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Abstract

Homeostasis is constancy in the face of perturbation. The concept was originally

developed to describe the fixed internal environment of an organism and this descriptive

view of homeostasis has been prevalent in the literature. However, homeostasis can also

be seen as the dynamicprocessof self-regulation and as such it is an organising principle

by which systems adapt their behaviour over time. In this thesis we adopt this causal view

of homeostasis and develop a theory of homeostatic adaptivesystems.

We study homeostatic adaptive networks by looking at specific examples of homeo-

static systems: the Homeostat, homeostatic plasticity in neural networks, and homeostatic

regulation of the environment by the biota. Investigation of these case studies forms the

basis for the development of a generalised theory of homeostatic adaptive systems.

The Homeostat was an electromechanical device designed by W. Ross Ashby to demon-

strate the principle of ultrastability, where the stability of a system requires homeostasis

of essential variables. Ashby put forward a theory of mammalian learning as a process of

homeostatic adaptation that was based on the idea of the ultrastable system. Here we de-

velop a simulated Homeostat and explore its properties as a homeostatic adaptive system,

looking at its ultrastable nature and its ability to adapt toexternal perturbations.

The second case study, neural homeostasis, has recently been a topic of much interest

in the neurosciences, with new data being presented concerning the existence and func-

tioning of a variety of mechanisms by which neural activity is regulated. Homeostatic

plastic mechanisms prevent long term quiescence or hyper-excitation in biological neu-

rons and this suggests that such mechanisms may be used to solve the problem of node

saturation in artificial neural networks. Here we develop homeostatic plastic mechanisms

for use in continuous-time recurrent neural networks, a kind of network often used in evo-

lutionary robotics, and study the effect of these mechanisms on network behaviour. Node

saturation effects can make these networks difficult to evolve as robot controllers and we

also look at the effect of homeostatic plasticity on evolvability.

The third case study is the evolution of homeostatic regulation of the physical environ-

ment by the biota. The Gaia theory states that life regulatesthe entire biosphere to condi-

tions suitable for life, but the general concept of biological regulation of the environment

is applicable on a variety of scales. However, there are major theoretical issues concerning

the compatibility of environmental regulation with evolutionary theory. Here we develop

a modified version of the Daisyworld model and use it to determine the compatibility of

global regulation with individual selection. We show that regulation in Daisyworld de-

pends on several key assumptions and fails if these assumptions are removed. We develop

the Flask model, in which environmental regulation by microbial communities evolves as
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a result of multi-level selection, in order to show how regulation can occur when the core

assumptions of Daisyworld are relaxed.

At the end of the thesis we try to draw some general conclusions concerning homeo-

static adaptive systems. We consider the adaptive and homeostatic properties of each of

the case study systems, and then generalise from these to give some principles of home-

ostatic adaptation. Our analysis shows that perturbationsto a system can be classified in

terms of their effect on homeostasis, and that the ability ofa system to adapt to a pertur-

bation and maintain homeostasis depends on the variety of responses it can produce. We

argue that parameter change caused by a loss of homeostasis causes ‘organisation death’

in a homeostatic adaptive system, where the system does not survive in its current form.

This suggests a view of learning and evolution of organisms as second order homeostatic

adaptive processes.
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Chapter 1

Homeostasis as an organising principle

1.1 Heating the home

The occupants of a house with no mechanisms for altering the internal temperature are

subject to the whim of the elements. When the sun shines in summer they will be too hot,

and when the wind blows in winter they will be too cold. Installing central heating and

air conditioning allows the occupants toregulatethe temperature of the house by making

adjustments to the internal temperature when external conditions demand it. By switching

on the heating when it is too cold, or the air conditioning when it is too hot, the occupants

can keep the house close to their desired temperature.

To avoid having to repeatedly make manual adjustments to thetemperature, it might

be useful to install some form of automatic device that will monitor the temperature and

make adjustments as necessary. Such a device, together withthe heating and air con-

ditioning systems, would make the househomeostatic. Temperature within the house

would be controlled by a process of dynamic self-regulation. The occupants of one par-

ticular house narrow down their options to a choice of two devices for the automatic

temperature monitoring and adjustment role. One device is athermostat, and the other

a Trial-o-maticTM . Both devices connect to the heating and air conditioning systems to

make the house homeostatic, but each has different strengths and weaknesses.

The thermostat continuously monitors room temperature anddetects any deviation

from the desired level. If temperature drops, the thermostat switches on the heating; if

temperature rises, the thermostat activates the air conditioning. The major selling point

2
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of the thermostat is its efficiency; when correctly wired it always picks the appropriate

mechanism to counter-act any deviation from the optimal temperature. However, the

thermostat has some limitations that arise from its fixed mode of operation. Suppose

that the thermostat is wired up incorrectly to the heating and air conditioning systems, so

that their connections are switched. Now when the house is too cold, the thermostat will

activate the air conditioning, thus making the house colder; when the house is too hot, the

thermostat will switch on the heating and make it hotter still. The regulatory system is

broken, and there is no way for the thermostat to remedy the situation.

The Trial-o-matic is a different form of controller to the thermostat. It monitors the

temperature of the house and responds to any deviation from the desired level by activat-

ing either the heating or the air conditioning system, but its choice of which system to use

depends on its history. When newly installed, the Trial-o-matic responds to every tem-

perature deviation by activating at random either the heating or the air conditioning, and

then waiting for a period to see if this action has had the desired effect. If the temperature

has returned to the desired level, the Trial-o-matic switches the system off and records

which system it used to correct that sort of deviation. Alternatively, if the temperature is

still not at the desired level, the Trial-o-matic repeats the random selection process until

eventually the deviation is corrected. Over time the list ofknown deviation-response pairs

grows, so that the Trial-o-matic is often faced with temperature changes it has experienced

before; when this occurs it consults its memory to find the correct response. In this way,

the Trial-o-matic slowly ‘learns’ the responses needed to regulate the temperature of the

house and improves its efficiency.

While the thermostat is efficient but vulnerable to mistakes in its wiring, the Trial-

o-matic is initially inefficient but able to adapt to different wiring schemes. Both the

thermostat and the Trial-o-matic act to maintain homeostasis in room temperature, but do

so in different ways. Each method has its strengths and weaknesses, which result from

the different mechanisms they use to adapt to perturbations.

In reality, central heating in the home is a well understood problem and it is unlikely

that there would ever be a need for a reconfigurable controller such as the Trial-o-matic.

Thermostats are reliable and effective, and there is no needfor an alternative method

of temperature regulation. However, homeostatic regulation is not always a simple pro-

cess, easily implemented with a thermostat. For example, when designing systems that

are more complex and less well understood than central heating, it may not be possible

to specify in advance the necessary responses needed to regulate a variable. This kind

of situation may require a more sophisticated regulatory mechanism that can adapt its re-

sponse. Also, when seeking to understand homeostatic systems in biology we can observe

that evolved biological systems are likely to be messy and contingent on their evolution-
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ary history, making regulation in these systems inefficientand dependent on mechanisms

that did not originally evolve for that purpose. These observations mean that homeostatic

adaptive systems are not necessarily easy to understand andsimple to design. There is a

need for a better understanding of how homeostasis can be achieved in complex systems.

1.2 Overview

This thesis looks at homeostasis as a cybernetic organisingprinciple. It considers home-

ostasis not as a purely descriptive property, but as a process of dynamic self-regulation

that shapes the behaviour of a system. We will study the different forms of adaptive

mechanism that can lead to homeostasis, their similaritiesand their differences, by look-

ing at three example homeostatic adaptive systems: the Homeostat, neural homeostasis,

and environmental regulation by the biota. We will then build on these case studies to

try and form a general theoretical understanding of the properties of homeostatic adaptive

networks.

This chapter first of all gives some historical background tothe concept of homeosta-

sis and offers a few examples of homeostatic systems. Next some concepts related to

homeostasis are defined, with reference to a toy model of a minimal homeostatic system.

This is followed by a statement of the research aims of the thesis, together with a brief

introduction to the case study systems that provide the bulkof the thesis material. The

chapter concludes with a few comments on methodology and on the layout of the thesis.

1.3 Homeostasis

1.3.1 A brief history of homeostasis

The termhomeostasiswas originally coined in 1932 by Walter Cannon [26], but the con-

cept owes much to the earlier work of Claude Bernard (1813-1878), a French scientist

who was perhaps the first to recognise that organisms maintain a near-constant internal

environment despite changing external influences. Bernardfamously wrote that “La fixit́e

du milieu int́erieur est la condition de la vie libre”, which translates as“The fixity of the

internal environment is the condition for free life” [20]. Cannon, an American physiolo-

gist, derived the termhomeostasisfrom the Greekhomo(same, like) andstasis(to stand,

posture). Cannon used the term to describe the properties of stability and constancy that

he observed in living organisms. Cannon studied the ability of living organisms to regulate

their internal environment, detailing many of the mechanisms by which various elements
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in the human body are regulated in his book ‘The Wisdom of the Body’ [26]. These in-

cluded regulation of body temperature through the skin, regulation of blood glucose by

the liver and pancreas, regulation of water content by the kidneys, and the role of stimuli

such as hunger and thirst in ensuring the supply of necessarymaterials.

Homeostasis remained a physiological term until William Ross Ashby, a British cy-

bernetician, proposed an alternative view of homeostasis that implicated the regulation

of ‘essential variables’ in the generation of behaviour [7]. Ashby developed the linked

concepts ofultrastability and homeostatic adaptationas an explanation of learning in

organisms and machines (these concepts will be explained later). Ashby’s ideas were

theoretically advanced, but their development was hindered by the resources available to

him; only recently with the advent of easily available computational power are his ideas

beginning to be explored [46].

It is Ashby’s concept of homeostasis as a dynamic adaptive process that we are most

concerned with here, but it is interesting to note that homeostasis is a widely recognised

phenomenon in a variety of fields. It is still seen primarily as a physiological quality, but

homeostasis has been applied and studied in areas as diverseas ecology, control theory,

psychology, neuroscience, and transport.

1.3.2 Examples of homeostasis

1.3.2.1 Physiological homeostasis

Homeostasis as a concept was originally developed to describe the internal constancy of

the human body, and it is in this area that most examples can befound. Many aspects of

the body are regulated homeostatically, including blood glucose level, body temperature,

blood water content, pH, etc. Physiological (and other) homeostatic systems typically

function in the manner shown in Figure 1.1. Receptors detecta change in the level of the

target variable and trigger a compensatory action in effectors. There may be a variety of

different receptors and effectors involved in the regulation of a single variable. For exam-

ple, body temperature homeostasis involves detectors in the hypothalamus and in the skin,

and several different effector mechanisms (Figure 1.2). Itis common for a homeostatic

system to use different mechanisms to move the target variable in opposing directions.

Blood glucose level is controlled in the pancreas by two hormones, insulin and glucagon.

Insulin decreases the level of glucose in the blood, while glucagon raises the level of glu-

cose in the blood. Changes in blood glucose concentration aredetected in the pancreas.

If glucose level falls too low, then the pancreas secretes glucagon, while if glucose level

rises too high, the pancreas secretes insulin (Figure 1.3).Physiological homeostasis can

involve both behaviour and internal mechanisms. For example, the amount of water in
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Figure 1.1: Physiological homeostasis. Deviation of a factor from the normal level
is detected by receptors that trigger effectors to compensate and return the factor
to its normal level. Diagram reproduced with permission from http://www.biology-
online.org/4/1physiologicalhomeostasis.htm, 24th January 2006.

Figure 1.2: Thermoregulation involves a variety of different receptors and effectors.
Changes in temperature are detected by receptors in the skin and hypothalamus, which
trigger compensatory changes via effectors in skin and muscle. Diagram taken from
http://www.biologymad.com/Homeostasis/Homeostasis.htm, 24th January 2006.

the blood is regulated via the hypothalamus both by triggering sensations of thirst and by

controlling the reabsorbtion of water from urine.

1.3.2.2 Ecological homeostasis

The most famous example of ecological homeostasis is the Gaia theory [116], which

postulates global regulation of the environment by the biota. Gaia theory states that the

collective effect of the interactions between the biota andthe physical environment will be

such that the biosphere is homeostatically regulated in a range suitable for life. This con-

troversial theory has slowly become more accepted by the scientific community, although

uncertainties still exist, particularly concerning the compatibility of the Gaia hypothesis

with evolutionary biology. Gaia theory will be covered in more detail in Part IV of this

thesis.
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Figure 1.3: Blood glucose homeostasis uses different mechanisms to move the target
variable in different directions: insulin and glucagon secreted in the pancreas counteract
changes in blood glucose level by adjusting it downwards andupwards respectively. Di-
agram taken fromhttp://www.biologymad.com/Homeostasis/Homeostasis.htm, 24th Jan-
uary 2006.

Another way in which homeostasis is thought to be expressed at an ecosystem level is

in regulation of the population size of a species by density dependent factors [19]. These

might include limited food supply, predation, disease, etc. If the population density of a

species affects either its birth rate or death rate, then there will be some equilibrium value

for the population size when birth rate is equal to death rateand the population size is

stable. Below this equilibrium, the population will increase, while above it the population

size will decrease. Thus density dependent population growth is a form of ecological

homeostasis.

A more sophisticated notion of ecosystem homeostasis is putforward by Trojan [166],

who considers ecological equilibrium as a form of homeostasis. Trojan notes that when

an ecosystem reaches an equilibrium state, there will oftenbe mechanisms by which

this state is maintained in the face of disturbance. In Trojan’s view, the key regulatory

processes in an ecosystem are those protecting matter cycling and energy flow, primary

production level, and system structure. The structure of the ecosystem is thus both the

mechanism and part of the target for homeostatic regulation.

1.3.2.3 Genetic homeostasis

Lerner [112] developed a theory of genetic homeostasis, which he described as the ten-

dency of Mendelian populations to maintain a constant genetic composition in the face

of external pressure. Lerner noted that although selectionoperates on the level of in-

dividuals, a by-product of segregation is that gene pools tend to become integrated and

maintain an optimal balance of gene frequencies at different loci. When subjected to pres-

sure, such as that from artificial selection experiments (the area where most of Lerner’s

data came from), genetic homeostatic mechanisms acted to restore any frequencies which
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have shifted from mean optimal values.

1.3.3 Homeostasis as an organising principle

Homeostasis is a widespread phenomenon, with many more examples than the few given

above. There is considerable variety in both the targets andthe mechanisms of regulation,

and in the physical and temporal scales of different homeostatic systems. In this thesis we

are interested in homeostasis as an organising principle, that is, as a force that can shape

the dynamics and behaviour of a system. This view moves away from the more traditional

view of homeostasis as simply a property displayed by certain types of system; we want

to move away from this descriptive viewpoint towards a concept of homeostasis that gives

it a causal role in the development of systems over time. In effect this switches from an

‘adjective’ definition of homeostasis to a definition that treats it as a verb.

Consider the alternative devices for regulating room temperature that were discussed

in the anecdote given at the start of this chapter. Both the thermostat and the Trial-o-matic

maintain homeostasis in temperature by triggering the activation of either the heating or

the air conditioning systems when a deviation in temperature occurs. However, apart

from this high level similarity, the two regulatory mechanisms are qualitatively different

in nature. The thermostat has a fixed response, in that it willalways respond in the same

way to a given ambient temperature. Since this response has been designed to move

temperature towards the desired target level, the thermostat is very efficient. However, it

is also brittle, so that any error in its wiring will lead to a failure of regulation. The Trial-

o-matic, by contrast, has a response that varies over time asit ‘learns’ to regulate the

house, so that it might give a different response to the same temperature on two different

occasions. Its design is such that its response should improve over time, as it records

more effective temperature-response pairings. The trial-and-error method by which the

Trial-o-matic acquires better responses means that it is likely to be inefficient early in

its operational lifetime, but offers the advantage of robustness. Because it has no pre-

ordained responses, it will adapt to being wrongly connected to its heating and cooling

effector systems.

The thermostat can be seen as an elastic system, where changes in behaviour have no

persistent effect. Its behaviour may change temporarily toaccommodate a perturbation,

but when the temperature is restored to the desired level thethermostat will return to

a resting condition identical to its original state. The Trial-o-matic, however, is a plastic

system, where changes can be persistent. The Trial-o-matic’s current behaviour can affect

its future behaviour, so that its behaviour at any point in time is a function both of its

current environmental stimulus and of its operational history.
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Elastic homeostatic systems are well studied and include most of the physiological

examples of homeostasis given above. This form of homeostatic system is the domain of

control theory, where explanations often involve negativefeedback loops. Plastic home-

ostatic systems are much less well studied. Plastic homeostatic systems change their

behaviour semi-permanently or permanently depending on their precise formulation, and

this means that their continual drive towards homeostasis is a force that shapes their organ-

isation over time. The persistent changes to the system thatoccur as the system attempts

to regulate its target variables have an effect on its subsequent behaviour that will last

until over-written by some future changes.

It is plastic homeostatic systems that are the topic of this thesis. We will look at three

examples of plastic homeostatic systems as case studies, and then look for any system

features or properties that are general to all. The three case studies are the Homeostat,

homeostatic plasticity in neural networks, and environmental regulation by the biota.

1.3.4 Definitions

Before we proceed, we must first of all attempt some more rigorous definitions of home-

ostasis and related concepts. While definitions make no difference to the behaviour of

a system, precise terminology will be of use when trying to compare and contrast the

different case study systems in the final stages of this study. Here we present some defi-

nitions of various forms of homeostasis, followed by some examples based on a minimal

homeostatic system.

It is not straightforward to give a rigorous definition of homeostasis that clearly dis-

tinguishes it from related concepts such as negative feedback or system stability; the

definitions given below represent our best attempt. There isoverlap between these con-

cepts, and there is a danger of lapsing into arbitrary semantics when trying to separate

them. Homeostatic systems can display negative feedback, but need not do so. Homeo-

static systems show stability, but the term homeostasis implies more about the nature of a

system than just stability. In the interests of avoiding a lengthy linguistic discussion and

retaining an effective terminology, we will here give a set of definitions that is pragmati-

cally focussed on ease of use and clarity. At all points during this thesis, systems that are

described as homeostatic will also be described mathematically and mechanistically, so

that no confusion over function should arise.

1.3.4.1 Homeostasis

Homeostasisis the maintenance by some mechanism(s) of a variable withina target range,

in opposition to forces which would otherwise cause the variable to leave that range. A
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Figure 1.4: A homeostatic system consists of a reacting part(RP) which is continually
interacting with its environment (ENV). This interaction determines the values of a set
of essential variables (V). The regulating part consists of a detector mechanism (DET)
which detects deviations of the essential variables from their target range, and an effector
mechanism (EFF) which acts on the parameters of the reacting part. If the regulator is
effective the essential variables are brought back into bounds after any deviation. There
are two feedback loops, one the continual interaction between the reacting part and its
environment, and the other an intermittent feedback activewhen the essential variables
are out of bounds.

homeostatic system consists of a reacting part by which the system interacts with its envi-

ronment, a set of essential variables which are the targets of regulation, a target range for

each essential variable that defines the boundaries of homeostasis, and a set of regulatory

mechanisms which maintain the essential variables within bounds. Every homeostatic

system is co-defined with a source of perturbations that would cause a loss of homeosta-

sis of essential variables if not counter-acted by the regulatory mechanisms. This scheme

is shown in Figure 1.4, and is related to Ashby’s concept of the ultrastable system (see

Chapter 2).

Homeostasis is achieved when all essential variables are inside the target range, and

homeostasis is lost when an essential variable moves outside of the target range. A def-

inition of homeostasis as the static condition of having allessential variables inside the

target range would be forced to label a system where essential variables went temporarily

out of bounds as non-homeostatic. By emphasising the dynamic nature of homeostasis

and viewing it as a process, we avoid such problems. Our definition of a homeostatic

system is tolerant of the situation where an essential variable goes temporarily outside

of the target range but is then returned to the target range bythe action of the regulatory

mechanism, so that a system where this occurs is still definedas a homeostatic system.

Homeostasis involves two feedback loops. One is the feedback loop engendered by
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the continuous interaction between the reacting part of thesystem and its environment,

which is always active because the system is situated in the world. The other feedback

loop is only operational when the essential variables go outof bounds, and involves the

regulator detecting this deviation and triggering a response in the reacting part which may

bring the essential variables back into bounds.

Each regulatory mechanism can be sub-divided into detectorand effector sub-mechanisms.

Detectors discriminate between homeostatic and non-homeostatic states of the system,

while effectors change the behaviour of the reacting part sothat homeostasis is restored.

The environment is the source of perturbations to the systemand is also a ‘black box’

which translates the actions of the reacting part into the values of the essential variables.

It should be noted that the environment of a homeostatic system is not necessarily the

same as the environment of any larger system of which the homeostatic system is a part.

For example, the environment of the thermoregulatory system in mammals includes the

external environment as well as most of the body, i.e., all system components that are not

directly active in temperature regulation. The interaction between the active components

which form the reacting part of the homeostatic system (suchas sweat glands, fat-burning

intracellular reactions, etc.) and the environment is whatdetermines the temperature of

the animal. The regulator mechanism acts through the reacting part, which in turn acts

through the environment to determine the essential variables.

Homeorhesisis a special case of homeostasis where the target ranges for essential

variables may change over time. Regulation in a homeorheticsystem occurs around a tra-

jectory rather than a set point. For example, the automatic pilot in an aeroplane corrects

any deviation from the plotted course between two airports.This course will involve sec-

tions with different compass headings and angles of ascent,so that the target of regulation

is constantly shifting.

1.3.4.2 Homeostatic adaptation

Homeostatic adaptationis the process by which a system changes its behaviour so that

homeostasis is recovered after perturbation. Such adaptation may involve temporary re-

sponses in a system with no persistent effect, or may involvechanges with a lasting effect

on system parameters. In order to differentiate the two classes of adaptation, we here

defineelastic homeostatic adaptationas adaptation that does not cause any persistent

changes in the system, andplastic homeostatic adaptationas adaptation where there is a

persistent change in at least one part of the system. Elastichomeostatic adaptation means

that a system will return to its original state after a perturbation is removed, whereas plas-

tic homeostatic adaptation implies that the system will remain in an altered state after the
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Figure 1.5: A homeostatic system can have multiple homeostatic subsystems operating
concurrently. These may operate on the same essential variables as other homeostatic
mechanisms, but need not have the same target ranges. This allows for different mech-
anisms to be called into operation for deviations of different extremity. All homeostatic
feedback loops act on the same reacting part and environment. The diagram shows multi-
ple different regulator mechanisms (D1E1,D2E2, ...,DNEN) creating multiple homeostatic
feedback loops through the essential variables (V), the reacting part (RP), and the envi-
ronment (ENV).

perturbation is removed.

We make a distinction between these two types of homeostaticadaptation to avoid

any confusion that might otherwise arise from discussion of‘adaptation’, ‘adapting’,

‘adapted’ and ‘adaptive’ behaviours. We define homeostaticadaptation as any process

by which a system changes its behaviour so that it moves from anon-homeostatic state

to a homeostatic state, with plastic and elastic forms of homeostatic adaptation defined as

above.

1.3.4.3 Multiple homeostatic feedbacks

Multiple homeostatic feedback loops can regulate the same set of essential variables in

a homeostatic system. These may have (but do not require) different target ranges for

the variables, and are differentiated by their regulatory mechanisms (i.e., their detector-

effector mechanisms). All these homeostatic mechanisms act on the reacting part, except

in the special case of higher order regulation (see next section). This scheme is shown in

Figure 1.5.

1.3.4.4 Second order homeostasis

A homeostatic regulatory mechanism may itself be the subject of a higher order homeo-

static feedback loop. In this situation a regulatory mechanism acts on the parameters of
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Figure 1.6: Higher order homeostatic feedbacks are possible in which the target of the
higher order homeostatic mechanism is itself a homeostaticmechanism at a lower level. In
this situation, all homeostatic mechanisms still monitor the same set of essential variables,
but the effector output of the higher order regulator mechanism acts on a lower level
regulator. This kind of arrangement can trigger changes in how regulation is accomplished
when a major failure of homeostatic regulation is detected.The diagram here shows a
second order regulator mechanism acting on a first order regulator, creating two tiers of
homeostatic feedback loops.

another regulatory mechanism. First order homeostatic mechanisms act on the reacting

part, while second order mechanisms act on first order mechanisms. This definition can

be extended to theNth order. Both first and second order mechanisms are triggered by

changes in the same essential variables. A higher order mechanism is called into play

when there is a failure of regulation by a lower order mechanism, which may be signified

by a continuing loss of homeostasis or a deviation of an unusually large magnitude. This

scheme is shown in Figure 1.6.

1.3.5 Examples from a minimal homeostatic system

Consider a simple system where the reacting part has a single state variablex and the en-

vironment is experienced as another variabley which changes periodically. The essential

variable results from the interaction between reacting part and environment and is defined

as the productxy. The regulator is composed of a number of conditional rules on the

value of the essential variable. The ‘IF’ part of the rule corresponds to the detector in

Figure 1.4, while the ‘THEN’ clause corresponds to the effector. These rules alter the

value ofx dependent on the value ofxy. This system is shown in Figure 1.7.
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Figure 1.7: A minimal homeostatic system. The reacting parthas a single state variablex
which interacts with the environment, represented by a random variabley, to form a value
xy for the essential variable. A conditional rule changesx dependent onxy. Depending on
the form of this rule, the system can display various forms ofhomeostatic or homeorhetic
adaptation.

1.3.5.1 An elastic homeostatic adaptive system

Let x = 5 at initialisation and lety be a randomly drawn integer value from the range

[0,10], wherey is periodically randomly reassigned. Then if we define the rule:

R: If xy< 40 thenx = x+1

Else ifxy> 60 thenx = x−1

Elsex = 5

we have an elastic homeostatic adaptive system where the target range for the essential

variablexy is [40,60]. Outside this range directed changes are made tox such thatxy is

adjusted in the correct direction to return to the target range. Sincex is reset to 5 whenever

the system is returned to its homeostatic bounds, there are no lasting changes to the system

resulting from a perturbation and the system displays elastic homeostatic adaptation.

1.3.5.2 A plastic homeostatic adaptive system

Let x = 5 at initialisation and lety be a randomly drawn integer value from the range

[0,10], wherey is periodically randomly reassigned. Then if we define a variation on the

previous rule:

R: If xy< 40 thenx = x+1

Else ifxy> 60 thenx = x−1
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we have a plastic homeostatic adaptive system with the same target range as the previous

system. In this case the value forx is not reset to 5 when the essential variable returns

to bounds, so any changes inx are persistent and the system shows plastic homeostatic

adaptation.

1.3.5.3 A plastic homeorhetic adaptive system

Let x = 5 at initialisation and lety be a randomly drawn integer value from the range

[0,10], wherey is periodically randomly reassigned. Further, letz be a variable governed

by the rulezt = t wheret is the time from system initialisation. Then if we define a rule:

R: If xy< (z−10) thenx = x+1

Else ifxy> (z+10) thenx = x−1

we have a plastic homeorhetic adaptive system. Changes made by the adaptive mechanism

are persistent, so the system shows plastic adaptation. Thetarget range for the essential

variablexy is [z−10,z+10] for a constantly increasingz. Since the target for regulation

changes over time, the system is homeorhetic, rather than homeostatic.

1.3.5.4 A homeostatic adaptive system with multiple homeostatic feedback loops

Let x = 5 at initialisation and lety be a randomly drawn integer value from the extended

range[0,100], wherey is periodically randomly reassigned. Then the rule set:

R1: If xy< 200 thenx = x+1

Else ifxy> 250 thenx = x−1

R2: If xy< 50 thenx = x+5

Else ifxy> 400 thenx = x−5

creates a plastic homeostatic adaptive system with multiple homeostatic feedback loops.

R1 defines one homeostatic loop with a target range forxyof [200,250], while R2 defines

a second loop with a more relaxed target range forxy of [50,400]. This system would

regulatexy homeostatically to the inner range of[200,250], sinceR1 will continue to

be active until this range is reached. TheR2 loop will only be active when the essential

variablexy is at very high or very low levels, but has a more powerful adaptive mechanism

which will bring xy inside its target range more quickly. Both theR1 andR2 homeostatic

loops show plastic homeostatic adaptation since changes they make tox are persistent.
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1.3.5.5 A second order homeostatic adaptive system

Let x = 5 at initialisation and lety be a randomly drawn integer value from the range

[0,100], wherey is periodically randomly reassigned. Then the rule set:

R1: If xy< 200 thenx = x+δ
Else ifxy> 250 thenx = x−δ

R2: If xy< 50 orxy> 400 thenδ = 5

Elseδ = 1

creates a second order homeostatic adaptive system.R1 specifies a first order homeostatic

mechanism that will adjustx to movexy towards the target range of[200,250]. If R1

is ineffective andxy goes outside of the range[50,400], R2 will amplify the adjustment

to x by a factor of 5 in order to returnxy to the target range more quickly.R1 is a first

order mechanism since the rule operates directly on the variablex. R2 is second order

since it operates on the parameters toR1. Also, R1 is a plastic homeostatic adaptation

process since the changes it makes tox are persistent, whileR2 is an elastic homeostatic

adaptation process since it makes a temporary change to the parameters ofR1.

1.4 Thesis outline

1.4.1 Research aims

The aim of this thesis is to study three example homeostatic adaptive systems: Ashby’s

Homeostat, neural homeostatic plasticity, and the biotic regulation of the environment.

These studies will be at two levels. Primarily the focus willbe on exploring each of the

systems in its own right, seeking to gain an understanding ofits operation and further

scientific knowledge of its behaviour. A secondary focus will be on comparative analysis

of all of the systems, seeking to identify their similarities and differences, and to gain a

more general understanding of homeostatic adaptation as a cybernetic phenomenon.

The parts of the thesis will therefore have a dual existence.On the one hand, the

sections looking at each of the three example systems are designed to be self-contained

units, with their own research questions, experiments and conclusions. On the other hand,

each section will also be of relevance to the encompassing whole. The work presented in

each section will be guided by the material. Rather than force the research in a section to

fit the straightjacket of the greater aim, it is the intentionhere to follow the loose threads

of each topic to their logical conclusion. However, it is also the intention at the end of
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the thesis to try and relate each topic to the broader question, and to elucidate conclusions

that are more generally relevant.

1.4.2 Case studies

1.4.2.1 Ashby’s Homeostat

The Homeostat was an electrical device designed by Ashby to demonstrate the principle

of ultrastability [7]. It consisted of four magnetic units connected by circuits with variable

properties. Each unit was attached to a gauge, and each gaugehad a target region for its

level of activation. When the activation of a unit was outsideof this range the parameters

of the connecting circuit to that unit were altered at random, thus changing the way in

which it was influenced by output from the other three units. Left to itself the Homeostat

would eventually settle to a stable equilibrium where the output of all units was in bounds,

i.e., where homeostasis was maintained. The outputs of the units were the essential vari-

ables, and the system as a whole was ultrastable. The Homeostat will be explored in more

detail in Part II.

We develop a simulated Homeostat that demonstrates how a homeostatic adaptive

system may be ultrastable, and how stability is affected by the size of the system and

the tightness of the constraints. The ability of an ultrastable system to accommodate

perturbations by homeostatic adaptation is also explored.

1.4.2.2 Neural homeostasis

It is increasingly recognised by neuroscientists that plastic mechanisms act in the brain to

homeostatically regulate levels of neural activity [37, 167]. These mechanisms alter the

properties of neurons and neuronal networks, such as synaptic connection weights and

the intrinsic excitability of neurons, so that while there may be short term fluctuations

in neural activity, the long term mean firing rate of each neuron tends towards some set

point.

Homeostatic plasticity is a relatively new area of study in the neurosciences. It is

thought to play an important role in counter-acting the destabilising positive feedback

effects associated with other forms of neural plasticity such as Hebbian learning, but its

precise functioning and mechanisms are yet to be fully elucidated. The network-level

effects in particular remain to be explored.

Here we approach homeostatic plasticity from the viewpointof neural robotics, which

allows the study of its effects at a variety of different levels, from individual nodes through

to a complete behaving agent interacting with the world. Using a highly abstracted neural
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model, we demonstrate that homeostatic plasticity makes nodes and networks more sen-

sitive to input, improves signal propagation, and makes oscillatory dynamics more likely.

From an engineering standpoint, we show that it may have bothbeneficial and detrimen-

tal effects on the evolvability of networks for robot control. While the simplicity of the

neural model employed here is well removed from its biological counterpart, we draw on

our results to speculate on the functioning and role of homeostatic plasticity in biological

neuronal networks, suggesting that the current neuroscientific view may be incomplete.

1.4.2.3 Environmental regulation by the biota

The Gaia hypothesis [116], which suggests that the biota collectively regulate the envi-

ronment to conditions suitable for life, has been the cause of much controversy. Much of

the debate concerns the compatibility of Gaia theory with evolutionary biology. The idea

that the biota can evolve to collectively regulate the environment seems to run counter to

selfish Darwinian adaptation, implying teleology or group selection. Some of the criti-

cisms of Gaia have been rebutted, while others remain. The central question is how global

regulation might be explained by selection acting on individuals, and it is a question that

has yet to be answered.

With the aim of studying environmental regulation by the biota in general, we here

approach this topic by looking primarily at Gaia theory. Specifically, we review exist-

ing models and then develop a simplified version of the Daisyworld [183] model. We

use this model to replicate known Daisyworld results and to generate some new results

concerning the importance of evolutionary constraints forregulation. The effects of relax-

ing the core assumptions of the Daisyworld model are explored, showing that successful

environmental regulation relies on several key assumptions which may or may not be

present in nature. A new model, the Flask model, is then developed with the intention

of demonstrating the compatibility of environmental regulation with Darwinian evolution

in a model which relaxes several of the key Daisyworld assumptions. Preliminary results

from the Flask model are given, allowing a strong argument tobe constructed for the

evolution of regulatory feedbacks.

1.4.3 Methodology

The experimental work presented in this thesis relies on simulation modelling and some

justification of this approach is given here.

Computer simulations are no longer a new technique and have been usefully employed

in many situations. We can categorise simulation models as falling into two main classes,
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which we can call ‘engineering simulations’ and ‘computational thought experiments’. It

is the latter class which concerns us here.

Engineering simulations are the least controversial of thetwo types of simulation

model. They are typically used to optimise some feature of a real world systemin sil-

ico before its physical construction. For example, the aerodynamics of a car can be tested

in simulation prior to more costly wind tunnel experiments.Engineering simulations use

accepted knowledge about the world to determine the implications of a particular configu-

ration of a system. They derive new data, without necessarily generating new knowledge.

Computational thought experiments are a more recent use of computer models and are

often regarded with more suspicion than engineering simulations. The basic idea is to test

the logical validity of a particular set of assumptions about how a real world phenomenon

occurs. For example, a researcher might think they understand how flocking behaviour

occurs in birds and decide to test their model by instantiating it as a simulation. If the

simulation is based on sound assumptions and flocking behaviour is observed, then the

researcher’s theory of flocking is logically consistent andbecomes a live hypothesis for

testing by a field biologist. If flocking behaviour is not observed in the simulation, the

assumptions of the model are not sufficient and the model mustbe revised.

The use of thought experiments using pen and paper is an accepted part of scientific

progress. Thought experiments using computer simulationsare no more and no less valid

than their armchair equivalents. The utility of simulationmodels lies in their ability to

capture more complex phenomena than is possible with pen andpaper. The computa-

tional power of a simulation allows more entities to be modelled and easier testing of

different sets of parameters. Simulation models have been described as ‘opaque thought

experiments’ [51], recognising that the phenomena they areoften used to model are too

complicated to be tractable by conventional thought experiments.

It should be remembered that simulation models can never prove any theories about

the real world, but also that this is not their aim. Their utility is in forcing the explicit

statement of the assumptions of a theory and in allowing the easy observation of the

implications of these assumptions. The logical consistency of a theory can be tested and

refined by simulation modelling, in order to create valid hypotheses for empirical testing.

The complexity of the systems studied in this thesis necessitates the use of simulation

models. The Homeostat, neural networks, and the Earth system, are all complex systems

that are opaque to armchair thought experiments.

In the case of the Homeostat, the model Homeostat we develop is not a true simulation,

since it does not pretend to model some real world system but is an actual instantiation

of a simple ultrastable system. The same partially applies to the neural networks used

in Part III. While inspired by biology, they are in themselvesreal instances of a class
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of computer program often used for robot control, at the sametime as being simulacra of

biological neuronal networks. The Gaia models used in Part IV are more traditional simu-

lations in that their interest comes from their interpretation as simulacra of real biological

systems.

1.4.4 Thesis plan

This thesis is divided into five parts which reflect the logical structure of the material

presented. Parts II, III and IV cover the three case studies and are intended to be self-

contained. Part II covers the Homeostat, Part III covers neural homeostatic plasticity,

and Part IV covers environmental regulation by the biota. Each case study begins with

a review of the relevant literature and background material, before outlining the research

questions to be answered. This is followed by experimental chapters presenting the meth-

ods used and results obtained, and then some discussion of the results presented.

Part I and Part V are more concerned with the over-arching theme of the thesis: home-

ostatic adaptive networks. Part I consists of the current introductory chapter, which sets

the scene and gives a general overview of the thesis. Part V contains discussion of the

material presented in Parts II, III and IV, and analyses these results in the context of a

general theory of homeostatic adaptive networks.
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The Homeostat
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Chapter 2

The Homeostat

2.1 Overview

The Homeostat was developed by Ashby in the 1950s as a demonstration of his concept

of ultrastability [7], which is the earliest exposition of a theory of homeostatic adaptation.

We begin by introducing the concept of ultrastability and Ashby’s view of homeostatic

adaptation, including the Homeostat. Next we present a simple simulated Homeostat that

is used to explore ultrastability and homeostatic adaptation. We show that the time taken

for the simulated Homeostat to reach stability is affected by the number of nodes and

the tightness of the homeostatic constraints on the nodes. The Homeostat can adapt to

perturbations and is in some circumstances capable of beingused as a self-organising

control system.

2.2 Background

William Ross Ashby (1903-1972) was a British cyberneticianoriginally trained in neurol-

ogy. Ashby’s most famous work isDesign for a Brain[7], in which he attempts to answer

the question of how the brain can produce adaptive behaviour:

“When a kitten first approaches a fire its reactions are unpredictable and

usually inappropriate. It may walk almost into the fire, or itmay spit at it, or

may dab at it with a paw, or try to sniff at it, or crouch and ‘stalk’ it. Later

22
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however, when adult, its reactions are different. It approaches the fire and

seats itself at a place where the heat is moderate. If the fire burns low, it

moves nearer. If a hot coal falls out, it jumps away. Its behaviour towards the

fire is now ‘adaptive’.” (p.12, [7])

Ashby looked at organisms as ‘machines’, that is, he regarded them as determinate

and subject to the same physical laws as mechanical devices.He defined theessential

variablesof an animal as those variables which must be kept within limits for the animal

to remain alive. Armed with this definition, Ashby could recast the problem:

“A determinate machine changes from a form that produces chaotic, un-

adapted behaviour to a form in which the parts are so co-ordinated that the

whole is stable, acting to maintain its essential variableswithin certain limits

- how can this happen?” (p.70, [7])

This question has obvious implications for learning in artificial agents as well as ani-

mals, and in recent years there has been a resurgence of interest in Ashby’s work [46,48].

2.2.1 Ultrastability

Ashby developed the idea that organisms areultrastable. He made a functional separation

between different parts of the organism that specified a set of essential variables, a reacting

part, and a set of parameters to the reacting part (see Figure2.1). The essential variablesV

must be kept within bounds to ensure the continued viabilityand survival of the organism.

The reacting partR was the behaviour-producing part by which the organism interacted

with the world. The parameter setSdetermined howR should react to the environment.

Ultrastability was then defined as the situation where:

“Two systems of continuous variables (that we call ‘environment’ and ‘re-

acting part’) interact, so that a primary feedback (throughcomplex sensory

and motor channels) exists between them. Another feedback,working inter-

mittently and at a much slower order of speed, goes from the environment to

certain continuous variables which in their turn affect some step-mechanisms,

the effect being that the step-mechanisms change value whenand only when

these variables pass outside given limits. The step-mechanisms affect the re-

acting part; by acting as parameters to it they determine howit shall react to

the environment.” (p.98, [7])
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Figure 2.1: Ultrastability. There are two feedback loops: the primary loop involves the
interaction of the reacting partR with its environmentENV, while a secondary loop in-
volves also the essential variablesV and the parametersS to R. WhenV goes out of
bounds step-changes are triggered inS so that the behaviour ofR changes. This affects
the interaction betweenR andENV, which may or may not bringV back in bounds.

The ‘step-mechanisms’ Ashby refers to are mechanisms that cause sudden discontin-

uous changes in the value of a variable. Thus, in other words,an ultrastable system is one

where an excursion of the essential variables from their desirable ranges causes a sudden

change in the parameters of the behaviour-producing subsystem. An ultrastable system

can only be stable when normal operation maintains the essential variables within bounds,

since if this does not happen the system is made unstable by step-changes in parameters.

Stability requires homeostasis of essential variables, and the lack of homeostasis triggers

changes in behaviour.

2.2.2 The Homeostat

The Homeostat was an electromechanical device that Ashby built to demonstrate ultra-

stability. It consisted of four units mounted on a base platform (Figure 2.2(a)). Each

unit carried a pivoted magnet (Figure 2.2(b)), and the angular deviations of these magnets

from the central position were specified as the essential variables of the system. Each unit

emitted a DC current proportional to the deviation of its magnet, which was passed to the

other three units.

The currents received by each unit acted upon its magnet via three coils, and the

output of a unit also affected its magnet via a self-connection. Before reaching the coils,

input currents were modified by passing them through a potentiometer and a commutator,

the settings for which acted as parameters to the unit. On each unit, the potentiometer

and commutator settings were assigned by a uniselector which chose from 25 different
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(a) Homeostat (b) Single unit

Figure 2.2: Ashby’s Homeostat consisted of four units mounted on a base platform. The
output from each unit was fed into all other units by circuitry that was reconfigured when
unit output moved outside the target range, such that the whole system was ultrastable.
Illustrations adapted from [7].

random settings. This gave 254 = 390625 different combinations of parameters for the

four unit system. If the angular deviation of a magnet passedoutside the range[−45o,45o]

the uniselector on that unit would choose a new setting at random.

The Homeostat was shown to be ultrastable. It was initialised with the uniselectors set

to random positions and its subsequent behaviour was observed. By changing the unise-

lector setting when magnet deviations went out of bounds, eventually a stable equilibrium

was reached where all magnets were located in the target range for angular deviation. The

Homeostat was also shown to be able to adapt to perturbations. If a magnet was manually

displaced, the ultrastable nature of the system ensured that the system eventually settled

down to an attractor where all free-moving magnets were in bounds.

2.3 Method

In this section we will develop a simple simulated Homeostatthat displays the property

of ultrastability. The Homeostat described here is constructed differently to the original

Homeostat. Ashby’s Homeostat was an electromechanical device, whereas the current

implementation is a computer program, and the connectivityand mechanisms are neces-

sarily different in nature. However, both Ashby’s Homeostat and the current version are

designed with similar logical structure and display similar behaviours, so for that reason

the ‘Homeostat’ nomenclature is retained.

Our Homeostat is a system ofN units arranged in a fully connected network topology.

Each unit receivesN inputs, from itself and from all other units, weighted by thestrength

of the connection between them (see Figure 2.3). The weighted sumI (Equation 2.1)

of the inputs to a unit determines its outputs, as specified by a piecewise linear transfer
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Figure 2.3: Schematic of a single Homeostat unit. The unit receives input from other
units (wisi) and from itself (w1s1). Outputs1 is a piecewise linear function of weighted
summed input.
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0 
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Figure 2.4: Example Homeostat unit transfer function. Function is piecewise linear with
points at(x1,y1), ...,(xP, ...,yP) wherex1 = 0 andxP = N for all units in anN-unit network.
P = 4 in example shown. Dashed lines indicate target homeostatic range.

functionF (Equation 2.2 and Figure 2.4). A unit may be specified as a set of parameters

U = {w1, ...,wN,x1, ...,xP,y1, ...,yP} wherewi is the afferent connection strength from the

ith unit and(x j ,y j) is the coordinate of thejth point on its transfer function. Ranges are

set so thatw∈ [0.00,1.00] ands∈ [0.00,1.00], soI ∈ [0.00,N].

I =
N

∑
i

wisi (2.1)

s= F(I) =











y1 +(y2−y1)(
I−x1
x2−x1

) : x1 ≤ I < x2

y2 +(y3−y2)(
I−x2
x3−x2

) : x2 ≤ I < x3

y3 +(y4−y3)(
I−x3
x4−x3

) : x3 ≤ I ≤ x4

(2.2)

At initialisation, connection strengths are randomly assigned from a uniform distribu-

tion on the appropriate range, as are values for all transferfunction parameters. A target
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rangeR = [0.5− δ ,0.5+ δ ] for output is specified, where the size ofδ determines the

tightness of the homeostatic constraint. Ifs∈ R the unit is homeostatic. Ifs /∈ R then

homeostasis is lost and adaptive change is triggered.

There are two adaptive mechanisms which are applied to the parameters of non-

homeostatic units. The first mechanism assigns new random values for the strengths of

all afferent connections to the unit (Equation 2.3). The second mechanism assigns new

random values for the coordinate parameters of the unit’s transfer function (Equation 2.4).

Ranges for reassigned parameters are the same as those used for initialisation.

IF (s /∈ R) THEN [w = rand(0.00,1.00) ∀w∈ {w1, ...,wN}] (2.3)

IF (s /∈ R) THEN [x = rand(0.00,N) ∀x∈ {x2, ...,xP−1}]

AND [y = rand(0.00,1.00) ∀y∈ {y1, ...,yP}]
(2.4)

whererand(a,b) is a function that returns a real number randomly drawn from auniform

distribution on the range[a,b].

