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Abstract

This thesis presents the construction, the analysis angetifecation of a new form of
higher than second order fluctuation splitting discreisator the solution of steady con-
servation laws on unstructured meshes. This is an altemagiproach to the two existing
higher than second order fluctuation splitting schemesghvhse submesh reconstruction
(developed by Abgrall and Roe) and gradient recovery (age by Caraeni) to obtain
the local higher degree polynomials used to evaluate thaugition. The new higher than
second order approach constructs the polynomial intenpafthe values of the depen-
dent variables at an appropriate number of carefully chosesh nodes.

As they stand, none of the higher than second order methodguzaantee the absence
of spurious oscillations from the flow without the appliceatiof an additional smoothing
stage. The implementation of a technique that removes sigdiyoscillations (devised
by Hubbard) as part of the new higher than second order appnodl be outlined. The
design steps and theoretical bases are discussed in depth.

The new higher than second order approach is examined ahgaddhrough appli-
cation to a series of linear and nonlinear scalar problemisigua pseudo-time-stepping
technique to reach steady state solution on two-dimenbkginectured and unstructured
meshes. The results demonstrate its effectiveness inx@pptng the linear and nonlin-
ear scalar problems.

This thesis also addresses the development and examimditgomultistage high or-
der (in spacandtime) fluctuation splitting scheme for two-dimensional i&asly scalar
advection on triangular unstructured meshes. The methsichitar in philosophy to that
of multistep high order (in spacandtime) fluctuation splitting scheme, for the approx-
imation of time-dependent hyperbolic conservation law$e Tonstruction and imple-
mentation of the high order multistage time-dependent otedre discussed in detail and
its performance is illustrated using several standardpgesilems. The multistage high
order time-dependent method is evaluated in the contextistieg fluctuation splitting
approaches to modelling time-dependent problems and soguestions for their future
development are made. Results presented indicate thatuhistage high order method
can produce a slightly more accurate solution than the stafiihigh order method.
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Chapter 1

Introduction

1.1 Motivation

The field of computational fluid dynamics has been developmymaturing over the last
35 years, due to the enormous growth in computing power bogpeed and memory,
coupled with rapid advances in algorithmic efficiency. Tdniswth has enabled a substan-
tially increase in the complexity of the flow configuratiohat are possible. However, to
fully exploit this computational potential, new models amntinuously being required to
deliver more accurate, efficient, flexible and robust sohaifor more and more complex
and realistic configurations.

It is widely thought that the use of unstructured grids isfenable for discretising
complex geometries and flow patterns compared to structurddnulti-block structured
grid techniques. This is because structured grids are deémbe restrictive from the
geometrical point of view and a multi-block structured aggmh takes a lot of time to
generate (especially in 3D) [81]. However, the unstructued technique not only gives
greater flexibility for discretising complex domains, blg@enables straightforward im-
plementation of solution-dependent local refinement araptadion in order to enhance
the solution simulation and reduce the number of cells oesoteded to achieve a spec-
ified accuracy [12, 14].

In general the use of unstructured grid techniques and dbdity to enhance solution
accuracy through adaptive procedures have proved to beasgokat advantage that the
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design of new numerical algorithms for the simulations omptex flows in complex
domains are largely aimed at formulations which are welteslito unstructured grids
[13].

The mathematical model for the fluid mechanics equationsvengoy conservation
laws [54]. For example, hyperbolic systems of partial défgial equations can be used
to model the conservation of some quantities over a giveionegf space and time. The
normal design procedure of fluid flow simulations then bedinstudying simple con-
servation laws, given that one is provided with prior inf@ation on the properties of the
exact solution. Throughout this thesis, the numericaktdstt are used to compare and
verify the various numerical schemes are based on simpleeceation laws with exact
solutions.

Despite the advantages of numerical methods for consenvétivs on unstructured
grids, the development of efficient and robust unstructyyed algorithms is a consid-
erable ongoing challenge, because the necessity for moteae, robust and flexible
numerical methods for the analysis of complex systems i whshes forward the con-
struction of new techniques [64]. This effort in developmgdern numerical methods
also needs to adhere to three main design constraints, nac®iracy, stability and effi-
ciency.

Accuracy

Increasingly accurate approximations are sought usingedsmgly expensive re-
construction steps, while at the same time making sure igestheme is less sen-
sitive to the grid structure. This is specially important émstructured grids, since
they can be highly irregular (particularly in 3D).

Stability

Stability is often associated with conditions that restrinbounded oscillations.
Conservation laws can support weak solutions containiagadtinuities, and nu-
merical methods should be able to deal with discontinutigisout polluting the so-

lution with unbounded spurious oscillations. Generalig stability of the method
should not depend on some parameter which could be diffiouttptimise in a

universal way.

Efficiency

Efficiency deals with the simplicity and compactness of thenarical methods,
where compactness refers to using information associaitbédie closest grid en-
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tities to compute the values of the unknowns. This genefatijlitates for a fast
and efficient implementation.

Present day numerical methods on unstructured grids, suthige volume schemes,
have been accepted as some of the most flexible, robust aableetolution algorithms
for the analysis of hyperbolic systems of conservation latdewever, on unstructured
grids the modern finite volume schemes for multiple spaceedsions are understood to
have shortcomings, as they heavily rely on extending the&-dimensional formulation
in perpendicular directions to mesh edges (in their twoathsional formulation) or mesh
faces (in three dimensions), which leads to numerical nustiwhich are sensitive to the
orientation of the grid [64]. This reliance on the mesh diats often particularly hinders
the accuracy of the scheme on unstructured grids. Moredlernaive interpretation
of the physics of the underlying fluid flow misinterprets mamyltidimensional flow
features, which also reduces accuracy as it generatesaddinumerical dissipation
[72]. The attempts to design more accurate multidimensionie volume schemes,
using ENO/WENO techniques [77, 78], and improved high ofaete volume schemes
on unstructured grids [15] were not able to completely fixsthdeficiencies.

However, another promising way of developing a genuineljtisitmensional numer-
ical method is the fluctuation splitting approach, whichldisiion the fluctuation-signal
formulation of the one-dimensional finite volume method][&bBd the residual distribu-
tion approach of Ni [59]. The advantage of the fluctuationtspg approach is that it can
imitate the evolution of the linearly (or higher degree paynial) varying solution within
each grid cell. In other words, it can reproduce exactly sohs which can be repre-
sented exactly by the type of interpolation used for the wmkms on the grid. This makes
this method well designed to work on unstructured grids. &doer, compared to finite
volume schemes, fluctuation splitting schemes discard ig@dtinuous representation
of the dependent variable in favour of a continuous, pieseywblynomial approximation
which is closer in approach to the finite element schemesiBB2]. This design gives
the fluctuation splitting approach the ability to imitate tevolution of the continuously
varying solution.

This close link between the fluctuation splitting schemes farite element schemes,
especially the increasingly popular discontinuous Gatedpproach [23], was initially
overlooked, but it has now turned out to be important for dtgweent of the fluctuation
splitting schemes. In particular, the discontinuous Gatefinite element scheme uses a
stabilisation mechanism based on finite volume-like nuoa¢fluxes, which reduces the
residual character (discrete finite element space). Evethealesign of non-oscillatory
discontinuous Galerkin finite element schemes uses elibdirtite volume limiter (which



Chapter 1 Introduction 4

reduces their accuracy) or discontinuity capturing opesaf36, 48]. This does not guar-
antee local monotonicity and depends on the fine tuning o$temrts which are difficult
to determine naturally. However, fluctuation splitting sotes which are based on repre-
senting the dependent variables in a similar way to the felgéenent scheme, allows the
design of nonlinear schemes with a true fluctuation propastyell as guaranteeing (by
construction) the preservation of the local monotonicityhe approximation.

1.2 The Fluctuation Splitting Schemes

Historically, the fluctuation splitting schemes were inlnoed in the early eighties by
Roe [75], in an upwind context using a reinterpretation oeRdlux difference split-
ting finite volume scheme. Roe then continued to developappoach by generalising
the fluctuation splitting scheme in 2D in 1986 [71], to a fomitially termed “multi-
dimensional upwind scheme”. This ideal of developing diisations that exploit the
multidimensional structure of the governing equations Vedsr discussed extensively
in [74], which also helps to clarify the fluctuation splittischemes’ relationship with fi-
nite volume and finite element schemes. The close link wittefelements has informed
and helped most recent fluctuation splitting developmdatsgxample in the context of
time-dependent problems and diffusive fluxes (as in the &tastiokes equations) [30].
Fluctuation splitting schemes, otherwise referred to agltal distribution schemes,
approach the approximation of nonlinear systems of coasiern laws on unstructured
grids by splitting it into two stages. First, decomposingraservatively linearised form
of each fluctuation into its fundamental components, eaeingdts own special type
of signal. Second, distributing these distinct componémthe grid nodes [29, 64, 65,
83]. This approach gives the fluctuation splitting schemelfity in propagating the
discrete signals in any direction over the grid, making itemgnely multidimensional
upwind method. This quality has also been proved to allovhéigaccuracy than finite
volume schemes of similar order [69]. For steady state grok| the methods are now
being applied in industry [30], as relatively accurate amiolist varieties of the fluctuation
splitting schemes now exist. Generally, second order ateumethods at steady state are
deemed accurate enough for simulating complex flows in tesguce of discontinuities,
without introducing unphysical oscillations into the flolhe so-called PSI scheme [32]
is the most commonly used second order accurate fluctugtidgtirey scheme at steady
state, being both positive (to prohibit unphysical ostitlas) and linearity preserving
(for accuracy). This scheme will differ from the N scheme du¢he distribution of the
simplified components, which is the second stage of the fich splitting scheme.
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More recently, the construction of fluctuation splittindiemes which are higher than
second order accurate for both steady and time-dependeblepns has received more
focus by researchers. This is mainly because, for the stetadg problem, simple ex-
periments on scalar advection show that the strong perfocmaf the very high order
schemes in being able to reduce the error, compensatesfoothplexity that is involved
in obtaining the very high order approximation [82]. For érdependent problems, the
approximation of the discrete forms of both spatial and teralderivative terms requires
very high order accuracy, so that the overall degree of aoyuis maintained over a long
time [3, 6, 27].

For time-dependent simulations, fluctuation splittingesules are still an expanding
research topic, even though real progress has been seem lastifew years. The main
framework for the construction of higher than first order weate fluctuation splitting
schemes was started by observing the equivalence of flimtusplitting schemes to the
mass-lumped Petrov-Galerkin finite element formulatid? §6]. This is mainly because
in their basic formulation fluctuation splitting schemeamat be more than first order ac-
curate in time-dependent computation, due to an incomsigt@ the spatial discretisation
of the time derivative term. However, high order accuracyinme can be obtained using
a consistent mass matrix [6, 68], which has proved to be sgbgen the construction of
second order accurate scheme.

For the achievement of higher than second order accurasge@aand Fuchs pre-
sented a new approach in which the time derivative is caogrsistincluded in the defini-
tion of the fluctuation [17,19,21,57]. They did this by cragta quadratic representation
within each grid cell using local gradient reconstructidrilee dependent variable at the
grid nodes, which can be found easily from the surroundirig.danother alternative, de-
veloped by Abgrall and Roe [8] and Andrianov and Mezine [3u4fes additional nodes
created by uniformly subdividing the global grid to storedarpdate the values of the
dependent variables before distributing it to the resglsobtriangles.

However, the above approaches were found to be non-poliivethe various numer-
ical experiments that were undertaken and these resultsfargher substantiated by the
theoretical investigation that was carried out [41]. Thisamt that unphysical oscillations
occur in regions where the solution gradient changes rgmdid for time-dependent sim-
ulation even schemes which are positive at steady statethas property when the time
derivative is integrated consistently in space. Moreotlese shortcomings are further
complicated when one considers nonlinear systems [17]s&uently, a new technique
was devised for the steady state problems by Hubbard [4lthwimposes positivity on
the above two higher than second order schemes for steadypstdblems, and has been
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shown to achieve a positive and linearity preserving schaitrehigher than second order
accuracy.

1.3 Contribution

The research carried out in this project deals with the cangbn of new numerical algo-
rithms within the fluctuation splitting framework and apiplg them to scalar equations,
based on which a more complicated computational methodoimpdex fluid flow can be
built. The contributions and new developments that aregoriesl are based on three key
elements.

1. The development of a new, higher than second order fluotuaplitting scheme,
which uses additional neighbouring nodes. Currently tlaeestwo types of meth-
ods that achieve higher than second order fluctuation isygligchemes, as men-
tioned in Section 1.2, employing submesh reconstructi¢raf@l gradient recov-
ery [17] to obtain higher degree polynomials, which are theed to construct the
fluctuation. The new additional neighbouring nodes fluctuasplitting scheme
constructs the high order fluctuation by using extra infdioraabout the depen-
dent variables stored at neighbouring nodes in additioméorégular cell nodes.
The additional grid nodes are chosen by carefully pickingappropriate number
of nodes from the immediate neighbouring cells, to consttlue polynomial in-
terpolant of the values at the dependent variables. Theisolis then stored and
updated at the regular cell nodes with the distribution effthctuation carried out
on the regular cells. The advantage of using the additiogighibouring nodes fluc-
tuation splitting scheme over submesh reconstructiorasitinequires less storage.
It also avoids the complexity involved in approximatingwgain gradients to higher
order accuracy on structured or unstructured grids.

2. The very high order fluctuation splitting scheme presgébteAbgrall and Roe [8],
was found to be not positive from the various numerical exxpents that were un-
dertaken and these results were further substantiatecelihdoretical investigation
that was carried out by Hubbard [41]. These findings alsoceiéid the source of
the non-positivity of the very high order scheme as well asimg the need for
constructing a very high order scheme that would combing positivity and lin-
earity preservation properties. In the same paper a mettradiposing positivity
on existing high order schemes was presented, providingnagwork for imposing
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positivity on the additional neighbouring nodes fluctuatsplitting scheme. In this
thesis a positive additional neighbouring nodes schemwitonstructed.

3. The development of a multistage time-dependent flucinaiplitting scheme. This
work is concerned with the construction of a high order (iacgandtime) fluctu-
ation splitting scheme for two-dimensional unsteady scadaection on triangular
meshes. The method has been developed as a complement ighterder dis-
cretisation of the steady state by Abgrall and Roe [8], amduiisteady high order
multistep space-time discretisation of Abgrall, Andrisramd Mezine [3]. The con-
struction of this technique was carried out by combining aigpee Runge-Kutta
time-stepping [79] for the time derivative with a contingopiecewise quadratic
representation of the dependent variable which, when coaabilead to a high or-
der space-time fluctuation. A low order (N scheme) space-fiottuation is used to
assist in stabilising the solution by combining it with thghhorder (Abgrall-Roe
scheme) fluctuation within each stage of the Runge-Kuttdhoakto reduce the
occurrence of unphysical oscillations. The performancéhf method has been
illustrated using several standard test problems. Therddgae of the multistage
fluctuation splitting scheme over the multistep fluctuatsphtting scheme [3], is
that it does not require the storage of additional infororatt previous time levels
and it is not as difficult to preserve the positivity of the sglediscretisation [41].

1.4 Overview of the Thesis

The organisation of this thesis starts by going through thstiag fluctuation splitting
methods, pointing out the contributions and new develogsenthe fluctuation split-
ting framework. The contributions of this research worklveé outlined, and various
tests and comparisons of existing and new fluctuation sgitfchemes will be discussed.
Since the first introduction of fluctuation splitting schesnthey have been proved to be
accurate and robust enough to give a real alternative te fimtume [25, 81] and finite
element schemes [5] for the computation of both steady asteady flows on unstruc-
tured meshes. Chapter 2 deals with the concepts of fluctuggilitting schemes, and the
design criteria to be satisfied by the advection schemegarginuity, positivity, linearity
preservation, multidimensional upwinding, conservaton compactness. It will show
the close link between fluctuation splitting schemes andugbfinite volume schemes, as
well as Petrov-Galerkin finite element schemes. It will alegcribe two linear schemes,
the N scheme which satisfies positivity at the expense of brger accuracy, the LDA
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scheme which satisfy linearity preservation at the expeafispurious oscillations near
discontinuities. Finally the nonlinear PSI scheme, whiatiséies both positivity and lin-
earity preservation, is presented.

Chapter 3 discusses the very high order fluctuation sgiigtheme presented by Ab-
grall and Roe [8], and outlines the theoretical reasons Wisyapproach cannot guarantee
the absence of spurious oscillations from the flow. This tdrapill also discuss in detail
the new approach devised by Hubbard [41] which showed howligege a positive and
linearity preserving higher than second order fluctuatipliittng scheme. The scheme
which has been developed is based on acquiring an exacetimiry high order cell
fluctuation and distributing this to the appropriate veatiof the cell, as determined by
comparing the distribution coefficients of the limited végh order scheme and those of
the N scheme [32]. It will also be shown that encouragingltesiave been obtained for
simple steady state advection problems and for Burgersatsau

The methods that form the basis of this approach are the Abgo® scheme, which
uses submesh reconstruction [8], and Caraeni’s methodhwises gradient recovery
[17] to obtain the high degree polynomials that will be useevaluate the fluctuation.
A third new alternative approach which will give higher theecond order accuracy at
steady state, called the additional neighbouring nodesmsetwill also form the basis of
the above approach and will also be presented in this chaptes new addition to the
existing two high order fluctuation splitting schemes is ofhie new contributions of this
thesis and offers an alternative approach to construckiagpblynomial from the values
of the dependent variables at an appropriate number ofudgrehosen grid nodes. The
high order fluctuations are then calculated using the erfaarination about the dependent
variables stored at the neighbouring nodes in addition ¢ordgular cell nodes. These
values are then stored and updated at the regular cell n@iles the distribution of the
fluctuation carried out on the regular cells.

The numerical experiments undertaken on the scalar adwvestjuation clearly showed
the advantage of using the very high order schemes compathd PSI scheme, which is
only second order [32,81]. This is mainly because of thengtqeerformance of the very
high order schemes in being able to reduce the unphysicaise@nd this characteristic
being able to provide a counterbalance to the complexityishavolved in obtaining the
very high order approximation [8].

Chapter 4 is concerned with the construction of a multistaigla order (in space
andtime) fluctuation splitting scheme for two-dimensional ig&ly scalar advection on
triangular meshes. The method has been constructed as deroemt to the high order
discretisation of the steady state by Abgrall and Roe [8f #re unsteady high order
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multistep space-time discretisation of Abgrall, Andrigramd Mezine [3].

This chapter will begin by outlining the space-time framekvand the design prop-
erties to be satisfied by the different schemes. The deswript the space-time variants
of the N, PSI and LDA schemes, as well as the constructiorssiefhe higher than sec-
ond order multistep method will also be presented. The impl&ation of the multistage
method, which is also a new contribution of this thesis, Wwél discussed in detail and
some illustrative computational examples and analysisbeilyiven at the end.

Chapter 5 summarises the research presented and its magverolents by recalling
the results and ideas presented. Moreover, the way forveaether with some possible
routes and ideas for extending and improving the work preskwill also be outlined.



