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Abstract 

Extrapolating biodiversity patterns across spatial scales can address 

shortfalls in our knowledge of species distributions, inform conservation and 

further our understanding of spatial patterns in biodiversity.  I compared fine 

grain predictions of occupancy for British Odonata species among ten 

downscaling models.  I observed a sigmoidal occupancy-area relationship for 

the best performing model and found that predictive success for Odonata 

species varied systematically with species traits.  Species with high dispersal 

abilities had greater predictive error.  Poorer predictions for species with a 

climatic range limit in Britain suggest that environmental information is 

required to fully capture spatial patterns in biodiversity.  I modelled the 

distribution of the Brindled Green moth at two spatial grains using a 

hierarchical Bayesian model to quantify associations with climate, landcover 

and elevation, whilst accounting for residual spatial autocorrelation and 

spatial patterns in recording effort.  Model predictions improved at the finer 

spatial grain and identified unsurveyed grid cells with high suitability for 

future recording.  The overlap between individual species distributions 

underpins spatial patterns in multi-species assemblages.  I used simulated 

species assemblages to evaluate 29 abundance-based metrics of β-diversity 

against a set of desirable and ‘personality’ properties.  Metrics accounting for 

unseen shared and unshared species were lacking.  I identified a trade-off 

between robustness in the face of undersampling and sensitivity to turnover 

in rare species.  The findings were borne out when a selection of metrics 

were applied to assemblages of British macro-moths: variation in β-diversity 

was best explained by climate, landcover and distance when using 

standardised data and abundance-based metrics, as opposed to 

opportunistic data and presence-absence metrics.  This thesis has 

demonstrated the value of using biological records to explore biodiversity 

patterns at multiple spatial scales and has highlighted some of the 

methodological challenges that remain.                 
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Chapter 1 

General introduction 

1.1 Scope 

Understanding the distribution, abundance and biodiversity of living organisms in 

time and space is a fundamental goal of ecology.  The intention of this research is 

to explore spatial patterns in insect biodiversity at multiple spatial scales.  The 

patterns of interest and the methods applied include elements of multiple ecological 

sub-disciplines.  Macroecology is concerned with the statistical description of large-

scale patterns in biodiversity, and the problem of inferring causality when 

manipulative experiments are impossible (Keith et al. 2012).  The regional-scale 

patterns at the heart of this thesis share the observational nature of 

macroecological data.  Other parts of the thesis fall under the remit of spatial 

ecology, which emphasises spatial structure in the distribution and abundance of 

species (Legendre & Fortin 1989).  Biogeography focuses on this spatial structure 

at regional scales (Townsend Peterson et al. 2011).  Describing and explaining 

spatial patterns, in individual species and communities, is a key aim of this thesis.  

Finally, community ecology is the study of the structure of species communities and 

the local and regional processes responsible for their assembly and dynamics.  The 

distribution and abundance of species is determined by the interplay between 

climate, habitat (abiotic niche), intra- and interspecific interactions (biotic niche), 

spatial processes (dispersal limitation) and stochastic events (Stoll & Prati 2001; 

Potts et al. 2004; Palmer 2007; Soberón 2007).  The relative importance of these 

processes is not well understood, partly because these processes differ in the 

spatial scale at which they operate. Moreover, establishing causality and identifying 

confounding effects is particularly difficult over large spatial extents where 

experimental manipulations are unfeasible.  In the chapters to follow, I investigate 

the signature of these processes in individual species distributions and multi-

species assemblages.  I take a predominantly macroecological approach focussing 

on statistical descriptions of spatial patterns, and statistical links with environmental 

variables over large spatial extents.  This is a top-down approach which will 

facilitate the characterisation of general patterns in biodiversity.  These methods 

often require very little information beyond the known distributions of the focal taxa, 

but this is at the expense of a truly mechanistic approach to the questions I ask. In 

Chapter 6, I discuss the limitations of this approach, and suggest an alternative way 

of describing and explaining spatial patterns in biodiversity.     
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I investigate spatial patterns in insect biodiversity using observed data on the 

distribution and abundance of British moths and dragonflies and also simulated 

communities of species.  The observed data vary in structure from opportunistic 

biological records of species occurrences to a standardised protocol for recording 

abundances.  In each of the following chapters, I acknowledge the sources of the 

data used and describe each data set as it is introduced.  Underpinning all chapters 

is a motivation to bridge the gap between methodological advances in quantifying 

biodiversity patterns and the application of these methods to the problem of 

monitoring biodiversity.  Consequently, a number of the hypotheses in subsequent 

chapters revolve around methodological questions.  I focus on the application of 

methods designed to quantify biodiversity and explain and predict spatial patterns.  

I evaluate and compare the effectiveness of these methods when applied to 

biological records, in the face of their inherent spatial bias.  Sources of spatial bias 

in recording intensity include recorder behaviour (e.g. recording within the vicinity of 

their home or preferentially visiting sites that are species rich in a given taxonomic 

group) and variation in recording effort per visit leading to spatial variation in the 

completeness of species lists (Isaac & Pocock 2015).     

In the remainder of this chapter, I briefly outline some of the challenges in 

measuring biodiversity.  I go on to describe the general patterns in biodiversity that 

ecologists have observed in a variety of taxa and regions and then review some 

theories of biodiversity that attempt to predict these patterns and the relationships 

between them, as well as explaining the processes that generate them.  Spatial 

scale emerges as the major obstacle to achieving a unified theory of biodiversity 

and to addressing useful questions about how best to protect it.  I discuss the 

complexity surrounding the concept of scale-dependence and highlight the ways in 

which spatial scale can both complicate and facilitate our understanding of 

biodiversity patterns.  I include a discussion of the shortfalls in our knowledge of the 

distributions and abundances of species, especially at larger spatial scales, a 

situation that is exemplified by the patchy biological records for the focal taxonomic 

groups in this thesis: British moths and dragonflies.  I finish with a short outline of 

the specific questions to be addressed in Chapters 2 to 5. 

1.2  The challenge of quantifying biodiversity 

Biodiversity is the variability among living organisms, but this is a complex concept 

incorporating all levels of biological organisation from genes to biomes (Gaston & 

Spicer 2004).  The components of biodiversity are varied and include species 

(taxonomic diversity), traits (functional diversity) and evolutionary history 
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(phylogenetic diversity) to name but a few.  There are different levels of biodiversity 

encompassing local or within-sample variation (α-diversity), the spatial or temporal 

variation between two or more samples (β-diversity) or the variation within regions, 

often comprising multiple, pooled samples (γ-diversity) (Whittaker 1960, 1972; 

Jurasinski et al. 2009).  This hierarchical framework highlights the scale-

dependence of biodiversity.  Even once the units and focal scale(s) of biodiversity 

are defined, the issue of how to quantify the variation remains.  There are countless 

metrics designed to capture the many nuances of biodiversity (Magurran & McGill 

2011).  For example, are the units of biodiversity to be measured with species 

presence-absence or abundances?  If the latter, how will rare versus common 

species contribute to the value of the metric?  Quantifying biodiversity is not 

straightforward, but it is essential if we are to explain the distribution and 

abundance of organisms and provide an evidence base for decision-making to 

protect biodiversity (Purvis & Hector 2000). 

1.3  Large-scale patterns in biodiversity 

Ecologists have identified a number of near ubiquitous patterns in the large-scale 

distribution of biodiversity (Lawton 1999).  These are general patterns in the 

abundance, distribution and diversity of species and the spatial scaling of these 

variables (Smith et al. 2008).  Acronyms follow the nomenclature in McGill (2011).        

1.3.1 Species-area relationship (SAR) 

The first mathematical description of a scaling relationship in ecology was the 

species-area relationship, modelled as a power law (Arrhenius 1921) and on semi- 

logarithmic axes (Gleason 1922).  The SAR documents the increase in the number 

of species recorded with the area of nested sampling units and demonstrates that 

biodiversity is highly dependent on the spatial scale of sampling (Chave 2013a).  

Moreover, the local slope of the SAR is also scale-dependent with power-law, 

asymptotic, sigmoidal and triphasic patterns observed depending, empirically, on 

the range of scales considered.  The SAR arises for a number of reasons.  Firstly,  

smaller sample areas contain fewer individuals, which, for statistical reasons, 

constrains the possible number of species; the number of species cannot exceed 

the number of individuals.  Secondly, species spatial turnover means larger sample 

areas incorporate larger numbers of species and the faster the rate of turnover, the 

steeper the slope of the SAR.  For example, the accelerating slope of the SAR at 

coarse spatial grains (e.g. continental) reflects that the sample area approaches 

species’ geographical range sizes, such that an increase in sample area 
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incorporates additional biogeographical regions (Storch et al. 2012).  As species 

range sizes underpin the SAR, a number of biological mechanisms would therefore 

be expected to affect the shape of the SAR including the size of the species pool, 

interspecific interactions (competition, predation) and minimum area requirements 

for essential resources.  Applications include estimating species extinctions under 

habitat loss (Pan 2013) and extrapolating species richness from plots to regional 

spatial scales (Harte & Kitzes 2015).   

1.3.2 Endemics-area relationship (EAR) 

The endemics-area relationship (EAR) describes the relationship between the 

number of endemic species (those species restricted to a single sampling unit 

within the study region) and the area of nested sampling units (Harte & Kinzig 

1997).  The EAR has been used as an alternative to the SAR for predicting species 

loss in response to habitat loss, since the SAR has been shown to overestimate 

extinction rates except in the special (and unrealistic) case where individuals are 

randomly and independently distributed (Kinzig & Harte 2000; He & Hubbell 2011, 

but see Axelsen et al. 2013).     

1.3.3  Occupancy-area relationship (OAR) 

Occupancy describes the number of presences of a species in some predefined 

unit (typically a grid cell) within the study region.  This unit may be a habitat patch, a 

host-plant or a sampling quadrat.  Occupancy can be quantified as the number, 

proportion or area of occupied cells within a study area.  The sizes of these grid 

cells define the grain of the study: sampling many small cells generates fine-grained 

data, while sampling a few large cells generates coarse-grained data.  When 

occupancy is plotted as a function of the grain of the study, the occupancy-area 

relationship (OAR) is obtained.  This provides a summary of a species’ rarity (or 

commonness) at multiple spatial grains.  By summing the occupancies of multiple 

species at each spatial grain, the expected number of species at a given spatial 

scale (the SAR) is obtained (Storch et al. 2008).   Depending on the grain of 

measurement, occupancy can be a measure of species range extent (coarse 

sampling grain), regional ubiquity (intermediate sampling grain) or ground cover 

(fine sampling grain) (Hartley & Kunin 2003, Witte 2003).     

By imposing an arbitrary grid cell size on the study area, information about the 

distribution of organisms within grid cells is lost (Wiegand & Moloney 2004).  As the 

grid cell becomes larger, an increasing amount of uncertainty is introduced as both 

the number and position of individuals and the amount of unoccupied space within 

a grid cell is unknown (He & Hubbell 2003).  The cells in fine-grained occupancy 
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maps can be merged into coarser-grained cells and so contain all of the information 

needed to generate a coarse-grained map (Kunin et al. 2000).  The converse is not 

true because information about the location of absences is not retained in coarse-

grained data.  Downscaling models attempt to ‘rediscover’ some of this lost 

information by assuming a set of statistical regularities which govern the changing 

occupancy across scales (Hui et al. 2010) and which can guide our estimates of 

how many absences will be expected within occupied grid cells as the sampling 

grain becomes finer.   When the sampling grain is sufficiently fine that there is, on 

average, just one individual in each occupied cell, then occupancy begins to 

approximate total abundance (Kunin 1998; He & Gaston 2000a, 2007; He et al. 

2002).  

1.3.4  Occupancy-abundance relationship (ONR)  

The OAR is closely related to the occupancy-abundance relationship (ONR), if we 

assume a linear relationship between area and abundance (the individual-area 

relationship: NAR), a relationship that is usually found to apply (Hubbell 2001; 

Pautasso & Gaston 2006; McGill 2011).  There are two forms of the ONR: the 

intraspecific ONR describes the relationship between the number of sites at which a 

species is recorded regionally and its mean local abundance where each data point 

is for a different point in space or time (Borregaard & Rahbek 2010); the 

interspecific ONR describes the relationship between area of occupancy and local 

abundance where each data point is a different species (Warren & Gaston 2013).  

Both relationships are usually positive (Gaston et al. 2000; Cowley et al. 2001; 

Blackburn et al. 2006; Webb et al. 2012, but see Päivinen et al. 2005).  The 

mechanisms underlying these well-documented relationships are not well 

understood, but all models of the ONR assume some pattern of intraspecific 

aggregation determines the slope of the ONR (Holt et al. 2002; Conlisk et al. 2007).  

Like all the patterns we have described here, the ONR is scale-dependent (He & 

Gaston 2000c).  This scale-dependence is unsurprising.  At very fine grains 

occupancy is much lower and begins to equal abundance when each grid cell 

contains just one individual.  At extremely coarse grains, approaching the area of 

the study region, all species will have equal occupancy.  Therefore, steeper ONRs 

are expected at coarser spatial grains, that is, there is a greater increase in area-of 

occupancy for a given increase in abundance.                   

1.3.5 Species abundance distribution (SAD) 

The SAD describes the structure of an ecological community in terms of the 

commonness and rarity of its species.  It is usually presented as the frequencies of 
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species within discrete abundance classes and is a way of quantifying the widely 

observed pattern that an assemblage contains a few common and many rare 

species (a hollow curve).  A large number of models have been developed to 

describe and explain the SAD (see McGill et al. (2007) and Ulrich et al. (2010)).  

The SAD is relevant to conservation practices as it contains information about the 

dominance, evenness and rarity of species as well as providing a tool to address 

fundamental ecological questions about the distribution and abundance of species.  

It has been used to test some of the leading theories about community assembly 

(Magurran 2005; White et al. 2012), although success with this approach is limited 

as theories of biodiversity predict almost identical patterns in the SAD (Chisholm & 

Pacala 2010). Like each of the ecological patterns described above, the SAD is 

highly scale-dependent and there have been numerous attempts to predict the 

regional SAD from local SADs (Borda-de-Agua et al. 2002; Sizling & Storch 2007; 

Green & Plotkin 2007; Šizling et al. 2009; Borda-de-Água et al. 2012; Conlisk et al. 

2012). 

1.3.6  Distance-decay of similarity 

The distance-decay of similarity describes the decreasing relationship between the 

similarity of two sites with the geographical distance between them (Nekola & White 

1999).  The observed pattern (ecological distance) is the aggregate effect of spatial 

turnover of species along an environmental gradient (environmental distance) and 

spatial turnover due to stochastic processes such as dispersal limitation 

(geographical distance).  The implication is that species distributions are spatially 

auto-correlated.  Partitioning the distance-decay of similarity into environmental and 

spatial components and comparing these relationships between regions and taxa 

has been one approach for ecologists to explore community assembly processes 

(Fitzpatrick et al. 2013).  The shape of the distance-decay relationship is central to 

the spatial scaling of biodiversity as the rate of turnover will determine how local 

patterns of species diversity will translate to larger spatial extents (Arita & 

Rodriguez 2002).  Unfortunately, the distance-decay relationship is not linear, that 

is, species turnover is not constant along environmental and geographical gradients 

(Ferrier et al. 2007), which makes extrapolation difficult.  A second obstacle to 

extrapolation is that there are two other concepts of β-diversity: i) pairwise 

dissimilarity metrics and ii) the ratio of diversity between two nested spatial scales.  

These concepts are related to the distance decay of similarity, but not equivalent, 

making mapping of β-diversity on to the distance-decay of similarity somewhat 

difficult.  Moreover, the relationship is highly scale-dependent (Soininen et al. 

2007b) and varies among taxa (Soininen et al. 2007a; Astorga et al. 2012).      
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The functional form of the above biodiversity patterns is often consistent across 

taxa and spatial scales suggesting a set of general statistical regularities could 

underpin the relationships we repeatedly observe in very different systems (Nekola 

& Brown 2007; Storch et al. 2012). 

1.4 A unified theory of biodiversity 

There are a number of general theories of biodiversity that aim to predict multiple 

biodiversity patterns (Hubbell 2001; Harte et al. 2008; Storch et al. 2008).  Progress 

towards unifying these theories has focussed on aspects of stochastic geometry.  

Fuelling the search for such a framework are a multitude of studies that have 

demonstrated a large number of biodiversity patterns link to and can be derived 

from other patterns (Harte & Kinzig 1997; Harte et al. 2005; McGill 2010b, 2011; 

Passy 2012), suggesting a set of ‘minimally sufficient rules’ (McGill 2010b) may 

underpin each of them.  Indeed the distance-decay of similarity and the SAR can be 

reasonably well predicted in environmentally homogenous tropical forest plots, 

based on indices of intraspecific aggregation and the regional species abundance 

distribution (Morlon et al. 2008).  These same measures can be used to predict the 

EAR (Green et al. 2003a).  The SAR can be derived from the OAR by summing the 

proportion of occupied cells across species at several spatial grains (Sizling & 

Storch 2004).   

The connections between these patterns continue to emerge and the applications 

associated with predicting one pattern from another have yet to be fully explored.  

There is the potential to obtain much more information from the large-scale data 

sets available to us if these relationships can be refined and a set of general 

principles identified which are able to predict each of these patterns and the links 

between them.  McGill (2010) identified and reviewed six unified theories of 

biodiversity (neutral, fractal, cluster Poisson point processes, continuum, 

metapopulation and maximum entropy).  Each of these theories can predict two or 

more patterns out of the global / local species abundance distribution (SAD), the 

species-area relationship (SAR), the abundance-occupancy relationship (ONR) and 

the distance decay of similarity.  All rest on three common statistical assumptions: 

intraspecific aggregation, uneven distribution of abundance among species and 

spatial distributions of species that are mutually independent (McGill 2011), 

although the latter is unlikely, especially at fine spatial grains (Kissling et al. 2011).  

Intraspecific aggregation is widely documented in ecology at all spatial scales 

(Kotliar & Wiens 1990; Seidler & Plotkin 2006; Sizling & Storch 2007; Karlson et al. 

2007; Jovani & Tella 2007; Green & Plotkin 2007).  More recently, Azaele et al. 
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(2014) introduced a unified descriptive theory for spatial ecology, which explicitly 

models intraspecific aggregation using a pair-correlation function (the correlation 

between species abundances as a function of distance).  The theory not only 

predicts the distance-decay of similarity, species richness and the species 

abundance distribution but is also able to predict the spatial scaling of these 

biodiversity patterns.           

Existing theories of biodiversity are not yet consistent in the form of the patterns 

predicted.  One explanation may be that the theories emphasise the importance of 

different processes in structuring species distributions.  For example, neutral theory 

focuses on the role of non-deterministic processes (e.g. demographic stochasticity 

and dispersal limitation determines community composition), while continuum 

theory considers the niche as the primary driver of variation in abundance along 

environmental gradients.  If the relative importance of these processes change with 

spatial scale, then our current suite of theories are only likely to perform well over a 

limited range of spatial scales.  The SAR is known to be triphasic when the full 

range of scales is considered, from local plots to continental scales (Harte 2011), 

yet most theories of biodiversity fail to predict this pattern unless the predictions of 

multiple unified theories are pasted together, but see Azaele et al. (2014) and 

(Rosindell & Cornell 2007).  This suggests that  theories of biodiversity have yet to 

fully incorporate spatial scale.  McGill (2010) notes that each theory appears to be 

geared towards characteristic set of scales, perhaps reflecting the sub-discipline 

from which it emerged.  Ecological sub-disciplines tend to be characterised by a 

subset of patterns and processes, which in turn translates into a characteristic 

range of spatial scales for studies.  For a macroecologist, this is typically continental 

to global scales with a focus on patterns (e.g. latitudinal gradients in biodiversity) 

and processes (e.g. climatic and historical drivers) operating at large spatial and 

temporal scales (Stevens 1989, 2006; Hawkins et al. 2007).  Biogeographers aim to 

capture the species-environment relationship using coarse-grain climate data in 

order to predict current and future species distributions over national or continental 

extents (Berry et al. 2002).  Landscape ecology encompasses much finer spatial 

scales, albeit coarse enough to reflect landscape heterogeneity, connectivity and 

spatial structure.  At this scale key processes are the colonisation, extinction and 

demography central to metapopulation dynamics (Hanski 1982), the species-habitat 

associations that can be inferred from landcover data.  At a finer scale still, many 

studies in community ecology are characterised by field- and plot-scale studies 

where manipulative experiments are possible.  At this scale, questions surrounding 

inter- and intra-specific competition (Gunton & Kunin 2009; Rayburn & Schupp 
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2013) and the impact of management on local-scale abundance and diversity can 

be addressed (Woodcock et al. 2007).  What we are lacking is the framework to link 

these observations of patterns and process across spatial scales and to join the 

dots between these ecological sub-disciplines. 

 

The complexity of ecological systems raises the question of whether a general 

theory of biodiversity is possible.  Indeed, the theories of biodiversity discussed 

above have been evaluated on the basis of their ability to reproduce a core set of 

biodiversity patterns (e.g. the SAR, SAD, distance-decay of similarity).  As 

discussed above, these observed patterns have been predicted with some success, 

but almost exclusively over larger spatial extents.  Over smaller spatial extents, 

species differences may not be overpowered by stochastic effects in the way they 

are at larger spatial extents (Wiegand et al. 2012).  Species-specific responses to 

each other and to the environment are clearly important in determining biodiversity 

patterns, yet these are not explicitly considered in a stochastic geometry 

framework.  In chapters 2, 3 and 5, I use top-down statistical approaches to predict 

local-scale patterns and attempt to explore the importance of species differences 

through species-level traits (Chapter 2) and species-environment relationships 

(Chapters 3 and 5).  In chapter 6, I draw on the findings of the chapters in this 

thesis to discuss the extent to which a unified theory of biodiversity, based on 

stochastic geometry, can be useful in explaining and predicting biodiversity patterns 

given species differences, and whether this may depend on spatial scale. 

1.5  Scale-dependence 

Since the 1980s, the concept of spatial scale has received increasing interest from 

ecologists (Levin 1992; Schneider 2001; Chave 2013b; Azaele et al. 2014; Sandel 

2015).  Spatial scale is now frequently incorporated into sampling regimes (Fortin & 

Dale 2005; McMahon & Diez 2007; Sandel & Smith 2009), to capture patterns at 

multiple spatial scales.  Keil et al. (2011) used hoverfly species richness at five 

spatial scales before and after 1980 to examine the scale-dependence of change in 

species richness: it was negative at fine spatial grains, stable at intermediate grains 

and positive at coarse grains, indicating the strength and even the sign of temporal 

trends in biodiversity can change with spatial scale.  The implication is that negative 

changes at fine scales reflect the loss of specialist species from local habitat 

patches, while positive change at coarse scales reflect the expansion of generalist 

species (biotic homogenisation).  These changes in pattern and process (the form 

of relationships between variables) with spatial scale have been explicitly studied 
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for a number of other ecological relationships including species-habitat associations 

(Altmoos & Henle 2010; Cunningham et al. 2014), species-environment 

associations (de Knegt et al. 2010),  abundance-habitat associations (Holland et al. 

2004), diversity-stability relationships (Chalcraft 2013), productivity-biodiversity 

relationships (Chase & Leibold 2002), richness-environment associations (Field et 

al. 2009; Belmaker & Jetz 2011), biotic interactions (Araújo & Rozenfeld 2014), 

biotic homogenisation (Baiser et al. 2012) density-dependence (Gunton & Kunin 

2007, 2009) and metapopulation dynamics (Haby et al. 2013).  As a result, we 

know that ecological processes tend to operate at characteristic scales (Pearson & 

Dawson 2003; Wu & Harbin 2006) and that the individuals, species, populations 

and distributions we study vary in the way they respond to the environment and to 

each other.            

One consequence of this scale-dependence is inconsistent results between studies 

conducted at different spatial grains and extents (Wiens 1989; Rahbek 2004).  A 

failure to appreciate scale-dependence has perpetuated long-running controversies 

in ecology including optimising reserve design (Schwartz 1999) and the relative 

importance of niche and neutral processes in shaping species relative abundances 

and distributions (Chase 2014; Garzon-Lopez et al. 2014).  In part this is because 

scale-dependence is multi-faceted and its measurement is not straightforward.  

Sandel (2015) identifies three distinct concepts under the umbrella term of scale-

dependence, each of which should be explicitly defined by a study.  These are 1) 

the scale component (grain or extent); 2) the subject of scale-dependence (data or 

model) and 3) the class of scale-dependence (true or perceived).  I discuss the 

implications of these in turn.        

The distinction between grain and extent has long been recognised in ecology 

(Wiens 1989).  Spatial grain is the size of the individual sampling units, such as the 

area of a quadrat or grid cell.  Most of ecology makes the implicit assumption of 

homogeneity within each sampling unit, so the spatial grain defines the resolution at 

which we can capture spatial variation, like a pixel in a digital image.  For example, 

monthly measures of temperature and rainfall vary rather gradually in space, such 

that a 25km2 resolution is quite reasonable for most purposes (see Met Office 

UKCP09 data used in chapter 3, but see Gillingham et al. (2012) for microclimate 

effects at finer spatial grains), while elevation varies substantially at finer spatial 

grains.  Spatial grain is an important decision in study design as it defines how 

much variation is contained within samples versus the variation between samples.  

Any variation within a sampling unit is averaged away under the assumption of 

homogeneity, thus this information is lost if the chosen grain is too coarse.  The 
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spatial extent is the size of the study region of interest, for example a field, a 

country or a continent (Gunton et al. 2014).  The spatial extent of a study is a 

second sampling decision and determines how much of a relationship is visible to 

an observer.  A relevant example here is the triphasic shape of the SAR when the 

full range of scales is observed (Grilli et al. 2012): the slope often appears to 

decelerate moving from local to regional scales, but to steepen again at continental 

scales.  The grain and extent define the window through which we observe a given 

pattern or process.  The concepts of grain and extent are thus distinct, with different 

mechanisms unpinning grain- and extent-dependence, as evidenced by the 

contrasting relationships of β-diversity with grain and extent (Barton et al. 2013).  

Limited resources usually lead to a trade-off in sampling design, such that studies 

of larger spatial extent tend to have coarser grain sizes.  This situation leads to 

large gaps in our knowledge of the distribution and diversity of species, an issue 

which I discuss further in section 1.6 of this chapter.     

Besides the grain-extent distinction, Sandel (2015) identifies a further distinction 

between scale-dependent data and scale-dependent models.  This can be 

interpreted as directly measuring the scale-dependence of a single variable or the 

scale-dependence of a statistical relationship between two or more variables (first-

order and second-order scale-dependence, respectively: Sandel & Smith 2009).  

Examples of scale-dependence in data include changes in species richness, area 

of occupancy, number of endemics and abundance with spatial grain or extent (e.g. 

the SAR, EAR, NAR in section 1.3).  Scale-dependence of models refers to 

quantifying the change in statistical descriptors of biodiversity patterns.  Examples 

include parameter estimates (Borda-de-Água et al. 2012), effect sizes (Chase & 

Knight 2013), goodness-of-fit (Gunton & Kunin 2007, 2009), predictive success and 

the functional form of these relationships (Azaele et al. 2014).           

Unfortunately, there are a number of pitfalls in measuring scale-dependence that 

apply to both data and models.  The final distinction in Sandel’s (2015) taxonomy is 

between true and perceived scale-dependence.  There are two sources of 

perceived scale-dependence: the observation process (e.g. detectability changing 

with spatial scale) and imperfect model specification (missing covariates or 

incorrect functional form of a model).  The extent to which scale-dependence is true 

or perceived can be difficult to pick apart.  Consider the OAR in section 1.3.  There 

is a mechanism underpinning the decline in area of occupancy (AOO) with the 

spatial grain of sampling: intraspecific aggregation leads to more unoccupied cells 

at finer spatial grains than at coarser spatial grains (Azaele et al. 2012).  However, 

the perception of scale dependence is likely to be amplified by the fact that 
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sampling intensity per grid cell also declines with area, such that an unknown 

proportion of absences at fine spatial scales are artefacts (pseudo-absences or 

false absences).  This kind of perceived scale-dependence can also be generated 

when important covariates are missing from models (e.g. confounding effects) or by 

not accounting for spatial autocorrelation among residuals (Sandel 2015).      

One implication of scale-dependence is how to match the sampling scale to the 

characteristic scale at which the process of interest operates (Chase & Knight 

2013).  Even in studies when sampling has been conducted at a range of scales, 

measured effect sizes are typically greatest at the finest or coarsest scales, 

suggesting that sub-optimal sampling scales lead to systematic underestimates of 

effect sizes (Jackson & Fahrig 2014).  This is particularly worrying when the 

purpose is to quantify the effect of drivers of biodiversity loss and the interventions 

that will be sufficient to mitigate these impacts.  In the UK, drivers of biodiversity 

loss include land use change related to agricultural intensification, pollution 

including pesticides and inorganic fertilisers, climate change and the 

overexploitation of natural resources (Burns et al. 2013).  Our ability to mitigate 

these impacts depends on identifying the scale at which these processes have the 

greatest impact and intervening at the appropriate scale. 

Only recently has the precise form of relationships between scale and key 

measures of diversity, distribution and abundance become a major focus of 

research  (Kunin 1998; Kunin et al. 2000; Sizling & Storch 2004; Hartley et al. 2004; 

Storch et al. 2007, 2012; Azaele et al. 2012).  This line of investigation is crucial to 

developing a multi-scale unified theory of biodiversity.  Aside from the theoretical 

advances made possible by describing how the distribution, abundance and 

diversity of species (and the parameters quantifying the relationships between 

these variables) change with spatial scale, the practical applications for biodiversity 

monitoring are invaluable in providing the tools to interpolate and extrapolate these 

biodiversity patterns to different spatial grains and extents.  One example is that β-

diversity determines the local slope of the SAR, providing a means of linking local 

and regional species richness.  We need methods which allow us to extrapolate 

biodiversity patterns to scales that are unfeasible to sample using traditional field 

surveys, given the time, money and human resources required for such an 

endeavour.  These are tools with the potential to estimate biodiversity metrics in 

regions and taxonomic groups where we lack knowledge and to facilitate the 

discovery of new species and new populations (Townsend Peterson et al. 2011).  In 

addition spatial scaling tools could be used to contribute to generating indicators of 

the status and trends in biodiversity at multiple spatial scales (Collen et al. 2013). 
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1.6 Data and taxonomic groups 

The terms Linnaean shortfall and Wallacean shortfall have been coined to describe 

our lack of knowledge about the diversity and distributions, respectively, of many 

taxonomic groups (Lomolino & Heaney 2004).  These knowledge shortfalls are 

especially extreme at large scales, that is, national, continental and global patterns 

of biodiversity are poorly understood (Mora et al. 2011; Jetz et al. 2012).  In the 

case of the Wallacean shortfall, our sampling design is usually a trade-off between 

grain and extent and between data quality and data quantity because of the limited 

resources available for data collection.   Data sets covering large spatial extents 

typically map biodiversity using coarse-grain grids (Robertson et al. 2010; Beck et 

al. 2012).  Examples include British atlases (Asher et al. 2001; Cham et al. 2014), 

which are designed to collect data on species occurrences with national coverage 

within a defined time-period.  Recording is sufficiently patchy that good coverage 

can only be achieved by mapping the distribution at relatively coarse-grains (usually 

100km2).  By contrast, fine-grain data are collected over short time-periods with 

limited spatial extent or poor spatial coverage (Barbosa et al. 2010), but the 

information content is usually much higher.  For example, there may be abundance 

data for a limited number of grid cells in long-term monitoring schemes like the UK 

Butterfly Monitoring Scheme, but this level of recording would not be feasible if the 

spatial coverage were greater.  In the case of the Linnaean shortfall, gaps in our 

knowledge become more extreme with decreasing body size (Whittaker et al. 

2005).  Both the Wallacean and Linnaean shortfalls are especially severe among 

insect taxa (Cardoso et al. 2011).   

These data-deficits are obstacles to our theoretical understanding of biodiversity 

patterns and to addressing more practical and urgent questions in the face of rapid 

anthropogenic change (Butchart 2010).  The UK government is legally required to 

identify, conserve, protect and enhance biological diversity at a national scale 

(Convention on Biological Diversity 2020 Aichi targets), which requires the 

development of methods to monitor progress towards these targets (Mace & Baillie 

2007; Jones et al. 2011).  The scales at which we are able to monitor trends in 

species abundances and distribution rarely match the scales relevant for reporting 

and for conservation planning (Miller et al. 2004; Araújo et al. 2005a; Lengyel et al. 

2008; Pereira et al. 2010; Pelosi et al. 2010; Paloniemi et al. 2012; Guerrero et al. 

2013).  As such, the Wallacean and Linnaean shortfalls must be addressed (Bini et 

al. 2006; Diniz-Filho et al. 2010).   



14 
 

The best-studied taxonomic groups in the UK are undoubtedly birds and butterflies 

and these would be obvious choices for the study of large-scale biodiversity 

patterns.  However, I focus here on less well-studied groups: the dragonflies 

(Odonata) and macro-moths (Lepidoptera).  There are two reasons for these 

choices.  First, the insights from less-well studied taxonomic groups are potentially 

more compelling with a greater scope for novel ecological findings.  Secondly, aside 

from the ecological insights, a key focus of this research is to bridge the gap 

between theoretical models of spatial ecology and monitoring of biodiversity at 

multiple spatial scales.  If the methods I apply in the following chapters are to be 

useful and widely applicable, the impact of data quality on their performance will be 

a key consideration.  In other words, the data for birds and butterflies could be said 

to be “too good” for the methodological questions posed in this thesis.  

Demonstrating the insights that can be derived from patchy biological records for 

dragonflies and moths is an important step towards harnessing the potential of the 

datasets that are available for even less well-studied groups.  This is particularly 

timely given the large volumes of biodiversity data currently being generated 

through citizen science projects (Pocock et al. 2014; Silvertown et al. 2015; 

Theobald et al. 2015).  These data are a rich resource for monitoring biodiversity, 

but typically lack a standardised protocol for data collection.  Examples include the 

Global Biodiversity Information Facility (GBIF), ebird and iSpot.  The major 

implication of opportunistic recording is that the data contain false absences (when 

failure to detect a species is wrongly interpreted as the absence of that species).  

The challenges associated with presence-only data and its associated biases are 

central to the methodological questions posed in the following chapters.  The types 

of recording behaviour that generate false absences are discussed below.  

Isaac et al. (2014) identify four classes of bias driving false absences in 

opportunistic records: 1) temporal variation in recorder effort; 2) spatial variation in 

recorder effort; 3) variation in sampling effort per visit and 4) spatial and temporal 

variation in detectability.  False-absences are problematic when trying to quantify 

biodiversity patterns in time and space (Iknayan et al. 2014; Isaac & Pocock 2015).  

One implication of these biases are that maps of species distributions based on 

opportunistic biological records confound patterns of biodiversity with patterns of 

recording effort.   

Temporal variation in recording effort can be problematic when extracting temporal 

trends in species distributions (Hickling et al. 2006; Powney 2013; van Strien et al. 

2013).  An example of this is the increase in the number of biological records over 

time (Isaac & Pocock 2015), which can lead to spurious increases in distribution 
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size over time, potentially masking the true trends in stable or declining distributions 

(Hassall & Thompson 2010).  While the focus of this thesis is spatial patterns in 

biodiversity, temporal variation also has implications for choosing an appropriate 

time period as a snapshot of the distribution.   

Spatial variation in recording activity leads to geographical biases in recording, with 

a number of potential sources.  An example is high intensity recording activity 

around areas of high quality habitat, or a disproportionate contribution of records by 

a small number of recorders, focussed in areas around the homes of those 

individuals.  A well-documented example in the UK is the decrease in recording 

intensity with increasing latitude (Hassall et al. 2010; see chapter 2 Appendix 2).   

A third source of false absences is the amount of time a recorder has spent in the 

field on a given visit.  In the absence of a standardised protocol for recording, the 

length of species lists increases asymptotically with time spent in the field (Ugland 

et al. 2003; Szabo et al. 2010), therefore grid cells with low recording intensity carry 

a greater risk of false absences.  At the extreme are cells that have never been 

sampled but are interpreted as absences in opportunistic data sets.  A second facet 

of recording activity within a site is under-recording of common or widespread 

species.  One example of this is incomplete species lists biased towards rare, 

charismatic or migrant species that are rarely observed in the UK and often 

excluding less interesting or more common species.  

Finally, there is interspecific variation between species in terms of detectability, 

which can be influenced by factors such as life history stage or flight period.  Spatial 

patterns in detectability can also be driven by habitat characteristics like vegetation 

structure (Dennis et al. 2006).     

The effects of uneven recording in space and time can be mitigated to some extent 

by combining records for consecutive number of years to provide a snapshot with 

better spatial coverage and / or by aggregating the spatial grain of records to a 

grain at which fewer grid cells have never been visited.  Both approaches are used 

to generate distribution maps in published atlases, but they discard potentially 

valuable information about fine grain spatial patterns and temporal dynamics.  

