ← 𝐴2

St6: 𝑋1 ← 𝑥. 𝑍1 + 𝑋1.

Conversion Step: 𝑥3 ← 𝑋1/𝑍1 ; 𝑦3 ← ((𝑥 + 𝑋1) 𝑍1⁄)[(𝑋1 + 𝑥𝑍1)(𝑋2 + 𝑥𝑍2) +

(𝑥2 + 𝑦)(𝑍1𝑍2)](x𝑍1𝑍2)−1 + 𝑦.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-13

Memory and the output of quad square (𝐴4 = 𝑍2
4) is saved in the local register, 𝑅2

(dotted box). We can use data from the local register (dotted box) immediately without

doing any memory operations to save clock cycles.

 Similarly, during st2, st3 and st4, the squaring operations of 𝑋2 is realized by saving

in the accumulator through b_bus; in this case, the square output, 𝐴2 = 𝑋2
2 is saved in

the local register, 𝑅1 , and the quad square output, 𝐴4 = 𝑋2
4 is saved in the memory. In

st3 and st4, one of the multiplication operands is used from the memory and the other

operand from the local registers.

 In st4, 𝑍1 (result of 𝑋2. 𝑍1) is ready to save in the memory to use in st5. Again in st4,

the available output, 𝑍1 is required to add with the multiplication result of 𝑋1 on the fly.

At this time, we access (tapping) 𝑋1 from the output of the reduction unit (dotted arrow,

one cycle earlier than the normal output) to add with 𝑍1 followed by saving in the

accumulator to do the square operation to get a new 𝑍1.

Figure 5.3 Data flow of HPECC for ki+1 = 1, ki = 1 and ki-1 = 1

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-14

 The new 𝑍1 is ready in st5 to save in the memory and is required in the st6 and the next

loop. In st5, the old 𝑍1 (saved in st4) is used for multiplication with 𝑋1 where 𝑋1 is

directly collected from the multiplier output followed by saving in the local register, 𝑀.

We can manage 𝑋1 to use immediately for multiplication by using the instruction delay

(Moore machine based control unit) of accessing the old 𝑍1 from memory.

 In st6, we add 𝑋2 (from memory) on the fly with the multiplier output to get new 𝑋2

followed by saving in the memory. Again, the multiplication in st6 is in between the

base point, 𝑥 and new 𝑍1 is completed after two clock cycles. But, a new loop is started

after st6.

Thus, the st1 of the new loop depends on the last coordinate of the previous loop, 𝑋1 (in this

case of 𝑘𝑖+1 = 1 , 𝑘𝑖 = 1 and 𝑘𝑖−1 = 1) which is calculated by adding the results of the

multiplications started in st5 and st6.

Figure 5.4 Data flow of HPECC for ki+1 = 0, ki=1 and ki-1 = 1

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-15

 In Figure 5.4, we demonstrate the loop of point multiplication for 𝑘𝑖+1 = 0, 𝑘𝑖 = 1 and

𝑘𝑖−1 = 1. The previous bit of 𝑘, is 𝑘𝑖+1 = 0 means coordinate 𝑋2 of the last loop is not ready

to start with.

 In this case, the first state (st1) is started with multiplication between 𝑋1 and 𝑍2. In this

state, the multiplier output (𝑍1) started from st4 of the previous loop is saved in the

memory to use in the next state (st2). In the same state, we need to start the squaring

operation on 𝑍2 . Thus 𝑍2 is accessed from memory through the a_bus for

multiplication and through the b_bus into the accumulator for squaring.

 In st2, the multiplication is 𝑋2. 𝑍1; where 𝑋2 is calculated by adding two outputs of

the multiplier and then is saved in the 𝑀 register for using in the next cycles to multiply

with 𝑍1. In the same time, the calculated 𝑋2 is required and saved in the accumulator

for squaring as 𝑘𝑖 = 1.

 The rest of the states of Figure 5.4 are similar to those in Figure 5.3.

5.4.2 Multiplier with Segmented Pipelining for HPECC

We consider the two extreme field sizes in the NIST standard [77] i.e GF2163 and GF2571

to evaluate the ECC performance. In the implementation over GF2163, we select 𝑤 = 14 bit to

get 12 of the 14 digit serial multiplication results. The results then are loaded in the twelve 177

bit long registers. Thus the critical path of GF2MUL depends on one two input AND gate and

13 layers of two input XOR gates to achieve a 14x163 multiplication. Again, the 12 pipelining

register outputs are shifted and XORed (for accumulation) to get the full-precision

multiplication result (2m-1) without reduction. The result is then reduced into 163 bit in the

reduction unit using the fast irreducible reduction polynomial [77]. The reduced result is saved

in the second stage pipelining register. Thus, the architecture works like 12 (14 bit) digit serial

multipliers are operating in parallel followed by a full precision reducing operation. The

reduction unit consists two parts: the accumulation part and the reduction part. The

accumulation part has 11 layers of 2 inputs XORs and the reduction part has k layers of 2 input

XORs. Thus, the crical path delay is balanced theoretically. Again, in the ECC implementation

over GF2571, we also consider the segment size of 14 bit.

5.4.3 Square Circuit, Memory Unit and Control Unit of HPECC

Our proposed high speed ECC design operates by using six clock cycles for each loop

of the point multiplication. To achieve the six cycles point multiplication loop, we need a quad

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-16

square (4-square) circuit to do a one clock quad square operation. The quad squaring is used in

the st2 and st3 along with field multiplication as shown in our proposed algorithm 5.2. Again,

the latency of the conversion step contributes a significant amount to the total latency of the

proposed ECC as the latency of the loop operation is comparable to that of the conversion step.

In the conversion step, the inversion operation consumes the major part of the latency in our

projective based ECC implementation, a multiplicative inversion is applied for the projective

to affine coordinate conversion. Several multiplications and m steps repeated squaring

operations are required. Thus, we can utilize the quad square circuit for speeding up the

inversion by reducing the number of the repeated square operations. In our proposed

architecture, we use a register (accumulator) in the arithmetic data path to achieve a repeated

quad square operation without loading to the main memory. Thus, we need 1 clock cycle for a

4-square, 2 clock cycles for an 8-square and so on.

 We design a friendly memory unit that is developed in a single behavioral entity which

comprises an accumulator and 8xm register file. The register file is based on distributed RAM

to give high performance and flexibility. There are five input-output buses in the memory unit.

Particularly, our register file consists of three output buses (𝐴, 𝐵, 𝐷) and one input bus. Data

through a_bus and b_bus takes one more cycle delay than data through d_bus. Data from D_bus

is dedicated to the multiplier input through the 𝑀 register. Hence, the two outputs of the

memory through a_bus and b_bus, and the output of M (through D_bus) are syncronised. The

M register acts as a pipelining register between the input and the output of the multiplier and

also saves local data for the multiplier. The memory unit offers flexibility to access any data

from any location of the memory through each of the output buses independently. The memory

unit takes one cycle for a write operation and one cycle for a read operation. The accumulator

is designed in the same entity of the memory unit and utilizes unused resources (flip-flops) of

the memory unit. Apart from our memory unit, we deploy local registers 𝑅1 and 𝑅2 ; 𝑅1 and

𝑅2 are used to save outputs of square and quad square respectively. Thus, the local registers

(𝑅1 and 𝑅2) and M save outputs of concurrent operations to avoid the idle state that is due to

the common input bus of the memory unit, and also avoid the data dependency in the

successive point operations loop.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-17

 A Moore finite state machine based control unit is developed in the single behavioral entity.

The pipelined Moore machine takes one clock cycle delay as compared to a Mealy machine

while Mealy machine depends on input to change state. The advantage of this initial instruction

delay is a more flexible data control as we use an FSM. We can utilize the one cycle delay to

accomplish some intermediate operations with the help of the local registers. Again, the control

unit consists of very few states to complete a point multiplication due to the full-precision

multiplier and concurrent operations. As a result, the control unit consumes very low area while

helps keeping speed very high.

5.4.4 Critical path delay and clock cycles of the HPEEC

Our proposed high speed ECC (HPECC) design uses a segmented pipelining based full-

precision multiplier to achieve six clock cycles for each loop of the point multiplication. The

critical path delay of the ECC mainly depend on the critical path of the multipliers. Again, the

proposed multipliers critical path delay can be the critical path delay of the GF2MUL part or

the reduction part depending on the size of the segment. As the multiplier output (Mula_out)

is taped at end of the reduction part, and passed through the adder and multiplexer followed by

saving in the M register, the critical path delay of the ECC can be the delay of the reduction

part+adder + mux. The critical path delay of the ECC architecture is shown in the Table 5.2.

The focus of our proposed ECC is the reduction in the number of clock cycles. Particularly,

our design can manage to take 6 clock cycles for each loop of the point multiplication in the

projective coordinates. The total clock cycles for point multiplications is the sum of three main

parts: affine coordinates to projective coordinates initialization, point multiplication in the

projective coordinates and finally projective coordinates to affine coordinates conversion. The

total number of clock cycles (CCs) for point multiplication = 5 CCs (required for initialization)

Table 5.2 Critical path delay (TECC) of the proposed ECC

Ref Critical path delay

HPECC 𝑇𝑚𝑢𝑙 or (log2(𝑛 + 𝑘)) 𝑇𝑋 + 𝑇𝑎𝑑𝑑𝑒𝑟 + 2𝑇𝑚𝑢𝑥

HFECC 𝑃𝑎𝑡ℎ1: 𝑇𝐴 + (log2(
𝑚

𝑑
)) 𝑇𝑋 + 4 𝑇𝑚𝑢𝑥 or 𝑃𝑎𝑡ℎ2: (log2((𝑛 + 𝑘)) 𝑇𝑋 + 𝑇𝑎𝑑𝑑𝑒𝑟(=

𝑇𝑋) + 𝑇𝑠𝑞𝑟(= (log2((𝑘))𝑇𝑋) + 3 𝑇𝑚𝑢𝑥

LLECC 𝑇𝑚𝑢𝑙 + 𝑇𝑎𝑑𝑑𝑒𝑟 + 𝑇𝑠𝑞𝑟 + 3 𝑇𝑚𝑢𝑥

𝑛 = #Segments, d= digit size, k is the second higher order of irreducible polynomial, 𝑇𝑚𝑢𝑥= 2x1 mux

delay, 𝑇𝑠𝑞𝑟=log2(𝑘), 𝑇𝑎𝑑𝑑𝑒𝑟 = 𝑇𝑥, HPECC= High performance ECC, HFECC= High Frequency ECC,

LLECC= low latency ECC.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-18

+ 6xm CCs (for point multiplication in the projective coordinates) + CCs (for the final

coordinates conversion = m/2 CCs for square + #Mul for inversion x3 +3 CCs for Inversion +

28 CCs for others) + 3 clock cycles for pipelining as shown in Table 5.3. For example, the total

clock cycles for point multiplication over GF2163= 5+(6x162)+139(=(81+27+3)+28)

+3=1119 cycles. Similarly, the latency of HPECC processor over GF2571 is 3783 clock cycles.

5.5 Proposed the highest possible frequency based ECC (HFECC)

for Point Multiplication

High speed ECC can be designed on software, software/hardware, and hardware platforms.

For high speed, hardware implementation is attractive to overcome the high latency associated

with word level computations of field multiplication [78]. In this section, a high speed hardware

implementation on FPGA of ECC is presented comprising two novel full precision pipelined

multipliers. A low latency point multiplication scheduling to avoid data dependency in the

point operations for the proposed high frequency ECC (HFECC).

We propose a high speed ECC hardware architecture over binary fields GF(2m). To achieve

very low latency, we adopt full precision multiplication. We improve the multiplier’s

performance by using a novel 2 stages pipelining technique. In our proposed multiplier, we

divide a GF(2m) multiplication into wxm multiplications where w is the digit size and, where

the n = m/w number of w digit serial multiplications can be achieved using two stages of

pipelining thus enabling very low latency while it is still maintaining high clock frequency.

Furthermore, we adopt the Montgomery point multiplication to exploit the underlying

parallelism and combine point addition and point doubling operations to concurrently deploy

two full precision field multipliers to increase speed. As there is data dependencies in the

Montgomery point multiplication, we modify the schedule of point operations to avoid these

data dependencies. Also, we use local registers as part of the pipelining to save intermediate

data; this avoids expensive memory operations and further improves the critical path delay in

the overall ECC architecture. We designed a distributed logic based Memory unit, a dedicated

finite state machine (FSM) based control unit, and a novel 4-squarer (square over square) based

inversion operation to accelerate the overall performance of the proposed ECC.

5.5.1 Low latency Point Multiplication Shecdualing for HFECC

For a high speed ECC implementation, a careful point multiplication scheduling is required

to avoid data dependency due to pipelining stages in the field multiplier. The merit of pipelining

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-19

can be exploited by observing data dependency in the successive field operations. We propose

a combined Montgomery point multiplication algorithm to comply with the pipelining delay

of our proposed multiplier as shown in algorithm 5.3. In the proposed algorithm, the last two

multiplications results are required to be added concurrently to start a new loop and pipelining

delay needs to be overcome. This is achieved by having a different Start Operation (from state

1, St1) for the new loop to the previous loop. The values of the Key select the Starting

Operation. Two full precision multipliers are used to achieve 4 clock cycles for the main loop

Algorithm 5.3 Proposed combined LD Montgomery point multiplication (main loop)

For 𝑖 from 𝑡 − 2 down to 0 do

If 𝑘𝑖 = 1 then

If 𝑘𝑖+1 = 1 then If 𝑘𝑖+1 = 0 then

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) + 𝑄(𝑋2,𝑍2) and Point Doubling: 𝑄(𝑋2, 𝑍2) =

2𝑄(𝑋2, 𝑍2)

St1: 𝑍1 ← 𝑅𝑦. 𝑅2;
 {𝑎𝑠 𝑅

𝑦
= 𝑋2 𝑎𝑛𝑑 𝑅2 = 𝑍1 }

 𝑅1 ← 𝑅𝑦
2 ; 𝑅4 ← 𝑅𝑦

4;

 𝑅𝑐 ← 𝑍2;

 { 𝑅𝑦 = 𝑋1} ← 𝑅𝑚1 + 𝑅𝑚2;

 St2: 𝑋1 ← 𝑅𝑦. 𝑍2; 𝑅2 ← 𝑅𝑐
2;

 𝑅3 ← 𝑅𝑐
4 ;

St1: 𝑋1 ← 𝑅𝑦. 𝑅2;

 {𝑎𝑠 𝑅𝑦 = 𝑋1 𝑎𝑛𝑑 𝑅𝑐 = 𝑅2 = 𝑍2 }

 𝑅2 ← 𝑅𝑐
2 ; 𝑅3 ← 𝑅𝑐

4;
 { 𝑅𝑦 = 𝑋2} ← 𝑅𝑚1 + 𝑅𝑚2;

 St2: 𝑍1 ← 𝑅𝑦 . 𝑍1; 𝑅1 ← 𝑅𝑦
2;

 𝑅4 ← 𝑅𝑦
4 ;

St3: 𝑅𝑦 ← 𝑏. 𝑅3 + 𝑅4 ; 𝑍2 ← 𝑅1. 𝑅2; 𝑅2 ← (𝑋1 + 𝑍1)2

St4: 𝑅𝑚1 ← 𝑥. 𝑅2; 𝑅𝑚2 ← 𝑋1. 𝑍1;

Figure 5.5 Proposed HFECC architecture for the high speed point multiplication

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-20

operation. The loop operation is folded over the next loop to save latency due to pipelining.

Our proposed multiplier can support the proposed 4 clock cycles algorithm as the multiplier

has two outputs; output a (mul1a for multiplier1 (mul1) and mul2a for multiplier 2 (mul2) and

output b (mul1b and mul2b). Note that multiplier takes 1 clock cycle to have an output from

output a and 2 clock cycles from output b.

The proposed 4 clock cycles based loop operation is illustrated in Figure 5.6a and in Figure

5.6b for the current bit of key, 𝑘𝑖 = 1 . In state 1 (st1) and state (st2), we consider 1

multiplication and in state 3(st3) and state 4(st4), two multiplications for each state are

performed. The Figure 5.6a shows the main loop operation for the case of the previous bit of

the key, 𝑘𝑖+1 = 1:

 In st1, 𝑋2. 𝑍1 is performed, the input 𝑋2 is calculated and saved in the local register 𝑅𝑦 to

input in the multiplier 1(mul1) as shown in Figure 5.5. 𝑍1 is the other input of multiplier1

saved in the register 2 (𝑅2) as also shown in Figure 5.5. The content of 𝑅𝑦 is squared and

4-squared to achieve 𝑋2
2 and 𝑋2

4 . The results of the squares are saved in 𝑅1 and 𝑅4

respectively.

 In st2, the 𝑋1. 𝑍2 multiplication is performed. The input 𝑋1 is a result of the addition of the

mul1a_out of the mul1 and mul2a_out of the mul2 which is saved in the 𝑅𝑦 to input in the

mul1. The other input of the mul1 (𝑍2) is inputted into mul1 through 𝑅𝑐. The content of 𝑅𝑐

(𝑍2) is squared and 4-squared are saved in the 𝑅2 and 𝑅3 respectively.

 The two multiplications 𝑏. 𝑍2
4 and 𝑋2

2. 𝑍2
2 are performed in the st3 in mul1 and mul2

respectively. The results of 𝑏. 𝑍2
4 will be added with 𝑋2

4 (the content of 𝑅4) in the

a) ki=1 and ki+1 =1 b) ki=1 and ki+1 = 0

Figure 5.6 Main loop operations with the ki values, including: a) ki=1 and ki+1 =1 and b) ki=1 and ki+1 = 0

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-21

following loop to generate new 𝑋2 . Again, the other multiplication gives a new output of

𝑍2.

 The final state involves two multiplications (𝑥. 𝑍1 (=(𝑋1 + 𝑍1)2) and (𝑋1. 𝑍1) using two

multipliers simultaneously. Out of the two inputs of mul1, 𝑥 is an output of the memory

and 𝑍1 is the new 𝑍1 output. The new 𝑍1which is just the squared of the addition result of

the multiplication output (𝑍1) of the st1and the output of 𝑋1 the multiplication of st2. For

𝑋1. 𝑍1 , the outputs st1 and st2 are inputted locally to mul2. To synchronize, the st1

multiplication output, 𝑍1is saved in the local register 𝑅𝑥 to input in the mul2 at st4, and the

 𝑋1, the output multiplication result of st2 is directly inputted to mul2. The outputs of the

two multiplications at st4 are finally added in the following loop to generate new 𝑋1.

The last multiplication result is 𝑋1 for 𝑘𝑖 = 1 or 𝑋2 for 𝑘𝑖 = 0 . The last result of the previous

loop will be inputted as a multiplication operand at st2. For example, if 𝑋1 is the last ouput of

the previous loop, then st2 is considered for the multiplication of 𝑋1. 𝑍2. Similarly, if 𝑋2 is the

last output of the previous loop, then the multiplication at st2 will be 𝑋2. 𝑍1. The changing

multiplications based on the previous value of k, 𝑘𝑖+1 is shown in Figure 5.6b and in algorithm

2. The other difference of Figure 5.6b from Figure 5.6a is that the squaring operation on 𝑍2is

considered first as the 𝑋2 (last output of the previous loop) is not ready at st1.

5.5.2 Square Circuits, field Inversion operation and coordinates conversion of HFECC

 The field square circuit consumes very low resource and performs a square operation in a

single clock cycle. To achieve 4 clock cycles based main loop operation of the point

multiplication, we need to do 4-squared in a single clock cycle. Thus, we need two square

circuits connected as cascaded to get both square and 4-square in the same clock cycle.

 A standalone field inversion is a costly operation in the ECC implementation. As we

consider projective coordinates based ECC design, we need to compute one inversion operation

during coordinates conversion. We consider the widely used multiplicative inversion operation

proposed by Itoh-Tsujii [65]. For an inversion operation over GF(2m), a repeated square and

multiplication operation is required [65]. For example, there are 9 multiplication and 162

square operations required for the inverse operation over GF(2163). As there is a dependency

in data in the consequent field operation during inversion, each multiplication takes extra

latency due to pipelining. We can improve the inversion latency by using a 4-square circuit to

speed up the repeated squaring operations.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-22

 The final step of the Montgomery point multiplication is the coordinates conversion which

involves field inversion, multiplication, squaring and addition operations. For the low latency

and high speed ECC operation, the optimization part in the conversion coordinates step is the

inversion operation. As we use a 4-square circuit we save clock cycles during the inversion

operation. Our conversion step takes 125 clock cycles out of which 104 clock cycles are for

the inversion. The total latency of the proposed ECC is shown in Table 5.3 (page 5-28). The

total latency over GF(2163) is as follows:

Total clock cycles for point multiplication (PM) is 780 = 7 clock cycles for initialization +

4x162 clock cycles for main loop of the PM + 125 clock cycles for conversion.

5.5.3 Memory Unit and Control Unit of HFECC

We developed a distributed logic based memory unit to get a high throughput ECC. Our

memory unit is 8xm size with three outputs buses (a, b and c) and one input bus as shown in

Figure 5.5. We can access data separately using each of the buses. Initially, we save the inputs

data in the memory. After the start of the point multiplication loop, variable data are saved in

the local registers. The constant data are accessed from memory. The local registers Rx, Ry Rc,

R1, R2, R3, and R4 save intermediate data to save latency for memory access.

 We design a dedicated control circuit of our ECC with a finite state machine (FSM)

modelled in the same entity. We control the state of point multiplication using the counter

inputs, and three key bits (previous bit 𝑘𝑖+1, current bit 𝑘𝑖, and next bit of k, 𝑘𝑖−1). As the

proposed design is based on very low latency and high speed, we perform several arithmetic

operations concurrently by controlling multiplexers.

5.5.4 Pipelining in the ECC Architecture of HFECC

We introduce a novel pipelining in the ECC architecture to break the long critical path delay.

We use some local registers such as Rx, Ry Rc, R1, R2, R3, and R4 to save local variables to input

into multiplication. The local registers offer flexibility to do some low cost arithmetic

operations such as addition or squaring by accessing data from faster output ports (mul1a and

mul2a) of the proposed multiplier. Thus, we can save clock cycles for addition and squaring

by concurrent operation followed by saving in the local registers. By doing this, the overall two

clock cycles latency of our proposed multiplier is preserved. The critical path delay of the ECC

architecture is shown in Table 5.2 (page 5-17). The value of n defines the critical path delay.

There are two possible critical path delays, path1 and path2 as shown in Table 5.2 (page 5-17).

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-23

The selection of the optimum size of n is matter of a trial and error method as different cell

technologies have different flexibilities.

5.6 Proposed Low Latency ECC (LLECC) Processor for Point

Multiplication

The speed of ECC can be improved for high speed applications by reducing latency of the

point multiplication. Parallel full-precision multipliers can reduce latency to speed up the point

operations. We propose a high speed ECC processor for point multiplication utilizing three

full-precision multipliers to achieve the lowest latency high speed ECC as shown in Figure 5.7.