Chapter 2

Multidimensional Fluctuation Splitting
Schemes

2.1 Introduction

In this chapter the fluctuation splitting schemes which heestubject of this work will be
introduced. A clear definition for this approach will be givas well as showing the close
link between the fluctuation splitting schemes and both gveind finite volume and finite
element schemes. Currently the fluctuation splitting appinofor simulating complex
steady state fluid flow are judged to give a real alternativeotib finite volume and finite
element schemes [64]. lllustrative numerical examplegaen at the end of this chapter
to experimentally show the difference between the variaugtdbtion splitting schemes
that will be presented.

2.2 Fluctuation Splitting Framework

Many partial differential equation models with a physicaitivation derive from conser-
vation laws. This philosophy of the physical theory is rabie the understanding that
quantities (such as charge, energy, momentum etc) arervedseén general a conserva-
tion law is simply the mathematical formulation of the basict that the rate at which a
quantity (1) changes in a given domain must equal the rate at which thatiggilows into

10
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or out of the domain plus the rate at which the quantity ister@@r destroyed within the
domain. This thesis considers the numerical approximatfeolutions to the following
conservation law

%+D.F=o, (2.1)
One of the most common partial differential equations, Wwhitodels the transport of a
substance that is present in very small concentrationsiwitte fluid is the advection
equation. Itis generally used to model transport of the eoresl quantity through the do-
main [11]. Assuming the domain contains no sources and ligatanserved quantity is
being transported by some velocity (e.g. dust particlesezhby wind, chemical concen-
tration carried by fluid motion, boats drifting downstreatn)at is possible to introduce
a constitutive law relating the flux and that quantity

f=uh, (2.2)

whereA is the advection velocity carrying quantity)(through the domain. Substituting
the advection constitutive equation (2.2) into the coresgon law (2.1) to obtain

Jdu <

—+0-(UA) = 2.

5 0 (uA) =0, (23)
and now applying the product rule it is possible to expan8)(2o obtain the general
advection equation

%+UD~7\+3\-DU:O. (2.4)

One common assumption to be made is that the velocity fieldnstant everywhere in
the domain which leads t@- A = 0. Another common assumption that could be made is
for incompressible flows, which is expressed mathemayidajithe constraini] A =0,
because in this case the velocity field may vary spatiallytoeitiivergence of the velocity

is zero everywhere. In these cases equation (2.4) simpiifies

= 4+A-0u=0. (2.5)

This is called the advection equation form of the conseoveltiw and the approximation
of this scalar advection equation on an unstructured disatén of the space-time do-
main Q x [0,t] can be done using fluctuation splitting schem@sis the spatial domain
andA is the appropriate advection velocity associated with threservation law.
Fluctuation splitting schemes use a continuous piecewaobgmpmial representation
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Figure 2.1: The inward scaled normals.

of the solution variables, and the methods are designed itatethe evolution of the
polynomial varying solution within each grid cell [32, 65The high accuracy and gen-
uinely multidimensional characteristics of the fluctuatiplitting schemes make them
very efficient when compared to the finite volume schemes. [Z8jmpared to finite el-
ement schemes, fluctuation splitting schemes give incde@bi@bility because they lead
to parameter-free non-oscillatory schemes [27]. Moreavey are also able to take ad-
vantage of the geometric flexibility enjoyed by unstructugeid methods [32].

The fluctuation associated with the scalar advection egug®.5), is a cell based
quantity which is given by

(pT:_/a.f*th:_/x.mudQ: UA-Adr (2.6)
o o 00

wheref" is a continuous interpolant of the fltfx a function of the solution variable and
T represents a triangular mesh cell. The basic steps in agpthe fluctuation splitting
schemes are as follows :

1. Evaluate the fluctuatiop’ using an conservative linearisation [32], so that the
integration in Equation (2.6) is carried out exactly, giyin

g 3 15
T—_ . — — — — Nt
@' =-SrA-Ou glkmu ki d)\ n (2.7)

wheren is the inward pointing normal scaled by the length of the ddafehe cell,
as depicted in Figure 2.1, akdis called the inflow parameter forgzdimensional
space, in whichdepicts an appropriately linearised quantity &xds the cell area.

2. Distribute the appropriate amount@f to each vertex of the cell. i§" is used to
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Figure 2.2: Median dual cell shaded around vertex

denote the contribution of the fluctuation to nadeT, then by construction, these
must satisfy

_;wzw (2.8)

for conservation. The distribution coefficien®s determine the appropriate pro-
portion of the fluctuatiomp' to be sent from cell to nodei, and are given by

Bl=a/o". (2.9)
Conservation is therefore achieved as long as
B =1, (2.10)
i.e., the whole of each fluctuation is sent to the nodes withagll. This ensures

that the local fluctuations satisfy (2.8).

3. Gather the contributions of the elements at the vertindsuge an appropriate time
integration, e.g. a forward Euler discretisation of thedierivative, which gives
an iterative update of the nodal solution values of the form

At
Ty L — T ol . 2.11
1 | S TerDI BI (p ( )

whereAt is the time-step an§ is the median dual cell area around nodene third
of the total area of the triangles havings a vertex, see Figure 2.2.

For solving steady state problems, the time derivative isriimcluded as a scheme for
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iterating to the steady state. However, for dealing withetiependent problems, the time
derivative term is necessary and it must be integrated inraneravhich is consistent with
the underlying representation off the order of accuracy for the steady state approach is
to be maintained [3]. This will be explained further in Chexs.

2.2.1 Linear and Nonlinear Schemes

In order to identify and define the two subclasses of lineheswes, substitute (2.7) in to
(2.11) to obtain

n+1 u — Zﬁl (z kjuj>. (2.12)

It follows that one can write the scheme as

uMl = Y aul, (2.13)
leh;

with ¥ ¢, = 1 required for consistency. Two classes of schemes can beeddfom the
above scheme: linear schemes, for whichre independent af, and nonlinear schemes,
for which ¢; depend onu.

Moreover the linear schemes can be subdivided into two asbek using (2.12). One
can have a linear scheme with distribution coefficigihtindependent of, or it is also
possible to have a linear scheme for Whmﬁ B, T is linear inu or depend oru
andBT O F' This definition will be very helpful in identifying the vaous fluctuation
splitting schemes that will be presented in this chapter.

2.2.2 Properties of Fluctuation Splitting Schemes

The different schemes, corresponding to different waysashguting the distribution

coefficients used in (2.11), have been designed to satisBraleproperties. These de-
sign criteria are positivity, continuity, linearity prasation, multidimensional upwinding,
conservation and compactness.

Positivity
The positivity property guarantees that there are no nwakoscillations, by ensur-
ing that the scheme satisfies a maximum principle which jththe occurrence

of new extrema in the solution [32,65,81]. A scheme of thenf¢2.13) is globally
positive when
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¢ >0, V. (2.14)

This guarantees that every solution value at the new tine [ew 1) can be writ-
ten as a convex combination of the values at the old time .I€élfis ensures that
the resulting scheme can capture discontinuities like lshaad slip lines without
undershoots and overshoots. In general this property easbat no extrema are
created, since

min uf' < Zq u' < maxu . (2.15)

Requiring that the condition (2.14) is obeyed for each palér cell, is known as
the local positivity condition. This condition will also lggid independent making
it easy to impose.

Continuity

The continuity of a scheme is required to obtain a smooth eg®nce to the
steady state solution [32,65]. A scheme is continuous ifcir@ributions to the
nodes,3T @', depend continuously on both the solutierand the advection ve-
locity A. Discontinuous schemes introduce switches which hamparergence
towards steady state solutions, a behaviour known as lipaling [32]. This is
because the contributions to the nodes discontinuoustygehfxom one iteration to
the next. Therefore it is desirable that the contributianhe nodes using the distri-
bution coefficients3 are continuous functions in both the advection and solution
gradient directions.

Linearity Preservation

The ability of a numerical scheme to reproduce exactly atladinearly varying
solution is called linearity preservation [46,65,81]. §bondition requires that, for
an arbitrary triangular mesh, the scheme preserves the steady state solution
when this is a linear function of the space coordinates. €sefor this property
is done by using an explicit scheme of the form (2.11), whidh e linearity
preserving if and only if, for any triangl€, the coefficient3" are bounded a@’
tends to zero [32].

A relaxed version of this property avoids defining the dizition coefficients ex-
plicitly [9]. For example, to get second order accuracy atdy state, the local
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Figure 2.3: One target downstream vertex, denoted by node
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Figure 2.4: Two target downstream vertices, denoted by sipdendis
ﬂuctuations;gT are required to satisfy the property [9]
@' (u") =0(h®) (2.16)

whereu is a piecewise polynomial interpolant on the mesh higithe maximum
diameter of the triangle§. It is now possible to see that the total fluctuation eval-
uated foru" satisfies

@' =0(h®) (2.17)

so that the boundedness[B}T = %I is true for (2.16). This is an alternative way of
ensuring the linearity preservation condition to asking loundedness @' 's. It

Is worth noting that linearity preservation and positivie incompatible for linear
schemes according to Godunov’s theorem [38], which statdsatlinear scheme of
the form (2.13) cannot be both locally positive and lingapiteserving.

Multidimensional Upwinding

The multidimensional upwind design property is one whicBugas that the fluc-
tuation is distributed only to the downstream vertices & ¢ell according to the
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direction of the flow velocity. There are two possible conatians of inflow and
outflow faces of a triangular cell for scalar advection in tdimensions. These
correspond to one inflow face, as shown in Figure 2.3, and mflow faces, shown
in Figure 2.4. In general, the multidimensional upwind pdyp will be satisfied if

B'=0 if k <O, (2.18)

which means that nothing will be distributed to the upstreerdes; all the fluctu-
ation will be distributed to the downstream nodes, as itatst in Figures 2.3 and
2.4. Here the inward scaled normals satisfy

fi, + i, +hi; =0, (2.19)
and, as a consequence, the inflow paramekteﬁs%ﬁ - M satisfy
ki, + ki, + ki, =0. (2.20)

Now looking at Figures 2.3 and 2.4, it is possible to expl&@ri8). For the one
inflow case, it is obvious as only one of the inflow paramekeis positive. This
means thak;, > 0 andk;,, ki; <0 so@) = @' andg] = @] = 0. For two target
triangles, two of the’s are positive, i.ek;, ki, > 0 andkj, <0, which means that
the fluctuation must be split between the two downstream sipdendiz. Overall
the multidimensional upwind scheme minimises the amouotagswind diffusion
within the class of upwind schemes and consequently giveseurate result if the
flow is not aligned with the grid [81].

ConservationAs already mentioned in (2.10), conservation is ensured akimg sure
that the whole fluctuation is distributed to the nodes of tlesin[32]. As a conse-
guence this property guarantees correct discontinuitjucayy.

CompactnessComputations are performed on each vertex using only iectimeigh-
bours. For a given grid pointin Figure 2.2, the stencil only contains the vertices
of all the neighbouring triangles with shared verte$such compactness is ensured
by restricting the distribution of the fluctuation to withits cell. This property is
an aid for a fast and efficient implementation and easy paisdltion [31, 32].
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2.3 Finite Volume Schemes

Finite volume schemes are techniques which are obtained d&rdirect discretisation of
a system of conservation laws written in integral form. Tiisthod can be defined on an
arbitrary mesh, and a large number of options are availailéhe definition of the con-
trol volumes (an arbitrary spatial region) on which the camation laws are expressed
and the subsequent evaluation of the fluxes through thealauirface (the boundaries of
the control volume). The fluxes are approximated by meansoiaerical flux function,
which could be obtained from the approximate cell averagdy/ @ suitable reconstruc-
tion including neighbouring cell averages as well. In aiddit by direct discretisation
of the integral form of the conservation laws, the methodiegssthat the basic quantities
conserved at the analytical level remain conserved at 8weate level. Thisis an essential
attribute for compressible fluid flow, since the correct apmation of a discontinuous
solution can only be obtained by using this principle [17, 16is possible to show the
correspondence between any finite volume scheme which edbas the median dual
cells [12, 15, 16, 28, 54, 84], and some fluctuation splitsagemes. The analysis below
follows that of [2], to show that the first order upwind finitelume scheme on the median
dual grid could be formulated as a fluctuation splitting soke For the scalar conserva-
tion law (2.3), consider a fluctuation in a triangle which is equivalent to the integral
representing the flux balance over the triangle, which caddiimed as

(pT:/D-FdQ:— F.dr, (2.21)
T oT

where the flux vector for linear convection case can be esprasf = Au, thanks to
the consistency property of the upwind finite volume flux, @nd the inward pointing
normal to the cell boundary. Now consider the numerical fluxctionH (u_, ug, fi), cor-

responding to the first order upwind differencing which canwitten as

of
<%> _. ﬁ
u

whereu is an average state betweanandug, satisfying

-

flug) -4+ fluy)-A 1

H(UL,UR, ﬁ) = > >

(UR— U|_). (2.22)

(%) U_(UR— uc) = f(ur) - F(u) , (2.23)
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Figure 2.5: Upwind finite volume scheme on median dual cell.

Now, using the fact tha%(z— |z]) = min(z 0), for an arbitraryz, with the flux vector,
already defined af = Au, itis possible to express the numerical flux function (2.22)

XUR—}'\UL
ARTATL ) H
(UR—uL)

A- ﬁ‘ (UR— UL))

((A-Aur+ (7\ -Au) — 1

> (Ur—uL)

H (UL,UR, ﬁ) =

<X . ﬁ(UR) —|—X . ﬁ(UL) —

-

X~ﬁ(UR—UL)—é A -ﬁ‘ (UR—UL)

[
>l >l >l
] 3l
—~~ —~
= <
— —
~— ~
+ + +

()\ -ﬁ)i(UR—UL) . (2.24)

Hence, the upwind finite volume semidiscrete equation aamtwith nodd becomes
(see Figure 2.5)

d B}
Sd_l: = e AT == 2 [H (U, U Figiy) + H (U, Ul )] (2.25)
TeDb;

when summing over all the cells D; (see Figure 2.5). Substituting (2.24) in to (2.25)
finally allows the upwind finite volume scheme to be definedhzydplit fluctuation [66]
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n+l_

SUITtUIn - _TG i |:(3\ ‘ ﬁiliz +3\ ’ ﬁi1i3)uﬂ + (7\ ' ﬁiliz)i(uinz - U:l) + (7\ . ﬁi1i3>7(ug - Uinl)]
=5 [ )+ Ry 0]
= —T | [(Kiliz)_(ui”2 —up) + (Kigig) ™ (Ul — Uinl)]
oA (2.26)
TeDb;

because€y t¢p, (Mii, + Miji;) = 0. For this expression to become equivalent to that of a
fluctuation splitting scheme, one has to recall the definitibthe fluctuation in a triangle
T (2.21)

o = %(F(u{‘z)+l?(u{;)>~ﬁil+% F(u{'l)+F(ug)).ﬁi2+%(F(u{‘l>+F(ug>).ﬁi3
= (7\ Uinz+7\uir;> - (Phigip + Migig) + <3\ uir11+}"uir13) (= Tligiy + Mizig) (2.27)
+ 7\u{‘1+7\u{‘2>-(—ﬁi1i3—ﬁi2i3)
= (A -Tigiy) (Ul — U]+ (A - Figig) [ — ]+ (A - Flgig) [u — U] (2.28)

becausei,, + fi,i, = %ﬁil, as shown in Figure 2.5, with similar expressions derived fo
fi, andnij,. Having in mind the distribution coefficient definition (2.®r fluctuation
splitting schemes, if each term is taken separately in tlevalequation, for example
looking at the flux in the directiom;,j, it is possible to construct an upwind scheme by
formulating the distribution to nodi or i2, by looking at the sign ol -Tii,. This leads

to a distribution coefficient,

Biliv = (p_lT Z (X 'ﬁilil)_(uir: —up) - (2.29)

It is possible to see that (2.26) is formulated as fluctuaglitting scheme (2.11)

V=q' /9", (2.30)
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which finally leads to the upwind finite volume - fluctuatioriggmg scheme defined by
the split fluctuations [66]

@ = ; (A -Fig)) ™ (U] —ul). (2.31)

Moreover the scheme will be positive for (2.26), if the notliade restriction reads

Sy
A= —(Kiyip) ™ — (Kisia)

This is more constraining than most of the fluctuation gpbittschemes which will be
discussed later in this chapter. Another of the shortcomofghe finite volume scheme
is the fact that it is not a multidimensional upwind schemel@fned in Section 2.2.2,
so it lacks one of the major advantages of fluctuation spgjtschemes over flux-based
methods. This general statement becomes clear when ong &dkgure 2.6, showing
the distribution target regions for the velocﬁy When the fluctuation splitting scheme
IS one target to vertebg for the velocityf\ drawn in the figure, the upwind finite volume
Is two target to vertice® andiz, making it more diffusive [66], as the distribution is not
restricted to the downstream vertex only, compared to treetarget distribution by the
upwind fluctuation splitting scheme. For varyiﬁg'n general, the upwind finite volume
scheme is always two target except when the velcﬁ:ity pointing to the vertex and is
in alignment with one of the medians of the triangle whichnpdowards the vertex from
which the median originates from. However, the upwind ratfithe fluctuation splitting
scheme, indicated by the shaded regions, is defined by tresedgoutlined in (2.18). It
determines the distribution targets by the signs of the mff@rameters;,, ki, andk;,
respectively.

Overall it is possible to see that the upwind finite volumessuok operating on median
dual cells with numerical flux function of the type (2.22) dasmrecast into a fluctuation
splitting formalism.

. (2.32)

2.4 Finite Element Schemes

Finite element schemes are variational based techniquesofaing partial differential

equations [40, 76]. They are a technique in which a given dionsarepresented as a
collection of simple sub-domains, called finite elementswich it is possible to sys-
tematically construct the approximation functions neeted variational or weighted
residual approximation of the solution to a problem. In timsthod, the approximation
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1 target to i3

1 target to 71

2 target to i1,
*1 target to i

Figure 2.6: The distribution target regions for upwind fluettion splitting scheme (right),
and upwind finite volume scheme (left) : For vechoshown, the finite volume is targeted
to two vertices, andisz while the fluctuation splitting scheme is one-target toicedis.

functions are typically piecewise polynomials.
The basic components in developing the finite element madasfollows [40].

1. Weak formulation of the differential equation over ameést.
2. Finite element interpolation of the primary variableslod weak formulation.

3. Finite element formulation over a typical element.

The weak formulation itself involves a three step procedudeich in general cases
allows the definition of an equivalent integral formulati@am/olving the identification of
primary variables (i.e. variables that are required to b@iooious throughout the domain,
including the nodes at which cells are connected). The feldment model interpolation
functions are developed on the basis of continuity, conepless, and linear independence.
The finite element method is devised by substituting apjatpinterpolations of the
primary variable into the weak form of the differential etjoa.

