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Abstract

This thesis presents the construction, the analysis and theverification of a new form of

higher than second order fluctuation splitting discretisation for the solution of steady con-

servation laws on unstructured meshes. This is an alternative approach to the two existing

higher than second order fluctuation splitting schemes, which use submesh reconstruction

(developed by Abgrall and Roe) and gradient recovery (developed by Caraeni) to obtain

the local higher degree polynomials used to evaluate the fluctuation. The new higher than

second order approach constructs the polynomial interpolant of the values of the depen-

dent variables at an appropriate number of carefully chosenmesh nodes.

As they stand, none of the higher than second order methods can guarantee the absence

of spurious oscillations from the flow without the application of an additional smoothing

stage. The implementation of a technique that removes unphysical oscillations (devised

by Hubbard) as part of the new higher than second order approach will be outlined. The

design steps and theoretical bases are discussed in depth.

The new higher than second order approach is examined and analysed through appli-

cation to a series of linear and nonlinear scalar problems, using a pseudo-time-stepping

technique to reach steady state solution on two-dimensional structured and unstructured

meshes. The results demonstrate its effectiveness in approximating the linear and nonlin-

ear scalar problems.

This thesis also addresses the development and examinationof a multistage high or-

der (in spaceand time) fluctuation splitting scheme for two-dimensional unsteady scalar

advection on triangular unstructured meshes. The method issimilar in philosophy to that

of multistep high order (in spaceand time) fluctuation splitting scheme, for the approx-

imation of time-dependent hyperbolic conservation laws. The construction and imple-

mentation of the high order multistage time-dependent method are discussed in detail and

its performance is illustrated using several standard testproblems. The multistage high

order time-dependent method is evaluated in the context of existing fluctuation splitting

approaches to modelling time-dependent problems and some suggestions for their future

development are made. Results presented indicate that the multistage high order method

can produce a slightly more accurate solution than the multistep high order method.
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Chapter 1

Introduction

1.1 Motivation

The field of computational fluid dynamics has been developingand maturing over the last

35 years, due to the enormous growth in computing power both in speed and memory,

coupled with rapid advances in algorithmic efficiency. Thisgrowth has enabled a substan-

tially increase in the complexity of the flow configurations that are possible. However, to

fully exploit this computational potential, new models arecontinuously being required to

deliver more accurate, efficient, flexible and robust solutions for more and more complex

and realistic configurations.

It is widely thought that the use of unstructured grids is preferable for discretising

complex geometries and flow patterns compared to structuredand multi-block structured

grid techniques. This is because structured grids are deemed to be restrictive from the

geometrical point of view and a multi-block structured approach takes a lot of time to

generate (especially in 3D) [81]. However, the unstructured grid technique not only gives

greater flexibility for discretising complex domains, but also enables straightforward im-

plementation of solution-dependent local refinement and adaptation in order to enhance

the solution simulation and reduce the number of cells or nodes needed to achieve a spec-

ified accuracy [12,14].

In general the use of unstructured grid techniques and theirability to enhance solution

accuracy through adaptive procedures have proved to be sucha great advantage that the

1



Chapter 1 Introduction 2

design of new numerical algorithms for the simulations of complex flows in complex

domains are largely aimed at formulations which are well suited to unstructured grids

[13].

The mathematical model for the fluid mechanics equations is given by conservation

laws [54]. For example, hyperbolic systems of partial differential equations can be used

to model the conservation of some quantities over a given region of space and time. The

normal design procedure of fluid flow simulations then beginsby studying simple con-

servation laws, given that one is provided with prior information on the properties of the

exact solution. Throughout this thesis, the numerical tests that are used to compare and

verify the various numerical schemes are based on simple conservation laws with exact

solutions.

Despite the advantages of numerical methods for conservation laws on unstructured

grids, the development of efficient and robust unstructuredgrid algorithms is a consid-

erable ongoing challenge, because the necessity for more accurate, robust and flexible

numerical methods for the analysis of complex systems is what pushes forward the con-

struction of new techniques [64]. This effort in developingmodern numerical methods

also needs to adhere to three main design constraints, namely accuracy, stability and effi-

ciency.

Accuracy

Increasingly accurate approximations are sought using decreasingly expensive re-

construction steps, while at the same time making sure that the scheme is less sen-

sitive to the grid structure. This is specially important for unstructured grids, since

they can be highly irregular (particularly in 3D).

Stability

Stability is often associated with conditions that restrict unbounded oscillations.

Conservation laws can support weak solutions containing discontinuities, and nu-

merical methods should be able to deal with discontinuitieswithout polluting the so-

lution with unbounded spurious oscillations. Generally, the stability of the method

should not depend on some parameter which could be difficult to optimise in a

universal way.

Efficiency

Efficiency deals with the simplicity and compactness of the numerical methods,

where compactness refers to using information associated with the closest grid en-
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tities to compute the values of the unknowns. This generallyfacilitates for a fast

and efficient implementation.

Present day numerical methods on unstructured grids, such as finite volume schemes,

have been accepted as some of the most flexible, robust and reliable solution algorithms

for the analysis of hyperbolic systems of conservation laws. However, on unstructured

grids the modern finite volume schemes for multiple space dimensions are understood to

have shortcomings, as they heavily rely on extending their one-dimensional formulation

in perpendicular directions to mesh edges (in their two-dimensional formulation) or mesh

faces (in three dimensions), which leads to numerical methods which are sensitive to the

orientation of the grid [64]. This reliance on the mesh directions often particularly hinders

the accuracy of the scheme on unstructured grids. Moreover,the naive interpretation

of the physics of the underlying fluid flow misinterprets manymultidimensional flow

features, which also reduces accuracy as it generates additional numerical dissipation

[72]. The attempts to design more accurate multidimensional finite volume schemes,

using ENO/WENO techniques [77, 78], and improved high orderfinite volume schemes

on unstructured grids [15] were not able to completely fix these deficiencies.

However, another promising way of developing a genuinely multidimensional numer-

ical method is the fluctuation splitting approach, which builds on the fluctuation-signal

formulation of the one-dimensional finite volume method [75] and the residual distribu-

tion approach of Ni [59]. The advantage of the fluctuation splitting approach is that it can

imitate the evolution of the linearly (or higher degree polynomial) varying solution within

each grid cell. In other words, it can reproduce exactly solutions which can be repre-

sented exactly by the type of interpolation used for the unknowns on the grid. This makes

this method well designed to work on unstructured grids. Moreover, compared to finite

volume schemes, fluctuation splitting schemes discard the discontinuous representation

of the dependent variable in favour of a continuous, piecewise polynomial approximation

which is closer in approach to the finite element schemes [47,48, 52]. This design gives

the fluctuation splitting approach the ability to imitate the evolution of the continuously

varying solution.

This close link between the fluctuation splitting schemes and finite element schemes,

especially the increasingly popular discontinuous Galerkin approach [23], was initially

overlooked, but it has now turned out to be important for development of the fluctuation

splitting schemes. In particular, the discontinuous Galerkin finite element scheme uses a

stabilisation mechanism based on finite volume-like numerical fluxes, which reduces the

residual character (discrete finite element space). Even so, the design of non-oscillatory

discontinuous Galerkin finite element schemes uses either the finite volume limiter (which
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reduces their accuracy) or discontinuity capturing operators [36, 48]. This does not guar-

antee local monotonicity and depends on the fine tuning of constants which are difficult

to determine naturally. However, fluctuation splitting schemes which are based on repre-

senting the dependent variables in a similar way to the finiteelement scheme, allows the

design of nonlinear schemes with a true fluctuation propertyas well as guaranteeing (by

construction) the preservation of the local monotonicity of the approximation.

1.2 The Fluctuation Splitting Schemes

Historically, the fluctuation splitting schemes were introduced in the early eighties by

Roe [75], in an upwind context using a reinterpretation of Roe’s flux difference split-

ting finite volume scheme. Roe then continued to develop thisapproach by generalising

the fluctuation splitting scheme in 2D in 1986 [71], to a form initially termed “multi-

dimensional upwind scheme”. This ideal of developing discretisations that exploit the

multidimensional structure of the governing equations waslater discussed extensively

in [74], which also helps to clarify the fluctuation splitting schemes’ relationship with fi-

nite volume and finite element schemes. The close link with finite elements has informed

and helped most recent fluctuation splitting developments,for example in the context of

time-dependent problems and diffusive fluxes (as in the Navier-stokes equations) [30].

Fluctuation splitting schemes, otherwise referred to as residual distribution schemes,

approach the approximation of nonlinear systems of conservation laws on unstructured

grids by splitting it into two stages. First, decomposing a conservatively linearised form

of each fluctuation into its fundamental components, each having its own special type

of signal. Second, distributing these distinct componentsto the grid nodes [29, 64, 65,

83]. This approach gives the fluctuation splitting scheme flexibility in propagating the

discrete signals in any direction over the grid, making it a genuinely multidimensional

upwind method. This quality has also been proved to allow higher accuracy than finite

volume schemes of similar order [69]. For steady state problems, the methods are now

being applied in industry [30], as relatively accurate and robust varieties of the fluctuation

splitting schemes now exist. Generally, second order accurate methods at steady state are

deemed accurate enough for simulating complex flows in the presence of discontinuities,

without introducing unphysical oscillations into the flow.The so-called PSI scheme [32]

is the most commonly used second order accurate fluctuation splitting scheme at steady

state, being both positive (to prohibit unphysical oscillations) and linearity preserving

(for accuracy). This scheme will differ from the N scheme dueto the distribution of the

simplified components, which is the second stage of the fluctuation splitting scheme.
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More recently, the construction of fluctuation splitting schemes which are higher than

second order accurate for both steady and time-dependent problems has received more

focus by researchers. This is mainly because, for the steadystate problem, simple ex-

periments on scalar advection show that the strong performance of the very high order

schemes in being able to reduce the error, compensates for the complexity that is involved

in obtaining the very high order approximation [82]. For time-dependent problems, the

approximation of the discrete forms of both spatial and temporal derivative terms requires

very high order accuracy, so that the overall degree of accuracy is maintained over a long

time [3,6,27].

For time-dependent simulations, fluctuation splitting schemes are still an expanding

research topic, even though real progress has been seen in the last few years. The main

framework for the construction of higher than first order accurate fluctuation splitting

schemes was started by observing the equivalence of fluctuation splitting schemes to the

mass-lumped Petrov-Galerkin finite element formulation [22,56]. This is mainly because

in their basic formulation fluctuation splitting schemes cannot be more than first order ac-

curate in time-dependent computation, due to an inconsistency in the spatial discretisation

of the time derivative term. However, high order accuracy intime can be obtained using

a consistent mass matrix [6,68], which has proved to be successful in the construction of

second order accurate scheme.

For the achievement of higher than second order accuracy, Caraeni and Fuchs pre-

sented a new approach in which the time derivative is consistently included in the defini-

tion of the fluctuation [17,19,21,57]. They did this by creating a quadratic representation

within each grid cell using local gradient reconstruction of the dependent variable at the

grid nodes, which can be found easily from the surrounding data. Another alternative, de-

veloped by Abgrall and Roe [8] and Andrianov and Mezine [3, 4], uses additional nodes

created by uniformly subdividing the global grid to store and update the values of the

dependent variables before distributing it to the resulting subtriangles.

However, the above approaches were found to be non-positivefrom the various numer-

ical experiments that were undertaken and these results were further substantiated by the

theoretical investigation that was carried out [41]. This meant that unphysical oscillations

occur in regions where the solution gradient changes rapidly, and for time-dependent sim-

ulation even schemes which are positive at steady state, lose that property when the time

derivative is integrated consistently in space. Moreover,these shortcomings are further

complicated when one considers nonlinear systems [17]. Subsequently, a new technique

was devised for the steady state problems by Hubbard [41], which imposes positivity on

the above two higher than second order schemes for steady state problems, and has been
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shown to achieve a positive and linearity preserving schemewith higher than second order

accuracy.

1.3 Contribution

The research carried out in this project deals with the construction of new numerical algo-

rithms within the fluctuation splitting framework and applying them to scalar equations,

based on which a more complicated computational method for complex fluid flow can be

built. The contributions and new developments that are presented are based on three key

elements.

1. The development of a new, higher than second order fluctuation splitting scheme,

which uses additional neighbouring nodes. Currently thereare two types of meth-

ods that achieve higher than second order fluctuation splitting schemes, as men-

tioned in Section 1.2, employing submesh reconstruction [8] and gradient recov-

ery [17] to obtain higher degree polynomials, which are thenused to construct the

fluctuation. The new additional neighbouring nodes fluctuation splitting scheme

constructs the high order fluctuation by using extra information about the depen-

dent variables stored at neighbouring nodes in addition to the regular cell nodes.

The additional grid nodes are chosen by carefully picking anappropriate number

of nodes from the immediate neighbouring cells, to construct the polynomial in-

terpolant of the values at the dependent variables. The solution is then stored and

updated at the regular cell nodes with the distribution of the fluctuation carried out

on the regular cells. The advantage of using the additional neighbouring nodes fluc-

tuation splitting scheme over submesh reconstruction is that it requires less storage.

It also avoids the complexity involved in approximating solution gradients to higher

order accuracy on structured or unstructured grids.

2. The very high order fluctuation splitting scheme presented by Abgrall and Roe [8],

was found to be not positive from the various numerical experiments that were un-

dertaken and these results were further substantiated by the theoretical investigation

that was carried out by Hubbard [41]. These findings also indicated the source of

the non-positivity of the very high order scheme as well as raising the need for

constructing a very high order scheme that would combine both positivity and lin-

earity preservation properties. In the same paper a method for imposing positivity

on existing high order schemes was presented, providing a framework for imposing
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positivity on the additional neighbouring nodes fluctuation splitting scheme. In this

thesis a positive additional neighbouring nodes scheme will be constructed.

3. The development of a multistage time-dependent fluctuation splitting scheme. This

work is concerned with the construction of a high order (in spaceand time) fluctu-

ation splitting scheme for two-dimensional unsteady scalar advection on triangular

meshes. The method has been developed as a complement to the high order dis-

cretisation of the steady state by Abgrall and Roe [8], and the unsteady high order

multistep space-time discretisation of Abgrall, Andrianov and Mezine [3]. The con-

struction of this technique was carried out by combining a positive Runge-Kutta

time-stepping [79] for the time derivative with a continuous piecewise quadratic

representation of the dependent variable which, when combined, lead to a high or-

der space-time fluctuation. A low order (N scheme) space-time fluctuation is used to

assist in stabilising the solution by combining it with the high order (Abgrall-Roe

scheme) fluctuation within each stage of the Runge-Kutta method to reduce the

occurrence of unphysical oscillations. The performance ofthis method has been

illustrated using several standard test problems. The advantage of the multistage

fluctuation splitting scheme over the multistep fluctuationsplitting scheme [3], is

that it does not require the storage of additional information at previous time levels

and it is not as difficult to preserve the positivity of the spatial discretisation [41].

1.4 Overview of the Thesis

The organisation of this thesis starts by going through the existing fluctuation splitting

methods, pointing out the contributions and new developments in the fluctuation split-

ting framework. The contributions of this research work will be outlined, and various

tests and comparisons of existing and new fluctuation splitting schemes will be discussed.

Since the first introduction of fluctuation splitting schemes, they have been proved to be

accurate and robust enough to give a real alternative to finite volume [25, 81] and finite

element schemes [5] for the computation of both steady and unsteady flows on unstruc-

tured meshes. Chapter 2 deals with the concepts of fluctuation splitting schemes, and the

design criteria to be satisfied by the advection schemes, i.e. continuity, positivity, linearity

preservation, multidimensional upwinding, conservationand compactness. It will show

the close link between fluctuation splitting schemes and upwind finite volume schemes, as

well as Petrov-Galerkin finite element schemes. It will alsodescribe two linear schemes,

the N scheme which satisfies positivity at the expense of highorder accuracy, the LDA
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scheme which satisfy linearity preservation at the expenseof spurious oscillations near

discontinuities. Finally the nonlinear PSI scheme, which satisfies both positivity and lin-

earity preservation, is presented.

Chapter 3 discusses the very high order fluctuation splitting scheme presented by Ab-

grall and Roe [8], and outlines the theoretical reasons why this approach cannot guarantee

the absence of spurious oscillations from the flow. This chapter will also discuss in detail

the new approach devised by Hubbard [41] which showed how to achieve a positive and

linearity preserving higher than second order fluctuation splitting scheme. The scheme

which has been developed is based on acquiring an exact limited very high order cell

fluctuation and distributing this to the appropriate vertices of the cell, as determined by

comparing the distribution coefficients of the limited veryhigh order scheme and those of

the N scheme [32]. It will also be shown that encouraging results have been obtained for

simple steady state advection problems and for Burgers’ equation.

The methods that form the basis of this approach are the Abgrall-Roe scheme, which

uses submesh reconstruction [8], and Caraeni’s method, which uses gradient recovery

[17] to obtain the high degree polynomials that will be used to evaluate the fluctuation.

A third new alternative approach which will give higher thansecond order accuracy at

steady state, called the additional neighbouring nodes scheme will also form the basis of

the above approach and will also be presented in this chapter. This new addition to the

existing two high order fluctuation splitting schemes is oneof the new contributions of this

thesis and offers an alternative approach to constructing the polynomial from the values

of the dependent variables at an appropriate number of carefully chosen grid nodes. The

high order fluctuations are then calculated using the extra information about the dependent

variables stored at the neighbouring nodes in addition to the regular cell nodes. These

values are then stored and updated at the regular cell nodes using the distribution of the

fluctuation carried out on the regular cells.

The numerical experiments undertaken on the scalar advection equation clearly showed

the advantage of using the very high order schemes compared to the PSI scheme, which is

only second order [32, 81]. This is mainly because of the strong performance of the very

high order schemes in being able to reduce the unphysical errors, and this characteristic

being able to provide a counterbalance to the complexity that is involved in obtaining the

very high order approximation [8].

Chapter 4 is concerned with the construction of a multistagehigh order (in space

and time) fluctuation splitting scheme for two-dimensional unsteady scalar advection on

triangular meshes. The method has been constructed as a complement to the high order

discretisation of the steady state by Abgrall and Roe [8], and the unsteady high order
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multistep space-time discretisation of Abgrall, Andrianov and Mezine [3].

This chapter will begin by outlining the space-time framework and the design prop-

erties to be satisfied by the different schemes. The description of the space-time variants

of the N, PSI and LDA schemes, as well as the construction steps of the higher than sec-

ond order multistep method will also be presented. The implementation of the multistage

method, which is also a new contribution of this thesis, willbe discussed in detail and

some illustrative computational examples and analysis will be given at the end.

Chapter 5 summarises the research presented and its main achievements by recalling

the results and ideas presented. Moreover, the way forward together with some possible

routes and ideas for extending and improving the work presented will also be outlined.



Chapter 2

Multidimensional Fluctuation Splitting

Schemes

2.1 Introduction

In this chapter the fluctuation splitting schemes which are the subject of this work will be

introduced. A clear definition for this approach will be given as well as showing the close

link between the fluctuation splitting schemes and both the upwind finite volume and finite

element schemes. Currently the fluctuation splitting approach for simulating complex

steady state fluid flow are judged to give a real alternative toboth finite volume and finite

element schemes [64]. Illustrative numerical examples aregiven at the end of this chapter

to experimentally show the difference between the various fluctuation splitting schemes

that will be presented.

2.2 Fluctuation Splitting Framework

Many partial differential equation models with a physical motivation derive from conser-

vation laws. This philosophy of the physical theory is rooted in the understanding that

quantities (such as charge, energy, momentum etc) are conserved. In general a conserva-

tion law is simply the mathematical formulation of the basicfact that the rate at which a

quantity (u) changes in a given domain must equal the rate at which the quantity flows into

10
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or out of the domain plus the rate at which the quantity is created or destroyed within the

domain. This thesis considers the numerical approximationof solutions to the following

conservation law

∂u
∂ t

+∇ ·~f = 0 , (2.1)

One of the most common partial differential equations, which models the transport of a

substance that is present in very small concentrations within the fluid is the advection

equation. It is generally used to model transport of the conserved quantity through the do-

main [11]. Assuming the domain contains no sources and that the conserved quantity is

being transported by some velocity (e.g. dust particles carried by wind, chemical concen-

tration carried by fluid motion, boats drifting downstream etc) it is possible to introduce

a constitutive law relating the flux and that quantity

~f = u~λ , (2.2)

where~λ is the advection velocity carrying quantity (u) through the domain. Substituting

the advection constitutive equation (2.2) into the conservation law (2.1) to obtain

∂u
∂ t

+∇ · (u~λ ) = 0 , (2.3)

and now applying the product rule it is possible to expand (2.3), to obtain the general

advection equation

∂u
∂ t

+u ∇ ·~λ +~λ ·∇u = 0 . (2.4)

One common assumption to be made is that the velocity field is constant everywhere in

the domain which leads to∇ ·~λ = 0. Another common assumption that could be made is

for incompressible flows, which is expressed mathematically by the constraint∇ ·~λ = 0,

because in this case the velocity field may vary spatially butthe divergence of the velocity

is zero everywhere. In these cases equation (2.4) simplifiesto

∂u
∂ t

+~λ ·∇u = 0 . (2.5)

This is called the advection equation form of the conservation law and the approximation

of this scalar advection equation on an unstructured discretisation of the space-time do-

mainΩ× [0, t] can be done using fluctuation splitting schemes.Ω is the spatial domain

and~λ is the appropriate advection velocity associated with the conservation law.

