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Abstract 

Hydrogenases are structurally complex enzymes that catalyse the production and 

oxidation of H2 in a wide variety of microorganisms. The catalytic properties of these 

enzymes are related to the interaction between their redox-active metal cofactors. O2-

tolerant [NiFe] hydrogenases catalyse H2 oxidation in the presence of O2, which 

normally completely inhibits other hydrogenases. Their (in)activation mechanism is of 

fundamental importance for H2-based energy technologies. 

The present study has characterized the catalytic properties of the full heterotrimeric 

membrane bound hydrogenase (MBH) in native-like conditions by using a novel 

approach for immobilizing the enzyme onto the electrode. With the use of the tethered 

bilayer lipid membrane (tBLM) approach, the study obtained mechanistic insights 

relevant to the in vivo functioning of the enzyme. The MBH, inserted into the tethered 

lipid membrane, in equilibrium with the quinone pool, was probed in cyclic 

voltammetry and chronoamperometry experiments. 

The catalytic properties displayed at oxidizing potentials revealed that the heterotrimeric 

MBH undergoes anaerobic oxidative inactivation to a much smaller extent compared to 

the heterodimeric sub-complex, which was probed in previous protein film 

electrochemistry studies. In addition, the enzyme recovers after aerobic inactivation 

under oxidizing conditions without the application of reducing potentials.  

The reactivation kinetics of MBHwt and that of an MBH variant with the metal cofactor 

configuration of an O2-sensitive [NiFe] hydrogenase were probed under oxidative 

substrate-limiting conditions. The results show that the O2 sensitive mutant reactivates 
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faster than MBHwt. This indicates that protection against oxidative damage is achieved 

by tuning electron transfer to the active site with the scope of preventing the formation 

of reactive species that would lead to irreversible inactivation. 
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108 



 

 XVI   
 

Figure 5.8 Chronoamperograms showing the evolution of the recorded 

current of different tBLMs with MBHwt upon switching from 

anaerobic to aerobic and then back to anaerobic conditions (0.5 

V; ubiquinone-containing tBLMs; 30 oC; pH 7.4; 4:10 dry total 

protein to dry polar lipids). The sequence was designed to 

assess the recovery of activity after prolonged exposure to O2. 
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Figure 6.1 Chronoamperograms showing the evolution of the H2 

oxidation current of MBHwt upon applying H2 pulses 

intercalated with O2 and N2 pulses (0.499 V vs SHE; 

ubiquinone-containing tBLM; N2 flushing; 30 oC; pH 7.4; 4:10 

dry total protein to dry polar lipids; H2 concentration after 

injection: 100 μM; O2 concentration after injection: 28 μM; the 

value of τ was determined to be 50 s in the setup employing 

mechanical stirring, which was used for these experiments). 
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Figure 6.2 Chronoamperogram showing the evolution of the H2 oxidation 

current of MBHwt upon applying H2 pulses intercalated with 

one O2 pulse at a potential of 0.1 V (30 oC; pH 7.4; 

ubiquinone-containing tBLM; 4:10 dry total protein to dry 

polar lipids; N2 flushing; H2 concentration after injection: 100 

μM; O2 concentration after injection: 28 μM; the value of τ was 

determined to be 50 s in the setup employing mechanical 

stirring, which was used for these experiments). 
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Figure 6.3 (A) The reactivation rate after the third injection of H2 (based 

on the slope of the current increase) as a function of the time 

elapsed between the second and the third injection under N2. 

The rates are normalised against the rate obtained after the 

second injection (MBHwt; 0.499 V vs SHE; ubiquinone-

containing tBLMs; 30 oC; pH 7.4; blue dotted line: rate after 

the second injection; red dotted line: rate after the first 

injection).  The H2 concentration decay after an injection is 

plotted in gray (the exponential decay was plotted, as described 

in Section 4.3.1, according to the equation: C(t) = 

C(0).exp(−t/τ), where C is concentration, and t is time; the 

value of τ was determined to be 50 s in the setup employed for 

these experiments). (B) Schematic drawing showing the time 

of oxidative poise between injections that was varied to obtain 

the time dependency described in (A). 
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Figure 6.4 (a) Overlay of chronoamperometric traces showing the 

evolution of the H2 oxidation current for MBHwt after applying 

H2 pulses at different temperatures (0.299 V vs SHE; electron 

carrier: menaquinone; pH 7.4; 4:10 dry total protein to dry 

polar lipids; H2 concentration after injection: 100 μM). (b) 

Arrhenius plot for Ni-B reactivation of MBHwt (traces were 

recorded in triplicate in the temperature interval 20-38 oC). 
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Figure 6.5 Chronoamperograms showing the evolution of the MBHwt H2 

oxidation current after applying H2 pulses at different 

potentials (electron carrier: menaquinone; pH 7.4; 30 oC; 4:10 

dry total protein to dry polar lipids; H2 concentration after 

injection: 100 μM). 
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Figure 6.6 Chronoamperograms showing the current response obtained 

from a tBLM incorporating MBHwt subjected to the potential 

sequence depicted at the top of each figure (MBHwt; 

ubiquinone-containing tBLMs; 30 oC; pH 7.4; 4:10 dry total 

protein to dry polar lipids). (A) Background trace recorded 

under N2. (B) Trace recorded under 0.25% H2. (C) 

Background-subtracted trace with the fit (according to 

Equation 35) to the current decay after switching the potential 

back to 0.5 V (light gray line). 
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Figure 6.7 Cyclic voltammograms showing the activity level for MBHwt 

(blue) and MBHC19G/C120G (red) (10 mV/s; tBLMs containing 

both menaquinone and ubiquinone; 30 oC; pH 7.4; 4:10 dry 

total protein to dry polar lipids; the MBHC19G/C120G scan and the 

blank 100% N2 scan were recorded on the same tBLM; the 

quinol oxidation peaks are shifted to higher potentials due to 

the low capacitance of the tBLM as explained in Section 4.1). 
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Figure 6.8 Chronoamperometric traces showing the reactivation of 

MBHwt (black) and MBHC19G/C120G (red) (0.499 V; 30 oC; pH 

7.4; ubiquinone-containing tBLMs; 4:10 dry total protein to 

dry polar lipids). 
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Figure 6.9 Chronoamperograms showing the evolution of the H2 

oxidation activity of MBHC19G/C120G after three H2 pulses: (a) 

trace showing the three consecutive pulses; (b) overlay of the 

background-corrected traces (0.499 V vs SHE; ubiquinone-

containing tBLM; 30 oC; pH 7.4; 4:10 dry total protein to dry 

polar lipids; H2 concentration after injection: 100 μM). 
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 XVIII   
 

Figure 6.10 (a) Chronoamperograms showing the evolution of the H2 

oxidation current after applying H2 pulses at different 

temperatures for MBHC19G/C120G (0.499 V vs SHE; electron 

carrier: ubiquinone; pH 7.4; 4:10 dry total protein to dry polar 

lipids; H2 concentration after injection: 100 μM; the traces are 

offset for clarity). (b) Arrhenius plot for MBHC19G/C120G Ni-B 

reactivation (0.499 V; ubiquinone-containing tBLMs; 11 traces 

were recorded at 30 oC and 4 traces at 33 oC and 36 oC; the 

slope of the reactivation trace, m, was taken as the 

temperature-dependent variable as in the case of MBHwt). 
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1. Introduction 

Hydrogenases are complex microbial metallo-enzymes which catalyse the reversible 

oxidation of H2 (Equation 1) (Lubitz et al., 2014; Fritsch et al., 2013; Parkin and 

Sargent, 2012; Vignais and Billoud, 2007). The efficiencies of hydrogenases are 

comparable to those achieved by Pt under similar conditions (Woolerton and Vincent, 

2009; Jones et al., 2002). Many organisms, like prokaryotic microbes, eukaryotic 

protozoa and fungi, make use of the catalytic properties of hydrogenases to produce H2 

in order to dispose of the excess reducing equivalents or to cleave H2 into protons and 

electrons in order to generate energy (Armstrong, 2004; Evans and Pickett, 2003). Even 

pathogenic bacteria from the mammalian gut have the capability to use H2 as an energy 

source. Hydrogenases present in Helicobacter pylori help the bacterium in the 

colonization of the stomach environment by metabolising H2 formed during 

carbohydrate fermentation (Olson and Maier, 2002). 

    
   eHH ehydrogenas 222                   (1) 

The first indication of the existence of hydrogenases was provided by Stephenson and 

Stickland (1931), who observed that E. coli evolves H2 during growth under anaerobic 

conditions. Stephenson and Stickland, who coined the term “hydrogenase”, used redox 

dyes to prove the formation of H2. The fact that dye reduction was inhibited by carbon 

monoxide (CO), as was determined later, indicated the involvement of transition metals 

in the process (Thauer et al., 2010).  
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Since their discovery in 1931, hydrogenases have been a subject of intense research not 

only because of their intriguing enzymology, but lately also because of their potential 

application in renewable energy technologies (Wakerley and Reisner, 2015; de 

Poulpiquet et al., 2014; Parkin and Sargent, 2012; Reisner, 2011; Thauer, 2011; 

Friedrich et al., 2011; Wait et al., 2010; Le Goff et al., 2009; Heinekey, 2009) and in 

catalysis for chemical production (Reeve et al., 2015; Reeve et al., 2012). Efforts have 

been invested in developing bio-mimetic H2-producing catalysts, genetically engineered 

hydrogenases for photobiological H2 production, and membrane-free H2/O2 fuel cells 

based on O2-tolerant hydrogenases. Many hydrogenases possess a remarkable tolerance 

to inhibitors like O2, CO, and H2S, a crucial property since their application as catalysts 

in energy technologies requires them to function in the presence of air or even utilize 

gaseous mixtures containing CO or H2S. 

From the point of view of the metal content of their active site, hydrogenases are 

classified into three main classes: [NiFe], [FeFe], and [Fe] hydrogenases (Lubitz et al., 

2014; Vignais and Billoud, 2007; Fontecilla-Camps et al., 2007). All three types of 

hydrogenases contain a Fe atom coordinated by thiolates and CO ligands. In [NiFe] and 

[FeFe] hydrogenases, Fe is also coordinated by cyanide (CN-) ligands. 

[NiFe] and [FeFe] hydrogenases catalyse both the reduction of protons and the oxidation 

of H2, while [Fe]-hydrogenases catalyse only the first step in the uptake process (the 

heterolytic cleavage of H2) (Thauer et al., 2010; Meyer et al., 2007). Hydrogenases 

located in the cytoplasm are usually associated with H2 production and those located in 

the membrane or the periplasm of gram-negative bacteria are associated with H2 

oxidation. So far, the sequences of more than 450 hydrogenases have been determined 
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based on genome analysis. [NiFe] and [FeFe] hydrogenases constitute by far the most 

studied classes (Mulder et al., 2011; Vignais and Billoud, 2007). [NiFe] hydrogenases 

have been of particular interest, as they include a sub-class of so-called O2-tolerant 

membrane-bound hydrogenases (MBHs) which display higher tolerances to 

aerobic/oxidizing conditions (Fritsch et al., 2013). The introductory chapter provides a 

more detailed overview of [NiFe] hydrogenases and only a brief description of [FeFe] 

and [Fe] hydrogenases as the focus of my PhD studies has been on [NiFe] hydrogenase. 

1.1 [NiFe] Hydrogenases 

[NiFe] hydrogenases are found in organisms that are capable of living in very diverse 

environmental conditions: under light or in darkness, in anaerobic or aerobic media. The 

structures and catalytic properties of [NiFe] hydrogenases are tailored to meet the 

physiological requirements under the given regime of the organism (see Section 1.1.2).  

[NiFe] hydrogenases contain at least two subunits: a large (α) subunit (with a molecular 

weight of ~60 kDa in MBHs), hosting the [NiFe] active site, and a small (β) subunit 

(with a molecular weight of ~35 kDa in MBHs), enclosing an [FeS] electron transfer 

relay (Lubitz et al., 2014; Volbeda et al., 2013; Fritsch et al., 2013; Horch et al., 2012; 

Volbeda et al., 2012; Fritsch et al., 2011a; Shomura et al., 2011; Ogata et al., 2010; 

Fontecilla-Camps et al., 2007; Volbeda et al., 1995). With a few exceptions, the Ni atom 

is coordinated by four cysteine thiolates (SCys) (Figure 1.1). In the sub-class of 

[NiFeSe] hydrogenases, the Ni atom is terminally coordinated by a cysteine and a 

selenocysteine (SeCys) residue (Marques et al., 2010; Vignais and Billoud, 2007; 

Garcin et al., 1999). Two cysteine thiolates form a bridge between the Ni atom and the 
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Fe atom. The Fe atom is coordinated to two CN- and one CO ligand. One coordination 

site, bridging the Fe and the Ni atom, constitutes the substrate-binding site.  

 
Figure 1.1 The structure of the active site of [NiFe] hydrogenases. 

Typically, the small subunit of a [NiFe] hydrogenase accommodates up to three [FeS] 

clusters: a distal [4Fe-4S] cluster, a medial [3Fe-4S]/[4Fe-4S] cluster, and a proximal 

[4Fe-4S]/[4Fe-3S] cluster (distal/proximal is with respect to the active site). [4Fe-4S] 

medial clusters are more common in actinobacterial and [NiFeSe] hydrogenases 

(Schäfer et al., 2016; Marques et al., 2010; Garcin et al., 1999). The [NiFe] active site 

and the three [FeS] clusters are closely spaced (<14 Å) allowing rapid intramolecular 

electron transfer (Page et al., 1999). The [FeS] relay transfers electrons between the 

active site and the acceptor/donor site. The distal cluster, the furthest away from the 

[NiFe] active site, is located close to the surface of the small subunit (Horch et al., 2012; 

Fontecilla-Camps et al., 2007). 

[NiFe] hydrogenases are classified into five main groups based on the amino acid 

sequences of their small and large subunits and on their inherent function (Parkin and 

Sargent, 2012; Kim and Kim, 2012; Vignais and Billoud, 2007). 

The first group is constituted by the uptake [NiFe] hydrogenases, which are 

hydrogenases that are primarily involved in respiratory H2 oxidation coupled to quinone 
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reduction. These are membrane-bound proteins, also called membrane-bound 

hydrogenases or H2-uptake (Hup) hydrogenases, which link H2 oxidation activity to the 

reduction of a wide variety of electron acceptors like SO4
2-, NO3

-, fumarate, CO2, and 

O2 (via terminal reductases). The energy is recovered in this case in the form of a proton 

motive force (Vignais and Billoud, 2007). 

One common structural feature of the [NiFe] hydrogenases in this category is the 

existence of a long peptide (ca. 35-50 amino acid residues) at the N terminus of the 

small subunit for export across the cytoplasmic membrane. This peptide signals the 

export of the heterodimer into the periplasm or the periplasmic side of the cytoplasmic 

membrane (Vignais and Billoud, 2007). In addition to the α and β subunits, these 

hydrogenases contain a third subunit, a di-haem cytochrome b, which, along with a 

hydrophobic C-terminus of the small subunit, fixes the αβ dimer to the membrane 

(Volbeda et al., 2013; Vignais and Billoud, 2007; Fontecilla-Camps et al., 2007). The 

cytochrome b subunit is also responsible for electrically connecting the hydrogenase 

active site to the quinone pool in the membrane (catalytically reducing the quinone 

pool). 

The second group is constituted by cytoplasmic H2 sensors and cyanobacterial uptake 

[NiFe] hydrogenases (Parkin and Sargent, 2012; Vignais and Billoud, 2007). These 

hydrogenases do not contain a signal peptide at the N terminus of the small subunit and 

consequently are not exported to the periplasm, remaining in the cytoplasm. The 

cytoplasmic H2 sensor [NiFe] hydrogenases have the role of detecting H2 and triggering 

a cascade of cellular reactions controlling the biosynthesis of uptake hydrogenases in 

response to the presence of H2 (Friedrich et al., 2011; Ludwig et al., 2009). The 



Chapter 1 

 

6 
 

cyanobacterial uptake hydrogenases (HupSL) are linked to the occurrence of 

nitrogenase and are induced under N2-fixing conditions (Vignais and Billoud, 2007). 

The third group comprises the so called “bidirectional heteromultimeric cytoplasmic 

[NiFe] hydrogenases” which are water-soluble multi-protein complexes dependent on 

cofactors like NADH/NAD+, NADPH/NADP+ or F420 (8-hydroxy-5-deazaflavin). In 

addition to the dimeric hydrogenase module, these complexes contain subunits that bind 

the cofactors. These enzymes function reversibly, re-oxidizing the cofactors under 

anaerobic conditions using protons from water as electron acceptors (Horch et al., 2012; 

Friedrich et al., 2011; Vignais and Billoud, 2007). 

The fourth group of [NiFe] hydrogenases is constituted by H2-evolving hydrogenases. 

These are energy conserving, membrane-associated, multimeric proteins (containing at 

least six subunits) which catalyze H2 production with no physiological H2 oxidation 

activity. These hydrogenases reduce protons from water in order to dispose of excess 

reducing equivalents resulting from the anaerobic oxidation of C1 organic compounds 

like CO or formate (Vignais and Billoud, 2007). 

A recently discovered fifth group comprises [NiFe] hydrogenases found in soil-living 

actinobacteria (Constant et al., 2011). It has been hypothesized that these enzymes can 

oxidise H2 at atmospheric concentrations, having presumed KM values in the nM range. 

However, the KM of the actinobacterial-type hydrogenase (AH) from Ralstonia eutropha 

was determined to be in the lower μM range, indicating that the high affinity for H2 

might not be a defining characteristic of this group (Schäfer et al., 2013). 
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1.1.1 Catalytic and inactivation mechanism 

The challenge of identifying the critical steps involved in catalysis by hydrogenases 

arises from the difficulty of detecting and monitoring the state of redox active metal 

cofactors, buried deeply in the protein matrix, while having bound small and elusive 

molecules/ions like H2 or H-, or reactive and ubiquitous O2-derived species. 

Crystallographic, spectroscopic, as well as computational methods and electrochemical 

techniques have all been employed for elucidating the mechanism of hydrogenase 

catalysis. 

 

Figure 1.2 Possible mechanistic pathways for H2 cycling, O2 (aerobic) inactivation/reactivation, and 

anaerobic inactivation/reactivation at the active site of a [NiFe] hydrogenase (only the formal oxidation 

states of the metal atoms are depicted). The catalytic cycle is presented in blue, while the inactivation 

cycles are presented in red (aerobic) and black (anaerobic). “X” designates an unknown O2-derived 

ligand. 
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In the [NiFe] hydrogenase catalytic cycle, H2 is heterolytically cleaved via four redox 

intermediates: “Ni-S”, “Ni-C”, “Ni-R”, and “Ni-L” (Figure 1.2) (Bleijlevens et al., 

2001; Krasna, 1979). All four states have distinct IR signatures. Ni-S and Ni-R are EPR-

silent, while Ni-C and Ni-L are EPR-detectable intermediates. 

In the Ni-S state the active site carries no exogenous ligand in the open site and the Ni 

atom has a formal 2+ charge (George et al., 2004; Kurkin et al., 2004).  The cleavage of 

the H-H bond at the active site leads to the formation of the Ni-R state in which a H- 

occupies the bridging position and a H+ was thought to bind to the sulphur atom of one 

of the thiolates terminally coordinated to the Ni atom (Ogata et al., 2015). However, 

recently published data indicates that the guanidine group from an arginine residue near 

the metal centre may act as the base stabilizing the H+ resulted from heterolytic cleavage 

(Evans et al., 2016). The release of one H+ and one electron brings the enzyme into the 

Ni-C state in which an H- is still occupying the binding site and the Ni atom is in the 3+ 

state (Brecht et al., 2003). The elimination of another electron along with the release of 

the proton from the bridging position returns the enzyme to the Ni-S state. An 

alternative route for the conversion to the Ni-S state was proposed to be via the Ni-L 

state, which carries the Ni atom in the +1 state (Figure 1.2). Previously thought to be 

only a photoinduced state, Ni-L was recently proved to be detectable under catalytic 

turnover conditions in the absence of light and its formation was shown to be favoured 

under basic pH conditions (Hidalgo et al., 2015; Murphy et al., 2015; Roessler et al., 

2012). 

Most [NiFe] hydrogenases cleave H2 using a common mechanism and display similar 

catalytic properties under the reducing conditions ensured by the substrate, but not all of 
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them react in the same way under oxidizing and/or aerobic conditions. [NiFe] 

hydrogenases have been divided into two categories based on their catalytic 

performance under aerobic/oxidizing conditions. Many [NiFe] hydrogenases lose 

completely their catalytic activity in the presence of O2 (Vincent et al., 2005a; Lamle et 

al., 2005; Leger et al., 2004; Lamle et al., 2004; Lamle et al., 2003; Leger et al., 2002a). 

These enzymes, also termed standard [NiFe] hydrogenases, recover extremely slowly 

after the removal of O2. In contrast to these “O2-sensitive” [NiFe] hydrogenases, “O2-

tolerant” [NiFe] hydrogenases recover activity much faster after O2 inactivation. They 

are also known to partly maintain H2 oxidation activity at ambient O2 concentrations 

(Pandelia et al., 2010; Lukey et al., 2010; Ludwig et al., 2009; Cracknell et al., 2009; 

Armstrong et al., 2009; Cracknell et al., 2008a; Vincent et al., 2007; Vincent et al., 

2005ab). Many of the O2-tolerant [NiFe] hydrogenases are membrane-bound 

hydrogenases from organisms like E. coli, Aquifex aeolicus, Ralstonia eutropha, 

Ralstonia metallidurans, Salmonella enterica and Hydrogenovibrio marinus (de 

Poulpiquet et al., 2014; Fritsch et al., 2013). The disparity in the catalytic responses of 

[NiFe] hydrogenases under oxidizing conditions is believed to be due to different 

inactivation mechanisms. 