2.4 Results

Here we describe the behaviour of the simulated Homeostat. We look first of all at its

ultrastable behaviour when each of the two different adaptive mechanisms is used, before

looking at how the time taken for the system to reach stability is affected by the number

of nodes in the network and by the tightness of the homeostatic constraint. Next we look

at the response of the system to perturbation, before finallyconsidering the possibility of

using the simulated Homeostat as a self-organising controlsystem.

Two different adaptive mechanisms were used: a mechanism which changes trans-

fer function parameters, and a mechanism which changes connection strengths. The two

mechanisms are used to show that homeostatic adaptation canoccur via the action of dif-

ferent kinds of mechanism, and that some mechanisms are moreeffective at maintaining

homeostasis in the system than others. The two mechanisms can lead to different kinds

of homeostatic ‘solution’.

2.4.1 Reaching stability

The first result to show is that the Homeostat described in theprevious section is ultra-

stable. Figure 2.5 shows the Homeostat converging to a stable steady steady state from a

random initialisation. Here the target range was set to be[0.4,0.6] and a 4 unit network
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(a) Unit output
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(b) Transfer function parameter change

Figure 2.5: Convergence over time to a stable steady state in a4-unit Homeostat with
transfer function adaptation. Comparison of the two plots shows that parameter change
is correlated with excursions of unit output from the targetrange. The upper plot shows
the target range for unit activation ([0.4,0.6], region within dashed lines) together with the
activation of all of the units (solid lines). Initially activity is out of bounds and changes
erratically, but over time the activity of all nodes stabilises at a steady level within the
target range. The lower plots show the change in the (x, y) coordinate parameters of the
transfer function for each unit. These change continually so long as the activity of the
associated unit is out of bounds, but stop changing when activity is within bounds. The
lower plots therefore show a large amount of parameter change early on when activation
of several units is out of bounds. Eventually the random changes to transfer function pa-
rameters generate a parameter set that keeps activity in bounds, at which point parameter
change ceases and activation stabilises.
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(c) Transfer functions

Figure 2.6: Convergence/non-convergence to homeostatic stability of units in a 4-unit
Homeostat with adaptation by reassignment of afferent connection strengths. The upper
plot shows activation of all units, while the lower plots show connection weights to each
unit (left plot) and the fixed transfer function for each unit(right plot). Transfer functions
are fixed for the duration of the trial. Comparing the plots, wecan see that two of the units
immediately find a good set of connection strengths that keeps their activity in bounds, so
that these units show a fixed level of activity and no connection strength change (lower
two weight change plots, bottom left and bottom right transfer function plots). Another
unit initially has activity out of bounds but eventually finds a good set of connection
strengths, at which point parameter change ceases (uppermost weight change plot, top left
transfer function plot). The remaining unit never finds a good parameter set. Its transfer
function (top right transfer function plot) has no part of its input range giving output
in the target homeostatic range, so change in its afferent connection strengths continues
indefinitely (second-from-top weight change plot). This iscorrelated with continually
changing activity that is always outside the target range (upper line in activity plot).
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was used. Output from several units starts off outside of thetarget range but quickly moves

to the target range as new transfer function parameter sets are generated that keep activity

in bounds. Parameter change can be seen in Figure 2.5(b), which shows the changes in

transfer function parameters for each unit. Parameter change is correlated with excursions

of unit output from the homeostatic target range.

Figure 2.6 shows the behaviour of a Homeostat where the adaptive mechanism is ran-

dom reassignment of the strengths of the afferent connections to any non-homeostatic

unit. In this scenario, most units find a set of connection weights that satisfy the home-

ostatic constraint, but some units are not able to do so because their transfer functions

allow no possibility of giving output in the correct range, no matter what level of input is

received. Figure 2.6(c) shows the transfer functions for each of the units in the Homeostat.

The convergent units all have transfer functions where it ispossible for the homeostatic

constraint to be satisfied, while the non-convergent unit (top right transfer function plot)

has a transfer function which precludes convergence to a stable steady state. Its output is

always out of bounds.

Homeostats that adapt by reconfiguring their transfer function are always able to even-

tually find a set of transfer function parameters that leads to steady output in the home-

ostatic range. Homeostats that adapt by assigning new afferent connection strengths are

not always able to satisfy the constraint, since their fixed transfer function may not allow

this possibility.

2.4.2 Time to convergence

The time taken for a Homeostat to converge to a stable homeostatic attractor with the

activation of all units inside the target range may be affected by the number of units in

the Homeostat network and the tightness of the homeostatic constraint on each unit. In

this section we examine these relationships by varying these parameters and measuring

the time taken for the Homeostat to reach stability.

As a proxy for the time taken to reach a stable attractor, we measure the probability

of individual Homeostat units having their activation in bounds after a given amount of

time has elapsed from initialisation. This method is used because some Homeostats never

converge to a homeostatic stable state (e.g., if they use connection strength adaptation and

have an unsuitable transfer function for one of the units) and also because random changes

to parameters can be an inefficient search method that occasionally takes a very long time

to find a solution. Both of these occurrences make accurate measurement of the time taken

to reach a homeostatic attractor difficult, but the measurement of probability that a unit

will be homeostatic after a given time allows us to gather theinformation we need to look
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Figure 2.7: Probability of homeostasis in Homeostats with adapting connection strengths,
plotted against elapsed time from initialisation.Top row: Individual nodes.Bottom row:
Whole networks. Plots show the effect of increasing network size (N ∈ {4,10,20}) when
homeostatic target range is kept fixed at[0.4,0.6] (left column) and the effect of keep-
ing network size fixed atN = 4 and varying the tightness of the homeostatic target range
([0.5−δ ,0.5+δ ] for δ ∈ {0.1,0.2,0.3}) (right column). Increasing N reduces the likeli-
hood of nodes and networks displaying homeostasis. Relaxing the homeostatic constraint
by increasingδ has a more dramatic effect, making homeostasis much more likely. All
the Homeostats are unlikely to display perfect homeostasisbecause of the possibility of
fixed transfer functions which do not allow the constraint tobe satisfied, as occurred in
the non-convergent Homeostat shown in Figure 2.6.
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Figure 2.8: Probability of homeostasis in Homeostats with adapting transfer functions,
plotted against elapsed time from initialisation.Top row: Individual nodes.Bottom row:
Whole networks. Plots show the effect of increasing network size (N ∈ {4,10,50}) when
homeostatic target range is kept fixed at[0.4,0.6] (left column) and the effect of keep-
ing network size fixed atN = 4 and varying the tightness of the homeostatic target range
([0.5− δ ,0.5+ δ ] for δ ∈ {0.1,0.2,0.3}) (right column). In this scenario, increasing N
counter-intuitively causes a small increase in the likelihood of individual nodes display-
ing homeostasis, though it also decreases the likelihood ofwhole networks displaying
homeostasis. This is because higher connectivity reduces the relative impact of individual
afferent signals to a unit by extending the size of the range of inputs for which its activity
falls in the target range. Asδ is increased and the homeostatic constraint is relaxed, the
probability of individual nodes and whole networks displaying homeostasis goes up, as
would be expected. Perfect homeostasis is observed after around 30 timesteps, because it
is always possible to find a transfer function that can satisfy the homeostatic constraint by
varying the (x,y) coordinates.
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at the effect of different Homeostat parameters on speed of convergence. Because we are

only interested in the qualitative changes resulting from different parameterisations, the

method used here is sufficient for our purpose, despite its poor handling of cases where

convergence does not occur.

We look at the performance of both the adaptive transfer function mechanism and the

adaptive connection strength mechanism that were used in the previous section. Home-

ostats are initialised with random parameters and then updated for a fixed period in which

the proportion of units displaying homeostasis is measuredat each timestep. These data

are used to calculate the probabilities of individual unitsand of entire Homeostat net-

works showing homeostasis after a given time. This information is gathered from 1000

Homeostats of each type examined.

Figure 2.7 shows the effect of changing the number of units orthe tightness of the

target range in Homeostats that adapt by random reassignment of connection strengths.

Figure 2.8 shows the effect of the same changes on Homeostatsthat adapt by random re-

assignment of transfer function parameters. Comparison of Figures 2.7 and 2.8 shows that

Homeostats using the adaptive transfer function mechanismare much quicker to stabilise

than Homeostats using the adaptive connection weight mechanism, with both nodes and

networks having a near unity chance of having converged after around 30 timesteps when

the adaptive transfer function is used. The adaptive connection weight mechanism is ham-

pered by the occurrence of transfer functions which do not permit constraint satisfaction,

which has an adverse effect on the likelihood of reaching homeostasis.

Increasing network size reduces the likelihood of a whole network behaving home-

ostatically for both mechanisms, and has a similar effect onindividual nodes when the

adaptive connection strength mechanism is used. However, increased network size actu-

ally increases the likelihood of homeostasis in individualnodes when the adaptive transfer

function is used. This effect is seen because the size of the ‘homeostatic’ input range in-

creases in proportion to the number of units in the network, which reduces the effect of

changes in input on unit output. Such an effect would also be seen in the case of the adap-

tive connection strength mechanism, but is masked by the greater impact of the problem

of fixed transfer functions that are incompatible with homeostasis.

The tightness of the homeostatic constraint has a more significant, but more straight-

forward effect on the probability of homeostasis. As the target range for unit output gets

smaller, increasing the tightness of the constraint on the Homeostat, both nodes and net-

works take longer to reach homeostasis. Again the adaptive transfer function mechanism

is more effective than the adaptive connection weight mechanism.

The effects of network size and the tightness of the homeostatic constraint on the time

and probability of convergence to a homeostatic stable state are of interest primarily for
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pedagogical purposes, serving to illustrate some of the factors which may influence the

ability of a system to maintain homeostasis. However, the results may have implications

for systems other than the Homeostat. While caution should beexercised in seeking to

transfer insight from the Homeostat to other systems, the observations that bigger net-

works and tighter constraints make homeostasis harder to achieve in the Homeostat seem

intuitively likely to hold in many kinds of system.

2.4.3 Perturbations

The Homeostat can only really be said to be maintaining homeostasis in its constituent

units if there is some form of external perturbation that threatens to push the target vari-

ables out of bounds. In this section we describe the behaviour of the Homeostat when

it is subjected to a variety of different perturbations. Perturbations take the form of an

external input to each Homeostat unit, implemented as an amount added to the weighted

sum of the inputs it receives from other units. For these experiments, only the adaptive

transfer function mechanism is used, since it has been shownto be the most effective form

of adaptation.

Figure 2.9 shows the effect of perturbations applied to a single unit in the Homeostat.

A random amount drawn from a uniform distribution in the range [0,2] is added to the

input of a designated unit in a 4-unit Homeostat. Initially,the perturbed unit often loses

homeostasis and undergoes parameter change, but over time amore stable parameter set

is found that allows the unit to maintain homeostasis in the face of continuing perturba-

tions. Sometimes the change in output from the perturbed unit disrupts other units in the

network, and causes a cascade of parameter change, but againthis effect is reduced over

time. The perturbed unit adapts so that it nullifies the effect of the perturbation on the

Homeostat.

Figure 2.10 shows the effect of simultaneous perturbationsapplied to all units in the

Homeostat. Two forms of perturbation, one which adds a random level of external input

to all units, and one which adds a continuously varying sinusoidal input signal to all units.

The Homeostat adapts to both forms of perturbation, with allunits eventually finding sets

of transfer function parameters that allow them to maintainhomeostasis in the face of

continuing perturbation.

2.4.4 A control problem

We have seen that the Homeostat can maintain homeostasis andadapt to perturbations,

and in this section we will now look at whether ultrastability can be used to create useful

controllers. We use a simple input-output mapping task in which the Homeostat must
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Figure 2.9: 4-unit Homeostat with adaptive transfer function where random input from
the range[0,2] is applied only to a single designated input unit. Input level changes every
25 timesteps. Changes in input can cause activity of the inputunit to go out of bounds,
causing adaptive change. Sometimes this can lead to a cascade of changes around the
network, where a perturbation causes loss of homeostasis inthe input unit, which in turn
causes a loss of homeostasis and adaptive change in other units. Left column:Case where
perturbations only cause loss of homeostasis in the input unit. Right column:Case where
perturbation causes a cascade of homeostasis-loss around network.
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(d) Transfer function parameter change

Figure 2.10: 4-unit Homeostat with adaptive transfer function with perturbation applied
to all units. Examples are shown where the Homeostat adapts to two different forms of
perturbation. Left column: Random input from the range[0,2] is applied to all units,
changing every 50 timesteps. All units eventually find transfer function parameters to ac-
commodate this perturbation and maintain homeostasis.Right column:Sinusoidal input
is applied to all units with amplitude[−1,1] and period 50 timesteps. All units eventually
adapt to this perturbation.
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give the correct response to different input signals. Two levels of external input are ap-

plied to the units of the Homeostat, which must respond with the correct level of output

from a designated output unit. If the output response is incorrect, change is triggered

in the parameters of the output unit. All other units must maintain homeostasis as be-

fore, with parameter change applied if their activation goes out of bounds. The task for

the Homeostat is thus to give the correct output associated with each input signal, while

maintaining homeostasis. Again, only the adaptive transfer function mechanism is used

for these experiments.

Figure 2.11 shows results when the input signal is applied toall units, including the

output unit. There were two levels of input signal: high (external input to all nodes is

equal to 2), and low (external input to all nodes equal to 0). The correct output response

to the high input signal was output in the range[0.7,0.8], while the correct response to the

low input signal was output in the range[0.2,0.3]. Effectively this means that the output

node had a split target range for homeostasis; when a low response was required the target

range was[0.2,0.3] and when a high response was required the target range was[0.7,0.8].

Should the output unit give the wrong response, i.e., a response outside whichever target

range was currently being applied, adaptive change was triggered. Non-output nodes had

a target homeostatic range of[0.4,0.6]. The input signal was changed every 50 timesteps.

Figure 2.11 shows that the Homeostat successfully achievedthe task. After a period

of adaptation a parameter set is found that gives correct output responses to changes in

input and maintains homeostasis in all other nodes.

However, in a variation of the experiment where the input signal was applied to all

unitsexceptthe output unit (meaning that a signal must be passed across the network) it

proved extremely difficult to satisfy the control problem. This is because the homeostatic

nature of the Homeostat units means that they tend not to be very responsive to input,

since the units self-organise so that output always lies within a narrow target range. The

activation of the input units does not change significantly enough in response to changing

external input to cause a change in the activation of the output unit. Units in the Homeostat

are better at stopping information spreading than propagating signals.

2.5 Discussion

In this chapter we have presented a simple Homeostat inspired by Ashby’s original device,

that demonstrates the concept of ultrastability. Ultrastable systems are those in which a

threat to homeostasis of essential variables is countered by adaptation of the interacting

part such that homeostasis is maintained during normal behaviour. The simulated Home-

ostat we developed here maintains homeostasis in the levelsof activation of a number of
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Figure 2.11: 4-unit Homeostat with adaptive transfer function and a designated output
unit. When external input to all nodes is low, the output signal should be in the range
[0.2,0.3]. When the input signal is high, the output signal should be in the range[0.7,0.8].
External input changes from every 50 timesteps. Eventuallya parameter set is found that
satisfies the control problem.Upper: output signal from designated unit (solid line) and
homeostatic target ranges (dashed lines) of[0.2,0.3] and[0.7,0.8]. Middle: output from
other units (solid lines) and homeostatic target range (dashed line) of [0.4,0.6].Lower:
transfer function (x,y) parameter change.
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units arranged in a fully connected network topology. Adaptation occurs by random as-

signment of connection weights or by changes in transfer function parameters, whenever

unit activation goes out of bounds.

The simulated Homeostat was shown to be ultrastable in that aloss of homeostasis in

any of its nodes triggered parameter change that in most cases led to a restoration of home-

ostasis. Stability of the simulated Homeostat required allnodes to maintain homeostasis.

The Homeostat was shown to be able to adapt to a variety of perturbations, and was also

briefly tested as a control system with a simple input-outputmapping task, where it was

found able to perform the task when the input signal was experienced directly by the out-

put unit, but unable to perform the task when input was applied elsewhere in the network

so that signal transmission was required. This is explainedby the homeostatic nature of

the units in the Homeostat, which become barriers to signal transmission after adaptation

to maintain a steady level of activation. This agrees with Ashby’s own observation that

homeostatic units are regulators that reduce the effect of disturbance [7].

An interesting observation is that we have observed instances of the simulated Home-

ostat where homeostasis was inevitable, impossible, or dependent on circumstances. For

instance, in Figure 2.6 we can see that one of the nodes can never display homeostasis,

since its transfer function always gives output outside thetarget range and is not alterable

by the plastic mechanism. Although an example is not shown, it is easy to think of a

case where the transfer function of a node gives output that is alwaysinside the target

range, i.e., the node is always homeostatic. More common than either of these extremes

will be cases where a node can display homeostasis dependingon the behaviour of other

nodes. This distinction, between a machine that is always homeostatic, a machine that is

never homeostatic, and a machine that is sometimes homeostatic, is an important one for

homeostatic systems in general.

A related (and better developed) attempt to incorporate homeostatic adaptation and

ultrastability into a control system is the body of work presented by Di Paolo [46, 48]

in which homeostatic adaptive mechanisms are introduced into controllers for artificial

autonomous agents. Some of this work will be covered in the discussion of neural home-

ostasis presented in Chapter 3, but one aspect of Di Paolo’s studies that is of particular

relevance here is his exploration of robot controllers thatare based on an architecture very

similar to the simulated Homeostat used here.

Di Paolo motivates his research by drawing attention to the continuing failure to create

artificial agents that can truly be described as intelligentor autonomous. He locates the

central problem in the lack of true intentionality in agentscreated by current methodolo-

gies such as evolutionary or behaviour-based robotics, andclaims that while these agents

may be biologically inspired in some aspects of their structure, they ignore the basic qual-
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ities of what it is to be alive. Put simply, because these robots are not alive, they are denied

the sense of purpose and the value system that stems from the need to survive. They can

have no goals or subjectivity, and any impression of these properties lies in the eye of the

observer.

Di Paolo constructs an approach to the design of artificial agents that is grounded in the

ideas of Ashby, with a generous nod to the philosophy of Hans Jonas [94] and the concept

of autopoiesis [128,129]. Claiming survival as the ‘mother-value’, Di Paolo illustrates the

new approach with a robot controller in which sensory input is transduced to motor output

via piecewise linear transfer functions similar to those used in the simulated Homeostat

described above. Di Paolo’s robotic agent has a battery which is charged by successful

performance of phototaxis. The level of charge of the battery forms the essential variable

in which homeostasis must be maintained, with plastic change being triggered in the

transfer functions of the robot when charge falls below a certain level.

Di Paolo reports successful adaptation of the robot controller, so that phototaxis is

reliably performed and battery charge maintained above thethreshold level. The robot

is also able to adapt to inversion of its sensor array, and even to accommodate periodic

inversion and re-inversion. However, Di Paolo notes that there is no guarantee of the

time taken to adapt (which can be very long) or that adaptations will be conserved. The

simplicity of the task and of the controller also raise questions of scalability. Similar

concerns also apply to Di Paolo’s related work on homeostatic adaptation in neural robot

controllers (see Chapter 3).

Di Paolo’s work shows that homeostatic adaptation can be successfully applied to

controllers for artificial autonomous agents and it is to be hoped that his findings will

stimulate further research in this interesting area. Thereremain significant questions to

be answered concerning the ways in which homeostatic adaptation and ultrastability can

be implemented in robotic systems, not least in regard to thescalability of such systems.

Random parameter search provides powerful validation of the technique, in that it is the

worst case scenario for biological adaptation and requiresno assumptions concerning

mechanism, but it seems likely that more efficient directed search mechanisms will be

needed if homeostatic adaptation is to be successfully applied in situations of non-trivial

complexity. There is a need for further examples of successful homeostatic adaptation,

both to bolster the theory against potential criticisms concerning the simplicity of the

tasks currently attempted and to make clear that the successes so far achieved result from

the power of a homeostatically adaptive organisation, rather than any unforeseen artefact

of implementation.

Ashby’s theory of homeostatic adaptation was developed at atime when the resources

needed to push it to its logical conclusions were not available, but in the age of easily
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available computational power and increased understanding of biological adaptation, the

time may have come for Ashby’s ideas to be developed further.Homeostatic adaptation

provides an intuitively appealing and widely applicable model for learning, and the idea of

ultrastability may be applied in areas other than agent-level adaptation. By exploring the

properties of a simulated Homeostat, we hope in this chapterto have contributed towards

the foundations of such a study.
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Homeostatic Plasticity in Neural

Networks
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Chapter 3

Background to Part III

3.1 Overview

Homeostatic mechanisms in the brain have been observed by neuroscientists to act on

neuronal and synaptic properties so that neural activity isregulated [37, 167]. Empirical

work to further elucidate these mechanisms in biological nervous systems is ongoing.

Here we consider the function of homeostasis in artificial neural systems. We look at

the effect of homeostatic plastic mechanisms analogous to those observed in biological

systems on the dynamics and function of a class of artificial network commonly used in

robotics, the continuous-time recurrent neural network (CTRNN) [15].

CTRNNs offer a number of attractive properties but are difficult to parameterise. Cur-

rently the best parameterisation methods are based on artificial evolution using genetic

algorithms, but this can be problematic and is not yet reliable. Here we examine whether

the inclusion of homeostatic plasticity can aid in the consistent evolution of good robot

controllers, either by preventing node saturation or by directly improving evolvability in

some other way.

Part III of the thesis describes the development and application of homeostatic plastic

mechanisms for use in CTRNNs. This chapter gives some background to the research,

describing relevant work from the literature and motivating the original research subse-

quently presented. The remainder of Part III describes experiments intended to explore the

effect and utility of homeostatic plastic mechanisms. Chapter 4 looks at how homeostatic

plasticity may be incorporated into CTRNNs, before Chapter 5 covers some analysis of

43
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the nature of the homeostatic constraint thus imposed. Chapter 6 describes a set of ex-

periments looking at the generic effects of homeostatic plasticity in large ensembles of

randomly generated CTRNNs. Chapter 7 describes some experiments concerning the im-

pact of homeostatic plasticity on evolvability of these networks. Part III concludes with

Chapter 8, which offers some discussion of the results achieved and their implications for

both robotics and neuroscience.

3.2 Neural and evolutionary robotics

When symbolic artificial intelligence began to founder on thetwin rocks of the frame

problem [43] and the symbol grounding problem [77, 154], autonomous robotics was

forced to look for new approaches. Leading the way were those, led by Rodney Brooks,

who thought robotics could best make progress by building real robots that operated

in a real environment. In a body of work performed during the late 1980s and 1990s,

Brooks presented a framework for ‘new AI’ that emphasisedembodimentandembeddness

(see [22, 23] for an overview of this approach). Brooks’ callfor robotics to walk before

it ran and seek to develop insect-level intelligence led to an increased focus on biologi-

cally inspired control. With this began the second coming ofneural networks in artificial

intelligence.

Neural networks had been around from as early as the 1940s [131] and had been

the subject of much research in the 1950s. However, the publication in 1969 of Marvin

Minsky’s damning critique [133] condemned them to almost two decades of unfunded

obscurity, notwithstanding that the problems Minsky citedwere later solved [144, 145].

John Hopfield’s work on memory storage by attractors in recurrent neural networks [86]

and Rumelhart & McClelland’s two-volume book on parallel distributed processing [146]

heralded a new approach to neural networks. The new style of networks were different

to the feed-forward architectures and perceptrons familiar to Minsky. Now neural net-

works were fully connected and recurrent, allowing cyclical dynamics and state-holding.

Later on, more biologically plausible networks with continuous neural activations began

to appear.

The new networks were harder to parameterise than feed-forward networks. Normal

training methods (such as back-propagation of errors) wereunsuitable for the recurrent

architecture and new techniques were needed. The increasedfocus on biologically in-

spired structures for control led to biologically inspiredapproaches to parameterisation,

i.e., evolution. Genetic algorithms had first appeared in the 1970s [85]. In the 1990s they

began to be applied to the optimisation of neural networks for robot control [31, 32, 82]

and the field of evolutionary robotics was born.
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Evolutionary robotics encompasses a variety of different approaches to robotics that

typically use a methodology involving the artificial evolution of neural networks for robot

control. Within evolutionary robotics there are many differences in approach, concerning,

for example, simulation versus real robots, neural architecture, type of genetic algorithm,

etc. Although biological inspiration is widely proclaimedby the community, the degree to

which this is actually taken up depends on the particular aims and restrictions of individual

projects.

Some researchers want to practice computational neuroethology [13,34], that is, learn

about biological nervous systems by looking at the whole-system behaviours of artifi-

cial networks. Others simply want to build useful robots, and are not much concerned

with biology except as a source of solutions to particular engineering problems. Brooks’

watch-words of embodiment and embeddedness are still repeated as mantra by much of

the evolutionary robotics community, despite the fact thatBrooks’ work is neither evolu-

tionary nor based on neural architectures (except in the most general sense of distributed

control).

Perhaps the biggest lures of evolutionary robotics are its potential for shedding light

on real biological systems and the potential it is thought tooffer for automated design.

Biological evolution has come up with a rich abundance of examples of robust intelligent

control. Perhaps artificial evolution and biological design principles can lead us to robust

and intelligent robots.

3.3 Evolving robot controllers

Whatever type of controller is used, the methodology for evolutionary robotics takes a

similar form. This involves using a genetic algorithm [68, 85, 134] to optimise the pa-

rameters of the controller for an artificial agent so that it performs a particular task. This

section will briefly describe the methodology, starting with a general overview of ge-

netic algorithms and then looking at some special considerations when evolving robot

controllers.

3.3.1 Genetic algorithms

Genetic algorithms (GAs) are most easily explained by following the steps of a typical

example. Pseudocode for a typical GA is given below.

1. Randomly generate an initial population of solutions

2. Encode solutions as a population of genotypes



Chapter 3 46 Background to Part III

3. Loop until termination criterion reached:

(a) For each genotype in population:

i. Instantiate genotype as phenotype solution

ii. Test solution on target problem

iii. Assign genotype fitness based on phenotype performance

(b) Until a new population has been filled:

i. Choose two parents using fitness-proportionate selection

ii. Combine parent genotypes to form child genotype

iii. Mutate child genotype

iv. Add child to new population

(c) Replace old population with new population.

4. Final solution is best solution from final population

Evolutionary change in GAs occurs by a process of selection between different phe-

notypes (solutions), coupled with mutation and recombination of genotypes. The form of

the candidate solutions depends on the particular problem faced and is not restricted ex-

cept that solutions must be suitable for encoding as genotypes. The termination criterion

for the main loop (Step 3) is often a fixed number of iterations, but may also be the attain-

ment of a fixed level of performance. Step 3a is the fitness testing stage. Step 3b creates a

new population of genotypes from the fittest members of the old population. Step 3(b)i is

the selection of fit parents from the old population, which are combined using crossover

in Step 3(b)ii. Crossover allows recombination of existing solutions, while the mutation

of the child genotype in Step 3(b)iii adds new variation to the population. The final output

of the GA is the best solution found, i.e., the phenotypic expression of the fittest genotype

in the final population.

It should be remembered that the intricacies of GAs are not completely understood and

their use is still seen to be something of a ‘black art’ by practitioners. There is no universal

best practice and it is likely that the best type of GA to use ishighly contingent on the

particular nature of the optimisation problem. Full discussion of all the issues involved

with evolutionary computation is beyond the scope of this thesis. However, some of the

main stages of the GA are discussed briefly below, while the features of the particular

GAs used in this thesis will be given in the text where appropriate.
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3.3.1.1 Encoding

Genetic algorithms work by analogy with the genetic code in biological organisms. Can-

didate solutions to a problem are encoded as an ordered string of symbols (e.g., binary

digits) called the genotype. The genotype is a convenient form for conducting the opera-

tions of crossover and mutation, which allow new candidate solutions to be created. The

new genotypes are then interpreted (via some set of developmental rules) as phenotypes

that are candidate solutions to the problem in order to measure their performance.

Genotypes may be encoded as strings of digits that are binary, real-valued or sym-

bolic. Which is used will have an effect on evolutionary dynamics, since it determines the

number and effect of possible single-locus mutations. Also, the rules for the genotype-to-

phenotype mapping may vary in their complexity and may involve several steps (see for

example the grammar re-write rules used by [100]). Genotype-to-phenotype mappings

may be one-to-one or many-to-one, since they are generally chosen so that each genotype

corresponds to a single phenotype.

3.3.1.2 Crossover

Recombination (crossover) involves the creation of a single child genotype from two par-

ent genotypes during sexual reproduction. Crossover is usually carried out by picking at

random a small number of crossover points along the genotype, then switching the parent

supplying genetic material at these points. For example, with two parents A and B, single-

point crossover in a genotype with 10 loci might be performedby randomly picking locus

7 as the crossover point. The child genotype would then be copied from parent A up until

locus 7, at which point the remainder of the genotype would betaken from parent B.

Crossover is not always used. The utility of sexual recombination in GAs is under

discussion in the literature and many people use asexual GAs. In an asexual GA child

genotypes are created from a single parent and mutation is the only source of genetic

variation.

3.3.1.3 Mutation

Mutation involves a random change in value at one or more lociof a genotype. There is

a variety of different mutation operators, the most common of which fall into two main

categories: point mutation operators and vector mutation operators.

Point mutation can be used with any type of encoding and is carried out by ran-

domly selecting a small number of loci and assigning to them new values (either by

adding/subtracting a small amount to/from the existing value or by choosing a new value

from a permitted range).
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Vector mutation is generally only used with real-valued genotype encodings. It in-

volves adding a vector of values along the length of the complete genotype. Thus it

would be too destructive with binary encodings, while addition is generally not defined

on arbitrary symbolic encodings. With real-valued encodings vector mutation is typically

performed by picking a random point on the M-dimensional hypersphere (where M is the

number of genotype loci) to give a unit direction vector, then randomly picking a small

vector magnitude from some (typically Gaussian) distribution, before finally adding this

vector to the genotype to be mutated.

Point mutation is simple to implement and can be applied withall kinds of genotype

encoding, but it mostly creates orthogonal movement through parameter space where only

one parameter changes during a mutation event. Vector mutation on the other hand, while

less widely applicable, allows movement in any direction through parameter space in a

single mutation event by potentially altering all loci at once. The relative merits of each

kind of mutation operator have yet to be fully understood.

3.3.1.4 Selection

Many different means of selection have been used in the literature and there is no utility

in a review of these here. The reader is referred to [68, 85, 134] for good coverage of a

variety of selection operators. Here we will concentrate onthe purpose and general form

of selection in GAs.

Selection operators use the fitness scores assigned to different phenotype solutions to

decide which genotypes should supply genetic material for the next generation, with the

idea being that the fittest phenotypes should be most strongly represented. This may be

achieved in a variety of ways, but typically some stochasticsampling method is used to

favour the selection of fitter parents. One example method isto rank the phenotypes of

the previous generation in order of fitness and then use roulette wheel selection. Roulette

wheel selection takes the analogy of a roulette wheel in a casino and operates by the

random selection of a single slot from all of the possibilities. In a population of size N,

roulette wheel selection might give N slots to the fittest genotype, N-1 slots to the second

fittest, and so on, so that the chance of selection is directlyproportional to ranked fitness.

Selection operators are usually associated with generational GAs, i.e., those where

the evolutionary search is organised into discrete sequential generations of solutions. The

alternative to this is a steady-state GA, which involves a persistent population where in-

dividuals are removed or introduced. In this kind of GA selection may be implicit in

the ecology of the population, with survival and reproduction taking the place of explicit

selection operators choosing parents for the next generation.
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3.3.1.5 Fitness function

One important feature of a GA is the fitness function, which determines how credit is

assigned to different solutions based on their performance. The fitness of a genotype is

a function of some metric(s) measured on the performance of the associated phenotype

during a fitness trial. Successful evolution of good solutions relies on a well-designed

fitness function. It is not always easy to quantify good performance in terms that can be

easily converted into a single fitness score, and often multi-variate fitness scores are used

to reward different aspects of performance. Also, scores may be averaged over several

trials to reduce noise. However, the end result of any fitnesstrial is always a score that

can be used to compare the worth of different solutions.

The fitness function defines the shape of thefitness landscapeand hence has a massive

impact on the solutions generated by a GA. The fitness landscape is a metaphor that likens

the fitness score achieved by a solution based on a particularpoint in parameter space to

the height above sea level in some imaginary mountain range;evolutionary search is then

a form of hill-climbing. It can easily be visualised in a two-dimensional parameter space

by thinking of fitness as the third dimension.

Two-dimensional parameter spaces are the exception thoughand most GAs have a

large number of parameters. This makes visualisation of thefitness landscape difficult and

challenges the utility of the fitness landscape as a good metaphor for evolutionary search.

There is some uncertainty over how far it is sensible to regard evolutionary optimisation

as hill-climbing, but this is a topic in itself and will not befurther explored here; we will

tentatively accept some similarity between asexual evolutionary search and hill-climbing

on a landscape.

A feature of fitness landscapes that affects the evolutionary search is the ruggedness

of the landscape, or its landscape correlation. A highly correlated landscape means that

points that are close together in parameter space will have similar fitness. This makes

hill-climbing easier, since there is a simple gradient to follow towards well-defined fitness

peaks. In a completely non-correlated landscape there is norelation between the distance

between two points in parameter space and the similarity of their fitness values. This

makes hill-climbing difficult since fitness peaks are more likely to be isolated spikes than

smooth gradients, and evolutionary search may become more akin to random sampling

than gradient-following.

Another feature of a fitness landscape with relevance to evolutionary search is the

amount of neutrality present. Neutrality is the property ofadjacent points in the param-

eter space (in terms of being reachable by a single mutation)having equivalent fitness.

Neutrality allows for an amount of genetic drift in an evolutionary search, where new
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genotypes may arise without any improvement in fitness. Thismay be useful for reaching

parts of the search space that would not otherwise have been reachable if strict gradient-

following was enforced. Neutrality is an open topic in evolutionary theory; see [9] for a

good introduction to the topic in artificial evolutionary algorithms.

3.3.2 Using GAs for evolutionary robotics

There are also a number of considerations over GA methodology that are unique to evo-

lutionary robotics. For instance, there is a significant decision to be taken over whether

the fitness of a controller is tested by implementing the candidate solution in a real robot

or in a simulated robot and environment. Simulation offers alarge pay-off in terms of the

time taken to perform fitness trials, since working with realrobots is time-consuming and

fraught with engineering difficulties, but there can be significant problems in transferring

evolved solutions from the simulated environment to the real robot. The simplifications

necessary in any simulation (such as restricted physics or ‘perfect’ sensors and motors)

and the possibility of artefacts in the coded implementation mean that controllers evolved

in the simulated environment may not perform well when implemented in the real envi-

ronment; they have difficulty crossing the ‘reality gap’ [92].

One solution to this problem is to include sufficient noise atcritical parts of the sim-

ulation to prevent the GA from developing solutions that rely too heavily on any pre-

cise feature of the simulation and are thus more likely to be able to cope with changed

circumstances in the real world. This approach is known as the ‘minimal simulation’

approach and has been shown to improve the transfer of solutions from simulation to

reality [89–91]. Evolutionary robotics also offers some limited scope for evolving the

physical structure of agents in addition to, or conjunctionwith, the evolution of the con-

troller. This is currently easier achieved in simulation than hardware (see [33] for a good

introductory study of co-evolving morphology with controlin simulation), but various

studies suggest that such a process is plausible in hardware[21,58,139].

3.4 Continuous-time recurrent neural networks

Continuous-time recurrent neural networks (CTRNNs) [15] area variety of neural net-

work popular in the evolutionary robotics community for their robustness and general

applicability to dynamic control tasks. They offer nonlinear dynamics and have been

shown capable of approximating the output of any dynamical system if correctly param-

eterised [65], meaning that they are suitable for producingthe kinds of autonomous and

oscillatory dynamics thought to be important for robotic control. They have been used
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Figure 3.1: Schematic of a single node in a CTRNN network. The node receives input
from other nodes (wizi), from itself (w1z1), and also external input (I ). These quantities are
summed and contribute to node activation (y), which changes according to Equation 3.1.
Node firing rate (z1) is a sigmoidal function of activation (y) and bias (b), as specified by
Equation 3.2.

for robotic tasks including legged locomotion [18, 66], swimming [88] and visual shape

discrimination [81], as well as more abstract tasks such as sequence learning [192] and

the production of “minimally cognitive behaviour” [10,155].

This section describes the mathematical formulation of CTRNNs, how they can be

evolved using genetic algorithms, and some variants of the standard formulation devel-

oped to try and improve performance. The section concludes with discussion of a prob-

lematic feature of CTRNNs, that of node saturation, that may be solved by the inclusion

of homeostatic plasticity.

3.4.1 Mathematical formulation of CTRNNs

CTRNNs are specified as a set of differential equations that govern how the state of each

neuron changes over time and how neuron potential determines firing rate. These are

given in Equations 3.1&3.2 below. Figure 3.1 shows a schematic of a single CTRNN

node in a network.

τyẏ = −y+
N

∑
i=1

wizi + I (3.1)

z=
1

1+e−(y+b)
(3.2)

By analogy with biological neurons, Equations 3.1&3.2 represent the state of a node

connected toN nodes including itself, wherey represents neuron potential,wi is the

strength of the synapse from theith afferent neuron,zi is the firing rate of theith affer-
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ent neuron,I is any external input the neuron receives, andb is the bias term for the

neuron. Equation 3.1 defines the rate of change of potential with respect to time ( ˙y) mod-

erated by a neuron specific time constant (τy). Equation 3.2 specifies neuron firing rate

as a sigmoid function of neuron potential and bias. Weights can take positive or negative

values, representing excitatory and inhibitory synapses.Biases can also be positive or

negative, reflecting the neuron’s inherent tendency towards quiescence or excitation.

3.4.2 Evolving CTRNNs

Currently the best method for training CTRNNs is artificial evolution using genetic al-

gorithms. The GAs are generally used as previously described; [81] and [10] offer good

descriptions of this methodology applied to CTRNNs. Here we will just briefly describe

how CTRNNs may be encoded for use with GAs.

Each node in a fully connected CTRNN hasN + 2 parameters: a decay constantτy,

a bias termb, andN afferent connection weightswi from itself and from all other nodes

in the network. Thus anN-node CTRNN hasN(N + 2) parameters in total. Note that

the space of all fully connectedN-node architectures contains allN-node networks with

lower connectivity, where a connection weight of zero indicates a lack of connection.

Since all the parameters in a CTRNN are real-valued, it is common to use a real-valued

encoding. This is the method used for the evolutionary experiments in this thesis. The

ranges for connection weights, bias terms and decays are alldifferent, whereas the val-

ues used in a genotype usually all come from a single range, for ease of implementation

of mutation and crossover. For this reason, CTRNNs are here encoded into a genotype

where all values are drawn from the range[−1.00,1.00], with a developmental stage map-

ping genotype values linearly to appropriate ranges for their associated phenotypic traits.

Further details of the GA and encoding used here will be givenin the text as appropriate.

3.4.3 Improving evolvability

Successful evolution of good neural controllers is not necessarily easily achieved and

over the years attempts have been made to improve the method in a number of ways,

e.g., improvements to the evolutionary algorithm [33,78,79], different encoding schemes

[64, 72, 100, 132], the addition of Hebbian plasticity [60, 62, 63], the inclusion of mecha-

nisms analogous to the diffusion of gases in biological brains [87], the enforcement of the

centre-crossing condition [127], and the use of spiking neurons [50, 59]. These attempts

have met with some success, but have not solved the general problem of how to reliably

evolve good neurocontrollers. Even where evolvability hasbeen improved, the difficulty
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inherent in the post-hoc analysis of such complicated systems means that the reasons for

the improvement may not be fully understood.

The type of controller used defines the evolutionary substrate on which the genetic al-

gorithm acts. The different levels of success achieved by different controller types demon-

strate that some evolutionary substrates are better than others for certain problems. It is

tempting to wonder whether a type of controller exists that is universally better than other

neurocontroller variants. However, this kind of thinking is likely to be wrong-headed. An

appeal to the principle of ‘no free lunch’ [188, 189] remindsus that there is no universal

best optimisation algorithm over all classes of problem. Similarly, there is not necessarily

any reason to believe that a universal best neural controller exists for robotics.

However, the lack of a universal best controller does not mean that some types of

controller might not be better than other types for a particular class of problems. Also,

the range of problems where a particular controller type hasan advantage might be broad

enough to encompass a large part of the domain of evolutionary robotics. It is this hope

that has motivated previous attempts to improve the methodology of evolutionary robotics

by developing types of controller that are more evolvable. The mythical substrate of

perfectly evolvable, perfectly capable, perfectly robustcontrollers does not exist, but that

does not mean that we cannot try to find controllers that are more evolvable, more capable

and more robust than others.

In Section 6.2.6.1 we will argue that any good robot controller will display the basic

properties of being able to react to its environment whilst maintaining some internal (pos-

sibly oscillatory) dynamics. CTRNNs are capable of providing all these desirable prop-

erties; they hold internal state, can propagate a signal from sensors to effectors, and have

often been used as central pattern generators (neural circuits that generate autonomous

oscillatory dynamics). Their capabilities of universal function approximation and nonlin-

earity offer further benefits. However, the fact that CTRNNscandisplay these properties

does not necessarily mean that theywill .

3.4.4 The saturation problem

In Chapter 6 we will present experimental evidence to show that randomly parameterised

CTRNNs are typically poor at showing the sorts of desirable property we have outlined

above. The reason for this is node saturation.

Consider the sigmoidal transfer function that is used to calculate neuron firing rate

from neuron potential (given by Equation 3.2). This curve isshown in Figure 3.2, which

plots neuron firing rate as a function of potential. Since neuron firing rate is bounded

between 0 and 1, in a network of fixed connectivity the effective input received by any
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Figure 3.2: Sigmoidal transfer function: firing rate as a function of potential, showing
different possible ranges of habitual fluctuation. Ranges Aand C give a saturated response
where firing rate will not vary significantly in response to a change in input, while range
B gives a non-saturated response where firing rate will change significantly.

neuron is also bounded, with the upper and lower limits determined by the number of

afferent connections and their weights. This means that thepotential of the neuron (being

a function of itself and the received input) will fluctuate within a bounded range. The

location and size of this range of potential determine what variation is possible in firing

rate.

Figure 3.2 shows three examples of different ranges in whichpotential might vary.

Two of these ranges, A and C, give what might be termed asaturatedresponse. In these

ranges the firing rate of the neuron does not vary despite the variation in potential since the

potential is either too high or too low; the neuron issaturated-off(range A) orsaturated-

on (range C). The saturated-off response corresponds to quiescence in biological neurons,

where the neuron never fires, while the saturated-on response corresponds to biological

hyper-excitation, where the neuron always fires at its maximal rate. The third range,

range B, gives a non-saturated response. Here the potentialvaries in the region where the

sigmoid curve has the largest gradient, meaning that a change in potential is translated

into a significant change in firing rate.

Consider the effect of a change in input on neurons with potential varying in ranges A,

B and C. Non-saturated neurons (range B) will change their output when input changes,

since the change in potential is converted into a change in firing rate. However, saturated

neurons (ranges A and C) will not alter their firing activity, meaning that they display no

effective change in state. Saturated neurons thus play no part in network dynamics since

they give constant output irrespective of changes in input.They cannot play any part in

oscillatory dynamics and act as barriers to the propagationof signals.

Saturation is a continuous, not a discrete, quantity; a neuron may be more or less sat-

urated. It may be thought of in an inverse relation to sensitivity. Fully saturated neurons,

where a change in input causes no detectable change in firing,are completely insensi-

tive. Minimally saturated neurons, where the range of potential is centred on the region
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(b) Sinusoidal input and node firing rate re-
sponses.

Figure 3.3: Firing rates at equilibrium and firing rate responses to a sinusoidal input signal
for three example nodes. Node I has a fully saturated-on response; its firing rate never
changes but remains maximal. Node III has a mostly saturated-off response; its firing rate
changes slightly. Node II has a strong non-saturated response and its firing rate is changed
significantly by the input signal.

of largest gradient of the sigmoid and a change in input causes the largest possible change

in firing, are maximally sensitive. Figure 3.3 shows the effect of a sinusoidal input signal

on three nodes with varying levels of saturation. The nodes show different levels of re-

sponse to the same stimulus; one node shows a strong oscillatory dynamic as a result of

the external forcing, another a faint oscillation, while another shows no change in activity

at all.

Networks will generally be made up of neurons with differentlevels of saturation,

giving an aggregate saturation at the network level. Networks will be more or less satu-

rated/sensitive depending on the saturation levels of their constituent neurons. Networks

made up of maximally sensitive neurons are referred to by Mathayomchan & Beer (2002)

as centre-crossing networks, where the nullclines of the nodes intersect at their exact cen-

tres of symmetry (in other words, where there is an equilibrium point of the system in the

absence of input where the firing rate of all nodes is 0.5). Centre-crossing networks were

shown by Mathayomchan and Beer to be a fertile substrate for the evolution of rhyth-

mic behaviour, since all nodes played a part in network dynamics. Contrast this with

the behaviour of a network made up of fully saturated nodes; such a network would not

change its activity in response to stimuli and would not produce interesting behaviours.

Depending on the topology and connectivity of the network, networks could be severely

affected by saturation of just a few nodes at key locations. Centre-crossing networks may

be thought of aspoisedto behave, while saturated networks may be thought of asinert.

We can expect signals and waves of activation to propagate well in poised networks, but

not at all in networks that are inert.



Chapter 3 56 Background to Part III

3.5 Homeostatic plasticity in biological nervous systems

It is useful to consider biological neural networks and to observe that saturation effects

(i.e., hyper-excitation and quiescence) are probably not acommon problem. One pos-

tulated reason for this is the existence of homeostatic plastic mechanisms that serve to

regulate neural activity [37,167]. While the precise feature of neural activity that is regu-

lated is not known (it may be mean firing rate, mean calcium concentration or some other

feature) it is clear that neural activity tends towards a constant level in the long term. It

is also clear that there are a variety of mechanisms by which this homeostasis is accom-

plished, amongst which are a number of mechanisms affectingthe strength of synaptic

connections [1, 25, 37, 167] and several mechanisms affecting the intrinsic excitability of

individual neurons [2,45,167,194].