Fluctuation splitting schemes use a continuous piecewise polynomial representation
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Figure 2.1: The inward scaled normals.

of the solution variables, and the methods are designed to imitate the evolution of the

polynomial varying solution within each grid cell [32, 65].The high accuracy and gen-

uinely multidimensional characteristics of the fluctuation splitting schemes make them

very efficient when compared to the finite volume schemes [25]. Compared to finite el-

ement schemes, fluctuation splitting schemes give increased reliability because they lead

to parameter-free non-oscillatory schemes [27]. Moreover, they are also able to take ad-

vantage of the geometric flexibility enjoyed by unstructured grid methods [32].

The fluctuation associated with the scalar advection equation (2.5), is a cell based

quantity which is given by

φT = −

∫

Ω

~∇ ·~f h dΩ = −

∫

Ω

~λ ·∇u dΩ =

∮

∂Ω
u~λ ·~n dΓ (2.6)

where~f h is a continuous interpolant of the flux~f , a function of the solution variableu, and

T represents a triangular mesh cell. The basic steps in applying the fluctuation splitting

schemes are as follows :

1. Evaluate the fluctuationφT using an conservative linearisation [32], so that the

integration in Equation (2.6) is carried out exactly, giving

φT = −ST
~̃λ ·∇u = −

3

∑
l=1

kl ul , kl =
1
d
~̃λ ·~nl , (2.7)

where~nl is the inward pointing normal scaled by the length of the edgel of the cell,

as depicted in Figure 2.1, andkl is called the inflow parameter for ad-dimensional

space, in which̃depicts an appropriately linearised quantity andST is the cell area.

2. Distribute the appropriate amount ofφT to each vertex of the cell. IfφT
i is used to
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Figure 2.2: Median dual cell shaded around vertexi.

denote the contribution of the fluctuation to nodei ∈ T, then by construction, these

must satisfy

∑
i∈T

φT
i = φT (2.8)

for conservation. The distribution coefficientsβ T
i determine the appropriate pro-

portion of the fluctuationφT to be sent from cellT to nodei, and are given by

β T
i = φT

i /φT . (2.9)

Conservation is therefore achieved as long as

∑
i∈T

β T
i = 1 , (2.10)

i.e., the whole of each fluctuation is sent to the nodes withina cell. This ensures

that the local fluctuations satisfy (2.8).

3. Gather the contributions of the elements at the vertices and use an appropriate time

integration, e.g. a forward Euler discretisation of the time derivative, which gives

an iterative update of the nodal solution values of the form

un+1
i = un

i −
∆t
Si

∑
T∈∪Di

β T
i φT . (2.11)

where∆t is the time-step andSi is the median dual cell area around nodei, one third

of the total area of the triangles havingi as a vertex, see Figure 2.2.

For solving steady state problems, the time derivative termis included as a scheme for
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iterating to the steady state. However, for dealing with time dependent problems, the time

derivative term is necessary and it must be integrated in a manner which is consistent with

the underlying representation ofu if the order of accuracy for the steady state approach is

to be maintained [3]. This will be explained further in Chapter 3.

2.2.1 Linear and Nonlinear Schemes

In order to identify and define the two subclasses of linear schemes, substitute (2.7) in to

(2.11) to obtain

un+1
i = un

i −
∆t
Si

∑
T

β T
i

(
3

∑
j=1

k ju
n
j

)
. (2.12)

It follows that one can write the scheme as

un+1
i = ∑

l∈Di

cl u
n
l , (2.13)

with ∑l cl = 1 required for consistency. Two classes of schemes can be defined from the

above scheme: linear schemes, for whichcl are independent ofu, and nonlinear schemes,

for which cl depend onu.

Moreover the linear schemes can be subdivided into two subclasses using (2.12). One

can have a linear scheme with distribution coefficientβ T
i independent ofu, or it is also

possible to have a linear scheme for whichφT
i = β T

i φT is linear in u or depend onu

andβ T
i ∝ 1

φT . This definition will be very helpful in identifying the various fluctuation

splitting schemes that will be presented in this chapter.

2.2.2 Properties of Fluctuation Splitting Schemes

The different schemes, corresponding to different ways of computing the distribution

coefficients used in (2.11), have been designed to satisfy several properties. These de-

sign criteria are positivity, continuity, linearity preservation, multidimensional upwinding,

conservation and compactness.

Positivity

The positivity property guarantees that there are no numerical oscillations, by ensur-

ing that the scheme satisfies a maximum principle which prohibits the occurrence

of new extrema in the solution [32,65,81]. A scheme of the form (2.13) is globally

positive when
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cl ≥ 0, ∀l . (2.14)

This guarantees that every solution value at the new time level (n+1) can be writ-

ten as a convex combination of the values at the old time level. This ensures that

the resulting scheme can capture discontinuities like shocks and slip lines without

undershoots and overshoots. In general this property ensures that no extrema are

created, since

minl u
n
l ≤ ∑

l

cl u
n
l ≤ maxl u

n
l . (2.15)

Requiring that the condition (2.14) is obeyed for each particular cell, is known as

the local positivity condition. This condition will also begrid independent making

it easy to impose.

Continuity

The continuity of a scheme is required to obtain a smooth convergence to the

steady state solution [32, 65]. A scheme is continuous if thecontributions to the

nodes,β T
i φT , depend continuously on both the solutionu and the advection ve-

locity ~λ . Discontinuous schemes introduce switches which hamper convergence

towards steady state solutions, a behaviour known as limit cycling [32]. This is

because the contributions to the nodes discontinuously change from one iteration to

the next. Therefore it is desirable that the contributions to the nodes using the distri-

bution coefficientsβ T
i are continuous functions in both the advection and solution

gradient directions.

Linearity Preservation

The ability of a numerical scheme to reproduce exactly at least a linearly varying

solution is called linearity preservation [46,65,81]. This condition requires that, for

an arbitrary triangular mesh, the scheme preserves the exact steady state solution

when this is a linear function of the space coordinates. The test for this property

is done by using an explicit scheme of the form (2.11), which will be linearity

preserving if and only if, for any triangleT, the coefficientsβ T
i are bounded asφT

tends to zero [32].

A relaxed version of this property avoids defining the distribution coefficients ex-

plicitly [9]. For example, to get second order accuracy at steady state, the local
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Figure 2.4: Two target downstream vertices, denoted by nodes i2 andi3

fluctuations,φT
i are required to satisfy the property [9]

φT
i (uh) = O(h3) (2.16)

whereuh is a piecewise polynomial interpolant on the mesh andh is the maximum

diameter of the trianglesT. It is now possible to see that the total fluctuation eval-

uated foruh satisfies

φT = O(h3) (2.17)

so that the boundedness ofβ T
i =

φT
i

φT is true for (2.16). This is an alternative way of

ensuring the linearity preservation condition to asking the boundedness ofβ T
i ’s. It

is worth noting that linearity preservation and positivityare incompatible for linear

schemes according to Godunov’s theorem [38], which states that a linear scheme of

the form (2.13) cannot be both locally positive and linearity preserving.

Multidimensional Upwinding

The multidimensional upwind design property is one which ensures that the fluc-

tuation is distributed only to the downstream vertices of the cell according to the
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direction of the flow velocity. There are two possible combinations of inflow and

outflow faces of a triangular cell for scalar advection in twodimensions. These

correspond to one inflow face, as shown in Figure 2.3, and two inflow faces, shown

in Figure 2.4. In general, the multidimensional upwind property will be satisfied if

β T
l = 0 i f kl ≤ 0, (2.18)

which means that nothing will be distributed to the upstreamnodes; all the fluctu-

ation will be distributed to the downstream nodes, as illustrated in Figures 2.3 and

2.4. Here the inward scaled normals satisfy

~ni1 +~ni2 +~ni3 = 0 , (2.19)

and, as a consequence, the inflow parameterski = 1
2
~λ ·~ni satisfy

ki1 +ki2 +ki3 = 0 . (2.20)

Now looking at Figures 2.3 and 2.4, it is possible to explain (2.18). For the one

inflow case, it is obvious as only one of the inflow parameterski is positive. This

means thatki2 > 0 andki1, ki3 ≤ 0 soφT
i2 = φT andφT

i1 = φT
i3 = 0. For two target

triangles, two of theki ’s are positive, i.e.ki2,ki3 > 0 andki1 ≤ 0, which means that

the fluctuation must be split between the two downstream nodes i2 andi3. Overall

the multidimensional upwind scheme minimises the amount ofcrosswind diffusion

within the class of upwind schemes and consequently gives anaccurate result if the

flow is not aligned with the grid [81].

ConservationAs already mentioned in (2.10), conservation is ensured by making sure

that the whole fluctuation is distributed to the nodes of the mesh [32]. As a conse-

quence this property guarantees correct discontinuity capturing.

CompactnessComputations are performed on each vertex using only its direct neigh-

bours. For a given grid pointi in Figure 2.2, the stencil only contains the vertices

of all the neighbouring triangles with shared vertexi. Such compactness is ensured

by restricting the distribution of the fluctuation to withinits cell. This property is

an aid for a fast and efficient implementation and easy parallelisation [31,32].
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2.3 Finite Volume Schemes

Finite volume schemes are techniques which are obtained from a direct discretisation of

a system of conservation laws written in integral form. Thismethod can be defined on an

arbitrary mesh, and a large number of options are available for the definition of the con-

trol volumes (an arbitrary spatial region) on which the conservation laws are expressed

and the subsequent evaluation of the fluxes through the control surface (the boundaries of

the control volume). The fluxes are approximated by means of anumerical flux function,

which could be obtained from the approximate cell averages or by a suitable reconstruc-

tion including neighbouring cell averages as well. In addition, by direct discretisation

of the integral form of the conservation laws, the method ensures that the basic quantities

conserved at the analytical level remain conserved at the discrete level. This is an essential

attribute for compressible fluid flow, since the correct approximation of a discontinuous

solution can only be obtained by using this principle [12, 15]. It is possible to show the

correspondence between any finite volume scheme which is based on the median dual

cells [12, 15, 16, 28, 54, 84], and some fluctuation splittingschemes. The analysis below

follows that of [2], to show that the first order upwind finite volume scheme on the median

dual grid could be formulated as a fluctuation splitting scheme. For the scalar conserva-

tion law (2.3), consider a fluctuation in a triangleT, which is equivalent to the integral

representing the flux balance over the triangle, which can bedefined as

φT =
∫

T

∇ ·~f dΩ = −
∮

∂T
~f ·~n dΓ , (2.21)

where the flux vector for linear convection case can be expressed as~f =~λu, thanks to

the consistency property of the upwind finite volume flux, and~n is the inward pointing

normal to the cell boundary. Now consider the numerical flux functionH(uL,uR,~n), cor-

responding to the first order upwind differencing which can be written as

H(uL,uR,~n) =
~f (uR) ·~n+~f (uL) ·~n

2
−

1
2

∣∣∣∣∣

(
∂~f
∂u

)

ū

·~n

∣∣∣∣∣(uR−uL). (2.22)

whereū is an average state betweenuL anduR, satisfying

(
∂~f
∂u

)

ū

(uR−uL) = ~f (uR)−~f (uL) , (2.23)
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i

i3

i2
Di

Si

i1

~ni1

~ni1i2

~ni1i3

Figure 2.5: Upwind finite volume scheme on median dual cell.

Now, using the fact that12(z− |z|) = min(z,0), for an arbitraryz, with the flux vector,

already defined as~f =~λu, it is possible to express the numerical flux function (2.22)as

H(uL,uR,~n) =
1
2
((~λ ·~n)uR+(~λ ·~n)uL)−

1
2

∣∣∣∣∣

(
~λuR−~λuL

(uR−uL)

)
·~n

∣∣∣∣∣(uR−uL)

=
1
2

(
~λ ·~n(uR)+~λ ·~n(uL)−

∣∣∣~λ ·~n
∣∣∣(uR−uL)

)

= ~λ ·~n(uL)+
1
2
~λ ·~n(uR−uL)−

1
2

∣∣∣~λ ·~n
∣∣∣ (uR−uL)

= ~λ ·~n(uL)+
1
2

(
~λ ·~n−

∣∣∣~λ ·~n
∣∣∣
)

(uR−uL)

= ~λ ·~n(uL)+min(~λ ·~n,0)(uR−uL)

= ~λ ·~n(uL)+(~λ ·~n)−(uR−uL) . (2.24)

Hence, the upwind finite volume semidiscrete equation associated with nodei becomes

(see Figure 2.5)

Si
dui

dt
=

∮

∂Si

~f ·~n dΓ = − ∑
T∈Di

[
H(un

i1,u
n
i2,~ni1i2)+H(un

i1,u
n
i3,~ni1i3)

]
, (2.25)

when summing over all the cells inDi (see Figure 2.5). Substituting (2.24) in to (2.25)

finally allows the upwind finite volume scheme to be defined by the split fluctuation [66]
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Si
un+1

i −un
i

∆t
= − ∑

T∈Di

[
(~λ ·~ni1i2 +~λ ·~ni1i3)u

n
i1 +(~λ ·~ni1i2)

−(un
i2 −un

i1)+(~λ ·~ni1i3)
−(un

i3 −un
i1)
]

= − ∑
T∈Di

[
(~λ ·~ni1i2)

−(un
i2 −un

i1)+(~λ ·~ni1i3)
−(un

i3 −un
i1)
]

= − ∑
T∈Di

[
(Ki1i2)

−(un
i2 −un

i1)+(Ki1i3)
−(un

i3 −un
i1)
]

= − ∑
T∈Di

β FV
i φT (2.26)

because∑T∈Di
(~ni1i2 +~ni1i3) = 0. For this expression to become equivalent to that of a

fluctuation splitting scheme, one has to recall the definition of the fluctuation in a triangle

T (2.21)

φT =
1
2

(
~f (un

i2)+~f (un
i3)
)
·~ni1 +

1
2

(
~f (un

i1)+~f (un
i3)
)
·~ni2 +

1
2

(
~f (un

i1)+~f (un
i2)
)
·~ni3

=
(
~λun

i2 +~λun
i3

)
· (~ni1i2 +~ni1i3)+

(
~λun

i1 +~λun
i3

)
· (−~ni1i2 +~ni2i3) (2.27)

+
(
~λun

i1 +~λun
i2

)
· (−~ni1i3 −~ni2i3)

= (~λ ·~ni1i2)[u
n
i2 −un

i1]+(~λ ·~ni1i3)[u
n
i3 −un

i1]+(~λ ·~ni2i3)[u
n
i3 −un

i2] (2.28)

because~ni1i2 +~ni1i3 = 1
2~ni1, as shown in Figure 2.5, with similar expressions derived for

~ni2 and~ni3. Having in mind the distribution coefficient definition (2.9) for fluctuation

splitting schemes, if each term is taken separately in the above equation, for example

looking at the flux in the direction~ni1i2 it is possible to construct an upwind scheme by

formulating the distribution to nodei1 or i2, by looking at the sign of~λ ·~ni1i2. This leads

to a distribution coefficient,

β FV
i1 =

1
φT ∑

i l 6=i1

(~λ ·~ni1i l )
−(un

i l −un
i1) . (2.29)

It is possible to see that (2.26) is formulated as fluctuationsplitting scheme (2.11)

β FV
i1 = φT

i /φT , (2.30)
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which finally leads to the upwind finite volume - fluctuation splitting scheme defined by

the split fluctuations [66]

φT
i l = ∑

i l 6=i1

(~λ ·~ni1i l )
−(un

i l −un
i1). (2.31)

Moreover the scheme will be positive for (2.26), if the nodaltime restriction reads

∆t ≤
Si1

−(Ki1i2)
−− (Ki1i3)

−
. (2.32)

This is more constraining than most of the fluctuation splitting schemes which will be

discussed later in this chapter. Another of the shortcomings of the finite volume scheme

is the fact that it is not a multidimensional upwind scheme asdefined in Section 2.2.2,

so it lacks one of the major advantages of fluctuation splitting schemes over flux-based

methods. This general statement becomes clear when one looks at Figure 2.6, showing

the distribution target regions for the velocity~λ . When the fluctuation splitting scheme

is one target to vertexi3 for the velocity~λ drawn in the figure, the upwind finite volume

is two target to verticesi2 andi3, making it more diffusive [66], as the distribution is not

restricted to the downstream vertex only, compared to the one target distribution by the

upwind fluctuation splitting scheme. For varying~λ in general, the upwind finite volume

scheme is always two target except when the velocity~λ is pointing to the vertex and is

in alignment with one of the medians of the triangle which point towards the vertex from

which the median originates from. However, the upwind nature of the fluctuation splitting

scheme, indicated by the shaded regions, is defined by the edges as outlined in (2.18). It

determines the distribution targets by the signs of the inflow parameterski1, ki2 andki3

respectively.

Overall it is possible to see that the upwind finite volume scheme operating on median

dual cells with numerical flux function of the type (2.22) canbe recast into a fluctuation

splitting formalism.

2.4 Finite Element Schemes

Finite element schemes are variational based techniques for solving partial differential

equations [40, 76]. They are a technique in which a given domain is represented as a

collection of simple sub-domains, called finite elements, on which it is possible to sys-

tematically construct the approximation functions neededin a variational or weighted

residual approximation of the solution to a problem. In thismethod, the approximation
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i2

i32 targ
et to i1, i3

2 target to i2, i3

2 target to i1, i2

i1

1 target to i2

1 target to i1

λ

1 target to i3

i2

i3

i1

λ

2 targ
et to i1, i3

2 target to i1, i2

1 target to i3

1 target to i2

1 target to i1

2 target to i2, i3

Figure 2.6: The distribution target regions for upwind fluctuation splitting scheme (right),
and upwind finite volume scheme (left) : For vector~λ shown, the finite volume is targeted
to two verticesi2 andi3 while the fluctuation splitting scheme is one-target to verticesi3.

functions are typically piecewise polynomials.

The basic components in developing the finite element model are as follows [40].

1. Weak formulation of the differential equation over an element.

2. Finite element interpolation of the primary variables ofthe weak formulation.

3. Finite element formulation over a typical element.

The weak formulation itself involves a three step procedure, which in general cases

allows the definition of an equivalent integral formulation, involving the identification of

primary variables (i.e. variables that are required to be continuous throughout the domain,

including the nodes at which cells are connected). The finiteelement model interpolation

functions are developed on the basis of continuity, completeness, and linear independence.

The finite element method is devised by substituting appropriate interpolations of the

primary variable into the weak form of the differential equation.

The analysis below follows that of [22,30,35,45,65], to equate the fluctuation splitting

schemes with mass-lumped Petrov-Galerkin and Galerkin finite element schemes. The

fluctuation splitting scheme is linked with the Galerkin finite element scheme [30] in the

context of central schemes obtained by distributing the fluctuation to the nodes of a cell

equally. On the other hand the fluctuation splitting scheme can also have equivalence

with Petrov-Galerkin finite element schemes [36, 47–50, 52], if the weight functions are

designed to satisfy some of the properties outlined earlierin this chapter [30, 34]. The

weighting function will be associated with nodei of cell T denoted here byωT
i .
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First, consider the Petrov-Galerkin finite element scheme for steady advection equa-

tion (2.5), for which the discretisation can be written as

∑
T

∫

T
ωT

i
~λ ·∇uh dΩ = 0 , (2.33)

whereuh is a piecewise linear solution representation. From (2.5) it is possible to define

φT as

φT = ΩT
~λ ·∇uh , (2.34)

whereΩT is the area of the triangle T. This is because, for constant advection velocity

and the linear approximation ofuh,~λ ·∇uh will be constant overT and equate toφ
T

ΩT
. For

reasons that will become clear later in this section, the Galerkin scheme can be written as

∑
T

1
3

φT = 0. (2.35)

This is equivalent to a steady state approximation of the advection equation with a linear-

ity preserving fluctuation splitting scheme, with distribution coefficients

β T
i1 =

1
3

. (2.36)

For constant advection speed it is just a centred fluctuationsplitting scheme and equivalent

to the Galerkin finite element scheme. Now, to support this claim let us look at how (2.35)

was obtained by simplifying (2.33) given (2.34). For constant advection velocity~λ and
~λ ·∇uh constant overT, (2.33) gives

∑
T

∫

T
ωT

i dΩ
φT

ΩT
= 0 . (2.37)

Note that this only holds in the constant coefficient case, and in general the fluctuation

splitting and Galerkin finite element schemes give different discrete equations, because

the integrals (2.33) do not reduce to (2.37) all the time. However for Galerkin and Petrov-

Galerkin discretisations to be equivalent to the fluctuation splitting discretisation (2.8),

the weighting functionωT
i must satisfy

∫

T
ωT

i dΩ = β T
i ΩT . (2.38)

Now by substituting (2.38) in to (2.37)
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∑
T∈∪Di

β T
i φT = 0, (2.39)

it is possible to see that the fluctuation splitting scheme reduces to a pure Galerkin finite

element scheme, for equidistribution of the fluctuation over all vertices of the cell (2.35).

It is now very useful to gain more understanding of the association between the

weighting functionωT
i and the distribution coefficientβ T

i , by defining the weight func-

tion. In order to do this, it is appropriate to write the solution in finite element terms, as-

suming a continuous numerical approximation ofu in space and given{ui(t) = u(xi,yi , t)}i∈T

uh(x,y, t) = ∑
i∈T

ψi(x,y)ui(t) . (2.40)

whereψi1 denotes the continuous nodal basis function. To define the relation between the

weighting functionωT
i and the basis functionψi , an SUPG-like weight function [59, 63]

is chosen

ωT
i = ψi +αT

i γT . (2.41)

whereαT
i is the upwind bias coefficient contribution of cellT to nodei and γT is the

piecewise constant function equal to 1 on cellT and 0 elsewhere. Substituting this in to

the previous equation (2.38) gives

1
ΩT

∫

T
ψi +αT

i dΩ = β T
i , (2.42)

and hence

β T
i =

1
d+1

+αT
i , (2.43)

whered denotes ad-dimensional space. Using the above equation and (2.41), itis possible

to associate the weighting functionωT
i with the distribution coefficientβ T

i ,

ωT
i = ψi +

(
β T

i −
1

d+1

)
γT . (2.44)

From the above equation it is clear to see that the Galerkin finite element scheme with

the weighting functions identical to the nodal basis functions(ψi = ωi) andγT = 1, and

for equidistribution of the fluctuation over all vertices ofthe cell leads to a distribution

coefficientβ T
i = 1

d+1 outlined in (2.36) for two dimensions , which is nothing elsebut

the centred fluctuation splitting scheme given in (2.35). Onthe other hand, because

Petrov-Galerkin finite element schemes don’t have identical weighting and nodal basis
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functions, their distribution coefficients and weighting functions have the more general

forms given in (2.42) and (2.44). Moreover because of this relation, it is sometimes pos-

sible to view fluctuation splitting schemes as a particular class of Petrov-Galerkin finite

element scheme, giving this approach a different viewpointto the discontinuous model

used in the finite volume method.