5.6.1 Low Latency Montgomery Point Multiplication

Montgomery Point multiplication offers flexibility of parallel field operations. There

are six field multiplications in the projective coordinates based Montgomery point

multiplication as shown in algorithm 5.1. In theoretically, the six multiplications can be

Figure 5.7 Proposed low latency ECC architecture

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-24

achieved in two steps by using three full-precision multipliers as shown in algorithm 5.4. To

achieve the theoretical limit of the loop operation, an ECC architecture needs single clocked

field multipliers along with concurrent square and addition operations, all with careful

scheduling. In our implementation here, we target and achieve this limit, which to our

knowledge, no previously reported implementation has achieved to date due to the hitherto

restrictive performance of the field multiplier. We propose a modified Montgomery point

multiplication loop based on two steps

Algorithm 5.4 Proposed low latency Montgomery point multiplication (with each loop for two clock cycles)

For 𝑖 from 𝑡 − 2 down to 0 do

If 𝑘𝑖 = 1, 𝑘𝑖+1 = 1 and 𝑘𝑖−1 = 1 then{ No transition}

Point addition:𝑃(𝑋1,𝑍1) = 𝑃(𝑋1,𝑍1) + 𝑄(𝑋2,𝑍2) and Point Doubling:

𝑄(𝑋2, 𝑍2) = 2𝑄(𝑋2, 𝑍2)

Mul1 Mul2 Mul3

St1: 𝑍1 ← 𝑋2. 𝑅1; { 𝑅1 = 𝑍1} 𝑋1 ← 𝑋1. 𝑅3; 𝑍2 ← 𝑋2
2. 𝑅4; 𝑅2 ← 𝑋2

4 ;

St2: 𝑋1 ← (𝑥. (𝑋1 + 𝑍1)2 + 𝑋1 ← 𝑋1. 𝑍1); 𝑋2 ← 𝑏. 𝑅5 + 𝑅2;

 𝑅1 ← (𝑋1 + 𝑍1)2 𝑅3 ← 𝑍2 𝑅5 ← 𝑍2
4 ; 𝑅4 ← 𝑍2

2 ;

else If 𝑘𝑖 = 1, 𝑘𝑖+1 = 1 and 𝑘𝑖−1 = 0 then{Transition :𝑘𝑖 = 1 to 𝑘𝑖 = 0}

St1: 𝑍1 ← 𝑋2. 𝑅1; { 𝑅1 = 𝑍1} 𝑋1 ← 𝑋1. 𝑅3; 𝑍2 ← 𝑋2
2. 𝑅4; 𝑅2 ← 𝑋2

4 ;

St2: 𝑋1 ← (𝑥. (𝑋1 + 𝑍1)2 + 𝑋1 ← 𝑋1. 𝑍1); 𝑋2 ← 𝑏. 𝑅5 + 𝑅2;

 𝑅1 ← (𝑋1 + 𝑍1)2 𝑅3 ← 𝑍2 𝑅5 ← ((𝑋1 + 𝑍1)2)2 ;{ 𝑅5 = 𝑍1
2}

If 𝑘𝑖 = 0, 𝑘𝑖+1 = 1 and 𝑘𝑖−1 = 0 then {Transition : 𝑘𝑖 = 1 to 𝑘𝑖 = 0}

St1: 𝑋2 ← 𝑋2. 𝑅1; { 𝑅1 = 𝑍1} 𝑍2 ← 𝑋1. 𝑅3; 𝑍1 ← 𝑋1
2. 𝑅5; 𝑅2 ← 𝑋1

4 ;

 𝑅4 ← 𝑅5
2 ; { 𝑅4 = 𝑍1

4}

St2: 𝑋2 ← (𝑥. (𝑋2 + 𝑍2)2 + 𝑋2 ← 𝑋2. 𝑍2); 𝑋1 ← 𝑏. 𝑅4 + 𝑅2;

 𝑅1 ← (𝑋2 + 𝑍2)2 𝑅3 ← 𝑍1 𝑅5 ← 𝑍1
4 ; 𝑅4 ← 𝑍1

2 ;

If 𝑘𝑖 = 0, 𝑘𝑖+1 = 0 and 𝑘𝑖−1 = 0 then{ No transition}

St1: 𝑍2 ← 𝑋1. 𝑅1; { 𝑅1 = 𝑍2} 𝑋2 ← 𝑋2. 𝑅3; 𝑍1 ← 𝑋1
2. 𝑅4; 𝑅2 ← 𝑋1

4 ;

St2: 𝑋2 ← (𝑥. (𝑋2 + 𝑍2)2 + 𝑋2 ← 𝑋2. 𝑍2); 𝑋1 ← 𝑏. 𝑅5 + 𝑅2;

 𝑅1 ← (𝑋2 + 𝑍2)2 𝑅3 ← 𝑍1 𝑅5 ← 𝑍1
4 ; 𝑅4 ← 𝑍1

2 ;

Conversion Step: As shown in the Algorithm 5.1.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-25

utilizing three full precision multipliers as shown in algorithm 5.4. In each state of the proposed

algorithm, three multiplications outputs are concurrently used for additions, square and square

over square (4-square) to generate the required output for the next states as shown in Figure

5.7. Apart from this, we utilize a smart scheduling to avoid data dependency in the successive

loop. We show data flow diagrams to illustrate the point operations for the different

combinations of the previous, current and next values of 𝑘𝑖 in Figure 5.8 and Figure 5.9.

 The data flow diagram shown in Figure 5.8 is for the values of 𝑘𝑖+1 = 1, 𝑘𝑖 = 1 and 𝑘𝑖−1 =

1. In this case, the point operations of the previous loop, current loop and next loop are the

same, hence, there is no transition of the point operations in the successive loops. There are

only two states (st1 and st2) for each loop to accomplish the field operations (i.e. multiplication,

square and addition) for a point multiplication loop operation. The field multiplication takes 1

clock cycle delay due to one stage pipelining; however, the field square and field adder have

only combinational circuit delay and can be performed in the same clock cycle. In Figure 5.8.

1, the data diagram shows the utilization of three full-precision multipliers called Mul1, Mul2

and Mul3 in each state to accomplish three multiplications. As the multiplier, adder and square

circuits are cascaded, we can achieve different field operations in the same clock cycle by

tapping the results respectively.

Figure 5.8 Data flow of LLECC for ki+1=1, ki=1 and ki-1 =1

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-26

 In st1, Mul1 and Mul2 outputs (𝑖. 𝑒. 𝑍1𝑎𝑛𝑑 𝑋1) are added and squared to get new 𝑍1

on the fly. The 𝑍1 is immediately used in the next loop as an input to Mul1 and also

𝑍1 is saved in Register 1 (𝑅1) to use in the next loop. Again, the output of Mul3 is 𝑍2

is squared and 4-squared in the same clock to get 𝑍2
2 and 𝑍2

4. After then, the three

outputs (𝑍2, 𝑍2
2 and 𝑍2

4) are saved in 𝑅3, 𝑅5 and 𝑅4 register respectively to use in the

next loop.

Figure 5.9 Data flow diagram of LLECC for ki+1=1, ki=0 and ki-1 =0

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-27

 In state st2, we get output 𝑋1 by adding the outputs of Mul1 and Mul2 and we also get

𝑋2 by adding the output of Mul3 and the content of 𝑅2 (𝑋2
4). The 𝑋2 and its square, 𝑋2

2

are directly applied as an input of Mul1 and Mul3 respectively in the st1 of the next

loop and also 𝑋2 is squared over squared (4-square) to get 𝑋2
4 output in the same clock

cycle is saved in the 𝑅2 for the next operation.

Thus, all inputs that are required to begin the next loop are ready. The dataflow diagram is the

same for the combination of values 𝑘𝑖+1 = 0, 𝑘𝑖 = 0 and 𝑘𝑖−1 = 0 except that the variables

are changed as shown in algorithm 5.4.

 In Figure 5.9, a data flow diagram of the loop of point multiplication is presented for the

values of 𝑘𝑖+1 = 1, 𝑘𝑖 = 0 and 𝑘𝑖−1 = 0. The diagram shows three consequent loops (for six

clock cycles) of data flow to illustrate the transition from the loop of 𝑘𝑖 = 1 to the loop of the

𝑘𝑖 = 0.

 In st1 and2st2, the point operations for the value of 𝑘𝑖 = 1 is performed. As the next

loop for 𝑘𝑖 = 0, the squared outputs of the loop (𝑘𝑖 = 1) should be 𝑍1
2, 𝑍1

4, 𝑋1
2, and 𝑋1

4

instead of 𝑍2
2,𝑍2

4, 𝑋2
2, and 𝑋2

4. In the loop, 𝑍1
2 is calculated and saved in 𝑅5 in the st2.

Again, the output 𝑋1 of the loop will be squared and 4-squared to get 𝑋1
2 and 𝑋1

4 in the

st1 of the next loop (𝑘𝑖 = 0).

 In st1 of the loop of 𝑘𝑖 = 0 (at clock cycle 3), the 𝑋1
2 is used as Mul3 input, the 𝑋1

4 is

saved in 𝑅2. In the same state, the content of 𝑅5 (𝑍1
2) is squared to get 𝑍1

4 and saved

in 𝑅4.Thus, the second loop for 𝑘𝑖 = 0 can be started with three multipliers inputs 𝑋2

𝑍1, 𝑋1. 𝑍2 and 𝑍1
2. 𝑋1

2 after the previous loop (𝑘𝑖 = 1). In this case, the loop (𝑘𝑖 = 0)

inputs of Mul1 and Mul2 are the same as the inputs of the previous loop (𝑘𝑖 = 1) due

to the last output (the addition of 𝑅2 and Mul3) of the previous loop is 𝑋2; however,

the outputs of the multipliers are different than that of the previous loop.

 Now, the final loop is for 𝑘𝑖 = 0 (at st5 and st6) is similar to Figure 5.8, (no transition)

except that the variables are changed as shown in algorithm 5.4.

Thus, the loop of the point operations can be accomplished utilizing only two clock cycles for

any set of values of 𝑘𝑖+1, 𝑘𝑖 and 𝑘𝑖−1.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-28

5.6.2 Multiplier with Segmented Pipelining for LLECC

Parallel multipliers are used to reduce latency for point multiplication in ECC

implementations and the majority of reported designs in the literature are based on digit serial

multipliers instead of bit parallel multipliers [53], [60-61], [72-73]. Bit parallel multipliers take

larger area and critical path delay as the size of the multiplier is large due to the large field sizes

of the ECC curves [31]. The subquardratic bit parallel multiplier can be suitable for a high

speed ECC design, however, pipelining is required to improve speed [71]. The adoption of the

pipelining in the proposed 3 multiplier-based ECC is limited as the loop operation takes place

within two clock cycles only. Thus, only one stage pipelining can be adopted to improve the

performance of the multiplier providing a smart scheduling is devised to overcome the data

dependency. The limitation of pipelining is a serious bottleneck for the traditional bit parallel

and subquadratic multipliers to achieve significant performance. This is overcome in our

proposed segmented pipelining technique by implementing n pipelines in parallel, achieving

an overall single stage only pipelining as shown in Figure 5.7. This makes the proposed full-

precision multiplier suitable for the very low latency loop while the ECC is still maintaining a

high performance. The high performance can allow high security ECC curves to be deploy in

more applications.

 In our proposed low latency ECC (LLECC) architecture (as shown in Figure 5.7on page 5-

23), we consider LLECC implementation over GF(2163) where we use three parallel multipliers

where each of them is a 163 bit full-precision multiplier with 14 bit segmented pipelining.

5.6.3 Square Circuit, Memory Unit and Control Unit of LLECC

Our proposed least latency ECC (LLECC) takes 2 clock cycles for a loop operation of

the Montgomery point multiplications. To accomplish 2 clock cycles based loop operation, we

need to process the multiplier output in same clock cycle by cascading the adder and square

circuits. Thus, in Figure 5.7 (page 5-23), there are several extra adder, square circuits and local

registers (𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, and 𝑅6) are considered to calculate some instructions of the point

operation on the fly as compared to Figure 5.2 (page 5-11). The main memory architecture

adopted is the same as that of the distributed based memory of Figure 5.2 (page 5-11) used to

enhance speed. Our main memory saves the initial input and the final outputs, and during a

loop operation, the memory supplies the constant values (x, y, b) as most of the calculated

outputs are saved in the local registers to reduce the delay for memory access.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-29

We also use a separate shift register (k register) to save the key of the ECC. The shift

register shifts 1 bit in every two cycles to generate a new set of values for 𝑘𝑖+1 , 𝑘𝑖 and

𝑘𝑖−1 used in the control unit as shown in Figure 5.7 (page 5-23). The control unit of the LLECC

is also based on a finite state machine (FSM) that controls the two clock cycles based point

operations and is simpler than the control unit of the HPECC as most of the operation are

performed concurrently.

5.6.4 Critical path delay and clock cycles of the LLEEC

In the proposed low latency ECC (LLECC) architecture, we perform several

instructions in the same cycle by cascading the multiplier, adder and square circuits as shown

in Figure 5.7(page 5-23). The critical path delay of the LLECC is the path delay of GF2MUL

+ the reduction part + adder + square + 3x1 mux as shown in Table 5.2 (page 5-17). The critical

path delay can be optimised by selecting the size of w through a trial and error approach.

The total clock cycles of ECC mainly depends on the latency of the loop operation of

the point multiplication. We achieve 2 clock cycles for each loop operation for the Montgomery

point multiplication in projective coordinates which is the theoretical limit of the Montgomery

point multiplication algorithm under projective coordinates. Again, the coordinates conversion

circuit includes the costly inversion operation. We adopt multiplicative inversion to reduce area

and time complexities overheads [65]. As the total latency of the point multiplication in

projective coordinates based on the two clocked cycles loop operations is comparable to the

latency of the final conversion operation, reducing the clock cycles for the conversion operation

is required. The inversion operation involved in the conversion step consumes most of the clock

cycles and is thus the focus for optimisation. We use a 4-square circuit to speed up the

multiplicative inversion operation. The total clock cycles(CCs) for point multiplications of the

LLECC = 5 CCs for initialisation + 4 CCs to start of the loop+ mx2 CCs for loop operations

Table 5.3 Latency of the proposed ECC (MUL= M1=1, or M2=2, or M3=3, ADD=1, SQR=1, and 4SQR =1)

ECC Initial + point operations + Conversion GF(2163) GF(2571)

HPECC_1M 5 + (6𝑀1)(𝑚 − 1) + (7𝑀2+ Inv1+3𝑀3 + 8) 1099 3783

HFECC_2M 7 + 4𝑀1(𝑚 − 1) + (7𝑀2 +Inv2+3𝑀2 + 1) 780

LLECC_3M 5 + (4 + 2𝑀1(𝑚 − 1) + 4) + (7𝑀2 +Inv3+3𝑀2 + 3) 450 -

Inv1= m/2 CCs for square + #Mul for inversion x3 +3 CCs; Inv2 =m/2 CCs for square + #Mul for inversion

(𝑀2) x3 +5 CCs; Inv3= m/2 CCs for square + #Mul for inversion (𝑀1) x3.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-30

+ 4 CCs to exit loop+ CCs for Coordinates conversion(= (m/2) for square + #mulx1) CCs for

inversion +23 others) as shown in Table 5.3. For example, the total clock cycles for GF2163 =

5+4+162x2+4+113(= (81 + 9) +23) = 450 clock cycles.

5.7 Implementation Results

The results of our proposed high speed ECC implementation on Virtex4 (XC4VLX60),

Virtex5 (XC5VLX50) and Virtex7(XC7V330T) for HPECC and again, Virtex5

(XC5VLX110) and Virtex7 (XC7V690T) for LLECC over GF(2163), and Virtex7

(XC7VX980T) for HPECC over GF(2571) using Xilinx ISE 14.5 tool after place and route are

shown in Table 5.4 (page 5-35). The presented results are achieved with the use of high speed

timing closure techniques. Where feasible the designs have been implemented in each Virtex

family. The FPGA size selected was the smallest in the family that could accommodate the

design in terms of area and pin count. We used repeated place and route for different timing

constraints to achieve the best possible result.

The high performance ECC implementations over GF(2163) based on one multiplier

(HPECC_1M) on Virtex4, Virtex5 and Virtex7 consume 12964 slices, 4393 slices and 4150

slices and can operate at maximum clock frequencies of 210 MHz, 228 MHz and 352 MHz

respectively. The achievement of high frequency is due to the design of the high performance

field multiplier.

Our proposed HFECC architecture over GF(2m) based on Montgomery point multiplication

is implemented on FPGA. We have considered the same platform to compare with previous

presented high speed works. We have used VHDL language to code the ECC model and Xilinx

ISE version 14.5 design software to synthesize and Xilinx Virtex5 XC5VLX110 and Xilinx

Virtex7 XCV7VX550T for implementation. We consider the elliptic curve over GF(2163) to

implement for fair comparison of our results with the relevant state of the art.

The implementation results of our proposed architecture are presented in Table 5.4 after place

and route (PAR). The implementation consumes 10,363 slices to compute point multiplication

in 5.10 µs on Virtex5. The Virtex7 implementation shows the fastest point multiplication to date

at 3.50 µs and consumes 8736 slices.

The novelty of the proposed HFECC architecture is based on the novel pipelined full

precision multipliers, smart point multiplication scheduling, and adoption of proper pipelining

in the ECC architecture. In addition, we have exploited distributed logic based memory unit,

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-31

dedicated FSM based control unit, 4-squared based repeated square operation for multiplicative

inversion for improving the overall HFECC performance. The combination of these ideas

yielded the remarkable lowest latency figure, compared to previous works, of only 780 clock

cycles whilst still achieving a high clock frequency of 223 MHz on Virtex7.

Our Low latency ECC based on three parallel multipliers (LLECC_3M) improves speed by

reducing latency with an area overhead. The proposed LLECC on Virtex7 can manage 159

MHz frequency by consuming the same area of the Virtex5 (113 MHz and 11777 Slices).

5.7.1 Analysis of Results

In our proposed ECC processor, we utilise the popular Montgomery point

multiplication algorithm to exploit parallel operations to reduce latency. In the point

multiplication algorithm, the loop operation (for each value of ki) in the projective coordinates

requires 6 field multiplications, 5 field squares and 3 field addition operations. The most

significant operation in the point multiplication is field multiplication while square and addition

are concurrently performing; however, last two multiplication results are required to add to

start a new loop is a dependency of the algorithm. The 6 multiplications can be achieved using

one multiplier or two parallel multipliers or three parallel multipliers.

In this ECC architecture, we use a novel full-precision multiplier consuming one clock

cycle per multiplication; however, two clock cycles is required as an initial delay to start point

multiplication. Our proposed HPECC architecture utilises one full-precision to complete a

loop of the point multiplication by using 6 clock cycles. Again, our proposed HFECC uses two

parallel field multipliers to reduce further latency. The ECC architecture utilises two stages of

pipelining to shorten short critical path delay. The ECC architecture can manage 4 clock cycles

for a loop operation; however, the two stages of pipelining are utilised. Our LLECC

implementation utilises a segmented pipelined based full-precision multiplier consuming one

clock cycle per operation due to one stage pipelining. In the LLECC architecture, we utilise

three multipliers to reduce latency towards the theoretical limit. The ECC architecture can

manage two clock cycles per loop operation of the point multiplication.

 In Figure 5.10, the bar chart illustrates the area consumption of the three different ECC

architecture i.e. HPECC, HFECC and LLECC. The field multiplier of the ECC consumes a

bigger area than the other module (for example, memory unit). As the unit of area for ECC

each increases as per use of the number field multiplier. Thus, the area for ECC linearly

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-32

increases. Thus, for a high speed ECC implementation, number of field multiplier consideration

dominates resource requirement than square, addition and memory unit

In Figure 5.11, the bar graph demonstrates the frequency of ECC for three different

architectures implemented in the Virtex5. The HPECC shows the highest frequency (228 MHz)

due to a standalone segmented pipelined based Full-precision with lower area complexity than

the two stage pipelined based HFECC (the Full-precision multiplier exploits one stage

pipelining). The HFECC is able to sustain the maximum possible frequency (153 MHz) by

utilising the two-stage pipeline in the ECC; however, using a one-stage pipeline based

multiplier. Hence, the ECC is named high-frequency ECC, HFECC. The LLECC has one stage

pipelining in the ECC architecture with large area complexity shows the low frequency, but it

is still comparable to the frequency of the HPECC and HFECC.

Figure 5.11 Frequency vs ECC architecture over GF(2163)

228

153

113

0

50

100

150

200

250

HPECC (1M) HFECC (2M) LLECC (3M)

F
re

q
u
en

cy
 (

M
H

z)

ECC Architecture

Frequency vs ECC Architecture

Figure 5.10 Area vs ECC architecture over GF(2163)

16090

29095

42192

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

HPECC (1M) HFECC (2M) LLECC (3M)

A
re

a
(S

li
ce

s)

ECC Architecture

Area vs ECC Architecture

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-33

Latency is the crucial requirement for achieving high speed. The parallel multipliers

based ECC (HFECC and LLECC) that shows very low latency is illustrated in Figure 5.12. The

low latency is achieved with an expense of large area based multiplier. The proposed novel

pipelined based multipliers can operate at a high frequency to utilise the advantages of the

reduction of latency. The LLECC shows, in particular, very low latency (450 clock cycles) is

the theoretical requirement of a loop operation of the point multiplication. For the GF(2163), a

loop operation consumes 162x2 = 324 clock cycles . Thus, the latency for the final coordinates

conversion is becoming significant can affect the ECC performance. In the ECC, the largest

multiplier can reduce latency of point operations instead affecting conversion.

In Figure 5.13. the bar graph shows the point multiplication time of three ECC

architectures. The high frequency of HPECC contributes to reduce the time for point

multiplication sharply. The HPECC keeps high frequency by using two stage pipelined based

Figure 5.13 kP time vs ECC architecture over GF(2163)

4.91 5.1

3.99

0

1

2

3

4

5

6

HPECC (1M) HFECC (2M) LLECC (3M)

k
P

 T
im

e
(µ

s)

ECC Architecture

kP Time vs ECC Architecture

Figure 5.12 Latency vs ECC architecture over GF(2163)

1119

780

450

0

200

400

600

800

1000

1200

HPECC (1M) HFECC (2M) LLECC (3M)

L
at

en
cy

 (
C

lo
ck

 C
y
cl

es
)

ECC Architecture

Latency vs ECC Architecture

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-34

standalone multiplier. The LLECC shows the best figure for point multiplication by using the

advantages of low latency and the high operating frequency of the multiplier. The largest

complexity based ECC can reduces latency but operating frequency will be reducing that affect

the overall performance.

The bar chart in Figure 5.14 shows the area-time metric of three ECC architectures. The

low value of the area-time shows the best efficiency. The HPECC shows the best figure of

performance (thus, it is named high-performance ECC) due to high operating frequency and

low area complexity. The area-time metric of HFECC is comparable to the metric of the

LLECC. The largest complexity (large multiplier) based ECC can improve kp time but showing

poor performance. Finally, data dependency can cause worse performance (i.e. HFECC)

5.7.2 Comparison with state of the art

Table 5.4 provides detailed comparison to state of the art using the same technology

(for a fair comparison). To evaluate performance in a new technology, the high speed design

is implemented on Virtex7 and results included.

Our previous high throughput design presented [83] is the best reported implementation

in terms of area-time metric; our HPECC implementation presented here over GF(2163) on

Virtex7 achieves a better metric value (area-time metric of 13) even using a full precision

multiplier. Our high speed ECC implementation, HFECC presented in [84] is the new high

Figure 5.14 Area-time vs ECC architecture over GF(2163)

22

53
47

0

10

20

30

40

50

60

HPECC (1M) HFECC (2M) LLECC (3M)

A
re

ax
T

im
e

(S
li

ce
-S

ec
.)

ECC Architecture

Area-Time vs ECC Architecture

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-35

speed figure on FPGA design to date. Our proposed design, HPECC in this work outperforms,

HFECC [84] in both speed and area-time metrics.

For Virtex4, the previous highest speed implementation is presented in [60] and

consumed 20807 slices to achieve 7.72 µs using three 82 bit parallel multiplier cores. Our

HPECC implementation on Virtex4 consumes 38% less area and shows 31% speed

improvement. Again, our work uses less arithmetic (163 bit multiplier) resource to gain 2.33

times improvement in the area-time metric (Slices x Time x 10-3) as compared to the work in

[60]. In [72], the authors presented a high speed design that used 17929 slices to attain 9.60 µs

for the point multiplication time; meanwhile, our proposed work on Virtex4 is 45% faster than

that in [72] and consuming less area by 4965 slices. The work presented in [53] uses three 55

Table 5.4 Comparison of the results of proposed ECC with the state of the art over GF(2m) on FPGA after

place and route

Ref. Slices

(Sls)

FFs LUTs Freq.

