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Abstract

This thesis addresses the behaviour of the artificial magnetic Penrose

tiling pattern in three different states: the as-fabricated state, the ac

demagnetised state and the thermally annealed state. The artificial

magnetic Penrose tiling comprises magnetic nano-elements, which are

termed “islands”, forming a Penrose tiling patterned from a 2-D film.

The main focus is the energy minimisation effect of these three proto-

cols and the effect of frustration on the thermal fluctuation processes.

The experimental investigations were conducted via magnetic force

microscopy.

A well-defined ground state for the Penrose pattern was theoretically

predicted based on consideration of the nearest neighbour dipolar in-

teraction. In this predicted ground state, a twofold degenerate rigid

framework that spans the system is interspersed with islands for which

the moment direction is not defined, since both directions are energet-

ically degenerate. The experimental samples were then characterised

in terms of the population of the rhombuses which are the basic units

of the Penrose tiling. The predicted long-range order in the system-

spanning framework was not found from any states in the experiments.

Further to this, a correlation function was defined for this pattern

and evaluated for the three different states. The correlation length

extracted from the correlation function indicates that the thermally

annealed state has longer range order than other two states, and

this conclusion is corroborated by the domain size measurement from

colour mapping of domains (the configuration of arrays are mapped by

different colours depending on whether the configuration is the as or

different to the ground state). The moments of the nano-elements are



found to be only locally correlated in the thermally annealed samples,

which was believed to be due to the blocking temperature distribu-

tion emerging during the thermal annealing process. However, this

hypothesis failed to explain an anomaly in the vertex energy distribu-

tions from the thermally annealed samples. One certain type of vertex

was found be stuck in a high energy state rather than the lowest energy

state after the thermal annealing. Based on the blocking temperature

estimation and magneto-static energy calculation, the energy distri-

bution of each vertex at the blocking temperature was found to follow

the Boltzmann distribution multiplied by a degeneracy factor. This

result agrees with the vertex energy distribution extracted from the

experiments at room temperature. This agreement shows that the

energy minimization of the Penrose tiling is restricted by the ratio of

vertex energy and the blocking temperature, giving a guide for future

investigations.
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Chapter 1

Introduction

1.1 Frustration

Sometimes, frustration can make life interesting, especially for physicists. The

study of frustration is an interesting and important aspect in physics. Frustration

is the inability to simultaneously satisfy competing interactions in a system. This

leads to the failure to have a unique ground state, and instead there are many

degenerate low energy states. We can then say that the system shows frustration.

Different forms of frustration have been realised when people studied different

materials. For example, a spin glass as a random and magnetic system has

been studied for decades. It is believed that the frustration accounted for most

features of this type of material. A well studied spin glass material is the alloy

CuMn, in which the Mn ion is randomly diluted in the non-magnetic Cu [1]. The

indirect exchange interaction between the magnetic moments of the Mn ions is

mediated via the conduction electrons in Cu. The interaction is of the RKKY

type, which means that the sign of interaction oscillates depending on the distance

between Mn ions, i.e. the interaction can be ferromagnetic or antiferromagnetic.

This means that it takes random values and signs for the randomly distributed

moments. The net result is that such a system does not possess a well defined

ground state, but instead a large number of possible ground states. It also leads

to a “cooperative freezing transition”. This is not a phase transition which would

lead the system into a magnetic ordered state, as no long-range order is found

[2].

1



1.1 Frustration

Figure 1.1: Frustration in an antiferromangetic triangle motif: all the spins prefer

to be antiparallel in this system. When the direction of two of the spins are fixed,

the remaining spin is in a dilemma, where it cannot satisfy both the interactions

with its neighbouring spins, i.e. frustration is present.

Conversely, in some materials, frustration arises because of geometrical con-

straints. An often-used example is an antiferromagnetic motif with an odd num-

ber of spins in a loop, the simplest example of which is a triangle. As shown in

figure 1.1, the Ising spins prefer to be antiparallel to their neighbours. If two spins

are placed antiparallel, the remaining one cannot satisfy both of the interactions

with its neighbouring spins at the same time. In this case, the system is said to

have geometrical frustration. As a result, there are six energy-degenerate ground

states for this system. These multiple ground states enhance fluctuation, while

suppressing the order of the system. It also leads to finite ground state entropy. A

example of this geometrical frustration in a 3-D material is spin ice, e.g. Ho2Ti2O7

and Dy2Ti2O7. These systems have a pyrochlore structure, which is a network of

corner sharing tetrahedra in which the rare earth ions Ho or Dy sit in the corners

[3; 4; 5]. Due to strong crystal fields, the moments of these ions are confined to

point along a certain axis. Therefore the spins are Ising doublets, and can only

point inwards or outwards from the tetrahedra. The dominant interaction is the

dipolar interaction between these large magnetic moments. It is long range, but

it can be understood using an effective nearest neighbour ferromagnetic exchange

interaction model [6]. This ferromagnetic interaction is frustrated by the crystal

geometry and leads to the ground state of the spins in a tetrahedron following

the so called “two-in two-out” rule, which means that two of the spins point in-

2



1.1 Frustration

Figure 1.2: Ground state of magnets from site disorder to frustration. The chart

is after A.P. Ramirez [7].

wards and two point outwards. The ground state of a single tetrahedron is highly

degenerate and has six equal configurations. Owing to frustration, there is no

ordering transition at any temperature. More details on spin ice will be given in

Chapter 2.

Based on the knowledge of frustration and disorder, magnetic materials can

be coarsely classified (see figure 1.2). However, there are other systems whose

structure is neither ordered nor disordered, but shows a kind of quasi-order. One

such structure is the Penrose tiling, which lacks periodicity but still possesses long

range order [8]. The corresponding material is the quasicrystal. When this type of

material was found to possess magnetic properties, people expected that some ex-

otic magnetic long range order may exist. The magnetic quasicrystal compounds,

therefore, attracted intensive interest [8; 9; 10]. However, after decades of study,

only short range magnetic order has been found in rare earth based quasicrystals

[11; 12; 13]. The spin order in magnetic quasicrystals remains elusive.

3



1.2 Outline of the thesis

In recent years, a prominent programme has been developed in which the

physics of geometrical frustration is explored via a model system known as arti-

ficial spin ice [14; 15; 16; 17]. Such systems consist of nano-fabricated magnetic

elements. Each element is designed to be an elongated island. Due to the shape

anisotropy, each element has Ising-like moment, which prefers to point along the

elongated direction. The advantage of this system is that it not only allows flex-

ibility in the design of the desired arrays, but also it is possible to be probed

at room temperature via nano-scale imaging tools. An example of such work is

the 2-D artificial square pattern, in which a frustrated interaction is designed

analogous to those found in 3-D spin ice [14].

So far, large portions of this work focussed on special patterns, which were

designed to investigate the analogous physics to bulk spin ice. Following short-

range correlation, artificial magnetic charge propagation was found, similar to

the bulk spin ice material [14; 15; 16; 18; 19]. These results give credence to

the idea of exploring the frustration in the magnetic quasi-periodic system using

similarly constructed artificial analogues. Based on this idea, in this project a

2-D artificial Penrose tiling pattern was designed and several energy minimisation

protocols were conducted. The thermal annealing has been confirmed as the most

effective protocol, which significantly minimises the total energy of arrays. It has

be shown that further energy minimisation is possible from the investigation of

thermal fluctuations.

1.2 Outline of the thesis

The aim of this thesis is to present the main efforts on energy minimisation. A

well-defined ground state of a Penrose tiling and the construction process will be

presented. Several statistical analyses were conducted on different states and the

results are addressed. Furthermore, the energy distribution of different types of

vertex in the thermally annealed state is displayed and the distributions are found

follow the Boltzmann law. The results are confirmed by numerical simulation.

Chapter 2 will give a brief overview of spin ice and artificial spin ice, as well

as quasicrystal materials. The experimental protocols implemented on the square

and kagome patterns in the literature will be described in more detail. Chapter

4



1.2 Outline of the thesis

3 will illustrate the methods and techniques used in this thesis to fabricate and

characterise the samples. A correlation function will also be introduced in this

chapter.

A well defined ground state of Penrose tiling will be illustrated in Chapter 4.

Each procedure of the ground state construction process will be demonstrated.

In Chapter 5, some statistical results in terms of experimental rhombuses

population will be shown. Apart from these results, a colour map method that

help to visualise the magnetic order of sample is also introduced. A correlation

function is introduced in Chapter 6 which is different from the one used on other

patterns. The corresponding results will be listed as well.

In Chapter 7, the energy distribution of each type vertex will be listed. The

blocking temperature estimation will be given, based on which the numerical

simulation of energy distribution will be shown.

In Chapter 8, an overview of the results and a discussion of future work and

further interesting directions will be given.

5



Chapter 2

Literature review

2.1 Spin ice

2.1.1 Introduction

Water ice is an interesting condensed matter system. It has been found to have

residual entropy at zero temperature [20], which seemingly violates the third law

of thermodynamics. In 1935, Pauling pointed out that this non-zero entropy

originated from the configurational proton disorder. Based on this theory, the

residual entropy of water ice was estimated as 0.81 Cal/deg.mol [21], which is

very close to the experimental value of 0.82± 0.05 Cal/deg.mol [20].

It is known that the oxygen and hydrogen ions in water ice obey the so-called

“ice-rule” [22], which requires that two of the protons are close to and two protons

are further away from each oxygen ion in order to minimize the energy (see figure

2.1(a)). The whole ice system can be described as a lattice of corner-sharing

tetrahedra, in which each oxygen ion sits at the center of each tetrahedron and

interacts with other oxygen ions via protons that are close to the four vertices of

the tetrahedron (see figure 2.1(b)). Pauling showed that due to the “ice rule”, the

protons do not build long-range order, but rather generate a multiply-degenerate

ground state. In other words, the system has residual entropy.

As each tetrahedron provides six-fold degeneracy, when following the “ice

rule”, the number of degeneracies diverge exponentially with the size of the sys-

tem. According to Pauling’s calculations, this degeneracy gives water the residual
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2.1 Spin ice

Figure 2.1: (a) Water ice: the white spheres are oxygen ions and the black dots are

hydrogen ions. (b) The pyrochlore lattice (c) Spin ice: the macroscopic ground

state is two spins pointing inwards and two spins pointing outwards. (a) after

Bramwell et al. [3], (b) and (c) after Fenell et al. [23].

entropy per mole S = (R
2

) ln 3/2=0.81 Cal/deg.mol, which is in agreement with

the experiment [24].

In 1956 [25], Anderson investigated an antiferromagnetic pyrochlore Ising

model, which showed that the system possessed similar structure to water ice

by replacing the H+ ion vectors with spins. Therefore, the magnetic ordering in

this system has similar problems to water ice ordering due to the geometrical frus-

tration and is characterized by residual entropy. In 1997 [3], this type of magnetic

structure was experimentally discovered in the rare earth compound Ho2Ti2O7.

The cation Ho3+ sits on the pyrochlore lattice of corner-sharing tetrahedra. A

strongly anisotropic crystallographic environment forces the magnetic moments

to point along the 〈111〉 axes.

The Curie-Weiss temperature deduced from high temperature susceptibility

measurements is 1.9 K. It shows that the coupling between Ho+ ions should be

∼1 K. However, other experiments found no evidence of a magnetic transition

when the temperature was lowered as far down as a few mK [3]. Similar behaviour

has been observed in another rare earth compound, Dy2Ti2O7. The susceptibility

curve does not show a sharp cusp as expected from spin glass material at low

temperature [26]. Besides, the material for the experiment was identified as

having few structural defects [27]. All the evidence points to the fact that this

spin disorder is not caused by either a spin glass state or structural defects, but

represents a new kind of frozen spin state.

7



2.1 Spin ice

Harris [3] proposed a simple model of nearest neighbour ferromagnetic interac-

tions. It shows that in a system with a cubic pyrochlore lattice, the ferromagnetic

exchange coupling is highly frustrated by the lattice geometry, while the antifer-

romagnetic exchange coupling is not. The development of ferromagnetic order

is, therefore, frustrated. The system obeys similar “ice rules” when constructing

low energy states as those for water ice. Therefore, the system possesses residual

entropy, like water ice.

This scenario was strongly supported by a remarkable experiment [28]. In the

work of Ramirez et al., the residual entropy of Dy2Ti2O7 at low temperature, as

deduced from specific heat data, is in agreement with Pauling’s estimation for

water ice.

It was suggested, however, that the nearest neighbour exchange interaction is

antiferromagnetic rather than ferromagnetic [29], which should result in a phase

transition at low temperature. This is, however, difficult to reconcile with the

specific heat measurement. As shown in figure 2.2 the specific heat measurement

indicated that no phase transition occurs in Dy2Ti2O7 across a wide range of

temperatures. When the temperature is above Tpeak ∼1.24 K, the system is in

the paramagnetic regime and is weakly correlated. Single tetrahedra do not obey

the “ice rules”. As the temperature approaches Tpeak, the ice rule is progressively

fulfilled. The Schottky anomaly-like peak arises in the specific heat curve. How-

ever, this Schottky anomaly is not a sharp peak or cusp, as might be associated

with a phase transition. This controversy was solved later by the development of

another model, which takes the dipolar interaction into account. This model is

called the “dipolar ice model” [4].

Normally, the dipolar interaction is treated as a perturbation because its mag-

nitude is too small when compared with the exchange interaction, but the rare

earth ions in spin ice materials have large magnetic moments, and consequently

the magnetic dipolar-dipolar interaction is expected at least to be of the same

order as the exchange interaction. This hypothesis was confirmed by neutron

diffraction data and Monte-Carlo simulation based on the “dipolar ice model” [4]

(see figure 2.3). The spin ice is better described by the dipolar spin ice model,

which incorporates both the long-range dipolar interaction and weak antiferro-

magnetic nearest neighbour exchange interactions. The ground states for both

8



2.1 Spin ice

Figure 2.2: Specific heat measurement data for Dy2Ti2O7: There is a smooth

broad maximum for the specific heat curve, which is known as a Schottky

anomaly. This does not indicate that a phase transition occurs. After Ramirez

et al. [28]

models are approximately equivalent when the temperature is close to zero [30].

Due to the large energy barrier between the ground and the first excited state

(around 100 K), as well as the slow relaxation time, the ground state is still far

from being accessed experimentally.

2.1.2 Magnetic monopole

Based on the “dipolar spin ice” model, one of most exciting developments so

far has been the prediction of magnetic monopoles [6]. The magnetic monopole

arises because violations of the “ice rule” can occur. A simple defect consists of a

tetrahedron with three spins pointing in and one spin pointing out or vice versa

due to a single flip spin. The centre of the tetrahedron forms a source of sink for

flux, and therefore, it can be deemed to behave as a monopole.