Aerobically isolated and O2-treated standard (O2-sensitive) [NiFe] hydrogenases reside 

in two catalytically inactive states called “Ni-A” and “Ni-B” (Lukey et al., 2010; Ogata 

et al., 2010; Pandelia et al., 2010; Saggu et al., 2009; Volbeda et al., 2005; Bleijlevens et 

al., 2001). The same inactive states can be generated in anaerobic conditions by 

exposing the enzyme to oxidizing redox conditions (e.g. high electrode potentials/redox 

dyes) (Abou Hamdan et al., 2013; Jones et al., 2003). Both Ni-A and Ni-B are EPR-
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active and can be monitored by FTIR spectroscopy. Both intermediates contain an O2-

derived bridging ligand. The Ni-B state carries an OH- in the open binding site (Ogata et 

al., 2005; Volbeda et al., 2005), while the exact nature of the bridging species in Ni-A 

has remained unclear. Both Ni-A and Ni-B are converted to the active Ni-S state under 

reducing conditions (Figure 1.2). The formation of the Ni-B state has also been proved 

to be promoted by cyanide (CN-), which is thought to bind at the active site under 

oxidizing conditions (Hexter et al., 2014). The rate of reactivation from the Ni-B state is 

significantly higher than in the case of Ni-A. Reactivation from the Ni-B state is 

completed in a matter of seconds, while Ni-A reactivation can take hours to complete 

(Ogata et al., 2005; Volbeda et al., 2005; Vincent et al., 2005a; Jones et al., 2003; 

Bleijlevens et al., 2001). The difference in the reactivation kinetics has prompted the 

designation of the Ni-B state as “ready” and the designation of the Ni-A state as 

“unready”. While the active sites of standard [NiFe] hydrogenases are converted to both 

the Ni-A and Ni-B state under oxidizing conditions (Lukey et al., 2010; Vincent et al., 

2005a; Volbeda et al., 2005; Jones et al., 2003; Bleijlevens et al., 2001), those of O2-

tolerant [NiFe] hydrogenases are converted only to the Ni-B state (Hidalgo et al., 2015; 

Evans et al., 2013; Goris et al., 2011; Pandelia et al., 2010; Saggu et al., 2009).  

Interestingly, the O2 tolerant MBH from E. coli (Hyd-1) was also reported to form a 

mixture of Ni-A and Ni-B after treatment with O2, although the fraction of Ni-A was 

determined to be small under controlled potential conditions (Lukey et al., 2010). 

The striking difference in the inactivation pathways is thought to be due to the different 

electronic properties of the [FeS] relays. O2-tolerant [NiFe] hydrogenases contain an 

unusual [4Fe-3S] cluster proximal to the active site as opposed to standard [NiFe] 
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hydrogenases which contain a [4Fe-4S] cluster. The [4Fe-3S] cluster, which contains six 

cysteine thiolates in its coordination environment, is stable in three oxidation states, 

performing two redox transitions at physiologically relevant potentials (Equations 2 and 

3; midpoint potentials, Em, are given for the membrane-bound [NiFe] hydrogenase of 

Ralstonia eutropha) (Fritsch et al., 2013; Volbeda et al., 2013; Volbeda et al., 2012; 

Goris et al., 2011; Fritsch et al., 2011ab; Shomura et al., 2011; Lukey et al., 2011).  

[4Fe-3S]3+ ↔ [4Fe-3S]4+ Em = -0.060 V  (2) 

[4Fe-3S]4+ ↔ [4Fe-3S]5+ Em = +0.160 V  (3) 

The second redox transition is associated with major structural rearrangements: Fe(4) 

exchanges a sulphide ligand with an amide N atom of a cysteine residue (Figure 1.3). 

 

Figure 1.3 Schematic drawing of the structure of the unusual proximal [4Fe-3S]4+ cluster undergoing 

oxidation, which is accompanied by the Fe(4) swapping a sulphide with an amide N and the addition of an 

O2-derived species at Fe(1). 

An O2-derived ligand bound to Fe(1) of the [4Fe-4S] cluster (Figure 1.3), together with 

the aforementioned ligand exchange, is hypothesized to make the second redox 

transition accessible at physiologically relevant potentials (Frielingsdorf et al., 2014). It 
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should be noted that the additional O2-derived ligand was observed only in the structures 

of R. eutropha MBH, but not in the structures of other O2 tolerant MBHs. 

The proximal [4Fe-4S] cluster in standard [NiFe] hydrogenases, which contains only 

four cysteine thiolates and two glycine residues in its coordination environment, 

performs only a single redox transition (Ogata et al., 2010; Vincent et al., 2007; Volbeda 

et al., 1995). The enhanced electron availability ensured by the unusual [4Fe-3S] cluster 

has been proposed to contribute to the formation only of the Ni-B state in O2-tolerant 

[NiFe] hydrogenases under oxidizing conditions. The extra electron provided by the 

cluster is hypothesized to ensure the full reduction of an O2 molecule, which would then 

lead to the formation of OH- ligands in the open coordinating site (Fritsch et al., 2013). 

Standard [NiFe] hydrogenases, on the other hand, accumulate more Ni-A state 

compared to Ni-B and implicitly recover activity much slower than O2-tolerant [NiFe] 

hydrogenases after inactivation (Evans et al., 2013; Lukey et al., 2010; Leger et al., 

2004; Jones et al., 2003). The substitution of the supernumerary cysteine residues (the 

two extra cysteines in the coordination environment of the unusual [4Fe-3S] cluster) by 

glycine residues led to the loss of catalytic activity upon prolonged exposure to O2 

(Evans et al., 2013; Goris et al., 2011; Lukey et al., 2011). Spectroscopic analysis 

revealed the accumulation of unready inactive states, characteristic for O2 sensitive 

[NiFe] hydrogenases. Interestingly, only small fractions of Ni-A state were detected, 

suggesting that the unready states generated electrochemically under aerobic conditions 

are not solely correlated to the spectroscopically defined Ni-A state. 

It has been proved that H2 oxidation in the presence of O2, requiring reactivation from 

the Ni-B state, involves the reduction of O2 to H2O, which has to be removed from the 
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active site (Wulff et al., 2014; Lauterbach and Lenz, 2013; Fritsch et al., 2013). The 

crystal structures of the O2-tolerant membrane-bound [NiFe] hydrogenases from 

Ralstonia eutropha and Hydrogenovibrio marinus revealed the presence of hydrophilic 

water channels leading from the active site to the surface of the large subunit, which 

might serve as an exit gate for the H2O molecules generated at the active site (Fritsch et 

al., 2011a; Shomura et al., 2011). The reductase activity would require four electrons to 

be provided by the active site and the [FeS] relay. It has been suggested that one 

electron is provided by Ni (Ni2+
Ni3+), two by the proximal [4Fe-3S] cluster 

([4Fe-3S]3+ [4Fe-3S]4+; [4Fe-3S]4+
[4Fe-3S]5+), and another one by the medial 

cluster ([4Fe-4S]0 [4Fe-4S]1+). 

It has also been proposed that the occlusion of putative hydrophobic gas channels 

(through which gas molecules reach the active site) by bulky amino acid residues might 

contribute to O2 tolerance (Liebgott et al., 2010a; Dementin et al., 2009). A recent study 

comparing the predicted gas tunnel routes in crystal structures of standard and O2-

tolerant [NiFe] hydrogenases hypothesized that the former have a more complicated and 

extended tunnel network, which might increase gas diffusion rates for both H2 and O2 

(Kalms et al., 2016). However, site-directed mutagenesis studies have shown that the 

narrowing of the gas channels affects the rate of O2 diffusion, but it does not 

significantly alter O2 tolerance (Abou Hamdan et al., 2012; Liebgott et al., 2010b). 
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1.1.2 The model O2-tolerant membrane-bound [NiFe] hydrogenase (MBH) from 

Ralstonia eutropha 

The membrane-bound [NiFe] hydrogenase (MBH) from the β-proteobacterium 

Ralstonia eutropha, the enzyme studied in this thesis, is one of the best-studied O2-

tolerant hydrogenases (Fritsch et al., 2013; Lenz et al., 2010). It is one of the four 

hydrogenases found in R. eutropha which is considered to be one of the best studied 

organisms growing on H2 and carbon dioxide (CO2) (Schäfer et al., 2013; Cramm, 

2009). R. eutropha has suffered many name changes due to nomenclature modifications. 

Initially assigned the name Hydrogenomonas eutrophus, it was successively reclassified 

in the genus Alcaligenes, Ralstonia, and Wautersia. Its current name, according to the 

Rules of the International Code of Nomenclature of Bacteria, is Cupriavidus necator (a 

name very rarely used) (Cramm, 2009; Vignais and Billoud, 2007). 

R. eutropha is capable of growing on explosive gas mixtures, such as 70% H2, 10% CO2 

and 20% O2 (Lenz et al., 2010). When organic substrates are scarce, this bacterium can 

utilize CO2 as a carbon source and H2 as an energy source (Cramm, 2009). H2 is 

converted to protons and electrons by two hydrogenases, the membrane-bound 

hydrogenase (MBH) and the soluble hydrogenase (SH), to provide energy. The 

regulatory hydrogenase (RH) controls the expression of MBH and SH in response to the 

availability of H2 (Lenz et al., 2010). The fourth hydrogenase is an actinobacterial-type 

hydrogenase (AH) and its physiological role has not been determined yet (Schäfer et al., 

2013). 
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Figure 1.4 Schematic representation of MBH as part of the supercomplex of heterotrimers. H2 is oxidized 

to protons and electrons at the active site of the large subunit, HoxG . The resulted electrons are 

transferred via the [FeS] relay of the small subunit, HoxK, to the membrane integral cytochrome b, HoxZ, 

which then reduces the quinone pool (Q). 

Like all uptake hydrogenases, MBH is a heterotrimeric protein complex, consisting of a 

large subunit (HoxG, 67.2 kDa), a small subunit (HoxK, 34.6 kDa), and a membrane-

integral cytochrome b562 harbouring two haem groups (HoxZ, 27.6 kDa) (Figure 1.4) 

(Fritsch et al., 2011a; Frielingsdorf et al., 2011; Bernhard et al., 1997). The hydrogenase 

module, consisting of the small and the large subunit, is oriented towards the 

periplasmic side of the cytoplasmic membrane. Based on molecular mass determinations 

of the purified enzyme, it was proposed that MBH forms super-complexes consisting of 

three heterotrimers (Frielingsdorf et al., 2011). However, the crystal structures of MBHs 

from E. coli, A. vinosum, S. enterica, and H. marinus have shown the formation of 

dipartite complexes (Bowman et al., 2014; Volbeda et al., 2012; Ogata et al., 2011; 

Shomura et al., 2011). Oligomerization of MBHs has been proposed to enable 

intermolecular electron transfer via the distal [4Fe-4S] cluster, which is located close to 

the surface of the small subunit (Figure 1.4) (Volbeda et al., 2013). 
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As previously mentioned, MBH couples H2 oxidation to the reduction of the quinone 

pool via the cytochrome b562 subunit in the cytoplasmic membrane (Frielingsdorf et al., 

2011; Bernhard et al., 1997). It has been proposed that MBH can donate electrons to 

both ubiquinone and menaquinone found in the membrane of R. eutropha (Frielingsdorf 

et al., 2011). 

Like all other studied O2 tolerant MBHs, the MBH from R. eutropha can oxidize H2 at 

atmospheric O2 levels. Under these conditions, the enzyme has a high tolerance towards 

O2 and a high selectivity for H2. The concentration of O2 required to attenuate H2 

oxidation activity by 50% is approximately twenty times higher than the O2 

concentration required for the complete inhibition of the activity of “standard” (O2-

sensitive) [NiFe] hydrogenases. The value of the Michaelis-Menten constant for H2, 

2H

MK , is in the lower end range reported for [NiFe] hydrogenases (< 10 μM) (Ludwig et 

al., 2009; Cracknell et al., 2009; Vincent et al., 2005b). 

1.1.3 Electrochemical investigations of O2 tolerant [NiFe] hydrogenases 

1.1.3.1 Protein film electrochemistry 

Protein film electrochemistry (PFE) is a powerful technique for studying the catalytic 

properties of redox enzymes (Armstrong et al., 2009, Vincent et al., 2007; Leger et al., 

2003).  It allows the measurement of potentials at which redox reactions occur and the 

determination of the rates of these reactions. The technique requires a small amount of 

enzyme, usually in the range of picomoles, which is adsorbed on the surface of an 

electrode (typically a pyrolitic graphite electrode, PGE) to form a mono- or sub-mono-

layer film (Leger et al., 2003). The adsorbed enzyme molecules directly exchange 
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electrons with the electrode while maintaining the original configuration of the active 

site (Figure 1.5). 

 
Figure 1.5 Schematic representation of the  

hydrophilic subunits of a MBH adsorbed  

on an electrode surface. 

The immobilisation of the enzyme on the working electrode is ensured by first polishing 

the surface to expose a rough and oxidized fresh surface that provides adsorption sites 

(oxidized functional groups like –COOH, –C–OH and –C=O) which can non-covalently 

bind enzyme molecules (Blanford and Armstrong, 2006). In these conditions, the 

driving force for redox reactions is controlled through the applied electrode potential 

and the response is monitored via the current representing interfacial electron transfer. 

The stability of the enzyme film can be improved by employing poly-cationic co-

adsorbates such as polymyxin (Hoeben et al., 2008). Covalent attachment can be used to 

achieve permanent immobilisation of the enzyme onto the electrode surface. The 

electrode can be functionalised with a monolayer of aromatic amines and then the 

enzyme can be linked to the electrode via amidic bonds formed between carboxylic 

groups of the protein backbone and electrode-bound amine groups (Rüdiger et al., 

2005). The most common techniques employed for investigating the catalytic properties 
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of enzymes are cyclic voltammetry and chronoamperometry. PFE has been used to 

study the interaction of hydrogenases with small molecule inhibitors like O2, CO and 

H2S, complementing structural and spectroscopic studies. 

The setup required for PFE involves a standard three-electrode configuration 

electrochemical cell holding a few millilitres of solution. The counter electrode is 

usually a platinum wire and the reference electrode is typically a saturated calomel 

electrode or a Ag/AgCl electrode. For precise temperature control the cell can be 

equipped with a water jacket. In the case of experiments employing hydrogenases, the 

cell is typically placed within an anaerobic glove box and gas mixtures are bubbled 

through the content of the cell. The addition of gases can also be done by injection of 

aliquots of gas-saturated solutions or by placing the cell in a controlled gas chamber 

(Armstrong et al., 2009; Goldet et al., 2008). Removal of gases can be done by flushing 

with other gases (usually N2 or Ar). As the enzyme is adsorbed on the electrode surface, 

the content of the cell can be easily exchanged allowing the control of other variables 

(e.g. pH, ionic strength) in addition to temperature and electrode potential. A rotating 

disc electrode is typically used as the working electrode. This ensures a well-controlled 

flux of substrate to the surface and facilitates the removal of products away from the 

surface (Armstrong et al., 2009, Vincent et al., 2007) with the aim of avoiding electron 

transfer being limited by mass transport of the substrate/product to/from the electrode 

surface. In the absence of mass transport limitations, the inherent activity of the enzyme 

is directly correlated with the maximum catalytic current (Equation 4, where kcat is the 

turnover frequency of the enzyme, ilim is the maximum catalytic current obtained in an 

experiment where mass transport is not rate limiting, n is the number of electrons 
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involved, F is the Faraday constant, A is the electrode surface area, and Γ is the electro-

active coverage of enzyme molecules) (Vincent et al., 2007; Leger et al., 2005). 




AFn

i
kcat

lim    (4) 

Mass transport limitations are difficult to avoid in the case of hydrogenases due to their 

high catalytic activities and low 2H

MK  values (Pershad et al., 1999). In order to overcome 

this, one can lower the enzyme film coverage. A fraction of the enzyme molecules can 

be removed by polishing the electrode surface (with damp cotton wool for example) so 

that the enzyme film behaves like an array of microelectrodes (Woolerton and Vincent, 

2009; Vincent et al., 2007). 

The electro-active coverage of enzyme molecules (Γ), necessary for the estimation of 

the turnover frequency (kcat), can be determined from the area of the non-turnover peaks 

observed in cyclic voltammograms (Armstrong et al., 2009; Leger et al., 2002a; Jones et 

al., 2002). The non-turnover peaks are the result of reversible redox transitions of the 

bound redox-active metal cofactors (see Section 2.1.1.2). In the case of hydrogenases, 

the Fe-S clusters signals can be observed when the enzyme is completely inactivated (by 

an inhibitor such as CO) and the catalytic electron flow is blocked. Non-turnover peaks 

can only be obtained when the electro-active enzyme coverage is high (Jones et al., 

2002; Pershad et al., 1999). 

The main drawbacks of PFE with PGE electrodes are film loss and heterogeneity of 

interfacial electron-transfer rate constants. Because the enzyme molecules are attached 

to the electrode via non-covalent bonds, they can desorb from the surface. In addition, 
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the interaction with the PGE surface can destabilize the enzymes causing them to unfold 

during experiments (Blanford and Armstrong, 2006). The instability of the enzyme film 

complicates the evaluation of the parameters related to the electro-active coverage of 

enzyme molecules. The environments and the orientations of enzyme molecules are 

variable within the film. This non-homogeneous distribution leads to heterogeneity of 

interfacial electron-transfer rates, affecting the electron transfer kinetics between the 

surface and the enzymes and implicitly the shape of the voltammograms (Vincent et al., 

2007). Instead of a current plateau at high potential, corresponding to the maximal 

turnover, recorded voltammograms typically display a residual slope. This is assumed to 

be caused by enzyme molecules that are not well coupled to the electrode requiring 

higher electrode potentials to ensure efficient interfacial electron transfer (Armstrong et 

al., 2009; Jones et al., 2003; Leger et al., 2002b). 

1.1.3.2 Electrochemical investigations of O2 tolerant MBHs 

One of the first techniques used to study the O2-tolerance of MBHs was gas 

chromatography. The employed assay involved mixing hydrogenase-containing 

membrane particles with H2, O2 and a redox dye acting as an artificial electron acceptor 

(e.g. methylene blue). Using such an artificial dye assay, Schink and Probst concluded 

that the MBH from R. eutropha is more stable in the presence of O2 than in its absence 

(Schink and Probst, 1980). However, redox dyes undergo side reactions (especially in 

the presence of O2) and this may lead to erroneous results. In addition, due to the low 

driving force imposed by the redox dye, electron transfer to the dye molecule limits 

enzyme turnover (Cammack et al., 1994). Protein film electrochemistry (PFE, described 

above) emerged as an alternative method allowing fast and easy measurements of 
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activity and overcoming the drawbacks of the methods involving redox dyes. 

Complementing spectroscopy and crystallography, PFE has provided valuable 

information regarding the kinetics and the thermodynamic determinants of H2 

oxidation/H+ reduction catalysis by hydrogenases. Due to the difficulties posed by the 

isolation of the entire heterotrimeric complex (Frielingsdorf et al., 2011; Saggu et al., 

2009), many of the electrochemical studies carried out so far, including the PFE-based 

ones, have employed only the heterodimeric (αβ) sub-complex of MBHs (Lubitz et al., 

2014; Vincent et al., 2007). 

1.1.3.2.1 The overpotential requirement 

Cyclic voltammetry scans have revealed that the heterodimeric sub-complexes of O2 

tolerant MBHs display an overpotential for the onset of H2 oxidation with respect to the 

thermodynamic potential of the 2H+/H2 couple (Figure 1.6) (Lukey et al., 2010; Pandelia 

et al., 2010; Goldet et al., 2008; Vincent et al, 2005a). While the onset potential for H2 

oxidation of standard [NiFe] hydrogenases almost coincides with the reduction potential 

of the 2H+/H2 couple, the MBHs from E. coli, R. eutropha, and Aquifex aeolicus require 

an overpotential of 0.05-0.08 V (Lukey et al., 2010; Pandelia et al., 2010; Goldet et al., 

2008). The high potential at which electrons leave the protein through the distal [4Fe-

4S] cluster in O2 tolerant MBHs (-0.19 V in Hyd-1 compared to -0.3 V in Hyd-2 of E. 

coli) has been proposed to account for this property (Hexter et al., 2012). 

1.1.3.2.2 Anaerobic inactivation 

At high electrode potentials in anaerobic conditions, O2 tolerant MBHs undergo 

oxidative inactivation (also termed “anaerobic inactivation”). 
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Figure 1.6 Schematic representation of a cyclic voltammogram 

of an O2 tolerant MBH undergoing anaerobic inactivation. The thermodynamic potential of the 2H+/H2 

couple is marked with a vertical dashed line. Eswitch is marked with a continuous vertical line. 

As the potential is scanned towards positive values, the catalytic current drops and is 

restored by reductive reactivation on the return scan (Figure 1.6) (Bowman et al., 2014; 

Goris et al., 2013; Evans et al., 2013; Parkin et al., 2012; Lukey et al., 2011; Pandelia et 

al., 2010; Lukey et al., 2010; Armstrong et al., 2009; Goldet et al., 2008; Vincent et al., 

2007; Vincent et al., 2005a). Spectroelectrochemical data has confirmed that the 

intermediate formed during high potential turnover conditions is the Ni-B state (Hidalgo 

et al., 2015). 

It was observed that reductive reactivation is fast, consistent with Ni-B reactivation 

kinetics (Pandelia et al., 2010; Lukey et al., 2010; Goldet et al., 2008; Vincent et al., 

2005a). In addition, the potentials at which O2 tolerant MBHs undergo reactivation are 

higher compared to standard [NiFe] hydrogenases (Lukey et al., 2010; Vincent et al., 

2005a). In order to compare the “ease” with which hydrogenases are reactivated, the 

“switch” potential (Eswitch) was introduced as a qualitative parameter (Jones et al., 2003). 

The switch potential is the potential at which the maximal rate of current recovery is 

observed when the potential is scanned in the reductive direction. It is determined by 
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taking the local minimum of the first derivative of the current/potential profile (di/dE) in 

the high-potential region of the scan (Armstrong et al., 2009; Jones et al., 2003). The 

switch potential was found to be dependent on pH, indicating that the reactivation 

process is H+-coupled (Jones et al., 2003), and also dependent on the employed scan rate 

(Fourmond et al., 2010). Standard [NiFe] hydrogenases have switch potentials 

around -0.1 V, while O2 tolerant MBHs have values around +0.1 V (Vincent et al., 

2005a). The extent of anaerobic inactivation observed in the case of O2 tolerant MBHs is 

higher at slow scan rates and low H2 concentrations (Lukey et al., 2010; Armstrong et 

al., 2009; Goldet et al., 2008). The full heterotrimeric MBH from R. eutropha directly 

adsorbed on a functionalized electrode surface showed the same catalytic response at 

high potential as the heterodimeric sub-complex. Electron transfer via the cytochrome b 

subunit was proved to be slow compared to the small subunit route. The enzyme 

displayed anaerobic inactivation to the same extent as the heterodimeric sub-complex 

(Sezer et al., 2011). The heterotrimeric MBH from A. aeolicus, embedded in lipid 

vesicles, displayed anaerobic inactivation even when using methylene blue as an 

electron mediator (Infossi et al., 2010). 