(MHz)

kP

Time

(µs)

Sls x

Time x

10-3

Latency,

Clock

Cycles

FPGA Resources:

Multipliers(Mul)

ECC over GF2163

[59] 4080 1502 7719 197 20.56 84 4050 V4 41 bit Karatsuba Mul

[71] 8095 - 14507 131 10.70 87 1429 V4 163 bit Karatsuba Mul

[10] 16209 7962 26364 154 19.55 317 3010 V4 55 bit mul

[60] 20807 - - 185 7.72 161 1428 V4 3 Core 82 bit Mul

[53] 24363 - - 143 10.00 244 1446 V4 3 GNB 55 bit Mul

[72] 17929 - 33414 250 9.60 172 2751 V4 3 Digit Serial 55 bit Mul

[73] 12834 6683 22815 196 17.20 221 3372 V4 2 GNB 55 bit Mul

[80] 8070 - 14265 147 9.70 78 1429 V4 163 bit Karatsuba Mul

[81] 10417 - - 121 9.00 94 1091 V4 163 bit Karatsuba Mul

[82] - - 27889 133 16.00 - 2128 V4 163 bit Karatsuba Mul

[83] 3536 1870 6672 290 14.39 51 4168 V4 41 bit Digit Serial Mul

HPECC_1M 12964 3077 23468 210 5.32 69 1119 V4 163 bit Mul

[61] 6150 - 22936 250 5.48 34 1371 V5 3 Digit Serial 81 bit Mul

[71] 3513 - 10195 147 9.50 33 1429 V5 163 bit Karatsuba Mul

[73] 6536 4075 17305 262 12.90 84 3379 V5 2 GNB 55 bit Mul

[80] 3446 - 10176 167 8.60 30 1429 V5 163 bit Karatsuba Mul

[82] - - 18505 199 11.00 - 2189 V5 163 bit Karatsuba Mul

[83] 1089 1522 3958 296 14.06 15 4168 V5 41 bit Digit Serial Mul

HPECC_1M 4393 3090 16090 228 4.91 22 1119 V5 163 bit Mul

HFECC_2M 10363 6529 29095 153 5.10 53 780 V5 2x163 bit Mul

LLECC_3M 11777 3403 42192 113 3.99 47 450 V5 3x163 bit Mul

[83] 1476 1886 4721 397 10.51 16 4168 V7 41 bit Digit Serial Mul

HPECC_1M 4150 3747 14202 352 3.18 13 1119 V7 163 bit Mul

HFECC_2M 8736 6529 27105 223 3.50 31 780 V7 2x163 bit Mul

LLECC_3M 11657 7969 41090 159 2.83 33 450 V7 3x163 bit Mul

ECC over GF2571

[59] 34892 6445 66594 107 133.00 4641 14231 V4 143 bit Karatsuba Mul

[83] 12965 10066 38547 250 57.61 747 14420 V7 143 bit Digit Serial Mul

HPECC_1M 50336 29217 141078 111 34.05 1815 3783 V7 571 bit Mul

HPECC_1M: High Performance ECC with 1 Multiplier, HFECC_2M: High Frequency ECC with 2

Multiplier, LLECC_3M: Low Latency ECC with 3 Multipliers, LUTs: Look_Up_Tables, FFs: Flip-Flops, kp:

point multiplication,

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-36

bit multipliers consumed two times the area to achieve 10 µs, whereas our design can show

two times better speed. The most relevant work is presented in [71] where the authors using a

163 bit multiplier with four stage pipelining to achieve maximum clock frequency 131 MHz.

Our design is based on 163 bit multiplier with two stages pipelining achieved a clock frequency

of 210 MHz that is 60% clock frequency (79 MHz) speed up improvement. Again, our ECC

implementation (5.32 µs kp tim, 12964 slices and 69 area-time metric) is twice as fast with

only 60% more slices; this translates to 21% improvement in the area-time metric than the

reported efficient design in [71] with 10.70 µs kp time, 8095 slices and 87 area-time metric.

Our design shows 18% better area-time metric than the previous best optimized design

presented in [59] with 20.56 µs kp time, 4080 slices and 84 area-time metric. The work

presented in [10] used pipelining technique to achieve high clock frequency. Our proposed

ECC uses 2 stages pipelining to get 36% improvement in clock frequency speed over [10]. The

work in [80] is the previous version of [71] and the work in [81] and [82] are a similar

implementation to [71] and [80] with optimised LUTs. In comparison with [80], [81] and [82],

our work shows better results than the best results they presented.

For Virtex5, the best reported performance result over GF(2163) is 5.48 µs and is presented

in [61] with 6150 slices. Our proposed ECC consumes only 4393 slices to compute a point

multiplication in 4.91 µs is better in both speed (10%) and area (29%) than that in [61]. Our

state of the art achieves double the speed of [71] but consuming only 25 % more slices. The

presented work in [73] consumes 6536 slices to get a speed of 12.9 µs; our area-time metric is

3.81 times better than that in [73].

For the new Virtex7 technology, our HPECC design shows both the fastest (3.18 µs) and

the best area-time metric, reported on FPGA hardware for ECC point multiplication to date.

The proposed HPECC architecture over GF(2571), the highest security NIST curve is the first

reported full precision multiplier based implementation and sets a new time record for point

multiplication (37.5 µs on Virtex7).

For HFECC, we compare our implementation results to the results of the most relevant high

performance ECC results in the literature as shown in Table 5.4. The most relevant works are

presented in [61], [71], and [73] and are implemented on Virtex5. In [71], Rebeiro et al.

proposed an area efficient High speed ECC processor based on full precision pipelined

Karatsuba multiplier. They improved the performance of their proposed multiplier using LUTs

based pipelining and adopted a scheduling to achieve low latency point multiplications. [71]

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-37

implemented their ECC on both Virtex4 and Virtex5 FPGAs. Their Virtex5 implementation

takes 9.5 µs which is comparable to their Virtex4 implementation’s speed of 10.7µs. The work

presented in [61] uses three 81 bit parallel digit serial multipliers to achieve the previously

fastest figure of 5.48 µs with the highest clock frequency of 250 MHz for point multiplication

on Virtex5. Their digit serial multiplier based ECC however takes 1371 cycles latency due to

data dependencies. The work in [73] utilizes three 55 bit multipliers to achieve PM time of 12.9

µs on Virtex5. Our proposed HFECC implementation result shows a new fastest figure of 5.1

µs for point multiplication on Virtex5 despite running at a frequency of 153 MHz.

Several high performances ECC implementations were on the old technology, Virtex4, are

reported in [10] [53], [59-60], [71-73], and [81]. For a fair comparison with the works presented

on Virtex4, we compare the speed and latency of the works with our results. The fasted reported

work onVirtex4 is presented in [60] shows 7.72 µs for point multiplication utilizing three 82

digit multipliers. The recently published ECC hardware in [81] utilized a 163 bit Karatsuba

multiplier to achieve 9 µs with a 1091 clock cycles latency to compute PM. Again, the work in

[71] consumes 1414 clock cycles and 10.7 µs for point multiplication on Virtex4 which is within

only 10% in performance difference compared to their Virtex5 implementation. Again, the work

in [72] requires 9.6 µs for point multiplication with a latency of 1751 clock cycles. Our proposed

HFECC on Virtex5 shows 34% improved speed when compared to the fastest reported previous

work in [60] on Virtex4.

Crucially, our implementation on Virtex 7 achieves the highest speed (3.5 µs) ECC

implementation on FPGA to date with a 36% improvement in speed over the previous fastest

reported design presented in [61] and has the best area-time performance.

Our low latency ECC (LLECC) requiring only two clock cycles for Montgomery point

multiplication is the first implementation in the literature with such schedule. The proposed

LLECC design has the lowest latency figure (450 clock cycles for the curve over GF(2163))

reported to date while the ECC is still achieving a high clock frequency thanks to the novel

pipelining technique in the field multiplier and the smart breaking of the long critical path delay

by inserting local registers. Furthermore, the LLECC over GF(2163) implemented on Virtex7

shows the fastest ever figure for point multiplication (2.83 µs) on FPGA at the theoretical limit

of performance. Notably, the minimum clock cycles requirement (theoretical limit) for a loop

operation of the Montgomery point multiplication algorithm is two clock cycles to calculate 6

field multiplication, 5 field squaring and 4 addition operations.

Chapter 5: Implementing High Speed Elliptic Curve Cryptography

 5-38

5.8 Conclusions

This chapter presented a very high speed elliptic curve cryptography processor for point

multiplication on FPGA based on a novel two-stage pipelined full-precision standalone

multiplier in HPECC, a two-stage pipelined ECC architecture using 2 full precision multipliers

in HFECC and three one-stage pipelined full-precision multipliers in LLECC. In the each of

the three cases, a careful scheduling is utilised for the combined Montgomery point

multiplication algorithm. The proposed HPECC processor has very low latency while the ECC

is maintaining a very high clock frequency (353 MHz on Virtex7) and low area. The proposed

HPECC processor outperforms state of the art both in the speed and area-time metrics. Our

implementation HPECC on Virtex7 shows the fastest speed (3.18 µs) to date for a hardware

ECC implementation for point multiplication.

We propose a novel Montgomery point multiplication based high speed ECC architecture

(HFECC) over GF(2m). We exploit novel pipelined full precision multipliers to reduce latency

as well as achieve high throughput. A careful scheduling is utilized to avoid data dependency in

the main loop of the point multiplication. Moreover, we adopt pipelining registers in the ECC

architecture to keep low critical path delay. Our FPGA implementations over GF(2163) on

Virtex5 and Virtex7 both outperform the reported state of the art. Our Virtex7 based

implementation requires 3.5 µs that is a new high speed figure for point multiplication on FPGA.

 To our knowledge, the LLECC used 3 parallel multipliers to achieve the best latency figure

(450 clock cycles) in the literature together with a new milestone for high speed ECC point

multiplication (2.83 µs) on Virtex7 which is roughly two times faster than the previous fastest

time(5.48 µs) on FPGA.

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-1

 Low Latency

Multiprecision Arithmetic

Circuit based Scalable ECC

over GF(2m)
This chapter presents a low latency hardware implementation of scalable ECC over GF(2m) to

be applied in secure constrained applications. The key requirement to develop a scalable ECC

is a multiprecision arithmetic circuit, in particular, a multiprecision multiplier. The research

work presents a parallel Comba multiprecision multiplier with on the fly reduction is scalable

for all NIST curves. The arithmetic circuit also included low latency square circuit is presented

in the chapter. In this chapter, the scalable hardware ECC can meet highest security using

same the module is vital for the low-end application.

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-2

6.1 Introduction

Elliptic curve cryptography (ECC) now being rapidly deployed in the public key

cryptography (PKC) systems. The shorter key length of the ECC offers low bandwidth and low

complexity in the communication system. Thus, ECC based PKC can apply in the low

resources applications such as RFID tags, sensor networks and smart card. There are five NIST

curves over binary field (GF(2m)) such as GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571).

The security of ECC depends on the size of the field. The complexity of ECC implementation

increases with the increase of the field. In the near future, the requirement of security is

increasing. Thus, high security based communication is required using the same ECC module.

In particular, the low resource applications such as battery run devices have resource

constraints (area, time and power) to adopt high security curves using existing resources. The

area and processing time of the high security curve increase abruptly with the increase of the

field size.

 In previous chapters, we have reported that high security curve (i.e. GF(2571))

consumes more resources. For a low resource application, small curve usually suitable, hence,

they are mostly considered for low-end cryptography operation. As the security requirement

increases over time, a higher security module would be required to replace low security

cryptography module. Thus, the critical issues can be solved by designing a low resource

scalable ECC. The scalable module can provided high security without replacing the module.

Again, the scalable ECC processor requires high latency to provide high security. Thus, a low

resource along with low latency scalable ECC can be an ultimate solution.

The main operation of ECC is the point multiplication on the Elliptic curve. The

performance of the point multiplication is important to yield an ECC processor to fit, in

particular, in cryptographic applications. The point multiplication is accomplished by point

addition and point doubling operations on the elliptic curve. The underlying operations of the

point operations are the field arithmetic operations such as multiplication, squaring, addition

and inversion. The field inversion is the most non-trivial operation, in particular, for the low

resources applications. In the low complexity application, multiplicative inversion is applied

instead of standalone inversion operation by using multiplication and squaring. The field

multiplication is thus important module to achieve high efficiency ECC as the square and

addition are linear operations that are simple to implement over GF(2m).

To achieve scalability of security in the same ECC processor, we need to use

multiprecision arithmetic circuit to offer processing of the different elliptic curves in the same

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-3

module. There are several scalable ECC processor implementations are reported in [9, 63, 66,

89-93]. The reported scalable works are implemented in the different platform such as software

only, hardware/software and hardware only. The main target of the implementations are to

optimize the crucial field operations such as field multiplication. The field multiplication is

achieved using multiprecision multiplication to operate large operand multiplication in the

small processor. Thus, there is word level field multiplication is performed to achieve full

operands multiplication using a multiprecision multiplication algorithm. The word level

multiplication requires frequent memory operations to load partial products. The most of

scalable works are utilised Comba algorithm based multiprecision multiplier. The Comba

multiprecision is suitable to reduce memory operations as compared to schoolbook

multiplications.

The software implementation of ECC in the embedded processor consumes high

latency (order of ten clock cycles) thwart the merits of low die size of embedded processor in

the low resources ECC applications. The high latency of a multiprecision multiplication can

affect the total point multiplications time. To reduce latency some works using instruction

extension sets to do some operations using the integral hardware module (i.e. coprocessor).

The coprocessor is the hardware part to perform field multiplication that is controlled by the

main processor. The hardware/software design still involves with instruction delay to

accomplish ECC operation. Thus, to achieve significant improvement in the point

multiplication time, dedicated hardware implementation is preferable. The hardware

implementation can be a good solution to reduce the latency as well as reduce the area of ECC

to achieve highly efficient scalable ECC processor.

To achieve a highly efficient scalable ECC, there are requirements of modification of

field arithmetic algorithm to use the flexibility/scalability of the hardware design. Most of the

state of the art fails to reduce latency by exploiting concurrency in the hardware

implementation of algorithmic modification [9, 91]. However, some modification is adopted

in the [9, 63, 66, 89-93] to modify the multiprecision algorithm to reduce latency; the latency

of their processor is high to compute the point multiplication. Moreover, in [66, 93], they

utilised large parameter (32 bit instead of 8 bit) to reduce latency. The multiprecision

multiplication in 8-bit data path is more complex than that of 32-bit data path based

multiprecision multiplier. The requirement of algorithmic modification is thus vital in the 8 bit

data path based processor to get efficient ECC.

The scalable ECC over the five NIST curves is complex due to the mix of trivalent and

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-4

pentavalent irreducible polynomial based modular reduction operations. For example, some

implementation considers only pentavalent to reduce complexity [9, 63, 89, 91, 92]. Again, the

complexity is more in the case of ECC with 8-bit data path architecture while the ECC is

considering for the 16-bit or 32-bit data path architecture. For example, the implementation in

[66, 93] consider 32 bit data path to reduce complexity of control unit. Finally, the complexity

is more in the case of hardware implementation than the software implementation due to low

level operations. Thus, a hardware implementation of scalable ECC over all NIST curves in

the 8-bit data path is still an open problem to improve performance.

In this chapter, we consider Comba multiprecision multiplier and multiprecision square

to implement all of NIST curves included GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571)

with the 8-bit data path in the hardware platform, FPGA. To achieve high performance scalable

ECC, we present a modified Comba algorithm and introduce a novel multiprecision square

circuit. Moreover, we develop low area memory unit by avoiding block RAM of FPGA to

investigate the actual consumption of the area. The main contributions of the chapter are as

below:

 A modified Comba algorithm for multiprecision multiplication is proposed to

reduce the latency significantly.

 In the modified algorithm, both loop operations of the Comba algorithm are

performed concurrently.

 The proposed multiplier perform as a standalone multiplier without accessing main

memory while it is performing multiplication. To avoid the main memory

operation, two operands are saved in the local memory.

 The proposed multiplier utilizes two wxw (w is word size) to perform two loops

of Comba algorithm concurrently. We propose a more parallel operations of the

Comba algorithm to reduce latency by exploiting very small area overhead. For

example, the latency of the proposed multiplier can be reduced sharply further by

adopting another set of multiplier (two wxw multipliers).

 Another novelty of the modification of Comba algorithm is to achieve on the

fly reduction operation. Thus, the latency of the multiprecision multiplier depends

on the latency of the Comba multiplication, GF2MUL operations.

 The uniqueness of the reduction operation is that the both trinomial and

pentanomial irreducible polynomials based multiprecision multiplication can be

achieved on the fly reduction operation. In the NIST curves, the non-zeros terms

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-5

of the pentanomial irreducible polynomial are lying on the right most side and

hence, the big middle part is zeros. Thus, the pentanomial irreducible polynomial

based ECC architecture is simple and regular than the trinomial-based ECC.

 We propose a novel multiprecision circuit square circuit that consumes very low

latency to perform square operation with reductions. The proposed square circuit

consume only s+2 clock cycles where, s=
𝑚

𝑤
, including loading and storing

operations.

 We propose a square circuit consumes same latency to perform a square

operation for the both cases of the trinomial and pentanomial irreducible polynomial

based curves.

 Another originality of the proposed square circuit is that repeated square

operation can be performed without any delay for the both pentanomial and

trinomial cases. The repeated circuit can accelerate the multiplicative inversion

operations, hence, point multiplication of the ECC.

 The adding operation can be performed along with multiplication. Thus, there

is not latency for addition in the proposed ECC architecture.

 A novel scalable ECC architecture is implemented to perform the ECC

operation over all NIST curves utilizing same work.

 We consider Montgomery point multiplication algorithm due to faster

computation of the point multiplication. We utilise a careful scheduling in the point

multiplication to avoid dependency. Thus, the loop operation of the Montgomery

algorithm depends only on the latency of the field multiplications.

 We utilise a novel SRL16 based memory unit to quantify actual area overhead

of a scalable ECC. In general, low resource ECC, in particular, scalable ECC

consumes most of the area (50-70% of the ECC) due to register file (memory). The

block RAM of the FPGA can be used to save logic cells (slices). Thus, our proposed

architecture translates actual figure the scalable ECC architecture.

 We use a separate individual control circuit for standalone multiplier,

standalone square circuit and multiplicative inversion operations are based on FSM

(Finite State Machine). An FSM based top-level control unit controls the point

multiplication.

The proposed scalable ECC is implemented on a low cost FPGA such as Spartan3 and

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-6

Spartan6. Notably, the Spartan FPGA family consumes low power than high performance

FPGA family such as Vertex. Our proposed 8-bit data path based Scalable ECC can compute

point multiplication over all NIST curves such as GF(2163), GF(2233), GF(2283), GF(2409), and

GF(2571). Our proposed novel multiprecision multiplier and novel square circuit are utilised to

get a low latency arithmetic unit to enable the scalable field operations of the ECC. We

implemented parallel version Comba algorithm for different sets of parallel multipliers such as

2 wxw multipliers, 4 wxw multipliers and 8 wxw multipliers to evaluate the merit of parallelism

of the Comba algorithm. In this case, the proposed on the fly reduction is used to reduce latency

of the proposed multiplier. The reduction circuit can manage on the fly reduction for the both

trinomial and pentanomial irreducible polynomial based curves is the first time reported low

latency hardware implementation to date. The proposed low latency square circuit consumes

only s+2 clock cycles for any curves of NIST. The proposed square circuit consumes only 2

clock cycles delay between access of input and load of the output. The proposed square

operation is the fastest multiprecision squaring operation to the author’s knowledge.

The proposed scalable ECC is implemented in the FPGA to explore the actual area (slices of

FPGA) requirement for a scalable ECC without using block RAM and compare with the state

of the art. Especially, our proposed ECC consumes very low latency to show better area-time

time products as compared to relevant works. Moreover, the proposed ECC outperforms the

most relevant works in the speed.

The chapter is organized as follows: Section 2 discusses a background of multiprecision

arithmetic circuit and its application in the design of scalable ECC. A description of novel

multiprecision multipliers and parallelism of the Comba multiplication algorithm with on the

fly reduction is presented in the section 3. In Section 4, a novel squaring circuit is illustrated

included a new repeated squaring for all curves. The proposed low latency scalable ECC

implementation is demonstrated, including SRL16 based memory unit in the section 5. In

section 6. We analyze our results and compare them with state of the art followed by a

conclusion in the section 7.

6.2 Background

Public key cryptography based on scalable elliptic curve cryptography is applicable for

low resource applications such as RFID tags, wireless sensor nodes and smart card. For the low

resources applications, ECC implementation require to meet some constraints mainly area and

latency to fit in those applications. Several scalable ECC reported in the literature are

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-7

implemented in the software, hardware-software and hardware only. In [9, 63, 89, 90, 92],

authors presented scalable ECC targeteting for low resources applications. Their works

consumes many clock cycles, thus, their ECC consumes large time to compute point

multiplication. Again, they did not consider all NIST curves in [9, 63, 89, 91, 92] to reduce

complexity except in [90]. The author in [66, 93] consider scalable ECC hardware

implementation for server side application by considering 32-bit multiprecision multiplier and

large-digit size reduction circuit.

Low resource curve based scalable elliptic curve cryptography (ECC) requires

multiprecision arithmetic circuit to enable a flexible high security. There are the field

multiplication, square, addition and inversion operations are involved in the point

multiplication of ECC. For the low resource application, the area requirement is more profound

than the speed of the cryptography processor. The high complexity part is the field multiplier

when the multiplier is considered for doing the inversion operation. The multiplication mainly

contributes a major area when the inversion is performed by utilizing multiplicative inversion

in the point multiplication. To reduce the area of the multipliers, a low resource multiplier such

as a bit-serial multiplier, small digit-serial multiplier and multiprecision multiplier is

Figure 6.1 Row-wise and Column-wise multiprecision multiplication

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-8

considered. For the scalable ECC, the bit or digit serial multiplier based ECC consumes large

area. Thus, multiprecision arithmetic processor can offer different field sizes to ensure scalable

security in the same arithmetic module. The multiprecision multiplier is a key driver to enable

high security in the low resources application, for example, wireless sensor nodes and RFID

tags. The field of Multiprecision multiplier can be binary field and prime field. The polynomial

multiplication in the binary field is suited for hardware implementation as the multiplication is

less complex and faster due to carry free operation is involved.

6.2.1 Comba Multiprecision Multiplication over GF(2m)

Multiprecision multiplication can be considered for software or hardware-software or

hardware to implement large size (m) multiplication. Especially, a low-resource flexible

cryptography processor requires a small resource to accomplish large multiplication is now

increasingly considered for the hardware implementation to get highly efficient cryptography

systems. In this multiplication, the m size data divided into s number of w size (i.e. processor

data path) word. Using the multiprecision method, the w digit size single precision

multiplication (GF2MUL) is performed and accumulate the result in the multiprecision

techniques to obtain a mxm result is presented in the 2s-1 number of w word size data.

Multiprecision multiplication on the curve-based cryptography over the binary field is

accomplished in the two steps. Firstly, word level multiplication and secondly, reduction

Algorithm 6.1 Comba multiprecision multiplication of binary polynomials

Input: 𝐴(𝑥) = 𝐴𝑠−1, … 𝐴1, 𝐴0and 𝐵(𝑥) = 𝐵𝑠−1, … 𝐵1, 𝐵0 , each represented by an array of s single-

precision(i.e w-bit) words

Output: Product 𝐶(𝑥) = 𝐴(𝑥). 𝐵(𝑥) = 𝐶2𝑠−1, 𝐶2𝑠−2, … … , 𝐶0

(𝐻, 𝐿) ← 0

For i from 0 by 1 to s-1 do

 For j from 0 by 1 to i do

 (𝐻, 𝐿) ← (𝐻, 𝐿)(𝐴𝑗 . 𝐵𝑖−𝑗)

 end for

𝐶𝑖 ← 𝐿

𝐿 ← 𝐻, 𝐻 ← 0

end for

For i from s by 1 to 2s-2 do

 For j from i-s+1 by 1 to s-1 do

 (𝐻, 𝐿) ← (𝐻, 𝐿)(𝐴𝑗 . 𝐵𝑖−𝑗)

 end for

𝐶𝑖 ← 𝐿

𝐿 ← 𝐻, 𝐻 ← 0

end for

𝐶2𝑠−1 ← 𝐿

Return 𝐶(𝑥) = 𝐶2𝑠−1, 𝐶2𝑠−2, … … , 𝐶0

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-9

operation on the accumulated results. The first part can be mainly standard row base

multiplication (pen and pencil method) and standard column based multiplication is shown in

the Figure 6.1 respectively. The standard column based multiplication is better than the row

based multiplications for flexible (scalable) cryptography processors. Comba proposed a

column-based multiplication is presented for binary field in [88] is shown in the algorithm 6.1.