2.5 Fluctuation Splitting Methods

2.5.1 The N scheme

The linear positive N scheme, designed by Roe [71] for solving the advection equation,

is the most successful first order scheme, and currently forms the principal component in

the construction of linearity preserving, nonlinear, positive discretisations. This scheme

is a first order fluctuation splitting formulation of the positive multidimensional upwind

method which gives the lowest numerical dissipation among first order schemes [46, 62,

71, 81]. In two dimensions the triangular mesh cells do not always have a unique (only

one target) downstream node so an alternative, two target, distribution must be devised,

as shown in Figure 2.4. If a mesh cell does have a one target downstream node, then a

single target distribution will be used.

In the one target case in two dimensions, the whole fluctuation is distributed to a

single downstream vertex, as illustrated in Figure 2.3. This locally satisfies the positivity,

upwind, conservation and linearity preservation property, making it an appropriate choice

in these situations [32]. In order to show this, assume nodei2 is the downstream vertex,

as in Figure 2.3, so that from (2.7) and (2.11) the local update takes the form

Si2u
n+1
i2

= Si2u
n
i2 −∆t(ki1u

n
i1 +ki2u

n
i2 +ki3u

n
i3) (2.45)

where∆t is the time-step.ui1 andui3 are left unchanged by the activity within this cell.

This scheme is positive ifSi2−ki2∆t ≥ 0, which is true as long as∆t <
Si2
ki2

. The distribution

is optimal, in the sense that it allows the largest possible time-step as well as satisfying

positivity. It is also linearity preserving since the distribution coefficients(β T
i1 = 0,β T

i2 = 1

andβ T
i3

= 0) are independent of the data, so it preserves the exact steadystate solution

when this is piecewise linear in space [32]. Conservation isautomatically guaranteed as

∑ j∈T β T
j = 1, and it is upwind becauseβ T

i1
, β T

i3
= 0, for ki1, k3 < 0, which means that

nothing is distributed to the downstream nodes. Note that for the one target case in two

dimensions all the fluctuation splitting schemes are identical.

In the two target case the N scheme differs from the other fluctuation splitting schemes
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Figure 2.7: A three point stencil indicated by filled circle,and outermost points indicated
by full circle

(defined later in this chapter) in its distribution coefficients. Since the N scheme is re-

quired to be positive, it cannot be linearity preserving because it is linear, according to

Godunov’s theorem [32, 46]. In order to show this assume, as in Figure 2.4, that the two

inflow sides are given byki2,ki3 ≥ 0. No contribution will be sent to the upstream vertex

because of the upwind condition, i.e.

β T
i1 = 0 and β T

i2 +β T
i3 = 1 . (2.46)

The scheme for the local update reads

Si1u
n+1
i1

= Si1u
n
i1

Si2u
n+1
i2

= Si2u
n
i2 −∆tki2(u

n
i2 −un

i1)

Si3u
n+1
i3

= Si3u
n
i3 −∆tki3(u

n
i3 −un

i1)

(2.47)

This is a locally positive scheme as long as the time-step satisfies [32]

∆t ≤ min

(
Si2

ki2
,
Si3

ki3

)
. (2.48)

Note that this is less restrictive than the constraint mentioned in Section 2.3, (2.32) for

the upwind finite volume scheme because

∆t ≤
Si1

−(Ki1i2)
−− (Ki1i3)

−
≤

Si1

ki1
, (2.49)

whereKl =~λ ·~nl , andkl =
1
d
~λ ·~nl . Condition (2.48) ensures local positivity, as it is derived

using only the contribution of a single triangle, and it is slightly more restrictive than

necessary when the overall nodal scheme is considered. Thismeans that a less restrictive



Chapter 2 Multidimensional Fluctuation Splitting Schemes 27
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i3

i1

~λi2

~λ

~λi3

Figure 2.8: Geometry on the N scheme for two target case

condition for positivity can be used to obtain the limit on the time-step. For the scheme

in (2.45) and (2.47) positivity can be based on the nodal update (2.11), so the time-step

restriction at nodei becomes [32,81]

∆t ≤
Si

∑T max(0,kT
i )

. (2.50)

This can be shown to be the largest possible time-step for which a linear fluctuation split-

ting scheme can be positive. Another reason to call (2.45) and (2.47) the optimal positive

scheme is that it has the most narrow stencil, hence its name,the Narrow (N) scheme. This

was achieved by eliminating the contribution from the outermost points of the stencil, as

shown in Figure 2.7.

The fluctuation distribution for the N scheme can be understood by considering the

velocity~λ to be decomposed, as shown in Figure 2.8, into the sum of components parallel

to edgesi1i2 andi1i3 so that,
~λ =~λi2 +~λi3 . (2.51)

Givenkl , defined in (2.7), the fluctuation due to~λi2 can be shown to be

φN
i2 = −

1
2
(~λi2 ·~ni2)(u

n
i2 −un

i1)−
1
2
(~λi2 ·~ni3)(u

n
i3 −un

i1)

= −
1
2
(~λi2 ·~ni2)(u

n
i2 −un

i1)

= −
1
2
(~λ ·~ni2)(u

n
i2 −un

i1)

= −ki2(u
n
i2 −un

i1)

(2.52)
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i2

i4

i1

~λ

li1i4

Figure 2.9: The LDA scheme for two positive inflow parameters

because~λi2 ·~ni3 = 0, i.e. for~λi2 only edgei1i3 is an inflow side. The second velocity

component leads to

φN
i3 = −ki3(u

n
i3 −un

i1) . (2.53)

Now, the two target N scheme (2.47) sends the whole of the fluctuation due to~λi2 to vertex

i i2 and that of~λi3 to vertexi i3, thereby reducing to upwind along the inflow edges of the

cell.

2.5.2 The LDA Scheme

The LDA (Low Diffusion A) scheme satisfies linearity preservation at the price of spuri-

ous oscillations near discontinuities and other sharp changes in solution gradient [32]. As

with the N scheme, the LDA scheme satisfies positivity, upwind, conservation and linear-

ity preservation property for one inflow side triangles as shown in Figure 2.3, because it

uses the same distribution as (2.45). However for two inflow side triangles the schemes

differ. The geometrical interpretation of this scheme is shown in Figure 2.9 where it is

assumed thatki2 andki3 are both positive andki1 is negative. Its distribution coefficients

are given by

β LDA
i2 =

ki2

ki2 +ki3
=

|Ti4i3i1|

|T|
, β LDA

i3 =
ki3

ki1 +ki2
=

|Ti2i4i1|

|T|
. (2.54)

where
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|Ti4i3i1| =
l i1i4ki2

||~λ ||
, |Ti2i4i1| =

l i1i4ki3

||~λ ||
, and |T| = |Ti4i3i1|+ |Ti2i4i1| , (2.55)

|Ti4i3i1| and|Ti2i4i1| are the areas of the sub-triangleTi4i3i1 andTi2i4i1. Consequently|T|

is the total area ofT, and can also be written as

|T| =
l i1i4(ki2 +ki3)

||~λ ||
. (2.56)

It is now possible to write a general distribution coefficient by substituting (2.56) and

(2.55) in to (2.54), giving

β LDA
i =

k+
i

∑ j∈T k+
j

(2.57)

wherek+ refers to the positive part ofk. Note that if only one inflow parameterki is

positive, the LDA and the N scheme are identical. However, iftwo inflow parameters are

positive, the schemes differ.

2.5.3 The PSI Scheme

The nonlinear PSI (Positive Streamwise Invariant) scheme is one of the most successful

fluctuation splitting schemes constructed. This is becauseof its positivity and linearity

preserving properties as well as its compactness [66]. The name Positive Streamwise

Invariant refers to the fact that it was designed to enforce invariance of the solution along

streamlines when each and every cell is considered individually. The PSI scheme can be

obtained from the N scheme using a form of limiter (usually minmod limiter) [4, 8, 46,

62, 65]. The philosophy behind this scheme is to only apply the limiter to the two target

case, as indicated in Figure 2.4, because in the one target case the N scheme contributions

are both positive and linearity preserving. The two target PSI scheme satisfies all of the

properties outlined in Section 2.2.2. The linearity preservation is obtained by limiting the

distribution coefficients of the N scheme. The PSI scheme’s distribution coefficients can

be written as

β PSI
i =

(β N
i )+

∑ j∈T(β N
j )+

, (2.58)

where()+ denotes the positive part of the distribution coefficient within the bracket, and



Chapter 2 Multidimensional Fluctuation Splitting Schemes 30

β N
i =

φN
i

φT . (2.59)

HereφN
i refers to the contribution made by the cell to nodei by the N scheme andφT is the

cell fluctuation, from expressions (2.52) and (2.53). Linearity preservation is guaranteed

becauseβ PSI
i ∈ [0,1] is bounded. This gives zero cross diffusion on a triangular grid. The

PSI scheme is also globally positive; it automatically inherits this property from the N

scheme because|β PSI
i | ≤ |β N

i |.

2.6 Results

A genuinely unstructured triangular mesh, which has 3806 vertices and 7370 cells, shown

in Figure 2.10, is used to obtain the results shown in Figures2.13 and 2.14. Uniform

structured triangular meshes, like the ones shown in Figures 2.11 and 2.12, are used to

provide errors for the advection problem which will be shownbelow. Starting from the

finest mesh to the coarsest, the meshes used have 525825, 131841, 33153, 8385, 2145 and

561 vertices. To obtain solutions to the inviscid Burgers’ equation a genuinely unstruc-

tured triangular mesh, which has 1926 vertices and 3690 cells, shown in Figure 2.19, will

be used.

Test case A

First consider a problem which will be referred to as test case A. The initial equation

is given as

x
∂u
∂x

−y
∂u
∂x

= 0 (x,y) ∈ [−1,1]× [0,1] . (2.60)

This problem models a steady state clockwise circular advection around the point

(0,0), with velocity,~λ = (y,−x)T . The initial profile is given as

u(x,0) =





0 if x /∈ [0.35,0.65]

1 if x ∈ [0.35,0.65] .
(2.61)

The genuinely unstructured triangular mesh shown in Figure2.10 is used to obtain

all the results for this test case. This test case is appropriate for illustrating the

positivity of the scheme. The result for this test case are shown in Figure 2.13. In

the figure the N scheme is shown to have a significant level of numerical diffusion,
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while the PSI scheme is shows a significant improvement over the N scheme. For

the PSI scheme there are still no oscillations and much less numerical diffusion.

The LDA scheme is shown to have a significant amount of oscillation which is

visible at the discontinuities. All the schemes converge quickly to steady state as

shown in Figure 2.15. The convergence monitor which was usedis the root mean

square (RMS) of the fluctuation of the solution, at each time step given as

RMS=

√
∑Nn

i=1(u
n+1
i −un

i )

Nn
(2.62)

Test case B

Now consider a problem which will be referred to as test case B. The initial profile

is given as

u(x,0) =





0 if x /∈ [0.35,0.65]

cos2 10π(x+1/2)
3 if x ∈ [0.35,0.65]

(2.63)

and it uses exactly the same genuinely unstructured triangular mesh as in the previ-

ous test case A, with the same steady state clockwise circular advection, around the

point (0,0), with velocity~λ = (y,−x)T . Test case B is appropriate for determining

the scheme’s ability to maintain a smooth peak without artificially steepening the

profile. All the schemes converge to the steady state as shownin Figure 2.15. The

results for this test case are shown in Figure 2.14. The N scheme can be seen to have

a significant level of numerical diffusion, but it does not show any sign of oscilla-

tion. The same figure shows that the PSI scheme, gives an improvement in accuracy

over the N scheme, because of its nonlinear positive and linearity preserving prop-

erty, while also giving a smooth profile. The LDA scheme, alsoshown in the same

figure, shows some oscillation visible at the outflow boundary in correspondence

with its non-positive property.

Test case C

Now consider a problem which will be referred to as test case C, which uses exactly

the same velocity field but with smoother solution profile, given as

u(x,0) =





G(x) for −0.75≤ x≤−0.25

0 otherwise
(2.64)
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in which

G(x) =





g(4x+3) if −0.75≤ x≤−0.5

g(−4x−1) if −0.5≤ x≤−0.25
(2.65)

where

g(x) = x5(70x4−315x3 +540x2−420x+126) . (2.66)

This test case is appropriate for determining the order of accuracy of the schemes in

the presence of turning points, because the exact solution to this problem,u(x,y) =

G(r) for 0.25≤ r =
√

x2 +y2 ≤ 0.75, with zero elsewhere, has continuous fourth

derivative. A series of uniform structured triangular meshes like the ones shown in

Figures 2.11 and 2.12, were used to provide errors for the advection problem given

above. Starting from the finest mesh to the coarsest, the meshes used have 33153,

8385, 2145 and 561 vertices.

All the oscillation and accuracy measures are outlined in Table 2.1 and Figures

2.16, 2.17 and 2.18 for mesh type A, as well as Table 2.2 and Figures 2.16, 2.17 and

2.18 for mesh type B. For the N and PSI schemes, the measured order of accuracy

reported in the tables are within the standard and expected values for all the schemes

presented. However, the LDA scheme clearly exhibits higherthan second order

accuracy for the smooth test case. That was not expected, even though the LDA

scheme is a linearity preserving scheme which gives it high accuracy. The PSI

scheme gives a slope between 1.8 and 2, which is what is normally measured on a

uniform structured mesh for a nonlinear positive and linearity preserving scheme.

The N scheme give a slope which is slightly under one, as it does not satisfy linearity

preservation, which is essential to obtaining a high order of accuracy. In general,

very similar conclusions have been obtained by looking at theL1 andL2 errors. It’s

also possible to see the accuracy improve as the mesh is refined for L∞ norm. For

all the accuracy results, grid type A gives a slightly betteraccuracy than grid type

B, maybe because the grid is well suited to represent the solution because of the

angle present (connectivity is favourably inclined) in thecell edges of the mesh,

especially in the outflow half.

2.7 Nonlinear Burgers’ equation

A two-dimensional variant of Burgers’ equation, used here to exemplify a nonlinear equa-

tion, is given as
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∂u
∂ t

+
∂
∂x

(
u2

2

)
+

∂u
∂y

= 0 or
∂u
∂ t

+~∇ · ~f = 0 (2.67)

where~f = (u2

2 ,u)T . From the linearisation given in [46,61], it is possible to write the local

advection velocity as,̃~λ = (ū,1)T , whereū is the average of the values of the variableu

at the vertices of the cell. This test case will be used for a nonlinear conservation law

to simulate a discontinuous solution. The mesh structure which is used is a genuinely

unstructured triangular mesh, shown in Figure 2.19, on the domain(x,y) ∈ [0,1]2. The

boundary conditions used are

u(x,0) = 1.5−2x, 0≤ x≤ 1

u(0,y) = 1.5, 0≤ y≤ 1

u(1,y) = −0.5, 0≤ y≤ 1 .

(2.68)

The exact solution is given as

u(x,y) =





−0.5 if y≤ 0.5 and−2(x− 3
4)+y− 1

2 ≤ 0

1.5 if y≤ 0.5 and−2(x− 3
4)+y− 1

2 ≥ 0

max

(
−0.5,min

(
1.5,

x− 3
4

y− 1
2

))
otherwise.

(2.69)

A genuinely unstructured triangular mesh, with 1926 vertices and 3690 cells, shown in

Figure 2.19, is used to obtain all the results shown in Figure2.20. The exact solution

will be compared with the various solutions obtained using the different schemes outlined

previously.

From Figure 2.20 it is possible to see that the N scheme is lessaccurate than the

others in the region where the characteristics intersect. This is because the N scheme is

not linearity preserving. The results for the LDA scheme, which is linearity preserving,

shown in the same figure, illustrate that the shock is captured sharply. The PSI scheme for

which the results are shown in the same figure, resolves the shock in a better way than the

N and LDA schemes, because it is a second order scheme as well as positive. The LDA

scheme also produce comparable isolines and resolves the linear part of the solution well.
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Schemes Test Case A Test Case B Test Case C
min (u) max(u) L1 order L2 order L∞ order

N 0.00 0.58 0.92 0.85 0.76
LDA -0.14 0.98 2.35 2.17 1.31

PSI 0.00 0.78 1.91 1.79 1.83

Table 2.1: Oscillation and accuracy measures. Mesh type A, shown in Figure 2.11, was
used for accuracy. The finest mesh used has 33153 vertices while the coarsest mesh used
has 561 vertices. The genuinely unstructured triangular mesh shown in Figure 2.10 was
used for test cases A and B.

Schemes Test Case C
L1 order L2 order L∞ order

N 0.89 0.83 0.72
LDA 2.29 2.16 1.29

PSI 1.91 1.78 1.82

Table 2.2: Accuracy measures on grid type B, shown in Figure 2.12.
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Figure 2.10: A genuinely unstructured triangular mesh, which has 3806 vertices and 7370
cells, used for the advection equation with discontinuous solution and with cosine squared
profile on a nonuniform advection field
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Figure 2.11: The mesh type A, which was used for the advectionequation with smooth
solution (for determining the order of accuracy) on a nonuniform advection field.
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Figure 2.12: The mesh type B, which was used for the advectionequation with smooth
solution (for determining the order of accuracy) on a nonuniform advection field.
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Figure 2.13: Test case A, solution for N (top), PSI (middle),LDA (bottom) schemes for
the square wave case.
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Figure 2.14: Test case B, solution for N (top), PSI (middle),LDA (bottom) schemes for
the cosine squared case.
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Figure 2.15: Convergence histories for test cases A (top left), B (top right) and C (bottom),
on mesh shown in Figure 2.19.
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Figure 2.16: Numerical error for grid type A (left), and for grid type B (right) : L1 error
where the solid line without a marker is slope 2.
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Figure 2.17: Numerical error for grid type A (left), and for grid type B (right) : L2 error
where the solid line without a marker is slope 2.
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Figure 2.18: Numerical error for grid type A (top right), andfor grid type B (top left) :
L∞ error where the solid line without a marker is slope 2.
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Figure 2.19: A genuinely unstructured triangular mesh, used for the test case which deals
with discontinuous solution for Burgers’ equation.
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Figure 2.20: Solutions to the Burgers’ equation test case, showing the isolines of the exact
(top left) and N (top right), LDA (bottom left) and PSI (bottom right) solutions.



Chapter 3

High Order Fluctuation Splitting

Schemes

3.1 Introduction

The construction of fluctuation splitting schemes which have higher than second order

accuracy is of fundamental significance [8, 67]. This is mainly because numerical ex-

periments on scalar advection show that very high order schemes are more efficient than

second-order schemes, because the high reduction of the error due to the high order accu-

racy compensates for the large number of operations needed to obtain the very high order

approximation [82]. Another, more compelling, reason is simply because the approxima-

tion of time-dependent problems demand the discrete forms of both spatial and temporal

derivative terms to be of a very high order of accuracy, so that the degree of accuracy is

maintained over a long time [3,6,27,56].

In this chapter two existing schemes devised in order to achieve higher than second

order fluctuation splitting schemes, presented by Abgrall and Roe [8], and Caraeni [17]

will be discussed. Moreover, a new alternative to these existing schemes, named the

additional neighbouring nodes (ANN) scheme, will also be introduced and described here.

However, even though each approach achieved higher than second order accuracy, none

of them satisfies the positivity property. Consequently, a new technique was devised by

Hubbard [41], which imposes positivity on these high order schemes. This procedure

45
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which will also be discussed in this chapter.

3.2 Abgrall-Roe Scheme

This scheme is a very high order fluctuation splitting schemewhich was developed re-

cently for the numerical solution of first order steady conservation laws, by Abgrall and

Roe [8]. In the classical low order fluctuation splitting schemes, it is supposed that the

dependent variableu has a linear variation over a mesh cell. In order to calculatea high

order fluctuation within the cell, one assumes that the dependent variable has a high order

polynomial variation over each cell. The idea was to developa scheme in the context of

triangular or tetrahedral cells, whose unknowns are storedand updated using additional

nodes created by uniformly subdividing the global mesh, seeFigure 3.1, so that it is pos-

sible to construct a high order interpolating polynomial oneach cell. This then results

in a fluctuation that can be evaluated on any of the subcells using a suitable quadrature

rule. The purpose is to allow this construction to achieve high order accuracy, initially for

solving steady state problems.

For constructing a third order scheme the first stage is to allow each triangle to be

equipped with additional degrees of freedom to the values atthe vertices. For example,

Figure 3.1 shows the casek = 2 usingpk triangular elements whose degrees of freedom

are the values of the solution at the points withinT, shown in the Figure 3.1, creatingk2

sub-triangles withinT [8]. The construction of an upwind fluctuation splitting scheme,

for any degree of freedomσ , is given as

un+1
σ = un

σ −
∆t

S′

σ
∑

T,σ∈T
ψT

σ (3.1)

where

ψT
σ = ∑

Tξ ,σ∈Tξ

φ
Tξ
σ . (3.2)

Hereσ denotes a point that may be one of the vertices of the originalcell, or the additional

points introduced by the sub-triangulation,Tξ expresses a generic sub-triangle andS
′

σ is

the area of the median dual control volume associated with the sub-triangle node.