A monopole and anti-monopole pair will arise with a spin flip as the first

excitation over the ice rule state and this gives three in-one out and three out-

one in spin configuration (see figure 2.4). A dumbbell picture is used here to

describe the situation. A dumbbell is obtained by replacing a spin by a pair of

opposite magnetic charges (see figure 2.4 c and d). Therefore, a pair of monopoles
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2.1 Spin ice

Figure 2.3: (a) Experimental neutron scattering pattern of Ho2Ti2O7 in re-

ciprocal space at 50 mK. (b) Simulation of the reciprocal structure based on a

spin ice model in which only ferromagnetic exchange coupling is considered. (c)

The calculated neutron scattered intensity takes into account both dipolar in-

teractions and weak nearest neighbour exchange coupling (antiferromagnetic). It

captures the main detail of the experimental data more precisely than the nearest

neighbour spin ice model. After Bramwell et al. [4]

can be separated by flipping a chain of adjacent dumbbells. During this flipping

process, the magnetic charge of tetrahedra along the trace will return to overall

charge neutrality since the ice rule is restored. It takes finite energy to separate

the monopole pair, therefore, these monopoles are deconfined, as shown in figure

2.4 [6]. It is worth pointing out here that the monopole scenario does not violate

Maxwell’s equations. In fact, electromagnetic theory allows for such an excitation

to occur. ∇ · B = 0 implies that ∇ · M = −∇ · H, which corresponds to

the divergence of magnetic field H. This gives rise to the magnetic monopole in

H. This monopole scenario has been confirmed by several experimental papers

[31; 32; 33; 34].
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Figure 2.4: (a) The ground state of spin ice in two adjacent tetrahedra. Both

tetrahedra follow the two spin pointing in and two spin pointing out ice rule. (b)

The excited state of a pair of neighbouring tetrahedra is generated by flipping one

spin from the ice-rule state. This gives rise to a monopole and anti-monopole pair

with opposite signs of magnetic charge represented by red and blue spheres. (c)

and (d) are the dumbbell model descriptions of (a) and (b) respectively. Each spin

is represented by a dumbbell consisting of two magnetic charges. Therefore, in the

ice-rule state, the net magnetic charge is zero at every vertex, while in the excited

state two quasi-particles with opposite magnetic charge form. (e) Inset: the

monopole and anti-monopole pair separate after flipping a chain of spins: only the

two ends violate the ice rule. The curve is a magnetic Coulomb interaction (solid

line) calculated based on −µ0q
2
m/4πr compared with the numerical evaluation of

monopole interaction energy (circle) in dipole spin ice as a function of monopole

separation. After Castelnovo et al.[6]
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2.2 Artificial spin ice

Figure 2.5: (a) AFM image of typical permalloy array with a lattice constant at

400 nm. (b) Magnetic force microscopy image of the same pattern. Each island

consists of black and white dots, which correspond to the north and south pole

respectively. The outline vertices are type 1 (pink), type 2 (blue) and type 3

(yellow). After Wang et al. [14]

2.2 Artificial spin ice

2.2.1 Introduction

Geometrical frustrations exist not just in atomic scale systems, but also in nano-

scale artificial systems. For the latter, the structure is easier to design and probe

via nano-scale microscopy tools. The artificial spin ice is such a system. It con-

sists of 2-D magnetic interacting nano-islands made of permalloy. This material

has little crystalline anisotropy and the shape anisotropy confines the magnetiza-

tion of each nano particle along its elongated direction. Therefore each particle

can be deemed to behave as an Ising-like macro-spin. Compared to real spin

ice, the system has the advantage of being accessible at room temperature and

has tunable inter-element interaction. The artificial spin ice system has drawn

intensive interest lately. The main focus has ranged from energy minimization

[15; 35; 36] to pattern design [14; 16; 37; 38], accessing well-defined statistic states

[17; 39], field driven dynamics [40; 41] and so on.
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2.2 Artificial spin ice

The system consists of elongated magnetic islands at the nano-scale: a typical

element is designed to be hundreds of nanometres in length and tens of nanome-

tres in width. Numerical models [42] and simulations [18] have shown that this

size of islands is sufficiently small to act as single domain, but big enough to main-

tain stable magnetic moment at room temperature. More precisely, the thermal

energy for overcoming the kinetic barrier is up to 105 K. Therefore, the island is

thermally stable at room temperature. The fabrication of islands with this size

needs electron beam lithography. The fabrication details are given in chapter 3,

section 3.1.

In 2006, Tanaka and co-workers [43] built a permalloy wire-based honeycomb

network providing an analogue from the nano-wire network to the Ising system on

the kagome lattice. The system is designed to be connected in order to perform

the magnetization reversal and magnetoresistance measurement. In this study,

the link between the nano-array system with water ice and spin ice has already

been addressed. The connection was developed by Wang et al. [44] on a square

array consisting of disconnected islands and this group of authors coined the name

“artificial spin ice”.

In addition, several other similar lattices have been realized, such as triangu-

lar, brickwork, and quasiperiodic patterns [37; 38; 45]. In principle, an artificial

ice system can be formed from any interacting Ising component, and therefore, a

wide class of artificial system is built from superconducting flux vertex array [46]

and colloidal version of artificial spin ice in an optical trap [47].

For the purpose of this thesis, a new quasi-periodic pattern, based on a Penrose

tiling is studied for the first time. It must be pointed out that Bhat et al. [45]

did some pioneering work on magnetic reversal measurement for quasicrystal

pattern. Nevertheless, the main character of quasi-periodicity of this pattern like

the ground state, thermal dynamic behaviour has not been investigated. These

important features will be illustrated later on.

Because the system is stable at room temperature, the topography and mag-

netic configuration of the pattern can obtained via AFM (Atomic Force Mi-

croscopy) and MFM (Magnetic Force Microscopy). The details of these methods

are given in Chapter 3, section 3.2. Other methodologies are also employed to

explore additional properties of such systems. For instance, a large portion of
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2.2 Artificial spin ice

Figure 2.6: (a) A TEM image of kagome pattern. (b) Lorentz TEM image of

the same pattern. (c) The simulation shows the moment direction based on the

dark and bright edge. After Qi et al. [16]

the kagome pattern research was based on networked systems (see figure 2.6). In

this case, MFM images fail to provide information about the magnetic alignment

of the section part, which connects two junctions [16]. To solve this problem,

Lorentz TEM (Transmission Electron Microscopy) is used to probe the local

magnetic structure without ambiguity. The substrate needs to be transparent in

order to allow the electron beam to go through. To observe the dynamic equi-

librium of artificial ice system, some other techniques were employed, such as

PEEM (Photoemission Electron Microscopy) with XMCD (X-ray Magnetic Cir-

cular Dichroism) which was used to determine the magnetization of individual

elements. The system magnetic property also needs to be adjusted to fit the

experiment condition [36; 48; 49; 50]. However, compared with AFM/MFM, the

other apparatus mentioned above are much more expensive.

2.2.2 Square pattern and kagome pattern

In artificial spin ice systems, the symmetry of the 2-D is different from the 3-D spin

ice. Four points in three dimensions may be equidistant, but this is impossible in
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2.2 Artificial spin ice

two dimensions. This causes two of the ice-rule states to have lower energy than

the other four in two-dimensional system.

As shown in figure 2.7, the 16 possible configurations can be grouped into four

types, labelled T1, T2, T3, T4 in the order of increasing magnetostatic energy

for an isolated single vertex. The total energy for a single vertex is the sum of

six pairwise interactions, including the first and second nearest neighbour pairs.

Both favourable and unfavourable alignments for each type of pair are listed.

type 3 and type 4 vertices have much higher energy than type 1 and type 2.

Therefore, the low energy state of the pattern is dominated by the number of

type 1 and type 2 vertices. T1 state is the lowest energy state, hence the ground

state of square ice consists of type 1 vertices (see figure 2.7(a)). It follows a

similar “two-in two-out” ice rule just as in real spin ice. However, in reality, in

some experiments, the low energy state is made up of type 2 vertices rather than

type 1 vertices [51]. This is because the energy difference of type 1 and type 2

vertices is too small, and therefore, a small magnetic field when coupled with the

magnetic nano-element makes the type 1 vertex energetically unfavourable. Type

3 and 4 possess an excess of north or south, having normalized monopole moment.

They present analogs of the fractionalized magnetic monopoles in real spin ice,

but the difference is that these “magnetic monopoles” are not deconfined. The

reason is that when separating a pair of “magnetic monopoles” in artificial spin

ice, the vertex along the trace cannot revert to its initial state, hence costing

extra energy.

The kagome pattern is a two dimensional array consisting of corner-shared

triangular structures. The pyrochlore lattice in 3-D spin ice consists of alternat-

ing stacks of kagome layers and triangular layers when viewed along the 〈111〉
direction. The magnetic monopole manipulation of spin ice when subjected to

an external magnetic field along 〈111〉 direction is mainly determined by the spin

state in kagome layers. Being a very close analogue of this kagome ice state, with

the added advantage of being directly accessible coupled with ease of construc-

tion, the kagome pattern in artificial spin ice is intensively exploited.

The kagome vertex possesses eight possible configurations that are split into

two groups with different energies (see figure 2.8). All of the interactions across

the vertex are equivalent, which leads to the corresponding “ice rule” of this
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Figure 2.7: (a) The moment configuration is in one of the ground states. (b)

Illustration of favourable and unfavourable dipolar interaction between pairs. (c)

The 16 possible moment configurations for a single vertex, grouped into 4 different

types. The percentage indicates the expected population when each element is

randomly aligned. (b) and (c) is after Wang et al. [14]
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2.2 Artificial spin ice

Figure 2.8: The eight possible moment configurations in a kagome lattice can

be separated into two types. (a) Low energy type configuration, which follows

the ice rule “two-in one-out” or “two-out one-in”. The coloured circles repre-

sents the normalized magnetic charge ±1. (b) High energy configuration possess

normalized magnetic charge ±3 (big coloured circle).

system to be modified into “two-in one-out” or “two-out one-in”. However, the

“ice rule” in kagome patterns only works for nearest neighbour elements, and

therefore cannot guarantee a long-range order. It has been predicted that the

system undergoes two phase transitions on lowering the temperature, where the

degeneracy of spin ice manifold is lifted by the long-range dipolar interaction

[52; 53]. These thermodynamic phase transitions in kagome spin ice have been

probed using low energy muon spectroscopy [54].

2.2.3 Accessing the ground state

Introduction

In such artificially designed systems, a prevalent point of focus is accessing the

prescribed ground state via an “anneal” process [55; 56; 57; 58; 59]. For example,

AC demagnetization was employed to form GS configurations in dipolar coupled

nano-magnetic chains [60; 61]. In artificial spin ice systems, this methodology

has been intensively used to generate low moment and low energy states [15; 44].

The demagnetization is described in the following section.
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2.2 Artificial spin ice

Figure 2.9: AC demagnetization protocols. (a) The sample is rotated along an

axis that is out of plane. The external field is applied in plane with a square

function profile. With each half period, the field decreases. After Ke et al. [15]

(b) Schematic plot of three demagnetization protocols: protocol 1 is depicted in

(a), protocol 2 presents a linear decrease in field without oscillation and protocol

3 has a step function profile without alternating field direction. (c) Residual

magnetization as a function of lattice space, following protocol 1.

AC demagnetisation

For a general AC demagnetization process, the sample is subjected to an external

in plane magnetic field, which alternates in direction while also decreasing in

magnitude. A series of demagnetization protocols were tested by Wang et al.

[15; 18; 44] In order to do so, the sample was mounted on a rotating ∼ 10 Hz

plate while subjected to an in-plane field, oscillating stepwise between opposite

directions and decreasing magnitude. The plate rotation direction was out of

plane (see figure 2.9(a)). The field starts above the coercive field ∼ 700 Oe (for

the islands size of 220 nm × 80 nm × 25 nm), which is nearly independent of the

lattice constant. Then, the field holds each step for a few seconds and ramps at

a rate of 10 kOe/s. The magnitude of the field is decreased by a step of 10 Oe

every half period. Therefore, the whole process can be completed within minutes.

A linear decrease protocol and a non oscillating step protocol were also tested, as

illustrated in figure 2.9(b). These two protocols were reported to be less effective.

It is worth pointing out that, as reported by another paper, the linear decrease

protocol was proved to have the same effect as AC demagnetization protocol [62].

The demagnetized state of net moment Mtot ∼ 0, as shown in figure 2.9(c), can
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2.2 Artificial spin ice

Figure 2.10: Field step-size dependent of residual moment. The state of effectively

zero magnetization can be accessed when the step size is smaller than 12.8 Oe.

The trends for four selected lattice constants are similar. The inset is a close-up

view for low step size region. After Ke et al. [15]

be repeatedly accessed.

While the exact detailed process involved remaining unclear, several important

results emerged from the initial work [15; 44]. It was shown that the external

field for demagnetization works only in a narrow window around the coercive

field. The residual moment is field step size and lattice constant dependent (see

figure 2.10). When the step size is smaller than a specified value (12.8 Oe), the

final state is effectively demagnetised. The net magnetic moment cannot uniquely

specify the state. Therefore short-range magnetic correlations were employed to

examine the low step region.

As shown in figure 2.11, further reducing the field step size makes the short-

range correlation stronger. The net energy is further minimized as the field step

size reduces (see figure 2.12). However, the ground state cannot be obtained
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Figure 2.11: Control of short-range magnetic correlation via field step size and

lattice constant. (a) Correlation for three different types of neighbour pairs as

defined in (b), for 400 nm square lattice following AC demagnetization with

∆H=12.8 Oe and ∆H=1.6 Oe. The black curve is given by experiment, and the

red curve is given by the Monte Carlo simulation. Correlations are stronger when

the field step size becomes smaller. After Ke et al. [15]
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2.2 Artificial spin ice

via this method [15]. This is due to the geometry of the square pattern, which

makes it impossible to transfer a type 2 vertex directly into a type 1 vertex,

which requires a flip of two moments via type 3 configuration. The small step

size field cannot overcome this barrier, while a large step size field will act to jam

the high energy configuration. The demagnetization cannot anneal the system

into its antiferromagnetic GS. The moment is in a static, disordered state, which

is similar to the frozen state in spin ice. Nevertheless, these experiment results

suggest a new model from which the population of local state can be predicted.

Effective thermodynamics

Growing evidence shows [17; 39] that AC demagnetization can be treated as an

effective thermal annealing process. This is not surprising, as both thermalization

and AC demagnetization exert forces on each particle of the system, which can

flip the moment of particle during the whole process. The difference is that

the former is the result of local normally distributed thermal “kicks”, while the

latter has a periodic directionality where all the moments experience the same

applied field via dipolar interactions. Based on the result of Wang et al. [14],

an equilibrium statistical mechanical formula is introduced by Nisoli et al. to

describe the AC demagnetization process in terms of “effective thermodynamics”

[17; 39]. An effective temperature is defined to understand the full statistical

properties. This is not the first time effective temperature is used to analyze

non-thermalization processes. It has been employed in vibro-fluidized granular

systems [63] and powder mixture statistical studies [64]. Both of the processes are

described as a Brownian motion behaviour. In the case of AC demagnetization,

however, the process was described as more like stirring a box of sand rather

than shaking it. Therefore, the description of the thermal-like process cannot be

immediately employed on the demagnetization process.

The evidence initially comes from the statistical result: the expected value of

dipolar energy of the square pattern after AC demagnetization closely tracks the

T2 vertex energy (see figure 2.13). The average vertex energy of array in the AC

demagnetized state can be written as Ẽ =
∑

i niEi = E2, where ni denotes the

fractional population of vertex types for i = 1 to 4 and Ei are the vertex energies

21



2.2 Artificial spin ice

Figure 2.12: Top: Step size dependence of total magnetostatic energy for D(1),

L(1), T(1) island pairs. The sum of the energies for these three pairs for 560 nm

lattice spacing. Bottom: Normalized total energy for array with different lattice

constants when demagnetized with different field step sizes. After Ke et al. [15]
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respectively. The measured energy, as plotted in figure 2.13, fully tracks the

calculated energy for the T2 vertex in each lattice constant pattern. The random

average energy plotted in the inset of figure 2.13 implies that this relationship

is from simple random average. In order to explain this phenomenon, the first

approximation is a vertex-gas approximation where each vertex is treated as a

single entity. As described in the 16 vertex model, each vertex can take one of

four energy states Ei with degeneracy qi equal to 2, 4, 8, and 2, respectively. As

the prepared state before AC demagnetization is fully polarized along diagonal

direction, all the vertices are initialized as type 2 vertices. When the external

field is much higher than the coercive field, all the islands follow the external field.

As the field magnitude gradually decreases, successive islands start to “fall-off”

from the field, which subsequently carve out defect vertices from the background

of type 2 vertices. As the field decreases further, these defects become arrested.

The equilibrium fractional vertex population can therefore be calculated through

maximizing the entropy S with respect to the number of configurations of vertices

Ni. This can be written as S/NkB = (1/N) ln Ω = −
∑

ini lnni/qi with respect

to ni. Ω is the total number of ways in which to arrange N vertices with Ni

configurations of each vertex and is given by

Ω = N !
∏
i

qNi
i

Ni!
. (2.1)

It was found, however, that the predicted population based on this theory

does not agreed very well with the observed population from the MFM image.

This is not too surprising, as the demagnetization is a non-thermal process. A

modified theory is given later in which the background “diagonal polarized state”

population, as well as the defect vertex population, was taken into account. Now,

the Ω in equation 2.1 can be written as

Ω =
N !

(N −D)!