HoweverAlternative approaches to the problem of false absences are being 

developed which explicitly model the relationship between recording effort and 

probability of detection and retain a greater proportion of the information content of 

the data (Kéry & Royle 2008; Bornand et al. 2014; Beale et al. 2014).  These 

methods are a promising line of investigation towards the use of biological records 

for monitoring biodiversity and explaining its structure at multiple spatial scales.      
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1.7  Thesis outline 

In the following chapters my main focus is to explore methods for predicting and 

explaining large-scale spatial patterns in the distribution and abundance of British 

dragonflies and moths in a way that explicitly considers issues of spatial scale.  

When addressing these questions there is certainly a trade-off between the quantity 

and quality of data used and the quality of the predictions and ecological insights.  

The statistical approaches used here are chosen as they are less data-hungry than 

alternative, more mechanistic approaches.  This is particularly important when the 

biodiversity patterns of interest concerns species-rich assemblages and large 

spatial extents.  The species-specific data required to capture the complexity of 

these interactions and approach these questions in a mechanistic way is not always 

available.  These data-efficient methods have particular relevance for the purposes 

of biodiversity monitoring for poorly studied regions and taxa.  For example, the UK 

government has a legal obligation to report on progress towards internationally 

agreed biodiversity targets (Jones et al. 2011) and we must find a way to do this 

even for poorly studied taxonomic groups like macro-moths.  A valuable resource 

for monitoring UK biodiversity is the wealth of opportunistic records collected by 

volunteer recorders.  The methods I employ below are designed to exploit the full 

potential of these records, so all species can be monitored in a consistent way, 

regardless of how well-studied they are.   

 

In Chapter 2, I explore area of occupancy as a way of comparing the commonness 

and rarity of different species.  It is one of the IUCN red list criteria for classifying 

species as threatened and it is, therefore, important to understand how area of 

occupancy depends on the spatial grain of measurement.  We know it is prone to 

overestimating the distribution size when measured using coarse-grain grids and 

underestimating it using fine-grain grids.  I compare competing models of the OAR 

in an attempt to obtain an accurate fine-grain metric of distribution size by 

extrapolating occupancy to fine grains for Odonata species with a range of 

ecological and distributional traits.  Chapters 2 and 3 share a major challenge in 

overcoming the false-absences in the known distribution of their focal species.  In 

chapter 2, we deal with false-absences by coarsening the data to a spatial grain 

with far fewer gaps, at a cost of excluding large amounts of information contained in 

the spatial precision of records.   

 

In Chapter 3, instead of coarsening the data, I apply a method which explicitly 

models recording effort in each cell.  I also introduce environmental information 
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using species distribution modelling techniques, to obtain spatially explicit 

predictions of probability of occurrence at finer spatial grains than has previously 

been attempted and to quantify the drivers of the distribution of the Brindled Green 

moth.   

 

In chapter 4, I move from modelling patterns in single species to considering spatial 

patterns in multi-species assemblages, specifically, how spatial turnover can best 

be quantified using abundance-based metrics of β-diversity.  I identify a set of 

criteria and evaluate the performance of 24 abundance-based metrics and five 

widely used presence-absence metrics for these properties.   

 

In chapter 5, the best-performing metrics of β-diversity are applied to total counts of 

moths in the Rothamsted Insect Survey and are used to evaluate the independent 

contributions of climate, landcover and geographical distance in structuring spatial 

patterns of macro-moth β-diversity.   

 

Chapter 6 discusses the findings of this thesis in relation to the spatial scaling of 

insect biodiversity, the limitations of the methods used here for explaining 

biodiversity patterns, the feasibility of a unified theory of biodiversity and the use of 

biological records in monitoring biodiversity. 
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Chapter 2 

Can coarse-grain patterns in insect atlas data predict local 

occupancy? 

 

2.1 Abstract 

Species atlases provide an economical way to collect data with national 

coverage, but are typically too coarse-grained to monitor fine-grain patterns 

in rarity, distribution and abundance. I test the performance of ten 

downscaling models in extrapolating occupancy across two orders of 

magnitude. To provide a greater challenge to downscaling models, I extend 

previous downscaling tests with plants to highly mobile insect taxa (Odonata) 

with a life history that is tied to freshwater bodies for reproduction. I 

investigate the species-level correlates of predictive accuracy for the best 

performing model to understand whether traits driving spatial structure can 

cause interspecific variation in downscaling success.  Occupancy data for 38 

British Odonata species were extracted from the Dragonfly Recording 

Network (DRN). Occupancy at grains ≥ 100 km2 was used as training data to 

parameterize ten downscaling models. Predicted occupancy at the 25, 4 and 1 

km2 grains was compared to observed data at corresponding grains. Model 

predictive error was evaluated across species and grains.  The Hui model 

gave the most accurate downscaling predictions across 114 species:grain 

combinations and the best predictions for 14 of the 38 species, despite being 

the only model using information at a single spatial grain. The occupancy–

area relationship was sigmoidal in shape for most species. Species’ 

distribution type and dispersal ability explained over half of the variation in 

downscaling predictive error at the species level. Species with a climatic 

range limit in Britain were poorly predicted compared with other distribution 

types, and high dispersal ability was associated with relatively poor 

downscaling predictions. These results suggest that downscaling models, 

using widely available coarse-grain atlas data, provide reasonable estimates 

of fine-grain occupancy, even for insect taxa with strong spatial structure. 

Linking species-level traits with predictive accuracy reveals general 

principles about when downscaling will be successful. 
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2.2  Introduction 

The lack of fine-grain data over large spatial extents is problematic for accurate 

monitoring of threatened species and limits our theoretical understanding of 

biodiversity patterns  (McGill 2010a; b; Jetz et al. 2012; Beck et al. 2012; Keith et al. 

2012).  Species‘ distributions are typically  mapped in the form of atlases derived 

from spatially explicit, opportunistic occurrence records for a specific taxanomic 

group within a defined geographic extent and time period (Robertson et al. 2010).  

Atlases use coarse grain sizes to minimise pseudo-absences (false absences, or 

omission errors), at a cost of including large areas where the species is actually 

absent (commission errors: Boitani et al., 2011). However, distribution size is highly 

scale-dependent (Kunin 1998), such that coarse-grain occupancy is a poor 

predictor of abundance (Hartley & Kunin 2003).        

Recently, ecologists have begun to realise that the scale-dependency of species 

distributions can be described statistically and even extrapolated across scales 

(Kunin et al. 2000; He & Gaston 2000b; He et al. 2002; Hui et al. 2006; He & Condit 

2007), thus helping to address this fine-grain data deficit and improve our 

assessment of rarity and extinction risk (Mace et al. 2008).  Specifically, the  

occupancy-area relationship (OAR, following the terminology in McGill, 2010b) 

describes how occupancy (the proportion of grid cells where a species is present) 

increases with grain size (the area of each grid cell).  Elsewhere, closely related 

relationships are the scale-area curve (Kunin 1998; Veldtman et al. 2010), area-

area curve (He & Gaston 2000b), range-area curve (Green et al. 2003b), scaling 

pattern of occupancy (Hui et al. 2006; Hui 2009) and p-area curve (Storch et al. 

2008).  As the grain used to record species’ presences becomes coarser, empty 

fine-grain cells merge with neighbouring occupied cells and a greater proportion of 

the study region appears occupied.  There is considerable variation in the shape 

and slope of the OAR among species, driven by species’ overall abundances, 

patterns of intraspecific aggregation (Cowley et al. 2001b; Storch et al. 2008; 

Conlisk et al. 2009; Gaston & He 2011) and the logical constraint that no fewer than 

one cell can be occupied at a given scale (Fig. 2.1).  The local slope of the OAR 

contains information about intraspecific aggregation: a steep local slope between 

two spatial grains indicates a species occurs in few fine-grain cells within each 

occupied coarse grain cell (a sparse, fragmented distribution).  A shallow local 

slope indicates the species is present in many fine-grain cells within each coarse 

grain cell (an aggregated, contiguous distribution) (Wilson et al. 2004; Veldtman et 

al. 2010).  Downscaling models have been developed to describe the OAR, 
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mathematically, without reference to any biologically meaningful covariates.  As 

noted above, species occupancy at fine spatial grains is often underestimated when 

using fine grain data, because there are many false absences in species 

occurrence records.  Downscaling models attempt to provide a solution to this 

problem, by parameterising the portion of the OAR that is least prone to false 

absences and identifying a phenomenological relationship between neighbouring 

spatial grains which can then be extrapolated to finer spatial grains.  Although 

downscaling models do not describe the processes shaping aggregation patterns, 

they are nonetheless able to capture interspecific variation in the shape of the OAR 

(Azaele et al. 2012).  

Downscaling models have been tested (using training data at coarse grains and a 

test data set at fine grains) for 73 species of rare plants in mainland Britain (Kunin 

1998; Kunin et al. 2000), 92 species of grasses in mainland Britain (Kunin et al. 

2000), 301 tree species in a 0.5 km2 tropical rainforest plot in Barro Colorado 

Island, Panama (He & Condit 2007), 824 tree species in 0.5 km2 tropical rainforest 

plot in Pasoh, Malaysia (He & Gaston 2000b), passerine birds in Bedfordshire (He 

& Gaston 2000b), 6 large mammalian herbivores in the 13912 km2 Kruger National 

Park (Tosh et al. 2004) and southern African bird species (Lennon et al. 2007; Hui 

et al. 2009).  Azaele et al. (2012)  tested the performance of 9 downscaling models 

across several orders of magnitude in grain size using multi-scale occupancy data 

for 16 rare British plant species.  The Thomas model, derived from a clustered 

Poisson point process, provided the most accurate and unbiased estimates of fine-

grain occupancy across the 16 species, despite the absence of information about 

the spatial positions of occupied cells.  Virtually all of these tests are for plants and 

in most cases three or fewer of the available downscaling methods were applied to 

the data.  The range of extrapolation varies greatly among studies from 25-fold 

(Kunin 1998) to four orders of magnitude (Azaele et al. 2012).  In the absence of a 

mechanistic understanding of the  OAR (but see McGill & Nekola, 2010; McGill, 

2011), it is important to establish whether downscaling models are general enough 

to describe all observed forms of the OAR and to extend comparative tests of 

model performance to taxa with a very different set of dispersal abilities, habitat 

requirements and spatial structures.   

I identify four traits, measured at the level of the species, which I predict will lead to 

interspecific variation in the shape of the OAR (and therefore downscaling 

success).  A species’ distribution type (widespread, range limited, local-sparse or 

local-aggregated) is a broad descriptor of interspecific variation in the number and 

spatial arrangement of occupied cells (Supplementary Material section 2.7.5).  On a 
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more mechanistic level, patterns of intraspecific aggregation depend on the 

interplay between dispersal ability and the patchy distribution of suitable (micro) 

climate and habitat (Hubbell 2001; Green & Plotkin 2007; Storch et al. 2008; McGill 

2010b).  The other three traits (dispersal ability, habitat breadth and range change) 

are chosen for their relationship to those processes influencing intraspecific 

aggregation and variation in the shape and slope of the OAR (Fig. 2.1).  Range 

change is here defined as a measure of a species’ increase or decrease in 

distribution size within a defined time period.  I describe the metric used to measure 

range change in section 2.3.3. 

Here, I present a comparison of downscaling methods applied to coarse-grain 

records of British Odonata and extrapolate occupancy through two orders of 

magnitude in spatial grain.  These distribution data are used to investigate 1) which 

downscaling models perform best in predicting fine-grain occupancy from coarse-

grain atlas data, and 2) whether species traits can explain interspecific variation in 

predictive success.  These analyses extend knowledge gained in previous 

downscaling studies by testing for general principles in our ability to predict 

occupancy at fine spatial grains. 

2.3  Methods 

2.3.1 Odonata distribution data 

Occupancy data for British Odonata were extracted from the Dragonfly Recording 

Network (DRN) held by the British Dragonfly Society (BDS).  The DRN data 

comprise over 1 million records on 34 510 spatially referenced 1km2 cells in 

mainland Britain.  OARs based on eight spatial grains were estimated for a total of 

38 species, comprising the resident breeding Odonata species in the UK 

(Supplementary Material section 2.7.1).  Spatial variation in recording intensity, 

geographical biases and pseudo-absences must be acknowledged when estimating  

species occupancies from presence-only, opportunistic occurrence records (van 

Strien et al. 2013).  To address the issue of pseudo-absences, I included only cells 

in which at least one species had been recorded (as evidence of a visit) and 

assumed species not recorded in a grid cell were absent.  This threshold is 

intended to address the trade-off between the number of false absences and the 

exclusion of large amounts of fine-grain data (Supplementary Material section 

2.7.3).  Cells with < 30% land cover (≥ 70% sea) were excluded at each spatial 

grain as a trade-off between the total amount of land represented by cells in the 

analysis and the total number of cells available for analysis at coarse grains.  The  
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Fig. 2.1 Occupancy-area relationships (OAR) for three hypothetical species.   

There are a wide variety of shapes and slopes of the OAR among species, 

reflecting both the extent of a species’ distribution within the study region and 
the intensity of intraspecific aggregation.  Here, the differences in slopes 
cause the species’ curves represented by the solid black line and the dotted 
black line to cross over, demonstrating that the grain at which occupancy is 
measured can change our perception of which species is rarest.  For 
widespread species (solid black line) within the study region, the curve 
becomes shallower as the sampling grain approaches the extent of the study 
region, A0.  At grains coarser than the point of saturation, S, the species 
represented by the solid black line occurs in all cells (e.g. occupancy = 1).  
For a species that is restricted to some portion of the study region (dashed 
line), an inflection point will be seen at the finest grain to contain the entire 
distribution within a single grid cell (the point of endemism, E).  Saturated and 

endemic grains add no information about the scaling of occupancy for the 
purposes of downscaling.  Occupancy cannot fall within the shaded grey area, 
which represents the region where occupancy < A/A0 and equates to a 
species occurring in less than one cell in the study region (adapted from 
Azaele et al., 2012). 
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spatial references of occupied grid cells at 1km2 were coarsened to obtain species’ 

occupancies at the 4, 25, 100, 144, 400, 1600, 6400 km2 grains to estimate the 

OAR for each species.  A species’ occupancy was calculated as the proportion of 

the total number of sampled grid cells in which the focal species occurs.  Data 

cleaning, manipulation and calculation of species occupancies at multiple scales 

was performed in R version 2.15.1 (R Core Development Team 2014). 

2.3.2  Downscaling 

Ten downscaling models (Table 2.1) were fitted to occupancy data at coarse grains 

(≥ 100km2) for the 38 British Odonata species.  This reflects the typical 100km2 

grain of atlas data in the UK.  Models 2 - 9 (Table 2.1) use the shape of the OAR at 

multiple grains to extrapolate to finer grains (reviewed in Azaele et al 2012).  The 

term Thomas model, as used here, refers to the downscaling formula in 

Supplementary Material (section 2.7.4), rather than the spatially explicit Thomas 

point process from which it was derived by Azaele et al. (2012).  I parameterised 

these models using occupancy at five coarse spatial grains (100, 144, 400, 1600 

and 6400 km2).  Saturated grains contain no information for downscaling purposes 

(Fig. 2.1).  For seven widespread species the OAR was saturated (i.e. reached 

100% occupancy) at the coarsest (Enallagma cyathigerum, Sympetrum striolatum, 

Pyrrhosoma nymphula, Libellula quadrimaculata and Sympetrum danae) or two 

coarsest (Lestes sponsa, Ischura elegans) grains and so these grains were 

excluded when parameterising models.   Model 1, the Hui model (Hui et al., 2006; 

Hui, 2009; Table 2.1), uses spatially referenced data from one reference grain size 

to estimate occupancy at others based on just two pieces of information: the 

probability that a cell is occupied, P+, and the conditional probability that 

neighbouring cells are occupied, Q+/+ (an index of spatial aggregation).  Bayes’ 

theorem can be used to express all conditional probabilities of occupancy in terms 

of P+ and Q+/+ and to derive the OAR.  I implemented the formulae in Hui (2009), 

using 100km2 as the reference grain size.  

Mathematica 9.0 Student Edition (Wolfram Research 2013) was used for 

optimisation of parameter estimates for all models.  The parameterised models 

were used to predict occupancy at 25, 4 and 1km2 grains.  Model predictions were 

obtained at three grains (25, 4 and 1km2) for the 38 species, giving a total of 114 

predictions for each model.  Model predictions were evaluated as the absolute 

value of the percentage error,
|𝒑𝑨,𝒊
𝒑𝒓𝒆𝒅

− 𝒑𝑨,𝒊
𝒐𝒃 |

𝒑𝑨,𝒊
𝒐𝒃 . 100, where 𝑝𝐴,𝑖

𝑜𝑏  and 𝑝𝐴,𝑖
𝑝𝑟𝑒𝑑

are the observed 

and predicted occupancies at grain A for species i.  I assessed model performance  
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Table 2.1  Summary of performance for ten downscaling models.   

For model formulae and notation, see section 2.7.4. # Params is the number 
of free parameters. Best is the number of species for which each model gave 
the best downscaling predictions (the lowest mean percentage error for each 
species across the three predicted grains). Median, Min and Max are the 

median, minimum and maximum absolute value of percentage error of 

downscaling predictions across 114 species: grain combinations, 
|𝒑𝑨,𝒊
𝒑𝒓𝒆𝒅

− 𝒑𝑨,𝒊
𝒐𝒃 |

𝒑𝑨,𝒊
𝒐𝒃 ∗

𝟏𝟎𝟎, where 𝒑𝑨,𝒊
𝒑𝒓𝒆𝒅

 and 𝒑𝑨,𝒊
𝒐𝒃are the predicted and observed occupancy at grain 

𝑨 for species 𝒊.  

 

  

Model # 

Params 

Best Median  Min  Max  References 

1)  Hui 2 14 16.594 0.313 102.467 
(Hui et al. 2006; 
Hui 2009) 

2) Nachman  2 12 19.480 0.119 85.121 
(Nachman 

1981) 

3) Power Law 2 5 25.196 0.202 126.543 (Kunin 1998) 

4) Logistic 2 5 30.107 0.548 93.259 
(Hanski & 
Gyllenberg 

1997) 

5) Thomas 3 1 59.795 0.457 98.518 
(Azaele et al. 
2012) 

6) Finite negative 

binomial 
2 1 73.946 0.835 97.591 

(Zillio & He 

2010) 

7) Generalised 
negative binomial 

3 0 32.561 0.209 99.515 (He et al. 2002) 

8) Improved negative 

binomial 
3 0 35.009 0.080 89.026 

(He & Gaston 

2003) 

9) Negative binomial 2 0 72.046 0.473 97.863 
(He & Gaston 
2000b) 

10) Poisson 1 0 91.111 46.648 99.132 (Wright 1991) 
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on a species-by-species basis, as well as across all 114 species:grain 

combinations.  Species level performance was evaluated as the number of species 

for which each model gave the best overall predictions (the mean absolute value of 

percentage error across the three predicted grains).  The median, minimum and 

maximum of absolute values of percentage errors were used to evaluate model 

performance across all 114 species:grain combinations. 

2.3.3  Odonata traits 

Downscaling errors are most extreme when extrapolated furthest from the fitted 

region of the OAR.  Therefore, the percentage errors at 1km2 (including the 

direction of error, + or -) for the overall best performing model were used as the 

response variable in a species-level trait analysis, calculated as 
𝒑𝟏,𝒊
𝒑𝒓𝒆𝒅

− 𝒑𝟏,𝒊
𝒐𝒃

𝒑𝟏,𝒊
𝒐𝒃 . 100, 

where 𝑝1,𝑖
𝑜𝑏  and 𝑝1,𝑖

𝑝𝑟𝑒𝑑
 are the observed and predicted occupancies at the 1 km2 

grain for species i.  Data on two distributional traits (distribution type, range change) 

and two life-history traits (habitat breadth, dispersal ability) were obtained for the 38 

British Odonata species.  Distribution type was classified as widespread, range 

limited, localised-aggregated or localised-sparse, based on the number and spatial 

arrangement of occupied cells (Supplementary Material, section 2.7.5).  Habitat 

breadth (1 to 6) was obtained from Powney et al. (2014).  Data for British Odonata 

range change between 1970 and 2012 were taken from NJB Isaac (unpublished 

data) as the annual linear trend in the probability of occupancy on a logit scale 

using a generalised linear mixed effect model (Roy et al. 2012).  I obtained 

dispersal ability estimates from Fitt (2013), who inferred dispersal distances from 

the positions of newly colonised 1 km2 cells in each year from 1991 to 2012 (2000 

to 2012 for the recent colonist Erythromma viridulum).  Distances of newly 

colonised cells from the nearest previously occupied 1km2 cell were weighted by 

the probability of a species being previously missed in that cell, given the number of 

times the newly colonised cell was surveyed prior to the first recording of the 

species (using the list length model; Szabo et al. 2010).  This method is intended to 

reduce the error in dispersal distance estimates driven by cells that appear newly 

colonised, but were in fact merely unrecorded due to low sampling intensity.  The 

75th percentile of dispersal distances was used as the measure of dispersal ability 

in the trait analysis (Supplementary Material section 2.7.6). 
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2.3.4  Statistical analyses 

I fitted a phylogenetic generalised least squares model (Supplementary Material 

section 2.7.7) with normally distributed errors using function pgls in R package 

caper (Orme et al. 2012).  The dependent variable was the percentage error of 

downscaling predictions at the 1km2 grain.   In the global model, predictor variables 

were the dispersal ability (measured as the upper quartile of dispersal distances), 

habitat breadth, range change and distribution type.  Residuals of the model were 

improved by log10 transformation of dispersal ability.  Models were ranked by 

Akaike Information Criterion with a small sample size correction (AICc) using the 

function dredge in R package MuMIn (Barton 2013).  Models with Δ (AICc 

difference) < 4 were selected and weighted model averaging across this subset of 

models was used to estimate the parameters (Burnham & Anderson 2002).  

Standardised model parameter estimates were used to compare effect sizes 

between traits.  I tested for collinearity between predictor variables using both 

correlation coefficients between pairs of predictors and variance inflation factors 

(Supplementary Material section 2.7.9), but found collinearity was not sufficient to 

warrant exclusion of predictors from the global model.  All statistical analyses were 

performed in R version 2.15.1 (R Core Development Team 2014). 

2.4  Results 

Observed OARs generally became shallower at the finest grains, resulting in a 

concave or sigmoidal OAR for many of the 38 Odonata species.  The Hui model 

predictions were also of this shape (Fig. 2.2).  The Hui and Power Law models were 

the only models biased towards over-prediction of occupancy (Fig. 2.2; 

Supplementary Material section 2.7.8), as indicated by the positive median value of 

percentage errors (Fig. 2.3).  All other models tended to under-predict occupancy.  

This was particularly severe for the Poisson model, which systematically under-

predicted occupancy at all predicted grains for all species (Fig. 2.3).  The Hui model 

had the highest peak in percentage errors surrounding zero, followed by the 

Nachman and Power Law models.  The Hui model also had a lower range of 

percentage errors (141.6) than 
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Fig. 2.2  Hui model downscaling predictions for a) 14 species of British 
Zygoptera (damselflies) and (see overleaf) b) 24 species of British 
Anisoptera (dragonflies).   

The Hui model gave the best overall predictions of the ten downscaling 
models tested. Black lines and points are the observed occupancies at each 
spatial grain. Grey lines are the Hui downscaling predictions at the 25, 4 and 1 

km2 grains.  
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Fig. 2.2 (Continued) 
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Fig. 2.3  Distribution of errors in downscaling predictions for 114 

species:grain combinations.   

Percentage errors are calculated as 
|𝑝𝐴,𝑖
𝑝𝑟𝑒𝑑

− 𝑝𝐴,𝑖
𝑜𝑏 |

𝑝𝐴,𝑖
𝑜𝑏 ∗ 100, where 𝑝𝐴,𝑖

𝑝𝑟𝑒𝑑
 and 𝑝𝐴,𝑖

𝑜𝑏  are 

the observed and predicted occupancies at grain 𝐴 for species 𝑖.  The 
percentage errors for 114 species:grain combinations are binned into intervals 
of 10. Vertical solid lines represent zero error in downscaling predictions. 
Vertical dashed lines are the median % errors.  See Table 2.1 for a summary 

of comparative model performance. 

 



40 
 

either the Nachman (151.3) or Power Law (210.2) models (Fig. 2.3).  Half the Hui 

model predictions were within 16.6% of the observed occupancy (Table 2.1):  the 

next two best models were the Nachman and Power Law, with comparable figures 

of 19.5% and 25. 2%, respectively. The Hui model had the lowest median absolute 

percentage error across species and gave the best predictions for 14 of the 38 

species (Fig. 2.4; Table 2.1).  The Hui model was never worse than the seventh 

best model for any species.  The relative performance of the Hui model was 

retained when only predictions at the finest grain were considered; at the 1km2 

grain, the Hui model gave the best predictions for 15 of the 38 species, with 50% of 

predictions within 36.2% of observed occupancy.  By comparison, the Nachman 

model gave the best predictions for 10 species at the 1km2 grain with 50% of 

predictions within 41.1% of observed occupancy and the Power Law model was 

best for 5 of the 38 species with 50% of predictions within 42.6% of observed 

occupancy.  

Table 2.2  Model selection.   

Three models selected from 16 candidate linear models quantifying the 
effects of species-level traits of British Odonata on the percentage error of 
downscaling predictions.  Downscaling models provide an estimate of fine-

grain occupancy, 𝑝𝐴,𝑖
𝑝𝑟𝑒𝑑

 , where p is the proportion of grid cells with grain size 

A  in which species i is present.  Therefore, the method generates spatially 
implicit predictions.  The global model was Percentage Error ~ Distribution 
type + log10 UQ dispersal ability + Habitat breadth + Range change.  Dispersal 
ability is measured as the upper quartile (UQ) of all distances (km) to newly 
colonised cells between 1990 and 2012.  The symbol • denotes the variables 
in each candidate model.   Models were ranked by AICc scores, which applies 
a correction for small sample sizes to the AIC.  R2 is the amount of variation 
explained by each model and DF is the number of degrees of freedom.  ΔAIC 

is the difference in AICc scores between models.  Models with ΔAIC < 4 were 

selected for weighted model averaging.  Akaike weight is the relative 
likelihood of each model within the subset of models selected.  Importance is 
the relative importance of predictor variables and is the sum of Akaike weights 
across all models including that predictor. 

 

Model rank 

  

 

 

1 2 3 Importance 

Distribution type • • • 1 

Log10 UQ dispersal ability (km) • • • 1 

Range change (1970-2012) 
 

• 
 

0.188 

Habitat breadth 
  

• 0.147 

R2 0.590 0.596 0.590 - 

DF 6 7 7 - 

AICc 358.637 361.170 361.660 - 

ΔAIC 0 2.533 3.024 - 

Akaike weight 0.666 0.188 0.147 - 
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Figure 2.4  Predictive performance of ten downscaling models for 38 British 
Odonata species.   

Each boxplot represents the distribution of mean absolute percentage errors 
in predictions at 25, 4, and 1 km2 for 38 species.  Mean absolute percentage 

errors for each species are calculated as 
𝟏

𝒏
∑

|𝒑𝑨,𝒊
𝒑𝒓𝒆𝒅

−𝒑𝑨,𝒊
𝒐𝒃 |

𝒑𝑨,𝒊
𝒐𝒃 . 𝟏𝟎𝟎𝒏

𝑨=𝟏 , where  𝒑𝑨,𝒊
𝒑𝒓𝒆𝒅

 

and 𝒑𝑨,𝒊
𝒐𝒃  are the predicted and observed occupancy at grain A for species 𝒊 

and 𝒏 is the number of spatial grains for which there are predictions (𝒏 =  𝟑).  

The solid line in the centre of the boxes is the median % error and the box is 
the interquartile range (25th and 75th percentiles).  The solid lines are the 
range of the data and the black points are outliers.  Models are ordered by the 
number of species for which they gave the best overall predictions (Table 
2.1). 

 

The percentage errors of Hui model downscaling predictions at the 1km2 grain were 

used to investigate species-level trait correlates of downscaling predictive accuracy.  

The estimate of lambda from the phylogenetically controlled analysis was zero, 

implying no tendency for closely-related species to have similar downscaling error 

at the 1km2 grain.  Therefore, I proceeded with model averaging of linear models.  

The top three models, ranked by AICc , explained between 0.590 and 0.596 of the 

variation in downscaling predictions among species (Table 2.2).  Distribution type 

and dispersal ability were the most important predictors of Hui model downscaling 

error and were present in all three models with ΔAIC < 4 (Table 2.2).  Percentage 

error for species with localised-aggregated distributions, localised- sparse  
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Fig. 2.5  Relative effect sizes of species-level traits on the percentage error of 
Hui model downscaling predictions.   

Standardised β is the standardised parameter estimate derived from weighted 

model averaging across three linear models with AICc < 4.  Each variable is 
rescaled to a mean of 0 and a standard deviation of 1 for comparison of effect 
sizes among traits.  The reference group for Distribution type is Climatic 
Range Limit, which has a standardised parameter estimate of 0.  The 
percentage error of downscaling predictions was significantly lower for the 
three distribution types shown than for the species with a climatic range limit.  
Error bars are the 95% confidence intervals of the mean of the standardised 

parameter estimates.   

 

distributions and widespread distributions were, on average, 35.6, 52.8 and 36.8 

lower than climatic range limited species, respectively.  The 95% confidence 

intervals of the parameter estimates for these three distribution types did not 

incorporate zero (Fig. 2.5).  A unit increase in a species’ log10 dispersal ability 

increased percentage error of downscaling predictions by, on average, 89.8 

(Supplementary Material section 2.7.9).  The 95% confidence intervals for the 

dispersal ability parameter estimate did not incorporate zero (Fig. 2.5).  Habitat 

breadth was present in two of the four best models and had lower relative 

importance in predicting downscaling error.  Range change was present in one of 

the top three ranked models (Table 2.2), increasing the amount of variation in error 

explained by less than one percent.  There was a weak positive effect of range 
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change on the percentage error of downscaling predictions but the 95% confidence 

intervals for this parameter incorporated zero.  Habitat breadth had the lowest 

relative importance and the effect size was close to zero (Table 2.2; Fig. 2.5). 

2.5  Discussion 

This comparison of methods for downscaling coarse-grain atlas data has produced 

four notable results.  First, I have observed sigmoidal OARs for many of the 38 

species, a shape that has not previously been reported.  Second, extrapolating the 

OAR across two orders of magnitude delivers sensible estimates of fine-grain 

occupancy, even for highly mobile insects.  Third, the Hui model outperforms nine 

other downscaling models.  Finally, I have shown that downscaling accuracy varies 

systematically with species traits in Odonata.  These findings have several 

implications and applications for how distributional data are used across scales. 

The two–parameter Hui model outperforms nine other downscaling models, three of 

which have an additional parameter.  Moreover, it requires data at only one spatial 

grain.  The Hui model has previously given accurate predictions of occupancy for 

Drosophila species in a mesocosm experiment (Hui et al. 2006) and predictions of 

the regional-scale abundance of southern African bird species (Hui et al. 2009).   

The success of the Hui model reflects that it is the only model tested here to predict 

an OAR with a slope that becomes shallower at finer grains.  The OAR is typically 

convex at coarse grains for widespread species (approaching saturation) and it is 

this combination of convex at coarse grains and concave at fine grains that 

generates the overall sigmoidal relationship.  This property indicates that individuals 

are most aggregated at the finest grain (i.e.1km2), perhaps reflecting the 

characteristic grain of British wetlands and the dependence of Odonata on 

freshwater for reproduction.  The fragmented pattern of freshwater bodies in the 

landscape would also explain the steeper slope of the OAR at intermediate grains.  

Observed OARs for Barro Colorado Island tree species (He & Condit 2007), 

Alaskan tree species (Lennon et al. 2002) and British plant species (Kunin 1998) do 

not consistently show the sigmoidal patterns seen here for British Odonata. 

However successful predictions for Odonata do not imply that the Hui model is 

constrained to produce sigmoidal OARs, It will be important to investigate the 

generality of a sigmoidal OAR (and, therefore, the generality of the Hui model’s 

success) among taxa without strong habitat associations.   

Variation in the shape of the OAR between studies and taxa (and variation in model 

performance) could also reflect the window of scales through which the OAR is 
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viewed.  Dispersal, biotic interactions, disturbances and habitat availability affect 

the intensity of intraspecific aggregation (and therefore the slope of the OAR) at 

characteristic scales (Hortal et al. 2010; Procheş et al. 2010).  It is possible that the 

range of scales used in this study and those in Kunin (1998a), He & Condit (2007a) 

and Lennon et al. (2002) are not sufficiently broad to capture the full range of 

variation in the slope of the OAR.  My results suggest that the shape of the OAR 

may be more complex when viewed across the full range of scales.  This mirrors 

the development of theory describing the slope of the SAR.  Crawley and Harral 

(2001) observed multiple phases of increase and plateau in the species-area 

relationship (SAR) for vascular plants from 0.01m2 to 110ha.  More recently, the 

assumed shape of the SAR has shifted from power-law to triphasic (Drakare et al. 

2006; Sizling et al. 2011; Storch et al. 2012), while the assumed shape of the OAR 

has developed from linear (reflecting a fractal distribution across scales: Kunin, 

1998) to concave down (reflecting saturation in a finite study area: Azaele et al., 

2012) to sigmoidal (this study)   The theory of OAR and SAR are not merely 

developing in parallel; the two patterns are linked, conceptually (McGill 2010b).  

Summing species’ occupancies at each grain provides an estimate of the mean 

number of species for a given area (Sizling & Storch 2007).  By varying the area, 

we therefore obtain the SAR and may be able to infer properties of the SAR from 

the OAR.  

The shape of the predicted OAR depends on each model’s depiction of intraspecific 

aggregation.  Spatial structure can be incorporated into OAR models in spatially 

implicit way (describing spatial variance only) or a spatially explicit way (e.g. pair 

correlation functions) (Wiens 2000; Hui & McGeoch 2007; Hui et al. 2010; McGill 

2011).  Spatially explicit information has been identified as a key property improving 

the predictions of several biodiversity patterns (Hui et al. 2006; Morlon et al. 2008; 

Conlisk et al. 2009; Hui 2009).  My results are consistent with this trend: the Hui 

model is the only candidate model to incorporate information about the relative 

positions of occupied cells. In fact, the downscaling formula for the Thomas model, 

as derived in Azaele et al. (2012), can incorporate spatially explicit information, like 

the Hui model, but here was implemented without using such information. When 

including spatially explicit information, e.g. by calculating the correlation function, 

the model might be expected to deliver downscaling predictions that are 

comparable with the Hui model.  A second property of the Hui model likely to be 

associated with its predictive accuracy is the assumption that intraspecific 

aggregation is strongest at the finest spatial grains and approaches random at 

coarse grains, while spatially implict models typically predict the reverse (Hui et al. 
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2006).  Empirical evidence is generally consistent with the assumptions of the Hui 

model (Hartley et al. 2004; Wiegand et al. 2007; Procheş et al. 2010).  The shape of 

the OARs I observed indicate that Odonata species are generally more aggregated 

at fine grains (higher occupancy) than is assumed by the other downscaling 

models, all of which consistently under-predict fine-grain occupancy (with the 

exception of the Power Law).  The poorer predictions for range limited species are 

also consistent with the Hui model assumption of weaker aggregation at coarse 

grains.  Climatic range limits represent strong intraspecific aggregation at the 

coarsest scales, thus violating one of the assumptions of the Hui model (Hui et al. 

2006).      

While the predictive accuracy of downscaling models is encouraging, there are a 

number of ways in which my results can inform downscaling improvements.  All 

downscaling models, as fitted here, do not incorporate environmental information 

from the study region.  Although the Hui model uses spatially explicit information, its 

predictions are spatially-implicit.  A potentially useful approach to improving 

downscaling predictions would be to integrate the concepts used in species 

distribution modelling (SDM) with downscaling models.   The incorporation of 

climatic or habitat correlates would surely improve the errors associated with Hui 

model predictions for species with a climatic range limit.  Moreover, SDMs would 

allow us to predict where occupied cells are likely to be.  There have been previous 

attempts to downscale SDMs with varying success (Araújo et al. 2005b; McPherson 

et al. 2006; Niamir et al. 2011), but only one method has attempted to incorporate 

the spatial structure captured by the OAR  (Keil et al. 2012a).  The reverse 

approach, of integrating SDMs into downscaling models, has not been attempted, 

but offers great potential for deriving accurate predictions that are both fine-grain 

and spatially explicit.     

Accurate downscaling models are one approach to monitoring range change at 

multiple spatial scales.  The slope of the OAR contains information about recent 

range expansion and contraction (Wilson et al. 2004; Pocock et al. 2006; Hui 2011).  

Moreover, time-slicing occurrence data and constructing the OAR for two or more 

time periods would predict changes in occupancy at multiple scales.  My results 

also suggest that downscaling may be a promising tool for estimating abundance 

over spatial extents that are too large to sample using traditional methods.   If 

accurate downscaling can be achieved at sufficiently fine grains that each occupied 

cell contains just one individual, then downscaling methods can be used to predict 

national-scale abundance (Kunin 1998) and to link population dynamics across 

scales.  However, scaling discontinuities (poor correlations between occupancy at 
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neighbouring spatial grains) have been identified at the grain of human land use 

and may present an obstacle to downscaling to abundance (Hartley et al. 2004; 

Webb et al. 2007).  The OARs obtained here do not extend to sufficiently fine grains 

to confirm whether the same scaling discontinuity can be seen within the Odonata.  