Biological neuronal networks are highly complex systems. As well as the electrical

firing of neurons and release of neurotransmitters, the structure of the network and in-

ternal properties of neurons all change continually. Experience-dependent plasticity and

developmental change cause alterations to the network, yetin the face of this continual

perturbation the network somehow maintains a large amount of stability. Homeostatic

plasticity acts to promote stability in neuron firing rates.It is thought that homeostatic

plasticity may counteract the positive feedback effects associated with Hebbian learn-

ing [171] and that it may also serve to maintain stability in neuronal networks during

development [172].

This section will give a brief description of some of the forms of homeostatic plas-

ticity observed by neuroscientists. The literature on thissubject is very large and a

complete review is beyond the scope of this thesis. The interested reader is referred

to [37,167,171,172], which together give a reasonable overview of current knowledge of

homeostatic plasticity in biological nervous systems. In brief, neurons can use their own

activity as a feedback signal that allows them to maintain long-term stability in firing rate

by homeostatic mechanisms. There is a wide variety of mechanisms, of which only a few

will be described here. For our purposes we are mainly interested in the mechanisms that

are most suitable for use with artificial neural networks, which include those affecting the

intrinsic excitability of neurons and those regulating neuronal activity by multiplicative

scaling of afferent synaptic connections. We will describethese below, together with a

brief description of a few other kinds of homeostatic plastic mechanism which are in-

cluded to indicate the variety of mechanisms so far observed.
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Figure 3.4: When firing rate is low, intracellularCa2+ concentration falls, triggering a
compensatory increase in the inward current and decrease inoutward current. This raises
the excitability of the neuron, increasing firing rate. The opposite occurs when firing
is too high, increasedCa2+ concentration leads to a reduction in inward current and an
increase in outward current. Excitability is then lowered,reducing the firing rate. In this
way, intracellularCa2+ concentration is homeostatically regulated around a target level,
with an associated regulation of firing rate. Diagram adapted from [167] (p.222).

3.5.1 Plasticity of intrinsic excitability of neurons

The levels of synaptic input to a neuron may vary dramatically during learning and devel-

opment, yet neurons somehow remain sensitive to input, suggesting that their output re-

sponse is regulated dependent on their recent history of activity. The integrative properties

of a postsynaptic neuron are determined by the mixture and distribution of the voltage-

dependent sodium, calcium and potassium conductances thatit exhibits. Thus if activity

can alter these conductances, it can alter the response of the neuron to input, that is, it

will alter the intrinsic excitability of the neuron [171]. Such an effect has been demon-

strated in invertebrate neurons, where ongoing patterned activity was shown to regulate

conductances [69, 70, 168, 170]. A similar effect has been observed in cultured neocorti-

cal pyramidal neurons, where activity blockade lowers the threshold for spike generation,

raising the firing frequency for any given level of input stimulation [45].

It is modifications to the balance of inward and outward ion channels that performs the

regulation of firing activity. Regulation is triggered by some signal that is well-correlated

with firing activity, such as intracellularCa2+ [167]. If the neuronal firing rate is low,

the intracellularCa2+ concentration falls, triggering an alteration in conductances that

raises firing rate (and with itCa2+ levels). If the firing rate is too high, intracellularCa2+

concentration rises and conductances change to decrease activity and lowerCa2+ levels.

This is shown in Figure 3.5.1.

Homeostatic regulation of conductances is an example of howthe intrinsic excitability

of neurons may be altered to maintain long-term stability infiring rate, where the target
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Figure 3.5: Synaptic scaling preserves relative differences between synaptic strengths.
Initially, the two synapses have equal strength. When one synapse is strengthened by
long-term potentiation, postsynaptic firing rate increases, causing a scaling down of the
strengths of both the synapses. Thus firing rate is regulatedand relative strengths of
synapses are preserved. Diagram adapted from [167] (p.224).

level of theCa2+ signal reflects the set-point around which firing rate is regulated. Such

regulation may be able to fine-tune the output properties of aneuron to match its input, so

that the information encoded by the firing rate output is maximised [158].

3.5.2 Synaptic scaling in the central nervous system

Regulation of neuronal activity in the central nervous system (CNS) is difficult. Each

neuron may have thousands of afferent synaptic connections, which may be inhibitory,

excitatory or modulatory. The number and strength of these connections also changes

during the lifetime of the neuron. This input complexity makes the maintenance of sta-

ble activity by a neuron unlikely, but it now seems likely that cortical and hippocampal

neurons regulate their own firing by scaling their synaptic inputs up or down as a func-

tion of activity [167]. This scaling has been demonstrated in cultured cortical neurons,

where excitatory connections between pyramidal neurons were globally scaled in relation

to firing rate; when firing rate was high, excitatory connections were scaled down, when

firing rate was low excitatory connections were scaled up [169]. The scaling is achieved

by changes in the quantal amplitude of the AMPA receptor-mediated component of exci-

tatory neurotransmission, which is responsible for much ofthe excitatory transmission in

the CNS.

Synaptic scaling in the CNS is a slow process, taking hours or days of altered activ-

ity to modify synaptic strengths [167]. This allows short-term fluctuations (necessary for

encoding information in normal operation) while ensuring that long-term stability is main-

tained. Also, synaptic scaling is a multiplicative processthat acts equally on all excitatory

synapses to a neuron. This preserves relative differences in strength between synapses,

such as those caused by synapse-specific plasticity like long-term potentiation or long-
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term depression (see Figure 3.5.2). Synaptic scaling can also lead to competition between

synapses if (as is believed) there is some regulation of total synaptic strength [167].

3.5.3 Synaptic homeostasis at the neuromuscular junction

One of the earliest demonstrated examples of homeostatic plasticity is the response to loss

of innervation to skeletal muscles. When synaptic drive is lost, muscles become more ex-

citable and likely to contract spontaneously. Genetic manipulation of synaptic properties

in Drosophilahas highlighted the existence of a number of compensatory mechanisms

that act to keep neuromuscular transmission relatively constant [37]. At theDrosophila

neuromuscular junction there is a very narrow range of innervation where the muscle

will respond appropriately, outside of which the muscle either becomes hyper-innervated

(causing tetanus) or hypo-innervated (causing failure to contract). However, when one

synaptic property is altered by genetic manipulation, other aspects of synaptic transmis-

sion change to homeostatically regulate the level of innervation [37,38].

3.5.4 Neurotrophins and regulation of activity in cortical networks

Brain-derived neurotrophic factor (BDNF) has been implicated in various mechanisms

of activity-dependent plasticity, including the modulation of synaptic transmission, long-

term potentiation, postsynaptic depolarization, dendritic outgrowth, synaptic scaling, and

plasticity of intrinsic neuronal excitability [171]. Somestudies show that short-term ex-

posure may increase excitatory synaptic transmission, while others show that longer-term

exposure may act to stabilise network activity.

Long-term, low concentration exposure to BDNF appears to stabilise the activity of

cortical networks, not only by regulating intrinsic excitability [44], but also by balanc-

ing the strength of inhibitory and excitatory inputs [147].In the cortex, pyramidal neu-

rons have an excitatory effect on other pyramidal neurons, while interneurons have an

inhibitory effect. BDNF acts to scale down excitatory inputs to pyramidal neurons and

scale up those to interneurons, raising the level of inhibition in the network. Because the

level of BDNF is positively correlated with activity, this mechanism acts as a negative

feedback on activity that maintains overall levels of firingin the network around some set

point.

3.5.5 Activity-dependent regulation of synapse number

Perhaps the most controversial form of homeostatic plasticity in the brain, with evidence

in the literature both for and against it, concerns the idea that regulation may be achieved
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through changes in the number of synapses and not just by changes in their strength.

Some studies have suggested that numbers of AMPA and NMDA receptors can be

modulated as a result of prolonged changes in activity, though whether they are regulated

independently or in parallel is unknown [171].

Homeostatic plasticity may play a role in synaptogenesis, since the success or failure

of the possible synapses during dendritic/axonal outgrowth and retraction is determined

by the strengthening of the synapse [167]. Since homeostatic plasticity affects synap-

tic strength it must implicitly affect the success of new synapses. It also possible that

there is some global regulation of the number of synapses, since some similar process

is needed to counteract Hebbian mechanisms and explain retraction of synapses during

development [171]. This is related to the competition between synapses that is fostered

by synaptic scaling; synapses weakened by scaling down in response to strengthening of

other synapses may reach a point where they are eliminated [167].

3.6 Homeostatic plasticity in artificial nervous systems

There are few previously published studies of homeostatic plasticity in artificial neural

networks for robot control. The most significant papers are those by Di Paolo [46,48] on

homeostatic adaptation (followed up by Balaam [8]), and another paper by Di Paolo on the

use of homeostatic oscillators to give functional robustness [47]. Another related article

is [84], which also attempts to apply homeostatic plasticity to artificial neural networks.

Also related is the concept of centre-crossing networks, presented in [127]. These papers

are briefly reviewed below.

3.6.1 Di Paolo (2000) ‘Homeostatic adaptation to inversion of the vi-

sual field and other sensorimotor disruptions’

Di Paolo (2000) [46] presented an investigation into Ashby’s ideas of ultrastability and

homeostatic adaptation [7] applied to evolutionary robotics. Di Paolo was interested in the

link between internal stability and adaptive behaviour, and whether a causal relationship

could be established between them in an artificial agent; if this could be done then perhaps

it would give similar robustness and adaptability to that seen in animals.

Di Paolo tested his ideas in a simple evolutionary robotics scenario. He evolved

CTRNN controllers for a simulated robot to perform phototaxis in a simple environment.

Fitness was awarded for performance of phototaxis on a series of light sources, and also

for maintenance of internal stability. Internal stabilityrelated to a novel feature of the

CTRNNs that Di Paolo used, which was the inclusion of a form of neural homeostasis.
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Di Paolo combined the notion of node-level homeostasis in firing rate with Hebbian

learning mechanisms acting on synapses. Each synapse had a genetically specified Heb-

bian learning rule associated with it, which was applied when post-synaptic firing was too

high or too low. This selective plasticity was implemented through the use of a plastic fa-

cilitation function. Plastic facilitation was a piecewiselinear function of neural activation

that returned a signed value when activation was outside a target homeostatic range.

Controllers were evolved with fitness awarded for phototactic behaviour and for keep-

ing node activation inside the homeostatic range. Evolved controllers were then tested for

long-term stability by running them for several hundred light source presentations, to en-

sure that there were no destabilising slow dynamics occurring. The stable controllers were

then tested for adaptation to a variety of sensorimotor disruptions, with results presented

for adaptation to inversion of the visual field.

The simulated robot had two light sensors well separated on acircular body (i.e., the

same layout as the robot shown later in Figure 6.1). Inversion of the visual field in this

scenario corresponds to switching the input to the left and right sensors. This switch

was performed and then robot behaviour was observed to see ifadaptation (recovery of

phototactic behaviour) occurred. Di Paolo’s hypothesis was that phototactic behaviour

and internal stability (node homeostasis) somehow become linked during evolution so

that they require each other. When a perturbation occurs thatdisrupts the phototactic

behaviour, the resulting loss of internal stability will drive plastic change until a new

stable phototactic attractor is discovered. This should occur since internal stability can

only be recovered when phototaxis is performed; the controller is ultrastable, similarly to

the Homeostat [7].

Results showed that adaptation to inversion occurred in around 50% of stable con-

trollers. The time taken to re-adapt was linearly correlated with the time of inversion, i.e.,

it took longer to adapt when the sensors were swapped later inthe agent lifetime. Similar

adaptation was reported to other perturbations, such as asymmetric alterations to the gain

of sensor and motor neurons.

The work presented by Di Paolo in [46] is interesting and is (to the best of the author’s

knowledge) the first reported attempt to incorporate any form of neural homeostasis into

an artificial neural network for robot control. However, there are a few areas of uncertainty

over the results. Firstly, the simplicity of the task makes it hard to be sure that genuine

re-adaptation has occurred. Phototaxis can be easily performed by a light-sensitive robot

using only one sensor and moving in a cycloidal motion towards the source. While the

robot motion reported by Di Paolo prior to inversion is a smooth two-sensor solution, the

motion by re-adapted agents after the inversion is reportedas this kind of cycloidal trajec-

tory. The existence of these single-sensor solutions raises questions over the suitability of
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the task for testing adaptation to sensor inversion.

Also, it is not clear how successful the evolved controllersare at maintaining internal

homeostasis. The nature of the Hebbian rules used means thatpositive feedback and

runaway weight change can occur, and in these cases non-homeostatic saturated attractors

will be easily reached, where weights are pushed to the extremes of their permitted range

by the plasticity. This kind of feedback effect has been observed by the current author in

unreported investigations of Hebbian learning in CTRNNs.

A final concern that is less to do with Di Paolo’s work and more related to our pur-

pose in this thesis, is that the homeostatic plastic mechanisms used by Di Paolo are not

reflective of the view of homeostatic plasticity from neuroscience. The idea of plasticity

triggered when firing goes outside a target range is valid, but the use of Hebbian mecha-

nisms is not. Homeostatic plasticity in biological brains is thought to be a counterpart to

Hebbian learning, using node-level scaling and intrinsic plasticity to give negative feed-

back on activity. Hebbian mechanisms, however, are synapse-specific and tend to give

positive feedback; it is precisely these effects that homeostatic plasticity is thought to

prevent [171].

Di Paolo’s study was subsequently re-implemented by Balaam[8], who performed

further experiments and minor modifications to the originalscheme. Balaam found that

successful re-adaptation occurred less frequently than the 50% rate found by Di Paolo.

Balaam speculated that phototaxis might be a behavioural attractor with a large basin of

attraction, and measured the likelihood of phototaxis occurring with randomly generated

control networks. He found that almost 10% of random networks of the same size as

Di Paolo’s networks performed phototaxis, and raised concerns that adaptation in this

scenario might not be as difficult as previously assumed.

Despite these concerns, Di Paolo’s work remains an interesting and original piece

of research. Its aim was to study homeostatic adaptation in artificial agents, rather than

homeostatic plasticity in neural networks, and it has provided a valuable first step in this

line of questioning.

3.6.2 Di Paolo (2003) ‘Organismically-inspired robotics: homeostatic

adaptation and teleology beyond the closed sensorimotor loop’

In [48], Di Paolo further develops his theoretical model of biological homeostatic adap-

tation and argues that robotics should move beyond just taking biological inspiration for

the solution of engineering problems, and seek to incorporate the fundamental properties

of biological organisation into artificial agents in order to give them true autonomy and

self-generated purpose. As such, the paper is largely a philosophical treatment of the na-



Chapter 3 63 Background to Part III

ture of life and cognition, where homeostatic adaptation isfeatured in its Ashbyan sense

of maintaining organisation and protecting essential variables. Homeostatic plasticity in

neural systems is included in the form of a review of Di Paolo (2000), where he highlights

similar problems to those mentioned above. He presents a simple model that addresses

some of these problems, in the form of a robot controller thatperforms a piecewise linear

input-output mapping and behaves as Ashby’s Homeostat [7].The lack of a neural model

in this work means that it does not offer any useful advance for our current purpose; dis-

cussion of this work is included here for completeness and todemonstrate Di Paolo’s own

awareness of the problems with his earlier work that we described above.

3.6.3 Di Paolo (2002) ‘Evolving robust robots using fast homeostatic

oscillators’

In [47], Di Paolo presents an exploration of the how robustness of evolved neurocon-

trollers can be improved using neurons that are constrainedto oscillate at a timescale

faster than that of behavioural dynamics. He showed that robustness to various sensori-

motor disruptions was increased because the faster timescale forced behavioural function

to be distributed across the whole control system, meaning that each component played a

smaller role and hence had a smaller impact on performance ifperturbed.

The networks Di Paolo used were variants of CTRNNs where the bias term becomes a

variable.1 The node state and transfer functions are the same as those given by Equations

3.1 and 3.2 respectively, while the bias was now governed by Equation 3.3 below.

τbḃ = −(b+y) (3.3)

whereb andy are the bias term and activation of a neuron as before andτb is a genetically

set neuron-specific time constant constrained to be a multiple of the decay constant for

that neuron. The bias thus acts on a slower timescale than theactivation, and drives firing

rate to an average of 0.5 in the long term.

Fully connected networks with 4, 6, 8, 10 and 20 nodes were instantiated as controllers

for a photosensitive robot (again similar to that shown in Figure 6.1). Controllers were

evolved to perform phototaxis in a simple environment containing a light source, then the

evolved controllers were tested for their robustness to various sensorimotor disruptions.

Results showed that the controllers with the adapting bias were more robust, retain-

ing a significantly greater proportion of the unperturbed performance when sensors were

swapped, lesioned or suffered angular displacement. Analysis showed that the nodes in

1Note that bias adaptation is sometimes referred to as threshold adaptation in the neuroscience literature.
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the evolved controllers all performed as oscillators. Di Paolo’s conclusion was that this

prevented individual nodes from taking on functionally specific roles in the performance

of a behaviour, distributing behavioural control across the whole network so that failure

of individual elements had a lesser effect. He ended the paper with a hypothesis, “In

complex multi-component systems, robustness will be likely to be obtained if functional

specification at the level of individual components is minimised” (p.8, [47]).

While Di Paolo’s work with homeostatic oscillators makes useof a homeostatic plastic

mechanism that is more directly related to one of the mechanisms observed by neuroscien-

tists (plasticity of intrinsic excitability), his main emphasis was on improving robustness

of evolved controllers by enforcing multiple timescales. He did not address the questions

of the general effects of homeostatic plasticity on neural network controllers, did not look

at how it affected evolvability, and only considered one type of mechanism. The work is

valid and relevant to this thesis, but leaves substantial gaps in understanding that we hope

will be addressed by the original work presented here in later chapters.

3.6.4 Mathayomchan & Beer (2002) ‘Centre-crossing recurrent neu-

ral networks for the evolution of rhythmic behaviour’

In an earlier paper [15], Randall Beer had speculated that centre-crossing networks might

be more evolvable. Mathayomchan and Beer (2002) [127] tested this hypothesis and

found that seeding evolutionary searches with centre-crossing networks led to quicker

evolution and better solutions.

To quote Mathayomchan and Beer directly, “A center-crossing CTRNN is one in

which the null-(hyper)surfaces of individual neurons cross one another at their exact cen-

ters, ensuring that the range of inputs that each neuron receives is centered over the most

sensitive part of its activation function” (p.2044, [127]). This means that there is a stable

fixed-point equilibrium state of the network where the firingrate of each neuron is 0.5

exactly. Substituting for this value into Equation 3.1 and solving gives a relation for the

bias and weights of a neuron at the centre-crossing condition:

b∗ =
−∑N

i=1wi

2
(3.4)

whereb∗ is the bias value that will give the centre-crossing condition for the set of afferent

weightswi.

The argument that centre-crossing networks will be more evolvable is based around

the observation that, “Due to the form of [Equation 3.2], unless a neuron’s bias is prop-

erly tuned to the range of inputs it receives, that neuron will simply saturate on or off and
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drop out of the dynamics. Thus the richest dynamics should befound in the neighbour-

hood of the center-crossing networks in parameter space, and one would expect that an

evolutionary algorithm would benefit from focusing its search there.” (p.2046, [127]).

Mathayomchan and Beer tested this hypothesis by seeding an evolutionary search

with centre-crossing networks. The task was to evolve CTRNN central pattern generators

(CPGs) for walking in a legged robot, a task which had already been well-studied by Beer

in previous work [12]. Mathayomchan and Beer compared evolutionary searches seeded

with randomly generated CTRNNs and with CTRNNs where the weights were randomly

generated but where the bias terms were calculated to give centre-crossing networks using

Equation 3.4.

Results showed that the seeded searches consistently evolved higher fitness solutions

and that higher fitness solutions evolved faster in seeded searches. Mathayomchan and

Beer found that in general, centre-crossing networks were much more likely to display

oscillations than ordinary networks, so that the initial population was likely to contain

more fit solutions when the centre-crossing condition was enforced. This gave more po-

tential oscillatory circuits to begin with, which could then be refined by the evolutionary

algorithm to fit the control task.

While the results given by Mathayomchan and Beer are based on awalking task, they

argued that because centre-crossing networks are more suited to producing CPGs, they

will be more evolvable for any oscillatory task. The also suggest that centre-crossing

networks may be more evolvable in general, since they allow easier access to a wider

range of dynamics.

3.6.5 Hoinville & Henaff (2004) ‘Evolving plastic neural controllers

stabilized by homeostatic mechanisms for adaptation to a per-

turbation’

One paper that explicitly tried to incorporate a more biologically plausible model of

homeostatic plasticity into neural networks for robot control was that of Hoinville and

Henaff [84]. Hoinville and Henaff were interested in increasing the robustness of evolved

neurocontrollers to external perturbation. They presented a model that included both Heb-

bian and homeostatic plasticity, and tested their networkson a simulated single-legged

robot. While the intentions of the work presented by Hoinville and Henaff were good,

there are a number of problems with their work that mean it maynot have achieved its

goals.

Hoinville and Henaff used a variant of the standard CTRNN and added Hebbian plas-

ticity rules that they based on the adaptive synapses model presented in [61]. In the adap-
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tive synapses model, every synapse has an associated learning rule that changes synapse

strength according to some function of the correlated firingof pre-synaptic and post-

synaptic neurons. This rule is genetically selected from four possibilities (plain Hebb,

pre-synaptic, post-synaptic, covariance), adding a further N2 symbolic loci to the genetic

encoding. The use of this kind of plasticity has been explored in (e.g.) [46, 60, 62–64],

which demonstrate some interesting results without a full analytical understanding of how

such plasticity affects the network.

To this already complicated network architecture, Hoinville and Henaff then add two

forms of homeostatic plasticity. One is regulation of intrinsic neuronal excitability using

a rule based on the idea of centre-crossing networks discussed in [127]. The other is

normalisation of synaptic weights.

Hoinville and Henaff mistakenly claim that a centre-crossing network can be made by

switching from the asymmetrical logistic transfer function (Equation 3.2) to a symmetric

function such as the hyperbolic tangent. This claim does nothold.

Normalisation of weights is performed by dividing the magnitude of every afferent

synaptic weight to a neuron by the magnitude of the resultantof the vector of afferent

weight magnitudes. This is performed after every change to the weights caused by the

Hebbian plasticity rules and keeps the size of the resultantequal to 1. This stops runaway

weight change and prevents grossly excitatory or inhibitory weightings from occurring.

However, it ignores the sign of the weights, meaning that it does not allow for the case

where large excitatory connections are balanced by large inhibitory connections.

Despite the problems with each of these rules individually,there is a more significant

problem that affects both of the homeostatic rules used by Hoinville and Henaff. This

is that neither of the mechanisms that are supposed to ensurehomeostasis of firing rate

actually take into account the current level of firing. The linear mapping of afferent firing

rates from the range[0,1] to [−1,1] does nothing to change the current firing rate of a

neuron and is based on an incorrect understanding of the centre-crossing condition. The

normalisation of weights will regulate the size of the inputs to a neuron to some extent but

there is no feedback between the firing of a neuron and the weight normalisation except

indirectly through the Hebbian mechanisms.

Hoinville and Henaff showed that controllers using variouscombinations of the above

plastic mechanisms could be evolved to give robust maintenance of a target velocity in

a single-leg robot system. They also showed that when perturbations such as changes to

friction coefficients or to the target speed were introducedto the evolutionary process the

genetic algorithm could still find good solutions. This result is valid and adds another

data point to the set of successful evolved neurocontrollers. However, the bigger claim of

Hoinville and Henaff, that their ‘homeostatic’ controllers are more robust to external per-
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turbations than more standard controllers, is unfounded. Setting aside the problems with

the implementation of their homeostatic controller, the fact that the evolved controllers

are only shown to be robust to the perturbations which were present in their fitness tri-

als and for which they were evolved means that any claim of general robustness must be

watered down to a more modest claim of meeting the fitness criteria.

While the aims of the paper presented by Hoinville and Henaff are good, and the

attempted inclusion of different sorts of homeostatic mechanism is to be commended, it

is the opinion of this author that there are too many flaws, with both the design of the

controller and with the experimental set-up, to be able to learn much from this work. The

way in which homeostatic plasticity has been included into the control network should be

reconsidered, the evolved controllers should be tested against perturbations that were not

present during evolution, and the post-hoc analysis shouldbe much more rigorous if this

work is to be useful.

We should no longer be surprised that a controller with so many variables and un-

doubtedly complex network dynamics can be optimised by a genetic algorithm to give

performance of a simple task. Instead we should be asking whyand how it does so, and

there is simply too much complexity in the networks presented by Hoinville and Henaff

to be able to isolate cause and effect. Rather than adding every plastic mechanism we can

think of, all at once, we should be seeking to describe the properties of each mechanism

and its effect on network dynamics and evolvability, by a methodical series of experiments

and analysis.

3.7 Can simple simulations inform neuroscience?

In this chapter so far we have seen a clear flow of ideas from neuroscience to robotics,

but it is worthwhile to consider the possibility that there can also be a flow of information

in the other direction. Although the neural models used in robotics are hugely simplified

and abstracted compared to real brains, there are a number ofareas in which it may be

possible for neural robotics to inform neural science.

Computational modelling is an accepted methodology in neuroscience, where detailed

models of different brain structures are simulated and compared to real-world observation.

However, computational neuroscience has a tendency eithertowards detailed models that

are computationally expensive (and may in any case miss out crucial features of the real

system), or towards simple models that are tractable but bear no relation to the real system.

In attempting to capture the complexity of real neural systems, computational constraints

mean that there is always a trade-off between the level of detail in a model and the scale

of the system that can be modelled. It is not yet possible to model whole brains at a high
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level of neuronal detail, and will not be possible for some time.

CTRNNs are highly abstracted and are probably not very good models of real neu-

ronal networks. However, their abstraction means that relatively large networks can be

modelled, and their suitability for use as robot controllers opens up the interesting pos-

sibility of modelling at the level of an agent interacting with an environment. This is

something that has never before been possible. The scale andcomplexity of biological

neuronal networks, and the computational expense of accurate models, have meant that

experiments on behaving neural systems have not been possible until the advent of neural

robotics. We can’t observe undisturbed biological brains behaving in their natural state,

neither can we selectively alter different parts of workingbrains and measure the effect

on animal behaviour. But we can do exactly that in artificial neural systems, where all

parameters and variables are accessible, and where experiments are repeatable and free of

ethical concerns.

Neural systems used to control agents that act in some environment close the sensori-

motor loop; the agent is involved in a continuous reciprocalinteraction with the world. As

such, sensory information and patterns of neural activity have meaning that is grounded in

behaviour. Rather than arbitrarily assigning inputs and meanings, we are now able to ob-

serve the actions of an agent in its environment and interpret neural dynamics in terms of

objectively measurable behaviours. This grounding avoidsthe problems inherent in sub-

jective speculations over the possible function of different types of neural mechanism for

higher-level functions; we do not need to guess at how neuralactivity might affect agent-

level behaviour because we can directly measure it. The symbol-grounding problem of

symbolic AI (and non-embedded connectionist models) is avoided.

The utility of this whole-system analysis for learning about biological brains rests on

how well the artificial networks we use share the properties of the biological ones we want

to learn about. It is readily apparent that CTRNNs are not accurate models of real neu-

ronal networks; they are highly abstracted and ‘neurons’ inCTRNNs are probably better

interpreted as representing groups of biological neurons.However, it is also apparent that

both CTRNNs and biological neuronal networks fall into some higher category of ‘par-

allel distributed processors’, or more ambitiously, the general class of ‘neural systems’.

As such, it may be that learning about one can help us to learn about the other. Real

neuronal networks are made up of interconnected nodes displaying a sigmoidal firing re-

sponse to stimulation, just like CTRNNs. Maybe a good understanding of the dynamics of

CTRNNs and behaviours of agents controlled by them will help us to a better functional

understanding of animal brains and animal behaviour.

A good example of this kind of work is Beer’s analysis of the neural controller of an

agent that had been evolved to perform a categorical perception task [11]. In this work,
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Beer applied dynamical systems analysis to the coupled network/agent/environment sys-

tem to understand the way in which a decision was reached. In doing so he highlighted a

number of interesting issues. For instance, the ‘decision’made by the agent over which

category an object belonged to appeared to be extended both temporally during an ac-

tive scanning behaviour and spatially across the whole system. Describing the decision-

making process in terms of dynamics and attractors raises interesting questions for cog-

nitive scientists and provides a concrete example for thosewho take a dynamical systems

approach to cognition [14, 16, 164, 173]. Do biological brains follow a similar decision-

making process? Might other cognitive tasks have a similar explanation? The answers to

these questions are far from clear, but Beer’s approach is surely valid.

In justifying his work, Beer makes reference to the metaphorof the ‘frictionless

brain’ [11]. Just as Newtonian mechanics was developed and made useful by ignoring

complicating real-world factors such as friction and air resistance and instead working

with idealised representations of the world, it may be that by abstracting the fundamental

principles of neural systems away from the messy complexityof biological brains we may

arrive at a better functional understanding of brain-like systems.

Such a methodology is to some extent followed here. We don’t pretend that the models

of homeostatic plasticity presented below are accurate models of how it occurs in biology,

but we do maintain that the mechanisms used share some of the fundamental properties

that their biological counterparts must have. So long as we remember that we are working

with simple abstractions it may be that we, like children, can learn about the real world

by playing with toy models.

3.8 Aims, objectives, questions

The over-arching aim of evolutionary robotics is to build good robots, and this must be

remembered as the primary goal here. However, to do so is not astraightforward matter

of iteration and improvement. There is also room for new ideas and exploratory study.

We have seen that CTRNNs and their variants are capable of producing good robot con-

trollers, but also that they do not easily or reliably do so. We have identified a possibly

problematic feature of CTRNNs that might make them hard to evolve, i.e., that of node

saturation. We have also observed that node saturation is not a problem in biological ner-

vous systems, and that this is likely to be because of the presence of homeostatic plastic

mechanisms that act on system parameters to keep activity inbounds.

We feel that these observations justify a study of the utility of homeostatic plastic-

ity in artificial neural networks. Specifically, we want to find answers to the following

questions:
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1. Can HP be implemented in CTRNNs?

2. Does HP prevent node saturation?

3. What effect does HP have on node/network/agent behaviour?

4. Does HP make CTRNNs more evolvable?

These questions will be described and justified more fully, and hopefully answered, in the

remaining chapters of Part III. While the emphasis of Part IIIis on the engineering aspects

of these questions, we will always try to discuss the relevance of the work presented for

neuroscience.



Chapter 4

Can homeostatic plasticity be

implemented in CTRNNs?

4.1 Overview

Before any study of the effects and utility of homeostatic plasticity in continuous-time

recurrent neural networks (CTRNNs) can be undertaken, we first of all need to deter-

mine how it should be implemented. We need to consider which of the various kinds of

homeostatic mechanism are suitable for incorporation intoCTRNNs and then develop a

formulation for how this should be done.

4.2 What types of mechanism should be implemented?

As described in Chapter 3, there are many different sorts of homeostatic plastic mecha-

nism in the brain, and therefore there are a wide variety of candidate mechanisms that we

might adapt for use in CTRNNs. With enough effort, almost any of the mechanisms might

be used, but given the simplified nature of CTRNNs compared to real brains it seems sen-

sible to work at a similar level of abstraction when adding plasticity. CTRNNs are highly

abstracted, highly idealised simulacra of small sections of biological neuronal matter that

ignore the full complexity of neural dynamics in favour of a conceptually clear framework

for study. The homeostatic plastic mechanisms developed here should follow the same

rationale, for reasons of analytical and computational tractability, and also because over-
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(a) Synaptic scaling applied to the self-
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(b) Internal plasticity can affect the intrinsic
excitability of a neuron, translating its input-
output function. Synaptic scaling of input
weights has a similar effect.

Figure 4.1: Schematic of the effects of different kinds of homeostatic neural plasticity.
All axes are linearly scaled.

complicating the plasticity we add to a CTRNN will move the resulting networks too far

from the standard CTRNN for reasonable comparisons to be made.

CTRNNs (as used in the robotics community) typically have a fixed architecture that

does not change during the functional lifetime of an agent, i.e., no new synapses are

added or removed. Adding homeostatic mechanisms involvingthe creation or deletion of

connections would therefore involve considerable effort;first of all a reasonable model of

how neural architecture might changewithouthomeostatic constraints would be needed,

before a model of how this might occurwith homeostatic constraints could be developed.

For this reason we will not develop mechanisms that change network topology.

Broadly speaking, the remaining homeostatic mechanisms that are well-documented

in the literature can be grouped into those that act on synaptic efficacies and those that

affect the intrinsic excitability of neurons, and these will be the mechanisms we study in

this thesis. Rather than copy individual mechanisms in detail, we will appeal to simplicity

and develop mechanisms that hopefully capture the qualitative functional performance

of the myriad individual synaptic and internal mechanisms.That is, we will develop

two simple homeostatic plastic mechanisms that perform synaptic scaling and that alter

intrinsic excitability. In biological networks these mechanisms are directed to regulate

firing activity, and we will adhere to this principle here.

4.3 Functional effects of homeostatic plastic mechanisms

How do the chosen kinds of homeostatic plastic mechanism affect a neuron? Figure 4.1

shows the way in which plasticity of intrinsic excitabilityand synaptic scaling should

affect a hypothetical neuron. We describe the way in which each type of mechanism

might regulate firing rate below.
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4.3.1 Synaptic scaling

If the overall level of firing of a neuron falls too low, an increase in the strength of all

its excitatory connections should help to raise it; similarly, if the level of firing gets too

high a decrease in the strength of excitatory connections should help to reduce it. This

synaptic change is thought to act with equal force on all afferent synapses to a neuron,

i.e., it is a multiplicative scaling of all synaptic strengths [167]. Contrast this with the

synapse-specific changes associated with Hebbian correlation-based plastic mechanisms

such as long-term potentiation or depression.

The functional effect of synaptic scaling is different whenthe scaling is applied to the

self-connection or to the input connections to a neuron. Effectively, synaptic scaling of

the self-connection alters the gain of a neuron, that is, it changes the size of the output

response to a given input signal (see Figure 4.1(a)). Synaptic scaling of the input weights

affects the influence of the input signal received, and this is reflected by a translation of

the output curve along the input axis (see Figure 4.1(b)).

4.3.2 Plasticity of intrinsic excitability

Another way of regulating activity around a constant level is alteration of the intrinsic ex-

citability of neurons. If firing rate is consistently too high, a reduction in the excitability

of the neuron should reduce it; if firing rate is consistentlytoo low, increased excitability

should raise it. Intrinsic plasticity of the excitability of neurons affects the neuron’s func-

tion by changing the firing rate response to a given input; effectively this translates the

neuron’s input/output curve along the input axis (see Figure 4.1(b)).

4.4 Mathematical formulation of homeostatic plastic mech-

anisms

Homeostatic plasticity is here incorporated into CTRNNs by defining a target range for

the firing rates of neurons, corresponding to the postulatedset level of activity about

which homeostasis is maintained, and then triggering plasticity whenever the firing rate

of a neuron is too high or too low. The notion of plasticity activated by high or low firing

rates is captured by the use of a plastic facilitation function that varies with firing rate [46].

Two mechanisms were developed to implement homeostatic plasticity in CTRNNs. These

were synaptic scaling (Figure 4.1(a)) and an adaptive bias term (Figure 4.1(b)). It should

be noted that in biological systems plastic change occurs ona much slower timescale to

that of neural firing activity, and that the values ofτw andτb used in Equations (4.2) and
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tion of the excursion determine the rate and direction of plastic change.Left: Sigmoidal
transfer function showing upper (HU ) and lower (HL) bounds of target range.Right: Plas-
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(4.3) are chosen to reflect this. Actual values used will be given below where appropriate.

4.4.1 Plastic facilitation

The idea of plastic facilitation was first suggested by Di Paolo in [46]; its use here owes

much to his original work, but the form of the function used isslightly different. Plastic

facilitationρ is zero when the firing rate is within the target range and rises or falls linearly

to ±1 outside this range, as defined by Equation 4.1 and shown in Figure 4.2(b).

ρ =











HL−z
HL

: 0≤ z< HL

0 : HL ≤ z≤ HU
HU−z
1−HU

: HU < z≤ 1

(4.1)

whereρ is the level of plastic facilitation andHL andHU are the lower and upper bounds

of the target range. It is not clear what the optimal values for these variables would be

for any given situation. For most of the experiments reported below, HU = 0.75 and

HL = 0.25, but sensitivity tests on these parameters showed that other values could have

been used without changing the qualitative nature of the results achieved.

The plastic facilitation function acts in conjunction withthe plastic mechanisms de-

scribed below to give directed plastic change that should regulate firing rate to the target

homeostatic range.

4.4.2 Synaptic scaling

When the firing rate of a neuron goes outside the prescribed range all afferent synapses

to that neuron (including the self-connection) are multiplicatively scaled. The scaling

is directional; it acts so that weights are changed in the direction most likely to bring the

neuron firing rate back into bounds. Scaling is applied to both inhibitory (negative weight)
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and excitatory (positive weight) synapses. If the firing rate is too high, then excitatory

synapse strengths are scaled down and inhibitory synapse strengths are scaled up. If the

firing rate is too low, excitatory inputs are scaled up and inhibitory inputs are scaled down.

Scaling up or down here refers to the absolute value of the synaptic weight, so that scaling

down a negative weight makes it less negative. The size of thechange is determined by the

plastic facilitationρ, by a time constantτw, and by the current magnitude of the weight.

The plasticity rule for synaptic scaling is therefore expressed by Equation 4.2.

τwẇ = ρw (4.2)

4.4.3 Adaptive bias

Plasticity of the intrinsic excitability of neurons can be implemented in CTRNNs as an

adaptive bias term. When a neuron’s firing rate goes outside the prescribed range, the

bias term of the neuron is shifted to make the neuron more or less likely to fire depending

on what is required to bring the firing rate back into bounds. If firing rate is too low

the bias is increased, effectively translating the sigmoidactivation function so that the

neuron is more excitable and hence more likely to fire. If firing rate is too high the bias

is decreased, making the neuron less excitable. The size of the change depends on the

plastic facilitationρ and a time constantτb. The plasticity rule for intrinsic plasticity is

therefore given by Equation 4.3.

τbḃ = ρ (4.3)

The adaptive bias term used here looks similar to that used in[47] to give neurons

that are fast homeostatic oscillators. The main functionaldifferences between the two

mechanisms are that here there is a greater separation of timescale between the adapting

bias term and the firing rate dynamics (typically at least an order of magnitude difference

in time constants compared to same-order time constants in [47]), and also that here the

bias adapts only to move firing towards the target homeostatic range, rather than strictly

towards a rate of 0.5 as in [47]. If the timescales were the same and the target range

was contracted to a single-point range at rate 0.5 then the two mechanisms would be

equivalent.
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4.5 Can homeostatic plasticity be applied to other kinds

of network?

Homeostatic plasticity in biological nervous systems causes changes in neuronal prop-

erties depending on the level of activity. For this reason, homeostatic plasticity is most

naturally applied to artificial neural networks which incorporate some conception of con-

tinuous firing rate and activation dynamics. CTRNNs include these by definition, so are a

suitable substrate for the inclusion of homeostatic plasticity. It is possible that homeostatic

plastic mechanisms could be adapted for use with other network types (e.g., feed-forward

architectures) provided that a target homeostatic range for node output can be defined.

For instance, nodes with binary output would not be suitableunless the mean level of

activation over some time frame was used as the target for homeostasis.

4.6 Neuroscientific relevance

The plastic mechanisms defined above are obviously highly simplified compared to their

biological counterparts, and the use of a plastic facilitation function is a mathematical con-

venience that cannot be claimed to represent any real biological entity. This means that

the relevance of work done with these mechanisms for neuroscience is limited. However,

since we are already working with highly abstracted systems(CTRNNs), it is reasonable

to hope that nofurther relevance has been lost. In as far as CTRNNs are good models of

biological nervous systems, the mechanisms described above are good models of biolog-

ical homeostatic plasticity. We may not be able to learn muchabout specific biological

mechanisms, but we may be able to understand some of the general qualitative effects of

homeostatic plasticity in neural systems. As such, we hope that the mathematical formu-

lation of the plastic mechanisms that is outlined above should be sufficient to let us draw

some limited inferences from the work presented in subsequent chapters for neuroscience

and for cognitive science.
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Does homeostatic plasticity prevent

node saturation?

5.1 Overview

This chapter considers the effects of the homeostatic plastic mechanisms defined in Chap-

ter 4 on the behaviour of a single CTRNN node. It would appear that the homeostatic

mechanisms should always stop node saturation from occurring, and in most cases this is

true, but the mathematical forms of the CTRNN and of the plastic mechanisms mean that

there are cases where the situation is less clear.

5.2 Nature of homeostatic constraint

First of all we will look at the nature of the constraint placed on a CTRNN by the inclusion

of homeostatic plasticity, ignoring the plastic mechanisms for a moment and looking just

at the significance of the homeostatic target range.

Consider the state equation (Equation 3.1) and activation function (Equation 3.2) for

neurons in anN-node network. To meet the homeostatic constraint on activation, all zi

must fall into the target range. The range is defined to be symmetric aboutz= 0.5, and

cannot exceed the range forz (recall thatz∈ [0,1]). So, for someδ ∈ [0,0.5] we have:

z∈ [0.5−δ ,0.5+δ ]

77
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This gives two boundary conditions for the satisfaction of the constraint:

z≥ 0.5−δ

z≤ 0.5+δ

which by substitution into Equation 3.2 and rearranging canbe reduced to:

−b− ln(
0.5+δ
0.5−δ

) ≤ y≤−b+ ln(
0.5+δ
0.5−δ

)

This must be satisfied at any fixed-point equilibrium state ofthe homeostatic plastic

CTRNN system. For the single-neuron case, the two extremes ofthe range where this

is possible are where the neuron output is equal to the limitsof the homeostatic range,

i.e., z= 0.5− δ andz= 0.5+ δ . At equilibrium, ẏ = 0. Substituting these values into

the state equation (3.1) for a single-neuron network and assuming that there is no external

input, we get:

bmin = −(0.5−δ )w− ln(
0.5+δ
0.5−δ

) (5.1)

bmax= −(0.5+δ )w+ ln(
0.5+δ
0.5−δ

) (5.2)

as boundary conditions restricting the relation between the self-connection weightw and

biasb of the node at a fixed-point equilibrium satisfying the homeostatic constraint for

some givenδ . Equations 5.1 & 5.2 define two straight lines. These are plotted in Fig-

ure 5.1 withδ = 0.25. The two lines define a region of parameter space in which the

homeostatic constraint will be satisfied at equilibrium.

For more than one node, the boundary lines are replaced by boundary hyper-planes

and the constraint-satisfying region is impossible to represent on the page. However, we

hope that the reader will be able to generalise from the one-node example given; the idea

of a constraint-satisfying region of parameter space generalises to networks of any size.

For networks of all sizes, the size of the satisficing range isdetermined by the size of

δ (an example value of 0.25 is used in Figure 5.1). The case whereδ = 0 is the condition

for a centre-crossing network [127] and is plotted in Figure5.1 for reference.
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Figure 5.1: Boundaries of region of single-node CTRNN parameter space that will satisfy
homeostatic constraint at fixed-point equilibrium. Centre-crossing line also shown. Con-
straint can be satisfied by fixed-point equilibria when(w,b) lies between lower and upper
boundary lines. Note the impossibility of a constraint-satisfying fixed-point equilibrium
for w > 4.

Figure 5.2: Schematic of a single-node CTRNN. The node receives input from itself (wz)
and also external input (I ). These quantities are summed and contribute to node activation
(y), which changes according to Equation 5.3. Node firing rate (z) is a sigmoidal function
of activation (y) and bias (b), as specified by Equation 3.2.

5.3 Satisfaction of homeostatic constraint in a single node

In the single-node case (see Figure 5.2), the state equation(Equation 3.1) simplifies to

Equation 5.3 below:

τyẏ = −y+wz+ I (5.3)

while the transfer function (Equation 3.2) is unchanged. The simplicity of the single-node

case makes it a good example for demonstrating the constraints placed on a CTRNN node

by homeostatic plasticity. To do so, here we apply plasticity to an ensemble of nodes and

see how the plasticity moves these nodes in parameter space.Because the homeostatic

plastic mechanisms we have defined are directed, they alwaysmove the nodes towards a

constraint-satisfying parameter set if one exists.
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Figure 5.3: Final node positions in parameter space after homeostatic plasticity was ap-
plied (with super-imposed boundary lines for constraint-satisfying region). After plas-
ticity most nodes are located in the constraint-satisfyingregion, with some exceptions.
Some nodes are trapped against the vertical line ofw = 0 by the inability of the synaptic
scaling mechanism to change the sign of the synaptic weight.Also some nodes are scat-
tered in a noisy distribution in the bottom-right of the plots, due to an inability to satisfy
the constraint.

Parameter sets for 200 single nodes (as specified by Equations 3.2, 4.2, 4.3 and 5.3)

were randomly generated (τy ∈ [1.00,4.00], w ∈ [−10.00,10.00], b ∈ [−10.00,10.00],

τw = 40,τb = 20) and instantiated as 1-node CTRNNs. The nodes were then updated for

500 timesteps with zero external input (I = 0) while homeostatic plasticity was applied

in four different regimes: non-plastic control, synaptic scaling alone, adaptive bias alone,

synaptic scaling and adaptive bias together. Figure 5.3 shows the final positions of the

nodes in parameter space after homeostatic plasticity has been applied, with the boundary

lines from Figure 5.1 superimposed for comparison. Where plasticity has been applied,

nodes are mostly located in the constraint-satisfying region of parameter space, with some

exceptions. When the synaptic scaling mechanism is used somenodes are trapped against

thew = 0 line. Also, with both of the homeostatic plastic mechanisms there is a region in

the bottom-right hand corner of the plots where nodes are scattered in a noisy distribution.