The analysis below follows that of [22,30, 35,45, 65], to&®the fluctuation splitting
schemes with mass-lumped Petrov-Galerkin and Galerkitefglement schemes. The
fluctuation splitting scheme is linked with the Galerkin fenelement scheme [30] in the
context of central schemes obtained by distributing thetdlatoon to the nodes of a cell
equally. On the other hand the fluctuation splitting schelre @lso have equivalence
with Petrov-Galerkin finite element schemes [36, 47-50, B2he weight functions are
designed to satisfy some of the properties outlined earli¢his chapter [30, 34]. The
weighting function will be associated with nodef cell T denoted here by .
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First, consider the Petrov-Galerkin finite element scheonesfeady advection equa-
tion (2.5), for which the discretisation can be written as

Z/Toﬁ .O"dQ = 0, (2.33)

whereu" is a piecewise linear solution representation. From (2.5)possible to define
T
@' as

@ =Q7A-0Ou", (2.34)

where Q7 is the area of the triangle T. This is because, for constavgcibn velocity
- T
and the linear approximation of', A - Ou" will be constant ovel and equate t%. For
reasons that will become clear later in this section, theetkal scheme can be written as
1
Z¢" = 0. (2.35)
3
This is equivalent to a steady state approximation of theeitityn equation with a linear-
ity preserving fluctuation splitting scheme, with distrifaun coefficients

1
Bl = 3 (2.36)

For constant advection speed itis just a centred fluctuapbtiing scheme and equivalent
to the Galerkin finite element scheme. Now, to support thaswclet us look at how (2.35)
was obtained by simplifying (2.33) given (2.34). For constadvection velocitﬁ and

A - Ou" constant oveT, (2.33) gives

Z/Taf ngL: ~0. (2.37)

Note that this only holds in the constant coefficient casd, iargeneral the fluctuation
splitting and Galerkin finite element schemes give diffediscrete equations, because
the integrals (2.33) do not reduce to (2.37) all the time. Easv for Galerkin and Petrov-
Galerkin discretisations to be equivalent to the fluctuasplitting discretisation (2.8),
the weighting functiormT must satisfy

/T W dQ= BTOr . (2.38)

Now by substituting (2.38) in to (2.37)
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S B =0 (2.39)
Teub;

it is possible to see that the fluctuation splitting schendeices to a pure Galerkin finite
element scheme, for equidistribution of the fluctuationralkvertices of the cell (2.35).
It is now very useful to gain more understanding of the asgmmn between the
weighting functioncqT and the distribution coefficierﬂiT, by defining the weight func-
tion. In order to do this, it is appropriate to write the sadatin finite element terms, as-
suming a continuous numerical approximatiomaf space and givefu;(t) = u(xi, Vi, t) tiet

u(x,y,t) = Z (X Y)Ui(t) . (2.40)

wherey;, denotes the continuous nodal basis function. To define tatae between the
weighting functionw™ and the basis functiogh, an SUPG-like weight function [59, 63]
is chosen

o =gitaly . (2.41)

whereq;" is the upwind bias coefficient contribution of cdllto nodei andy' is the
piecewise constant function equal to 1 on delind O elsewhere. Substituting this in to
the previous equation (2.38) gives

1
Q—T/T¢i+af do— g, (2.42)

and hence L
Bl =gg+ai (2.43)

whered denotes a@-dimensional space. Using the above equation and (2.44 passible
to associate the weighting functiahmT with the distribution coefficienBiT,

d+1
From the above equation it is clear to see that the Galerkite felement scheme with
the weighting functions identical to the nodal basis fumsi( = w) andy™ = 1, and
for equidistribution of the fluctuation over all vertices thie cell leads to a distribution
coefficient3" = Fll outlined in (2.36) for two dimensions , which is nothing else
the centred fluctuation splitting scheme given in (2.35). t&a other hand, because
Petrov-Galerkin finite element schemes don’t have idehtweaghting and nodal basis

W =i+ (BF —~ i) vy (2.44)
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functions, their distribution coefficients and weightingh€tions have the more general
forms given in (2.42) and (2.44). Moreover because of tHegti@n, it is sometimes pos-

sible to view fluctuation splitting schemes as a particulasg of Petrov-Galerkin finite

element scheme, giving this approach a different viewptrthe discontinuous model

used in the finite volume method.

2.5 Fluctuation Splitting Methods

2.5.1 The N scheme

The linear positive N scheme, designed by Roe [71] for sgltire advection equation,
Is the most successful first order scheme, and currentlygdh@ principal component in
the construction of linearity preserving, nonlinear, p@sidiscretisations. This scheme
is a first order fluctuation splitting formulation of the ptsg¢ multidimensional upwind
method which gives the lowest numerical dissipation amarsg drder schemes [46, 62,
71,81]. In two dimensions the triangular mesh cells do nebgk have a unique (only
one target) downstream node so an alternative, two targstibdition must be devised,
as shown in Figure 2.4. If a mesh cell does have a one targatstowam node, then a
single target distribution will be used.

In the one target case in two dimensions, the whole fluctnasadistributed to a
single downstream vertex, as illustrated in Figure 2.3sToeally satisfies the positivity,
upwind, conservation and linearity preservation properasking it an appropriate choice
in these situations [32]. In order to show this, assume ngiethe downstream vertex,
as in Figure 2.3, so that from (2.7) and (2.11) the local uptites the form

S,ur™t = s,ull — At(ki, Ul + ki, ufh +kigufl) (2.45)

12

whereAt is the time-stepu;, andu;, are left unchanged by the activity within this cell.
This scheme is positive §, — ki,At > 0, which is true as long a& < E—; The distribution
is optimal, in the sense that it allows the largest possibie-istep as well as satisfying
positivity. It is also linearity preserving since the dibtrtion coefficient§ 37 =0, 3] =1
and Biz = 0) are independent of the data, so it preserves the exact sstaidysolution
when this is piecewise linear in space [32]. Conservatiaui®matically guaranteed as
SieT Bl =1, and it is upwind becaus@!, B! =0, for ki, ks < 0, which means that
nothing is distributed to the downstream nodes. Note thathf® one target case in two
dimensions all the fluctuation splitting schemes are idanhti

In the two target case the N scheme differs from the otherdatain splitting schemes
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/5

Figure 2.7: A three point stencil indicated by filled circéend outermost points indicated
by full circle

(defined later in this chapter) in its distribution coeffiti®. Since the N scheme is re-
quired to be positive, it cannot be linearity preservingaaese it is linear, according to
Godunov’s theorem [32, 46]. In order to show this assumen &gure 2.4, that the two
inflow sides are given b, ki, > 0. No contribution will be sent to the upstream vertex
because of the upwind condition, i.e.

Bl =0 and Bi+Br=1. (2.46)
The scheme for the local update reads
Sluinl_‘—l — Sluinl
S,u’ = S,ufl — Atk;, (Ul —ufl) (2.47)

12

S,ut ™ = S,ull — Atk (Ul —uf)

i3 i1
This is a locally positive scheme as long as the time-stegfest [32]

At < min (i, i) . (2.48)
ki, ki
Note that this is less restrictive than the constraint nogr&d in Section 2.3, (2.32) for

the upwind finite volume scheme because

S
At < L
—(Kiyip) ™ — (Kigig) ™
whereK, = A -ij, andk; = 4A -fj,. Condition (2.48) ensures local positivity, as it is dedve
using only the contribution of a single triangle, and it iggtly more restrictive than
necessary when the overall nodal scheme is consideredmiéaas that a less restrictive

S
—1 2.49
S kil Y ( )
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13

19
Figure 2.8: Geometry on the N scheme for two target case

condition for positivity can be used to obtain the limit ore hme-step. For the scheme
in (2.45) and (2.47) positivity can be based on the nodal igp(al11), so the time-step
restriction at node becomes [32, 81]

[N R—
2T max(O, kIT)
This can be shown to be the largest possible time-step fariwdnlinear fluctuation split-
ting scheme can be positive. Another reason to call (2.48)2147) the optimal positive
scheme is that it has the most narrow stencil, hence its niamlarrow (N) scheme. This
was achieved by eliminating the contribution from the owntest points of the stencil, as
shown in Figure 2.7.
The fluctuation distribution for the N scheme can be undecstay considering the
velocity7\ to be decomposed, as shown in Figure 2.8, into the sum of coeme parallel
to edgesi, andiziz so that,

(2.50)

A :Xi2+7\i3 . (2.51)

Givenk;, defined in (2.7), the fluctuation due}g can be shown to be

1- 1~
qq’;l = _E(Aiz ) ﬁiz)(uinz - ulnl) - E(Aiz ) ﬁis)(uina o uinl)

1- n_.n
- _?(/\.Z-ﬁ.z)(ui2 uiy) (2.52)

= 30 (U~ )

= _kiz(uinz - Ulnl)
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12

Figure 2.9: The LDA scheme for two positive inflow parameters

because;\i2 -fi; =0, l.e. f0r7\i2 only edgeiis is an inflow side. The second velocity
component leads to

@) = —ki (Ul —ufl) . (2.53)

Now, the two target N scheme (2.47) sends the whole of thaufiticin due tc;\i2 to vertex

i, and that of7\i3 to vertexij,, thereby reducing to upwind along the inflow edges of the
cell.

2.5.2 The LDA Scheme

The LDA (Low Diffusion A) scheme satisfies linearity presation at the price of spuri-

ous oscillations near discontinuities and other sharp gaésim solution gradient [32]. As
with the N scheme, the LDA scheme satisfies positivity, ughvaonservation and linear-
ity preservation property for one inflow side triangles aewsh in Figure 2.3, because it
uses the same distribution as (2.45). However for two inflmle $riangles the schemes
differ. The geometrical interpretation of this scheme iswgh in Figure 2.9 where it is

assumed thak;, andk;, are both positive ank, is negative. Its distribution coefficients
are given by

LDA _ ki, _ | Tigisis | LDA _ kis _ | Tizigis |
2 kptke [T ¢ kg tk, [T

(2.54)

where
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lizi Ki,
Al

lisi Kis
[[A]]

| Tigigia| = v Tigiaia| = and [T| = [Tiigiy| + [ Tizigis | - (2.55)
| Ti,isi, | @nd|Ti,i4i, | @re the areas of the sub-trianglg.;, andT,,,i,. ConsequentlyT |
is the total area of , and can also be written as

|i1i4(ki2 + k|3) _
[[A]]

It is now possible to write a general distribution coeffididry substituting (2.56) and
(2.55) in to (2.54), giving

IT| = (2.56)

LDA k'
B =—"— (2.57)
| ZjeT kr
wherek™ refers to the positive part &. Note that if only one inflow parametdy is
positive, the LDA and the N scheme are identical. Howevewd inflow parameters are
positive, the schemes differ.

2.5.3 The PSI Scheme

The nonlinear PSI (Positive Streamwise Invariant) schesyane of the most successful
fluctuation splitting schemes constructed. This is becafises positivity and linearity
preserving properties as well as its compactness [66]. EmenPositive Streamwise
Invariant refers to the fact that it was designed to enfongariance of the solution along
streamlines when each and every cell is considered indiiguThe PSI scheme can be
obtained from the N scheme using a form of limiter (usuallynmod limiter) [4, 8, 46,
62, 65]. The philosophy behind this scheme is to only appdylithiter to the two target
case, as indicated in Figure 2.4, because in the one tagetlotaN scheme contributions
are both positive and linearity preserving. The two targel &cheme satisfies all of the
properties outlined in Section 2.2.2. The linearity prgagon is obtained by limiting the
distribution coefficients of the N scheme. The PSI schemisisibution coefficients can
be written as

psi_  (BY)* 258
S e (2:58)

where()" denotes the positive part of the distribution coefficierthivi the bracket, and
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gN = (H_N ‘ (2.59)

Here(p;N refers to the contribution made by the cell to notig the N scheme angl’ is the
cell fluctuation, from expressions (2.52) and (2.53). Lntgareservation is guaranteed
becausg@”S! € [0,1] is bounded. This gives zero cross diffusion on a triangulia: §he
PSI scheme is also globally positive; it automatically imisethis property from the N
scheme becausg”>!| < |BN|.

2.6 Results

A genuinely unstructured triangular mesh, which has 3806oes and 7370 cells, shown
in Figure 2.10, is used to obtain the results shown in Fig@ré8 and 2.14. Uniform
structured triangular meshes, like the ones shown in Fgg@rél and 2.12, are used to
provide errors for the advection problem which will be shomglow. Starting from the
finest mesh to the coarsest, the meshes used have 5258281133853, 8385, 2145 and
561 vertices. To obtain solutions to the inviscid Burgerguation a genuinely unstruc-
tured triangular mesh, which has 1926 vertices and 3696,c#bwn in Figure 2.19, will
be used.

Test case A

First consider a problem which will be referred to as tesegasThe initial equation
is given as

Jdu Jdu
X3 Yoy = 0 (x,y) € [-1,1] x [0,1] . (2.60)
This problem models a steady state clockwise circular advearound the point
(0,0), with velocityj\ = (y,—x)T. The initial profile is given as

0 ifx ¢[0.350.65
u(x,0) = (2.61)
1 ifx €]0.35/0.65 .
The genuinely unstructured triangular mesh shown in Figuié@ is used to obtain
all the results for this test case. This test case is apmtpfor illustrating the
positivity of the scheme. The result for this test case amevshin Figure 2.13. In

the figure the N scheme is shown to have a significant level ofarical diffusion,
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while the PSI scheme is shows a significant improvement dveeNtscheme. For
the PSI scheme there are still no oscillations and much lesgerical diffusion.
The LDA scheme is shown to have a significant amount of osichawhich is
visible at the discontinuities. All the schemes convergeldy to steady state as
shown in Figure 2.15. The convergence monitor which was is#te root mean
square (RMS) of the fluctuation of the solution, at each titep given as

Nn n+1 n

. U — U

RMS= \/ RIC ) (2.62)
A\

Test case B

Now consider a problem which will be referred to as test casér# initial profile
is given as

if x ¢ [0.35,0.65)

cog 1Y) jf x ¢ [0.35,0.65

u(x,0) = (2.63)
and it uses exactly the same genuinely unstructured trlangwesh as in the previ-
ous test case A, with the same steady state clockwise air@dieection, around the
point (0,0), with velocity7\ = (y,—x)T. Test case B is appropriate for determining
the scheme’s ability to maintain a smooth peak without aréfly steepening the
profile. All the schemes converge to the steady state as sholkigure 2.15. The
results for this test case are shown in Figure 2.14. The Nrselean be seen to have
a significant level of numerical diffusion, but it does nobghany sign of oscilla-
tion. The same figure shows that the PSI scheme, gives anwerpent in accuracy
over the N scheme, because of its nonlinear positive andriiyepreserving prop-
erty, while also giving a smooth profile. The LDA scheme, abkown in the same
figure, shows some oscillation visible at the outflow bougdarcorrespondence
with its non-positive property.

Test case C

Now consider a problem which will be referred to as test casstlich uses exactly
the same velocity field but with smoother solution profileegi as

G(x) for—-0.75<x< -0.25
u(x,0) = (2.64)
0 otherwise
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in which
4x+3) if —0.75<x< —0.5
G = 4 93 =%s (2.65)
g(—4x—1) if —0.5<x<-0.25
where
g(x) = x°(70x* — 315 4-540¢ — 420k + 126) . (2.66)

This test case is appropriate for determining the order ofieecy of the schemes in
the presence of turning points, because the exact solwtithig problemp(x,y) =
G(r) for 0.25<r = \/x2+y? < 0.75, with zero elsewhere, has continuous fourth
derivative. A series of uniform structured triangular meslhike the ones shown in
Figures 2.11 and 2.12, were used to provide errors for thecwn problem given
above. Starting from the finest mesh to the coarsest, theesesed have 33153,
8385, 2145 and 561 vertices.

All the oscillation and accuracy measures are outlined ibldf2.1 and Figures
2.16,2.17 and 2.18 for mesh type A, as well as Table 2.2 and€s32.16, 2.17 and
2.18 for mesh type B. For the N and PSI schemes, the measwtedairaccuracy
reported in the tables are within the standard and expeetees for all the schemes
presented. However, the LDA scheme clearly exhibits highan second order
accuracy for the smooth test case. That was not expected,tegagh the LDA
scheme is a linearity preserving scheme which gives it higgueacy. The PSI
scheme gives a slope between 1.8 and 2, which is what is ngrmehlsured on a
uniform structured mesh for a nonlinear positive and lirtggreserving scheme.
The N scheme give a slope which is slightly under one, as & doesatisfy linearity
preservation, which is essential to obtaining a high ordexcguracy. In general,
very similar conclusions have been obtained by looking @t thandL; errors. It's
also possible to see the accuracy improve as the mesh isdd@inke,, norm. For
all the accuracy results, grid type A gives a slightly bettecuracy than grid type
B, maybe because the grid is well suited to represent theignlbecause of the
angle present (connectivity is favourably inclined) in tedl edges of the mesh,
especially in the outflow half.

2.7 Nonlinear Burgers’ equation

A two-dimensional variant of Burgers’ equation, used herexemplify a nonlinear equa-
tion, is given as
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du 9 [u? du ou - -
E+a_x(5)+ﬂ_o or H+D~f_0 (2.67)

wheref = (“72, u)". From the linearisation given in [46,61], it is possible tata/the local
advection velocity as) = (0,1)T, whereuTs the average of the values of the variable
at the vertices of the cell. This test case will be used for @linear conservation law
to simulate a discontinuous solution. The mesh structuretwis used is a genuinely
unstructured triangular mesh, shown in Figure 2.19, on thaain (x,y) € [0,1]%. The
boundary conditions used are

u(x,0) = 1.5—2x, <x<1
u(0,y) = 1.5, <1
u(l,y) =—-0.5, 0<y<
(2.68)
The exact solution is given as
~05 ify<05and—2(x—3)+y—1<0
ux,y) =4 1.5 ify<05and—2(x—3)+y-1>0
max(—O.S, min (1.5, X%)) otherwise.
2
(2.69)

A genuinely unstructured triangular mesh, with 1926 vediand 3690 cells, shown in
Figure 2.19, is used to obtain all the results shown in Figug®. The exact solution
will be compared with the various solutions obtained usimdifferent schemes outlined
previously.

From Figure 2.20 it is possible to see that the N scheme isdessrate than the
others in the region where the characteristics intersekts iE because the N scheme is
not linearity preserving. The results for the LDA schemejahihis linearity preserving,
shown in the same figure, illustrate that the shock is cagtsinarply. The PSI scheme for
which the results are shown in the same figure, resolves theksh a better way than the
N and LDA schemes, because it is a second order scheme assvpalkaive. The LDA
scheme also produce comparable isolines and resolvesidas ppart of the solution well.
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Schemesg Test Case A Test Case B Test Case C
min (u) max(u) || Ly order| L, order| Lo, order
N 0.00 0.58 0.92 0.85] 0.76
LDA -0.14 0.98 2.35 217131
PSI 0.00 0.78 1.91 1.79|1.83

Table 2.1: Oscillation and accuracy measures. Mesh typé&éws in Figure 2.11, was
used for accuracy. The finest mesh used has 33153 verticéstivhicoarsest mesh used
has 561 vertices. The genuinely unstructured triangulatnséown in Figure 2.10 was
used for test cases A and B.