A useful exercise would be to investigate the degree of correlation between fine-

grain occupancy predictions and mean local abundance.  If this is sufficiently 

accurate, downscaling could provide a proxy for multi-site monitoring of 

populations.             

Whilst the DRN records are among the richest available datasets for exploring the 

OAR over two orders of magnitude, it is worth reflecting on the imperfections in 

these data. In particular, I have assumed that a single record within a 1 km2 grid cell 

reflects evidence that other species are absent. This is probably not the case at 100 

km2, which is the scale at which species atlases are traditionally published (BDS 

published a new atlas in 2014).  In reality, grid cells differ markedly in sampling 

intensity, and our estimates of occupancy for most species are likely to be 

systematically under-estimated at the finest grain.  It follows that I have over-

estimated the performance of eight underpredicting models and under-estimated 

the downscaling accuracy of the Hui model, which was the best-performing model 

overall and over-predicted at the finest scales (Fig. 2.2; Fig. 2.3).     

I have tested four hypotheses about interspecific variation in the predictive accuracy 

of downscaling models: collectively these traits explained more than half the 

observed variation.  In particular, dispersal ability and distribution type may be of 

use for identifying species for which downscaling predictions are unlikely to be 

successful.  Species with a range limit in Britain were less well-predicted than other 

distribution types.  Climatic range limits reflect coarse-scale environmental 

heterogeneity.  In fact, no downscaling model is currently equipped to incorporate 

information about environmental heterogeneity.  The Hui model assumes that 

intraspecific aggregation becomes weaker at coarse grains, therefore range limited 

species violate one of the assumptions of the Hui model (Hui et al. 2006).  A 

climatic range limit also generates species OARs that approach the scale of 

endemism (as defined in Fig. 2.1), which contains little information for the purposes 

of downscaling.  One way to address this would be to calculate the Hui parameters, 

P+ and Q+/+, while excluding cells outside of the range margin, thereby avoiding the 

portion of the OAR that approaches the scale of endemism.    Downscaling 

predictions were more successful for species with limited dispersal abilities, and 

relatively poor for the most mobile species.  One reason could be that mobility 

reduces aggregation at the finer scales, thus violating the Hui model assumption 
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that spatial structure is random at the coarsest grains and increasingly patchy at 

fine spatial grains.  Alternatively dispersive species experience higher rates of 

population turnover (Simmons & Thomas 2004; Pöyry et al. 2009; Hill et al. 2011; 

Hof et al. 2012; Jaeschke et al. 2013) and vagrancy (individuals recorded during 

migration between suitable habitat patches), such that records collated over many 

years overestimate the average number of occupied fine-grain cells in any one 

year.  Like many of the predictions that emerge from macroecological theory, I have 

assumed the data are static and do not incorporate temporal dynamics (Fisher et al. 

2010; White et al. 2010). 

Describing species’ spatial structure is central to understanding and linking 

biodiversity patterns and informing our conservation efforts, but atlas data is 

typically too coarse to address these issues effectively.  I have demonstrated that 

downscaling models can provide accurate estimates of fine-grain occupancy for 

highly mobile insects, observed a sigmoidal OAR for many species and found the 

Hui model to provide the most accurate downscaling estimates.  In doing so, I have 

identified some properties that explain the success and failure of downscaling 

models and which will contribute to their development and future application to a 

range of theoretical and conservation issues. 
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2.7 Supplementary Material 

2.7.1 Odonata species  

Table S2.1  The 38 resident British Odonata species  

Latin name Common name Authority Sub-order Family 

Calopteryx splendens Banded Demoiselle Harris Zygoptera Calopterygidae 

Calopteryx virgo Beautiful Demoiselle Linnaeus Zygoptera Calopterygidae 

Lestes sponsa Emerald Damselfly Fabricius Zygoptera Lestidae 

Lestes dryas Scarce Emerald Damselfly Kirby Zygoptera Lestidae 

Platycnemis pennipes White-legged Damselfly Pallas Zygoptera Platycnemididae 

Pyrrhosoma nymphula Large Red Damselfly Schmidt Zygoptera Coenagrionidae 

Ceriagrion tenellum Small Red Damselfly Villers Zygoptera Coenagrionidae 

Coenagrion mercuriale Southern Damselfly Charpentier Zygoptera Coenagrionidae 

Coenagrion hastulatum Northern Damselfly Charpentier Zygoptera Coenagrionidae 

Coenagrion puella Azure Damselfly Linnaeus Zygoptera Coenagrionidae 

Coenagrion pulchellum Variable Damselfly Lohmann Zygoptera Coenagrionidae 

Enallagma cyathigerum Common Blue Damselfly Charpentier Zygoptera Coenagrionidae 

Ischnura pumilio 

Scarce Blue-tailed 

Damselfly Charpentier Zygoptera Coenagrionidae 

Ischnura elegans Blue-tailed damselfly 
Vander 
Linden Zygoptera Coenagrionidae 

Erythromma najas Red-eyed Damselfly Hansemann Zygoptera Coenagrionidae 

Erythromma viridulum Small Red-eyed Damselfly Charpentier Zygoptera Coenagrionidae 

Brachytron pratense Hairy Dragonfly Müller Anisoptera Aeshnidae 

Aeshna caerulea Azure Hawker Strom Anisoptera Aeshnidae 

Aeshna juncea Common Hawker Linnaeus Anisoptera Aeshnidae 

Aeshna mixta Migrant Hawker Latreille Anisoptera Aeshnidae 

Aeshna cyanea Southern Hawker Müller Anisoptera Aeshnidae 

Aeshna grandis Brown Hawker Linnaeus Anisoptera Aeshnidae 

Aeshna isosceles Norfolk Hawker Müller Anisoptera Aeshnidae 

Anax imperator Emperor Dragonfly Leach Anisoptera Aeshnidae 

Gomphus vulgatissimus Club-tailed Dragonfly Linnaeus Anisoptera Gomphidae 

Cordulegaster boltonii Golden-ringed Dragonfly Selys Anisoptera Cordulegastridae 

Cordulia aenea Downy Emerald Linnaeus Anisoptera Corduliidae 

Somatochlora metallica Brilliant Emerald 

Vander 

Linden Anisoptera Corduliidae 

Somatochlora arctica Northern Emerald Zetterstedt Anisoptera Corduliidae 
Libellula 
quadrimaculata Four-spotted Chaser Linnaeus Anisoptera Libellulidae 

Libellula fulva Scarce Chaser Müller Anisoptera Libellulidae 

Libellula depressa Broad-bodied Chaser Linnaeus Anisoptera Libellulidae 

Orthetrum cancellatum Black-tailed Skimmer Linnaeus Anisoptera Libellulidae 
Orthetrum 

coerulescens Keeled Skimmer Fabricius Anisoptera Libellulidae 

Sympetrum striolatum Common Darter Charpentier Anisoptera Libellulidae 
Sympetrum 
sanguineum Ruddy Darter Muller Anisoptera Libellulidae 

Sympetrum danae Black Darter Sulzer Anisoptera Libellulidae 

Leucorrhinia dubia White-faced Darter 

Vander 

Linden Anisoptera Libellulidae 
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2.7.2  Threshold  species list length for inclusion of cells  

There are a number of sources of bias when estimating the occupancy-area 

relationship (OAR) from unstructured records of species’ occurrences.  It is 

important to acknowledge that the species recorded in a cell are not always a 

complete list of those species present.  A single species may have been recorded 

because it is particularly charismatic or rare, while a number of more common 

species present are not recorded.  As such, common species tend to be under-

represented, while rare species are over-represented.  One method of addressing 

this bias is to exclude cells with a species list length falling below some threshold, 

hence excluding cells which are likely to be an incomplete list of the species 

present.  However, this is also problematic as the number of cells available for the 

analysis declines steeply as the threshold species list length becomes higher.  The 

list length results in large losses of cells at fine-grains and very little loss of cells at 

coarse grains (Fig. S2.1), therefore proportion occupancy at the finest spatial grains 

increases rapidly as the list length threshold gets higher.  For some species this 

results in a spurious non-monotonic OAR when the list length threshold is high (e.g. 

Somatochlora metallica at list length 6, Fig. S2.2).  Moreover, the cells excluded are 

not spatially random.  In fact, cells that are poorly sampled and those that are less 

speciose are more likely to be lost as the threshold species list length is increased.  

Odonata diversity decreases from South to North in Britain, as does sampling 

intensity.  Therefore, higher list length thresholds for inclusion of cells introduce 

spatial biases into our estimates of distribution size: cells are more likely to be 

excluded in the North, so the distribution size will be heavily influenced by the most 

species-rich and well-sampled regions in the south-east (Fig. S2.3).  The choice of 

the threshold species list length for including cells is, therefore, a trade-off between 

these two sources of bias (under-recording of common species and spatial bias in 

estimates of distribution size).  Our choice of a list length of >= 1 for inclusion of 

cells in the analysis reflects this trade-off.  In any case, the choice of list length does 

not substantially affect the observed OARs for any species in our analysis (Table 

S2.1). 
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Fig. S2.1  Decline  in the number of cells available for analysis as the species 
list length threshold increases. 
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Fig. S2.3  Spatial patterns of A) species richness and B) sampling intensity in 
British Odonata records at the 100km2 grain.   

Species richness is the number of species recorded in each 100km2 cell 
between 1990 and 2012.  Sampling intensity (# 1km2 cells) is measured as 
the number of 1km2 cells visited within each 100km2 cell between 1990 and 

2012. 
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Table S2.2  Correlations between OARs estimated using a list length of 1 and 
six other list length thresholds for the 38 British Odonata species   

 
List length threshold 

Species 0 1 2 3 4 5 6 

Aeshna caerulea 0.999901 1 0.999997 0.999972 0.999971 0.999904 0.999888 

Aeshna cyanea 0.993162 1 0.998907 0.996996 0.993226 0.987672 0.979178 

Aeshna grandis 0.982596 1 0.992985 0.973081 0.919701 0.798752 0.486339 

Aeshna isosceles 0.998582 1 0.999777 0.999285 0.998532 0.997285 0.99517 

Aeshna juncea 0.999029 1 0.999938 0.999916 0.999937 0.99987 0.999819 

Aeshna mixta 0.990633 1 0.998336 0.995696 0.990177 0.981692 0.966379 

Anax imperator 0.991143 1 0.997349 0.9899 0.97193 0.935577 0.861896 

Brachytron pratense 0.998318 1 0.999754 0.999303 0.998424 0.997019 0.995226 

Calopteryx splendens 0.99186 1 0.999436 0.998632 0.997245 0.99469 0.992184 

Calopteryx virgo 0.996661 1 0.999799 0.999416 0.998547 0.997343 0.996147 

Ceriagrion tenellum 0.999394 1 0.999906 0.999711 0.999366 0.998862 0.998133 

Coenagrion hastulatum 0.99994 1 0.999992 0.999979 0.999953 0.999925 0.999914 

Coenagrion mercuriale 0.999724 1 0.999965 0.999886 0.999782 0.999643 0.99954 

Coenagrion puella 0.989157 1 0.995866 0.985878 0.965299 0.930885 0.871851 

Coenagrion pulchellum 0.999804 1 0.999978 0.999944 0.999875 0.999762 0.999667 

Cordulegaster boltonii 0.997676 1 0.999941 0.999915 0.999885 0.999869 0.99991 

Cordulia aenea 0.999402 1 0.999903 0.999703 0.999359 0.998824 0.998085 

Enallagma cyathigerum 0.997772 1 0.999742 0.999729 0.999288 0.998402 0.997047 

Erythromma najas 0.996892 1 0.999445 0.998407 0.995899 0.991167 0.983815 

Erythromma viridulum 0.999388 1 0.999934 0.999835 0.999605 0.999199 0.99889 

Gomphus vulgatissimus 0.9987 1 0.999843 0.99959 0.999304 0.999029 0.998785 

Ischnura elegans 0.991948 1 0.996968 0.991903 0.985556 0.978561 0.96907 

Ischnura pumilio 0.999736 1 0.999968 0.999919 0.999814 0.999656 0.999538 

Lestes dryas 0.999667 1 0.999967 0.999907 0.999802 0.999651 0.999527 

Lestes sponsa 0.999345 1 0.999954 0.999857 0.999534 0.998907 0.99801 

Leucorrhinia dubia 0.999953 1 0.999995 0.999986 0.999977 0.999956 0.999939 

Libellula depressa 0.997274 1 0.999492 0.998307 0.995429 0.989021 0.977838 

Libellula fulva 0.999266 1 0.999922 0.999786 0.999538 0.999115 0.998809 

Libellula quadrimaculata 0.998981 1 0.999923 0.999861 0.999679 0.999218 0.998999 

Orthetrum cancellatum 0.997004 1 0.999541 0.998794 0.997107 0.994206 0.990095 

Orthetrum coerulescens 0.99931 1 0.999936 0.999832 0.999721 0.999543 0.999488 

Platycnemis pennipes 0.996231 1 0.99937 0.998478 0.997396 0.996251 0.995777 

Pyrrhosoma nymphula 0.998674 1 0.999712 0.999385 0.998523 0.99724 0.995775 

Somatochlora arctica 0.999882 1 0.999988 0.999976 0.999919 0.999886 0.999902 

Somatochlora metallica 0.999502 1 0.999918 0.999726 0.999401 0.998885 0.998081 

Sympetrum danae 0.999462 1 0.999972 0.999913 0.99977 0.999705 0.999653 

Sympetrum sanguineum 0.996054 1 0.999247 0.997869 0.994942 0.989709 0.98292 

Sympetrum striolatum 0.991396 1 0.998239 0.996886 0.99492 0.993721 0.992534 
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2.7.3  Threshold proportion land for inclusion of cells 

An additional source of bias is the inclusion of cells with large proportions of sea.  

Following the species-area relationship, fewer species will be present in a cell 

containing a greater proportion of sea.  This introduces a negative bias in 

distribution size.  This can be addressed by excluding cells with the proportion of 

land below a specified threshold.  However, the number of cells included in the 

analysis declines rapidly as the threshold of land required increases, particularly at 

coarse grains, where large proportions of cells in the North and South West are 

sea.  When the threshold land is set very high, the disproportionate loss of coarse 

grain cells leads to a positive bias in coarse-grain occupancy.  Our choice of 0.3 as 

the threshold proportion of land required for inclusion of a cell is a trade-off between 

the total number of cells in the analysis at each spatial grain and the total amount of 

land represented by these cells (Fig. S2.4).               

The threshold proportion of land and the threshold species list length for inclusion of 

a cell can also drive different patterns of bias at different spatial grains.  In 

particular, if disproportionately more cells are excluded at fine grains due to the 

chosen thresholds, then occupancy at fine grains can be spuriously higher than at 

coarser grains, generating a non-monotonic OAR.  This is clearly not possible and 

cannot be fitted by downscaling models. 

Fig. S2.4  Trade-off between the total proportion land in the study region and 
proportion of cells included in the analysis.   

The vertical dashed lines are the threshold proportion of land we required to 
include cells in the analysis (0.3).  The same threshold was used for cells at 
all spatial grains. 
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2.7.4  Details of downscaling models 

The formulae and notation of the ten downscaling models are defined below.  The 

Hui model (model 1) uses information at single spatial grain, while Models 2 to 9 

are fitted to multiple coarse grains to estimate scale invariant parameters from 

which the OAR is extrapolated to finer grains.  Consequently, models 2 to 9 are 

expressed in terms of pA, the proportion of occupied cells at grain A in a study 

region of size A0.  Following Azaele et al. (2012), the free parameters of 

downscaling models 2 to 9 (shown in bold after each formula) were estimated for 

each species by numerical minimisation of the Euclidean norm of predicted 

occupancy in log space,  
1

𝑁
∑ (log 𝑝𝐴,𝑖

𝑝𝑟𝑒𝑑
− log𝑝𝐴,𝑖

𝑜𝑏)
2𝑔

𝐴=1 , where 𝑝𝐴,𝑖
𝑝𝑟𝑒𝑑

 and 𝑝𝐴,𝑖
𝑜𝑏  are the 

predicted and observed occupancy at grain A for species i and g is the number of 

grains used to parameterise the model.  To estimate the parameters of the Thomas 

model, a simulated annealing optimisation algorithm was specified to ensure a 

robust search for the global minimum (Bolker 2008).  All optimisation was carried 

out in Mathematica 9.0 Student Edition.  It should be noted that the Thomas model, 

like the Hui model, can be used to downscale with occupancy data at a single 

spatial grain, provided that information about the positions of occupied cells is used 

to parameterise the model. 

1)  Hui 

The Hui model (Hui et al. 2006; Hui 2009) was developed by to describe the spatial 

scaling of species occupancy.  The scaling pattern uses conditional probabilities 

(joint-count statistics) as well as probability of presence to describe the distribution 

of a species within a presence-absence grid.  The scaling pattern describes how 

these probabilities depend on a percolation process as neighbouring fine-grain cells 

are combined into larger coarse-grain cells.  Here, we use the model to predict the 

probability of occupancy at fine grains (the target grain), using observed occupancy 

data at a coarser reference grain.  The relationships between these probabilities 

can be defined using Bayes’ theorem, such that all conditional probabilities can be 

expressed in terms of two pieces of information estimated from spatially referenced 

occurrence data at the reference grain: in this case, species atlas data at 10km x 

10km (100km2).  The first piece of information required is occupancy, the probability 

that a randomly chosen cell is occupied; the second, a measure of spatial 

aggregation, is the conditional probability that, given a cell is occupied, a randomly 

chosen cell adjacent to it is also occupied.  The notation for these probabilities and 

the joint-count statistics are defined below, along with the relationships between 

them.  We use upper case letters to refer to observed probabilities at the reference 
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grain and lower case letters to refer to estimated probabilities at the target (fine) 

grain. 

𝑷+: observed probability of presence, obtained at the reference grain of the data 

(100 km2) 

𝑸+|+: observed conditional probability, obtained at the reference grain of the data, 

that a randomly chosen cell adjacent to a given occupied cell is also occupied.  

𝑷𝟎: observed probability of absence at the reference grain.  P0 = 1 − 𝑃+  

𝑸𝟎|𝟎: , observed conditional probability that a randomly chosen cell adjacent to an 

empty cell is also empty.  This can be calculated from 𝑄+|+ and 𝑃+ using Bayes’ 

theorem 𝑄0|0 = 1 − ((1 − 𝑄+|+) 𝑃+ (1 − 𝑃+⁄ )     

𝒑+ : estimated probability of presence at the finer, target grain 

𝒒+|+: estimated conditional probability at the finer, target grain that a randomly 

chosen cell adjacent to a given occupied cell is also occupied  

𝒑𝟎: estimated probability of absence at the finer, target grain, 1 − 𝑝+ 

𝒒𝟎|𝟎 : estimated conditional probability, at the finer target grain, that a randomly 

chosen cell adjacent to an empty cell is also empty  

𝒒𝟎|+: estimated conditional probability, at the finer target grain, that a randomly 

chosen cell adjacent to an occupied cell is empty 

𝒒+|𝟎: estimated conditional probability, at the finer target grain, that a randomly 

chosen cell adjacent to an empty cell is occupied 

𝒃𝟎: conditional probability that a cell with two empty neighbours is also empty at the 

finer, target grain   

n : an index of spatial grain (or the linear grain size).  One cell at the reference 

grain has an area of n2 cells at the finer, target grain (e.g. to estimate occupancy at 

2km x 2km using the reference grain of 10km x 10km, n = 10/2 = 5).  The value of n 

does not need to be an integer. 

The formula we use to estimate occupancy with the Hui model is derived from 

equations 6 and 7 in Hui (2009): 

𝑃0 = 𝑝0 . 𝑞0|0
2(𝑛−1) . 𝑏0

(𝑛−1)2
 (Eqn. A)       
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𝑄0|0 = 𝑞0|0
𝑛. 𝑏0

𝑛(𝑛−1)
 (Eqn. B)       

  

The two unknown terms, 𝑞0|0 and 𝑏0 can be expressed in terms of 𝑝0 ,  𝑃0  and 𝑄0|0.  

This is achieved for the term 𝑄0|0 by rearranging equations 6 and 7 equal to b0 (and 

hence to each other).  This equation can then be expressed in terms of the 

unknown term: 

𝑞0|0 = 𝑝0
−
1
𝑛−1  . 𝑃0

1
𝑛−1 .𝑄0|0

−1
𝑛  (Eqn. C)       

  

By substituting equation C into Bayes’ theorem relating the conditional probabilities 

we can express the conditional probability 𝑞0|+ in terms of 𝑝0 ,  𝑃0and 𝑄0|0: 

𝑞0/+  =  
𝑝0(1−𝑝0

−
1
𝑛−1 𝑃0

1
𝑛−1 𝑄0|0

−1
𝑛 )

1−𝑝0
 (Eqn. D) 

We can now express b0 in terms of 𝑝0 ,  𝑃0and 𝑄0|0, using equation 3 in Hui (2009): 

𝑏0 =
𝑞0|0

2.𝑝0

𝑞0|0
2.𝑝0+ 𝑞0|+

2.𝑝+
 (Eqn. E) 

Equations C and D are substituted into equation D to estimate the unknown 𝑏0: 

𝑏0 =
(𝑝0 .

1− 2
𝑛−1 . 𝑃0

2
𝑛−1  .𝑄0|0

−2
𝑛 )

(𝑝0
1− 2

𝑛−1 . 𝑃0
2
𝑛−1 .𝑄0|0

−2
𝑛 + 

𝑝0  
2 . (1 − 𝑝0

− 1
𝑛−1 . 𝑃0

1
𝑛−1 .𝑄0|0

−1
𝑛 )

2

1 − 𝑝0
)

 

Finally, the Hui model scaling relationship in Eqn. A can be rewritten, substituting in 

𝑞0|0  and 𝑏0 as defined in equations C and E to obtain: 

 𝑃0 = 𝑝0. (𝑝0
−
1
𝑛−1 . 𝑃0

1
𝑛−1 .𝑄0|0

−1
𝑛 )

2(𝑛−1)

(

 
 
 
 

(𝑝0
1−

2
𝑛−1 .  𝑃0

2
𝑛−1  .  𝑄0|0

−2
𝑛 )

(

 
 
𝑝0
1−

2
𝑛−1 . 𝑃0

2
𝑛−1 . 𝑄0|0

−2
𝑛 + 

𝑝0  
2.(1−𝑝0

−
1
𝑛−1  .  𝑃0

1
𝑛−1 .  𝑄0|0

−1
𝑛 )

2

1−𝑝0

)

 
 

)

 
 
 
 

(𝑛−1)2

(Eqn. F) 

 
Note that  𝑝0 in equation F is the only unknown variable.  In the absence of an 

analytical solution, the value of  𝑝0 is estimated by finding the numerical root of the 

above equation, using an iterative algorithm to find successively better 

approximations to the root.  The predicted value of 𝑝0  is that which satisfies the 

relationship above for the observed values of 𝑃0  and 𝑄0|0 at the reference grain.  

Predicted occupancy is then 𝑝+= 1 - 𝑝0. 
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2)   Nachman 

𝑝𝐴 = 1 − 𝑒
−𝑐𝐴𝑧 

c : constant 
z : constant 
 
3)  Power Law 
 𝑝𝐴 = 𝑐𝐴

𝑧  

c : constant 
z : constant 
 
4)  Logistic 

𝑝𝐴 =
𝑐𝐴𝑧

1+ 𝑐𝐴𝑧
 ,  

c : constant 
z : constant 
 
5)  Thomas 

𝑝𝐴 = 1 − exp {−𝜌∫ [1 − exp (−µ ∫ 𝑘(||𝑐 − 𝑥||)
𝐴

𝑑𝑥)]𝑑𝑐}  

ρ : intensity of the Poisson distribution of cluster centres in a Thomas spatial point 

process 
σ2: variance of the bivariate normal distribution of points around cluster centres   
μ : mean number of points around each cluster centre 
 
6) Finite Negative Binomial 

𝑝𝐴 = 1 −  
Г(𝑁+

𝐴0𝑘

𝐴
−𝑘)Г(

𝐴0𝑘

𝐴
)

Г (𝑁+
𝐴0𝑘

𝐴
) Г(

𝐴0𝑘

𝐴
− 𝑘)

  

N : total number of individuals  

A0 : total area of study region 
 
7)  Generalised Negative Binomial 

𝑝𝐴 = 1 −  (1 +
𝑐𝐴𝑧

𝑘
)
−𝑘

 

c : constant 
z : constant 
k: overdispersion parameter of a negative binomial distribution 
 

8) Improved negative binomial 

𝑝𝐴 = 1 −  [𝑐(𝛾𝐴)
𝑏−1]

 
𝛾𝐴

1−𝑐(𝛾𝐴)𝑏−1 

γ: mean density  
b: constant 
c: constant 
 
9) Negative Binomial 

𝑝𝐴 = 1 −  (1 +
𝛾𝐴

𝑘
)
−𝑘

 

γ: mean density 
k: overdispersion parameter of the negative binomial distribution 
 
10) Poisson 

𝑝𝐴 = 1 − 𝑒
−𝛾𝐴 

γ: mean density 
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2.7.5  Species distribution type 

In the trait analysis, the predictor distribution type is intended to capture two 

components of species’ distributions: the size of the distribution and the spatial 

arrangement of occupied cells.  Distribution type was initially classified by eye, 

using distribution maps of British Odonata at the 100km2 grain.  Four discrete 

categories were identified: Climatic Range Limit (a large range size with a Northern, 

Southern, Continental (South Easterly) or Oceanic (Westerly) distribution), 

Widespread (a large range size with a distribution throughout British mainland), 

Local-aggregated (a small range size, with a largely contiguous distribution), and 

Local-sparse (a small range size with a disjunct distribution).  In order to confirm 

that these categories were borne out in the data, we plotted each species on two 

axes quantifying the distribution size (area of occupancy) and spatial arrangement 

of occupied cells (residuals of the relationship between occupancy and fractal 

dimension (Wilson et al. 2004) for grains 100km2 and 10000km2).  Seven species 

changed category (Fig. S5). 

Fig. S2.5  Classification of species’ distribution type for the trait analysis.   

The colour of circles indicates the initial classification of distribution type.  Blue 
= widespread, black = climatic range limit,  red  = local-aggregated, yellow = 
local-sparse.  The dashed lines denote the revised division of species into the 
four categories of distribution type, based on quantifying distribution size and 
the spatial arrangement of occupied cells.  The labels in the margins define 
the four categories,  L = local (occupancy < 20 000 km2), RL = range limited 
(20 000 km2 < occupancy < 125 000 km2), W = widespread (occupancy > 125 
000 km2), Ag = aggregated (residual D > 0 ), Sp = sparse (residual D < 0). 
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2.7.6  Upper quartile of dispersal distances 

In the absence of field-based dispersal estimates for many species of British 

Odonata, dispersal estimates were taken from R Fitt.   Dispersal distances were 

inferred from the distances of newly colonised 1km2 cells in each year from the 

nearest previously occupied cell.   The 75th percentile of all dispersal distances 

between 1991 and 2012 was used as the measure of species-level dispersal in the 

trait analysis (75% of newly colonised cells for the focal species were within this 

distance of the nearest occupied cell).  False absences can lead to overestimates 

of dispersal from distribution data when high percentiles from the dispersal kernel 

are used to infer dispersal.  However, lower percentiles conceal much of the 

interspecific variation in dispersal, because most individuals of any species will 

disperse very short distances, while only a few individuals will disperse far.  Our use 

of the 75th percentile of the dispersal kernal reflects this trade-off between the 

stronger signal (more interspecific variation) and greater noise (less certainty in the 

estimates of dispersal) at the highest percentiles of the dispersal kernel (see Fig. 

S2.6). 
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Fig. S2.6  Effect of species’ dispersal on the percentage error of downscaling 

predictions using different quantiles of the dispersal kernel as the 
estimate of dispersal distance   

Red circles are Zygoptera (damselflies) and black circles are Anisoptera 
(dragonflies), indicating there is no clear phylogenetic signal in dispersal 
distance, despite the body size differences between dragonflies and 
damselflies.  

 

2.7.7  Odonata phylogeny 

To control for phylogenetic non-independence among the traits of related taxa, we 

attempted to build a phylogeny based on genetic distances for all 38 British 

Odonata species in the analysis.  Due to a lack of suitable genetic data for a large 

number of Odonata species and low confidence in alignments, we instead used a 

phylogeny based on species taxonomy.  We converted the taxonomy (Suborder, 

Family, Genus, Species) into a tree with polytomies at each node and branch 

lengths set to 1 using the as.phylo function from the R package ape (Paradis et al. 

2004). 
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Table S2.3  Summary of percentage errors and absolute percentage errors of downscaling predictions 

Median, min and max are the absolute percentage error of downscaling predictions at three spatial grains.  Best is the number 
of species for which each model gave the best predictions (the lowest mean percentage error for each species). 

% errors 

Spatial Grain (km2) 25  4  1 

Model Median Min Max Best  Median Min Max Best  Median Min Max Best 

Hui 2.946 -29.347 24.097 12  22.548 -34.342 64.685 12  32.737 -39.094 102.467 15 

Nachman -0.299 -35.276 35.974 8  -13.044 -67.252 49.709 9  -36.33 -85.121 66.136 10 

Power Law 10.716 -34.304 43.698 4  16.924 -66.161 105.869 7  14.429 -83.639 126.543 5 

Logistic -8.188 -36.218 30.889 5  -40.254 -77.808 36.904 5  -62.254 -93.259 42.914 4 

Thomas -27.166 -75.158 44.877 2  -72.386 -94.513 74.985 1  -90.219 -98.518 28.74 3 

Finite Negative Binomial -35.67 -60.819 5.274 1  -78.67 -91.12 -0.835 2  -92.945 -97.591 -34.52 1 

Generalised Negative Binomial -7.142 -57.789 14.412 3  -34.711 -93.37 2.101 0  -58.524 -99.515 -2.521 0 

Improved Negative Binomial -9.629 -38.587 10.817 2  -37.629 -72.525 1.561 2  -62.436 -89.026 -3.476 0 

Negative Binomial -30.189 -64.27 4.584 1  -74.42 -92.094 -3.166 0  -90.989 -97.863 -37.531 0 

Poisson -67.962 -84.497 -46.648 0  -91.111 -96.759 -82.29 0  -97.181 -99.132 -93.859 0 

Absolute value of % errors 

Spatial Grain (km2) 25  4  1 

Model Median Min Max Best 
 

Median Min Max Best 
 

Median Min Max Best 

Hui 5.566 0.313 29.347 12  24.314 1.663 64.685 12  36.231 0.739 102.467 15 

Nachman 7.562 0.234 35.974 8  23.371 0.197 67.252 9  41.090 0.119 85.121 10 

Power Law 14.632 0.434 43.698 4 
 

29.901 0.202 105.869 7 
 

42.649 2.930 126.543 5 

Logistic 14.501 0.548 36.218 5  40.254 2.053 77.808 5  62.254 6.367 93.259 4 

Thomas 28.164 0.457 75.158 2  73.663 6.213 94.513 1  90.219 2.254 98.518 3 

Finite Negative Binomial 35.670 2.191 60.819 1 
 

78.670 0.835 91.120 2 
 

92.945 34.520 97.591 1 

Generalised Negative Binomial 7.416 0.240 57.789 3  34.711 0.209 93.370 0  58.524 2.521 99.515 0 

Improved Negative Binomial 10.725 0.363 38.587 2  37.629 0.080 72.525 2  62.436 3.476 89.026 0 

Negative Binomial 30.189 0.473 64.270 1 
 

74.420 3.166 92.094 0 
 

90.989 37.531 97.863 0 

Poisson 67.962 46.648 84.497 0  91.111 82.290 96.759 0  97.181 93.859 99.132 0 
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2.7.8  Comparison of downscaling models for British Odonata 

Model performance was assessed using the absolute values of percentage errors 

and the raw percentage errors of downscaling predictions for 114 species:grain 

combinations are shown in Table S2.3.  Absolute values of percentage errors are a 

better measure of overall predictive accuracy, as they avoid averaging across 

positive and negative errors with a model and cancelling out predictive error.  

However, raw percentage errors are also useful as they provide information about 

positive or negative bias in downscaling predictions. 

 

2.7.9  Trait analysis 

Table S2.4 Unstandardised parameter estimates for the trait analysis.   

We tested for an effect of four species-level traits on the predictive error of the 
Hui downscaling model using a linear model.  The global model was 
Percentage Error ~ Distribution type + log10 Dispersal ability + Range 
change+ Habitat breadth.  Weighted model averaging was used to obtain 
parameter estimates for each trait with the lower and upper 95% confidence 
intervals.  Parameter estimates are averaged across three models with ΔAIC 

< 4, weighted by the Akaike weights of each model.  The reference group of 
the factor distribution type is Climatic Range Limit.  The trait variables are 
ordered by decreasing relative importance. 

Parameter Estimate Lower 95% CI Upper 95% CI 

Intercept 0.725 -21.341 35.851 

Distribution type local-aggregated -35.626 -63.257 -7.995 

Distribution type local-sparse -52.763 -73.807 -31.719 

Distribution type widespread -36.795 -58.572 -15.017 

Log10 Dispersal ability (km) 89.792 0.222 0.752 

Range change (1970-2012) 68.007 -146.781 282.794 

Habitat breadth -0.042 -7.925 7.842 

 

Table S2.5  Generalised variance inflation factors (GVIF) for each of the 
predictor variables included in the global model of predictive 

downscaling error.   

GVIFs were obtained using the function vif in R package car (Fox & Weisberg 

2011). All GVIF values are < 4 indicating collinearity does not severely inflate 
the variance associated with parameter estimates. 

Predictor Generalised variance inflation factor (GVIF) Df GVIF (1/(2*Df)) 

Distribution type 2.276139 3 1.14692 

log10 Dispersal distance (km) 1.203343 1 1.09697 

Range change (1970-2012) 1.312466 1 1.145629 

No. habitat types 1.790005 1 1.33791 
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Table S2.6  Correlation matrix between pairs of traits included the global 
linear model of predictive downscaling error. 

Predictor 
Distribution 
type 

log10 
Dispersal 
distance (km) 

Range 
change No. habitat types 

Distribution type 1 0.28265 0.39481 0.655771 

log10 Dispersal distance (km) 0.28265 1 0.122213 -0.18865 

Range change 0.39481 0.122213 1 0.179419 

No. habitat types 0.655771 -0.18865 0.179419 1 
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Chapter 3 

Filling in the gaps in the fine-grain distribution of the 

Brindled Green moth  

 

3.1.  Abstract 

There are many uncertainties in our knowledge of species distributions.  

Absences in opportunistic biological records can constitute a true absence or 

a failure to detect a species that was present.  These false absences limit our 

ability to identify threatened species, to plan networks of protected areas and 

to understand the drivers of species distributions.  The Beale observer effort 

model fills in these gaps in species distributions by estimating the probability 

of detecting a species, given observer effort, species-environment 

associations and residual spatial autocorrelation.  Here, I apply this model to 

biological records of the Brindled Green moth (a species whose distribution 

is widespread but under-recorded in the British Isles) at two spatial grains 

(100 and 25 km2) and compare the predictions to an independent data set.  

Residual spatial autocorrelation had higher relative importance in predicting 

probability of occurrence than any of the environmental predictors at both the 

fine and coarse grains, but its effect on the distribution of the Brindled Green 

declined with latitude.  Predictions of probability of occurrence, evaluated 

against an independent dataset, were slightly better at the finer 25 km2 grain 

(AUC = 0.680 ± 0.075)  compared to the coarser 100 km2 grain (AUC = 0.600 ± 

0.173).  The Beale observer effort model identified sites with high probability 

of occurrence for the Brindled Green but no records.  It is therefore a 

promising tool for targeting visits to these sites.  Relationships between 

predicted probability of occurrence and mean local abundance in an 

independent data set were positive but weak and will require finer grain 

predictions to evaluate to the degree to which predicted habitat suitability can 

be used as proxy for abundance.  The results have highlighted that the scale 

of sampling and the characteristic scale of ecological processes are critical 

considerations for accurate modelling of species distributions.   
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3.2  Introduction 

Species distributions are often poorly known, and the data used to estimate them 

are biased in space (Whittaker et al. 2005).  This lack of information is termed the 

Wallacean Shortfall (Lomolino & Heaney 2004).  Two sources of error in our 

knowledge of species distributions are false absences and false presences.  This 

uncertainty limits our understanding of the drivers of species distributions (Diniz-

Filho et al. 2010; Jetz et al. 2012; Keith et al. 2012; Beck et al. 2013a) and is an 

obstacle to assessing species conservation status (Sousa-Silva et al. 2014) and 

monitoring temporal trends (Burns et al. 2013; Isaac et al. 2014b), both of which are 

needed to categorise extinction risk (IUCN, 2001).  Poorly known species 

distributions prevent the optimal design of reserve networks (Bini et al. 2006; 

Lessmann et al. 2014) and make it difficult to evaluate the success of conservation 

initiatives at large spatial scales (Pereira et al. 2010; García-Roselló et al. 2015).     