These exceptions are explained below.

Before plasticity is applied, nodes are randomly scatteredin parameter space, which

can be seen by the positions of the nodes where no plasticity was applied (Figure 5.3(a)).
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The adaptive bias mechanism moves the nodes through parameter space by altering the

bias, i.e., it moves the representative point vertically inFigure 5.3. The synaptic scaling

mechanism alters the synaptic weight, i.e., it moves the representative point horizontally

in Figure 5.3. Synaptic scaling has a significant restriction in that it cannot alter the sign

of the weight. This means that the synaptic scaling mechanism is not always successful

in getting the node into the constraint-satisfying region of parameter space; the inability

to alter the sign means that the vertical line ofw = 0 acts as a barrier trapping the rep-

resentative point. Combining the two mechanisms means that the node can move in all

directions through parameter space (see Figure 5.3(d)).

The noisy distribution of nodes in the bottom-right region of the plots in Figure 5.3 is

due to the impossibility of a constraint-satisfying fixed-point equilibrium forw > 4. This

will be examined in the next section.

5.4 Equilibrium points for the single-node system

Methods for finding the equilibrium states of a dynamical system as a parameter is varied

can be found in [160]; sometimes this can be done analytically, but in other cases this is

not possible and numerical methods may be used. A useful technique is to plot the set of

all the equilibria of a system as a particular parameter is varied. In most cases this forms

a connected pathway through parameter space that is traversed as the parameter varies,

though in some situations multiple equilibria may exist fora given parameter value.

For the homeostatic constraints to be satisfied in the single-node system, the node

must reach a stable equilibrium with its firing rate within bounds. The possibility of this

is determined by the shape of the plot of all equilibrium firing rates for the single-node

dynamical system, examples of which are shown in Figure 5.4.

Figure 5.4 shows how the equilibrium value of the node firing ratez changes as the

external inputI changes. Recall that an equilibrium state of a system is a state that will

persist as long as the system is not perturbed. A stable equilibrium is robust to minor

perturbations; the system will return to the equilibrium position after its state is altered

by a small amount. An unstable equilibrium is not robust to perturbations; even a small

perturbation will cause the system to diverge from its equilibrium position.

In the single-node system the number of equilibria changes at a bifurcation point at

w= 4. A bifurcation occurs when a change in some parameter causes a qualitative change

in the behaviour of the system. Details of how the bifurcation points of a dynamical

system are found are given in [160]. In this case the bifurcation at w = 4 separates the

unistable and bistable regimes. Forw≤ 4 the system is in the unistable regime, forw > 4

it is bistable. In the unistable regime there is a single stable equilibrium, in the bistable
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Figure 5.4: Firing ratesz at equilibrium for a single node, plotted against external input I
for 3 different(w,b) parameter pairs, wherew is the self-connection strength andb is the
bias term. The plots show how equilibrium firing ratez varies with external inputI for
I ∈ [−15,15]. For a single node the value ofw determines the slope of the plot; the slope
increases asw increases, tilting back on itself forw > 4.

regime there are two stable equilibria separated by an unstable equilibrium.

5.5 Behaviour of the single-node system in the unistable

and bistable regimes

Figure 5.5 plots equilibrium firing rate against external input for nodes in the unistable and

bistable regimes. It might appear that the shape of the plotsis determined by the sigmoidal

transfer function (Equation 3.2), but the situation is actually a little more complicated.

The equilibrium firing rate is determined by the dynamics of the system and its initial

conditions, and is not a simple mapping.

While the transfer function obviously limits the equilibrumstates toz-values in the

range[0,1], the shape of the plot of all equilibria is actually determined by the strength of

the self-connectionw. Raisingw increases the slope of the plot at its steepest point. The

slope of the plot is small forw < 4, becomes vertical atw = 4, then tilts back on itself to

become multi-valued and enter the bistable regime whenw > 4.

The unistable regime (see Figure 5.5(a)) is quite straightforward to understand. Here

z is a single-valued monotonically increasing function ofI , w andb. z varies withI , a

change inw alters the slope of the plot (and hence the size of response inz to a change

in I ), while a change inb translates the plot along the horizontal axis while leavingthe

shape of the curve unchanged. A change inw so thatw > 4 causes the node to leave the
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Figure 5.5: Equilibrium firing rates for unistable and bistable nodes showing different
input ranges. Plots give equilibrium firing ratez against external inputI . Solid line
shows a stable equilibrium firing rate, dotted line shows unstable equilibirum firing rate.
Shape of the plots is determined by single-node dynamics. Different ranges of input are
superimposed on the plots (dashed lines); see text for details of system behaviour when
input varies in these ranges.

unistable regime and become bistable.1

The bistable regime is more complicated. First consider theunstable equilibrium

associated with a particular(w,b, I) triple. This equilibrium will only ever be reached

if that is where the system is initialised. Because it is unstable, if the system is even a

miniscule distance from the equilibrium state it will diverge to one of the stable equilibria.

This is illustrated in Figure 5.6, which plots ˙y (the differential ofy with respect to

time) againsty for example nodes in the unistable and bistable regimes. Below each plot

is the vector field for the system, which shows what will happen for any value ofy. The

shape of the curve for the node in the unistable regime (Figure 5.6(a)) is such that it can

only intersect the ˙y axis at one point. This means that the node has a single stableattractor,

so there is only one stable firing rate. The shape of the curve for the node in the bistable

regime is such that it may intersect the ˙y axis at one, two or three points. This means

that the node has one, two or three attractors depending on its parameterisation. The node

shown in Figure 5.6(b) has three attractors, one unstable and two stable, so it can fire at

two different stable rates.

ChangingI translates the plots in Figure 5.6 on the vertical axis without changing the

shape of the curve. In the unistable regime this changes the value of the stable firing rate.

In the bistable regime it may change the values of the stable firing rates, or may move the

system to a point where it has only one stable firing rate.

1Note that in a multi-node system synaptic scaling of the input weights has a translation effect similar
to the adaptive bias mechanism; in this scenario synaptic scaling has both a slope-altering effect caused by
scaling of the self-connection and a translation effect caused by scaling of input weights.
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Figure 5.6: Plots ofdy/dt againsty (top) and vector fields (bottom) for example nodes
in the unistable and bistable regimes. In the vector field plots, the black circles on the
line represent the attractors (i.e., where ˙y = 0). The direction of the arrows on the line
signifies the sign of ˙y; the system will move to the next attractor in the direction of the
arrow. The arrows illustrate the stability of the attractor; if the arrows on either side of
the attractor point towards it, it is a stable equilibrium. If the arrows point away from it, it
is an unstable equilibrium. There is one stable attractor inthe unistable regime, and two
stable attractors separated by an unstable attractor in thebistable regime.

Figure 5.5 shows example plots of equilibrium firing rates for unistable and bistable

nodes with super-imposed input ranges that provide qualitative examples of the types of

behaviour that might be expected whenI varies within a range. In Figure 5.5(a), inputs

varying in ranges A and C will give rise to a saturated response; range A gives a saturated-

low response and range C gives a saturated-high response. Inputs varying in range B will

cause a significant change in firing rate, since range B is positioned over the steepest part

of the curve.

The situation for the bistable node, shown in Figure 5.5(b) is more complicated. There

are six distinct types of system behaviour possible for the bistable node. It is of course

possible for the normal input to the node to vary in ranges giving rise to saturated-low

and saturated-high responses, similarly to the unistable case, and these input ranges have

been omitted from the plot for clarity. These saturated responses are the first two types of

behaviour. The next two behaviours exhibithysteresis, that is, the behaviour of the system

depends on how it has behaved in the past.

When input varies in range A, the firing rate will be unable to move away from the

low-firing equilibrium once it reaches it. It may start at thehigh-firing equilibrium and

then fall to the low-firing equilibrium due to perturbation by the variation inI , but once

it reaches the low-firing equilibrium it remains there, withfiring rate varying slightly as

input changes. A similar situation exists in input range C, but in reverse; the firing rate
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Figure 5.7: Equilibrium firing rates for unistable and bistable nodes showing target range
for firing rate homeostasis. Equilibrium firing ratez is plotted against external inputI .
There is always a stable equilibrium firing rate within the target range when the node is in
the unistable regime, but this may not be true in the bistableregime, where it is possible
that the only attractors in the target range are unstable andthus unattainable.

may begin low but once it reaches the high-firing equilibriumit remains there. WhenI

varies in the range B the firing rate will remain at whichever equilibrium it starts off at; it

is not possible for the firing to flip from high-to-low or low-to-high. The most interesting

input range is range D, in which it is possible for the firing totake the low-firing or high-

firing equilibria and to flip in between them depending on input.

The significance and utility of node bistability for networkbehaviour is a topic in

itself and will not be examined further here. Suffice to note that bistable nodes may allow

an approximation to discrete switching in an otherwise continuous system, if the input

to any candidate switching node varies in the region of the transition between the stable

equilibria. Such switching may allow a network to alternatebetween different modes of

behaviour depending on input.

5.6 Effect of homeostatic plasticity on equilibria

Of direct relevance to the current study is the observation that there is a clear conflict

between homeostatic plasticity driving node activation towards the centre of its range and

nodes where the parameterisation does not allow this to happen.

Figure 5.7 shows equilibrium firing rates in relation to the homeostatic range for firing

rates. As homeostatic plasticity attempts to drive the firing rate to a stable equilibrium

that lies within the target range it alters the relationshipbetween firing rate and external

input. The adaptive bias mechanism2 translates the equilibrium curve along theI -axis,

2And in the case of a multi-node system, synaptic scaling of the input weights.
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while synaptic scaling applied to the self-connection alters its slope. For any given input

Ix, homeostatic plasticity attempts to change node parameters so that there is a stable

equilibrium inside the target range. This is always possible in the unistable regime since

there are always stable equilibria which lie within the range. However, as suggested by

Figure 5.7(b), in the bistable regime it is not always possible since there may be no stable

equilibria inside the target range. In Figure 5.7(b), the only equilibrium within the target

range is unstable (dotted line).

To find a stable fixed-point equilibrium that satisfies the homeostatic constraint, the

task for homeostatic plasticity for a node in the unistable regime is to translate and trans-

form the equilibrium curve so that the stable equilibrium position at Ix falls within the

homeostatic range. For a node in the bistable regime, homeostatic plasticity must trans-

form node parameters such that it becomes unistable (thus creating a stable equilibrium

in the target range) and then translate the equilibria so that this occurs atIx. If this is not

possible then no fixed-point equilibrium will be found.

Figures 5.8(a) & 5.9(a) show this process for two examples nodes that start in the

bistable regime. Figure 5.8(a) shows homeostatic plasticity (adaptive bias and synaptic

scaling mechanisms combined) successfully reaching a fixed-point that satisfies the home-

ostatic constraint. Figure 5.8(b) shows the bias, weight and firing rate of the same neuron

over time. Figures 5.9(a) & 5.9(b) show the same plots for a case where the homeostatic

constraint is not met.

What happens in the case where no fixed-point equilibrium can be found is a slow

oscillation between low and high firing rates (i.e., a limit cycle), caused by the action of

the plastic mechanism. This limit cycle does not satisfy thehomeostatic constraint; it is

the action of the plasticity continually seeking to do so that causes the oscillation. While

in theory it should always be possible to find a fixed-point solution to satisfy the constraint

by combining translations and gradient changes of the equilibrium curve, whether or not

this actually occurs depends on initial conditions.

5.7 Constraint satisfaction in a network

So far we have analysed the satisfaction of the homeostatic constraint in the single node

case. Regarding networks we have only observed that the ideaof a constraint-satisfying

region of parameter space is still valid. We will not performany analysis of constraint-

satisfaction in networks, because the mathematics in the N-dimensional case gets rather

complicated and does not justify the meagre explanatory pay-off. However, there are a

few observations we can make concerning constraint-satisfaction in networks.

The first is to note that each node in the network will independently try and maintain
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Figure 5.8:Homeostatic plasticity moves a bistable neuron to the unistable regime and finds a constraint-
satisfying fixed point solution. Figure 5.8(a) shows equilibria changing over a short period of the time series
plots of node parameters and firing rate shown in Figure 5.8(b). Synaptic scaling of the self-connection al-
ters the slope of the equilibrium curve and adaptive bias translates the curve so that it has a stable equilibrium
firing rate inside the target range.
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Figure 5.9:Homeostatic plasticity fails to make a bistable neuron unistable and finds a limit cycle equilib-
rium that does not satisfy the homeostatic constraint. Figure 5.9(a) shows equilibria changing over a short
period of the time series plots of node parameters and firing rate shown in Figure 5.9(b). Both synaptic
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rium firing rate inside the target range. The continuing action of the plasticity results in a stable oscillation
where firing rate continually overshoots the target range, with associated oscillatory changes inw andb.
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local homeostasis, so that homeostasis in the network is achieved in a decentralised man-

ner. The constraint-satisfaction task is harder in networks than in a single node, because

the input each node receives from other nodes. Also, in any functioning network, the

continual perturbation of sensory input makes the task harder still. Because of these inter-

actions, the case where a constraint-satisfying equilibrium is found for the whole network

is likely to occur infrequently.

In networks, satisfaction of the homeostatic constraint may be better interpreted as a

tendency or process, rather than an achievable goal. The parameters of each node in the

network are continuously acted on by homeostatic plasticity to move the node towards the

constraint-satisfying condition. However, the conditions within which each node operates

may change too quickly for this goal ever to be reached.

The same effects that are seen at the level of a single node will also occur in networks.

For instance, the slow oscillations caused by the failure tofind a fixed-point solution

to the homeostatic constraint may be present in any of the nodes in the network. The

switching behaviours and slow dynamics this may cause at thenetwork level may be

useful or disruptive to a functioning network; this remainsa topic for investigation.

5.8 Implications for neuroscience

The analysis above is based entirely on the mathematical formulation of the CTRNNs and

homeostatic plastic mechanisms we defined. As such, the results shown have no relevance

to biological brains. However, we can observe that the ideasthat synaptic scaling of

the self-connection alters the slope of the transfer function, and that the adaptive bias

(or scaling of input weights) translates the transfer function, may be analogous to the

operation of biological neurons; logically something similar must occur. Also, the idea

that homeostatic plasticity in neural networks is an ongoing process that is goal-oriented

but does not necessarily reach its target is likely to be valid in the biological case.
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What effect does homeostatic plasticity

have on network behaviour?

6.1 Overview

Having examined the effect of homeostatic plasticity on a single CTRNN node, now we

will consider the effects on a network. In this section we areconcerned with typifying the

way in which homeostatic plastic CTRNNs are different from non-plastic CTRNNs. To

do so we will not consider performance on any particular network function or behavioural

task, but rather will attempt to quantify differences in basic network properties: sensitivity,

signal propagation and the propensity to display oscillations. In order to fully understand

the effects of homeostatic plasticity at a network level, itis necessary also to consider the

effects at levels below (node) and above (agent) the networklevel.

This chapter will first of all present a brief discussion of some methodological issues,

followed by the actual methods used and results achieved, before concluding with some

discussion of the results.

6.2 Methodology

There are a number of methodological issues that need to be considered to ensure that a

reasonable understanding of the effects of homeostatic plasticity is obtained. These range

from the problems of fair comparison between different types of neural network to those

89
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of defining an appropriate level of analysis. Some discussion of these issues is given in

this section.

6.2.1 Plasticity, learning, and progress

Before proceeding it is worth a brief clarification of terminology. There is a tendency

in the literature to equate plasticity with learning, but this adds a subjective impression

of progress to the concept that is not necessarily grounded in observed data.Learning

implies the acquisition of a new skill or goal-directed behaviour, while plasticity does

not. Learning may involve plasticity, but plasticity does not imply learning.

In this thesis, we use the term ‘plasticity’ to refer to online (or ‘lifetime’) changes in

the weights or biases of a neural network. By ‘plastic mechanism’ we mean the mech-

anism by which such changes are effected. Thus our conception of plasticity implies no

sense of improvement and is independent of its utility to a host agent. We realise that our

definition makes a distinction between ‘plastic’ variables(i.e., weights and biases) and

other variables (e.g., firing rates) that is largely artificial — they are all just variables in a

dynamical system — but feel that adopting this terminology allows for a clearer discus-

sion.

6.2.2 Measuring the effects of plasticity

Some examples of previous uses of plasticity in CTRNNs include the application of Heb-

bian rules to controllers for a robot navigation task [60], the combination of Hebbian rules

with Ashbyan homeostatic adaptation [46], and the use of mechanisms analogous to the

action of diffusing gases [87] (which can be argued to be a form of plasticity since the gas

alters the way in which firing rates interact and thus createsa second order effect).

It is important to remember that adding plasticity to a CTRNN is not a simple mod-

ification or extension of it, but makes a significant change tonetwork dynamics. It is

tempting to see plasticity as a quantitative alteration of network parameters akin to a mu-

tation in the network genotype, but this view is misleading.Adding plasticity to a CTRNN

makes a qualitative change to its dynamics and can create a new class of controller with

very different characteristics.

Plasticity turns parameters into variables. For example, Hebbian plasticity rules change

the strength of synapses dependent on node activation. Thismeans that in a Hebbian net-

work the synaptic weights are variables, whereas in a non-plastic network they are param-

eters. Plasticity may act on a slower timescale when compared with firing rates, but the

increased number of variables adds extra degrees of freedomto the system irrespective of
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timescale. The corresponding increase in the dimensionality of the network’s dynamics

will have implications for evolvability.

How should we assess the usefulness of different kinds of plasticity? Given the general

aim of designing useful robots, comparative studies of the performance of different types

of controller in various evolutionary trials are a valid approach (some evolutionary ex-

periments will be reported in Chapter 7). However, the evolutionary approach is limited.

Evolutionary trials are by their nature task-dependent andwe should not be surprised if

one sort of controller outperforms another in a particular trial, but success in one scenario

does not necessarily imply superiority overall. Differentsorts of controller have different

sorts of dynamics, and may be better suited to some tasks thanto others; comparison of

evolvability is only possible when the performance criteria are well-specified.1

In pursuit of a more general comparison, it is useful to view plastic neural controllers

as dynamical systems composed of a coupling between a firing rate subsystem and a

plasticity subsystem. The way in which these subsystems interact and give rise to global

dynamics may allow us to classify the intrinsic dynamics of different kinds of neural

controller and find qualitative differences that allow us tomatch controllers with tasks

for which they will be well-suited. By this approach we may gain a theoretical base to

complement and guide the evolutionary robotics design methodology, moving away from

intuition and ‘black box’ design.

In this chapter, we look at the effect of homeostatic plasticity on some properties

of CTRNNs that are not task-specific, but instead might be significant for a variety of

network tasks. We hope to gain a general understanding of theeffects of homeostatic

plasticity that will help to explain the results gained fromevolutionary trials.

6.2.3 Adiabatic approximation

Plasticity in neural systems typically occurs on a much slower timescale to that of firing

rate dynamics, often by several orders of magnitude. This allows us to make a simplifying

assumption and treat the slower-changing plastic variables as fixed in relation to the faster-

changing firing rate variables, on the basis that the faster variables will typically reach an

equilibrium before the slower variables have changed significantly. This approach is based

on the technique of adiabatic elimination [73] and gives useful purchase on the analysis

of network behaviour.

We can approximate the behaviour of the whole plastic systemby studying the be-

haviour of non-plastic snapshots of the system at particular instants in time, treating the

1Goats are better at climbing mountains while sheep provide more wool, but it is hard to say that one
species is better than the other.
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slow plastic variables as fixed parameters. Effectively we consider the state trajectory

of the homeostatic plastic CTRNN as a journey through CTRNN-space. The state of the

plastic network at any point in time can be used to specify a non-plastic CTRNN. Compar-

ison of the non-plastic networks instantiated at differentpoints on this trajectory should

give some indication of the behaviour of the plastic network. Importantly, adiabatic elim-

ination can allow a more direct comparison of plastic networks to non-plastic networks in

some cases, because a non-plastic CTRNN can be instantiated from a plastic CTRNN by

freezing the plastic variables at any particular point in time.

The technique of adiabatic elimination is a useful tool and will be used extensively in

the work presented in this chapter, but it does not tell the whole story. We have already

looked at the dynamics of homeostatic plasticity in a singlenode in Chapter 5, and it

is important also to conduct analysis of the dynamics and behaviour of fully functioning

homeostatic plastic networks. However, mathematical analysis of larger networks is prob-

lematic, and the method of looking at the change in behaviourof non-plastic CTRNNs

instantiated from the attributes of plastic networks as they move through CTRNN-space

allows useful comparisons to be made.

6.2.4 Lifetime plasticity versus developmental period

Another issue in assessing the effect of homeostatic plasticity concerns the time at which

the plasticity should be applied. Should the plastic mechanism be used as a developmental

mechanism, and applied for a lengthy continuous period before the network is assessed?

Or should plasticity be applied in an ongoing manner during the entire functional lifetime

of the network, with assessment right from the start?

This issue is a greater concern when evolutionary trials areused, and will be treated

in more depth in Chapter 7. For the current set of experiments (that seek to determine

what effect homeostatic plasticity has on generic network dynamics) there is no network

‘function’ or ‘lifetime’ in any meaningful sense. We are more concerned with network

behaviour before, after, and during the application of homeostatic plasticity. Experiments

in this section are performed with plasticity applied continuously unless otherwise stated.

6.2.5 Measurement from random ensembles

We want to determine the effects of homeostatic plasticity when applied to CTRNNs

in a general sense. Therefore we are not interested in the effects of the plasticity on

any particular individual CTRNN or on CTRNNs trained to perform a particular task.

We wish to understand how homeostatic plasticity affects CTRNNs in general, which we
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hope will then allow us to predict what will happen when homeostatic plasticity is applied

to individual networks in particular.

To understand the general effects of homeostatic plasticity on CTRNNs and the be-

haviour of homeostatic networks, we need to look across the whole space of possible

networks. Looking at networks trained for a particular taskrestricts the study to a par-

ticular region of parameter space. Here we wish to expand ourfocus to cover the entire

space. The large number of parameters of CTRNNs means that exhaustive sampling of

the space is not feasible. Instead we will look at large ensembles of networks instantiated

from randomly chosen points in the parameter space. By looking at large ensembles it

should be possible to get a representative picture of the whole space.

6.2.6 Metrics for measuring networks

Because we are not interested in particular functions or behaviours, but instead want to

look at generic effects, the metrics we use to quantify the effects of plasticity are necessar-

ily very general. We discussed above the aim of improving CTRNNs as an evolutionary

substrate, and with this in mind the metrics we will use are some that we hope will be

relevant to the evolvability of neural robot controllers ingeneral, without being specific

to any particular problem.

6.2.6.1 Useful qualities for behavioural substrates

Without performing any evolutionary experiments, we mightlook for types of controller

that make it easy to generate behaviour in an autonomous agent placed in an environment.

Envisaging basic robotic tasks such as navigating a real-world environment, avoiding

obstacles, locating opportunities, and escaping threats,and observing that such behaviours

will form the basis of any more advanced tasks a mobile autonomous agent might be

asked to carry out, we feel that a good behavioural substratewill be one rich in the sorts

of behavioural primitive that might support such actions.

First, the agent must be capable of reacting to its environment. This may sound over-

simple, but it is not achieved in saturated CTRNNs. Reacting to the environment requires

that the agent be possessed of sensors and actuators with an effective link between them.

Signals must be transduced in some form from input to output to complete the sensorimo-

tor loop [28,30]. In a neural network controller, the input nodes must communicate with

the output nodes in some fashion. If they do not, then there isno link between sensory

information and action and thus the agent cannot react to a changing environment in any

meaningful way. Any action taken would be based solely on internal state with no refer-

ence to the outside world. This type of behaviour is unlikelyto be adaptive, since it will
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not allow opportunities to be exploited nor threats avoided.

Second, and more controversially, for an agent to display interesting or ‘cognitive’

behaviour it must have some form of internal dynamics. Without internal dynamics the

agent would be restricted to actions that are purely reactive, that is, it can only respond to

instantaneous stimuli and cannot integrate stimuli over time. To do so requires that some

internal state variable can store or reflect stimuli received at a previous moment in time.

If an agent controller has an ongoing internal dynamic, the task of behaviour generation

becomes one of modulating activity and guiding the dynamicsto suit the current situation

rather than that of generating behaviour from scratch at each moment in time. Sensory

input is then seen as a perturbation to an existing process,2 rather than as the sole trigger

for action.3

Third, building on the previous property, it is widely thought that autonomous os-

cillations are important in the generation of behaviour. A huge number of biological

systems depend on oscillations in some form, from legged locomotion to digestion, and

it is believed that many of these phenomena depend on rhythmic patterns generated in

the nervous system. Central pattern generation has thus beenthe focus of much research

effort, and it is not unreasonable to suppose that the ability to produce autonomous oscil-

lations will be important to artificial agents as well as biological ones. [67] offers a good

discussion of physiological rhythms, while [88], [29] and [17] describe good examples of

this kind of research from the field of adaptive behaviour.

6.2.6.2 Metrics

The properties described in the previous section form the basis of our metrics for quan-

tifying network behaviour. We will measure the sensitivityof nodes in the network, how

easily signals are propagated, and how likely networks are to display oscillatory dynam-

ics. By measuring the performance of ensembles of differentsorts of network on these

metrics we will be able to make qualitative distinctions between plastic and non-plastic

networks and understand the effect of homeostatic plasticity on CTRNNs in general.

6.2.7 Levels of analysis

When seeking to understand the effect of plasticity acting ona neural network, it is useful

to look at behaviour at the levels immediately below and above the network, that is, at

2Cf. dynamical systems approaches to cognition and behaviour [14,16,164,173]
3A counter-example to this argument is provided by stigmergic agents such as social insects, whose

behaviour is guided entirely by their environment. However, it may be argued that stigmergy involves a
form of memory just as much as other kinds of behaviour that are more commonly described as ‘cognitive’;
it is just that in the case of stigmergic behaviour the memoryis externalto the agent.
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the levels of the node and the agent. By understanding what occurs in individual nodes

we can make predictions about the network level and better explain what is observed.

By considering the level of the agent that is controlled by a network, we can interpret

the network level properties we see in terms of the actions ofan agent embedded in an

environment. In the experiments reported below we considerthe effects of plasticity at

the levels of node, network and embedded agent.

6.3 Method

In the set of experiments reported below the neural network and homeostatic plasticity

are implemented as described in Section 3.4.1 and Section 4.4, and this method will not

be repeated here. In this section we describe a robot simulation platform used to look at

agent-level behaviours and the implementation of the metrics used to measure network

performance.

6.3.1 Photo-sensitive robot simulator

To give an agent-level illustration of the different behaviours generated by plastic and

non-plastic control networks, a simple simulation of a light-sensitive robot was developed.

The simulated robot is not intended to represent any real-world robot, so there can be no

intention of transferring controllers from simulation to reality and we are able to sidestep

many of the problems that this can cause.

The robot is modelled as a circular body with two motors mounted at either ends of

an axle along its diameter and two light sensors mounted at angles of±π
3 radians from

the forward direction, as shown in Figure 6.1.

6.3.1.1 Kinematics

The simulated robot kinematics are adapted from [56]. Differential drive steering is ac-

complished by the two motors, which may give thrust both forwards and backwards,

allowing the robot to spin while stationary or to move forwards or backwards with any

instantaneous angular velocity. Robots are assumed to havenegligible mass, so that the

motor output can be taken as the tangential velocity of the robot at the motor mount point.

The instantaneous angular velocityω of the robot is calculated using Equation 6.1, and

this is used to calculate the motion of the robot using Equation 6.2, whereVL andVR are

the instantaneous velocities of the left and right motors respectively,d is the length of the

axle,ICC denotes the instantaneous centre of curvature (the imaginary point about which

the robot orbits at any given instant),β is the current heading of the robot, and(x,y) is the
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Figure 6.1: Diagram of photosensitive robot. The robot has two wheels that give differ-
ential drive steering in response to sensory input from its two sensors.

robot’s position. Details of how this system is derived can be found in [56]. The equations

are updated using Euler’s forward method with a timestep equal to that used for the neural

controller.

ω = (VR−VL)/d (6.1)

x′ = (x− ICCx)cos(ωδ t)− (y− ICCy)sin(ωδ t)+ ICCx

y′ = (x− ICCx)sin(ωδ t)+(y− ICCy)cos(ωδ t)+ ICCy

β ′ = β +ωδ t

(6.2)

6.3.1.2 Light sensors

The light sensors return a signal with strength inversely proportional to the distanceD

of the sensor from the light source. This is modelled as a signal varying as an inverse

exponential function (Equation 6.3). Sensors are assumed to be mounted on top of the

agent, so that they are never in the shadow of the robot’s body, and have a maximum

range at which they can detect light (denoted byDmax and set to 500 for the experiments

reported in this chapter).

Signal= e
−D

Dmax (6.3)
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6.3.1.3 Control network

The robot is controlled by a fully connected 6-node CTRNN of the type described above.

Two nodes are designated sensor nodes and each receive the signal from one of the

light sensors modified by an agent-symmetrical gain parameter (drawn from the range

[0,10.00]) as external input. Two other nodes are designated motor nodes, and the out-

put from these nodes is scaled to the range[−1.00,1.00] and modified by an agent-

symmetrical gain (again drawn from the range[0,10.00]) to give the instantaneous veloc-

ity created by that motor. Both sensory input and motor output have noise added before

the gain is applied, drawn from a uniform distribution in therange[−0.25,0.25].

6.3.1.4 Environment

Robots are placed into an infinite featureless plane containing one or more point light

sources. The sensory input from these sources is determinedby Equation 6.3, as men-

tioned previously.

6.3.2 Metrics

The metrics used to measure network performance are how wellsignals propagate through

the network, and how likely the network is to display oscillatory dynamics. These metrics

are supported by measurement of the sensitivity of individual nodes, and by some obser-

vation of the behaviours of photo-sensitive agents. The metrics will be used to measure

the effect of homeostatic plasticity in and on CTRNNs.

6.3.2.1 Node sensitivity

We here define sensitivity as the change in output caused by a change in input. More

specifically, we look at the mean change in output caused by a series of random step

changes in the external input to the node. Sensitivity is calculated here on nodes with a

self-connection, i.e., on the type of nodes used in fully connected CTRNNs.

To test sensitivity, external inputI (randomly drawn from a uniform distribution in

the range[−1.00,1.00]) is applied to the node and held constant for a period (usually

20 timesteps) to allow the node to reach a stable equilibriumoutput, at which point a

new external input is randomly selected from the same range.The firing rate of the node

at equilibrium is recorded immediately before each change in input is applied and used

to calculate the absolute difference in firing rate resulting from each change in input.

Sensitivity is defined as the mean change in firing rate causedby 1000 successive random

input changes, as given in Equation 6.4.
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Sensitivity=
1

1000

1000

∑
n=1

zn−zn−1 (6.4)

6.3.2.2 Signal propagation

Signal propagation is calculated similarly to node sensitivity, but on network architec-

tures. We want to get a picture of how homeostatic plasticityaffects signal propagation

in all types of network architecture, but exhaustive coverage of the whole space of possi-

ble topologies lies beyond the scope of this paper. Instead we use a subset of topologies

(shown in Figure 6.2) that we feel is sufficient to gain a general understanding. To measure

the impact of homeostatic plasticity, we will look at signalpropagation in networks before

and after a period of homeostatic plasticity; this period ofplasticity might be loosely com-

pared with a developmental phase in a biological organism. Data will always be gathered

on non-plastic networks in order to avoid any interference from the plastic mechanisms

and allow a fair comparison.

Signal propagation will be measured as the mean change in firing rates in a network

caused by a change in input. In order to gain a representativemeasure of signal propaga-

tion in a particular type of CTRNN topology, we will look at large numbers of randomly

parameterised networks of that type, measuring the mean change in firing caused by many

different input changes.

This conception of signal propagation is rudimentary and does not consider the in-

formation content of a signal or transmission accuracy. Nordo we consider the prospect

of an appropriately adapted CTRNN performing computation over its inputs such that

in some cases the output would not change for a given change insensory input (e.g., a

predator that has evolved to do nothing when presented with inappropriate prey). How-

ever, the point we are trying to make concerns the very possibility of any information

being transmitted, and as such we feel that such a basic measure is justified.

6.3.2.3 Oscillations

The mathematical formulation of CTRNNs means that oscillatory dynamics are not pos-

sible in a single node, but are only possible in networks of 2 or more nodes depending

on parameterisation. In a large network there are many subcircuits that could maintain a

stable oscillation; in an N-node network there areN(N−1)
2 2-node subcircuits,N(N−1)(N−2)

6

3-node subcircuits, and so on. As N rises, there is thus an exponential increase in the

number of possible oscillatory subcircuits and we would expect the likelihood of an au-
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(a) Fully connected (b) Random

(c) Feedforward

Figure 6.2: Different network topologies used to test signal propagation: (a) Fully con-
nected — each node has a self-connection and an afferent connection from every other
node, (b) Random — based on Erdös-Renyi scheme [57], example shown has 50% prob-
ability of connection between each pair of nodes, (c) Feedforward — there are no back-
wards or lateral connections. External input is applied to an arbitrarily chosen subset of
nodes in the fully connected and randomly connected networktopologies, or to the first
layer in the feedforward topology.



Chapter 6 100 Network behaviour

tonomous oscillatory dynamic to rise.4

Whether or not an oscillatory stable state does in fact occur is dependent on network

parameters (connection weights, biases, decay constants)and on the initial state of the

system. Some network parameterisations will always produce an oscillation irrespective

of initialisation, some will never produce an oscillation,and many will show oscillations

if the initial condition is favourable.

We looked at how likely CTRNNs were to display autonomous oscillations. Specif-

ically, we considered the statistical likelihood of an oscillatory dynamic occurring in a

randomly parameterised network. This was measured by creating large ensembles of

random CTRNNs, starting each network in a variety of different initial conditions, and

observing its subsequent behaviour to see if an oscillationoccurred in any subcircuit of

the network.

Oscillations were detected by looking at a combination of variance in neuron firing

rate and repeated change of sign in the rate of change of neuron potential, since these

together indicate an oscillatory dynamic; repeated changes of sign of the rate of change

of potential mean that there is an oscillation in potential,while non-zero variance in firing

rate means that this oscillation in potential is translatedinto an oscillation in firing rate (it

is possible that a saturated node may display an oscillationin potential without this being

detected in its firing rate). This method is crude and does notdifferentiate between limit

cycle and chaotic oscillations, but is computationally tractable and thus allows sufficient

data to be collected in a reasonable time.

6.4 Node-level effects of homeostatic plasticity

6.4.1 Slow oscillations

The first node-level effect to observe is that the introduction of homeostatic plasticity cre-

ates the possibility of slow oscillations in firing rate as the plastic mechanism causes firing

rate to repeatedly flip-flop between too-high and too-low levels. This effect is contingent

on initialisation and is a result of the lack of a stable firingrate equilibrium inside the

target homeostatic range. This effect was discussed earlier (in Section 5.6) and will not

be further described here.
4The precise nature of the relationship between network sizeand the likelihood of oscillatory dynamics

is not straightforward to determine and will be affected by connectivity [95].
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Figure 6.3: Node sensitivity rises over time as homeostaticplasticity is applied. NP - no
plasticity, AB - adaptive bias, SS - synaptic scaling.

6.4.2 Increased sensitivity

Parameter sets for 200 single nodes were randomly generated(τy ∈ [1.00,4.00], w ∈

[−10.00,10.00], b∈ [−10.00,10.00], τw = 40,τb = 20) and instantiated. The nodes were

then updated for 500 timesteps while homeostatic plasticity was applied with different

regimes (synaptic scaling alone, adaptive bias alone, bothsynaptic scaling and adaptive

bias together). Every 5 timesteps a snapshot of node parameters was taken and instanti-

ated in a non-plastic node in order to measure changes in nodesensitivity over time as

plasticity was applied.

Sensitivity is plotted against time in figure 6.3, which shows that the homeostatic plas-

tic mechanisms cause a rise in node sensitivity over time. The adaptive bias mechanism is

significantly more effective in doing so than the synaptic scaling mechanism, while both

mechanisms together are the most effective.

The reason for the greater efficacy of the adaptive bias mechanism over the synap-

tic scaling mechanism is hinted at in Figure 5.3. Recall thathomeostatic plastic change

continues until the representative point of the node in parameter space lies within the

constraint-satisfying region. Also recall that the adaptive bias mechanism always success-

fully achieved a constraint-satisfying parameter set, whereas the synaptic scaling mech-

anism cannot alter the sign of the weight and thus is not always successful in satisfying

the constraints. Since sensitivity is maximised when nodesare in the constraint-satisfying

region, this explains the low efficacy of the synaptic scaling mechanism in raising node

sensitivity compared to the adaptive bias mechanism. Combining the two mechanisms

means that the node can move in all directions through parameter space and gives similar

sensitivity to the adaptive bias mechanism.
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6.5 Network-level effects of homeostatic plasticity

6.5.1 Additional behavioural timescales

The slower timescale introduced by the plasticity, which can cause slow oscillations at the

node level, also adds an additional slower timescale to the dynamics at the network level.

The slow node-level oscillations still occur when nodes areconnected in a network, and

can cause bifurcations in network behaviour. For example, anode showing the slow flip-

flop behaviour may trigger a switch between a stable oscillatory dynamic in the network

when its firing output is high and a fixed-point network attractor when its output is low.

6.5.2 Transient dynamics

As mentioned previously, adding homeostatic plasticity toa CTRNN converts weight and

bias parameters into variables, albeit with a slower timescale than firing activity. This

increase in the dimensionality of the system has a big effecton the complexity of the

dynamics. One way in which this is expressed is in the time taken for the system to

converge to an attractor when started from a random initial state. A rough measure of the

time taken to converge to an attractor is given by the time taken for the system to converge

to a repeating sequence. A repeating sequence in a deterministic system indicates either a

fixed point or a limit cycle attractor, and while this measurewould not detect convergence

to a chaotic attractor (which would not repeat), it serves asa useful metric for comparing

the time to convergence of networks with different plasticity regimes. Tables 6.1, 6.2

and 6.3 show results from a series of experiments in which we generated ensembles of

randomly parameterised, randomly initialised networks and recorded how long they took

to converge to a repeating sequence.

We tested non-plastic CTRNNs and HP-CTRNNs with different sizes of target range

for the firing rate and different values forτb and τw. Ensembles of 1000 networks of

each type were randomly initialised withw,b∈ [−10.00,10.00], τy ∈ [1.00,5.00] andy∈

[−8.00,8.00], and were updated using Euler’s forward method. We monitored network

state as it changed over time and measured the lengths of the transient trajectories prior

to a repeating sequence being reached, terminating the run after 20000 timesteps if no

repetition of state had been found. The results shown include the mean and median lengths

of the transients, calculated on those cases when a repeating sequence was reached.

i

The results shown indicate that there is a huge difference inthe time to convergence

of the different network types. Non-plastic CTRNNs always converged in the given time

period, typically taking less than 100 timesteps to do so. Incontrast, HP-CTRNNs were
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Repeating seq. foundMean trans. length Median trans. length
1000/1000 63 47

Table 6.1:Convergence to repeating sequence: Non-plastic 10-node CTRNNs. Transient lengths shown
to nearest timestep. Non-plastic CTRNNs converge reliablyand quickly.

Repeating seq. foundMean trans. length Median trans. length
τw = 4,τb = 2 953/1000 1671 1155
τw = 8,τb = 4 919/1000 3513 2670
τw = 40,τb = 20 186/1000 10135 11451

Table 6.2:Convergence to repeating sequence: 10-node HP-CTRNNs withtarget rangez∈ [0.05,0.95].
Transient lengths shown to nearest timestep. Not all of the plastic networks converged to a repeating
sequence in less than the 20000 timesteps available in the trial, with the rate of plastic change having an
impact on the likelihood of a repeating sequence being reached. Slower plasticity (larger time constants)
made networks less likely to converge and increased the length of the pre-convergence transient period.

Repeating seq. foundMean trans. length Median trans. length
τw = 4,τb = 2 637/1000 7444 6327
τw = 8,τb = 4 492/1000 10114 9547
τw = 40,τb = 20 1/1000 — —

Table 6.3:Convergence to repeating sequence: 10-node HP-CTRNNs withtarget rangez∈ [0.25,0.75].
Transient lengths shown to nearest timestep. These networks were tested with a tighter homeostatic target
range than the networks described in Table 6.2, which accentuated the effects of the plasticity on the conver-
gence of these networks. The tighter range made the networkssignificantly less likely to reach a repeating
sequence in the trial duration of 20000 timesteps, and wherea repeating sequence was reached the transient
period was substantially longer. When plasticity was used atthe slowest rate shown(τw = 40,τb = 20),
only one network reached a repeating sequence in the given time; mean and median transient lengths were
not computed for this case due to the paucity of data. It is possible that given more time more networks
would have converged, but here the time allowed was restricted to allow fair comparison with data from
Tables 6.1 and 6.2.

less likely to reach a repeating state in less than 20000 timesteps, and took many thousands

of timesteps if they did so. The tightness of the homeostatictarget range had an effect on

convergence, as did the rate at which the plasticity acted, with faster plasticity and a more

relaxed range giving quicker convergence.

While the plastic networks take a long time to converge to a repeating sequence, it

should be noted that the character of their dynamics during the transient phase is not

without structure. After a noisy initial stage, they typically show a slowly attenuating

convergence that may be best described as ‘spiralling in’ towards the attractor state.
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6.5.3 Improved signal propagation

The increased sensitivity caused by homeostatic plasticity at the node level is also seen

at the network level, where it is exhibited as an increase in the strength of the signal

propagated when network input changes. The effect of homeostatic plasticity on signal

propagation was measured for the different types of networktopology mentioned above.

Each type of network topology was tested in a similar way. Ensembles of randomly

parameterised networks were generated. Signal propagation was examined in each net-

work in its original state, and then again after a period in which homeostatic plasticity was

applied. All connection weights and biases were drawn from the range[−10.00,10.00]

and all neuron potential decay constants were drawn from therange[1.00,4.00]. Plastic-

ity was applied withτw = 40 andτb = 20. Networks were updated using Euler integration

with a step size of 0.2 timesteps.

Network input was chosen randomly from a uniform distribution. Input was held

constant for a period during which network firing rates were measured and then a new

input was chosen. The mean size of the change in output causedby each change in

input was calculated over a large number of input presentations to give a representative

measure of the change in network activity that might typically be expected from a change

in input. This measure was used to compare signal propagation between different network

topologies before and after plasticity was applied.

The change in output was assessed in different (though similar) ways depending on

the network topology. The mathematical formulation of CTRNNs means that stable os-

cillatory dynamics can occur if two or more nodes are connected in a loop. In networks

where cyclic paths are possible (that is, fully and randomlyconnected networks but not

feed-forward networks), there is a good chance that oscillatory dynamics will occur. In

these networks, the mean firing rate was measured for each node over the full period for

which input was held constant. The period was chosen to be long enough such that any

transient dynamics (while the network settled to a new stable state following the change

in input) would have an insignificant effect on the recorded mean. The use of the mean

allowed a rough comparison between oscillatory and fixed-point stable states; if the os-

cillation changed then its mean value would most likely change also. For the feedforward

networks, where oscillations cannot occur, the firing rate of each node was measured at

the end of each period prior to the presentation of a new inputvector. This allowed the

network to settle to a new fixed-point before measurement.

Results given here are from simulations where both kinds of homeostatic plasticity

(synaptic scaling and adaptive bias) were applied simultaneously. Equivalent runs per-

formed with each mechanism acting alone gave qualitativelysimilar results. Data from
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these runs are omitted for clarity.

6.5.3.1 Fully connected networks

Fully connected networks have a connection in both directions between each pair of

nodes, and every node also has a self-connection (see Figure6.2(a)). They are the type

of neural architecture most commonly used in the evolutionary robotics literature. A key

point to note is that there is a path length of one link betweenany pair of nodes, meaning

that in a fully connected architecture there is a direct connection between input and out-

put nodes. This direct influence of the input node on the output node is modulated by the

activity of the other nodes.

Networks were created with 1, 3, 5 and 10 nodes; 200, 600, 1000and 2000 networks

of each respective size were created to reflect the combinatorial expansion in the number

of parameters.5 A single node in each network was designated the input node and received

input randomly drawn from the range[−5.00,5.00], held fixed for 200 timesteps. Signal

propagation was measured over 1000 input presentations. Homeostatic plasticity was

applied for 500 timesteps and then signal propagation was measured again.

Results are plotted in Figure 6.4, which shows the mean changes in output caused by

a change in network input for each node in the network, beforeand after the homeostatic

plasticity is applied. The input node in each network is marked on the plots; the other

nodes shown are the hidden nodes. The input node shows a significantly greater response

than the other nodes. However, before plasticity is applied, even the input node does not

demonstrate a large mean change in state, and the other nodesshow negligible change.

The mean change of state in any node is inversely related to the size of the network;

this is because as the size of the network grows, the externalnetwork input becomes less

significant compared to the influence of other nodes. After plasticity, the same pattern

is repeated, with the input node showing a much greater change in state in response to

a change in input. However, the overall level of response is much greater than the pre-

plasticity networks.

6.5.3.2 Randomly connected networks

Biological neural networks are not fully connected, but aremuch more sparsely con-

nected. For this reason we studied the effects of homeostatic plasticity on signal propa-

gation in 10-node CTRNNs where connectivity was based on the random graph scheme

5There areN(N + 2) parameters in a fully connected N-node CTRNN; in 1-node, 3-node, 5-node and
10-node networks there are 3, 15, 35 and 120 parameters respectively. We realise that the numbers of
networks used to generate the data do not therefore reflect aneven sampling rate but feel that sufficient data
was produced to suffice for the intended demonstration.
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Figure 6.4: Signal propagation in fully connected CTRNNs after homeostatic plastic-
ity has been applied. Mean change in node firing rate in response to a random change
in network input is shown for N-node networks forN ∈ {1,3,5,10}. Mean changes in
node firing rates in response to stimuli are increased by homeostatic plasticity: dark grey
represents pre-plasticity level, light grey is post-plasticity increase.

devised by Erd̈os-Renyi [57,136]. In these graphs edges between vertices are assigned at

random with a fixed probability (see Figure 6.2(b)). Here we created networks by assign-

ing afferent connections between each pair of nodes with fixed probability, generating a

random weight value for each connection created. These networks are not intended to

mimic the structure of biological neuronal networks (whichin any case varies in differ-

ent species and in different regions of the brain), but simply to give an idea of signal

propagation in more sparsely connected networks.