There are some other high complexity methods such Karatsuba-Ofman method [69] and row

style method (operand scanning algorithm) [87] that are not suitable for low-end application.

The Karatsuba-Ofman method involves with divide-and-conquer approach that requires large

memory space and repeated memory operations. Again, the operand scanning method has a

crucial problem of loading and storing operations of large partial results.

In the multiprecision multiplier the full-length operand, m is divided into s number of

w size words, s = m/w. Each of w size word of an operand multiplies each of w size of the other

operand. Then, the GF2MUL result is accumulated after addition operation with previous

results. The accumulated result is 2w size. There are total 2s-1 number of words of multiplier

result (Cs) at end of multiplication. The 2s-1 size multiplication result is required to reduce m

size multiplication result. To reduce the result, the trivalent and pentavalent irreducible

polynomial based well-known fast reduction methods are utilised [1]. Typically, in the case of

multiprecision multiplication, the GF2MUL needs 2s2 operations to complete the

multiplication without reduction. Again, to store the GF2MUL results, it needs 2s storing

operations. After then, the reduction unit takes large latency to achieve s number of words (m)

size of reduced multiplication result.

Multiprecision multiplier performs on small word size operation is suitable in the

device constrained (low power and low area) applications. The Multiprecision multiplier can

be implemented in the embedded processor (software), hardware-software and hardware only

design. The advantage of multiprecision circuit is to provide high security by implementing

large field size of ECC with small resources. The main disadvantage is the increase of latency

with the increase of the field size of ECC. The latency of complete field multiplication includes

read-write operation, GF2MUL multiplication and reduction operations. There several state of

the art of multiprecision multiplier are presented to reduce latency by offering parallel hardware

implementation [63, 91]. The state of the art presented in [63] considers hardware-software

implementation. They consider hybrid–Comba multiprecision multiplication to reduce

intermediate read write operation. They utilize a low area without significant improvement in

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-10

the overall latency. In [91], the authors improved latency using standalone hardware

implementation with parallel GF2MUL multipliers. In [66, 93], the authors targets high speed

scalable ECC is implemented in the hardware design. They focus on high speed is implemented

in 32 bit data path for server end applications. They mainly improve the latency of GF2MUL

multiplication using large digit multiplication and the latency of the reduction by considering

large-digit size reduction operation.

6.2.2 Multiprecision squaring over GF(2m)

Both digit squaring and full-precision squaring over GF(2m) in the hardware

implementation are free due to simple interleave zero operation. The crucial operation of the

squaring is the reduction operation. However, the dedicated (Full-precision) square needs

single clock cycle to square an m size operand; the dedicated squaring circuit is not suitable for

the scalable ECC due to large operand size and different irreducible polynomials (pentanomial

and trinomial). The multiprecision squaring with the interleaving zero operation of the input

is shown in the algorithm 6.2. The latency of multiprecision square circuit mainly depends on

read-write operation and linear squaring by interleaving zero followed by reducing operation

[88].

6.2.3 Multiprecision modular reduction over GF(2m)

In the finite arithmetic operations such as multiplication and square operation requires

modular reduction using irreducible polynomials, f(x) [1, 26]. The modular reduction operation

performs on the result of size of 2m-1 bit of multiplication or square operation to reduce m bit

Algorithm 6.2 Multiprecision squaring over GF(2m)

Input: 𝑎(𝑥) = 𝑎𝑠−1, 𝑎𝑠−2, … … , 𝑎0 𝑜𝑣𝑒𝑟 𝐺𝐹(2𝑚) where 𝑠 =
𝑚

𝑤
, 𝑤 = word size.

Output: 𝐶(𝑥) = (𝑎(𝑥))2 = 𝐶𝑠−1, 𝐶𝑠−2, … … , 𝐶0

St1: 𝑇(𝑢, 𝑣) ← (0.0)

St2: For I in 0 to s-1 (by one) do

 𝑇(𝑢, 𝑣) ← 𝑎𝑖 𝐴𝑁𝐷 𝑎𝑖

𝐶(2𝑖) ← 𝑣 𝑎𝑛𝑑 𝐶(2𝑖 + 1)) ← 𝑢

𝑇(𝑢, 𝑣) ← (0.0)

end for;

St3: Return 𝐶(𝑥)

Step4: Return C(x) = (C2s-1 , …, C1, C0)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-11

size of output. The reduction operation can be bit level or word level and full-precision

reduction operations [1]. For the multiprecision arithmetic operation, word level reduction

operation is suitable than full precision reduction operation due to area complexity for storage

large outputs (2m-1 bit). The multiprecision reduction operation can be left-to-right reduction

operation or right-to-left reduction operation or fast reduction [88]. For example, the left-to-

right word level reduction is more suitable in the software platform than the fast reduction for

NIST curves as the middle term, k of f(x) is closer to the other term [88] [1]. In the case of

hardware implementation, a word level left-to-right fast reduction can be better than software.

The fast reduction method can be suitable to design in the hardware architecture due to that the

flexibility of controlling data and the flexibility to modify the design in the hardware [9, 63,

66, 88-93].

6.2.4 Inversion and Multiprecision Addition over GF(2m)

Inversion in the finite field theory can be achieved using a standalone inversion circuit

(for example, the greatest divisor algorithm [94]) or using the multiplicative inversion [1]. In

the projective coordinates based ECC, the multiplicative inversion operation is performed by

using the existing resources (multiplier and square circuits). A basic algorithm for the

multiplicative inversion is Fermat’s little theorem (FLT) is cheaper than standalone inversion

circuit [1]. Itoh and Tsujii in [95] proposed a modified version of the FLT is widely considered

for the hardware implementation.

An addition operation in the finite field is simple bitwise xor operation of the two

operands over GF(2m); thus, addition operation does not need reduction operation. For an

addition in the word level operation, the total latency depends on the latency of data accessing

from memory and output storing to memory.

6.3 Implementing Multiprecision Multiplier over GF(2m)

6.3.1 Preliminary of the Multiprecision Multiplier over GF(2m)

Hardware based Multiprecision multiplication can be efficient, in particular, for the low

resources application; however, the multiprecision multiplication is widely considered for the

software implementation [9, 63, 66, 88-93]. Again, for a low resource with flexible (scalable)

cryptography processor, the ECC processor requires a small resource to accomplish large

multiplication with low delay (i.e. latency). Thus, the hardware implementation is increasingly

popular to consider a highly efficient cryptography system [9, 63, 66, 89-93]. Moreover, for

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-12

low power application, the hardware design can meet the requirement by optimizing area, time,

and latency.

In this chapter, we concentrate on Comba multiprecision multiplication algorithm over

GF(2m) is presented in [88]. The Comba multiprecision is also called column-wise or product-

scanning multiplication is popular for its less number of memory accesses of data as shown in

the algorithm 6.1. In the Comba algorithm, the multiprecision multiplier is divided into two

nested loops to define the indices of multiplier and multiplicand in the column-wise fashion.

Each nested loop has two loops such as outer loop and inner loop. The outer loop indexes the

multiplier operand and inner loop indexes the relative multiplicand operand. If the inner loop

is operated in a conventional processor, then there are total s2 operations such as two-load

operations in the each loop, a single precision GF2MUL operation, and an xor operation to get

partial sums. After each of the outer loop, a column of multiplication is completed is required

to store the result. Thus, there are total latency for a conventional embedded processor is such

as 2s2 load operations, s2 of single precision GF2MUL operations and a 2s number of store

operations is shown in the Table 1 in [88] . Hardware based multiprecision circuit can improve

latency abruptly as well as increase speed with small resource utilization [9, 63, 66, 90-93] is

suitable for low resource application.

There are few hardware-based design of the Comba multiprecision multiplier is

available in the literature. In [63, 91] a hardware Comba multiprecision multiplier is

implemented to enable a low resource ECC cryptography processor. The work in [91] is a

hardware-software ECC implementation while the multiplication is operating in the hardware

based multiprecision multiplier. They improve the latency of the GF2MUL multiplier by

considering additional GF2MUL multiplier as per their proposed hybrid Comba algorithm.

Again, they use separate reduction unit to reduce the results of multiprecision multiplier by

using the right-to-left reduction style. Their total latency for a multiprecision multiplication is

2𝑠2 + #𝑔𝑓2𝑚𝑢𝑙 + 2𝑠 + 21 + 3𝑠 where 2𝑠2 + #𝑔𝑓2𝑚𝑢𝑙 + 2𝑠 clock cycles for Comba GF2MUL

where # means “number of” operation and a latency for reduction is 21 + 3s clock cycles. The

latency for their GF2MUL depends on consideration of parallel operation of the multiplier. The

work presented in [93] and [66] consider Comba multiprecision hardware multiplier for the

high-speed ECC design. They consider 32-bit word size multiplier to reduce latency for both

multiprecision multiplication and the reduction of the result. Their design consumes clock

cycles of 1+s2+2 for Comba multiplication and an additional latency for reduction. Their

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-13

architecture started reduction operations start by shifting 160 bits of the multiplier output

results. Thus, their proposed reduction unit consumes extra latency along with extra hardware

for storing of large output and large multiplexer due to five curves outputs.

6.3.2 Proposed Comba Multiprecision Multiplier over GF(2m)

Polynomial multiprecision multiplication can be utilized by several schemes. The easiest

scheme is shift-and-add method that takes long delay to complete multiplications. Comba based

multiprecision multiplier is faster as it uses less memory access. The Comba algorithm

presented in algorithm 6.1 is generally considered for software implementation. Again, to

accelerate the multiprecision multiplication, a hardware implementation of the multiplier is

suitable to exploit the parallelism of the Comba algorithm. The hardware multiprecision

operation can be optimised more effectively than software platform when it is considering

parallel operation in the Comba algorithm. Moreover, the latency of multiplication increases

exponentially with an increase of the field size. Thus, the hardware design of the multiplier can

offer faster multiplication with small area overhead than software to multiply large operand in

the multiprecision style. A duplicating GF2MUL multiplier to operate in parallel can reduce

the latency for GF2MUL operation. The utilization of the parallel multipliers can be one of the

several options, including the parallel multipliers to multiply the words in the same column,

called mix row-column (hybrid method) and the parallel multipliers to multiply the words of

Algorithm 6.3 Proposed parallel Comba multiprecision multiplication of binary polynomials

Input: A (x) = (As-1, …, A1, A0) and B(x) = (Bs-1, …, B1, B0) , each represented by an array of s single-

precision(i.e w-bit) words

Output: Product C(x) = A(x) . B(x) = (C2s-1 , …, C1, C0)

Step1: (pH, pL) ← 0

 i’ = s-1

Step2: For j from 0 by 1 to s-1 do

 (pH, pL) ← (pH, PL) XOR (Aj AND Bi’-j)

end for

pTL ← pL

pTH ← pH

Step3: For i’ from s-2 by 1 to 0 do

(pH, pL) ← 0

 For j from 0 by 1 to i’ do

 (pH, pL) ← (pH, PL) XOR (Aj AND Bi’-j)

end for

pTL ← pL; Ci’+1 ← pTL XOR pH

end for

C0 ← pTL

Step1: (qH, qL) ← 0

 i’’ =s

Step2:For j from 1 by 1 to s-1 do

 (qH, qL) ← (qH, qL) XOR(Aj AND Bi’’-j)

end for

Cs ← qL XOR pTH

qTH ← qH; qTL ← 0

Step3: For i’’ from 2s-2 by 1 to s+1do

(qH, qL) ← 0

 For j from i’’-s+1 by 1 to s-1 do

 (qH, qL) ← (qH, qL) XOR (Aj AND Bi’’-j)

end for

If i’’= s +1 then

Cs+1 ← qL XOR qTH

Ci’’+1 ← qTL XOR qH

Else if i’’= s +1 then

qTL ← qL; Ci’’+1 ← qTL XOR qH

End if

end for

Step4: Return C(x) = (C2s-1 , …, C1, C0)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-14

different columns. The hybrid Comba (row-column mix) method approach of parallelization is

presented in the [63-91] to reduce the latency for the Comba GF2MUL operation. In their

proposed design, the Comba GF2MUL multiplication is performed first; after then, they use

separate reduction operation to reduce 2s-1 size result into s size result.

The parallel operation of Comba proposed in [63-91] can accelerate particular column

operation. Their Comba method reduces latency; however, there are several optimisations are

required to consider improving latency by using the advantage of parallelism of Comba

algorithm such as

 The Comba multiplier outputs are required to reduce in the reduction unit. In the hybrid

method, a parallel operation can accelerate a particular column operation. After then,

the data is stored until the required outputs are available to start the reduction operation.

If the parallel operation increases, then the latency of the GF2MUL operation decreases,

but the latency of the reduction operation will remain constant. Again, if the parallel

multipliers are used to get two separate columns, then the different outputs can be

achieved in the same time. The separate data can help to reduce data dependency to

start reduction.

 To increase parallel operation, the different column operations may require some extra

hardware such as registers.

 The reduction operation in the hybrid method is performed after completing Comba

operation. In this case, the large number of products is required to save in the registers

to start the reduction. Hence, the method requires a big storage.

Our proposed modified Comba multiprecision algorithm is a column-based multiplication

is presented in the algorithm 6.3. In our proposed algorithm, we consider several techniques to

utilize the resources in a better way to reduce latency such as:

 Our proposed multiprecision multiplier needs at least two multipliers. The two

multipliers multiply two columns from two separate upper loops. Thus, we get two

different column results using the two multiplier to reduce dependency in the reduction

operation.

 We utilise local registers to supply inputs to multiply. To reduce the latency of loading

inputs from main memory to local memory, we consider middle two columns of the

Comba algorithm for the first multiplication. We access data from main memory as per

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-15

middle column of Comba to save the inputs in the local register. We can get multiplier

input after one clock cycle of the loading operation. In this case, loading and

multiplication are performed simultaneously.

 After first step, we move to multiply the left most column to last column under the left-

side upper loop and the right-side upper loop continues the next column operation as

shown in the algorithm. For example, left-side upper loop starts from the C2s-1 column

and the right-side upper loop starts from the Cs-1 column of the Comba algorithm. As

the most significant outputs are available that are required to reduce the outputs of right-

side upper loop, the data dependency is very less to start fast reduction operation.

 The left-side upper loop (column from C2s-1 to Cs) is calculated earlier than then the right

side upper loop (column from Cs-1 to 0). The proposed multiplier provides the require

data concurrently to get reduced output. Thus, multiplication and reduction operation

perform concurrently.

 In the proposed method, the reduction operation performs in the word level without

storing large number of products. Thus, the proposed method saves area of the memory.

 The reduction operation performs on the fly with Comba multiplication; thus, we

manage to reduce the latency of reduction operation.

 The results of the reduction operation are saved concurrently in the memory; thus, the

proposed algorithm saves the latency of loading results after multiplication.

Our proposed multiplier needs minimum two GF2MUL multipliers to multiply two

columns simultaneously. There are two upper loops in the standard Comba algorithm. One of

the upper loops is dedicated to compute the products of C2s-1 to Cs and the other loop involves

to calculate the products of Cs-1 to 0. In our proposed algorithm, two multipliers multiply two

columns. One multiplier multiplies a column of Comba from one upper loop, and the other one

perform a column of Comba from another upper loop independently. Thus, in our proposed

method, the two multipliers generate two products. In the first step, the Comba multiplication

start with the columns such as s, and s-1. The s column consists all words of the multiplier and

multiplicand. Thus, we can save the two operands in the local memory when it is performing

the multiplication. After then, two upper loops included left upper loop, 2s-1 to s+1 and right

upper loop, s-1 to 0 are performed multiplication in the left to right Comba style. Thus, the

carry-word of the column Cs is required to save to use later. In the each loop operation, we get

a column of the multiplication result of size of 2w. The 2w result includes a w size partial

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-16

product (Ci) and a carry word. Carry word is added to the previous partial product of

multiplication in the next loop operation as shown in the algorithm.

In our proposed algorithm, left to right Comba multiplication is considered achieving

on the fly reduction. The left-side upper loops are finished earlier than the right side upper

loops. Thus, the products of the left side upper loop can be used for the generation of reduction

vector to utilise simultaneous reduction operation.

Our proposed algorithm can be modified for more parallel operations. Notably, the

proposed basic algorithm involves with the two multiprecision multipliers to compute one

column for each of the upper loops. To do the more parallel, we need to adopt two GF2MUL

multipliers for each case to accelerate the multiplication for a given data path. For example, to

achieve parallelization, we need 2x multipliers where x can be 1,2,3,4 or more with an overhead

of area complexity. The parallel multipliers of each upper loop perform multiplication on the

consequent column at a time. For example, if we use two multiplier for each upper loop, then,

the parallel operation is performed on the two columns such as Ci and Ci-1 where i = (2s-1 to 0)

of the each loop. The limit of the consideration of more parallel operations of the proposed

multiplier depends on the area and time tradeoff.

Figure 6.2 Proposed Comba multiprecision multiplier over GF(2m)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-17

6.3.3 Implementation of Proposed Comba Multiprecision Multiplier on FPGA

We propose a standalone architecture of the multiprecision multiplication circuit to

support on the fly reduction. The proposed 8-bit data-path multiplier circuit is depicted in

Figure 6.2. The proposed Comba algorithm has two upper loops and each upper loop has one

inner loop. Both upper loops complete 2s-1 numbers of inner loop. The left-side circuit

performs the inner loops of 2s-1 to s (q-block) and the right-side circuit performs the inner

loops of s-1 to 0 (p-block).

 The proposed multiplier architecture consists two GF2MUL multipliers to perform

multiplication on the two columns where each column for each of the upper loops. In the

parallel, each of the multiplier operates independently utilizing separate 2xm register file. In

the beginning step, two operands (a and b) are loaded in the local register file. The data from

local registers are used for multiplication. Thus, we can start the multiplication after one clock

cycle of the start of the load operation. The load operation and multiplication operation are

performed simultaneously in the first step. In this step, one multiplier (left side) performs the

GF2MUL operation on s column and the other multiplier performs the GF2MUL operation on

the s-1 column of the Comba algorithm. We consider the s-1column for the first GF2MUL

operation as the column consists all s-1 operands of a and b. Thus, a and b inputs are

simultaneously loaded in the local register when the multiplication is performed. After 1st step,

the p-block and q-block perform multiprecision multiplication from left to right Comba style

multiplication operation. A dedicated finite state machine for each multiplier block. Thus, the

separate loops are performed independently (is not shown in Figure 6.2).

The Comba multiprecision algorithm is a column-wise multiplication included

multiplication and accumulation. Two w-size operands are inputted to each of the multiplier

(GF2MUL) from local registers and the output of multiplier is 2w (two word size) result. The

2w-size result is divided into upper word (i.e. pH) and lower word (i.e. pL) as shown in the

Figure 6.2. The accumulator performs a 2w-size addition (i.e. xorH and xorL) using the inputs

of current GF2MUL result and previous accumulated result. Finally, the addition result is saved

in the accumulator registers (i.e. SRD5, SRD4, SRD3, and SRD1) as shown in Figure 6.2. A

sequence of the GF2MUL multiplication and accumulation are accomplished in a column of

Comba algorithm. Each of the columns produces a 2w size (for example, 16 bit for 8 bit data

path) of the result. At the end of each column operation, the upper word (i.e. pH) is used to

generate new products and lower word (i.e. pL) is stored to add to the upper word of the next

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-18

loop output. In particular, the upper word (i.e, pH for p part and qH for q part) is performed

xor with previous lower words (pL for p part and qL for q part) to give final multiplication

results in the left to right Comba style algorithm. The previous lower words are stored in the

temporary registers (i.e. SRD2 and SRD7) along with the clear operations of the accumulator

register after every inner loop of Comba algorithm operation. The upper word is always added

with the previous calculated lower word except the leftmost column (2s-1) and right most

column (0th). In the case of the leftmost column, pH of the result is the multiplication result of

the most significant column, C2s-1. Similarly, in the case of right most column (0th) of Comba

algorithm, the lower part of the multiplication output, pL is the result of the 0th column, C0.

In the left to right method of Comba, the column of 2s-2 result is appeared after the

multiplication of the column of 2s-3 is completed and so on. Again, in our modified algorithm,

the sth column result, Cs is calculated by using pH of s-1th column and pL of sth column. The

pH of sth column is saved in the temporary resister, SRD6 before starting of the left-to-right

multiplication (from the column of 2s-1 to s+1) in the step2 of the proposed algorithm. At the

end of the left-side upper loop, after completing s+1th column, we get the result of (s+2)th

column and in the next clock cycle, we get the result (s+1)th column by using stored pH of sth

column from SRD6 (as the sth column is already calculated in the beginning step). Thus, our

left-side loop (q part for 2s-1 to s) completes Comba multiplication well before (s-4 clock

cycles) the finishing of the right-side part (p part for s-1 to 0). The advance calculation of the

columns of 2s-1 to s reduce data dependency for the fast reduction operation.

 6.3.4 Implementing Two-and-two GF2MUL based Multiprecision Multiplier on FPGA

We can improve performance of the proposed by parallel operation of the proposed

multiprecision multiplier with small hardware resource overhead. We can use additional

GF2MUL multipliers without using extra 2m–size register file. We propose a parallel multiplier

architecture with two parallel multipliers for each of the upper loop of Comba algorithm is

depicted in Figure 6.3. The multipliers perform the GF2MUL operation on the two consequent

columns of each upper loop. We can manage two different sequences of the two consequent

columns by using a delay circuit. For example, if there are two consequent columns such as s-

1th column and s-2th column then, the sequence of inputs of the s-1th column are a0bs-1, a1bs-

2, … as-1b0 . Again, the sequence of inputs of the s-2th column are a0bs-2, a1bs-3, … as-2b0. The s-1th

column has one more sequence than s-2th column. We can use a simple delay circuit to delay

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-19

the ‘a’ input for one clock cycle. The delayed ‘a’ input is aligned with ‘b’ input to maintain the

sequence of inputs of the s-2th column. Thus, we need to put a register to delay ‘a’ input in the

right-side upper loop. Similarly, we need to put a register delay on the ‘b’ inputs of the left-

side upper loop to get the required sequence of inputs of the next column (the column with a

smaller sequence of inputs). In the right side, we use a delay (SRD1) on the input of ‘a’, whereas

in the left side, we use a delay (SRD2) on the input of ‘b’. Thus, the smaller column is started

the GF2MUL operation after one clock cycle of the column of longer sequences. The both

columns are finished GF2MUL operations at the same time.

According to our proposed algorithm, in the first step (loading and multiply), the

proposed architecture completes the GF2MUL operation on the column of s+1 and s in the left-

side upper loop and s-1 and s-2 in the right-side upper loop. We get multiplication results of

column of s+1th, sth and s-1th in the beginning step. We save pH of s+1 in a temporary

register, SRD12 as shown in the Figure 6.3. After then, the left to right Comba style

multiplications is performed by considering two columns in each time (using two multipliers)

from the leftmost columns of left-side upper loop such as 2s-1th and 2s-2th and so on. In the

same time, two other multipliers are multiplying two consequent columns of the right-side

upper loop such as s-2th and s-3th and so on. Thus, two inner loops of an upper loop are

performed at each iteration.

Figure 6.3 Proposed two-and-two GF2MUL based Comba multiprecision multiplier over GF(2m)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-20

6.3.5 Implementing Four-and-Four GF2MUL based Multiprecision Multiplier on FPGA

A further parallel architecture is proposed utilizing 4 multipliers for each of the two

upper loops of the Comba algorithm is shown in Figure 6.4 In the proposed architecture, we

extend the proposed architecture in Figure 6.3 to improve performance and also evaluation of

the proposed parallel approach. In this architecture, the inputs of a of the longer-sequence

column are delayed by 1, 2, and 3 clock cycles in p-block to retain the sequences of the 4

consecutive columns of the right-side upper loop of the Comba algorithm. Similarly, b inputs

of the column with longer sequences in left-side upper loop (the q block) is delayed by 1, 2 and

3 clock cycles to maintain sequence of the consecutive 4 inner loops (columns) of left-side

upper loop. Thus, the proposed architecture can produce 4 multiplication results in each of two

blocks in each iteration. The circuits can calculate GF2MUL operations with ½ of latency of

the proposed architecture of Figure 6.3 and with ¼ of latency of the architecture proposed in

Figure 6.2 (page 6-16) with small resource overhead (registers for delay and multiplexers to

serial outputs).