Table 2.2: Accuracy measures on grid type B, shown in Figutg.2

Schemesg Test Case C
L, order| Lo order | Lo, order
N 0.89 0.83 0.72
LDA 2.29 2.16 1.29
PSI 1.91 1.78 1.82
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Figure 2.10: A genuinely unstructured triangular mesh ohtias 3806 vertices and 7370
cells, used for the advection equation with discontinua@lst®n and with cosine squared
profile on a nonuniform advection field



Chapter 2 Multidimensional Fluctuation Splitting Schemes 36

0.8

0.6

0.4

0.2

Figure 2.11: The mesh type A, which was used for the adve&guation with smooth
solution (for determining the order of accuracy) on a nofam advection field.
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Figure 2.12: The mesh type B, which was used for the adveetijpmtion with smooth
solution (for determining the order of accuracy) on a nofam advection field.
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Figure 2.13: Test case A, solution for N (top), PSI (middI€)A (bottom) schemes for
the square wave case.
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Figure 2.14: Test case B, solution for N (top), PSI (middl€)A (bottom) schemes for
the cosine squared case.
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Figure 2.15: Convergence histories for test cases A (tap B{top right) and C (bottom),
on mesh shown in Figure 2.19.
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Figure 2.16: Numerical error for grid type A (left), and fordjtype B (right) : L1 error
where the solid line without a marker is slope 2.
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Figure 2.17: Numerical error for grid type A (left), and fordjtype B (right) : L, error
where the solid line without a marker is slope 2.
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Figure 2.18: Numerical error for grid type A (top right), afar grid type B (top left) :
L., error where the solid line without a marker is slope 2.
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Figure 2.19: A genuinely unstructured triangular meshdueethe test case which deals
with discontinuous solution for Burgers’ equation.
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Figure 2.20: Solutions to the Burgers’ equation test cdsmys1g the isolines of the exact
(top left) and N (top right), LDA (bottom left) and PSI (bottoright) solutions.



Chapter 3

High Order Fluctuation Splitting
Schemes

3.1 Introduction

The construction of fluctuation splitting schemes whichehhigher than second order
accuracy is of fundamental significance [8, 67]. This is nyabecause numerical ex-
periments on scalar advection show that very high orderraelseare more efficient than
second-order schemes, because the high reduction of threde to the high order accu-
racy compensates for the large number of operations needsutdin the very high order
approximation [82]. Another, more compelling, reason ey because the approxima-
tion of time-dependent problems demand the discrete fofrbsth spatial and temporal
derivative terms to be of a very high order of accuracy, so tiwa degree of accuracy is
maintained over a long time [3, 6,27, 56].

In this chapter two existing schemes devised in order toexehhigher than second
order fluctuation splitting schemes, presented by Abgradl Roe [8], and Caraeni [17]
will be discussed. Moreover, a new alternative to thesetieggsschemes, named the
additional neighbouring nodes (ANN) scheme, will also lieoiduced and described here.
However, even though each approach achieved higher thandecder accuracy, none
of them satisfies the positivity property. Consequentlyea technique was devised by
Hubbard [41], which imposes positivity on these high ordetesmes. This procedure

45
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which will also be discussed in this chapter.

3.2 Abgrall-Roe Scheme

This scheme is a very high order fluctuation splitting schevhech was developed re-
cently for the numerical solution of first order steady camagon laws, by Abgrall and
Roe [8]. In the classical low order fluctuation splitting sates, it is supposed that the
dependent variable has a linear variation over a mesh cell. In order to calcudaltégh
order fluctuation within the cell, one assumes that the dégetvariable has a high order
polynomial variation over each cell. The idea was to devalggheme in the context of
triangular or tetrahedral cells, whose unknowns are staretiupdated using additional
nodes created by uniformly subdividing the global meshRgere 3.1, so that it is pos-
sible to construct a high order interpolating polynomialeach cell. This then results
in a fluctuation that can be evaluated on any of the subceilhg s suitable quadrature
rule. The purpose is to allow this construction to achieghtarder accuracy, initially for
solving steady state problems.

For constructing a third order scheme the first stage is tmmalach triangle to be
equipped with additional degrees of freedom to the valuéseavertices. For example,
Figure 3.1 shows the cage= 2 usingpX triangular elements whose degrees of freedom
are the values of the solution at the points witfiinshown in the Figure 3.1, creatirg
sub-triangles withinl [8]. The construction of an upwind fluctuation splitting sahe,
for any degree of freedom, is given as

n At T

Uttt =l — = 1 (3.1)
o o SUT702€T o
where
T
o= 5 @ (3:2)
TE’UGTE

Hereo denotes a point that may be one of the vertices of the origelglor the additional
points introduced by the sub-triangulatidi}, expresses a generic sub-triangle Sg,ds
the area of the median dual control volume associated wilsti-triangle node.
Consider a triangle as in Figure 3.1 for the clse 2, with Ty, To, T3 and T, being the
subtriangles, and)CT,‘E representing the fluctuations fér= 1,2, 3,4 which will be sent to
the points contained ifi. The high order (HO) fluctuation on a subtriangle is given as

A / 3 - Ouhdo (3.3)
Te
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Figure 3.1: Sub-triangles gi* and p? interpolation.
whereu" represents a piecewise polynomial continuous representatth values stored

at all the sub-cell nodes. Now by evaluating (3.3) exadtiy,qﬂ%*o can be obtained to be
distributed to the nodes of the refined mesh. The proposédbditon is based on [8]

g (@ /a0

T
o) % P 3.4)

Soere ((@5N/@°)

Even though these distribution coefficients are boundedd®t zero and one, in some

cases, which will be discussed in detail in Section 3.24 stheme (3.4) gives only zero

distribution coefficients for a given subcell, violatingnsrvation. Due to this, Abgrall

T . . .
and Roe [8] proposed a default mode@f = 1/3, for use when this type of situation
occurs in two dimensions. The distribution coefficientshi$é scheme are revised to be

ge_ ((@5)/0°) +e (3.5)
T S (@N/er©) 3e

with £ = 1019, Unfortunately these distribution coefficients presenew problem, as
they automatically default to central discretisation [4This issue will also be discussed
in Section 3.2.1. Abgrall and Roe use the above distributmefficients to calculate the
fluctuations at the vertices of the sub-triangles,

]
@ = Beol°, (3.6)

and the overall fluctuations at the vertices are
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W = @ (3.7)

The resulting scheme is high order accurate but not positivellowing this result a
method for imposing positivity on this high order scheme deeloped by Hubbard [41],
which will be discussed in Section 3.5.3.

3.2.1 The Problem

The high order fluctuation splitting scheme on triangulashes presented by Abgrall
and Roe [8] was found to be not positivity preserving fromvheous numerical exper-
iments that were undertaken. These results were furthestaatiated by the theoretical
investigation carried out. These findings also demongtrtte source of the non-positive
results obtained using numerical experiments. This amalgdlows [41, 42] and also
some closely associated work done independently by Ritzhi@8] and Abgrall [10].
There are three critical problems.

1. When the high and low order fluctuations have differerrhsjge.(pg‘ (pEHO <0, for
a particular sub-triangle, the scheme can violate conservavhen (3.4) is used.
For example, when the contributions made by the N schemeudtion to a par-

. T\N . . . N
ticular nodea, ((pgf) , iIs non-negative for all vertices d§ and the contribution

from the very high order fluctuatio(‘(pg)Ho Is negative, then the third order fluctu-
ation splitting scheme gives zero distribution coefficgeint (3.4), for every vertex
of the subcell, infringing on the conservation. Abgrall a@Rde [8] proposed the
alteration to the distribution coefficients shown in (3iB)roducing a default mode
of B§ = 1/3, when this type of situation occurred, but this modificatiorced the
scheme to acquire the property of central discretisatidnglvis not positive.

2. Even wheng ' > 0, for sub-triangleZ, it is also possible to hav ?O) >
&
than the N scheme fluctuatiqvé\‘. This means that it will affect the positivity of the
steady state approximation, since a more restrictive ¢mmdihan (2.50) is required
for the time-stepping procedure to remain positive. Consetly it becomes very
difficult to distribute the high order fluctuation to the appriate vertices of the
sub-triangle in a conservative manner while maintainingifpoty.

, i.e. the very high order fluctuatiopf'® can have a much bigger magnitude

3. In some circumstanceep?o is nonzero wheny, = Ui, = Uj, in a subcell. When
this situation occurs distributinngHO to the vertices of subced, in a conservative
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manner while maintaining local or, sometimes, global pagytbecomes unattain-
able. Hence, it is impossible to construct a conservatigelacally positive higher
than second order accurate fluctuation splitting schemtheifdistribution of the
fluctuation in a subcell is restricted to be only to the vesiof that subcell.

3.3 Caraeni's scheme

The essence of Caraeni’'s scheme is its construction of adndgr representation of the
dependent variable using the reconstructed gradients of the solution at thenceles to
obtain a quadratic interpolant [17, 18, 20]. The first coasition that was made in order
to obtain high order accuracy is thathas a quadratic variation over the cell. This can
be achieved if the gradient of the dependent variabtecomputed and stored at the cell
nodes, before computing the high order fluctuation withmdahlI.

The procedure starts by approximating the cell gradiersinigithe Green-Gauss the-

orem, given by
1

Ou' = — ¢ urdr, 3.8
Sr Jot (38)
whereSr denote the area of each cell. The cell gradients are thentasggproximate the
value of the gradients at the nodes using

= 1

Ou = > ST (3.9)

dTeuT ST 1T
Now it is possible to obtain a higher order reconstructiontf@ variableu over the cell.
The values ofi at the midpoints of the edge, i.e. thoseai, i»i3 andisiy in Figure 3.2,

are defined using

Ui, — Ui Uui, — Oy
1 2 12 1 8 12 : (Xlz _Xil) ) (310)

wherei, andi, denote the vertices at each end of the cell edge. These \@eesed to

calculate a high order fluctuation within the cell, whichhgn distributed using the non

positive LDA scheme [17,20]. As in the previous scheme, @aita scheme is high order

accurate but not positive, however positivity can also bpased using the technique

Uiji, =

presented in [41]. This positive version of Caraeni’s scaawill be discussed in Section
3.5.2.
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il ilig Z.2

Figure 3.2: Definition of the nodes in a high order triangwelt for Caraeni’s scheme.

3.4 The Additional Neighbouring Nodes Scheme

In Sections 3.2 and 3.3, the existing alternatives for qoetihg very high order fluctu-
ation splitting schemes were presented. Abgrall and RosH8fved that by subdividing
a triangular mesh to provide the additional degrees of seedecessary for construct-
ing quadratic polynomials, they were able to achieve a highder accurate fluctuation
splitting scheme. Another alternative to this approach pr@sented by Caraeni [17],
who was able to recover solution gradients at the mesh naagsise these to obtain
a quadratic interpolant, which also led to higher than sdaangler accurate fluctuation
splitting scheme.

What will be presented here is a high order fluctuation spgtscheme that is con-
structed using extra information about the dependent bkriatored at the additional
neighbouring nodes of the global mesh. These additionghbeuring nodes provide
the additional degrees of freedom that are necessary tdagesaehigh order polynomial
representation of the dependent variables, and henceaggahe fluctuationp’ with an
appropriate degree of accuracy.

The first stage in the development of the additional neighihgunodes scheme is to
consider a mesh composed of triangles, denoted byith verticesiy, i», i3. In addition,
(i1)a<1<n are the other collocation points, as shown in Figure 3.31fer10 to construct a
unique cubic polynomial. For a given triangulation, we saaknterpolant that is piece-
wise polynomial of degree in each triangl€l;, and therefore this triangulation needs to
provide eachl; with

n=S(p+1(p+2). (3.11)

degrees of freedom. Figure 3.4 shows the d¢ase2, and the additional verticesg, is, ig.
The construction of a continuous piecewise higher degrégmpmial interpolant is
achieved using the values oft the additional mesh nodes neighbouring a given cell. For
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A

Figure 3.3: The nodes over which the high order polynomiptesentation of the de-
pendent variables will be fitted. The crosses at the veroteell 1, plus the immediate
neighbouring cell 2 vertices, indicated by hexagons, idetite nodes to be added for
developing quadratic polynomials. If the next immediatgghbouring cells’ vertices of
cell 3 denoted by squares are also added, it will be possilderistruct cubic polynomials
etc. The numbers show the order in which the neighbouring ee¢ chosen to be added
to the stencil.

constructing a quadratic interpolant we use three additiondes, which are obtained
from the three neighbouring cells by choosing the nodes sippthe given cell’s edges,
denoted 2 in Figure 3.3. These make it possible to construgtadratic interpolating
polynomial on each original cell of the mesh. In genergit"aorder stencil has nodes
(3.11), and the complete polynomial in two dimensiong'8fdegree is given by

n
u= Zaixeyf, et+f<p. (3.12)
i=

The complete set ai = 10 points for the cubic polynomial (cells labelled 1-3) i©aim
in Figure 3.3. For constructing a quadratic interpolang, plolynomial involves six con-
stants, which can be expressed in terms of the nodal valube efiriable being interpo-
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Figure 3.4: The stencil over which quadratic polynomiall\w# fitted, wherdy, i> and
i3 (crosses), are the vertices of celli, is andig (hexagons) identify the neighbouring
nodes from cells identified by 2, to be added for developirgdgatic polynomials.

lated (shown in Figure 3.4) as
Uj = a1+ 8] + agyj + auXjyj +asX; +agy.  j=1,...n. (3.13)
This generates the matrix equation

Ba=u, (3.14)

whereB is a square matrix containing the coefficients. }?, a andu are vectors con-
taining the coefficienta; andu;. Once this matrix equation is solved for the coefficients,
it will be possible to construct the third order midpoint was ofu, on each edge of the
original cell,i4ip, i2i3 andisi;. After the unique local quadratic interpolant on each cell
of the original mesh is constructed, an additional stagevislved to attain conservation,
since the continuity of the representation could be hantpefdese issue arises as the
reconstruction of the quadratic interpolant within eactsimeell is achieved by extending
the stencil to obtain information from the neighbouringl€ehodes, making the stencil
selection local for each cell. This means that the stenodsid@ferent for any given pair
of neighbouring cells, and give two different polynomigbresentations for each internal
mesh edge, the two local quadratic representations ovewthadjacent cells. However,
to produce a continuous representation, it is possible ¢cansaverage of the two neigh-
bouring quadratic interpolants across each cell edge,wtives a quadratic interpolant
on each edge of the original mesh. Quadrature is then usechtoate the high order
fluctuation, by evaluating (2.6) exactly. The high order tiiation can then be used to
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update the solution using, for example, an LDA distribut{@r57),

(@ YANN = i((pT)ANN — BLDA(T)ANN . (3.15)
2k
It is important to note that when the LDA distribution is usélis high order accurate
scheme is not positive. A solution to this problem will belm#d later on in this chapter.

For boundary cells, as shown in Figure 3.5, it is impossiblgitk enough additional
nodes from the immediate neighbouring cells for constngct continuous piecewise
higher degree polynomial interpolant. This is because thentdary cells will always
have one or two of the neighbouring cells, and thereby treresponding nodes, absent
in the mesh structure. As a consequence of this, the bourddsywill always be treated
as special cases.

For boundary cells in regular meshes, there are various wiagisoosing more neigh-
bouring nodes for constructing higher degree polynomitrpolants. One such way of
choosing between the various neighbouring nodes beyonditiea cell is to continu-
ously add the necessary amount of neighbouring nodes uatilgh neighbouring nodes
are found for constructing the local polynomial.

To explain further, by looking at Figure 3.5, it is possibtesee that to construct a
guadratic interpolant, the immediate neighbouring celiides, indicated by the hexagons,
do not produce enough information, as at least six nodalegatre required. However
it is possible to collect as many or even more nodes as retjforethe quadratic poly-
nomial to be constructed by adding the neighbouring neighbells’ nodes, indicated
by the squares in the figure. In this case, this gives eighési@hd consequently more
columns in the system (3.14). Now, even though there will lseenequations than un-
knowns, once the polynomials are constructed, it will besgme to use a singular value
decomposition [39, 85], to find a solution to the resultingteyn and consequently the
high order degree polynomial interpolant. In general, gsimgular value decomposition
Is advantageous in the case wh8re (3.14) is a singular matrix, or if there are fewer
equations than unknowns.

For radically irregular mesh structures, as shown in Figufe the basic ideas of the
additional neighbouring nodes scheme carry over in a sttingvard manner, but its ap-
plication introduces new problems. These new probleme dnecause the construction
of the polynomial interpolant depends on the closenesseoh#ighbouring cells’ nodes
to a given cell, and this type of stencil selection leads ®atldition of more layers of
neighbouring nodes, while also extending the distancedxstvihe nodes, due to the irreg-
ularity of the mesh structure. This creates a similar prnoble that seen in the boundary
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<
Figure 3.5: The cells that will be added to the stencil at tberfdary cell indicated by
1, for the additional neighbouring nodes scheme. To coasstjuadratic polynomials for
boundary cells 1, the crosses at the vertices of cell 1, plasrhmediate neighbouring
cell 2 vertices indicated by hexagons, plus the three \esté cell 3 indicated by squares,

will be used.—2 within the circle indicates the boundary and the numbessvghe order
in which the neighbouring cells are chosen to be added totémei.

cells, because it is difficult to collect the necessary nunob@odes from the immediate
neighbouring cells. As the nodes of the neighbouring calldda be further away from
the cell, this can also make the information taken from thextes sensitive to the mesh
structure.

One suggestion to be made regarding the stencil selectibatisinstead of selecting
the immediate nodes of the cells neighbouring a given a¢edguld be better to select the
closest neighbouring nodes in a geometric sense, to olst@mmmation for constructing a
continuous piecewise higher degree polynomial intergokmthat the stencil would not
extended as far in space. In order to select the necessatyanafithe closest neighbour-
ing nodes for constructing a high order polynomial, it cobédpossible to use distances
between the centres of the cells or their size. Once theistamtains enough nodes the
singular value decomposition is again used to find the lepsires fit polynomial.
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Figure 3.6: The additional neighbouring nodes scheme’sehaf the closest neighbour-
ing nodes that will be added to the stencil for a radicallggular mesh structure. The
crosses at the vertices of cell 1, plus the vertices indithyehexagons, and the three ver-
tices of cell 3indicated by squares, identify the nodes taduk=d for developing quadratic
polynomials. However, this stencil selection adds moreiayf neighbouring nodes and
also takes information from the nodes of the surroundingsaghich are further away,
making the scheme sensitive to the mesh structure.
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3.5 Modified Scheme

This section will describe a technique developed by Hubp&tyl which guarantees the
absence of spurious oscillations by applying an additisnaothing stage. The explicit
construction of a higher than second order scheme whichtis fpasitive and linearity
preserving for the steady state advection problem will bééireed. Since the source of
the non-positivity of the very high order scheme presentedibgrall and Roe [8] was
identified in the previous chapter, what will be outlinedé& one possible approach
which can be taken in order to improve the distribution of adified form of the very
high order quctuationp::'O to the appropriate vertices of the subtriangle (or subceld
conservative manner while imposing both local and globaitpaty.

The first step in constructing the modified third order schesnenderstanding the
fact that by modifying the interpolant, and consequentsy/ fllhictuation, it is possible to
construct a positive distribution scheme within the ergframework. To explain further,
by modifying the interpolant in a way which allows a locallggitive distribution scheme,
even when the fluctuation in a cell is distributed only to @lt’'s vertices, a new scheme
which is both positive and higher than second order acctwatbe steady state advection
problem can be produced. In the previous Sections, 2.5.24&n8, the linear interpolant
used for the N and PSI schemes led to a positive scheme [6&]hamr the N scheme
will also be used as the basis for the higher order case todesdjle how to distribute a
limited amount of a high order correction term.