Ensembles of 1000 networks were generated forP(Connection) ∈ {0.0,0.1, ...,1.0}.

A single node in each network was designated the input node and received input drawn

from the range[−5.00,5.00], held fixed for 200 timesteps. Signal propagation was mea-

sured over 1000 input presentations. Homeostatic plasticity was applied for 500 timesteps

and then signal propagation was measured again.

The effect of changes in input on randomly connected networks is shown in Figure 6.5.

Input nodes are most affected for all P values, as would be expected, but as connectivity

increases the effect of input decreases due to the increasedinfluence of input from other

nodes. Hidden nodes are most affected at intermediate connectivity rates of around 20-

30%; below this connectivity rate there are insufficient connections for signals to be able

to propagate, above this rate the large number of inputs eachnodes receives reduces the

effective influence of the input node. Homeostatic plasticity significantly increases the

effect of input in all cases.

6.5.3.3 Feed-forward networks

An example of the feedforward architecture used is given in Figure 6.2(c). Each node has

a self-connection and receives input from every node in the preceding layer; there are no
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Figure 6.5: Signal propagation in CTRNNs based on Erdös-Renyi random graphs. Net-
works are created by assigning afferent connections between each pair of nodes with fixed
probability. Mean change in node firing rate in response to a random change in network
input is shown for 10-node networks forP(Connection) ∈ [0.0,1.0]. Mean changes in
node firing rates in response to stimuli are increased by homeostatic plasticity: circle and
square markers represent pre-plasticity and post-plasticity levels respectively.

lateral connections within a layer or return connections tothe preceding layer. This archi-

tecture is included in order to look at signal propagation through multiple network layers.

While feedforward architectures are in many cases studied without self-connections to

the nodes, self-connections were included in the feedforward topology used here to allow

easy comparison with the fully connected and randomly connected topologies.

For this architecture input was applied to all nodes in the first layer of the network,

and signal propagation was measured as the magnitude of the change in the firing rate

vector at each layer subsequent to a change in input. Each node in the input layer received

input from the range[−1.00,1.00] which was held constant for 100 timesteps. The mean

size of change was measured over 100 input presentations, for ensembles of 200, 1000

and 2000 networks with 1, 3 and 5 nodes per layer respectively.6

Figure 6.6 shows the mean change in state vector at each layerfor the ensembles

generated, before and after the application of homeostaticplasticity. It can clearly be seen

that prior to plasticity, the change in input typically doesnot affect many downstream

layers of the network for any of the network sizes. For theN = 1 networks (effectively

chains of individual neurons) only neurons in the first 3 layers are affected, and by small

amounts. As N rises the signal travels further, but even forN = 5 the signal does not get

further than the 10th layer. The signal travels further whenN is larger because not only is

the change in the input vector more significant (incorporating a change in N component

dimensions), but each neuron receives input from more neurons in the previous layer

(recall that in the feedforward architecture each neuron receives input from all neurons in

6The number of parameters in a feedforward network with L layers of N nodes isLN(N + 3); for
networks with 25 layers of 1, 3 and 5 nodes there are 100, 450 and 1000 parameters respectively. Obviously
the sampling rate is low, but again we feel that sufficient data has been generated to support the argument
here.
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Figure 6.6: Signal propagation in feedforward networks with 25 layers of 1, 3 and 5 nodes,
shown as mean change in firing rate vector for each layer caused by a random change in
network input. Layer 0 in the plots represents the input vector. Plots shown for networks
before (dashed line) and after (solid line) homeostatic plasticity has been applied. Note
that∆ZLayer refers to vector change in firing rate of all nodes in a layer rather than change
in firing rate of an individual node.

the previous layer as well as its own self-stimulation; there are no lateral or backwards

connections). This has the effect of amplifying the change in state at each layer and thus

allows the signal to travel further. It is worth pointing outthat if any of these feedforward

controllers were used for robot control, before plasticitythey would produce a robot that

never did anything. Changes in input never cause a change in output, meaning that an

agent controlled by the network would never change its behaviour in response to input.

After the homeostatic plasticity has been applied, the change in input clearly causes a

change in state at layers much further downstream from the input layer than beforehand.

This trend is seen in all the network sizes tested, although it is more prominent in the

networks with larger N since these are inherently more conducive to signal propagation

because of their greater level of connectivity.

These results suggest that if a feedforward architecture isused for any purpose, home-

ostatic plasticity should be considered as a method of ensuring that signals are passed

usefully from input to output.

6.5.4 Greater likelihood of oscillations

Ensembles of fully connected N-node CTRNNs were generated for N ∈ {3,5,8,10}. 500

networks of each size were generated with connection weights randomly drawn from the

range[−10.00,10.00], biases drawn from the range[−10.00,10.00] and decay constants

drawn from[1.00,5.00]. Each network was initialised from 100 randomly sampled po-

sitions in its state space. After initialisation the network was updated for 100 timesteps

to allow it to settle into a stable equilibrium, after which it was observed for another

100 timesteps to determine whether this equilibrium was a fixed point or an oscillatory
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dynamic,7 with oscillations detected as described in Section 6.3.2.3.

An oscillation in the network was said to exist if at least oneof the nodes showed

an oscillation in firing rate.8 The proportion of initial conditions that led to oscillatory

dynamics was measured for each network and used to calculatea mean value for the

whole ensemble of networks of that size. Each network then had homeostatic plasticity

applied for a period of 400 timesteps withτw = 40 andτb = 20, after which the proportion

of initial conditions that led to an oscillatory stable state was calculated as before.

Figure 6.7 shows the proportion of initial conditions leading to stable autonomous

oscillations in fully connected CTRNNs before and after homeostatic plasticity has been

applied. There is a positive correlation between the size ofthe network and the likeli-

hood of an oscillatory dynamic, reflected in the increased proportion of initial conditions

leading to oscillation as network size increases.

Before plasticity is applied, it is noticeable that even in the 10-node networks there is

only a small (≈ 6%) proportion of initial conditions leading to autonomousoscillations.

This suggests that randomly parameterised CTRNNs are not very likely to display rhyth-

mic dynamics. However, after plasticity has been applied, networks of all sizes are much

more likely to oscillate. This can be intuitively interpreted as homeostatic plasticity mak-

ing networks more sensitive and thus more likely to oscillate. The removal of saturation

effects makes sure that all nodes play a part in network dynamics, increasing the num-

ber of effective possible oscillatory subcircuits and making the network as a whole more

conducive to maintaining autonomous rhythms.

This finding resonates with Mathayomchan and Beer’s demonstration that centre-

crossing CTRNNs are more likely than standard-form CTRNNs [127] to show oscilla-

tions. Oscillations are thought to be important for a variety of motor-control tasks and

the results shown here suggest that homeostatic plasticitymight be a good method for

increasing the likelihood of their occurrence in CTRNNs.

6.6 Agent-level effects of homeostatic plasticity: anecdo-

tal evidence

It is hard to quantify agent behaviour without having a particular task in mind. However,

here we will present some evidence that homeostatic plasticity can make the behaviours

exhibited by an agent more ‘interesting’. Without making any claims as to the usefulness

of the properties described here, we wish to draw attention to the increased level of inter-

7No distinction was made between limit cycles and chaotic dynamics.
8In fact any oscillatory network dynamics must necessarily involve at least 2 nodes.
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Figure 6.7: Mean proportion of initial conditions that leadto oscillatory autonomous dy-
namics for fully connected N-node CTRNNs after homeostatic plasticity has been applied
(shown forN ∈ {3,5,8,10}). There is a significant increase after the plasticity has been
applied: blue (dark grey) shows the pre-plasticity level, green (light grey) shows the post-
plasticity level.

action between the agent and its environment that occurs when homeostatic plasticity is

used.

The robot used is that described in Section 6.3.1 above. We present two sets of tra-

jectory plots describing the motion of the robot was placed in an environment containing

light sources. The first set are from runs where the robot was controlled by a randomly

parameterised homeostatic plastic CTRNN, and the second setare from runs where the

robot was controlled by randomly parameterised non-plastic CTRNNs before and after a

period of plasticity.

6.6.1 Robots controlled by homeostatic plastic CTRNNs

Parameter sets for 6-node CTRNN networks and associated sensor/motor gain parameters

were randomly generated and instantiated as robot controllers. Figures 6.8(a), 6.8(b),

6.8(c) and 6.8(d) show motion for 4000 time steps (20000 Euler integration steps) where

the light source was randomly repositioned every 800 time steps. The symbol× marks

the position of light sources and the symbol+ marks the start position of the robot. Note

the different scales of the plots.

Robots controlled by randomly generated non-plastic CTRNNsalmost always rotated

on the spot and ignored the light source. Sometimes they moved in circles, but their

motion was consistently a steady rotation. This is explained by the observations of the

behaviours of fixed random CTRNNs; they are not generally sensitive to external input

because of saturation and tend to give constant output irrespective of input. If the motor

neurons fire at a constant rate the differential drive kinematics will produce a constant
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angular velocity for the robot, which gives the types of rotational movement observed.

An example of this is shown in Figure 6.8(a). The rotation cannot be seen in the plot as

the robot was spinning about its axis almost without any movement relative to the light

source. The net distance travelled by the robot is very small, and is due to gradual drift as

the robot’s rotation is very slightly influenced by the different light intensities its sensors

experience as it rotates.

In contrast to the non-plastic CTRNNs, robots controlled by the CTRNNs with synap-

tic scaling displayed quite complex behaviours. Since the synaptic scaling ensured that

they were sensitive to external input, these agents were strongly influenced by the light

source. Their motion, as seen in Figure 6.8(b), is complex; the easiest description is to

liken it to that of a moth near a flame. The robot approaches thesource, then veers away,

then approaches, then spends some time moving erratically away from the light source.

Periods of phototactic behaviour occur, but then cease, as do periods of photo-aversion.

The difference in behaviour for different randomly generated networks is considerable,

but the plot shown is representative of the general class of behaviours observed.

Interestingly, many of these agents showed occasional periods of phototaxis, and some

(roughly 10% by visual inspection) of the agents controlledby CTRNNs with synaptic

scaling displayed stable phototaxis. In these cases the typical pattern was an early period

of erratic behaviour, while the synaptic scaling configuredthe network to be sensitive

to external input, followed by consistent phototaxis. An example of this is shown in

Figure 6.8(c), where the robot approaches and then circles the light sources.

Robots controlled by CTRNNs with adaptive bias also displayed interesting behaviours,

which were generally some form of cycloidal motion (see Figure 6.8(d)). The cycloidal

motion is caused by the interaction of the adaptive bias withthe random set of fixed

weights causing oscillations in individual nodes. The cycloidal motion means that the

robot moves relative to the light source, in contrast to the near-stationary rotation of the

non-plastic CTRNN controllers. The cycloidal motion displayed was generally the same

irrespective of how far the agent was from the light source (Figure 6.8(d)), since the adap-

tive bias can counteract changes in ambient light intensity.

6.6.2 Robots controlled by non-plastic CTRNNs (before/after plas-

ticity)

We have seen that when homeostatic plasticity is active, it creates a greater level of inter-

action between the robot and the light source stimulus. To show that this increased level

of interaction is a feature of increased sensitivity and reduced saturation, and is not caused

by the increase in the complexity of the network dynamics, wenow show plots of agent
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Figure 6.8: Motion plots of photo-sensitive robots controlled by randomly parameterised
homeostatic plastic CTRNNs. Robots were placed into an environment containing a sin-
gle light source which was periodically moved to a new randomposition relative to the
robot. X marks the position of a light source, the line plots the trajectory of the robot’s
motion over time. Note the different scales of the differentsub-plots.
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motion before and after a period of plasticity. Here the robot is always controlled by a

6-node non-plastic CTRNN; motion plots are shown for the agent reacting to a series of

light sources before and after a period in which homeostaticplasticity was applied to the

network.

Figure 6.9 shows the behaviour of the robot for three different randomly parameterised

controllers before and after the application of homeostatic plasticity. The motion traces

show that initially the agents do not react to the light source. This is because their control

networks are largely saturated and they do not change their activity in response to the

light falling on their sensors; the controllers give constant output which is translated into

stereotyped agent behaviour of rotating on the spot. When thehomeostatic plasticity is

applied it stops the control networks giving a saturated response so that they now react

to the light source. The nature of their interaction with theenvironment is not of any

especially useful form, but an interaction exists.

6.7 Summary of results

In this chapter we have looked at the effect of homeostatic plasticity on and in CTRNNs.

We have seen that when homeostatic plasticity is active in a CTRNN, it creates the pos-

sibility of slow oscillations in a single isolated node due to the interaction of the plastic

mechanisms with firing rate. Plasticity also adds a slower timescale to network dynamics,

which can mean that networks take much longer to converge to arepeating sequence rep-

resenting a fixed point or limit cycle attractor. Agents controlled by homeostatic plastic

CTRNNs interact much more strongly with their environment.

We have also seen that when homeostatic plasticity is applied to a CTRNN and then

switched off again, so that the plasticity is used just as a developmental mechanism to

condition the network before use, the sensitivity of each node to input increases. This

means that signals can propagate much further through a network and that oscillations are

much more likely to occur. Agents controlled by CTRNNs that have been conditioned

with homeostatic plasticity interact more strongly with their environment.

6.8 Implications for robotics

In this chapter we have characterised the effects of homeostatic plasticity in and on

CTRNNs. In Chapter 7 we look at the implications of these effects for the evolvabil-

ity of CTRNNs, but before doing this there are a few observations we can make about the

utility of homeostatic plasticity for robotics more generally.
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(f) Example 3: After plasticity

Figure 6.9: Behaviour examples. Motion of three photosensitive CTRNN-controlled
agents before and after homeostatic plasticity is applied.Crosses mark the position of
the light sources. Before plasticity is applied the agents do not react to the light source,
after plasticity has been applied they are more sensitive tostimuli and there is a stronger
level of interaction.
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The introduction of an additional slower timescale into network dynamics may allow

increased behavioural complexity, and may also have a significant effect on the stability

of the system [24]. Homeostatic plasticity performs this function since it operates on a

timescale typically an order of magnitude slower than firingrate dynamics.

Node sensitivity is an important basic property in any neural network. If nodes are

not sensitive to input then they cannot do any useful information processing, and for

this reason homeostatic plasticity may be useful in some circumstances to ensure that an

appropriate level of sensitivity is maintained.

Similarly, signal propagation is vital to network information processing. If a change

in input does not cause a change in network output then no computation can be per-

formed. In fully connected network architectures the path length from input to output is

only one step, but in multi-layer networks signal propagation becomes a more significant

consideration. As demonstrated by the results shown above for feedforward architectures,

randomly parameterised non-plastic CTRNNs typically do notpass any signal more than

a few layers downstream. Homeostatic plasticity increasesthe distance a signal is prop-

agated by making individual nodes more sensitive. Thus, homeostatic plasticity may be

useful for improving signal propagation in multi-layer networks.

Oscillations in network dynamics are thought to be important for a variety of motor

control tasks in biology, and by extension in robotics also.Homeostatic plasticity not only

makes network-level oscillations more likely by increasing sensitivity, but also allows the

possibility of slow oscillations in single nodes, and may therefore by a useful mechanism

to include in control networks for certain motor tasks. Homeostatic plasticity also has

the potentially useful property of adding a slower timescale of oscillation to network

dynamics.

The work presented here has been done largely from the perspective of evolution-

ary robotics, but the properties described above are for homeostatic plastic networks in

general and are valid independent of the method used to parameterise the networks.

6.9 Implications for neuroscience

Homeostatic plasticity in biological nervous systems is thought to regulate neural firing

around some set point. It has often been ascribed a stabilising role in neural dynamics,

and has been suggested as a counter-mechanism to the destabilising positive feedback

effects associated with Hebbian plasticity.

However, the results presented here suggest that the network-level result of neuron-

level regulation of firing rates is actually increased levels of activity passing between

nodes. Homeostatic plasticity makes each node more responsive to input, meaning that
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signals propagate further and with greater amplitude. The result is an increased chance

of oscillatory dynamics and greater interaction between the network and its sensorimotor

environment.

Thus it seems that far from stabilising patterns of neural activity, homeostatic plas-

ticity may actually cause greater excitability at the network level and thereby destabilise

network dynamics. It is unwise to make too bold a claim about biological brains in refer-

ence to results derived from a grossly simplified cyberneticabstraction, but the results we

have obtained here suggest that the current neuroscientificview of homeostatic plasticity

as a stabilising force may not be true at the network level. The idea that homeostatic

plasticity counteracts Hebbian plasticity may, however, still be valid.

Hebbian rules in CTRNNs tend to cause positive feedbacks and lead to node saturation

as a result of extreme weight values. Homeostatic plasticity offers a mechanism that

can prevent node saturation in CTRNNs, maintaining network sensitivity and promoting

integrated dynamics. It may play a similar role in biological nervous systems.



Chapter 7

Does homeostatic plasticity make

CTRNNs more evolvable?

7.1 Overview

In this chapter we explore the impact of homeostatic plasticity on the evolvability of

CTRNNs for robot control. The chapter begins with some discussion of evolvability and

the reasons why an investigation into the evolvability of homeostatic plastic CTRNNs is

worthwhile. The experimental method is then described, followed by a presentation of

the results achieved. The chapter concludes with some discussion of the results and their

implications for evolutionary robotics and neuroscience.

7.2 Homeostatic plastic CTRNNs as an evolutionary sub-

strate

In Chapter 6 we saw that homeostatic plasticity makes CTRNNs more sensitive to input,

allows signals to propagate further, increases the likelihood of oscillatory dynamics, and

strengthens the interaction between an agent and its environment. Homeostatic plastic

CTRNNs arebehaviour-richandpoised to behave. We have also noted in Chapter 3 the

findings of Mathayomchan and Beer [127] that centre-crossing CTRNNs evolved good

pattern-generation circuits more quickly than standard CTRNNs [127]. We went on to

117
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show in Chapter 5 that homeostatic plasticity moves CTRNNs towards the centre-crossing

condition. If the inclusion of homeostatic plasticity makes CTRNNs behaviour-rich and

at the same time makes them similar to centre-crossing networks, then we might expect

that it will make CTRNNs more evolvable. However, there are also reasons why this may

not be so. As mentioned previously homeostatic plasticity increases the dimensionality

of network dynamics by turning network parameters into variables. This may increase

the amount of divergence and noise in the dynamics and increase their complexity, which

may make consistent performance more difficult to achieve. Also, we have seen that

homeostatic plasticity causes a large increase in the time taken for a network to reach

an attractor from initialisation, which might mean that networks perform badly in fitness

trials unless the trials are of sufficient duration to nullify possible poor performance during

the transient phase.

There are arguments for and against an evolvability payoff from homeostatic plasticity,

and it is not clear whether it will be useful. The remainder ofthis chapter will attempt to

shed some light on this issue.

7.3 Measuring evolvability

By common usage in evolutionary robotics,evolvability refers to how easy it is to op-

timise a neural controller using a genetic algorithm. We saythat a type of controller is

more evolvable if it reaches a higher level of performance than other types, or reaches an

equivalent level in fewer generations. This is a reasonablecommon sense definition and

one which we will make use of in this chapter, but there are a few complexities of which

we must be aware.

When the evolvability of a system is discussed, it is usually in reference to a particular

optimisation task and with a particular flavour of genetic algorithm in mind. Often a type

of controller is cited as being highly evolvable after it hasperformed well in a single

evolutionary task. This makes the often unstated assumption that there is some measure

of generality to evolvability, i.e., that if a class of controller is more evolvable using

genetic algorithm A on task X, it will also be more evolvable when optimised with genetic

algorithm B to perform task Y. However, there is little evidence for this and it seems likely

that evolvability is highly contingent on the form of the genetic algorithm and the specific

task it is applied to, as well as the nature of the controller.Good evolvability is likely

to result from a synergy between controller, task and genetic algorithm. This may make

testing thegeneralevolvability of a type of controller difficult.

However, using a similar argument to that in Section 3.4.3, we can claim that while

there may be no universal best-evolving controller, it is likely that there will at least be
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some controllers that are more evolvable than others with more varieties of genetic algo-

rithm and for more classes of behavioural task. Thus we can justifiably seek to find more

evolvable controllers that will improve the methodology ofevolutionary robotics and lead

to more rapid and robust design.

How should we find these evolvable controllers? To avoid the problem of task speci-

ficity highlighted above and try to gain the most general measure of the evolvabilty of a

class of controller, one method is to perform evolvability tests of the controller with many

different genetic algorithms and many different tasks. In the absence of a clear theory

of evolvability, it may be that this appeal to weight of data is in fact the best approach.

However, this method rapidly becomes intractable. Evolutionary robotics experiments

are computationally expensive and time consuming, especially if performed on hardware

rather than simulation. There is a clear trade-off between generality and tractability.

In an ideal world it would be beneficial to run a large variety of experiments to clearly

elucidate the evolvability benefits (or not) of homeostaticplasticity in CTRNNs. How-

ever, constraints of time and space mean that this is not possible in this thesis and we will

have to be content with the more limited set of experiments offered below. We accept that

this is not a complete account, but hope that it will shed at least some light on the issue

and perhaps point the way for future work.

The results presented in this chapter should be seen as the first few data points found

in a larger study of the evolvability of neural controllers with homeostatic plasticity. It is

hoped that other researchers may be tempted to run differentexperiments with different

implementations of the basic theory. Doing so will test the assumptions made in the cur-

rent implementation and thus allow for greater generality in the construction of a coherent

theory.

Here we will make use of the common sense definition of evolvability described above

and look for comparative fitness performance achieved with different plasticity schemes

and tasks when CTRNN controllers are evolved for simple agent-based behavioural tasks.

7.4 Method

We will look at evolvability of CTRNNs with and without homeostatic plasticity on two

simple agent-based tasks derived from original work by Beer[10]. These tasks involve a

simulated agent that uses visual information to respond to shapes that fall towards it in a

vertical plane. By moving horizontally towards or away froma falling object, the agent

can either catch shapes or avoid them. We define two behavioural tasks. The first task is

to use visual information to direct movement so that the agent catches all falling shapes.

The second task is to discriminate between different types of shape by catching some and
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Figure 7.1: The agent has a circular body and is equipped with3 ray sensors and 2 motors
that allow it to move horizontally in response to sensory input.

avoiding others.

Neural controllers are evolved using a standard genetic algorithm. Homeostatic plas-

ticity is applied in various schemes to look at the evolutionary performance of networks

incorporating adaptive bias, synaptic scaling, or both mechanisms together. The effect

of a pre-trial developmental phase of plasticity is also examined. In all experiments,

performance is compared against that of standard non-plastic CTRNNs, which act as an

experimental control.

7.4.1 Agent

The agent-shape system (see Figure 7.1) is an idealised abstraction of a situation in which

the shapes fall towards a robot that moves horizontally along a straight line on the ground.

The agent and the falling shapes are constrained to move in the same vertical plane so that

the world is two-dimensional. The agent has a circular body of radius 5 units.

7.4.1.1 Control network

The agent is controlled by a fully connected 5-node CTRNN with3 sensor neurons and 2

motor neurons. There are no interneurons. The CTRNNs and homeostatic plastic mech-

anisms are implemented as described above in Sections 3.4.1and 4.4 respectively, with

the homeostatic target range set to bez∈ [0.2,0.8]. The network is updated using Euler’s

forward method with step-size of 0.2 timesteps.
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7.4.1.2 Sensors

There are 3 ray sensors mounted on the periphery of the agent and arranged in an upward-

facing fan (see Figure 7.1), with each sensor giving a signalpresented to the network as

the external input (I in Equation 3.1) to a unique node in the CTRNN controller. Each

sensor returns a signal proportional to the proximity of anysurface with which its ray

intersects as specified by Equation 7.1. Sensors may be thought of as similar to laser

range-finders. The sensor array spans an arc ofπ
6 radians.

S= Smax

(

Dmax−D
Dmax

)

(7.1)

whereS is the signal returned by the sensor,Smax is the maximum sensor value,D is

the distance from the ray’s origin to the intersected surface, andDmax is the maximum

distance at which sensors can detect an object. In the experiments presented hereSmax=

5 andDmax = 100. Sensors only return intensity values related to the distance to the

intersection, and encode no other information.

7.4.1.3 Motors

The agent can move left and right horizontally as if mounted on a frictionless rail, with

motion determined by the output of the remaining non-sensornodes. The output of the

motor nodes is mapped to the output of two motors (acting in opposite directions) that

give an immediate horizontal velocity proportional to the difference in their activity. The

agent is assumed to have zero mass, so that there is no momentum or inertia. Agent

movement is calculated using Equation 7.2.

τxẋ = zright −zle f t (7.2)

wherex is the position of the agent,zle f t andzright are the firing rates of the motor neurons

for the left (negativex) and right (positivex) directions respectively, andτx = 0.2 is a time

constant for the velocity. Sinceτx is for simplicity chosen to be the same as the integration

step for the control network, the change in position at everynetwork update is given by

the right-hand side of Equation 7.2.

7.4.2 Falling shapes

There are two types of shape, circles and diamonds, both of radius 10 units (i.e., circles

are of radius 10 units, while diamonds are sized such that their vertices would lie on the

circumference of a circle of radius 10 units). Shapes begin at a horizontal displacement
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from the agent that is randomly chosen from 10 possibilitiesevenly distributed in the

range[x− 25,x+ 25], wherex is the position of the agent. They appear at a vertical

distance of 100 units above the agent, then fall until the lowest point of the shape passes

below the level of the uppermost part of the agent, at which point they disappear and are

replaced by a new shape randomly placed as before.

Since the agent can only sense objects through its 3 ray sensors, the agent’s percep-

tion of the falling shapes is a continuously varying triple of sensor values that varies as

the relative position of the shape from the agent changes. The values returned are also

determined by the relief of the leading edge of the shape, so the relationship between

the values in the triple provides information that can in principle be used to differentiate

between circles and diamonds.

7.4.3 Genetic algorithm

Each evolutionary run is performed with a population of 50 genotypes evolved for 500

generations. The initial population consists of randomly generated genotypes. Each sub-

sequent generation is created from the fittest members of thepreceding generation, se-

lected according to the scheme below.

7.4.3.1 Encoding

For all types of controller, the weights, biases and decay constants for all nodes in the net-

work are encoded on the genotype. The genotype is real-valued with allele values on the

range[−1.00,1.00]. These values are linearly mapped to appropriate ranges forthe as-

sociated phenotypic traits when networks are instantiatedfrom genotypes. The genotype

for anN-node network is thus an array of sizeN2+2N, i.e., 35 values in the 5-node case.

The allele values for weights and biases are interpreted differently for plastic networks

and non-plastic networks; for plastic networks the genotype encodes the initial values for

the weight and biasvariables, while in non-plastic networks the genotype encodes the

values for the weight and biasparameters.

7.4.3.2 Selection

Elitism is used to preserve the best genotypes from each generation unaltered. Each new

generation is formed by passing the 5 best genotypes unchanged from the previous gen-

eration and making up the rest of the new population from genotypes chosen by roulette

wheel selection.
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In roulette wheel selection the previous generation is firstof all ranked in fitness or-

der. Then, each member of the population is assigned a numberof slots in an imaginary

roulette wheel. Fitter genotypes have more slots. In a population size ofN there areN

slots assigned to the fittest genotype,N−1 to the second fittest, and so on down to the

least fit genotype, which gets 1 slot. There are thusN(N + 1)/2 slots in the complete

wheel.

The new generation is created by randomly choosing a slot (spinning the roulette

wheel) and using the associated genotype as a parent for the next generation. Since fitter

genotypes have more slots, they are on average more stronglyrepresented in the next gen-

eration than less fit genotypes. This process is repeated, with replacement, until sufficient

parent genotypes have been chosen to form the new population.

7.4.3.3 Mutation / crossover

No crossover was used, so that the population can be thought of as reproducing asexually.

The elite genotypes are passed to the next generation without mutation, but all other geno-

types are subjected to point mutation with a 3% chance of mutation at each allele. Two

forms of point mutation occurred with equal probability. The first type of mutation was

carried out by randomly choosing a new value for the allele from the range[−1.00,1.00].

The second type added to the existing allele value an amount randomly chosen from the

range[−0.50,0.50].

7.4.3.4 Fitness function 1: Ball-catching task

In the ball-catching task a series of circle shapes is dropped and the agent has to move so

that it intercepts them. The agent is awarded fitness for moving so that it ‘catches’ all the

falling objects, a task which involves locating the object and moving to keep the object in

the centre of its field of view until it reaches ground level.

In each trial, 20 circles are dropped from 10 possible start positions with randomly

chosen velocity. The horizontal component of shape velocity is drawn from a uniform

distribution on the range[−0.3,0.3], while the vertical component is drawn from the

range[−0.5,−0.2].

Fitness is calculated as a combination of scores on two criteria. The first criterion is

percentage reduction in the horizontal distance between the centre points of the agent and

the falling object. The second criterion is minimising the absolute distance between the

agent and the shape at the end of the trial, with the score normalised by comparing the

actual distance to the greatest possible distance based on the maximum speed of the agent.

Mean values for both criteria are taken over the 20 object presentations in each trial,
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summed with equal weighting and normalised to the range[0.0,1.0]. The trial fitness

score in the ball-catching task is therefore given by Equation 7.3.

Fitness=
1
P

P

∑
i=1

1
2

[

φ
(

1−
Sf inal

Sinit

)

+

(

1−
Sf inal

Smax

)]

i
(7.3)

HereS is the horizontal displacement of the object from the agent.φ(...) is a func-

tion that returns zero if the argument is outside the range[0,1], and otherwise leaves the

argument value unchanged, i.e., in this case the function returns zero ifSf inal > Sinit but

otherwise returns the argument value.Smax is the maximum achievable horizontal dis-

tance between agent and shape is calculated by working out the time taken for each shape

to reach the ground (based on its vertical velocity) and multiplying by the maximum hor-

izontal speed of the agent relative to the shape.P is the number of presentations (P = 20

used here). The indexed square brackets[...]i refer to the data gathered from theith object

presentation. The fitness for a genotype is taken as the mean value over 10 trials in order

to promote consistency in performance.

7.4.3.5 Fitness function 2: Discrimination task

The discrimination task is similar to the ball-catching task except that a variety of circle

and diamond shapes are presented, with the task for the agentbeing to avoid circles and

catch diamonds.

In this task the shapes fall vertically at a speed of 1 unit pertimestep and have zero

horizontal velocity. In each trial, 20 shapes (10 circles, 10 diamonds) are dropped from

10 possible positions.

A shape is deemed to be caught if it reaches the ground at a horizontal distance from

the agent less than the combined radii of agent and shape, i.e., if the agent and shape

overlap at ground level. Objects that are not caught are saidto be avoided. Catching or

avoidance is viewed as a behavioural expression of the agent’s successful discrimination

between objects.

Fitness is the proportion of correct classifications performed. Trial fitness for the

discrimination task is given by Equation 7.4.

Fitness=
1
P

P

∑
i=1

γ(i) (7.4)

whereγ(i) returns 1 or 0 when the correct or incorrect classification respectively is made

for presentationi, andP = 20 is the total number of object presentations in the trial.

Again the fitness for a genotype is calculated as the mean value over 10 trials in order

to promote consistency in performance.
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7.5 Results

We will present results here from four experiments, in orderto tell a comprehensible

story about the effect of homeostatic plasticity on the evolvability of CTRNN robot con-

trollers. First we will perform a basic comparison of evolvability of CTRNNs with dif-

ferent plasticity schemes. Next we will look at the effect ofadding a developmental pe-

riod to the evolutionary trials, then at how homeostatic plastic networks perform next to

centre-crossing networks. Finally we will consider the performance of larger non-plastic

CTRNNs, in order to determine the effect on evolvability of greater numbers of degrees

of freedom in network dynamics.

7.5.1 Experiment 1: Comparative evolvability of CTRNNs with dif-

ferent homeostatic plasticity schemes

For this set of experiments CTRNN controllers with differentplasticity schemes were

evolved using the method and tasks described above. Ten evolutionary runs were per-

formed for each scheme to make sure that the results gained were representative; while

10 measurements is not a large sample, it should be sufficientto reduce the influence of

occasional anomalous data whilst remaining within the bounds of tractability.

The plasticity schemes used are given below. All networks had 5 nodes and were fully

connected, with sensor/motor connections as described in the method above.

• Non-plastic CTRNN

• CTRNN with synaptic scaling

• CTRNN with adaptive bias

• CTRNN with both synaptic scaling and adaptive bias

Each type of network was tested on both the ball-catching anddiscrimination tasks.

Figure 7.2 shows the average evolutionary performance of controllers with each plasticity

scheme on the ball-catching task, taken over 10 evolutionary runs. Figure 7.3 shows the

performance in each run individually for comparison. Figures 7.4 and 7.5 show the same

results for the discrimination task.

The results for the ball-catching task show that the best individual performances were

by non-plastic networks, but that the population average fitness was generally slightly

higher for the plastic controllers (Figure 7.2). All of the plastic controllers reach a high

level of fitness in fewer generations than the non-plastic controllers, with the average

fitness rising more quickly in the early stages of the evolutionary runs.
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(a) Non-plastic
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(b) Synaptic scaling
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(c) Adaptive bias

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Synaptic scaling and adaptive bias

Figure 7.2:Ball-catching task.Plots show mean performance over 10 evolutionary runs of
CTRNNs with different homeostatic plasticity schemes. In each plot, upper line is fitness
score of best individual in population, lower line is mean fitness score for population.
Both are plotted against generational time. Non-plastic networks reach the highest levels
of fitness by an individual in the population, but plastic networks are more consistent,
with a higher population mean fitness.
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(a) Non-plastic
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(b) Synaptic scaling
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(c) Adaptive bias
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(d) Synaptic scaling and adaptive bias

Figure 7.3: Ball-catching task.Plots show individual run performances (for 10 evolu-
tionary runs) of CTRNNs with different homeostatic plasticity schemes. In each plot,
upper line is fitness score of best individual in population,lower line is mean fitness score
for population. Both are plotted against generational time. Non-plastic controllers show
jerky increases in fitness during the early stages of the evolutionary runs, while plastic
controllers show a smoother increase.
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(a) Non-plastic

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Synaptic scaling
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(c) Adaptive bias
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(d) Synaptic scaling and adaptive bias

Figure 7.4:Discrimination task.Plots show mean performance over 10 evolutionary runs
of CTRNNs with different homeostatic plasticity schemes. Ineach plot, upper line is
fitness score of best individual in population, lower line ismean fitness score for popula-
tion. Both are plotted against generational time. All kindsof network perform poorly, but
non-plastic networks are slightly better than the plastic networks.
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(a) Non-plastic
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(b) Synaptic scaling
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(c) Adaptive bias
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(d) Synaptic scaling and adaptive bias

Figure 7.5: Discrimination task. Plots show individual run performances (for 10 evo-
lutionary runs) of CTRNNs with different homeostatic plasticity schemes. In each plot,
upper line is fitness score of best individual in population,lower line is mean fitness score
for population. Both are plotted against generational time. Most of evolutionary runs
for the non-plastic networks show some degree of progress, but only a few of the plastic
networks show any improvement in evolutionary time.



Chapter 7 130 Evolvability

The plastic controllers also all show a smooth increase in fitness, whereas the non-

plastic networks exhibit a more jerky increase. While this jerky increase would be smoothed

out if the sample size of runs was increased, it is notable that the plastic controllers are

a lot more consistent than the non-plastic networks, showing greater similarity in their

performances in different runs than the non-plastic networks (see Figure 7.3). The plas-

tic controllers always quickly evolve a reasonable level offitness, while the non-plastic

controllers improve slowly to begin with but go on to eventually reach a higher best per-

formance level. There is little difference between the different plastic networks, with all

giving a similar level of performance.

The results for the discrimination task show that it is a moredifficult evolutionary

challenge than the ball-catching task. Figure 7.4 shows that the non-plastic networks

achieve only a moderate level of fitness, while the plastic networks universally perform

poorly.

It is possible to get a fitness score of 0.5 in the discrimination task by shooting off in

one direction, hence catching nothing and thus making 50% correct classifications. This

strategy is likely to be present in the initial population ofall of the controller types. The

plastic networks appear never to improve on this strategy, with the best networks in each

generation probably just being lucky enough to make a few additional correct classifica-

tions accidentally. Looking at Figure 7.5 we can see that theresults for the individual runs

show that in only a few cases do the plastic networks show any evolutionary progress, and

also that this may take several hundred generations of genetic drift to appear.

Comparing the results for both tasks, we see that homeostaticplasticity offers advan-

tages of consistency and quick early progress in the ball-catching task, but is eventually

out-performed by the best non-plastic networks in most runs. In the discrimination task

we observe that the plastic networks are clearly out-performed by the non-plastic net-

works. It is not immediately clear why this should be so, though looking at the strategies

of the best non-plastic networks suggests one possibility.The best evolved non-plastic

networks use an active scanning motion where the agent movesrapidly from side to side

as the object approaches. Catching is then performed by narrowing the amplitude of this

oscillation, and avoidance by expanding it at the last moment. There is only a small

observable difference between the catch and avoid behaviours and it may be that the in-

creased dimensionality of the dynamics in the plastic networks makes them too clumsy

and unreliable for this level of sensitive control.

The level of performance of the different homeostatic plastic mechanisms seems to be

similar in all regimes. The adaptive bias mechanism has a slight advantage in the ball-

catching task, but this is too slight for us to conclude it is better than synaptic scaling in

general, especially given our earlier remarks about the contingent nature of evolvability.
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The plastic networks also show similar poor levels of performance on the discrimination

task.

From this experiment we have seen that in terms of achieving the highest level of

fitness the plastic networks perform worse than the non-plastic networks. However, on

the ball-catching task the plastic networks offer advantages of quicker early progress in

the evolutionary run and more consistency in achieving a reasonable level of performance

in multiple runs.

7.5.2 Experiment 2: The effect of a developmental period

Here we want to look at the effect on evolvability of a developmental phase, where home-

ostatic plasticity is applied for a period in each trial prior to fitness assessment. We looked

at the same types of plastic controller as in Experiment 1, updating every network for 6000

timesteps before each trial began. In one set of evolutionary runs the plastic mechanisms

were left active during the trial (Figures 7.6 and 7.7), while another identical set of runs

was performed where the plasticity was switched off after development for the duration

of the fitness trial (Figures 7.8 and 7.9). In the latter case the plasticity is used purely

as a mechanism for pre-conditioning networks that have no active plasticity during their

functional lifetime.

Figures 7.6 and 7.7 show the performance of the plastic networks with and without

a developmental period for the ball-catching and discrimination tasks respectively. The

plots for performance without development have been repeated from Figures 7.2 and 7.4

for ease of comparison.

Performance is broadly very similar on first inspection, with similar levels of fitness

being reached irrespective of the presence/absence of a developmental period. However,

careful examination of performance in the early stages of the evolutionary runs (genera-

tions 0-150) for the ball-catching task shows that the developmental period has the effect

of reducing the number of generations taken until a high level of fitness is achieved. This

effect seems to be most pronounced in the plots for the synaptic scaling and adaptive bias

mechanisms acting individually.

For the discrimination task, the developmental period causes a small increase in the

levels of fitness reached, but overall performance by the plastic networks on this task

remains very poor.

The effect of the developmental period when used as a pre-conditioning phase for

non-plastic networks is quite large in the ball-catching task. Figures 7.8 and 7.9 show the

results for runs where homeostatic plasticity was applied for a period prior to each fitness

trial, but then switched off while the trial was performed.
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(a) SS without developmental period
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(b) SS with developmental period
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(c) AB without developmental period
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(d) AB with developmental period

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) SS&AB without developmental period
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(f) SS&AB with developmental period

Figure 7.6:Ball-catching task.Plots show mean performance over 10 evolutionary runs of
CTRNNs with different homeostatic plasticity schemes with and without a pre-trial devel-
opmental period. In each plot, upper line is fitness score of best individual in population,
lower line is mean fitness score for population. Both are plotted against generational time.
SS - synaptic scaling, AB - adaptive bias. The developmentalperiod improves progress
in early stages of the evolutionary runs compared to networks without a developmental
period, as demonstrated by the quicker attainment of high fitness in the runs with devel-
opment.
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(a) SS without developmental period

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SS with developmental period

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) AB without developmental period
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(d) AB with developmental period
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(e) SS&AB without developmental period
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(f) SS&AB with developmental period

Figure 7.7: Discrimination task. Plots show mean performance over 10 evolutionary
runs of CTRNNs with different homeostatic plasticity schemes with and without a pre-
trial developmental period. In each plot, upper line is fitness score of best individual
in population, lower line is mean fitness score for population. Both are plotted against
generational time. SS - synaptic scaling, AB - adaptive bias. The use of a developmental
period causes a slight improvement in performance but overall levels of fitness are poor
both with and without a developmental period.
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(a) Non-plastic CTRNN without develop-
ment
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(b) Non-plastic CTRNN after SS develop-
ment
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(c) Non-plastic CTRNN after AB develop-
ment
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(d) Non-plastic CTRNN after SS&AB de-
velopment

Figure 7.8:Ball-catching task.Plots show mean performance over 10 evolutionary runs
of non-plastic CTRNNs where fitness trials were performed after a period of homeostatic
plastic development. In each plot, upper line is fitness score of best individual in popula-
tion, lower line is mean fitness score for population. Both are plotted against generational
time. Development performed with different plasticity schemes: SS - synaptic scaling,
AB - adaptive bias. Using homeostatic plasticity as a developmental mechanism to pre-
condition non-plastic CTRNNs gives a clear advantage in evolutionary performance.



Chapter 7 135 Evolvability

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Non-plastic CTRNN without develop-
ment
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(b) Non-plastic CTRNN after SS develop-
ment
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(c) Non-plastic CTRNN after AB develop-
ment
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(d) Non-plastic CTRNN after SS&AB de-
velopment

Figure 7.9:Discrimination task.Plots show mean performance over 10 evolutionary runs
of non-plastic CTRNNs where fitness trials were performed after a period of homeostatic
plastic development. In each plot, upper line is fitness score of best individual in popula-
tion, lower line is mean fitness score for population. Both are plotted against generational
time. Development performed with different plasticity schemes: SS - synaptic scaling,
AB - adaptive bias. In this task, conditioning non-plastic networks with a period of home-
ostatic plastic development made no significant differenceto performance.
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The plots for the ball-catching task (Figure 7.8) show a distinct improvement in the

speed of evolution of good controllers, though again the final levels of fitness reached are

similar irrespective of development. High levels of fitnesson the ball-catching task are

reached several hundred generations earlier when non-plastic networks are pre-conditioned

with homeostatic plastic development.

Developmental pre-conditioning has very little effect on performance in the discrimi-

nation task (Figure 7.9), with perhaps a small negative effect on levels of best performance

reached.

It is interesting to note that the plastic networks with development perform similarly

to those without. From this we can deduce that the reason for the poor performance of

the plastic networks is not related to the increased length of the transient phase in their

dynamics that was identified in Chapter 6. It might be thought that the continual change

in network behaviour during the long transient phase contributed to the poor performance

by adding noise to the genotype-to-phenotype mapping, but the good performance of non-

plastic networks after development shows that the long transient phase is not in itself to

blame. It appears from this that it is the presence of active plasticity which is the important

factor in causing poor performance on the discrimination task.

7.5.3 Experiment 3: Comparison of pre-conditioned networks with

centre-crossing networks

The improved evolvability of the non-plastic networks after a developmental period on

the ball-catching task might be because the homeostatic plasticity moves the networks

towards the centre-crossing condition during development, as we showed in Chapters 5

and 6. This would tie in with the improved evolvability of centre-crossing networks on a

pattern generation task that was demonstrated by Mathayomchan and Beer [127].

Evolutionary runs were performed using the same method as the previous experi-

ments, using non-plastic networks in which the centre-crossing condition enforced under

two different regimes. The first regime seeded the initial generation of each genetic al-

gorithm with genotypes calculated to give centre-crossingnetworks, but then allowed the

evolutionary process to move network parameters away from centre-crossing neighbour-

hood by mutation. Thus in this regime the centre-crossing condition was only enforced

in the first generation and was then subject to evolutionary change. The second regime

enforced the centre-crossing condition all through the evolutionary run, by calculating the

necessary bias terms from the genetically specified weightsat every agent initialisation.

Figures 7.10 and 7.11 show the results achieved on the ball-catching and discrimina-

tion tasks respectively. The figures show performance in runs with the centre-crossing
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(a) Non-plastic CTRNN without develop-
ment
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(b) Non-plastic CTRNN after SS&AB de-
velopment
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(c) Non-plastic CTRNN with CC seeding
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(d) Non-plastic CTRNN with CC always en-
forced

Figure 7.10: Ball-catching task. Plots show mean performance over 10 evolutionary
runs of non-plastic CTRNNs where the initial population is seeded with centre-crossing
networks and also where the centre-crossing condition is enforced for every network in
every generation. Also shown is performance of non-plasticCTRNNs with and without
homeostatic plastic development for comparison. In each plot, upper line is fitness score
of best individual in population, lower line is mean fitness score for population. Both
are plotted against generational time. SS - synaptic scaling, AB - adaptive bias, CC -
centre crossing. Best performance is shown by centre-crossing networks and by networks
conditioned with homeostatic plastic development, which perform to similar levels.
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(b) Non-plastic CTRNN after SS&AB de-
velopment

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Non-plastic CTRNN with CC seeding
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(d) Non-plastic CTRNN with CC always en-
forced

Figure 7.11:Discrimination task. Plots show mean performance over 10 evolutionary
runs of non-plastic CTRNNs where the initial population is seeded with centre-crossing
networks and also where the centre-crossing condition is enforced for every network in
every generation. Also shown is performance of non-plasticCTRNNs with and without
homeostatic plastic development for comparison. In each plot, upper line is fitness score
of best individual in population, lower line is mean fitness score for population. Both
are plotted against generational time. SS - synaptic scaling, AB - adaptive bias, CC -
centre crossing. Centre-crossing networks perform best on this task, showing better levels
of mean and elite fitness than standard CTRNNs and networks with homeostatic plastic
development.
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condition enforced under the two regimes described above, and also the performance of

standard non-plastic CTRNNs and the non-plastic CTRNNs afterdevelopment (repro-

duced from Figures 7.2, 7.4, 7.8 and 7.9) for comparison.