6.3.6 Implementing On-the-fly Reduction Unit for Multiprecision Multiplier on FPGA

We propose a novel architecture of reduction circuit as an integral part of the

multiprecision multiplier over GF(2m). In this architecture, we propose a multiprecision

reduction unit to reduce 2s-1 number of words of multiplier result to s-1 number of words of

multiprecision multiplier output in the left to right fast reduction approach. The proposed

reduction circuit can be implemented to accomplish fast reduction method over all the binary

Figure 6.4 Proposed four-and-four GF2MUL based Comba multiprecision multiplier over GF(2m)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-21

elliptic curves of NIST such GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571). The fast

reduction operation is performed in the word level using the available outputs of the multipliers.

As the left-side upper loop outputs are available before the right-side upper loop outputs, thus,

the reduction operation is performed on the fly along with the Comba multiprecision

multiplication.

The reduction operation over GF(2163) and GF(2233) are discussed in Figure 6.5 and

Figure 6.6 (page 6-24)to demonstrate pentanomial and trinomial based reduction operation

respectively. In the pentanomial based reduction polynomial, the second highest non-zero

terms of the NIST fast-reducible polynomials are lying closer to each other of the non-zeros

terms. As the position of highest second-nonzero term is at the 12th bit for 571, 10th bit for 283

and the 7th bit for 163, the dependency of data is very low to generate reduction vectors (to add

to the outputs of left-side upper loops). For example, three consequent outputs (3 words for 8-

bit data path) of the left-side loop in 571 are required to generate reduction vectors.

 In the Figure 6.5, the inputs (p and q) of the reduction circuit are the p and q outputs

of p-block and q-block of the multiprecision multipliers respectively. The q inputs are inputted

from C2s-1 to Cs and the p inputs are inputted from Cs-1 to C0. In the case of the parallel

multiprecision multipliers, the parallel inputs of p and q are required to convert parallel to serial

Algorithm 6.4 Fast reduction modulo ∫(𝑥) = 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1 (with 𝑊 = 8))

Input: A binary polynomial degree of at most 324 𝑐(𝑥) is divided into two binary polynomials: 𝑞(𝑥)

of degree from 163 at most 324 are q[20],…, q[1],q[0]= (p[20] & x07) and 𝑝(𝑥) of degree from 0 to at

most 162 are p[20], p[1],p[0].

Output: 𝑐(𝑥) mod ∫(𝑥).

Step1: For i 20 down to 0 and q-1, q-2 = x”00” are extra q inputs after q[0]

 Lv <= q[i]<<5

 Mv <= q[i]<<4 xor q[i] xor q[i]<<3 xor Lv

 Fv <= q[i]<<5 xor q[i]<<4 xor Mv

 If i=< 18 then

For j 20 down to 0

If j=< 1 then c(j) <= Fv[j] xor p[j] xor Ev (j)

Else

c(j) <= Fv[j] xor p[j]

end

end

Ev(1) <= (00q325q324q323q322q321q320) xor (0000q325q324q323q322)

Ev(0) <= (q319q31900q31900q319) xor (q321(q325 xor q322 xor q320)(q324xor q322 xor q321))(

q323xor q321 xor q320)(q322 xor q320) (q325 xor q322 xor q321))(q324xor q321 xor q320)

(q323xorq320))

Step2: Return c[20] , …c[1],c[0]

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-22

as shown in Figure 6.5. Our proposed pentanomial based reduction operation over GF(2163) is

presented in the algorithm 6.4. The proposed reduction architecture consists two main blocks.

The left side (main block) block generates the regular reduction vectors such as Lv, Mv and Fv

vectors as shown in the algorithm 6.4. The extra vectors such as Ev1 and Ev0 vectors are also

generated in a separate block followed by saving in a local register file. The extra vectors are

used to reduce the least consequent words (Ev1 and Ev0 vectors over GF(2163) are used to

reduce 1st and 0th words) as shown in the algorithm 6.4.

 For each of the q inputs, new Fv, Mv and Lv vector is generated. The typical vectors of

Fv, Mv and Lv for a q input, qy as shown in a tabular form in the Table 6.1. In the Table 6.1,

the vector, Lv for a q input (qy) is saved in the delay register to add to next partial Mv vector

(will be generated by the qx input) to get a next Mv vector. The current Mv vector is the addition

of the partial Mv vector of qy and the old Lv vector (generated by qz). The current Mv vector is

Figure 6.5 Reduction unit of multiprecision multiplication

Table 6.1 Lv, Mv, Fv vectors generation over GF(2163)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FV MV LV

 qz qy7 qy6 qy5 qy4 qy3 qy2 qy1 qy0 qx

qz qy7 qy6 qy5 qy4 qy3 qy2 qy1 qy0 qx

qz qy7 qy6 qy5 qy4 qy3 qy2 qy1 qy0 qx

qz qy7 qy6 qy5 qy4 qy3 qy2 qy1 qx qx

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-23

saved in a delay register. Similarly, the current Fv vector is the addition of the partial vector of

the qy and the old Mv vector. The Fv vector is saved in the SRD3 to add to the p input to generate

a reduced multiplier output (except the last several outputs as shown in the algorithm 6.1) as

shown in the Figure 6.5. To generate last two final vectors over GF(2163), we need to add Fv

vectors with the respective extra vectors (i.e. Ev1 and Ev0) to generate final vectors to add with

the last two p inputs as shown in the Figure 6.5. Notably, the extra vectors, Ev1 and Ev0 are

generated by using C2s-1 and C2s-2 of q inputs. The extra vectors are generated and saved in the

SRD5 in the beginning of Comba multiplication. Finally, the proposed reduction operation is

performed concurrently with the Comba multiprecision multiplication.

The reduction outputs depend on the generation of Fv vectors. To generate a Fv vector,

the required q inputs should be available well before (i.e. 3 consequent words for the case

GF(2163)) the targeted p input. If the p input is available before the required Fv vectors, then

the p input is delayed by using a delay register. In the case parallel multipliers (Figure 6.3 and

Figure 6.4) based Comba operation, the delay may incur few clock cycles is negligible as

compared to total clock cycles for a multiplication.

The trinomial based fast reduction operation of over GF(2233) and GF(2409) is also

performed in the left-to-right fast reduction. The crucial problem in the reduction operation

using the trinomial irreducible polynomials is the difference between the consequent non-zeros

terms in the polynomial. For example, the second highest non-zero bits of the trinomial

reduction polynomials for GF(2233) and for GF(2409) are at 74th bit and 87th bit respectively.

The difference incurs extra latency to complete reduction operations. We propose a reduction

method over a trinomial curve to achieve on the fly reduction is shown in the algorithm 6.5. In

the algorithm 6.5, we present reduction operation over GF(2233) which is implemented in the

hardware as shown in Figure 6.6. In the figure, the multiplier inputs are inputted as p inputs

from 232 bit to 0 bit (in words, 29 to 0 as shown in the algorithm 6.5) and q inputs from 465 to

233 bits (in words, 29 to 0 as shown in the algorithm 6.5). As the q inputs are available as a

sequence of words of 29,…, 0; the first reduction-vector generation depends on the 19th word

due to second non-zero term of the polynomial. We need to delay 29 to 20 words (in the SRD1

as shown in Figure 6.6) to align with the sequence of 19,.., 0 to start vector generation (in step1

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-24

and step2 as show in the algorithm 6.5). Again, we to save 29 to 20 words (in the SRD5 as

shown in Figure 6.6) to generate extra vectors (Ev1 and Ev0 as shown in the step1 of algorithm

6.5).

 A reduction vector (Fv) is generated by using current input and previous input q. The

reduction vector is added with the p inputs to get reduction output. The Mv vector is generated

using current input followed by saving in the delay register. The delayed Mv vector is added to

current input to generate Fv vector. Thus, the Fv vector is the resultant addition of current input

and Mv vector.

Algorithm 6.5 Proposed fast reduction modulo ∫(𝑥) = 𝑥233 + 𝑥74 + 1 (with 𝑊 = 8)

Input: A binary polynomial degree of at most 465 𝑐(𝑥) is divided into two binary polynomials: 𝑞(𝑥)

of degree from 233 at most 465 are q[29],…, q[1],q[0]= (p[29] & x03) and 𝑝(𝑥) of degree from 0 to at

most 232 are p[29], p[1],p[0].

Output: 𝑐(𝑥) mod ∫(𝑥).
Step1:

Step2:

Step 3:

Step4:

Step5:

Step 6:

Step7:

For i= 29 to 0 then by one

 If i= 29 to 20 then

 Lv[i]<= q[i]

 T[t] <= q[i]

 end if

 if i= 19 to 0 then

 Lv[i]<= q[i]

end if

end for

For n= 29 down to 0 then by one

If n= 29 to 11then

Mv <= Lv[n] <<7 xor q[n-10]<<1 {n-10= 20,…,1}

Fv[n] <= Lv[n] >>1 xor q[n-10]>>7 xor Mv

End if

If n= 10 then

Mv <= Lv[n] <<7 xor q[n-10](6 t0 1) &0x”00”)

Fv[n] <= Lv[n] >>1 xor q[n-10]>>7 xor Mv

End if

If i=9 to 0 then

Mv <= Lv[n] <<7

Fv[n] <= Lv[n] >>1 xor Mv

End for

For j= 29 down to 0 by one

 If j= 29 to 19 then

 c(j) <= Fv[j] xor p[j]

 else If j= 18 to 10 then

 c(j) <= Fv[j] xor p[j] xor Ev1(j-9)

 else if j=< 9 to 0 then

 c(j) <= Fv[j] xor p[j] xor Ev1(j-9) xor Ev0 (j)

end if

For m= 9 down to 0 by one

T2 <= T[m]<<2

Ev1[m] <=T[m-1]>>6 xor T2

Ev0[m] <=T[m]

End for

Return c[29] , …c[1],c[0]

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-25

The final reduction outputs from 29 to 20 depend on the Fv and p inputs. The extra

vector Ev1 (1st vector as shown in the Figure 6.6) is required to add during 19 to 9 and extra

vector Ev0 (0th vector as shown in the Figure 6.6) is required to add during 9-0 inputs of p

inputs as shown in the algorithm 6.5. At the 9th input, the Ev1 and Ev0 (both are exclusive each

other) added with p inputs. We need to remove undesired bits of Ev1 and Ev2 (in step 3) as

shown in the ‘interface’ of Figure 6.6. As the q inputs of the reduction unit such as 29 to 20 are

inputted in the starting, thus, the extra vectors such as Ev1and Ev0 are generated concurrently

to add with the targeted p inputs as shown in the algorithm 6.5. However, the both q and p

inputs are inputted concurrently; the q inputs are calculated (due to a lower sequence of

column) well before the p inputs. The required reduction vector (Fv) is calculated followed by

saving in the SRD3 to add to the respective p input. Thus, the trinomial-based reduction

algorithm can manage on the fly reduction with the Comba multiprecision multiplication.

Figure 6.6 Scalable multiprecision multiplier reduction over GF(2233)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-26

The reduction algorithm for GF(2409) is similar to the GF(2233) except the power of the

second non-zero element of the irreducible polynomial.

6.3.7 Analytical Comparison of multiprecision multipliers on FPGA

The proposed multiprecision multiplier with reduction is implemented on Sparatan3

and Sparatan6 FPGAs to evaluate the performance of proposed parallel architectures using

Xilinx tool, ISE14.5. In the Table 6.2 shows the theoretical latency and in the Table 6.3 presents

resources (Slices, Luts and FFs after Synthesis), maximum frequency and latency over

GF(2163) of the proposed multiplier (Mul(1&1) and its parallel forms such as Mul(2&2) and

Mul(4&4) respectively.

 In our proposed architecture, the latency to complete a multiprecision multiplication

with reduction depends on the latency of the p inputs provided by Multiplier. For our proposed

architecture of Figure 6.2 (page 6-16), (Mul(1&1)), provide p inputs over GF(2163) in the

sequence of clock cycles such as 1, 22,20,19,18,…,3,2,1,and 1. At the start of the

multiplication, we need 1 clock cycle for loading in the local register and in the beginning step,

we need 22 clock cycles where 21 clock cycles for Comba operation in the right to left style

and to switch left to right style of Comba, it takes 1 extra clock cycle. After then, the Comba

multiplication follows a sequence as like as 20,19,…3,2,1. Finally, we need 1 extra clock cycle

to get the final p multiplication result (right most column). We can write the sequence as like

Table 6.3 Area and maximum frequency of the proposed multiprecision multiplier over GF(2163) on FPGA

FPGA Slices (Sls) LUTs FFs Max. Freq, MHz # Clk Cycles(s=21)

Mul(1&1)

S3 391 652 120 103

234

S6 162 444 137 172

Mul(2&2)

S3 611 1014 130 102
125

S6 238 701 145 176

Mul(4&4)

S3 891 1417 139 97
77 S6 251 918 139 162

S3- Spartan 3, S6- Spartan 6

Table 6.2 Latency of the proposed multiprecision multiplier

Arithmetic Operation #load #Comba Mul #Reduction # Clk

Cycles(s=21)

Multiprecision Mul with

2 Multipliers (Mul(1&1))

1 ((s(s+1))/2) + 2 0 234

Multiprecision Mul with

4 Multipliers (Mul(2&2))

1 [{((s+1)/2)(s +1)}/2] +3

0 125

Multiprecision Mul with

8 Multipliers (Mul(4&4))

1 ([{(s+3)/4}(s +1)]/2) +7 3 77

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-27

as (21+20+19+…+ 3+2+1)+3. Thus, Our total latency of the multiprecision multiplication

with reduction of the proposed Mul(1&1) is (s(s +1)/2) +3 ≈ 𝑠2

2⁄ where s2>>3.

 The parallel architecture as shown in the Figure 6.3 (Mul(2&2)), provides p inputs(two

inputs at a time) in a sequence such as 22, 19, 17… 5, 3, 1,1, and 1. In the Figure 6.3 (page 6-

19), the proposed architecture takes 1 clock cycle for loading, 1 clock cycle for switching

Comba style and 1 clock cycle for final output as like as Figure 6.2 (page 6-16) and the Figure

6.3 takes 1 extra clock cycle for parallel to serial conversion. Therefore, in our proposed

architecture in Figure 6.3, the Mul(2&2) takes (((s/2)(s +1))/2) +4 clock cycles.

Finally, our proposed architecture in Figure 6.4 (page 6-20) (Mul(4&4)) follows a

sequence of p inputs such as 25, 17, 13, 9, 5, 1, 1, 2, and 3. Similar to previous architecture,

the proposed multiplier consumes 1 clock cycle for loading. After then, the multiplier takes 25

clock cycles for the first 4 columns of the proposed Comba algorithm. In this step, the Comba

operation performs multiplication in the right to left style. After then, the Comba multiplication

is performed in the left to right style. Thus, out of 25 clock cycles, 3 clock cycles are used to

convert parallel to serial and to switch the multiplication style. In the last step, 2 clock cycles

are used for serialisation of the multiplier results to apply in the reduction unit. Apart from this

extra delay in the multiplication, there is a delay in the reduction unit to generate reduction

vectors for the last three outputs because of delay reduction vector generation (the last q inputs

and p inputs are available in the same time). Our reduction unit takes 3 clock cycles to generate

respective reduction vectors to reduce last three p inputs. Thus, Mul(4&4) consumes the total

latency for multiprecision multiplication with reduction is ((((s+3)/4)(s +1))/2) +11 clock

cycles.

We illustrate the results of the multipliers are shown in the Figure 6.7 as area vs

proposed multiplier, latency vs proposed multiplier and max. frequency vs proposed multiplier

over GF(2163). In the Figure 6.7, the Mul(1&1) included 2x8bit GF2MUL for the Comba

operation and reduction circuit consumes 391 slices. The parallel multipliers, Mul(2&2) and

Mul(4&4) consumes 611 and 891 slices respectively. The Mul(2&2) uses twice as resources of

GF2MUL as the resources of Mul(1&1) and The Mul(4&4) uses four times more resources of

GF2MUL than Mul(1&1). The parallel version consumes comparatively less slices to provide

better latency performance as shown in the Figure 6.7. For example, The Mul(2&2) consumes

very low latency, 125 clock cycles and the Mul(4&4) utilizes only 77 clock cycles. Thus, the

latency reduces abruptly by consuming small resources. The frequency of the three multipliers

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-28

is similar as shown in the Figure 6.7. Finally, the latency can be reduced significantly with

small overhead of resources; thus, the proposed parallel operation can improve performance of

ECC.

The latency of the proposed Comba multiplication with reduction is compared with

previous reported relevant multipliers is shown in Table 6.4. In this table, the Comba

multiprecision multiplier is implemented in the software [88, 89], hardware-software [91] and

hardware only platform [63, 66, 93,]. The software implementation in [88] is implemented in

Figure 6.7 Area, latency, max. frequency vs proposed multiplier over GF(2163)

391

611

891

0

100

200

300

400

500

600

700

800

900

1000

Mul(1&1) Mul(2&2) Mul(4&4)

A
re

a
(S

li
ce

s)

Proposed Multiplier

Area vs Proposed Multiplier 234

125

77

0

50

100

150

200

250

Mul(1&1) Mul(2&2) Mul(4&4)

L
at

en
cy

 (
C

lo
ck

 C
y
cl

es
)

Proposed Multiplier

Latency vs Proposed Multiplier

103 102

97

92

94

96

98

100

102

104

106

Mul(1&1) Mul(2&2) Mul(4&4)

F
re

q
u
en

cy
 (

M
H

z)

Proposed Multiplier

Frequency vs Proposed Multiplier

Table 6.4 Comparison of the proposed multiplier with the relevant multipliars

Ref. Multiplication latency, 𝑡𝑚𝑢𝑙 GF(2163),

Clock

cycles

GF(2571),

Clock

cycles

Platform:(resources)

 load Comba Mul Reduction others 𝑠 = 21 𝑠 = 72 Platform & Mul

[88] 2𝑠2 3𝑠2 + 2𝑠 5𝑠2 − 2𝑠 0 4,410 51,840 S (ISE) (16-bit ALU)

[89] 20 + 110𝑠2 + 28𝑠 45(s+1) - 50,108 575,561 S: (8-bit ALU,

PicoBlaze)

[66] 1 𝑠2 2
+ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

3 447+

 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

5187+

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

H (1x32-bit

GF2MUL and full-

precision reduction)

[91] 2(14𝑠2 + 14𝑠) 2(131+30(s-

3))

- 13,738 149,500 H/S: (3x8-bit

GF2MUL)

[63] 2𝑠2 + #𝑚𝑢𝑙𝑔𝑓2
+ 2𝑠

21 + 3𝑠 - 1,169 12,525 H: (3x8-bit

GF2MUL)

ours 1 (𝒔𝟐 + 𝒔)/𝟐 0 2 234 2,631 H (2x8-bit GFmul2)

H= Hardware, S=Software, Hardware/Software= H/S, #𝐺𝐹2𝑀𝑈𝐿= estimated

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-29

a 16-bit data path based embedded processor. The latency is very high for both Comba

multiplication and reduction due to frequent memory access and instruction delay. They

consider reduction operation in the left to right method for pentanomial-based curve consumes

higher latency than their trinomial-based reduction operation. In [89], a pure software

implementation of Comba implementation is implemented in the embedded processor,

PicoBlaze. The PicoBlaze implementation consumes very high latency for the both Comba

multiplications and right to left reduction operations. To improve the latency problem in the

software implementation, the Comba multiprecision multiplication is implemented in the

hardware as an integral part of the embedded processor (using an instruction set extension)

called hardware-software implementation. In [91], a Comba multiplication is implemented in

the hardware and the embedded processor performs the control operation. In the [91], three

GF2MUL units (3x8 GF2MUL) are used to improve their performance (in particular, latency)

using small area overhead. Their implementation still consumes large number of clock cycles

(13,738 clock cycles over GF(2163)) to compute multiprecision multiplication, however, they

can manage their improvement of latency when it is compared with their software

implementation in [89] (50,108 clock cycles). To reduce latency, a standalone Comba

multiprecision multiplier is required to implement in the hardware platform (i.e. FPGA). The

hardware implementation consumes low latency due to the very low word level memory

operation and dedicated control unit (low or no instruction delay). Moreover, the latency can

be reduced abruptly by duplication of resources with small area overhead. In [63], a hardware

implementation is presented based on three GF2MUL multipliers. The hardware

implementation consumes lower latency such as 1169 clock cycles for multiprecision

multiplication with reduction as compared to their both software [88, 89] and hardware-

software [91] implementations. In [66], the Comba multiprecision multiplier is implemented

utilizing 32-bit data path that is targeted for the high speed design. The large digit (32 bit) based

multiplier is simpler to implement than 8bit data path based. If the architecture in [66] would

be designed for 8-bit data path, then their architecture potentialy consumes higher latency than

our proposed multiplier.

Our proposed Comba multiplication is implemented in the hardware as a standalone

multiplier. The proposed multiplier need minimum two GF2MUL multiplier. The standalone

multiplier can start multiplication by using one clock cycle for the loading operation. The both

multipliers perform multiplication on the two separate upper loops of Comba individually to

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-30

provide the necessary multipliers outputs to the start reduction. Thus, Comba multiplication

and reduction are performing in concurrently. The proposed hardware design reduces the

latency lower than the theoretical limit as the multiprecision multiplication performs by free

reduction operation. For example, the theoretical latency for the multiprecision multiplications

is included a load operation(s clock cycles), the GF2MUL operations (s2), a latency for

reduction (#clock cycles for reduction) followed by storing (s clock cycles). If two GF2MUL

are used, then the theoretical latency of Comba GF2MUL operation is s2/2 excluding other

latency (latency of the load, reduction and store operations). Our proposed architecture can

save latency for loading, reduction, and storing to achieve a very low latency of ≈
𝑠2

2
 clock

cycles. For example our, multiplier with 8 bit data path consumes 234≈ 221 (where s=21)

clock cycles for Comba multiplication with reduction operation over GF(2163). Our proposed

parallel multiplier reduces drastically the clock cycles using less resources (2x8-bit GF2MUL)

as compared to the presented multipliers (3x8-bit GF2MUL) in [63].

We save both the latency of the reduction operation and a large area to store large multiplier

outputs for reduction [63]; however, we use extra hardware for local memory to save inputs of

the multiplier. Moreover, our proposed multiplier performs the reduction operation on the fly

Algorithm 6.6 Proposed multiprecision squaring over GF(2163)

Input: A (x) = (As-1,…, A1, A0) represented by an array of s single-precision (i.e. w-bit) words

Output: Product C(x) = A(x)2 mod f(x)

Step1. (pH, pL) ← 0; (qH, qL) ← 0

For i from s-1 by 1 to (s-1)/2{20 t0 10}

Step2: (qH, qL) ← (Ai)2 [interleave zero]

If i=(s-1)/2

(qH, qL) ← (qH, qL) & (x07,00)

End if

Lv← qL<<5

Mv← qL>>3 xor qL xor qL<<3 xor qL<<4 xor qH<<5

Fv← qH>>3 xor qH xor qH<<3 xor qH<<4 xor qL>>5 xor qL>>4 xor Lv

FFv← qH>>5 xor qH>>4 xor Mv

Step3: (pH, pL) ← (A(i-((s-1)/2)))2 [interleave zero]

j= 2i -(s-1)

If j=0 then

C1 ← C1 xor Ev1{(0,0,0,q324,0,q322,0,q320) xor (0,0,0,0,0,q324,q322)}

C0 ← FFv xor pH xor EV0{(0,(q322 xor q320),(q324 xor q322), q320,(q322 xor q320) ,q322 ,(

q324 xor q320), q320)}

else

Cj ← FFv xor pH

Cj-1 ← Fv xor pL

End if

end for

Return C(x) = (Cs-1,…, C1, C0)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-31

irrespective of the position of second non-zero element in the reduction polynomial. Thus, our

proposed method can be used for the multiplication with on the fly reduction operation

independent of the structure of reduction polynomial. Again, as our standalone multiplier used

local memory for the operands (multiplicand and multiplier), thus, the main memory can be

utilized for other operations concurrently with the multiplication.

