# ESTIMATING THE HETEROGENEITY VARIANCE IN A RANDOM-EFFECTS META-ANALYSIS

 $Two \ volumes$ 

VOLUME II OF II

Dean Langan

Doctor of Philosophy

University of York

Health Sciences

November 2015

## Table of contents

|                                                    |         | Study sizes |                     |        |                    |        |
|----------------------------------------------------|---------|-------------|---------------------|--------|--------------------|--------|
|                                                    |         | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |         | p. 287      | p. 288              | p. 289 | p. 290             | p. 291 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5     | p. 292      | p. 293              | p. 294 | p. 295             | p. 296 |
|                                                    | 0.1-0.5 | p. 297      | p. 298              | p. 299 | p. 300             | p. 301 |
|                                                    | 0.05    | p. 302      | p. 303              | p. 304 | p. 305             | p. 306 |
|                                                    | 0.01    | p. 307      | p. 308              | p. 309 | p. 310             | p. 311 |

### 

### 2. Mean squared error of heterogeneity estimates...... 312

|                                                    |         | Study sizes |                     |        |                    |        |
|----------------------------------------------------|---------|-------------|---------------------|--------|--------------------|--------|
|                                                    |         | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |         | p. 312      | p. 313              | p. 314 | p. 315             | p. 316 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5     | p. 317      | p. 318              | p. 319 | p. 320             | p. 321 |
|                                                    | 0.1-0.5 | p. 322      | p. 323              | p. 324 | p. 325             | p. 326 |
|                                                    | 0.05    | p. 327      | p. 328              | p. 329 | p. 330             | p. 331 |
|                                                    | 0.01    | p. 332      | p. 333              | p. 334 | p. 335             | p. 336 |

#### 

|                                                    |           | Study sizes |                     |        |                    |        |
|----------------------------------------------------|-----------|-------------|---------------------|--------|--------------------|--------|
|                                                    |           | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |           | p. 337      | p. 338              | p. 339 | p. 340             | p. 341 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5       | p. 342      | p. 343              | p. 344 | p. 345             | p. 346 |
|                                                    | 0.1 - 0.5 | p. 347      | p. 348              | p. 349 | p. 350             | p. 351 |
|                                                    | 0.05      | p. 352      | p. 353              | p. 354 | p. 355             | p. 356 |
|                                                    | 0.01      | p. 357      | p. 358              | p. 359 | p. 360             | p. 361 |

|                                                    |           | Study sizes |                     |        |                    |        |
|----------------------------------------------------|-----------|-------------|---------------------|--------|--------------------|--------|
|                                                    |           | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |           | p. 362      | p. 363              | p. 364 | p. 365             | p. 366 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5       | p. 367      | p. 368              | p. 369 | p. 370             | p. 371 |
|                                                    | 0.1 - 0.5 | p. 372      | p. 373              | p. 374 | p. 375             | p. 376 |
|                                                    | 0.05      | p. 377      | p. 378              | p. 379 | p. 380             | p. 381 |
|                                                    | 0.01      | p. 382      | p. 383              | p. 384 | p. 385             | p. 386 |

#### 

#### 

|                                                    |           | Study sizes |                     |        |                    |        |
|----------------------------------------------------|-----------|-------------|---------------------|--------|--------------------|--------|
|                                                    |           | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |           | p. 387      | p. 388              | p. 389 | p. 390             | p. 391 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5       | p. 392      | p. 393              | p. 394 | p. 395             | p. 396 |
|                                                    | 0.1 - 0.5 | p. 397      | p. 398              | p. 399 | p. 400             | p. 401 |
|                                                    | 0.05      | p. 402      | p. 403              | p. 404 | p. 405             | p. 406 |
|                                                    | 0.01      | p. 407      | p. 408              | p. 409 | p. 410             | p. 411 |