∏
i

qNi
i

Ni!
, (2.2)

and entropy can be written as S/NkB = −[ρ ln ρ + (1 − ρ) ln 1− ρ] + ρσ. Max-

imizing the entropy under a vertex energy constraint
∑

iνiEi = E2 gives the

canonical distribution of defects

ν∗i =
qi exp (−βEi)

Z
. (2.3)
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Figure 2.13: Calculated T2 vertex energy (red diamonds) compared with average

vertex energy Ẽ (dots). These energies are very close to each other at each

lattice spacing. The randomly aligned energy is also plotted (triangles) and has a

different value, especially when the lattice spacing is small. The inset shows the

specific energy and the randomly aligned energy, normalized to pure T2 vertex

energy at each lattice constant (red line). After Nisoli et al. [17]
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Figure 2.14: (a) The effective temperature of square array. nI , nII , nIII are rel-

ative population of type I, II, III vertices. The ratio given by theory roughly

matches the ratio given from the linear fit from the experiment. (b) The effective

temperature extracted from the experiment has a linear relationship with the

step size of the demagnetization process. After Nisoli et al. [39]

Z is the partition function over ν∗i , Equation 2.3 gives

β(Ej − Ei) = ln

(
qjνi
qiνj

)
. (2.4)

As each vertex energy can be estimated by using the “dumbbell model” in which

the islands are treated as a dumbbell of monopoles, the ratio between different

populations of vertex types can be predicted from the equation 2.4. This value

agrees well with the ratio of population of each type vertex read from MFM

images (see figure 2.14(a)).

Further, equation 2.4 allows for an effective temperature Teff = 1/kBβ of a

state to be inferred from an MFM image by counting the vertex populations. Not

surprisingly, Nisoli found that this effective temperature had a linear dependence

with the step size of the AC demagnetization process figure 2.14(b), which in-

dicates that this effective temperature description has basic physics akin to real

temperature.
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2.2.4 Thermal behaviour in artificial spin ice

The AC demagnetization protocol can reduce the total energy of the square arti-

ficial pattern: however, it is found that the ground state cannot be obtained via

this method. Therefore, consideration is given to the true thermalisation process.

As reported firstly by researchers at the University of Leeds [65], the ground state

of a wide-range order in a square ice pattern was found from the as-grown pattern

(see figure 2.15(a)). Over ∼ 20 lattice constants long-range order is observed from

macroscopic images. The frequency of different types of elementary excitation in

the background of the ground state were found follow the Boltzmann law (see

figure 2.15(b)). Based on this fact, the authors of this paper [65] argued that the

state observed is frozen-in residue of true thermodynamic processes that occurred

during fabrication.

This is a reasonable conclusion, since when the sample is in the initial stage

of fabrication, the thickness and thus the volume of elements was small enough

so that the shape anisotropy energy of element EA, (EA = KV , K is anisotropy

constant, V is the volume of element) can be overcome by the thermal energy.

Hence the thermal fluctuation was active and the elements behave like superpara-

magnetic. As the nano-islands are being grown, the height and thus the volume

of islands increase, which induce higher energy barriers. The thermal fluctuation

progressively slows down and the islands moments are frozen at some point during

the fabrication stage. During this process, the dipolar interactions between the

neighbouring islands plays an important role. It slightly changes the energy bar-

rier in the reverse direction of elements. Therefore, the magnetic moments of each

vertex transfer towards their most favourable configurations during the magnetic

materials deposition stage. These excitations therefore are expected follow the

Boltzmann law for an effective temperature that matches the real temperature

when the system is arrested.

This finding proved that the thermal fluctuation can indeed induce the long-

range ground state order in the artificial system and triggered intense theory and

modelling efforts [66; 67]. However, the as-fabricated state study is a limited

methodology. First, the ground state formation is not easy to reproduce due to
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Figure 2.15: (a) Direct observation of the long-range ordered GS in a square

pattern with ∼ 10 µm width domain. (b) The frequency of a given excited state

against the excitation energy with an exponential fit in red. After Morgan et al.

[65]

the wide range of fabrication parameters. Besides, the as-grown state can eas-

ily be destroyed by external field and cannot be recovered, which complicates

systematic studies. In order to circumvent these limitations, alternative meth-

ods were developed. As discussed above, when the system temperature is much

lower than the blocking temperature, the thermal fluctuation is suppressed. For

the most intensively used material, permalloy, the blocking temperature is much

higher than room temperature. Therefore the thermal fluctuations of artificial

spin ice are hard to observe at room temperature for typical island sizes. The

high temperature observation is beyond the current experimental condition. To

solve this problem, the properties of the islands need to be adjusted.

In a pioneering work, Kapaklis et al. [51] changed the material’s Curie tem-

perature by modifying the constitution of the material. The material for the

nano-element was replaced with δ-doped Pd(Fe). The Curie temperature of the

film can be tuned by changing the thickness of the layer [68]. This modification

can allow the Curie temperature of material to drop from ∼ 900 K to 230 K. The

magnetization of system is found to fall to zero in a faster way than for the con-

tinuous film, which is called the “pre-melting”phenomenon (see figure 2.16(a)).
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2.2 Artificial spin ice

Figure 2.16: (a) Normalized remanent magnetization of array as a function of

temperature after a field applied along horizontal ([10]) and diagonal ([11]) di-

rection, compared with the remanent magnetization of the continuous film used

for patterning. The array moments collapse at a temperature below the Curie

temperature of the material (T c= 230 K). (b) The ratio of remanent to saturation

magnetization of array compared with numerical simulation. After Kapaklis et

al. [51]

This is believed to be caused by the disordering of macro-spins occuring at a tem-

perature below the Curie-temperature. The order of macro-spins is due to the

magnetostatic interactions between them, and therefore, the macro-spins start

to become disorder before the sample reaches the paramagnetic state. The pre-

melting experiment was tested by two different initial states which were induced

by the application of an external field at a different direction at the beginning.

The ratio of remanent to saturation magnetization of each state, therefore, is

different (see figure2.16(b)). For both states, the ratio decays are all consistent

with the numerical simulation results. Furthermore, no phase transition to an

ordered state was observed. However, each chain of the array is believed to be

ordered at a finite temperature, which is confirmed both by the Monte-Carlo

simulation and the analytical solution for a 1-D finite Ising chain of macro-spins.

The finite size chain order, therefore, is believed to be the origin of pre-melting

phenomenon. This pre-melting phenomenon shows that a real thermal dynamic

artificial spin ice array is created: however, the system remains disordered even

at temperatures close to zero.
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2.2 Artificial spin ice

Figure 2.17: (a) The MFM image of square pattern with 320 nm lattice space

after thermal annealing at (542.5◦C). Pattern size is 16 µm × 16 µm. Only a few

islands are not in the ground state. (b) Magnetic charges maps from MFM image

of kagome pattern with 260 nm lattice space. The red and blue correspond to

the two magnetic charge ordered states. After Zhang et al. [69]

In order to access the ground state of an artificial system, other protocols

were developed. In 2013, a group in the Pennsylvania State University succeeded

in approaching the well-defined ground state of the square pattern with small

lattice spaces [69]. Here, an alternative method is employed. A special layer

Si3N4 is deposited on the surface of Si in order to increase thermal stability.

This special layer protects the sample from film-substrate interdiffusion. The

sample was heated above the Curie temperature of its constituents (542.5◦C),

and then cooled down to room temperature. Carefully choosing the heating and

cooling rates, the artificial square pattern approaches the GS across the whole

sample and only a few domain boundaries arise. This protocol can be repeated as

many times as desired. Not surprisingly, the population of elementary excitation

in the thermally annealed square pattern sample has been found to follow the

Boltzmann law, which was reported earlier in the as-grown square pattern [65].

The ground state ordering observed in artificial square ice pattern revealed a

significant difference between artificial square ice and real spin ice, as it is believed

the latter cannot access an ordered ground state due to frustration. This indicates

that the frustration in artificial spin ice is weaker than the real spin ice.

29



2.3 Penrose pattern

The kagome pattern subjected to the thermal annealing protocol was also

investigated in this paper. For the kagome pattern, the net magnetic charge for

a vertex of three islands is ± 1 when obeying the pseudo ice rule. Theoretical

work [52] has showed that when the kagome spin ice is cooled down from the

paramagnetic state at a high temperature, the system will experience a phase

transition from the kagome ice I state, in which magnetic charges are disordered

but all the spins obey the pseudo ice rule to the kagome ice II state in which

magnetic charges are ordered and all the spins obey the pseudo ice rule. In this

paper, the thermal annealing experiment has shown that for all the samples with

a small lattice constant, all the vertices follow the pseudo ice rule after thermal

annealing, which indicates that the system is at least in the kagome ice I state.

In a sample with a small lattice constant (260 nm), incipient charge order starts

to emerge (see figure 2.17).

For most of the artificial spin ice studies, the system can be treated as an

athermal system at room temperature, and therefore, the AFM/MFM technique

is sufficient for any static study. In order to investigate the thermal dynamic prop-

erty of system, some other apparatuses are required. Photoemission Electron Mi-

croscopy with X-ray Magnetic Circular Dichroism (PEEM-XMCD) was employed

to detect the magnetization distribution of the whole pattern [36; 48; 49; 50]. In

a recent study, low energy muon spectroscopy was used to probe the dynamic

behaviour in kagome spin ice [54]. These techniques offer the advantage of fast

imaging and being sensitive to thermal fluctuation but are also quite expensive.

2.3 Penrose pattern

2.3.1 Introduction to the quasi-periodic pattern

Periodic solids, or crystals, as a basic concept of the solid state of physics, have

been investigated for centuries. Most of the important theories and properties of

solids, like the phonon vibration theory, the Bloch theory, the electron transport

theory, etc. are based on the assumption that atoms sit periodically on lattices.

These theories, however, give different results when the atoms are not arranged
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2.3 Penrose pattern

periodically. This has already been verified in disordered systems like glass, where

any long-range order is absent.

Apart from ordered and disordered systems, there are quasi-periodic systems

whose order is between these two but was not investigated until a few decades

ago. As these materials do not possess translational symmetry but instead have

rotational symmetry, it was expected that they may possess exotic properties.

For example, the unique Bragg diffraction pattern of quasicrystal shows sharp

peaks with a five or ten-fold symmetry. This discovery required the International

Union of Crystallography to modify the definition of crystals, and acknowledge

that the diffraction pattern can be generated either by periodicity or aperiodicity.

There are two types of quasicrystals have been realized: the first type is periodic

along certain axes, and quasi-periodic, in a plane normal to the axes. The second

type is aperiodic in any direction.

1-D quasi-periodic pattern

A very useful example is the Fibonacci chain. This can be built by any non-

periodic procedure. For example, if we start with two segments, one short S, one

long L, and then if we apply iterative rules to replace each S with L and each L

with LS

S→ L

L→ LS.
(2.5)

After several operations, we could get longer strings. This iteration could be

repeated infinitely to get infinite strings. The resultant string has typical quasi-

periodic pattern properties, like:

(I) self-similarity: the string after n step iteration F (n) can be constructed from

the previous two strings , i.e F (n) = F (n− 1) + F (n− 2).

(II) Quasi-periodicity: the string does not have any periodic repetitive sequences

on any scale; on the other hand, the type of segment of the chain at any point can

be inferred from the initial sequence. This means that it still possesses long-range

order. Due to the simplicity of the Fibonacci chain, it will be used to demonstrate

how to generate a quasi-periodic array from a high dimension space.
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2.3 Penrose pattern

Figure 2.18: Penrose tiling consists of two types of rhombuses: thin and thick.

These have to follow matching rules to form a continuous layer, which state that

the vertices of rhombuses when consisting of a vertex in Penrose tiling, has to be

either all dot or all blank. An example is given on the right.

2-D quasi-periodic pattern

In 1974, Roger Penrose showed that a plane could be tiled by two elements in

a non-periodic way. This is the well-known Penrose tiling pattern [70]. These

two classes of units derive their names from their shapes, which are “kite” and

“dart”, respectively. Subsequently, other sets of tiling have been discovered as

having the same features as “kite ” and “dart”. One intensive study set is a pair

of rhombuses, called the thin and thick rhombuses. Besides, it was found that

the Penrose pattern can be constructed by one type of decagon overlapping in

two different ways [70]. In each case, the basic tile needs to follow the so-called

“matching rule” to avoid overlap [71]. As illustrated in figure 2.18, the vertices

of rhombuses when forming a vertex in a Penrose pattern have to be either all

dot or all blank. This matching rule can generate various types of Penrose tiling.

2.3.2 How to generate a Penrose pattern

Describing a periodic pattern mathematically is quite simple, as, due to transla-

tional symmetry, all positions in the periodic pattern can be written by a set of

unit vectors. It becomes, however, non-trivial in quasi-periodic patterns, which
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2.3 Penrose pattern

do not possess translational symmetry. As a matter of fact, apart from the 1-D

quasi-periodic chain, no formula has been found to describe the 2-D and 3-D

quasi-periodic patterns so far. Instead, most methods are based on the self-

similarity property, such as: inflation of elementary units [72; 73; 74] and growth

from initial seed [70]. In this project, we choose a method called “cut and project”

whose details can be found in Appendix A. This method can be summarized as

projecting points of a 5-D hypercubic lattice along a special direction onto the

physical 2-D plane. This method is advantageous for obtaining the coordinates of

each vertex location as well as the neighbouring vertices. Based on this method,

we developed a program that can trace each vertex and its neighbouring coordi-

nates as well as the magnetic charge from an MFM image. All these results will

be shown in chapter 5.

2.3.3 Study on quasicrystal materials

Since long-range order exists in a quasi-periodic pattern, people expect that sim-

ilar magnetic long-range order may arise in real materials with quasi-periodic

structure: a quasicrystal. Experimentally, for a long period, the study was lim-

ited by the aluminium transition metal based quasicrystals, which were the only

magnetic quasicrystals. In these systems, the magnetic moment per transition

metal is very small, therefore, and therefore it is hard to form long-range magnetic

order in these compounds.

In 1993, an icosahedral quasicrystalline phase compound Zn-Mg-R (where R

is a rare earth element) was discovered. These materials offered an opportunity

to study the magnetic behaviour in quasicrystal materials [10; 75; 76]. These

materials have well-localized 4f electrons and sizeable moments. Due to this

feature, rare earth based quasicrystals were intensively studied by diffraction of

x-rays, electrons and neutrons [10; 77; 78; 79; 80].

The x-ray diffraction experiment confirms that the rare earth ions sit quasi-

periodically on the quasicrystal [81]. In 1997, Charrier et al. performed neutron

diffraction experiments on powder samples [82]. They reported that magnetic

long-range order was found when the temperature was below 7 K. This result,
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2.3 Penrose pattern

Figure 2.19: (a) The Monte Carlo simulation for pure dipolar interactions. The

spins are divided into two parts. One is in ordered state consisting of a perime-

ter of decagon rings. The rest are in disordered spin glass-like states inside the

decagon. (b) The experimental part, magnetic bars on a millimetre scale were

fixed onto the nodes of a Penrose tiling, but able to rotate freely. After Vedme-

denko et al. [9]

however, is neither consistent with AC susceptibility nor with the µSR experi-

ment [83; 84]. Later, in another neutron experiment [85], Takakura et al. found

magnetic short-range order in Zn60Mg31Ho9. This was the first time that at

least short-range order was confirmed in a quasicrystal. After several neutron

experiments [75; 83], this became an accepted conclusion.

The magnetic order in the quasi-periodic structure has already been stud-

ied as a fundamental issue theoretically, while quite a few anomalous behaviours

were predicted, such as “spiky peaks and pseudo gap at the Fermi level”, and

“criticality” in electron wave functions [86; 87]. Nevertheless, these anomalies in

real quasicrystals are contradictory with experiments result. Only short-range

exchange interactions were taken into account in these theoretical studies. Long-

range dipolar interactions have not been considered (see a review in [88]). On

the other hand, due to the sizeable magnetic moments of the rare earth elements,

the long-range dipolar interactions could compete with short-range exchange in-

teractions, which have already been reported in the spin ice materials [4]. This
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feature lets other methodologies be employed to investigate the magnetic order in

the quasi-periodic structure. In 2003, Vedmedenko [9] did some pioneering work

on the magnetic order in Penrose tiling. In the experimental part, a 2-D micro-

structure model was constructed by putting millimeter-scale magnetic bars onto

the nodes of a Penrose tiling in-plane (see figure 2.19). This corresponds to the

pure dipolar interaction case. Studies have shown that after several relaxations,

the total energy of the pattern is always identical. This implies that the ground

state in the case of pure dipolar interaction is highly degenerated. The Monte

Carlo simulation shows that when the exchange interactions are set to be zero,

the ground state consists of two parts: one is the ordered decagon ring, and the

other part is the spin glass-like part inside the decagon. The result is consistent

with the phenomenon discovered in 3-D quasi-periodic materials.