Consider a triangle as in Figure 3.1 for the casek = 2, with T1,T2,T3 andT4 being the

subtriangles, andφ
Tξ
σ representing the fluctuations forξ = 1,2,3,4 which will be sent to

the points contained inT. The high order (HO) fluctuation on a subtriangle is given as

φHO
ξ =

∫

Tξ

~λ ·∇uhdΩ (3.3)
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Figure 3.1: Sub-triangles ofp1 andp2 interpolation.

whereuh represents a piecewise polynomial continuous representation with values stored

at all the sub-cell nodes. Now by evaluating (3.3) exactly, theφHO
ξ can be obtained to be

distributed to the nodes of the refined mesh. The proposed distribution is based on [8]

φ
Tξ
σ =

(
(φ

Tξ
σ )N/φHO

ξ

)+

∑σ ′
∈Tξ

(
(φ

Tξ

σ ′ )N/φHO
ξ

)+ φHO
ξ = β

Tξ
σ φHO

ξ . (3.4)

Even though these distribution coefficients are bounded between zero and one, in some

cases, which will be discussed in detail in Section 3.2.1, the scheme (3.4) gives only zero

distribution coefficients for a given subcell, violating conservation. Due to this, Abgrall

and Roe [8] proposed a default mode ofβ
Tξ
σ = 1/3, for use when this type of situation

occurs in two dimensions. The distribution coefficients of this scheme are revised to be

β ξ
σ =

(
(φ

Tξ
σ )N/φHO

ξ

)+
+ ε

∑σ ′
∈Tξ

(
(φ

Tξ

σ ′ )N/φHO
ξ

)+
+3ε

, (3.5)

with ε = 10−10. Unfortunately these distribution coefficients present a new problem, as

they automatically default to central discretisation [41]. This issue will also be discussed

in Section 3.2.1. Abgrall and Roe use the above distributioncoefficients to calculate the

fluctuations at the vertices of the sub-triangles,

φ
Tξ
σ = β ξ

σ φHO
ξ , (3.6)

and the overall fluctuations at the vertices are
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ψT
σ = ∑

Tξ ,σ∈Tξ

φ
Tξ
σ . (3.7)

The resulting scheme is high order accurate but not positive. Following this result a

method for imposing positivity on this high order scheme wasdeveloped by Hubbard [41],

which will be discussed in Section 3.5.3.

3.2.1 The Problem

The high order fluctuation splitting scheme on triangular meshes presented by Abgrall

and Roe [8] was found to be not positivity preserving from thevarious numerical exper-

iments that were undertaken. These results were further substantiated by the theoretical

investigation carried out. These findings also demonstrated the source of the non-positive

results obtained using numerical experiments. This analysis follows [41, 42] and also

some closely associated work done independently by Ricchiuto [68] and Abgrall [10].

There are three critical problems.

1. When the high and low order fluctuations have different signs, i.e.φN
ξ φHO

ξ < 0, for

a particular sub-triangle, the scheme can violate conservation when (3.4) is used.

For example, when the contributions made by the N scheme fluctuation to a par-

ticular nodeσ ,
(

φ
Tξ
σ

)N
, is non-negative for all vertices ofTξ and the contribution

from the very high order fluctuation
(
φξ
)HO

is negative, then the third order fluctu-

ation splitting scheme gives zero distribution coefficients in (3.4), for every vertex

of the subcell, infringing on the conservation. Abgrall andRoe [8] proposed the

alteration to the distribution coefficients shown in (3.5),introducing a default mode

of β ξ
σ = 1/3, when this type of situation occurred, but this modification forced the

scheme to acquire the property of central discretisation, which is not positive.

2. Even whenφN
ξ φHO

ξ ≥ 0, for sub-triangleξ , it is also possible to have
∣∣∣φHO

ξ

∣∣∣ ≫∣∣∣φN
ξ

∣∣∣, i.e. the very high order fluctuationφHO
ξ can have a much bigger magnitude

than the N scheme fluctuationφN
ξ . This means that it will affect the positivity of the

steady state approximation, since a more restrictive condition than (2.50) is required

for the time-stepping procedure to remain positive. Consequently it becomes very

difficult to distribute the high order fluctuation to the appropriate vertices of the

sub-triangle in a conservative manner while maintaining positivity.

3. In some circumstances,φHO
ξ is nonzero whenui1 = ui2 = ui3 in a subcell. When

this situation occurs distributingφHO
ξ to the vertices of subcellξ , in a conservative
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manner while maintaining local or, sometimes, global positivity becomes unattain-

able. Hence, it is impossible to construct a conservative and locally positive higher

than second order accurate fluctuation splitting scheme, ifthe distribution of the

fluctuation in a subcell is restricted to be only to the vertices of that subcell.

3.3 Caraeni’s scheme

The essence of Caraeni’s scheme is its construction of a highorder representation of the

dependent variableu using the reconstructed gradients of the solution at the cell nodes to

obtain a quadratic interpolant [17, 18, 20]. The first consideration that was made in order

to obtain high order accuracy is thatu has a quadratic variation over the cell. This can

be achieved if the gradient of the dependent variableu is computed and stored at the cell

nodes, before computing the high order fluctuation within the cell.

The procedure starts by approximating the cell gradients, using the Green-Gauss the-

orem, given by
~∇uT =

1
ST

∮

∂T
u~n dΓ, (3.8)

whereST denote the area of each cell. The cell gradients are then usedto approximate the

value of the gradients at the nodes using

~∇ui =
1

∑T∈∪Ti
ST

−1 ∑
T∈∪Ti

S−1
T

~∇uT . (3.9)

Now it is possible to obtain a higher order reconstruction for the variableu over the cell.

The values ofu at the midpoints of the edge, i.e. those ati1i2, i2i3 andi3i1 in Figure 3.2,

are defined using

ui1i2 =
ui1 −ui2

2
+

~∇ui1 −
~∇ui2

8
· (~xi2 −~xi1) , (3.10)

wherei1 andi2 denote the vertices at each end of the cell edge. These valuesare used to

calculate a high order fluctuation within the cell, which is then distributed using the non

positive LDA scheme [17,20]. As in the previous scheme, Caraeni’s scheme is high order

accurate but not positive, however positivity can also be imposed using the technique

presented in [41]. This positive version of Caraeni’s scheme will be discussed in Section

3.5.2.
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Figure 3.2: Definition of the nodes in a high order triangularcell for Caraeni’s scheme.

3.4 The Additional Neighbouring Nodes Scheme

In Sections 3.2 and 3.3, the existing alternatives for constructing very high order fluctu-

ation splitting schemes were presented. Abgrall and Roe [8]showed that by subdividing

a triangular mesh to provide the additional degrees of freedom necessary for construct-

ing quadratic polynomials, they were able to achieve a higher order accurate fluctuation

splitting scheme. Another alternative to this approach waspresented by Caraeni [17],

who was able to recover solution gradients at the mesh nodes and use these to obtain

a quadratic interpolant, which also led to higher than second order accurate fluctuation

splitting scheme.

What will be presented here is a high order fluctuation splitting scheme that is con-

structed using extra information about the dependent variable stored at the additional

neighbouring nodes of the global mesh. These additional neighbouring nodes provide

the additional degrees of freedom that are necessary to develop a high order polynomial

representation of the dependent variables, and hence evaluate the fluctuationφT with an

appropriate degree of accuracy.

The first stage in the development of the additional neighbouring nodes scheme is to

consider a mesh composed of triangles, denoted byTi , with verticesi1, i2, i3. In addition,

(i l)4≤l≤n are the other collocation points, as shown in Figure 3.3 forn = 10 to construct a

unique cubic polynomial. For a given triangulation, we seekan interpolant that is piece-

wise polynomial of degreep in each triangleTi, and therefore this triangulation needs to

provide eachTi with

n =
1
2
(p+1)(p+2) , (3.11)

degrees of freedom. Figure 3.4 shows the casek = 2, and the additional verticesi4, i5, i6.

The construction of a continuous piecewise higher degree polynomial interpolant is

achieved using the values ofu at the additional mesh nodes neighbouring a given cell. For
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Figure 3.3: The nodes over which the high order polynomial representation of the de-
pendent variables will be fitted. The crosses at the verticesof cell 1, plus the immediate
neighbouring cell 2 vertices, indicated by hexagons, identify the nodes to be added for
developing quadratic polynomials. If the next immediate neighbouring cells’ vertices of
cell 3 denoted by squares are also added, it will be possible to construct cubic polynomials
etc. The numbers show the order in which the neighbouring cells are chosen to be added
to the stencil.

constructing a quadratic interpolant we use three additional nodes, which are obtained

from the three neighbouring cells by choosing the nodes opposite the given cell’s edges,

denoted 2 in Figure 3.3. These make it possible to construct aquadratic interpolating

polynomial on each original cell of the mesh. In general, apth-order stencil hasn nodes

(3.11), and the complete polynomial in two dimensions ofpth degree is given by

u =
n

∑
i=1

aix
eyf , e+ f ≤ p . (3.12)

The complete set ofn = 10 points for the cubic polynomial (cells labelled 1-3) is shown

in Figure 3.3. For constructing a quadratic interpolant, the polynomial involves six con-

stants, which can be expressed in terms of the nodal values ofthe variable being interpo-
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Figure 3.4: The stencil over which quadratic polynomial will be fitted, wherei1, i2 and
i3 (crosses), are the vertices of cell 1,i4, i5 and i6 (hexagons) identify the neighbouring
nodes from cells identified by 2, to be added for developing quadratic polynomials.

lated (shown in Figure 3.4) as

u j = a1+a2x j +a3y j +a4x jy j +a5x2
j +a6y2

j j = 1, ...,n . (3.13)

This generates the matrix equation

Ba= u , (3.14)

whereB is a square matrix containing the coefficients 1, ..,y2
j , a andu are vectors con-

taining the coefficientsa j andu j . Once this matrix equation is solved for the coefficients,

it will be possible to construct the third order midpoint values ofu, on each edge of the

original cell, i1i2, i2i3 and i3i1. After the unique local quadratic interpolant on each cell

of the original mesh is constructed, an additional stage is involved to attain conservation,

since the continuity of the representation could be hampered. These issue arises as the

reconstruction of the quadratic interpolant within each mesh cell is achieved by extending

the stencil to obtain information from the neighbouring cells’ nodes, making the stencil

selection local for each cell. This means that the stencils are different for any given pair

of neighbouring cells, and give two different polynomial representations for each internal

mesh edge, the two local quadratic representations over thetwo adjacent cells. However,

to produce a continuous representation, it is possible to use an average of the two neigh-

bouring quadratic interpolants across each cell edge, which gives a quadratic interpolant

on each edge of the original mesh. Quadrature is then used to evaluate the high order

fluctuation, by evaluating (2.6) exactly. The high order fluctuation can then be used to
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update the solution using, for example, an LDA distribution(2.57),

(φT
i )ANN =

k+
i

∑ j k
+
j

(φT)ANN = β LDA
i (φT)ANN . (3.15)

It is important to note that when the LDA distribution is used, this high order accurate

scheme is not positive. A solution to this problem will be outlined later on in this chapter.

For boundary cells, as shown in Figure 3.5, it is impossible to pick enough additional

nodes from the immediate neighbouring cells for constructing a continuous piecewise

higher degree polynomial interpolant. This is because the boundary cells will always

have one or two of the neighbouring cells, and thereby their corresponding nodes, absent

in the mesh structure. As a consequence of this, the boundarycells will always be treated

as special cases.

For boundary cells in regular meshes, there are various waysof choosing more neigh-

bouring nodes for constructing higher degree polynomial interpolants. One such way of

choosing between the various neighbouring nodes beyond thegiven cell is to continu-

ously add the necessary amount of neighbouring nodes until enough neighbouring nodes

are found for constructing the local polynomial.

To explain further, by looking at Figure 3.5, it is possible to see that to construct a

quadratic interpolant, the immediate neighbouring cell’snodes, indicated by the hexagons,

do not produce enough information, as at least six nodal values are required. However

it is possible to collect as many or even more nodes as required for the quadratic poly-

nomial to be constructed by adding the neighbouring neighbour cells’ nodes, indicated

by the squares in the figure. In this case, this gives eight nodes and consequently more

columns in the system (3.14). Now, even though there will be more equations than un-

knowns, once the polynomials are constructed, it will be possible to use a singular value

decomposition [39, 85], to find a solution to the resulting system and consequently the

high order degree polynomial interpolant. In general, using singular value decomposition

is advantageous in the case whereB in (3.14) is a singular matrix, or if there are fewer

equations than unknowns.

For radically irregular mesh structures, as shown in Figure3.6, the basic ideas of the

additional neighbouring nodes scheme carry over in a straightforward manner, but its ap-

plication introduces new problems. These new problems arise because the construction

of the polynomial interpolant depends on the closeness of the neighbouring cells’ nodes

to a given cell, and this type of stencil selection leads to the addition of more layers of

neighbouring nodes, while also extending the distance between the nodes, due to the irreg-

ularity of the mesh structure. This creates a similar problem to that seen in the boundary
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Figure 3.5: The cells that will be added to the stencil at the boundary cell indicated by
1, for the additional neighbouring nodes scheme. To construct quadratic polynomials for
boundary cells 1, the crosses at the vertices of cell 1, plus the immediate neighbouring
cell 2 vertices indicated by hexagons, plus the three vertices of cell 3 indicated by squares,
will be used.−2 within the circle indicates the boundary and the numbers show the order
in which the neighbouring cells are chosen to be added to the stencil.

cells, because it is difficult to collect the necessary number of nodes from the immediate

neighbouring cells. As the nodes of the neighbouring cells could be further away from

the cell, this can also make the information taken from thesenodes sensitive to the mesh

structure.

One suggestion to be made regarding the stencil selection isthat, instead of selecting

the immediate nodes of the cells neighbouring a given cell, it could be better to select the

closest neighbouring nodes in a geometric sense, to obtain information for constructing a

continuous piecewise higher degree polynomial interpolant, so that the stencil would not

extended as far in space. In order to select the necessary number of the closest neighbour-

ing nodes for constructing a high order polynomial, it couldbe possible to use distances

between the centres of the cells or their size. Once the stencil contains enough nodes the

singular value decomposition is again used to find the least squares fit polynomial.
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Figure 3.6: The additional neighbouring nodes scheme’s choice of the closest neighbour-
ing nodes that will be added to the stencil for a radically irregular mesh structure. The
crosses at the vertices of cell 1, plus the vertices indicated by hexagons, and the three ver-
tices of cell 3 indicated by squares, identify the nodes to beadded for developing quadratic
polynomials. However, this stencil selection adds more layers of neighbouring nodes and
also takes information from the nodes of the surrounding cells which are further away,
making the scheme sensitive to the mesh structure.
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3.5 Modified Scheme

This section will describe a technique developed by Hubbard[41], which guarantees the

absence of spurious oscillations by applying an additionalsmoothing stage. The explicit

construction of a higher than second order scheme which is both positive and linearity

preserving for the steady state advection problem will be outlined. Since the source of

the non-positivity of the very high order scheme presented by Abgrall and Roe [8] was

identified in the previous chapter, what will be outlined here is one possible approach

which can be taken in order to improve the distribution of a modified form of the very

high order fluctuationφHO
ξ to the appropriate vertices of the subtriangle (or subcell)in a

conservative manner while imposing both local and global positivity.

The first step in constructing the modified third order schemeis understanding the

fact that by modifying the interpolant, and consequently the fluctuation, it is possible to

construct a positive distribution scheme within the existing framework. To explain further,

by modifying the interpolant in a way which allows a locally positive distribution scheme,

even when the fluctuation in a cell is distributed only to thatcell’s vertices, a new scheme

which is both positive and higher than second order accuratefor the steady state advection

problem can be produced. In the previous Sections, 2.5.1 and2.5.3, the linear interpolant

used for the N and PSI schemes led to a positive scheme [66], and here the N scheme

will also be used as the basis for the higher order case to helpdecide how to distribute a

limited amount of a high order correction term.

Considering a triangular mesh cell, see Figure 3.1 on the right, the high order repre-

sentation within that particular cell can be written as ¯u(~x)+δu(~x), whereū(~x) is the linear

interpolant of the dependent variableu at the vertices of the cell, andδu(~x) is the high

order correction to the interpolant over that cell. Thus, ifδu
′
(~x) represents a modified

high order correction along the edges of the cell, the modified interpolant can be written

asu
′
(~x) = ū(~x)+δu

′
(~x). The high order correction for each edgei1i2 of the cell is limited

so that

‖ δu
′

i1i2(~x) ‖≤ K | ui1 −ui2 | ∀~x = µ~xi1 +(1−µ)~xi2, 0≤ µ ≤ 1, (3.16)

for some constantK ≥ 0, and this condition allows the fluctuation obtained by using

the modified interpolant to be distributed in a locally positive manner, for an appropriate

time-step restriction in (2.11).

The limiting of the high order polynomial is conducted at every quadrature point so

that the above relations are satisfied. The optimal choice for the constantK is still an open

question but in general there are three values for the constant K which have particular
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Figure 3.7: The limiting procedure for a general case along acell edge, where• show
the limited values at the quadrature points, and◦ indicate the linear and quadratic limits.
The double ended arrows indicate the values the polynomial is allowed to take at the
quadrature point. The solid line indicates the linear interpolant ū(~x), the dashed line
indicates the quadratic interpolantu(~x) and the dotted lines are the limited interpolant
u
′
(~x) for K = 0.25 andK = 0.5.

interest

• K = 0, reduces to the linear case and the PSI scheme is recovered.

• K = 0.25, which guarantees a monotonic interpolant along every edge and is the

largest value that guarantees a limited monotonic interpolant along each edge. The

monotonicity proof is outlined in [41]. Figure 3.7 illustrates the geometric effect

of usingK = 0.25 which clearly lies between the linear and quadratic interpolants.

This value ofK will also be used in all the results conducted in this work, because

using larger values ofK was found by experiment to reduce the rate of convergence

to steady state.

• K = 0.5, which guarantees that the midpoint interpolant values are bounded by the

endpoint values for any given edge. Figure 3.7 shows the the geometric effect of

usingK = 0.5. It is worth noting that the time step restriction will become more

severe asK increases [41].

It can easily be shown that this modification allows a positive distribution as follows.

The fluctuation due to the limited interpolantu
′
(~x) for a general edge can be written as
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∮

∂Ω
u
′~λ ·~n dΓ = ∑

edges

∫ i2

i1
u
′~λ ·~n dΓ (3.17)

= ∑
edges

[∫ i2

i1
u
′~λ ·~n dΓ+

∫ i2

i1
ū~λ ·~n dΓ−

∫ i2

i1
ū~λ ·~n dΓ

]

= ∑
edges

[∫ i2

i1
(u

′
− ū)~λ ·~n dΓ+

∫ i2

i1
ū~λ ·~n dΓ

]

= ∑
edges

[∫ i2

i1
δu

′ ~λ ·~n dΓ+
∫ i2

i1
ū~λ ·~n dΓ

]
. (3.18)

In order to ensure that (3.16) is satisfied, but high order is retained whenever possible, a

functionαi1i2(~x) is defined along each edge which satisfies

δu
′
(~x) = αi1i2(~x)(ui1 −ui2) . (3.19)

(3.18) then gives

∮

∂Ω
u
′~λ ·~n dΓ = ∑

edges

[∫ i2

i1
αi1i2(ui1 −ui2)

~λ ·~n dΓ+

∫ i2

i1
ū~λ ·~n dΓ

]
. (3.20)

In order to satisfy (3.16),| α(~x) |≤ K is required for all~x on the given edge. It is enough

that the inequality is satisfied at the quadrature points andin this work, αi1i2 is chosen

at the edge midpoint (the additional quadrature point necessary for the application of

Simpson’s rule) to take the form

αi1i2 = max


−K,min


K,

ui1i2 −
(ui1+ui2)

2

ui1 −ui2




 , (3.21)

in which division by zero is avoided by making sure the denominator does not become

zero.
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Now, note that the low order fluctuation can be written

φLO = −
1
2 ∑

i∈T
ui
~̃λ ·~ni

=
(ui1 −ui2)

~̃λ · ~ni2

2
+

(ui1 −ui3)
~̃λ · ~ni3

2
= φi1i2 +φi1i3

= ki2(ui1 −ui2)+ki3(ui1 −ui3) , (3.22)

where~̃λ is the linearised advection velocity, from (2.7). The inflowparameters are defined

aski2 = 1
2
~̃λ · ~ni2 andki3 = 1

2
~̃λ · ~ni3 and i2 and i3 are chosen so thatki2 andki3 are of the

same sign or zero. Now it is worth noting that the N scheme can be viewed as distributing

φi1i2 andφi1i3 (3.22) via

Si2ui2 → Si2ui2 +
1
2

∆t~̃λ · ~ni2(ui1 −ui2) if ~̃λ · ~ni2 ≥ 0

Si1ui1 → Si1ui1 +
1
2

∆t~̃λ · ~ni2(ui1 −ui2) if ~̃λ · ~ni2 < 0

Si3ui3 → Si3ui3 +
1
2

∆t~̃λ · ~ni3(ui1 −ui3) if ~̃λ · ~ni3 ≥ 0

Si1ui1 → Si1ui1 +
1
2

∆t~̃λ · ~ni3(ui1 −ui3) if ~̃λ · ~ni3 < 0 . (3.23)

An alternative to (3.23) can be derived from rewriting the low order fluctuation as

φN = k+
i2
(ui1 −ui2)+k−i2(ui1 −ui2)+k+

i3
(ui1 −ui3)+k−i3(ui1 −ui3), (3.24)

where[ ]+ and[ ]− are the positive and the negative parts of the argument within the square

brackets, and the verticesi1, i2 andi3 are again chosen according to the inflow edges, as

directed by the N scheme. This leads to a formulation of the distribution given by

Si1ui1 → Si1ui1 +∆t[k−i2(ui1 −ui2)+k−i3(ui1 −ui3)]

Si2ui2 → Si2ui2 +∆tk+
i2
(ui1 −ui2)

Si3ui3 → Si3ui3 +∆tk+
i3
(ui1 −ui3) . (3.25)

These are useful alternative formulations for the distribution of the higher order fluctua-

tion. Now, returning to the high order fluctuation in (3.20) and using the fact that
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(ui2 −ui3) ≡ (ui1 −ui3)− (ui1 −ui2) , (3.26)

it is possible to derive the form

φLIM =
∮

∂Ω
u
′~λ ·~n dΓ (3.27)

=
1
2
(ui1 −ui2)

~̃λ · ~ni2 +
1
2
(ui1 −ui3)

~̃λ · ~ni3

+

∫ i2

i1
αi1i2(ui1 −ui2)

~λ ·~n dΓ−

∫ i3

i2
αi2i3(ui1 −ui2)

~λ ·~n dΓ

−

∫ i1

i3
αi3i1(ui1 −ui3)

~λ ·~n dΓ+

∫ i3

i2
αi2i3(ui1 −ui3)

~λ ·~n dΓ,

wherei1, i2 andi3 are the vertices of the cell (or subcell) taken in an anticlockwise manner.