In the ball-catching task, centre-crossing networks out-perform the standard networks

when enforced in both the regimes described above. The best performance is by networks

where the centre-crossing condition is always enforced, which show a similar level of per-

formance to the non-plastic networks that have been conditioned by homeostatic plastic

development. This similarity lends support to the hypothesis that the good performance

of the non-plastic networks after development is because the homeostatic plastic moves

them towards the centre-crossing condition, where they arein a behaviour-rich region of

parameter space and poised to behave.

The situation for the discrimination task is a little different. Centre-crossing networks

created under both regimes out-perform the other types of network. The best performance

is again by the networks where the centre-crossing condition is always enforced.

Taken together the results are a little confusing. In one task, centre-crossing networks

and networks where homeostatic plastic development moves them towards the centre-

crossing condition show similar levels of success, suggesting that proximity to the centre-

crossing condition is the source of their success. In the other task the centre-crossing

networks show a significant improvement over the standard networks, whereas the devel-

oped networks show a performance decrease.

We know from previous work that homeostatic plasticity moves networks towards

the centre-crossing condition. The results for the ball-catching task suggest that this ac-

counts for the success of the pre-conditioned networks. Thepre-conditioned networks

in the discrimination scenario will still be close to the centre-crossing condition, which

suggests that their poor performance compared to centre-crossing networks found by pre-

calculation of bias terms must be related to some feature of the developmental process.

This finding would appear to contradict our conjecture in thediscussion of results from

Experiment 2 that the development process itself did not have a negative effect on perfor-

mance.

7.5.4 Experiment 4: Evolvability of larger non-plastic CTRNNs

One possible explanation for the poor evolvability performance of the homeostatic plastic

CTRNNs in some of the previous experiments is that the increased dimensionality of

their dynamics makes their behaviour too complex and the intra-network interactions too

strong for evolution to be successful.

The complexity of a dynamical system is a difficult property to quantify. To do so in a



Chapter 7 140 Evolvability

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Non-plastic 5-node CTRNN
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(b) Non-plastic 12-node CTRNN
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(c) Non-plastic 20-node CTRNN
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(d) Homeostatic plastic 5-node CTRNN
(SS&AB, no development)

Figure 7.12:Ball-catching task.Plots show mean performance over 10 evolutionary runs
of non-plastic CTRNNs of different sizes. Also shown is performance of networks with
active homeostatic plasticity for comparison. In each plot, upper line is fitness score of
best individual in population, lower line is mean fitness score for population. Both are
plotted against generational time. SS - synaptic scaling, AB - adaptive bias. Increasing
the size of the network decreases evolvability, with lower levels of fitness reached by
larger networks.
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(a) Non-plastic 5-node CTRNN
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(b) Non-plastic 12-node CTRNN
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(c) Non-plastic 20-node CTRNN
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(d) Homeostatic plastic 5-node CTRNN
(SS&AB, no development)

Figure 7.13:Discrimination task. Plots show mean performance over 10 evolutionary
runs of non-plastic CTRNNs of different sizes. Also shown is performance of networks
with active homeostatic plasticity for comparison. In eachplot, upper line is fitness score
of best individual in population, lower line is mean fitness score for population. Both are
plotted against generational time. SS - synaptic scaling, AB - adaptive bias. Increasing
network size reduces evolvability, with larger networks reaching lower levels of fitness.
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rigorous fashion is not straightforward, but we can perhapsperform some useful informal

testing of our hypothesis by testing the evolvability of large non-plastic CTRNNs. By

adding more nodes to a network we potentially add more dimensions to its dynamics.

Thus we may to some extent test the idea that greater dimensionality in the autonomous

dynamics of a system makes it harder to evolve.

Figures 7.12 and 7.13 show the results from evolutionary runs with non-plastic CTRNNs

with 12 and 20 nodes. Results for 5-node plastic and non-plastic networks are reproduced

from Figures 7.2 and 7.4 for comparison. It can be seen from these plots that increasing

the size of the network reduces evolvability, with lower fitness values being reached for

both ball-catching and discrimination tasks.

We can note from these runs that adding potential dimensionsof variation to the net-

work dynamics in these cases reduces evolvability, and tentatively suggest that a similar

effect could occur when dimensions are added by including active plasticity. AnN-node

non-plastic CTRNN has up toN dimensions in the dynamics, whereas anN-node network

with both adaptive bias and synaptic scaling active can haveup toN2 + 2N dimensions.

The large difference in the number of degrees of freedom of the plastic networks com-

pared to non-plastic networks may explain the poor performance of the plastic networks.

It should be noted that counting the dimensions in which a system may vary is a very

weak method of comparison. The nature of the coupling between the different variables

in a system is obviously hugely important in classifying itsbehaviour. This is another

reason why comparing plastic networks to non-plastic networks is not straightforward.

Even if they have the same number of dimensions of variation,the interactions between

these variables are very different. For this reason we must exercise caution when draw-

ing conclusions about plastic networks from the behaviour of non-plastic networks with

greater numbers of nodes.

However, we can observe here that adding dimensions makes evolving good con-

trollers more difficult in some cases and speculate that thismay cause the poor perfor-

mance of the plastic networks.

7.6 Summary

From the results of the experiments described above we can observe that homeostatic

plastic CTRNNs reach lower levels of best fitness than non-plastic CTRNNs on both the

ball-catching and discrimination tasks, but that the plastic networks are more consistent

than the non-plastic networks, with higher population meanfitness and greater consis-

tency between evolutionary runs. The plastic networks alsoevolve more quickly in the

early stages of the evolutionary runs for the ball-catchingtask, but they always perform
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badly on the discrimination task.

The use of a developmental period improves the performance of the homeostatic plas-

tic CTRNNs on both tasks, while the use of a developmental period to pre-condition non-

plastic networks gives a large improvement in evolutionaryperformance on both tasks

also. Centre-crossing networks give a similar level of performance to conditioned non-

plastic networks on the ball-catching task, but perform better on the discrimination task.

Finally, the evolutionary performance of non-plastic networks decreases as network

size increases.

7.7 Implications for robotics

These results deliver a mixed verdict on the utility of homeostatic plasticity for improv-

ing evolvability. While homeostatic plastic networks can bemore consistent and evolve

more quickly to begin with, they are ultimately out-performed by non-plastic networks. It

thus appears that the only evolvability benefit that can be claimed by homeostatic plastic

CTRNNs is quick early progress and consistency, and even these results are not seen in

the discrimination task.

However, when used as a mechanism for pre-conditioning non-plastic networks prior

to the commencement of fitness testing, we see an improvementin performance on the

ball-catching task, although little difference is seen in the results for the discrimination

task. These results seem to suggest a useful role for homeostatic plasticity for improving

evolvability. This role is undermined, however, by the greater success of centre-crossing

CTRNNs on both tasks.

Centre-crossing networks are the most successful kind of network on both of the evo-

lutionary tasks, and the recommendation from our experiments is that the best way to

improve evolutionary progress is to use this kind of network. It seems likely that the

good performance of the non-plastic networks after homeostatic plastic development on

the ball-catching task is at least in part because the homeostatic plasticity moves the net-

works to the centre-crossing condition before the trial begins. If there is a simple calcu-

lation that can be performed in place of the developmental period with similar effect (i.e.,

Equation 3.4) then the computational expense of using homeostatic plastic development

must count against it.

The most likely explanation for the reduced evolvability ofthe plastic networks is that

their dynamics are simply too complicated for evolutionarysearch to be able to optimise

their parameters. The experiments performed with larger non-plastic CTRNNs showed

that as the networks grew larger their evolutionary performance was reduced. We can

take this as evidence that more complicated network dynamics reduces evolvability, with
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some caveats relating to the qualitatively different nature of plastic networks to non-plastic

networks.

One complication is that the genetic algorithm used here allows the possibility of the

initial parameters of a plastic network being set by evolution. This could potentially make

the plastic mechanisms redundant, since careful parameterisation could prevent home-

ostasis being lost during normal behaviour. It would be interesting to study the effects of

homeostatic plasticity on evolutionary progress in a scenario where network parameters

were initialised randomly during each trial, thus ensuringa greater role for the plastic

mechanisms in agent performance.

The results achieved do not suggest any immediate evolvability benefit from using

homeostatic plasticity in CTRNNs, except when used as a developmental mechanism, in

which case an equivalent effect can be achieved with less computational cost by using

centre-crossing networks.

However, the experiments we have performed are very limitedin scope and should

be seen only as the beginnings of an investigation into the evolvability of homeostatic

plastic networks. As we discussed above, evolvability testing is not straightforward and

more data is required before we can claim a good understanding of the evolvability of

homeostatic plastic CTRNNs. It may be that other robotics scenarios, using other kinds

of behavioural task or different genetic algorithms, mightdeliver contradictory results to

those seen here. This is likely given the significant differences in the results from the two

very similar tasks shown here.

Also, looking for direct evolvability benefits from homeostatic plasticity may be mis-

guided. Homeostatic plasticity is thought by neuroscientists to play a role in regulating

network function against perturbations from other types ofplastic mechanism during the

lifetime of an individual. It may be that homeostatic plasticity in artificial neural networks

will be useful performing a similar function in robot brains, maintaining sensitivity in the

face of perturbations during the agent lifetime.

These perturbations may be internal, such as changes to network structure caused by

other plastic mechanisms. For example, homeostatic plasticity may allow a robot con-

troller to avoid node saturation and maintain network sensitivity in the face of destabilis-

ing positive feedbacks caused by Hebbian learning.

Alternatively, perturbations may be environmental. For example, consider the case

where a light-sensitive robot must behave in a variety of different environments, each

with a different level of ambient light. While sensor nodes ina non-plastic CTRNN might

have difficulty in adjusting to the different levels of ambient light, being over-stimulated in

bright conditions and under-stimulated in dull conditions, sensor nodes using homeostatic

plasticity would be able to adjust their sensitivity to the current conditions and maintain
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their functional response.1

The bottom line is that we simply do not have enough data to draw any major con-

clusions concerning the utility of homeostatic plasticityfor improving evolvability. Here

we have presented results from one implementation of homeostatic plasticity, tested on

two tasks on a single simulated robot platform. Much more work is needed to develop

a fuller understanding. The results presented above do not show much benefit to using

homeostatic plasticity, but maybe that is because the situations have not demanded it. If

an evolutionary scenario calls for maintenance of network sensitivity and avoidance of

saturation in the face of lifetime perturbations, it seems likely that homeostatic plasticity

will be of use.

7.8 Implications for neuroscience

The most evolvable networks were the centre-crossing CTRNNs, followed by the non-

plastic networks after a developmental period. The developmental period actually creates

centre-crossing networks from a non-centre crossing starting position, without the explicit

calculation of bias terms that was used for the ‘traditional’ centre-crossing networks used

by Mathayomchan and Beer [127].

Biological nerve cells do not engage in abstract mathematics, and are thus unable to

create centre-crossing networks by pre-calculation of bias terms, even supposing that a

direct biological counterpart to the bias term existed. If centre-crossing networks (that

is, sensitive networks consisting of neurons that respond strongly to input) are beneficial,

then maybe homeostatic plasticity is a means of creating them that is accessible to bio-

logical evolution. Homeostatic plasticity is thought to have a significant role during the

development of the mammalian brain [172], and perhaps one ofits functions is to move

neuronal networks towards a condition where they are sensitive and respond to input,

perhaps in the face of pressures from other forms of neural plasticity.

1The ability of homeostatic plastic CTRNNs to maintain theirsensitivity in the face of changing base
levels of external input was demonstrated in a published paper based on work in this thesis. See Williams
(2004) ‘Homeostatic plasticity in recurrent neural networks’ as referred to in the front matter of this thesis.
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Discussion of Part III

8.1 Overview

In this chapter we will try to summarise and discuss the material presented in Part III,

looking at the main findings and their implications for robotics and neuroscience. We will

review the methods and approach used, before going on to outline ideas for future work.

8.2 Summary of results

8.2.1 Chapter 3: Background

In Chapter 3 we reviewed the relevant literature concerning homeostatic plasticity both in

biological neuronal networks and in artificial neural networks applied to robotics. We in-

troduced evolutionary robotics and continuous-time recurrent neural networks (CTRNNs),

that are both fundamental to the work presented in later chapters. We saw that homeo-

static plastic mechanisms have recently become an increased focus of research in the

neurosciences, and that their use in artificial neural networks for robot control is almost

unexplored. Where homeostatic mechanisms have been used with robot controllers, none

of the reported work covers the questions we wish to address.

Di Paolo [46,48] and Balaam [8] were interested in Ashby’s idea of homeostatic adap-

tation [7], and accordingly their implementation did not reflect the picture of homeostatic

plasticity favoured by neuroscientists.

146
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Another investigation by Di Paolo into the use of homeostatic oscillators [47] is the

closest prior study to the current work in terms of mechanism, but was again aimed at

the question of behavioural robustness rather than an investigation of the homeostatic

mechanisms identified by neuroscientists. While the adaptive mechanism used in [47] is

similar to the adaptive bias mechanism used here, the different timescale and research

goal mean that there is little overlap with the work presented in this thesis.

Hoinville and Henaff [84] were also interested in robustness, and while the mecha-

nisms they employed were intended to reflect those seen in biological brains, there were

significant methodological problems with their implementation and we can learn little

from their work.

The centre-crossing networks presented by Mathayomchan and Beer [127] are rele-

vant here, but cannot be said to be homeostatic mechanisms. Although we showed in

Chapter 5 that homeostatic plasticity creates centre-crossing networks, the networks used

in [127] were created by explicit pre-calculation of parameters and employed no homeo-

static mechanisms.

With this background the aims of the current work were identified. The first task was

to develop mechanisms to implement homeostatic plasticityin CTRNNs. Subsequently

we wanted to see if homeostatic plasticity solved the problem of node saturation, before

going on to investigate its effects on CTRNNs at the levels of node, network and agent.

Since this work falls mostly under the banner of evolutionary robotics, the final aim was

to look at the impact of homeostatic plasticity on evolvability.

8.2.2 Chapter 4: Can homeostatic plasticity be implemented in CTRNNs?

Chapter 4 covered how homeostatic plasticity could be implemented into CTRNNs. The

functional effects of the different homeostatic mechanisms seen in biological brains were

discussed, and mechanisms acting to scale synaptic weightsand alter the intrinsic ex-

citability of neurons were identified as being most suitablefor use with CTRNNs. Sim-

ple mathematical formulae to govern plastic change were developed, making use of Di

Paolo’s plastic facilitation mechanism (Equation 4.1) [46], and implementing homeostatic

plasticity in CTRNNs in the form of mechanisms for adaptive bias (Equation 4.3) and

synaptic scaling (Equation 4.2).

The chapter finished with some discussion of which level of abstraction was appropri-

ate when implementing homeostatic plasticity in CTRNNs, concluding that the level of

realism chosen should be (and in fact was) roughly equivalent to the level of abstraction

of CTRNNs compared to real brains. The homeostatic plastic networks used here thus

retain the same level of biological relevance as CTRNNs.
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8.2.3 Chapter 5: Does homeostatic plasticity prevent node satura-

tion?

Chapter 5 opened with some analysis of the nature of the constraint imposed on single-

node CTRNNs by specifying a target range for firing rates. It was shown that in most

cases, homeostatic plasticity will move the node to a constraint-satisfying region of pa-

rameter space, although in some cases there is no stable equilibrum that allows this and

nodes may display a slow oscillation as the plastic mechanism continually seeks to satisfy

the constraint.

The concept of a constraint-satisfying region of parameterspace was generalised to

multi-node networks, and it was noted that in a functioning network homeostatic plasticity

may move the network through parameter space towards the constraint-satisfying region

without ever reaching it, due to the continually changing inputs the network receives. The

character of homeostatic constraint satisifaction in a network as anongoing processwas

discussed.

8.2.4 Chapter 6: What effect does homeostatic plasticity have on net-

work behaviour?

In Chapter 6 we looked at the effect of homeostatic plasticityon CTRNNs at the levels of

nodes, networks and agents. This was measured on metrics of sensitivity to input, signal

propagation, and likelihood of oscillatory dynamics. The behaviour of a light-sensitive

robot controlled by a homeostatic plastic CTRNN was simulated and observed.

Before any experimental work was done it was noted that adding plasticity to a net-

work creates a new class of controller, and is not simply an additive change to the existing

network. This raises difficulties in fair comparison, and the method of adiabatic approx-

imation for comparing the behaviour of non-plastic networks with plastic networks was

discussed and used throughout the experiments.

It was shown that homeostatic plasticity allows slow oscillations to occur in a single

node, and causes individual nodes to become more sensitive to external input by moving

them closer to the centre-crossing condition.

In networks, homeostatic plasticity was shown to add a slower timescale to network

dynamics and cause a large increase in the time taken for network dynamics to converge

to an attractor from a random initial state. Signal propagation was improved in fully con-

nected, randomly connected, and feedforward CTRNN architectures. Oscillations were

much more likely to occur in both homeostatic plastic networks and in non-plastic net-

works after a period of homeostatic plastic development. Oscillations in firing rates were
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made more likely by homeostatic plastic development because they made networks more

excitable and allowed signals to propagate further. Plastic networks behaved similarly, but

also had the possiblility of slower oscillations involvingchanges in weights and biases,

caused by individual nodes failing to satisfy the homeostatic constraint.

Homeostatic plasticity made the interaction between the photo-sensitive agent and a

light source in its environment much stronger both when the plasticity was left active

and also when used as a pre-conditioning mechanism for the agent controller. This was

demonstrated by motion plots of agent’s controlled by randomly parameterised networks

interacting with a series of light sources. Standard CTRNN controllers typically ignored

the light sources, while plastic controllers showed obvious and continuous interaction.

8.2.5 Chapter 7: Does homeostatic plasticity make CTRNNs more

evolvable?

Chapter 7 opened with an argument for why homeostatic plasticnetworks might be more

evolvable than non-plastic networks, citing their properties of increased sensitivity, better

signal propagation and increased likelihood of oscillations. These properties are thought

to be important in a number of biological motor control systems and could therefore be

useful for artificial agents.

A series of evolvability experiments was then reported, after some preliminary discus-

sion of the difficulties in measuring evolvability caused bythe contingent nature of evolu-

tion. These experiments used a simulated agent whose control network was evolved with

a genetic algorithm to catch and discriminate between different types of falling shape.

The results of the evolvability experiments were not conclusive. In terms of best

fitness, networks with active homeostatic plasticity generally performed worse than non-

plastic networks. Although they showed quicker progress early in evolutionary runs and

greater consistency in reaching a reasonable level of performance, they were eventually

out-performed by non-plastic networks.

When homeostatic plasticity was used just as a developmentalmechanism for the

robot control networks, that is, when it was applied for a period prior to the fitness trial and

then switched off again, it had significant beneficial effects on one of the tasks and slight

beneficial effects on the other task. The developmental period caused quicker evolution

of good controllers.

It was conjectured that this benefit might be because the developmental process moved

the control network to the centre-crossing condition, thusleaving it poised to behave. To

test this hypothesis, some runs were performed with centre-crossing networks created by

calculating bias terms as in the original work by Mathayomchan and Beer [127]. These
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centre-crossing networks proved to be the most successful type of controller on both the

tasks. They were better than the plastic and non-plastic networks in terms of speed of

evolution and best level of performance reached. They also achieved equivalent or bet-

ter performance than the non-plastic networks conditionedby a developmental period of

homeostatic plasticity. Since the centre-crossing networks achieved at least equivalent

performance to the developed networks, without incurring the computational cost of the

developmental process, the centre-crossing networks wereheld to be more evolvable than

the developed networks on the tasks investigated here.

Chapter 7 concluded with some discussion of the significance of the results presented.

It was pointed out that due to time and space constraints the question of evolvability had

not been fully addressed, and that more work was needed to gain a more complete under-

standing. Also, since neuroscientists believe that the function of homeostatic plasticity in

biological nervous systems is to control the destabilisingeffects of other plastic mecha-

nisms, it was suggested that homeostatic plasticity might be most useful playing a similar

role in artificial neural networks. If the evolutionary taskinvolved disruptions to network

function by alternative forms of plasticity or from environmental perturbation, homeo-

static plastic networks may be more evolvable and perform more strongly than they did

on the static control tasks employed here.

8.3 Implications for robotics

From the perspective of robotics, we are interested in whether or not we have learned

anything from our studies of homeostatic plasticity that can be used to help us build better

robots more quickly. The results we have presented suggest anumber of ways in which

homeostatic plastic CTRNNs might be useful.

Homeostatic plasticity as implemented above operates on a slower timescale than neu-

ral activation dynamics. This may be useful in situations where the environment or task

faced by a robot requires action on a wider range of timescales than those easily allowed

by standard CTRNNs. While standard CTRNNs can implement dynamics on timescales

slower than that of individual nodes by carefully designed network structure, homeostatic

plasticity may allow easier access to a wider range of timescales using fewer nodes.

Also, the slow oscillations that can be displayed by single homeostatic plastic nodes

may allow some useful form of switching. The flip-flop behaviour of these nodes as they

alternate between high and low activations may be useful as aform of binary switching

that could perhaps be used to trigger different network behaviours.

The network-level properties resulting from the application of homeostatic plasticity

(i.e., increased sensitivity, better signal propagation and more oscillations) seem likely
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to be useful for a variety of robot control tasks. However, since these properties are

also demonstrated by centre-crossing networks and are thusavailable without the com-

putational overhead of homeostatic plastic development, it seems likely that homeostatic

plasticity will only be useful in situations where these properties must be maintained in

the face of perturbation. This is supported by the evolvability results shown in Chapter 7,

where centre-crossing networks were the most successful controller on the static tasks

used.

It is easy to imagine situations where the ability to maintain sensitivity and signal

propagation in a network in the face of perturbations will beuseful. One obvious case

is networks where other forms of plasticity are active. For example, if Hebbian learning

rules are altering synaptic weights in response to patternsof associated activity, this can

cause positive feedback and runaway weight change. This would lead to extreme weight

values and network saturation if left to run unchecked. Homeostatic plasticity could pro-

vide a mechanism by which such changes were counter-balanced. This balance would be

dynamically maintained online during the agent lifetime, keeping networks sensitive and

ensuring some form of interaction between the agent and its environment.

A less obvious situation where the online maintenance of sensitivity and a non-trivial

coupling to the environment would be useful is the transfer of controllers from simula-

tion to hardware. As mentioned briefly in the introduction toevolutionary robotics in

Chapter 3, it can often be difficult to successfully transplant robot controllers that have

been evolved in simulation to the hardware they are supposedly designed to control. This

problem of bridging the ‘reality gap’ [89] might be ameliorated by the inclusion of home-

ostatic plasticity, since the plastic mechanisms should allow some of the inevitable differ-

ences between the simulated hardware and the actuality to beovercome.1 For instance, if

the level of gain in the interface between controller and hardware is not the same as the

amount in the simulation, the homeostatic plasticity should allow the controller to adjust

the sensitivity of the relevant nodes to compensate. A similar situation might occur in

cases where the real environment does not provide the same feedback as its simulated

counterpart. If the levels of stimulation received by the robot sensors are consistently too

high or too low, then homeostatic plasticity in the sensor nodes should allow for some

compensation to overcome this.

The ability to adjust excitability of sensor nodes should also be useful where the task

1For instance, Thompson [165] highlights unforeseen problems related to temperature when transfer-
ring artificially evolved field-programmable gate array (FPGA) circuits from simulation to reality. The
temperatures generated during the operation of the FPGA in some cases caused circuit malfunctions; dif-
ferent ambient environmental temperatures also caused negative effects. Interestingly, Thompson proposed
solutions based on biological schemes of thermo-regulation.
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faced by the robot involves operating in different environments.2 For instance, if the

photo-sensitive robot used in Chapter 6 was placed into a verybright or very dim envi-

ronment, it may fail to detect relevant light gradients due to its sensors being consistently

under- or over-stimulated by the extreme levels of ambient light. If the sensor nodes in-

corporated homeostatic plasticity they might be able to adjust their baseline excitability to

match the environment, continuing to distinguish different light intensities and give useful

information to the network.

The results we have presented in this thesis show that homeostatic plasticity can be

implemented in CTRNNs, and explore some of the effects of doing so. While the inclu-

sion of active homeostatic plasticity makes networks less evolvable in static (internal and

external) environments, there is a strong argument in favour of some utility for homeo-

static plasticity in situations where network functionality must be maintained in the face

of perturbations.

8.4 Implications for neuroscience

While pure engineering roboticists are not directly interested in the biological relevance

of their robot controllers, except in so far as it can help them to design better robots, the

enterprises of biomimetics, neuroinformatics and cognitive science are directly concerned

with what we can learn about biology through the construction of this kind of artificial

simulacrum. It is important to be clear about the limitations of the work presented here in

this respect.

The first thing to state when considering the implications ofthe work presented in this

thesis for neuroscience is that the models of neuronal networks and homeostatic mech-

anisms used here are highly abstracted. The details and complexity of biological brains

have been sacrificed in favour of analytical and computational tractability. CTRNNs are

not brains, genetic algorithms are not biological evolution.

However, in the sense that they are distributed network processors of rate-based in-

formation, where individual nodes fire at a rate determined as a sigmoidal function of

multiple inputs, and where activation in the network is persistent over time, CTRNNs are

reasonable, if simple, models of brains. We can follow Beer’s analogy of the ‘frictionless

brain’ [11] and seek to gain insights from the functioning ofthese artificial networks that

may guide experiments by ‘real’ neuroscientists. For this purpose we can make several

observations about the results from our experiments with homeostatic plastic CTRNNs.

The first result to note is that while homeostatic plasticityregulates the activity of

2See again Thompson [165].
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nodes to a moderate level in the long term, the result of this is greater response to input.

Homeostatic plasticity regulates the activity of individual nodes so that they are not sat-

urated, and this means that their inputs have a larger effecton their firing output. This

leads to improved signal propagation and more oscillationsat the network level, which

can arguably be seen as the converse to the regulation of network activity. This seems to

go against the view in neuroscience that homeostatic plasticity stabilises network activity.

Another prevalent idea in neuroscience is that homeostaticplasticity acts as a counter-

balance to the destabilising effects of Hebbian learning. However, it seems that Hebbian

learning in CTRNNs actually has a stabilising, not destabilising, effect. When Hebbian

rules are applied to CTRNNs, a common result is positive feedback between activity and

weight change, so that weights are quickly forced to extremevalues. This results in node

saturation and a loss of response from individual nodes, leading to a general lack of signal

propagation at the network level. This can be viewed as a formof stabilisation of network

dynamics, albeit one which is likely to cause a loss of functionality.

So we have the neuroscientific opinion that homeostatic plasticity stabilises network

activity and Hebbian plasticity destabilises network activity, compared to our findings that

theconverseis what actually occurs in CTRNNs. Homeostatic plasticity inCTRNNs po-

tentially destabilises network activity by allowing signals to propagate further and making

oscillations more likely, while Hebbian rules often lead tothe desensitising and thereby

stabilising effect of node saturation.

This conflict suggests that it would be useful for neuroscientists to study the hierar-

chical effects of both Hebbian and homeostatic plastic mechanisms to try and elucidate

whether or not the network-level effects of node-level Hebbian and homeostatic plastic

mechanisms are what they are purported to be. Such experiments are likely to be difficult

because of the inherent complexity of biological neuronal networks, and simulation mod-

elling at a higher level of biological accuracy may be the most practical initial route to the

required data. The results from the simple simulations we have undertaken here suggest

that this may be a fruitful line of enquiry.

It appears from our results that homeostatic plasticity andHebbian learning act in

opposite ways. In view of this, we may be able to identify a higher level of homeostatic

regulation at the network level, where the regulated quantity is the level of activity in

the network, rather than of individual nodes. Hebbian learning causes node saturation,

which reduces the amount of activity in the network. Homeostatic plasticity increases the

response of individual nodes and raises the level of networkactivity. Since homeostatic

plasticity raises network activity and Hebbian learning reduces network activity, it seems

likely that the two types of mechanism will balance each other out, providing a measure of

long term stability in the overall level of network activity. In effect, Hebbian learning and
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node-level homeostatic plasticity may combine to maintainnetwork-level homeostasis of

activity.

8.5 Review and Future Work

It would have been advantageous to have run more experimentson the evolvability of

homeostatic plastic CTRNNs, since the data set generated in Chapter 7 is limited. While

it can be argued that there is rarely ‘enough’ data in any experiment, that more data is

always useful and that the law of diminishing returns applies, two evolutionary scenarios

are not enough to gain a true picture of the evolvability of homeostatic plastic CTRNNs.

In particular, it would have been very interesting to see howhomeostatic plastic networks

performed in situations where there was a need for the onlinemaintenance of network

function in the face of perturbations.

This leads to the other obvious omission from the thesis, which is the lack of any

experimental exploration of the interaction between homeostatic plasticity and Hebbian

learning. While reference has been made to this interaction in the text, no study of Heb-

bian learning in CTRNNs has been undertaken here. The simple reason for this is that

such a study is a whole topic in itself, requiring preliminary studies of the literature, de-

velopment of mechanisms, measurements of the effects of Hebbian rules on CTRNN dy-

namics, and examination of the utility of Hebbian rules in evolutionary scenarios. This is

an equivalent body of work to the entirety of Part III, and would need to be performed be-

fore any study of the interaction between homeostatic plasticity and Hebbian rules could

reasonably be undertaken. Such a study is beyond the scope ofthis thesis, and while it

may form the topic of future work, the reader will for now haveto be content with the

passing discussion presented here.

A weakness in the presented analysis of homeostatic plasticity is that no work was

done to look at the nature of evolved plastic controllers. Itwould have been useful to anal-

yse a number of evolved controllers and find out how the plastic mechanisms contributed

to agent behaviour. For instance, is the plasticity used just as a regulatory mechanism or

does it form an integral part of the dynamics of the evolved controllers?

Another area where more work could usefully be done is some study of the effects of

homeostatic plasticity on the robustness of evolved solutions. This is related to the earlier

conjecture about the utility of homeostatic plasticity in allowing networks to overcome

perturbations, and well-designed experiments could perhaps attack both questions simul-

taneously. Results concerning behavioural robustness would allow the results given here

to link to the existing work of, e.g., Di Paolo [46–48, 50], Balaam [8], and Hoinville &

Henaff [84].
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Homeostatic plasticity clearly exists in biological brains and must therefore offer some

adaptive benefit that caused its evolution. Our experimentsso far have not shown a posi-

tive relationship between the presence of homeostatic plasticity and evolvability. Further

experiments may demonstrate such a relationship, but our conclusion from current results

is that the benefit of homeostatic plasticity must lie elsewhere.

Finally, we should review the overall thrust of the researchpresented here. Were the

right questions addressed?

In Chapter 3 we saw that the literature on homeostatic plasticity in artificial neu-

ral networks is small, and that the existing work has largelybeen aimed at questions

of robustness. Thus we feel justified in attempting a more general exploration of how

homeostatic plasticity changes network dynamics, and whatits functional effects might

be. We feel that we have addressed many of the basic questions(e.g., satisfaction of the

homeostatic constraint, effect on node/network/agent behaviour), and partially addressed

the issue of evolvability. However, there are clearly many functional questions remain-

ing to be answered and we view the work presented here as a firststep towards a fuller

understanding.

8.6 Conclusions

In our exploratory studies we have shown that homeostatic plasticity can be implemented

in CTRNNs. It drives networks towards a region of parameter-space where the homeo-

static constraint is satisfied, but it is important to note that it may never reach a stable

equilibrium inside this region. Sometimes initialisationdictates that the network falls into

a dynamic equilibrium that continually overshoots this region, a limit cycle equilibrium

where the constraint is not satisfied. Also, in any functioning network (i.e., one con-

nected to some sensorimotor apparatus) the continual influence of external input will in

most cases mean that the action of homeostatic plasticity isbest viewed as acontinuously

perturbed processrather than a ballistic trajectory towards some goal state.

Homeostatic plasticity increases node and network sensitivity, improves signal propa-

gation in networks, and makes oscillatory dynamics more likely. It adds a slower timescale

to network dynamics and may allow for an approximation to binary switching in networks

as a result of slow single-node oscillations. It leaves networks poised and behaviour-rich,

increases the strength of interaction between agent and environment, and thus ensures a

non-trivial agent-environment coupling.

In the situations tested here, namely ball-catching and discrimination tasks with a

simple agent, active homeostatic plasticity did not improve evolvability. Both these tasks

involve an unperturbed static environment, and it is possible that homeostatic plasticity
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will improve evolvability in situations where perturbation is likely or adaptation to differ-

ent levels of stimulation is required. Homeostatic plasticity may also have an important

role in counter-balancing the positive feedback effects ofHebbian learning.

Our studies also challenge the existing view in neuroscience, that homeostatic plastic-

ity acts to stabilise network dynamics. While it does so at thelevel of individual nodes,

the network-level result of this is increased excitabilityand greater levels of activity.
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Homeostatic Regulation of the

Environment by the Biota
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Chapter 9

Background to Part IV

9.1 Overview

The idea that feedback from the environment shapes the way inwhich organisms adapt

is well established in evolutionary theory. Increasing emphasis is being placed on coevo-

lutionary change, where multiple species adapt in responseto feedback from each other.

This move away from the idea of a fixed evolutionary environment, and a static fitness

landscape for an evolving species, echoes Darwin’s original view of evolutionary change

as resulting from the interactions between the many speciesinhabiting the ‘entangled

bank’ [36].

Despite the increasing emphasis on coevolutionary adaptation, the idea that the envi-

ronment can be altered by the actions of living things (and that coevolution can take place

between species and environment, as well as between speciesand species) has until re-

cently been largely ignored. But with the establishment in evolutionary theory of the ideas

of niche construction [102,103] and the ‘extended phenotype’ [40], feedback between the

environment and the biota is now seen as a bi-directional process.

This shift in evolutionary thinking has been accompanied bythe development of a

more daring theory concerning the interaction between lifeand its environment: Gaia

theory [124]. Gaia theory claims not only that the feedback between life and the envi-

ronment works in both directions, but also that life alters the environment to maintain

conditions suitable for life. Initially outrageous and still controversial, Gaia theory has

slowly gained support from mainstream science to the point where many of its claims are

158
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now well supported.

Some examples of proposed Gaian phenomena include the regulation of local cli-

mate by marine algae that influence the formation of clouds over the oceans [5, 27,

114,122], global temperature regulation by biotic enhancement of rock weathering [152,

153], the maintenance of constant marine salinity and nitrogen:phosphorous ratios by the

aquatic biota [110, 140, 176], and efficient nutrient recycling loops created by the collec-

tive metabolic processes of microorganisms [176,187].

Such phenomena are measurable and testable by scientific experiment, and thus pro-

vide firm evidence that regulatory loops do exist in nature. But do they point to a general

occurrence of regulation in the biosphere? There remain many areas of contention and

much research to be done. The mechanisms and processes by which Gaia operates are elu-

sive and are not fully understood. Perhaps the most significant theoretical challenge lies in

achieving a reconciliation between Gaia theory and evolutionary biology. Gaia has been

criticised by evolutionary theorists because it seems to imply unfavoured mechanisms

such as teleology, altruism, or group selection, but Gaiansargue that these criticisms are

not justififed. It is in this area that the work presented in subsequent chapters lies.

Here we examine the hypothesis that the evolving biota regulate their environment to

conditions suitable for life. Starting from the view that species coevolve with each other

and with their environment, we present two different simulation models of environmen-

tal regulation that explore the implications of various hypotheses and assumptions. One

model is an extension of the Daisyworld model initially presented by Watson & Love-

lock [183], while another model is a piece of original work intended to relax some of the

assumptions inherent in the Daisyworld formulation.

This study adds a new dimension to our over-arching theme of homeostatic adapta-

tion, in that the adaptive mechanism at the local level is nowevolutionary change by

Darwinian mechanisms. The inclusion of evolution as a possible mechanism for homeo-

static adaptation is a novel exploration that complements the previous studies, especially

as environmental regulation by the biota involves the maintenance of a macro-level home-

ostasis by micro-level adaptation.

This chapter briefly reviews the literature on Gaia theory, tracing its historical origins

before looking at its current status and existing theoretical models. Chapter 10 presents

an extended Daisyworld model and some results generated from it. Chapter 11 presents a

sketch of the new and original Flask model, which is based on adifferent set of assump-

tions to Daisyworld. This sketch is followed in Chapter 12 by some preliminary results

from Flask. Part IV concludes in Chapter 13 with some discussion of the results achieved

in earlier chapters and conclusions concerning the research questions addressed.
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9.2 Gaia theory

This review of Gaia theory will not attempt to exhaustively cover what is a large and broad

literature in its entirety. Instead it will give a concise synopsis of the most significant and

relevant pieces of work for the current purpose.

9.2.1 Precursors: Vernadsky

The Gaia theory was first named and expounded by Lovelock & Margulis in 1973 [124],

but it owes much to the earlier work of the Russian scientist Vladimir Ivanovich Vernad-

sky (1863-1945). Vernadsky looked beyond traditional views of biology and developed a

view of life centred on thebiosphere[174,175]. The term ‘biosphere’ had been proposed

by geologist Eduard Suess in 1875 to describe the region of the Earth’s surface – air, land,

surface rocks and water – in which life existed, differentiating it from the other geological

zones of lithosphere, hydrosphere and atmosphere. Vernadsky realised that life existed

in parts of all of the other three zones and that the biospherewas notdistinct from them

but ratherincluded them. He re-defined the biosphere as the interacting system of life

together with its physical environment.

Vernadsky’s concept of the biosphere as a complex interacting system of life and the

physical environment was the first recognised theory to givelife a major role in the devel-

opment of the physical environment. He saw living matter as the greatest of geological

forces, involved in transporting and transforming matter across oceans and continents,

both in the form of living things and as a result of their actions. Vernadsky’s deliberately

vague definition of life as geological force was a departure from the Cartesian duality of

spirit and matter, life and non-life, and emphasised the notion of life as a process, heavily

involved in shaping the atmosphere, hydrosphere and lithosphere.

9.2.2 Early development

In the early 1960s, James Lovelock was working for NASA on methods for the detection

of life on other planets. He realised that this could be done by testing the composition of

the atmosphere. Lovelock thought that any type of life must take in some form of energy

and matter and excrete waste products, and that this processmust be mediated by atmo-

spheric transport of these materials. Thus a reliable signature of life on a planet would be

an atmosphere in chemical disequilibrium, since the only way in which this could occur

would be if some process (i.e., life) was continually pumping mutually reactive chemical

products into the atmosphere. On a planet without life, the atmosphere would soon fall to

equilibrium as those chemicals capable of reacting did so. Considering the Earth, Love-



Chapter 9 161 Background to Part IV

lock noted that the chemical composition of the atmosphere had been held stable away

from equilibrium for long periods during Earth history and reasoned that this must be due

to the cumulative effects of all living things.

Lovelock’s hypothesis that the biota regulated the atmosphere to conditions suitable

for life was given the name Gaia by a friend (the novelist William Golding) after the Greek

earth goddess, and was first published in a 1973 paper co-authored by Lynn Margulis1

[124]. The Gaia hypothesis attracted criticism, but was refined throughout the 1970s

before being published in extended form as the 1979 book ‘Gaia’ [116].

Lovelock defined Gaia as:

...a complex entity involving the Earth’s biosphere, atmosphere, oceans,

and soil; the totality constituting a feedback or cybernetic system which seeks

an optimal physical and chemical environment for life on this planet. The

maintenance of relatively constant conditions by active control may be con-

veniently described by the term ‘homeostasis”.’ ( [116], p.10)

This definition, together with the title of the initial 1973 paper, “Atmospheric home-

ostasis by and for the biosphere: the Gaia hypothesis” (p.1,[124]), together give a good

view of Lovelock’s early thinking. He thought that life regulates the atmosphere to pro-

vide conditions optimal for life.

9.2.3 Criticisms

Lovelock outlined a number of candidate global regulatory mechanisms in his 1979 book

[116], which centred on the constancy of the surface temperature of the Earth (in the face

of increasing solar luminosity), the constancy of the composition of the atmosphere (held

stable away from equilibrium), and the constancy of the salinity of the oceans. However,

it was on theoretical grounds that the Gaia hypothesis attracted most criticism.

Before we look at these criticisms, it is worth first of all noting that by choosing such

an emotive name for the Gaia hypothesis, Lovelock may have done the underlying science

a disservice. Naming the theory for a Greek earth goddess brings with it connotations of

mysticism and hippy sentimentality that may have offended the purist analytical tenden-

cies of the orthodox scientific community. Lovelock did not help to allay these fears by

talking of Gaia as a quasi-living superorganism and using descriptive language in papers

on Gaia that appeared to allude to sentience. Gaia was adopted as a talisman by var-

ious New Age and environmentalist groups, amplifying the doubts felt by hard-headed

objective scientists.

1Margulis was already no stranger to controversial theories, cf., her theory of serial endosymbiosis.
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It was in this climate that Dawkins [40] and Doolittle [52] independently made their

early scientific criticisms of the Gaia hypothesis. These centred on accusations of tele-

ology, namely that regulation of the biosphere by the biota would require foresight and

planning. In any case, contributing to global regulation would involve altruistic sacri-

fice by participating organisms that would result in them being out-competed by non-

contributing ‘cheaters’ and regulation would thus break down. Other criticisms disputed

the possibility that feedback mechanisms would be sufficient to create global regulation,

argued that such regulatory feedback loops could not have evolved, and claimed that the

Gaia hypothesis was untestable and thus non-scientific.

9.2.4 Daisyworld

In response to these criticisms, Watson & Lovelock presented the Daisyworld model

[183]. In Daisyworld, populations of black and white daisies compete for space on an

artificial planet, with the proportion of the surface area covered in black or white daisies

determining the planets albedo and thus its temperature. Itwas demonstrated that com-

petition between the two daisy species led to regulation of the temperature of the planet

around the optimal level for daisy growth.

Daisyworld answered several of the criticisms aimed at Gaiatheory. It demonstrated

that global regulation could emerge by a process of positiveand negative feedbacks with-

out any foresight or planning, and thus rebutted the teleology criticism. However, since

there was no cost to daisy pigmentation, there was no scope for either altruism or selfish-

ness, and the original Daisyworld model could not answer thecheater criticism. Also, the

limited amount of genetic variation (daisies were all identical except for pigmentation and

could only be black or white) and lack of mutation meant that Daisyworld in its original

form did not shed much light on the compatibility of Gaia theory with neo-Darwinian

evolutionary biology.

We will cover the Daisyworld model in more detail below.

9.2.5 Multiple Gaia hypotheses

James Kirchner [97] argued that the Gaia debate needed clarification, and that there was

not one but several Gaia hypotheses. Kirchner’s typology ofGaia hypotheses is listed

below in order of increasing strength:

• Influential Gaia.The biota has a substantial influence over the aspects of the com-

position of the abiotic world.
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• Coevolutionary Gaia.The biota influences the environment and the environment

influences the evolution of the biota.

• Homeostatic Gaia.The biota influences the abiotic world in a way that is sta-

bilising; the major linkages between the biota and the abiotic world are negative

feedback loops.

• Teleological Gaia.The atmosphere is kept in homeostasis not justby the biota, but

for the biota; some sense of purpose is implied.

• Optimizing Gaia. The biota manipulates the environment to create favourableor

optimal conditions for itself.

Kirchner was able to supply quotations and references in support of each of these

variant hypotheses from Lovelock’s own published work, andpointed out that much of

the debate over Gaia might stem from different apprehensions of what the Gaia hypothesis

actually stood for. This fragmentation of Gaia theory into many different hypotheses is

still much in evidence today. A recent special issue of theClimatic Changejournal on

Gaia theory includes papers by several leading authorities, each of whom independently

start their discussion by setting out several competing versions of the Gaia hypothesis

[149].

As the Gaia theory has changed over the years, the various hypotheses that have been

put forward can be grouped according to whether they are ‘weak’ or ‘strong’ [126]. Weak

Gaia says that feedback exists in both directions between life and the environment, and

that the whole Earth system co-evolves, a view which is now widely accepted. Strong

Gaia says that the planet and its lifeforms constitute a single living system that regulates

itself to optimal conditions for life. It is this strong Gaian view that attracts most criticism

from neo-Darwinians, who say that a unified planetary systemcannot have evolved except

through competition with other planetary systems.

It seems likely that the truth will lie somewhere between these two extremes. Most

people now agree that the biota influences the abiotic world,but few believe it does so

purposively; much of the ongoing debate concerns how stronga Gaia theory can be sup-

ported by scientific evidence.

9.2.6 Gaia vs Evolutionary biology

Gaia has suffered many criticisms from neo-Darwinian evolutionary biologists over the

years, who are mainly concerned with how global regulatory feedback loops could arise

by natural selection.



Chapter 9 164 Background to Part IV

9.2.6.1 Early criticisms

The first complaint against the Gaia hypothesis was that it seemed to imply teleology.

However, in 1988 the American Geophysical Union hosted a conference devoted entirely

to Gaia [151] and at the meeting Lovelock presented a revisedform of the Gaia hypothesis

[120] that made particular efforts to refute the claims of teleology. Lovelock’s revised

hypothesis claimed that Gaia regulated the biosphere by homeostatic feedback loops, and

was supported by results from Daisyworld. The teleology criticism appears to have been

dropped by the scientific community after this conference, but other theoretical problems

remained.