Another study concentrated on the collective behaviour of aperiodic pattern

in nano-scale presented was conducted by V. S. Bhat et al. [45] The Penrose tiling

pattern investigated is constructed by the “kite” and “dart” units and the edges

are joined to form a continuous network, as shown in figure 2.20. Broadband FMR

(Ferromagnetic Resonance) measurement and DC field sweeping were performed

on different scale patterns. The FMR absorption experiment showed asymmetry

mode existing in the spectra. These spectra are applied field angle dependent

and have ten-fold symmetry (a same spectrum arises when rotating the sample

by 36 degrees each time). A series of knees arose in the hysteresis loop from

the experiment and simulation, which were found to depend on the scale of the

pattern and temperature. These knees were associated with the abrupt reversal

of groups of equivalent segments in the networked pattern. This suggests that

collective behaviour exists along the segment. Neither frustration nor thermal

dynamic behaviour were discussed in this paper.

2.4 Summary

Artificial spin ice is the realization of the 2-D Ising model and a 2-D geometry

frustrated system. Experiments for the manipulation so far have focused on

field and thermal-based forcing. Various models and methods were employed to

analyze these results, such as “effective temperature”, “pseudo magnetic charge”,
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Figure 2.20: SEM image of wire networked Penrose tiling: the black part is

silicon, the bright part is permalloy. The units in this pattern are “kite” and

“dart” as named after the shape. Segment lengths are d1=810 nm, d2=500 nm,

and the width is 85 nm. Image is after Bhat et al.[45]

“macro-spin” correlation as well as entropy calculation, among others [17; 36; 51;

69]. All these models and methods, when applied to different geometries give

different results, which suggested the physical properties of the artificial spin ice

are strongly geometry dependent. Therefore, distinct features are expected to

arise in the Penrose tiling pattern.
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Chapter 3

Methods

3.1 Electron Beam Lithography

The technique of electron beam lithography (EBL) dates to the late 1970s, and

was widely used for sub-micron structure patterning [89; 90; 91]. EBL utilises a

focused electron beam onto a substrate, which is coated with an electron sensitive

polymer resist. It forms a lateral nanoscale template, into which materials can be

deposited on the substrate. A typical EBL process is shown in figure 3.1. Initially,

the electron sensitive resist dissolved in solvent is spin-coated on the substrate at

several thousands RPM. The solvent is then subsequently evaporated by heating

the substrate, leaving a resist layer with ∼ 100 nm thickness. The resist is

then exposed to the focused electron beam in vacuum. The electron beam can

penetrate into the resist and carve the desired pattern on the resist layer. The

electron beam spot is controlled via a computer with patterning software. During

this stage, it is essential to choose the correct current and exposure time to achieve

the desired dosage.

Material can be deposited on the pattern by the common thin film growth

techniques, such as sputter deposition or evaporation. Following this procedure,

the remaining resist and material deposit on the resist can be removed by putting

the sample in a solvent bath. This procedure is called “lift off”. The desired

pattern is retained after the lift-off process.

All the samples used in this project were fabricated at the Center for Func-

tional Nanomaterial (CFN), Brookhaven National Laboratory (BNL). The EBL
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3.2 AFM/MFM

used was a JEOL 6300-FS. A single layer of ZEP520A resist was spun on the

silicon substrate, baked at 180 ◦C for 3 min, giving it a thickness of 100 nm. The

electron beam current is 150 pA, the beam step size of 1.75 nm was proximity-

effect-corrected. The thickness of 25 nm Ni80Fe20 and 2 nm of Ti of films were

deposited by the electron beam evaporation.

3.2 AFM/MFM

AFM (Atomic Force Microscopy) is a scanning probe microscopy technique, which

has been widely used in surface scanning since the mid 1980s. The first AFM

results were published by Gerd Binnig, Calvin Quate, and Christopher Gerber in

1986 [92]. This technique is based on Scanning Tunnelling Microscopy (STM).

Instead of using an STM tip whose direction is perpendicular to the surface, the

AFM tip consists of a cantilever arm and a small ∼10 nm tip protruding from the

end of cantilever. Therefore, the tip end is just above the surface of the material

and exerts a force (mainly van der Waals force) on the sample. The force has

a magnitude similar to the inter-atomic force. According to the nature of tip

motion, AFM operation can be described by three modes: contact mode, tapping

mode, and non-contact mode. For the tapping mode used in this project, the

tip is driven to oscillate near its resonant frequency ∼100 kHz. The amplitude is

around 10 nm - 100 nm.

All the AFM images in this thesis were generated using Veeco Multimode

and Veeco Nanoman systems (both available in Leeds) operating under tapping

mode. The tip is Veeco MESP (Magnetic Etched Silicon Probe) cantilever. A

diagrammatic representation of operation is given in figure 3.2. When the tip

is close to the surface of the materials, the van der Waals force between the tip

and the surface will cause the cantilever to bend and this bending will cause a

shift in the resonant frequency of the cantilever. This shift will be monitored and

recorded when the tip is raster scanned over a given area of sample surface. As

figure 3.2 shows, the oscillation of the cantilever is normally monitored by a laser

beam, which is reflected by the cantilever onto photo detectors. The cantilever is

micro-fabricated and has a spring constant of the order of 1 N/m and resonant
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3.2 AFM/MFM

Figure 3.1: Schematic process of the EBL technique: an electron sensitive polymer

resist coated on a substrate and dried. Then the electron beam controlled by the

computer is incident on the surface of the sample, and exposes the pattern in the

resist. In the development section, the exposed resist is removed by development.

A desired thin film of material was then deposited onto the surface of the resist

and substrate through the gap. After this stage, the resist was removed in the

solvent lift-off process, and the final patterned sample remains.
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3.2 AFM/MFM

Figure 3.2: Tapping mode of AFM operation. The details are described in the

main text.

frequency ω/2π of tens of kHz, which is high enough to support fast raster scan-

ning. The cantilever is then driven to oscillate by a driving force of set amplitude

F0 and frequency ωd near or at its resonant frequency ωR =
√
k/meff , where k is

the spring constant and meff is the effective mass of the cantilever. The behaviour

of cantilever can be described by an equation of damping and forced harmonic os-

cillation with the solution of amplitude D0 = (F0/meff)/
√

(ω2
R − ω2

d)2 + (Aω2
Rω

2
d)

[93; 94]. When the cantilever is driven to the surface of a material, this frequency

will shift due to the gradient of the interaction force. The spring constant then

becomes keff = k − F ′, where F ′ is the gradient of the interaction force [92; 95].

In order to initiate operation, a cantilever is driven close to the surface. Dur-

ing this process, the frequency and amplitude keeps changing until an amplitude

set point in D0 is achieved. When the tip raster scans the surface line by line,

the variation of topography will result in variation in ω and D0. A closed loop

feedback system maintains a constant D0 via the adjustment of tip and sample

separation. This is recorded line by line to build a 3-D topography of the material

surface. Adjustable parameters, such as scan speed, scan size, integral gain and
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Table 3.1: MESP - Magnetic Etched Silicon Probe - Specifications

Parameter Quoted Value (for LM-MESP low moment tips)

Thickness 2.5 - 3.5 µm

Length 200 - 250 µm

Width 23 - 33 µm

Resonant frequency f0 60 - 100 kHz

k 1 - 5 N/m

Co/Cr layer thickness 10 - 250 nm

Coercivity Hc 400 Oe (< 400 Oe)

µ 1× 10−13 emu (0.3× 10−13 emu)

proportional gain allow for surface tracking to be optimised.

The Nanoman system used in Leeds has a maximum view of 40 µm×40 µm

and a moderately sized image 512 × 512 pixels, which normally requires tens of

minutes to acquire. Figure 3.3(a) is a portion of the AFM image of Penrose

artificial spin ice with lattice constant of 1000 nm. The resolution of the image

can be the order of 10 nm under the reasonable ambient conditions. The image is

basically a convolution of the surface of the material with the shape of the given

tip. Therefore, the resolution of AFM is mainly limited by the tip size. The tip

can become blunted under scanning, which can result in an exaggerated feature

such as edge crown [96].

3.2.1 MFM

Not long after the invention of AFM, the study of magnetic tip-sample interac-

tion led to this technique developing into “magnetic force microscopy” [97; 98].

The measurement can be performed under an operated mode of the Veeco AFM

system. For measurement in this thesis, a MESP cantilever coated with mag-

netic material (e.g. Co/Cr) was used 3.1. Before performing the scan, the tip is

magnetised vertically using a small permanent magnet. The tip therefore is like

a magnetic dipole object. It is sensitive to the normal component of the gradient

of the stray field from the sample surface. The tip performs an initial line scan

in AFM tapping mode operation to obtain the topography profile of the sample
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3.3 Interpretation of microscopy data

surface. A second scan across the same line is then made at a user-defined height

above the topography profile. This height is typically around 10 - 100 nm, to

eliminate the non-magnetic interaction variation between tip and sample. The

component of gradient of the stray field variation therefore acts to change the

resonant frequency and effective spring constant of the cantilever. For example, a

repulsive force decreases the magnitude of oscillation, which effectively enhances

the spring constant of the cantilever. These variations can be mapped from the

phase and amplitude of the cantilever oscillation to create an image representa-

tive of the magnetic charge distribution. As shown in figure 3.3, for artificial spin

ice systems, each magnetic island behaves like a single domain; therefore, the

MFM technique provides a qualitative route to probe the magnetic orientation

of the magnetisation, which is produced out of the plane. As the MFM probe

is an intrusive process, it is possible to affect or reconfigure the magnetic struc-

ture of the material surface locally, especially for soft magnetic materials [98; 99].

Therefore, an initial characterisation study is always performed before the exper-

imental procedure. In some cases, a low moment tip has to be employed in order

to avoid the tip interaction effect. For the sample studied in this project, due

to shape anisotropy, the island’s magnetisation is found to be adequately stable

when subject to scanning.

3.3 Interpretation of microscopy data

3.3.1 Interpretation of AFM/MFM image

Due to the high resolution requirement, the whole Penrose pattern images are

obtained by scanning four quarters of the sample separately and then the images

are stitched together to form a full pattern via image processing software. The

pattern structure and magnetic configuration of the array can be mapped from

the AFM and MFM images onto the calculated pattern from which the coordinate

of each island is precisely given. Figures 3.3(a) and (b) show a portion of AFM

and MFM data taken from an L = 1000 nm lattice constant pattern. In order to

give sharp contrast, the MFM data is processed via image software Gwyddion.

In the MFM image, the north pole and south pole of each element are visible as
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3.3 Interpretation of microscopy data

Figure 3.3: (a) and (b) A portion of AFM and MFM image of Penrose tiling with

lattice constant L = 1000 nm. (c) A digital image of Penrose tiling pattern, each

dot sits in the center of a vertex. (d) A portion of SEM image of Penrose tiling

pattern. The lattice constant is defined as the distance between center of one

vertex and its neighbouring vertex center (red line).
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Figure 3.4: The islands were designed to have a shuttle shape. Each island has a

lateral size of 450 nm by 80 nm with a thickness of 26 nm.

a black and yellow dot, respectively. Therefore, the elements are confirmed as a

single domain. Figure 3.3(c) is a digital image generated via python code. Each

dot sits at the center of the vertex and the coordinates for each dot are from

the code. Therefore, when this digital pattern is mapped onto the AFM/MFM

images, each island position can be precisely figured out. A number of useful

parameters therefore can be extracted from AFM/MFM images, such as vertex

magnetic charge distribution, net magnetisation, vertex energy distribution, etc.

The algorithm of Penrose tiling generation is detailed in Appendix A. Figure

3.3(d) is a portion of SEM image with lattice constant L = 600 nm nm. The

lattice constant L is defined as the distance from the center of one vertex to its

neighbouring vertex center (red line in figure 3.3(d)).

3.3.2 Dipolar energy calculation and net magnetisation

calculation

For the sample studied in this thesis, the islands were designed to have a shut-

tle shape (see figure 3.4). For an island with shape and size shown in fig-

ure 3.4, the volume is V = 6.67 × 10−22 m3 the magnetisation of permalloy

sample is M = 8.0 × 105 A/m. Hence, the magnetic moment of an island is

m = MV = 5.336× 10−16 Am2. For the Penrose tiling, there are seven types of

vertex in total (see figure 3.5). For the magnetostatic energy calculation of each

type of vertex, we chose the OOMMF micro-magnetic simulation platforms, for

which a simulation unit comprising nano-islands is used to form a vertex with the

magnetisation orientation set according to different energy configurations [100].

For the simulation, the pattern is treated as 3-D and each object is divided into
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Figure 3.5: The seven different type of vertex in Penrose tiling are shown here.

Table 3.2: The number of possible configuration and energy level for each type

of vertex in the Penrose tiling.

Vertex Possible configuration number Number of energy level

Type I 8 3

Type II 8 3

Type III 16 6

Type IV 32 10

Type V 32 4

Type VI 64 20

Type VII 128 36

5 nm × 5 nm × 5 nm cells. The exchange stiffness of 1.3 × 10−11 J/m, zero

crystalline anisotropy and a damping coefficient with 0.5 for Permalloy was used

for simulation ( This is an artificially high value of damping, used to ensure fast

convergence of the static micromagnetic states). These simulation parameters

can be found in [100]. The geometry and size are set as identical to the sam-

ple used, and the lattice constant is set to be L = 600 nm. Table 3.2 lists the

number of possible vertex configurations and energy level number for each type

of vertex. As shown in the table, for type VII vertex, all possible configurations

can be grouped into 36 levels with different energies. As the aim of the thesis

is to study the low energy states, we will focus on the lowest energy and second

lowest energy configurations for each vertex. The possible configurations with

corresponding energy for type I vertex is illustrated in figure 3.6. The configura-

tions and corresponding energy for the rest of vertices are listed in Appendix B.
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Figure 3.6: All possible configurations and corresponding energies for type I

vertex. The energy comes from OOMMF micro-magnetic simulation.

3.3.3 Net magnetisation calculation

As mentioned in Chapter 2, when a square pattern is effectively demagnetised,

a digital net magnetisation is close to zero and therefore hard to be probe from

magnetometer device. Alternatively, the net magnetisation can be obtained from

MFM image, i.e. the net magnetic moments in square patterns can be calculated

by M = MXx̂+MYŷ, whereMX =
∑
mx, mx = ±1, my = ±1 is the Ising moment

along the transverse and perpendicular direction of the array, respectively. These

Ising moments values can be directly read from the MFM images. For a Penrose

tiling, all the islands aligned in one of five different directions. Therefore, the net

magnetisation could be calculated by summing up all the net magnetic moments

along these 5 directions. Mi =
∑
mi, where mi(i = 1, 2, 3, 4, 5) = ±1, moments

along each direction can be decomposed along x, y direction: mix = micos θi,

miy = misin θi where θi = i × 72 ◦. Then the total net magnetic moment is

M =
√
mx

2 +my
2, where mx =

∑
i=1,2,3,4,5mix, my =

∑
i=1,2,3,4,5miy.

3.3.4 Order parameter calculation

Correlation functions have been employed in early studies of square and kagome

patterns, and have provided information about frustration [14; 69]. The correla-

tion function can be defined in different ways. For example, in the square arti-

ficial spin ice system, a set of pairwise correlations are defined between distinct

neighbouring pairs. When the moments of paired elements are in an energetically
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3.3 Interpretation of microscopy data

favourable configuration, the correlation value is 1, otherwise it is -1. Due to frus-

tration, different types of pairwise elements correlate in different ways. Therefore,

the effects frustration can be inferred from the correlation calculations. For the

ac demagnetisation study, when the net moment of array is zero, the correlation

study provides an instructive method to describe the demagnetisation effect. As

discussed in [15], the complex ac demagnetisation states can be described by just

two types of pair correlations.