Considering a triangular mesh cell, see Figure 3.1 on th&,rtge high order repre-
sentation within that particular cell can be writternugg) + ou(X), whereu(X) is the linear
interpolant of the dependent variahlet the vertices of the cell, andu(X) is the high
order correction to the interpolant over that cell. Thusdif(X) represents a modified
high order correction along the edges of the cell, the madiifiterpolant can be written
asu (X) = u(X) 4+ ou (X). The high order correction for each edg® of the cell is limited
so that

/

1112

I 8u,(R) <K |uy—ui,| V8= Xy, +(1—p)%,, 0<pu<1, (3.16)
for some constanK > 0, and this condition allows the fluctuation obtained by gsin
the modified interpolant to be distributed in a locally ppgitmanner, for an appropriate
time-step restriction in (2.11).

The limiting of the high order polynomial is conducted at gvguadrature point so
that the above relations are satisfied. The optimal choiciéoconstank is still an open
guestion but in general there are three values for the conktavhich have particular
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i1 1112 (5

Figure 3.7: The limiting procedure for a general case alormglaedge, where® show
the limited values at the quadrature points, anddicate the linear and quadratic limits.
The double ended arrows indicate the values the polynomiallowed to take at the
quadrature point. The solid line indicates the linear iptéantu(X), the dashed line
indicates the quadratic interpolantX) and the dotted lines are the limited interpolant
u' (%) for K = 0.25 andK = 0.5.

interest

e K =0, reduces to the linear case and the PSI scheme is recovered.

e K = 0.25, which guarantees a monotonic interpolant along evegg ethd is the
largest value that guarantees a limited monotonic intemiadlong each edge. The
monotonicity proof is outlined in [41]. Figure 3.7 illustess the geometric effect
of usingK = 0.25 which clearly lies between the linear and quadratic pukmnts.
This value ofK will also be used in all the results conducted in this worlcahese
using larger values df was found by experiment to reduce the rate of convergence
to steady state.

e K =0.5, which guarantees that the midpoint interpolant valuesaunded by the
endpoint values for any given edge. Figure 3.7 shows the ¢bengtric effect of
usingK = 0.5. It is worth noting that the time step restriction will b&éee more
severe a¥ increases [41].

It can easily be shown that this modification allows a positlistribution as follows.
The fluctuation due to the limited interpolan{x) for a general edge can be written as
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1= [ 1=
7{ WA Adr = ;JZUA-ﬁdF (3.17)
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=3 /25UA~ﬁdF+/2u_)\~ﬁdr}. (3.18)
edgesl”/!1 I

In order to ensure that (3.16) is satisfied, but high ordeeigined whenever possible, a
function ai,j,(X) is defined along each edge which satisfies

SU (%) = i, (%) (Ui, — Ui,) . (3.19)

(3.18) then gives

i 5 i 5
/Zdiliz(uil—uiz)/\ -ﬁdl’+/2u_)\ -ﬁdr] . (3.20)
i I1

1

UA-Adr =
j{m e;ges

In order to satisfy (3.16), a(X) |< K is required for allX on the given edge. Itis enough
that the inequality is satisfied at the quadrature pointsiarttlis work, a;j,j, is chosen
at the edge midpoint (the additional quadrature point resgsfor the application of
Simpson’s rule) to take the form

Ui — (Ui +Ui,)
ai,i, = max| —K,min |K,—*2 2| | | (3.21)
Ui, — Ui,

in which division by zero is avoided by making sure the denwtor does not become
zero.
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Now, note that the low order fluctuation can be written

1 g
LO
@ = —5 UiA - i
2i€
— (uil_uiz)}"'n_i’z (uil_uis)}\"n_i'B
= 5 :
= Qi T Wig
= Ky (Uiy = Uip) + g (U, — Uig) , (3.22)

whereA is  the linearised advection velocity, from (2.7). The inflpmrameters are defined
ask, = 3A -, andk;, = 3A - 1%, andi, andis are chosen so thét, andk;, are of the
same sign or zero. Now it is worth noting that the N scheme eavidwed as distributing
®,i, andq,i, (3.22) via

S,ui, — S, Ui, + %At?\v -, (Ui, — Uiy) if j\v-n*iz >0
S,ui; — S,ui, + %Ati -, (Ui, — Uiy) if 7N\ n, <0
S, Ui, — S, Uiy + %Ati (=) f A, >0
S Ui, — S, Ui, + %Ati - iy (Ui, — Uis) if in?s <0. (3.23)

An alternative to (3.23) can be derived from rewriting thev lorder fluctuation as
qDN = Iﬁt(uil — Ui,) + ki;(uil — Uj,) + kiJ;(uil — Uig) + ki;(uil — Uiy), (3.24)

where[ ™ and[]|~ are the positive and the negative parts of the argumentmiitiei square
brackets, and the verticeg i> andiz are again chosen according to the inflow edges, as
directed by the N scheme. This leads to a formulation of te&idution given by

S.ui; — Siu +At[ki;(ui1_ui2>+ki;(ui1_ui3)]
S,Ui, — S,ui +Atkit(ui1_ui2)
Sali; —  Saliy + Atk (Uip — i) . (3.25)

These are useful alternative formulations for the distidouof the higher order fluctua-
tion. Now, returning to the high order fluctuation in (3.2@)deusing the fact that
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(Ui, — Uig) = (Ui; — Uiz) — (Uiy — Uiy) , (3.26)

it is possible to derive the form

oM = 7{ WA -Adr (3.27)
2Q
1 s 1 s
= é(uil _uiz))‘ “Nip + é(uil_uisy\ -Nig

i2 o i3 o
+ / i, (Ui, — Ujy)A -ﬁdr—/i i (Ui, — Ujy)A -Aidl
2

1

i1 5 i3 5
- / Qii; (Ui, — Uig)A -Adl —l—/ Qi (Ui; — Uig)A -1 dl,
i 12

3

whereiy, i» andiz are the vertices of the cell (or subcell) taken in an anticldse manner.
This then gives

/- g [ - [ o
7{ uA-Adr = FA-rfi2+/2ai1i2)\-ﬁdr—/saizig)\-ﬁdr] (Ui, — ui,)
Q 2 i1 i
1= i1 - i3 -
+ {EA -ni3—/ iz, A -ﬁdl’+/ o (W} -ﬁdl‘] (Ui, — Ui,)
13 12
Kigip (Uiy — Uiy) + Kigig (Uiy — Uig) - (3.28)

This is now written in similar form to the linear fluctuatio®.22).

Note that ifK;,i, has the same sign &g in (3.28), sendingK,;, (u;, — u;,) to the same
node as;, (Ui, — U;j,) will lead to a locally positive distribution. Otherwise ttfey are of a
different sign, then sending,i, (Ui, — Ui,) to the other edge node updatedkpyui, — ui,)
on edgei1iy, leads to an update which is locally positive. The same ghaewill be
performed for the fluctuation associated with edge This is the essence of the positive
scheme on which the high order scheme will be based.

Importantly, due to the constraints anj,, 0i,i; and ai;; in (3.28), K, andKj,j,
are clearly bounded. Furthermore, simple bounds can beettfor these coefficients on
each edge, i.e.
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15 2 o i3
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and
1= i1 S i3 o
| Kijis | = _A'ms_/ a)\-ﬁdl'+/ (1)\~ﬁd|—'

2 i3 io
1: i1 — i3 -

SN AR a)\-ﬁ+dr’+/ a)\-ﬁdr’
2 i3 io
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< |53+ [Clal[d-n| o+ [Clal[A-n| ar
2 i3 i2
15 15 i3,

< —A-n*i3+K/ A.ﬁ} dF+K/ )\-ﬁ’ ar
2 i3 i2
15 - o

< |54 +K {max)\ -1, |+ max|A .n‘i’l] ‘ (3.30)
2 13—I11 io—i3

SinceK|,i, andKj,i, are bounded, it is now automatically possible, for smallugyoAt,

to use the limited fluctuation (3.28) to produce a locallyipes update to the dependent
variableu. As in the N scheme formulation given by (3.22)-(3.25), tbhatabution due
to edgei1i; andijiz can be written as

S, Ui, — S, Ui, +AtKi i, (Ui, —Ui,) if Ki,i, >0
S,Ui; — S, Ui, +AtK i, (Ui, — ui,) if Kiji, <O
S,Ui; — S, +AtK i (Ui, —uiy)  if Kiji; > 0
S, Ui, — S, Ui, +AtK, i, (Ui; — Uiy) if Kii; <O. (3.31)

For small enought, this clearly leads to a positive distribution, which wik lshown
shortly. Note that along the line of (3.24), the limited higitder fluctuation can also be
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written as

(P = Kij; (u|1 u|2)+KI |2(u|1 u|2)+KI |3(ul1 u|3)+KI |3(ui1_ui3)7 (3.32)

1112

and that the distribution (3.31) is equivalently given as

Siu; — Spui +AK |2(ul1 ul2)+K|1|3(ui1_ui3)]
Spui, —  Sjui, +ALK; |2(Ui1_ Ui, )
S,ui, — S3u.3+AtK,l| (Ui, — Uiy) . (3.33)

The N scheme directs the way the verticgs, andis are chosen according to the inflow
edges. Now the contributions from the two edges are gathiegether to give the cell

vertices contributions, which allows the overall disttilon to be done in a manner similar
to that of the PSI scheme (2.58), by imposing linearity preg@on on the N scheme, so

that N
( T)PSI'-”V' _ [(BiT)N } —( oM = (B )PSI'-'M( s (3.34)
sier [BTM]
where(BT)PS"™ is the limited high order fluctuation ar@™)N"" can be defined using
(@) = (BN (o). (3.35)

The limiting of the polynomial in (3.16) ensures that at te@se distribution coefficient
(BiT)NL'M within each cell is positive so the denominator in (3.34)aser zero. Also the
limiting procedure applied in (3.34) will not increase thagnitude of the distribution
coefficients given by (3.35). The restriction on the timesterequired by (3.33), and
will be discussed in the next section. The limited fluctuattan now be used to produce
a high order scheme which is both positive and linearity gnasg.

3.5.1 Modified Third Order Abgrall-Roe Scheme

The approximation of the two-dimensional scalar adveactignation

+A-Ou=0 (3.36)



Chapter 3

High Order Fluctuation Splitting Schemes 63

using the modified fluctuation splitting schemes will be ¢desed here, for linearly vary-
ing A, and piecewise quadraticwith further restriction to cases wheté A = 0, which
means that the fluctuation can be written as

(pT:_/X.ﬁudQ:_/ﬁ-(Xu)dQ:]{ uA -fidr, (3.37)
g . 00

whereii is the inward pointing normal to the cell boundary. Using Bgon’s rule along
each edge of the triangular cells, the fluctuation is exactly

f{ UA -fidr
Q

+

olk Ol Ol Ol Ol Ol OIFRPOIF O

(ui1Xi1 i -+ A, Aiyi, - Tig -+ Ui Ay ﬁi3> (3.38)
(Uizj\iz Py AliigAiyig - Py + UigAiy - ﬁu)

(Ui37\i3 - T, +4Ui3i17\i3i1 -, + Uij\il : ﬁi2>

-Uilj\il Mg +4 (&ZU'Z) Aigiy - Fig + Uiy Ai, ﬁi3:|

4 (Uiliz _ ;L uiz) Aigiy ﬁi3:|

[ = Ui, + Uiy \ = K
Uiz/\iz'ﬁil+4( 12 I3)/\i2i3'ﬁi1+ui3}\i3'ﬁi1]

i U, + Ui\ =

4 <Ui2i3 — 28 5 '3) Aigig - ﬁil]

[ - Ui + Ui, \ >
Ui3/\i3-ﬁi2+4( '32 Il)/\igil'ﬁiz"‘r‘uil}\il'ﬁiz}

[ Ui, + Ui, \ =
4 <Ui3il L 5 '1) Aiiy - ﬁiz]

whereiq, io andiz are the three vertices of the triangle.
For linearA anduwhenil-A = 0, the fluctuations are
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. 1, - . -
f(;Q uA -ndlr = 6 (uil)\il-ﬁi3+4uili2/\ili2-ﬁi3+ui2)\i2-ﬁi3> (3.39)
1, - . .
+ 6 <Ui2)\i2'ﬁi1+4Ui2i3/\i2i3'ﬁi1+Ui3}\i3'ﬁi1>
1, - . -
+ 6 (uis)‘is'ﬁi2+4ui3i1)\i3i1'ﬁi2+ui1)‘i1'ﬁi2>
17 = Ui, + Ui, \ 3 = |
= 6 Uil/\il-ﬁi3+4( ! > Iz)/\iliz-ﬁi3+ui2Ai2-ﬁi3
1[ - Ui, +Uig \ 3 < :
+ 6 Uiz/\iz'ﬁil‘f“‘r( '22 Ig)/\izig'ﬁi1+ui3}\i3'ﬁil
[ - Uiz +Ui; \ 3 < :
+ 5 Uig)\i3~ﬁi2—i—4( '3 Il) Aigiy - iy + Uiy Aiy - T,
where
I . . g 1 5
/)\-DudQ:( )\dQ)-Du:ST)\-Du:—— A - i, (3.40)
T T 2.£

. 5 1 3
jgg UuA -ndll = —Euil)\ N, — éuiz)\ M, — Euis)\ -Ti
2 U, + Ui, \ = 2 U, + Ui, \ =
+ 3 <um2 — > '2) Aigip Fig + 5 (Uizig -2 > |3) Aigig - Ty
2 Uis + Ui; \ 3
+ 3 <Ui3i1—%) Aigiy - Ty . (3.41)

This will lay the cornerstone for constructing a limited ydrigh order cell fluctua-
tion, which will in turn be distributed to the appropriate shevertices. The unlimited
fluctuation, by itself, cannot be distributed to the vesickenoted by, i» andiz in a
manner which satisfies the positivity property. Therefdhe, interpolated values at the
midpoints of the subcell edges, ; , u;.;, andui,, shown in Figure 3.9, will be limited.
The mathematical representation of the limited midpoithiesa can be written as
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(31 112 19

Figure 3.8: The limiting procedure for subtriangle reconstion, wheres show the lim-
ited values at the quadrature points, anohdicate the linear and quadratic limits. The
solid lines indicate the linear interpolamiX), the dashed lines indicate the quadratic in-
terpolantu(X) while the dotted lines are the limited interpolantx).

Figure 3.9: The high order reconstruction points of the AdtlgRoe scheme.
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/ Ui, + U
Ui, = % + Qiyi, (Uiy — Uiy)
/ Ui, + U;
ui2i3 = % + aizig(uiz - uig)
/ Ui, + Uj
Uigiy = {4y F0) 2 ) + Qigiy (Ui — Uiy) (3.42)

where the coefficients;,j,, ai,i, andai,i, are defined as

Ui — (Uig +Uiy)
. 1112 2
ai,i, = max| —K, min [ K, ————=—
Ui, — Ui,
[ Ui — (Uiy+Uig) |
: 1213 2
Qi,i; = max| —K,min |K, ———5—
Ui, — Ui,
. Uigiy — (Uigzuil)
Qigi, = max| —K,min |K, ——%— (3.43)
Ui; — Ui,

in which division by zero is avoided by making sure the denmator does not become

! . . . . . .
zero. Herey; ., U;2i3 and U;3i1 are the limited midpoint values as shown in Figure 3.8,

indicated by the filled circles on the dotted lines. Thesebaseed on (3.16), and satisfy

/ (U' =+ Uj )

i — = > 2 < K|uj; — Ui,

/- (Ui2+ui3) <Kt —u

i2iz 2 = | i2 ls‘

’ (U' +U' )

iaip — = 5 11 <K |uiy — Uiy | (3.44)

where the value oK > 0 will be chosen appropriately. To guarantee that the above
relation holds at all the quadrature points, the high orddymomial will be limited.
The best choice foK is an open question but three significant values are givehen t
previous Section 3.5. The positive time-step restrictiopehds oK and decreases &S
increases. The appropriate choicekofs very important because the precise calculation

of the coefficientsyj,j,, 0i,i, andai,j, for the appropriate edges will be dependent on the
value ofK. This will allow the fluctuation to be written as,
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— —

_uil)\ -1, B Ui,A - 1, B UigA - Nig

A-Adr = e
féﬂ u 2 2 2 ( )
2C{iliZ(uil B uiz)Ailiz : nTg 2C{i2i3(ui2 — ui3)Ai2i3 . ﬁi’l
_|._
3 3
20051, (Uiz — Uiy)Aigiy - 1T,
3 .

Returning to the linear case described in Section 2.5.1fltleéuation can then be
written as

u'lj\ Niy ulz}" Mi, uij Nig — (uil _ulz)}" Tz (u|1 ulg);\) nTs
2 2 2 2 2
(»qliz + (nlig
= kiz(uil_ui2)+ki3(ui1_ui3) ’ (346)

wherek;, = %7\ -n, andk;, = 13 -n;, are of the same sign or zero. The modified fluctuation
(3.45) can now be distributed to the vertices in a positivemnea, following the analysis
of Section 3.5. As will be shown below, the N scheme will agsiguiding the direction
in which the modified fluctuation will be distributed.

The N scheme can be viewed as distributqg, and @,j, using (3.23) which is a
useful alternative formulation when considering the d@isition of the higher order fluc-
tuation. The fluctuation in the limited high order case (3.45equal to

oM = | dinar
0Q

(Uiy — Uip)A - 1, + 2004, (Uiy — Uip)Aigi, - Mg _ 200,i (Uiy — Uip)Aii - 1My

2 3 3
n (Uiy = Ui)A -1, 2050, (Ui, — Uig)Aigiy -1, . 20 Uiy — Uiz)Aigiy 1,
2 3 3
= Kiyip (Uiy — Ui,) + Kigig(Uiy — Uig) (3.47)

sincen;, = —nj, —n; and

Uj — Uk = (Uj — Ui) + (U — ) = (Ui — ) — (U —uj) . (3.48)
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The limited high order fluctuations (3.47) can be seen to laasienilar form to the N
scheme fluctuations (3.46). Nowkf,;, has the same sign &s, sendindK,i, (Ui, — Ui,)
to the same node &s, (uj, — u;,) will lead to a locally positive distribution. If they are of
a different sign, then sending,;, (u;, — ui,) to the node opposite that updatedipyfu;, —
92) on edgeiNliz, leads to an update which is locally positive. However, ribtg when
A n,=0 orh - ni, = 0in (3.46), the split between nodes in (3.47) is not uniquklaads
to a situation where the fluctuation can be arbitrarily distted to either node in the high
order distribution. This does not seem to have any detrialegftect on the numerical
results. The new scheme can be written in a form similar t81(38.which will lead to a
positive distribution. Since the fluctuation can also betten as (3.32), the distribution
(3.31) is equivalently given as

Siui;, — Spui, +AtK; |2(ul1 ul2>+K|1|3(ui1_ui3>]
S,u, — Szu.2+AtKl+|2(uil—ui2)
SaUi; — Sl +ALK |3(Ui1 — Uis) (3.49)

where[ ]* and[ ]~ are the positive and the negative parts of the argument henekttices
i1, I2 andiz are chosen according to the inflow edges, as directed by trehéhse. This
scheme is clearly locally positive for

At < min —S . S‘j , S‘j . (3.50)
KI:|_I2—i_KI;|_I3 KI;|_I2 KI;|_I3

Now the overall distribution is done in a manner similar tattlof the PSI scheme
(2.58), by imposing linearity preservation on the N schesogthat

(BTN
Sjer (B >N“M]+

+

((HT)PSIL'M _ = (B )PSI'-”"' LIM (3.51)

where(BjT)NLIM is the limited high order fluctuation ar{@™)N"™"" can be defined using

NLIM

(@™ = (BTN g™ . (3.52)
The limiting of the polynomial ensures that at least oneritistion coefficient within
each cell is positive. Also the limiting procedure applied3.51) will not increase the
magnitude of the distribution coefficients given by (3.52).
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Figure 3.10: The limiting procedure for Caraeni’s schemadgnt recovery, where
show the limited values at the quadrature points, amticate the linear and quadratic
limits. The solid lines indicate the linear interpolani), the dashed lines indicate the
quadratic interpolant(X) and the dotted lines are the limited interpolarg).