1.1.3.2.3 O2 tolerance 

As mentioned before, O2 tolerant MBHs can maintain H2 oxidation activity in the 

presence of O2 (Bowman et al., 2014; Parkin et al., 2012; Pandelia et al., 2010; Lukey et 

al., 2010; Vincent et al., 2005ab). Activity is inhibited fast upon O2 injection, but the 

extent of inactivation is small compared to standard [NiFe] hydrogenases (Vincent et al., 

2005a). The 2

)(

O

appIK  for the MBH from R. eutropha has been determined to be around 
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110 μM at +0.122 V (pH 5.5, 30 oC), which is more than 20 times higher than the O2 

concentration required to completely inhibit the activity of the standard [NiFe] 

hydrogenases from Allochromatium vinosum (4 μM; +0.142 V; pH 5.6, 30 oC) and 

Desulfovibrio fructosovorans (5 μM; +190 V; pH 7; 40 oC) (Cracknell et al., 2009; 

Vincent et al., 2005b; Leger et al., 2004). 2

)(

O

appIK , the inhibition constant for O2 

inhibition of H2 oxidation, is defined as the concentration of O2 required to attenuate H2 

oxidation activity by 50% (Cracknell et al., 2009). O2 tolerance was found to increase 

with temperature and to decrease at higher electrode potentials (Cracknell et al., 2009; 

Vincent et al., 2005b). Protein film cyclic voltammetry showed that upon a short pulse 

of 90 μM O2, the MBH from R. eutropha maintains 70% of its activity (Vincent et al, 

2005a). In addition, the enzyme starts to recover activity before the complete removal of 

O2 from the solution at potentials above + 0.150 V (Vincent et al, 2005a). A similar 

response after O2 treatment was reported for the MBH (Hyd-1) from E. coli (Lukey et 

al., 2010). Protein film chronoamperometry showed that MBH from R. eutropha 

maintains more than 70% of the initial activity at -0.008 V at ambient concentrations of 

O2 (Ludwig et al., 2009; Weiss, 1970; Whiple and Whipple, 1911). Activity recovery is 

complete after the removal of O2 from the environment. Upon addition of increasing 

amounts of O2, inactivation becomes more prominent and H2 oxidation activity drops 

stepwise. After the addition of O2, the current stabilizes after a period of time. This 

provides evidence supporting the hypothesis that O2 reacts at the active site and that the 

origin of O2-tolerance is not a simple physical exclusion of O2 from the [NiFe] center. 

This was found to be in agreement with the hypothesized O2 removal from the active 
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site by reduction to H2O, which is transported away from the catalytic site through the 

network of water cavities (Fritsch et al., 2011a). 

1.1.3.2.4 Affinity for H2 

The Michaelis-Menten constant for H2 ( 2H

MK ) under various conditions can be 

determined by analysing the activity decay following H2 injection (transient 

measurements) or by H2 titration (Lukey et al., 2010; Ludwig et al., 2009; Leger et al., 

2004). In transient experiments, chronoamperometric traces are recorded following a 

short pulse of H2. Stirring and gas purging (with N2 or Ar) ensure the exponential decay 

of H2 from the electrochemical cell. The current decay caused by the substrate depletion 

can be fitted to an equation (Equation 5) which describes the variation of current i(t) 

with time (t) following H2 injection into the electrochemical cell to give an initial 

concentration )0(
2HC (Figure 1.7) (Ludwig et al., 2009; Leger et al., 2004).  
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Figure 1.7 Schematic representation of a chronoamperogram 

showing the current response during a hydrogenase transient experiment.  

The catalytic response of a hydrogenase following a short pulse of H2 can be fitted starting 

with the maximum activity region (red trace) to determine KM. 
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The equation takes into account the exponential profile for the loss of H2 from solution 

(τ is the time constant for exponential gas removal and imax is the initial current) 

(Ludwig et al., 2009; Leger et al., 2004). 

)/exp(
)0(
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M 
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2H

MK  values for the MBHs from R. eutropha and R. metallidurans have been determined 

to be 6 μM and 0.6 μM, respectively (- 0.108 V, pH 5.5, 30 oC) (Ludwig et al., 2009). In 

the case of the MBHs from E. coli the values are in the same range: around 9 μM for the 

O2 tolerant Hyd-1 and 17 μM for the standard Hyd-2 (-0.175 V, pH 6, 30 oC) (Lukey et 

al., 2010). It is not clear whether the high affinity for H2 of O2 tolerant MBHs plays a 

role in O2 tolerance. 2H

MK was found to increase with temperature and potential 

(Cracknell et al., 2009). O2 tolerance of the MBH from R. eutropha increases at 

temperatures higher than 30 oC despite lower affinity for H2 (high 2H

MK ). The increased 

tolerance correlates with the hypothesis that O2 reacts at the active site. The reductase 

activity of [NiFe] hydrogenases has been demonstrated in the case of the O2 tolerant 

NAD+-reducing [NiFe]-hydrogenase from R. eutropha (kcat = 2.03±0.13 s-1) (Lauterbach 

and Lenz, 2013) and the O2 tolerant Hyd-1 from E. coli (kcat = 0.28 s-1) (Wulff et al., 

2014) using O2 isotope measurements. However, it has also been determined, using both 

electrochemical and spectroscopic methods, that the presence of O2 does not change the 

ratio of Ni-A/Ni-B state obtained in anaerobic oxidizing conditions for the standard 

[NiFe]-hydrogenase from D. fructosovorans (Abou Hamdan et al., 2013). Based on this, 

it has been suggested that the O2 molecule acts only as an electron acceptor in the 
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vicinity of the active site. In conclusion, although the molecular determinants of O2 

tolerance have been elucidated to a great extent, the models proposed so far can only 

partially explain the catalytic properties of O2 tolerant [NiFe] hydrogenases under 

oxidizing conditions. 

1.1.3.2.5 H+ reduction activity 

H+ reduction rates of O2 tolerant MBHs are very low or zero at physiologically relevant 

pH values (Bowman et al., 2014; Lukey et al., 2010; Pandelia et al., 2010; Goldet et al., 

2008). Consequently, the H+ reduction catalytic currents are very low compared to the 

H2 oxidation currents. The lower limit for the turnover frequency for H2 production by 

the MBH in R. metallidurans, in the presence of O2, was estimated to be around 70 H2 

molecules per second (-0.45 V, pH 5.5, 40 oC) (Goldet et al., 2008). Product inhibition 

was found to be very strong ( )( 2HK app

I
 = 7.1 ± 1.6 μM for R. eutropha MBH and 10.8 

± 1.2 μM for R. metallidurans MBH). It was shown that Hyd-1 from E. coli can become 

an efficient H2 producer at pH values below 4 (Murphy et al., 2014). One possible cause 

for the strong bias of O2 tolerant MBHs towards H2 oxidation is considered to be the 

high midpoint potentials of the [FeS] clusters which might hinder the electron flow from 

the electron relay to the [NiFe] active site (Murphy et al., 2014; Goldet et al., 2008). 

1.1.3.2.6 CO inhibition 

H2 oxidation activity of the MBHs from A. aeolicus and R. eutropha is not inhibited by 

CO (Luo et al., 2009; Vincent et al., 2005b). In the case of the MBH from E.coli, CO 

reversibly inhibits the H2 oxidation activity ( )(COK app

I
 = 51 ± 6 μM at -0.06 V, under 
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20% H2, pH 6, 20 oC) (Lukey et al., 2010). Full recovery of activity is observed upon 

removal of the inhibitor. 

CO inhibition of H+ reduction activity was found to be weaker than H2 inhibition. The 

H+ reduction activity of R. eutropha MBH is reversibly inhibited by CO and full 

recovery is observed after complete removal of the inhibitor ( )(COK app

I
 = 1.7±0.11 

mM, -0.45 V, pH 5.5, 30 oC). The same behaviour was reported for the MBH from R. 

metallidurans ( )(COK app

I
 = 1.2±0.06 mM, -0.45 V, pH 5.5, 30 oC) (Goldet et al., 

2008). 

1.2 [FeFe] Hydrogenases 

[FeFe] Hydrogenases are present in prokaryotes as well as in eukaryotes (Mulder et al., 

2011; Vignais and Billoud, 2007). Sequence analogues of [FeFe]-hydrogenase have 

been found in genomes of higher eukaryotes including the human genome (Vignais and 

Billoud, 2007). [FeFe] hydrogenases are found in single or multiple subunit form. The 

active metal centre is a binuclear [FeFe] centre, which is bound to a [4Fe-4S] cluster via 

a bridging cysteine residue of the protein (Figure 1.8). The metal centre and the bound 

[FeS] cluster form the so-called “H-cluster”. In some [FeFe] hydrogenases, accessory 

[FeS] clusters, apart from the one in the H-cluster, are accomodated in the catalytic 

subunit or the additional subunits. Each active site Fe atom is coordinated to one CN- 

and one CO ligand (Fontecilla-Camps et al., 2007). The two Fe atoms are connected 

with one another through a CO ligand and two bridging sulphur ligands of an 

azadithiolate cofactor (Berggren et al., 2013; Esselborn et al., 2013). The Fe atom distal 
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to the [FeS] cluster has an open coordination site where the substrate binding site is 

presumed to be located (Lemon and Peters, 1999). 

 

Figure 1.8 The structure of the H-cluster of [FeFe]-hydrogenases.  

The open site is thought to be the H2 binding site. 

Catalysis involves cycling of the H-cluster between states known as Hox {[4Fe-4S]2+-

Fe(I)Fe(II)} and Hred {[4Fe-4S]2+-Fe(I)Fe(I)}. Both states have been detected in all 

[FeFe] hydrogenases studied so far with FTIR (Lubitz et al., 2014). One electron 

reduction of Hred leads to the “super-reduced state” Hsred {[4Fe-4S]+-Fe(I)Fe(I)}. This 

state has been shown to be active and consequently proposed to be also part of the 

catalytic cycle (Adamska et al., 2012; Silakov et al., 2009). A more recent PFE study 

found that accumulation of Hsred is associated with activity loss, questioning the 

involvement of the intermediate in the catalytic cycle (Haji et al., 2014). 

In the presence of O2, [FeFe] hydrogenases show varying catalytic responses. The 

[FeFe] hydrogenase from Desulfovibrio desulfuricans loses most of its activity after a 

short pulse of O2, undergoing irreversible inactivation (Parkin et al., 2006; Vincent et 

al., 2005a). As with [NiFe] hydrogenases, [FeFe] hydrogenases also undergo reversible 

inactivation at oxidizing electrode potentials in anaerobic conditions. The so-called 

inact

oxH  state that is generated under oxidizing conditions has been hypothesized to protect 

the enzyme from O2 damage (Parkin et al., 2006), which was shown to take place at the 
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H-cluster (Swanson et al., 2015; Stripp et al., 2009). Unlike the [FeFe] hydrogenase 

from D. desulfuricans, the [FeFe] hydrogenases from Clostridium acetobutylicum and 

Chlamydomonas reinhardtii maintain activity in the presence of O2 (Orain et al., 2015; 

Goldet et al., 2009; Baffert et al., 2008). Inhibition by O2 is only partial and after the 

removal of the inhibitor, activity is partially recovered. The C. acetobutylicum [FeFe] 

hydrogenase recovers activity even after encountering O2 concentrations that normally 

completely and irreversibly inhibit the [FeFe] hydrogenase from D. desulfuricans or the 

standard [NiFe] hydrogenases from A. vinosum and Desulfovibrio gigas. The rate 

constant for the reaction with O2 for the C. acetobutylicum [FeFe] hydrogenase was 

estimated to be eight to ten times smaller than in the case of standard [NiFe] 

hydrogenases (Liebgott et al., 2010b; Baffert et al., 2008; Leger et al., 2004). Moreover, 

the rate of anaerobic inactivation for the C. acetobutylicum [FeFe] hydrogenase was 

estimated to be one order of magnitude smaller than for the [FeFe] hydrogenase from D. 

desulfuricans (Baffert et al., 2008). The understanding of the molecular mechanism of 

O2 tolerance of [FeFe] hydrogenases is yet not as advanced as in the case of [NiFe] 

hydrogenases. Further studies are required to elucidate the structural characteristics that 

confer O2 tolerance. 

A direct comparison of the turnover frequencies of [FeFe] hydrogenases and [NiFe] 

hydrogenases has proved difficult due to the limitations imposed by the enzyme 

immobilisation at the electrode surface and the difficulties associated with the 

estimation of the electroactive coverage. The H2 production turnover frequency of C. 

acetobutylicum [FeFe] hydrogenase was determined to be 1000 s-1 at -0.7 V when the 

enzyme was adsorbed on a mercapto-carboxylic acid self-assembled monolayer formed 
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on a flat gold electrode and the coverage was determined via electrochemical scanning 

tunnelling microscopy (Madden et al., 2012). By comparison, the [NiFeSe] hydrogenase 

from Desulfomicrobium baculatum, adsorbed at a graphite surface, has a H2 production 

turnover frequency of 750 s-1 at -0.55 V (Parkin et al., 2008). The H2 oxidation turnover 

frequency of C. acetobutylicum [FeFe] hydrogenase is around 16000 s-1, as determined 

from spectrophotometric assays (Liebgott et al., 2010b). The H2 oxidation turnover 

frequency of D. baculatum [NiFeSe] hydrogenase, determined via PFE experiments, is 

four times lower. Other [NiFe] hydrogenases, like the ones from Desulfovibrio vulgaris 

Miyazaki F and Citrobacter sp. S-77, adsorbed onto carbon black, have reported H2 

oxidation turnover frequencies of 14,100 s-1 and 893,000 s-1, respectively (Matsumoto et 

al., 2014). 

1.3 [Fe] hydrogenases 

[Fe] hydrogenases catalyse only one step in the reduction of CO2 to CH4 (Thauer et al., 

2010; Vignais and Billoud, 2007) and methanogenic archaea are the only organisms 

known to harbour these enzymes (Thauer et al., 2010). [Fe] hydrogenases are dependent 

on methenyl-tetrahydromethanopterin (methenyl-H4MPT+) as a substrate. Using H2, 

they reduce methenyl-H4MPT+ to methylene-H4MPT (Figure 1.9). The reaction is 

reversible and, consequently, [Fe] hydrogenases have also been designated as “H2 

forming methylene-tetrahydromethanopterin dehydrogenases” (Hmd) (Lubitz et al., 

2014). Hmd is essential only under specific growth conditions of Ni limitation (Thauer 

et al., 2010; Vignais and Billoud, 2007). Unlike [NiFe] and [FeFe] hydrogenases, [Fe] 

hydrogenases do not reduce artificial redox dyes (Zirngibl et al., 1992). 
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Figure 1.9 The stereoselective transfer of a hydride from H2 to a pterin substrate catalysed by Hmd. 

The nature of the coordination sphere of Fe in [Fe]-hydrogenases resembles that of the 

Fe atom in the binuclear active sites of [FeFe]-hydrogenases and [NiFe]-hydrogenases 

(Heinekey, 2009). The Fe atom is coordinated to two CO ligands, one S atom of a 

cysteine residue, one N atom from the pyridine ring of a guanylylpyridinol cofactor, and 

one carbonyl group belonging to the same guanylylpyridinol cofactor (Figure 1.10). The 

enzyme does not contain any Fe-S clusters, being sometimes referred to as “Fe-S 

cluster-free hydrogenase”. [Fe] hydrogenases have been identified in 

Methanothermobacter marburgensis, Methanocaldococcus jannaschii and 

Methanopyrus kandleri. 

 
Figure 1.10 Active site structure of [Fe]-hydrogenases (GMP, guanidine monophosphate). 
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1.4 Hydrogenases in biofuel cells 

H2 is considered a viable fuel for storing excess energy generated by wind, solar and 

hydrothermal power plants (de Poulpiquet et al., 2014). During periods of low energy 

demand, excess electrical energy could be used to produce H2 by water electrolysis 

(Wakerley and Reisner, 2015). Reconversion to electricity can be done by oxidizing H2 

in fuel cells, which are known to have significantly higher efficiencies than combustion 

engines (Sahaym and Norton, 2008; Cracknell et al., 2008b; Atkins and de Paula, 2006; 

Adzic et al., 2006; Ahluwalia et al., 2006). H2 has a higher energy density (120 MJ/kg) 

than methane (55 MJ/kg). In addition, its combustion produces only water and its 

production can be achieved from wastewater (Lin et al., 2012). 

 

Figure 1.11 Schematic representation of a membrane-less bio-fuel cell employing hydrogenase at the 

anode and oxidase at the cathode. 

The widespread exploitation of fuel cells remains a challenge due to the high operating 

cost imposed by the expensive Pt electrocatalyst and the anode/cathode separating 

membrane. The use of hydrogenases as catalysts for H2 oxidation, coupled with O2 

reduction catalysed by laccases/bilirubin oxidases, would eliminate the need for an ion 
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selective membrane due to their high substrate selectivity (Figure 1.11). In this instance, 

direct electron transfer must be ensured between the enzyme and the electrode surface. 

Water-soluble redox mediators do not constitute an option as their short-circuit reactions 

require the use of a separating membrane between the anode and the cathode 

compartment. 

The performance of hydrogenases in membrane-less fuel cells is limited by enzyme 

desorption and inactivation. Attachment to the electrode via covalent bonds provides a 

better control of orientation and achieves a higher protein film stability compared to 

adsorption onto graphite surfaces widely used in mechanistic studies (e.g. PFE). The use 

of covalent attachment leads to increased enzyme stability and higher current densities 

compared to the protein adsorption approach (Krishnan and Armstrong, 2012). Further 

improvements are possible by increasing the catalyst load. A single hydrogenase active 

site is enveloped in a bulky protein matrix, which means that the maximum current 

density is limited by the protein coverage of the electrode. Covalent attachment to 

carbon nanotubes significantly increases current density and long-term electrode 

stability, providing a promising approach for the efficient exploitation of hydrogenase-

based electrodes (de Poulpiquet et al., 2013; Xu and Armstrong, 2013; Ciaccafava et al., 

2012; Alonso-Lomillo et al., 2007).  

The operating potential window of hydrogenases in membrane-less fuel cells is 

restricted by O2 inactivation and oxidative (high potential) inactivation. Despite 

employing O2-tolerant hydrogenases, the power output decreases due to O2 inactivation, 

which is fast at the positive potentials imposed during operation (Wait et al., 2010; 

Vincent et al., 2006; Vincent et al., 2005b). Under low H2 concentrations (<4%, below 
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the flammability range) when the fuel cell output is limited by the anode, anaerobic 

inactivation due to the increasingly positive potential of the hydrogenase electrode 

further decreases the power output. Hydrogenase reactivation can be done by connecting 

a second “fresh” hydrogenase anode, which serves as an external source of electrons 

(Wait et al., 2010). 

Protection from inactivation was achieved by incorporating hydrogenases into redox 

hydrogel films (Oughli et al., 2015; Plumere et al., 2014; Baur et al., 2011; Karyakin et 

al., 2005). The approach was successfully validated with standard [NiFe] hydrogenases, 

a [NiFeSe] and a [FeFe] hydrogenase used as anodic catalysts. A viologen-

functionalized polymer was used as a protective matrix that prevents both O2-induced 

and anaerobic oxidative inactivation (Oughli et al., 2015; Plumere et al., 2014). The 

viologen functionalities mediate electron transfer from the hydrogenase active site to the 

electrode. The redox buffering of the viologen couple at -0.3 V prevents anaerobic 

inactivation of the hydrogenase. Protection from aerobic inactivation is ensured by 

physical exclusion of O2 and by viologen-catalized O2 reduction at the surface of the 

hydrogel film (Plumere et al., 2014). 

A better understanding of the catalytic and (in)activation mechanisms of hydrogenases 

is needed for improving the strategies of designing and optimizing synthetic catalysts 

that would match the catalytic performances of hydrogenases and, at the same time, 

overcome the drawbacks of current (bio)fuel cell technologies in terms of catalyst 

loading and lifetime. 
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The work described in this thesis was performed with the aim of investigating the 

catalytic properties of the heterotrimeric membrane-bound [NiFe] hydrogenase 

(HoxGKZ) by comparison to the heterodimeric sub-complex (HoxGK), which was 

thoroughly studied via an array of techniques including protein film electrochemistry. 

The heterotrimeric MBH was probed in its native lipid environment in equilibrium with 

the quinone pool in the tethered lipid bilayer membrane (see Section 2.2.4.1). Anaerobic 

and aerobic oxidizing conditions have been employed in order to obtain insights into the 

inactivation/reactivation and O2 tolerance mechanism of MBHs. The role of the [FeS] 

electron relay in (re)activation was studied by probing a variant with the same electron 

relay configuration as standard (O2 sensitive) [NiFe] hydrogenases.
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 2. Electrochemistry and electrodes 

2.1 Electrochemical methods 

2.1.1 Cyclic voltammetry 

Cyclic voltammetry is a technique used to acquire information on the thermodynamics 

and kinetics of electron-transfer processes. It consists of linearly scanning the potential 

(E) of a working electrode using a triangular potential waveform (Figure 2.1) and 

measuring the current response (i). The potential of the working electrode is controlled 

versus a reference electrode with a stable and well-known potential using a potentiostat. 

The rate at which the working electrode potential is changed is termed scan rate or 

potential ramp (ν in Equation 6 where t is time). 

dt

dE
    (6) 

The direction of scan is reversed at the so-called switching potential (Figure 2.1). The 

plot of the applied potential versus the resulted current is called a cyclic voltammogram 

or a current-voltage curve (i-E curve) (Bard et al., 2003; Bard and Faulkner, 2001; 

Zoski, 2001; Wang, 2000; Kissinger and Heineman, 1983). 
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Figure 2.1 Typical excitation signal for cyclic voltammetry. 