For Penrose tiling, in order to discuss the disorder of the states obtained from

different protocols, we chose an alternative way to define the order parameter.

Rather than calculate the dipolar interactions between different islands, the cor-

relation function is given by the scalar product of the Ising moments in the ground

state and measured states:

C =

∑
i Si · S ′i
N

,

where Si and S ′i are the island macro-spin in the same location of the ground

state and measured state, respectively. N is the total number of macro-spins

being taken into account. The macro-spin moment is taken as unity. The ground

state here refers to a theoretical predicted configuration (details in the following

chapter). The spin scalar product is defined to be 1 if the moment of an element

from a measured state has the same direction as it would in the ground state,

otherwise defined as -1. Therefore, the correlation value can vary from -1 to 1. If

the moments in the measured state are all parallel (anti-parallel) to the ground

state, the order parameter will be 1 (-1). When this correlation calculation is

performed across the whole pattern, i.e. when all the macro-spins are taken into

consideration, it was found that the value of correlation is particularly small,

which implied that no large scale ground state emerged. Therefore, a modified

correlation function was employed. Instead of summing up the product of a spin

with its counterpart in the ground state Si · S ′i for all the spins, the modified

definition is summing up the Si · S ′i for a group of spins surrounding it Ci =∑
n Si · S ′i first, where n represents nth nearest neighbour spins of spin S. Then

average all the correlation Ci for all the spin in the pattern. The correlation is

given by

Cn =

∑
i |
∑

n Si · S ′i|∑
i

∑
n 1

. (3.1)
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3.4 The AC demagnetisation and thermal annealing detail

The absolute value operation is used to prevent the correlation value with different

signs cancelling out. In this modified definition, the correlation between a spin

and its counterpart in the ground state is weighted by its neighbouring spins;

therefore, the correlation is expected to decay when further neighbouring spins

are considered. As the states from our experiment are identified to be locally

ordered only, this correlation calculation will give an estimate of correlated region

size. The correlation calculation result will be discussed in Chapter 6.

3.4 The AC demagnetisation and thermal an-

nealing detail

3.4.1 The detail of AC demagnetisation

The ac demagnetisation protocol we chose was a rotating linearly-ramped applied

field rather than oscillating magnitude of field protocol. The linear demagnetisa-

tion protocol has been proved to be as effective as the oscillation demagnetisation

protocol [62]. An in-plane magnetic field was applied starting from 2000 Oe while

decreasing linearly with a ramping rate 10 Oe/s until it reached zero. In the mean

time, the sample was rotating around an axis normal to the sample plane with

a frequency f = 20 Hz. After demagnetisation, the remanent magnetic moments

orientation were imaged by MFM.

3.4.2 The detail of thermal annealing

Silicon substrates coated with 200 nm LPCVD nitride were used for thermal an-

nealing. The thermal annealing experiment was carried out in the MBE (Molecu-

lar Beam Epitaxy) chamber where the high vacuum and low stray field conditions

can satisfied. The vacuum of MBE system in Leeds University is 10−10 mbar. The

thermal annealing protocol is the same as protocol used in [69]. The sample was

first heated up to 545 ◦C at a rate of 20 ◦C per minute and then maintained at

this temperature for 15 minutes. The sample was then cooled down to 445 ◦C

at a rate of 1 ◦C per minute. Following this step, the sample was cooled down
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3.4 The AC demagnetisation and thermal annealing detail

to room temperature naturally (≈ 10 ◦C per minute). When the sample cooled

down to room temperature, the magnetic structure was then imaged by MFM.
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Chapter 4

Ground state of the Penrose

tiling

4.1 Introduction

In this chapter, the macroscopic ground state of Penrose tiling will be illustrated.

Before we discuss the Penrose tiling, it is worth comparing the ground state of

real spin ice, artificial square ice and artificial kagome ice system. For the real

spin ice system, the spins are disordered when the local configuration obeys the

rule that two spins point inwards and two spins outwards in a basic tetrahedron.

The number of possible configurations for the ground state of a single tetrahedron

of spins are C2
4 = 6 when all the spins follow the “ice-rules” (see figure 2.1). These

local “ice-rules” cannot guarantee a long-range order; therefore, a real spin ice

system is disordered at any temperature and displays a low temperature entropy.

For the square artificial spin ice, the 2-D geometry results in energy differences

between states obeying the “ice-rules”. In this case, the lowest energy state of

a single vertex only has two fold degeneracy. As this condition propagates from

one vertex up to the whole system, only two states can satisfy this rule, i.e. it

results in a ground state with long-range order (see figure 2.7), which has been

confirmed by thermal annealing experiments [69].

For the kagome artificial system, the three elements in a vertex are equivalent

to each other, so that the “ice-rules” becomes “two in one out” or vice versa.

Unlike the “ice-rules” in a square pattern, this rule results in a ground state of
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4.1 Introduction

Figure 4.1: The charge ordered state of the kagome pattern. All the vertices

obey the “ice-rules”, i.e. the magnetic charge of each vertex is ±1. The charge

distribution in this configuration is ordered to reduce the total energy. The

adjacent triangles carry charges with opposite sign. After Chern et al. [52]

a vertex with six-fold degeneracy, therefore can be satisfied by a macroscopically

large number of micro-states. In other words, the rule cannot lead to a long-

range order. When all the vertices in the system follow these “ice-rules”, the

magnetic charge of each vertex is ±1, the kagome pattern is in a low energy state.

The total energy can be further minimised by considering the further neighbour

interactions of elements. For example, when a kagome pattern is described by a

dumbbell model (each element is treated as an object consisting of two magnetic

charges with opposite sign), when the adjacent magnetic charge interactions are

minimised, the system enters a state called “charge ordered state” [52]. The

charge ordered state is supposed to have lower energy as well as longer order (see

figure 4.1).

For the Penrose tiling pattern, a similar idea is used to construct the ground

state. First, in order to get a low energy state of the whole system, each vertex

energy is minimised. There should exist similar “ice-rules” to keep the vertex in

the lowest energy configuration. Second, if these rules give a long-range order,

then the system’s lowest energy configuration can be obtained by tiling all the

vertices in a low energy state compatibly. If these rules do not give a long-range
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4.2 Ground state of the Penrose tiling

order, i.e. the state can be satisfied by a large number of configurations, then the

further neighbour interactions need to be considered to reduce the total energy

of the system. It was found that unlike the square and kagome pattern, there

is no unique “ice-rules” for putting each vertex in a low energy state. As for

the Penrose tiling, there are seven different types of vertex and for each vertex,

the “ice-rules” is different. Carefully tiling each vertex in a low energy state

leads to a low energy configuration of the Penrose tiling pattern. As illustrated

below, this configuration consists of two parts: one has long-range order, which

has only two-fold degeneracy, while the other part can be satisfied by a number

of configurations.

4.2 Ground state of the Penrose tiling

4.2.1 Vertex energy configuration

As discussed above, the first step towards solving the problem of the ground state

of a system would be finding the ground state configuration of each vertex. For

Penrose tiling, there are seven types of vertex, as listed in figure 3.5. The config-

uration of the two lowest vertex energies for each vertex is listed in figure 4.2. At

first glance, the lowest energy configurations of each vertex follow similar align-

ment to the square pattern and kagome pattern. The macro-spins of each vertex

point in and out alternately to minimise the total energy. This alignment can

be termed as generic “ice-rules”. Besides, each vertex has different degeneracy,

which implies that when these vertices are tiled together to form a whole pattern,

the ones that have two-fold degeneracy may lead to a long-range order, while the

other vertices may lead to states with more than two fold degeneracy. Due to

the geometry of some vertices, the Ising-like moments in these vertices can point

to either of the two directions without altering the total energy of the vertex,

as represented by red double-arrow in figure 4.2. However, as each element is

shared by two vertices, when both vertices that share the element are taken into

consideration, the elements moments direction may not be flexible any more. All

these situations will be displayed below.
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4.2 Ground state of the Penrose tiling

Figure 4.2: Schematic showing the low energy configuration of seven types of

vertex (only lowest and second lowest energy configuration are listed). The energy

difference between level one and two has been normalised by the one of vertex VII.

The double-headed arrows represent the Ising-like moment of the island that could

point to either of the two directions without changing the total energy of vertex.

The energy calculation is based on the OOMMF micromagnetic simulation.
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4.2 Ground state of the Penrose tiling

4.2.2 Ground state of two decagons

As the lowest energy configuration of each type of vertex has been obtained, we

need to tile these low energy vertices to form a Penrose tiling pattern. If these

vertices are compatible with each other, we can get a low energy configuration

of the whole pattern. For Penrose tiling, due to its non-periodicity, one has to

tile these vertices one by one manually to form a Penrose tiling pattern. This is

like playing a tiling game and for the pattern we studied, which contains 1650

islands, it is a nontrivial problem. Fortunately, the Penrose tiling pattern can

be decomposed into two different decagon units, each of which contains several

vertices (see figure 4.3). If we could find the low energy configuration of these

decagons by tiling the vertices one by one, then the whole Penrose tiling can be

tiled by these larger units rather than seven different vertices, which significantly

reduces the amount of work. The construction details are given below. As a first

step, ground state constructions for the two types of decagon will be illustrated

one by one. These constructions are largely based on the vertex configuration list

of figure 4.2. Finally, the decagons are joined into the larger pattern.

GS of type A decagon

If one starts constructing the type A decagon (as listed in figure 4.3) from any

single island and follows the vertex ground state configurations listed in figure

4.2, it can be easily found that the vertices inside the decagon are compatible

with each other. An example of this process is shown in figure 4.4. The whole

pattern configuration can be easily inferred from a single island alignment. This

is because most of the vertices in this decagon have only two fold degeneracy.

When these vertices are connected together, the degeneracy is lifted. Therefore,

the configuration in the type A decagon forms order across the whole decagon,

in such a way that when this type of decagon is connected with other decagons,

the order is connected together and crosses the whole pattern eventually. The

single island degeneracy in the type V vertex is preserved in this decagon, which

is marked in red in figure 4.4. The islands along the decagon edge are shared with

other vertices; therefore, their states need to be confirmed in the neighbouring

decagon configurations. This will be discussed below.
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4.2 Ground state of the Penrose tiling

Figure 4.3: The Penrose tiling can be decomposed into two types of decagons,

highlighted by the red circle (type A decagon) and green circle (type B decagon).

GS of type B decagon

The type B decagon has five-fold symmetry; therefore, the whole decagon can be

divided equally into five parts. For any one part, if we follow the same strategy

outlined above, we will find immediately that not all elements can be satisfied

at the same time. The three possible low energy configurations of this part are

listed in figure 4.5 (a), (b) and (c). In these three configurations, the type II

vertex and a pairwise element along the edge cannot be in a low energy state

at the same time. In order to tile these vertices together, a pair of elements

has to be configured to a higher energy state, as represented by red arrows in

figure 4.5 (a), (b) and (c) respectively. The double arrow represents how the

element moment can point to either of the two directions without costing extra

energy. The energy difference between these configurations is listed in figure 4.5

(d). The configuration in figure 4.5 (a) has lower energy than other two. The

other four parts have the same low energy configuration as this one due to the

same geometry. The joint elements between these five parts can be arranged into
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4.2 Ground state of the Penrose tiling

low energy configurations by aligning the five parts in a proper order. The final

configuration is illustrated in figure 4.5 (e). The vertex in the center (type V

vertex) can be easily tiled into a low energy state by following the generic “ice-

rules” of one in, one out, alternately. The double arrows disappear, because the

constraints of the “ice-rules” lift the degeneracy. However, the low energy state

of the type V vertex has ten-fold degeneracy as listed in table 4.2; therefore, the

low energy state configuration of the type B decagon has ten-fold degeneracy.

When two decagons overlap

The low energy states of two types of decagon have been obtained. Next, these

decagons need be tiled one by one manually to form a Penrose tiling. During this

process, when two decagons meet, the element’s alignment in the joined area has

to be considered. There three cases to be consider are:

1. When type A and type B decagons overlap, both decagons can be in a low

energy state compatibly, as shown in figure 4.6(a).

2. When two type A decagons overlap, there will be two type II vertices

whose energy cost when lifting to another energy level is smaller than other

vertices in this structure, as represented by the black dot and red dot in figure

4.6(b). However, the low energy configuration of these two vertices is frustrated.

It can be solved by lifting either of them to another energy level, which will

let another vertex stay in one of the two degenerated low energy configurations

(yellow vertex).

3. When two type A decagons and a type B decagons join together, there will

be four type II vertices that become frustrated. This can be solved by lifting two

of them to another level, leading the type VII vertex (red arrows) to be able to

occupy its ground state. These two type II vertices that stay at a higher energy

level are marked by red dots in figure 4.6(c).

4.2.3 The ground state of the whole pattern and its char-

acter

When considering all of the above, the whole pattern can be tiled decagon by

decagon. The final low energy state is shown in figure 4.7. From the point of
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4.2 Ground state of the Penrose tiling

view of order, a large numbers of elements are “chained” together, similar to the

square pattern. The macro-spins in this part have only two fold degeneracy and

this order crosses the whole pattern, making it possible for the long-range order

to arise in Penrose tiling. This part is therefore termed the “skeleton” part (see

the black part of the figure 4.7). On the other hand, there is another type of

element, which is not “chained” to the macro-spins in the skeleton part. These

elements include type V, VI and VII vertices. For a type V vertex, it can stay

at one of its ten degenerate configurations without changing the total energy of

the pattern, while for type VI and VII vertices, it can stay at any one of two

degenerate configurations. The elements in these vertices seems to be flippable,

and therefore this part is termed the “flippable” part (see figure 4.7, red part).

Due to the properties of the aperiodic structure, the whole pattern configura-

tion is constructed almost manually. As illustrated in figure 4.2, part of the type

II vertices have to stay at the second energy level due to frustration. This frus-

tration arises from the topology of the Penrose tiling pattern, therefore, is a kind

of “topologically induced emergent frustration”. A similar frustration has been

found in another type of artificial spin ice system with different geometry [101]

where part of the vertices have to stay at higher energy states. In similar way, the

configuration for the whole Penrose tiling pattern accommodates most vertices

at low energy states and we refer to this state as the ground state of the Penrose

tiling. As will be illustrated below, several samples, when put through an energy

minimisation protocol, do show a trend towards this low energy configuration.

57



4.2 Ground state of the Penrose tiling

Figure 4.4: Type A decagon ground state construction process: (a) Assuming a

single element magnetic moment direction is given, (b) then the favourite mag-

netic moment directions of the neighbour islands can be inferred from figure 4.2.

(c) and (d) more island’s magnetic moment directions can be inferred from the

configuration in figure 4.2. The red arrow denotes that the moment can flip with-

out costing extra energy, preserving the type V vertex degeneracy at the decagon

level. (e) The spin direction of the remaining islands inside the decagon can be

worked out following similar rules.
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4.2 Ground state of the Penrose tiling

Figure 4.5: Type B decagon ground state construction: the type B decagon

can be divided into five equal portions (dashed line). Three possible low energy

configurations for one portion are listed in (a), (b) and (c). The double arrow

represents how the element moment can point to any direction without costing

extra energy. For a portion, the type II vertex and a pairwise element cannot

stay in a low energy configuration at the same time. The higher energy state is

represented by red arrows. The energy difference between the low energy state

and higher energy state is listed in (d) (normalised by energy difference of a

type II vertex). Therefore, (a) has lower energy than (b) and (c). The final

configuration of decagon B is drawn in (e).
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4.2 Ground state of the Penrose tiling

Figure 4.6: Three cases of two joined decagons: (a) Type A and type B decagons

joined together, where both decagons can stay in their lowest energy state com-

patibly. (b) When two decagons overlap, there are two type II vertices that cannot

be in their low energy states compatibly, which is represented by black and red

dots, respectively. One of these two vertices has to be lifted to a higher level,

which results in another vertex staying at one of its two degenerate state (yellow

arrows). (c) Two types of decagon A and a type B decagon joined together. The

four type II vertices are not compatible, which leads to two of them lifting their

energy configuration level (red dots).
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4.2 Ground state of the Penrose tiling

Figure 4.7: The ground state of the whole pattern consists of two parts. The

skeleton part (black arrows) consists of type I, II, III, IV vertices. The magnetic

moments build long-range order across the whole pattern, which has two-fold

degeneracy. The flippable part (red arrows) consist of type V, VI and VII vertices.