Several solutions to the Wallacean shortfall have been proposed.  These include 

investing in standardised sampling methods to obtain unbiased estimates of 

presence and absence (Aranda et al. 2011).  Unfortunately, the time, resources and 

financial requirements to sample with sufficient intensity to eliminate sampling bias 

are usually unfeasible.  By definition, knowledge of species distributions requires 

data over large spatial extents.  In most cases, the viable option is to collate 

unstructured opportunistic records of species occurrences (Schmeller et al. 2009).  

Examples include citizen science projects and volunteer collected data used to 

generate species atlases.  

A second tool to address the Wallacean shortfall is species distribution modelling 

(SDM).  One of the primary applications of SDMs has been to facilitate the 

discovery of previously unrecorded populations, through characterising the 

relationship between the abiotic environment and the presence or abundance of a 

species (Raxworthy et al. 2003; Townsend Peterson et al. 2011; Hill et al. 2014).  

These species-environment relationships can be used to make predictions about 

the suitability of unrecorded sites for a focal species, to fill in the gaps in our 

knowledge or to target areas requiring increased recording intensity.  One problem 

for SDMs is that two different processes can generate the absence of a species 

from a grid cell: true absence (the cell is unoccupied) and false absence, in which 

the species has not been detected (e.g. because the cell has not been surveyed 

intensively).  It is difficult to distinguish true absences from false absences in 

presence-only data, which can lead to biased estimates of the species-environment 

relationship (Lahoz-Monfort et al. 2014).  One solution is to generate artificial 
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absences (background or pseudo-absence data), but the methods of selecting 

these absences vary and the choice of method can have a large impact on model 

predictions (Lobo et al. 2010; Barbet-Massin et al. 2012).   

Species’ distributions can be measured as the extent of occurrence or the area of 

occupancy (Jetz et al. 2008; Gaston & Fuller 2009).  Extent of occurrence is defined 

as a polygon encompassing all known presences, while area of occupancy refines 

the distribution by identifying regions within the extent of occurrence where the 

species is absent (Gaston 1991).  There is a trade-off here between commission 

errors, which are greatest in extent of occurrence, and omission errors, which 

become more common as the grain used to measure area of occupancy becomes 

finer (Rondinini et al. 2006).  One approach to dealing with omission errors in area 

of occupancy is to coarsen spatially referenced point samples to a grain where false 

absences are deemed to be acceptably small.  Analyses of British atlas data 

traditionally use 10x10km grid cells (Powney & Isaac 2015), but for most parts of 

the world a much larger grain size would be required (Meyer et al. 2015).  One 

problem with this approach is that coarse-grain predictions can severely 

overestimate the area of occupancy or the area of suitable habitat (Seo et al. 2009).  

Downscaling models address this issue by extrapolating coarse-grain area of 

occupancy to finer grains using spatial scaling laws (Kunin 1998; He & Gaston 

2000; Zillio & He 2010; see Chapter 2).  These methods have had some success in 

predicting fine-grain occupancy (Azaele et al. 2012; Barwell et al. 2014), but the 

predictions are not spatially explicit and do not incorporate environmental 

information.  This limits their application in reserve design, and tracking movement 

in species distributions (e.g. with climate change).   

SDMs incorporate environmental information, but face another problem: the 

mismatch between fine-grain environmental information and the coarse-grain of 

species data.  Fine-grain variation is averaged away when environmental data is 

coarsened to that of the species data. More recently, methods have been proposed 

to link fine grain environmental data to coarse-grain species occurrences (Keil et al. 

2012a; Keil & Jetz 2014).  These ‘downscaling SDMs’ are a promising avenue to 

address the Wallacean shortfall when environmental data is available at a finer 

grain size than the species’ data, but discard information when coarsening species 

records, which are typically spatially referenced at grains ≤ 1km.   The species data 

are coarsened as the downscaling SDMs assume that all absences are true 

absences.  By coarsening the data, there is much greater certainty that absences 

are true absences.      
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To model both environment and species data at fine grains, it is necessary to model 

explicitly the data collection process, which generates data with false absences 

through the spatial variation in recording intensity.  Directly modelling the 

relationship between some measure of sampling intensity (e.g. number of visits) 

and detection probability allows species occurrence records to be modelled at the 

scale they are collected (Beale et al. 2014).  Consequently, occupancy models 

have become a focus of many studies using presence-only data to examine the 

distribution status, and / or trends therein (Kéry & Royle 2008; Chen et al. 2013; 

McCarthy et al. 2013; Comte & Grenouillet 2013; Guillera-Arroita et al. 2014; 

Lahoz-Monfort et al. 2014).    

Beale et al. (2014) introduced a Bayesian approach to species distribution 

modelling which quantifies nonlinear species-environment associations and 

incorporates a spatial random effect to quantify unexplained variation in species 

distributions.  A possible extension of the model is described in the supplementary 

methods of Beale et al. (2014), in which an additional hierarchical level (a data 

model of cell-specific observer effort) is incorporated into the model.  This approach 

offers a solution to the problem of false absences at fine spatial grains.  Instead of 

coarsening fine-grain records to deal with false absences, the method estimates the 

relationship between recording intensity and detection probability during the 

modelling process, allowing us to estimate which absences are true absences and 

which are false absences.  I call this the Beale observer effort model.   

I apply the Beale observer effort model to the Brindled Green moth, a species 

whose distribution is widespread but under-recorded in the British Isles, with many 

gaps in the known distribution at grains <100 km2 (e.g. 10 km x 10 km).  The 

species was selected as it is widely distributed in England, but patchy in Wales and 

especially at higher latitudes, suggesting its distribution is climatically limited.   The 

Brindled Green also uses oak as its sole host-plant, so broadleaved woodland 

cover, as defined in landcover maps, is a good candidate for predicting its 

distribution.  The purpose of this research is to model the distribution of the Brindled 

Green moth using patchy data and I do not expect to produce a perfect model of 

the species’ distribution.  The inclusion of a spatial random effect will help to 

account for spatial autocorrelation in the distribution of the Brindled Green moth, for 

example unmeasured environmental covariates, spatial processes and other 

stochastic factors.  There is evidence for opposing and synergistic effects of climate 

and landcover on moth distributions (Fox et al. 2014).  Models fitted at finer grains 

are expected to better capture the scale of effect of predictors such as elevation 

and land cover (Pearson et al. 2004), which can vary at much finer grains than is 
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captured in coarser grain models.  Climatic variables such as temperature and 

rainfall are predicted to influence distribution patterns at much coarser spatial 

grains, (but see Gillingham et al. 2012 for strong effects of microclimatic variation).  

Predictions at two spatial grains are used to investigate 1) the environmental drivers 

of distribution of the Brindled Green moth in Britain, 2) whether modelling species 

distributions at finer spatial grains can provide more accurate predictions of the 

pattern of occurrence than the coarser grains we typically use for species 

distribution modelling, 3) if the predictions can be used as a tool to target recording 

towards areas with high suitability, but no records of the focal species and 4) if fine 

scale predictions of habitat suitability can be used to infer local presence and 

abundance in light traps. 

3.3  Methods 

I fit the Beale observer effort model (Beale et al. 2014) at two spatial scales, using 

Brindled Green occurrence data in the National Moth Recording Scheme as my 

training data set.  I compare these predictions with observed patterns of presence-

absence and abundance of the Brindled Green moth in the Rothamsted Insect 

Survey (RIS), a network of light traps distributed around Britain.  I do not expect the 

RIS to fully validate the model predictions, as the RIS traps sample only a small 

area within the grid cells for which I have predictions.  The implication of this is that 

predicting a low probability of occurrence in cells with an RIS record, or conversely, 

predicting high probability of occurrence in cells with no records need not invalidate 

the model.  RIS traps located within a landcover type or elevation that are unusual 

compared with the rest of the grid cell could lead to these mismatches between 

predicted and observed distribution.  However, I would still predict a correlation 

between these data that should be stronger when the NMRS data are modelled at 

finer spatial grains.   

3.3.1  Distribution and recording intensity data 

Estimates of recording intensity and distribution data for the Brindled Green moth 

were obtained from the National Moth Recording Scheme (NMRS) led by Butterfly 

Conservation.   The NMRS data comprise over 17 million records of >900 macro-

moths: a record comprises a spatial reference, a date and a species identity.  I 

extracted all moth records collected in mainland Britain between 2000 and 2011 

with a precision of ≤ 1km2.  To ensure the independence of the NMRS and RIS 

datasets, I excluded from the analyses any NMRS records in 1km2 cells where 

Rothamsted light traps are located, and records for which “Rothamsted Light Trap” 



75 
 

was the stated sampling method.   The remaining NMRS dataset comprised > 8.5 

million records of 994 species across 40759 spatially referenced 1km cells: from 

these records I derived measures of sampling intensity and the training dataset of 

Brindled Green records at two grain sizes: 25 km2 and 100 km2.  Sampling intensity 

was estimated for each 1km2 cell as the number of visits to that cell.  A visit is 

defined as a unique combination of site and date (Van Strien et al. 2013).  Cells 

with no moth records were given a value of 0 for the number of visits. To calculate 

sampling effort at 25 km2 and 100 km2 grains I simply summed the number of visits 

within each 1km2 cell.  There were 0 visits in 1816 out of the 9082 25 km2 cells in 

mainland Britain and in 71 out of 2422 100 km2 grain cells.   Presence-only training 

data for the Brindled Green moth comprised 8451 records across 1788 1km2 cells.   

3.3.2  Environmental predictors  

I used four environmental variables to predict the British distribution of the Brindled 

Green moth at 100 km2 and 25 km2 grains (henceforth called hectads and 

quadrants) grains.  For each 1km2 cell, I derived the percentage cover of 

broadleaved woodland (WDCV) from the Landcover Map 2007 (Morton et al. 2011), 

digital elevation (ELV) data from NextMap Britain (Intermap Technolologies 2007) 

and mean annual temperature (MAT) and mean annual rainfall (MAR) from the 

monthly Met Office UKCP09 datasets (Perry & Hollis 2005).  Data at the 1 km2 grain 

were coarsened to larger grains by aggregating 1km2 cells and taking the mean of 

the contributing 1km2 cells.  Data cleaning and preparation for all distribution and 

environmental data were performed in R 3.0.3 (R Core Development Team 2014).  

3.3.3  Model fitting 

I model the Brindled Green presence-only data at hectad and quadrant grains.  I 

also attempted to fit the model at finer grains but this proved too computationally 

intensive to be practical at grains ≤ 4 km2.  I used the hierarchical Bayesian model 

described in Beale et al. (2014) and fitted the model using OpenBUGS 3.2.3 (Lunn 

et al. 2009), called from an R script using package R2OpenBUGS (Sturtz et al. 

2005).  BUGS code was taken from the original implementation of the model in 

Beale et al. (2014).  The model consists of a basic species distribution model 

(SDM) in the form of a generalised additive model with probability of occurrence as 

the dependent variable, modelled as a function of the four environmental variables 

and a spatially explicit random effect, which captures the spatial dependence of 

each cell on the surrounding eight cells.  All environmental variables were rescaled 

to a mean of 0 and standard deviation of 1 to avoid numerical overflow and 

convergence problems during MCMC sampling.  Following the procedure described 
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in Beale et al. (2014), smooth functions were estimated for each of the 

environmental covariates using penalised spline regression with two knots.  Each of 

these spline bases were included as an additive term in the generalised linear 

model of probability of occurrence of the Brindled Green moth.  Observed 

presences are linked to the underlying pattern of true presence-absence (the latent 

variable), by modelling the probability of observing a species as conditional on 

presence and the probability of detection (Beale et al. 2014).  I assume that the 

probability of detection, 𝑃𝑑𝑒𝑡 ,  increases asymptotically with the number of visits to a 

cell, following the increasing form of an exponential decay function, 

𝑃𝑑𝑒𝑡 = 1 − exp (−𝛽𝑜𝑏𝑠 ∗ 𝑣), 

where 𝛽𝑜𝑏𝑠 is a constant and 𝑣 is recording intensity measured as the number of 

visits to a grid cell. 

Uninformative priors were used for all environmental variables with a mean of 0 and 

variance of 1000.  𝛽𝑜𝑏𝑠 was given an uninformative normal prior with a mean of 0.3, 

a variance of 100 and constrained to be ≥ 0.  The prior for the spatial random effect 

was defined by an intrinsic conditional autoregressive model (iCAR), based on a 

sparse matrix of neighbours derived from the spatially referenced environmental 

data.  Initial values for each chain should be over-dispersed with respect to the prior 

distribution.  To obtain initial values, I modelled observed presence-absence as a 

function of the four environmental predictors using a generalised linear model with a 

binomial error structure.  For each chain, the initial value was drawn from a normal 

distribution with the mean taken as the parameter estimate for that environmental 

variable and a variance of 100.  

I ran four chains, each with 20000 iterations and discarded 15000 as burnin.  Only 

every tenth iteration was kept to avoid autocorrelation in MCMC samples.  

Convergence was assessed using the Gelman and Rubin convergence diagnostic, 

inspection of the Gelman-Rubin-Brooks plot in R package coda (Plummer et al. 

2006) and by visual inspection of traceplots to ensure the four chains were well-

mixed.  Parameter estimates for environmental and spatial predictors, detection 

probability and the latent variable, probability of occurrence, were calculated as the 

median of MCMC samples with upper and lower credible intervals calculated as the 

0.025 and 0.975 quantiles, drawn from the posterior distribution for each parameter, 

including a total of 20000 iterations (5000 iterations from each of the four chains). 
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3.3.4  Quantifying the relative importance of covariates   

The overall contributions of each predictor (MAT, MAT, EL, WDCV) and residual 

spatial autocorrelation were quantified as the absolute difference between predicted 

probabilities of occurrence for each cell and the probabilities when the contribution 

of each predictor was partitioned into individual components, following the method 

suggested in Beale et al. (2014).  These components were expressed as the ratio 

of each component to the contribution of all components, providing a measure of 

the relative importance of each covariate (bounded between 0 and 1).  All relative 

importance estimates include estimates of uncertainty derived from the 95% 

credible intervals of posterior distributions of all monitored parameters. 

 

3.3.5  Model evaluation 

I also compared model predictions (predicted probability of occurrence) to 

independent data in the Rothamsted Insect Survey (RIS) using the area under the 

receiver operating characteristic (ROC: Fielding & Bell (1992)) curve (AUC).  To 

compare continuous predicted probabilities of occurrence with observed presence 

absence, predicted probability of occurrence must first be converted to categorical 

presence-absences.  The AUC is a threshold-independent measure, summarising 

overall model performance using the full range of possible thresholds of probability 

of occurrence to classify presences and absences.  It quantifies the relationship 

between sensitivity (true presences) and 1-specificity (false presences).  I used a 

subset of the RIS comprising 148 light traps running between 2000 and 2011 for 

comparability with the time period of the distribution data extracted from the NMRS.  

Presence-absence and total abundances (summed across all years between 2000 

and 2011) from the RIS data were available for 53 quadrants and 24 hectads in the 

NMRS and were used to test if the predictions could be used as a proxy for habitat 

quality (e.g. do predictions correlate with the abundances of the Brindled Green 

moth in light traps)?  I used variance component analysis under hierarchical 

sampling (Crawley 2013) to quantify the variation in predicted probability of 

occurrence between and within hectads.  

3.4  Results   

3.4.1  Species-environment associations 

 
Marginal effects of the four environmental predictors on the probability of 

occurrence of the Brindled Green moth did not differ substantially between quadrant  
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Fig. 3.1  Marginal effects  

Marginal effects of broad-leaved woodland cover (a, b), mean annual rainfall 
(c, d), mean annual temperature (e, f) and elevation (g, h) on the probability of 
occurrence of the Brindled Green moth at 100km2 (a, c, e, g) and 25km2 
grains (b, d, f, h).  Predictions are based on multiplying the regression spline 
bases by their respective parameter estimates and adding the variance from 
the intercept parameter, all derived from a generalised additive model.   Solid 
black lines are the median of 20000 Markov Chain Monte Carlo simulations.  
Grey areas are the 95% credible intervals.  Quantile distributions of the 

observed data are shown above (presences) and below (absences) each plot. 
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Fig. 3.2 Predicted probability of occurrence for the Brindled Green moth, as 
predicted by the Beale model fitted at a) hectad (100km2) and b) 
quadrant (25km2) grains.   

Empty circles are cells that have been visited (defined as having a record for 
at least one macromoth between 2000 and 2011), but with no record of the 
Brindled Green moth.  Filled circles are cells with one or more records for the 
Brindled Green. No circle indicates cells that have received no visits (no 
moths have been recorded in the National Moth Recording Scheme). 

 



80 
 

Fig. 3.2 continued 

and hectad grains (Fig. 3.1).  Probability of occurrence was positively related to 

WDCV (Fig. 3.1 a and b).  MAR (Fig. 3.1 c and d) and ELV (Fig. 3.1 g and h) 

showed very similar marginal effects, especially at the quadrant grain, both having 

a negative relationship with probability of occurrence over most of the range of 

observed values (note that the deviation from this trend at high values is 

accompanied by large credible intervals indicate high uncertainty).  Low 

probabilities of occurrence are clearly associated with high ELV as evidenced by 

the predictions for Exmoor, Dartmoor, Snowdonia, the Pennines and the Scottish 

Highlands (Fig. 3.2). There was some evidence for a hump-shaped relationship 
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between MAT and probability of occurrence, with highest probability of occurrence 

at intermediate temperatures (Fig. 3.1 e and f).  Predictions for extreme values of all 

four environmental predictors were associated with high levels of uncertainty: 95% 

credible intervals spanned the full range of possible values of probability of 

occurrence, presumably because of limited data for extreme values. 

Within each spatial grain the overall relative importance of residual spatial 

autocorrelation was higher than for the four measured environmental covariates.  

Differences in the overall relative importance of ELV, MAR, MAT and WDCV within 

each spatial grain were negligible with all components having very similar relative 

importance.  It is not surprising that each of the environmental predictors had high 

relative importance as they were selected based on a priori knowledge about the 

Brindled Green moth.  MAT had the lowest impact on probability of occurrence at 

both spatial grains.  Relative importance of the covariates did not differ substantially 

between spatial grains (Table 3.1).  

The Beale observer effort model estimates a spatially explicit error term for each 

grid cell in the analysis.  This parameter captures residual spatial autocorrelation 

(RSA) which may be driven by unmeasured environmental variables, poor 

specification of the species-environment relationship, spatial processes (e.g. 

dispersal limitation and source-sink dynamics) and stochastic events (e.g.  

 

 

 

Table 3.1  Overall relative importance of the covariate effects and the spatially 
explicit error term in predicting probability of occurrence of the Brindled 
Green at two spatial grains. 

The values are calculated as the median value of relative importance across 
all grid cells with 95% credible intervals, following the procedure described in 
Beale et al. (2014).   

 

 Overall relative importance (95% CI) 

 

 Hectad (100 km2) 

 

Quadrant (25 km2) 

Mean annual temperature (MAT) 
 

0.756 (0.657, 0.934) 
 

0.776 (0.647, 0.953) 

Mean annual rainfall (MAR) 
 

0.792 (0.682, 0.949) 
 

0.780 (0.689, 0.946) 

Elevation (ELV)  
 

0.815 (0.690, 0.974) 
 

0.790 (0.654, 0.961) 

% Broadleaved woodland cover (WDCV)  
 

0.787 (0.723, 0.948) 

 

0.793 (0.701, 0.945) 

Residual spatial autocorrelation (RSA)  0.880 (0.656, 0.970) 

 

0.894 (0.695, 0.977) 



82 
 

Fig. 3.3   Residual spatial autocorrelation (RSA) in UK quadrants (25 km2 
grain) for the Brindled Green moth 

RSA is a spatially explicit error term estimated using an intrinsic conditional 
autoregressive model (iCAR).  Values of RSA are the median of 20000 
Markov Chain Monte Carlo simulations.  White areas with RSA close to zero 

indicate regions where environmental variables (temperature, rainfall, broad-
leaved woodland cover and elevation) predict well the probability of 
occurrence.  Pink areas indicate regions where the probability of presence is 
much higher than predicted by environmental variables and blue areas where 
the probability of presence is much lower than predicted by environmental 
variables.  Black cross symbols indicate quadrants where the 95% credible 
intervals (0.025 and 0.975 quantiles) of RSA do not overlap 0. 
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unpredictable disturbance events).  Mapping RSA identified a latitudinal gradient in 

the effect of unmeasured variables on probability of occurrence, with RSA being 

positive in the southern portion of Britain, close to zero in the region north of the 

Wash and transitioning to negative at higher latitudes and towards Western 

peninsulas in Wales and Cornwall (Fig. 3.3).  Median RSA was positive and the 

95% credible interval (CI) did not overlap zero in an large contiguous area including 

Norfolk, Suffolk, most of the South east, parts of the west midlands and an area 

parallel to the south coast, extending as far West as Devon (Fig. 3.3).  In the north, 

there are two regions where median RSA was negative and the 95% CI did not 

overlap zero.  One region incorporates Aberdeenshire, the Grampians and 

surrounding areas.  A second area is the region extending from Glasgow and 

surrounding areas into Lothian and the borders.   

3.4.2  Targeting recording 

Comparing the NMRS data with predictions of suitability for the Brindled Green 

moth highlights areas that have not been visited by recorders, but which are 

predicted to have high probability of occurrence for the Brindled Green (Fig. 3.2).  

One such area is south and east of the Wash, comprising parts of South 

Lincolnshire and Cambridgeshire.  Another is largely in Oxfordshire.  These gaps in 

recording are much larger at the quadrant grain.  The predictions also highlight a 

number of isolated hotspots of high probability of occurrence in Western Scotland.             

3.4.3  Model performance 

Overall model predictive success was slightly better at the quadrant grain (AUC = 

0.680 ± 0.075 SD) compared to the hectad grain (0.600 ± 0.173 SD) when 

compared to the observed presence and absence of the Brindled Green, although 

predictive success was poor at both spatial grains when evaluated against an 

independent data set (RIS).  Quadrant predictions were able to pick up some 

variation in suitability within hectads (Fig. 3.4a), although percentage variance 

components indicated most variation in predicted probability of occurrence was 

common to both spatial grains (between hectad variance component = 84%).  A 

smaller but substantial amount of variation was between quadrants nested within 

hectads (within hectad variance component = 16%).   Variance in predicted 

probability of occurrence was most strongly associated with within-hectad variance 

in WDCV (r2 = 0.286), while variance in MAR, MAT and ELV had low explanatory 

power (r2 < 0.05: Fig. 3.4b).   
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Fig.  3.4  Variance within hectads 

Variance of a) predicted probability of occurrence of the quadrants within each 
hectad and b) the relationship between variance in each of the climate and 
land cover variables and variance in probability of occurrence within each 
hectad. 
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Fig. 3.5  Relationship between predicted probability of occurrence and total 
annual counts of the Brindled Green moth in RIS light traps. 

Predictions are shown in a) 24 hectads (100 km2 grain) and b) 53 quadrants 
(25 km2 grain).  Solid black lines are the fitted values for a generalised linear 
model with poisson error structure and logit transformed probability of 
occurrence as the dependent variable.  Points are shaded according to 
sampling effort (how many years light traps were operating in that  grid cell 
between 2000 and 2011), with darker points indicating higher sampling effort.  

 

There was a weak but positive relationship between predicted probability of 

occurrence and the local abundance of Brindled Green moths in the Rothamsted 

Light Trap Network (Fig. 3.5). 

3.5  Discussion    

The application of the Beale observer effort species distribution model to the known 

distribution of the Brindled Green moth has highlighted five key results.  Firstly, I 

have characterised the marginal effects of four environmental factors whose impact 

on the species’ distribution would be expected, a priori, to be felt at different spatial 

scales.  Second, I have identified a latitudinal gradient in the extent to which 

probability of occurrence deviates from that predicted purely by the environmental 

associations modelled, suggesting additional unmeasured variables or spatial 

processes are important in shaping the distribution of the Brindled Green.  Third, a 

species distribution model accounting for observer effort produced marginally better 

predictions at a finer spatial grain.  Fourth, the Beale observer effort model has 

generated fine grain (i.e. sub-hectad scale) predictions of probability of occurrence 
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for areas of the distribution that have never been sampled, which provides a 

potential tool for targeting future activity towards under-recorded areas.  Finally, I 

identify a weak positive association between total counts in RIS light traps and the 

predicted probability of occurrence of the Brindled Green moth suggesting the 

application of these methods at finer spatial grains could provide a proxy for local 

abundance estimates.  

3.5.1  What is driving the distribution of the Brindled Green moth? 

Like any species distribution model, these marginal effects are associations and not 

causal effects on the distribution of Brindled Green.  At both grains, WDCV had a 

positive association with probability of occurrence.  Higher probability of occurrence 

in cells with greater broad-leaved woodland cover is consistent with the 

dependence of the Brindled Green on oak species as the larval foodplant (Waring & 

Townsend 2009).  Greater woodland coverage is also likely to support higher 

densities of woodland-associated moth species (Fuentes-Montemayor et al. 2012) 

leading to a higher probability of observing the species.  The negative association 

between both MAR and ELV and the probability of occurrence are consistent with 

patterns in the garden tiger moth (Conrad et al. 2002), and UK butterfly species 

(Roy et al. 2001).  MAT appeared to have negligible association with the distribution 

of the Brindled Green, contrary to many of the findings for butterflies (Warren et al. 

2001) and moths (Pollard 1988) at their northern range limits.  One reason for the 

absence of a relationship could be that MAT masks seasonal and diurnal 

temperature variation.  For example, adult night-flying moths such as the Brindled 

Green moth are likely to be more affected by mild nights rather than the warm days 

that influence day-flying butterflies and moths.  Warm summer temperatures are 

known to positively influence butterfly abundance in Britain (Roy et al. 2001), while 

warm, wet Winter temperatures have a negative effect on moth over wintering 

survival in Britain (Conrad et al. 2002).  Brindled Green ecology is not sufficiently 

well-known to speculate on which months it might be most temperature-sensitive, 

but models more sophisticated than fitted here would be insightful.    

Relative importance of WDCV, ELV, MAT and MAR, and the marginal effects of 

these covariates on the distribution of the Brindled Green moth, were broadly 

similar at quadrant and hectad grains.  I predicted that the species-environment 

relationship would be stronger at finer grains, especially for those variables that 

vary substantially within hectads (i.e. ELV and WDCV, but not MAR or MAT), but 

this was not the case.  One reason for this may be that a quadrant is not especially 

fine-grained relative to the biological scale of interest when mapping species 
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distributions (the “population-scale”).  If this is the case the model would need to be 

fitted to data at an even finer range of spatial grains in order to pin-point the scale of 

effect (the grain at which elevation and broadleaved woodland cover are most 

strongly associated with the presence of the Brindled Green).  By predicting at finer 

grains, the issue of recorder effort becomes increasingly important.  For the 

purposes of species atlases in Britain, we usually assume there are no false 

absences in hectad-grain datasets, yet these results at hectad grain identify a 

substantial number of hectads with high predicted probability of occurrence but no 

recorded presences (Fig. 3.2a).  This is consistent with a number of studies that 

have demonstrated the pitfalls of ignoring imperfect detection in species distribution 

modelling, even at coarser grain sizes (Rota et al. 2011; Dorazio 2014; Lahoz-

Monfort et al. 2014).  As noted above, I tried and failed to fit the Beale observer 

effort model at 4 km2 grain.  Beale (pers. comm.) has suggested Integrated Nested 

Laplace Approximation (INLA) as a viable tool for efficiently approximating the 

posterior distributions of hierarchical Bayesian models with large datasets (see 

Bivand et al. 2015 for implementation in R), although this has yet to be applied to 

hierarchical model structures.      

The map of median RSA indicates that there are large regions of Britain in which 

the four measured environmental variables substantially under- or over-predict the 

probability of occurrence of the Brindled Green (Fig. 3.3).   Positive and negative 

RSA values indicates that probability of occurrence is higher and lower, 

respectively, than would be predicted based on measured environmental 

covariates, while an RSA close to zero indicates the environmental variables 

capture well the probability of occurrence.               

Unfortunately, there are limitations when interpreting these patterns in RSA: it is not 

possible to unpick whether it is stochastic processes (e.g. neutral) or unmeasured 

environmental covariates that are driving RSA.  One plausible explanation for the 

decreasing RSA with latitude is spatial patterns of colonisation and extinction, as 

described in metapopulation theory (Hanski 1994).  Dispersal rates can be different 

at the range limit compared to the core.  The decreasing values of RSA at higher 

latitudes and towards peninsulas in Wales and Cornwall may reflect more 

fragmented and lower quality habitat with increasing latitude or on peninsulas.  If 

these are population sinks, supporting smaller populations, dispersal may be 

selected against (Gaston 2009).  Limited dispersal from these populations would 

translate into lower probability of occurrence than expected based on habitat 

suitability alone, consistent with the negative RSA observed towards the fringes of 
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the British distribution of the Brindled Green.  By contrast, predicted probability of 

occurrence at lower latitudes tends to be greater than would be predicted by habitat 

suitability based on the four environmental predictors I have used to model the 

species-environment relationship.  Some of this positive RSA may be explained by 

WDCV failing to capture the effect of solitary oaks on the distribution of the Brindled 

Green, or due to the exclusion of broad-leaved woodland habitat not dominated by 

trees > 5m high or with tree cover > 20%  in the Land Cover Map 2007 (see Morton 

et al. 2011).  There is evidence that solitary trees and hedgerows can act as 

stepping stones between forest fragments for other macro-moth species with affinity 

to woodland (Slade et al. 2013).  Indeed, the Brindled Green has been recorded in 

parkland and gardens, presumably where there are solitary oaks that can be larval 

hosts.  These solitary oaks are likely to be much more common in more urbanised 

areas in southern Britain.    Moreover, broadleaved woodlands themselves are 

much more fragmented in the southern lowlands (54 % of woodlands are < 100 ha 

in England compared to 18 % in Scotland: Watts 2006).  Together, the large 

numbers of solitary oaks and the greater movement of individuals between 

networks of fragmented woodland in the south would lead to greater occurrence of 

the Brindled Green moth at lower latitudes than would be predicted by the species-

environment relationship captured here.         

The iCAR model requires that a decision is made a priori about the distance over 

which neighbouring cells are able to influence one another (e.g. the assumed scale 

of spatial autocorrelation).  It isn’t obvious what distance would be appropriate to 

capture the influence of neighbouring grid cells in a given dataset (Yen et al. 2013).   

Increasing the size of this neighbourhood would take into account processes 

operating over larger spatial scales and would allow grid cells with high quality 

habitat to influence the probability of occurrence in cells further afield (Beale et al. 

2010).  Matching the chosen distance to the characteristic scale of processes 

captured by RSA (which will themselves differ) is difficult and could greatly affect 

the magnitude of RSA.  My chosen neighbourhood of grid cells allows only the 

habitat suitability of the eight grid cells directly neighbouring the focal cell to 

influence it.  Unfortunately, there is very little information about dispersal processes 

of the Brindled Green which could be used to guide the decision about the 

neighbourhood of grid cells that would be appropriate to capture spatial processes.  

One approach would be to estimate mobility based on traits including wing 

morphology adult and larval feeding guild and forest affinity as evidenced by Slade 

et al. (2013) for other macro-moths.  There is some evidence to suggest that moth 

species in general have high mobility and are unlikely to be dispersal limited.          
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3.5.2  Identifying false absences 

The predictions identify areas with high probability of occurrence that have not been 

sampled or have experienced low numbers of visits in the period 2000-2011.  A 

potential application for this feature of the model would be to target recording 

activity to these grid cells.  Such an approach could better capture the underlying 

distribution without any increase in overall recording activity.  It would also provide a 

direct validation of the model predictions.  

3.5.3  Model performance 

As predicted, overall model performance was better at the quadrant grain than the 

hectad grain.  This suggests that finer spatial grains could yield better species 

distribution models, provided the observation process is modelled.  However, the 

improvement in performance was small.  One reason for this may be that 

improvements associated with finer grain size are limited by the amount of within-

hectad variation.  My results indicate that just 16% of the total variation was 

between quadrants (within hectads), meaning the remaining 84% of variation is 

common to both scales.  One reason for this may be the limited number of hectads 

containing more than one light trap with which to distinguish variation within cells.   

Overall model predictive success, evaluated against an independent data set was 

still poor at both spatial grains.  One source of discrepancy between model 

predictions and observed data in the RIS is for those cells where the model predicts 

high probability of occurrence for the Brindled Green moth but where it is absent 

from RIS light traps.  One explanation would be that the model is over-predicting 

probability of occurrence in these cells.  However, it may be that RIS traps sample 

only a small fraction of a quadrant and an even smaller fraction of a hectad.  

Estimates for the range of attraction of light traps have varied from 3 m to ~ 200 m, 

depending on the type of light trap used, with most finding moths are attracted 

primarily from short distances (van Grunsven et al. 2014 and references therein).  

RIS light traps are standardised and have a known detection radius.  By contrast 

NMRS data come from a range of lights traps (along with many other methods of 

sampling).  Of the 53 quadrant cells with RIS data to validate the predictions, 28 

were predicted high probability of occurrence (> 0.6) for the Brindled Green, but the 

species was absent from 9 of these.  Of these 9 RIS absences, only 1 grid cell had 

Brindled Green records in the NMRS, lending evidence to the explanation that the 

model appears to over-predict the distribution of the Brindled Green.  However, 

NMRS recording activity in these cells was substantially lower (median 7 visits in 12 

years) than in cells where the Brindled Green had been recorded (median 209 visits 
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in 12 years).   If the RIS is undersampling the quadrant grain, model validation with 

the RIS data would require model predictions at spatial grains substantially finer 

than a quadrant, and probably finer even than 1km2.  Alternatively, resurveying (or 

surveying) those grid cells with no records would provide a proper validation of the 

model predictions. 

A second discrepancy is between model predictions and the NMRS data.  This is 

apparent in cells where low probability of occurrence is predicted, but the NMRS 

data show a record of the Brindled Green (see Fig. 3.2).  One explanation for these 

errors could be poor model performance (e.g. missing environmental covariates).  

Alternatively the migration of individuals between suitable habitat patches could 

generate these patterns.   As explained above, the spatial autocorrelation captured 

by the RSA parameter may be operating over larger spatial scales than I specified 

when fitting the model, which would mean the full influence of spatial 

autocorrelation would not be captured by the RSA parameter.  Isolated records in 

areas of low probability of occurrence may be fed by movement from grid cells with 

high quality habitats, but those cells may be outside the neighbourhood I have 

specified.  Alternatively, as noted above, the larval hosts (pedunculate and sessile 

oaks) are likely to be present in land cover types outside of broad-leaved woodland 

(e.g. parks, gardens or fields with isolated oak trees).  In fact, the Brindled Green is 

found in parkland and some gardens and suburban areas (Waring & Townsend 

2009).  Maps of the NMRS data and predicted probability of occurrence also 

indicate that records of the Brindled Green in cells with low predicted probability of 

occurrence are generally isolated from neighbouring records (see Fig. 3.2).  Long-

distance movements between sites of high probability of occurrence may result in 

these isolated records.            

 

3.5.4  Do the predictions correlate with local abundance estimates       

for the Brindled Green? 

There is a large body of evidence that habitat quality is positively associated with 

abundance (Matter & Roland 2002; Oliver et al. 2012; Howard et al. 2014; Curtis & 

Isaac 2015).  The results presented here indicate a weak correlation between 

probabilities of occurrence and total counts of the Brindled Green in light traps.   

The limited sample area of RIS light traps explored in the previous section also has 

implications for the observed relationship between predicted probability of 

occurrence and abundance in RIS light traps.  As I note in Chapter 1, abundance 

scales allometrically with the spatial extent sampled (Pautasso & Gaston 2006), 
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therefore total counts in RIS light traps would be expected to severely 

underestimate the abundance in a 25 km2 cell.  Once it is possible to fit the Beale 

observer effort model at 1 km2 or finer, it will be possible to start assessing the 

relationship between predicted probability of occurrence (as a proxy for habitat 

quality) and local abundance.       

3.5.5  Conclusions 

By modelling under-recorded species distributions at fine spatial grains, using 

information about species-environment associations, probability of detection and 

accounting for spatial autocorrelation, I have shown that the Beale observer effort 

model is a promising tool for addressing the Wallacean shortfall, with applications in 

quantifying the environmental covariates of species distributional patterns, exploring 

their characteristic the scales of effect and for focusing recording activity towards 

those sites that are more likely to yield undiscovered populations.  These results 

have highlighted that the scale of sampling (in both training and test data) and the 

characteristic scale of the ecological processes shaping species distributions are 

critical considerations for accurate modelling of species distributions.  Key 

challenges to matching the scale of effect and the scale of sampling include 

estimating the scale at which ecological processes like dispersal operate and the 

further development of statistical and efficient computational methods to address 

biases in fine grain data. 
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Chapter 4 

Measuring β-diversity with species abundance data 

4.1  Abstract 

In 2003, 24 presence-absence β-diversity metrics were reviewed and a 

number of trade-offs and redundancies identified.  I present a parallel 

investigation into the performance of abundance-based metrics of β-diversity.  