This then gives

∮

∂Ω
u
′~λ ·~n dΓ =

[
1
2
~̃λ · ~ni2 +

∫ i2

i1
αi1i2

~λ ·~n dΓ−
∫ i3

i2
αi2i3

~λ ·~n dΓ
]
(ui1 −ui2)

+

[
1
2
~̃λ · ~ni3 −

∫ i1

i3
αi3i1

~λ ·~n dΓ+
∫ i3

i2
αi2i3

~λ ·~n dΓ
]
(ui1 −ui3)

= Ki1i2(ui1 −ui2)+Ki1i3(ui1 −ui3) . (3.28)

This is now written in similar form to the linear fluctuation (3.22).

Note that ifKi1i2 has the same sign aski2 in (3.28), sendingKi1i2(ui1 −ui2) to the same

node aski2(ui1 −ui2) will lead to a locally positive distribution. Otherwise, ifthey are of a

different sign, then sendingKi1i2(ui1−ui2) to the other edge node updated byki2(ui1−ui2)

on edgei1i2, leads to an update which is locally positive. The same procedure will be

performed for the fluctuation associated with edgei1i3. This is the essence of the positive

scheme on which the high order scheme will be based.

Importantly, due to the constraints onαi1i2, αi2i3 andαi3i1 in (3.28), Ki1i2 andKi1i3

are clearly bounded. Furthermore, simple bounds can be derived for these coefficients on

each edge, i.e.
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| Ki1i2 | =

∣∣∣∣
1
2
~̃λ · ~ni2 +

∫ i2

i1
α~λ ·~n dΓ−

∫ i3

i2
α~λ ·~n dΓ

∣∣∣∣

≤

∣∣∣∣
1
2
~̃λ · ~ni2

∣∣∣∣+
∣∣∣∣
∫ i2

i1
α~λ ·~n dΓ

∣∣∣∣+
∣∣∣∣
∫ i3

i2
α~λ ·~n dΓ

∣∣∣∣

≤

∣∣∣∣
1
2
~̃λ · ~ni2

∣∣∣∣+
∫ i2

i1
|α|
∣∣∣~λ ·~n

∣∣∣ dΓ+

∫ i3

i2
|α|
∣∣∣~λ ·~n

∣∣∣ dΓ

≤

∣∣∣∣
1
2
~̃λ · ~ni2

∣∣∣∣+K
∫ i2

i1

∣∣∣~λ ·~n
∣∣∣ dΓ+K

∫ i3

i2

∣∣∣~λ ·~n
∣∣∣ dΓ

≤

∣∣∣∣
1
2
~̃λ · ~ni2

∣∣∣∣+K

[
max
i1→i2

∣∣∣~λ · ~ni3

∣∣∣+ max
i2→i3

∣∣∣~λ · ~ni1

∣∣∣
]

(3.29)

and

| Ki1i3 | =

∣∣∣∣
1
2
~̃λ · ~ni3 −

∫ i1

i3
α~λ ·~n dΓ+

∫ i3

i2
α~λ ·~n dΓ

∣∣∣∣

≤

∣∣∣∣
1
2
~̃λ · ~ni3

∣∣∣∣+
∣∣∣∣
∫ i1

i3
α~λ ·~n+dΓ

∣∣∣∣+
∣∣∣∣
∫ i3

i2
α~λ ·~n dΓ

∣∣∣∣

≤

∣∣∣∣
1
2
~̃λ · ~ni3

∣∣∣∣+
∫ i1

i3
|α|
∣∣∣~λ ·~n

∣∣∣ dΓ+
∫ i3

i2
|α|
∣∣∣~λ ·~n

∣∣∣ dΓ

≤

∣∣∣∣
1
2
~̃λ · ~ni3

∣∣∣∣+K
∫ i1

i3

∣∣∣~λ ·~n
∣∣∣ dΓ+K

∫ i3

i2

∣∣∣~λ ·~n
∣∣∣ dΓ

≤

∣∣∣∣
1
2
~̃λ · ~ni3

∣∣∣∣+K

[
max
i3→i1

∣∣∣~λ · ~ni2

∣∣∣+ max
i2→i3

∣∣∣~λ · ~ni1

∣∣∣
]

. (3.30)

SinceKi1i2 andKi1i3 are bounded, it is now automatically possible, for small enough∆t,

to use the limited fluctuation (3.28) to produce a locally positive update to the dependent

variableu. As in the N scheme formulation given by (3.22)-(3.25), the contribution due

to edgei1i2 andi1i3 can be written as

Si2ui2 → Si2ui2 +∆tKi1i2(ui1 −ui2) if Ki1i2 ≥ 0

Si1ui1 → Si1ui1 +∆tKi1i2(ui1 −ui2) if Ki1i2 < 0

Si3ui3 → Si3ui3 +∆tKi1i3(ui1 −ui3) if Ki1i3 ≥ 0

Si1ui1 → Si1ui1 +∆tKi1i3(ui1 −ui3) if Ki1i3 < 0 . (3.31)

For small enough∆t, this clearly leads to a positive distribution, which will be shown

shortly. Note that along the line of (3.24), the limited highorder fluctuation can also be
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written as

φLIM = K+
i1i2

(ui1 −ui2)+K−
i1i2

(ui1 −ui2)+K+
i1i3

(ui1 −ui3)+K−
i1i3

(ui1 −ui3), (3.32)

and that the distribution (3.31) is equivalently given as

Si1ui1 → Si1ui1 +∆t[K−
i1i2

(ui1 −ui2)+K−
i1i3

(ui1 −ui3)]

Si2ui2 → Si2ui2 +∆tK+
i1i2

(ui1 −ui2)

Si3ui3 → Si3ui3 +∆tK+
i1i3

(ui1 −ui3) . (3.33)

The N scheme directs the way the verticesi1, i2 andi3 are chosen according to the inflow

edges. Now the contributions from the two edges are gatheredtogether to give the cellT

vertices contributions, which allows the overall distribution to be done in a manner similar

to that of the PSI scheme (2.58), by imposing linearity preservation on the N scheme, so

that

(φT
i )PSILIM

=

[
(β T

i )NLIM
]+

∑ j∈T

[
(β T

j )NLIM
]+ (φT)LIM = (β T

i )PSILIM
(φT)LIM , (3.34)

where(β T
i )PSILIM

is the limited high order fluctuation and(β T
i )NLIM

can be defined using

(φT
i )NLIM

= (β T
i )NLIM

(φT)LIM . (3.35)

The limiting of the polynomial in (3.16) ensures that at least one distribution coefficient

(β T
i )NLIM

within each cell is positive so the denominator in (3.34) is never zero. Also the

limiting procedure applied in (3.34) will not increase the magnitude of the distribution

coefficients given by (3.35). The restriction on the time step is required by (3.33), and

will be discussed in the next section. The limited fluctuation can now be used to produce

a high order scheme which is both positive and linearity preserving.

3.5.1 Modified Third Order Abgrall-Roe Scheme

The approximation of the two-dimensional scalar advectionequation

∂u
∂ t

+~λ ·~∇u = 0 (3.36)



Chapter 3 High Order Fluctuation Splitting Schemes 63

using the modified fluctuation splitting schemes will be considered here, for linearly vary-

ing~λ , and piecewise quadraticu with further restriction to cases where~∇ ·~λ = 0, which

means that the fluctuation can be written as

φT = −

∫

T

~λ ·~∇udΩ = −

∫

T

~∇ ·
(
~λu
)

dΩ =

∮

∂Ω
u~λ ·~n dΓ, (3.37)

where~n is the inward pointing normal to the cell boundary. Using Simpson’s rule along

each edge of the triangular cells, the fluctuation is exactly

∮

∂Ω
u~λ ·~n dΓ =

1
6

(
ui1

~λi1 ·~ni3 +4ui1i2
~λi1i2 ·~ni3 +ui2

~λi2 ·~ni3

)
(3.38)

+
1
6

(
ui2

~λi2 ·~ni1 +4ui2i3
~λi2i3 ·~ni1 +ui3

~λi3 ·~ni1

)

+
1
6

(
ui3

~λi3 ·~ni2 +4ui3i1
~λi3i1 ·~ni2 +ui1

~λi1 ·~ni2

)

=
1
6

[
ui1

~λi1 ·~ni3 +4

(
ui1 +ui2

2

)
~λi1i2 ·~ni3 +ui2

~λi2 ·~ni3

]

+
1
6

[
4

(
ui1i2 −

ui1 +ui2

2

)
~λi1i2 ·~ni3

]

+
1
6

[
ui2

~λi2 ·~ni1 +4

(
ui2 +ui3

2

)
~λi2i3 ·~ni1 +ui3

~λi3 ·~ni1

]

+
1
6

[
4

(
ui2i3 −

ui2 +ui3

2

)
~λi2i3 ·~ni1

]

+
1
6

[
ui3

~λi3 ·~ni2 +4

(
ui3 +ui1

2

)
~λi3i1 ·~ni2 +ui1

~λi1 ·~ni2

]

+
1
6

[
4

(
ui3i1 −

ui3 +ui1

2

)
~λi3i1 ·~ni2

]

wherei1, i2 andi3 are the three vertices of the triangle.

For linear~λ andu when~∇ ·~λ = 0, the fluctuations are
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∮

∂Ω
u~λ ·~n dΓ =

1
6

(
ui1

~λi1 ·~ni3 +4ui1i2
~λi1i2 ·~ni3 +ui2

~λi2 ·~ni3

)
(3.39)

+
1
6

(
ui2

~λi2 ·~ni1 +4ui2i3
~λi2i3 ·~ni1 +ui3

~λi3 ·~ni1

)

+
1
6

(
ui3

~λi3 ·~ni2 +4ui3i1
~λi3i1 ·~ni2 +ui1

~λi1 ·~ni2

)

=
1
6

[
ui1

~λi1 ·~ni3 +4

(
ui1 +ui2

2

)
~λi1i2 ·~ni3 +ui2

~λi2 ·~ni3

]

+
1
6

[
ui2

~λi2 ·~ni1 +4

(
ui2 +ui3

2

)
~λi2i3 ·~ni1 +ui3

~λi3 ·~ni1

]

+
1
6

[
ui3

~λi3 ·~ni2 +4

(
ui3 +ui1

2

)
~λi3i1 ·~ni2 +ui1

~λi1 ·~ni2

]

where

∫

T

~λ ·~∇u dΩ =

(∫

T

~λdΩ
)
·~∇u = ST

~̃λ ·~∇u = −
1
2 ∑

i∈T
ui
~̃λ · ~ni , (3.40)

in which~̃λ = (~λi1 +~λi2 +~λi3)/3. Hence, in the high order case

∮

∂Ω
u~λ ·~n dΓ = −

1
2

ui1
~̃λ ·~ni1 −

1
2

ui2
~̃λ ·~ni2 −

1
2

ui3
~̃λ ·~ni3

+
2
3

(
ui1i2 −

ui1 +ui2

2

)
~λi1i2 ·~ni3 +

2
3

(
ui2i3 −

ui2 +ui3

2

)
~λi2i3 ·~ni1

+
2
3

(
ui3i1 −

ui3 +ui1

2

)
~λi3i1 ·~ni2 . (3.41)

This will lay the cornerstone for constructing a limited very high order cell fluctua-

tion, which will in turn be distributed to the appropriate mesh vertices. The unlimited

fluctuation, by itself, cannot be distributed to the vertices denoted byi1, i2 and i3 in a

manner which satisfies the positivity property. Therefore,the interpolated values at the

midpoints of the subcell edges,ui i1i2
, ui i2i3

andui i3i1
shown in Figure 3.9, will be limited.

The mathematical representation of the limited midpoint values can be written as
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Figure 3.8: The limiting procedure for subtriangle reconstruction, where• show the lim-
ited values at the quadrature points, and◦ indicate the linear and quadratic limits. The
solid lines indicate the linear interpolant ¯u(~x), the dashed lines indicate the quadratic in-
terpolantu(~x) while the dotted lines are the limited interpolantu

′
(~x).

i2

K = 2

T2

T4

T3 T1

i1i2

i2i3i3i1

i1

i3

Figure 3.9: The high order reconstruction points of the Abgrall-Roe scheme.
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u
′

i1i2 =
(ui1 +ui2)

2
+αi1i2(ui1 −ui2)

u
′

i2i3 =
(ui2 +ui3)

2
+αi2i3(ui2 −ui3)

u
′

i3i1 =
(ui3 +ui1)

2
+αi3i1(ui3 −ui1) , (3.42)

where the coefficientsαi1i2, αi2i3 andαi3i1 are defined as

αi1i2 = max


−K,min


K,

ui1i2 −
(ui1+ui2)

2

ui1 −ui2






αi2i3 = max


−K,min


K,

ui2i3 −
(ui2+ui3)

2

ui2 −ui3






αi3i1 = max


−K,min


K,

ui3i1 −
(ui3+ui1)

2

ui3 −ui1




 (3.43)

in which division by zero is avoided by making sure the denominator does not become

zero. Here,u
′

i1i2, u
′

i2i3 andu
′

i3i1 are the limited midpoint values as shown in Figure 3.8,

indicated by the filled circles on the dotted lines. These arebased on (3.16), and satisfy

∣∣∣∣u
′

i1i2 −
(ui1 +ui2)

2

∣∣∣∣≤ K |ui1 −ui2|

∣∣∣∣u
′

i2i3 −
(ui2 +ui3)

2

∣∣∣∣≤ K |ui2 −ui3|

∣∣∣∣u
′

i3i1 −
(ui3 +ui1)

2

∣∣∣∣≤ K |ui3 −ui1| (3.44)

where the value ofK ≥ 0 will be chosen appropriately. To guarantee that the above

relation holds at all the quadrature points, the high order polynomial will be limited.

The best choice forK is an open question but three significant values are given in the

previous Section 3.5. The positive time-step restriction depends onK and decreases asK

increases. The appropriate choice ofK is very important because the precise calculation

of the coefficientsαi1i2, αi2i3 andαi3i1 for the appropriate edges will be dependent on the

value ofK. This will allow the fluctuation to be written as,
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∮

∂Ω
u~λ ·~n dΓ = −

ui1
~̃λ · ~ni1

2
−

ui2
~̃λ · ~ni2

2
−

ui3
~̃λ · ~ni3

2
(3.45)

+
2αi1i2(ui1 −ui2)

~λi1i2 · ~ni3

3
+

2αi2i3(ui2 −ui3)
~λi2i3 · ~ni1

3

+
2αi3i1(ui3 −ui1)

~λi3i1 · ~ni2

3
.

Returning to the linear case described in Section 2.5.1, thefluctuation can then be

written as

−
ui1

~̃λ · ~ni1

2
−

ui2
~̃λ · ~ni2

2
−

ui3
~̃λ · ~ni3

2
=

(ui1 −ui2)
~̃λ · ~ni2

2
+

(ui1 −ui3)
~̃λ · ~ni3

2
= φi1i2 +φi1i3

= ki2(ui1 −ui2)+ki3(ui1 −ui3) , (3.46)

whereki2 = 1
2
~̃λ · ~ni2 andki3 = 1

2
~̃λ · ~ni3 are of the same sign or zero. The modified fluctuation

(3.45) can now be distributed to the vertices in a positive manner, following the analysis

of Section 3.5. As will be shown below, the N scheme will assist in guiding the direction

in which the modified fluctuation will be distributed.

The N scheme can be viewed as distributingφi1i2 and φi1i3 using (3.23) which is a

useful alternative formulation when considering the distribution of the higher order fluc-

tuation. The fluctuation in the limited high order case (3.45), is equal to

φLIM =
∮

∂Ω
u
′~λ ·~n dΓ

=
(ui1 −ui2)

~̃λ · ~ni2

2
+

2αi1i2(ui1 −ui2)
~λi1i2 · ~ni3

3
−

2αi2i3(ui1 −ui2)
~λi2i3 · ~ni1

3

+
(ui1 −ui3)

~̃λ · ~ni3

2
−

2αi3i1(ui1 −ui3)
~λi3i1 · ~ni2

3
+

2αi2i3(ui1 −ui3)
~λi2i3 · ~ni1

3
= Ki1i2(ui1 −ui2)+Ki1i3(ui1 −ui3) , (3.47)

since~ni1 = −~ni2 − ~ni3 and

u j −uk ≡ (u j −ui)+(ui −uk) ≡ (ui −uk)− (ui −u j) . (3.48)
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The limited high order fluctuations (3.47) can be seen to havea similar form to the N

scheme fluctuations (3.46). Now ifKi1i2 has the same sign aski2, sendingKi1i2(ui1 −ui2)

to the same node aski2(ui1 −ui2) will lead to a locally positive distribution. If they are of

a different sign, then sendingKi1i2(ui1−ui2) to the node opposite that updated byki2(ui1−

ui2) on edgei1i2, leads to an update which is locally positive. However, notethat when
~̃λ · ~ni2 = 0 or~̃λ · ~ni3 = 0 in (3.46), the split between nodes in (3.47) is not unique and leads

to a situation where the fluctuation can be arbitrarily distributed to either node in the high

order distribution. This does not seem to have any detrimental effect on the numerical

results. The new scheme can be written in a form similar to (3.31), which will lead to a

positive distribution. Since the fluctuation can also be written as (3.32), the distribution

(3.31) is equivalently given as

Si1ui1 → Si1ui1 +∆t[K−
i1i2

(ui1 −ui2)+K−
i1i3

(ui1 −ui3)]

Si2ui2 → Si2ui2 +∆tK+
i1i2

(ui1 −ui2)

Si3ui3 → Si3ui3 +∆tK+
i1i3

(ui1 −ui3) (3.49)

where[ ]+ and[ ]− are the positive and the negative parts of the argument, and the vertices

i1, i2 andi3 are chosen according to the inflow edges, as directed by the N scheme. This

scheme is clearly locally positive for

∆t ≤ min

(
−Si1

K−
i1i2

+K−
i1i3

,
Si2

K+
i1i2

,
Si3

K+
i1i3

)
. (3.50)

Now the overall distribution is done in a manner similar to that of the PSI scheme

(2.58), by imposing linearity preservation on the N scheme,so that

(φT
i )PSILIM

=

[
(β T

i )NLIM
]+

∑ j∈T

[
(β T

j )NLIM
]+ φLIM

T = (β T
i )PSILIM

φLIM
T (3.51)

where(β T
j )NLIM

is the limited high order fluctuation and(β T
i )NLIM

can be defined using

(φT
i )NLIM

= (β T
i )NLIM

φLIM
T . (3.52)

The limiting of the polynomial ensures that at least one distribution coefficient within

each cell is positive. Also the limiting procedure applied in (3.51) will not increase the

magnitude of the distribution coefficients given by (3.52).
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Figure 3.10: The limiting procedure for Caraeni’s scheme gradient recovery, where•
show the limited values at the quadrature points, and◦ indicate the linear and quadratic
limits. The solid lines indicate the linear interpolant ¯u(~x), the dashed lines indicate the
quadratic interpolantu(~x) and the dotted lines are the limited interpolantu

′
(~x).

3.5.2 Caraeni’s Scheme

The implementation of the technique for imposing positivity on Caraeni’s scheme is car-

ried out using the edge midpoint values (3.10), so that it is possible to constructu
′

i1i2
, u

′

i2i3

andu
′

i3i1, the limited midpoint values along each edge, as shown in Figure 3.10, indicated

by the filled circles. As already discussed in Section 3.5, the limiting procedure is exactly

the same for all higher than second order schemes, and the limited high order fluctuation

for Caraeni’s scheme can also be written in the form (3.47), i.e.

φCARLIM
=

∮

∂Ω
u~λ ·~n dΓ = Ki1i2(ui1 −ui2)+Ki1i3(ui1 −ui3) . (3.53)

This limited high order fluctuation can now be distributed ina similar manner to that of

the PSI scheme (2.58), i.e.