Each vertex can stay at one of its several degenerate states without altering the

total energy of the pattern (for a type V vertex, the degeneracy is ten, for a type

VI and VII vertex, the degeneracy is two).
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Chapter 5

Statistical results of rhombus,

and colour maps

5.1 Introduction

As discussed above, a predicted low energy state of Penrose tiling is obtained

manually, which contain two parts, the skeleton part and the flippable part.

The skeleton part has two-fold degeneracy, similar to the ground state of square

pattern, the long range order is more possible to arise in this part than the

flippable part. As the Penrose tiling is a quasi-periodic pattern, the long range

order here refers to a group of magnetic elements that, in principle, show finite

correlations up to any arbitrary distance. It will be demonstrated below from

the rhombus population analysis that the sample after thermal annealing “looks”

more close to the predicted ground state than the other states such as the as-

grown state or the ac demagnetised state. Nevertheless, a further analysis based

on a colour mapping method reveals that no long-range order arises either in the

thermally annealed state or in the other states.
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5.2 Different Rhombus configuration distribution

5.2 Different Rhombus configuration distribu-

tion

5.2.1 Different types of rhombus configurations and cor-

responding populations in each state

In this chapter, the Penrose tiling is analysed in terms of rhombuses rather than

vertices. In Penrose tiling, there are two types of rhombuses, which are termed

as “thick” and “thin” rhombuses. As shown in figure 5.1, the configurations of

rhombuses can be grouped into four types regardless of the shape discrepancy

of “thick” and “thin”. The first type of rhombus, for which the magnetic mo-

ments form a loop, has the lowest magnetostatic energy amongst the four types

of rhombuses. Therefore, in the predicted ground state, most rhombuses stay

in this configuration. The second type rhombus possess polarisation, therefore

can be easily found in polarised state. For the third rhombus, the configuration

can be obtained by reversing one element from the first type rhombus. This

configuration has higher energy than the first type rhombus. Due to its high

configuration degeneracy, this type of rhombus has a large population in the ran-

dom aligned state. For the fourth rhombus, all adjacent element pairs are aligned

“head to head” or “tail to tail”. These types of pairwise elements are energy

unfavourable, and therefore possess the highest energy compared to other types

of vertices. Consequently, this type of vertex does not emerge in the predicted

state and also is very rarely observed in experiment. These four types of rhombus

configuration populations from the sample in different states are plotted in figure

5.1. Compared with the as-grown state and ac demagnetised state, the ratio of

different configurations in the thermally annealed state is found to be very close

to the predicted ground state. However, it cannot guarantee a long-range order

arising in the thermally annealed state. In order to verify the long-range order,

we use a colour mapping method that maps different coloured rhombuses on to

the different rhombus configurations.
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5.2 Different Rhombus configuration distribution

Figure 5.1: The population of rhombus moments configurations in different states:

Below, the abscissa represents the four types of rhombuses with different moment

configurations. The red arrows indicate the different moments respect to the first

rhombus configuration. The four rhombus population ratios in the thermally

annealed state are much closer to the ground state than the other ones. All the

data are from four patterns with 600 nm lattice spacing.
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5.2 Different Rhombus configuration distribution

Figure 5.2: Coloured magnetic configuration: (a) The rhombus moments are

mapped in different colors based on the configuration. (b) Two types of decagons

in the ground state after colour mapping. The green rhombus with the highest

energy configuration does not arise in any low energy decagon configuration.

5.2.2 Colour mapped MFM images analysis

As shown in figure 5.2(a), different rhombus configurations can be represented

by different colours. In the predicted ground state, the two types of decagon

configurations after colour mapping are shown in 5.2(b). Due to the symmetry

of decagon configuration, other energy degenerate decagon configurations can be

obtained via simple operations (by rotation or horizontal flip). The coloured

decagons when mapped onto structure with moment direction can be used to

identify possible correlate elements in a decagon scale. If any ground state order

with “domain” scale larger than a decagon arise, a coloured low energy decagon

should be found from the colour mapped MFM images. Here, the term “domain”

should be used with great caution: as in quasi-periodic pattern, magnetic domains

have not been defined before. Here we use it to define a group of macro-spins

that have a kind of correlation.

As an example, a MFM images of a sample in a state prepared by thermal

annealing 5.3 is mapped by coloured rhombuses and the result is listed in figure

5.4. At first glance, it is hard to identify which decagons are in the low energy

state. This problem can be easily solved by considering the feature of coloured

decagons in ground states. Firstly, no green rhombus emerges in any coloured
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Figure 5.3: A MFM image of a sample in a state prepared by thermal annealing,

the lattice constant is 600 nm.
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Figure 5.4: Coloured MFM image from the sample after thermal annealing (600

nm lattice space). The rhombus colour is based on its magnetic configuration

from figure 5.2. The type B decagon in location 1 is not in a low energy state

due to a green rhombus arising. Its neighbour, a type B decagon in location 2

can be exclude from low energy state because a paired black rhombus exists. The

type A decagon in location 3 (red circle) is in a low energy state. Lost lines (as

an example, a lost line is marked by line 4)are partly due to being physically lost

and partly due to the low resolution of the MFM image.
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low energy decagon configuration. Any coloured decagon from the coloured MFM

images can be excluded from a low energy configuration if containing a green

rhombus. An example is illustrated in figure 5.4, location 1. Secondly, all the

type B decagons are disconnected to each other in a Penrose tiling. Therefore,

the black rhombuses that only arises in type B decagon low energy state are

not connected to each other when the whole pattern is in low energy state. If

any black rhombuses are found to be paired together or more than one black

rhombus are found in a decagon, it can be inferred that the decagon is not in a

low energy state. An example is given in 5.4, location 2. Following the features

of coloured decagon in low energy state, it can be easily verified that most of

the decagons in coloured MFM images are not in a low energy state, as most of

the black rhombuses are paired together and green rhombuses arise. We did find

some low energy type A decagon along the boundary of the sample with small

lattice constant (see figure 5.4 location 3). This may be due to the frustration

being weak along the edge, which results in a low energy state of the decagon.

This kind of low energy decagon is also found from the edge of other patterns

with 700 nm lattice constant in an as-grown state.

5.2.3 Conclusion

The small lattice spacing and thus strong dipolar interactions between islands

result in stronger correlations in an artificial system. Hence, for a square pattern,

long-range order are more easily found in samples with the small lattice space

[69]. For Penrose tiling pattern, a similar result is expected. The long-range

ordered ground state however is not easily identified from the magnetic moments

configuration. Hence, a colour mapping method is employed. From the colour

mapped MFM images, few large GS “domain” emerge from samples with the

smallest lattice constant (600 nm). As will be shown later, this is partly because

the samples, even after thermal annealing, have not approached the predicted

ground state, and partly because one type of vertex (type VII vertex) prefers to

stay at the second lowest energy configuration rather than the lowest one after

thermal annealing. This type of vertex sits right at the joined part between

decagon A and decagon B, which changes both of the decagon configurations.
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On the other hand, how far these states are from the predicted ground state is

not easy to infer from rhombus population and colour mapped MFM images. In

order to obtain such information, an order parameter will be employed in the

following chapter.
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Chapter 6

Domain size estimate

6.1 Introduction

A correlation function is often used in statistical mechanical systems. For ex-

ample, in a 2-D Ising model (the spins in the system can only pointing up or

pointing down and the values can only be 1 or -1), consider the alignment of two

Ising spins S(x) and S(x + r) separated by a distance r in the system. If the

separation of the two spins r is much larger than a typical domain size L, their

average product

C(r) =< S(x)S(x+ r) >

will be near zero as the spins have 50 % chance to align or misalign. If r is much

smaller than a typical domain size L, the spins are aligned parallel to one another.

The averaged product of the spins will be one. Hence the averaged domain

size of the system can be extracted from a correlation function as the length

scale on which correlations die away. Moreover, when the system experiences a

phase transition, the domain size will vary from one phase to another, and the

correlation function can provide information about the phase transition. When

the correlation function is used in an artificial spin ice system, similar information

can be extracted from the correlation between islands, such as “domain” size.

As discussed earlier, the thermal annealing protocol has been confirmed to

be more effective in energy minimisation than in the other protocols. When it

was implemented on a square pattern with a small lattice constant, ground state
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ordering was achieved [69]. It was observed that when the sample lattice space

increased, the ground state domain size started to reduce, which was qualitatively

confirmed by examining the MFM images. When these phenomena were inves-

tigated by a correlation function, a trend was clearly revealed by the magnitude

of correlation decay behaviour as a function of lattice separation. The radius of

average domain sizes can be estimated from the correlation decay behaviour (see

figure 6.1).

6.2 Skeleton-part correlation function

For a Penrose tiling, we have shown that the symmetry can lead to the emer-

gence of long-range ordered ground state in the skeleton part. However, due to

fabrication limitations, the lattice constant can only be reduced to 600 nm before

the islands touch each other. This constraint makes the ground state ordering in

Penrose tiling difficult to access for the samples used for this project. A correla-

tion function is introduced to discuss the disordering of arrays in a wide range of

lattice spacing (600 nm to 1000 nm). The correlation function has been defined

in Chapter 3 by equation 3.1. As discussed there, the correlation between the

ground state and the other states for each spin is weighted by its “neighbouring

spins’ correlation”.

For Penrose tiling, each island sits on one of the edges of a non-periodic

pattern, in which the number of nearest neighbour of each island varies from

site to site. Therefore, the distance to a neighbouring island is not defined in real

space, but in terms of hop steps, i.e. the nth nearest neighbours are defined as the

islands that need n hops from the reference island, as illustrated in figure 6.2(a).

As long-range order is expected to arise only in skeleton part (as discussed in

Chapter 4), the spins we are concerned with are those in the skeleton part only.

Figure 6.2 gives the correlation function between the ground state and three states

from the sample with 600 nm lattice spacing. The difference is easily visible;

the thermally annealed states are more ordered than the other two states. The

difference between the as-grown and the ac demagnetised state is small compared

with the thermally annealed state, which indicates that demagnetisation does

not increase the order as much as the thermal annealing protocol. A similar
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6.2 Skeleton-part correlation function

Figure 6.1: Magnitude of correlation as a function of lattice spacing for annealed

square artificial spin ice: different curves correspond to different lattice constants.

The colour mark is illustrated at the top. The intersection of a horizontal dash

line 1/e with each curve gives an estimate of the averaged domain size. After

Zhang et al. [69]
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6.2 Skeleton-part correlation function

Figure 6.2: Correlation between different states and the ground state: for cor-

relation calculation, each spin’s neighbouring islands correlation is taken into

account. The three nearest neighbours of a island are sketched in (a). The neigh-

bour definition is explained in the text. The white islands do not belong to the

skeleton part and hence are excluded from the analysis. The correlation between

the ground state and other states as a function of neighbour island distances are

plotted in (b). The correlation function calculation is based on equation 3.1. The

lattice spacing of the arrays is 600 nm.
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6.3 Domain in Penrose tiling pattern

method from a square pattern is used to estimate the domain size of states in

Penrose tiling. As shown in figure 6.2, the interception of a line 1/e with each

correlation curve gives an estimation of the domain sizes. The estimation of

domains sizes therefore is less than two neighbouring islands for the as-grown and

ac demagnetisation state and beyond two neighbouring islands for the thermally

annealed state. It needs to be pointed out that the islands we considered are

from the skeleton part only. The correlation in the flippable part is difficult to

calculate since the configuration has more than two-fold degeneracy.

6.3 Domain in Penrose tiling pattern

Next, we will demonstrate that the domains in the skeleton part can be visu-

alised by colour mapping the magnetic configuration of each state. This method

turns out to be equivalent to the correlation function discussed above. Instead

of assigning a value of ±1 to the correlation Si · S′i, the islands are assigned dif-

ferent colours depending on the correlation with the ground state skeleton part.

If an island from a state has the same direction to its counterpart in the ground

state, i.e. if Si · S′i = 1, this island is coloured blue, otherwise, it will be coloured

red, which corresponds to Si · S′i = −1, where Si is the normalised spin from the

state, S ′i is the normalised spin from same location in the ground state. The spin

configurations from any state after colour mapping will consist of two types of

coloured spin; one is “blue” spin, which has the same moment direction with its

counterpart in the ground state while the other is “red” spin, which has opposite

moment direction with its counterpart in the ground state. Two examples are

illustrated in figure 6.3. In figure 6.3(a), the spin configuration of a sample in the

as-grown state with 1000 nm lattice space is mapped by two different colours. The

red spin and blue spin are mixed together, and therefore no “domain” is formed

in this state, which are consistent with the previous correlation calculation. In

contrast to this, the spin configuration from the sample with 600 nm lattice space

after thermal annealing clearly shows different coloured “domains” (as shown in

figure 6.3(b)). In order to characterise these domains, an averaged domain size

is employed, which is given by the whole area of the sample divided by the sum

of perimeter of all the domains in the pattern L = A/
∑

i si, where A is the area
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6.3 Domain in Penrose tiling pattern

Figure 6.3: Colour mapping of magnetic configuration of the two states: (a)

Sample in the as-grown state with 1000 nm lattice constant; (b) Sample with 600

nm lattice constant after thermal annealing. The moments colour depends on the

correlation with the ground state. If the island moment has the same direction

to its counterpart in the ground state, it will be coloured blue, otherwise, it will

be coloured red. The magnetic configurations are extracted from MFM images

of the samples.
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6.3 Domain in Penrose tiling pattern

Figure 6.4: The average domain size from samples in different states as a function

of lattice spacing: The average domain size is calculated based on the equation

given in the text. Each dot is an averaged value from the MFM images taken

from three different samples. The error bar is the standard error of these three

measures.

of whole skeleton part, and si denotes a domain’s perimeter. The summation is

over all the domains in the skeleton part. Since the pattern consists of islands,

the total area is constant. The boundary separating two different coloured do-

mains refers to the vertices, which consist of blue and red spins. Therefore, the

perimeter here is estimated by the number of vertices that consist of red spin and

blue spin. When more domains are formed in a pattern with a constant area,

the domains becomes smaller and the total perimeter of all the domains becomes

larger. Therefore, it is a reasonable parameter to estimate the domain size. The

estimated domain sizes from different samples in different states are illustrated in

figure 6.4. For the as-grown state and the thermally annealed state, the domain

sizes clearly show a decreasing trend when the lattice spacing increases. As these
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6.4 Summary

two states are remanent states after the thermalisation process, the domain size

variation for both states therefore has a similar trend. As the thermally annealed

state is fully thermalised compared with the as-grown state, it is not a surprise

that the average domain is larger.

For the ac demagnetised state, the domain size of samples with lattice spacing

from 600 nm to 900 nm is nearly constant. A similar phenomenon was found in

the case of hexagonal array ac demagnetisation, where the effective temperature

1/βe, which is used to characterise the ac demagnetisation, is found to be inde-

pendent with the lattice spacing [39]. For Penrose tilings, due to multiple types of

vertices as well as the multiple vertex energies, the effective thermodynamic de-

scriptions has not been employed to investigate the ac demagnetisation; however,

the domain sizes that reflect the ordering of the pattern should also be valid for

the ac demagnetisation description. It implies that the inter-element interactions

play a weaker role in ordering through ac demagnetisation. These phenomena

are still under investigation. It is worth noting that the number of “red spins”

and “blue spins” are very close to each other for all the samples in different states

with different lattice spacing. Neither of the coloured spins show dominance even

in the sample with the smallest lattice spacing after thermal annealing. This im-

plies that the system is still in a phase where the symmetry has not been globally

broken.