Sophisticated regulatory mechanisms are typically the result of competition and selec-

tion between individuals; better regulators make better survivors and better reproducers,

and thus regulation is selected for. However, there is no population of life-bearing planets

for selection to operate on and no concept of planetary reproduction, so global regulation

must result from cooperation and coordination between individuals at a lower level. On

the other hand, organisms altruistically contributing to global regulation runs counter to

the accepted idea of selfish natural selection; such foolishly generous organisms would

be out-competed by non-contributing ‘cheaters’ who reapedthe benefits of environmental

regulation without incurring the cost of participation. Gaia theory seemed to imply group

selection or costly altruism, and was thus incompatible with modern evolutionary theory.

9.2.6.2 The casefor the evolution of regulation

The debate over whether Gaia theory was compatible with neo-Darwinian evolutionary

biology continued through the 1990s. Lenton [105] reviewedthe issues in the debate,

stating the main question to be answered as “...how can self-regulation at the planetary

level emerge from natural selection at the individual level?” (p.439, [105]).

Lenton constructed a logical argument for why global regulation must have evolved.

Life on Earth has a long history, which might be explained either by the presence of global

self-regulating mechanisms (Gaia) or by random chance (anti-Gaia), with an intermedi-

ate position accepting that regulatory feedbacks exist butconsidering their genesis as a

matter of good luck rather than an inevitable outcome of evolution. Lenton favoured the

Gaian view, pointing to the low probability of life persisting and maintaining a favourable

climate in the face of perturbations from planetisimal impacts and volcanic eruptions if

there were no regulatory mechanisms.

Lenton then used Daisyworld models to demonstrate that global regulation could

emerge from selfish adaptation at the individual level. By introducing mutation of daisy

albedo into the Daisyworld scheme he showed that the evolution of stable collective reg-
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ulation could occur, but noted that mutation of the preferred growth temperature would

lead to evolutionary change that destroyed regulation.

Lenton also argued that the cheater criticism could be answered by noting that many

organisms alter their environment not for purposes of planetary regulation but because

it brings them some local benefit, and that global regulationcould emerge as a byprod-

uct of many species acting in this way; thus there is no conflict between contributing to

regulation and acting selfishly, since the two actions are the same.

9.2.6.3 The caseagainst the evolution of regulation

A good synopsis of the current disagreements between Gaia theory and evolutionary biol-

ogy is given by Kirchner [98]. Kirchner is critical of the homeostatic Gaia theory, stating

that beyond the accepted view that there is feedback coupling between organisms and the

environment, there is little evidence in support of furtherGaian claims. He identifies three

central propositions to the modern Gaia hypothesis: (1) biological feedbacks to the envi-

ronment contribute to global homeostasis, (2) biological feedbacks make the environment

more suitable for life and (3) biological feedbacks will evolve by natural selection.

Kirchner refutes each of these propositions in turn. He claims that biological feed-

backs are not inherently homeostatic and that the feedback between organisms and their

environment is just as likely to be positive as negative. Positive feedbacks would be

destabilising and would lead to non-homeostatic (anti-Gaian) amplification of changes in

climate.

Kirchner then argues that rather than biological feedbacksmaking the environment

more suitable for life, it is much more likely that life simply adapts to its environment,

which is in turn altered by the effects of life. If the environment, created by the actions

of the biota, appears to be beneficial for life, it is simply that the currently existing biota

are well-adapted to the environmental conditions they create. The fit between biota and

environment is thus explained by biological adaptation alone and no Gaian mechanisms

for ‘improving’ the environment need be invoked.

Finally, Kirchner argues that although it is possible for Gaian feedbacks to evolve, it

is also possible for anti-Gaian feedbacks to evolve. He casts doubt on the Daisyworld

model as a proof of a tendency for homeostatic feedbacks to evolve, pointing out that

the regulation in Daisyworld relies on the assumption that abeneficial adaptation for

an individual daisy will by default have a regulatory effecton the environment. The

situation in the real world is not the same, since evolution will favour any trait that offers

a reproductive advantage to carriers over non-carriers. The effect of such a trait on the

environment is largely irrelevant since this will affect both carriers and non-carriers in the
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same way. This means that Gaian and anti-Gaian feedbacks areequally likely to evolve.

9.2.6.4 By-product Gaia

The ‘by-product Gaia’ version of the theory developed by Volk [176] avoided many of

the criticisms from evolutionary biology by positing a weaker hypothesis based on life’s

involvement in nutrient recycling in the biosphere.

Volk took the Gaian idea that ‘life begets life’ and developed an alternative viewpoint

by arguing that the key Gaian phenomenon was the increased availability of nutrients

in the environment that resulted from biotic influences. In an abiotic environment, Volk

argued, nutrients were only available as a result of chemical and physical processes such

as weathering and volcanic out-gassing. In a world with life, nutrients were recycled

many times via metabolic processes and their availability was greatly increased. Life did

indeed beget life, by increasing the food supply in the environment compared with the

lifeless alternative.

Volk felt that any homeostasis of the environment was a fortuitous result of nutrient

recycling and his view focused on metabolic by-products rather than regulation. Thus

Volk’s view of Gaia was not vulnerable to the same criticismsas the original ‘homeostatic’

Gaia. There was no altruistic cooperative regulation to be vulnerable to ‘cheaters’, and

feeedback loops involving metabolism and biota-enhanced physical processes were fully

compatible with selfish natural selection.

9.2.7 Gaia - an organism?

The commonly held layman’s view of Gaia theory, resulting inpart from its emotive

name and New Age associations, was that Gaia theory meant that the Earth was alive.

This misconception caused problems in the scientific community despite the fact that

none of the scientists involved actually believed it. Gaia theory assigned to the Earth

system certain life-like properties such as global transport and regulation, but thenearest

scientific viewpoint to saying that the Earth was alive was the claim that it might be a

superorganism (an organism consisting of many smaller organisms each of which is not

capable of surviving alone for any significant period of time, such as an ant colony).

Lovelock himself proposed a less contentious way of thinking about the Earth. He

viewed the Earth system as an indivisible set of interactions between life and its environ-

ment, and had earlier coined a new (less emotive) term to describe this study, ‘geophys-

iology’, that he hoped would allow for a more scientific approach [120]. The new study

of geophysiology was meant to reflect the organism-like properties of the Earth system

while pointing out that the Earth system is not an organism inthe truest sense.
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Further refutations of the ‘Gaia-is-alive’ viewpoint comefrom two leading Gaia theo-

rists, Lynn Margulis and Tyler Volk. Margulis, one of the founders of Gaia theory and an

active proponent of the Gaia hypothesis, argues that Gaia transcends the level of individ-

ual organisms:

Gaia, the living Earth, far transcends any any single organism or even any

population. One organism’s waste is another’s food. Failing to distinguish

anyone’s food from someone else’s waste, the Gaian system recycles mat-

ter on the global level. Gaia, the system, emerges from ten million or more

connected living species that form an incessantly active body...The sum of

planetary life, Gaia, displays a physiology that we recognize as environmen-

tal regulation. Gaia itself is not an organism directly selected among many. It

is an emergent property of interaction among organisms, thespherical planet

on which they reside, and an energy source, the sun...I cannot stress strongly

enough that Gaia is not a single organism...[the surface of the planet] be-

haves as a physiological system in certain limited ways. Theaspects that

are physiologically controlled include surface temperature and atmospheric

composition of reactive gases, including oxygen, and pH. ( [126], p.148-154)

Volk also refutes the idea of Gaia as an organism while upholding its organism-like

properties:

On the one hand, I experience a delightful sense of being inside a giant

metabolism. This perception grows more acute the more I learn, but I am also

convinced that Gaia is very different from any organism. Thus I can honestly

apply the principles of science to study the global metabolism without postu-

lating a global organism.

What is Gaia? Following Lovelock, I consider Gaia the interacting sys-

tem of life, soil, atmosphere, and ocean. It is the largest level in the nesting of

parts within wholes that encompasses – and thus transcends –living beings,

a nesting that ranges from the molecules within cells all theway outward to

the Gaian system itself. Like the interiors of organisms, Gaia contains com-

plex cycles and material transformations driven by biological energy. Indeed,

Gaia’s inclusion of life means that from some perspectives,it much resembles

life. But how Gaia differs from organisms turns out to be its glory.

Consider: Although Gaia has changed through time, it does notevolve in

a Darwinian sense. Nevertheless it both contains and is built from evolving

organisms. Furthermore, organisms are open, flow-through systems, whereas
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Gaia is relatively closed to material transfer across its borders. Gaia exists

on its own unique level of operating rules, a level surely as complex as that

of organisms and therefore worthy of its own science – which Jim Lovelock

calls geophysiology. ( [176], p.xiii)

9.2.8 Current status of the Gaia theory

The Second Chapman Conference on the Gaia Hypothesis was held in 2000 with a scope

covering:

...not only interactions of biota with atmosphere, the hydrosphere, the

soils and the sediments, but also the involvement of biota inmaintaining the

steady states of key biogeochemical cycles, climate acid/base and redox bal-

ances. The three interlinked themes will be Gaia in time, therole of the biota

in regulating biogeochemical cycles and climate, and dealing with complex-

ity and feedbacks in the earth system.” ( [4], p.6)

The conference confirmed the acceptance of Gaia as a valid field for scientific re-

search; now the focus was on the details of Gaia, how it workedand the mechanisms

involved, as opposed to the questions of basic acceptability that had marked the earlier

Chapman conference in 1988.

More recently there has been a vigorous debate in theClimatic Changejournal, where

in one special theme issue on Gaia a number of leading Gaian thinkers were asked to give

their opinion on the status of the Gaia hypothesis [149]. Kleidon [101] echoes Kirchner

in defining a number of competing Gaia hypotheses, but goes further in also providing

a metric and a means of testing which of the hypotheses is correct. Kleidon predicted

the gross primary productivity of the Earth’s vegetation indifferent scenarios using sim-

ulation models of the interaction between climate and vegetation, and used this data to

support his ‘enhancing Gaia’ hypothesis, which stated thatlife has a beneficial effect on

the conditions for life. Lenton [106] also takes a hypothesis-testing approach, consider-

ing different explanations for the presence of regulatory feedbacks in the biosphere. He

argues first of all that the continuing presence of life on Earth in the face of severe per-

turbations such as asteroid impacts and volcanic eruptionsstrongly suggests the existence

of regulation, but notes the difficulty in determining whether this regulation is a chance

event or statistically probable. Kirchner [98] attacks Gaia theory (on similar grounds to

his views noted above), saying that it is far more probable that life has adapted to its envi-

ronment than the other way around. Finally, Volk [177] giveslimited support to Kirchner

while remaining supportive of some forms of Gaian mechanism. Interestingly, Volk calls
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for new models to be constructed, citing the Guild model of Downing and Zvirinsky [55]

as a good example of the direction new modelling work should take.

This was followed closely by a further special issue in whichthe authors were invited

to respond to each others work [150]. Papers were presented by Lenton and Wilkinson

[111], by Volk [178], and by Kirchner [99]. We will not cover the contents of these papers

here, noting only that there was little fundamental change in the theoretical positions of

the contributors. The vigorous continuation of the debate demonstrates that not only had

Gaia theory become accepted as a part of mainstream science,but that it remained a

controversial topic, with its form and details still the subject of much disagreement and

research effort. The general and specific details of the Gaiatheory remain to be elucidated.

9.3 Models of Gaia

As mentioned above, there is a genuine need for models in Gaian research [106, 177].

There are significant problems in measuring phenomena on thescale of Gaia, due to the

large size and complexity of the Earth system and also to the fact that we, as observers,

are a part of the system to be observed. Models allow us to simplify the real world to

manageable levels of complexity and to test the validity of assumptions.

This section will look at the various models of Gaia that havebeen presented in the

literature. This will focus mainly on Daisyworld models, asindeed does the Gaian litera-

ture, together with brief coverage of Downing & Zvirinsky’sGuild model [55].

9.3.1 Daisyworld

The original Daisyworld model [117,118,183] was presentedin 1983 as a refutation of the

teleology criticism of Gaia theory put forward by Doolittle[52] and Dawkins [40]. It did

so by demonstrating that simple ecological competition between black and white daisies

could regulate the temperature of a fictional planet withoutthe need for any foresight or

planning. Daisyworld showed that decentralised control could result in global regulation.

Since its initial appearance, Daisyworld has spawned a large number of papers that ex-

tend the basic scheme in order to approach a variety of different questions [3,35,41,42,93,

105,107–109,119,121,123,125,135,142,148,157,159,161,180,182,184,185,190,193].

The Daisyworld model has provided a concrete test case for many aspects of Gaia theory,

made popular (despite its simplicity) due to the difficulty of testing Gaia hypotheses in

the real Earth system. In the absence of practical real worldexperiments capable of con-

clusively testing the validity of the Gaia hypothesis, it seems that Daisyworld has become

a proxy for Gaia; if Daisyworld succeeds so does Gaia, and vice versa. While Daisyworld
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can help to answer a number of questions about Gaia, it shouldbe remembered that it was

never intended to be a complete model of the Earth system and that the Gaia theory does

not depend upon it.

Here we will review the original Daisyworld model, before looking at some of the

most interesting extensions to it.

9.3.1.1 The original Daisyworld model

The original Daisyworld [117,118,183] is a fictional planetinhabited only by two species

of daisy. These daisies differ only in their pigmentation: one species is black and the other

is white. Solar insolation strikes the planet at a rate that increases slowly over geological

time; the warming effect of the insolation is determined by how much is absorbed by the

planet and how much is reflected back to space. This in turn is determined by planetary

albedo. The albedo of the planet is determined by weighted contributions from the regions

of the surface area covered by black daisies, white daisies,and bare earth. Daisy coverage

therefore has an effect on the temperature of the planet.

All daisies grow best at a universal optimum temperature andless well as their local

temperature moves away from this optimum. The local temperature of a daisy is affected

by its albedo (reflectivity) and by the ambient temperature of the whole planet. Black

daisies have lower albedo than bare earth and therefore reflect less of the solar insola-

tion. Hence black daisies experience local temperatures that are warmer than bare earth.

Conversely, white daisies have higher albedo than bare earthand reflect more of the sun’s

light, so white daisies experience local temperatures cooler than bare earth. The effects

of warming by black daisies and cooling by white daisies allow global temperature to be

altered in both directions by the biota.

The formulation for the basic Daisyworld is presented below, taken from Watson and

Lovelock [183]. Note that some aspects of the model are perhaps over-complicated for the

phenomenon that Watson and Lovelock were trying to demonstrate. For example, there is

no need for such a realistic implementation of heat radiation in Equation 9.4, where what

is important is some heat loss gradient from the planet to outer space. Similarly there is no

need for such precise values for the constants in Equation 9.3, where all that is required

for the model to work is any form of parabolic function. Thesedetails mask the true

simplicity of the Daisyworld model and seem irrelevant given the arbitrary nature of other

features of the model (such as genetic variation). We can only speculate at the reasons

for their inclusion when the aim of the model was to show how global regulation could

emerge without teleology or central control, but this should not be allowed to devalue the

valuable contribution the Daisyworld model has made to the Gaia debate.
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Equation 9.1 describes the change over time in the daisy populations, expressed as the

proportion of the surface of the planet they cover. A daisy population expands to cover

more of the surface area of the planet at a rate directly proportional to its current size and

to the amount of bare earth available, and decreases at a constant rate due to daisy death.

dαw

dt
= αw(xβw− γ)

dαb

dt
= αb(xβb− γ) (9.1)

whereαw andαb are the proportion of the fertile surface area covered in white and black

daisies respectively.x is the proportion of the fertile surface left bare.βw andβb are the

growth rates of white and black daisies per unit time.γ is the death rate per unit time

(constant for both types of daisy).

Equation 9.2 states that all of the fertile surface area of the planet is either uncolonised,

or colonised by black or white daisies. The total fertile surface area of the planet is taken

as a dimensionless constantP, set to unity. Then the proportion of the total fertile surface

area that is uncolonised is(x), found as the total areaP minus the proportions covered by

black(αb) and white(αw) daisies.

x = P−αw−αb (9.2)

Equation 9.3 defines the growth rate of the daisies as a parabolic function of their local

temperature (Ti , wherei denotes the colour of the daisy), centred on an optimum rate of 1

atTi = 22.5oC and falling to zero byTi = 5oC andTi = 40oC.

βi =

{

1−0.003265(22.5−Ti)
2 : 5 < Ti < 40

0 : otherwise
(9.3)

Equation 9.4 states that the radiation emitted by the planetmust equal that absorbed.ρ is

Stefan’s constant,Te is the effective planetary temperature (oC), L is the (dimensionless)

solar luminosity, andS is a constant (with units of flux).

ρ(Te+273)4 = SL(1−A) (9.4)

Equation 9.5 gives the mean albedo of the planet(A) as the sum of the albedos(Ai) of

bare earth, black, and white daisies, weighted by the proportions(αi) of the surface area

they cover (wherei = g denotes bare earth andi = b and i = w denote black and white

daisies respectively). For the simulations performedAg = 0.5, Ab = 0.25 andAw = 0.75,

so thatAb < Ag < Aw.
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A = Agαg +Awαw +Abαb (9.5)

Equation 9.6 deals with heat flow between patches in a simple fashion by relating local

temperatures(Ti) to the effective planet temperature(Te) by albedo and a constant(q)

that measures the amount of redistribution of solar energy.If q = 0 then daisy patches

have the same temperature as the planet, while ifq > SL
ρ heat flow is (impossibly) against

the temperature gradient. Watson and Lovelock setq= 2.06×109, well below the critical

value. Equation 9.6 preserves the energy balance in the Daisyworld system.

(Ti +273)4 = q(A−Ai)+(Te+273)4 (9.6)

The system of equations describing Daisyworld were demonstrated by Watson and

Lovelock to converge to a single steady state attractor for any given parameterisation, no

matter what the initial condition. Watson and Lovelock useda computer to numerically

integrate the Daisyworld system to a steady state attractorto give equilibrium values for

Te for different values ofL. L was incrementally increased to represent a gradual increase

in solar luminosity similar to that experienced by the Earthas the Sun has grown hotter

during Earth’s history. Both black and white daisy seeds were assumed to be present in

the soil of Daisyworld, so that either species could spontaneously germinate if conditions

were suitable.

Figure 9.1 plots the steady state response of the Daisyworldsystem asL is incre-

mented. The constants in the system were set as follows:P = 1, γ = 0.3, S= 9.17×105

for convenience (since this makesL approximately equal to 1),Ag = 0.5, Ab = 0.25,

Aw = 0.75. Figure 9.1 shows that daisies with neutral albedo have noeffect on the effec-

tive temperature of the planet, despite maintaining a largepopulation when conditions are

suitable (Figure 9.1(a)). Black daisies have a warming effect (Figure 9.1(b)), while white

daisies have a cooling effect (Figure 9.1(c)). Black and white daisies together maintain

temperature around the optimal level for growth by a processof ecological competition

(Figure 9.1(d)).

Initially no daisies are present, then when increasing luminosity warms the planet

to a sufficient level black daisies are able to grow because they have a local warming

effect. The black daisy population quickly spreads and warms the planet towards the

optimal level for growth, allowing white daisies to grow also. The black daisy population

initially dominates because the local warming effect of black daisies allows them to out-

compete the white daisies in cold conditions. As luminosityincreases, the black daisy

population starts to get out-competed by the white daisies,whose local cooling effects

become more beneficial, and eventually the white daisy population dominates. The black
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Figure 9.1: Results from original Daisyworld. Percentage of fertile area covered by black
and white daisies and effective temperature are plotted against increasing solar luminos-
ity. Solid and dotted lines show effective temperature of planet with and without life.
[a] Neutral daisies (albedo 0.5, equivalent to bare ground)have no effect on temperature,
dotted and solid lines are coincident. [b] Black daisies (albedo 0.25) only can regulate
temperature upwards towards optimal level. [c] White daisies (albedo 0.75) only can reg-
ulate temperature downwards towards optimal level. Also shown is effect of decreasing
solar luminosity. [d] Competition between black and white daisies leads to temperature
regulation. All results reproduced with permission from Watson and Lovelock [183]; poor
quality of reproduction is the fault of the current author.
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daisy population goes extinct when luminosity warms the planet to a point where the

additional warming effect of the black daisies makes them too hot to survive. Eventually

the white population also goes extinct when its cooling properties are insufficient to keep

its local temperature viable for growth. At this point planetary temperature regulation

collapses and there is a sudden large increase in temperature as the planet returns to its

abiotic stable state.

9.3.1.2 Ecology in Daisyworld

Lovelock [121] experimented with the ecology of Daisyworldby looking at the case

where there are 100 daisy species, each coloured a differentshade of grey to give a range

of albedos from 0.25 (black) to 0.75 (white). He found that temperature regulation was

unaffected, but that competitive exclusion meant that onlyone or two daisy species co-

existed at any particular level of solar luminosity, a result that had earlier been shown by

Maddock [125]. Von Bloh et al [180] also showed that competitive exclusion reduced the

number of co-existing species in their 2-dimensional cellular automata Daisyworld, but

that this actually improved temperature regulation.

Lovelock extended this model to include further trophic levels in the form of herbi-

vores (whose growth depended on the size of the daisy population) and carnivores (who

preyed on the herbivores). He showed that biodiversity in Daisyworld was greatest just

after perturbation and was least after a long period withoutperturbation when the system

approached a steady state.

Harding and Lovelock [76] also added herbivores, but allowed a variety of different

herbivore feeding strategies. They found that temperatureregulation was unaffected, but

that the types of herbivore feeding strategy in the system influenced the trajectory of

temperature regulation displayed by the system. A later paper showed that when multiple

herbivore strategies were present, the dominant strategy was determined by the dynamics

of daisy-environment interaction [75].

Cohen and Rich [35] presented results showing that in some circumstances the pres-

ence of life on Daisyworld had a destabilising (rather than stabilising) effect on global

temperature. They implemented stronger competition between daisy species by reducing

the growth rate of a species dependent on the size of the population of the other species,

and showed that for some changes in luminosity the system displayed a larger change in

temperature with life present than with life absent.

On the whole increasing the complexity of the ecology in Daisyworld seems to make

little difference to the fundamental behaviour of the model. Adding more daisy species

does not effect regulation, while adding further trophic levels does not seem to lead to



Chapter 9 175 Background to Part IV

any new insight. The most interesting findings in this section are the occurrence of com-

petitive exclusion in the Lovelock’s multi-species model [121], and Cohen and Rich’s

demonstration that when competition between species is made extreme, life can actually

have a destabilising effect on global temperature [35].

9.3.1.3 Chaos in Daisyworld

Zeng et al [193] apparently showed that the surface temperature in Daisyworld could dis-

play chaotic behaviour. They used discretised versions of the the equations given above,

together with a forward difference numerical integration algorithm with a timestep∆t = 1.

Zeng et al claimed that the chaotic behaviour that resulted not only invalidated the results

achieved by Watson and Lovelock [183], but cast doubt on the Gaia theory as a whole.

However, Jascourt and Raymond [93] pointed out that the discrete and differential

versions of the Daisyworld are fundamentally different systems. Jascourt and Raymond

show that the large timestep used by Zeng et al corresponds toa one-generation lag in the

population and environmental update equations, which is the cause of the chaos observed

by Zeng et al. Furthermore, Jascourt and Raymond show that some of the parameterisa-

tions used by Zeng et al to show chaotic behaviour actually result in impossible negative

population sizes at various points in the chaotic trajectory. Finally, Jascourt and Raymond

point out that even in the chaotic regime of the discrete system, the mean temperature in

the presence of daisies is stable and that the results of Lovelock and Watson [183] are

fundamentally supported.

A further explication of the confusion over chaos in Daisyworld is provided by De

Gregorio et al [41,42], who introduce a time lag into the differential Daisyworld model of

Lovelock and Watson [183]. De Gregorio et al demonstrate that as the size of the time lag

is increased, the system moves from fixed point to limit cycleand eventually to chaotic

solutions, supporting the findings of Jascourt and Raymond [93].

A footnote to the debate over chaos in Daisyworld is suppliedby Lenton and van

Oijen [109], who point out that there is no biological justification for the delays or time

lags that give rise to periodic or chaotic solutions.

9.3.1.4 Spatial Daisyworlds

The original Daisyworld model is dimensionless. Although there are variables represent-

ing the areas covered by black and white daisies, and the remaining bare earth, there are

no spatial aspects to the way the model works other than an assumption that black and

white daisies live in patches large enough to have their own local temperature.

Von Bloh et al [180] presented a cellular automata model of Daisyworld that modelled
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the surface of the planet as an array of patches, each of whichcould be populated by a

daisy species or left bare. They incorporated lateral heat flow between adjacent patches

and showed that this allowed the coexistence of multiple daisy species (as compared with

the the competitive exclusion seen in non-spatial Daisyworlds), since patches containing

mal-adaptive daisy species with albedo too high or too low for the current level of inso-

lation could be warmed or cooled by neighbouring patches populated by better adapted

daisy species. Von Bloh et al showed that global temperatureregulation in the face of

increasing solar luminosity was more effective in their 2-dimensional CA than in the non-

spatial equivalent.

Other spatial Daisyworld models are reported on elsewhere in the literature [3, 109],

where one interesting result is that spatial models allow ‘desert’ formation at certain levels

of solar luminosity [3].

9.3.1.5 Evolution in Daisyworld

The original Daisyworld model includes evolution only in the limited sense that the daisy

population most suited to the environment will grow most quickly, but there have been

many extensions to the model to try and address the question of whether the emergent

regulation displayed by Daisyworld (and by extension Gaia in general) is compatible with

evolutionary theory.

One criticism of Daisyworld (and Gaia) by evolutionary theorists is that the global reg-

ulation will be vulnerable to cheaters, which benefit from regulation but do not contribute.

To test this hypothesis, Lovelock developed a variation of the original Daisyworld model

that added a cost for producing pigmentation expressed as a growth rate reduction [119].

This model included grey daisies that did not produce black or white colouring and thus

did not incur this cost. Lovelock showed that the presence ofthese potential ‘cheaters’

did not destroy regulation, since the grey daisies only had acompetitive advantage at cer-

tain temperatures. This result refuted the cheater criticism of Daisyworld and was later

reconfirmed [108].

Lovelock’s multiple-species model extended the size of the‘gene pool’ by including

100 daisy species with different albedos and showed that regulation still occurred in this

scenario [121]. Sẗocker [159] then showed that when a more realistic mechanismfor mu-

tation of daisy albedo was used regulation not only still occurred, but was more efficient.

Lenton [105] noted the criticism of Keeling [96] concerningthe fact that in these models

all possible daisy species are pre-specified, and showed that regulation still occurred in

a model where albedo mutated by occasional small perturbations to value passed down

from parent to offspring which were then faithfully replicated. Other papers have also
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confirmed that mutation of albedo does not destroy regulation and in some cases may

improve it [108,109,180].

The other aspect of daisy evolution that has been addressed is adaptation of the opti-

mum growth temperature. Saunders [148] showed that when theoptimum temperature of

black daisies was switched to be 22.5oC and the optimum temperature for white daisies

switched to 17.5oC (as might be expected to occur if the daisies’ metabolism adapted to

prefer the local temperature created by their respective albedos), planetary temperature

regulation still occurred, albeit with a smaller range of stability. This finding was contra-

dicted by Robertson and Robinson [142], who used spreadsheet simulations to show that

temperature regulation did not occur if the preferred growth temperature of the daisies

was allowed to mutate freely. Lenton and Lovelock [107] responded to this finding by

pointing out the existence of constraints on evolutionary adaptation imposed by physical

and chemical laws, and then demonstrating that regulation occurred when constraints on

the mutation of preferred growth temperature were enforced.

An interesting result was shown by Wood et al [190], who foundthat when mutation

of both growth temperature and albedo was incorporated intoa spatial Daisyworld model

with heat flow, one possible result was the occurrence of stable oscillations with a period

of hundreds of daisy generations. The evolution of growth temperature interacts with the

evolution of albedo, so that low temperature/high albedo species could co-exist with high

temperature/low albedo variants. Global temperature regulation still occurred, but as an

average of a stable oscillation in the habitable range.

9.3.1.6 Cut-down Daisyworld

Harvey [80] presented a ‘cut-down Daisyworld’ model in which he simplified the math-

ematics of the system as far as possible while retaining its regulatory properties. Harvey

replaced the parabolic growth function of the daisies in theoriginal Daisyworld model

by a piecewise linear ‘hat’ function (see Figure 10.1 in Chapter 10) and also replaced

the semi-realistic heat radiation and transfer functions of the original model with simpli-

fied linear caricatures of the underlying physics. The interaction between different daisy

species was restricted to indirect interaction by heat transfer between daisy patches; no

competition for space or mutual inhibition was included.

Harvey found that global temperature regulation was easilydisplayed in the ‘cut-down

Daisyworld’ system, and that its occurrence depended on theexistence of the ‘hat’ func-

tion (although the precise shape of the hat was irrelevant and could be any peaked shape)

and on an intermediate level of heat flow between the black andwhite daisy patches. If

the two patches were too tightly coupled, they acted as a single mixed-species patch in
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which neither species was able to set up an advantageous local temperature, and the global

regulation broke down. If they were not coupled at all, it wasas if there were two seperate

planets and the concept of collective regulation had no validity.

9.3.2 Other Gaia models

Daisyworld models have been the central modelling paradigmfor studies of Gaia theory,

but additional models from an artificial life perspective have been developed by Down-

ing [53–55]. The Euzone model [53] was a model of the evolution of aquatic ecosystems

and their effect on the chemical environment, but no regulation was demonstrated. The

Guild model [55] was an attempt to reconcile Gaia theory and natural selection, in which

the evolution of nutrient recycling guilds and environmental control was explored. The

Metamic model [54] incorporated a more realistic chemistrythan Guild and was devel-

oped in order to test the logical plausibility of Gaian phenomena occurring in a system

following basic rules governing chemical reactions, metabolism, and energy transfer. The

Guild model is briefly described below.

9.3.2.1 The Guild model

The Guild model [55] looks at an evolving ecosystem of many species of bacteria-like

organisms that interact via a shared chemical environment.Guild considers not only

environmental regulation by the biota but also Volk’s proposed Gaian metric of nutrient

cycling [176]. Guild was intended to support and extend Daisyworld by allowing a much

greater range of genetic variation and setting an environmental control problem that could

not be answered by a single species acting alone; in Guild thechemical environment is

regulated as a result of the collective metabolic activity of the biota.

Guild is an individual-based evolutionary simulation model. Organisms in Guild con-

sume and excrete chemical nutrients in genetically specified ratios. An organism cannot

consume what it excretes. At each time step each organism will attempt to consume

an amount of nutrientsAf eed, depending on availability, whereAf eed is given by Equa-

tion 9.7.

Af eed= (X)0.75r f S (9.7)

HereX is the current biomass of the organism,r f is a universal constant base feeding

rate, andS is the satisfaction of the organism with its local environment. S is an error

function of the relative proportions of the organism’s local chemical environment com-

pared to a pre-determined optimum ratio that is universal toall organisms.S is given by
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Equation 9.8.

S= e−ksatεsat (9.8)

whereksat is a universal satisfaction coefficient that determines thestrength of influence

of satisfaction on the amount of food consumed, andεsat is a measure of the deviation of

the organism’s local environment from the pre-defined optimum given by Equation 9.9.

εsat =
1
n

n

∑
i=1

∣

∣

∣

∣

Eo
i −E′

i

Eo
i

∣

∣

∣

∣

(9.9)

whereEo
i is the optimum proportion in the environment of theith chemical nutrient andE′

i

is the effective proportion of this chemical experienced bythe organism. These quantities

are calculated from the consumption and excretion ratios ofthe organism and from the

current chemical constitution of the global environment byEquation 9.10.

E′
i = Ei(1+kf ilter(Fi,out−Fi,in)) (9.10)

whereEi is the level of theith chemical in the global environment,Fi,in and Fi,out are

the proportions of this chemical that the organism consumesor excretes respectively, and

kf ilter is a universal constant determining the degree to which organism’s can filter their

perception of the chemical environment.

There are a number of other aspects to the Guild model concerning reproduction,

mutation, death and recycling of dead material that are not covered here. Here we have

only given the key equations that are needed to understand how the model operates.

Organisms gain biomass at a rate dependent on availability of nutrients and their cur-

rent satisfaction with their local environment. Satisfaction varies inversely with deviation

of the organism’s local environment from a pre-defined optimum. The local environment

of the organism is determined by the global environment ‘filtered’ by the effect of the

organism’s consumption and excretion of chemicals. Thus anorganism can create a local

buffer against the global environment, which may offer selective advantage over other

organisms by promoting growth.

Figure 9.2 shows the result of a typical simulation run. The model is seeded with a

single species and is parameterised so that there are 4 chemical nutrients{N1, ...,N4} with

an optimal growth ratio of< Eo
1,Eo

2,Eo
3,Eo

4 >=< 0.4,0.3,0.2,0.1>. Population size, nu-

trient cycling ratio (roughly speaking the amount of the nutrient consumed divided by

the influx of that nutrient per timestep), and environmentalnutrient fractions (the propor-

tions of the different chemical nutrients present in the environment), are plotted against

generational time.
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Initially the single-species population can only exploit asingle nutrient and biotic

growth is constrained by the amount of that nutrient entering the environment at each

timestep. Eventually new species are created by mutation that can use other nutrients and

there is a population boom. Nutrient cycling networks are formed and the biota start to

regulate the chemical environment.

The Guild model shows that the key Gaian metrics of regulation and nutrient recycling

can evolve in a simulated microcosm. There is no central control, and only standard

individual-level selection is used, yet coordinated distributed control evolves. Thus the

results of the Guild model support the results from Daisyworld and show that regulation

can still emerge when the genetic space is large.

9.4 Aims, objectives, questions

We have seen that the modern Gaia theory posits that the interaction between life and its

environment is bi-directional, and that life can to some extent regulate its environment to

conditions suitable for life. The central debate over Gaia theory concerns the compatibil-

ity of Gaia theory with evolutionary theory. Can regulatory feedbacks evolve? Are they

vulnerable to cheaters?

Daisyworld, supported by Guild, has answered a number of questions in the Gaian

debate. Daisyworld has been used to refute the teleology criticism that was previously

aimed at the Gaia hypothesis, and has also provided limited evidence that Gaian regulation

can evolve. Guild has shown that regulation can emerge as a result of the ecological

and evolutionary interactions between simple organisms ina simulated microcosm, thus

showing that regulation can occur as a result of ‘by-products’ rather than as a costly

process additional to metabolism.

However, certain kinds of evolution destroy regulation in Daisyworld; when the pre-

ferred growth temperature can mutate freely regulation collapses. While there have been

several efforts to incorporate evolution into Daisyworld,there are still questions to be

answered, such as what happens when both albedo and growth temperature evolve at the

same time, and what effect different mutation rates would have. The original Daisyworld

model incorporating evolution is not easy to analyse, and itseems that there would be

utility in developing a simple and analytically tractable model that allows the testing of

different hypotheses concerning the effect of evolution ontemperature regulation.

Also, it is not clear that Guild is an entirely distinct modelfrom Daisyworld. While

Guild uses different language and models distributed environmental control in an ecosys-

tem, both Daisyworld and Guild share some key assumptions. One is that individual

organisms can create a local buffer against the larger environment that affords them some
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(a) Population is initially small but expands
rapidly once mutation allows the ecology to
take advantage of previously unused nutri-
ents.

(b) Nutrient cycling is poor until population
growth allows sufficient diversity for cycling
loops to be formed.

(c) Environmental chemical ratios are not
regulated until population growth and diver-
sity allows formation of a stable food web
that regulates environmental chemicals close
to the optimal ratio.

Figure 9.2: Results from a Guild simulation run. Vertical axes show: (a) Population
size, (b) nutrient cycling ratio, (c) environmental chemical ratios. Horizontal axes in all
plots show number of generations elapsed. Population is initially small, until mutation
to a metabolism that can capitalise on stored environmentalnutrients allows a population
boom. An ecology develops and nutrient cycling ratios in theecosystem rise dramatically.
At the same time the biota establish control of the levels of different chemicals in the
environment; the onset of regulation. Figures reproduced with permission from [55];
poor quality of reproduction is the fault of the current author.
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selective advantage. Another is that the only evolutionaryadaptations that are beneficial

at an individual level are also those that contribute towards Gaian regulation; there is no

possibility for selfish mutations that have an adverse effect on regulation. It would be

interesting to look at the effect of relaxing these assumptions.

With these observations in mind, we can now frame some questions to be answered in

subsequent chapters.

1. Under what conditions will regulation occur in an evolutionary Daisyworld?

2. Does regulation occur when organisms cannot create a local buffer against the en-

vironment?

3. Does regulation occur when selfish mutations do not necessarily contribute to it?

To explore the answers to these questions, we will first of alldevelop a simple Daisy-

world model that allows for straightforward incorporationof different kinds of evolution-

ary adaptation. We will use this model to find the conditions under which regulation of

global temperature will evolve, and to clarify our understanding of the compatibility of

evolution with Gaian regulation in Daisyworld. Next we willdevelop a new model that

seeks to relax the common assumptions of the Daisyworld/Guild models and advance

the theory of environmental regulation by the biota, hopingto gain new insight into the

central question of Gaia theory: can Gaian regulation evolve in a manner consistent with

evolutionary theory?
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Evolution in Daisyworld

10.1 Overview

As set out at the end of the preceding chapter, the aim of this chapter is to look at the con-

ditions under which environmental regulation will occur inan evolutionary Daisyworld

model. We approach this question by constructing a simplified Daisyworld model that

allows easy implementation of daisy adaptation while maintaining similar dynamics to

the original model. We take inspiration from Harvey’s ‘cut-down Daisyworld’ [80], but

further simplify the model and extend it into a 2-dimensional cellular automata model

that is more amenable to the inclusion of evolutionary adaptation. The simplicity of the

model aids understanding of the mechanisms underlying the evolution of regulation in

Daisyworld models. We look at adaptation of daisy albedo andof the preferred growth

temperature, starting by replicating known results from the literature and then moving on

to present some new results concerning the importance of constraints for the evolution of

regulation.

The chapter begins with a description of the model used, followed by presentation of

results.

10.2 Rationale

The original Daisyworld model [183] incorporates two species of daisy, identical except

that one is black (with low albedo) and the other is white (with high albedo). Daisy

183
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albedo alters the local temperature of each daisy patch, with daisies assumed to live in

single-species clumps large enough to maintain their own local temperature. This in turn

alters the growth rate of the daisies, which varies as a function of temperature. Since

the albedo of bare earth lies between the albedos of black andwhite daisies, population

dynamics allow global temperature to move away from that expected of a dead planet.

Competition between black and white daisies led to global temperature regulation around

the optimal temperature for daisy growth; deviations away from this point were coun-

teracted by negative feedback engendered by the selective advantage gained by one of

the daisy species away from this point. Black daisies out-compete white daisies at low

temperatures because of their ability to increase local temperature, and vice versa at high

temperatures. Regulation was observed for a significant range of solar luminosity, outside

which the planet was too cold or too hot to support daisies of any colour.

The Daisyworld model used reasonably accurate approximations of the real-world

phenomena on which it was based and thus incorporated quite complicated mathematical

formulations of (for example) the interaction between solar luminosity and the level of

heat radiation emitted by the planet. Harvey [80] developeda simplified model, his ‘cut-

down Daisyworld’, that used much simpler approximations but conserved the essential

regulatory behaviour of the system. Following Harvey and simplifying even further, we

present the very basic model described below.

10.3 Model

Our model is a cellular automata model in which patches are arranged in a 2-dimensional

toroidal lattice (another CA Daisyworld model was presentedby von Bloh et al [180], but

in a different form and with different aims). Each patch may be barren (bare earth) or

may contain a single species of daisy. Barren patches can be colonised by daisies from

neighbouring patches, while living patches may die. Each patch has a local temperature

that changes in relation to solar luminosity (applied at an equal level to all patches) and to

its albedo (determined by the presence of daisies). The global temperature of the planet

is taken as the mean of all the local patch temperatures. Thisscheme is covered in more

detail below.

10.3.1 Daisies

A daisy species is represented by an albedo and a growth function, i.e., each daisy has

a colour and a preferred growth temperature. The daisy population can be thought of

as points scattered in a 2-dimensional gene space. Albedo isdrawn from the range
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Figure 10.1:An example growth function. The growth rate of all daisy species varies from 0 to 1 as a
piecewise linear function of temperature.

[0.25,0.75] (representing a continuum from black to white), while the growth function

is a piecewise linear function of local temperature that hasthe qualitative form shown

in Figure 10.1 and is given by Equation 10.1. This ‘hat-shaped’ function has the same

width 2δ at its base for all daisies, so the hat function for a single daisy species can be

represented by the location of its centre pointHmid.

G =























0 : T < (Hmid−δ )
T−(Hmid−δ )

δ : (Hmid−δ ) ≤ T < Hmid
(Hmid+δ )−T

δ : Hmid ≤ T < (Hmid +δ )

0 : T ≥ (Hmid +δ )

(10.1)

whereG is the growth rate of the daisy species,T is the current local temperature of the

patch,Hmid is the centre point of its growth function and 2δ is the width of the growth

function at its base. In all the experiments reported hereδ = 15 so that the hat function

reached zero atHmid±15.

Daisies are assumed to either fully occupy a patch or not to bepresent. The growth

rate of a daisy species determines its likelihood of colonising a neighbouring bare patch.

High growth rates lead to increased colonisation and the spread of the species.

10.3.2 Seeding

An empty patch may be seeded with a new daisy species with low probability (0.03 in

the simulations described below). When seeding occurs an entirely new daisy type is

randomly generated from the set of permissible values for albedo and growth function

parameters. Seeding allows new genetic stock to enter the world and takes the place of

mutation in the evolutionary process.
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10.3.3 Colonisation

Empty patches may be colonised by daisy species living in neighbouring patches. Each

neighbour species has a chance to colonise that is proportionate to its growth rate. This

is implemented by assigning a probabilityP(Ci) to the eventCi that the empty patch is

colonised by theith neighbouring patch (alive or dead). This is expressed by Equation 10.2

below.

P(Ci) =
Gi

N
(10.2)

whereGi is the growth rate of theith neighbouring patch andN is the total number of

neighbours. Note that the growth rate of a dead patch is zero.Thus daisies with a higher

growth rate have a higher likelihood of colonisation. Also,a daisy species occupying

multiple neighbouring patches has a higher likelihood of colonisation due to having more

‘tickets in the lottery’.

10.3.4 Death

If a daisy species living in a patch has a growth rate of zero, it is assumed not to be able

to survive and the patch becomes empty. Also, daisies livingin a patch will die (and

the patch become empty) with a probability of 0.1 at each timestep. This may be seen

as a simple instantiation of death by natural causes and serves to promote selection and

competition.

10.3.5 Calculation of patch temperature

Local patch temperature depends on the current temperatureof the Sun (traditionally

taken in Daisyworld models as a monotonically increasing value), the albedo of the patch

(determined by daisy growth), and heat loss to space. The rate of change of local patch

temperature is therefore given by Equation 10.3 below, whereTP is the patch temperature,

TS is the temperature of the Sun, andα is the patch albedo.

dTP

dt
= (1−α)(TS−TP)−TP (10.3)

In Equation 10.3, the first term increases patch temperaturein proportion to the heat

gradient (TS− TP) from the Sun to the patch, moderated inversely by patch albedo α
so that high albedo reduces heat flow (by reflecting solar insolation back to space). The

second term reduces patch temperature to account for heat loss to space by radiation and
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is proportional to the negative heat gradient between spaceand the patch (0−TP), where

the temperature of space is assumed to be zero.

Equation 10.3 does not include a term for heat flow between patches. It was found

that when heat transfer between neighbouring patches was included in the model, it made

no qualitative difference to the results achieved. For thisreason it is omitted here for

clarity. The exception to this rule is when heat transfer is instantaneous, i.e., when patches

equalise temperature instantly. This special case will be considered later in this chapter.

Patch temperatures are integrated numerically using Euler’s forward method. The

global temperature of the planet is taken as the mean of all the patch temperatures.

10.3.6 Cellular automata update

The results presented below were gathered from a 10×10 toroidal CA where each patch

has 4 neighbours at top, bottom, left and right. Runs were also performed with larger

(20×20, 50×50) CAs, and with CAs where each patch had 8 neighbours (added attop-

left, top-right, bottom-left, bottom-right), with no qualitative changes in results. The CA

is synchronously updated at each timestep (i.e., all patches are updated simultaneously)

by testing for colonisation, seeding and death in that order. Although in discrete systems

synchronous update can cause artefacts, here states are continuous so this should not be a

problem [49,81]. Runs with asynchronous update produced similar results.TS is typically

increased from 100 to 500 in increments of 2, and the CA is updated for 1000 timesteps

for each increment inTS to allow the daisy population to stabilise for the new level of

external forcing.

10.4 Results 1: Replication of existing Daisyworld results

First of all we compared the results generated from our modelwith known results gener-

ated from existing Daisyworld models. In all of the following experiments the albedo of

bare earth was set to 0.5 and the world was initialised with all patches bare.

The primary Daisyworld phenomenon, that of temperature regulation by competition

between black and white daisies [183], was considered first of all. We set the albedo of

black daisies to 0.25 and the albedo of white daisies to 0.75.Results are shown in Figure

10.2, which displays global temperature regulation occurring by competition between

daisy species as it does in the original Daisyworld model.