3.5.2 Caraeni's Scheme

The implementation of the technique for imposing posiiah Caraeni’'s scheme is car-
ried out using the edge midpoint values (3.10), so that ibssfble to construalgliz, Ui
andugsil, the limited midpoint values along each edge, as shown iarEig.10, indicated
by the filled circles. As already discussed in Section 3.6]ithiting procedure is exactly
the same for all higher than second order schemes, and theditmgh order fluctuation

for Caraeni’'s scheme can also be written in the form (3.4&), i

(pCARLlM = jég UA-fidl = Kisi, (Ui — Ui,) + Kijig (Ui — Uiy) - (3.53)
This limited high order fluctuation can now be distributecaisimilar manner to that of

the PSI scheme (2.58), i.e.

(g )CAR™ — [(BiT)NLIMr CARM _ (

— zjeT [(BJ'T)NLIM]+ —

T)PSI'-'M (p(r:ARL'M _ (3.54)

Constructing a positive higher than second order schemieeigfore also possible for
Caraeni's scheme, because the limiting procedure will Howethe distribution coeffi-
cient to be larger in magnitude than that of the underlyingjfpee scheme (3.49).
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3.5.3 The Positive Additional Neighbouring Nodes Scheme

The LDA distribution coefficients, as stated previously econ 3.4, do not distribute
the high order fluctuation of the additional neighbouringle® scheme in a positivity
preserving manner. As with the approach proposed by Cafaéhiwhich constructed a
high order fluctuation within each cell and then distribuitagsing the LDA distribution
coefficients, the additional neighbouring nodes schenteasnot guarantee the absence
of spurious oscillation from the flow without the applicatiof an additional smoothing
stage. The modification outlined earlier in this section barused to guarantee the ab-
sence of spurious oscillations. Once again, by modifyirggttigh order interpolant and
using a limiting procedure it is possible to distribute timeited fluctuation in a positivity
preserving manner, so that the spurious oscillations casvbeeome in exactly the same
way as for Abgrall-Roe and Caraeni’s schemes. The impleatient of this technique
starts by using quadrature to evaluate the fluctuation dwentesh cell, not the subcell
used in Section 3.5, so the limited solution value at a gigeanidpoint, such asiy, is
given as

;o (Ui, + Ui,)
o=

+ai1i2(ui1_ui2) ) (355)

where, as in (3.21)

Ui — (Ui +Uiy)
ai,i, = max| —K,min K, 22— 2| | (3.56)
U, — Ui,

This limiting procedure is exactly the same as discussdebeand the limited high order
fluctuation can again be written as

(pANNL'M =¢_ UA-Adr = Kii, (Ui; — Ui,) 4 Kigig (Ui, — Uig) (3.57)

It will be distributed in the same manner that created thedeBéme (2.58), i.e.

T NLlM
_ [(B. ) } ¢¢NNLIM _ (BiT)PSIUM(IﬁNNUM ‘ (3.58)

o (B

+
( T)ANN'-”V'

As discussed in Section 3.5.1, like the PSI scheme, theitighpgrocedure will produce
distribution coefficients which will not be larger in magmie than those of the under-
lying positive scheme, so a positive third order additiom@ighbouring nodes scheme is
achieved.
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Figure 3.11: The quadrature points used in integrationgach cell edge

3.6 Burgers’ Equation

The simple extension of the high order schemes, describédeiprevious chapter, to
nonlinear equations will be outlined here. The analysi®fes$ [41] . A two-dimensional
variant of Burgers’ equation is used to exemplify a nonlimeguation, and is given in
(2.67). In order to evaluate the high order fluctuation f@ plositive high order schemes,
Burgers’ equation needs a suitabjgpoint quadrature along each cell edge, since Simp-
son’s rule is not accurate enough to be used for evaluatmfjubtuation, as was the case
in the linear advection equation. Once the appropriate iqack points are chosen, it is
possible to write the fluctuation as

Up

_’. — | £ I .
) fondr e%%(éwf(u) ﬁ)e (3.59)

d ap . .
- 2 Reer) - g (8o (o-ro)-o

wherew are the quadrature weight coefficients arid the value of the linear interpolant
of u at the quadrature points along the cell edges. One can abgetithe above equation
now comprises a difference in the flux, which can be handlea smilar manner to a

standard finite volume scheme, whenever a suitable Roeiagian exists [70], and can
therefore be written

e
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—~
-

F(u)—F(m:%(u—mzi(u—m. (3.60)

The advection velocity} = ((u+1)/2,1)T, now also depends on the limited polyno-
mial interpolant. However, because the polynomial inteapbis limited in the same way
as in the linear advection equation, there is only a smatbeptocedure involved. For
example, the limiting along a given edg® in Figure 3.11 is carried out by setting

/ 3U;, + Uj

U, = ( 7&4 '2)+ain(uil—ui2)

Uig = %‘i’aie(uil_uiz)

' Ui, + 3Uj

U, = %‘i‘ailz(uil—uiz), (3.61)

where the coefficients;,,, ai, anda;j,, are defined as

_ (3ui +Ui,)
; Ui, — 4
aj,, = max| —K,min K’ﬁ
11— Hi2
o (uigtuiy)
: Uie — — 2~
ai;, = max| —K,min K,W
11 12
_ (ui1+3ui2)
; Ui, — 4
ai,, = max| —-K,min|K, ——=—— (3.62)
12 ) ) Us Us
11— Hi2

in which division by zero is carefully avoided. Now, the adiren velocities, required
by (3.60) along the same edg&®, depend on the limited polynomial interpolant, and are
defined by
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N ’ 3(uj, +Ui,) T

A _ iy T 1
111 2 9

_ / 3(ui, +Ui,) T

TR (e S
le — 2 )

" / (ui, +3ui,) T

T (P S (3.63)
|12 —_— 2 P . .

Similar expressions are used to calculate the advectiarcitgs in (3.60) for the other

edgesj.iz andisi;. One needs to be careful to make sure the solution is bouralad s
to maintain positivity, because here the time step limit wilw depend on the solution.
Given the above information, the fluctuation for the nordingcalar equation can now be
written as

Jp

f.Adr =+ (z
edges

w (U — J‘)i : ﬁ) . (3.64)
I=1

e

0Q

This now follows the same procedure as in the linear advedatese, except that the
additional quadrature points will be used in the integratidong each cell edges when
evaluating the fluctuation. Again one needs to be carefutepkng the advection velocity
bounded so as to achieve a positive scheme by using a sui@gestep limit, which
makes it possible to limit the interpolant in the same waynabe linear advection.

3.7 Results

The same uniformly structured and genuinely unstructunedigular meshes that were
used in Chapter 2 will also be used for circular advection afistontinuous solution
profile (test case A), cosine squared profile (test case Bpasmooth solution (test case
C), the test cases shown in Figures 2.11, 2.12 and 2.10 tesggcThe modified positive
schemes discussed in Sections 3.5.1, 3.5.2 and 3.5.3 vatidyen as the Abgrall-Roe PSI
scheme when the non-oscillatory modification it is appliedne Abgrall-Roe scheme,
ANN PSI scheme when it is applied to the ANN scheme and CaR8hscheme when
it is applied to Caraeni’s scheme. The structured and gehuimstructured triangular
meshes mentioned above are used to obtain results with tla@i@aANN, Caraeni PSI
and ANN PSI schemes. A uniformly subdivided genuinely wrdtired triangular mesh,
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Schemes Test Case A Test Case B Test Case C
min (u) | max(u) outflow | L; order| L order| L. order
Abgrall-Roe -0.0648 0.9703 2.52 1.98 1.47
Abgrall-Roe PSI 0.0000 0.9163 2.69 2.32 2.31
Caraeni -0.1683 0.9999 3.03 2.62 2.04
Caraeni PS] 0.0000 0.9285 3.48 2.73 1,25
ANN -0.1896 1.0000 2.55 2.31 2.08
ANN PSI 0.0000 0.8947 2.64 2.38 2.17

Table 3.1: Oscillation and accuracy measures. Mesh type #Ausad for accuracy. The
first two columns have been obtained on the 3806 node andwdedi984 node meshes
shown in Figures 2.10 and 3.12 respectively.

Schemes Test Case C
L, order| Lo order| L, order
Abgrall-Roe 2.49 1.92 1.41
Abgrall-Roe PSI 2.63 2.28 2.26
Caraeni 2.97 2.58 1.98
Caraeni PS] 3.41 2.67 1.19
ANN 2.50 2.29 2.03
ANN PSI 2.59 2.32 2.11

Table 3.2: Accuracy measures on grid type B.

created from a coarser mesh to give a similar number of unksand shown in Figure
3.12, will be used to obtain results with the Abgrall-Roedzhschemes for the same test
cases, described above. Subdivided meshes derived framnifioemly structured meshes
shown in Figures 2.11 and 2.12, will also be used to obtailt®svith the Abgrall-Roe
based schemes which demonstrate their accuracy.

A regular structured mesh with 2145 vertices shown in Figufiel are used for test
cases A, B and C to obtain results with the third and fourtleoANN PSI scheme.

For test case A, which was outlined in Section 2.6, the madstésting aspect is that it
will show whether the schemes presented in this chaptesfgalie positivity property, as

Schemesg Test Case C
L, order | Lo order| Lo order
3rd order ANN PSI 2.59 2.32 2.11
4th order ANN PSI 3.36 2.91 2.58

Table 3.3: Accuracy measures on grid type A.
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oscillations will be visible close to the discontinuitiéstiey don’t. None of the modified
positive schemes produce any unphysical oscillations.

Figure 3.13 shows the Abgrall-Roe third order scheme, watysmall oscillations
visible at the discontinuities near to the inflow boundangiag from the non-positivity
issue discussed in Section 3.2.1. For the modified Abgraé-&theme, Figure 3.16 shows
that the oscillations have clearly been removed, and thermaxr and minimum solution
values are the same as the exact solution, to machine mecisior Caraeni’s scheme
Figure 3.14 shows a significant amount of oscillation whigltlearly visible close to
the discontinuities, and also some oscillation visiblehat dutflow boundary (especially
around the minimum values). The Caraeni PSI scheme, lik&bigeall-Roe PSI scheme
has no oscillations, and the maximum and minimum solutidnesare recreated exactly
as Figure 3.17 exhibits.

For the ANN scheme, derived from extending the stencil, Fegu15 shows some os-
cillations that are visible close to discontinuities witkimilar pattern to that of Caraeni’s
scheme, Figure 3.13. As expected the ANN PSI scheme givelis@gich are positive
and the maximum and minimum solution values are the samea&sé#ct solutions. Based
on the results discussed above it is possible to say that3h&dsed schemes are better
when discontinuities occur. In all cases the results ameifsegntly better than those of
the PSI scheme. Note that the semi circular shape of the@olistcompletely respected
in each test case. For this test case, a comparison of thisosdat the outflow, where the
solution is at its maximum, are provided in Figure 3.19, glanth a comparison between
all the positive high order schemes. This confirms the olagems made above.

Figure 3.26 shows the third and fourth order ANN PSI scherppsied on the regular
structured mesh with 2145 vertices shown in Figure 2.11. ddraparison of the two
solutions at the outflow are also shown in Figure 3.28. As entthrd order ANN PSI
scheme, the fourth order ANN PSI scheme clearly doesn’t stwayvoscillation at the
discontinuities and a zoom of the solution where the safusanaximum also shows an
improvement.

Test case B, illustrates each scheme’s capacity to maiatsimooth peak value with-
out artificially steepening the profile, as already menttireSection 2.6. Figure 3.13
shows the third order Abgrall-Roe scheme, with slight datdns at the outflow profile
and some improvement in accuracy compared to the low ordemnses, which is also
apparent from the outflow profile shown in Figure 3.20. The waltlgRoe PSI scheme
has clearly removed the small oscillations which were presethe basic Abgrall-Roe
scheme, at the cost of a slight drop in peak value seen in&@u6. Caraeni’s scheme,
shown in Figure 3.14, produces more oscillations in the owtfbrofile compared to the
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Abgrall-Roe scheme. However, Figure 3.17 shows that tha&arPS| scheme com-
pletely removes the oscillations, again at the expense blat sirop in peak value. As
with the previous non-positive schemes, the ANN scheme @isduce slight oscilla-
tions at the outflow profile (shown in Figure 3.15). The maxmgplution at the outflow
for the modified ANN PSI scheme shown in Figure 3.18 producsiggat drop in peak
value which is consistent with the Caraeni PSI and AbgrakkRSI schemes. For all the
schemes discussed above, the comparison of the solutiahe attflow is provided in
Figure 3.20.

Table 3.1 and 3.2 show results obtained using a uniform uctstred mesh shown in
Figure 3.12 for Abgrall-Roe based schemes, and all the seb@&xcept the Abgrall-Roe
based schemes using the mesh shown in Figure 2.10. The tdérggy the minimum
value for test case A and the maximum value for test case Begamittm the observations
stated above.

The third and fourth order ANN PSI scheme results are showigare 3.27. Figure
3.29 shows the solution comparisons at the outflow. Neittiegimie produces oscillations
at the discontinuities, and a zoom of the solution aroundbtitéow where the solution
is maximum clearly shows that an increase of the formal amyuof the scheme does
improve the result.

Test case C, which was also introduced in Section 2.6, is teséesst the order of
accuracy of the schemes using the same circular advectloaityeas the above two test
cases, but with a smoother solution profile. Figure 3.21ywshibe zoom of the solutions
at outflow obtained using genuinely unstructured meshe® rébults obtained for the
different schemes are similar to those of test case B, bustih@oth peak values at the
outflow are much more close to the exact solution.

All the oscillation and accuracy measures calculated amesarised in Table 3.1 and
on the left of Figures 3.22, 3.23 and 3.24 for mesh type A, atulel3.2 and on the right
of Figures 3.22, 3.23 and 3.24 for mesh type B.

The accuracy measures are calculated using structuregyiiix meshes of the form
shown in Figures 2.11 and 2.12, by repeatedly halving thkdracnd mesh size, so that it
is possible to see the rate at which the error will reduce &s fileshes are used, starting
from a coarser one. Here, a sequence of six structured mestie$61, 2145, 8385,
33153, 131841 and 525825 vertices are used.

For the smooth test case Caraeni’'s scheme is the most az@fratl the schemes
outlined in this thesis, since it uses an LDA distributioniethis known to be more ac-
curate than the PSI scheme for smooth solutions, whereaggikigh accuracy is more
important than dealing with the slight oscillations thatynoagcur. Based on this fact it is
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possible to say that for smooth solutions, where achievigg accuracy is more impor-

tant than dealing with small oscillations that may be presesing an LDA-type scheme

is a logical choice. Even though the reasons are not very pétahe ANN scheme, which

also uses an LDA distribution, produces a less accuratdt tbam Caraeni’s scheme, pos-
sibly because the ANN scheme reconstructs a quadratigoitert within each cell using

more information from the surrounding cells, especiallytfte boundary cells which re-

quires even more information from the surrounding cellsnétethe stencil of the scheme
is not local, which may affect the accuracy of the scheme. Altgrall-Roe scheme also
produces a less accurate result than Caraeni’'s schemesaseétimes reverts back to an
unstable central distribution at certain nodes, which seenaffect its accuracy.

The tables also show that the modified schemes are less sethiaa the schemes
based on LDA distribution, but the PSI-based modified sclseate more suitable in
dealing with discontinuities, as already discussed far¢ase A. However, between the
modified schemes, the Caraeni PSI scheme is more accuratébgrall-Roe PSI and
ANN PSI. Even though the Abgrall-Roe PSI scheme producesehithan second order
accuracy, the smoothness of the interpolant seems to leadfas the limiting procedure
is conducted separately on each of the four subcells. Asctagehe additional neigh-
bouring nodes PSI scheme achieves higher than second acaaay. Compared to
schemes based on LDA distribution, a slight drop in accufacy?Sl-based schemes for
this test case C is to be expected, since the advection tyelsciot constant in space and
the solution profile contains a turning point, which oftename that the schemes return to
the standard second order scheme.

For an accuracy study conducted on successively refinectsted meshes, the, L,
andL. norms are considered and the results are shown in Figurdas@3224. Compari-
son between the accuracy measures for mesh type A and mesh tgghown to produce
minimal difference, but mesh type A produces a slightly déregiccuracy than mesh type
B, as the mesh connectivity is favourably inclined for tleisttcase. Overall, it is possible
to see that all the modified positive schemes produce hidiatrsecond order accuracy
in Ly andL, norms and, as expected, imposing positivity doesn’t necdgsmprove the
order of accuracy for the smooth test case. However, thea@bBoe PSI scheme shows
improved accuracy compared to the original Abgrall-Roeesef, possibly because the
Abgrall-Roe scheme reverts to the central distributiondame cases, which would be un-
stable if used on its own [41]. ThHe, norm results in Figure 3.24 illustrate the impact
of the Abgrall-Roe scheme reverting back to using the cedifierence distribution. It
is though, still possible to see the accuracy improve as tbghnis refined, for thé
norm. For third order and fourth order ANN PSI schemes, T&8Bshows the summary
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of the calculated accuracy measures. Figure 3.31 showatheatwhich the error would
decrease as finer meshes are used fpt, andL. norms. The figure shows clearly that
the fourth order ANN PSI scheme improves its effective aacurcompared to the third
order ANN PSI scheme.

The convergence history of all the solutions obtained fer dbove three test cases
are plotted in Figure 3.25. The convergence monitor which leen used is again the
root mean square (RMS) of the residual at each time stepreadyl stated in Section
2.6. It can be seen from the figures that all the schemes agamvapidly to machine
accuracy, except the Abgrall-Roe scheme [41]. The rate noV@gence to the steady
state for the converging schemes is most rapid for the N sehétar the modified high
order schemes, the convergence histories shown ark for0.25. As the value oK
increases the convergence rate slows until it ceases teggniorK = 0.75. ForK = 0.5,
the simulation takes more than double the number of itanatto converge compared to
K =0.25.