6.4 Summary

The order in the skeleton part of the system has been revealed by the calculation

of an order parameter and of an average domain size, which has been extracted

from colour mapped magnetic configurations for three different states. Both

methods show that the thermally annealed states are more ordered than the

other two states but still far from the ground state. The lattice spacing in the ac

demagnetisation process was found to play a weak role in the ordering.
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Chapter 7

Thermal fluctuation studies of

Penrose tilings

7.1 Introduction

Not long after the artificial spin ice system was created, thermalisation was found

preserved in as-grown states [65]. This discovery proved that ground state order-

ing could be achieved. The explanation of such an observation relies on the fact

that when the nanoislands are in the initial deposition stage, the small volume

of the islands means the energy barrier is small enough that it can be overcome

by the thermal energy E = kBT at the deposition temperature, where kB is the

Boltzmann constant. The energy barrier is given by

Er = KV =
1

2
µ0DM(T )2V, (7.1)

where V is island volume, K is the shape anisotropy constant, µ0 is the magnetic

vacuum magnetic permeability and D is the difference between demagnetisation

factors along the in-plane short and long axis of the island and magnetisation

M(T ) ∝ 1 − cT 3/2, where c is a constant. Therefore, the elements behave like

superparamagnets during the initial deposition stage. As the nano-islands are

being grown, the islands’ height and thus the volume of islands increases, as does

the energy barrier to reversal. The rate of thermal fluctuation progressively slows

down and the moment of islands gradually freeze. The islands therefore undergo
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7.1 Introduction

a transition from the superparamagnetic state to the ferromagnetic state. This

kind of transition also happens in the thermal annealing experiment. For thermal

annealing experiments, the temperature is varied from above the Curie temper-

ature of the material back down to room temperature. The islands therefore

undergo the same transition, since their energy barriers to reversal are low just

below the Curie point, and they are briefly superparamagnetic before freezing on

further cooling. In both cases, a blocking temperature can be used to characterise

this phenomenon. The blocking temperature is given by

TB =
KV

kB ln(t/t0)
, (7.2)

where K, V , kB is the same as used in equation 7.1, t is the experiment measure-

ment time and t0 is an attempt time, which is typically 10−10 s. When a system

is at a temperature below the blocking temperature TB, the moment of an island

cannot flip continuously between two stable directions, i.e. they are “blocked”.

The blocking temperature thus depends on the particular laboratory experiment

technique used, which defines t.

For artificial spin ice systems, the effect of the “inter-island coupling” cannot

be neglected. When considering the inter-islands interactions, the energy barrier

becomes Eb = Er + Ei, where Er is intrinsic energy barrier, and Ei arise from

inter-islands interactions. These dipolar interactions between the islands slightly

raises/lowers the energy barrier Eb, which can induce unfavourable/favourable

moments configurations. The system can therefore transit towards low energy

states during these thermally-activated dynamical processes.

Take the thermal annealing of the square ice, for example: when the system

is at a temperature just below TC, the magnetisation Ms ∼ 0, and therefore

the energy barrier as well as the dipolar interactions can be neglected. All 16

possible vertices energy states are equally-populated at this stage. As TB is being

approached, the energy barrier and the dipolar interactions increase: therefore,

these interactions will gradually lift the degeneracy of four vertex configurations.

This is because the thermal energy can overcome the shape anisotropy barrier

towards lower energy. The reverse process becomes less likely because in order

to jump from a low energy configuration to a high energy configuration, the

79



7.2 Temperature driven dynamics of Penrose tiling

thermal energy should not only overcome the shape anisotropy energy, but also

overcome the additional energy that is the energy difference between these two

configurations. Hence, a depopulation of high energy configurations is expected.

If we describe the jump over the barrier from a high energy state to a low energy

state process as the downward channel, the reverse process is the upward channel.

The possibility of a jump happening in these two channels is different and is

determined by the difference in the energy barriers that must be overcome. When

TB is approached, the energy difference is so large that the upward channel will

freeze before all jumps become impossible (i.e. below TB).

For one of the square ice thermal annealing experiments, it has been shown

that the energy difference between each vertex configuration is larger than the

thermal energy when the temperature is close to the TB [102]. Hence, below TB,

with significant depopulation of the high energy vertices, the system is expected

to contain type one vertices only, i.e. the ground state. However, in some exper-

iments, the samples did not approach the purely type one vertex configuration

[102]. Instead, several domain boundaries arise between different ground state

regions. One of explanations for this discrepancy is traced to the defects, such

as island size and shape distribution, as not all the islands are identical due to

the nano fabrication process, where a distribution of blocking temperature arises.

During cooling process, the region with higher TB would freeze first and nucle-

ate the ground state ordered region. These frozen regions will become a seed of

ground state order in different parts of the array. As the temperature decreases

further, these regions will progressively expand until they reach another ground

state region. These two regions will merge forming a larger region if they have

the same form of order, or a boundary of type two and/or type three vertices will

form if the two regions’ order are incommensurate.

7.2 Temperature driven dynamics of Penrose tiling

For the Penrose tiling, due to non-periodicity, the number of neighbouring islands

varies from site to site, as do the inter-islands interactions. Therefore, a wide

blocking temperature distribution is expected. As discussed earlier, the ground

state of Penrose tiling consist of two parts. One is the flippable part, which
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7.2 Temperature driven dynamics of Penrose tiling

consists of type V, VI, and VII vertices and the other is the skeleton part, which

consists of type I, II, III and IV vertices. For any vertex in the flippable part, due

to the environment, it can choose one of its degenerate low energy configurations

freely without changing the global energy of the system, i.e. no boundary can

arise in the flippable part. Besides, the long-range order cannot be built in these

regions as they are not connected to each other. On the other hand, the nucleation

of the low energy state in these regions will not affect the long-range order in the

skeleton part. For the vertices in the skeleton part, where the long-range order is

expected to arise, due to the variety of blocking temperatures of different types of

vertex, the long-range ordering through thermal annealing may be difficult. The

reason is similar to the domain boundary forming in the square pattern during

the thermal annealing experiment. As for Penrose tiling, a large distribution

of blocking temperature is expected, a likely thermal annealing result is these

vertices form a ground state region locally and these ground state regions form

“domains”, which are consistent with that observed in the thermal annealing

experiment (see figure 6.3).

7.2.1 The energy distribution of each vertex in different

states

Based on the assumption that a long-range order may arise, we conduct a sta-

tistical analysis of vertex configuration populations for the thermally annealed

state and the as-grown state. The results are displayed in figure 7.1 and 7.2 (the

anomalies arise in energy population distribution are demonstrated in the later

figure).

At a first glance, the energy levels are more uniformly occupied when the

samples are in the as-grown state. After thermal annealing, the energy distribu-

tions have a clear shift toward the low energy direction for all types of vertex,

which indicates that the thermal annealing is more effective in energy minimisa-

tion than the as-grown state. Most of the vertices are at the lowest and second

lowest energy levels; hence, in order to simplify the analysis, we focus our study

on these two levels of each vertex. The configurations of these two energy levels
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.1: Vertex energy level occupations (part I): The energy level occupation

of five types of vertices when samples are in the as-grown state (gray bar) and

the thermally annealed state (red bar). Each figure shows the population of the

vertex energy levels for a certain vertex type.
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.2: Vertex energy level occupations (part II): The energy level occupation

for remaining two types of vertices when samples are in as-fabricated state (gray

bar) and the thermally annealed state (red bar). The type VII vertex energy level

are partly listed.

for each type of vertex have been listed in figure 4.2. Based on the calculation,

each energy level of vertex configuration can be identified from the MFM images.

For thermodynamic studies in artificial spin ice systems, the frequency of the

excitations is expected to follow the Boltzmann distribution. This has been found

both from the as-grown state and the thermally annealed state for the square

pattern [65; 69]. For the Penrose tiling, the number of excitations at high energy

level for most of vertices is insufficient to extract a Boltzmann law. Nevertheless,

from the population distribution of the lowest two energy level, we could still

extract some information. For type I, III, IV, V, and VI vertices, the population

of the second energy level is significantly less than the lowest energy level after

thermal annealing. This is expected as in the thermal annealing process, the

thermal energy would prefer to overcome the energy barrier towards low energy

configuration direction. However, for type II vertices in the as-grown state and

the thermally annealed state, more vertices were found to stay at the second

energy level. For type VII vertices, this excessive population is more significant

(see figure 7.3). This phenomena has been both observed in the as-grown state
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.3: The difference between the lowest and second lowest vertex energy

configuration populations for seven vertices when samples are in the thermally

annealed state. Negative values mean that the second energy level has a higher

population than the first energy level. Data comes from four samples with a

lattice constant 600 nm.

and the thermally annealed state, hence it is not a statistical anomaly.

For type II vertex, the excessive population is reasonable. This is because part

of type II vertex has to stay at the second energy level due to the construction

of the ground state of the whole pattern. The ratio of E1/E2 for type II vertex

is 0.4 in the ideal ground state of the Penrose tiling, which is slightly lower than

the experimental value. However, for type VII vertex, the excessive population is

unusual. As we will show below, this result is due to the Boltzmann distribution.

A more precise Boltzmann distribution should take the degeneracy factor into

account, which is

n(J) = g(J) expE(J)/kBT

where n(J) is the population density of level J and g(J) is the degeneracy which
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7.2 Temperature driven dynamics of Penrose tiling

is the number of degenerated states in energy level J . The population ratio in

two different energy states therefore is

F1

F2

=
g(1)

g(2)
exp

E1 − E2

kBT
. (7.3)

In most case, the degeneracy factor is neglected, as it is insignificant compared

with the exponential factor. However, we will show below that for type VII

vertex, when the temperature is close to TB, the energy difference between the

first and second energy level is comparable with the thermal energy. Hence the

degeneracy factor plays a more important role in the population distribution.

For a type VII vertex, we will show below that it costs little energy to excite

from the ground state to the first excited state. As illustrated in figure 7.4, when

a Penrose tiling array is in the ground state, it needs to flip three islands to excite

a type VII vertex from its lowest energy state to its first excited state. These

three islands flipping will alter the configurations of their neighbouring vertices,

which is marked by number 1, 2 and 3 in figure 7.4. The vertices 1 and 3 are

all type II vertices; the islands flipping will raise the energy of one vertex and

lower the other, which does not change the total energy. The states of the two

vertices are marked by a red or green dot in figure 7.4, respectively. For the

number 2 vertex, which is a type I vertex, the island flipping would not change

the vertex energy, as the relevant island degenerates when type I vertex is in the

lowest energy state (see figure 4.2). Therefore, when a type VII vertex is excited

from its ground state to its first excited state, it can be treated as a disconnected

vertex. The only energy cost is the energy difference between the initial and

final energy states. Therefore, it is much lower than the corresponding energy

cost in other type of vertices. As discussed earlier, the thermal activation rate

from ground state to the first excited state (upward channel) depends on the

shape energy barrier Er and the inter-island interactions energy barrier Ei. More

precisely, it is proportional to exp(−(Ei+Er)/kBT ), while the reverse process rate

(downward channel) depend on the shape energy barrier only, i.e. proportional

to exp(−Er/kBT ). (It does not need to overcome the inter-islands interactions in

the reverse process). The depopulation of an energy state depends on the ratio

of these two, which is exp(−Ei/kBT ). For a type VII vertex, the small Ei implies

that the depopulation rate for the first excited state is low.
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.4: Type VII vertex configuration transit: (a) A type VII vertex (black

arrows) is in the lowest energy configuration. (b) The type VII vertex is in the

first excited energy configuration. The red arrows represent that the elements mo-

ments are reversed with respect to the configuration in (a). The reversed islands

change the configurations of three neighbouring vertices, which are labelled 1, 2

and 3, respectively. The flipped islands will affect two type II vertices (marked

by number 1 and 3) by raising the energy of one and lowering the energy of the

other by exactly the same amount. The other flipped island did not change the

energy of type I vertex (marked by number 2).
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7.2 Temperature driven dynamics of Penrose tiling

On the other hand, for a type VII vertex, three islands need to be flipped to

alter the configuration (either from E2 to E1 or from E1 to E2). As indicated by

equation 7.1, the energy barriers are proportional to the volume of the reversing

magnetic body, and so the energy barrier for a type VII vertex to relax into its

ground state is higher than for the other vertex that only needs to flip a single

island to do so. Considering all of the above, these type VII vertices drop out of

the thermal equilibrium sooner and can arrest at a higher temperature than the

others, leaving a highly excited population to be imaged in MFM experiments.

The population ratio between E2 and E1 observed from the MFM experiments is

1.964, which is close to the value at the high temperature. (At high temperature,

the magnetisation and thus the dipolar interactions can be neglected; therefore,

energy difference E2−E1 in type VII vertex is close to zero. The population ratio

between these two energy levels is given by the degeneracy factor ratio, which is

2). The observation confirms the assumption made above.

To realise this, we can consider in detail the blocking temperature of type VII

vertices. The blocking temperature can be evaluated from the expression of TB

given above (Eq. 7.2), which can be cast in the following form:

ln
τm
τ0

kBTB = KV =
1

2
µ0M

2
s (TB)DV. (7.4)

The tm is the measurement time, we use tm = 3 s considering that the cooling

rate in the thermal annealing process is 0.33 K/s (assuming that the moment on a

particle is relaxed in 3 seconds when the system is cooled by 1 K). The measured

Ms versus T of a 25 nm thickness film made of Py with 200 nm silicon nitride

buffer is shown in figure 7.5; we use D = 0.141 (calculated using the expressions

given in [103]). The volume of a nanoisland is 6.67 × 10−22 m3. For a type VII

vertex in our Penrose tiling, the reversal energy barrier can be estimated by con-

sidering reversal of one element from the ground state configuration, resulting in

the creation of a second excited energy state, as shown in figure 7.6, as this would

mostly minimise the Er and Ei at the same time. The blocking temperature

equation 7.4 can be solved graphically. The blocking temperature equation can

be rewritten as F (TB) = MS(TB), where

F (TB) =

√
2 ln tm

t0
kBTB

µ0∆NV
. (7.5)
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Figure 7.5: Magnetisation data for a permalloy film on Si3N4: Magnetisation as a

function of temperature for a 25 nm thickness permalloy film on Si/Si3N4. Data

comes from [69].
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.6: The inter-island interaction barrier estimation in type VII vertex: a

element in type VII vertex ground state reverses its magnetic moment, resulting

in a second energy level configuration; its neighbouring vertex (type IV vertex)

configuration energy does not change because the element moment is degenerate

in this vertex. This choice is the optimised way to minimise the reversal energy

barrier.
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7.2 Temperature driven dynamics of Penrose tiling

The result is shown in figure 7.7(a), where the intersection gives the blocking

temperature TB=789 K. At this temperature, the saturation magnetisation has

a value of 64 kA/m, which we used to evaluate the dipolar magnetostatic energy

for different configurations. The energy was calculated using the OOMMF micro-

magnetics simulation platform, for which we used a simulation unit comprising

nanoislands forming a vertex with the specified MS above and the orientation of

each element moment was set according to each vertex magnetic configuration.

Each island is divided into cubic cells with a 5 nm side for the simulation. For

the type VII vertex, the energy of the ground state, first excited state, and the

second excited state are 0.4043 aJ, 0.4057 aJ and 0.4253 aJ, respectively. The

thermal energy at the blocking temperature is 0.109 aJ. The degeneracy factor

of the ground state, first excited state, and the second excited state of type VII

vertex are 2, 4, and 2. Based on these parameters, the population ratio of E2/E1

and E3/E1 can be calculated using equation 7.3 and the result is plotted in figure

7.7(b), which is not far from the experimental value. Therefore, the anomaly in

the population distribution is from the degeneracy factor in the Boltzmann distri-

bution law. In the calculation above, the inter-island interactions are neglected,

i.e. Ei has not been considered in the blocking temperature equation. A more

precise equation should be

ln
tm
t0
kBTB =

1

2
µ0M

2
s (TB)∆NV + Ei. (7.6)

The order of the inter-islands interaction can be estimated from this equation.