(φT
i )CARLIM

=

[
(β T

i )NLIM
]+

∑ j∈T

[
(β T

j )NLIM
]+ φCARLIM

T = (β T
i )PSILIM

φCARLIM

T . (3.54)

Constructing a positive higher than second order scheme is therefore also possible for

Caraeni’s scheme, because the limiting procedure will not allow the distribution coeffi-

cient to be larger in magnitude than that of the underlying positive scheme (3.49).
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3.5.3 The Positive Additional Neighbouring Nodes Scheme

The LDA distribution coefficients, as stated previously in Section 3.4, do not distribute

the high order fluctuation of the additional neighbouring nodes scheme in a positivity

preserving manner. As with the approach proposed by Caraeni[17], which constructed a

high order fluctuation within each cell and then distributedit using the LDA distribution

coefficients, the additional neighbouring nodes scheme also cannot guarantee the absence

of spurious oscillation from the flow without the application of an additional smoothing

stage. The modification outlined earlier in this section canbe used to guarantee the ab-

sence of spurious oscillations. Once again, by modifying the high order interpolant and

using a limiting procedure it is possible to distribute the limited fluctuation in a positivity

preserving manner, so that the spurious oscillations can beovercome in exactly the same

way as for Abgrall-Roe and Caraeni’s schemes. The implementation of this technique

starts by using quadrature to evaluate the fluctuation over the mesh cell, not the subcell

used in Section 3.5, so the limited solution value at a given edge midpoint, such asi1i2, is

given as

u
′

i1i2 =
(ui1 +ui2)

2
+αi1i2(ui1 −ui2) , (3.55)

where, as in (3.21)

αi1i2 = max


−K,min


K,

ui1i2 −
(ui1+ui2)

2

ui1 −ui2




 . (3.56)

This limiting procedure is exactly the same as discussed earlier, and the limited high order

fluctuation can again be written as

φANNLIM
=

∮

∂Ω
u~λ ·~n dΓ = Ki1i2(ui1 −ui2)+Ki1i3(ui1 −ui3) . (3.57)

It will be distributed in the same manner that created the PSIscheme (2.58), i.e.

(φT
i )ANNLIM

=

[
(β T

i )NLIM
]+

∑ j∈T

[
(β T

j )NLIM
]+ φANNLIM

T = (β T
i )PSILIM

φANNLIM

T . (3.58)

As discussed in Section 3.5.1, like the PSI scheme, the limiting procedure will produce

distribution coefficients which will not be larger in magnitude than those of the under-

lying positive scheme, so a positive third order additionalneighbouring nodes scheme is

achieved.
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Figure 3.11: The quadrature points used in integration along each cell edge

3.6 Burgers’ Equation

The simple extension of the high order schemes, described inthe previous chapter, to

nonlinear equations will be outlined here. The analysis follows [41] . A two-dimensional

variant of Burgers’ equation is used to exemplify a nonlinear equation, and is given in

(2.67). In order to evaluate the high order fluctuation for the positive high order schemes,

Burgers’ equation needs a suitableqp point quadrature along each cell edge, since Simp-

son’s rule is not accurate enough to be used for evaluating the fluctuation, as was the case

in the linear advection equation. Once the appropriate quadrature points are chosen, it is

possible to write the fluctuation as

∮

∂Ω
~f ·~n dΓ = ∑

edges

(
qp

∑
l=1

ω l~f (ul ) ·~n

)

e

(3.59)

= ∑
edges

(
qp

∑
l=1

ω l~f (ūl ) ·~n

)

e

+ ∑
edges

(
qp

∑
l=1

ω l
(
~f (ul)−~f (ūl)

)
·~n

)

e

whereω l are the quadrature weight coefficients and ¯u is the value of the linear interpolant

of u at the quadrature points along the cell edges. One can observe that the above equation

now comprises a difference in the flux, which can be handled ina similar manner to a

standard finite volume scheme, whenever a suitable Roe linearisation exists [70], and can

therefore be written
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~f (u)−~f (ū) =
∂̃~f
∂u

(u− ū) =~̃λ (u− ū) . (3.60)

The advection velocity,̃~λ = ((u+ ū)/2,1)T , now also depends on the limited polyno-

mial interpolant. However, because the polynomial interpolant is limited in the same way

as in the linear advection equation, there is only a small extra procedure involved. For

example, the limiting along a given edgei1i2 in Figure 3.11 is carried out by setting

u
′

i11
=

(3ui1 +ui2)

4
+αi11(ui1 −ui2)

u
′

i6 =
(ui1 +ui2)

2
+αi6(ui1 −ui2)

u
′

i12
=

(ui1 +3ui2)

4
+αi12(ui1 −ui2) , (3.61)

where the coefficientsαi11, αi6 andαi12 are defined as

αi11 = max


−K,min


K,

ui11−
(3ui1+ui2)

4

ui1 −ui2






αi6 = max


−K,min


K,

ui6 −
(ui1+ui2)

2

ui1 −ui2






αi12 = max


−K,min


K,

ui12−
(ui1+3ui2)

4

ui1 −ui2




 (3.62)

in which division by zero is carefully avoided. Now, the advection velocities, required

by (3.60) along the same edgei1i2, depend on the limited polynomial interpolant, and are

defined by
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~̃λ i11 =


u

′

i11
+

3(ui1+ui2)

4

2
,1




T

~̃λ i6 =


u

′

i6
+

3(ui1+ui2)

2

2
,1




T

~̃λ i12 =


u

′

i12
+

(ui1+3ui2)

4

2
,1




T

. (3.63)

Similar expressions are used to calculate the advection velocities in (3.60) for the other

edges,i2i3 and i3i1. One needs to be careful to make sure the solution is bounded so as

to maintain positivity, because here the time step limit will now depend on the solution.

Given the above information, the fluctuation for the nonlinear scalar equation can now be

written as

∮

∂Ω
~f ·~n dΓ = φLO + ∑

edges

(
qp

∑
l=1

ω l (ul − ūl )~̃λ ·~n

)

e

. (3.64)

This now follows the same procedure as in the linear advection case, except that the

additional quadrature points will be used in the integration along each cell edges when

evaluating the fluctuation. Again one needs to be careful in keeping the advection velocity

bounded so as to achieve a positive scheme by using a suitabletime step limit, which

makes it possible to limit the interpolant in the same way as in the linear advection.

3.7 Results

The same uniformly structured and genuinely unstructured triangular meshes that were

used in Chapter 2 will also be used for circular advection of adiscontinuous solution

profile (test case A), cosine squared profile (test case B) anda smooth solution (test case

C), the test cases shown in Figures 2.11, 2.12 and 2.10 respectively. The modified positive

schemes discussed in Sections 3.5.1, 3.5.2 and 3.5.3 will beknown as the Abgrall-Roe PSI

scheme when the non-oscillatory modification it is applied to the Abgrall-Roe scheme,

ANN PSI scheme when it is applied to the ANN scheme and CaraeniPSI scheme when

it is applied to Caraeni’s scheme. The structured and genuinely unstructured triangular

meshes mentioned above are used to obtain results with the Caraeni, ANN, Caraeni PSI

and ANN PSI schemes. A uniformly subdivided genuinely unstructured triangular mesh,
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Schemes Test Case A Test Case B Test Case C
min (u) max(u) outflow L1 order L2 order L∞ order

Abgrall-Roe -0.0648 0.9703 2.52 1.98 1.47
Abgrall-Roe PSI 0.0000 0.9163 2.69 2.32 2.31

Caraeni -0.1683 0.9999 3.03 2.62 2.04
Caraeni PSI 0.0000 0.9285 3.48 2.73 1,25

ANN -0.1896 1.0000 2.55 2.31 2.08
ANN PSI 0.0000 0.8947 2.64 2.38 2.17

Table 3.1: Oscillation and accuracy measures. Mesh type A was used for accuracy. The
first two columns have been obtained on the 3806 node and subdivided 984 node meshes
shown in Figures 2.10 and 3.12 respectively.

Schemes Test Case C
L1 order L2 order L∞ order

Abgrall-Roe 2.49 1.92 1.41
Abgrall-Roe PSI 2.63 2.28 2.26

Caraeni 2.97 2.58 1.98
Caraeni PSI 3.41 2.67 1.19

ANN 2.50 2.29 2.03
ANN PSI 2.59 2.32 2.11

Table 3.2: Accuracy measures on grid type B.

created from a coarser mesh to give a similar number of unknowns and shown in Figure

3.12, will be used to obtain results with the Abgrall-Roe based schemes for the same test

cases, described above. Subdivided meshes derived from theuniformly structured meshes

shown in Figures 2.11 and 2.12, will also be used to obtain results with the Abgrall-Roe

based schemes which demonstrate their accuracy.

A regular structured mesh with 2145 vertices shown in Figure2.11 are used for test

cases A, B and C to obtain results with the third and fourth order ANN PSI scheme.

For test case A, which was outlined in Section 2.6, the most interesting aspect is that it

will show whether the schemes presented in this chapter satisfy the positivity property, as

Schemes Test Case C
L1 order L2 order L∞ order

3rd order ANN PSI 2.59 2.32 2.11
4th order ANN PSI 3.36 2.91 2.58

Table 3.3: Accuracy measures on grid type A.
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oscillations will be visible close to the discontinuities if they don’t. None of the modified

positive schemes produce any unphysical oscillations.

Figure 3.13 shows the Abgrall-Roe third order scheme, with very small oscillations

visible at the discontinuities near to the inflow boundary, arising from the non-positivity

issue discussed in Section 3.2.1. For the modified Abgrall-Roe scheme, Figure 3.16 shows

that the oscillations have clearly been removed, and the maximum and minimum solution

values are the same as the exact solution, to machine precision. For Caraeni’s scheme

Figure 3.14 shows a significant amount of oscillation which is clearly visible close to

the discontinuities, and also some oscillation visible at the outflow boundary (especially

around the minimum values). The Caraeni PSI scheme, like theAbgrall-Roe PSI scheme

has no oscillations, and the maximum and minimum solution values are recreated exactly

as Figure 3.17 exhibits.

For the ANN scheme, derived from extending the stencil, Figure 3.15 shows some os-

cillations that are visible close to discontinuities with asimilar pattern to that of Caraeni’s

scheme, Figure 3.13. As expected the ANN PSI scheme gives results which are positive

and the maximum and minimum solution values are the same as the exact solutions. Based

on the results discussed above it is possible to say that the PSI-based schemes are better

when discontinuities occur. In all cases the results are significantly better than those of

the PSI scheme. Note that the semi circular shape of the solution is completely respected

in each test case. For this test case, a comparison of the solutions at the outflow, where the

solution is at its maximum, are provided in Figure 3.19, along with a comparison between

all the positive high order schemes. This confirms the observations made above.

Figure 3.26 shows the third and fourth order ANN PSI schemes applied on the regular

structured mesh with 2145 vertices shown in Figure 2.11. Thecomparison of the two

solutions at the outflow are also shown in Figure 3.28. As in the third order ANN PSI

scheme, the fourth order ANN PSI scheme clearly doesn’t showany oscillation at the

discontinuities and a zoom of the solution where the solution is maximum also shows an

improvement.

Test case B, illustrates each scheme’s capacity to maintaina smooth peak value with-

out artificially steepening the profile, as already mentioned in Section 2.6. Figure 3.13

shows the third order Abgrall-Roe scheme, with slight oscillations at the outflow profile

and some improvement in accuracy compared to the low order schemes, which is also

apparent from the outflow profile shown in Figure 3.20. The Abgrall-Roe PSI scheme

has clearly removed the small oscillations which were present in the basic Abgrall-Roe

scheme, at the cost of a slight drop in peak value seen in Figure 3.16. Caraeni’s scheme,

shown in Figure 3.14, produces more oscillations in the outflow profile compared to the
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Abgrall-Roe scheme. However, Figure 3.17 shows that the Caraeni PSI scheme com-

pletely removes the oscillations, again at the expense of a slight drop in peak value. As

with the previous non-positive schemes, the ANN scheme alsoproduce slight oscilla-

tions at the outflow profile (shown in Figure 3.15). The maximum solution at the outflow

for the modified ANN PSI scheme shown in Figure 3.18 produces aslight drop in peak

value which is consistent with the Caraeni PSI and Abgrall-Roe PSI schemes. For all the

schemes discussed above, the comparison of the solutions atthe outflow is provided in

Figure 3.20.

Table 3.1 and 3.2 show results obtained using a uniform unstructured mesh shown in

Figure 3.12 for Abgrall-Roe based schemes, and all the schemes except the Abgrall-Roe

based schemes using the mesh shown in Figure 2.10. The tablesidentify the minimum

value for test case A and the maximum value for test case B, andconfirm the observations

stated above.

The third and fourth order ANN PSI scheme results are shown inFigure 3.27. Figure

3.29 shows the solution comparisons at the outflow. Neither scheme produces oscillations

at the discontinuities, and a zoom of the solution around theoutflow where the solution

is maximum clearly shows that an increase of the formal accuracy of the scheme does

improve the result.

Test case C, which was also introduced in Section 2.6, is usedto test the order of

accuracy of the schemes using the same circular advection velocity as the above two test

cases, but with a smoother solution profile. Figure 3.21, shows the zoom of the solutions

at outflow obtained using genuinely unstructured meshes. The results obtained for the

different schemes are similar to those of test case B, but thesmooth peak values at the

outflow are much more close to the exact solution.

All the oscillation and accuracy measures calculated are summarised in Table 3.1 and

on the left of Figures 3.22, 3.23 and 3.24 for mesh type A, and Table 3.2 and on the right

of Figures 3.22, 3.23 and 3.24 for mesh type B.

The accuracy measures are calculated using structured triangular meshes of the form

shown in Figures 2.11 and 2.12, by repeatedly halving the background mesh size, so that it

is possible to see the rate at which the error will reduce as finer meshes are used, starting

from a coarser one. Here, a sequence of six structured mesheswith 561, 2145, 8385,

33153, 131841 and 525825 vertices are used.

For the smooth test case Caraeni’s scheme is the most accurate of all the schemes

outlined in this thesis, since it uses an LDA distribution which is known to be more ac-

curate than the PSI scheme for smooth solutions, where achieving high accuracy is more

important than dealing with the slight oscillations that may occur. Based on this fact it is
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possible to say that for smooth solutions, where achieving high accuracy is more impor-

tant than dealing with small oscillations that may be present, using an LDA-type scheme

is a logical choice. Even though the reasons are not very clear yet the ANN scheme, which

also uses an LDA distribution, produces a less accurate result than Caraeni’s scheme, pos-

sibly because the ANN scheme reconstructs a quadratic interpolant within each cell using

more information from the surrounding cells, especially for the boundary cells which re-

quires even more information from the surrounding cells. Hence the stencil of the scheme

is not local, which may affect the accuracy of the scheme. TheAbgrall-Roe scheme also

produces a less accurate result than Caraeni’s scheme, as itsometimes reverts back to an

unstable central distribution at certain nodes, which seems to affect its accuracy.

The tables also show that the modified schemes are less accurate than the schemes

based on LDA distribution, but the PSI-based modified schemes are more suitable in

dealing with discontinuities, as already discussed for test case A. However, between the

modified schemes, the Caraeni PSI scheme is more accurate than Abgrall-Roe PSI and

ANN PSI. Even though the Abgrall-Roe PSI scheme produces higher than second order

accuracy, the smoothness of the interpolant seems to be affected as the limiting procedure

is conducted separately on each of the four subcells. As expected the additional neigh-

bouring nodes PSI scheme achieves higher than second order accuracy. Compared to

schemes based on LDA distribution, a slight drop in accuracyfor PSI-based schemes for

this test case C is to be expected, since the advection velocity is not constant in space and

the solution profile contains a turning point, which often means that the schemes return to

the standard second order scheme.

For an accuracy study conducted on successively refined structured meshes, theL1, L2

andL∞ norms are considered and the results are shown in Figures 3.22 to 3.24. Compari-

son between the accuracy measures for mesh type A and mesh type B is shown to produce

minimal difference, but mesh type A produces a slightly better accuracy than mesh type

B, as the mesh connectivity is favourably inclined for this test case. Overall, it is possible

to see that all the modified positive schemes produce higher that second order accuracy

in L1 andL2 norms and, as expected, imposing positivity doesn’t necessarily improve the

order of accuracy for the smooth test case. However, the Abgrall-Roe PSI scheme shows

improved accuracy compared to the original Abgrall-Roe scheme, possibly because the

Abgrall-Roe scheme reverts to the central distribution in some cases, which would be un-

stable if used on its own [41]. TheL∞ norm results in Figure 3.24 illustrate the impact

of the Abgrall-Roe scheme reverting back to using the central difference distribution. It

is though, still possible to see the accuracy improve as the mesh is refined, for theL∞

norm. For third order and fourth order ANN PSI schemes, Table3.3 shows the summary



Chapter 3 High Order Fluctuation Splitting Schemes 78

of the calculated accuracy measures. Figure 3.31 shows the rate at which the error would

decrease as finer meshes are used forL1, L2 andL∞ norms. The figure shows clearly that

the fourth order ANN PSI scheme improves its effective accuracy compared to the third

order ANN PSI scheme.

The convergence history of all the solutions obtained for the above three test cases

are plotted in Figure 3.25. The convergence monitor which has been used is again the

root mean square (RMS) of the residual at each time step, as already stated in Section

2.6. It can be seen from the figures that all the schemes converge rapidly to machine

accuracy, except the Abgrall-Roe scheme [41]. The rate of convergence to the steady

state for the converging schemes is most rapid for the N scheme. For the modified high

order schemes, the convergence histories shown are forK = 0.25. As the value ofK

increases the convergence rate slows until it ceases to converge forK = 0.75. ForK = 0.5,

the simulation takes more than double the number of iterations to converge compared to

K = 0.25.

3.7.1 Nonlinear Burgers’ Equation

As in the previous chapter, Section 2.7, this test case involves a discontinuous solution

of a nonlinear conservation law, represented by the two-dimensional Burgers’ equation

(2.67). The mesh structures which are used are the genuinelyunstructured triangular

mesh shown in Figure 2.19, and a uniformly subdivided mesh created from a coarser

mesh to give a similar number of unknowns (it has 1933 vertices and is shown in Figure

3.32) on the domain(x,y)∈ [0,1]2. The exact solution varies linearly until the intersection

point located atx = 3
4, y = 1

2, where it then forms a discontinuity which lies inclined to

the mesh. All the schemes except the Abgrall-Roe scheme converge to machine accuracy.

The results for the positive high order schemes show that thenew limiting procedure

completely removes the unphysical oscillations from the high order schemes which were

previously not positive. The ANN PSI scheme, shown in Figure3.34, gives straight iso-

lines in the lower triangle, below where the characteristics intersect, and also give a good

resolution at the convergence point(3
4, 1

2). Figure 3.33 shows that the positive Abgrall-

Roe PSI and Caraeni PSI schemes also do not produce unphysical oscillations and are

able to capture the shock. The high order representation also improves the accuracy of

the scheme in the smooth regions compared to the low order schemes. The modified

Caraeni PSI scheme, as shown in Figure 3.34, also completelyremoves the unphysical

oscillations and captures the shock accurately.

The plot of the solution cross-sections fory= 0.75, where it crosses the discontinuity,
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are shown in Figure 3.38. Similarly, the cross-section through y = 0.25, which crosses

the fan, is shown in Figure 3.35. On the right in both of these figures, a zoom of the

“corner” is provided. It is clear to see the improvement in the quality of the solutions

with the increase in the order of accuracy. The solutions across the shock,y= 0.75, show

very little difference between the positive high order schemes, on the other hand the LDA

scheme is shown to produce oscillations. Fory = 0.25, the positive high order schemes

produce better quality results, compared to the low order schemes, as seen in the figures.
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Figure 3.12: The mesh used for the advection results obtained with submesh reconstruc-
tion schemes.
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Figure 3.13: Solutions for the Abgrall-Roe scheme applied to the circular advection
square wave test case A (top) and cosine squared test case B (bottom).
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Figure 3.14: Solution for Caraeni’s scheme applied to the circular advection square wave
test case A (top) and cosine squared test case B (bottom).
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Figure 3.15: Solution for ANN scheme applied to the circularadvection square wave test
case A (top) and cosine squared test case B (bottom).
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Figure 3.16: Solutions for the Abgrall-Roe PSI scheme applied to the circular advection
square wave test case A (top) and cosine squared test case B (bottom).
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Figure 3.17: Solution for the Caraeni PSI scheme applied to the circular advection square
wave test case A (top) and cosine squared test case B (bottom).
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Figure 3.18: Solution for ANN PSI scheme applied to the circular advection square wave
test case A (top) and cosine squared test case B (bottom).
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Figure 3.19: Test case A, square wave at outflow (top left), zoom around the maximum
(top right) and zoom around all the positive high order schemes (bottom). Solid line is
exact solution.
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Figure 3.20: Test case B, cosine squared profile at outflow (top left), zoom around the
maximum (top right) and zoom around all the positive high order schemes (bottom). Solid
line is exact solution.
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Figure 3.21: Test case C, smooth profile at outflow (top left),zoom around the maximum
(top right) and zoom around all the positive high order schemes (bottom). Solid line is
exact solution.
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Figure 3.22: Numerical error for grid type A (left), and for grid type B (right) : L1 error
where the solid line without a marker is slope 2.
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Figure 3.23: Numerical error for grid type A (left), and for grid type B (right) : L2 error
where the solid line without a marker is slope 2.
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Figure 3.24: Numerical error for grid type A (left), and for grid type B (right) : L∞ error
where the solid line without a marker is slope 2.
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Figure 3.25: Convergence histories for test cases A (top left), B (top right), C (bottom),
on meshes shown in Figures 2.19 and 3.12.
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Figure 3.26: Solution for third order ANN PSI scheme (top) and fourth order ANN PSI
scheme (bottom) applied to the circular advection square wave test case A.
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Figure 3.27: Solution for third order ANN PSI scheme (top) and fourth order ANN PSI
scheme (bottom) applied to cosine squared profile, test caseB.
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Figure 3.28: Test case A, square wave at outflow (left), zoom around the maximum (right),
for third order and fourth order modified ANN PSI schemes. Solid line is exact solution.
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Figure 3.29: Test case B, cosine squared profile at outflow (left), zoom around the max-
imum (right), for third order and fourth order modified ANN PSI schemes. Solid line is
exact solution.
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Figure 3.30: Test case C, smooth profile at outflow (left), zoom around the maximum
(right), for third order and fourth order modified ANN PSI schemes. Solid line is exact
solution.
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Figure 3.31: Numerical error for third order and fourth order ANN PSI schemes on grid
type A : L1 error (top left),L2 error (top right) andL∞ error (bottom) where the solid line
without a marker is slope 3.
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Figure 3.32: A submesh created from a coarser mesh to give a similar number of un-
knowns as that of genuinely unstructured triangular mesh shown in Figure 2.19, and used
for the test case which deals with a discontinuous solution for Burgers’ equation.
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Figure 3.33: Isolines of the AR scheme (left) and AR PSI scheme (right) solutions.
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Figure 3.34: Isolines of the ANN PSI scheme (left) and Caraeni PSI scheme (right) solu-
tions.
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Figure 3.35: Plot of the solutions across the fan,y = 0.25, (left) and the zoom around the
corner (right). Solid line is exact solution.
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Figure 3.36: Plot of the solutions across the fan,y = 0.25, (left) and the zoom around the
bottom corner (right). Solid line is exact solution.
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Figure 3.37: Plot of the solutions across the fan,y = 0.25, (left) and the zoom around the
top corner (right) for the high order positive schemes. Solid line is exact solution.
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Figure 3.38: Plot of the solutions across the shock,y = 0.75, (left) and the zoom around
the corner (right). Solid line is exact solution.
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Figure 3.39: Plot of the solutions across the shock,y = 0.75, (left) and the zoom around
the corner (right) for the high order positive schemes.