3.7.1 Nonlinear Burgers’ Equation

As in the previous chapter, Section 2.7, this test case wegoh discontinuous solution
of a nonlinear conservation law, represented by the twoedsional Burgers’ equation
(2.67). The mesh structures which are used are the genuimstyuctured triangular
mesh shown in Figure 2.19, and a uniformly subdivided meslated from a coarser
mesh to give a similar number of unknowns (it has 1933 vesta®d is shown in Figure
3.32) on the domaifx,y) € [0, 1]2. The exact solution varies linearly until the intersection
point located ak = %, y= % where it then forms a discontinuity which lies inclined to
the mesh. All the schemes except the Abgrall-Roe schemeggato machine accuracy.

The results for the positive high order schemes show thatéelimiting procedure
completely removes the unphysical oscillations from tlghlorder schemes which were
previously not positive. The ANN PSI scheme, shown in FigRi84, gives straight iso-
lines in the lower triangle, below where the charactersstntersect, and also give a good
resolution at the convergence po(r%g %). Figure 3.33 shows that the positive Abgrall-
Roe PSI and Caraeni PSI schemes also do not produce unghystdiations and are
able to capture the shock. The high order representati@nimigroves the accuracy of
the scheme in the smooth regions compared to the low ordensefr The modified
Caraeni PSI scheme, as shown in Figure 3.34, also completeigves the unphysical
oscillations and captures the shock accurately.

The plot of the solution cross-sections for 0.75, where it crosses the discontinuity,
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are shown in Figure 3.38. Similarly, the cross-sectionulioy = 0.25, which crosses
the fan, is shown in Figure 3.35. On the right in both of thegars, a zoom of the
“corner” is provided. It is clear to see the improvement ie tjuality of the solutions
with the increase in the order of accuracy. The solutionssecthe shocky = 0.75, show
very little difference between the positive high order sols, on the other hand the LDA
scheme is shown to produce oscillations. et 0.25, the positive high order schemes
produce better quality results, compared to the low ordees®s, as seen in the figures.

0.8

0.6

0.4

0.2

Figure 3.12: The mesh used for the advection results olutainié submesh reconstruc-
tion schemes.
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Figure 3.13: Solutions for the Abgrall-Roe scheme appliedhte circular advection
square wave test case A (top) and cosine squared test castt@fh
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Figure 3.14: Solution for Caraeni’s scheme applied to theutar advection square wave
test case A (top) and cosine squared test case B (bottom).
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Figure 3.15: Solution for ANN scheme applied to the circ@dvection square wave test
case A (top) and cosine squared test case B (bottom).
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Figure 3.16: Solutions for the Abgrall-Roe PSI scheme &gjto the circular advection
square wave test case A (top) and cosine squared test castt@fh
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Figure 3.17: Solution for the Caraeni PSI scheme applieddaircular advection square
wave test case A (top) and cosine squared test case B (bottom)
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Figure 3.18: Solution for ANN PSI scheme applied to the dacadvection square wave
test case A (top) and cosine squared test case B (bottom).
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Figure 3.19: Test case A, square wave at outflow (top lefdnzaround the maximum
(top right) and zoom around all the positive high order scegrfbottom). Solid line is
exact solution.
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Figure 3.20: Test case B, cosine squared profile at outflopvI@ft), zoom around the
maximum (top right) and zoom around all the positive highesigsthemes (bottom). Solid
line is exact solution.
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Figure 3.21: Test case C, smooth profile at outflow (top letipm around the maximum
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Figure 3.22: Numerical error for grid type A (left), and fordjtype B (right) : L1 error
where the solid line without a marker is slope 2.
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Figure 3.28: Test case A, square wave at outflow (left), zoammarad the maximum (right)
for third order and fourth order modified ANN PSI schemes.idblihe is exact solution.
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imum (right), for third order and fourth order modified ANN P&hemes. Solid line is
exact solution.
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solution.
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Figure 3.32: A submesh created from a coarser mesh to givmitgasinumber of un-
knowns as that of genuinely unstructured triangular meskwshn Figure 2.19, and used
for the test case which deals with a discontinuous soluboBtirgers’ equation.
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Figure 3.34: Isolines of the ANN PSI scheme (left) and CarB&t scheme (right) solu-
tions.
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Figure 3.36: Plot of the solutions across the fag; 0.25, (left) and the zoom around the
bottom corner (right). Solid line is exact solution.
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Figure 3.38: Plot of the solutions across the shpek(.75, (left) and the zoom around
the corner (right). Solid line is exact solution.
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Chapter 4

Fluctuation Splitting Schemes for
Unsteady Problems

4.1 Introduction

This chapter is concerned with the construction of a malgysthigh-order (in spacnd
time) fluctuation splitting scheme for two-dimensional ieagly scalar advection on tri-
angular meshes. The method has been developed as a comptentiea high order
discretisation of the steady state by R.Abgrall and P.L.@Byeand the unsteady high
order space-time discretisation of R.Abgrall, N.Andrigramd M.Mezine [3].

The implementation of this technique was carried out by domp Runge-Kutta
time-stepping [79] for the time derivative with a contingopiecewise quadratic repre-
sentation of the dependent variable, which together leadhigh order space-time fluc-
tuation. The description will start with the space-timeiaats of the N, followed by PSI
and LDA schemes, the construction of higher than second ondédtistep methods [3],
and multistage methods.

4.2 Space-Time Framework

For a fluctuation splitting scheme (2.11), a discrete foatiah for unsteady advection
can be achieved by introducing a space-time fluctuatiottisygjiframework [6, 24, 26, 30,

100
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68]. The solution of the advection equation (2.5) will be Epmated on discretisations
of Q1 = Q x [0,t], which can be decomposed into space-time prisths: T x [t",t"1],
shown in Figure 4.1 for triangular cells. This approach dedithe cell fluctuation to be the
integral of the differential operator with space-time appmation ofu on T x [t",t"+1].
For example, to get second order accuracy a second ordemap@tion ofu is needed
implying @" = ¢(h®). The numerical solution of (2.5) is interpolated lineanyspace
and linearly in time, i.e.

u(x,t) = ur‘“(x)ﬂ u”(x)thrl t

’ At At

whereu" andu™? are, respectively, found using the piecewise linear irkon be-
tween (i1, ul,ul) and G2, ultt, ut™). Hence, the discretisations approximating time

127 12
dependent solutions of (2.5) hx [t",t"*1] can be summarised in three steps.

(4.1)

1. Compute the fluctuation on the space-time prism|t", t"*+1]

n+1 o ou h
o :/ / +A.0udQ ) dt | (4.2)
tn T Ot

which could be simplified in the piecewise linear case to [6]

T At
ot =B s @+ G 3 k. @3)
IS e

2. Distribute the cell fluctuatiopp™? to the nodes off, @™ is used to denote the
contribution of the fluctuation to nodes T, and by construction, these must satisfy

(p_n-H. — (er—l , (44)
%"

for conservation. The distribution coefficierﬁg, which determine the appropriate
proportion of the fluctuatiog™"! to be sent from cell to nodei, is given by

T qqn+1
which should also satisfy
Br=1. (4.6)

3. Collect all the cell contributions of all € D; and calculate the unknown nodal
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Figure 4.1: Prismatic elemen®.
values ofu"*! by solving the algebraic system
gt=o0. (4.7)

TeD;

The basic design properties for the space-time fluctuatuitting schemes remain
unchanged except the following two properties.

Positivity
The space-time fluctuation splitting discrete solutioti'at requires the solution of
a system of the type

AUl =BU". (4.8)
A positive space-time fluctuation splitting scheme is orranfbich [68]

1. Ais an invertible M-matrix&; > 0, Aij <O for j #i, |Ai| > ¥4 |Aj| Vi)

2. Bis a positive matrixBj; > 0 Vi, j)
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A linear positive space-time scheme cannot be linearitggmang according to
Godunov’s theorem [32, 44, 46]. The positivity property gardees that there are
no numerical oscillations.

The Upwinding Property

For the space-time fluctuation splitting schemes, the fatain needs to be dis-
tributed upwind in time to the vertices of priss¥. This is known as a causality
principle and states that no contribution is sent to the pades located at tim@,
instead all the fluctuation of? is sent to time"*1. Hence, for every space-time
prismT x [t",t"*1], a space-time upwind scheme will never distribute any flactu
tion to the nodes at tim#&, thereby decoupling the values @t at these nodes from
their values at timé¢"*! and producing a true time marching procedure.

4.3 Petrov-Galerkin Formulation

In Chapter 2, the Petrov-Galerkin formulation of the flu¢tom splitting approach was
outlined. It was shown that the steady state fluctuatioritsischemes can be equated
with a mass-lumped Petrov-Galerkin spatial discretisaticConsidering the unsteady
scalar advection equation, a consistent Petrov-Galeddmulation where the Petrov-
Galerkin is test function applied to the unsteady consewmdaw is determined by the
distribution scheme, of equation (2.43). The semi-dissagibn of the unsteady scalar
advection equation is [6]

du;
szauzd=m (4.9)
]
WheremTj IS a consistent mass matrix given by
o 1 9 1 # 1
T aTT 6 aTT 12 5: 12
U : _Mlle 1 ¢ 1 & 1
mj—/ToqudQ— Sl%-5 G4l -4 (4.10)
%1 %1 %1
o7 12 T 12 T 6

Here, w is the Petrov-Galerkin weighting function associated witdei, and ; de-
notes the standard basis function. The consistent formoulé4.9) is needed to get high
order accuracy, and makes the unsteady scheme implicmhangince the consistent mass
matrix is not diagonal as it would be for the steady state Aasped case. This type
of consistent formulation, combined with different timeygping techniques for the time
derivatives and using the standard fluctuation splittifgesees, will be used to carry out
unsteady computations.
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4.4 Dual time-stepping technique

The dual time-stepping technique [51], is used to solve thdinear systems of equa-
tions which result from the consistent formulation (4.ueed to reach a high order of
accuracy for solving unsteady problems. The consistemdidation consists of coupled
nonlinear systems of equation, which need to be solved &t ttae step by some itera-
tive method. One approach for doing this is the dual timeysteg technique, where the
nonlinear system of equations is solved by inner iteratwhigh advance in pseudo-time
7. Hence equation (4.2) is augmented to give

tn+1 d . .
%H/tn ( Td—‘:‘—)\ -Duth)dt. (4.11)

For equation (4.3), this basically means
m+1 m

Ca =B wew -Gk, @)
wherem denotes the pseudo-time level (iteration number). At tluspit should be
noted that the idea of using subiteration is to converge dheisn at each physical time-
step. One of the advantages of using the dual time-steppuithique is the fact that,
as long as the inner iteration converges, it is simple to asadlving the full system of
equations. On the other hand, one must be careful when usendual time-stepping
technique, because there is no way of assessing accuragysuhke inner iterations are
fully converged. Also, if a large number of iterations argueed, the scheme becomes
very expensive and could be very slow to converge.

4.5 The N scheme

The extension of the N scheme to the space-time frameworkciongistent manner is
essential for the construction of nonlinear limited schen@ne way of constructing this
extension is to take the steady N scheme defined by the lodal flactuation [10]

@ =k (ui—0), (4.13)

where

u= (%k;) - (%k;u,-) : (4.14)
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The multidimensional upwind parameters are

kt = max0,k) k= = min(0, k) for k = %7\ T (4.15)

Note thaty ;7 kj = 0, becausg j.r Nj = 0, and thak = k' + k™. The N scheme nodal
fluctuation (4.13) combined with the forward Euler time ot&tion leads to an iterative
update of the nodal solution values defined by

yrt =l - SZ (4.16)

Hence, by combining the above spatial discretisation oteeheme with Crank-Nicolson
time integration, the N scheme can be defined by the spaeeltical nodal fluctuation

T A
(HT — %(urm )_|_ k|+( Ul ~n+1) + EtkIJI(ulr‘l -, (4.17)

1

which is positive as presented in [6]. Het®, andi"! are designed to satisfy the con-
servation relation (4.4), and'! are defined by (4.14)
Equation (4.17) can also be written as

T At _
LT >+EZ[K+NK W) N )] @18)
i€

by (4.7) reads as

T _
1

(4.19)
and leads to the systefu™! = Bu", whereA andB are constant matrices given by

IT| At + At A
A, = (5 + 5k, Aiji, = —— ki Nk, , (4.20)
11 MHZGT 3 21 112 (Mil’%z)g 2 12
T] At At
Bui, = > (?——kf) Bui,= > —Ekﬁlngz. (4.21)
Miy €T (Mig,Mi,) €T

The proof thatA is a matrix independent dft, andB is positive under the condition
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eTkt . . .
Atmaxy Z“GTT‘ L < 1is outlined in [6].

So far it has been possible to see how the N scheme formuiatmstained, by com-
bining the spatial discretisation of the N scheme with Crllnolson time integration.
The dual time-stepping technique (see Section 4.4) is wsedlve the linear system of
equations using inner iterations which advance in pseurde-t.

4.6 The LDA scheme

Early attempts at using fluctuation splitting schemes foretidependent problems re-
sorted to the analogy with the Petrov-Galerkin finite eletmeathod, which introduced
a consistent mass matrix (4.9) [67]. For the linearity presg LDA scheme this type
of formulation was done in [56] and later in [6, 7,58]. The wafyextending the LDA
scheme to the space-time framework, outlined in [6], giesltDA fluctuation as

LDA 7] 1 1 T| 1 1 1
g-Pr = ?(_kﬁlNJré)(uiT _u{‘l)+?(—kﬁN—l—2)M; (Uit —uh +
i7Miq
At + n+1 n
?kilN Tkj(uj +Uj) - (4.22)
i€

This extension incorporates the consistent formulatio®)(ithin a Crank-Nicolson time
stepping for the time derivatives coupled with the standadd scheme. Combining the
consistent formulation (4.9) with the standard LDA scherae loe expressed as

d .
pi szdmﬁd—‘:w S (KN 0. (4.23)

whereu" = Y jeT Uj(t)y;. If Crank-Nicolson time stepping is considered for the time
derivatives, one can write

1
T,n+l . n + LDA, n+1 , ,LDA n
> > myuT=u+5 Y (kTN)(@ U e u) =0,
i€ jeT 1 . 2 S

Nzew% (U™ = uf) +%Mz€T(—K+N> (J; k,-(u?+1+u';)> =0, (4.24)

and again leads to a system of the fobuf"*! = Bu". The dual time-stepping technique
is used to solve the consistent formulation.
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4.7 The PSI scheme

The space-time variant of the PSI scheme is constructed tisgnblended approach with
a combination of the first order positive N scheme (4.19) d&edsecond order linearity
preserving LDA scheme (4.22). The fluctuations distribuiedhe nodes are defined
by [30]

oS =19+ (1-1)gP? (4.25)
wherel = max(¢(ri,), ¢ (ri,), d(riy)) with
LDA X
r, = (HlN ) ¢(X) = {1X tx<0 (4.26)
@, 0 otherwise

The same is done for nodesandiz. The general scheme can be written as

_Z(ngN +(1-HgPH=o0. (4.27)

le
The blending parameter which was proposed by [30, 80] fadstestate calculation and
defined by
_ o'
2jeT |(ij‘ ,
does not satisfy the positivity requirements, but still keowell [30]. Overall, the formu-
lation of the space-time PSI scheme allows the constructicansecond order scheme.

(4.28)

4.8 Multistep Fluctuation Splitting Schemes

This section is concerned with the construction of a higleo(oh spacendtime) fluctua-
tion splitting scheme for two-dimensional unsteady scadlvection on triangular meshes.
The method has been developed to extend the high order ustien of the steady
state by R.Abgrall and P.L.Roe [8], to the unsteady high ospace-time discretisation
of R.Abgrall, N.Andrianov and M.Mezine [3]. In Section 3.2; denoted any of the
sub-triangles withinl and now the space-time fluctuation is computed over the prism
Pg =T x [t",t™1], as shown in Figure 4.2. The fluctuation splitting schemeefingd

by
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Figure 4.2: Space time mesh for prismatic elemeéft

Z ¢(€f,tn+l) — O . (4.29)
P3(0 1)
The construction of the high order accurate sub-fluctuat@%, can be summarised as
follows.

1. Calculate the first order node contribution, using the Nesee (4.17), or Ricchi-
utto’s version of the N scheme [67].

2. Calculate the high order cell fluctuatign”s with high accuracy, using high or-
der interpolation in space-time over pristd;. Equation (4.2) can be adopted for
computing the fluctuation ove#’,

. tn+1 auh N
0”7t = / ( — +A ~Duth) at (4.30)
tn T Ot

and after a long calculation [3], the high order cell fluctuat(p% is obtained. For
example, the third order (in spaead time) fluctuation,&(hP2 At%) for p = 2,
takes the form
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g A =
@7 :/ (UML) —u'(x))dQ  + 223 ouido (4.31)
Ts 12 J7,
+ A5 nwdo— 2 [ outdo
3 JT; 12 J7;

3. Calculate the high order node contributions,

7

o ¢ = Bso”% (4.32)

where -
e (@) +e

g — PN\ T+
zUjeTf <((p§j)N/(pE E) + 3¢

, (4.33)

where((pgi)N is defined as (4.17) in which expresses a generic sub-triangle ande-
notes one of the vertices of the original cell or the addaiorertices introduced by the
sub-triangulation. Now that the fluctuations at the vedioéthe sub-triangles have been
calculated, the overall fluctuation at the vertices are amdated using

g P
(p(fjtnﬂ) = z (pcri ¢ . (4-34)
TE7O'|€TE

Again the dual time-stepping technique is chosen to soleetmsistent formulation.

4.9 Multistage Fluctuation Splitting Schemes

This method has been developed as a complement to the highdasgretisation of the
steady state by R.Abgrall and P.L.Roe [8], and the unsteagly drder space-time dis-
cretisation of R.Abgrall, N.Andrianov and M.Mezine [3]. &hmplementation of this
technique was carried out by combining a positive Runge&iimne-stepping [79] for
the time derivative with a continuous piecewise high ordgresentation of the depen-
dent variable, which together lead to a high order space-fioctuation. A low order
space-time fluctuation is used to assist in stabilising theti®n by combining it with
the high order fluctuation within each stage of the Rungea&uatethod to reduce the
occurrence of unphysical oscillations. For simplicitye thual time-stepping technique
is chosen to solve the nonlinear system of equations whishlteefrom the consistent
formulation required to reach a high order of accuracy fdvieg the unsteady prob-
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lems. The performance of this method is illustrated usirvgisd standard test problems.
Multistage fluctuation splitting schemes require the fwilg stages.

1. Use a positive Runge-Kutta time-stepping for the timevdéwe, as proposed by
C. Shuand S. Osher [79], in order to obtain a high order fluginaplitting scheme
by combining it with a continuous piecewise high order repraation of the de-
pendent variable. For example, a positive third-order RuKgtta method is given
as

ut = uO At L)
U® = W S AL 4 At L)
u® = @4 % At L(u©) +% At L(u) +§ AtL(u®@),  (4.35)

whereL is a discrete operator anf®) = u", u™ = u"1 fors=1,2,...,m, in which
mis 3 for the above equation.