#### 

|                                                    |         | Study sizes |                     |        |                    |        |
|----------------------------------------------------|---------|-------------|---------------------|--------|--------------------|--------|
|                                                    |         | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |         | p. 412      | p. 413              | p. 414 | p. 415             | p. 416 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5     | p. 417      | p. 418              | p. 419 | p. 420             | p. 421 |
|                                                    | 0.1-0.5 | p. 422      | p. 423              | p. 424 | p. 425             | p. 426 |
|                                                    | 0.05    | p. 427      | p. 428              | p. 429 | p. 430             | p. 431 |
|                                                    | 0.01    | p. 432      | p. 433              | p. 434 | p. 435             | p. 436 |

|                                                    |         | Study sizes |                     |        |                    |        |
|----------------------------------------------------|---------|-------------|---------------------|--------|--------------------|--------|
|                                                    |         | Small       | Small-to-<br>medium | Medium | Small and<br>Large | Large  |
| SMD meta-analyses                                  |         | p. 437      | p. 438              | p. 439 | p. 440             | p. 441 |
| OR meta-<br>analyses with<br>event<br>probability: | 0.5     | p. 442      | p. 443              | p. 444 | p. 445             | p. 446 |
|                                                    | 0.1-0.5 | p. 447      | p. 448              | p. 449 | p. 450             | p. 451 |
|                                                    | 0.05    | p. 452      | p. 453              | p. 454 | p. 455             | p. 456 |
|                                                    | 0.01    | p. 457      | p. 458              | p. 459 | p. 460             | p. 461 |

## 7. Coverage of Knapp-Hartung confidence intervals...... 437

## 1. Bias of heterogeneity variance estimates



Figure 1.1: Mean bias of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small sized studies



Figure 1.2: Mean bias of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small-to-medium sized studies Bias is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 1.3: Mean bias of heterogeneity variance estimates in SMD outcome meta-analyses. Containing medium sized studies Bias is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 1.4: Mean bias of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small and large sized studies Bias is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 1.5: Mean bias of heterogeneity variance estimates in SMD outcome meta-analyses. Containing large sized studies Bias is presented on the proportional scale when  $\tau^2 > 0$ 





Bias is presented on the proportional scale when  $\tau^2 > 0$ 







Figure 1.8: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



















Figure 1.12: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability Bias is presented on the proportional scale when  $\tau^2 > 0$ 









Bias is presented on the proportional scale when  $\tau^2 > 0$ 







Figure 1.16: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



### Figure 1.17: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability

















Figure 1.21: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 1.22: Mean bias of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability











![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_29_Figure_0.jpeg)

2. Mean squared error of heterogeneity variance estimates

Figure 2.1: Mean squared error of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small sized studies

![](_page_30_Figure_0.jpeg)

Figure 2.2: Mean squared error of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small-to-medium sized studies MSE is presented on the proportional scale when  $\tau^2 > 0$ 

![](_page_31_Figure_0.jpeg)

Figure 2.3: Mean squared error of heterogeneity variance estimates in SMD outcome meta-analyses. Containing medium sized studies MSE is presented on the proportional scale when  $\tau^2 > 0$ 

![](_page_32_Figure_0.jpeg)

Figure 2.4: Mean squared error of heterogeneity variance estimates in SMD outcome meta-analyses. Containing small and large sized studies MSE is presented on the proportional scale when  $\tau^2 > 0$ 

![](_page_33_Figure_0.jpeg)

Figure 2.5: Mean squared error of heterogeneity variance estimates in SMD outcome meta-analyses. Containing large sized studies MSE is presented on the proportional scale when  $\tau^2 > 0$ 

![](_page_34_Figure_0.jpeg)

Figure 2.6: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability MSE is presented on the proportional scale when  $\tau^2 > 0$ 

![](_page_35_Figure_0.jpeg)

Figure 2.7: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability

![](_page_35_Figure_2.jpeg)


Figure 2.8: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 2.9: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.5 underlying event probability





Figure 2.10: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.5 underlying event probability MSE is presented on the prepartice of each when  $\tau^2 > 0$ 

MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.11: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 2.12: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.13: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability MSE is presented on the prepartienal code when -2 > 0

MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.14: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.15: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability



Figure 2.16: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability











Figure 2.19: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.05 underlying event probability MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.20: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.05 underlying event probability MCE is uncertained on the memory in all each when  $\sigma^2 > 0$ 

MSE is presented on the proportional scale when  $\tau^2 > 0$ 



Figure 2.21: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 2.22: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability











Figure 2.25: Mean squared error of heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.01 underlying event probability



3. Proportion of zero heterogeneity variance estim-

Figure 3.1: Proportion of zero heterogeneity variance estimates in SMD outcome meta-analyses. Containing small sized studies



Figure 3.2: Proportion of zero heterogeneity variance estimates in SMD outcome meta-analyses. Containing small-to-medium sized studies



Figure 3.3: Proportion of zero heterogeneity variance estimates in SMD outcome meta-analyses. Containing medium sized studies



Figure 3.4: Proportion of zero heterogeneity variance estimates in SMD outcome meta-analyses. Containing small and large sized studies



Figure 3.5: Proportion of zero heterogeneity variance estimates in SMD outcome meta-analyses. Containing large sized studies



Figure 3.6: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability



Figure 3.7: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability



Figure 3.8: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 3.9: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.5 underlying event probability



Figure 3.10: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.5 underlying event probability



Figure 3.11: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 3.12: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability



Figure 3.13: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability



Figure 3.14: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability



Figure 3.15: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability



Figure 3.16: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



Figure 3.17: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability



Figure 3.18: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.05 underlying event probability


Figure 3.19: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.05 underlying event probability



Figure 3.20: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.05 underlying event probability



Figure 3.21: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 3.22: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability



Figure 3.23: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing medium sized studies with 0.01 underlying event probability



Figure 3.24: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.01 underlying event probability



Figure 3.25: Proportion of zero heterogeneity variance estimates in odds ratio outcome meta-analyses. Containing large sized studies with 0.01 underlying event probability



Figure 4.1: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small sized studies



Figure 4.2: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small-to-medium sized studies



Figure 4.3: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing medium sized studies



Figure 4.4: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small and large sized studies



Figure 4.5: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing large sized studies



Figure 4.6: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability



Figure 4.7: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability



Figure 4.8: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 4.9: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small and large sized studies with 0.5 underlying event probability



Figure 4.10: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing large sized studies with 0.5 underlying event probability



Figure 4.11: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 4.12: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability



Figure 4.13: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability



Figure 4.14: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability



Figure 4.15: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability



Figure 4.16: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



Figure 4.17: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability



Figure 4.18: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing medium sized studies with 0.05 underlying event probability



Figure 4.19: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small and large sized studies with 0.05 underlying event probability



Figure 4.20: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing large sized studies with 0.05 underlying event probability



Figure 4.21: Mean bias of mean effect estimates in SMD outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 4.22: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability



Figure 4.23: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing medium sized studies with 0.01 underlying event probability



Figure 4.24: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing small and large sized studies with 0.01 underlying event probability



Figure 4.25: Mean bias of mean effect estimates in SMD odds ratio meta-analyses. Containing large sized studies with 0.01 underlying event probability



Figure 5.1: Coverage of 95% Z-type confidence intervals in SMD outcome meta-analyses. Containing small sized studies



Figure 5.2: Coverage of 95% Z-type confidence intervals in SMD outcome meta-analyses. Containing small-to-medium sized studies



Figure 5.3: Coverage of 95% Z-type confidence intervals in SMD outcome meta-analyses. Containing medium sized studies



Figure 5.4: Coverage of 95% Z-type confidence intervals in SMD outcome meta-analyses. Containing small and large sized studies


Figure 5.5: Coverage of 95% Z-type confidence intervals in SMD outcome meta-analyses. Containing large sized studies



Figure 5.6: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability



Figure 5.7: Coverage of 95% Z-type confidence intervals in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability



Figure 5.8: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 5.9: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.5 underlying event probability



Figure 5.10: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.5 underlying event probability



Figure 5.11: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 5.12: Coverage of 95% Z-type confidence intervals in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability



Figure 5.13: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability



Figure 5.14: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability



Figure 5.15: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability



Figure 5.16: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



Figure 5.17: Coverage of 95% Z-type confidence intervals in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability



Figure 5.18: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.05 underlying event probability



Figure 5.19: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.05 underlying event probability



Figure 5.20: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.05 underlying event probability



Figure 5.21: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 5.22: Coverage of 95% Z-type confidence intervals in SMD odds ratio meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability



Figure 5.23: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.01 underlying event probability



Figure 5.24: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.01 underlying event probability



Figure 5.25: Coverage of 95% Z-type confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.01 underlying event probability



Figure 6.1: Coverage of 95% t-distribution confidence intervals in SMD outcome meta-analyses. Containing small sized studies



Figure 6.2: Coverage of 95% t-distribution confidence intervals in SMD outcome meta-analyses. Containing small-to-medium sized studies



Figure 6.3: Coverage of 95% t-distribution confidence intervals in SMD outcome meta-analyses. Containing medium sized studies



Figure 6.4: Coverage of 95% t-distribution confidence intervals in SMD outcome meta-analyses. Containing small and large sized studies



Figure 6.5: Coverage of 95% t-distribution confidence intervals in SMD outcome meta-analyses. Containing large sized studies



Figure 6.6: Coverage of  $95 \setminus \%$  t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability



Figure 6.7: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability



Figure 6.8: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 6.9: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.5 underlying event probability



Figure 6.10: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.5 underlying event probability



Figure 6.11: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 6.12: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability



Figure 6.13: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability



Figure 6.14: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability



Figure 6.15: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability


Figure 6.16: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



Figure 6.17: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability



Figure 6.18: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.05 underlying event probability



Figure 6.19: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.05 underlying event probability



Figure 6.20: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.05 underlying event probability



Figure 6.21: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 6.22: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability



Figure 6.23: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.01 underlying event probability



Figure 6.24: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.01 underlying event probability



Figure 6.25: Coverage of 95% t-distribution confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.01 underlying event probability



7. Coverage of 95% Knapp-Hartung confidence intervals

Figure 7.1: Coverage of 95% Knapp-Hartung confidence intervals in SMD outcome meta-analyses. Containing small sized studies



Figure 7.2: Coverage of 95% Knapp-Hartung confidence intervals in SMD outcome meta-analyses. Containing small-to-medium sized studies



Figure 7.3: Coverage of 95% Knapp-Hartung confidence intervals in SMD outcome meta-analyses. Containing medium sized studies



Figure 7.4: Coverage of 95% Knapp-Hartung confidence intervals in SMD outcome meta-analyses. Containing small and large sized studies



Figure 7.5: Coverage of 95% Knapp-Hartung confidence intervals in SMD outcome meta-analyses. Containing large sized studies



Figure 7.6: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.5 underlying event probability



Figure 7.7: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.5 underlying event probability



Figure 7.8: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.5 underlying event probability



Figure 7.9: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.5 underlying event probability



Figure 7.10: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.5 underlying event probability



Figure 7.11: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.1 to 0.5 underlying event probability



Figure 7.12: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.1 to 0.5 underlying event probability



Figure 7.13: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.1 to 0.5 underlying event probability



Figure 7.14: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.1 to 0.5 underlying event probability



Figure 7.15: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.1 to 0.5 underlying event probability



Figure 7.16: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.05 underlying event probability



Figure 7.17: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.05 underlying event probability



Figure 7.18: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.05 underlying event probability



Figure 7.19: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.05 underlying event probability



Figure 7.20: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.05 underlying event probability



Figure 7.21: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small sized studies with 0.01 underlying event probability



Figure 7.22: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small-to-medium sized studies with 0.01 underlying event probability



Figure 7.23: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing medium sized studies with 0.01 underlying event probability



Figure 7.24: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing small and large sized studies with 0.01 underlying event probability



Figure 7.25: Coverage of 95% Knapp-Hartung confidence intervals in odds ratio outcome meta-analyses. Containing large sized studies with 0.01 underlying event probability