I test 29 metrics for 18 desirable properties: metrics should be independent of 

α-diversity and cumulative along a gradient of species turnover.  Similarity 

should be probabilistic when assemblages are independently and identically 

distributed.  Metrics should have a minimum of zero and increase 

monotonically with the degree species turnover, decoupling of species ranks 

and evenness differences.  However, complete species turnover should 

always generate greater values of β than extreme ranks shifts or  evenness 

differences.  Metrics should have a fixed upper limit, symmetry (βA,B=βB,A), 

double-zero asymmetry for double-absences and double-presences and not 

decrease in a series of nested assemblages.  Additionally, metrics should be 

independent of species replication the units of abundance and differences in 

total abundance between sampling units.  When samples are used to infer β-

diversity, metrics should be independent of sample sizes and independent of 

unequal sample sizes.  I also test for five “personality properties”. Thirteen 

metrics were outperformed or equalled across all conceptual and sampling 

properties.  Differences in sensitivity to species’ abundance lead to a 

performance trade-off between sample size bias and the ability to detect 

turnover among rare species.  In general, abundance-based metrics are 

substantially less biased in the face of undersampling, although the 

presence-absence metric, βsim, performed well overall.  Only βBaselga R turn, 

βBaselga B-C turn and βsim measured purely species turnover and were 

independent of nestedness.  Among the other metrics, sensitivity to 

nestedness varied >4-fold.   These results indicate large amounts of 

redundancy among existing β-diversity metrics, while the estimation of 

unseen shared and unshared species is lacking and should be addressed in 

the design of new abundance-based metrics. 
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4.2  Introduction 

Metrics of β-diversity are widely used in ecological studies, but there is uncertainty 

about the degree of redundancy among the metrics available and the facets of β-

diversity being measured.  Whittaker (1960, 1972) broadly defined β-diversity as the 

spatial variation (turnover) in species composition and abundance between 

sampling units, while α-diversity is the local diversity within a single sampling unit 

and γ-diversity measures larger-scale diversity.  

The number of studies investigating β-diversity has increased considerably in 

recent years (Koleff et al. 2003a; Anderson et al. 2011).  β-diversity has been linked 

to the shape of the species area-curve (Harte et al. 1999), variance in species 

occupancy (McGlinn & Hurlbert 2012) and species’ spatial aggregation (Morlon et 

al. 2008).  The distance-decay relationship (the increase in β-diversity with 

geographical distance) is a critical component of three of the six unified theories of 

biodiversity reviewed by McGill (2010).  Measures of β-diversity in relation to 

environmental and spatial gradients have been used to unpick community assembly 

(Chase 2003) and drivers of global scale biodiversity patterns (Qian & Ricklefs 

2007).  Empirical measures of β-diversity can be used to delineate biotic regions 

(Holt et al. 2013) and to inform the optimal configuration of reserves (Wiersma & 

Urban 2005).  β-diversity has been used to evaluate the landscape-scale 

implications of farm management (Gabriel et al. 2006) and to assess the effects of 

environmental change on biotic homogenisation (Baiser et al. 2012).  Because γ-

diversity is entirely determined by the α and β components of diversity, empirical 

estimates of β-diversity link biodiversity at local and regional scales (Smith 2010).  

Turnover in abundance also has important implications for ecosystem functioning 

and monitoring responses to disturbance (Balata et al. 2007).     

A key distinction is between β-diversity metrics that use presence-absence data 

and metrics that use species abundances (Anderson et al. 2011).  Abundance data 

are clearly more information-rich than presence-absence data and this can change 

how we interpret spatial variation in assemblage structure (Cassey et al. 2008).  For 

presence-absence metrics, the only visible differences between sites are in species 

identities.  Abundance-based measures detect more nuanced variation: we may 

observe all the same species at two sites, but those species may have different 

abundance ranks (the commonest species here may be rare there, and vice versa).  

Even when the ranks are the same, evenness of abundances can vary (the 

common species can be more or less dominant).  Consequently, I distinguish 



100 
 

sensitivity to (i) species turnover, (ii) species richness differences (iii) rank 

abundance shifts and (iv) evenness differences as distinct components of β-

diversity.  Abundance-based indices may also be expected to be more robust to 

incomplete sampling (Beck et al. 2013b): stochastic differences in rare species are 

an artefact of undersampling, but abundance-based metrics are less influenced by 

turnover of rare species than their presence-absence counterparts.  Whilst 

abundance information makes inferences about β-diversity more powerful, it also 

introduces a source of subjectivity: we need to decide how to weight turnover in 

common and rare species.    

Koleff et al. (2003a) compared the performance of 24 presence-absence metrics of 

β-diversity and identified a number of trade-offs and redundancies among the 

presence-absence metrics available.  Overall, they recommended βsim (Lennon et 

al. 2001) as the best performing index.  We are lacking an equivalent investigation 

into the performance and “personality” of the many abundance-based metrics 

available.   

I test 16 conceptual properties that are important for an abundance-based β-

diversity metric, whatever the application.  Where applicable I note the relationship 

between these properties and those previously described in the literature. 

4.2.1  Desirable properties     

I make a distinction between conceptual and statistical properties.  Conceptual 

properties (C1-C16) are intrinsic to the design of the metric (e.g. the use of 

abundance information and whether the metric has a fixed upper limit).  Sampling 

properties (S1-S2) explore responses to undersampling: true differences between 

assemblages are confounded by imperfect detection, especially of rare species.  I 

consider both conceptual and sampling properties as desirable when choosing a 

metric.                

C1) Independence of α-diversity. β-diversity should be independent of α-diversity 

within assemblage pairs, so that the α- and β- components of diversity can be 

partitioned  (Jost 2007a; Chase et al. 2011) and β-diversity can be meaningfully 

compared between regions differing in α-diversity.  If α- and β-diversity are 

independent, then pairs of assemblages with the same proportion of species 

turnover should have the same value of β-diversity, regardless of whether α-

diversity within those assemblages is high or low.  Legendre & De Cáceres (2013: 
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property 10) test this property algebraically for 16 dissimilarity metrics. In P1 I 

consider an alternative where assemblage pairs have unequal species richness.  

C2) β is cumulative along a gradient of species turnover.  When assemblages are 

positioned along an environmental gradient, species turnover will be directional.  

Koleff et al. (2003a) call this property additivity.  Species are gradually replaced as 

conditions change so turnover between neighbouring pairs of assemblages is lower 

than between pairs that are farther apart.  When samples A, B and C are positioned 

in sequence along such a gradient, summed β-diversity between consecutive pairs 

of samples (βA,B + βB,C)  should equal the total β-diversity between the end points of 

the gradient (βA,C).  Metrics with disproportionate sensitivity to small amounts of 

turnover will lead to overestimates of cumulative β.     

C3) Similarity is probabilistic when assemblages are independently and identically 

distributed. When assemblages are independently drawn from within a larger, well-

mixed metacommunity, then similarity (that is: 1-β for metrics with an upper limit of 

1) among multiple pairs of assemblages should be probabilistic.  The expected 

similarity of assemblages A and C (1-βA,C) is given by the product of similarities 

between A and B and B and C, (1-βA,B)*(1-βB,C).  Metrics that lack an upper limit 

cannot be converted to their similarity complement and so cannot be probabilistic.   

C4)  Minimum of zero. Legendre & De Cáceres (2013: property 1) state that when 

comparing an assemblage to itself β should always be zero, and when comparing 

two different assemblages β should be equal to or greater than zero.  

C5) Fixed upper limit.  Legendre & De Cáceres (2013: property 9) note that 

bounded metrics are easier to compare than unbounded ones.  For example, the 

maximum value of βEuclidean and βManhattan depends on the combined abundances of 

an assemblage pair, making it difficult to interpret the values of β when assemblage 

pairs have different numbers of individuals. 

C6) Monotonic increase with species turnover.  β should be a strictly increasing 

monotonic function of the proportion of species in the first assemblage that are 

replaced by new species in the second assemblage: otherwise it is not reflecting 

species turnover.  A pair of assemblages in which 20% of assemblage A species 

are replaced by new species in assemblage B should have lower β-diversity than 

an assemblage pair with 40% turnover.  The property is closely related to the 

property described by Jost et al. (2011) as monotonicity. 
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C7) Monotonic increase with the decoupling of species ranks.  An abundance-

based β-diversity metric should be sensitive to the degree to which species ranks 

are decoupled between assemblage pairs (reflecting differences in the dominant 

and rare species).  Therefore, β-diversity should decrease monotonically with 

increased correlation between species ranks.     

C8) Monotonic increase with differences in evenness.   Even if two sites have the 

same species, with the same rank order of abundances, they may still differ in 

evenness: the commonest species may dominate more in some sites than others.  

A good abundance-based β-diversity metric should increase monotonically as 

differences in evenness between sites grow larger.  Properties C7 and C8 are two 

aspects of a property described as monotonicity to changes in abundance by 

Legendre & De Cáceres (2013: property 3).   

C9) β is lower for complete decoupling of species ranks than for complete species 

turnover. Consider a pair of assemblages in which all species are unshared and a 

second pair of assemblages in which all species are shared, but the rank 

abundances are reversed, such that the dominant species in assemblage A 

becomes the rarest in assemblage B and vice versa.  The first pair of assemblages 

must be considered more different than the second pair.      

 C10) β is lower for evenness differences than for complete species turnover. As an 

alternative scenario for abundance differences, consider a pair of assemblages in 

which all species are shared: in the first assemblage the abundances are perfectly 

even and in the second assemblage all species are singletons except the dominant 

species (e.g. extreme unevenness).  Compare this to an assemblage pair where all 

species are shared.  As above, the loss or gain of a species should always be 

deemed a more extreme difference than a shift in its abundance.  Sites with no 

species in common should have the largest values of β  (Legendre & De Cáceres 

2013: property 5).  Properties C9 and C10 describe two alternative scenarios in 

which this property should hold.         

C11) Symmetry.  Legendre & De Cáceres (2013: property 2) and Koleff et al. 

(2003a)  note that the order in which two assemblages, A and B, are considered 

should not change the value of β for that pair (e.g. βA, B = βB, A). 

C12)  Double-zero asymmetry.   Legendre & De Cáceres (2013: property 4) argue 

that the absence of a species from both assemblages does not indicate 

resemblence between the two assemblages in the way that shared presences do: 
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double absences contain no information about the distance in ecological niche 

space.  Consequently, the addition of zero abundances to both assemblages 

should not change the value of β while the addition of shared presences  should 

lower the value of β. 

C13)   β does not decrease in a series of nested assemblages.  Metrics vary in how 

they respond to nestedness.  However, β should never decrease when species 

richness differences increase, as the addition of unique species should not increase 

similarity (Legendre & De Cáceres 2013: property 6).          

C14) Independence of species replication.  When all species in both the 

assemblages being compared are duplicated, the value of β should remain 

constant.  This becomes important when identical subsets of an assemblage are 

pooled (Jost et al. 2011; Legendre & De Cáceres 2013: property 7).     

C15) Independence of units of abundance. When comparing β among regions 

differing in productivity or the units used to measure abundance, metrics that are 

sensitive to the total abundance in an assemblage pair will be inappropriate.  

Legendre & De Cáceres (2013: property 8) call this property invariance to 

measurement units.  

C16) Independent of differences in abundance.  This property was described as  

invariance to the total abundance in each assemblage by Legendre & de Cáceres 

(2013: property 11) and density-invariance by Jost et al. (2011).  It is designed to 

identify metrics that are mathematically dependent on differences in abundance 

between sampling units.  C15 and C16 differ from undersampling in that there is no 

stochasticity.   

S1)  Unbiased by undersampling. In all previous simulations I have assumed the 

simulated assemblages represent the “true” composition.  However, β-diversity is 

usually estimated from samples, which generates differences in richness and 

abundances as a sampling artefact (Chao et al. 2005, 2006).  A good β-diversity 

metric should remain constant as the sample size decreases.           

S2) Unbiased by unequal sampling effort.  Differences in sample size can also 

inflate β-diversity due to imperfect detection of rare species.   A good β-diversity 

metric should remain constant with increasing difference in sample sizes.  
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4.2.2  Personality properties  

In addition to the desirable properties identified above, β-diversity metrics may differ 

in other respects that are worthy of note.  I term this the “personality” of the metrics 

and their importance will depend on the ecological question concerned.     

P1) Sensitivity to nestedness.  For presence-absence metrics, Koleff et al. (2003a) 

distinguish ‘narrow-sense’ metrics, which measure purely species turnover, from 

‘broad-sense’ metrics, which measure both species turnover and differences in 

species richness.  We may want a β-diversity metric to reflect differences in 

richness, as these will mean that one site will have species that are absent in 

another.  On the other hand, we may want the value of β to measure purely species 

turnover, especially if we are comparing β-diversity between regions with different 

species richness.  This differs from the test in C1 (independence of differences in α-

diversity): in C1, each pair of assemblages I compare has an equal number of 

species.  Here, species richness differs between the two assemblages.      

P2) Relative sensitivity to nestedness and turnover components of β.  I test two 

metrics (βBray-Curtis and βRuzicka) that can be additively partitioned into independent 

nestedness and turnover components (Baselga 2013; Podani et al. 2013; Legendre 

2014).  For metrics that cannot be deconstructed, it is useful to compare the value 

of β for complete turnover to that for extreme nestedness to estimate the relative 

sensitivity to these components.     

P3) and P4) Relative weighting of species turnover and abundance differences. I 

have identified two ways in which species abundances can vary between 

assemblages: decoupling of species ranks and differences in evenness.  The 

relative weighting of these components and species turnover is a useful property to 

quantify.   The ideal weighting is somewhat subjective (provided that β-diversity is 

less for extreme differences in abundance than for turnover of a species, see C9 

and C10, above).   

P5) Relative sensitivity to turnover of rare versus common species  There is scope 

for variation in how common versus rare species contribute to β.  One reason for 

investigating this is the occupancy-abundance relationship (ONR).  Positive ONRs 

are nearly ubiquitous (Brown 1984) and reflect that rare species are generally more 

range restricted and so more likely to be turned over than are locally abundant (and 

more widespread) species.              
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Here, I manipulate the composition and structure of hypothetical assemblages and 

apply 29 β-diversity metrics to the resulting assemblage pairs.  Each metric is 

evaluated against 18 desirable properties (C1-C16 and S1-S2) to generate a score 

card, which I use to identify the best performing abundance-based β-diversity 

metrics. I then explore how personality properties may affect the choice of metric for 

different ecological applications. 

4.3  Methods 

4.3.1  β-diversity metrics  

In total, I evaluated 24 abundance-based metrics and five presence-absence 

metrics (see Supplementary Information in section 4.7.1).  All metrics are 

expressed so that higher values of β indicate more differentiation (1-β for similarity 

metrics).  For comparability, metrics were rescaled relative to the maximum value 

obtained in each set of simulations, before calculating scores.  

4.3.2  Hypothetical species assemblages  

Abundance differences in the hypothetical assemblages were modelled using the 

log series distribution (Fisher et al. 1943) using the function fisher.ecosystem in R 

package ‘untb’ (Hankin 2007).  The conclusions would be qualitatively identical 

using other commonly used models of the species abundance distribution (McGill 

2010b).  A hypothetical species assemblage with 100 species and 10000 

individuals was used as the starting assemblage for all simulations. 

4.3.4  Evaluation of properties 

For β-diversity metrics that have been previously implemented in R, the functions 

vegdist and d and adipart in R package ‘vegan’ v.2.0-5 (Oksanen et al. 2013) were 

used to calculate β-diversity.  Formulae for the remaining metrics can be found in 

the supplementary material in section 4.7.1.  Each of the properties was assessed 

by exploring how measured β-diversity co-varied with a test-specific parameter, 

describing some aspect of assemblage structure.  I manipulated the starting 

assemblage according to the specific rules for each test.  Each simulation 

described below was run 10000 times at each unique combination of the test 

specific parameter and proportion species turnover, t = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 , 

to obtain median β for that combination.  All simulations were carried out in R 

v.3.0.3 (R Core Development Team 2014).  Formulae for evaluating β-diversity 
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metrics for each of the properties can be found in the supplementary material in 

Section 4.7.2.   

C1)  Independence of α-diversity.  Fisher’s α of assemblages was manipulated 

using the function fisher.ecosystem in R package ‘untb’ (Hankin 2007).  The 

expected number of individuals was fixed at N = 10000 while manipulating the 

number of expected species, S, to generate a series of assemblages with S = 300, 

250, 200, 150, 100, 80, 60, 40, 20 and 10.  Fisher’s α was estimated for each 

assemblage.  For each α-diversity:turnover combination, I calculated error as the 

difference between the median β-diversity at each level of α and the median β-

diversity when α was highest (S = 300): dependence  on  α-diversity was measured 

as the root mean squared error (RMSE).     

C2) β is cumulative along a gradient of species turnover.   In each simulation, three 

assemblages, A, B and C, were generated according to the following rules: A 

proportion of species, t, in assemblage A were randomly selected to be turned over 

in assemblage B (t = 0, 0.1, 0.2, 0.3, 0.4 and 0.5).  Of the species in assemblage B, 

the same proportion were turned over in assemblage C, with the condition that 

species shared between assemblages A and B were g times more likely to be 

turned over in assemblage C than species unique to assemblage B, where g is a 

test specific parameter which I manipulate to simulate different strengths of 

directional species turnover (g = 1, 5, 10, 50, 100, 500 or 1000).  At each 

turnover:gradient combination, I calculated error as the difference between 

observed β-diversity for assemblages A and C (βA,C) and the value predicted if the 

metric was cumulative (βA,B + βB,C): departure from cumulative β was evaluated as 

the RMSE. 

C3) Similarity is probabilistic when assemblages are distributed independently and 

identically in space.  In each simulation, three assemblages, A, B and C, were 

generated according to the following rules:  A proportion, p (p = 0 to 1 in increments 

of 0.2) of the species in assemblage 1 were randomly selected to be conserved in 

assemblage 2.  This process was repeated with the species in assemblages 1 and 

2 (with the same value of p) to obtain the third assemblage.  Species lost from 

assemblage A can reappear in assemblage C, as we would expect in independent 

samples drawn from a well-mixed species pool, but entirely novel species can also 

appear in assemblage C.  In each simulation, error was calculated as the difference 

between observed similarity for assemblages A and C (1-βA,C) and the similarity 
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predicted if the metric is probabilistic (1 – βA,B)(1 – βB,C): departure from probabilistic 

similarity was evaluated as the (RMSE). 

C4)   Minimum of zero.  The starting assemblage was manipulated to generate 

assemblage pairs with increasing differences in species turnover, t, decoupling of 

species ranks, r, and evenness differences, ΔE.  Methods for these simulations can 

be found in C7 and C8.  Two behaviours were tested:  1) β is zero for identical 

assemblages and 2) β is greater than or equal to zero when assemblages are 

different, either because of species turnover, decoupling of species ranks or 

evenness differences.  The metric was scored as TRUE if both qualities were met. 

C5) Fixed upper bound.  This property was evaluated as TRUE/FALSE by applying 

equation 8 and then equation 3 in Legendre & De Cáceres (2013: property 9) to 

calculate the upper limit of a metric, using a pair of assemblages with no shared 

species.        

C6)  Monotonic increase with species turnover.  A series of assemblages with 

increasing species turnover was generated by randomly selecting a proportion of 

species (t = 0 to 1 in increments of 0.2) in the starting assemblage and assigning 

them a new identity in the new assemblage.  Metrics were scored as TRUE if each 

consecutive increase in species turnover generated an increase in median β.      

C7)  Monotonic increase with decoupling of species ranks.  A series of 

assemblages with increased decoupling of species ranks was generated by 

determining species ranks in the new assemblage partially by the ranks in the 

starting assemblage and partially at random (r = +1.0 (a perfect positive correlation 

between ranks) to -1.0 (a perfect negative correlation) in increments of 0.1).  

Metrics were scored as TRUE if each incremental decrease in r, generated an 

increase in median β at a given level of species turnover. 

C8) Monotonic increase with differences in evenness.  In the starting assemblage 

for this test all except the dominant species have just one individual (extreme 

unevenness).  A series of assemblages with increasing evenness differences were 

generated by redistributing individuals from the dominant species among the other 

99 species: the probability of being allocated to each species was determined by 

raising the abundances in a Fisher log series distributed assemblage to a power, b 

= 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 2.0, 4.0, 6.0 and 8.0.  These values were 

chosen to generate assemblages with both more and less evenness relative to a 
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Fisher log series distribution.  Metrics were scored as TRUE if each incremental 

increase in ΔE led to an increase in median β. 

C9)  β under extreme decoupling of species ranks < β when species turnover is 

complete and C10)  β under extreme evenness differences < β when species 

turnover is complete. The turnover of a species should be weighted greater than a 

change in abundance.  Metrics were scored as TRUE for these two properties if 

median β is lower for extreme decoupling of species ranks (r = -1) and extreme 

evenness differences (ΔE = 0.97) than for complete species turnover (t =1). The 

relative weighting of abundance differences and species turnover also has a 

personality component (see P3 and P4).            

C11)  Symmetry.  Symmetry was tested by reversing the order in which 

assemblages A and B were given to a metric.  This was tested for assemblage 

pairs with multiple levels of species turnover, t, decoupling of species ranks, r, and 

evenness differences, ΔE.  A metric was scored as TRUE if βA,B = β B,A in all 

simulations.   

C12)  Double-zero asymmetry.  I generated a series of eleven assemblage pairs, 

the first with no double zeros and then consecutively adding up to 10 double zeros 

to the assemblage pair.  This was repeated, but adding double presences of equal 

abundance. Abundances in each simulation were chosen at random from within the 

starting assemblage.  Two behaviours were tested: 1) β does not change with the 

addition of double zeros and 2) β decreases with the addition of double-presences.  

Metrics were scored as TRUE if both conditions were met.   

C13)  β does not decrease in a series of nested assemblages.  A series of nested 

assemblages were generated by randomly selecting a number of species to be lost 

from the starting assemblage (S = 0 to 90 in increments of 10).  Metrics were 

scored as TRUE if each incremental increase in species loss led to an increase in 

median β.   

C14)  Independence of species replication.  A series of ten assemblage pairs with 

all species replicated x times at six levels of species turnover, t, was used to 

simulate the effect of pooling identical subsets of unshared species.  At each 

combination of x (in 1 to 10) and t, error was calculated as the difference between 

median β in one identical subset and when x identical subsets were pooled.  

Metrics were scored as the RMSE. 
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C15)   Independent of the units of abundance.  Following the method in Legendre & 

De Cáceres (2013), I test this property by generating a series of assemblage pairs 

in which the abundances in both assemblages are multiplied by a constant factor, 

(cc = 1 to 10).  Error was calculated as the difference between median β in the 

starting assemblage pair (cc = 1) and between median β at each combination of cc 

and species turnover, t.  Metrics were scored as the RMSE.            

C16)  Independence of differences in abundance.   I test this property by generating 

a series of assemblage pairs in which the abundances in one assemblage are 

multiplied by a constant factor, (c = 1 to 10).  At each c:turnover combination, error 

was calculated as the difference between median β at each value of c and median 

β in the starting assemblage pair, (c = 1).  Metrics were scored as the RMSE.   

The following two properties test the behaviour of metrics when samples are used 

to infer β-diversity.        

S1)  Independence of sample size.  For a series assemblage pairs with different 

levels of turnover, t, both assemblages were randomly sampled, without 

replacement, to generate a series of assemblage pairs with equal sample sizes of N 

= 10000 (fully censused), 9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000, 1000, 

500, 200, 100, 50, 20, and 10.  For each sample size:turnover combination, error 

was calculated as the difference between median β-diversity at sample size N and 

median β-diversity in a fully censused assemblage: dependence on sample size 

was measured as the RMSE.   

S2) Independence of unequal sample sizes.  For a series of assemblage pairs with 

different levels of turnover, t, one assemblage in each pair was randomly sampled, 

without replacement, while the other was fully sampled to generate sample size 

differences of ΔN = 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 

9500, 9800, 9900, 9950, 9980, 9990).  As above, for each ΔN:turnover 

combination, error was calculated as the difference between the median β-diversity 

at sample size difference ΔN and median β-diversity when both assemblages were 

fully censused (ΔN = 0): dependence on unequal sample size was measured as the 

RMSE.   

P1) Sensitivity to nestedness.  To generate ten assemblages with differences in 

species richness, ΔS, I randomly selected S species (see C13) to be lost from the 

starting assemblage.  For each species loss:turnover combination, I calculated error 

as the difference between the median β-diversity for S and median β-diversity when 
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species richness was equal (S = 0): sensitivity to nestedness was measured as the 

RMSE.   

P2) Relative sensitivity to nestedness and turnover. This property was measured as 

the ratio of β under extreme nestedness but no turnover (ΔS = 90, t = 0), and the 

value for complete species turnover but no species loss (t = 1, ΔS=0).    

P3) and P4) Relative sensitivity to abundance differences and species turnover.  I 

calculated β under extreme decoupling of species ranks (r = -1), and extreme 

differences in evenness (ΔE = 0.97), using simulated assemblages from C7 and 

C8.  These values were expressed as a proportion of the value of median β under 

complete species turnover, t=1.   

P5) Relative sensitivity to turnover in rare versus common species I turned over a 

single species in the starting assemblage, from the dominant (1450 individuals) to 

the rarest species (1 individual) and recorded the value of β for each.  Relative 

sensitivity to rare and common species was evaluated as the ratio between β when 

the rarest species was turned over to β when the dominant species was turned 

over.  

In order to investigate redundancy and complementarity among the 29 metrics, a 

principal component analysis was performed using all quantitatively measured 

properties, using the function prcomp in R version 3.0.3 (R Development Core 

Team, 2014).  I also investigate which of the metrics are Pareto-dominated, that is, 

those metrics that are outperformed or equalled across all desirable properties.                  

4.4  Results 

I have scored the performance of 29 metrics for 16 conceptual and two sampling 

properties (Table 4.1).  In addition, a further five personality tests have identified 

more subjective variation in metrics’ behaviour (Table 4.2).  The results of all 

simulations are presented in Figs S4.1 – S4.13 in section 4.7.3.  

4.4.1  Conceptual and sampling properties   

All 29 metrics satisfied properties C4, C6 (minimum of zero and positiveness, 

monotonic increase with species turnover: Fig. S4.4) and C11 (symmetry).  I use 

the remaining properties to discriminate between the performances of metrics.  

Thirteen metrics were Pareto-dominated (Table 4.1).  I focus on the metrics that  
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Table 4. 1  Scorecard for 29 β-diversity metrics against the 16 conceptual and two sampling properties described in the text.  

Metrics are ordered by number of TRUES and, when equal, by the mean of quantitative scores. Note this weights qualitative properties 
greater than quantitative properties, such that metrics with one or two fails drop down the scorecard. Metrics have an ideal score of TRUE 
(T) for qualitative properties and 0 for quantitative properties. C4, C6 and C11 were TRUE for all metrics and scores are not shown. 

 

 

 Conceptual properties  Sampling properties Performance summary 

Metric 

 

C1 C2 C3 C5 C7 C8 C9 C10 C12 C13 C14 C15 C16  S1 S2  #T # F 

Mean of 

quantitative scores 

Morisita  0.0757 0.0197 0.0047 T T T T T T T 0.0030 0.0038 0.0027  0.0159 0.0036  8 0 0.0161 

Horn  0.0294 0.0331 0.0024 T T T T T T T 0.0009 0.0016 0.0007  0.1359 0.0357  8 0 0.0300 

Morisita-Horn  0.0763 0.0200 0.0048 T T T T T T T 0.0030 0.0037 0.0026  0.1356 0.0899  8 0 0.0420 

Jost Simpson  0.0826 0.0642 0.0037 T T T T T T T 0.0030 0.0043 0.0026  0.1157 0.0694  8 0 0.0432 

Renkonen*  0.0294 0.0331 0.0024 T T T T T T T 0.0009 0.0016 0.0007  0.1690 0.1433  8 0 0.0476 

Kulczynski*  0.0294 0.0331 0.0024 T T T T T T T 0.0009 0.0016 0.2292  0.1690 0.2235  8 0 0.0861 

Bray-Curtis*  0.0294 0.0331 0.0024 T T T T T T T 0.0009 0.0016 0.3916  0.1690 0.4151  8 0 0.1304 

Canberra  0.0000 0.1584 0.0170 T T T T T T T 0.0000 0.0000 0.3433  0.2260 0.3699  8 0 0.1393 

Ružička  0.0312 0.1166 0.0153 T T T T T T T 0.0010 0.0015 0.3966  0.1881 0.3902  8 0 0.1426 

†Baselga B-C turn  0.0294 0.0331 0.0024 T T T T T T F 0.0009 0.0016 0.0007  0.1690 0.0031  7 1 0.0300 

NESS  0.0062 0.0351 0.0014 T T T T T F T 0.0137 0.0010 0.0009  0.1431 0.0945  7 1 0.0370 

†Baselga R turn  0.0312 0.1166 0.0153 T T T T T T F 0.0010 0.0015 0.0006  0.1881 0.0032  7 1 0.0447 

†Podani B-C turn*  0.0294 0.0331 0.0024 T T T T T T F 0.0009 0.0016 0.3916  0.1690 0.4156  7 1 0.1305 

†Podani R turn*  0.0312 0.1166 0.0153 T T T T T T F 0.0010 0.0015 0.4556  0.1881 0.4736  7 1 0.1604 

sim  0.0000 0.0547 0.0000 T F F T T T T 0.0000 0.0000 0.0000  0.1485 0.0026  6 2 0.0257 

Classic Sørensen*  0.0000 0.0547 0.0000 T F F T T T T 0.0000 0.0000 0.0000  0.1618 0.2299  6 2 0.0558 

Classic Jaccard*  0.0000 0.1584 0.0170 T F F T T T T 0.0000 0.0000 0.0000  0.1854 0.2404  6 2 0.0752 

Jost Shannon  0.0302 0.0482 0.0079 T T T T T F F 0.0009 0.0017 0.2529  0.1272 0.3459  6 2 0.1019 

Chao Sørensen  0.0300 0.0330 0.0034 T F F T T F T 0.0019 0.0023 0.0015  0.0481 0.0849  5 3 0.0256 

Chao Jaccard  0.0300 0.1160 0.0155 T F F T T F T 0.0014 0.0017 0.0014  0.0645 0.1038  5 3 0.0418 

Lande Shannon*  0.0294 0.0331 F F T T T T F T 0.0009 0.0016 0.2322  0.1359 0.1462  5 3 0.0828 

CYd  0.1280 0.1400 F F T F T T T T 0.0003 0.1703 0.1324  0.2091 0.2528  5 3 0.1476 
Lande Simpson  0.2586 0.0200 F F T T T F F T 0.4663 0.0037 0.2905  0.0614 0.0446  4 4 0.1636 
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Table 4.1 (continued) 

  Conceptual properties  Sampling properties Performance summary 

Metric 
 

C1 C2 C3 C5 C7 C8 C9 C10 C12 C13 C14 C15 C16  S1 S2  #T #F 
Mean of 
quantitative scores 

Binomial  0.4092 0.0547 F F F T T T F F 0.3233 0.0000 0.1157  0.2704 0.1911  3 5 0.1949 

Gower*  0.0000 0.0577 0.1350 T F F F F F T 0.0000 0.0000 0.5054  0.4137 0.4602  3 5 0.1965 

Manhattan*  0.0294 0.0331 F F F T T T F F 0.3244 0.3244 0.2669  0.4458 0.2542  3 5 0.2397 

alt. Gower*  0.1802 0.1022 F F F T F F T T 0.0012 0.3258 0.3457  0.4232 0.3334  3 5 0.2445 

Av. Euclidean*  0.2178 0.1786 F F F T F F T T 0.0022 0.3479 0.3646  0.4762 0.2888  3 5 0.2680 

Euclidean*  0.2625 0.1393 F F F T T F F T 0.3168 0.3775 0.3586  0.5203 0.2670  3 5 0.3203 

 

*Pareto-dominated 

†Partitioned turnover component of β 
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performed best against the conceptual and sampling properties and consider their 

contrasting strengths and weaknesses.   

Nine metrics passed all qualitatively scored tests (βMorisita, βHorn, βMorisita-Horn, βJost 

Simpson βRenkonen, βKulczynski, βBray-Curtis, βCanberra and βRužička,: C5-C13, Table 4.1).  The 

presence-absence metrics βsim, βClassic Jaccard, and βClassic Sørensen failed only C7 and C8 

(monotonic increase with decoupling of species ranks and evenness differences: 

Figs S4.5 and S4.6), as such measures, by definition, are insensitive to differences 

in abundance.  All abundance-based metrics became less sensitive to abundance 

differences as the species turnover between assemblages became more extreme 

(Figs S4.5 and S4.6). 

Across all quantitative tests, βMorisita obtained the best mean score.  The presence-

absence metric, βsim performed best or joint best for six of the eight quantitative 

conceptual and sampling properties, with the exception of C2 (β is cumulative) and 

S1 (independence of sample size).  βMorisita was the most robust metric to 

undersampling, performing best when both assemblages were undersampled (S1) 

and second best under unequal sample sizes (S2).  βsim was best for S2, but 

performed poorly for S1 (Figs S4.2 and S4.12; Table 4.1).   βCanberra scored equally 

highly with βsim, βClassic Sørensen and βClassic Jaccard for C1 (independence of α-diversity: 

Fig. S4.1), C14 (independence of species replication: Fig. S4.7) and C15 

(independence of measurement units: Fig. S4.8), but performed poorly on C2 (β is 

cumulative: Fig. S4.2), C3 (similarity is probabilistic: Fig. S4.3), C16 (independence 

of differences in abundance: Fig. S4.9) and for both sampling properties (S4.1 and 

S4.2).  βBinomial was joint best for C15 (independence of measurement units: Fig. 

S4.8), but performed poorly for all other quantitative properties.   βHorn and βRenkonen 

performed relatively well across all quantitative properties, but were never best for 

any property. 

In sampling simulations S1 and S2 (Table 4.1; Figs S4.12 and S4.13) most 

presence-absence metrics were positively biased by undersampling, with the 

exception of βChao Sørensen and βChao Jaccard which have a correction for undersampling.       
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Table 4.2  Summary of scores for personality and sampling properties among 
29 β-diversity metrics  

Properties P1–P5 are described in the text 

† partitioned turnover component of β 

 

4.4.2  Personality properties 

With the exception of βsim and the partitioned turnover components of βBray-Curtis and 

βRužička all metrics were at least somewhat sensitive to nestedness (P1), although 

there were four-fold differences in the degree of sensitivity to species richness 

differences (P2, Table 4.2).            

The relative weighting of abundance differences and turnover varied substantially 

among abundance-based metrics (Table 4.2).  With the exception of βGower βalt. Gower, 

βAv. Euclidean, βLande Simpson and βEuclidean, metrics were more sensitive to species 

turnover than differences in abundance (P3: decoupling of species ranks, P4: 

differences in evenness, Figs S4.5 and S4.6).     

The relative sensitivity to turnover in rare versus common species (P5) varied 

substantially among metrics from equal weighting of rare and common species (all 

 
Personality properties 

Metric P1 P2 P3 P4 P5 

Morisita 0.2862 0.8538 0.9940 0.9798 0.0000 
Horn 0.1989 0.6046 0.9012 0.9195 0.0007 
Morisita-Horn 0.2861 0.8541 0.9940 0.9798 0.0000 
Renkonen 0.3305 0.9150 0.9544 0.9801 0.0007 
Jost Simpson 0.2631 0.7453 0.9880 0.9604 0.0000 
Kulczynski 0.1619 0.4575 0.9544 0.9801 0.0007 
Bray-Curtis 0.2678 0.8433 0.9544 0.9801 0.0007 
Canberra 0.2759 0.9000 0.7979 0.9802 1.0000 
Ružička 0.2825 0.9150 0.9767 0.9900 0.0008 
Baselga B-C turn† 0.0198 0.0000 0.9544 0.9801 0.0007 
NESS 0.2424 0.7749 0.9634 0.9289 0.0000 
Baselga R turn† 0.0219 0.0000 0.9767 0.9900 0.0008 
Podani B-C turn† 0.2672 0.0000 0.9543 0.9801 0.0007 
Podani R turn† 0.3154 0.0000 0.9767 0.9900 0.0008 
sim 0.0000 0.0000 0.0000 0.0000 1.0000 
Classic Sørensen 0.2574 0.8182 0.0000 0.0000 1.0000 
Classic Jaccard 0.2759 0.9000 0.0000 0.0000 1.0000 
Jost Shannon 0.1675 0.1807 0.8676 0.8915 0.0007 
Chao Sørensen 0.2665 0.8406 0.0000 0.0000 0.0000 
Chao Jaccard 0.2819 0.9134 0.0000 0.0000 0.0000 
Lande Shannon 0.1996 1.4297 0.9012 0.9195 0.0007 
CYd 0.2582 0.9001 0.6221 0.6243 0.1682 
Lande Simpson 0.1121 5.0896 0.9940 48.5149 0.0000 
Binomial 0.1823 0.4500 0.3264 0.4599 1.0000 
Gower 0.2759 0.9000 1.0000 1.0000 1.0000 
Manhattan 0.1860 0.4575 0.9544 0.9801 0.0007 
alt. Gower 0.2154 0.9150 1.9088 1.9602 0.0007 
Av. Euclidean 0.2430 0.9766 1.4099 9.8504 0.0007 
Euclidean 0.2303 0.6905 0.9970 6.9653 0.0007 
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presence-absence metrics) to metrics that had a negligible response to turnover in 

rare species (βMorisita: Fig. S4.11).         