Chapter 4

Fluctuation Splitting Schemes for

Unsteady Problems

4.1 Introduction

This chapter is concerned with the construction of a multistage high-order (in spaceand

time) fluctuation splitting scheme for two-dimensional unsteady scalar advection on tri-

angular meshes. The method has been developed as a complement to the high order

discretisation of the steady state by R.Abgrall and P.L.Roe[8], and the unsteady high

order space-time discretisation of R.Abgrall, N.Andrianov and M.Mezine [3].

The implementation of this technique was carried out by combining Runge-Kutta

time-stepping [79] for the time derivative with a continuous piecewise quadratic repre-

sentation of the dependent variable, which together lead toa high order space-time fluc-

tuation. The description will start with the space-time variants of the N, followed by PSI

and LDA schemes, the construction of higher than second order multistep methods [3],

and multistage methods.

4.2 Space-Time Framework

For a fluctuation splitting scheme (2.11), a discrete formulation for unsteady advection

can be achieved by introducing a space-time fluctuation splitting framework [6,24,26,30,

100
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68]. The solution of the advection equation (2.5) will be approximated on discretisations

of ΩT = Ω× [0, t], which can be decomposed into space-time prismsP = T × [tn, tn+1],

shown in Figure 4.1 for triangular cells. This approach defines the cell fluctuation to be the

integral of the differential operator with space-time approximation ofu on T × [tn, tn+1].

For example, to get second order accuracy a second order approximation ofu is needed

implying φT = O(h3). The numerical solution of (2.5) is interpolated linearly in space

and linearly in time, i.e.

uh(x, t) = un+1(x)
t − tn

∆t
+un(x)

tn+1− t
∆t

, (4.1)

whereun andun+1 are, respectively, found using the piecewise linear interpolation be-

tween (un
i1
,un

i2
,un

i3
) and (un+1

i1
,un+1

i2
,un+1

i3
). Hence, the discretisations approximating time

dependent solutions of (2.5) inT × [tn, tn+1] can be summarised in three steps.

1. Compute the fluctuation on the space-time prismT × [tn, tn+1]

φn+1 =
∫ tn+1

tn

(∫

T

∂uh

∂ t
+~λ ·∇uhdΩ

)
dt , (4.2)

which could be simplified in the piecewise linear case to [6]

φn+1 =
|T|
3 ∑

i∈T
(un+1

i −un
i )+

∆t
2 ∑

i∈T
ki(u

n+1
i +un

i ) . (4.3)

2. Distribute the cell fluctuationφn+1 to the nodes ofT, φn+1
i is used to denote the

contribution of the fluctuation to nodei ∈ T, and by construction, these must satisfy

∑
j∈T

φn+1
j = φn+1 , (4.4)

for conservation. The distribution coefficientsβ T
i , which determine the appropriate

proportion of the fluctuationφn+1 to be sent from cellT to nodei, is given by

β T
i =

φn+1
i

φn+1 , (4.5)

which should also satisfy

∑
j∈T

β T
j = 1 . (4.6)

3. Collect all the cell contributions of allT ∈ Di and calculate the unknown nodal
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Figure 4.1: Prismatic elementP.

values ofun+1 by solving the algebraic system

∑
T∈Di

φn+1
i = 0 . (4.7)

The basic design properties for the space-time fluctuation splitting schemes remain

unchanged except the following two properties.

Positivity

The space-time fluctuation splitting discrete solution attn+1 requires the solution of

a system of the type

Aun+1 = Bun . (4.8)

A positive space-time fluctuation splitting scheme is one for which [68]

1. A is an invertible M-matrix (Aii ≥ 0, Ai j ≤ 0 for j 6= i, |Aii | > ∑ j 6=i |Ai j | ∀i)

2. B is a positive matrix (Bi j ≥ 0 ∀i, j)
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A linear positive space-time scheme cannot be linearity preserving according to

Godunov’s theorem [32, 44, 46]. The positivity property guarantees that there are

no numerical oscillations.

The Upwinding Property

For the space-time fluctuation splitting schemes, the fluctuation needs to be dis-

tributed upwind in time to the vertices of prismP. This is known as a causality

principle and states that no contribution is sent to the pastnodes located at timetn,

instead all the fluctuation ofP is sent to timetn+1. Hence, for every space-time

prismT × [tn, tn+1], a space-time upwind scheme will never distribute any fluctua-

tion to the nodes at timetn, thereby decoupling the values ofun at these nodes from

their values at timetn+1 and producing a true time marching procedure.

4.3 Petrov-Galerkin Formulation

In Chapter 2, the Petrov-Galerkin formulation of the fluctuation splitting approach was

outlined. It was shown that the steady state fluctuation splitting schemes can be equated

with a mass-lumped Petrov-Galerkin spatial discretisation. Considering the unsteady

scalar advection equation, a consistent Petrov-Galerkin formulation where the Petrov-

Galerkin is test function applied to the unsteady conservation law is determined by the

distribution scheme, of equation (2.43). The semi-discretisation of the unsteady scalar

advection equation is [6]

∑
T

∑
j

mT
i j

duj

dt
+∑

T
φT

i = 0 , (4.9)

wheremT
i j is a consistent mass matrix given by

mT
i j =

∫

T

ωiψ j dΩ =
|T|
3




φT
1

φT + 1
6

φT
1

φT − 1
12

φT
1

φT − 1
12

φT
2

φT − 1
12

φT
2

φT + 1
6

φT
2

φT − 1
12

φT
3

φT − 1
12

φT
3

φT − 1
12

φT
3

φT + 1
6


 . (4.10)

Here, ωi is the Petrov-Galerkin weighting function associated withnode i, andψ j de-

notes the standard basis function. The consistent formulation (4.9) is needed to get high

order accuracy, and makes the unsteady scheme implicit in time since the consistent mass

matrix is not diagonal as it would be for the steady state mass-lumped case. This type

of consistent formulation, combined with different time-stepping techniques for the time

derivatives and using the standard fluctuation splitting schemes, will be used to carry out

unsteady computations.
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4.4 Dual time-stepping technique

The dual time-stepping technique [51], is used to solve the nonlinear systems of equa-

tions which result from the consistent formulation (4.9) required to reach a high order of

accuracy for solving unsteady problems. The consistent formulation consists of coupled

nonlinear systems of equation, which need to be solved at each time step by some itera-

tive method. One approach for doing this is the dual time-stepping technique, where the

nonlinear system of equations is solved by inner iterationswhich advance in pseudo-time

τ. Hence equation (4.2) is augmented to give

du
dτ

+
∫ tn+1

tn

(∫

T

duj

dt
−~λ ·∇uhdΩ

)
dt . (4.11)

For equation (4.3), this basically means

(um+1−um
i )

∆τ
= −

|T|
3 ∑

i∈T
(um

i −un
i )−

∆t
2 ∑

i∈T
ki(u

m
i +un

i ) . (4.12)

wherem denotes the pseudo-time level (iteration number). At this point it should be

noted that the idea of using subiteration is to converge the solution at each physical time-

step. One of the advantages of using the dual time-stepping technique is the fact that,

as long as the inner iteration converges, it is simple to use for solving the full system of

equations. On the other hand, one must be careful when using the dual time-stepping

technique, because there is no way of assessing accuracy unless the inner iterations are

fully converged. Also, if a large number of iterations are required, the scheme becomes

very expensive and could be very slow to converge.

4.5 The N scheme

The extension of the N scheme to the space-time framework in aconsistent manner is

essential for the construction of nonlinear limited schemes. One way of constructing this

extension is to take the steady N scheme defined by the local nodal fluctuation [10]

φN
i = k+

i (ui − ũ) , (4.13)

where

ũ =

(

∑
j∈T

k−j

)−1(

∑
j∈T

k−j u j

)
. (4.14)
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The multidimensional upwind parameters are

k+
i = max(0,ki) k−i = min(0,ki) for ki =

1
2
~λ ·~ni . (4.15)

Note that∑ j∈T k j = 0, because∑ j∈T ~n j = 0, and thatki = k+
i +k−i . The N scheme nodal

fluctuation (4.13) combined with the forward Euler time integration leads to an iterative

update of the nodal solution values defined by

un+1
i = un

i −
∆t
Si

∑
T

φN
i . (4.16)

Hence, by combining the above spatial discretisation of theN scheme with Crank-Nicolson

time integration, the N scheme can be defined by the space-time local nodal fluctuation

φN
i1 =

|T|
3

(un+1
i1

−un
i1)+

∆t
2

k+
i1
(un+1

i1
− ũn+1)+

∆t
2

k+
i1
(un

i1 − ũn) , (4.17)

which is positive as presented in [6]. Here,ũn andũn+1 are designed to satisfy the con-

servation relation (4.4), and̃un+1 are defined by (4.14)

Equation (4.17) can also be written as

φN
i1 =

|T|
3

(un+1
i1

−un
i1)+

∆t
2 ∑

j∈T

[
k+

i1
Nk−j (un+1

i1
−un+1

j )+k+
i1

Nk−j (un
i1 −un

j )
]

, (4.18)

whereN =
(

∑ j∈T k−j

)−1
. Given thatMi1,...,n are the mesh points, the final scheme as given

by (4.7) reads as

∑
Mi1∈T

[
|T|
3

(un+1
i1

−un
i1)+

∆t
2 ∑

j∈T

[
k+

i1
Nk−j (un+1

i1
−un+1

j )+k+
i1

Nk−j (un
i1 −un

j )
]]

= 0 ,

(4.19)

and leads to the systemAun+1 = Bun, whereA andB are constant matrices given by

Ai1i1 = ∑
Mi1∈T

(
|T|
3

+
∆t
2

k+
i1
), Ai1i2 = ∑

(Mi1,Mi2)∈T

−
∆t
2

k+
i1

Nk−i2 , (4.20)

Bi1i1 = ∑
Mi1∈T

(
|T|
3

−
∆t
2

k+
i1
), Bi1i2 = ∑

(Mi1,Mi2)∈T

−
∆t
2

k+
i1

Nk−i2 . (4.21)

The proof thatA is a matrix independent of∆t, andB is positive under the condition
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∆tmaxT
∑ j∈T k+

j
|T| ≤ 1 is outlined in [6].

So far it has been possible to see how the N scheme formulationis obtained, by com-

bining the spatial discretisation of the N scheme with Crank-Nicolson time integration.

The dual time-stepping technique (see Section 4.4) is used to solve the linear system of

equations using inner iterations which advance in pseudo-timeτ.

4.6 The LDA scheme

Early attempts at using fluctuation splitting schemes for time dependent problems re-

sorted to the analogy with the Petrov-Galerkin finite element method, which introduced

a consistent mass matrix (4.9) [67]. For the linearity preserving LDA scheme this type

of formulation was done in [56] and later in [6, 7, 58]. The wayof extending the LDA

scheme to the space-time framework, outlined in [6], gives the LDA fluctuation as

φLDA
i1 =

|T|
3

(−k+
i1

N+
1
6
)(un+1

i1
−un

i1)+
|T|
3

(−k+
i1

N−
1
12

) ∑
M j 6=Mi1

(un+1
j −un+1

j )+

∆t
2

k+
i1

N ∑
M j∈T

k j(u
n+1
j +un

j ) . (4.22)

This extension incorporates the consistent formulation (4.9) within a Crank-Nicolson time

stepping for the time derivatives coupled with the standardLDA scheme. Combining the

consistent formulation (4.9) with the standard LDA scheme can be expressed as

∑
Mi∈T

∑
M j∈T

mT
i j

duj

dt
+ ∑

Mi∈T
(−k+

i N)φLDA(uh) = 0 . (4.23)

whereuh = ∑ j∈T u j(t)ψ j . If Crank-Nicolson time stepping is considered for the time

derivatives, one can write

∑
Mi∈T

∑
M j∈T

mT
i j (u

n+1
j −un

j )+
1
2 ∑

Mi∈T
(−k+

i N)(φLDAun+1 +φLDAun) = 0 ,

∑
Mi∈T

∑
M j∈T

mT
i j (u

n+1
j −un

j )+
1
2 ∑

Mi∈T
(−k+

i N)

(

∑
j∈T

k j(u
n+1
j +un

j )

)
= 0 , (4.24)

and again leads to a system of the formAun+1 = Bun. The dual time-stepping technique

is used to solve the consistent formulation.
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4.7 The PSI scheme

The space-time variant of the PSI scheme is constructed using the blended approach with

a combination of the first order positive N scheme (4.19) and the second order linearity

preserving LDA scheme (4.22). The fluctuations distributedto the nodes are defined

by [30]

φPSI
i1 = lφN

i1 +(1− l)φLDA
i1 (4.25)

wherel = max(ϕ(r i1),ϕ(r i2),ϕ(r i3)) with

r i1 =
φLDA

i1

φN
i1

, ϕ(x) =





x
1−x if x < 0

0 otherwise.
(4.26)

The same is done for nodesi2 andi3. The general scheme can be written as

∑
i∈T

(lφN
i +(1− l)φLDA

i ) = 0 . (4.27)

The blending parameter which was proposed by [30, 80] for steady state calculation and

defined by

l =
|φT |

∑ j∈T |φN
j |

, (4.28)

does not satisfy the positivity requirements, but still works well [30]. Overall, the formu-

lation of the space-time PSI scheme allows the constructionof a second order scheme.

4.8 Multistep Fluctuation Splitting Schemes

This section is concerned with the construction of a high order (in spaceandtime) fluctua-

tion splitting scheme for two-dimensional unsteady scalaradvection on triangular meshes.

The method has been developed to extend the high order discretisation of the steady

state by R.Abgrall and P.L.Roe [8], to the unsteady high order space-time discretisation

of R.Abgrall, N.Andrianov and M.Mezine [3]. In Section 3.2,Tξ denoted any of the

sub-triangles withinT and now the space-time fluctuation is computed over the prism,

Pξ = Tξ × [tn, tn+1], as shown in Figure 4.2. The fluctuation splitting scheme is defined

by
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Figure 4.2: Space time mesh for prismatic elementPξ .

∑
P∋(σ ,tn+1)

φP

(σ ,tn+1) = 0 . (4.29)

The construction of the high order accurate sub-fluctuations φ
Tξ
σ , can be summarised as

follows.

1. Calculate the first order node contribution, using the N scheme (4.17), or Ricchi-

utto’s version of the N scheme [67].

2. Calculate the high order cell fluctuationφPξ with high accuracy, using high or-

der interpolation in space-time over prismPξ . Equation (4.2) can be adopted for

computing the fluctuation overPξ ,

φPξ =

∫ tn+1

tn

(∫

T

∂uh

∂ t
+~λ ·∇uhdΩ

)
dt , (4.30)

and after a long calculation [3], the high order cell fluctuation φPξ is obtained. For

example, the third order (in spaceand time) fluctuation,O(hp+2,∆t4) for p = 2,

takes the form
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φPξ =
∫

Tξ

(un+1(x)−un(x))dΩ +
5∆t
12

∫

Tξ

~λ ·∇un+1dΩ (4.31)

+
2∆t
3

∫

Tξ

~λ ·∇undΩ−
∆t
12

∫

Tξ

~λ ·∇un−1dΩ

3. Calculate the high order node contributions,

φPξ
σi = β ξ

σi φ
Pξ , (4.32)

where

β ξ
σi =

(
(φ ξ

σi)
N/φ

Pξ
ξ

)+
+ ε

∑σ j∈Tξ

(
(φ ξ

σ j )
N/φ

Pξ
ξ

)+
+3ε

, (4.33)

where(φ ξ
σi)

N is defined as (4.17) in whichξ expresses a generic sub-triangle andσ de-

notes one of the vertices of the original cell or the additional vertices introduced by the

sub-triangulation. Now that the fluctuations at the vertices of the sub-triangles have been

calculated, the overall fluctuation at the vertices are accumulated using

φP

(σ ,tn+1) = ∑
Tξ ,σi∈Tξ

φ
Pξ
σi . (4.34)

Again the dual time-stepping technique is chosen to solve the consistent formulation.

4.9 Multistage Fluctuation Splitting Schemes

This method has been developed as a complement to the high order discretisation of the

steady state by R.Abgrall and P.L.Roe [8], and the unsteady high order space-time dis-

cretisation of R.Abgrall, N.Andrianov and M.Mezine [3]. The implementation of this

technique was carried out by combining a positive Runge-Kutta time-stepping [79] for

the time derivative with a continuous piecewise high order representation of the depen-

dent variable, which together lead to a high order space-time fluctuation. A low order

space-time fluctuation is used to assist in stabilising the solution by combining it with

the high order fluctuation within each stage of the Runge-Kutta method to reduce the

occurrence of unphysical oscillations. For simplicity, the dual time-stepping technique

is chosen to solve the nonlinear system of equations which results from the consistent

formulation required to reach a high order of accuracy for solving the unsteady prob-
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lems. The performance of this method is illustrated using several standard test problems.

Multistage fluctuation splitting schemes require the following stages.

1. Use a positive Runge-Kutta time-stepping for the time derivative, as proposed by

C. Shu and S. Osher [79], in order to obtain a high order fluctuation splitting scheme

by combining it with a continuous piecewise high order representation of the de-

pendent variable. For example, a positive third-order Runge-Kutta method is given

as

u(1) = u(0) +∆t L(u(0))

u(2) = u(0) +
1
4

∆t L(u(0))+
1
4

∆t L(u(1))

u(3) = u(0) +
1
6

∆t L(u(0))+
1
6

∆t L(u(1))+
2
3

∆t L(u(2)) , (4.35)

whereL is a discrete operator andu(0) = un, u(m) = un+1 for s= 1,2, ...,m, in which

m is 3 for the above equation.

2. Calculate the high order representation in space with theAbgrall-Roe scheme, as

outlined in the Section 3.2.

3. Calculate the low order fluctuation at each stage. The calculation of the first order

node fluctuation follows the various stages of the positive Runge-Kutta method,

hence the name multistage method. For example, for a third order positive Runge-

Kutta method, the first N scheme Runge-Kutta nodal fluctuation at this stage is

given as

(φ ξ
i )N =

|T|
3

(u(1)
i −u(0)

i )+∆tk+
i (u(0)

i − ũ(0)) , (4.36)

where

ũ(0) =
∑ j∈ξ k−j un

j

∑ j∈ξ k−j
. (4.37)

The second N scheme Runge-Kutta nodal fluctuation at this stage can be written as

(φ ξ
i )N =

|T|
3

(u(2)
i −u(0)

i )+
∆t
4

(k+
i (u(0)

i − ũ(0)))+
∆t
4

(k+
i (u(1)

i − ũ(1))) , (4.38)

and the third N-scheme Runge-Kutta nodal fluctuation at thisstage is
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(φ ξ
i )N =

|T|
3

(u(3)
i −u(0)

i )+
∆t
6

(k+
i (u(0)

i − ũ(0)))+
∆t
6

(k+
i (u(1)

i − ũ(1)))

+
2∆t
3

(k+
i (u(2)

i − ũ(2))) . (4.39)

This low order space-time fluctuation is used to assist in stabilising the solution by

combining it with the high order fluctuation within each stage of the Runge-Kutta

method, so as to reduce the occurrence of unphysical oscillations.

4. Calculate the high order multistage cell fluctuation. As in the above, for the cal-

culation of the first order node fluctuation, the high order cell fluctuation follows

the various stages of the multistage methods. For the implementation of this tech-

nique using the third order positive Runge-Kutta method forthe time derivative, and

applied to the high order fluctuation splitting schemes, thefirst high order Runge-

Kutta cell fluctuation at this stage becomes

(φTξ )HO =

∫

Tξ

(u(1)(x)−u(0)(x))dΩ+∆t
∫

Tξ

~λ ·∇u(0)(x)dΩ . (4.40)

The second high order Runge-Kutta cell fluctuation at this stage is

(φTξ )HO =

∫

Tξ

(u(2)(x)−u(0)(x))dΩ+
∆t
4

∫

Tξ

~λ ·∇u(0)(x)dΩ

+
∆t
4

∫

Tξ

~λ ·∇u(1)(x)dΩ . (4.41)

Finally the third high order Runge-Kutta cell fluctuation atthis becomes

(φTξ )HO =
∫

Tξ

(u(3)(x)−u0(x))dΩ+
∆t
6

∫

Tξ

~λ ·∇u(0)(x)dΩ

+
∆t
6

∫

Tξ

~λ ·∇u(1)(x)dΩ+
2∆t
3

∫

Tξ

~λ ·∇u(2)(x)dΩ (4.42)

These high order space-time cell fluctuations will lead to a high order space-time

fluctuation splitting scheme.