6.4 Implementing Proposed Multiprecision Square Circuit

Multiprecision square operation is a linear operation over GF(2m) is achieved by

interleaving zero in the input followed by reducing operation in the digit level. The main

operation of the squaring over GF(2m) is the reduction operation. In general, the digit squaring

operation of an input with s words require 2s clock cycles (2 clock cycles for each word

squaring). After the digit squaring, the 2s words are saved for the reduction operation. Thus,

squaring operation with reduction may share a significant latency [89] of the total latency of

ECC point multiplication, in particular, in the software [88, 89] or in the hardware-software

platform [91]. The hardware based squaring is free operation (only need load and interleave

zero) as compared to software based implementation (need load, GF2MUL operations and

storage of 2s words of squaring output for the reduction operation) [63, 66, 88-91]. There are

several hardware based square circuits reported in [63, 66, 91]. However, their works show low

latency of squaring operation due to hardware implementation. They did not consider further

major optimization of square circuit to reduce latency. The latency of the reduction is required

to be low in the case of low latency multiprecision multiplication. The latency of the squaring

with reduction operation can be improved in the hardware implementation by utilizing the

flexibility of FSM based addressing is discussed in this section.

6.4.1 Novel Architecture of Multiprecision Square Circuit with On-the-Fly Reduction

The digit (word) square operation produces two digit size outputs for each digit operation.

After squaring of s number of words, we get 2s-1 size outputs. As the square of each word (w)

generates two-word size result, the digit squaring performs in the every two-clock cycles. For

example, the squaring of the 0th word of s input words produces two words output such as 0th

and 1st words of the 2s-1 result. the next input (1st digit) is delayed by one cycle to square that

produce 2nd and 3rd words of output. Thus, s number words take 2s clock cycles for squaring

operation.

We propose a novel multiprecision square algorithm is shown in the algorithm 6.6 that can

square s number words by using only s clock cycles along with on the fly reduction operation.

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-32

In this algorithm, we square s-1 words by addressing in a sequence of s-1, (s-1)-((s-1)/2), (s-

2), (s-2)-((s-1)/2)… 1, (s-1)/2, 0 to square s words by using s clock cycles as shown in the step2

and step3 of the algorithm. We merge two sequences such as s-1,-, s-2,-,…,-, 0 and (s-1)-((s-

1)/2), -, (s-2)-((s-1)/2),-,…, -,(s-1)/2 so that the proposed alternate sequence still allows

successive inputs of a particular sequence to do square in every two clock cycles. The alternate

sequences offers several advantages such as :

 The square operation of s words can be achieved using only s clock cycles.

 The reduction operation can be started after one-clock cycle of staring.

 The 2s-1 outputs does not require saving for the reduction operation.

 Finally, no delay for loading outputs.

 In the algorithm 6.6, a multiprecision square operation with reduction operation over

GF(2163) is presented. A hardware implementation of the algorithm is shown in the Figure 6.8.

In the figure, the square operation of each word (8 bit) produces a 16-bit output. The sequence

of input words is 20, 10, 19, 8,…10,0. The results of square of the words, 20 to 10 are used to

generate reduction vectors (Rv) as shown in the figure. The Rv is generated using fast reduction

method [1, 88] as shown in the algorithm to add with the square outputs of words of 10 to 0.

For example, if we square 10th word of input, then we get two-word size output. The two-word

size output is divided into two words such as 10thH and 10thL words. The H part contains 15 -

8 bit and the L part consists 7-0 bit. Similarly, if we square the 20th word of input, then we get

Figure 6.8 Multiprecision square circuit over GF(2163)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-33

20thH and 20thL. The 20thH and 20thL words are the required inputs to generate the reduction

first reduction vector that is FV in the Figure 6.8. After then, the first reduction vector is added

with 10thL (right-side of the Figure 6.8) to get the most significant square output (20th) word

of the reduction. Thus, the reduction operation is started after one clock cycle of the 1st input

(s-1th word). In left to right fast reduction algorithm, the extra vectors Ev1 and Ev0 (as shown

in algorithm 6.6) depends on the most significant output words. Thus, the Ev1 and Ev0 vectors

are ready to add with the least significant word (1st and 0th words for the case of GF(2163) as

shown in the Figure 6.8) as shown in the algorithm 6.6.

Trinomial irreducible polynomial based reduction operation has more complexity than

the pentanomial irreducible based reduction operation because of the second highest order term

of the irreducible polynomial. For example, in the case of trinomial based reduction

polynomial, the position of the second highest order (non-zero term) is at 74 and 87 in the case

of GF(2233) and GF(2409) respectively. Thus, there is a dependency in generating reduction

vector due to the position of the second non-zero terms. For example, to generate 1st reduction

vector for the left to right fast reduction operation (similar to the algorithm 6.6) the sequence

of 2s-1. 2s-2, …, s-1 outputs require to align with a sequence of outputs of (2s-1-k/w), ((2s-1)-

(k/w)-1)),…, (s-1). (Where k is the second higher order). Thus, the reduction operation can be

started upon the availability of output sequence of (2s-1-k/w), ((2s-1)-(k/w)-1)),…,(s-1). The

dependency can induce extra latency for the reduction operation.

We can utilise our proposed algorithm 6.6 of the pentavalent curves, to accomplish a

square operation in the case of trinomial-based reduction operation by considering extra

register. A hardware architecture of trinomial irreducible polynomial based reduction operation

is shown in Figure 6.9 and the reduction operation is illustrated in Table 6.5 over GF(2233).The

left side of Figure 6.9, continuous vector, QV is generated whereas right side of the figure is

generating the last two vector(L2V). To start reduction operation, we need the three sequences

of square results such as 1) 2s-1, 2s-2,…, s-1,;2) (2s-1)-(k/w), (2s-2)-(k/w),…, s-1; and 3) s-1,

s-2,...,0 as shown in the Table 6.5. We can get two sequences (2nd and 3rd sequences) as square

outputs by accessing data from main memory in the alternate addressing as shown in the

algorithm 6.6. We utilise a second register to supply the necessary operand to generate the

sequence of 2s-1, 2s-2,…, s-1,;2) (2s-1)-(k/w), (2s-2)-(k/w),…, s-1. Thus, we need to store the

k/w numbers of most significant operands in a temporary register (Temp in Figure 6.9) before

the start of the squaring operation. The temporary register provide the operands to generate part

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-34

of the 1st sequence (2s-1, 2s-2 .. (2s-1)-(k/w)) and we also reuse the operands to generate

reduction vectors during the reduction operation.

In the Table 6.5, we illustrate left to right reduction operation. We access the digits

from main memory is as the sequence of 20, 14, 19,13,…,14,0 and from the Temp register is as

the sequence of 29,29,28,28,…20,20. We get two words size output for each digit squaring

Figure 6.9 Multiprecision square circuit over GF(2233)

Table 6.5 Multiprecision reduction operation over GF(2233) on the 465 bits of square output (w = 8 bit)

29 28 … 18 9 … 0

239,…,232 231,…,224 … 151,…144 … 79,…72 … 7,…0

7 6,…,1 0 7 6,…,1 0 … 7,…,0 1,0 … 7 6,…,2 1,0 … 7 6,…,0

14th H 14th L … 9th L … 4th H … 0th L

239,…,232 231,…,224 … 151,…, 144 … 79 78,…,74 73,72 … 7 6,…,0

24th H 24th L … 14th H - … -

398,…, 392 391 390,…,384 383 … …. … 238-233 - … -

 … …

 29th L 28th H … … … … … …. … 14th H

472 471,…,465 464 463,…, 457 … … … … … … … 240 239,…,233

 29th L … 24th H

 … - 465,464 … 399,…,392

 29th L … … 24th H

 …,465,464 … …

.

397,…,292 -

VH(s-1) VL(s-2) 1stV((k/w)-1) 0thVi((k/w)-1) VL(0)

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-35

such H part (15-0) and L part (7-0) as shown in the table. The reduction vectors are generated

(Rv) by aligning 1st and 2nd sequence to add with the 3rd sequence in reduction operation. The

vector is generated by aligning the square results as shown in the table. For example, the most

significant vectors uses 29thL and 24th to generates vectors (Qv in the Figure 6.9) to add with

Pv inputs (14thH) to get the 1st output of reduction operation. We can the 1st reduction output

one clock cycle of the starting. Two extra vectors 1st and 0th as shown in the Figure 6.9 (similar

to the Ev1 and Ev0 as shown on the algorithm 6.6) are generated using the sequence of input

as 29thL to 24thH as shown in the Table 6.5. The first extra vectors (as like as Ev1) are added

from (2k-1)th bit to kth bit and second extra vectors, 0th (as like as Ev0) are added from k-1th

bit to 0 bit as shown in the Table 6.5. For example, the 1st extra vectors are added from the

word for 18th to 9th word and second extra vectors (0th) are added from 9th to 0 words over

GF(2233). Especially, at 9th word, part of the both extra vectors are used exclusively. Thus, the

unnecessary part of the vectors are padded with zeros at the 9th word. The trinomial-based

reduction operation is performed in the same latency(s+2 clock cycles) of the pentanomial

based reduction. The reduction operation based on trinomial polynomial utilise extra register

to show the same performance as like as the pentanomial based reduction operation.

6.4.2 Repeated Squaring

The repeated squaring is required in the case of multiplicative inversion operation. In

the case of repeated squaring, extra latency may require to start a new square while the

Table 6.6 Comparison of the proposed square circuit with the relevant square circuit

Ref. Squaring latency, 𝑡_𝑠𝑞𝑟 GF(2163),

Clock

cycles)

GF(2571),

Clock

cycles)

Platform:(resources)

 load Digit wise

squaring

Reduction others 𝑠 = 21 𝑠 = 72

[88] 2𝑠 +2s 2s+2s+s+2s 231 972 S: 16bit RISC

Processor

[89] (20 + 110)𝑠 45(s+1) - 3,720 11,225 S: (8-bit ALU,

PicoBlaze)

[66] 1 2𝑠 2
+ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

3 48
+ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

150
+ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

H: (32-bit data path

and full-precision

square)

[91] 2(24 + 21𝑠) 2(131+30(s-

3))

- 2,272 7,474 H/S: (8-bit data path

and Multiprecision

square)

[63] 2𝑠 + (
𝑠

3
) + 2𝑠

3s+21 - 175 549 H: (8-bit data path

and Multiprecision

square)

ours 1 𝒔 + 𝟏 0 0 23 74 H: (8-bit data path

and Multiprecision

square)

H= Hardware, S=Software, Hardware/Software= H/S

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-36

operation is depending on the previous output results. In particular, the trinomial based

reduction operation has a dependency to repeat the square operation on the previous squaring

result. In our proposed square operation, the starting square operation depends on the most

significant words. Thus, the pentanomial based square operation can be started immediately as

there is no requirement of storing operation as like as a trinomial. In the case of trinomial, as

the most significant words of square output are outputted first, the required most significant

outputs are saved in the alternate temporary register to use in the next square operation. In the

Figure 6.9, we use two duplicate Temp registers (2 SRL16) in the Temp block (dashed line) to

store most significant words alternatively. One of the Temp registers contains current square

operands, and the other Temp register is used to store the most significant results of the current

square to use in the next squatting operation. The alternate use of the temporary register helps

to avoid data dependency to start new squaring. Thus, our proposed architecture allows the

repeated square operation immediately irrespective of the structure of irreducible polynomials.

6.4.3 Comparison with relevant square circuit and discussion

In Table 6.6, we compare the performance of our proposed multiprecision square circuit

with the relevant square circuits. Most of the multiprecision square circuits in the literature

consume high latency for square operation; however, the square operation is a linear time

operation. In general, the software based squaring [88, 89] consumes higher latency than

hardware implementation [63, 66, 91] due to instruction delay. The software implementation

in [88] consumes 231 clock cycles over GF(2163) for the case of 8 bit data path, whereas the

work in [89] consumes high latency (3720 clock cycles) due to the different software platform.

The latency of [89] is improved in their hardware–software design in [91]. The hardware

implementation of square circuit in [63] shows very lower latency (175 clock cycles) than their

implementation of the software, [89] and software-hardware, [91]. The hardware

implementation in [66] presents multiprecision square operation followed by reducing

operation. Their design consumes 45 clock cycles only for digit squaring without reduction.

Our proposed design reduces latency more than half of the previous multiprecision square

circuit. The latency performance over GF2571 shows similar performance as like as GF(2163).

Our proposed square consumes 1 clock cycles for load operation, and s clock cycles for digit

squaring operation. The reduction operation of the proposed design is performed concurrently

with the digit squaring irrespective of the structure polynomial (pentanomial and trinomial).

Moreover, the repeated squaring is achieved immediately after previous square operation

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-37

without consuming the delay for loading. The proposed square circuit offers some advantages

such as:

 The reduction operation performs concurrently along with the squaring operation. Thus,

the square results (2s-1 words) are not required to store for the reduction operation.

 The latency of the proposed square circuit is considerably reduced to the theoretical

limit of latency for the multiprecision squaring with reduction.

 The square operation consumes same latency for the both pentavalent and trivalent

irreducible polynomials based square operation.

 The square circuit consumes very low latency; hence, the squaring operation can

operate concurrently with the field multiplication during ECC point multiplication.

 The repeated squaring (without delay of loading) can accelerate the inversion operation.

 ECC with a low latency multiplication (using the parallel architecture of multiprecision

multipliers) can improve efficiency using the proposed very low latency squaring

operation.

6.5 Proposed Hardware Architecture of Scalable ECC

Low resource scalable ECC is a promising solution for the low-end applications (i.e.

wireless sensor nodes, smart cards, radio identification (RFID) tags and mobile devices) to

provide high security using the same crypto processor. The large operand size of the ECC is a

crucial challenge to adopt in the constraint environment due to their limited storage and low

computation power. The challenge is also becoming worse while it is requiring scalability of

security.

Low resource ECC implementation can be software only (embedded processor),

software-hardware or hardware only. Each of them had some advantages and disadvantages.

Software only implementation uses an embedded processor to implement all of the ECC

operations using word level instructions. The hardware-software implementation is a

combination of embedded processor and hardware coprocessor (using instruction set

extension-based processor, RISC processor). The main processor (embedded processor)

controls some of the arithmetic part (i.e. field multiplication) as a peripheral. The hardware-

software based ECC processor is faster than software only implementation. The separate

hardware module is working as a dedicated module to improve performance.

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-38

Hardware solution of scalable cryptography is an attractive topic in the academic

research and industrial application due to both high performance and low power operations. In

particular, at present, for a sensitive data transmission, the cryptography requires high security

day by day. ECC processor with the scalability of security can meet the changing security

requirement using the same module. The high security can be increased by increasing field

size. Thus, the same crypto processor with higher security with flexibility (Scalability) is very

important. For an increase of field size, in particular, the computation requirement increases

geometrically. The high workload for point multiplication of ECC can deteriorate the

performance of cryptography operation. In particular, the software and hardware-software

based implementations consume higher latency per operation than that of the hardware-based

processor. Thus, the hardware solution can meet the requirement for a real time solution of

security with scalability. Thus, hardware solution is increasing popular for ECC

implementation even in the low resources applications.

 Several scalable hardware, in particular, FPGA implementations for point

multiplication are reported in [9, 63, 66, 89-93]. Most of them considered low security curves

or selected some specific curves instead of all NIST curves [9, 63, 89-92]. In [90], they

presented hardware-software ECC point multiplication implementation on all NIST curves. In

their implementation, they used hardware circuit for multiprecision arithmetic (Mul, Sqr and

Add) and reduction by using controlling signal from Picoblaze microcontroller. Their

hardware/software design work consumes high latency for point multiplication due to high

Figure 6.10 Proposed scalable ECC architecture

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-39

latency arithmetic operations; however, they improved the latency of point multiplication as

compared to their software-based implementation in [89]. A pure hardware based scalable ECC

is presented in [9] by considering Elliptic curves such as 113, 131, 163, 193. They uses lower

field size curves to evaluate their performance. Their hardware-based implementation

improves their latency as compared to the respective software implementation in [9]. Still, their

hardware scalable design consumes large delays for point multiplications. All NIST curves are

considered in [66, 93] are targeted for server end applications. The reported work show low

latency using the advantages of large digit (32 bit) size data path and large digit-size reduction

operation.

We propose a scalable ECC for point multiplication over all of the NIST curves such

GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571). The scalable ECC is implemented on

FPGA hardware using 8 bit data path architecture is shown in the Figure 6.10. We consider

combined Montgomery point multiplication algorithm in projective coordinate to perform

point multiplication. The point multiplication result of the projective coordinates is then

converted into affine coordinates. In this scalable architecture, we utilise a novel multiprecision

multiplier, a novel multiprecision square circuit and an adder circuit for the field arithmetic

unit as shown in Figure 6.10. We utilize two level control circuits included the top level control

unit to accomplish point operations (group operations) and low level control units for field

arithmetic operations. We utilize a low resource register file to saves the parameter of the

elliptic curve (coordinates of the base points, constant, b) (page 2-28). We use separate register

for key is used to control top control unit to accomplish point multiplications. Our proposed

scalable ECC over all NIST curves shows very latency for the point multiplication using low

arithmetic resources to enable an efficient scalable ECC for the low-end applications.

6.5.1 Proposed Montgomery Point Multiplication

The Montgomery point multiplication algorithm is widely considered for the ECC

implementation. The point multiplication algorithm has some advantages such as low memory

requirement due to x and z coordinates (in the projective coordinates) are used for the point

multiplications. Moreover, the algorithm can compute faster point operation than the basic

point multiplication. Again, the algorithm has partial side channel resistance (power attack)

due to the point addition and point doubling of point multiplication is performed in every bit

of key input.

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-40

We propose a combined point addition and point doubling based Montgomery point

multiplication algorithm for the scalable ECC implementation is shown in the algorithm 6.7.

In our proposed algorithm, we compute the square and addition operations concurrent with the

multiprecision multiplication as the multiprecision multiplication is a higher latency operation

than square or adder operation. Moreover, In the algorithm, we need to add last two

multiplication results to get last output X1/X2 at the end of the each of point multiplication

loops. Our proposed architecture support to add the result of multiplication in st5 with the result

of multiplication in the st6 concurrently. Thus, the architecture can manage to save the latency

of an addition. Thus, our proposed ECC depends on the latency of the multiplications. Again,

the memory operations is a word level load and unload operations. The load and unload in the

same location is complex. The complexity may increase the requirement of memory. Our

architecture utilizes the memory by using free location. We, thus, perform some transfer

operations (in the st2 and st5 as shown in the algorithm) to use the register effectively when

the multiplication is performed.

The loop of point multiplication is performed in the projective coordinates and the result

of point multiplication in the projective coordinates is then converted to affine coordinates. The

conversion operation includes a costly multiplicative inversion operation. The inversion

operation is utilised by repeated squaring and multiplication operations using the Itoh-Tsujii

algorithm [65].

6.5.2 Careful Scheduling for Point Multiplication

We present a careful scheduling for the point multiplication is shown in the Figure 6.11.

Our proposed algorithm is performed in the six steps to complete a loop operation of the point

multiplication. Each step is involved with one of the six field multiplications of Montgomery

algorithm. The square, addition and transfer between register are performed while the

multiplication is performed. As multiplication is the high latency operation, thus, the latency

of each step is the latency of multiprecision multiplication. The latency of a loop of the point

multiplication in projective coordinates is as same as the latency of six multiplications as shown

in the Figure.6.11 (for the case of 𝑘𝑖 = 1).

 In st1, 𝑋2 and 𝑍1 are loaded from the register file to local register of the multiplier. The

GF2MUL operation is started after one clock cycle of the loading operation. Thus, the

loading and multiplication are performed simultaneously. After the loading operation,

the memory is free for other operations such as square, addition, and transfer operations

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-41

as long as new results of the multiplier are ready to load in the main memory. The 𝑋2

operation is started after loading operation is completed (dash line). The X is accessed

from the main memory to square and the results of the square are saved in the address

of T (a location of the memory). The gap between the end of load operation and the

start of reduction of multiplier is used for accessing main memory operation to square.

After finishing the square operation, the reduction operation is performed. Thus, the

start of the reduction operation depends on the parallel operation. After the loading

operation, there is a common delay of 2s-4 clock cycles to start the reduction. In this

case, the starting of reduction is delayed if more than one parallel operation is

performed. In the case of trinomial curves, several parallel operations can be performed

before the first output of the multiplier as there is a big gap to start reduction (mainly

due to the order of second non-zero term in irreducible polynomial).

 The st2 is started immediately the multiplication of Step1 is finished. In the Step2, 𝑋1

and 𝑍2 are accessed from main memory to load in the multiplier. After loading, the 𝑍2

content is free to square by accessing from main memory followed by saving at the

address of 𝑋2. Now, we square again the content of 𝑋2 to get finally 𝑍2
4 . The new

square result of 𝑋2 is saved at the address 𝑍2 of the register file.

 The st3 performs the multiplication, 𝑍2 ← 𝑇. 𝑋2. After loading of multiplier operands,

the T content is accessed from memory. Thus, the content of T is squared and saved

at 𝑋2. Now, the T address is free. The content of 𝑍2 is required in the next step. We

Figure 6.11 Data flow graph of the proposed combined Montgomery point multiplication

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-42

also need the 𝑍2 to save current multiplication result. Thus, the content of 𝑍2 is

transferred to T location. Now, the 𝑍2 location is free to save multiplication output.

 In st4, 𝑏 and 𝑇 are multiplied and the result of the multiplication is added with the

content of 𝑋2 followed by saving in the 𝑋2 . To save the addition result at 𝑋2 , the

content of 𝑋2 is required to transfer in the other empty location (T) before the start of

reduction operation. The addition operation performs on the fly using the result of the

ongoing multiplication and the content of T (the transferred content of 𝑋2) as shown in

the solid line. The addition result is saved at 𝑋2.

 The multiplication 𝑋1 and 𝑍1 is performed in the st5. The same contents (𝑋1 and 𝑍1)

are required to add and then, squared. After loading 𝑋1 and 𝑍1 in the multiplier, the

same contents are accessed from the memory to add in the word level. The result of

addition is saved immediately in the temporary location (T) to use again for squaring.

The results of the squaring operation of the T is saved in the 𝑍1. After square operation,

the location of T is free to save the output of multiplier reduction.

 The final step, the coordinate x is multiplied by 𝑍1 and the result of the multiplication

is added with the result of the previous multiplier result (T) on the fly. The content of T

is accessed word by word to add with a sequence of respective reduction output. The

result of the addition is saved as 𝑍1 in the register file.

After finishing the step, new loop is started from the Step1 of the proposed algorithm. The

multiplication operands depend on the value 𝑘𝑖, the ith value of k, key. The change of address

due to change of 𝑘𝑖 value is performed by observing three consequent values such as previous

value, 𝑘𝑖+1 , current value, 𝑘𝑖 and future value, 𝑘𝑖−1 . The new loop operation started

immediately after the st6. Thus, the latency of each loop is the latency of six multiprecision

multiplications. Moreover, the careful scheduling utilised unused locations to save the

intermediate values. In particular, the scheduling can manage all necessary square and addition

operation on the fly by smartly using the transfer operation during multiplication. In the each

loop operation, the key counter, K_counter is updated to transfer control to complete

conversion (affine conversion) operation.

The projective to affine conversion is a one-way operation. To complete conversion

operation, the latency of the conversion is due to mainly 10 field multiplications and one

inversion operation. The inversion operation is accomplished with a multiplicative inversion.

The Itoh–Tsujii method, a modified Fermat’s little theorem (FLT) is widely considered

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-43

involved with repeated multiplication and square operations. In this method, total number of

multiplications are calculated by ⌊log2 𝑚 − 1⌋ + ℎ(𝑚 − 1) − 1, where ℎ(𝑚 − 1) is the

Hamming weight and ⌊ ⌋ is floor function. The total number of squaring operations is

(𝑚 − 1) [9, 16]. For GF(2163), the number multiplications are ⌊log2 163 − 1⌋ + ℎ(163 − 1) −

1 = 7 + 3 − 1 = 9 and the total number of square operations are (163-1)= 162. Thus, the

latency of square operation to complete inversion over GF(2163) is equivalent to 16

multiplications where the latency for a square is 23 clock cycles and a multiplication is 234

clock cycles. Again, the latency square operation of inversion over GF(2571) is also equivalent

to 16 multiplications where the latency of the square is 74 clock cycles and the multiplication

is 2631 clock cycles. Total equivalent multiplication work load in the conversion over GF(2163)

= (10 + 9 +16 =35) =35 multipliers. For the case GF(2571), the total number of equivalent

multiplications is (10 + 13+16) = 39. Thus, the conversion operation has high impact on the

low order curves than higher order curves. For example, the ratio of latency of (conversion

operation/loop operations) over GF(2163) is 0.036 (3.60%), and the ratio over GF(2571) is

0.0114 (1.14%).