The shape of a voltammogram depends on the electron-transfer kinetics and on mass 

transport processes at the electrode surface. According to an equation derived from the 

Butler-Volmer model, the electron-transfer rate constant is an exponential function of 

the applied potential (Equations 7 and 8). 
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In equations 7 and 8, kox and kred are the electron-transfer rate constants (cm s-1) for 

oxidation and reduction, respectively, ko is the standard heterogeneous electron-transfer 

rate constant, α is the transfer coefficient (dimensionless parameter, between zero and 

unity), n is the stoichiometric number of electrons involved in the electrode reaction, F 

is Faraday’s constant (C mol-1), R is the universal gas constant (J mol-1 . K-1), T is the 

absolute temperature (K), E is the applied electrode potential (V), and Eo is the formal 

redox potential of the redox couple (V). The transfer coefficient, α, is a measure of the 

fraction of energy that is supplied to the system (in the form of applied potential) which 
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is used to actually lower the activation energy barrier (Zoski, 2001; Wang, 2000; 

Mabbott, 1983).  

According to the Marcus theory of electron transfer, the rate of electron transfer (ket) 

depends on the distance between the donor and the acceptor molecules, the reaction 

Gibbs energy for electron transfer (ΔrG), and the reorganization energy λ (Equation 9, 

where h is Planck’s constant). Electron transfer becomes more efficient with decreasing 

donor to acceptor distance and with increasing exergonicity (Bard et al., 2003; Bard and 

Faulkner, 2001). 
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The DAH  term in Equation 9 accounts for the electronic coupling between the donor 

and the acceptor molecule. The reorganization energy λ represents the energy required 

for the structural rearrangements of the donor, acceptor, and medium (solvent) 

molecules during electron transfer. The Gibbs energy of activation, G , is related to 

the reaction Gibbs energy for electron transfer, ΔrG, in the following way: 





4

)( 2
 G

G r    (10) 

The model predicts that the electron transfer rate increases as the reorganization energy 

matches the reaction Gibbs energy, ΔrG. Equation 9 is useful for estimating electron 

transfer rates for processes with weak electron coupling between acceptor and donor 

molecules (as it is the case with protein complexes). For cases in which the 
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overpotential (|E-Eo|) is smaller than the reorganization energy of the redox process 

taking place, the Marcus model can be considered as analogous to the Butler-Volmer 

model (Vincent et al., 2007; Atkins and de Paula, 2006). 

2.1.1.1 Diffusion controlled cyclic voltammetry 

Based on the value of ko (in the Butler-Volmer model), redox couples can be classified 

as reversible, quasi-reversible, or irreversible. For reversible redox couples (ko > 10-1 cm 

s-1), the current depends only on mass transport (Wang, 2000; Heinze, 1984). For quasi-

reversible reactions, ko lies in the range of 10-1 to 10-5 cm s-1 and the current response is 

controlled by both the electron transfer and mass transport. In the case of an irreversible 

redox process (ko < 10-5 cm s-1), the current is mainly controlled by the rate of the charge 

transfer. 

The voltammogram of a reversible redox couple analyzed on a stationary planar 

working electrode immersed in a stationary electrolyte solution constitutes the simplest 

case. For simplification, it is assumed that only the reduced species (Red) is present in 

solution at the beginning of the experiment. As the redox reaction is reversible, 

interfacial electron transfer is fast with respect to the rate of mass transport of the redox-

active species. The concentration ratio for the reduced and the oxidized species at the 

electrode surface at a given potential can thus be determined from the Nernst equation 

(Equation 11). 
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CRed(0,t) and COx(0,t) in Equation 11 are the surface concentrations of the reduced (Red) 

and the oxidized (Ox) species respectively (Zoski, 2001). 

 

Figure 2.2 Cyclic voltammogram for an ideal reversible redox couple (adapted from Heinze, 1984; 

Mabbott, 1983; Kissinger and Heineman, 1983). The magnitude of the anodic (ipa) and the cathodic (ipc) 

peak currents is marked with double-headed arrows. Baseline extrapolations are presented in gray dashed 

lines. 

The starting potential for the experiment is chosen such that electrolysis of the reduced 

species (Red) is completely avoided when the electrode is switched on (Figure 2.2). As 

the potential is scanned positively, on the forward scan, an anodic current (faradaic 

current) emerges as Red is oxidized to Ox (Red  Ox + ne-). As the reactant is depleted 

from the electrode surface a limiting current plateau is reached and then the anodic 

current starts to decrease. When the switching potential is reached, the direction of scan 

is reversed. As the potential is scanned towards negative values, the oxidized species 

generated during the forward scan is reduced back to Red (Ox + ne-  Red) and a 

cathodic current peak arises having the same shape as the anodic peak. 
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The evolution of the current response as a function of potential during the cyclic 

voltammetry experiment can be explained by taking into account the mass transport 

phenomena taking place at the surface of the electrode. A diffusion layer is formed near 

the surface of the working electrode during the potential scan.  The change in surface 

concentration of the redox active species determines the variation of the current 

response. According to an application of Fick’s first law of diffusion (Equation 12), the 

current response at any time is proportional to the concentration gradient of the reactant 

(i.e. Red). 
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In Equation 12, i is the current (A), A is the electrode area (cm2), D is the diffusion 

coefficient of the species of interest (cm2 s-1), C is the concentration of the electroactive 

species (mol cm-3), and x is the perpendicular distance from the electrode (cm). 

Based on Equation 12, the current recorded at a certain potential can be correlated to the 

slope of the corresponding concentration-distance profile (Figure 2.3). The 

concentration gradient of the reduced species, (∂CRed/∂x)x=0, is zero at the beginning of 

the experiment (just above the starting potential) and the resulting current is, 

accordingly, zero (Figure 2.3A). As the potential is swept towards the value of the 

formal redox potential of the couple, the concentration gradient increases and the anodic 

current increases correspondingly (Figure 2.3B). When the reduced species is depleted 

from the electrode surface, the current starts to decrease (Figure 2.3C). After the 

direction of the scan is reversed the potential is lowered. The oxidized species 
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accumulated at the surface of the electrode will undergo reduction as the potential is 

dropping towards the formal redox potential. Now, the concentration gradient of the 

oxidized species, (∂COx/∂x)x=0, increases and the cathodic current increases 

correspondingly. 

 

Figure 2.3 Graphical representation of the concentration-distance profiles for selected potentials during a 

cyclic voltammetry experiment in an unstirred solution and the corresponding current response points on 

the cyclic voltammogram: (A) immediately after the start of the experiment; (B) in the range of the formal 

redox potential on the forward scan; (C) at zero reactant surface-concentration; (D) in the range of the 

formal redox potential on the reverse scan (adapted from Heinze, 1984; Mabbott, 1983; Kissinger and 

Heineman, 1983). 

The current decrease observed after the depletion of the electroactive species (i.e. after 

the current has reached a peak) is independent of the applied potential, following a t-1/2 

dependence. 
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For a reversible electrochemical couple, the peak current (ip in Figure 2.2) is dependent 

on the bulk concentration of the redox species and increases with the square root of the 

scan rate (Equation 13 – the Randles-Sevcik equation). The ratio between the anodic-to-

cathodic peak currents (ipa/ipc) is close to unity. This ratio changes when electron 

transfer processes are coupled with chemical reactions. The peak heights are determined 

by extrapolating the preceding baseline current (Figure 2.2). The correct determination 

of the baseline is essential for an accurate measurement of the peak current (Zoski, 

2001; Wang, 2000; Heinze, 1984). 

2/12/12/351069.2  CDAnip    (13) 

The position of the peaks on the potential axis is related to the formal potential of the 

redox process. The formal redox potential is equal to the average of the reduction 

potential (Epc) and the oxidation potential (Epa) when the diffusion coefficients of the 

reduced and the oxidized species have the same value (Equation 14). 
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The separation between the peak potentials can be used to determine the number of 

transferred electrons or to estimate the deviation from the ideal Nernstian 

electrochemical behaviour of the investigated system (Equation 15, valid at 25 oC). 
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In the case of irreversible couples, peak currents depend on the value of α (Equation 16). 
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Due to slow electron transfer, the peak potentials (Ep) shift with the scan rate (Equation 

17). 
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In the absence of mass transport limitations, the current response for a reversible 

electrochemical couple depends on the surface concentration of the electroactive 

species, the electrode potential, and the standard electron-transfer rate constant (the 

Butler-Volmer equation; Equation 18). 

   

 (18) 

 

2.1.1.2 Catalytic cyclic voltammetry 

Cyclic voltammetry can also be employed in the study of electroactive species adsorbed 

or bound to the electrode surface. In this case, no concentration profile develops. The 

peak current is proportional to the surface coverage (Γ) and the potential scan rate 

(Equation 19). 
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The quantity of charge (Q) transferred during a redox process (calculated from the peak 

area) can be used to determine the surface coverage of the species undergoing 

conversion (Equation 20). 

 AFnQ    (20) 

An ideal adsorbed electro-active catalytic species, like a redox protein or a transition 

metal complex redox catalyst, undergoing reversible uncoupled electron transfer in the 

absence of substrate gives rise to symmetrical oxidation and reduction waves with no 

peak separation (Figure 2.4) (Le Goff et al., 2009; Wang, 2000; Hirst and Armstrong, 

1998; Heering et al., 1998; Chidsey et al., 1991). 

 

Figure 2.4 Schematic representation of a voltammogram of an ideal surface-confined catalyst (Cat) under 

non-turnover conditions revealing non-catalytic peaks typical of reversible catalysts. Depicted in the 

upper left corner are the background-subtracted non-turnover peaks. 

During catalytic turnover, in the absence of mass transport limitations, the catalyst 

cycles between reduced and oxidized states as it conveys electrons to/from the electrode 
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for the oxidation/reduction of the substrate (Figure 2.5) (Bard et al., 2003; Leger et al., 

2003; Armstrong et al., 1997). The value of the current in the plateau region of the 

voltammogram (i∞) is a function of the catalytic rate constant, kcat (i∞ = kcat
.Q). When 

substrate diffusion is limiting the catalytic conversion, the voltammetric response 

resembles the one described in Section 2.1.1.1. 

 

Figure 2.5 Schematic representation of a voltammogram of an ideal surface-confined catalyst (Cat) under 

turnover conditions, i.e. in the presence of the substrate “S”, revealing the catalytic wave shape typical for 

reversible catalysts (a steady-state flux of substrate is typically ensured under turnover conditions by 

mixing the solution in the electrochemical cell or rotating the working electrode at high speed). 

2.1.2 Chronoamperometry 

Chronoamperometry consists of stepping the potential of the working electrode from a 

value at which no faradaic current is flowing to a value at which a redox process takes 

place (the current response is monitored as a function of time) (Bard et al., 2003; Bard 

and Faulkner, 2001; Zoski, 2001; Wang, 2000). Chronoamperometry can be used to 

study mechanisms of electrode processes as well as for determining working electrode 

surface areas, diffusion coefficients or the quantity of adsorbed electro-active species. A 
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multitude of potential steps can be employed, giving rise to complex potential 

sequences. The simplest involves a single potential step (Figure 2.6A). 

 
Figure 2.6 Chronoamperometric experiment: (A) the applied excitation / potential-time waveform; (B) the 

current-time response corresponding to the perturbation described in (A) in the case of a diffusion-limited 

system. 

In the case of diffusion-limited systems, the corresponding current response will consist 

of a sharp change from zero to a maximum/minimum value followed by a relaxation 

back to zero (Figure 2.6B). The current-time curve reflects the change in concentration 

gradient of the electroactive species in the vicinity of the surface. At a planar electrode, 

the response current decays with the square root of time (Figure 2.6B). Such a decay is 

described by the Cottrell equation (Equation 21). 
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In the case of systems that are not diffusion-limited, the corresponding current response 

will consist of a sharp change from zero to a maximum/minimum value followed by a 

constant current level. When a catalytic system is adsorbed on the electrode (see Section 

1.1.3.1 and 2.1.1.2) and an inhibitor is injected alongside the continuous supply of 
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substrate, a drop in current will be observed (Figure 2.7). This allows the probing of the 

inhibition kinetics, especially in combination with complex potential step sequences that 

are used to poise the catalyst being investigated in various redox states. 

 

Figure 2.7 Chronoamperometric experiment showing the evolution of the recorded current upon the 

introduction of an inhibitor in the electrochemical cell (the electrode potential is held constant and stirring 

ensures that the supply of substrate is not diffusion-limited; t=0 is the time of injection of the inhibitor). 

It is important to note that the use of potential steps leads to the occurrence of capacitive 

currents due to changes in the charge of the electrolyte double layer at the electrode 

interface on applying the step. The capacitive current occurs in parallel to the faradaic 

current and contributes to the overall current response. The double layer charging can be 

estimated by carrying out replicate experiments in the absence of the redox active 

species being investigated. 

2.1.3 Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) consists of applying small amplitude 

periodic (usually sinusoidal) electrical perturbations and monitoring the electrical 
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response over a range of perturbation frequencies. It is a noninvasive technique that can 

be used for investigating bulk as well as interfacial electrochemical processes (Bard et 

al., 2003; Zoski, 2001; Macdonald, 1992). The amplitude of the applied perturbations is 

small enough to give rise to a linear response of the system at steady state (Figure 2.8). 

 
Figure 2.8 Current-voltage domain showing pseudo-linearity. 

In a linear (or pseudo-linear) system, a sinusoidal perturbation of the applied voltage at 

time t (E(t); Equation 22) will generate a sinusoidal current response (i(t)) at the same 

frequency and shifted in phase (Equation 23). 

)sin()( 0 tEtE      (22) 

)sin()( 0  titi     (23) 

E0 is the voltage amplitude, i0 is the current amplitude, ω is the radial frequency (rad 

s-1), and Φ is the phase angle. Radial frequency is related to frequency f (measured in 

Hz) in the following way: ω = 2πf. 

The electrochemical impedance of an electrochemical cell (Z) is defined as the ratio 

between the voltage across the cell (E(t)) and the resulting current response (i(t); 
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Equation 24) (Bard et al., 2003; Zoski, 2001). Impedance has the same unit of 

measurement as the electrical resistance (R, Ω). 
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As any other vector quantity (having a magnitude, Z0, and a phase, Φ), impedance can 

be expressed as a complex number (Equation 25). 

'''
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Z’ is the real part and Z” is the imaginary part of the impedance, while j is equal to 

(-1)1/2. 

Admittance (Y) is the reciprocal of the impedance (measured in Siemens, Ω-1; Equation 

26) and it can also be expressed as a complex number. 
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EIS data can be presented in many forms. The most common form is the so-called 

Nyquist plot, in which –Z” is plotted against Z’. In order to include frequency 

information, Bode plots are used in which the phase angle (Φ) or the absolute values of 

impedance (Z’ or Z”) are plotted against ω or log(ω). When EIS data is more convenient 

to be analysed in terms of admittance (Y), Y’ and Y’/ω are plotted against –Y” 

and -Y”/ω, respectively (Bard et al., 2003; Zoski, 2001; McCafferty, 1997; Macdonald, 

1992). Admittance plots in the form of Y’/ω vs –Y”/ω have the advantage of allowing 

the direct extraction of capacitance values (see below). 
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In order to extract key physical or chemical parameters from the acquired impedance 

data, an equivalent electrical circuit that mimics the electrical response of the 

investigated electrochemical system has to be chosen. In the case of moderately 

complex systems (involving simple reversible charge-transfer reactions), simple 

equivalent circuits can be used to derive the parameters of interest. The chosen circuit 

should be constructed solely based on the chemical and physical characteristics of the 

investigated system and should not contain arbitrarily chosen elements. 

 

Figure 2.9 Schematic representation of the effect of a resistor (R) and a capacitor (C) on the phase of an 

alternating current i(t) with respect to the applied voltage E(t). 

The equivalent circuit usually contains elements like resistances and capacitances 

combined in series or in parallel. The impedance of a resistor, for example, is entirely 

real having no imaginary component and is independent of frequency (Equation 27). 

RZR     (27) 
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The impedance of a capacitor is entirely imaginary and depends on the frequency 

employed (Equation 28, where C is capacitance, measured in Farrads, F). The current 

through a capacitor exhibits a phase shift of -90 degrees (Figure 2.9). 

Cj
ZC






1
   (28) 

For the modelling of a three-electrode electrochemical cell there are three essential 

parameters to consider when constructing the equivalent circuit: the electrolyte 

resistance (Re), the double layer capacitance (Cd), and the faradaic impedance (Zf; or the 

charge transfer impedance). The electrolyte or solution resistance depends on the 

conductivity of the solution or electrolyte employed and on the geometry of the cell. At 

the interface between the electrode and the electrolyte, ions from the solution and the 

counter charges of the electrode form a double layer, which acts as a parallel plate 

capacitor. The capacitance of the double layer (Cd) is determined by the electrode 

characteristics (area, roughness, oxide layers, impurity adsorption etc.) and by the 

electrolyte characteristics (nature of ions, ionic strength, and permittivity). The faradaic 

impedance has a component called the charge transfer resistance (Rct) which accounts 

for the kinetics of the electron transfer process and a component called the Warburg 

impedance (Zw) which accounts for the mass transport process (Bard et al., 2003; Zoski, 

2001; McCafferty, 1997; Macdonald, 1992). The Warburg impedance, also called the 

mass transfer impedance, can be expressed as a complex number with both the 

imaginary and the real component depending on the radial frequency ω (Equation 29). 

2/12/1    jZw    (29) 
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Equation 29, where σ is the Warburg coefficient (Equation 30) applies only to cases of 

semi-infinite linear diffusion. 





















2/1

Re

*

Re

2/1*22

11

2 ddOxOx DCDCAFn

TR
    (30) 

In Equation 30, C*
Ox and C*

Red are the bulk concentrations of the oxidized and reduced 

species, respectively. 

 

Figure 2.10 Schematic representation of a Nyquist plot for a reversible electrochemical system with 

diffusion-limited behaviour at low frequencies (left) and the corresponding equivalent Randles circuit 

(right). 

Using the four circuit components based on the four parameters described above (Re, Rct, 

Zw, and Cd), a three electrode electrochemical cell can be modelled using the equivalent 

circuit depicted in Figure 2.10 (right). The equivalent electrical circuit, called a Randles 

circuit, consists of Cd combined in parallel with Rct and Zw and in series with Re. The 

frequency-dependent impedance response of an electrochemical cell that can be 

modelled using a Randles circuit is presented schematically in Figure 2.10 in the form of 

a Nyquist plot. The values of Re, Rct, and Cd can be extracted graphically and the total 
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impedance variation can be explained based on the impedance response of the 

individual circuit components. 

The semicircle in the Nyquist plot is caused by the charge-transfer-controlled reaction. 

At high frequencies (ω∞), the impedance of the double-layer capacitance (ZC) has a 

small value (Equation 28) and the charge transfer resistance is “shorted out”. Thus, the 

intercept of the semicircle with the Z’ axis at high frequencies represents the electrolyte 

resistance (Re). As the frequency decreases, the impedance of the double-layer 

capacitance increases and the contribution of the charge transfer resistance to the least 

resistive current path, and implicitly to the total impedance, increases. The diameter of 

the semicircle represents the charge transfer resistance (Rct). At the top of the semicircle, 

where the imaginary part of the impedance reaches its maximum, Equation 31 applies 

which allows the determination of the time constant of the faradaic process, τ (Equation 

32). 

dct CR 


1
    (31) 

dct CR     (32) 

At low frequencies (ω0), the impedance of the double-layer capacitance is larger than 

the faradaic impedance (Zf) and the total impedance is determined by the charge transfer 

resistance and the electrolyte resistance. Thus the intercept of the semicircle with the Z’ 

axis at low frequency represents the sum of the charge transfer resistance (Rct) and the 

electrolyte resistance (Re). The “tail” of the impedance spectrum, which is a straight line 
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with the slope of 1, is generated by the Warburg impedance which accounts for the 

purely diffusion-controlled reaction at the lower end of the frequency interval. 

When no redox species is present, the impedance response of an electrode can be 

emulated by a simple circuit used to model any purely capacitive coating: a resistance 

corresponding to the electrolyte solution (Re) in series with the double layer capacitance 

(Cd). The response gives rise to a straight vertical line in a Nyquist plot. The intercept 

with the Z’ axis represents the electrolyte resistance (Re) (Bard et al., 2003; Zoski, 

2001). An electrode functionalized with a redox inactive self-assembled monolayer 

(SAM) exhibits the same impedance response (Figure 2.11) 

 
Figure 2.11 Schematic representation of the Nyquist plot (left) obtained for the elementary circuit (top 

right) used to model the response of a self-assembled monolayer (lower right). 

The impedance data in Figure 2.11, plotted as frequency-normalised admittance (Y/ω), 

appears as a semi-circle, from which the double layer capacitance (Cd) can be 

determined (Figure 2.12). The diameter of the semi-circle is equivalent to Cd. The 

response of capacitors is ideal in the mid-frequency range, which spans about four 

orders of magnitude (e.g. 1-104 Hz) (Hitzbleck et al., 2013). At the apex of the semi-

circle Equation 31 applies, which allows the calculation of Cd. Experimentally, real 

systems give rise to depressed semi-circles (with the centre below the x-axis) due to the 
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occurrence of a distribution of time constants (τ) around the real value (McCafferty, 

1997). 

 
Figure 2.12 Schematic representation of the radial frequency normalised admittance spectrum for the 

circuit in Figure 2.11. The radial frequency normalised admittance, Y/ω (measured in s/Ω), is equivalent 

to capacitance, C (measured in F, C/V ≡ s/Ω). The diameter of the semicircle is equivalent to the double 

layer capacitance (Cd). 

The impedance response of tethered artificial lipid membranes (see Section 2.2) can be 

emulated with a circuit consisting of the electrolyte resistance (Re) in series with the 

membrane resistance (Rm) (accounting for residual charge transfer across the boundary), 

which is in parallel with the membrane capacitance (Cm), and continued, in series, with 

the double layer capacitance (Cd) (Figure 2.13) (Jadhav et al., 2008; Janshoff and 

Steinem, 2006; Schiller et al., 2003). 

 
Figure 2.13 Schematic representation of the circuit used to analyse the impedance response of artificial 

membranes. 
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The impedance data from the circuit in Figure 2.13, plotted as frequency-normalised 

admittance (Y/ω), allows the direct determination of the tethered membrane capacitance 

(Cm) and of the double layer capacitance (Cd) (Figure 2.14). 

 
Figure 2.14 Schematic representation of the radial frequency normalised admittance spectrum for the 

circuit in Figure 2.13. 