As ln tm
t0

is roughly 24, which means the shape anisotropy energy KV is about 24

times of the thermal energy kBTB at the blocking temperature, while according

to the calculation above, the Ei for type VII vertex is roughly 1/8 of the thermal

energy at the blocking temperature. Therefore, the shape anisotropy energy is

approximately more than 100 times that of the Ei for type VII vertex, which

means Ei can be neglected in the calculation above. The population ratio of the

other vertices can also be obtained in the same way. The population distributions

for type 1 and 3 vertices are shown in figure 7.8a and b, respectively, which

capture most details of the experiment. To further explain this model, we give

a comparison of population distribution between square pattern and Penrose

tiling pattern. According to the calculation and simulation in [102], the blocking
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.7: Blocking temperature equation solution and energy population of

type VII vertex: (a) The blocking temperature function (see equation 7.5) of a

nano-island (blue) and magnetisation of a 25 nm thickness Permalloy film (red)

as a function of temperature. The intersection gives the blocking temperature of

type VII vertex and the corresponding saturation magnetisation. (b) The energy

population distribution of type VII vertex from experiment (black line) compared

with simulation result (red line). Only the lowest three energy levels occupation

are present. Experimental values are from the MFM images and the simulation

result is based on the OOMMF simulation at blocking temperature given by (a).
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7.2 Temperature driven dynamics of Penrose tiling

Figure 7.8: The energy population distribution of type I and type III vertex from

experiment (black line) and simulation (blue line).

temperature of a square pattern array with 400 nm lattice constant is around

66 meV, and the energy difference between first and second vertex is roughly

390 meV. The E2/E1 population ratio at the blocking temperature is 0.0054

according to the Boltzmann law; therefore, the degeneracy factor can be neglected

and large ground state domains are found in the sample as most vertices are in

the lowest energy state. The domain boundary which still arises, according to

the discussion in [102], may be due to the distribution of island sizes or shapes

that is unavoidable during the lithography process, which means there will be

a distribution of blocking temperatures. Therefore, different regions nucleate at

different temperatures and generate degenerated ground state regions.

For the Penrose tiling, as we calculated above, due to the large lattice constant

(600 nm), the energy difference between different configurations is smaller than

the square pattern, so that the excitations are much more frequently observed.

For Penrose tilings, the blocking temperature has an intrinsic distribution, which

is mainly caused by the non-periodicity rather than the defects generated during

the fabrication process. However, this effect has not hindered the ground state

being accessed. This can be inferred from the “domain” length calculation in

chapter 6, as the “domain” length increased while the lattice spacing was reduced

to 600 nm. From the blocking temperature calculation, it can be inferred that

92



7.3 Summary

the lattice constant reduction will induce strong inter-island interactions and

consequently will broaden the blocking temperature distribution. However, this

is not consistent with the trend of the “domain” length variation when the lattice

spacing decreases; therefore, access to the ground state in the Penrose tiling is

mainly driven by the lattice constant. The blocking temperature distribution may

cause a notable effect at some point when the lattice spacing is reduced further;

however, this is hard to achieve with the current lithography limits (otherwise

the islands in type VII vertex will touch each other), and in order to further

reduce the excitation and minimise the energy, the ratio of Ei/kBTB needs to be

increased. For the future work, the energy minimisation effort should be made in

modifying this ratio.

7.3 Summary

In summary, based on the blocking temperature calculation, the simulation result

of population distribution at the blocking temperature is consistent with the

experimental results obtained at room temperature, which shows that access to

the ground state is mainly restricted by the lattice constant rather than the

distribution of the blocking temperatures.
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Chapter 8

Summary and future work

8.1 Summary

This thesis has experimentally addressed the behaviour of artificial magnetic

Penrose tiling pattern under different energy minimisation protocols on differ-

ent lattice constants. Magnetic force microscopy (MFM) allowed the magnetic

configuration to be probed, from which the statistical analysis was conducted.

In order to study the energy minimisation problem, we offered a low energy con-

figuration of the whole pattern, which can accommodate most vertices in the

lowest energy configurations. Hence, it is deemed to be a ground state of Penrose

tiling. The ground state construction is based on the vertex configuration ener-

gies determined from the OOMMF simulations. Generic “ice-rules” were found to

construct the lowest energy configuration for each vertex. Following this rule, the

element’s magnetic moments of each vertex should point in and out alternately to

minimise the magnetostatic energy. When tiling these low energy vertex config-

urations together, the degeneracy of each vertex configuration is removed, which

induces two parts of the structure. One part, termed as the “skeleton part”, has

a two-fold degenerate state. Hence, like the square pattern, a long-range order

is expected to arise in this part. The other part, termed as the “flippable part”,

has a multiply degenerate ground state. The vertices in this part can chose freely

between degenerate states without altering the energy in the other part.

Based on the ground state of Penrose tiling, the energy minimisation has been

addressed by three methods: as-grown state, rotational magnetic field demagneti-
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8.1 Summary

sation, and thermal annealing after the fabrication stage. The as-grown state and

thermally annealed state have been proved to induce long-range order in a square

pattern [17; 65; 69]. These achievements suggest that the long-range order is

expected to arise when similar protocols are conducted on the Penrose tiling pat-

tern. From the rhombus population analysis, the population ratio of different

rhombuses’ configurations is close to the ground state when the samples are ther-

mally annealed. However, a further study demonstrated that no large clusters

stay in the lowest energy configuration. In order to further identify the order

in the samples, a correlation function calculation was conducted on the sample’s

skeleton part. The magnitude of correlation for the thermally annealed state was

found to be significantly higher than the other states. The correlation length that

was estimated from the correlation curve is more than two neighbouring islands,

i.e. only short-range correlation was found. Further to this, a special “domain”

was defined based on the colour mapping of MFM images with the ground state

skeleton part. An averaged “domain size” was calculated and clearly shows that

the thermal annealing and as-fabricated state have similar trends as the lattice

spacing is reduced. This shows that both of the states are thermally induced

states. As a contrast, the averaged “domain” size is found to be almost irrelevant

to the lattice constant after the field demagnetisation. It implies that the lattice

constant plays a weaker role in the field ordering process and further investigation

is ongoing to explore this phenomenon.

For the thermally annealed state, an excess population phenomenon was found

to exist in the VII vertex energy population. Based on the calculation of the

blocking temperature, the thermal excitations are found to follow the Boltzmann

distribution at the blocking temperature. Hence the excitation population de-

pends on the ratio between excitation energy and thermal energy at the blocking

temperature. In order to reduce the number of excitations and thus minimise the

total energy, this ratio needs to be enlarged. This can be approached by either

decreasing the blocking temperature or increasing the inter-islands interactions.
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8.2 Future work

8.2 Future work

The work presented in this thesis provides various avenues for future research.

A number of points to be addressed are left out in this work. While the ground

state of the Penrose tiling has been predicted, the validity of this configuration

needs to be further tested. From an experimental view, it has been shown that

the system’s order in the skeleton part was significantly increased by the thermal

annealing. However, the predicted long range order in the skeleton part is still far

from being achieved. As shown in chapter 7, the thermal excitation populations

are mainly determined by the ratio between the thermal excitation and thermal

energy at the blocking temperature, rather than the distribution of the blocking

temperature. Therefore, in order to minimise the total energy and increase the

order of the system, this ratio has to be modified.

For the ac demagnetisation investigation, due to the complexity of the struc-

ture, it is difficult to conduct an “effective temperature” treatment on a Penrose

tiling pattern. However, the study on a specially defined “domain” size shows

that the averaged domain size increased after ac demagnetisation, but not by

as great an extent as from the thermal annealing protocol. Besides, the lattice

constants are found to play a weak role in the field ordering process. The details

have not been investigated explicitly, and this would for an interesting avenue for

future work. The field reversal problem has been intensively studied in square

and kagome patterns. How the moments of system are correlated during field

reversal due to interactions and frustration has become an interesting and impor-

tant aspect. For Penrose tiling, not surprisingly, the different geometry induced

different interactions as well as frustration will lead to new phenomena; hence,

more work is expected in the future. For the thermalisation study, in the short-

term, by varying the cooling rate or performing minor temperature loop, one can

investigate the ground state ordering and averaged domain size distribution as

a function of the cooling rate. In the long-term, the thermal fluctuation should

be further investigated with other materials with different Curie temperatures

and the behaviour can be studied by the other techniques such as Photoemission

Electron Microscopy with X-ray Magnetic Circular Dichroism (PEEM-XMCD).
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Appendix A

How to generate 2-D Penrose

tiling

Since the aperiodic pattern possesses long range order, each element site can be

predictable if the initial element site is known. However, mathematically, apart

from the 1-D quasiperiodic chain (Fibonacci chain), there is no mathematical

formula that could be relay upon to give each element site in the quasiperi-

odic pattern. Generally, in order to obtain Penrose tiling, one could utilise the

self similar property of the quasiperiodic pattern, which could generate a large

scale Penrose tiling pattern from a small piece (inflation rule). However, for this

project, we need to trace each element site for statistical reasons. Therefore,

another method is needed.

Rather than use the inflation/deflation rule, it was found firstly by de Bruijn

[72] that Penrose tiling can be generated by projecting a certain slice of high

dimensional cubic lattice into low dimension, which is called the “cut and projec-

tion” method. Several methods were developed afterwards [104; 105; 106]. The

method we used is another form of the “cut and projection”, called the “section

method”, which has advanced in calculation and coding. Details can be found in

[107], but the basic idea is given below.

If one considers a N dimension cubic lattice Λ with an orthogonal unit vector,

it has n-fold rotational invariance and belongs to rotational group Γ. The N cube

lattice Λ can be decomposed into two subspaces, which we call R‖ (parallel space)

and its complementary space R⊥ (perpendicular space), which have dimension
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A.1 1-D quasiperiodic pattern

N‖ and N⊥ respectively. The bases of R‖ and Λ are linked by the following

transformation:

R‖(j) =
N∑
i=1

qij · Λi,

where qij is the transformation matrix element, R‖(j) is the basis of R‖ and Λi

is the basis of Λ. Let C be a unit hypercube of Λ. When C is projected into

perpendicular space R⊥, the object that derives, C⊥, is called “window”.

When a set of points X in Λ are projected into its parallel space R‖ and

perpendicular space R⊥, one will get point sets X‖ and X⊥ respectively. If parallel

space R‖ is chosen to invariance under rotational group ΓR‖ , where ΓR‖ is an

irreducible subgroup of rotation group Γ, then the point set X‖ would be invariant

under ΓR‖ . If the transformation element qij are irrational numbers, the set of

points X‖ will form a quasiperiodic pattern [108].

A.1 1-D quasiperiodic pattern

We will begin from a one dimensional example, the Fibonacci chain, which is

a 1-D aperiodic structure. It can be generated from a 2-D square lattice, as

illustrated in figure A.1. A 2-D square lattice is aligned with an irrational slope

respect to the horizontal line. The slope is given by cosα/ sinα = τ , where τ is

the golden ratio and α is the angle between the square row and the horizontal

line. For each point in the square lattice, a vertical bar is placed on it with width

D, D is a window in this case, which is defined as a unit square diagonal projected

along vertical direction (perpendicular space). The vertical bar has cross section

with a horizontal line (parallel space), and gives a set of points which form the

quasiperiodic chain, or in other words, the Fibonacci chain.

A.2 Penrose tiling

The 2-D Penrose tiling pattern can be derived from a five dimensional cubic

lattice. When a five dimensional cubic lattice Λ is given, it is invariant under

five-fold rotation which belongs to rotation group Γ. Γ can be decomposed into

three irreducible subgroup ΓR‖ ,ΓR⊥ , ∆. In this case, the ΓR‖ is the parallel space

98



A.2 Penrose tiling

Figure A.1: 2-D projection method: A 2-D square lattice is aligned with an

irrational slope in respect to the horizontal line. Each point in 2-D lattice is

placed on a vertical bar(see text). Some vertical bars have a cross section in the

horizontal line( parallel space), which gives a set of points. These points can be

deemed to be the Fibonacci chain.
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A.2 Penrose tiling

Figure A.2: Icosahedral space: When a unit hypercube in 5-D is projected into

a 3-D perpendicular space, a rhombic icosahedron will be formed. The points

which are projected from Γ are constrained in four pentagonal planes, which are

normal to the [11111] direction. They are marked A, B, C, and D, respectively.

in this case, and the ΓR⊥ sum with ∆ is the perpendicular space. The ΓR‖

space inherits the five-fold rotational invariance from Γ. The ∆ space is a one

dimensional space along the [11111] direction. The transformation matrix that

links the basis of the subspace and the basis of the hypercube space is

R‖ =
√

2/5

(
1 cos θ cos 2θ cos 2θ cos θ
0 sin θ sin 2θ − sin 2θ − sin θ

)

R⊥ =
√

2/5

 1 cos 2θ cos θ cos θ cos θ
0 sin 2θ − sin θ sin θ − sin 2θ
1√
2

1√
2

1√
2

1√
2

1√
2


where θ = 2π/5. From the second matrix equation, we know that when projected

into the R⊥ space, the points would sit on four planes, which are normal to the

[11111] direction with intervals of 1/
√

5 of unit length in 5-D. The“window” C⊥ is

obtained by projecting a hypercube unit C into perpendicular space R⊥, therefore

being formed by 4 pentagonal planes, which amount to a rhombic icosahedron,

100



A.2 Penrose tiling

Figure A.3: Tiling generated by different value of γ: Left: When choosing γ = 0,

the pattern contains ten-fold symmetry vertices. Right: When choosing γ = 0.3,

the pattern is a Penrose tiling.

as shown in figure A.2. Therefore, a finite section of Λ is chosen, called X.

If the points of X that are projected into perpendicular space sit inside C⊥

(window), then the points in the parallel space would be invariantly under a five-

fold rotation. The pattern obtained, however, possesses both five-fold symmetry

and two-fold symmetry, thus it cannot be a Penrose tiling pattern. In order to

break the two-fold symmetry, there is another important parameter γ, which is

used to shift the four planes in C⊥ along the [11111] direction. It has been shown

that when γ varies from 0 to 0.5, it generate distinct patterns [109]. When 5γ=

0 (mod 1), the pattern contains locally ten-fold symmetric vertices. When 5γ =

0.5 (mod 1), the structure is a Penrose tiling, as shown in figure A.3. For the

pattern used in the experiment in this thesis, the scale of the 5-D hypercube is

chosen to be 3 unit lengths along each axis, and γ is 0.3.
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Appendix B

All possible vertex configurations

and their corresponding energies

B.1 Appendix B

All possible configurations of each type of vertex in the Penrose tiliing, with

corresponding magnetostatic energy and degeneracy are listed below:

Figure B.1: All possible configurations, and corresponding energies, of a type I

vertex. The red arrow represents an energetically degenerate island moment.
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B.1 Appendix B

Figure B.2: All possible configurations, and corresponding energies, of a type II

vertex. The red arrow represents an energetically degenerate island moment.

Figure B.3: All possible configurations, and corresponding energies, of a type III

vertex.
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Figure B.4: All possible configurations, and corresponding energies, of a type IV

vertex. The red arrow represents an energetically degenerate island moment.

Figure B.5: All possible configurations, and corresponding energies, of a type V

vertex.
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Figure B.6: All possible configurations, and corresponding energies, of a type VI

vertex.
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Figure B.7: All possible configurations, and corresponding energies, of a type VII

vertex.
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Appendix C

Some selected AFM, MFM and

SEM images

C.1 Appendix C

Some representative AFM and MFM images used for statistical study of Penrose

tiling system in three different states are given in the following (all the images

were obtained from a Veeco nanoman system with standard MESP tip and all

the images in this series have 900 nm lattice constant):
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Figure C.1: The AFM image of pattern when the sample was in the as grown

state.
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Figure C.2: The MFM image of the pattern when the sample was in the as grown

state. The image corresponds to the topography image in the previous figure.
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Figure C.3: The AFM image of the pattern when the sample was in the ac

demagnetised state.
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C.1 Appendix C

Figure C.4: The MFM image of the pattern when the sample was in the ac

demagnetised state. The image corresponds to the topography image in the

previous figure.
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C.1 Appendix C

Figure C.5: The AFM image of the pattern when the sample has been thermally

annealed. The pattern survived the anneal well and only a few small pieces of

debris appeared, which do not affect the magnetic imaging, as can be seen in the

next figure.
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Figure C.6: The MFM image of the pattern when the sample has been thermally

annealed. The image corresponds to the topography image in the previous figure.

The debris that appeared in the previous figure has no affected the magnetic

imaging.
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Figure C.7: The SEM image of a pattern when the sample was in the as grown

state.
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