6.5.3 Proposed Scalable Multiprecision Multiplier Circuit

The proposed scalable ECC utilizes novel multiprecision multiplier for scalable

multiplication. The multiplication has two parts, including GF2MUL operation followed by

reducing operation. The proposed modified Comba multiplication is utilised for GF2MUL

operation and fast reduction method is used for the reduction operation.

The proposed multiplication algorithm utilised two upper loop operations using two

GF2MUL multipliers. The multiplier architecture in Figure 6.2 illustrates the multiplier

architecture. The GF2MUL operation is performed over all of the NIST curves. The reduction

operation of the multiplier results of 2s-1 words is reduced concurrently with the GF2MUL

operation. However, the operation of reduction over pentanomial and trinomial has different

complexities, our scalable reduction can manage all reduction operations without extra latency.

Apart from pentanomial, the trinomial reduction operation requires special care to clear

unnecessary bits during the reduction vectors generation.

6.5.4 Proposed Scalable Multiprecision Square circuit

Multiplier can perform a square operation by taking same operand as multiplicand and

multiplier. As multiplication has higher latency than a square operation, thus a separate square

operation is commonly considered in the ECC crypto processor. Moreover, square operation

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-44

over GF(2m) is achieved by simply interleaving zeros in the inputs. Thus, the only main

operation of the square circuit is the reduction operation.

In the ECC, square operation can be achieved concurrently with the multiplication as

the latency of multiprecision multiplier has many times higher than the latency of

multiprecision square circuit. Thus, the latency of the square is not significant in the most of

the scalable ECC design when it is compared with the latency of multiprecision multiplier. If

parallel multipliers are considered to improve the latency of multiprecision multiplier, then the

latency of the square circuit will be comparable to the latency of the multiplier. In this case, an

efficient and low latency square circuit is required.

Small data path (8 bit data path) require a large number of operations to reduce 2s-1

words of square result. The complexity increases with increase of the field size. In particular,

the reduction operation of trinomial-based curves has more complexity than the pentanomial

based curves.

Thus, small data path based square circuit has more complexity in the controlling of

data than the large word size based scalable square circuit. Even, the complexity increase high

when all of NIST standard curves are considered in the same squaring module. The complexity

is increased mainly due to pentavalent (for GF(2163), GF(2283), and GF(2571) and trivalent (for

GF(2233), and GF(2409)) irreducible polynomials are involved. The second higher order of

trivalent (87 for GF(2409)) is multiples of the second highest order (7 for GF(2163)) of the

pentavalent irreducible polynomial. The differences in the second highest order values of the

irreducible polynomials create complexity in the area, latency and controlling of the

multiprecision square circuit.

There are several square circuit are presented in the literature [9, 63, 66, 88-93], they

use common reduction circuit for the multiplier and square circuit. Their square operation

consumes large latency. In [66, 93], a large digit (32 bit data path) based square operation

followed by a reducing operation of the common reduction unit.

 We propose an 8 bit data path scalable square circuit utlising low latency novel digit

square circuit over GF(2m) as shown in the Figure 6.8 over GF(2163), and in Figure 6.9 over

GF(2233). Our proposed scalable square circuit can support square operation over all NIST

binary curves such as GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571). In the proposed

scalable multiprecision square circuit, we adopt trivalent and pentavalent irreducible based

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-45

ECC curves consuming same latency, 2s+2 clock cycles to complete scalable square with

reduction.

The difficulty in the design of scalable ECC, including trivalent irreducible based ECC

curves is due large value of the second highest order (k) of the irreducible polynomial. To start

left to right reduction, first output is ready on the available (2s- (kth order/w) -1)th word. This

latency can be overcome by saving the most significant words in the temporary registers before

the square operation. After then, the temporary register and main memory provide the

necessary square outputs (interleave zero) to get reduced output after 2 clock cycles of the

starting.

The latency of squaring is also significant for the point multiplication as our proposed

ECC architecture utlises very low latency multiprecision multiplier. Our low latency square

circuit can further reduce total point multiplication by providing low latency repeated squaring.

In the repeated squaring, after one square finish, the next square can start immediately (same

for the both trivalent and pentavalent cases).

6.5.5 SRL16 based Register file

Multiprecision arithmetic circuit based ECC need a large area to save the ECC

parameter and intermediate results. The Memory unit or register file of ECC is the largest part

(about 50-70% of the total area) of a low area ECC architecture. The memory unit can be

designed by using different style such distributed logic (LUTs) or block memory (Block RAM

(BRAM)) [95]. The look up tables (LUTs) based memory unit is faster with an overhead of

extra logic cells. The BRAM is a storage fabric of the FPGA technology is suitable to store

data without taking extra logic cell. Again, SRL16 is FPGA fabric that is a 16x1 shift register

depends on the logic cell available in the most of the FPGAs to develop a register file. The

SRL16 consumes a very low area per bit as compared to direct logic based memory unit [95].

However; SRL16 consumes a very low area; there is hardly found the SRL16 based register

file in the literature for an ECC architecture due to its data shifting property. In the literature,

the memory unit is designed by using dual port BRAM as an advantage of the FPGA. The area

of the BRAM does not reflect in the area consumptions (slices).

We design a novel architecture 8xm size of register file based on SRL16 is shown in

Figure 6.12. The register file has 8 locations and each of them can able to store the largest NIST

curve, m= 571. The building block of the register file is a shift register, SRL16 (1 bit x16

locations). We create a module 8x16 bit storage using the 8 of 1x16 SRL16. We use 5 of 8x16

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-46

storage modules to connect in a cascaded form to allocate 571 bit in a matrix of 8x80 bits. To

store a 571 bits data, the 8x80 module takes 8 bit data in each clock and shifts the data to allow

next input as long as the last 8 bit (⌈571/8⌉𝑡ℎ) data is inputted. To read 571 data, an address

of SRL16 is used to read 8 bit data from the 8x80 modules. The address is divided into two

parts. The least significant 4-bit is the address of 16 locations of a particular SRL16 and the

most significant 3-bit is used to select one of the 5 of 8x16 modules to read 8 bit data in each

clock as shown in the Figure 6.12.

The eight numbers of 8x80 modules are grouped to form an 8xm size register file. The

register file consists one input data bus and two output data buses using two addresses. The

address SRLadrA defines the any of the 8 locations of the register file to access data as an

output, a_out, and similarly, the address SRLadrB defines any of the 8 locations to access data

as an output, b_out. The adr_a and adr_b are used to address any 8-bit data (word) out of 80

locations to read as a_out and b_out respectively.

The SRL16 based register file can access two different data from two separate locations

and save the input in another location concurrently. The limitation of the register file is that

Figure 6.12 SRL16 based 8xm memory unit

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-47

data cannot be read from and save in the same register location concurrently due shifting nature

of the SRL16.

Our proposed SRL16 based register file consumes a very low area to save 8x571 bit

data. In the synthesis result on Sparatan3 FPGA using ISE 14.5 tool, the register file consumes

only 472 slices (816 LUTs) with a maximum frequency of 316 MHz (3.16 ns).

6.5.6 Interface to outer world

 The proposed scalable ECC can compute point multiplication on all NIST curves by

selecting curve by using EC-sel. A finite state machine is used for interfacing input and output

with the outer world. To save an input in a location of a particular ECC, the load signal =1 and

the adr is used to select a location in the memory unit to save input. The ECC parameters are

saved in the register file and the key is saved in the key register. After load operation, Load =

0, then , the control unit starts point multiplication. After the end of the point multiplication,

done =1. To get output, the rd=1 and the adr are used to take the output from the particular

location.

6.6 Implementation Results

The propose scalable ECC over GF(2m) is modelled in VHDL coding and synthesised,

mapped and implemented using Xilinx ISE 14.5 tool. We implement the proposed scalable

ECC on the low cost FPGAs, such as Spartan3 and Spartan6. In Table 6.7, the utilization of

area (Slices, LUTs, FFs, Block RAM), maximum frequency, latency, and area-time metric of

the proposed scalable ECC for the point multiplication are presented after place and route. In

the table, the results of the most relevant scalable ECC over GF(2m) are also presented for a

fair comparison.

Our proposed Scalable ECC utilises novel low latency multiprecision multiplier, novel

low latency multiprecision square circuit to get a low latency point multiplication. In the

scalable ECC, the low latency based arithmetic circuits consumes a very low area to perform

point multiplication over all NIST binary curves such as GF(2163), GF(2233), GF(2283),

GF(2409), and GF(2571). We utilize a novel memory unit (register file) using low cost SRL16

instead of block RAM to evaluate clear picture of the performance of proposed scalable ECC.

Moreover, the proposed scalable ECC is based on 8-bit data path architecture that is targeted

in the low end applications. Our proposed architecture consumes the area of 2377 slices with

maximum frequency of 41 MHz on low cost Spartan3 and 1260 slices with a maximum

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-48

frequency of 63.74 MHz on Spartan6. Our proposed scalable ECC consumes very low latency

for point multiplication is 236k (k for kilo) clock cycles over GF(2163) and 9090k clock cycles

over GF(2571). Our low latency based ECC shows the area-time metric (slices x kP time x 10-

3) of 13.74 over GF(2163) and 554 over GF(2571) on Spartan3 and the are-time metric of 4.66

over GF(2163) and 179.71 over GF(2571) on Spartan6. Thus, our proposed scalable ECC shows

better metric in the advance technology .

To compare with state of the art, we implement our proposed design on Sparatn3 for

fair a comparison with state of the art. In general, the comparison of our proposed scalable

ECC with reported work in the Table 6.7 is difficult due different design considerations and

goals. Most of the reported scalable circuits use FPGA fabric (i.e Block RAM) to optimised

their area. The area presented by their results does reflect the actual area of their ECC.

Moreover, Memory is the largest part of ECC (50-70% of the total area) , thus, the area (slices)

information and their corresponding metric does reflect actual performance of the reported

works. We reported first time the actual figure of the area of the proposed scalable ECC to

evaluate its application in the low-end application. Our proposed ECC consumes a very low

area and very low latency to show better performance (area-time metric) than the most relevant

scalable hardware ECC.

In [91], a scalable hardware-software ECC implementation is presented as 8-bit

architecture on FPGA(Spartan3) over only the pentavalent irreducible based elliptic curves

such as GF(2131), GF(2163), GF(2283), and GF(2571) to avoid complexity. Their arithmetic part

is implemented in the hardware and the control part is implemented in the software

(microcontroller). They consider tNAF method for point multiplication to reduce the latency of

point multiplication abruptly. They mapped key in the offline to consider very simple field

squaring of the coordinates in place of point doubling operation. Thus, their implementation

saved resources and latency for mapping circuit to improve the performance of the point

multiplication. Their implementation utilises three 8-bit GF2MUL resources to accelerate field

multiplication(i.e. GF2MUL operation). The multiplier resources are also used for squaring

operation to reduce latency of the squaring operation. The ECC in [91] consumes area of 392

slices and 4 BRAMs and maximum frequency 91 MHz. The point multiplication time over

GF(2163) and GF(2571) are 87 ms and 2,740 ms respectively. Our proposed implementation

shows 15 times in the case of GF(2163) and 12 times GF(2571) faster time for point

multiplication than the ECC in [91]. Our proposed ECC consumes low resources (two 8-bit

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-49

GF2MUL instead of three 8-bit GF2MUL) to get very low latency ECC to enable far better

performance(are-time metric) than the low area scalable ECC in [91]. The works in [90] and

[91] show very poor performances due to very high latency for the point multiplication.

In [93], the authors consider scalable hardware ECC targeting for server-end

applications. The ECC implemented using 32-bit GF2MUL circuit with three stages pipelining

to reduce the latency of the multiplication geometrically. They use a large reduction circuit to

support the fast reduction operation of the pentavalent and trivalent-based multiplication result.

The 32-bit structure is prohibited to use in the low area application due to large area 2418 slices

and several block RAMs for memory(not shown) with a frequency of 80 MHz. Their

Table 6.7 Comparison of the proposed scalable ECC with the state of the art on FPGA after place and route

Ref Data

Path

(bit)

Fiel

d

size,

m

Slices

(Sls)

LUTs FFs Block

RAM

Max.

Freq,

MHz

Total Clk

Cycles

Total

kP Time,

ms

Area-

time, Sls

x Time x

10-3

Remark:

FPGA and

Arithmetic

Resources

[9]

8

113

471

813

518

4

76.33

-- -- -- Spartan3
Hardware:

1x8-bit

mulgf2

131 -- -- --

163 -- -- --

193 -- -- --

[91]

8

163

392

517

299

4

91.00

7,917,000 87.00 *34.10 Spartan3
Hardware/Sof

tware: 3x8-

bit mulgf2

283 33,761,000 371.00 *145.43

571 249,340,000 2740.00 *1074.08

[90]

8

163

452

578

244

4

80.93

15,943,210 197.00 *89.04 Spartan3

Hardware/Sof

tware: 1x8-
bit mulgf2

233 42,083,600 520.00 *235.04

283 73,160,720 904.00 *408.61

409 151,339,100 1870.00 *845.24

571 210,418,000 2600.00 *1175.20

[93]

32

163

2418

--

--

79.64

68,813 0.86 *2.08 Spartan3
Hardware:

1x32-bit

mulgf2

233 155,857 1.96 *4.74

283 200,182 2.51 *6.07

409 550,370 6.91 *16.71

571 1,312,461 16.48 *39.85

[63]

8

131 543 847 417 4 76.44 732,295 9.58 *5.20 Sparatn3

Hardware:

3x8-bit
mulgf2

163 1,311,710 17.16 *9.32

283 5,812,497 76.04 *41.29

571 44,916,144 587.60 *319.07

ours

8

163

2377

4,269

555

0

40.75

235,687 5.78 13.74 Spartan3

Hardware:
2x8-bit

mulgf2

233 667,866 16.39 38.96

283 1,155,523 28.35 97.39

409 3,429,119 84.14 200.00

571 9,090,409 223.06 553.98

ours

8

163

1260

2,961

698

0

63.74

235,687 3.70 4.66 Spartan6
Hardware:

2x8-bit

mulgf2

233 667,866 10.48 13.21

283 1,155,523 18.13 22.84

409 3,429,119 53.80 67.79

571 9,090,409 142.63 179.71

* memory resources (equivalent slices) are not included in the area-time product. LUTs: Look_Up_Tables,

FFs: Flip-Flops, kp: point multiplication

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-50

implementation shows better results by using the advantages of 32-bit architecture. Our 8-bit

architectures shows a comparable performance when the 32-bit based ECC is compared with

our state of the art.

In [63], a standalone hardware version is presented for the point multiplication. They

consider only pentavalent irreducible based Elliptic curves (i.e. GF(2131), GF(2163), GF(2283),

and GF(2571)) to enable a low area ECC architecture. They used a microprogramming approach

of control circuit to reduce the area. They use three 8-bit GF2MUL unit to reduce the latency

of point multiplication. Moreover, the three parallel multipliers also accelerate their square

operation. Their area-efficient hardware ECC utilises area of 543 slices and 4 BRAM with 76

MHz. The work takes the total time to compute point multiplication over GF(2163) and over

GF(2571) are 17.16ms and 587 ms. Our proposed ECC can compute the point multiplication as

3 times faster than that of the ECC presented in [63]. Their ECC shows poor performance than

our two GF2MUL-based ECC; however, they use three GF2MUL multipliers to accelerate the

point multiplication.

Our proposed scalable ECC consumes very lower latency than relevant scalable ECC

to date. In particular, the latency of the relevant ECC adopted three GF2MUL multipliers in

[63] over GF(2163) (1,211,710 clock cycles) is 6 times more and over GF(2571) (44,916,144

clock cycles) is 5 times more than our proposed two GF2MUL multipliers based ECC over

GF(2163) (235,687 clock cycles) and over GF(2571) (9,090,409 clock cycles) respectively. Our

novel multiprecision multiplier and novel multiprecision square circuit contributes to reduce

the latency of point multiplication promptly. Moreover, our proposed careful scheduling of

point multiplication and repeated squaring operation step up the speed of the ECC by reducing

latency for a loop of the point multiplication.

6.7 Conclusion

Scalable elliptic curve cryptography offers an important flexibility in the cryptography

based secure communications system to meet upcoming high security requirement. Hardware

platform (i.e. FPGA) offers better optimisation than software platform because of simplicity to

duplicate resources for parallel operation with small area overhead and easy to control a

complex system to generate a fair result.

In this Chapter, we propose a low latency novel multiprecision multiplier and a novel

square circuit to enable a low-latency standalone hardware implementation of scalable ECC

Chapter 6: Low Latency Multiplication Arithmetic Circuit based Scalable ECC over GF(2m)

 6-51

for the low resource applications. We propose a parallel Comba multiprecision multiplier using

two GF2MUL that can compute a multiplication with free (on the fly) reduction using only s2/2

latency (the theoretical latency). We also proposed a parallel approach of our proposed

architecture that can also perform multiplication with on the fly reduction. For example, if we

just duplicate the two of GF2MUL to four of GF2MUL, then the proposed architecture can

compute the multiplication using half of the latency of two GF2MUL based multiplier.

Moreover, we present a novel very low latency square circuit latency to do digit square

operation. The proposed multiprecision square circuit can perform repeated squaring

immediately after a square operation without extra latency for loading. Our proposed square

circuit can provide the first result after three clock cycles, including one clock cycle to load

and two clock cycles for squaring with reduction. Thus, the proposed square circuit consumes

s+2 clock cycles for s (where s=m/w, word=w) words squaring. The low latency of the square

circuit can be significant when it is considered in a low latency multiplication (more parallel

GF2MUL) based ECC.

In the proposed low latency scalable ECC, we utilise combined Montgomery point

multiplication using a careful scheduling. The scheduling can manage to perform concurrent

operations so that the latency of the each loop operation depends on the six field

multiplications. Moreover, the scheduling smartly manages to utilise the memory resources by

transferring intermediate results to the empty register. In addition, we propose a low resource

SRL16 (except BRAM) based register file (memory unit) to evaluate actual resource constraint

for the low resource applications.

Finally, we implemented a standalone scalable ECC on the low cost FPGA such as

Spartan3 and Spatan6 instead of Virtex FPGA. Our implementation shows several time faster

point multiplication than the most relevant hardware scalable ECC. For the point multiplication

over GF(2163) and GF(2571), our implementation takes 5.78 ms and 223.06 ms respectively on

Spartan3 and 3.70 ms and 142.63 ms respectively on Spartan6 that translates the fastest time

to date when the ECC is compared with the reported scalable ECC. Again, the speed of our

ECC is many times faster than the software or hardware-software implementation because of

the low latency ECC. The main contribution behind the performance is the utilisation of novel

multiprecision multiplier and square circuit. Finally, the proposed ECC with

scalability/flexibility can be one of the best solutions for the low resource applications to meet

high security requirement.

Chapter 7: Conclusions and Future Research Works

 7-1

 Conclusions and

Future Research Work
This chapter presents a summary of the contribution of the thesis and forecasts some

potential future research work. The chapter summarize the main contributions of the thesis

that are separately discussed in chapter3 to chapter6. The presented research work can open

up some potential future works that can be explored.

Chapter 7: Conclusions and Future Research Works

 7-2

7.1 Conclusions

The research works presented in the thesis focus on the efficient elliptic curve cryptography

on FPGA to apply in the public key cryptography effectively at different application levels.

The research presents several novel contributions to meet constraints such as area, time,

latency, and frequency for the low area to high-speed ECC applications. Although many

relevant works are presented in the literature, most of the work fails to meet the required

constraints. The previous hardware implementations consider straightforward algorithms that

are mostly developed for the software environment. Again, the hardware platform is vital for

public key cryptography because of expensive computation overhead. Specially, the hardware

platform on FPGA is popular as the FPGA plays a role to bridge the gulf between software and

hardware. Moreover, FPGA hardware implementation has small development time and

viability in the commercial applications. Thus, to enable an efficient hardware ECC, distinct

contributions are required that are from arithmetic level to point multiplication level.

Low area ECC design needs mainly to reduce the area. The reduction of area may incur

large latency that thwarts the advantage of the low area. The thesis presents a low area ECC

implementation in Chapter 3 over GF(2m) on FPGA for the device-constrained applications.

The proposed low area ECC consumes a very low area to compute the fastest point

multiplication than the relevant works to date. Thus, the proposed ECC shows the best

performance by showing the best both area-time and area2-time metric when the low area ECC

is compared with the state-of-the-art to date. The underlying contributions of the performance

of the low area ECC are low cost arithmetic unit, flexible memory unit, simple interface circuit

and finally, dedicated control unit. The low cost arithmetic unit utilises MSB first bit/small

digit (4-bit) serial multiplier, dedicated square circuit, and multiplicative inversion operation.

The low area design considers modified Montgomery algorithm, basic binary algorithm and

Frobenius map based point multiplications. The proposed ECC shows different aspects of the

merits such as the Montgomery algorithm based ECC shows very quick point multiplication,

the binary algorithm based ECC consumes a very low area and the Frobenius map based ECC

consumes very low latency. The intermediate results of the work were published at the IEEE

international conference on ICECS 2013.

High speed ECC utilises digit serial multiplier to enable high throughput ECC. Most of the

work in the literature has some problems, including consumption of large area, high latency for

the point multiplication and poor maximum frequency to meet the required throughput. The

Chapter 7: Conclusions and Future Research Works

 7-3

thesis presents in Chapter 4 a breakthrough of high speed digit-serial multiplier over GF(2m)

to apply in the high throughput ECC implementation. The proposed multiplier utilises a novel

segmented pipelining technique that exhibits high performance to apply in a low latency and

high-speed multiplication. In particular, a careful scheduling and low resource arithmetic unit

contribute to achieve a very high frequency to operate point multiplication while the ECC is

consuming very low resources. The proposed multipliers based ECC implementation shows

the best throughput/area result to date as compared to the reported relevant works. The works

were published in IEEE Transactions on Circuits and Systems-II.

The speed of ECC is an important parameter for the server end ECC applications. Many

high-speed works focus on the stepping up the speed by using large resources without major

development in the arithmetic level and point multiplication level. The published works fail to

reduce the latency due to overuse of pipelining and they fail to increase the frequency due to

high complexity to permit high efficiency ECC. The thesis shows in Chapter 5 a new milestone

to achieve the fastest speed for point multiplication of ECC over GF(2m). The key contribution

of the fastest design is the utilising a novel high performance full-precision multiplier and

careful scheduling of the combined Montgomery point multiplication algorithm. The work

utilises three different sets of the novel full-precision multiplier to achieve the high speed

individually as compared to the reported high speed ECC on FPGA. The one-full-precision

multiplier based ECC consumes a very low area to achieve faster speed than the previous

reported fastest speed. The performance of one-multiplier based ECC in the area-time metric

shows the best metric than any other relevant high-speed works. The two-multiplier based ECC

shows better speed by exploiting low latency and high operating frequency on FPGA. The final

version of the high speed ECC considers three full-precision multipliers. The three multipliers

based ECC outperforms in speed by achieving theoretical limit of latency with a fair operating

frequency. The two multiplier based high speed ECC result was presented at the international

conference on FPL2015. The rest of the work is accepted to publish in IEEE Transactions on

Very Large Scale Integration (VLSI) Systems.