In order to account for the non-ideal behaviour of systems like tethered membranes 

incorporating proteins, which can induce defects in the lipid bilayer, complex equivalent 

circuits have to be constructed. The response of a tethered artificial membrane can be 

fitted using a circuit that consists of the elements of the circuit in Figure 2.15 plus the 

resistance (Rsp) and the constant-phase element (CPEsp) corresponding to the space layer 

between the membrane and the electrode surface (Figure 2.15) (Friedrich et al., 2008ab). 

The constant phase element is used to emulate real electrical double layers, which 

behave like imperfect capacitors (Macdonald, 1984). The impedance of a CPE is 

dependent on ω, and two constants, n and Q (Equation 33). 

Qj
Z

nCPE



)(

1


   (33) 

The phase angle (Φ) of a CPE is independent of frequency and has a value of -90.n 

degrees. When the empirical constant n equals 1, the CPE resembles a capacitor with Q 
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having units of capacitance. Despite the many theories advanced so far for explaining 

the non-ideal behaviour (including surface roughness, non-uniform current distribution, 

composition and thickness variations), the exact physical phenomena that a CPE 

emulates are unknown (Jorcin et al., 2006; Bisquert et al., 1998). A CPE is used as a 

modelling element and has no corresponding real equivalent circuit component.  

 
Figure 2.15 Schematic representation of a complex circuit used to analyse the impedance response of 

systems consisting of tethered artificial membranes taking into account the non-ideal behaviour induced 

by defects. 

The impedance data obtained from a circuit like the one in Figure 2.15, plotted as 

frequency-normalised admittance (Y/ω), allows the direct determination of the 

capacitance of the tethered membrane system (Figure 2.16) (Friedrich et al., 2008ab). 

 
Figure 2.16 Schematic representation of the radial frequency normalised admittance spectrum for the 

circuit in Figure 2.15. The radial frequency normalised admittance, Y/ω (measured in s/Ω), is equivalent 

to capacitance, C (measured in F, C/V ≡ s/Ω). The diameter of the semicircle is equivalent to the 

membrane capacitance (Cm). 
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2.2 Electrode design for redox membrane enzymes 

Electrochemical investigation of the catalytic properties of redox-active membrane 

enzymes requires the attachment of the enzyme molecules to a conductive support in 

their integral form. The critical aspects of the immobilisation strategies are enzyme 

stability, the efficiency and type (direct/mediated) of electron transfer between the 

enzyme and the electrode, and the control of the catalytic process. Graphite surfaces 

have been successfully used to immobilise water-soluble proteins and membrane 

associated proteins that possess a single transmembrane helix (Clarke et al., 2008; 

Blanford and Armstrong, 2006; Leger et al., 2003). In the case of membrane-bound 

protein complexes bound to graphite electrodes, it was shown that electron transfer 

could bypass the membrane-integral subunit (Elliott et al., 2004). 

The use of functionalised metal surfaces improves adsorption, but interfacial electron 

transfer can be slow (Christenson et al., 2008) or can bypass the membrane subunit due 

to unfavourable protein orientation (Sezer et al., 2011). Typically, thiols adsorbed on 

gold or silver substrates are used to form self-assembled monolayers (SAMs), which 

serve as functional surfaces for protein adsorption. In order to improve the stability of 

membrane enzymes, new approaches have been designed to ensure the immobilisation 

of protein complexes within lipid membranes resembling the natural lipid environment. 

Like the thiol SAMs, lipid membranes are formed via self-assembly. The incorporation 

of the enzyme is achieved by first immobilising the detergent-solubilised protein and 

then replacing the detergent by lipids via dialysis. Alternatively, protein-containing 

vesicles can be fused with pre-formed lipid bilayers (Jeuken, 2009; Friedrich et al., 
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2008abc). The coverage and thickness as well as the electrical properties of bilayers 

vary depending on the preparation technique. 

2.2.1 Tethered enzymes 

Lipid-embedded enzymes can be tethered to the metal surface via the affinity tag 

(Figure 2.17). The metal ion (Ni2+) in the tag tether was proposed to mediate electron 

transfer (Friedrich et al., 2008ac), which was shown to be sluggish possibly due to the 

large distance between the protein metal cofactors and the support (> 50 Å) (Hrabakova 

et al., 2006). The “sealing” properties of the lipid bilayer are also proposed to hinder 

electron transfer (Friedrich et al., 2008b). However, by improving the control of the 

enzyme orientation, via the affinity tag positioning, and using another enzyme as a 

mediator (e.g. a binding partner like cytochrome c for cytochrome c oxidase), fast 

electron exchange is observed (Friedrich et al., 2008ac; Ataka et al., 2006).  

 

Figure 2.17 Schematic representation of a lipid-reconstituted membrane protein  

attached to an electrode via its affinity tag (the tag binds to a transition metal complex like Ni2+-

nitrilotriacetic acid that is surface-bound via a thiol moiety). 

2.2.2 Solid-supported lipid bilayers 

Enzyme molecules incorporated in thiopeptide-supported lipid bilayers (Figure 2.18), 

typically classified as solid-supported lipid bilayers, also require an additional enzyme 
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to mediate electron transfer to the electrode (Naumann et al., 1999). Cytochrome c 

oxidase, embedded in such a lipid membrane, was found to exchange electrons via 

cytochrome c. 

 

Figure 2.18 Schematic representation of a solid-supported lipid bilayer. 

Direct electron transfer was achieved with a strategy involving the covalent attachment 

of the protein to the electrode and the formation of the lipid bilayer on top of the protein 

film via lipidic tails that anchor the protein to the membrane (Figure 2.19) (Gutierrez-

Sanchez et al., 2011). The recorded H2 oxidation activity of Desulfovibrio vulgaris 

Hildenborough [NiFeSe] hydrogenase showed that the lipid bilayer enhances protein 

stability. 

 

Figure 2.19 Schematic representation of a solid-supported lipid bilayer formed on top of a layer of 

proteins attached covalently to the electrode. 
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2.2.3 Hybrid lipid bilayers 

The immobilisation of cytochrome c oxidase in a hybrid membrane made of a partially 

formed thiol SAM intertwined with a lipid bilayer (Figure 2.20) has been proposed to 

allow direct electron transfer between the enzyme and the electrode (Cullison et al., 

1994). However, it was found that electron transfer in this kind of setup is slow, limiting 

enzyme turnover (Su et al., 2004). The cause of slow interfacial electron transfer was 

attributed to non-optimal protein orientation. 

 

Figure 2.20 Schematic representation of a membrane protein incorporated in a thiol-containing lipid 

membrane adsorbed on a support. 

Hybrid lipid bilayers can also be formed inside a non-conductive microporous structure 

attached to a conductive support. Such a setup was constructed from an aluminium 

oxide microporous layer attached to a gold electrode (Marchal et al., 2001). Lipid 

bilayers were formed on alkane thiol monolayers adsorbed on both the gold and the 

aluminium oxide surfaces inside the pores. Ubiquinone-8, a lipid soluble natural 

electron carrier, was used as an electron mediator. The catalytic turnover of the quinone-

dependent pyruvate oxidase was efficiently controlled via the redox state of the quinone 

pool. 
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2.2.4 Tethered bilayer lipid membranes 

The use of thiol-functionalised lipids mixed with short-chain alkane thiols allows the 

incorporation of transmembrane proteins into tethered bilayer lipid membranes (tBLMs) 

(Figure 2.21). When these mixed SAMs phase separate on the electrode surface, regions 

of tethered lipid bilayer are formed that can accommodate transmembrane protein 

domains (Jeuken et al., 2007a; Jeuken et al., 2006). This approach also enables the 

immobilisation of native membrane extracts, which eliminates the need for enzyme 

purification and maintains the natural lipid environment of the protein (Weiss et al., 

2009; Jeuken, 2009; Jadhav et al., 2008; Jeuken et al., 2005; Dodd et al., 2003). Direct 

electron transfer has not been reported so far for redox enzymes in tBLMs. However, by 

incorporating natural quinones, mediated electron transfer occurs via quinone/quinol 

redox cycling (see Section 2.2.4.1). 

 
Figure 2.21 Schematic representation of a membrane protein incorporated in a tethered bilayer lipid 

membrane. 

Tin-doped indium (ITO) oxide electrodes have also been used to form lipid bilayers 

containing thiol-functionalised lipids (Devadoss and Burgess, 2002). The activity of 

cholesterol oxidase inserted in such a bilayer was only partially characterised via 

electrochemical detection of hydrogen peroxide reduction with no evaluation of the 

kinetics of the catalytic process. 
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2.2.4.1 The tethered bilayer lipid membrane system employed in this thesis 

The approach used in this study for immobilizing the protein makes use of tethered 

bilayer lipid membranes (tBLMs). The configuration used here employs the formation 

of a mixed SAM onto a gold surface. The mixed SAM is composed of a cholesterol 

derivative (EO3-cholesteryl), which acts as a tether, and 6-mercaptohexan-1-ol that 

fulfils the role of a spacer (Figure 2.22). Both the tether and the spacer molecule possess 

thiol groups that ensure the adsorption onto the gold surface. The cholesteryl moiety of 

the EO3-cholesteryl, separated from the thiol group by three ethylene-oxy units, is 

inserted in the lower leaflet of the lipid bilayer (Boden et al., 1997). 

 

Figure 2.22 Schematic representation of the R. eutropha MBH as part of the supercomplex of 

heterotrimers inserted in the tBLM, which is tethered to a gold electrode via a mixed SAM. The chemical 

structures of the tether (EO3-cholesteryl) and the spacer (6-mercaptohexanol) in the SAM are depicted in 

red/blue and dark red. The redox cycling reactions of ubiquinone (UQ↔UQH2) are represented in the top 

left corner: ubiquinone (UQ) is reduced by the cytochrome b (HoxZ subunit) to ubiquinol (UQH2) which 

is oxidized at the electrode surface. 

The lipid bilayer is formed by adhesion and rupture of phospholipid vesicles in the 

presence of calcium ions (Ca2+). The lipid vesicles are formed by extrusion. Calcium 

ions, further added as fusing agents, are thought to screen negative charges and therefore 
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modify electrostatic interactions (Richter et al., 2006; Jeuken et al., 2005). The E. coli 

lipid extracts used in this study contain approximately 20-35 % cardiolipin and 

phosphatidylglycerol, which are negatively charged phospholipids at neutral pH (Avanti 

Polar Lipids, www.avantilipids.com). The positively charged calcium ions are assumed 

to reduce the electrostatic repulsions between the lipid vesicles favouring the formation 

of the tethered lipid bilayer membrane (Weiss et al., 2010; Jeuken et al., 2007b). 

The incorporation of proteins into the tethered bilayer is achieved by mixing lipid 

vesicles with cytoplasmic membrane extracts and subjecting them to a series of 

freeze/thaw cycles followed by extrusion (Dodd et al., 2008). This leads to the 

formation of mixed vesicles containing the protein having the membrane integral 

domain inserted into the vesicle wall. Electron transfer is mediated by quinones, such as 

ubiquinone-8, ubiquinone-10 or menaquinone-7, which are mixed with the lipids used in 

vesicle preparation. The redox state of the quinone pool is controlled via the electrode 

potential. In this way, the catalytic activity of the electro-active enzyme, found in 

equilibrium with the quinone pool, can be driven electrochemically (Figure 2.22). Lipid-

soluble quinones, like ubiquinone, are known to have high enough short-range diffusion 

coefficients (D = 10-6 cm2 s-1) (Di Bernardo et al., 1998; Fato et al., 1986; Lenaz and 

Fato, 1986) in a phospholipid lipid bilayer (~ 5 nm thickness) (Jeuken et al., 2006) to 

drive the activity of mitochondrial redox complexes, which can maintain turnover 

frequencies exceeding 1000 s-1 (Fato et al., 1986; Lenaz and Fato, 1986). The use of 

high overpotentials ensures the poising of the quinone pool in the fully oxidized or 

reduced state during enzyme turnover (Jeuken et al., 2008). Quinones are typically 

added in excess of the physiological two-dimensional concentration of 2-3 pmol cm-2 
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(Marchal et al., 2001; Hackenbrock et al., 1986; Wallace and Young, 1977) to ensure 

that enzyme turnover is not limited by quinone conversion. 



Chapter 3 

 

68 
 

3. Materials and methods 

3.1 Chemicals 

All electrochemical experiments and membrane preparations were carried out using the 

following buffer solution: 20 mM MOPS (3-morpholinopropane-1-sulfonic acid) 

(Sigma-Aldrich), 30 mM Na2SO4 (Sigma-Aldrich), pH 7.4. For the pH dependency 

experiments the following mixed buffer solution was used: MOPS, MES (2-(N-

morpholino)ethanesulfonic acid) (Sigma-Aldrich), TAPS (3-[[1,3-dihydroxy-2-

(hydroxymethyl)propan-2-yl]amino]propane-1-sulfonic acid) (Sigma-Aldrich), CHES 

(2-(Cyclohexylamino)ethanesulfonic acid) (Sigma-Aldrich), sodium citrate (Sigma-

Aldrich) at 20 mM concentration, and 30 mM Na2SO4, pH 5-9. The pH was adjusted to 

the desired value with concentrated NaOH and H2SO4 solutions. All aqueous solutions 

were prepared using purified water (Millipore, 18.2 MΩ cm). All organic solvents were 

HPLC grade and were used without further purification. EO3-cholesteryl was made as 

previously described by Boden et al., 1997 (provided by the group of R. J. Bushby, 

University of Leeds). 6-Mercapto-1-hexanol (Sigma-Aldrich) was used without further 

purification. Ubiquinone-10 (Sigma-Aldrich) (Figure 3.1) and menaquinone-7 (Wako 

Chemicals) (Figure 3.1) were used as solutions in chloroform (1 mg/mL) and stored at -

20 oC. E. coli polar lipid extracts (Avanti Polar Lipids) were stored in 5 mg dry aliquots 

under nitrogen at -20 oC. CCCP (Carbonyl cyanide m-chlorophenyl hydrazine) (Sigma-

Aldrich) was stored as a 1 mg/mL stock solution in methanol. 
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Figure 3.1 The chemical structures of ubiquinone-10 and menaquinone-7. 

3.2 Preparation of cytoplasmic membrane extracts of R. eutropha 

Cytoplasmic membranes were prepared from total membranes of R. eutropha HF632 

(MBHwt expression strain), HF690 (ΔhoxK control strain lacking the MBH small 

subunit), and HP29 (MBHC19G/C120G expression strain) by sucrose gradient 

centrifugation. The total membrane samples were provided by Dr. Stefan Frielingsdorf 

and Prof. Dr. Oliver Lenz at the Technische Universität Berlin (Germany). The fresh 

total membranes were tested for H2 oxidation activity using the spectrophotometric 

assay (see below) before and after being sent to the University of Leeds (Schink and 

Probst, 1980). To separate the cytoplasmic membranes from outer membranes, total 

membrane pellets were resuspended in 25% (w/w) sucrose in MOPS/Na2SO4 buffer and 

loaded as the top layer of a 30% (w/w) to 55% (w/w) sucrose gradient. The sucrose 

layers were then centrifuged at 38000 rpm (Ti45 rotor, Beckman) for 16 hours with 

minimum acceleration and no breaking. The two bands were found next to each other 

with no clear separation. Consequently, the lower outer membrane fraction (light brown) 
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contains cytoplasmic membrane particles (dark brown). The cytoplasmic membrane 

fraction was washed by centrifuging two times in MOPS/Na2SO4 buffer at 41000 rpm 

(Ti45 rotor, Beckman) for 1 hour. Protein content was determined by BCA assay and 

SDS-PAGE (Figures 3.2, 3.3, and 3.4). The H2 oxidation activity of inner membrane 

samples was checked via the spectrophotometric assay. The cytoplasmic membranes 

were resuspended in MOPS/Na2SO4 buffer and stored at -80 oC. 

 

Figure 3.2 Expression level of MBHwt in R.eutropha HF632 by comparison to R.eutropha HF690 

expressing ΔHoxK MBH (12.5 % acrylamide SDS-PAGE; Coomasie staining; 80 μg total protein from 

the membrane extract; M- marker; IM – inner (cytoplasmic) membrane; OM - outer membrane). The 

expression level is higher in the HF632 strain compared to the control strain HF690 strain based on the 

intensity of the bands corresponding to the large subunit (HoxG, 67.2 kDa), the small subunit (HoxK, 

34.6 kDa), and the cytochrome b562 subunit (HoxZ, 27.6 kDa). The inner membrane fraction was 

separated from the outer membrane fraction by sucrose gradient centrifugation as explained in the text. 
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Figure 3.3 Expression level of MBHwt in the inner membrane fraction by comparison to the outer 

membrane fraction of R.eutropha HF632 (12.5 % acrylamide SDS-PAGE; Coomasie staining; 80 μg total 

protein from the membrane extract; M- marker; IM – inner (cytoplasmic) membrane; OM - outer 

membrane). The inner membrane fraction was separated from the outer membrane fraction by sucrose 

gradient centrifugation as explained in the text. The outer membrane fraction contains inner membranes 

due to the poor separation of the bands on the sucrose gradient. 

 

Figure 3.4 Expression level of MBHC19G/C120G in R.eutropha HF210 (12.5 % acrylamide SDS-PAGE; 

Coomasie staining; 140 μg total protein from the membrane extract;M- marker; IM – inner membrane; 

OM - outer membrane). 
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3.3 Spectrophotometric activity assay 

A 1 mL septum-capped cuvette containing 100 μM methylene blue buffered solution 

was saturated with H2 (MOPS/Na2SO4 buffer, pH 7.4). Immediately after stopping H2 

purging, a sample of cytoplasmic membranes containing 45-50 μg of total protein was 

injected into the cuvette. Methylene blue reduction was assessed by monitoring the drop 

in absorbance at 570 nm (ε = 13.1 cm2/mol) using a SHIMADZU UV-2450 UV-VIS 

spectrophotometer. Activity was calculated as μmol H2/minute.mg of enzyme. All the 

samples were prepared on the bench. The inner (cytoplasmic) membrane samples 

retained at least 50% of activity (15 μmol H2/minute.mg) compared to the total 

membranes samples (29 μmol H2/minute.mg, measured after isolation from disrupted 

cells). 

3.4 Electrode preparation and SAM formation 

Template stripped gold (TSG) surfaces were prepared as follows. Polished silicon 

wafers (Rockwood Riddings Wafer Reclaim) were cleaned by sonication in purified 

water (three times for 5 minutes) and dichloromethane (three times for 5 minutes) and 

dried under nitrogen. A layer of 150 nm gold (Goodfellows) was deposited by 

evaporation on the silicon wafers using an Edwards Auto 306 evaporator at < 2 x 10-6 

mbar. Glass slides were then glued to the gold surfaces using EPO-TEK 377 (Epoxy 

Technology) which was cured for 2 hours at 120 oC. The glass slides were detached 

from the silicon wafers to expose the TSG surfaces whenever needed. Self-assembled 

monolayers (SAMs) were prepared by immersing TSGs in 1 mM thiol solutions in 2-

propanol (Fischer) for 18 hours at room temperature. The thiol solutions contained EO3-
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cholesteryl and 6-mercapto-1-hexanol in ratios ranging from 9%/91% to 12%/88% 

(mol%). The TSGs were then washed with 2-propanol several times and dried under a 

flow of nitrogen. The thiol surface coverage was estimated via electrochemical 

impedance spectroscopy (EIS), assuming that the capacitance of a mixed SAM is a 

linear combination of the surface area fractions with the capacitances of pure thiol 

SAMs (CSAM = χEO3-cholesteryl 
. CEO3-cholesteryl + χ6-mercaptohexanol 

. C6-mercaptohexanol, where “C” 

is capacitance and “χ” is the surface fraction; CEO3-cholesteryl = 0.78 μF/cm2 and C6-

mercaptohexanol = 4.3 μF/cm2) (Jeuken et al., 2006). 

3.5 Formation of tethered bilayer lipid membranes (tBLMs) 

Ubiquinone or menaquinone were mixed with E. coli polar lipids dissolved in 

chloroform (ubiquinone in dry lipids - 1% w/w; menaquinone in dry lipids - 2% w/w). 

The E. coli phospholipid polar extract contains 67% phosphatidylethanolamine, 23.2% 

phosphatidylglycerol, and 9.8% cardiolipin. The chloroform solution containing E. coli 

polar lipids and quinone was kept for 15 minutes under nitrogen to evaporate 

chloroform. In order to ensure the complete removal of chloroform the dry E. coli 

lipids-quinone mixture was kept under vacuum for two hours. The dry mixture was then 

resuspended in MOPS/Na2SO4 buffer (pH 7.4) and extruded through a 200 nm 

track-etched membrane using a mini-extruder (Avanti Polar Lipids). The obtained 

vesicles were mixed with cytoplasmic membrane extracts from R. eutropha to obtain a 

ratio of dry lipids (E. coli polar lipids) to dry total protein (from the cytoplasmic 

membrane extract) of 1:10, 3:10 or 4:10 (w/w). The obtained mixture was subjected to 

three freeze-thaw cycles and extruded through a 400 nm track-etched membrane to 

obtain mixed vesicles. TBLMs were formed by adding mixed vesicles, at a final lipid 
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concentration of 0.45 mg/mL, to the TSG/SAM (with a surface coverage of 

EO3-cholesteryl between 30-50%) in the presence of 10 mM CaCl2 in MOPS/Na2SO4 

buffer (pH 7.4). The formation of the bilayer was verified by monitoring the drop of the 

double layer capacitance using electrochemical impedance spectroscopy (EIS) 

measurements. The impedance data was recorded at the open circuit potential (i.e. 0.2 

V). After the formation of the tBLM (1h), the surface was rinsed with MOPS buffer (20 

mM MOPS, 30 mM Na2SO4, pH 7.4) to remove remaining vesicles, with 1mM EDTA-

MOPS buffer to remove Ca2+ ions, and again with MOPS buffer to remove EDTA. The 

integrity of the bilayer-SAM system was checked after washing and throughout the 

experiment via EIS (0.2 V). The EIS data, along with CV data, confirmed that the tBLM 

was stable in the potential range of -0.4 V to +0.6 V at high temperature (up to 50 C) 

under nitrogen, hydrogen and/or oxygen conditions. Based on the area of the 

voltammetric redox signals, ubiquinone coverage was found to lie between 6-8 

pmol/cm2. It was previously noted that the commercially obtained E. coli polar lipids 

extracts contain small amounts of ubiquinone-8 (footnote 56 in Jeuken et al., 2006). 