A principal component analysis revealed substantial redundancy among the 29 

metrics investigated (Fig. 4.1). 

4.5  Discussion 

The results identify a number of trade-offs in performance, consider redundancy 

and complementarity among existing metrics and suggest areas to be addressed in 

the design of new metrics.  

In choosing a metric, I suggest that the desirable properties will provide a useful 

primary filter in choosing a metric. I focus on the best-performing metrics in Table 

4.1, but other metrics may still be useful if the relative weighting of the desirable 

properties is changed, or if personality properties or additional properties, untested 

here, become important.  The personality properties highlight two additional 

sources of variation which may further filter the appropriate metrics for some 

applications:  i) sensitivity to rare species and ii) sensitivity to nestedness.  My 

results indicate the first of these is traded-off with performance for sampling 

properties (Fig. S4.16).   

The most extreme example of this trade-off is βMorisita, which is the most 

independent of sample size (Fig. S4.10), at the expense of being almost completely 

insensitive to turnover in rare species (Fig. S4.13).  β-diversity metrics fall along a 

continuum in terms of sensitivity to rare species.  βClassic Sørensen is conceptually 

linked to species richness metrics of α-diversity such that rare and dominant 

species are weighted equally.  βHorn relates to Shannon entropy:  species are 

weighted by their relative abundance.  βMorisita is linked to the Gini-Simpson index of 

α-diversity (Jost 2007a): rare species contribute little to the final value of these 

metrics.  Consequently, βMorisita performs well, even with the very partial samples 

that ecologists usually work with, because the missing rare species in small 

samples have a negligible effect on the value of β.  This may be important: the 

emphasis βMorisita places on common species is suitable when shifts in dominance 

are of interest (e.g. when linking diversity to ecosystem function), but will be less 

appropriate when patterns of turnover in rare species of particular interest (e.g. 

complementarity of reserve networks: Wiersma & Urban (2005)).  Unfortunately,  
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Fig. 4.1  Biplot of the first two principal components axes of the scores of 29 β-diversity metrics based on quantitative scores for 
properties C1-C2, C14-C16, S1-S2 and P1-P5.   

Four partitioned turnover components are also shown, using the partitioning methods proposed by Baselga (2013) and Podani et al. (2013). 

Together, PC1 and PC2 explain 52% of variation in scores.    
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those metrics that are sensitive to turnover in rare species are, consequently, less 

robust in the face of undersampling.   

In general, the results suggest that when insensitivity to sample size (S1 and S2), 

sensitivity to turnover of individuals (C7 and C8) and/or cumulative β (C2) are 

priorities, βMorisita should be favoured.  When turnover in rare species is important 

and undersampling is not severe, the presence-absence metric, βsim, is favoured 

due to superior performance in terms of independence of α-diversity (C1) 

probabilistic similarity (C3), independence of species replication (C14), 

measurement units (C15) and differences in abundance (C16).  However, βMorisita is 

almost completely independent of sample size (S1), while βsim, βClassic Sørensen and 

βClassic Jaccard are eleventh, twelfth and eighteenth.  This is consistent with predictions 

that presence-absence metrics are more sensitive to sample sizes.             

An example of where these results have implications for existing studies of β-

diversity is in the spatial scaling of β-diversity.  Studies using presence-absence 

metrics have shown that β-diversity decreases with the spatial grain of samples 

(McGlinn & Hurlbert 2012; Barton et al. 2013).  One reason for this is statistical: the 

probability of a rare species being turned over increases at finer grains (Keil et al. 

2012b) both because rare species are range restricted and because fine-grain 

samples have (almost by definition) much smaller sample sizes of individuals than 

do coarse-grain samples.  By contrast common species are usually more 

widespread than rare species and much less likely to be turned over at fine grains.  

The trade-off I’ve noted between robustness to undersampling and sensitivity to 

rare species thus becomes relevant here: those metrics which weight rare species 

turnover highly (including all presence/absence measures) will likely find β shifting 

with scale.  It follows that abundance-based metrics, particularly those 

disproportionately influenced by dominant species, will likely be less scale-

dependent than presence-absence metrics (Fig. S4.15). 

A second consequence of this trade-off is that metrics that are insensitive to 

turnover in rare species, will also return very low values of β under a positive 

occupancy-abundance relationship (Fig. S4.14), a pattern that is near ubiquitous.  

Specialist applications focussing on rare species may need to use metrics that are 

less robust to undersampling but, consequently, will require larger sample sizes to 

observe the rarer species: no abundance-based metric is able to account for 

unseen shared species (i.e. abundance-based equivalents of βChao Sørensen and βChao 

Jaccard).   
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Another potential filter of metrics is sensitivity to nestedness (P1).  There are 

circumstances when the partitioning of the nestedness and turnover components 

will be a priority when choosing a metric.  Firstly, metrics measuring purely species 

turnover address methodological issues associated with species richness gradients 

(e.g. latitudinal gradients: Koleff, Lennon & Gaston 2003b).  Moreover, patterns of 

nestedness and turnover are likely to emerge as a result of different processes: 

distinguishing these patterns, may contribute to a more mechanistic understanding 

of spatial patterns in β-diversity (e.g. Baselga 2010).  These simulations include two 

abundance-based metrics, βBray-Curtis and βRužička that can be additively partitioned 

into independent nestedness and turnover components.  I find the partitioning 

method described by Baselga (2013) generates turnover components that are 

independent of nestedness, while the method proposed by Podani et al. (2013) 

does not.     

A principal component analysis indicated a large amount of redundancy among 

metrics.  Yet the results highlight one property which is lacking among existing 

abundance-based β-diversity metrics.  Three pieces of information are absent in 

samples of species assemblages; i) how many species are missing in the sample, 

but present at the site ii) their abundances and iii) whether they are shared or 

unshared between undersampled assemblage pairs.  Abundance-based β-diversity 

metrics that estimate this information and adjust the value of β accordingly are one 

avenue for improving performance when there is undersampling.  Recent 

developments in biodiversity sampling theory (Green & Plotkin 2007; Morlon et al. 

2008; McGill 2011) and hierarchical Bayesian techniques that model the 

observation process (Kéry & Royle 2008) provide a useful starting point for 

developing such metrics.           

The issues I have raised highlight that β-diversity is a multi-faceted concept.  

Any study measuring β-diversity should be explicit about its goals (which 

properties should be emphasised) and assumptions (e.g. about sampling) 

when filtering the available metrics. 
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4.7  Supplementary Material 

4.7.1  β-diversity metrics 

Table S4.1  Formulae for the 33 β-diversity metrics.   

Data indicates whether metrics use presence-absence (p-a) or abundance 

(abd) data    

Index Formula Range  Data Reference 

sim  
𝛽 =

min  (𝑏, 𝑐)

min  (𝑏, 𝑐) +  𝑎
 

0 – 1 p-a (Lennon et 

al. 2001) 

based on 

(Simpson 

1949), as 

expressed 

by (Koleff et 

al. 2003a) 

Classic 

Sørensen  
𝛽 =  1 −

2𝑎

2𝑎 + 𝑏 + 𝑐
 

0 – 1 p-a (Sørensen 

1948) as 

expressed 

by (Koleff et 
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Index Formula Range  Data Reference 

al. 2003a) 

Classic 

Jaccard  

𝛽 =  1 −
𝑎

𝑎 + 𝑏 + 𝑐
 0 – 1 

 

p-a (Jaccard 

1912) as 

expressed 

by (Koleff et 

al. 2003a) 

Chao 

Sørensen 
𝛽 =  1 −

2𝑈𝑉

𝑈 + 𝑉
 

0 - 1 

 

abd (Chao et al. 

2005) 

Chao 

Jaccard  
𝛽 = 1 −  

𝑈𝑉

𝑈 + 𝑉 − 𝑈𝑉
 

0 – 1 abd (Chao et al. 

2005) 

Ružička  
𝛽 =

2(∑ |𝑥 𝑖𝑗− 𝑥 𝑖𝑘| 
𝑠
𝑖=1  ∑ |𝑥 𝑖𝑗 +𝑥 𝑖𝑘|

𝑠
𝑖=1⁄ )

1 + (∑ |𝑥 𝑖𝑗 − 𝑥𝑖𝑘| 
𝑠
𝑖=1  ∑ |𝑥 𝑖𝑗+ 𝑥 𝑖𝑘|

𝑠
𝑖=1

⁄ ) 
 

0 – 1 

 

abd (Ružička 

1958) 

Baselga  

Ružička 

turn 

𝛽 =
2(minB, C)

𝐴 + 2min(𝐵, 𝐶)
 

0 – 1  abd (Legendre 

2014) 

Baselga 

Ružička 

nest 

𝛽 = (
|𝐵 − 𝐶|

𝐴 + 𝐵 + 𝐶
) (

𝐴

𝐴 + 2min(𝐵, 𝐶)
) 

0 - 1 abd (Legendre 

2014) 

Podani 

Ružička 

turn 

𝛽 =

2min (B, C)

𝐴 + 𝐵 + 𝐶
 

0 – 1 abd (Podani et 

al. 2013) 

Podani 

Ružička 

nest 

𝛽 = (
|𝐵 − 𝐶|

𝐴 + 𝐵 + 𝐶
) 

0 – 1  abd (Podani et 

al. 2013) 

Bray-

Curtis  
𝛽 =  

∑ |𝑥 𝑖𝑗− 𝑥 𝑖𝑘|
𝑠
𝑖=1

∑ |𝑥 𝑖𝑗+ 𝑥 𝑖𝑘|
𝑠
𝑖=1

 
0 – 1 abd (Bray & 

Curtis 1957) 

Baselga B-

C turn 
𝛽 =

min(𝐵, 𝐶)

𝐴 + min(𝐵, 𝐶)
 

0 – 1  abd (Baselga 

2013) 

Baselga B-

C nest 
𝛽 = (

|𝐵 − 𝐶|

2𝐴 + 𝐵 + 𝐶
) (

𝐴

𝐴 + min(𝐵, 𝐶)
) 

0 – 1  abd (Baselga 

2013) 

Podani B-

C turn 
𝛽 =

2min (B, C)

2𝐴 + 𝐵 + 𝐶
 

0 – 1  abd (Legendre 

2014) 

Podani B-

C nest 
𝛽 = (

|𝐵 − 𝐶|

2𝐴 + 𝐵 + 𝐶
) 

0 – 1  abd (Legendre 

2014) 

Canberra  
𝛽 =

1

𝑆
 [∑(

|𝑥 𝑖𝑗 − 𝑥 𝑖𝑘|

𝑥 𝑖𝑗 + 𝑥 𝑖𝑘
)

𝑆

𝑖=1

] 
0 – 1 abd (Lance & 

Williams 

1967) 
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Index Formula Range  Data Reference 

Morisita  
𝛽 =  1 −  

2 ∑ 𝑥𝑖𝑗𝑥 𝑖𝑘

(𝜆𝑗+ 𝜆𝑘)𝑁𝑗𝑁𝑘
 

0 – 1 abd (Morisita 

1959) 

Morisita-

Horn  
𝛽 = 1 −  

2 ∑𝑥 𝑖𝑗𝑥 𝑖𝑘

[(∑𝑥 𝑖𝑗
2 /𝑁𝑗

2) + (∑ 𝑥 𝑖𝑘
2 /𝑁𝑖𝑘

2 )]𝑁𝑗𝑁𝑘
 

0 – 1 abd (Horn 1966) 

Horn 𝛽

=  1

− 
∑[(𝑥 𝑖𝑗+ 𝑥 𝑖𝑘) log(𝑥 𝑖𝑗𝑥𝑖𝑘)] − ∑(𝑥 𝑖𝑗 log𝑥 𝑖𝑗) − ∑(𝑥 𝑖𝑘 log 𝑥 𝑖𝑘)

[(𝑁𝑗+ 𝑁𝑘) log(𝑁𝑗𝑁𝑘)] − (𝑁𝑗 log 𝑁𝑗)− (𝑁𝑘 log𝑁𝑘)
 

0 – 1 abd (Horn 1966) 

Kulczynski  
𝛽 = 1 − 0.5(

∑min(𝑥 𝑖𝑗,𝑥 𝑖𝑘)

𝑁𝑗
+  
∑ min(𝑥 𝑖𝑗,𝑥 𝑖𝑘)

𝑁𝑘
) 

0 – 1 abd (Kulczynski 

1927) 

Renkonen 𝛽 =  1 −∑min(𝑝𝑖𝑗 , 𝑝𝑖𝑘)

𝑖 =1

 0 – 1 abd (Renkonen 

1938) 

NESS(m = 50) 
𝛽 = 1 −

2∑ µ𝑖𝑗(𝑚)
𝑆
𝑖=1 µ𝑖𝑘(𝑚)

∑ [µ𝑖𝑗(𝑚)]
2  + 𝑆

𝑖=1
∑ [µ𝑖𝑘(𝑚)]

2 𝑆
𝑖=1

 
0 – 1 abd (Grassle & 

Smith 1976) 

Gower  
𝛽 =  

1

𝑆
∑

|𝑥 𝑖𝑗− 𝑥 𝑖𝑘|

max ( 𝑥 𝑖)− min (𝑥 𝑖)

𝑆

𝑖 =1

 
0 – 1 abd (Gower 

1971) 

Jost 

Shannon  
𝛽 =

𝐷𝛾
1

 𝐷𝛼
1 − 1 

0 – 1 

 

abd (Jost 2006, 

2007b), 

rescaled 

from 0 - 1 

Jost 

Simpson  
𝛽 =

𝐷2 𝛾

𝐷2 𝛼

− 1 
0 – 1 

 

abd (Jost 2006, 

2007b), 

rescaled 

from 0 – 1   

Euclidean 

distance  𝛽 = √∑(𝑥 𝑖𝑗− 𝑥 𝑖𝑘)
2

𝑆

𝑖 =1

 

0 – 1 abd (Clifford & 

Stephenson 

1975) 

Average 

Euclidean 

distance  

𝛽 = √
∑ (𝑥 𝑖𝑗− 𝑥 𝑖𝑘)

2𝑆
𝑖=1

𝑆
 

0 – no 

upper 

limit 

abd  see (Krebs 

1998) 

Manhattan  
𝛽 =  ∑|𝑥 𝑖𝑗− 𝑥 𝑖𝑘|

𝑆

𝑖=1

 
0 – no 

upper 

limit 

abd see (Krebs 

1998) 

Alternate 

Gower  
𝛽 =  

∑ |𝑥 𝑖𝑗−  𝑥 𝑖𝑘|
𝑆
𝑖=1

∑ 𝑤𝑖
𝑆
𝑖=1

 
0 – no 

upper 

limit 

abd (Anderson 

et al. 2006) 

CYd  
𝛽 =  

1

𝑆
∑  

𝑆

𝑖 =1

𝑛𝑖 log
1
2
⁄ −𝑥 𝑖𝑗 log 𝑥 𝑖𝑘+  𝑥 𝑖𝑘 log𝑥 𝑖𝑗

𝑛𝑖
 

0 – no 

upper 

limit 

abd (Cao et al. 

1997) 

Binomial  
𝛽 =  

∑ 𝑥𝑖𝑗log(𝑥𝑖𝑗 𝑛𝑖)⁄   + 𝑥𝑖𝑘 log(𝑥𝑖𝑘 𝑛𝑖) − 𝑛𝑖log
1
2
⁄⁄  𝑆

𝑖=1

𝑛𝑖
  

0 – no 

upper 

limit 

abd (Anderson & 

Millar 2004) 
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Index Formula Range  Data Reference 

Lande 

Shannon 

𝛽 = 𝐻𝛾 −  𝐻𝛼 0 - no 

upper 

limit    

abd (Lande 

1996) 

Lande 

Simpson 

𝛽 = 𝜆𝛾−  𝜆𝛼 0 - no 

upper 

limit    

abd (Lande 

1996) 

 

 

Table S4.2  Notation used in formulae for the 33 β-diversity metrics    

Symbol Definition 

β Beta-diversity 

a Matching component: The number of species shared between the focal and contrasted 

assemblages 

b Matching component: The number of species unique to the contrasted assemblage  and 

absent from the focal assemblage 

c Matching component: The number of species unique to the focal assemblage and absent 

from the contrasted assemblage 

xij The number of individuals of species i in assemblage j 

xik The number of individuals of species i in assemblage k 

xi = 𝑥𝑖𝑗 + 𝑥𝑖𝑘 = total number of individuals of species i in assemblages j and k combined 

S The total number of species in focal and contrasted assemblages 

Nj Total number of individuals in assemblage j 

Nk Total number of individuals in assemblage k 

pij Relative abundance of species i in assemblage j 

pik Relative abundance of species i in assemblage k 

𝐻𝛼̅ 

1

2
(∑ 𝑝𝑖𝑗

𝑆
𝑖=1 log𝑝𝑖𝑗  + ∑ 𝑝𝑖𝑘

𝑆
𝑖=1 log𝑝𝑖𝑘)  = mean of Shannon entropy (Shannon 1948) in 

assemblages j and k 

𝐻𝛾 ∑ 𝑝𝑖𝑗 + 𝑝𝑖𝑘
𝑆
𝑖=1 log 𝑝𝑖𝑗 +𝑝𝑖𝑘 = Shannon entropy (Shannon 1948) for assemblages j and k 

pooled 
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Symbol Definition 

𝜆𝛼̅ =
1

2
[
∑ [𝑥𝑖𝑗 (𝑥𝑖𝑗− 1)]

𝑁𝑗(𝑁𝑗− 1)
] + [

∑ [𝑥𝑖𝑘 (𝑥𝑖𝑘− 1)]

𝑁𝑘(𝑁𝑘− 1)
] = mean of Simpson’s index of diversity (Simpson 

1949) for assemblages  j and k 

𝜆𝛾 = [
∑ [𝑥𝑖 (𝑥𝑖− 1)]

𝑥𝑖(𝑥𝑖− 1)
] = Simpson’s index of diversity (Simpson 1949) for assemblages  j and k 

pooled 

µij (m) 
= 1 − (1 − 𝑝𝑖𝑗)

𝑚, where m is the size of a random sample drawn from a population 

µik (m) 
= 1 − (1 − 𝑝𝑖𝑘)

𝑚,  where m is the size of a random sample drawn from a population 

wi a weight applied to species i in order to exclude joint absences.  If xij + xik = 0, then wi = 0, 

if xij + xik > 0, then wi = 1  

𝐷𝛼
1  =  exp[−𝑤1∑ 𝑝𝑖1

𝑆
𝑖=1 log𝑝𝑖1 − 𝑤2∑ 𝑝𝑖2

𝑆
𝑖=1 log𝑝𝑖2]  

𝐷𝛾
1  =  exp [−∑ 𝑤𝑗𝑝𝑖𝑗

𝑆
𝑖=1 −∑ 𝑤𝑘𝑝𝑖𝑘

𝑆
𝑖=1 ], where wj and wk are weights reflecting the relative 

sizes of assemblages j and k 

𝐷𝛼
2  = (

1

𝑁
∑ 𝑝𝑖1

2𝑆
𝑖=1 +

1

𝑁
∑ 𝑝𝑖2

2𝑆
𝑖=1 )

1

1−2
  

𝐷𝛾
2

 
 = {∑ [

1

𝑁
(𝑝𝑖1 + 𝑝𝑖2)

1

1−2]
2

𝑆
𝑖=1 }

1

1−2

  

Djk Shared species, present in assemblage j and assemblage k 

I [expr] Indicator function, I = 1 if expression is true, I = 0 if expression is false 

𝑓1+ = ∑ 𝐼[𝑥𝑖𝑗 = 1, 𝑥𝑖𝑘 ≥ 1]
𝐷𝑗𝑘
𝑖=1

 = observed number of shared species that are singletons in 

assemblage j 

𝑓+1 
= ∑ 𝐼[𝑥𝑖𝑘 = 1, 𝑥𝑖𝑗 ≥ 1]

𝐷𝑗𝑘
𝑖=1  = observed number of shared species that are singletons in 

assemblage k 

𝑓2+ = ∑ 𝐼[𝑥𝑖𝑗 = 2, 𝑥𝑖𝑘 ≥ 1]
𝐷𝑗𝑘
𝑖=1

 = observed number of shared species that are doubletons in 

assemblage j 

 

𝑓+2 = ∑ 𝐼[𝑥𝑖𝑘 = 2, 𝑥𝑖𝑗 ≥ 1]
𝐷𝑗𝑘
𝑖=1  = observed number of shared species that are doubletons in 

assemblage k 

𝑈 = ∑
𝑥𝑖𝑗

𝑁𝑗
+ 

𝑁𝑘−1

𝑁𝑘

𝑓+1

2𝑓+2
∑

𝑥𝑖𝑗

𝑁𝑗
𝐼(𝑥𝑖𝑘 = 1)

𝐷𝑗𝑘
𝑖=1

𝐷𝑗𝑘
𝑖=1

  

𝑉̂ = ∑
𝑥𝑖𝑘

𝑁𝑘
+ 

𝑁𝑗−1

𝑁𝑗

𝑓1+

2𝑓2+
∑

𝑥𝑖𝑘

𝑁𝑘
𝐼(𝑥𝑖𝑗 = 1)

𝐷𝑗𝑘
𝑖=1

𝐷𝑗𝑘
𝑖=1
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4.7.2  Evaluation of metrics against desirable and personality 

properties 

Table S4.3  Summary of the 18 desirable properties abundance-based β-
diversity metrics, comprising 16 conceptual (C1-16) and two sampling  
properties (S1-S2).   

Properties are described in the methods section. The scores were 
standardised by the range of observed values for metric i, 𝜷𝒊 ,𝒓𝒂𝒏𝒈𝒆 in each 

test. 

Property Score for metric i 

C1.  Independent of α-

diversity 
C1𝑖 = √

1

𝑛𝑡𝑛𝛼
∑ ∑ (

𝛽𝑖 ,𝑡,𝛼,− 𝛽𝑖,𝑡,𝛼𝑚𝑎𝑥

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝛼
𝛼=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡,𝛼 and 𝛽𝑖,𝑡,𝛼𝑚𝑎𝑥 

are median β-diversity for metric i at turnover t and α-diversity 

α  and αmax, respectively, 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of observed β-

diversity for metric i in this test, nt  is  the number of turnover 

levels, here 6,  nα  is  the number of levels of  α-diversity, here 

10. 

 

C2.  β is cumulative along a 

gradient of species turnover 

 

C2i = √
1

𝑛𝑡𝑛𝑔𝑛𝑗
∑ ∑ ∑ (

(𝛽𝑖,𝑡,𝑔,𝑗
𝐴,𝐶 −( 𝛽𝑖,𝑡,𝑔,𝑗

𝐴,𝐵 +𝛽𝑖,𝑡,𝑔,𝑗
𝐵,𝐶 )) 

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)

2
𝑛𝑗
𝑗=1

𝑛𝑔
𝑔=1

𝑛𝑡
𝑡=1 , where 

𝛽𝑖,𝑡,𝑔,𝑗
𝐴,𝐶

, is β-diversity for metric i between assemblages A and C 

at turnover t, under a gradient of strength g in simulation j,  

𝛽𝑖,𝑡,𝑔,𝑗
𝐴,𝐵 + 𝛽𝑖,𝑡,𝑔,𝑗

𝐵,𝐶
is β-diversity expected under additivity, 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is 

the range of β-diversity for metric i in this test, nt is  the number 

of turnover levels, here 6,  ng  is  the number of gradient 

strengths, here 7, and nj is the number of simulations at each 

unique combination of t and g, here 10000. 

 

C3.  Similarity is 

probabilistic when 

assemblages are 

independently and 

identically distributed 

C3𝑖 = √
1

𝑛𝑡𝑛𝑗
∑ ∑ (

(1−𝛽𝑖,𝑡,𝑗
𝐴,𝐶)− (1−𝛽𝑖,𝑡,𝑗

𝐴,𝐵)(1−𝛽𝑖,𝑡,𝑗
𝐵,𝐶) 

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)

2
𝑛𝑗
𝑗=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡,𝑗

𝐴,𝐶
  is 

the value of β-diversity for metric i between assemblages A 

and C at turnover t in simulation j and 𝛽𝑖,𝑗,𝑡
𝐴,𝐵𝛽𝑖,𝑗,𝑡

𝐵,𝐶
 is β-diversity 

expected under probabilistic similarity, 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of 

observed β-diversity for metric i in this test, nt is  the number of 

turnover levels and nj  is the number of simulations at each 

level of t, here 10000. 

 



127 
 

Property Score for metric i 

C4.  Minimum of zero and 

positive 

C4i =  TRUE / FALSE for 𝛽𝑖
𝐴,𝐴 = 0 and  𝛽𝑖 

𝐴,𝐵 ≥ 0 where 𝛽𝑖
𝐴,𝐴

  

and 𝛽𝑖
𝐴,𝐵

  are  median β-diversity for metric i in 10000 

simulations for two identical assemblages and two different 

assemblages where there is either species turnover, 

decoupling of species ranks or evenness differences.  

 

C5.  Monotonic: β increases 

in a series of assemblages 

with increasing species 

turnover 

C5i = TRUE / FALSE  for if tA,B < tA,C  then  𝛽𝑖,𝑡
𝐴,𝐵 < 𝛽𝑖,𝑡

𝐴,𝐶
 , where  

tA,B and tA,C  are the proportion of species turned over  between 

assemblages A and B and between A and C, respectively and 

𝛽𝑖,𝑡
𝐴,𝐵

 and 𝛽𝑖,𝑡
𝐴,𝐶

 are median β-diversity in 10000 simulations for 

metric i at increasing levels of turnover, t.  

 

C6.  Monotonic:  β increases 

in a series of assemblages 

with increasing decoupling 

of species ranks 

C6i = TRUE / FALSE for if rA,B < rA,C  then  𝛽𝑖,𝑟
𝐴,𝐵 > 𝛽𝑖,𝑟

𝐴,𝐶
, where 

rA,B and  rA,C are the partial correlation between species ranks 

in assemblages A and B and A and C, respectively and 

𝛽𝑖,𝑟
𝐴,𝐵

and , 𝛽𝑖,𝑟
𝐴,𝐶

 are median β-diversity in 10000 simulations for 

metric i with incrementally decreasing correlation between 

species ranks, r.   

    

C7.  Monotonic:  β increases 

in a series of assemblages 

with increasing evenness 

differences 

C7i = TRUE / FALSE for if ΔEA,B < ΔEA, C  then  𝛽𝑖
𝐴,𝐵 < 𝛽𝑖

𝐴,𝐶
, 

where ΔEA, B and  ΔEA, C  are the difference in evenness 

between assemblages A and B and A and C, respectively and 

𝛽𝑖
𝐴,𝐵

 and 𝛽𝑖
𝐴,𝐶

 are median β-diversity in 10000 simulations for 

metric i with incrementally increasing levels of evenness 

differences, ΔE.   

   

C8. β when extreme 

decoupling of species ranks 

< β when species turnover 

is complete  

C8i  = TRUE / FALSE for βi, tmax, rmax >  βi, tmin, rmin, where  βi, tmax, 

rmax  and  βtmin, rmin are the median values of β-diversity for 

metric i under complete species turnover and no decoupling of 

species and under extreme decoupling of species ranks and 

no species turnover, respectively.   

C9.  β under extreme 

differences in evenness < β  

when species turnover is 

complete 

C9i = TRUE / FALSE  for βi,tmax, ΔEmin >  βi,tmin,  ΔEmax, where  

βi,tmax,  ΔEmin  and  βi, tmin, ΔEmax  are the median values of β-

diversity under complete species turnover and no evenness 

difference and under no species turnover and extreme 

evenness difference, respectively.  
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Property Score for metric i 

C10. Fixed upper bound C10i = TRUE/FALSE for  
1

2
∑𝛽𝑖,𝑡𝑚𝑎𝑥

2  = 1, where 𝛽𝑖 is the value 

of β-diversity for metric i when there is complete species 

turnover between assemblages. 

 

C11. Symmetry C11i = TRUE/FALSE for βi, A, B =  βi,B, A, where  βi,A, B  and   βi,B, 

A  are the values of β-diversity for metric i for assemblages A 

and B and B and A, respectively 

 

C12. Double-zero 

asymmetry 

C12i = TRUE / FALSE for ab and pr in 1:10,  βi, ab  =   βi,, ab=0  

and  βi, pr  <   βi,, pr=0  where  βi, a  and  βi,, a=0 are the values of  β-

diversity for metric i when ab double absences and no double 

absences, respectively, have been added to the assemblage 

pair.   βi, pr  and   βi,, pr=0   are the values of  β-diversity for metric 

i when pr double presences and no double presences, 

respectively, have been added to the assemblage pair. 

   

C13. β does not decrease in 

a series of nested 

assemblages 

C13i = TRUE / FALSE for  S1,2 < S1,3  then  𝛽𝑖,𝑡
1,2 ≤ 𝛽𝑖,𝑡

1,3
 , where 

S is difference in species richness between assemblages 1 

and 2 and 1 and 3, respectively and 𝛽𝑖
1,2

 and 𝛽𝑖
1,3

 are median 

β-diversity of assemblages 1 and 2 and 1 and 3, respectively, 

for metric i  at turnover, t in 10000 simulations. 

C14.  Independent of 

species replication 
C14i  = √

1

𝑛𝑡𝑛𝑥
∑ ∑ (

𝛽𝑖,𝑡,𝑥− 𝛽𝑖,𝑡,

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝑥
𝑥=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡 is median β-

diversity in 10000 simulations for metric i at turnover t and  

𝛽𝑖,𝑡,𝑥 is median β-diversity when x identical subsets are pooled 

(species replication), 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of observed β-

diversity for metric i in this test, nt  =  the number of turnover 

levels, here 6, and nx is the number of levels of species 

replication, x , here 10. 

C15. Independent of 

measurement units 
C15i  = √

1

𝑛𝑡𝑛𝑐𝑐
∑ ∑ (

𝛽𝑖,𝑡,𝑐𝑐− 𝛽𝑖,𝑡

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝑐𝑐
𝑐𝑐=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡 is median β-

diversity in 10000 simulations for metric i at turnover t and 

𝛽𝑖,𝑡,𝑐𝑐 is median β-diversity when abundances in both 

assemblages are multiplied by a constant factor cc.  𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is 

the range of observed β-diversity for metric i in this test, nt  is  

the number of turnover levels, here 6 and nc is the number of 

levels of the constant factor, cc , here 10. 
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Property Score for metric i 

C16. Independent of 

differences in abundance  
C16i  = √

1

𝑛𝑡𝑛𝑐
∑ ∑ (

𝛽𝑖,𝑡,𝑐− 𝛽𝑖,𝑡

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝑐
𝑐=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡 is median β-

diversity in 10000 simulations for metric i at turnover t and 𝛽𝑖,𝑡,𝑐 

is median β-diversity when abundances in one assemblage are 

multiplied by a constant factor c.  𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of 

observed β-diversity for metric i in this test, nt  is  the number 

of turnover levels, here 6 and nc is the number of levels of the 

constant factor, c , here 10. 

S1. Independent of sample 

size 
S1i  = √

1

𝑛𝑡𝑛𝑁
∑ ∑ (

𝛽𝑖,𝑡,𝑁− 𝛽𝑖,𝑡,𝑁𝑚𝑎𝑥

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝑁
𝑁=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡,𝑁  and  

𝛽𝑖,𝑡,𝑁𝑚𝑎𝑥 are median β-diversity in 10000 simulations for metric 

i at turnover t and sample sizes N and Nmax , respectively,   

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of observed β-diversity for metric i in this 

test, nt  =  the number of turnover levels, here 6 and nN is the 

number of sample size levels, here 16. 

S2.  Independent of unequal 

sample sizes 
S2𝑖 = √

1

𝑛𝑡𝑛𝛥𝑁
∑ ∑ (

𝛽𝑖,𝑡,𝛥𝑁− 𝛽 𝑖,𝑡,𝛥𝑁𝑚𝑖𝑛

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝛥𝑁
𝛥𝑁=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡,𝛥𝑁  and 

𝛽𝑖.𝑡,𝛥𝑁𝑚𝑖𝑛 are median β-diversity in 10000 simulations for metric 

i at turnover t and sample size difference 𝛥𝑁 and  𝛥𝑁𝑚𝑖𝑛, 

respectively, 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of observed β-diversity for 

metric i in this test, nt  =  the number of turnover levels, here 6 

and nΔN is the number of levels of sample size difference, here 

16. 

       

Table S4.4  Summary of the five personality properties (P1-5) against which β-
diversity metrics were evaluated.   

Score is the method used to evaluate β-diversity metric i for each property. 

Personality  Score 

P1.  Sensitivity to differences in α-

diversity 𝑃1𝑖 = √
1

𝑛𝛥𝛼𝑛𝑡
∑ ∑ (

𝛽 𝑖,𝑡,𝛥𝛼,− 𝛽𝑖,𝑡,𝛥𝛼𝑚𝑖𝑛,

𝛽𝑖,𝑟𝑎𝑛𝑔𝑒
)
2

𝑛𝛥𝛼
𝛥𝛼=1

𝑛𝑡
𝑡=1 , where 𝛽𝑖,𝑡,𝛥𝛼 

and 𝛽𝑖,𝑡,𝛥𝛼𝑚𝑖𝑛 are the median values of β-diversity for metric i 

at turnover t and sample size difference 𝛥𝛼 and  𝛥𝛼𝑚𝑖𝑛, 

respectively, 𝛽𝑖,𝑟𝑎𝑛𝑔𝑒 is the range of  β-diversity for metric i 

in this simulation and n is the number of unique combinations 

of Δα and t. 
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Personality  Score 

P2.  Relative sensitivity to 

nestedness and turnover components 

of β 

𝑃2𝑖 =
𝛽𝑖 ,𝑡𝑚𝑎𝑥,   𝑠𝑚𝑖𝑛

𝛽𝑖 ,𝑡𝑚𝑖𝑛,   𝑠𝑚𝑎𝑥
, where 𝛽𝑖,𝑡𝑚𝑎𝑥,𝑠𝑚𝑖𝑛 and 𝛽𝑖,𝑡𝑚𝑖𝑛,𝑠𝑚𝑎𝑥  are 

the median values of β-diversity under complete species 

turnover and no species nestedness and for extreme species 

loss and no species turnover, respectively. 

 
P3.  Relative sensitivity to 

decoupling of species ranks and 

species turnover components of β    

𝑃3𝑖 =
𝛽𝑖 ,𝑡𝑚𝑎𝑥,𝑟𝑚𝑎𝑥

𝛽𝑖,𝑡𝑚𝑖𝑛,𝑟𝑚𝑖𝑛
, where 𝛽𝑖,𝑡𝑚𝑎𝑥,𝑟𝑚𝑎𝑥 and 𝛽𝑖,𝑡𝑚𝑖𝑛,𝑟𝑚𝑖𝑛 are the 

median values of  β-diversity for metric i under complete 

species turnover and no decoupling of species ranks and 

under extreme decoupling of species ranks and no species 

turnover, respectively. 

 
P4.  Relative sensitivity to evenness 

differences and species turnover 

components of β 

𝑃4𝑖 =
𝛽𝑖,𝑡𝑚𝑎𝑥,𝛥𝐸𝑚𝑖𝑛

𝛽𝑖 ,𝑡𝑚𝑖𝑛,𝛥𝐸=𝑚𝑎𝑥
, where 𝛽𝑖,𝑡𝑚𝑎𝑥,𝛥𝐸𝑚𝑖𝑛 and 

𝛽𝑖,𝑡𝑚𝑖𝑛,   𝛥𝐸𝑚𝑎𝑥 are the median values of  β-diversity for metric 

i under complete species turnover and no evenness 

differences and  under extreme evenness difference and no 

species turnover, respectively 

P5.  Relative sensitivity to turnover 

in rare versus common species 
𝑃5𝑖 =

𝛽𝑖,𝑛𝑚𝑖𝑛
𝛽𝑖 ,𝑛𝑚𝑎𝑥

, where 𝛽𝑖,𝑛𝑚𝑖𝑛 and 𝛽𝑖,𝑛𝑚𝑎𝑥are the values of 𝛽 

for metric i when the rarest and commonest species, 

respectively, are turned over. 