The shorter key length of ECC offers the flexibility to scalable security in the low resource

ECC applications. The low area scalable ECC is becoming an interesting research area, thanks

to multiprecision multiplier. The Comba based multiprecision multiplier is widely used to

develop scalable ECC. In Chapter 6, the research reveals a new progress in the multiprecision

arithmetic based scalable ECC by introducing a new technique in the multiprecision

Chapter 7: Conclusions and Future Research Works

 7-4

multiplication and a new multiprecision squaring circuit over GF(2m). The proposed multipliers

can compute Comba multiprecision multiplication using a close to theoretical latency, with on

the fly reduction operation as a bonus. The multipliers offer a parallel version of multiplication

with concurrent reduction operations utilising small overhead of the area. Again, the proposed

multiprecision square circuit with the reduction consumes very low latency to accelerate the

point multiplication of the ECC. The low latency arithmetic operations contribute to achieve a

very low latency scalable ECC which can perform point multiplication over all NIST curves.

A careful scheduling and a combined Montgomery point multiplication are adopted to achieve

low latency loop operation of the point multiplication. The actual logic consumption of the

ECC is explored by using SRL16 based memory unit to measure the feasibility of ECC in the

low resource applications. The proposed scalable ECC shows the fastest computation of the

point multiplication when the ECC is compared with the most relevant work to date. Moreover,

the proposed scalable ECC outperforms in performance of the area-time to date. This work is

planned to submit for publication in a peer-reviewed journal.

7.1 Future Research Works

More investigation upon the existent research

The thesis contributions lead some potential future researches to explore the ECC

implementations. The low area ECC of the thesis shows very low area to achieve high speed.

The small increase of area may increase performance. For example, the Montgomery and basic

binary algorithm based ECC can increase speed by using parallel multipliers with the help of

some low cost shift registers. Again, the Frobenius map based work consumes the very low

latency as well as low area. The operating frequency of the Frobenius map can be increased by

using pipelining registers in the integer adder (ripple carry adder) with very small area

overhead.

The high throughput/area based ECC consumes a very low area to achieve very high speed.

The digit serial multiplier used in the work consumes four clock cycles for multiplication. The

proposed pipelining technique consumes three clock cycles delay. Thus, a further investigation

can be done by using a multiplier with three clock cycles delay without any major modification

to get high throughput ECC. For example, the ECC over GF(2163) utilising a 41-bit digit serial

multiplier consumes 4 clock cycles for each multiplication. The ECC implementation over

Chapter 7: Conclusions and Future Research Works

 7-5

GF(2m) implementation can be achieved using 55-bit digit serial multiplier by utilising the limit

of the pipelining delay.

The proposed high-speed ECC techniques adopt very high performance full-precision

multiplier. The full precision multipliers based ECC shows very high frequency on the FPGA.

The existence FPGA family supports the three multipliers based ECC over GF(2163) operating

with a high frequency. The three multiplier based ECC over GF(2571) can be considered to

implement in the future FPGA technology to generate the fastest ECC for the highest security

application.

The thesis presented low latency scalable work can open up several future research works by

using the merits of the work. The novel technique of Comba multiprecision multiplier with

reduction consumes same latency for any irreducible polynomial. The multiplier can utilise any

ECC curves to achieve very low latency ECC. The proposed multiprecision square circuit

consumes very low latency can also be utilised to accelerate exponentiation in any type of the

irreducible based ECC.

The multiprecision-based scalable ECC can increase its performance by using parallel

multipliers. For example, the proposed implementation can be increased performance by

adopting another two multipliers (for GF2MUL operation). Moreover, proposed scalable ECC

can be considered for 16-bit data path and 32-bit data path without parallel or with parallel

multipliers to quantify the merits of the proposed low latency multipliers and square circuits.

ECC with Side-channel resistance

The countermeasure of side channel attack is an extra overhead of ECC. However, FPGA has

resistance against low-level physical attack and black box attack, there are several attacks

available on FPGA based ECC implementation such as advance physical attack, fault

injections, side channel attacks. To overcome part of the attacks, partial power attack resistant

is exercised using algorithmic modification (i.e. Montgomery point multiplication) in the ECC

operations. For a robust ECC implementation, the workload may increase double of the

existence ECC operation Again, The resources complexity may increase double while a side-

channel protection is exercised by using Wave Dynamic Differential Logic (WDDL) based

protection. Our proposed efficient ECC can allow countermeasure of side channel attacks

because of high efficient ECC. Thus, a further investigation is required to evaluate the

performance of ECC with countermeasure of the side channel attacks.

Chapter 7: Conclusions and Future Research Works

 7-6

Considering different platforms

Now, the software and hardware-software platforms offer some flexibilities such as GF2MUL

operation in the software environment, multicore operation, instruction set extension based

embedded processor with flexible addressing, an FPGA with soft-core (Picoblaze and

Microblaze), and FPGA with embedded processor (i.e. system on chip). Our proposed

multiprecision algorithms (multiplication and square) are flexible to consider in the

implementation in both software and hardware-software platforms. In particular, the proposed

parallel operation of the multiprecision multiplication can accelerate ECC operations in the

software and software-hardware platforms using the flexibilities of the advancement as a matter

of further investigation.

Future public key cryptography based on existing work

Several novel arithmetic operations are proposed in the research work. The underlying

technique of the proposed arithmetic circuit can be utilised for integer arithmetic operations.

For example, the proposed multiprecision multiplier and proposed digit serial multiplier can be

utilised to implement large modular integer multiplication for future cryptography applications

(i.e. post-quantum cryptography).

References

 -1

References
[1] D. R. Hankerson, A. J. Menezes and S.A. Vanstone, “Guide to Elliptic Curve

Cryptography,” Spinger Verlag, 2004.

[2] B. Schneier. Applied Cryptography. John Wiley, New York, NY, USA, 2nd edition,

1996.

[3] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions

on Information theory, IT-22(6): 644-654, November, 1976.

[4] FIPS 186-4: Digital Signature Standard (DSS). National Institute of Standards and

Technology Gaithersburg, MD 20899-8900 Issued July 2013. Available to download at

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[5] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” J. Cryptol., vol.

14, no. 4, pp. 255–293, 2001.

[6] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure for key

distribution in TinyOS based on elliptic curve cryptography,” 2004 First Annu. IEEE

Commun. SoC. Conf. Sens. Ad Hoc Commun. Networks, 2004. IEEE SECON 2004.

[7] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede, “Low-Cost

Elliptic Curve Cryptography for Wireless Sensor Networks,” Secur. Priv. Ad-Hoc Sens.

Networks, pp. 6–17, 2006.

[8] N. Guillermin, “A high speed coprocessor for elliptic curve scalar multiplications over

Fp,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6225 LNCS, pp. 48–64.

[9] M. N. Hassan and M. Benaissa, “Small footprint implementations of scalable ECC

point multiplication on FPGA,” in IEEE International Conference on Communications,

2010.

[10] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on FPGA,” IEEE

Trans. Very Large Scale Integr. Syst., vol. 16, no. 2, pp. 198–205, 2008.

[11] W. Stallings, Cryptography and Network Security- Principles and Practices. Fifth

Edition, Publisher: Prentice Hall 2006.

[12] F. R-Henriquez, N.A. Saqib, A. Diaz-Perez and C.K. Koc, “Cryptographic Algorithm

on Reconfigurable Hardware” Springer series on signals and communication technology,

publisher Springer 2006.

References

 -2

[13] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2. pp. 120–126,

1978.

[14] P. Gallagher, “Secure Hash Standard (SHS) FIPS PUB 180-4,” Processing, vol. FIPS

PUB 1, no. October, 2012.

[15] R. Rivest, “The MD5 message-digest algorithm,” Network WorkingGroup, Request for

Comments (RFC) 1321, Apr. 1992.

[16] M. J. Dworkin “SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions,” publish August 04, 2015. [Online]. Available:

http://dx.doi.org/10.6028/NIST.FIPS.202.

[17] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no.

177. pp. 203–203, 1987.

[18] V. Miller, “Use of elliptic curves in cryptography,” Adv. Cryptol. — CRYPTO ’85

Proc., vol. 218, pp. 417–426, 1986.

[19] ANSI X9.62: Public Key Cryptography for the Financial Services Industry: The Elliptic

Curve Digital Signature Algorithm (ECDSA). American National Standard Institute, New

York, USA, 1999.

[20] IEEE P1363-2000: IEEE Standard Specifications for Public-Key Cryptography. IEEE

Computer Society Press, Silver Spring, MD, USA, 2000.

[21] ISO/IEC 15946-5:2009: Information Technology-Security Techniques-Cryptographic

Techniques based on Elliptic Curves. International Organisation for Standardisation,

Geneva, Switzerland, 2009.

[22] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography, vol. 106. 1997.

[23] E. R. Berlekamp, “Algebraic Coding Theory”, McGraw-Hill Book Company, New

York, 1968.

[24] R. E. Blahut, “Theory and Practice of Error Control Codes”, Addison-Wesley

Publication Co. 1983.

[25] R. Lidl, and H. Niederreiter, “Introduction to finite fields and their applications,”

Cambridge University Press, Cambridge, UK, Revised Additions 1994.

[26] National Institute of Standards and Technology (NIST). “Recommended Elliptic

Curves for Federal Government use,” Available at http://csrc.nist.gov/encryption/2000.

References

 -3

[27] G. Orlando and C. Paar, “A super-serial Galois fields multiplier for FPGAs and its

application to public-key algorithms,” Seventh Annu. IEEE Symp. Field-Programmable

Cust. Comput. Mach. (Cat. No.PR00375), 1999.

[28] J. Großschadl, “a low-power bit-serial multiplier for finite fields GF(2m), “ In

Proceedings of the 34th IEEE Int. Symposium on Circuits and Systems (ISCAS-2001), vol.

IV, pp. 37-40, 2001.

[29] S. Kumar, T. Wollinger, and C. Paar, “Optimum digit Serial GF(2m) multipliers for

curve-based cryptography,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1306–1311, 2006.

[30] L. Song and K. Parhi, “Low-energy digit-serial/parallel finite field multipliers,” J. VLSI

signal Process. Syst. signal, vol. 166, pp. 149–166, 1998.

[31] H. Fan, M. A. Hasan, "A survey of some recent bit-parallel multipliers," Elsevier, Vol.

32, pp. 5-43, 2015.

[32] I. Blake, G. Seroussi and N. Smart, “Elliptic Curves in Cryptography,” London

Mathematical Society, Lecture Note Series 265. Cambridge University Press, 1999.

[33] N. Koblitz, “Algebraic Aspects of Cryptography,” Springer-Verlag, ACM, vol. 3, 1998.

[34] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factorization,”

Mathematics of Computation, vol. 48, no. 177. pp. 243–243, 1987.

[35] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over GF(2m) without

Precomputation,” in Lecture Notes in Computer Science: Advances in Cryptology -

CRYPTO 1999 Proceedings, 1999, pp. 316–327.

[36] N. Koblitz, “CM-Curves with Good Cryptographic Properties,” in CRYPTO, vol. 576

of Lectures Notes in Computer Science, pp. 195-249, Mar. 2003.

[37] J. Lutz and A. Hasan, “High Performance FPGA based Elliptic Curve Cryptographic

Co-Processor,” in International Conference on Information Technology: Coding and

Computing - ITCC, Vol.2. 2004, pp. 486–492.

[38] J. Lopez and R. Dahab, “An overview of Elliptic Curve Cryptography,” Technical

report, May 2000.

[39] N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve Cryptography,”

Des. Codes Cryptogr., vol. 193, no. 2, pp. 173–193, 2000.

[40] G. Meurice de Dormale and J. J. Quisquater, “High-speed hardware implementations

of Elliptic Curve Cryptography: A survey,” J. Syst. Archit., vol. 53, no. 2–3, pp. 72–84,

2007.

References

 -4

[41] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and

software,” ACM Computing Surveys, vol. 34, no. 2. pp. 171–210, 2002.

[42] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,”

Foundations and Trends® in Electronic Design Automation, vol. 2, no. 2. pp. 135–253,

2007.

[43] Xilinx Documentations. [online] Available at http://www.xilinx.com/support.html.

[44] J.A. Solinas, “An improved Algorithm for Arithmetic on a Family of Elliptic Curves,”

Advances in Cryptology- CRYPTO’97, pp. 357-371, Springer, 1997.

[45] J.-P, Deschamps and G.Sutter,“Elliptic-urve Point-Multiplication Over GF(2163),“ in

Proc. IEEE Conf. on PL, pp. 25-30, 2008.

[46] S.Kumar and C. Paar. “Are Standards Compliant Elliptic Curve Cryptosystems

Feasible on RFID?,” Printed handout of Workshop on RFID Security (RFID Sec 06), 2006.

[47] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Flexible Hardware

Architectures For Curve-Based Cryptography,” in Proc. IEEE ISCAS , 2006.

[48] K. Jarvinen , M. Tommiska, and J. Skytta, “ A Scalable Architecture For Elliptic Curve

Point Multiplication,” in Proc. IEEE int. Conf. on Field-Programmable Technology, pp.

303–306, 2004.

[49] M. Morales-Sandoval, C. Feregrino-Uribe, R. Cumplido, and I. Algredo-Badillo, “A

Reconfigurable GF(2m) Elliptic Curve Cryptographic Coprocessor,” in proc. IEEE 2011

VII Southern Conf. on SPL, Cordoba, pp. 209–214, 2011.

[50] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera, A. Touhafi and I.

Verbauwhede, “A Compact FPGA-Based Architecture For Elliptic Curve Cryptography

Over Prime Fields,” in proc. 21st IEEE Int. Conf. on ASAP, pp. 313–316, 2010.

[51] S. Antao, R. Chaves and L. Sousa,” Compact and Flexible Microcoded Elliptic Curve

Processor for Reconfigurable Devices,” in proc.17th IEEE Symp. on FCCM , pp. 193–200,

2009.

[52] G. Zied, M. Mohsen and T. Rached, “On The Hardware Design of Elliptic Curve Public

Key Cryptosystems Using Programmable Cellular Automata” in proc. IEEE 2nd Int.Conf.

on SCS, pp. 1–6, 2008.

[53] H. M. Choi, C. P. Hong and C. H. Kim “High Performance Elliptic Curve

Cryptographic Processor Over GF(2163),” in proc. 4th IEEE Intl. Symposium on Electronic

Design, Test & Applications, DELTA, 2008, pp. 290 – 295.

References

 -5

[54] K. Sakiyama, E. D. Mulder, B. Preneel and I. Verbauwhede, “A Parallel Processing

Hardware Architecture For Elliptic Curve Cryptosystems,” in proc. IEEE Intl. Conf. on

ICASSP, Vol.3, 2006.

[55] S. l. Antao, R. Chaves, and L. Sousa, “ Efficient FPGA Elliptic Curve Cryptographic

Processor over GF(2m) ,” in proc. IEEE Int. Conf. on ICECE Technology, FPT 2008, Vol.2,

pp. 486–492, 2008.

[56] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, and

D. Stebila, “An End-to-End Systems Approach to Elliptic Curve Cryptography,” in CHES

’02, Springer-Verlag, pp. 349–365, 2003.

[57] C. Shu, K. Gaj, and T. El-Ghazawi, "Low latency elliptic curve cryptography

accelerators for NIST curves over binary fields," Proc. IEEE Intl. Conf. on Field-

Programmable Technology, pp. 309-310, 2005.

[58] W. Chelton and M. Benaissa, "High-Speed Pipelined EGG Processor on FPGA," IEEE

Workshop on Signal Processing Systems Design and Implementation, SIPS '06, pp. 136-

141, Oct. 2006.

[59] B. Ansari, M. A. Hasan, , "High-Performance Architecture of Elliptic Curve Scalar

Multiplication," IEEE Trans. On Computers, vol.57, no.11, pp. 1443-1453, Nov.2008.

[60] Y. Zhang, D. Chen, Y. Choi, L. Chen and S.-B. Ko, “A high performance ECC

hardware implementation with instruction-level parallelism over GF(2163),” Microprocess

and. Microsyst., vol. 34, no. 6, pp. 228–236, 2010.

[61] G. Sutter, J. Deschamps, J Imana, "Efficient Elliptic Curve Point Multiplication using

Digit Serial Binary Field Operations," IEEE Trans. on Industrial Electronics, vol. 60, no.1,

pp. 217-225, 2013.

[62] K.Sakiyama, L.Batina, B. Preneel, and I. Verbauwhede, “Superscalar coprocessor for

high-speed curve-based cryptography,” in Proc. of CHES, ser. LNCS, vol. 4249. Springer-

Verlag, pp. 415–429. 2006.

[63] M. Hassan and M. Benaissa, "Efficient Time-Area Scalable ECC Processor Using μ-

Coding Technique", in Arithmetic of Finite Fields, LNCS, Springer, vol. 6087, 2010, pp.

250-268.

[64] M. Amara, and A. Siad, “Hardware implementation of arithmetic for elliptic curve

cryptosystems over GF(2m),” in proc 2011 IEEE conf. on worldcis, pp. 73–78,21-23, 2011.

[65] T.Itoh and S. Tsujii,”A fast algorithm for computing multiplicative inverses in GF (2m)

using normal bases,” info. Comput., vol. 78, no.3, pp. 171-177, 1988.

References

 -6

[66] K.C.C. Loi and S.-B. Ko, “High performance Scalable Elliptic Curve Cryptosystem

Processor for Koblitz Curves,” Microprocessors and Microsystems, vol. 37, pp. 394-406,

2013.

[67] L. Deng, K Sobti and C. Chakrabarti, “Accurate models for estimating area and power

of FPGA implementations,” IEEE Int. Conf. on ICASSP, pp. 1417-1420, 2008.

[68] P. Tuyls and L. Batina, “RFID-tags for Anti-Counterfeiting,” CT-RSA 2006, Springer

Verlag. pp. 115-131, 2006.

[69] D. Knuth, “The Art of Computer Programming”, Vol.2, Semi-numerical Algorithm, 3rd

e, Addison-Wesley, 1997.

[70] Z. Khan and M. Benaissa, "Low area ECC implementation on FPGA," in Proc. IEEE

20th ICECS, Dec. 8-11, 2013, pp. 581-584.

[71] S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical Modeling of Elliptic Curve

Scalar Multiplier on LUT-Based FPGAs for Area and Speed,” IEEE Trans. VLSI Syst.,

vol. 21, no. 5, pp. 901–909, May. 2013.

[72] H. Mahdizadeh, and M. Masoumi, “Novel Architecture for Efficient FPGA

Implementation of Elliptic Curve Cryptographic Processor Over GF(2163),” IEEE Trans.

VLSI Systems, vol. 21, no. 12, pp. 2330-2333, Dec. 2013.

[73] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA implementations of point

multiplication on binary Edwards and generalized Hessian curves using Gaussian normal

basis,” IEEE Trans. VLSI Systems, vol. 20, no. 8, pp. 1453-1466, Aug. 2012.

[74] J.-S. Pan, R Azarderakhsh, M. M. Kermani, C.-Y Lee, W.-Y. Lee, C. W. Chiou, and J.-

M Lin, "Low-Latency Digit-Serial Systolic Double Basis Multiplier Over GF(2m) Using

Subquadratic Toeplitz Matrix-Vector Product Approach," IEEE Trans. on Comp., Vol. 63,

no. 5, pp. 1169-1181, 2014.

[75] C.-Y. Lee, C.-S. Yang, B. K. Meher, P. K. Meher, and J.-S. Pan, "Low-Complexity

Digit-Serial and Scalable SPB/GPB Multipliers over Large Binary Extension Fields using

(b,2)-Way Karatsuba Decomposition," IEEE Trans. Circuits and Syst.-I, vol. 61, no. 11,

pp. 3115-3124, 2014.

[76] C.-Y. Lee, "Super Digit-Serial Systolic Multiplier over GF(2m)," The Sixth ICGEC.,

Aug.25-28, 2012, pp. 509-513.

[77] U. S. Department of Comerce/NIST, “National Institute of Standards and Technology,”

Digital Signature Standard, FIPS Publications 186-2, January 2000.

References

 -7

[78] M. A. Hasan, A.H. Namin, and C. Negre., "Toeplitz Matrix Approach for Binary Field

Multiplication Using Quadrinomials," IEEE Transactions on VLSI Systems, vol. 20, no. 3,

pp. 449-458, March, 2012.

[79] B. Rashidi, R.R. Farashahi, S.M. Sayedi, “High-speed and pipelined finite field bit-

parallel multiplier over GF(2m) for elliptic curve cryptosystems,” in Proc. 11th Int. ISC

Conf. on Info. Security and Cryptology (ISCISC), 2014, pp. 15-20.

[80] C. Rebeiro, S. Roy, and D. Mukhopadhyay, “Pushing the Limits of High-Speed GF(2m)

Elliptic Curve Scalar Multiplication on FPGAs,” lecture Notes in Comp. Sc.–CHES 2012

vol. 7428, pp. 496-511.

[81] S. Liu, L. Ju, X. Cai, Z. Jia, Z. Zhang, “High Performance FPGA Implementation of

Elliptic Curve Cryptography over Binary Fields,”in proc. 13th IEEE Int. Conf. on Trust,

Security and Privacy in Comp. and Communications(TrustCom), 2014, pp. 148-155.

[82] A.P. Fournaris, J. Zafeirakis, and O. Koufopavlou, "Designing and Evaluating High

Speed Elliptic Curve Point Multipliers," in proc. 17th Euromicro Conf. on, Digital System

Design (DSD), 2014, pp. 169-174.

[83] Z. Zia-Uddin-Ahamed Khan and M. Benaissa, “Throughput/Area Efficient ECC

Processor using Montgomery Point Multiplication on FPGA,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 62, no. 11, pp. 1078-1082, Nov. 2015.

[84] Z.U.A. KHAN, M. Benaissa, “High Speed ECC Implementation of FPGA over

GF(2m),” In proc. on 25th International Conference on Field-programmable Logic and

Applications (FPL), 2-4 Sept. 2015, pp. 1-6.

[85] S. Bartolini, I. Branovic, R. Giorgi, E. Martinelli, “Effects of Instruction-Set Extensions

on an Embedded Processor: A Case Study on Elliptic Curve Cryptography over GF(2m),”

IEEE Trans.Computers, vol.57, no.5, pp. 672-685, May 2008.

[86] P. Comba, “Exponentiation cryptosystems on the IBM PC”, IBM Systems Journal,

29(4), pp. 526-538, 1990.

[87] C. K. Koc and T. Acar, “Montgomery multiplication in GF(2k)”, Designs, Codes and

Cryptography, 14(1), pp. 57-68, April 1998.

[88] J. Groszschaedl, G.A. Kamendje, "Instruction set extension for fast elliptic curve

cryptography over binary finite fields GF(2m)," in Proc. on IEEE Int. Conf. on Application-

Specific Systems, Architectures, and Processors, 24-26 June 2003, pp. 455-468.

[89] Hassan, M.N.; Benaissa, M., "Embedded Software Design of Scalable Low-Area

Elliptic-Curve Cryptography," in IEEE Embedded Systems Letters, vol.1, no.2, pp. 42-45,

Aug. 2009.

References

 -8

[90] M. N. Hassan and M. Benaissa, “A scalable hardware/software co-design for elliptic

curve cryptography on picoblaze microcontroller,” in proc. on IEEE Int. Symp. Circuits

Syst. Nano-Bio Circuit Fabr. Syst., 2010, pp. 2111–2114.

[91] M. N. Hassan, M. Benaissa, and a. Kanakis, “Flexible hardware/software co-design for

scalable elliptic curve cryptography for low-resource applications,” in proc. on Int. Conf.

Appl. Syst. Archit. Process., no. 2, pp. 285–288, 2010.

[92] M. N. Hassan and M. Benaissa, "Low Area-Scalable Hardware/Software Co-Design

for Elliptic Curve Cryptography," in proc. on 3rd Int. Conf. in New Technologies, Mobility

and Security (NTMS), 2009, pp. 1-5.

[93] K.C.C. Loi, and K. S-B. Ko, "High performance scalable elliptic curve cryptosystem

processor in GF(2m)," in proc. on IEEE Int. Sympo. on Circuits and Systems (ISCAS), 19-

23 May 2013, pp. 2585-2588,

[94] J. Stein, “Computational problems associated with Racah algebra,” Journal of

Computational Physics, vol.1, pp. 397-405, 1967.

[95] XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices [online],

XILINX Inc, March 20, 2013 Available:http://-

www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst.pdf.

[96] None (2015) Cerberus FTP Server supports Elliptic Curve Cryptography, [online]

Available at: https://www.cerberusftp.com/products/features/cerberus-ftp-server-

elliptical-curve-cryptography.html