Accordingly, the mixed vesicle preparation with 2% (w/w) menaquinone-7 (without 

added ubiquinone-10) also contains ubiquinone-8 (1-1.4 pmol/cm2). It is possible that 

part of the ubiquinone-8 originates from the cytoplasmic membrane extracts of R. 

eutropha, which are also likely to contain ubiquinone-8, although this was not 

confirmed independently. 

3.6 Electrochemistry 

Electrochemical measurements were carried out in a thermostatically controlled three 

electrode electrochemical cell (Soham Scientific), which holds 2 mL of buffer solution. 
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The water bath used for temperature control (Optima, Grant Scientific) was connected to 

the water jacket of the glass cell through soft tubing. A silver-silver chloride 

(Radiometer Analytical) or a mercury-mercury sulphate (Radiometer Analytical) 

electrode were used as reference electrodes. A platinum wire was used as a counter 

electrode. The gold working electrode was secured at the open base of the cell with 

rubber o-rings and a PTFE [poly(tetrafluoroethylene)] electrode holder. A 5 mm × 10 

mm cross-shape magnetic stirrer bar added to the cell allowed stirring with the use of a 

magnetic stirrer plate placed underneath the cell (Figure 3.5).  

 

Figure 3.5 Schematic representation of the cross-section of the electrochemical cell with magnetic stirring. 

Alternatively, an electrochemical cell with the reference electrode housed in a non-

isothermal side-container (Soham Scientific) was used in conjunction with mechanical 

stirring (using a Caframo stirrer) (Figure 3.6). 

All potentials are quoted versus the SHE (ESHE=EHg/Hg2SO4 + 651 mV at 25 oC; 

ESHE=EAg/AgCl + 199 mV at 25 oC).  The reference potential was corrected with respect 
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to temperature using the data provided in the operating instruction manual (Reference 

Electrodes, Radiometer Analytical) (Table 3.1). 

Table 3.1 The reference potential (mV versus SHE) as a function of temperature (oC). 

Temperature 

(oC) 

10 20 25 30 40 50 60 

EAg/AgCl (mV) 214 204 199 194 184 173 163 

EHg/Hg2SO4 (mV) 664 655 651 647 639 631 623 

Chronoamperometric data obtained with magnetic stirring was smoothed using a 

moving average procedure (10-25 data points averaging at a sampling rate of 10 data 

points/second). 

 

Figure 3.6 Schematic representation of the cross-section of the electrochemical cell with mechanical 

stirring and the reference electrode housed in a non-isothermal side-container. 

Unless stated otherwise, the electrochemical cell was housed in a Faraday cage (for 

electrical noise minimization) inside a nitrogen-filled glove box (MBraun Lab Master 

sp) which maintains oxygen levels below 0.1 ppm. Gases were bubbled into the cell 

solution at constant flow rates using two gas mass flow controllers (Smart-Trak Series 
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100, Sierra Instruments, accuracy: 1% of full range) connected to 5-μm-rated 

polyethylene mini filters (Master Pneumatic, FD50-2T) for solid impurity retention. The 

gases used were hydrogen (BOC), nitrogen (oxygen-free, BOC), medical air (BOC), and 

a 95% nitrogen - 5% hydrogen mixture (BOC). Gas-saturated aliquots were inserted into 

the electrochemical cell via an epidural catheter tube (Sarsted). Electrochemical 

measurements were carried out using an Autolab (Eco-chemie) electrochemical analyzer 

equipped with a PGSTAT30 potentiostat, SCANGEN module and a FRA2 frequency 

analyzer. 
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4. Immobilisation and parameters of activity monitoring of MBH 

The formation of lipid bilayers containing MBH was monitored by electrochemical 

impedance spectroscopy (EIS, see Section 2.1.3 and Section 3.5). EIS has the advantage 

of probing the adsorbed SAMs and tBLMs without poising the potential at values that 

would disturb the electrochemical equilibrium. Cyclic voltammetry was employed for 

probing the dependency of the activity of MBH on pH, temperature, and the 

composition of the quinone pool in the tBLM. This allowed the determination of the 

optimum conditions for monitoring the catalytic properties of MBH. 

Activity assays based on membrane extracts are prone to interferences from co-

expressed enzymes. The probing of control variants is crucial in this case. As mentioned 

previously, R. eutropha expresses four hydrogenases. While the reversible NADH-

dependent (SH) and the regulatory hydrogenase (RH) are water-soluble, the 

actinobacterial hydrogenase (AH) possesses a small subunit C-terminal extension 

similar to that of the small subunit (HoxK) of MBH, which might favour fixation to the 

membrane (Schäfer et al., 2016). It was therefore necessary to test whether the 

cytoplasmic membrane extracts exhibit H2 oxidation activity in addition to that 

attributable to the MBH. This was done using cytoplasmic membrane samples from a 

mutant, HF690, expressing an MBH variant (ΔHoxK) which lacks the hydrophilic 

subunits containing the metal active site and the [FeS] relay. 
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The 2H

MK  was determined in order to provide a measure of the affinity for H2 of the 

heterotrimeric MBH in equilibrium with the quinone pool as well as evidence of the 

correct preservation of the active site structure. 

4.1 Immobilisation of MBH 

4.1.1 Capacitance and protein content of tBLMs 

As emphasized above, the electrochemical properties of the tBLMs employed in the 

study were assessed using EIS and cyclic voltammetry. The capacitances of lipid 

bilayers and SAMs can be directly extracted from frequency-normalised admittance 

plots obtained with EIS.  Based on the equivalent electrical circuit models of the SAMs 

and the tBLMs described in Section 2.1.3, the diameter of the semi-circles in Figure 4.1 

and 4.2 is equivalent to the double layer capacitance of the SAMs and the capacitance of 

tBLMs. As these are the only crucial parameters necessary for verifying the correct 

formation of the tBLMs, the EIS data sets were not fitted with simulated spectra derived 

from equivalent circuits to determine other electrical properties. The surface coverages 

of the SAM thiols were determined based on the value of the capacitance (see Section 

3.5). 

It was found that SAMs with EO3-cholesteryl coverages between 50% and 80% ensure 

the formation of tBLMs, incorporating cytoplasmic membranes of R. eutropha, with 

capacitances in the interval 0.7-0.9 μF/cm2 (Figure 4.1). According to previous studies, 

typical artificial tethered bilayer capacitances vary between 0.4 and 0.8 μF/cm2 (Schiller 

at el., 2003; Jadhav et al., 2008), although values one order of magnitude higher have 

been reported when proteins are incorporated (Friedrich et al., 2008ab). 
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Figure 4.1 Overlay of EIS spectra measured at 0.199 V vs SHE 

showing the decrease of the double layer capacitance upon formation 

of a tBLM of E. coli polar lipids incorporating inner membranes containing 

the MBH (the diameter of the half circle is equivalent to the 

double layer capacitance; 55% EO3-cholesteryl coverage; ratio of dry enzyme 

to dry polar lipids of 1:10). 

In order to improve the level of the recorded catalytic current, the ratio of dry total 

protein to dry polar lipids in the mixed vesicle preparation was optimised by varying its 

value between 1/10 and 4/10. H2 oxidation activity was found to increase with the 

protein-to-lipid ratio. The increase in enzyme activity upon increasing the ratio from 

1/10 to 4/10 was in the range of 3- to 5-fold (compare the current levels at 30 oC and pH 

7.4 in Figure 4.10 with the ones in Figure 4.8 at 30 oC and pH 7). The increase of the 

protein-to-lipid ratio had no effect on the capacitance (compare Figure 4.1 and 4.2) or 

on the stability of the tBLM at high temperature and high electrode potential (see 

Section 4.2 and Section 4.4). In addition, the activity level was found to increase with 

tBLM capacitance (approximately 20% increase in activity per 1 μF/cm2 increase in 

capacitance in the interval 0.9-1.5 μF/cm2 and 40-50% in the interval 1.5-2.5 μF/cm2). 

EO3-cholesteryl coverages between 30% and 50% were found to lead to tBLM 
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capacitances of 0.9-2.5 μF/cm2, which is indicative of incomplete tBLM coverage. 

These lipid bilayers allowed the probing of enzyme activity for more than six hours, 

showing the same stability as the tBLMs with capacitance values below 0.9 μF/cm2. 

Consequently, most of the experiments described in the following chapters were 

conducted using tBLMs with capacitances in the interval 0.9-2.5 μF/cm2.  
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Figure 4.2 Overlay of EIS spectra measured at 0.199 V vs SHE showing the  

decrease of the double layer capacitance upon formation of a tBLM of E. coli polar lipids incorporating 

inner membranes containing the MBH (the diameter of the half circle is equivalent to the double layer 

capacitance; 74% EO3-cholesteryl coverage; ratio of dry enzyme to dry polar lipids of 4:10). 

The increase in activity with tBLM capacitance may be caused by an enhancement of 

the H+ transfer from/to the quinone pool facilitated by a change in the packing density of 

the lipid bilayer. Quinone redox conversion is gated by protonation/deprotonation steps, 

which are rate-determining in highly insulating (low-capacitance) lipid bilayers 

(Gordillo and Schiffrin, 2000). The area of the quinone redox peaks was also found to 

increase with tBLM capacitance. By lowering the EO3-cholesteryl fraction on the 

electrode surface, incomplete bilayers are formed, which have higher capacitances (0.9-
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2.5 μF/cm2) and higher permeability to protons. Cholesterol is known to have a 

rigidifying effect on lipid bilayers, increasing their viscosities (Lenaz and Fato, 1986). 

Previously it was determined that an EO3-cholesteryl coverage of 30% is optimum for 

observing quinone peaks (Jeuken et al., 2005). Consequently, lowering of the EO3-

cholesteryl fraction on the electrode surface might improve H+ transfer due to the 

decrease of the lipid bilayer viscosity. 

4.1.2 Activity measurements 

Cyclic voltammetry experiments were used to test the integrity of tBLMs and assess the 

activity of MBH. The stability potential window of the SAM-tBLM system was found 

to be in the interval of -0.3 to 0.6 V at 10 mV/s. Consequently, in all voltammetric 

experiments at slow scan rates, the potential was cycled between these values. This 

impedes the investigation of the H+ reduction activity of MBH, which is detectable at 

potentials below -0.3 V at physiologically relevant pH values of 5 to 8. 

The scans recorded under 100% N2 reveal the ubiquinone reduction and ubiquinol 

oxidation peaks (Figure 4.3, grey line). The large peak separation (~0.4 V) at 10 mV/s is 

caused by the aforementioned coupling of electron transfer with 

protonation/deprotonation steps, which are slow in the lipid phase (Gordillo and 

Schiffrin, 2000). As expected, the redox peak potentials shift with scan rate due to the 

quasi-reversibility of the quinone/quinol couple (see Section 2.1.1.1). The H+ gating of 

the redox conversion of the quinone couple also causes the quinone peaks to shift with 

pH (see Section 4.2.1), temperature (see Section 4.2.2 and Section 4.4), and the 
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capacitance of the tBLM, which might influence H+ transfer from/to the quinone pool 

(see Section 4.1.1). 
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Figure 4.3 Overlay of cyclic voltammograms of MBHwt inserted in the tBLM  

(10 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; pH 7.4; 30 oC; grey 

line-100% N2; black line-100% H2). The arrows indicate the direction of scan. 

The scans recorded under 100% H2 reveal catalytic wave shapes typical for H2 oxidation 

activity (Figure 4.3, black line). No current plateaus in the high potential region of the 

scans are observed, possibly due to the aforementioned slow H+-coupled ubiquinol 

oxidation in the lipid bilayer. However, changing the pH did not significantly alter the 

shape of the wave (see Section 4.2.1). The same outcome was observed with the 

addition of the ionophore CCCP (carbonyl cyanide m-chlorophenyl hydrazine), which 

improves the permeability of lipid membranes to protons (Figure 4.4). Scans recorded 

with menaquinone-loaded tBLMs showed the same residual slope at high potential 

despite the bigger activity potential window (see Section 4.4). The current slope might 

be a consequence of the poor coupling to the quinone pool due to tBLM defects in the 
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proximity of proteins, but the lack of suitable alternative lipid-soluble redox mediators 

did not allow the testing of such a hypothesis. 
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Figure 4.4 Overlay of cyclic voltammograms showing the effect of CCCP (Carbonyl cyanide m-

chlorophenyl hydrazine) on the shape of the catalytic wave of H2 oxidation (10 mV/s; ubiquinone-

containing tBLM; 4:10 dry total protein to dry polar lipids; 30 oC; pH 7.4). 

The onset of H2 oxidation coincides with the onset of ubiquinol oxidation at the 

electrode, confirming the fact that electron transfer between MBH and the electrode 

takes place via the quinone pool (Figure 4.3, black line). The ubiquinone reduction peak 

is absent in the scan recorded in the presence of H2 due to the complete reduction of the 

ubiquinone pool by MBH. Under 100% H2, MBH shows no anaerobic inactivation even 

at scan rates as low as 1 mV/s (Figure 4.5). 
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Figure 4.5 Cyclic voltammogram of MBHwt inserted in the tBLM  

(1 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids pH 7.4; 30 oC). 

4.1.3 Control experiments 

Control experiments were carried out by recording voltammograms of the ΔHoxK MBH 

variant (Figure 4.6), which lacks the small (HoxK) and the large (HoxG) subunits. 
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Figure 4.6 Overlay of cyclic voltammograms of ΔHoxK MBH 

(10 mV/s; ubiquinone-containing tBLM; 1:10 dry total protein to dry polar lipids; pH 7.4; 30 oC; grey 

line-100% Ar; black line-100% H2). 
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The scans recorded under H2 show no catalytic oxidation current, which proves that 

there are no other enzymes with H2 oxidation activity in the cytoplasmic membranes in 

addition to MBH (Figure 4.6). Small O2 reduction currents can be observed at low 

potential (below -0.2 V) in Figure 4.6 due to the fact that these experiments were carried 

out on the bench and trace amounts of O2 reach the electrode surface despite purging of 

the electrochemical cell with Ar. In these conditions, quinone-converting enzymes 

present in the cytoplasmic membranes of R. eutropha (e.g. ubiquinol oxidases) couple 

O2 reduction to ubiquinol oxidation. Due to this, less ubiquinol is oxidized at the 

electrode leading to the absence of clearly defined ubiquinol oxidation peaks (Figure 

4.6). 

Additional control experiments were conducted using tBLMs containing E. coli polar 

lipids only. As expected, no H2 oxidation catalytic current was observed in the scans 

recorded under 100% H2 (Figure 4.7). The ubiquinone redox peaks show no change 

when switching from N2 to H2. 
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Figure 4.7 Overlay of cyclic voltammograms of a tBLM containing only E. coli polar lipids and 

ubiquinone (10 mV/s; pH 7.4; 30 oC; grey line-100% N2; black line-100% H2; ubiquinone-containing 

tBLM). 
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4.2 Influence of pH and temperature on the activity of MBH  

4.2.1 pH dependence 

The pH dependence of the enzymatic activity was tested in the interval 5-9. The onset of 

H2 oxidation shifts to lower potentials with increasing pH (Figure 4.8) due to the 

decrease of the potential of H+-coupled ubiquinol oxidation (Figure 4.9). 
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Figure 4.8 Overlay of cyclic voltammograms showing the effect of pH on the H2 oxidizing activity of 

MBHwt (10 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; 30 oC; grey 

line-100% N2; black line-5% H2; mixed buffer solution: MOPS, MES, TAPS, CHES, sodium citrate at 20 

mM concentration, and 30 mM Na2SO4). 

At pH 9, the enzyme loses activity almost completely. No recovery is observed upon 

lowering the pH, suggesting that inactivation is caused by irreversible denaturation of 

the protein complex in the tBLM. Based on the activity potential window, the optimum 

pH range for monitoring the H2 oxidation activity of MBH is in the interval of 7-8. In 

contrast, the optimum pH range of the heterodimeric sub-complex of MBH on pyrolytic 

graphite electrodes is reported to be in the interval 4.5-6.5 (Ludwig et al., 2009; Goldet 
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et al., 2008; Vincent et al., 2005ab). Schink and Schlegel (1979) found approximately 

the same optimum pH ranges for the heterodimeric and the heterotrimeric complex 

using assays based on artificial redox dyes. 
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Figure 4.9 Overlay of cyclic voltammograms showing the pH dependence of ubiquinone redox cycling 

(10 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; 30 oC; 100% N2). 

4.2.2 Temperature dependence 

The temperature dependence of the MBH activity was probed in the interval 20-50 oC 

(Figure 4.10). The level of activity increases with temperature. At temperatures of 20 oC 

- 30 oC the SAM-tBLM system is stable for more than six hours. Due to small activity 

losses (<5%) between scans at temperatures of 40 oC and 50 oC, all remaining 

experiments in the thesis were conducted at 30 oC. 
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Figure 4.10 Overlay of cyclic voltammograms showing the effect of temperature on the H2 oxidizing 

activity of MBHwt (10 mV/s; ubiquinone-containing tBLM; pH 7.4; 1:10 dry total protein to dry polar 

lipids; grey line-100% N2; black line-100% H2). 

4.3 Determination of 2H

MK  

4.3.1 Determination of 2H

MK  by transient measurements 

Transient measurements make use of the time-dependent evolution of the current 

response following a short pulse of substrate or inhibitor, while the driving force is kept 

constant via the electrode potential. The resulting catalytic response, obtained with 

chronoamperometry, is analysed to determine various kinetic inhibition/activation 

parameters (Ludwig et al., 2009; Leger et al., 2004).  
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Figure 4.11 Chronoamperogram showing the exponential decay of the O2 reduction current at a bare Au 

electrode following a pulse of O2 (-0.353 V; 30 oC; pH 7.4; N2 flushing; O2 concentration after injection: 

46 μM). The dashed trace (light gray) is the exponential fit to the current decay (C(t)=C(0)·exp(-t/τ); C is 

concentration, and t is time). 

In the case of hydrogenases, both substrates and inhibitors are gases, which can be 

removed by flushing with another gas (preferably inert gases like N2 or Ar). 

Concomitant stirring of the electrochemical cell solution ensures the exponential 

removal of the added gas. In order to determine the time constant for exponential gas 

removal (τ in Equation 5, Section 1.1.3.2.4), O2 was used as a probe. O2 reduction at a 

bare gold electrode was monitored following the injection of an air-saturated aliquot of 

buffer solution into a N2-flushed electrochemical cell (Figure 4.11). The value of τ was 

determined to be 22 s. For the determination of 2H

MK , a H2-saturated aliquot of buffer 

was injected into the electrochemical cell solution while the electrode potential was held 

at a value which maintains the quinone pool in the tBLM completely oxidized. Upon 

substrate injection, the current increases up to a plateau value corresponding to the 

maximum enzyme turnover under the given H2 concentration (Figure 4.12). 
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Figure 4.12 Chronoamperogram showing the evolution of the H2 oxidation activity of MBHwt following a 

pulse of H2 (0.497 V; 30 oC; pH 7.4; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar 

lipids; time of injection: 126 s; N2 flushing; H2 concentration after injection: 160 μM). 

It was observed that there is a delay of about 60 s between the point of injection and the 

point of maximum current. This is caused by the reactivation of the enzyme from the 

Ni-B state (See Chapter 6). The heterodimeric sub-complexes of O2 tolerant MBHs 

display the same delay in PFE-based experiments (Lukey et al., 2010; Ludwig et al., 

2009). Due to the aforementioned delay and the fast depletion of H2, the enzyme reaches 

maximum activity when the substrate concentration reaches less than 20% of the initial 

value. Consequently, the observed maximum current plateaus are short lived. After 

reaching the maximum value, the catalytic current decays as H2 is flushed out of the 

electrochemical cell. The flow of H2 back into the electrochemical cell (through gas 

permeable components like rubber seals) can sometimes lead to deviations from the 

ideal exponential towards the end of the current decay. In the region where the H2 

concentration is expected to reach the zero value, the catalytic current is non-zero due to 
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the presence of H2 that leaked back into the electrochemical cell. The data points in this 

region were not fitted (Figure 4.13). 
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Figure 4.13 Plot for determining the value of 2H

MK . The transient decay data in Figure 4.12 was plotted 

according to equation 32. The continuous grey line represents the fit to the data points (t = 0 s represents 

the time of injection; the slope is equal to 1 / 2.3 τ; 0.497 V; 30 oC; pH 7.4; ubiquinone-containing tBLM; 

4:10 dry total protein to dry polar lipids; N2 flushing; H2 concentration after injection: 160 μM; the dashed 

gray line representing the extrapolation indicates the intercept with the y-axis). 

2H

MK  was determined at varying electrode potentials using the linear form of equation 5 

(Equation 34) (Figure 4.13). 
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2H

MK  was found to increase with the applied electrode potential (Table 4.1). This 

indicates that H2 oxidation of MBH might be limited to some extent by the redox 

cycling of the ubiquinone pool and that this rate limitation might have a more 

pronounced effect at lower potential. 
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Table 4.1 The value of 2H

MK  ( S.E.M.) at different potentials determined 

via transient measurements (n is the number of experiments). 

4.3.2 Determination of 2H

MK  by titration 

In order to validate the 2H

MK values obtained via transient experiments, H2 titration 

experiments were carried out. Cyclic voltammograms were recorded at increasing H2 

concentrations in the range 0.1 - 4% (v/v) in N2, which corresponds to a concentration in 

solution in the range of 0.8-32 μM (Figure 4.14A). 2H

MK  was obtained by fitting 

Michaelis-Menten curves to data points representing current values from return scans 

recorded in triplicate. 

The values determined at 0.4 and 0.5 V were in good agreement with the ones 

determined by transient measurements (Table 4.2). The 2H

MK  value at 0.6 V is 

significantly lower than the one determined via transient experiments at the same 

potential. This disparity between titration and transient measurements at high potential 

might be related to the duration of oxidative poise, which is significantly longer in the 

case of transient measurements. It has been determined with the heterodimeric sub-

complex that high potentials have a significant effect on the affinity for H2 of the active 

site of MBH (Cracknell et al., 2009). In addition, the turnover of the enzyme under low 

substrate concentration at high potential might be influenced by the reduction of the 

proximal cluster (see Chapter 6). 