5. Calculate the high order node contributions at each Runge-Kutta stage

(φ
Tξ
σi )HO = β ξ

σi φ
Tξ (4.43)
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where

β ξ
σi =

(
(φ ξ

σi)
N/(φTξ )HO

)+
+ ε

∑σ j∈Tξ

(
(φ ξ

σ j )
N/(φTξ )HO

)+
+3ε

. (4.44)

6. The overall fluctuations(φT
σ )HO are accumulated from the different sub-fluctuations

(φ
Tξ
σi )HO at each Runge-Kutta stage using

(φT
σ ,tn+1)

HO = ∑
Tξ ,σi∈Tξ

(φ
Tξ
σi )HO . (4.45)

It is now possible to see that the implementation of this technique was undertaken

systematically using Runge-Kutta discretisation for the time derivative, applied to the

existing high order fluctuation splitting schemes. This is done by interpolating the solution

in space, and using a multistage time-stepping method to approximate the time derivative.

The calculation of the first order node fluctuations and the high order cell fluctuations

follows the various stages of the multistage method. As before, the dual time-stepping

technique is chosen to solve the nonlinear system of equations which results from the

consistent formulation required to reach a high order of accuracy for solving unsteady

problems.

4.10 Numerical Results

The rotating cosine hill

The rotating cosine hill is a popular test case for the unsteady linear advection

equation. A cosine shape is transported by a circular advection field, with the initial

solution given by

u(x,y) =





cos2(2πr) if r ≤ 0.25

0 otherwise
(4.46)

wherer =
√

(x−0.5)2+y2, and~λ = (y,−x)T . At each time step, the solution is

set to zero at the inflow boundary. The initial profile should be advected in a cir-

cle without changing its shape until it returns to its original position whent = 2π.

In the numerical experiments maintaining the ratio∆t
∆x = 0.08 (for all cases) gives

a maximum CFL number of approximately 0.713. Uniform structured triangular

meshes, shown in Figures 4.3 and 4.4, will be used for rotating cosine hill and ro-

tating cylinder test cases the second of which will be outlined below. The accuracy
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measures are also calculated using these structured triangular meshes, by repeatedly

halving the background mesh size starting from coarser mesh, so that it is possible

to see the rate at which the error will reduce as finer meshes are used. A sequence

of four structured grids with 484, 1849, 7225 and 28561 vertices are used.

The visual examination of the accuracy of the scheme is done by plotting the solu-

tion, as shown in Figures 4.5 to 4.8, where all the schemes described in this chapter

are shown. On the left of the figures the full data is plotted and on the right, contour

plots of the solutions are shown. The N scheme, shown in Figures 4.5 and 4.7, is

clearly the most diffusive, even though the solution is keptpositive. Since the N

scheme is not linearity preserving, it is not surprising to see the maximum value

of the solution well below one, as outlined in Tables 4.1 and 4.2. The measured

order of accuracy reported in Tables 4.3 and 4.4 and Figures 4.13 to 4.15 is roughly

what was expected for the N scheme [58] and based on this, it ispossible to see

that they are first order accurate schemes. The results for the LDA scheme also

shown in the same tables and figures. The peak value is much better than that of

the N scheme, but it is also clear to see that the solution is not positive, as reported

in Tables 4.1 and 4.2 as well. Moreover the schemes are not able to preserve the

initial peak value, which is confirmed by the result on the left of the figures, and

the measured order of accuracy is within the range of expected values given in [58].

The PSI scheme, also in Figures 4.5 and 4.7, shows the positive property by the

complete absence of oscillations in the field. It is also lessdiffusive compared to

the N scheme which can be confirmed by the plot on the right. Theaccuracy mea-

sure also confirms that the PSI scheme gives a better approximation of the solution

compared to the N scheme.

The results for second order and third order multistep schemes are shown in Figures

4.6 and 4.8 respectively. Both schemes keep the solution above zero to some extent,

but as outlined in Tables 4.1 and 4.2, since the underlying high order scheme is

not positive [3] there are small oscillations which can be seen in the numbers in

the table. It is worth noting that the result obtained with the third order multistep

scheme has a maximum solution value that is a bit closer to theexact value than the

value given by the second order multistep scheme.

What is interesting to note is that the second order multistep scheme shows a bit

more of a dissipative character than the third order multistep scheme. This is clearly

seen in the contour plots of the solution. The second order and third order multistage

schemes are reported in Figures 4.6 and 4.8. These schemes are not positive, again
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since the underling high order scheme is not positive. This is substantiated by the

results as outlined in Tables 4.1 and 4.2. As with the multistep schemes, the more

dissipative character of the second order multistage scheme compared to the third

order multistage scheme can also be confirmed by the contour plot of the solution.

Moreover the third order multistage scheme produces a peak value which is better

than the third order multistep schemes described above. It is also possible to see

the exact profile is closely preserved with little smearing compared to the rest of the

schemes presented above.

A grid convergence study for the unsteady problems is outlined in Table 4.3 and

Figures 4.13, 4.14 and 4.15, forL1, L2 andL∞ norms. The third order multistage

and third order multistep schemes have roughly the similar slope and the superior

accuracy of these schemes are clearly demonstrated. All of the high order schemes

produce a slope which is higher than 1.5 in L1 andL2 norms, and generally it is

also possible to see the accuracy improve as the mesh is refined for L∞. Overall

the comparison between the accuracy measures produced using mesh type A and

mesh type B have minimal difference, but mesh type B producesa slightly better

accuracy than mesh type A, as the mesh connectivity is favourably inclined for this

test case.

The rotating cylinder

The rotating cylinder test case differs from the rotating cosine hill test case only in

the initial profile transported by the circular advection field, with the initial solution

given by

u(x,y) =





1 if r ≤ 0.25

0 otherwise.
(4.47)

This is a discontinuous test case and, as in the previous testcase,r =
√

(x−0.5)2+y2,

and~λ = (y,−x)T . The solutions are shown in Figures 4.9 to 4.12. The solutions

obtained using the rotating cylinder test case exhibit similar properties to those of

the rotating cosine hill solutions. As expected the LDA scheme, Figures 4.9 and

4.11, shows a spurious oscillation since it doesn’t satisfythe positivity property. As

usual the N scheme, shown in the same figures, is the most diffusive, even though

the solution is kept positive again. The PSI scheme, also shown in the same figures,

exhibits the positive property and produces a peak which preserves the exact profile

better than the N scheme.
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Schemes rotating cylinder rotating cosine hill
min max max

N 0.0000 0.8763 0.1993
LDA -0.0906 1.2250 0.7989
PSI 0.0000 0.9904 0.7782
Second order multistep -0.0051 0.9999 0.7561
Third order multistep -0.0003 1.0000 0.7825
Second order multistage-0.0063 0.9999 0.7511
Third order multistage -0.0007 1.0000 0.7982

Table 4.1: Minimum and maximum solutions for the rotating cosine hill and rotating
cylinder test cases, using mesh type A.

Schemes rotating cylinder rotating cosine hill
min max max

N 0.0000 0.8771 0.2003
LDA -0.0911 1.2263 0.7992
PSI 0.0000 0.9917 0.7797
Second order multistep -0.0057 0.9999 0.7576
Third order multistep -0.0008 1.0000 0.7887
Second order multistage-0.0051 0.9999 0.7537
Third order multistage -0.0012 1.0000 0.8015

Table 4.2: Minimum and maximum solutions for the rotating cosine hill and rotating
cylinder test cases, using mesh type B.

The second order and third order multistep schemes are shownin Figures 4.10

and 4.12. The third order multistep scheme maintains the initial peak better than

the second order multistep scheme, even though the schemes are not positive as the

underlying high order scheme is not positive. Moreover qualitatively the solutions

exhibit similar properties as the corresponding rotating cones. The second order and

third order multistage scheme, shown also in Figures 4.10 and 4.12, also doesn’t

keep the solution above zero and to a small extent it preserves the initial peak value

better than the multistep schemes described in this chapter.
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Schemes L1 order L2 order L∞ order
N 0.76 0.69 0.57

PSI 1.63 1.47 0.98
LDA 1.87 1.73 1.24

Second order multistep 1.67 1.51 1.21
Third order multistep 1.96 1.88 1.31

Second order multistage 1.71 1.58 1.26
Third order multistage 1.98 1.88 1.34

Table 4.3: Accuracy measures for rotating cosine hill, using mesh type A.

Schemes L1 order L2 order L∞ order
N 0.79 0.71 0.59

PSI 1.66 1.48 1.03
LDA 1.91 1.75 1.27

Second order multistep 1.69 1.55 1.23
Third order multistep 1.98 1.89 1.34

Second order multistage 1.74 1.60 1.28
Third order multistage 1.99 1.91 1.36

Table 4.4: Accuracy measures for rotating cosine hill, using mesh type B.
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Figure 4.3: The mesh A, used for the rotating advection results.
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Figure 4.4: The mesh B, used for the rotating advection results.
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Figure 4.5: Solution for the rotating cosine hill after one revolution on mesh type A, for
exact (top), N (second from top), PSI (third from top) and LDA(bottom) schemes.
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Figure 4.6: Solution for the rotating cosine hill after one revolution on mesh type A,
for second order multistep (top), third order multistep (second from top), second order
multistage (third from top) and third order multistage (bottom), schemes.
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Figure 4.7: Solution for the rotating cosine hill after one revolution on mesh type B, for
Exact (top), N (second from top), PSI (third from top) and LDA(bottom) schemes.
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Figure 4.8: Solution for the rotating cosine hill after one revolution on mesh type B,
for second order multistep (top), third order multistep (second from top), second order
multistage (third from top) and third order multistage (bottom), schemes.
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Figure 4.9: Solution for the rotating cylinder after one revolution on mesh type A, for N
(top), PSI (middle) and LDA (bottom) schemes, where the solid line without a marker is
the exact solution.
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Figure 4.10: Solution for the rotating cylinder after one revolution on mesh type A, for
second order multistep (top), third order multistep (second from top), second order multi-
stage (third from top) and third order multistage (bottom),schemes. The solid line without
a marker is the exact solution.
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Figure 4.11: Solution for the rotating cylinder after one revolution on mesh type B, for N
(top), PSI (middle) and LDA (bottom) schemes, where the solid line without a marker is
the exact solution.
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Figure 4.12: Solution for the rotating cylinder after one revolution on mesh type B, for
second order multistep (top), third order multistep (second from top), second order multi-
stage (third from top) and third order multistage (bottom),schemes. The solid line without
a marker is the exact solution.
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Figure 4.13: Numerical error for grid type A (top right), andfor grid type B (top left) :
for L1 error.
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Figure 4.14: Numerical error for grid type A (top right), andfor grid type B (top left) :
for L2 error.
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Figure 4.15: Numerical error for grid type A (top right), andfor grid type B (top left) :
for L∞ error.



Chapter 5

Conclusions and Future Prospects

In this thesis the fluctuation splitting schemes which were the subject of this research

have been examined and analysed in relation to their approximation of the linear advec-

tion equation and nonlinear Burgers’ equation. This lays a foundation on which more

complicated computational methods for complex fluid flows can be constructed. The

motivational and theoretical bases for the construction offluctuation splitting schemes

were also outlined in order to illustrate some of the similarities of the fluctuation splitting

schemes to finite volume and finite element methods, as well astheir unique features.

The fluctuation splitting schemes that were considered for approximating the advec-

tion equation and Burgers’ equation were analysed in the context of various properties.

The first order accurate N scheme, also used in the distribution of the limited fluctuation

of the positive high order fluctuation splitting schemes, ispositive but also has a clear

dissipative character. The non-positive linearity preserving LDA scheme, which was also

used to distribute the fluctuation resulting from higher order interpolants for the construc-

tion of high order fluctuation splitting schemes at the priceof spurious oscillation, was

also outlined in Chapter 2. The PSI scheme was designed to satisfy all the properties

defined in Chapter 2 and illustrated that a positive and linearity preserving property can

be obtained by simply limiting the distribution coefficients of the N scheme.

The construction of fluctuation splitting schemes which have higher that second order

accuracy was outlined in Chapter 3. However, it was shown that none of the high order

schemes was inherently positive, and that it is impossible to guarantee positivity when

the fluctuation corresponding to higher degree polynomial representation in a grid cell
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is constrained so that it can only be distributed to its vertices. These findings led to the

development of a technique which can impose positivity on any high order fluctuation

splitting scheme.

It was then shown that applying a limiting procedure to all the high order schemes

clearly removes the oscillations that were present, and this higher than second order ac-

curate and positive fluctuation splitting scheme can be usedto accurately approximate

solutions of linear and nonlinear scalar conservation lawswithout creating any unphysi-

cal oscillations in the solution.

5.1 Achievements

In this thesis the development, examination and verification of a new form of higher than

second order fluctuation splitting discretisation for the solution of steady conservation

laws on unstructured grids was presented. It was shown that it is possible to develop a

new type of higher than second order scheme, here called the additional neighbouring

nodes (ANN) fluctuation splitting scheme, which uses information about the dependent

variables stored at the neighbouring nodes in addition to the regular cell nodes. This is

used to construct the polynomial interpolant of the dependent variable used to evaluate

the fluctuation. Moreover, the implementation of a technique that removes unphysical os-

cillations (devised by Hubbard [41]) as part of the additional neighbouring nodes scheme

was also shown. This achieves a positive and linearity preserving higher than second

order fluctuation splitting scheme.

The performance of the new ANN PSI scheme was tested extensively, confirming that

the scheme was positive and higher than second order accurate. The results for the ad-

vection test problems presented in Section 3.7 clearly showed that the modified ANN PSI

scheme yields quite accurate and oscillation-free results, clearly implying that the scheme

guarantees the positivity property. These results also verified that the positive very high

order fluctuation splitting schemes presented in this thesis improve on the well-established

second order PSI scheme in terms of accuracy, as the very highorder schemes are able

to reduce the unphysical errors due to the high accuracy of the schemes compensating for

the more complicated operations needed to obtain the very high order approximation. The

overall advantages of using the ANN fluctuation splitting scheme compared to the exist-

ing high order schemes were also outlined, as ANN scheme requires less storage over

submesh reconstruction (Abgrall-Roe scheme) while it avoids the complexity involved

in approximating solution gradients (Caraeni’s scheme) tohigher order accuracy on un-

structured grids or highly distorted grids. Overall, like the existing high order schemes,
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the ANN PSI scheme shows its effectiveness at removing unwanted oscillations without

unduly affecting the underlying schemes accuracy.

A second original contribution was the construction of a multistage high order (in

spaceand time) fluctuation splitting scheme for two-dimensional unsteady scalar advec-

tion on triangular meshes. This clearly demonstrated that high order accuracy can be

achieved in both space and time.

A multistep high order (in spaceand time) fluctuation splitting scheme which is sim-

ilar in philosophy to the multistage high order scheme, for the approximation of time-

dependent hyperbolic conservation laws, was also presented. This was compared with the

multistage high order method. From the numerical tests conducted on the various space-

time low order fluctuation splitting schemes and the high-order space-time fluctuation

splitting schemes, it is clearly evident that the high orderspace-time fluctuation splitting

schemes produce consistently more accurate results. The accuracy comparison of the

multistage high-order fluctuation splitting scheme to thatof multistep high order fluctua-

tion splitting scheme has illustrated that a slightly more accurate solution with better peak

preservation can be achieved using the multistage method, as discussed in Section 4.10.

Another advantage is that the multistage fluctuation splitting scheme does not require

the storage of additional information at previous time levels, compared to the multistep

fluctuation splitting scheme.

5.2 Future Prospects

There is plenty of further research to complete regarding the new developments presented

in this thesis. The positive high order fluctuation splitting schemes have opened up various

research avenues which should be further explored, and successfully addressing them will

have a positive impact to this research area.

1. The new positive ANN fluctuation splitting scheme still requires an optimised way

of choosing the appropriate nodes needed to construct the polynomial interpolant

of the dependent variables for each grid cell, particularlyfor constructing a scheme

which is higher than third order accurate.

2. The new positive ANN fluctuation splitting scheme needs tobe applied to nonlinear

systems of conservation laws, e.g. the Euler or shallow water equations. Because of

the way the limiting procedure is constructed, there is a possibility of considering

the fluctuation as contributions due to the linear variationand a high order correc-

tion (written as a difference). This difference can be treated in a similar manner to
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the difference which occurs in flux difference splitting. This gives a fully conser-

vative linearised form for the fluctuation within each grid cell. This fluctuation can

then be distributed to the appropriate vertices of the cell as usual. However, one

needs to bear in mind the complexity involved when dealing with a system of non-

linear conservation laws, as none of the nonlinear positivehigher than second order

schemes has yet been successfully applied to nonlinear systems of conservation

laws.

3. The positive high order fluctuation splitting schemes canbe extended to space-time

fluctuation distribution, for imposing positivity on the time-dependent problems.

Recent unpublished research conducted by Hubbard has shownthat the limiting

procedure can also be used to construct a fully consistent, positive, high order fluc-

tuation splitting scheme for time-dependent situations. This extension could be

applied in a similar manner to that of the ANN PSI scheme.

4. There are also areas the new positive high order fluctuation splitting schemes can

be applied to, such as the dispersive third derivative termswhich appear in the KdV

equation and Boussinesq models of shallow water flow.

5.3 Applications

There are a multitude of interesting application areas for the high order fluctuation split-

ting schemes presented in this thesis. The simulation of flows using shallow water equa-

tions, such as flow through channels/rivers and around coastal structures is one particular

interest. Simulation of realistic coastal engineering problems will require the discretisa-

tion of additional source terms, such as those modelling bedfriction, variable topography,

and a method for handling dry areas. However, difficulties arise in the discretisation of

these source terms, which should be carried out in a manner which doesn’t disturb the

balance with the flux terms, and in the approximation of moving interface between wet

and dry regions of the domain. In all cases the additional study of properties of nonlinear

limited fluctuation splitting discretisation will be very beneficial.

Another very interesting application area is meteorology,where a shallow water model

is often used as a first approximation to horizontal global atmospheric dynamics. More-

over, in order to model chemical transport, schemes which are accurate and efficient are

continually being sought. However, the main challenge is applying the new methods to

atmospheric models on the sphere. A method of approximatingthe scalar advection equa-

tion in curvilinear coordinate system would be sought first,which would then be extended
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to the shallow water equations.
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[68] M. Ricchiuto,À. Csı̀k, and H. Deconinck, Residual distribution for general time-

dependent conservation laws.J. Comput. Phys., 209:249-289, 2005.



Chapter 5 BIBLIOGRAPHY 139

[69] P. L. Roe and D. Sidilkover. Optimum positive linear schemes for advection in two

and three dimensions,SIAM J. Numer. Anal., 29(6), 1542-1568, 1992.

[70] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference

schemes.J. Comput. Phys., 43:357-372, 1981.

[71] P. L. Roe. Linear advection schemes on triangular meshes. Technical Report CoA

8720, Cranfield Institute of Technology, 1987.

[72] P. L. Roe. A basis for upwind differencing of the two-dimensional unsteady Eurer

equation. In K.W.Morton and M.J.Baines, editors, Numerical Methods for Fluid

Dynamics, pages 55-80. Academic Press, 1986.

[73] P. L. Roe. “Optimum” upwind advection on a triangular mesh. Technical Report,

ICASE, NASA Langley R.C.,1990.

[74] P. L. Roe. Discretizations that exploit the structure of the governing equations. VKI

LS 2006-01, 33rd Computational Fluid Dynamics course, Von Karman Institutefor

Fluid Dynamics, 2005.

[75] P. L. Roe. Fluctuation and signals - a framework for numerical evolution problems.

In K.W.Morton and M.J.Baines, editors, Numerical Methods for Fluid Dynamics,

pp. 219-257. Academic Press, 1982.

[76] B. Szabo. Introduction to finite element analysis. JohnWiley and Sons, Inc, 1989.

[77] C. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory

schemes for hyperbolic conservation laws. Advanced Numerical Approximation of

Nonlinear Hyperbolic Equations, Volume 1697, pages 325-432. Springer-Verlag,

Heidelberg, 1998.

[78] C. Shu. High order methods for computational physics. In T.J.Barth and

H.Deconinck, editors. Lecture Notes in Computational Science and Engineering,

Volume 9, pages 439-582. Springer-Verlag, Heidelberg, 1999.

[79] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes.J. Comput. Phys., 77:439-471, 1988.

[80] E. van der Weide and H. Deconinck. Positive matrix distribution schemes for hyper-

bolic systems. InComputational Fluid Dynamics, pages, 747-753, Wiley, 1996.



Chapter 5 BIBLIOGRAPHY 140

[81] E. van der Weide. Compressible flow simulation on unstructured grids using multi-

dimensional upwind schemes. PhD thesis, Delft University of Technology, Nether-

lands, November 12, 1998.

[82] N. Villedieu, M. Ricchiuto, and H. Deconinck. Study of a3rd order residual distribu-

tive scheme for advection-diffusion equations. InVKI PR 04-24, Computational

Fluid Dynamics, 2004.

[83] B. van Leer. Progress in multidimensional upwinding. Tech. Rep. 92-43, ICASE,

1992.

[84] W. A. Wood and W. L. Kleb. Diffusion characteristics of finite volume and fluctua-

tion splitting schemes.J. Comput. Phys., 153:353-377, 1999.

[85] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical Recipes

in Fortran 77. Press Syndicate of the University of Cambridge, second edition, 1996.