 

4.7.3  Supplementary Results   

Figures S4.1 – 13 are the results of simulations testing the 33 metrics in Table S4.1 

against the 16 conceptual and two sampling and in Table S4.3 and five personality 

traits in Table S4.4.  On each of the x axes is a test-specific parameter describing 

some aspect of assemblage structure.  The scores for each metric are shown 

above the plots and were calculated using the methods in Tables S4.3 and S4.4. 
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Fig. S4.1  Effect of α-diversity of assemblages on β  

Effect of α (e.g. both low α or both high α) on the value of β for a) 25 metrics 
with a fixed upper limit and b) 8 metrics with no maxima.  Solid lines and 
shaded areas are the median and interquartile range, respectively, of β for 
10000 simulations at each unique combination of species turnover, t, and 

Fisher’s α-diversity, αFisher.  Metrics scored for desirable property C1, 
independence of α-diversity.  Vertical dashed black lines intersect the 
reference values of median β at high αFisher. 
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Fig. S4.2 Cumulative β-diversity 

Values of β-diversity under different strengths of directional species turnover 
along a simulated environmental gradient, g for a) 25 metrics with a defined 

upper limit b) 8 metrics with no maxima.  Solid lines and shaded areas are the 
median and interquartile range, respectively, of the differences between 
observed βA,C and that predicted if β were cumulative along a gradient of 
turnover (βA,B+βB,C), based on 10000 simulations at each unique combination 
of species turnover, t, and environmental gradient, g.  Metrics are scored for 
property C2, β is cumulative along a gradient of species turnover.  Horizontal 

dashed black lines at 0 represent perfect cumulative behaviour.  Scores for 
bias are also presented in order to evaluate whether the metrics are 
systematically sub- or supra-additive. 
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Fig. S4.3  Probabilistic β-diversity  

β-diversity in simulated assemblages that are independent draws form a well-

mixed metacommunity for 25 metrics with fixed upper limits.  Metrics without 
upper limits do not have a similarity complement.  Solid lines and shaded 
areas are the median and interquartile range, respectively, of the differences 
between observed similarity, (1-βA,C) and that predicted if similarity were 
probabilistic, (1-βA,B)(1-βB,C) based on 10000 simulations at each level of 
species turnover, t.  Metrics are scored for desirable property C3, similarity is 

probabilistic when assemblages are independently and identically distributed.  
Horizontal dashed black lines at 0 represent perfect probabilistic behaviour.  
The scores for bias are also presented to evaluate whether the metrics are 
systematically sub- or supra-probabilistic. 
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Fig. S4.4  Effect of species turnover on β-diversity  

Simulations for a) 25 metrics with a fixed upper limit b) 8 metrics without 
maxima  Solid lines and shaded areas are the median and interquartile range, 
respectively, of β based on 10000 simulations at each combination of species 

turnover, t and species loss, ΔS.  Metrics are scored as TRUE or FALSE for 

desirable property C4, minimum of zero and positive and C6, monotonic 
increase with species turnover.  Vertical dashed black lines intersect the 
reference values of median β at t = 0 (no species turnover). 
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Fig. S4.5  Effect of decoupling of species ranks on β-diversity  

Simulations of decoupling of ranks in species assemblages for a) 25 metrics 
with defined maxima and minima b) 8 metrics with no defined maxima.  Solid 
lines and shaded areas are the median and interquartile range, respectively, 
of β based on 10000 simulations at each unique combination of species 
turnover, t, and partial correlation between ranks, r.  Metrics are scored for 
desirable properties C7, monotonic increase with decoupling of species ranks 
and C9, extreme decoupling of species ranks (partial correlation = -1) is less 
than β for complete species turnover.  Metrics are also scored for P3, relative 
sensitivity to decoupling of species ranks and species turnover.  Vertical 
dashed black lines intersect the reference values of median β at r = 1 (perfect 
correlation between ranks).  
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Fig. S4.6  Effect of evenness differences on β-diversity  

Simulations of evenness differences in species assemblages for a) 25 metrics 
with fixed upper limits b) 8 metrics with no maxima.  Solid lines and shaded 
areas are the median and interquartile range, respectively, of β based on 
10000 simulations at each unique combination of species turnover, t, and 
difference in evenness, ΔE.  Metrics are scored for desirable properties C8, 
monotonic increase with evenness differences, and C10, median β under 
extreme evenness differences (ΔE ~ 1) is less than median β when species 
turnover is complete, (t=1).  Metrics are also scored for P4, relative sensitivity 
to evenness differences and species turnover components of β.  Vertical 
dashed black lines intersect the reference values of median β at ΔE=0 (no 

evenness differences).      
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Fig. S4.7  Effect of species replication on β-diversity  

Simulations of species replication in species assemblages (pooling x identical 
subsets of an assemblage pair) for a) 25 metrics with fixed upper limits b) 8 
metrics with no maxima.  Solid lines and shaded areas are the median and 
interquartile range, respectively, of β based on 10000 simulations at each 
unique combination of species turnover, t, and number of species replication 
events, x.  Metrics are scored for desirable property C14, independence of 

species replication.  Vertical dashed black lines intersect the reference values 
of median β at x=1 (no species replication).   
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Fig. S4.8  Effect of units used to measure abundance on β-diversity 

Simulations of assemblage pairs with different units of abundance for a) 25 
metrics with fixed upper limits b) 8 metrics with no maxima.  Solid lines and 
shaded areas are the median and interquartile range, respectively, of β based 
on 10000 simulations at each unique combination of species turnover, t, and a 
constant factor, cc, by which abundances in both assemblages are multiplied.  
Metrics are scored for desirable property C15, independence of measurement 
units.  Vertical dashed black lines intersect the reference values of median β 
at cc=1 (no change in measurement units). 
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Fig. S4.9  Effect of differences in abundance on β-diversity  

Simulations of differences in abundance between assemblages for a) 25 
metrics with fixed upper limits b) 8 metrics with no maxima.  Solid lines and 
shaded areas are the median and interquartile range, respectively, of β based 
on 10000 simulations at each unique combination of species turnover, t, and a 
constant factor, c, by which abundances in one assemblage are multiplied.  

Metrics are scored for desirable property C16, independence of differences in 

abundance.  Vertical dashed black lines intersect the reference values of 
median β at c=1 (no abundance differences).   
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Fig. S4.10  Effect of nestedness on the value of β-diversity  

Simulations of the effect of nestedness of assemblages pairs for a)  25 
metrics with fixed upper limits and b)  8 metrics with no maxima.  Solid lines 
and shaded areas are the median and interquartile range, respectively, of β 
based on 10000 simulations at each unique combination of species turnover, 
t, and difference in species richness, ΔS. Metrics are scored for desirable 
property C13, β does not decrease in a series of nested assemblages and 
personality traits P1, sensitivity to nestedness, and P2 relative sensitivity to 

nestedness and turnover.  Vertical dashed black lines intersect the reference 
values of median β at ΔS=0 (no differences in species richness).     
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Fig. S4.11  Sensitivity to turnover in rare versus common species  

Simulations of species turnover in common and rare species for a) 25 metrics 
with fixed upper limits b) 8 metrics with no maxima.  Solid lines are the value 
of β when a single species with relative abundance, n, is turned over.  Metrics 

are scored for personality trait P5, relative sensitivity to turnover in rare versus 
common species.  A value of 1 indicates that a metric weights turnover in rare 
and common species equally, while a value of less than one indicates rare 
species contribute less to the value of β.  A value of zero indicates a metric is 
almost completely insensitive to turnover in rare species. 
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Fig. S4.12  Effect of sample size on β-diversity  

Simulations of sample size in species assemblages for a) 25 metrics with 
defined minima and maxima and b) 8 metrics with no defined maxima.  Solid 
lines and shaded areas are the median and interquartile range, respectively, 
of β for 10000 simulations at each unique combination of species turnover, t, 

and sample size, N.  Metrics are scored for desirable property S1, 
independence of sample size.  Vertical dashed black lines intersect the 

reference values of median β at N=10000 (fully censused assemblages). 
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Fig. S4.13  Effect of unequal sample size on β-diversity  

Simulations of differences in sample size between assemblages for a) 25 
metrics with fixed upper limits b) 8 metrics with no maxima.  Solid lines and 
shaded areas are the median and interquartile range, respectively, of β for 
10000 simulations at each unique combination of species turnover, t, and 
sample size difference, ΔN.   Metrics are ordered by their scores for desirable 

property S2, unbiased by unequal sample size. Vertical dashed black lines 
intersect the reference values of median β at ΔN=0 (equal sample sizes). 
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Fig. S4.14  Effect of species turnover on β-diversity under a positive 
occupancy-abundance relationship (ONR)  

Simulations of species turnover assuming a positive relationship between 
local abundance and occupancy within a study region for a) 25 metrics with 
fixed upper limits b) 8 metrics with no maxima.  Dashed black lines are the 
median of β under random species turnover. Solid black lines are the median 
of β when the probability of a species being turned over is inversely 

proportional to its relative abundance (a positive ONR with exponent 0.65).  
Shaded areas are the interquartile ranges of β.  Median and interquartile 
range values are based on 10000 simulations at each level of species 
turnover, t.    
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Fig. S4.15  Effect of the spatial grain of sampling on β-diversity 

Simulations sampling species assemblages different spatial grains for a) 25 β-
diversity metrics with fixed upper limits b) 8 metrics with no maxima.  Solid 
lines and shaded areas are the median and interquartile, respectively, of β 
based on 100 simulations at each spatial grain.  Individuals of each species 
are assumed to be distributed according to an inhomogeneous Poisson point 
process (the Thomas process).  Quadrat pairs are equally sized and their 
position is sampled at random from within the simulated study region.   
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   Fig. S4.16  Trade-off between sampling property S1 (independence of 
sample size) and personality property P5 (relative sensitivity to turnover 
in rare and common species).   

Black dots are the 29 metrics tested against the two properties.  βMorisita and 
βsim represent two extremes of this trade-off. 
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Chapter 5 

Climate, habitat and distance as correlates of spatial 

patterns of β-diversity in British macro-moth species 

5.1  Abstract 

Understanding spatial patterns in β-diversity, and the drivers thereof, can 

inform reserve selection and improve predictions of the effects of habitat loss 

and climate change on biodiversity.  In this chapter, I use hierarchical 

partitioning of generalised linear models of β-diversity to quantify the 

independent and joint contributions of climatic variables, landcover and 

geographical distance in structuring the community composition of British 

macro-moths.  I compare conclusions based on eight models using 

community composition derived from two datasets (the standardised 

Rothamsted Insect Survey and opportunistic records from the National Moth 

Recording Scheme) and five different β-diversity metrics (βMorisita, βHorn, 

βSørensen, βSør.turn, βSør.nest).  The independent contributions of all predictors to β-

diversity were low to moderate: Across all eight models the independent 

contribution of climate explained, on average, the most variation in β-

diversity (4.65 ± 4.69 %), followed by geographical distance (4.58 ± 4.15 %).  

Landcover consistently explained the least variation β-diversity (1.11 ± 1.20 

%).  Together, geographical distance, climate and landcover were better able 

to explain spatial patterns in abundance-based β-diversity metrics (βMorisita, 

βHorn) compared with presence-absence metrics (βSørensen) and were better able 

to explain spatial patterns in the standardised Rothamsted Insect Survey than 

opportunistic National Moth Recording Scheme.  The purely turnover 

component of βSørensen was substantially better explained than the purely 

nestedness component (βSør.nest).  Conclusions about the overall explanatory 

power and relative independent effects of geographical distance, climate and 

landcover vary among the metrics and datasets that are used to quantify 

spatial patterns in β-diversity.. 

  



150 
 

5.2  Introduction 

β-diversity quantifies spatial variation in the composition of species assemblages 

(Tuomisto 2010a; b).  This aspect of biodiversity captures the complementarity of 

local communities and thereby connects local (α) and regional (γ) diversity 

(Whittaker 1960, 1972; Ricotta et al. 2002; McGlinn & Hurlbert 2012).  Spatial 

patterns in β-diversity emerge from the distribution and abundance of individual 

species and the degree to which these distributions overlap in space and time 

(Plotkin & Muller-Landau 2002).  Understanding spatial patterns in β-diversity has 

important implications for managing biodiversity: spatially random reserve selection, 

habitat loss and climate change will have disproportionate impacts on biodiversity if 

β-diversity is spatially structured rather than spatially random (Legendre et al. 

2005).        

Species distributions are driven by the interplay between niche and neutral 

processes (Wennekes et al. 2012), but the relative contributions of these processes 

are still unclear.  Niche and neutral hypotheses predict different spatial patterns in 

β-diversity.   This provides a framework with which to test hypotheses about the 

processes driving species distributions and community assembly.  Specifically, 

ecologists have employed a number of methods designed to partition the relative 

contributions of environmental, spatial and habitat heterogeneity by quantifying the 

strength of these associations with observed patterns in β-diversity (Harrison et al. 

1992; Ferrier et al. 2007; Legendre 2008; Keil et al. 2012b; Fitzpatrick et al. 2013).         

The niche hypothesis stresses the deterministic role of the environment in filtering 

the species that can persist at a given location, due to their unique set of traits and 

adaptations (Chase & Leibold 2003).  Environmental filtering by climate is well 

described in ecological studies (Parmesan et al. 1999; Hill et al. 2011).  Some of 

the best examples of this come from UK Lepidoptera: a large body of evidence 

suggests that their distributions are thermally constrained due to physiological limits 

on survival, development or reproduction (Bryant et al. 1997; Conrad et al. 2002; 

Davies et al. 2006; Buckley et al. 2011; Fox 2013).  Habitat quantity and quality will 

also determine the distribution and abundance of species through the availability of 

adult and larval host plants (and other biotic interactions) and the effect of 

vegetation structure and topology on survival and reproduction (Spalding & Parsons 

2004; Summerville & Crist 2004).  Environmental filtering predicts spatial patterns in 

β-diversity will result from both species turnover and nestedness (where an 

assemblage is a perfect subset of those species in the contrasted assemblage).   
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In contrast, neutral theory (Hubbell 2001; Rosindell et al. 2011, 2012) assumes that 

all species are equivalent in terms of per capita fitness, such that spatial variation 

can only be generated through stochastic processes (ecological drift) like dispersal 

limitation and random disturbance events leading to unpredictable extinctions 

(demographic stochasticity).  These processes would be expected to generate 

spatial patterns of β-diversity that are correlated strongly with geographic distance 

but not with environmental variables such as climate.  Moreover, neutral processes 

cannot generate gradients in species richness, so we would not expect to see a 

strong pattern of nestedness within spatial patterns of β-diversity.  Unfortunately, 

stochastic patterns may be partially or even wholly driven by important deterministic 

processes we don’t understand or variables have failed to measure accurately, 

raising the question of whether it is possible to quantify truly neutral processes. 

Spatial patterns in β-diversity can be described as a pairwise matrix of β-diversity 

between each site in the analysis, derived from a site (rows) by species (columns) 

matrix of presence (1) or absence (0), or the abundances for each species.  A 

complication is that not all β-diversity metrics measure the same underlying concept 

(chapter 4).  Both the replacement (turnover) of species and the gain or loss of 

species (nestedness) along environmental and spatial gradients contribute to 

spatial patterns in β-diversity (Koleff et al. 2003a; Baselga 2012), but turnover and 

nestedness are derived from different processes (Svenning et al. 2011; Dobrovolski 

et al. 2012; Ulrich & Almeida-Neto 2012; Calderón-Patrón et al. 2013).  Moreover, 

metrics can place different emphasis on variation in common and rare species 

(chapter 4), such that presence-absence and abundance data may reveal different 

spatial patterns in β-diversity.  A third source of variation in quantifying β-diversity is 

how robust a metric is in the face of undersampling of communities, which can lead 

to bias in estimates of β.      

In this chapter, I apply a suite of metrics covering these three facets of β-diversity 

metrics in order to explore how the choice of method affects conclusions about the 

role of environmental variables and geographical distance.  Firstly, I quantify the 

independent and joint contributions of geographical distance, climate and landcover 

to spatial variation in β-diversity of British macro-moths, using community 

composition data for 331 species. Secondly, I ask whether model explanatory 

power and the relative importance of environmental and spatial predictors remain 

consistent when β-diversity is measured using presence-absence versus 

abundance data.  Thirdly, I compare model explanatory power and the relative 

independent contributions of the predictors when β-diversity is estimated from 

unstructured biological records versus high-quality monitoring data from the same 
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locations.  Finally, I explore how partitioning β-diversity into its purely turnover and 

nestedness components influences the overall explanatory power and relative 

independent contributions of geographical distance, climate and landcover. 

5.3  Methods 

To explore the relative contributions of geographical distance, climateand landcover 

heterogeneity in structuring patterns of macro-moth β-diversity in mainland Britain, 

pairwise dissimilarity matrices were obtained for macro-moth community 

composition, mean monthly temperature, percentage landcover and geographical 

distance.  Data manipulation was performed in R 3.0.3 (R Core Development Team 

2014). 

5.3.1  Community composition data 

The focal insect taxon for this study are the British larger moth species (macro-

moths) studied by Conrad et al. (2006).   Two sources of data were used to explore 

patterns of β-diversity in British macro-moth species.  The first data set comprise a 

subset of 148 light traps in the Rothamsted Insect Survey (RIS) that were operating 

between 2000 and 2011.  In most cases, the abundances of moth species captured 

in these light traps have been recorded nightly during every year that the trap has 

been in operation using a standardised protocol.  Of these 148 traps, I included only 

the 76 light traps that had been operating for five or more years between 2000 and 

2011 in order to ensure maximum comparability across trap sites.   

From these data, I created two matrices of community composition with a row for 

each site (unique 1km2 grid reference) and a column for each species.  The first 

matrix (henceforth called RISa) comprised the total abundances of 329 macro-moth 

species between 2000 and 2011 by summing the annual abundances of species in 

each light trap across all years.  The second matrix (RISp), with the same structure, 

comprised presences (1) and absences (0) in order to compare patterns of β-

diversity measured with abundance data and presence-absence data.   

The third community composition matrix was derived from the National Moth 

Recording Scheme (NMRSp).  I extracted all moth records collected in mainland 

Britain between 2000 and 2011 with a precision of ≤ 1km2.  These records were 

used to generate a matrix of presence (1) and absence (0) with a row for each site 

(unique 1km2 grid reference) and a column for each of the 331 macro-moth species 

with records.  A total of 66 grid cells were shared between the NMRS and RIS and 

were used to compare patterns of β-diversity between the two data sets (Fig. 5.1). 
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5.3.2  Pairwise β-diversity matrices 

Pairwise β-diversity matrices were created for 8 combinations of dataset and metric 

(e.g. n = 2145 pairwise β-diversities among 66 grid cells).  These were βMorisita 

(Morisita 1959) and βHorn (Horn 1966), applied to the RISa community composition  

Fig. 5.1  Distribution of the 66 1km2 grid cells sampled by both the 

Rothamsted Insect Survey (RIS) light trap network and the National Moth 
Recording Scheme (NMRS) between 2000 and 2011.   

Macro-moth community composition at each site was summarised as 
presence-absence (NMRSp and RISp) and abundance (RISp) in site (rows) 
by species (columns) matrices and used to generate site by site pairwise 
matrices of β-diversity.   

 

matrix, βSørensen (Sørensen 1948), βSør.turn (Baselga 2010) and βSør.nest (Baselga 2010) 

applied to the RISp and βSørensen, βSør.turn and βSør.nest applied to the NMRSp.  These 

metrics were chosen to reflect two of the key personality traits of β-diversity 

(chapter 4).  βMorisita, βHorn and βSørensen form a continuum in terms of how abundance 

data is used: βMorisita is influenced predominantly by differences (turnover or loss of 

individuals) in common species, while βHorn weights species by their relative 
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abundance and βSørensen weights turnover of all species equally.  β-diversity metrics 

can also be narrow-sense or broad-sense.  Narrow-sense metrics measure purely 

the degree to which species (for presence-absence metrics) or individuals (for 

abundance-based metrics) are replaced by other species in the contrasted 

assemblage (turnover).  Broad-sense metrics measure both species turnover and 

the degree to which there is variation in either richness (for presence-absence 

metrics) or total abundance (for abundance-based metrics) between the two 

assemblages (nestedness: Koleff et al. 2003).  βSørensen can be partitioned into the 

turnover (also known as βsim) and nestedness components of β-diversity (Baselga 

2010, 2013).  These components of βSørensen (βSør.turn and βSør.nest) are quantified so 

that the contribution of geographical distance and environment to the turnover and 

nestedness components of β-diversity can be unpicked. 

βMorisita was calculated using the function vegdist in R package vegan (Oksanen et 

al. 2013).  A function to calculate βHorn was written in the R language by adapting 

the formula in Jost et al. (2011).  βSørensen (and the and nestedness components) 

were calculated using the function beta.pair in R package betapart (Baselga et al. 

2013). 

5.3.3  Climate and habitat heterogeneity 

Euclidean distances between percentage cover of landcover classes and mean 

monthly temperature were used as a proxies for habitat and climate heterogeneity, 

respectively.  Landcover data for each of the 66 1km2 grid cells in the analysis were 

obtained from the UK Landcover Map 2007 (Morton et al. 2011) in the form of a 

matrix of percentage cover with sites as rows and the 23 broad land-cover classes 

as columns.  A site by site dissimilarity matrix of Euclidean distances was created 

using the function vegdist in R package vegan (Oksanen et al. 2013).  Mean 

monthly temperature data were taken from the Met Office UKCP09 datasets (Perry 

& Hollis 2005), quantified as the mean for that month of all years between 2000 and 

2011 to generate mean temperature matrices with sites as rows and months as 

columns.  A site by site dissimilarity matrix of Euclidean distances was obtained for 

temperature using the function vegdist in R package vegan (Oksanen et al. 2013). 

5.3.4  Geographic distance 

Pairwise geographic distances between the sites were calculated in kilometres 

based on the coordinates of the 66 grid cells on the Ordnance Survey National 

Grid, using the function rdist.earth in R package fields (Nychka et al. 2015). 
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5.3.5  Statistical analysis 

The independent contributions of climate, landcover and geographic distance to 

macro-moth β-diversity were quantified using a hierarchical partitioning method 

(Chevan & Sutherland 1991) implemented using the function hier.part in R package 

hier.part (Walsh & Mac Nally 2013).  Prior to statistical analyses all three 

dissimilarity matrices were rescaled to a mean of zero and a standard deviation of 

1.  Hierarchical partitioning was applied to a generalised linear model with β-

diversity as the response variable and dissimilarity in temperature, landcover and 

geographic distance as predictors, assuming quasi-binomial error structure to 

account for over-dispersion.  Hierarchical partitioning was based on goodness of fit 

for the 8 candidate models (23 models for 3 explanatory variables), measured as 

the root mean squared predicted error (RMSPE: sum of squares of the residuals 

divided by the residual degrees of freedom).  Hierarchical partitioning quantifies the 

independent and joint contributions of each predictor as the mean of increases in 

goodness of fit (e.g. decrease in RMSPE) across all possible candidate models that 

include that predictor, where decreases in RMSPE are relative to the null model 

(intercept only).  The association of each predictor with β-diversity is partitioned into 

an independent contribution and joint effects with all other variables to address the 

issue of multi-collinearity among predictors.  Independent and joint contributions of 

climate, landcover and geographic distance are expressed as the percentage of 

spatial variation in β-diversity associated with each predictor.  Joint contributions 

with other predictors are also quantified for each predictor and represent the 

component of explanatory power that cannot be disassociated from other predictors 

(Mac Nally 2002). In the Results section I report the independent and joint effects of 

the three explanatory variables as percentages of the total variation explained, in 

both absolute and relative contributions (the former includes the unexplained 

variation but the latter does not).        

The assumption of independence among data points is violated in this analysis, due 

to spatial autocorrelation in the distributions of species.  Therefore, tests for 

significant effects of predictors were performed by randomising the values of each 

predictor independently over 1000 replicates and calculating the independent effect 

for each replicate, using the function hp.rand in R package hier.part (Walsh & Mac 

Nally 2013).  Statistical significance of each predictor was based on the 95% 

confidence intervals of Z-scores (Z >=1.65, Mac Nally 2002).  This hierarchical 

partitioning method was applied eight times, for each of the dataset-metric 

combinations described above. 
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5.4  Results 

5.4.1  Independent and joint effects of climate, landcover and 

distance 

Based on the Z-scores of randomisation tests of predictors, the independent effects 

of all three predictors (geographical distance, climate and landcover) were  

 Table 5.1  Summary of hierarchical partitioning of 8 generalised linear 
models of pairwise β-diversity of British macro-moths as a function of 
geographic distance, landcover dissimilarity and climate dissimilarity   

 A quasi-binomial error structure was assumed.  Dependent variables are β-

diversity derived from macro-moth community composition in the Rothamsted 
Insect Survey using abundance data (RISa), presence-absence data (RISp) 
or the National Moth Recording Scheme using presence-absence data 
(NMRSp), calculated using one of five metrics of β-diversity.  RMSPE is the 

root mean squared predicted error of each model.  Total is the change in 
RMSPE for the full model relative to the null model.  J is the change in 
RMSPE due to the joint effects of each variable that cannot be uncoupled 
from other predictors. I is the change in RMSPE due to the independent 
effects of each predictor.  Z-scores are derived from 1000 randomisations of 
each predictor variable. * denotes observed independent effects are 
significantly different from 0 at the 5% level.  % I are the independent effects 
of each predictor expressed as a percentage of model explanatory power.     

 

Dependent variable RMSPE Predictor Total J I Z-score % I 

RISa  βMorisita 7.51 geographical distance -0.73 -0.28 -0.44 163.18* 39.90 

  landcover  -0.17 -0.03 -0.14 47.91* 12.83 

  climate  -0.83 -0.31 -0.53 174.31* 47.27 

RISa βHorn 5.44 geographical distance -0.96 -0.34 -0.62 276.80* 42.20 

  landcover  -0.22 -0.02 -0.19 99.12* 13.16 

  climate  -1.03 -0.38 -0.65 284.40* 44.64 

RISp βSor 5.34 geographical distance -0.36 -0.12 -0.25 127.85* 46.79 

  landcover  -0.11 -0.01 -0.10 50.26* 18.38 

  climate  -0.31 -0.13 -0.18 107.24* 34.83 

RISp βSør.nest 5.25 geographical distance 0.00 0.00 0.00 0.22 6.20 

  landcover  -0.01 0.00 -0.01 8.12* 57.71 

  climate  -0.01 0.00 -0.01 4.14* 36.08 

RISp βSør.turn 3.13 geographical distance -0.55 -0.19 -0.36 289.92* 43.89 

  landcover  -0.07 0.00 -0.07 49.88* 8.13 

  climate  -0.61 -0.21 -0.39 290.68* 47.98 

NMRSp βSørensen 11.15 geographical distance -0.15 -0.05 -0.10 29.13* 56.50 

  landcover  -0.01 0.00 -0.01 3.05* 7.63 

  climate  -0.11 -0.04 -0.07 16.71* 35.87 

NMRSp βSør.nest 10.11 geographical distance -0.10 -0.04 -0.06 16.84* 37.69 

  landcover  -0.05 0.00 -0.04 12.47* 25.73 

  climate  -0.10 -0.04 -0.06 19.42* 36.59 

NMRSp βSør.turn 9.13 geographical distance -0.55 -0.18 -0.37 117.89* 56.64 

  landcover  -0.02 -0.01 -0.01 2.30* 1.44 

  climate  -0.46 -0.18 -0.27 86.96* 41.92 
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Fig. 5.2  Independent and joint contributions (expressed as percentages of 

the total explained spatial variation in β-diversity) of geographical 
distance, climate and landcover to β-diversity 

The dependent variable, β-diversity, is derived from eight metric-dataset 
combinations.  Independent and joint effects are estimated from hierarchical 
partitioning of generalised linear models. 
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significantly (P < 0.05) associated with β-diversity in seven of the eight models.  

The exception was βSør.nest applied to the RISp data, for which the independent 

effect of geographic distance was not significant (Table 5.1).  However, the 

independent contributions of all predictors to β-diversity were generally quite low: 

the greatest independent contribution of any predictor was the effect of climate 

(11.770 %) in the model with RISp βSør.turn as the dependent variable (Fig. 5.2).  

However, small independent effects are expected when there are correlations 

between variables, especially climate and geographical distance in this case.  

Across all eight models the independent contribution of climate explained, on 

average, the most variation in β-diversity (4.654 ± 4.693 %), followed by 

geographical distance (4.582 ± 4.152 %). Landcover consistently explained the 

least variation in β-diversity (1.111 ± 1.019 %), with the exception of the model with 

βSør.nest applied to the RISp data as the dependent variable.  There was substantial 

variation in the independent contributions of geographical distance, climate and 

landcover among the models with different metrics and datasets used to quantify β-

diversity (note the different axis scales in Fig. 5.2).    

In all models, the joint contributions of predictors were less than the independent 

contributions.  Joint contributions were greatest for geographical distance (2.485 ± 

2.310 %) and climate (2.728 ± 2.595) and least for landcover (0.138 ± 0.146 %).  

Negative joint contributions for RISp βSør.nest and RISp βSørensen indicate suppressive, 

rather than additive joint effects among predictors (Fig. 5.2).   

The explanatory power of geographical distance, climate and landcover together 

varied between the eight metric-dataset combinations used to quantify β.  The 

model with RISa βHorn as the dependent variable was best explained by 

geographical distance, climate and landcover predictors, which together accounted 

for 16.940 % of variation in β (Fig. 5.3a).  The three predictors were least able to 

explain variation in NMRSp βSør.nest, accounting for 0.297 % of variation in β (Fig 

5.4a).  

5.4.2  Presence-absence and abundance-based metrics         

In comparisons of presence-absence and abundance-based β-diversity metrics 

applied to the RIS data, overall model explanatory power (Fig. 5.3a) was 

substantially greater when the abundance-based metrics βHorn (16.940 %) and 

βMorisita (12.903 %) were used, compared to the presence-absence metric βSørensen 

(6.085 %) and was greatest of all for βHorn.  The relative independent contributions 

of climate, landcover and geographic distance did not change substantially 

depending on whether presence-absence or abundance data were used to quantify  
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Fig. 5.3  Comparison of independent effects of landcover dissimilarity, 
climate dissimilarity and geographic distance on the β-diversity of 
British macro-moths quantified using βMorisita, βHorn (abundance-based 
metrics) and βSørensen (presence-absence) applied to Rothamsted Insect 
Survey   

Independent effects are expressed as a) the percentages of total variation 
and b) the relative percentages of total explained variation.   The metrics form 

a continuum in terms of the contribution of turnover in common versus rare 
species to the value of β.   Independent contributions were estimated using 

hierarchical partitioning of generalised linear models. 
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β, but the relative contributions of both landcover and geographical distance 

increased for β-diversity metrics that place greater emphasis on turnover in rare 

species (e.g. moving from βMorisita to βHorn to βSørensen: Fig. 5.3b).  The relative 

independent effects of landcover dissimilarity were 12.8, 13.1 and 18.4% for βMorisita, 

βHorn and βSørensen, respectively, while independent effects of geographic distance 

were 39.9, 42.2 and 46.8%, respectively.  Independent effects of climate 

dissimilarity were 47.3, 44.6 and 34.8% for βMorisita, βHorn and βsim, respectively (Fig. 

3b).  

5.4.3  Opportunistic and standardised data 

In comparisons between opportunistic NMRSp data and the standardised RISp 

data to quantify β-diversity, model explanatory power (Fig. 5.4a) was higher for the 

RISp (6.085 and 9.525 %, for βSørensen and βSør.turn, respectively) as opposed to the 

NMRSp (2.140 and 7.596 % for βSørensen and βSør.turn, respectively).  βSør.nest was 

poorly explained in both data sets, but, in contrast to βSørensen and βSør.turn, 

explanatory power was higher in the NMRSp (2.000 %) than the RISp (0.297 %).  

The relative independent effects (Fig. 5.4b) of climate, landcover and geographic 

distance on βSørensen were broadly similar between the NMRSp and the RISp.  

However, when βSørensen was partitioned into turnover (βSør.turn) and nestedness 

(βSør.nest) components, there were substantial differences in the independent effects 

of landcover dissimilarity and geographic distance on the nestedness component:  

the independent effect of landcover on βSør.nest increased from 25.726 % in the 

NMRSp to 57.713 % in the RISp, while the effect of geographic distance decreased 

from 37.688 % in the NMRSp to 6.202 % in the RISp (Fig. 5.4b).   

5.4.4  Turnover and nestedness metrics 

In comparisons between turnover and nestedness metrics within the RISp, 

geographical distance, climate and landcover were able to explain most spatial 

variation in the purely turnover component of β-diversity (βSør.turn: 9.525 %), followed 

by combined nestedness and turnover (βSørensen: 6.085 %).  The purely nestedness 

component was poorly explained (βSør.nest: 0.297 %).  The relative contributions of 

climate and landcover were much greater and geographical distance much lower 

for βSør.nest compared to βSørensen and βSør.turn (Fig. 5.4b). 
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Fig. 5.4  Comparison of independent effects of geographic distance, climate 
and landcover on the β-diversity of British macro-moths quantified using 
βSørensen, βSør.turn and βSør.nest applied to the National Moth Recording Scheme 
(NMRSp) and the Rothamsted Insect Survey (RISp)   

Independent effects are expressed as a) the percentages of total variation 
and b) the relative percentages of total explained variation.   βSørensen is 
partitioned into purely turnover (βSør.turn) and nestedness (βSør.nest) components 
of β.   Independent contributions were estimated using hierarchical partitioning 

of generalised linear models. 
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5.5  Discussion 

The results have produced two key findings about the independent contributions of 

climate, landcover and geographic distance to the β-diversity of British moths.  

Firstly, model explanatory power varied substantially depending on the metrics 

(presence-absence versus abundance) and the datasets (RIS versus NMRS) used 

to quantify β-diversity.  Secondly, the perceived relative effects of mean annual 

temperature, landcover heterogeneity and geographical distance depend on the 

interpretation of abundance information by metrics (emphasis on rare versus 

common species), data quality (degree of undersampling) and the component of β-

diversity being measured (e.g. purely nestedness or purely turnover). 

5.5.1  General patterns in the independent effects of climate, 

landcover and distance 

The results indicate that climate and geographical distance are the most important 

predictors of spatial patterns in the β-diversity of British macro-moths while the 

independent contribution of landcover, as measured, is substantially lower.  This 

broad pattern is consistent across all turnover metrics and data sets used to 

quantify β-diversity.  Both niche and neutral processes are known to structure 

spatial patterns of β-diversity at regional scales.  Examples include geometrid 

moths in Borneo (Beck & Vun Khen 2007), mammals in North America (Qian et al. 

2009) and Bornean dipterocarps (Paoli et al. 2006).  However, other studies have 

found that primarily niche (Jiménez-Valverde et al. 2010; Püttker et al. 2014) or 

primarily neutral processes (Keil et al. 2012b) structure β-diversity.  The 

contribution of geographical distance captures the role of dispersal limitation and 

stochastic demography (neutral processes) in structuring to β-diversity, but can also 

pick up variation that is really associated with unmeasured (and spatially structured) 

predictors (Warren et al. 2014) and with spatially structured sampling error, which is 

likely to particularly strong in the NMRSp data.  I discuss this further in section 5.5.3 

in relation to the comparison of results derived from standardised and opportunistic 

data sets.  I also discuss some potentially important environmental predictors of 

macro-moth community composition that were not included in these models in the 

sections below on unexplained variation and spatial autocorrelation in β-diversity.    

Climate and landcover are different aspects of the ecological niche.  Keil et al. 

(2012) found the effect of landcover becomes stronger at finer grains, but our 

landcover data has a relatively fine grain of 1 km2 and is still only weakly associated 
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with macro-moth β-diversity.  In Chapter 2, I noted that light traps have a restricted 

sampling range and therefore are likely to undersample the community in 1 km2 grid 

cells, introducing stochasticity into observed communities that would reduce the 

amount of variation that is unambiguously associated with landcover.  This is an 

example of the problem of choosing the appropriate spatial grain of environmental 

predictors and matching this to the spatial grain at which species occurrences and 

abundances are mapped (Bradter et al).  The small contribution of landcover in 

explaining spatial patterns of β-diversity also suggests that the landcover classes 

may not be well-resolved enough to capture the variation in habitat quantity and 

quality that structure macro-moth communities.  In the case of woodland, moth 

assemblages have been shown to vary not only between woodland types (e.g. 

broadleaved versus conifer, which are separate landcover classes), but also within 

these woodland types depending on, for example, the age class of coppice 

management (Broome et al. 2011) and the tree diversity and species mix of 

woodland patches (Fuentes-Montemayor et al. 2012).  Likewise, there is evidence 

that spatial variation in agricultural practices such as organic and conventional 

farming and agri-environment scheme implementation, influence moth communities 

(Pocock & Jennings 2008; Taylor & Morecroft 2009), yet all of these management 

types fall under the arable landcover class.  In addition, all 23 landcover classes 

were used to derive a measure of habitat heterogeneity, which may dilute the 

effects of variation in the landcover classes that are most important in determining 

spatial patterns in macro-moth β-diversity, that is, the heterogeneity of landcover 

classes that have little relevance for macro-moths (e.g.) will drastically reduce the 

explanatory power of landcover heterogeneity in these analyses.  One way to 

derive a subset of these landcover classes that, a priori, would be expected to 

predict macro-moth turnover would be to refer a resource-based habitat 

classification, such as those for British butterflies (Shreeve et al. 2001) and central 

European macro-moths (Pavlikova & Konvicka 2012).         