Potential (V vs. SHE) +0.397 +0.497 +0.597 

2H

MK (µM) 1.5 ± 0.3  

(n=3) 

2.1 ± 0.9 

(n=8) 

9.2 ± 2.7  

(n=5) 



Chapter 4 

 

94 
 

-0.4 -0.2 0.0 0.2 0.4 0.6

0.0

0.4

0.8

1.2  MBH
wt N

2

 0.1% H
2

 0.25% H
2

 0.5% H
2

 1% H
2

 2% H
2

 4% H
2

C
u

rr
e
n

t 
d

e
n

s
it

y
 (



/c
m

2
)

Potential (V vs SHE)

A

-0.2 0.0 0.2 0.4 0.6

-0.2

0.0

0.2

0.4

0.6

0.8

 0.1% H
2

 0.25% H
2

 MBH
wt

C
u

rr
e
n

t 
d

e
n

s
it

y
 (



/c
m

2
)

Potential (V vs SHE)

B

 
Figure 4.14 (A) Overlay of cyclic voltammograms of MBHwt recorded at varying H2 concentrations 

(10 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; pH 7.4; scans were 

recorded in triplicate). (B) The scans recorded under 0.1% H2 and 0.25% H2 in triplicate. 

The voltammograms in Figure 4.14A also show that MBH does not undergo significant 

anaerobic inactivation under low substrate conditions. The decrease in current observed 

on the forward scans recorded under 0.1% H2 and 0.25 % H2 is caused by ubiquinol 

depletion due to the low turnover of MBH, although some oxidative inactivation cannot 

be excluded (Figure 4.14B). On the return scans, slight inflections can be observed 

around 0.4 V, indicative of reactivation. Taking into account the fact that three 
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consecutive scans were recorded showing the same shape characteristics, it can be 

assumed that the putative oxidative inactivation is fully reversible. 

Table 4.2 The value of 2H

MK  at different potentials determined 

from H2 titration experiments (the errors in brackets are fitting errors). 

4.4 The influence of the quinone pool composition on the activity of MBH 

In addition to ubiquinone, menaquinone was also proposed to act as an electron acceptor 

of MBH (Frielingsdorf et al., 2011). The catalytic activity of MBH in equilibrium with 

menaquinone was tested as with ubiquinone.  Tethered lipid bilayers prepared with 

menaquinone also contain trace levels of ubiquinone originating from the E. coli lipid 

extract and, possibly, the cytoplasmic membranes of R. eutropha. The faint reduction 

peak centred at approximately -0.05 V (Figure 4.15, grey trace) corresponds to 

ubiquinone reduction. 

Menaquinol oxidation starts at a potential of about -0.1 V, which is approximately 0.3 V 

lower than the onset potential of ubiquinol oxidation (Figure 4.15, grey trace). It should 

be noted that the difference between the reduction potentials of the two quinones is only 

0.15 V. The additional 0.15 V shift in the oxidation potential is caused by the difference 

between the deprotonation rates of menaquinol and ubiquinol in the lipid phase of the 

tBLM. The onset of catalytic H2 oxidation is observed at approximately -0.1 V, 

coinciding with the onset of menaquinol oxidation (Figure 4.15, black trace). The local 

Potential (V vs. SHE) +0.397 +0.497 +0.594 

2H

MK (µM) 2.6 (± 0.5) 2.5 (± 0.6) 1.7 (± 0.4) 
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current enhancement peaking at 0.35 V is due to the oxidation of the ubiquinol produced 

by MBH from the trace amounts of ubiquinone found in the tBLM. 
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Figure 4.15 Overlay of cyclic voltammograms of MBHwt inserted in a menaquinone-containing tBLM 

(10 mV/s; pH 7.4; 30 oC; 4:10 dry total protein to dry polar lipids; grey line-100% N2; black line-5% H2). 

Enzyme activity was also tested at various temperatures using a tBLM containing 

menaquinone as well as ubiquinone. Based on the surface coverages derived from the 

redox peak areas, the ratio of ubiquinone to menaquinone in the lipid bilayers varied 

between 1.5 and 2.5. Activity levels increase with temperature (Figure 4.16), as 

observed with ubiquinone (Figure 4.10) and menaquinone (Figure 4.17) as sole electron 

mediators. At a potential of about 0.25 V, the ubiquinol oxidation current adds to the 

menaquinol oxidation current, which leads to a change in the shape of the catalytic 

wave. 
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Figure 4.16 Overlay of cyclic voltammograms showing the effect of temperature on the H2 oxidizing 

activity of MBHwt inserted into a tBLM containing both menaquinone and ubiquinone 

(10 mV/s; pH 7.4; 4:10 dry total protein to dry polar lipids; grey line-100% N2; black line-5% H2). 
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Figure 4.17 Overlay of cyclic voltammograms showing the effect of temperature on the H2 oxidizing 

activity of MBHwt inserted into a tBLM containing menaquinone (10 mV/s; pH 7.4; 4:10 dry total protein 

to dry polar lipids). The onset potential for H2 oxidation shifts to lower values with temperature due to the 

decrease of the oxidation potential of menaquinol. 
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4.5 Conclusions 

The catalytic activity of MBH on the electrode increases with tBLM capacitance and the 

protein-to-lipid ratio. The experiments described in the following chapters were 

conducted using tBLMs with capacitances in the interval 0.9-2.5 μF/cm2 and a ratio of 

dry total protein to dry polar lipids of 4:10.  

Cyclic voltammetry experiments revealed that, unlike the heterodimeric sub-complex of 

MBH, the full heterotrimeric protein complex does not undergo anaerobic inactivation 

at high potential under 100% H2, even at scan rates of 1 mV/s. Electron transfer between 

the enzyme and the electrode was demonstrated to proceed via the quinone pool in the 

tBLM. 

The MBH catalytic wave was found to shift to lower potential with pH. The optimum 

pH range for monitoring activity in the tBLM setup was determined to lie between 7 and 

8. MBH activity significantly increases with temperature, but the stability of the system 

reduces at temperatures above 40 oC. The optimum temperature for monitoring H2 

oxidation activity was found to be 30 oC. The experiments described in the following 

chapters were conducted at 30 oC and pH 7.4, as in the case of the control and the 

preliminary experiments. 

The heterotrimeric MBH shows high affinity for H2, based on the 2H

MK values (1.7-9.2 

μM) determined by H2 titration and transient measurements (0.4-0.6 V). This is in 

agreement with the H2 affinity data reported for the heterodimeric sub-complex of MBH 

(6.1 μM at -0.108 V; 6.0 μM at -0.058 V) (Ludwig et al., 2009; Cracknell et al., 2009). 

Cyclic voltammetry scans recorded under low H2 concentrations (<4%) at 10 mV/s 
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revealed that heterotrimeric MBH does not undergo anaerobic inactivation at high 

potential like the heterodimeric sub-complex. 

Voltammetric data from tBLMs containing a mixed quinone pool revealed that MBH 

uses both menaquinone and ubiquinone as electron acceptors, alone and in tandem in the 

lipid bilayer. In addition, no reversible anaerobic inactivation was observed at high 

potential in any of the scans recorded from menaquinone and/or ubiquinone-containing 

tBLMs. 
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5. Inactivation of MBH under oxidizing conditions 

5.1 Anaerobic inactivation 

The heterodimeric sub-complexes of O2 tolerant MBH were shown to undergo 

reversible inactivation at high electrode potential in anaerobic conditions (Pandelia et 

al., 2010; Lukey et al., 2010; Armstrong et al., 2009; Goldet et al., 2008; Vincent et al., 

2005a). Inactivation is observed in cyclic voltammetry experiments as a drop in the 

catalytic current on the forward scan as the potential is increased, while reductive 

reactivation leads to a current recovery on the return scan as the potential is lowered 

(Figure 1.6 in Section 1.1.3.2.2). The inactivation and reactivation kinetics are 

consistent with the formation of the ready Ni-B state (See Section 1.1.3.2.2). 

Spectroelectrochemistry experiments have confirmed the accumulation of Ni-B under 

anaerobic oxidizing conditions (Hidalgo et al., 2015). 

The rate of anaerobic inactivation in the case of the heterodimeric sub-complexes of O2-

tolerant MBHs was found to be dependent on substrate concentration (Lukey et al., 

2010; Goldet et al., 2008). Cyclic voltammograms recorded under low substrate 

concentrations revealed a more pronounced drop of the catalytic current at oxidizing 

potentials. For the heterotrimeric MBH, the voltage was scanned under 0.5% H2 

(equivalent to 4 μM in solution) for 3 cycles in a row at 10 mV/s. No inactivation was 

observed at potentials up to 0.6 V (Figure 5.1). 
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Figure 5.1 Overlay of cyclic voltammograms of MBHwt under N2 and under 0.5% H2  

(10 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; pH 7.4; 30 oC; grey 

line-100% N2; black line-3 consecutive cycles under 0.5% H2). 

As the accumulation of the Ni-B state in anaerobic conditions is known to be slow 

(Evans et al., 2013; Lukey et al., 2010; Goldet et al., 2008), the potential was scanned at 

1 mV/s to probe slow inactivation kinetics (Figure 5.2). The scans show that the enzyme 

does not undergo oxidative inactivation under 0.5% H2. In fact, the level of the current 

on the return scan in the high potential region of the voltammogram in Figure 5.2 was 

slightly higher than the one on the forward scan. A crossover can be observed at about 

0.3 V. This feature could be due to slow changes in the charge distribution on the SAM 

surface (due to protonation or reorientation of the thiol molecules), which might lead to 

changes in quinone electrochemistry in the tBLM, although conclusive evidence has not 

been obtained. 
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Figure 5.2 Cyclic voltammogram of MBHwt inserted in the tBLM under 0.5% H2  

(1 mV/s; ubiquinone-containing tBLM; 4:10 dry total protein to dry polar lipids; pH 7.4; 30 oC; the 

background scan was not recorded in order to minimize possible tBLM damage or protein denaturing). 

Scans recorded at 1 mV/s under 0.1% H2 (0.8 μM in solution, significantly below the 

average value of 2H

MK  of MBH) revealed that in the high potential region the current 

levels on the return scan are slightly lower than expected based on the value of the 

capacitive current (Figure 5.3), indicative of inactivation. Scans recorded under 0.5% 

H2, following a scan recorded under 0.1% H2, showed no inactivation (Figure 5.3b). 

Compared to the heterodimeric sub-complexes of O2-tolerant MBHs, the heterotrimeric 

MBH from R. eutropha appears to undergo anaerobic inactivation at much slower rates. 

The extent of inactivation observed under 0.1% H2 is much smaller relative to the 

inactivation observed in PFE experiments, under similar oxidizing conditions, with the 

heterodimeric sub-complexes of MBHs. 
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Figure 5.3 Cyclic voltammogram of MBHwt under 0.1% H2 (a) and 0.1% /0.5% H2 (b) 

(1 mV/s; ubiquinone-containing tBLMs; 4:10 dry total protein to dry polar lipids; pH 7.4; 30 oC; 

background scans were not recorded in order to minimize possible tBLM damage or protein denaturing). 

The 0.5% H2 scan (b) was recorded after the scan recorded under 0.1% H2. 

5.2 Aerobic inactivation 

The heterodimeric sub-complexes of O2 tolerant MBHs maintain H2 oxidation activity at 

ambient O2 concentration and fully recover activity after exposure to aerobic conditions 

(Bowman et al., 2014; Evans et al., 2013; Goris et al., 2011; Lukey et al., 2011; Lukey 

et al., 2010; Pandelia et al., 2010; Ludwig et al., 2009; Vincent et al., 2005a). As in the 

case of anaerobic inactivation, the reactivation kinetics are consistent with reduction 

from the Ni-B state. The sub-complex of MBH from R. eutropha was reported to 

maintain about 70% of activity at a potential of -0.008 V under an O2 concentration 

equivalent to the ambiental aqueous concentration (Ludwig et al., 2009). 

Investigation of the O2 tolerance of the heterodimeric sub-complexes of MBHs at high 

electrode potential is complicated by the concomitant occurrence of anaerobic 

inactivation. The selection of the electrode potential in chronoamperometric 

experiments probing the O2 tolerance of the sub-complexes of MBHs has been restricted 
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by anaerobic inactivation at oxidizing potentials and O2 reduction at mildly reducing 

potentials (Lukey et al., 2010; Ludwig et al., 2009; Vincent et al., 2005b). Therefore, the 

full heterotrimeric MBH, which undergoes anaerobic inactivation to a very small extent 

(see Section 5.1), can provide an insight into the catalytic behaviour under aerobic 

conditions at high electrode potential. However, the cytoplasmic membrane extracts 

employed in this study might contain other membrane-bound enzymes that are coupled 

to the quinone pool (e.g. ubiquinol oxidases) (Cramm, 2009), which might interfere with 

the measurement of the tolerance to O2 of MBH. 

5.2.1 Transient experiments 

The catalytic properties of MBH under oxidizing conditions after the application of 

short pulses of O2 were tested via transient measurements. Aliquots of air-saturated 

buffer solution were injected into the H2-flushed electrochemical cell, while the 

electrode potential was poised at a value that maintains the quinone pool completely 

oxidized. Upon adding 57 μM O2 (equivalent to approximately a quarter of the aqueous 

ambient concentration; Weiss, 1970), the recorded current drops very fast to 75±1.4% 

(n=12) of the initial level at potentials of 0.4-0.6 V (Figure 5.4). 

Current recovery commences long before the complete depletion of O2 from the cell 

solution and is completed within 2 minutes after the injection, without requiring 

reducing potentials. The observed current decrease might be caused by aerobic 

inactivation of the enzyme (conversion to the Ni-B state) as observed with the 

heterodimeric sub-complex. The current trace mirrors the O2 concentration profile, 

suggesting that the active enzyme might be in equilibrium with the Ni-B state. It is also 
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possible that the current decrease is caused by quinol oxidases in the cytoplasmic 

membrane extracts and that the observed current recovery is only a consequence of the 

exponential decline of the O2-dependent quinol oxidase activity. An estimation of the 

contribution of this competing reaction at oxidizing potentials is complicated by the lack 

of suitable specific irreversible inhibitors of the oxido-reductases coupled to the quinone 

pool. Reconstitution of the purified heterotrimeric MBH into tBLMs would allow the 

investigation of the O2 tolerance without any interference from quinone-coupled 

membrane enzymes. 
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Figure 5.4 Chronoamperogram showing the evolution of the recorded current from a tBLM with MBHwt 

after a pulse of O2 (0.397 V; ubiquinone-containing tBLM; 30 oC; pH 7.4; 4:10 dry total protein to dry 

polar lipids; 100% H2 flushing; O2 concentration after injection: 57 μM; the exponential decay of the O2 

concentration was plotted, as already described in Section 4.3.1, according to the equation: C(t) = 

C(0).exp(−t/τ), where C is concentration, τ=22 s, and t is time). 

5.2.2 Continuous O2 flushing experiments 

The tolerance of MBH towards O2 was also assessed through experiments employing 

continuous purging with gas mixtures containing O2. Cyclic voltammograms were 

recorded at 5 mV/s under 2.5% H2 in N2 and under 2.5% H2/10% O2 in N2 on the 
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laboratory bench (i.e. outside the glove box) (Figure 5.5). In the scan recorded under 

2.5% H2 in N2, due to the presence of trace amounts of O2 in the electrochemical cell, 

catalytic currents corresponding to ubiquinol oxidase activity can be observed at 

potentials below -0.1 V (Figure 5.5, red trace). In the presence of 10% O2, the catalytic 

current levels in the high potential region drop approximately 25% compared to the scan 

recorded under 2.5% H2 in N2 (Figure 5.5, blue trace). The currents occurring 

below -0.1 V are caused by O2 reduction catalysed by quinol oxidases and to some 

extent by O2 reduction directly at the electrode. The lower current levels observed at 

high potential in the presence of O2 might be only an effect of quinol oxidases 

consuming the ubiquinol that should be oxidized at the electrode. Full recovery of 

activity was confirmed by a scan recorded under 5% H2 after O2 treatment (data not 

shown). 
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Figure 5.5 Overlay of cyclic voltammograms of MBHwt inserted in the tBLM under 2.5% H2/2.5% H2 + 

10% O2 in N2 (5 mV/s; ubiquinone-containing tBLM; 30 oC; pH 7.4; 4:10 dry total protein to dry polar 

lipids; red line: 2.5% H2 in N2; blue line: 2.5% H2 + 10% O2 in N2). 
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To further assess the MBH tolerance towards O2, chronoamperometric experiments 

were conducted to probe the enzyme under continuous supply of O2 as depicted in 

Figure 5.6. The electrode potential was poised at a value that maintains the quinone pool 

oxidized and after flushing 5% H2 for 10 minutes, the gas mixture was changed to 2.5% 

H2/10% O2 for another 10 minutes, after which the gas mixture was switched back to 

5% H2 in N2 to test the activity recovery. The drop in H2 concentration from 5% to 2.5% 

is not expected to affect the activity level as the equivalent aqueous concentrations are 

well above the 2H

MK  value at 0.5 V (5% H2 is equivalent to 40 µM in solution, 2.5% H2 

is equivalent to 20 µM in solution, while the value of 2H

MK  at 0.5 V lies in the range 1.2 

– 3.1 µM -  see Section 4.3). 
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Figure 5.6 Chronoamperogram showing the evolution of the recorded current of MBHwt, embedded in a 

tBLM, upon switching between anaerobic and aerobic gaseous environments (0.5 V; ubiquinone-

containing tBLM; 30 oC; pH 7.4; 4:10 dry total protein to dry polar lipids). The aerobic gas mixture was 

obtained by mixing medical air (20% O2/80% N2) with 5% H2 in N2 in a ratio of 1:1. 

Under 10% O2 the current level is 25% lower than the initial level (Figure 5.6). 

Immediately after switching the gas back to 5% H2, the current starts to increase and, in 
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about 5 minutes, recovery amounts to about 94%. Complete recovery was not observed, 

which might be due to tBLM/SAM damaging during the long duration experiment 

carried out on the bench and possibly due to protein denaturing (Figure 5.7). 
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Figure 5.7 Chronoamperogram showing the evolution of the H2 oxidation activity of MBHwt after the 

injection of one aliquot of H2-saturated buffer into the cell solution and under 5% H2 (0.499 V vs SHE; 

ubiquinone-containing tBLM; 30 oC; pH 7.4; final H2 concentration after injection: 100 μM). The 

decrease of the current level under continuous purging with 5% H2 might be caused by slow SAM-tBLM 

desorption or MBH denaturing. 

The current drop observed under 10% O2 in these experiments varied from 25 to 50% of 

the initial level (Figure 5.8). Even when the current drop was 50%, recovery was almost 

complete after switching to anaerobic conditions. As the ratio of ubiquinol oxidases to 

MBH is expected to vary with each tBLM preparation, the variable extent of current 

drop observed in these experiments might be indicative of the influence of ubiquinol 

oxidases on the oxidation state of the quinone pool in aerobic conditions. Therefore, it is 

very likely that the apparent activity loss of MBH in the presence of O2 is mainly due to 

the ubiquinol oxidation activity of the quinone-coupled oxido-reductases in the tBLM. 
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Figure 5.8 Chronoamperograms showing the evolution of the recorded current of different tBLMs with 

MBHwt upon switching from anaerobic to aerobic and then back to anaerobic conditions (0.5 V; 

ubiquinone-containing tBLMs; 30 oC; pH 7.4; 4:10 dry total protein to dry polar lipids). The sequence 

was designed to assess the recovery of activity after prolonged exposure to O2.  
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5.3 Conclusions 

As a full heterotrimeric protein complex, in equilibrium with the quinone pool, MBH 

appears to undergo reactivation from the Ni-B state under oxidizing conditions even 

under substrate limiting conditions.  Hence, the accumulation of Ni-B is slow even 

under 0.1% H2. It is possible that reverse electron flow from quinol to the active site 

might ensure the reducing conditions necessary for reactivation from the Ni-B state, but, 

at high potential, the quinone pool remains in the oxidized state. Thus, it is very unlikely 

that Ni-B accumulation is prevented by the quinone pool acting as a redox buffer. 

Alternatively, the reactivation properties of MBH might be related to its quaternary 

structure. It should be noted that the oligomerisation of the MBH in the cytoplasmic 

membrane might enable a reactivation pathway (Volbeda et al., 2013). Intermolecular 

electron transfer within the supercomplex of heterotrimers, possible through the distal 

cluster located close the surface of the small subunit, could be advanced as an 

explanation for the reactivation kinetics of MBH under oxidizing conditions. The fast 

reactivation of MBH from the Ni-B state at high potential can be promoted by the 

provision of electrons from a neighbouring active MBH. 

The heterotrimeric MBH, in equilibrium with the ubiquinone pool, was also probed in 

aerobic conditions at high electrode potentials. Assuming the activity of quinol oxidases 

to be completely absent and the observed current drop to be solely due to aerobic 

enzyme inactivation, the O2-tolerance of MBH is still higher than the tolerance reported 

for the heterodimeric sub-complexes of O2-tolerant MBHs. MBH recovers completely 

after O2 treatment even at potentials as high as 0.5 V under low substrate concentrations 
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(2.5-5% H2). Considering the high O2 reduction activity of quinol oxidases observed 

under the employed O2 levels, it can also be hypothesised that the current drop at high 

potentials is mainly due to enzymatic ubiquinol oxidation. Consequently, the MBH 

tolerance to O2 might be much higher than what the experimental results in this chapter 

suggest. I therefore propose that the oligomeric state of the protein complex in the native 

cytoplasmic membrane plays a crucial role in maintaining high H2 oxidation activity 

under aerobic conditions. 
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6. The role of the proximal [4Fe-3S] cluster in the reactivation of 

MBH in electron-deficient conditions 

The unusual [4Fe-3S] proximal cluster in O2 tolerant MBHs ensures the formation of the 

Ni-B state under oxidizing conditions without any Ni-A accumulation (Evans et al., 

2013; Lukey et al., 2011; Goris et al., 2011; Fritsch et al., 2011b; Saggu et al., 2009). 