2. Calculate the high order representation in space withAtbgrall-Roe scheme, as
outlined in the Section 3.2.

3. Calculate the low order fluctuation at each stage. Theutzlon of the first order
node fluctuation follows the various stages of the positivede-Kutta method,
hence the name multistage method. For example, for a thater grositive Runge-
Kutta method, the first N scheme Runge-Kutta nodal fluctoaéibthis stage is
given as

(N = )+ ok -0, (4.36)

where
G0 _ 2i€t kj uj ‘
Zjef k?
The second N scheme Runge-Kutta nodal fluctuation at thge si@n be written as

(4.37)

(@ = 5 W i)+ G0 -0+ G et - a), @se)

and the third N-scheme Runge-Kutta nodal fluctuation atstfaige is
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N = Sl -u)+ S -0+ Sl o))
n %(@(Ui@)_g(a))_ (4.39)

This low order space-time fluctuation is used to assist inikseng the solution by
combining it with the high order fluctuation within each stagf the Runge-Kutta
method, so as to reduce the occurrence of unphysical demilta

4. Calculate the high order multistage cell fluctuation. Aghe above, for the cal-
culation of the first order node fluctuation, the high orddt ftectuation follows
the various stages of the multistage methods. For the inmgaiégmion of this tech-
nique using the third order positive Runge-Kutta methodtertime derivative, and
applied to the high order fluctuation splitting schemes fits¢ high order Runge-
Kutta cell fluctuation at this stage becomes

((pr)HO:/T (u® (x) —u®(x))dQ + At : A-Ou@(x)dQ . (4.40)
3 £

The second high order Runge-Kutta cell fluctuation at ttagets

(p'e)HO = / (u<2>(x)_u<°>(x>)d9+% A - 0u@(x)dQ
Te Te
+ % T7\.Du<1>(x)dQ. (4.41)
3

Finally the third high order Runge-Kutta cell fluctuatiortlais becomes

nt [
@™ = [ W0 -P)da+G [ A-0u0d
4 4
+ % T7\-Du(1)(x)d§2+% T7\-Du<2>(x)o|§z (4.42)
é 4

These high order space-time cell fluctuations will lead tagh lorder space-time
fluctuation splitting scheme.

5. Calculate the high order node contributions at each R#ngta stage

(@O = B o' (4.43)
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where N
((#)N/(97)"0) +¢

2 0eT¢ ((‘ng)N/((PTE)HO)+ +3¢ ‘

Bo = (4.44)

6. The overall fluctuationgp! )"© are accumulated from the different sub-fluctuations
T, :
(@5 O at each Runge-Kutta stage using

o= 5 (@M. (4.45)

TE7O'|€TE

T
((pg7tﬂ+l

It is now possible to see that the implementation of this négpre was undertaken
systematically using Runge-Kutta discretisation for timeet derivative, applied to the
existing high order fluctuation splitting schemes. Thisaaelby interpolating the solution
in space, and using a multistage time-stepping method tmajppate the time derivative.
The calculation of the first order node fluctuations and thghtorder cell fluctuations
follows the various stages of the multistage method. Asieefithe dual time-stepping
technique is chosen to solve the nonlinear system of eq&tidich results from the
consistent formulation required to reach a high order olsacy for solving unsteady
problems.

4.10 Numerical Results

The rotating cosine hill

The rotating cosine hill is a popular test case for the umistdamear advection
equation. A cosine shape is transported by a circular adbrefield, with the initial
solution given by

u(x,y) = (4.46)

cog(2mr) ifr <0.25
0 otherwise

wherer = \/(x—0.5)2+y?, andA = (y,—x)T. At each time step, the solution is
set to zero at the inflow boundary. The initial profile shoué&laulvected in a cir-
cle without changing its shape until it returns to its orgiposition whert = 27

In the numerical experiments maintaining the r%}p: 0.08 (for all cases) gives
a maximum CFL number of approximately 0.713. Uniform stawet triangular
meshes, shown in Figures 4.3 and 4.4, will be used for ragatosine hill and ro-
tating cylinder test cases the second of which will be oatlibelow. The accuracy
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measures are also calculated using these structuredutaamgeshes, by repeatedly
halving the background mesh size starting from coarser nsesthat it is possible
to see the rate at which the error will reduce as finer mesheeasad. A sequence
of four structured grids with 484, 1849, 7225 and 28561 eegiare used.

The visual examination of the accuracy of the scheme is dgnediting the solu-

tion, as shown in Figures 4.5 to 4.8, where all the schemesitled in this chapter
are shown. On the left of the figures the full data is plottedi @mthe right, contour
plots of the solutions are shown. The N scheme, shown in Egydr5 and 4.7, is
clearly the most diffusive, even though the solution is kegpsitive. Since the N
scheme is not linearity preserving, it is not surprising ¢@ she maximum value
of the solution well below one, as outlined in Tables 4.1 arfl L’he measured
order of accuracy reported in Tables 4.3 and 4.4 and Figulestd 4.15 is roughly
what was expected for the N scheme [58] and based on thispadssible to see
that they are first order accurate schemes. The results éoLEA scheme also
shown in the same tables and figures. The peak value is mutdr ben that of

the N scheme, but it is also clear to see that the solutiontipositive, as reported
in Tables 4.1 and 4.2 as well. Moreover the schemes are nettalreserve the
initial peak value, which is confirmed by the result on the tdfthe figures, and
the measured order of accuracy is within the range of exde@tkies given in [58].

The PSI scheme, also in Figures 4.5 and 4.7, shows the mopitbperty by the
complete absence of oscillations in the field. It is also tffssive compared to
the N scheme which can be confirmed by the plot on the right.aldceracy mea-
sure also confirms that the PSI scheme gives a better appatbgimof the solution

compared to the N scheme.

The results for second order and third order multistep s&seane shown in Figures
4.6 and 4.8 respectively. Both schemes keep the solutioreat®yo to some extent,
but as outlined in Tables 4.1 and 4.2, since the underlyigh lorder scheme is
not positive [3] there are small oscillations which can berse the numbers in

the table. It is worth noting that the result obtained with third order multistep

scheme has a maximum solution value that is a bit closer texaet value than the
value given by the second order multistep scheme.

What is interesting to note is that the second order mufiistheme shows a bit
more of a dissipative character than the third order melischeme. This is clearly
seen in the contour plots of the solution. The second ordektiard order multistage
schemes are reported in Figures 4.6 and 4.8. These scheenast qositive, again
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since the underling high order scheme is not positive. Th&ubstantiated by the
results as outlined in Tables 4.1 and 4.2. As with the mejpisichemes, the more
dissipative character of the second order multistage seh@mpared to the third
order multistage scheme can also be confirmed by the contouofthe solution.
Moreover the third order multistage scheme produces a palale which is better
than the third order multistep schemes described above. disb possible to see
the exact profile is closely preserved with little smearinghpared to the rest of the
schemes presented above.

A grid convergence study for the unsteady problems is cedlim Table 4.3 and
Figures 4.13, 4.14 and 4.15, fbi, L, andL. norms. The third order multistage
and third order multistep schemes have roughly the simitavesand the superior
accuracy of these schemes are clearly demonstrated. Aledfigh order schemes
produce a slope which is higher tharblin L; andL, norms, and generally it is
also possible to see the accuracy improve as the mesh isddtné.,. Overall
the comparison between the accuracy measures producegirassh type A and
mesh type B have minimal difference, but mesh type B prodacggyhtly better
accuracy than mesh type A, as the mesh connectivity is fabbdyiinclined for this
test case.

The rotating cylinder

The rotating cylinder test case differs from the rotatingioe hill test case only in
the initial profile transported by the circular advectiondievith the initial solution
given by

1 ifr <025
u(x,y) = (4.47)

0 otherwise
This is a discontinuous test case and, as in the previousasst = 1/(x— 0.5)2 + 2,
andA = (y,—x)T. The solutions are shown in Figures 4.9 to 4.12. The solation
obtained using the rotating cylinder test case exhibitlsinpgroperties to those of
the rotating cosine hill solutions. As expected the LDA suokeFigures 4.9 and
4.11, shows a spurious oscillation since it doesn't satlsfypositivity property. As
usual the N scheme, shown in the same figures, is the mossigigfueven though
the solution is kept positive again. The PSI scheme, alsesimthe same figures,
exhibits the positive property and produces a peak whichges the exact profile
better than the N scheme.
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Schemes rotating cylinder| rotating cosine hill

min max max
N 0.0000| 0.8763 0.1993
LDA -0.0906| 1.2250 0.7989
PSI 0.0000| 0.9904 0.7782
Second order multistep| -0.0051| 0.9999 0.7561
Third order multistep | -0.0003| 1.0000 0.7825
Second order multistage-0.0063| 0.9999 0.7511
Third order multistage | -0.0007| 1.0000 0.7982

Table 4.1: Minimum and maximum solutions for the rotatingioe hill and rotating
cylinder test cases, using mesh type A.

Schemes rotating cylinder| rotating cosine hill

min max max
N 0.0000| 0.8771 0.2003
LDA -0.0911| 1.2263 0.7992
PSI 0.0000| 0.9917 0.7797
Second order multistep| -0.0057| 0.9999 0.7576
Third order multistep | -0.0008| 1.0000 0.7887
Second order multistage-0.0051| 0.9999 0.7537
Third order multistage | -0.0012| 1.0000 0.8015

Table 4.2: Minimum and maximum solutions for the rotatingioe hill and rotating
cylinder test cases, using mesh type B.

The second order and third order multistep schemes are showigures 4.10
and 4.12. The third order multistep scheme maintains th@lpeak better than
the second order multistep scheme, even though the scheenestgositive as the
underlying high order scheme is not positive. Moreover ga@ely the solutions
exhibit similar properties as the corresponding rotatioges. The second order and
third order multistage scheme, shown also in Figures 4. 14ah?2, also doesn’t
keep the solution above zero and to a small extent it preseineainitial peak value
better than the multistep schemes described in this chapter
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Table 4.3: Accuracy measures for rotating cosine hill, gsimesh type A.

Table 4.4: Accuracy measures for rotating cosine hill, gsiresh type B.

Schemes L, order| L, order| L. order

N 0.76 0.69 0.57

PSI 1.63 1.47 0.98

LDA 1.87 1.73 1.24

Second order multiste 1.67 1.51 1.21
Third order multistep 1.96 1.88 1.31
Second order multistag 1.71 1.58 1.26
Third order multistage 1.98 1.88 1.34

Schemes L, order| L, order| L., order

N 0.79 0.71 0.59

PSI 1.66 1.48 1.03

LDA 1.91 1.75 1.27

Second order multistep  1.69 1.55 1.23
Third order multistep 1.98 1.89 1.34
Second order multistag 1.74 1.60 1.28
Third order multistage 1.99 1.91 1.36

0.5

Figure 4.3: The mesh A, used for the rotating advection tesul
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Figure 4.4: The mesh B, used for the rotating advection tesul
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Figure 4.5: Solution for the rotating cosine hill after om@aelution on mesh type A, for
exact (top), N (second from top), PSI (third from top) and L{ttom) schemes.
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Figure 4.6: Solution for the rotating cosine hill after orevalution on mesh type A,
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multistage (third from top) and third order multistage (ioot), schemes.
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Figure 4.7: Solution for the rotating cosine hill after omeolution on mesh type B, for
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(top), PSI (middle) and LDA (bottom) schemes, where theddotie without a marker is
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Figure 4.10: Solution for the rotating cylinder after ongakition on mesh type A, for
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stage (third from top) and third order multistage (bottoschiemes. The solid line without
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Figure 4.11: Solution for the rotating cylinder after oneatition on mesh type B, for N
(top), PSI (middle) and LDA (bottom) schemes, where theddotie without a marker is
the exact solution.
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Conclusions and Future Prospects

In this thesis the fluctuation splitting schemes which wée gubject of this research
have been examined and analysed in relation to their appaiion of the linear advec-
tion equation and nonlinear Burgers’ equation. This layswntlation on which more
complicated computational methods for complex fluid flowa b& constructed. The
motivational and theoretical bases for the constructiofiiadtuation splitting schemes
were also outlined in order to illustrate some of the sinitikas of the fluctuation splitting
schemes to finite volume and finite element methods, as willeaisunique features.

The fluctuation splitting schemes that were considered ppraximating the advec-
tion equation and Burgers’ equation were analysed in théezomf various properties.
The first order accurate N scheme, also used in the distoibwti the limited fluctuation
of the positive high order fluctuation splitting schemespasitive but also has a clear
dissipative character. The non-positive linearity presgy LDA scheme, which was also
used to distribute the fluctuation resulting from higheresnthterpolants for the construc-
tion of high order fluctuation splitting schemes at the poéepurious oscillation, was
also outlined in Chapter 2. The PSI scheme was designedisfysall the properties
defined in Chapter 2 and illustrated that a positive and tibepreserving property can
be obtained by simply limiting the distribution coefficisrdf the N scheme.

The construction of fluctuation splitting schemes whichehlargher that second order
accuracy was outlined in Chapter 3. However, it was shownhrtbae of the high order
schemes was inherently positive, and that it is impossiblguarantee positivity when
the fluctuation corresponding to higher degree polynoneptesentation in a grid cell
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IS constrained so that it can only be distributed to its ¢egi These findings led to the
development of a technique which can impose positivity oy l@igh order fluctuation
splitting scheme.

It was then shown that applying a limiting procedure to a#l thigh order schemes
clearly removes the oscillations that were present, arglhigher than second order ac-
curate and positive fluctuation splitting scheme can be tsextcurately approximate
solutions of linear and nonlinear scalar conservation lawtlsout creating any unphysi-
cal oscillations in the solution.

5.1 Achievements

In this thesis the development, examination and verificadioa new form of higher than
second order fluctuation splitting discretisation for tleduson of steady conservation
laws on unstructured grids was presented. It was shown tthepbssible to develop a
new type of higher than second order scheme, here calledditiéamal neighbouring
nodes (ANN) fluctuation splitting scheme, which uses infation about the dependent
variables stored at the neighbouring nodes in addition @aréigular cell nodes. This is
used to construct the polynomial interpolant of the depanhsariable used to evaluate
the fluctuation. Moreover, the implementation of a techaithat removes unphysical os-
cillations (devised by Hubbard [41]) as part of the addigilbmeighbouring nodes scheme
was also shown. This achieves a positive and linearity pragg higher than second
order fluctuation splitting scheme.

The performance of the new ANN PSI scheme was tested exeynstonfirming that
the scheme was positive and higher than second order aecurbe results for the ad-
vection test problems presented in Section 3.7 clearly slddwat the modified ANN PSI
scheme yields quite accurate and oscillation-free restiétarly implying that the scheme
guarantees the positivity property. These results alsiiegithat the positive very high
order fluctuation splitting schemes presented in this ghegprove on the well-established
second order PSI scheme in terms of accuracy, as the veryonitgn schemes are able
to reduce the unphysical errors due to the high accuracyesd¢themes compensating for
the more complicated operations needed to obtain the vghydrder approximation. The
overall advantages of using the ANN fluctuation splittingeme compared to the exist-
ing high order schemes were also outlined, as ANN schemdresgless storage over
submesh reconstruction (Abgrall-Roe scheme) while it @vdhe complexity involved
in approximating solution gradients (Caraeni’s schemd)igmer order accuracy on un-
structured grids or highly distorted grids. Overall, likeetexisting high order schemes,
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the ANN PSI scheme shows its effectiveness at removing utadawscillations without
unduly affecting the underlying schemes accuracy.

A second original contribution was the construction of a tistdge high order (in
spaceandtime) fluctuation splitting scheme for two-dimensional i&agly scalar advec-
tion on triangular meshes. This clearly demonstrated tigtt brder accuracy can be
achieved in both space and time.

A multistep high order (in spacandtime) fluctuation splitting scheme which is sim-
ilar in philosophy to the multistage high order scheme, fog approximation of time-
dependent hyperbolic conservation laws, was also predehtes was compared with the
multistage high order method. From the numerical tests gotadl on the various space-
time low order fluctuation splitting schemes and the higtheorspace-time fluctuation
splitting schemes, it is clearly evident that the high orslgace-time fluctuation splitting
schemes produce consistently more accurate results. Tdugaay comparison of the
multistage high-order fluctuation splitting scheme to tfanultistep high order fluctua-
tion splitting scheme has illustrated that a slightly marewaate solution with better peak
preservation can be achieved using the multistage metisadisaussed in Section 4.10.
Another advantage is that the multistage fluctuation spdjtscheme does not require
the storage of additional information at previous time Isyeompared to the multistep
fluctuation splitting scheme.

5.2 Future Prospects

There is plenty of further research to complete regardiegiew developments presented
in this thesis. The positive high order fluctuation splgtsthemes have opened up various
research avenues which should be further explored, an@ssitdly addressing them will
have a positive impact to this research area.

1. The new positive ANN fluctuation splitting scheme stiljp&res an optimised way
of choosing the appropriate nodes needed to construct tiyaguial interpolant
of the dependent variables for each grid cell, particuléstyconstructing a scheme
which is higher than third order accurate.

2. The new positive ANN fluctuation splitting scheme needsgtapplied to nonlinear
systems of conservation laws, e.g. the Euler or shallowweapeations. Because of
the way the limiting procedure is constructed, there is asimilgy of considering
the fluctuation as contributions due to the linear variaaod a high order correc-
tion (written as a difference). This difference can be &dah a similar manner to
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the difference which occurs in flux difference splitting. i3 lgives a fully conser-

vative linearised form for the fluctuation within each griellc This fluctuation can

then be distributed to the appropriate vertices of the celisual. However, one
needs to bear in mind the complexity involved when dealinidp aisystem of non-

linear conservation laws, as none of the nonlinear poditigker than second order
schemes has yet been successfully applied to nonlineansgstf conservation
laws.

3. The positive high order fluctuation splitting schemesloaextended to space-time
fluctuation distribution, for imposing positivity on thente-dependent problems.
Recent unpublished research conducted by Hubbard has shaivthe limiting
procedure can also be used to construct a fully consistesitiye, high order fluc-
tuation splitting scheme for time-dependent situation$isextension could be
applied in a similar manner to that of the ANN PSI scheme.

4. There are also areas the new positive high order fluctuafditting schemes can
be applied to, such as the dispersive third derivative tevimsh appear in the KdV
equation and Boussinesq models of shallow water flow.

5.3 Applications

There are a multitude of interesting application areasHerhigh order fluctuation split-

ting schemes presented in this thesis. The simulation offlasing shallow water equa-
tions, such as flow through channels/rivers and around abststictures is one particular
interest. Simulation of realistic coastal engineeringgpeons will require the discretisa-
tion of additional source terms, such as those modellingtetitbn, variable topography,

and a method for handling dry areas. However, difficultieseain the discretisation of
these source terms, which should be carried out in a mannehvdoesn't disturb the

balance with the flux terms, and in the approximation of mguirnterface between wet
and dry regions of the domain. In all cases the additionalysti properties of nonlinear
limited fluctuation splitting discretisation will be vergeheficial.

Another very interesting application area is meteorolegyere a shallow water model
is often used as a first approximation to horizontal globaicsgipheric dynamics. More-
over, in order to model chemical transport, schemes whietaacurate and efficient are
continually being sought. However, the main challenge @yapg the new methods to
atmospheric models on the sphere. A method of approxim#timgcalar advection equa-
tion in curvilinear coordinate system would be sought fidtich would then be extended
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to the shallow water equations.
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