Despite the overall pattern, the results do identify substantial variation between 

metrics and data sets in terms of both explanatory power and the independent 

effects of climate, landcover and geographical distance.  This is consistent with 

other studies that have found that niche and neutral processes may drive spatial 

patterns in different facets of β-diversity (Svenning et al. 2011; Baselga 2013) and 

that data quality can influence conclusions about niche versus neutral processes 

(Jones et al. 2008).  I explore some of these sources of variation in the following 

sections. 
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5.5.2  Comparison of presence-absence and abundance metrics 

Within the RIS data, geographical distance, climate and landcover were better able 

to explain spatial patterns in abundance-based β-diversity metrics (βMorisita and βHorn) 

than presence-absence metrics (βSørensen).  This is not surprising, given that the 

additional information in abundance data will provide a much more nuanced picture 

of spatial variation in community structure, reflecting the turnover and/or loss of 

individuals, where presence-absence metrics would detect no differences.  An 

unexpected finding is that spatial patterns in βHorn were better explained by 

geographical distance, climate and landcover than patterns in βMorisita.  βHorn makes 

use of abundance information (like βMorisita and unlike βSørensen), but is more sensitive 

to differences in rare species than βMorisita.  Our simulations in chapter 4 indicated 

that βMorisita would return extremely low values of β under a positive occupancy-

abundance relationship (because rare species are more range restricted) and this is 

a pattern which is seems to be extremely strong within the British macro-moths 

(Fig. 5.5).  This implies that locally rare macro-moths are more likely to be turned 

over among the grid cells in our analysis than locally common macro-moths.    This 

may explain why for βHorn (which is more sensitive to the rarer species that seem to 

be driving macro-moth turnover) is better explained than βMorisita (which places much 

greater emphasis on spatial variation in dominant species) and βSørensen (which 

cannot detect spatial variation in relative abundance).  These results suggest that 

there may be an optimum use of abundance information by metrics that is reduced 

when emphasis is shifted too far towards differences in either rare (βSørensen) or 

common (βMorisita) species.     
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Fig. 5.5  Occupancy-abundance relationship for the 325 British macro-moth 
species in 66 1km2 grid cells shared between the National Moth 
Recording Scheme (NMRS) and the Rothamsted Insect Survey (RIS) 
between 2000 and 2011 

Occupancy is estimated as the proportion of grid cells with one or more 
records in the NMRS.  Mean local abundance is estimated as the mean of 
total annual counts in the Rothamsted Insect Survey.  

 

The relative contributions of geographical distance, climate and landcover also 

varied among the presence-absence and abundance-based metrics.  The results 

suggest that β-diversity metrics that are predominantly sensitive to spatial variation 

in common species (βMorisita) demonstrate relatively weaker associations with 

landcover and geographical distance and a stronger association with climate.  

Presence-absence and abundance information have previously led to opposing 

conclusions about impacts (positive or negative) of invasive species on biotic 

homogenisation (Cassey et al. 2008) and there is evidence that the abundance and 

the composition of communities can be structured by different processes (Siepielski 

et al. 2010; Siepielski & Mcpeek 2013).  Consequently our results suggest that 

climate may be associated with more subtle spatial variation in the abundances of 
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species, while landcover and geographical distance contribute more to 

compositional variation (e.g. species turnover and/or the gain or loss of species).   

One mechanistic hypothesis for the positive ONR (Fig. 5.5) is that habitat 

generalists are widespread and abundant because they can exploit resources that 

are also widespread and locally abundant (Borregaard & Rahbek 2010).  If 

generalist macro-moths are both more widespread and more locally abundant than 

specialists, then spatial variation amongst common species may be weak: this may 

explain why βMorisita (which is almost entirely influenced by variation in common 

species and insensitive to differences in rare species: chapter 4) has weaker 

associations with landcover (as a proxy for habitat heterogeneity) than metrics that 

can better detect variation in rare species (βHorn and, to a greater degree, βSørensen). 

5.5.3  Comparison of opportunistic and standardised data 

Together, geographical distance, climate and landcover explained substantially less 

variation in the opportunistic NMRSp data than the standardised RISp data.  The 

abundances in the RIS were converted to presence absences for this analysis, so 

the contribution of abundance information can be ruled out as the cause of greater 

unexplained variation in NMRSp.  A key feature of the NMRSp is spatial variation in 

recording in the NMRSp due to opportunistic data collection, compared to 

standardised recording protocols in the RISp.  Undersampling has been shown to 

positively bias β-diversity metrics (see chapter 4; Chao et al. 2006; Beck et al. 

2013), thus some unexplained spatial variation in β-diversity will be due to spatial 

patterns in recording activity.  The impact of under-recording should generate 

spatial patterns in nestedness, rather than species turnover because, among grid 

cells with identical communities, the species accumulation curve predicts that 

undersampled sites will contain a subset of the species in well-sampled sites (Chao 

et al. 2009).  This is consistent with the observation that βSør.nest (measuring purely 

nestedness) was the only metric to be better explained using NMRSp rather than 

RISp data.  In the absence of β-diversity metrics to account for unseen shared and 

unshared species in biological records (currently methods are available for 

presence absence, but not abundance-based metrics), these results suggest that 

the partitioning of nestedness and turnover components can be informative about 

the extent to which the data collection process drives spatial patterns in β-diversity.   

The relative independent contribution of geographical distance to spatial patterns in 

β-diversity were always greater in the NMRSp, while landcover and climate 

contributions were always less.  This suggests that the relative contribution of 

neutral processes may be overestimated when biological records are used to 
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quantify β-diversity, presumably because variation in recording activity generates a 

spatial signature, which is confounded with geographical distance. 

5.5.4  Partitioning of the turnover and nestedness components of 

β-diversity 

Together, geographical distance, climate and landcover were best able to explain 

the purely turnover component of β-diversity, but poorly explained spatial patterns 

in nestedness.  This suggests spatial variation in macro-moth β-diversity is 

predominantly due to the replacement of species along geographical and 

environmental gradients, rather than differences in species richness, or that 

important environmental or spatial drivers of macro-moth nestedness are missing 

from these models.  I discuss some potentially important missing covariates in the 

section “Unexplained variation” below.  One relevant issue is that I did not apply 

turnover and nestedness components of an abundance-based metric here.  The 

Bray-Curtis metric can also be partitioned into purely turnover and nestedness 

components which reflect purely turnover of individuals and purely gradients in 

abundance, respectively (Baselga 2013), and might be expected to paint a more 

detailed picture of spatial variation in nestedness than the partitioned presence-

absence nestedness component applied here.        

The weaker relative independent effects of geographical distance on nestedness in 

the RISp is consistent with the hypothesis that neutral processes (encompassed in 

geographical distance) should drive spatial patterns in species turnover (due to 

stochastic extinction-colonisation dynamics and dispersal limitation), but not in 

species nestedness (Svenning et al. 2011). 

5.5.5  Unexplained variation 

Together geographical distance, climate and landcover explained only a limited 

amount of variation in the β-diversity of British macro-moths (just 16.940 % in the 

best model), suggesting that important environmental predictors of macro-moth β-

diversity are missing from these models.  Indeed, one assumption of partitioning the 

contributions of niche and neutral processes is that all important environmental 

variables driving spatial variation in β-diversity are included in the model (Caruso et 

al. 2012).  This is rarely the case, especially for a less well-studied taxonomic group 

like macro-moths for which the climate and habitat associations of individual 

species are often poorly known (Fox 2013).  The perceived role of niche processes 

in structuring spatial patterns in β-diversity is, therefore, likely to be greatly 

underestimated in these results.  Potentially important missing variables for 

determining spatial patterns in British macro-moth communities include spatial 
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patterns in monthly rainfall (see chapter 3; Pollard 1988, but see Jonason et al. 

2014), mean minimum temperature and the interaction between wind, rain and 

temperature to reflect exposure to Atlantic weather systems in westerly and high 

elevation regions.  Other environmental factors that may be important in 

determining spatial patterns in macro-moth communities include light and chemical 

pollution (Fox 2013).  Finally, historical patterns have been shown to have a 

substantial effect on regional and local patterns in β-diversity (Dexter et al. 2012; 

Dobrovolski et al. 2012; Fitzpatrick et al. 2013).  However, a number of British 

macro-moths have a boreal distribution, that is, northern Britain is the southern 

edge of the distribution (Hill et al. 2010).  Moreover, the effects of these historical 

processes are likely to be weaker for highly mobile taxa like macro-moths.  A priori, 

we would expect landcover heterogeneity to  

5.5.6  Sources of spatial autocorrelation in β-diversity 

Spatial autocorrelation is a form of non-independence among data points which, in 

non-spatial models, can bias estimates of variable importance towards more 

spatially structured predictors as well as invalidating traditional tests of significance 

(Lennon 2000).  The risk of falsely rejecting the null hypothesis (no association 

between a predictor and spatial patterns of β-diversity) was addressed here by 

using randomisation tests to determine if estimates of independent effects were 

significantly different from those expected by chance.  However, the impact of 

spatial autocorrelation on the independent contributions of geographical distance, 

climate and landcover is more difficult to address.     

I have assumed (as in previous partitioning studies) that geographical distance 

among grid cell pairs captures the stochastic colonisation and extinction events and 

dispersal limitation (e.g. neutral processes), which generates spatial variation in 

community composition even among grid cells with similar environmental 

conditions.  However, there are additional sources of spatial autocorrelation in β-

diversity which may invalidate this assumption.  Firstly, there may be spatial 

autocorrelation in β-diversity that cannot be explained by geographical distance 

alone (Andrew et al. 2012).  In my analyses, two examples of additional sources of 

spatial autocorrelation that aren’t accounted for, but may be important, are the 

latitudinal gradients in species richness (the RIS and the NMRS) and recording 

intensity (mainly relevant to the NMRS).  β-diversity metrics can be sensitive to both 

regional diversity (e.g. a pair of sites from species rich region may have greater β-

diversity that an pair of sites from a species poor region: Koleff et al. 2003b) and 

sample size (β-diversity estimated from smaller samples is greater than β-diversity 
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in well-sampled assemblages: chapter 4; Beck et al. 2013).  This implies that a pair 

of environmentally similar grid cells in Scotland may have very different pairwise β-

diversities to a matching pair in England, either because of the effect on estimated 

β-diversity of lower regional diversity and/or lower recording activity in Scotland.  A 

second issue with interpreting the contribution of geographical distance as neutral 

processes was highlighted by Smith & Lundholm (2010), who noted that the 

dispersal rates (usually considered a neutral process) can increase the variation in 

β-diversity that is explained by environmental as well as spatial predictors.  This 

can occur if dispersal limitation interacts with habitat selection to increase the 

establishment of species in suboptimal grid cells adjacent to high quality grid cells.  

The emerging pattern is driven by the spatial structure of the environment, but is 

associated with geographical distance and not environmental predictors.  Together, 

unmeasured environmental variables (see previous section), unexplained spatial 

autocorrelation and spatial autocorrelation generated by non-neutral process limit 

the extent to which the relative independent effects of climate plus landcover and 

geographical distance can be interpreted as the footprint of niche versus neutral 

processes.     

One method to account for account for the unexplained spatial autocorrelation (not 

captured by geographical distance) would be to include an autocovariate in the 

models before applying hierarchical partitioning (e.g. Heikkinen et al. 2005).  

Alternatively, a generalised least squares model with a spatially autocorrelated error 

term would account for unexplained spatial autocorrelation (Dormann et al. 2007).  

Unfortunately, generalised least squares models are currently incompatible with the 

hier.part package I have used. 

5.5.7  Conclusions 

The independent effects of geographical distance, climate and landcover vary 

among the metrics and datasets that are used to quantify spatial patterns in β -

diversity.  Unexplained spatial autocorrelation and spatial autocorrelation due to 

non-neutral processes makes it difficult to map the variation explained by 

geographical distance and environmental variables to the relative contributions of 

niche and neutral processes. 
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Chapter 6 

Extrapolating insect biodiversity across spatial scales: a 

synthesis 

6.1  Outline 

In this thesis I have investigated spatial patterns in insect distributions, using 

unstructured biological records, simulated species assemblages and local 

abundance and presence-absence from standardised sampling protocols, whilst 

explicitly considering issues of spatial scale.  I have explored the extent to which 

opportunistic biological records can be used to explain and predict spatial patterns 

in biodiversity, despite inherent biases in these data.  By focussing on dragonflies 

and macro-moths, I have gained some ecological insights into these less well-

studied taxonomic groups.        

The thesis comprised four specific questions.  Firstly, can we utilise biodiversity 

theory describing the functional form of the occupancy-area relationship (OAR) to 

predict Odonata species occupancies at finer spatial grains than the British atlas 

data (Chapter 2)?  Secondly, can we fill in the gaps in the distribution of an under-

recorded British macro-moth using a combination of information on observer effort, 

species-environment associations and residual spatial autocorrelation (Chapter 3)? 

In chapters 4 and 5, I moved from single species distributions to examining the 

multi-species assemblages that emerge from these overlapping distribution 

patterns.  I compiled some desirable and personality properties of a β-diversity 

metric and examined how these inform the appropriate choice of a metric for 

quantifying spatial structure in species communities (Chapter 4).  Finally, I 

quantified the independent contributions of geographic distance, climate and 

landcover in structuring spatial patterns in macro-moth β-diversity (Chapter 5).          

In this final chapter I synthesise the findings of chapters 2 to 5 in relation to four 

broad themes. Firstly, all four chapters have highlighted some of the possibilities 

and difficulties associated with the scale-dependence of biodiversity.  Secondly, 

these chapters have shown that predicting spatial structure and understanding 

spatial scaling will require a  theoretical framework for quantifying the relative 

contribution of niche versus neutral processes.  Thirdly, I discuss whether a general 

theory of biodiversity is possible, given the current lack of mechanism and the poor 

linkage between data and theory.  .   .  Fourthly, I discuss some of the ecological 
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insights that have emerged for dragonflies and macro-moths as a result of these 

analyses.  Finally, I discuss the value of opportunistic biological records like those 

used in this thesis for addressing a range of questions about spatial patterns in 

biodiversity, but note that developing methods to deal with the biases in these data 

should be a priority. 

6.2   Spatial scaling of insect biodiversity 

This thesis has shown that methods for scaling biodiversity have promising 

applications in monitoring biodiversity, but it has also highlighted some challenges 

associated with spatial scale.  In this section, I discuss these successes and 

limitations.   

In chapter 2, I tested the predictions of fine-grain occupancy for ten downscaling 

models and found the results for the Hui model provided satisfactory estimates of 

distribution size at fine spatial grains and predicted a nonlinear relationship between 

sampling grain and area of occupancy.  If the superior performance of the Hui 

model can be demonstrated for data sets in other taxa and regions, this would have 

implications for frameworks like the IUCN, which use restricted or fragmented 

distributions as criteria to prioritise species for red lists.  Red list criteria lack clear 

guidelines on which spatial scale is appropriate for measuring area of occupancy 

and for comparing these indices of distribution size between species.  The 

nonlinear OAR slopes that were predicted by the Hui downscaling model may 

contain a footprint of biologically meaningful scales for measuring species 

distribution size.  Shallower slopes indicate greater levels of intraspecific 

aggregation within grid cells and may help to guide inferences about the scale of 

the population for a focal species and the degree of fragmentation of these 

populations.  The significance of the spatial structure that drives the OAR has 

previously been recognised as an important predictor of past declines and 

expansions in species distributions using simply the linear relationship between 

area of occupancy at nested spatial grains (Wilson et al. 2004).  Extending this kind 

of analysis to nonlinear OARs across a greater range of spatial scales offers an 

even more nuanced approach to understanding the patterns left by changes in 

species distributions size and the scales at which these changes are most extreme.                      

In contrast to the strong scale-dependence in species distributions observed in 

chapter 2, in chapter 3 I found no substantial differences in species-environment 

relationships for the Brindled Green moth at 25 km2 and 100 km2 or in the overall 

predictive success of models fitted at these two spatial grains.  Indeed, perhaps we 
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would not expect to see real differences in the effect of climate on the occurrence in 

grid cells ≤100 km2 as climate varies over much larger spatial grains.  However, 

elevation and woodland cover are known to vary a great deal within 100 km2 grid 

cells, therefore we would have expected to see an improvement in model 

predictions at finer grains.  There are a number of reasons that could explain why 

this was not the case.  Firstly, a key difference between chapters 2 and 3 is that a 

much narrower window of spatial scales were explored in chapter 3.  One possibility 

is that woodland cover and elevation actually structure the distribution of the 

Brindled Green at even finer spatial grains than I used, that is the scale of effect 

was not captured by my chosen scales.  By scale of effect, I mean the scale at 

which the emerging pattern (probability of occurrence) is most strongly affected by 

the variable of interest (woodland cover or elevation).   Indeed it has been observed 

that the scale of effect is difficult to pinpoint.  Even when a broad range of scales 

are investigated, the effect size is often strongest at the finest or coarsest of these 

scales, suggesting a broader range of spatial scales are often required to reveal the 

scales at which this relationship “peaks” (Jackson & Fahrig 2014).  A priori 

estimation of the appropriate range of scales needed to detect the scale of effect is 

not straightforward.  Biodiversity theory provides only very coarse guidelines as to 

the characteristic scales of the processes driving species distributions (Gotelli et al. 

2010; McGill 2010a) and our knowledge of how these scales of effect might vary in 

response to species-level traits like dispersal ability or physiological constraints is 

very limited.   

Perceived scale-dependence (Sandel 2015) was highlighted as potential issue in 

chapter 1.  It describes a situation where scale-dependence emerges from 

differences in observability of a variable with spatial scale, rather than true pattern 

shifts.  In chapters 2 and 3, perceived scale-dependence may have implications for 

the validation of model predictions.  In chapter 2, our 1km2 predictions of occupancy 

were evaluated against observed occurrences of species at the 1km2 grain in the 

Dragonfly Recording Network.  In chapter 3 predicted probability of occurrence in 

25 km2 cells was evaluated against observed occurrences and abundances in RIS 

light traps.  In both cases, the extent to which these test data can validate the 

predictions is subject to perceived scale-dependence: observed presence and 

abundance within these test data reflects only a sample of the species or 

individuals that are present and may well be biased towards particular habitats.  

Thus the test data will become an increasingly inaccurate reflection of the true 

pattern of abundance and occurrence as the scale becomes coarser and fewer of 

the species and individuals are sampled.  Unpicking true scale-dependence from 
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perceived scale-dependence will require not only finding the appropriate scale of 

effect, but also ensuring that the grain of the predictions matches the grain of the 

test data.  The difficulties with validating the predictions of the Beale observer effort 

in chapter 3 is an example of the need for clarity about how observed data are 

related to the conceptual model. Hierarchical Bayesian models are supremely 

valuable in this regard because there are separate sub-models for the data and the 

concept.  Applying such a model to the test data, as well as the training data is one 

approach to fully validating the predictions of the Beale observer effort model in 

chapter 3.  Alternatively, field surveys conducted at a grain corresponding to the 

predictions (e.g. 25 km2 for the Brindled Green moth and 1 km2 for Odonata 

species) and designed to minimise false absences (e.g. by sampling all habitat 

types within a grid cell) would validate the methods applied in chapters 2 and 3 with 

greater certainty.       

6.3  The challenge of unpicking stochastic and deterministic 

processes 

Chapters 2 to 5 explored the processes shaping dragonfly and macro-moth 

distributions and the patterns that emerge from the overlap of individual species 

distributions (e.g. β-diversity).  The methods used often provided an adequate 

description of the data sets used or predicted reasonably well, but a mechanistic 

understanding of the processes underpinning the observed distributions and 

abundances has proved challenging.  As an example, I discuss some of the 

difficulties in interpreting the relative importance of niche and neutral processes, 

using the methods within this thesis, and some examples from the wider ecological 

literature.   

In chapter 2, my results indicated that species with poorer downscaling predictions 

tended to have a climatic range limit within Britain and tended to have greater 

dispersal abilities.   Both of these traits would make species distributions more likely 

to be structured by environmental processes: a climatic range limit suggests some 

physiological tolerance is exceeded in some parts of the range, while high dispersal 

ability suggests dispersal limitation will leave little spatial footprint on the 

distribution.  The implication is that, while downscaling performs reasonably well 

using purely spatial information, the inclusion of environmental information models 

is likely to improve fine grain estimates of distribution size.  

In chapter 3, I focus on the distribution of just one species, the Brindled Green 

moth, and use a species distribution model (the Beale observer effort model) to 
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quantify the associations of probability of occurrence with mean annual 

temperature, mean annual rainfall, woodland cover and elevation.  The model also 

estimates the residual spatial autocorrelation between neighbouring cells, capturing 

the extent to which probability of occurrence within a grid cell is greater or less than 

would be expected based on environmental predictors alone.  Encompassed within 

this estimate are unmeasured environmental covariates, but also neutral processes 

and the effects of source-sink dynamics, all of which can lead to presences within 

environmentally unsuitable habitat or absences in environmentally suitable habitat.  

Therefore, using this approach, it is impossible to quantify the overall contributions 

of niche versus neutral processes to the distribution of the Brindled Green.  All 

climate and habitat predictors had high relative importance (> 0.7), but highest of all 

was residual spatial autocorrelation, indicating the combined effects of unmeasured 

environmental variables, neutral processes and measurement error have the 

greatest influence on the distribution of the Brindled Green.     

Whilst drivers of β-diversity were not the focus of chapter 4, I used simulated 

species assemblages to test two properties of β-diversity metrics that would be 

expected to hold if community assembly processes were purely niche (β should be 

cumulative if turnover is directional, along a simulated linear environmental 

gradient) or purely neutral (similarity (1-β) should be probabilistic if communities are 

random draws from a regional species pool).  No metric tested performed well 

under both scenarios, suggesting it may not be straightforward to use such metrics 

in a null model framework to interpret the contributions of niche and neutral 

processes.   

In chapter 5, I attempted to quantify the relative contributions of landcover 

dissimilarity, climate dissimilarity and geographic distance to spatial patterns of β-

diversity in British macro-moths and found that the independent effects of climate 

and geographic distance explained broadly similar amounts of β-diversity.  The 

pattern held across a suite of metrics used to quantify β-diversity.  However, as in 

chapter 3, disentangling the effects of unmeasured, spatially structured 

environmental covariates from purely spatial processes proved impossible as both 

were encompassed in the explanatory power of geographical distance.  This 

precluded any insights into the relative importance of niche and neutral processes 

in structuring the distributions of British macro-moths. 

In chapter 1, I highlighted an observation in McGill (2010) that theories of 

biodiversity tend to emphasise the role of either niche or neutral processes in 

structuring species distributions.  The assumption that one process or another will 
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consistently be the dominant effect in shaping species distributions is unlikely.  

Examples include species of damselfly genera in north-eastern USA, in which the 

coexistence of genera was largely determined by environmental gradients, but 

patterns of relative abundance across sites were predominantly neutral.  Species 

abundance distributions (Chust et al. 2013) and body-mass patterns (Vergnon et al. 

2009) in marine phytoplankton communities also show neither niche nor neutral 

processes prevail.  However, all too often, the distribution patterns that cannot be 

explained by niche processes are mislabelled as evidence of neutrality.  The 

difficulties in unpicking niche and neutral processes in the preceding chapters is 

perhaps symptomatic of the limitations of a purely statistical approach to 

understanding of biodiversity patterns.  A number of models attempting to integrate 

niche and neutral theory are being developed (Matthews & Whittaker 2014) and 

include phase transitions between niche and neutral communities (Fisher & Mehta 

2014), emergent neutral theory (Gravel et al. 2006) and stochastic niche theory 

(Kalyuzhny et al. 2015).  Ecologists have also begun to unpick the role of niche and 

neutral processes in community assembly by quantifying patterns of spatial 

variation at multiple hierarchical levels (haplotype to species) and comparing these 

to the self-similar patterns expected at all hierarchical under purely neutral 

processes (Baselga et al. 2015).  Others have explored the use of null models of 

community assembly, measuring the deviation of observed patterns from those 

predicted in the absence of neutral and niche processes, to disentangle their 

contributions (Tucker et al. 2015).   

Interestingly, spatial scale goes some way towards reconciling the relative 

importance of niche and neutral processes (Chase 2014), with environmental 

homogeneity within small spatial extents magnifying the importance of neutral 

processes, while strong environmental structure over larger spatial extents appears 

to emphasise niche processes (Garzon-Lopez et al. 2014).    

Together, the previous chapters indicate that a mechanistic understanding of 

species distributions and spatial patterns is problematic when using statistical 

methods to characterise ecological patterns.  This has always proved challenging in 

the field of macroecology (Beck et al. 2012).  Understanding the sensitivity of 

species to environmental versus spatial processes is central to choosing the 

appropriate management, but general rules for predicting species distributions and 

spatial structure will require a biodiversity theory that incorporates both 

deterministic and stochastic processes and which provides a framework to unpick 

the relative contributions of these two sets of predictors.  In the following section I 

discuss some of the obstacles to developing such a general theory of biodiversity 
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and some alternative approaches to predicting and understanding biodiversity 

patterns over large spatial extents and at fine spatial grains.   

6.4  Is a general theory of biodiversity possible? 

In the previous section I discuss the difficulties in unpicking niche and neutral 

effects in ecological models when employing phenomenological, data-derived 

models.  However, starting from a more theoretical position is problematic as 

biodiversity theory still lacks a traditionally mechanistic framework for understanding 

large-scale patterns in biodiversity.  The unifying principles of current biodiversity 

theories are rooted in stochastic geometry, as opposed to the deterministic 

processes we typically recognise as mechanism (McGill & Nekola 2010).  This is a 

key limitation to generalising biodiversity theory across taxa, regions and spatial 

scale.  In disciplines such as community ecology, there have been strong advances 

in our theoretical understanding of deterministic community assembly processes 

with examples including Lotka-Volterra models (May 1975), inter-specific 

competition (Tilman 1982) and meta-community dynamics (Leibold et al. 2004).  

However, these highly mechanistic approaches are data-hungry, requiring a wealth 

of information about species interactions.   

Macroecology as a discipline has been criticised for its lack of progress in 

understanding mechanism (Brown 1999; Beck et al. 2012; Keith et al. 2012), 

progress which some ecologists predict will come only as this relatively ‘young’ 

discipline matures (McGill & Nekola 2010).   Deducing mechanism has also been 

elusive due to the fact that the predictions derived from multiple different models, 

each assuming different mechanisms, are virtually identical, most notably for the 

species abundance distribution (McGill et al. 2007).  Until biodiversity theory can 

generate predictions with sufficient detail to distinguish opposing models, a general 

theory of biodiversity may not be possible.  The poor linkage between data and 

theory in biodiversity research has perhaps inhibited mechanistic insights into 

biodiversity patterns, especially over large spatial scales and in species-rich 

assemblages, where the complexity makes distinguishing very similar predictions 

even harder to do.   

Since McGill (2010b) highlighted three assertions that appeared to unify six theories 

of biodiversity, only one study has attempted to convert these assertions into 

quantitative predictions and validate them against multiple observed patterns.  

These patterns included the species abundance distribution, intraspecific 

aggregation, the species area relationship and the distance-decay of similarity.  
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Interestingly, observed patterns of intra-specific aggregation could not be 

reproduced without the inclusion of species-specific dispersal distances (May et al. 

2016).  Likewise Kalyuzhny et al. (2015) and Fung et al. (2016) found the 

predictions of neutral models were improved by including species-level fitness 

differences in the form of environmental stochasticity.  Interestingly, the addition of 

species-level fitness differences were also able to account for population dynamics, 

where general theories of biodiversity have typically only succeeded in predicting 

static patterns.  These findings suggest that species differences cannot be ignored 

when developing set of ‘minimally sufficient rules’ for a general theory of 

biodiversity, but these studies do represent some progress towards integrating 

mechanism into biodiversity theory.  It also highlights the potential value of 

stochastic geometry (a unifying principle of biodiversity theories) as a basic 

framework that can be extended to generate taxon- and region-specific predictions. 

In chapter 1 I considered the effect of species-level traits on downscaling accuracy 

in an attempt to understand how species differences can explain patterns above 

and beyond those predicted by stochastic geometry.  However, in addition to 

species differences, there has been an increasing interest in the significance of 

intra-specific differences in determining biodiversity patterns (Violle et al. 2012).  An 

alternative method to stochastic geometry in understanding and predicting 

biodiversity patterns is individual-based ecology where the properties of ecological 

systems depend on the patterns emerging from the adaptive behaviour of individual 

organisms and their interactions with each other and the environment (Grimm & 

Railsback 2005).  The ecological systems that have been explored have typically 

been populations and communities (Stillman & Goss-Custard 2010; DeAngelis & 

Grimm 2014), but with sufficient computing power, there is no reason why these 

same methods cannot be applied to understanding the distributions and 

abundances of species over large spatial extents.  Individual-based ecology uses 

computer simulation to parameterise models.  The approach is highly mechanistic 

and successful models will depend on the data acquired from field and laboratory 

studies of individual variation.  Linking the adaptive behaviours of individual 

organisms with their distribution patterns is a promising way of linking ecological 

subdisciplines from physiology and behaviour through to population ecology, 

community ecology and biogeography and to understand how and why biodiversity 

patterns change with spatial scale.  If I were to address the questions in this thesis 

again, this would be the approach I would choose.     
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6.5  Ecological insights for macro-moth and dragonflies   

In chapter 1, I explained that using moths and dragonflies for these analyses had 

greater potential to yield novel ecological insights.  In this section I highlight some of 

the findings that have emerged from investigating biodiversity patterns in these less 

well-studied taxonomic groups.    

In chapter 1, I observed a sigmoidal relationship of the OAR.  This is consistent with 

our broad understanding of the characteristic scale of effect for some key 

processes driving species distributions (Pearson & Dawson 2003; Hortal et al. 

2010).  Climate is thought to restrict species distributions at relatively coarse spatial 

grains and the depressed slope for some Odonata at grains >1600 km2 is 

consistent with latitudinal gradients in climate in Britain excluding these species 

from northerly regions.  The steeper slopes I observed at intermediate grains may 

reflect the distribution of suitable habitat: for Odonata this could well be driven by 

the fragmented distribution of lotic water bodies needed for reproduction and could 

even be interpreted as the meta-population-scale.  Below these scales, I observed 

a much shallower OAR, indicating high levels of occupancy within these habitats 

and possibly beginning to approximate the scale of individual populations.  In 

chapter 2, there was a positive relationship between over-prediction of fine-grain 

occupancy by downscaling models and the dispersal ability of dragonfly species.  

This relationship provides evidence that dispersal is associated with reduced 

distribution size at fine spatial grains (fragmented populations).  Put another way, 

dispersive species occupy fewer 1 km2 cells within each coarser grain cell than their 

less mobile relatives.  Assuming that less persistent habitats tend to be more 

fragmented at any given time, our results are consistent with the hypotheses that 

increased dispersal ability has evolved in species that exploit less stable and 

predictable habitats in space and time, with consequences including distributions 

being closer to climatic equilibrium and better tracking of climate change (Hof et al. 

2012; Grewe et al. 2012).   

In chapter 3, I focus on the Brindled Green moth and quantified the species’ 

associations with woodland cover, climate and elevation.  The distribution of the 

Brindled Green reaches a range limit in northern Britain, suggesting that climate is a 

limiting factor.  However, one surprising outcome of Chapter 3 is that the Brindled 

Green is much less likely to occupy grid cells at higher latitudes than our species-

environment relationship would predict, suggesting climate, elevation and landcover 

are not sufficient to explain the northern range limit.  Despite the fact that our 

environmental covariates were chosen to capture as much as possible of what is 

known about the ecology of the Brindled Green moth, additional factors are clearly 

shaping the distribution of the Brindled Green that are not captured in our species 
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distribution model.  Moreover, there was no clear relationship between mean 

annual temperature and probability of occurrence for the Brindled Green, despite 

the fact that temperature is usually a strong predictor of the distribution of butterflies 

(Warren et al. 2001) and moths (Pollard 1988) at their northern range limits.  Indeed 

in chapter 5, climate dissimilarity explained a significant amount of spatial variation 

in community composition of macro-moths, but clearly not all species contribute 

equally to this pattern. 

6.6  Addressing false absences in biological records 

The preceding chapters have demonstrated that biological records can be used to 

address a range of ecological questions.  This is reassuring given the huge 

volumes of opportunistic biological records that are currently being generated by 

citizen science projects.  In the opening chapter, I discussed the Wallacean shortfall 

and some of the issues associated with biological records that can bias estimates of 

species distributions.  As spatial patterns in biodiversity have been the focus of this 

thesis, my main concern has been spatial variation in recording activity, which lead 

to false absences in species distribution data.  In this section I discuss the 

approaches I used to deal with these false absences, provide some examples of 

how false absences can affect conclusions and identify some future avenues for 

improving our use of biological records for understanding species distributions.    

When species distributions are mapped at coarser grains, there is less uncertainty 

about whether absences are true absences or false absences.  In chapter 2, I 

attempted to estimate the occupancy of British Odonata at fine spatial grains, using 

downscaling models.  These models first coarsen species distributions to grains 

where false absences become less pervasive and then extrapolate the relationship 

between spatial grain and occupancy to finer spatial grains.  A key finding of 

chapter 2 was that the best performing Hui model was able to make reasonable 

predictions of fine grain occupancy, suggesting downscaling can go some way to 

mitigating the false absences in fine grain biological records and thereby improve 

our estimates of distribution size.  A limitation of this approach, however, is that 

species occurrence records are often point samples, collected with good spatial 

precision and this information is discarded when the records are aggregated into 

coarser grain maps.  As such there is likely to be limit on how much of this 

information can be recaptured, especially with no environmental information to 

guide fine grain predictions. 

In chapter 3, I approached the issue of false absences with a different method.  

Using a hierarchical Bayesian model (Beale observer effort model), I used 
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information that can be easily extracted from biological records to model the 

relationship between recording effort (number of visits) and the probability of that a 

species is recorded, given that it was there.  A key finding was that the model 

identified grid cells with high predicted probability of occurrence, but with no records 

for the Brindled Green moth, potentially indicating models such as these could be a 

useful tool in guiding recording activity towards areas of high suitability.  One 

avenue for improving this method of filling in the gaps in species distributions would 

be to use a method which can incorporate information from multiple sources, even 

when the data are sampled at different spatial scales and with different sampling 

protocols.  For example, abundance data for the Brindled Green from the RIS could 

be used to inform the predictions using biological records from the NMRS.  Such an 

approach has recently been attempted using a hierarchical Bayesian model 

combining data from standardised transects in the UK Butterfly Monitoring scheme 

and opportunistic data from Butterflies for the New Millennium atlas.  The model 

and was able to predict spatial and temporal variation in abundance of the 

Gatekeeper butterfly over large spatial extents (Pagel et al. 2014).   

During the course of this thesis, I have also explored how false absences in 

biological records can affect estimates of β-diversity (chapter 4) and conclusions 

about the environmental and spatial correlates of β-diversity (chapter 5).  In chapter 

4, I used simulated species assemblages to test two sampling properties of β-

diversity metrics and found that metrics that are more sensitive to turnover in rare 

species, are also more positively biased by false absences when there is 

undersampling.  In chapter 5, I then applied a selection of these metrics to 

biological records from the National Moth Recording Scheme (NMRS) and to 

standardised samples from the Rothamsted Insect Survey (RIS) and modelled 

spatial patterns in β-diversity as a function of environmental and spatial variables.  

The most striking finding was the much greater explanatory power of models when 

standardised recording protocols were used to estimate spatial patterns of β-

diversity.  Moreover, geographical distance is likely to be strongly associated with 

spatial variation in recording effort in the Britain in the NMRS.  Indeed geographical 

distance became a much more important predictor of β-diversity in NMRS, 

suggesting recording effort may be confounded with geographical distance.  

Together the finding of chapters 4 and 5 underscore that methods to account for 

false absences are essential for unbiased estimates of spatial patterns of β-

diversity (Chao et al. 2006) and for our understanding of the environmental and 

spatial drivers of these patterns (Rota et al. 2011; Lahoz-Monfort et al. 2014).  The 

hierarchical Bayesian framework for modelling observer effort has yet to be applied 
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when estimating β-diversity and would be an important step towards using 

biological records for this purpose.            

6.7  Concluding remarks 

The scale-dependence of biodiversity patterns is both a challenge and a promising 

tool for ecologists.  Spatial scale has yet to be fully integrated into biodiversity 

theory.  Moreover, effective conservation measures are limited by uncertainty about 

the spatial scales at which ecological processes operate and at which species use 

and respond to their environment.  However, spatial-scaling patterns also offer an 

opportunity to address the gaps in our knowledge of species distributions.  Coupled 

with biological records over large spatial extents and the statistical tools to deal with 

biases in our data, spatial scaling patterns are one way to link ecological patterns 

and processes across sub-disciplines in ecology and develop a truly unified theory 

of biodiversity. 
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