This leads to the fast recovery of activity observed under both anaerobic and aerobic 

conditions. The proximal cluster undergoes two redox transitions to provide electrons 

for O2 reduction (See Section 1.1.1). The reduction of the most oxidized state of the 

cluster, called the “superoxidized state”, to the partially reduced state is accompanied by 

major structural rearrangements (Frielingsdorf et al., 2014). The standard [4Fe-4S] 

proximal cluster does not access a superoxidized state, undergoing only one redox 

transition. Comparing hydrogenases carrying a [4Fe-3S] proximal cluster and 

hydrogenases carrying a standard [4Fe-4S] proximal cluster in terms of reactivation 

kinetics would reveal the role played by the second electron provided by the unusual 

[4Fe-3S] cluster. This chapter describes the reactivation kinetics of wild-type MBH 

(MBHwt) and that of a double mutant carrying a [4Fe-4S] proximal cluster 

(MBHC19G/C120G). The MBHwt and the MBHC19G/C120G were probed under oxidizing 

conditions and low substrate concentrations. 

6.1 Reactivation of MBHwt 

In the absence of H2, the heterotrimeric MBH resides in the Ni-B state (Hidalgo et al., 

2015; Saggu et al., 2009), which is thought to protect the active site from irreversible 

damage (Vincent et al., 2005a). Accumulation of MBH in the Ni-B state in electron 
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deficient conditions can be reversed upon treatment with low amounts of substrate. 

Reactivation from the Ni-B state in transient conditions leads to a lag between H2 

exposure and maximum activity, a feature observed in the transient experiments 

employed for determining 2H

MK  (Figure 4.12). Experiments utilising series of short H2 

pulses were carried out to test the kinetics and the reversibility of the reactivation of 

heterotrimeric MBH at high electrode potentials (Figure 6.1). 
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Figure 6.1 Chronoamperograms showing the evolution of the H2 oxidation current of MBHwt upon 

applying H2 pulses intercalated with O2 and N2 pulses (0.499 V vs SHE; ubiquinone-containing tBLM; N2 

flushing; 30 oC; pH 7.4; 4:10 dry total protein to dry polar lipids; H2 concentration after injection: 100 

μM; O2 concentration after injection: 28 μM; the value of τ was determined to be 50 s in the setup 

employing mechanical stirring, which was used for these experiments). 

It was observed that the rate of reactivation after the second pulse of H2 was 1.5 times 

higher compared to the rate after the first pulse, based on the slope of the linear domain 

of current increase at a potential of 0.5 V SHE (normalised rate at 1st reactivation: 92.2 

(±13.9) x 10-4 s-1 (n=9); 2nd reactivation: 136.6 (±11.5) x 10-4 s-1 (n=9); the time between 

injections was 449±37 s; the current levels were normalised against the current plateau 

of the second peak). The treatment with O2 at different electrode potentials (Figure 6.1, 

blue trace, and Figure 6.2) did not change the reactivation kinetics upon a third pulse of 
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H2 (comparing the reactivation kinetics after O2 treatment, Figure 6.1 blue trace, with 

the reactivation kinetics after N2 treatment, Figure 6.1 black trace). This indicates that 

after complete substrate depletion, active MBH is converted to the Ni-B state in 

anaerobic oxidizing conditions. 
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Figure 6.2 Chronoamperogram showing the evolution of the H2 oxidation current of MBHwt upon 

applying H2 pulses intercalated with one O2 pulse at a potential of 0.1 V (30 oC; pH 7.4; ubiquinone-

containing tBLM; 4:10 dry total protein to dry polar lipids; N2 flushing; H2 concentration after injection: 

100 μM; O2 concentration after injection: 28 μM; the value of τ was determined to be 50 s in the setup 

employing mechanical stirring, which was used for these experiments). 

The time of oxidative poise between the second and the third H2 pulse was varied to 

probe the change in reactivation kinetics. It was found that the rate of reactivation 

decreases with the time of oxidative poise (Figure 6.3). Conversion to the Ni-B state is 

almost complete in about 400 s after the total depletion of H2 from the electrochemical 

cell. Applying H2 pulses before the complete conversion to Ni-B leads to the variation in 

reactivation kinetics caused by the small fractions of reduced/partially reduced enzyme, 

which contribute to a faster current increase after substrate injection. As expected, after 

converting the MBH to Ni-B (approximately 650 s after the previous injection of H2), 



Chapter 6 

 

115 
 

the reactivation kinetics are slightly slower or match the ones observed for the first 

injection (Figure 6.3). The reactivation rates obtained after applying oxidative poises 

longer than 1000 s are slightly slower than expected. This may be caused by the 

degradation (or desorption) of the SAM/tBLM at high oxidizing potential during the 

long-duration experiment, which might lead to a poor coupling of the enzyme to the 

quinone pool. 
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Figure 6.3 (A) The reactivation rate after the third injection of H2 (based on the slope of the current 

increase) as a function of the time elapsed between the second and the third injection under N2. The rates 

are normalised against the rate obtained after the second injection (MBHwt; 0.499 V vs SHE; ubiquinone-

containing tBLMs; 30 oC; pH 7.4; blue dotted line: rate after the second injection; red dotted line: rate 

after the first injection).  The H2 concentration decay after an injection is plotted in gray (the exponential 

decay was plotted, as described in Section 4.3.1, according to the equation: C(t) = C(0) .exp(−t/τ), where C 

is concentration, and t is time; the value of τ was determined to be 50 s in the setup employed for these 

experiments). (B) Schematic drawing showing the time of oxidative poise between injections that was 

varied to obtain the time dependency described in (A). 

The rate of reactivation was found to increase with temperature (Figure 6.4a). Using the 

slope of the reactivation trace as the temperature-dependent parameter, the activation 

energy (Ea) was determined to be 141.5 (±5.0) kJ/mol (n=3) at 0.3 V, in agreement with 

values obtained for Hyd-1 for which Ea varied from a value of 56.8 (±0.3) kJ/mol at 

0.035 V to 96.3 (±0.8) kJ/mol at 0.235 V (Evans et al., 2013). The value of Ea at 0.5 V 



Chapter 6 

 

116 
 

3.20 3.28 3.36 3.44

-20

-18

-16

ln
 (

m
)

1000/T (K
-1
)

MBH
wt

700 800 900 1000 1100

0.0

0.4

0.8

1.2

1.6

2.0

2.4

MBH
wt

Time (s)

C
u

rr
e
n

t 
d

e
n

s
it

y
 (


A
 /
 c

m
2
)

 20 
o
C

 23 
o
C

 26 
o
C

 29 
o
C

 32 
o
C

 35 
o
C

a b 

was determined to be 131.5 (±9.1) kJ/mol (single data set fitting). The high value of  Ea 

for Ni-B reactivation compared to the activation energy for H2 oxidation (26 kJ/mol) 

(Hallahan et al., 1987; Schink and Schlegel, 1979) may be explained on the basis of the 

major structural changes the [4Fe-3S] proximal cluster undergoes when it performs the 

redox transitions between the three redox states during the (re)activation process 

(Frielingsdorf et al., 2014). 

Figure 6.4 (a) Overlay of chronoamperometric traces showing the evolution of the H2 oxidation current 

for MBHwt after applying H2 pulses at different temperatures (0.299 V vs SHE; electron carrier: 

menaquinone; pH 7.4; 4:10 dry total protein to dry polar lipids; H2 concentration after injection: 100 μM). 

(b) Arrhenius plot for Ni-B reactivation of MBHwt (traces were recorded in triplicate in the temperature 

interval 20-38 oC). 

The potential dependence of the reactivation kinetics was investigated in the potential 

window of 0.2-0.5 V. Instead of ubiquinone-10, which was used as electron mediator in 

the experiments described so far in this chapter, menaquinone-7 was employed as the 

oxidation potential of menaquinol is lower compared to ubiquinol, enabling the probing 

of a wider potential window. 

Higher potentials lead to faster turnover (higher plateau currents) due to the increase in 

the oxidation rate of menaquinol (Figure 6.5). In contrast, the rate of reactivation only 
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marginally changes with the applied potential. There is a 6% decrease of the slope of the 

reactivation trace when increasing the potential from 0.2 V to 0.3 V and an 11% drop 

from 0.3 V to 0.4 V. The heterodimeric sub-complexes of the MBHs from A. aeolicus 

and E. coli, display a similar potential dependency of Ni-B reactivation (Evans et al., 

2013; Pandelia et al., 2010). 

740 760 780 800 820

0.0

0.5

1.0

1.5
MBH

wt

C
u

rr
e

n
t 

d
e

n
s

it
y
 (


A
 /

 c
m

2
)

Time (s)

 0.2 V

 0.3 V

 0.4 V

 
Figure 6.5 Chronoamperograms showing the evolution of the MBHwt H2 oxidation current after applying 

H2 pulses at different potentials (electron carrier: menaquinone; pH 7.4; 30 oC; 4:10 dry total protein to 

dry polar lipids; H2 concentration after injection: 100 μM). 

In order to estimate the fraction of inactive enzyme residing in the Ni-B state under 

oxidizing conditions, experiments similar to the two-step methods, described in previous 

PFE studies, were conducted under low substrate concentrations (Evans et al., 2013; 

Pandelia et al., 2010; Fourmond et al., 2010). Under 0.25% H2 (equivalent to 2 μM in 

solution), a potential of 0.5 V was applied for 250 s followed by the reduction of the 

quinone pool at low potential (-0.2 V) to promote the complete reduction of the enzyme 

(for 300 s). Afterwards the potential was poised back to the initial value at which MBH 

oxidizes H2 (Figure 6.6). 
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Figure 6.6 Chronoamperograms showing the current response obtained from a tBLM incorporating 

MBHwt subjected to the potential sequence depicted at the top of each figure (MBHwt; ubiquinone-

containing tBLMs; 30 oC; pH 7.4; 4:10 dry total protein to dry polar lipids). (A) Background trace 

recorded under N2. (B) Trace recorded under 0.25% H2. (C) Background-subtracted trace with the fit 

(according to Equation 35) to the current decay after switching the potential back to 0.5 V (light gray 

line). 
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Based on the current level after stepping the potential back to 0.5 V, 16.9±1.2% (n=3) of 

the enzyme resides in the Ni-B state under low substrate turnover conditions (the ratio 

of inactive enzyme was obtained by dividing the difference between the current level 

after the second potential step and the initial current level to the current level after the 

second potential step). Fitting of the current relaxation curves following reactivation at 

low potential allowed the determination of the activation (ka) and inactivation (kin) rate 

constants. The data treatment was carried out as previously described in studies using 

two-step methods for determining (in)activation rate constants (Evans et al., 2013; 

Fourmond et al., 2010).  Fitting of the chronoamperometric data using equation 35 

yields the rate constant of the exponential relaxation (ktot), which is the sum of ka and kin 

(in Equation 35, i0 is the initial current and i∞ is the final current). 

  itkiiti tot )exp()()( 0
   (35) 

The value of ka can be calculated knowing the initial fraction of active enzyme (A0), 

which is assumed to be 1 after reactivation at low potential (Equation 36). 

tota k
i

i
Ak

0

0
    (36) 

It was determined that the value of kin is 8.7 (±1.9) x10-4 s-1 (n=3), about 5 times higher 

than the kin for the heterodimeric Hyd-1 from E. coli (Evans et al., 2013). PFE studies 

found kin to be independent of the applied potential (Evans et al., 2013; Pandelia et al., 

2010). The value of ka was found to be 37.2 (±11.4) x10-4 s-1 (n=3), 10 times higher than 

the ka of Hyd-1 at +0.235 V (at 5 oC, under 100% H2) (Evans et al., 2013). Inactivation 

of the heterotrimeric MBH under oxidizing conditions is faster than that of the 
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heterodimeric Hyd-1. On the other hand, reactivation of the heterotrimeric MBH is one 

order of magnitude faster than that of the heterodimeric Hyd-1 and four times faster than 

inactivation. This was expected as it was shown that, unlike the heterodimeric sub-

complexes, the heterotrimeric MBH reactivates fast under oxidizing substrate-limiting 

conditions without requiring the application of reducing electrode potentials, which 

means that the reactivation rate greatly exceeds inactivation (see Chapter 5). 

6.2 Reactivation of MBHC19G/C120G 

The MBH variant MBHC19G/C120G, was probed in the same way as MBHwt. 

MBHC19G/C120G, having glycine residues in the place of the supernumerary cysteines in 

the small subunit, carries a [4Fe-4S] proximal cluster, and its catalytic properties 

resemble those of standard [NiFe] hydrogenases. It was shown that MBHC19G/C120G loses 

almost entirely its activity upon prolonged exposure to O2, being more sensitive than 

MBHwt (Goris et al., 2011). However, short O2 pulses lead to a small extent of 

inactivation as observed with MBHwt and not full inactivation as observed with standard 

[NiFe] hydrogenases, possibly due to the retention of some features of O2 tolerant 

[NiFe] hydrogenases not pertaining to the coordination sphere of the electron relay. 

The activity of MBHC19G/C120G was 4 to 5 times lower compared to MBHwt in the tBLM 

(Figure 6.7), which can be attributed to the higher sensitivity towards O2, which leads to 

irreversible inactivation of the enzyme during extraction from R. eutropha. This was 

previously observed for this variant with spectrophotometric assays (Supplementary 

Table 1 of Goris et al., 2011). The scans in Figure 6.7 also prove that MBHC19G/C120G can 

use both menaquinone and ubiquinone as electron acceptor. 
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Figure 6.7 Cyclic voltammograms showing the activity level for MBHwt (blue) and MBHC19G/C120G (red) 

(10 mV/s; tBLMs containing both menaquinone and ubiquinone; 30 oC; pH 7.4; 4:10 dry total protein to 

dry polar lipids; the MBHC19G/C120G scan and the blank 100% N2 scan were recorded on the same tBLM; 

the quinol oxidation peaks are shifted to higher potentials due to the low capacitance of the tBLM as 

explained in Section 4.1). 

It was found with transient chronoamperometric measurements that MBHC19G/C120G 

reactivates 7 times faster than MBHwt (Figure 6.8). The normalised rate of current 

increase for MBHC19G/C120G after a H2 pulse was determined to be 1027.7 (±41.7) x10-4 

s-1 (n=11). 
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Figure 6.8 Chronoamperometric traces showing the reactivation of MBHwt (black) and MBHC19G/C120G 

(red) (0.499 V; 30 oC; pH 7.4; ubiquinone-containing tBLMs; 4:10 dry total protein to dry polar lipids). 
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In contrast to MBHwt, the reactivation kinetics of MBHC19G/C120G are independent of the 

time of exposure to oxidizing electrode potentials (Figure 6.9). 

 

Figure 6.9 Chronoamperograms showing the evolution of the H2 oxidation activity of MBHC19G/C120G after 

three H2 pulses: (a) trace showing the three consecutive pulses; (b) overlay of the background-corrected 

traces (0.499 V vs SHE; ubiquinone-containing tBLM; 30 oC; pH 7.4; 4:10 dry total protein to dry polar 

lipids; H2 concentration after injection: 100 μM). 

The temperature-dependence of the reactivation kinetics of MBHC19G/C120G was tested 

between 30 oC and 36 oC (Figure 6.10a). The temperature window was restricted by the 

low stability of the variant above 36 oC and the low signal to noise ratio obtained below 

30 oC. Ea, calculated in the same way as for the MBHwt, was determined to be 22.2 

(±8.1) kJ/mol (n=4) at 0.5 V (Figure 6.10b). The reactivation energy barrier is 

significantly lower than in the case of MBHwt (141.5 (±5.0) kJ/mol at 0.3 V) and 

comparable to the Ea for H2 oxidation (Leger et al., 2002b; Hallahan et al., 1987; Schink 

and Schlegel, 1979). This indicates that the slower reactivation kinetics of MBHwt might 

be caused by the the structural rearrangements of the proximal [4Fe-3S] cluster 

associated with the reduction from the superoxidized state. 
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Figure 6.10 (a) Chronoamperograms showing the evolution of the H2 oxidation current after applying H2 

pulses at different temperatures for MBHC19G/C120G (0.499 V vs SHE; electron carrier: ubiquinone; pH 7.4; 

4:10 dry total protein to dry polar lipids; H2 concentration after injection: 100 μM; the traces are offset for 

clarity). (b) Arrhenius plot for MBHC19G/C120G Ni-B reactivation (0.499 V; ubiquinone-containing tBLMs; 

11 traces were recorded at 30 oC and 4 traces at 33 oC and 36 oC; the slope of the reactivation trace, m, 

was taken as the temperature-dependent variable as in the case of MBHwt). 

6.3 Conclusions 

It was shown that, like the heterodimeric sub-complexes of O2-tolerant MBHs, the 

heterotrimeric MBH resides in the Ni-B state at high potential in the absence of H2. 

Under substrate limiting conditions, approximately 16% of the enzyme molecules are 

found in the Ni-B state. 

Reactivation from the Ni-B state was found to be strongly dependent on temperature. 

The higher reactivation energy barrier of MBHwt compared to MBHC19G/C120G points to a 

differentiation of the reactivation pathways determined by the electrochemical 

properties of the proximal cluster. The data presented in this chapter indicate that, after 

prolonged exposure to oxidizing conditions in the absence of H2, the proximal cluster of 

MBHwt resides in the most oxidized state ([4Fe-3S]5+). It can also be hypothesised that 

the reactivation kinetics of MBHwt are rate limited by the reduction of the superoxidized 

[4Fe-3S]5+ cluster. The relatively slow reduction of the [4Fe-3S]5+ cluster compared to 
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that of other [FeS] clusters can be explained by the chemical reorganisation that is 

coupled to this step (Frielingsdorf et al., 2014; Fritsch et al., 2011a). 

O2-tolerant [NiFe] hydrogenases like the ones from R. eutropha and A. aeolicus display 

a higher rate of anaerobic inactivation compared to standard [NiFe] hydrogenases like 

the ones from Allochromatium vinosum and Desulfovibrio gigas (Pandelia et al., 2010; 

Vincent et al., 2005a). The faster inactivation of O2-tolerant hydrogenases, associated to 

Ni-B formation, might be related to the oxidation of the proximal cluster to the 5+ state 

(Evans et al., 2013; Fritsch et al., 2011ab). It can be hypothesized that the slow 

reduction of the superoxidized cluster, which retards enzyme reactivation, prevents 

irreversible damage to the active site under aerobic conditions. Impaired electron 

transfer to the [NiFe] active site would halt the formation of radical oxygen species, 

which normally would lead to complete loss of enzymatic activity after reacting at the 

metal centre. Unlike O2-tolerant [NiFe] hydrogenases, standard [NiFe] hydrogenases 

maintain electron transfer to the active site via the electron relay under aerobic 

conditions. The continuous supply of electrons to the active site favours the formation of 

damaging reactive oxygen species, which might result in the accumulation of the 

inactive Ni-A state. One would therefore infer that O2-tolerant [NiFe] hydrogenases 

avoid the accumulation of unready states in highly oxidizing conditions via 

superoxidation of the proximal cluster, which slows down reverse electron transfer 

through the [FeS] relay, resulting in the shutdown of the active site reactivity. 
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7. General conclusions 

O2 tolerant MBHs are distinguished as peculiar in the class of [NiFe] hydrogenases due 

to their catalytic properties under oxidizing conditions. Electron availability at the active 

site plays a major role in selective H2 oxidation. The very low 2H

MK  values ensure that 

the number of reactive encounters at the active site is greater for H2 than for O2 

molecules. Electron availability controls the outcome of the very seldom “successful” 

O2 encounters. The change in the oxidation state brought about by the O2 molecule via 

the Ni-B state is controlled by the unusual proximal [4Fe-3S] cluster, which provides 

two of the electrons necessary for the formation of the bridging OH- at the active site. In 

the case of the heterodimeric sub-complexes of MBHs, the electron required for the 

reactivation to the active Ni-S state is provided under reducing conditions. The data 

presented in this thesis show that reactivation from the Ni-B state can take place under 

oxidizing conditions. The full heterotrimeric MBH, in equilibrium with the quinone 

pool, displays a higher level of tolerance to anaerobic oxidizing conditions compared to 

the heterodimeric sub-complexes of MBHs and recovers from O2 inactivation without 

requiring reducing conditions. It was also shown that the proximal [4Fe-3S] cluster 

might play a role in the protection of the active site from oxidative damage under 

substrate scarce conditions. Protection would be achieved not only by trapping the O2 

molecules as an OH-, but also by halting the delivery of electrons, which lowers the 

active site reactivity under oxidizing conditions. 

Oligomerization of MBHs in the cytoplasmic membrane, which was proposed in the 

case of several organisms growing on H2 (Bowman et al., 2014; Volbeda et al., 2012; 
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Frielingsdorf et al., 2011; Shomura et al., 2011), was suggested to enable intermolecular 

electron transfer via the distal [4Fe-4S] cluster (Volbeda et al., 2013; Fritsch et al., 

2013). The provision of the electron required for reactivation from the Ni-B state would 

be possible in an oligomeric complex when the active and the inactive metal centres of 

the proteins are in electrochemical equilibrium. Reactivation through this pathway 

would be possible even under oxidizing conditions, which is what was observed in the 

experiments described in this thesis. The heterotrimeric MBH in the cytoplasmic 

membrane recovered activity rapidly even in aerobic conditions (before the complete 

removal of O2). Recently published data comparing the catalytic properties of the 

monomeric Hyd-1 from E. coli with its oligomeric form also supports the hypothesis 

that intermolecular electron transfer enhances the tolerance towards oxidizing 

conditions, underlining the role of the quaternary structure in H2 catalysis by O2 tolerant 

MBHs (Wulff et al., 2016). 

Hydrogenase reactivation achieved by placing in electrochemical equilibrium active 

enzyme molecules with inactive ones has indeed been reported for a biofuel-cell 

operating under oxidizing conditions (Wait et al., 2010). An anode with adsorbed 

inactive Hyd-1 from E. coli was connected to another anode prepared in the same way 

with active enzyme. Activity recovery was rapid despite maintaining the two anodes in 

the same oxidizing conditions that inactivated the first anode (4% H2 / 96% air). 

The fine tuning of electron availability could be at the basis of the properties of 

hydrogenases under oxidizing conditions. The probing of redox enzymes in their native 

environment and in equilibrium with their native redox partners could offer answers 

regarding the complex mechanism of H2 activation under parameters similar to the ones 
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encountered in organisms relying on hydrogenases for energy conversion. The mild 

operating conditions (low temperature and almost neutral pH) under which 

hydrogenases can convert fuel to electricity represent a crucial aspect to be taken into 

consideration in the design of concepts of efficient and sustainable processes for energy 

technologies. Therefore, the experimental results regarding redox processes involved in 

enzymatic H2 cycling should be evaluated in terms of efficient tuning of electron 

availability under oxidizing conditions. 
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