The next significant result to be repeated is that allowing albedo to mutate does not af-

fect regulation, and may in some cases actually increase itsrange [105,121,159,180]. For

this scenario we allowed albedo to take any value in the range[0.25,0.75], corresponding
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Figure 10.2:Daisy population, global albedo and global temperature fora world with both black (albedo
= 0.25) and white (albedo = 0.75) daisies. Temperature regulation occurs as global albedo is adjusted by
competition between black and white daisy species.
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Figure 10.3:Daisy population, global albedo and global temperature fora world where daisy albedo is
allowed to mutate freely between the levels for black and white daisies, i.e., within the range[0.25,0.75].
Temperature regulation occurs as albedo of dominant daisy species varies in response to changing solar
luminosity.

to the full range from black to white. Temperature was regulated as before, although in

this case it is by a steady shift in the albedo of the dominant daisy species to maintain the

global temperature close to the optimal level, rather than competition between black and

white daisies. The overall effect is the same at a global level; temperature regulation in

this case and in the previous case is achieved by keeping the mean global albedo close

to the level which keeps temperature optimal. This in turn isa result of selection for the

daisy species with the highest growth rates.

Having shown that temperature regulation is not affected bymutation of albedo, the

next result is to show that unconstrained mutation of the growth function causes the reg-

ulation to break down [142]. Here we do this by allowingHmid to vary freely in the range

[70,130]. No regulation is observed, although the daisy population flourishes. The muta-

tion in growth function simply tracks the solar forcing; thedaisies adapt themselves to the

environment rather than adapt the environment to themselves. The tracking is not precise,

as the mutating albedo allows brief periods of quasi-regulation when the population be-

comes fixated on a particular growth function and uses the albedo to maintain the global

temperature this value ofHmid requires. In this scenario albedo can be seen as a free vari-

able, since a suitable growth function can be found to give optimal growth for any albedo
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Figure 10.4:Daisy population, global albedo and global temperature fora world where daisy albedo is
allowed to mutate freely between the levels for black and white daisies, i.e., within the range[0.25,0.75]
and where the centre of the growth function is allowed to mutate freely. No temperature regulation occurs
because daisies can adapt their preferred growth temperature to suit current environmental conditions.
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Figure 10.5:Constrained growth function. The maximum achievable growth rate of all daisy species
varies from 0 to 1 as a piecewise linear function of temperature. The height of the peak of a species’
individual growth function is constrained.

level.

Lenton and Lovelock [107] showed that when there is some constraint on the mutation

of the growth function, regulation will again emerge. They set up a Daisyworld model

where the centre of the hat function was mutated towards the current ambient temperature,

but where the maximum growth rate (i.e., the maximum height of the growth function) fell

away to zero with distance from some optimal value, in a way supposed to be analogous

with the decline in maximum achievable photosynthesis ratevaries with temperature in

plants. We implemented this by letting the maximum growth rate decline linearly to zero

with distance from an optimal temperature of 100 (see Figure10.5). We observed similar

results to Lenton and Lovelock [107], in that regulation wasobserved to occur, but with a

more gradual tailing in and tailing out than with the non-evolvable growth function.

We have now shown similar results to the most significant results achieved with more

conventional Daisyworld models. Regulation of global temperature has been shown to

occur when there is some constraint on evolution of the growth function (itself a very

well-supported assumption based on empirical evidence from biology given that life has

only been found within certain bounds of temperature, acidity, etc.), and where the daisies

have some means by which they can influence their local environmental temperature. If
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Figure 10.6:Daisy population, global albedo and global temperature fora world where daisy albedo is
allowed to mutate freely between the levels for black and white daisies, i.e., within the range[0.25,0.75]
and where the centre of the growth function is allowed to mutate freely. Maximum achievable growth rate
declines linearly with distance fromT = 100, reaching zero atT = 100±30. Temperature regulation occurs
because preferred growth temperature is constrained and daisies cannot always adapt their preferred growth
temperature to current conditions, allowing selective advantage to be gained from using albedo to alter local
temperature.

there are no constraints on the growth function (i.e., noneedto regulate) or global albedo

cannot vary (i.e., nomeansto regulate) then regulation breaks down.

For completeness, we have also run the model with heat transfer between neighbour-

ing patches [180], and found that the qualitative nature of the results is unchanged for all

of the above scenarios.

10.5 Results 2: Constraints on evolution and their impli-

cations for environmental regulation

It seems that the key criteria for regulation of global temperature to emerge areneed

andability. Unless there is some reason for the daisies to alter their local environment,

i.e., some selective advantage to be gained from doing so, then regulation will not occur.

If evolution is added to the model, then the only cases in which daisies have a reason

to alter their environment are those in which the evolutionary process is constrained in

some way so that the daisy population cannot evolve to preferthe environment as it is.

Selective advantage is gained by improving the fit between daisy and environment; this

can be achieved by changing the daisy or by changing the environment, and evolution will

generally opt for the easiest method available. Different factors will affect which method

is the easiest, such as the types of daisy in neighbouring patches and their effect on the

local environment, and constraints on the range of permissible mutations.

Constraints on evolution are an inevitable feature of any real-world biological system,

due to the existence of physical and chemical laws that no system may violate. Chemical

laws constrain metabolism, the rate of which typically depends on a number of parame-

ters as some bell-shaped curve. This idea is captured simplyin Daisyworld as a growth
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Figure 10.7:Daisy population, global albedo and global temperature fora world where there are two
well-seperated growth functions (centres atT = 65 andT = 135) and where daisy albedo is allowed to
mutate freely between the levels for black and white daisies(i.e., within the range[0.25,0.75). Regulation
occurs first around one growth function, then around the other.

function that depends on temperature by a Gaussian function, and in the current model

by a piecewise linear hat function. While evolution cannot alter the chemical reactions

involved in metabolism, it may tinker with the conditions under which those reactions

operate to maximise their rate and efficiency, or it may select between different sets of re-

actions, that is, between different types of metabolism. However, once a metabolism has

been chosen during the course of evolution it may often be easier to regulate the environ-

ment to suit this metabolism than to switch to a new metabolism entirely. Also, genetic

constraints may prevent ‘perfect’ phenotypic adaptation in the short term [74], and while

this effect may be lost in long term evolution, it nonetheless creates a potential benefit to

regulation.

Different metabolic types may be more successful at different ranges of an environ-

mental variable. In our simplified Daisyworld model, consider a situation where there are

two growth functions with centres at different temperatures. The different growth func-

tions may be well-separated, leading to independent regulatory epochs (Figure 10.7), or

have overlapping ranges, leading to competitive exclusion(Figures 10.8 and 10.9). When

ranges overlap there will usually be one dominant metabolictype around which the en-

vironment is regulated, with a flip from one to the other at some critical level of solar

forcing. The level at which this occurs depends on the history of the system. Whichever

metabolic type becomes abundant first will stop the late-comer from getting a foot-hold

in the ecology by holding temperature close to its own optimal level, and thus delay the

onset of an ecology (and regulation) based around the other type. This is demonstrated by

Figures 10.8 and 10.9 which show competition between two growth functions with over-

lapping ranges in the face of increasing and decreasing solar forcing respectively (i.e.,

time flows to the right in Figure 10.8 and to the left in Figure 10.9, although forcing is

plotted increasing left-to-right in both).

Another way in which evolution may be constrained and createan opportunity for
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Figure 10.8:Daisy population, global albedo and global temperature fora world where there are two
growth functions with overlapping ranges (centres atT = 85 andT = 115) and where daisy albedo is al-
lowed to mutate freely between the levels for black and whitedaisies (i.e., within the range[0.25,0.75).
Solar forcing increases over time (time increases from leftto right in the plots). Regulation occurs first
around the lower temperature growth function, then around the higher temperature growth function; com-
petitive exclusion delays the switch between the two.
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Figure 10.9:Daisy population, global albedo and global temperature fora world where there are two
growth functions with overlapping ranges (centres atT = 85 andT = 115) and where daisy albedo is al-
lowed to mutate freely between the levels for black and whitedaisies (i.e., within the range[0.25,0.75]).
Solar forcing decreases over time (time increases from right to left in the plots). Regulation occurs first
around the higher temperature growth function, then aroundthe lower temperature growth function; com-
petitive exclusion delays the switch between the two.

100 200 300 400 500
0

50

100

Solar Forcing ( T
S
 )

D
ai

sy
 P

op
ul

at
io

n

100 200 300 400 500
0

0.5

1

Solar Forcing ( T
S
 )

G
lo

ba
l A

lb
ed

o

100 200 300 400 500
0

50

100

150

200

Solar Forcing ( T
S
 )

G
lo

ba
l T

em
pe

ra
tu

re

Figure 10.10:Daisy population, global albedo and global temperature fora world where daisy albedo is
allowed to mutate freely between the levels for black and white daisies (i.e., within the range[0.25,0.75)
with a probability of 0.2 at each reproduction and where daisy growth function can mutate freely with a
probability of 0.002 at each reproduction. The slow mutation rate of preferred growth temperature compared
to albedo results in regulatory epochs and stepped increasein temperature.
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regulation to evolve is if evolution operates at different rates on different phenotypic traits.

Consider the case where the daisy growth function is free to mutate so that it can operate at

any temperature and where daisy albedo may also mutate freely to any level between those

for black and for white daisies. If both types of mutation occur at the same rate, then the

growth function simply tracks the increasing solar forcingand regulation is lost (Figure

10.4). However, if the mutation rate for the growth functionis very slow compared to

mutation rate of albedo the differential creates an opportunity for regulation. It is easier

for a daisy species to evolve a new albedo than a new growth function. This can be

observed in Figure 10.10, in which the world is started with aviable daisy population

that is then allowed to mutate. At each daisy reproduction (each colonisation of an empty

patch), the daisy species may mutate its growth function with probability 0.002 and its

albedo with probability 0.2 (so albedo mutates two orders ofmagnitude faster than the

growth function). As can be seen from Figure 10.10, this results in regulatory epochs

where the daisy population regulates the global temperature around the optimum for some

growth function. Eventually the albedo can mutate no further and mutants with a more

suitable growth function can out-compete the existing population to become established

as the new dominant metabolic type around which regulation occurs.

10.6 Results 3: Relaxing core assumptions

At the end of Chapter 9 it was noted that Daisyworld is based on two key assumptions:

1. Organisms create a local buffer against the global environment. Daisies are as-

sumed to be in patches large enough to maintain a local temperature that is differ-

ent to the global temperature. It is thus possible for daisy albedo to afford them a

selective advantage by altering the local temperature towards the optimum level for

growth.

2. Beneficial adaptations contribute to global regulation. Selective advantage can only

created by altering local temperature towards a global optimum level for growth.

This optimal level becomes the set point around which regulation occurs; thus lo-

cally beneficial adaptations are those which contribute to global regulation. There

is no possibility of selfish adaptation that destroys regulation.

In this section we will look at what happens when these assumptions are relaxed. First of

all we will observe system behaviour when heat flow between daisy patches is assumed

to be instantaneous, so that all patches have the same temperature. Daisy albedo still has

an effect, but here we assume that any temperature gradientsthat are created across patch
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boundaries are instantly equalised with their surroundings. Thus it is no longer possible

for daisies to create a local buffer zone against the global environment.

Figure 10.11 shows the results from a typical simulation runwhere daisy albedo is al-

lowed to mutate freely and where there is a single universal preferred growth temperature,

but where any differences in patch temperature are equalised at each timestepby moving

all patch temperatures to the global mean. When similar runs were performed with het-

erogeneous patch temperatures allowed the regulation observed was the most efficient of

any of the variations presented here (Figure 10.3). However, in Figure 10.11 we see that

no significant regulation occurs when patch temperatures are instantaneously equalised.

Regulation does not occur because daisy albedo has no effecton local temperature and all

daisies share the same homogeneous environmental conditions. Thus mutation of albedo

can offer no selective advantage and albedo has a neutral effect on selection. This means

that albedo is a free variable and the daisy population only succeeds when the ambient

temperature of the planet happens to be close the preferred level for growth.

When the level of solar insolation allows daisy growth there is a very faint level of

regulation. Although all patches are the same temperature and individual daisy species

cannot gain a selective advantage, there is still the possibility that the cumulative effects of

all the daisies can fortuitously move mean global albedo in the right direction to promote

growth. For example, if there happen to be more dark-coloured daisies than light-coloured

daisies the global albedo will be below that of bare earth. Ina cold environment (low solar

luminosity) this will stimulate growth and the daisy population will expand. This expan-

sion of a predominantly low-albedo daisy population will amplify the lowering of the

global mean albedo and thus create a positive feedback loop that moves global tempera-

ture towards the optimum level for growth. However, this potentially regulatory feedback

is brittle, because there is no selective pressure to maintain it. Non-contributing daisies

are just as likely to profit from temperature change as those daisies that contribute, allow-

ing genetic drift to dilute the low-albedo population and halt growth. Global temperature

will then return to a level similar to that of a dead planet.

The reason that there appears to be some weak regulation of temperature when the

daisy population is large is that the effect described abovecan only occur in the direction

of the optimum, since if global albedo moves in the directionto make conditions less

suitable for growth the daisy population collapses and the effect is stopped. There is

no extension to the range of luminosity in which daisies can grow because there is no

selection pressure to coordinate the population; an all-black or all-white population could

allow growth at more extreme levels of luminosity but is statistically very unlikely to

occur.
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Figure 10.11:Daisy population, global albedo and global temperature fora world where patch tempera-
ture instantaneously moves to the global mean at each timestep. There is a single growth function (centre
T = 100) and where daisy albedo is allowed to mutate freely between the levels for black and white daisies
(i.e., within the range[0.25,0.75). Solar forcing increases over time (time increases fromleft to right in
the plots). No significant regulation occurs because daisies cannot create a local buffer against the global
environment in which to create selective advantage by improving their local environment.

Now we will relax the assumption that locally beneficial adaptations always contribute

to global regulation. There are two ways in which this can happen: local adaptation

can have a neutral effect on regulation, or local adaptationcan have a negative effect on

regulation. To explore what will happen we need to alter the Daisyworld model so that

it is possible for daisies to adapt in ways which provide a selfish benefit but remove or

reduce the contribution to global regulation.

Consider the case when local adaptation has a neutral effect on regulation. One way

in which this might happen is if selection occurs on organismic traits other than the traits

that alter the environment; for example, natural selectionmight select for daisies with

large leaves. In this situation the environment-altering trait becomes selectively neutral.

We can see what might happen in this kind of situation by looking at a Daisyworld where

colonisation occurs at random and patch temperature is irrelevant to selection. While this

is not strictly the same as selection occurring on a different trait, it is a simple proxy for

that kind of situation and will serve to illustrate the point.

Figure 10.12 shows the results from a typical simulation runwhere albedo mutates

freely and where empty patches are colonised by random selection of a living daisy

species in a neigbouring patch. The daisy population is always large, since solar inso-

lation and planet temperature are irrelevant to growth. No regulation is observed and

albedo is a free variable. Local patch temperature reflects the free variation in albedo, and

this causes noise in the global temperature.

The results shown in this section show that the Daisyworld assumptions identified

above are key to the occurrence of regulation. If daisies cannot create a local buffer via

their albedo and thus create a selective advantage, regulation is lost. Regulation is also

lost if the link between local adaptive benefit and global regulation is broken, so that

adaptation of the environment-altering trait offers no selective advantage.
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Figure 10.12:Daisy population, global albedo and global temperature fora world where all daisies have
an equal growth rate irrespective of patch temperature. There is a single growth function (centreT = 100)
and where daisy albedo is allowed to mutate freely between the levels for black and white daisies (i.e.,
within the range[0.25,0.75). Solar forcing increases over time (time increases fromleft to right in the
plots). No regulation occurs because selection is random and there is no link between local adaptation and
global regulation.

10.7 Conclusion

We have presented a model that is derived from Daisyworld, but is simplified and extended

to allow for a more comprehensive study of the compatabilityof biotic environmental reg-

ulation with evolutionary theory. The model has been described here using the language

of Daisyworld (daisies using albedo to regulate temperature in the face of solar forcing)

but the mathematical formulation of the model is actually very general, meaning that sim-

ilarly constructed models may be used to study biotic regulation in other scenarios. Our

model shows that what is needed for regulation to emerge are constraints on the evolu-

tionary process and the possibility for organisms to createa local buffer against the global

environment, criteria that we feel are plausible in a wide variety of biological systems.

Relaxing the assumptions of the model shows that two Daisyworld assumptions (that

organisms can create a local buffer against the global environment, and that local adap-

tation contributes to global regulation) are key to the evolution of regulation. If either of

these assumptions is relaxed then regulation does not occur. However, varying some of

the physics of the model appears to have no effect on the evolution of regulation. Here we

used a simple piecewise linear growth function rather than the parabolic growth function

of the original Watson and Lovelock model, but regulation was still observed. Heat radi-

ation dynamics were also much simplified, without any effecton the qualitative nature of

the results achieved.

It appears from this work that the key features of the Daisyworld model which are

necessary for regulation to evolve are a peaked growth function with an optimal response

at some fixed level of the environmental factor, a local buffer allowing organisms to ben-

eficially affect their immediate environment and thus gain selective advantage, and con-

straints on the evolutionary process so that there is a need for regulation. These criteria
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all seem likely to be satisified in some situations in the natural world. Chemical reac-

tions (including metabolic reactions) typically have a peaked response with a maximum

rate achieved in ideal conditions. Constraints on evolutionary adaptation certainly exist,

coming from physical and chemical laws as well as from evolutionary canalisation and

genetic contraints on phenotypic adaptation. Perhaps the most contentious criterion is the

existence of a local buffer within which an organism can selfishly benefit from improving

its local environment, but this criterion may be less important in the real world than it is

in Daisyworld.

It is easy to think of some situations where an organism will create a local buffer

against the global environment; one example that is particularly relevant to Daisyworld

is the boreal forests, where the lower albedo of the trees compared to the surrounding

tundra permits rapid warming and an earlier start to growth in springtime than would

otherwise have been possible [104]. However, there are alsomany situations where the

possibility of a local buffer is harder to imagine, but whereregulation still occurs. For

instance, chemical regulation of the oceans by the marine biota seems to happen despite

the situation of the marine organisms in a liquid matrix which would rapidly disperse any

excreted materials that might contribute to the formation of a favourable buffer zone. The

evolution of environmental regulation in situations whereit is hard or impossible to form

a local buffer will be examined using the Flask model in following chapters.
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The Flask model

11.1 Overview

In this chapter we introduce the Flask model, a new and original model intended to explore

the evolution of environmental control by the biota in a scenario where some of the key

assumptions of Daisyworld are relaxed. The Flask model is based on evolving populations

of microbes that affect their environment as a side effect ofmetabolism. It is hoped that

the Flask model will be able to address some of the criticismsapplied to Daisyworld and

to contribute fresh ideas to the debate over Gaia theory. However, we do not intend that the

Flask model should be limited to Gaia theory; it is designed as a general model of biotic

environmental control that can be applied on a variety of different spatial and temporal

scales, of which Gaia is just one. For instance, at a smaller scale the Flask model could

be used as a model of niche construction, where organisms change the selection pressure

they experience by altering their environment.

The next section will recap on some of the arguments presented in previous chapters

and motivate the development of the Flask model. This will befollowed by a concep-

tual overview of the Flask model in which its key assumptionswill identified together

with some areas where preliminary study is needed before themain hypothesis can be

approached. Due to time and space constraints, the Flask model is not explored to its full

potential in this thesis and while some preliminary experimental work is presented in the

following chapter, a large amount of work is left for future research.

198
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11.2 Moving on from Daisyworld

Ecological models often ignore the interaction between thebiota and the environment.

For example, Lotka-Volterra population models [115, 179] and replicator equation mod-

els [83] typically look only at the interaction between species. The external environment,

where it is modelled at all, is usually taken only as a (possibly spatial) source of food;

other aspects that may affect the growth and reproductive success of organisms are in-

gored.

However, it is increasingly recognised that there is a constant and significant in-

teraction between living things and the abiotic environment. Ideas of niche construc-

tion [102, 103] and the extended phenotype [40] highlight the importance of the envi-

ronment in evolutionary dynamics, while the increasingly accepted Gaia theory [116]

suggests that that not only do organisms affect their environment, they do so in a way that

regulates the biosphere to conditions that are suitable forlife. In recent years, artificial

life models of ecologies have begun to include coevolution between species; it is now im-

portant that practitioners recognise the fundamental importance of coevolution between

the biota and the abiotic environment.

We are interested in the possibility of regulation of the abiotic environment by the

biota, which on a planetary scale is called Gaia theory but need not be confined to this

scale. The interaction between life and its environment is afascinating topic at any scale,

from microbial mats involved in the formation of stromatolites [141], to beavers that act

as ‘ecosystem engineers’ creating lakes and canals [191], to cloud formation caused by

marine phytoplankton [27].

In the previous chapter we looked at a version of the Daisyworld model [183] in which

the physics had been made simpler than those of the original in order to clarify the basic

properties of the model. We looked specifically at the role ofevolutionary adaptation in

the Daisyworld model, and examined the conditions under which environmental regula-

tion could evolve. It was found that two basic assumptions ofthe Daisyworld model are

essential for regulation to emerge. The first of these is thatorganisms should be able to

create a local buffer against the global environment, within which to gain selective ad-

vantage by favourably affecting their immediate locale. The second assumption is that

locally advantageous adaptations must also contribute to global regulation, that is, that

selfish adaptations change the environment in the directionnecessary for global regula-

tion to occur. We also saw that regulation only emerged when there was a need and an

ability to regulate. If daisies could adapt their preferredgrowth temperature to match the

current global temperature then there was no need for regulation, but if constraints were

placed on adaptation of growth temperature then it became beneficial to moderate local
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temperature via an appropriate albedo.

Armed with our new understanding of Daisyworld dynamics, itis now time to move

on. The Daisyworld models have been the source of many interesting debates and have

contributed greatly to the debate over Gaia theory. Whateverpeople may think about the

Gaia hypothesis, they are forced to concede that Daisyworlddoes at least provide a cyber-

netic example of how regulation might emerge from the dynamics of a non-teleological

model based on sound ecological and evolutionary principles. However, it seems likely

that the law of diminishing returns will apply and that the number of new insights that

will result from new variations of Daisyworld will be few. There is a recognised need for

new models [177].

Here we present the first steps towards a new model, the Flask model, which we hope

will answer significant questions about the logic of environmental regulation by the biota.

The Flask model is conceptually simple, but has the scope fora wide variety of questions

to be asked within its framework. It consists of looking at the ecological and evolutionary

dynamics of microbial populations in a series of microcosms, which may be thought of

as flasks. Each flask contains a well-mixed solution of nutrients, chemicals and neutral

substrate liquid. Adding microbes to the flask creates conditions in which communities

may form and evolutionary change occur. By enforcing perfect mixing within flasks,

but allowing only partial mixingbetweenflasks, we create the conditions for multi-level

selection. Between-flask selection takes place at the ecosystem level and within-flask

selection takes place at the level of the individual microbe.

Due to constraints regarding both time and space, the results presented in this thesis

are preliminary to a more in depth future study of the Flask model. While the eventual aim

is to study the evolution of environmental regulation by thebiota, we must be content here

with taking only the first steps towards this goal. In this chapter we present the model and

argue why we might expect to observe the evolution of environmental regulation within

it, and also why it might be a good model for the evolution of environmental regulation

in nature. We identify several basic criteria that must be satisfied before the model can be

used to test any larger hypotheses concerning the evolutionof environmental regulation,

which include the demonstration of heritability at the community level in the Flask model,

demonstration also of a correlation between environmentalregulation and biomass within

individual flasks, and confirmation that the spatial structure of the model does indeed

enable the conditions for multi-level selection.
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11.3 Biological basis for the Flask model

The basic Flask concept of microbial communities collectively altering their shared envi-

ronment is in part inspired by the artificial ecosystem selection experiments performed by

Swenson et al [162,163]. In these experiments, self-contained microbial ecosystems were

created in test tubes under laboratory conditions. After a fixed development period, the

chemical composition of the liquid in each test tube was measured for pH. In one set of

experiments, the ecosystem displaying the highest pH was used to provide seed microbes

for a new generation of test tube ecosystems, while in another series of experiments the

lowest pH community was chosen. A sustained response to selection was observed, with

deviation of pH away from the starting level increasing at each generation.

The experiments performed by Swenson et al show that selection on microbial com-

munities for their effect on their environment can over timeproduce communities that

alter their environment in a particular way. This suggests that if a particular type of en-

vironment increases microbial growth, community-level selection might lead to commu-

nities that move their environment closer to optimal growthconditions. This effect could

result in environmental regulation.

The Flask system is modelled as an array of connected flasks, each containing a micro-

bial population suspended in a liquid medium. The liquid medium is important as it allows

the assumption of a near-homogeneous environment inside every (well mixed) flask. Mi-

crobes are chosen as the model for the simulated organisms for a number of reasons. They

have simpler metabolisms and foraging techniques than multicellular organisms, and are

able to take advantage of chemical nutrients absorbed in liquid form from the environ-

ment. Microbes are also capable of using a wider variety of metabolic reactions than the

evolutionarily canalised metabolisms of multicellular organisms, making the possibility

of evolving to use a different metabolic reaction with just afew mutations less implau-

sible. The microbial reproductive cycle is also relativelysimple, being asexual in nature

and producing fully functioning offspring.

Microbes are also known to coexist in tightly integrated symbiotic communities called

microbial mats that can be found all over the Earth’s surfaceand in a wide variety of dif-

ferent environments [126]. Microbes arose much earlier in the history of life on Earth than

multicellular organisms, which means they are much more likely than multicellular organ-

isms to have played a part in regulating the biosphere; afterall, multicellular organisms

could never have arisen if there hadn’t been a suitable environment for them to evolve in.

The wide global coverage and geophysical action of microbial species also supports the

idea that microbes could play a significant role in regulating the global environment.

There are a variety of real environments to which the Flask model might be com-
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pared, which basically include any liquid environment populated by microorganisms. The

precise suitability of Flask for representing a particularenvironment will be in part de-

termined by the rate of mixing between flasks. While mixing within a flask is assumed

to be perfect, the level of between-flask mixing can be tweaked to fit different scenar-

ios. If between flask mixing occurs at quite a high rate, the model could represent an

ocean environment, with individual flasks representing different water cells. If the rate of

between-flask mixing was lower, then the Flask model might becompared to the bacterial

communities in mud flats or marshes. Depending on how the between-flask mixing is

modelled, the Flask model could also be seen as a form of island model, or perhaps an

arrangement of inter-tidal rockpools.

However, despite this range of possible analogies, the factremains that the Flask

model is primarily of heuristic value in determining the logic of environmental regula-

tion. If Flask can be used to test the implications of variousassumptions, or to find a

theoretically sound way in which environmental regulationcan evolve in accord with

Darwinian theory, then it will have been vindicated.

11.4 Differences from existing models

The Flask model relaxes the two main assumptions of the Daisyworld model. In Daisy-

world, there is a well-defined local buffer within which daisies can create selective ad-

vantage by ameliorating the impact of the global environment. In Flask, this buffer is

expanded so that individuals cannot by themselves create a selective advantage by alter-

ing the environment. Such an advantage can only exist through the collective result of the

environment-altering traits of all individuals inside a flask. The only buffer that remains

in the Flask model is that each flask maintains a homogeneous internal environment that

is near-closed to input from other flasks.

Also, in Daisyworld, adaptations which create local advantage are also those which

contribute to global regulation. There is no possibility for a daisy species to succeed

by adapting in a way that would cause global regulation to break down. In the Flask

model however, individual level mutations to the environment-altering trait are selec-

tively neutral, since all individuals in a flask share the same environment. Individual-level

selection acts on metabolic traits, and it is quite possiblefor a beneficial adaptation to

metabolic function to occur in conjunction with a mutation to the environment-altering

trait that pushes the environment further from the optimal conditions for growth. Selfish

adaptations can thus result in regulatory, non-regulatory, or neutral effects on the abiotic

environment.

Another advantage of the Flask model over the Daisyworld model is that it incorpo-
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Figure 11.1: Every organism has an environment (dotted circle) which consists of both
abiotic (A) and biotic (B) components. There is two-way feedback between the organism
and all of these components, as well as between the components and each other.

rates a more realistic ecological model, including the formation of food webs and nutrient

recycling loops. The same is true of the Guild model, but the Guild model shares the

same basic assumptions as the Daisyworld model, the limitations of which are described

in previous paragraphs.

11.5 The Flask model: A conceptual sketch

Every organism has an environment, which is made up of both biotic components (e.g.,

other organisms) and abiotic components (e.g., temperature, chemical fluxes, geography,

salinity, etc.). The organism interacts with all of these components, which also interact

with each other (see Figure 11.1). Since organisms evolve, it is possible that selection may

occur on the environment-altering traits of organisms, so that traits are favoured which

change the environment in a way beneficial to the organism. Since many organisms share

similar basic preferences for some aspects of the environment (such as temperature, ph,

etc.), the global result of many selfish adaptations may be environmental regulation.

The basic unit in the Flask model is a flask containing a neutral liquid matrix (see

Figure 11.2). The flask receives a chemical influx at a fixed rate and also loses stored

chemicals at a fixed rate through chemical outflux. Thus the chemical composition of

the liquid medium within the flask will fall to a steady state equilibrium in the absence

of perturbation. A microbial population is introduced to the flask, which may contain

individuals capable of metabolising some of the chemicals stored in the flask and thus

create the conditions for a microbial ecology to form.

Microbial metabolism involves the consumption of chemicalnutrients in a genetically

determined ratio specific to the individual. Some of the consumed nutrients are converted

to biomass, with the remainder excreted to the environment as chemical waste (also in
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Figure 11.2: Schematic of a single flask. The flask receives a steady chemical influx and
loses a fixed proportion of stored chemicals by chemical outflux. A microbial population
is introduced to the flask and affects its chemical composition.

a genetically determined ratio). One microbe’s chemical waste may potentially be con-

sumed by another microbe species.

Microbes reproduce asexually by splitting when they reach acertain biomass thresh-

old, with a low probability of mutation. Microbes also lose biomass at a steady rate due

to the cost of living, assumed to be lost to the environment asnon-recoverable heat or

energy. Microbes die if their biomass falls below a certain level.

Within each flask there are all the ingredients necessary foran ecology to form. There

is a steady supply of nutrients to the environment. Microbescan consume and excrete

different chemical products, so it is possible for one species’ excreta to be food for a dif-

ferent species. Reproduction or death depend on the fit between a microbe’s metabolism

and the food available, which creates selection pressure onindividuals since metabolism

is genetically specified.

Not all of the chemicals in the flask are used in microbial metabolism. Some chemicals

are consumable, while others are non-consumable chemicalsthat form part of the abiotic

environment of the microbes. Although the non-consumable chemicals are not used in the

metabolic process, it is assumed that microbial activity has an effect on their concentration

within the flask. This takes the form of a genetically determined effect on the level of

each non-consumable chemical, that may be implemented as a side-effect of metabolism

or as a fixed rate contribution from each microbe. The microbepopulation as a whole

interacts with the input and output fluxes of the non-consumable chemicals to determine

the composition of the abiotic environment.

In addition, the composition of the abiotic environment affects the rate at which mi-
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Figure 11.3: Metabolic rate is affected by the composition of the abiotic environment.
Plot shows an example function giving metabolic rate as a function of the composition of a
two-component abiotic environment. There is assumed to be an ideal abiotic composition,
at which the environment fits metabolism perfectly, which isshared by all organisms.

crobes can metabolise nutrients (as, for example, the environmental pH level might affect

the growth of real bacteria). It is furthermore assumed thatthere is a single preferred state

vector for the composition of the abiotic environment, at which the metabolic rate of all

microbes is maximised. An example function is given in Figure 11.3 for a two-component

abiotic environment.

The genetic code of a microbe specifies the ratio in which it consumes nutrients, the

ratio in which it excretes waste, and its effect on the abiotic environment. Since the flask is

assumed to be well-mixed, the environment is experienced equally by all microbes. This

affects the ways in which selection pressure can affect individuals. Selection can clearly

act on phenotypic traits concerned with metabolism, since the availablility of suitable food

will determine growth and hence reproductive success. However, there is no possibility

of individual-level selection on phenotypic traits which affect the abiotic environment,

since the well-mixed liquid medium in a flask means that the environment is experienced

equally by all microbes within it. Thus there can be no individual benefit arising from an

environment-altering trait, meaning that traits affecting the abiotic environment are selec-

tively neutral at the level of the individual. In the absenceof any higher-level selection,

this makes the collective effect of the microbial population on the abiotic environment a

free variable. Even though the composition of the abiotic environment will have a large

impact on the overall success of the microbial population, there is no way that it can be

beneficially steered by evolutionary adaptation within a flask.

Now, consider the case where there is an array of many flasks (see Figure 11.4). If

each of the flasks is initialised with a different microbial population, the different starting
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conditions should cause the ecological and evolutionary dynamics within each flask to

create different ecological and chemical conditions. In some flasks, the population will

quickly die out and the chemical environment will return to its abiotic stable state. In

other flasks, viable communities will be formed with functioning food webs.

The success of a community (measured in growth rate or numberof individuals) will

depend on the interaction of the microbial population with its environment. A commu-

nity which only consumes the nutrient influx and does not evolve good nutrient cycling

loops will be limited by the size of the nutrient influx. By contrast, communities which

form stable food webs will recycle nutrients many times before they leave the system via

nutrient outflux, and will thus make available a much larger food supply that can sustain

a larger microbial population [55, 176]. In order for the model to be thermodynamically

correct, either some energy must be lost during each metabolic reaction (to prevent infinite

recycling), or an additional assumption must be made of an external energy source such

as sunlight, making the Flask model an energetically open system rather than a closed

system.

The interaction of a community with its abiotic environmentis of key importance.

Since the abiotic environment affects the metabolic rate ofthe microbes, the collective

influence of the community will result in an abiotic environment that favours growth to

a greater or lesser degree. We should therefore be able to observe a correlation between

community biomass and the distance of the current abiotic environment composition vec-

tor from its ideal.

Note that it is extremely unlikely that a single species could maintain optimal envi-

ronmental conditions alone, since it will only be able to push each environmental factor

in one direction and would need to alter each factor by a precise amount. It is theoreti-

cally possible that a flask community consisting of a single species with exactly the right

kind of genotype could stabilise at a size that optimised theenvironmental factors in bal-

ance with the fluxes through the flask, but the chance of this happening in any non-trivial

system are vanishingly small. Also, if this event did occur,it would be very brittle to

mutation. This means that the creation of optimal environmental conditions must be a

collective activity of a stable food web, and it is infeasible for a single species to do so

alone.

Different communities will have ecologies that are more or less successful, as deter-

mined by their efficiency of nutrient recycling and their effect on the abiotic environment.

These differences will be expressed as variations in biomass or the number of individu-

als, and these quantities could form the basis of some selection criteria at the level of the

community. However, what is not clear is how these communities could ever ‘reproduce’

in order for selection pressure to have an effect.
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Figure 11.4: Ecological and evolutionary dynamics mean that microbial communities
within flasks may be more or less successful depending on initial conditions. If migration
is possible between flasks this raises the possibility of colonisation or invasion by more
successful communities.

Consider the case where each flask in the array is connected to its neighbours by a

valve that allows for limited mixing of the liquid matrix between flasks, and thus enables

migration of microbes from one flask to another. With the possibility of migration be-

tween flasks, it might be expected that viable communities might spread from populated

flasks to lifeless ones. What is more, since the populations indifferent viable flask com-

munities might be of different sizes, some communities might be more or less successful

at colonisation than others. We might expect more populous flask communities to be bet-

ter colonisers since they can spawn greater numbers of potential colonist individuals. This

might lead to more rapid expansion by more populous communities, and perhaps invasion

of smaller communities by larger ones.

We have now described means by which flask communities can be said to display vari-

ation, and also how they might selectively reproduce. The final ingredient for some form

of community-level selection to occur is heritability. Given that the flask communities are

made up of individual microbes that are subject to mutation,should we expect a colonist

community to develop similarly to its parent community? It seems likely that the answer

to this question depends on timescale.

In the short term, community dynamics are dominated by ecological interactions, with

different species reproducing dependent on food supply andcompetition. If the mutation

rate of individuals is sufficiently low, we might expect a reasonable degree of constancy

in the community species distribution over short time periods. However, over longer

period mutations and evolutionary dynamics come into play and there is less reason to

expect any constancy. New species may arise that have a significant effect on community

composition. So, we might expect to observe similarity between colonist communities

and their parent communities in the short term, but not in thelong term. This issue

will be developed in the following chapter with experimental results concerning the time
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dependent nature of ecosystem heritability.

The microbial communities within a flask must make good use oftheir nutrient supply

to be viable, and differential success between alternativeviable communities will be in

large part determined by their effect on their abiotic environment. Since the success of

a flask community will affect its likelihood of colonising orinvading other flasks, we

now have a possible criteria for selection between flasks. Over time we might expect to

see the flask array dominated by communities that keep the composition of their abiotic

environment close to the ideal levels for growth.

Group selection has historically been thought to be a weak ornon-existent force in

evolutionary theory, but recent studies have shown that there are specific circumstances

where it can play a significant role. These circumstances arethose where groups are

largely isolated but occasionally mixed, so that individuals from successful groups come

to form a large proportion of the entire population [156].

These conditions can be met in the Flask model dependent on the rate of migration

between flasks. If flasks are completely isolated no migration is possible, and while some

flasks may contain more successful communities than others,there is no possibility of

colonisation or invasion, and selection cannot occur. On the other hand, if flasks are

well connected and there is no barrier to migration, there isno community isolation and

group benefits cannot occur within flasks. However, it seems plausible that if the rate of

migration is present but small, then conditions for group selection might be met and the

possibility of selection acting on different flask communities might exist.

The main hypothesis that the Flask model is designed to test is given below:

If there is feedback between organisms and their environment, so that or-

ganisms affect their environment and growth is maximised ina particular set

of environmental conditions, and if there is an appropriatespatial structure

that allows partial isolation of semi-closed communities,then multi-level se-

lection will result in the evolution of communities which collectively regulate

their environment to conditions suitable for life, in a manner consistent with

neo-Darwinian evolutionary theory.

The Flask model so described rests on a large number of conjectures and assumptions,

and the author does not expect the reader to accept these without evidence and clarifica-

tion. A quantity of work is needed to show the validity of these assumptions; in the next

chapter we will present the first steps in this process. However, we feel that while the

details of the model need proof and refinement, the model is logically consistent both in

itself and with modern evolutionary biology.
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11.6 Basic assumptions and points to prove

In this section we discuss some assumptions of the Flask model that require clarification

and supporting evidence if the Flask model is to be valid

11.6.1 Universal preferred environment?

The existence of a universally preferred set of environmental conditions for growth is a

simplifying assumption of the Flask model. As discussed in Chapter 10, physical and

chemical constraints exist that restrict the range of conditions in which biological growth

can occur. Typically, the rate of a given metabolic reactionvaries with respect to a particu-

lar environmental factor as a bell-shaped curve (as it does in Flask), and this curve cannot

be altered by biological adaptation. However, the choice ofwhich of the many possible

metabolic reactions is used to extract energy from the environmentis subject to adapta-

tion, and given that different reactions may have differentoptimal conditions in which

their rate is maximised, the Flask assumption of a universally preferred environment may

seem to be flawed. However, we argue here that subject to certain caveats, this is not the

case.

While different metabolic reactions may have different optimal conditions, these con-

ditions are often broadly similar. It seems likely that adaptive choices made far back in

evolutionary history mean that the differences between different metabolisms are less sig-

nificant than their similarities, and that many metabolic types present in the natural world

are variations on a theme. For instance, different varieties of oxygen-based metabolism

may have slightly different optimal conditions, but these are all highly similar when com-

pared to any form of methane-based metabolism.

Also, evolutionary canalisation may mean that it is very difficult or impossible to

suddenly switch to a new form of metabolism with a radically different set of preferred

conditions. Such a change is likely to require an unfeasiblylarge number of coincident

mutations and it is in any case difficult to see how such a mutant could survive long

enough for its traits to reach fixation. Timescale is also an issue; while it may be possible

to switch to a different form of metabolism with a different set of preferred conditions,

the difficulties in doing so might lead to long periods of fixation on a single metabolism

type. This might give rise to a form of homeorhetic regulation, in which regulatory epochs

occur around different metabolic types in sequence.

We feel that these reasons justify the simplifying assumption that all organisms in

the Flask model have a universal preference for a particularset of environmental condi-

tions. Nonetheless, the implications of multiple preferences raises intriguing theoretical
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questions that may be explored by extension to the Flask model in future work.

11.6.2 Environmental fit correlates with biomass?

It is reasonable to suggest that when the abiotic environment has an effect on microbe

growth rate, so that growth is maximised at some particular environmental composition,

there will be a correlation between the size of the microbialcommunity in a flask and the

deviation of the actual environmental conditions from the optimum. Real world examples

might include the relation between temperature and growth in plants, or between bacterial

growth and the pH level of their surrounding environment. However, this claim must be

verified in the Flask model before any larger hypotheses can be approached.

11.6.3 Heritability at flask level?

For any higher-level effects to give selection for communities that regulate their abiotic

environment, it is first of all necessary to show that there issome measure of heritability

between a parent flask community and an offspring colonist community. If there is no

heritability, so that colonist communities bear no relation to their parent communities,

there is no reason to expect any persistence or spreading of communities that have a

favourable effect on their environment. This would preclude any higher-level selection

that might lead to the evolution of communities that regulate their environment.

11.6.4 Spatial structure leads to group selection?

Even if heritability can be demonstrated at the level of flaskcommunities, it remains to

be seen whether or not the spatial structure of the Flask scheme, with perfect intra-flask

mixing but weak inter-flask mixing, gives rise to any form of group selection dynamics.

It has been shown that group selection can be significant if the groups are largely isolated

with occasional mixing [156]. It seems likely that the spatial structure of the Flask model

will provide these conditions and allow higher-level selection to take place, but this is far

from inevitable and must be demonstrated.

11.7 Conclusion

In this chapter we have presented a sketch of the Flask model,and described the work

that must be performed before the main hypothesis for which it is designed can be tested.

Time and space constraints on this thesis mean that the majority of this work is left for
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the future, but in the next chapter we will address the issue of whether or not heritability

can be demonstrated at the community level in the Flask model.



Chapter 12

Response to ecosystem selection in the

Flask model

12.1 Overview

In this chapter we describe an experiment designed to show whether or not community-

level heritability can be demonstrated in the Flask model. Using a simplified version

of the model, that treats all flask communities as completelyisolated and ignores the

feedback from the abiotic environment to the growth rate of the microbial population, we

perform tests to measure a response to selection at the ecosystem level. A population

of different flask communities is initialised and allowed todevelop for a fixed period.

At the end of this period a fitness score is assigned to each flask by measuring the error

between the actual composition of the abiotic environment in each flask compared to a

pre-specified target vector. Artificial selection is then used to create a new population of

flask communities, performed by innoculating sterile flaskswith samples of the microbial

communities from the flasks with the lowest error. Results from this experiment show

that over time a response to artificial ecosystem selection is observed in the Flask model.

We begin with some background to the debate in evolutionary theory over group se-

lection and related modelling work in this area. This is followed by a description of the

methods used and results obtained, before some discussion of the implications of these

results for the Flask model and for evolutionary theory.

212
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12.2 Background

In the previous chapter we outlined some criteria that must be met if the Flask model is

to be viable. One of these criteria is that there must be some heritability at the level of

the flask communities, so that a colonist community resembles its parent community. If

this cannot be shown to hold, then there is no possibility that higher-level selection effects

can lead to the evolution of flask communities that regulate their abiotic environment.

Higher-level selection is a contentious issue in evolutionary theory, but there are grounds

to believe that group selection can play a significant role ina scenario such as the Flask

model.

Lewontin [113] states that any level of biological organisation that can be grouped

into a population of units has the potential for evolution bynatural selection. He goes

on to describe the three necessary and sufficient propertiesthat are required for evolution

to take place: (1) phenotypic variation, (2) differential fitness based on phenotypic vari-

ation, and (3) heritability of fitness. Lewontin goes on to argue that selection at higher

levels than the individual is unlikely, since higher-levelunits are unlikely to exhibit heri-

tability of phenotypic traits. This opinion is similar to the gene-centred view of evolution

propounded by many evolutionary biologists (e.g., ‘selfishgene’ theory [39]). Group se-

lection has been the subject of various critiques, notably from Maynard Smith [130] and

Williams [186], and until recently the idea of selection at alevel higher than that of the

individual has not been favoured.

However, higher level selection has latterly been a topic ofrenewed interest, with both

theoretical and experimental evidence for its existence being presented [71, 156, 181].

What used to be known as ‘group selection’ is beginning to find new acclaim as ‘multi-

level selection’, though it is still viewed with suspicion by many.

Recent work has demonstrated that artificial selection at the level of the ecosystem

can lead to a sustained evolutionary response [162, 163]. Ina number of laboratory ex-

periments a statistically significant response was observed to artificial selection, both

when soil communities were selected for the dry weight of plant biomass supported

and when pond-water communities were selected for raising or lowering pH level [162].

In a similar experiment, Swenson et al showed that artificialecosystem selection could

be used to evolve microbial communities to break down the environmental pollutant 3-

chloroaniline [163]. The selection in these experiments isartificial, not natural, and it is

possible that selection was implicitly for individual-level traits, but the results obtained

are significant and encouraging for our current purpose.

Some simulation experiments into ecosystem selection haverecently been reported in

the artificial life literature [137,138]. Using a system based on Lotka-Volterra population
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equations with mutation between populations, Penn showed aresponse to selection for

diversity [137]. Using a similar system, Penn and Harvey showed a response to selection

on species composition ratio in a Lotka-Volterra model without mutation, i.e., where the

only variation in ecosystems was caused by changes in species distribution [138].

A possible weakness of Penn’s model is that selection is performed directly on char-

acteristics of the population itself, i.e., diversity and species composition. It is possible,

though not certain, that this introduces some unwanted biasinto the evolutionary process.

Whether or not this is true we feel that a clearer understanding could be gained from ex-

periments where selection is for a trait that is affected by,but external to, the population.

Selection for the effect of the ecosystem on its environmentmeets these criteria.

The issue with group selection is not whether it exists, but to what extent. Individual-

level selection has traditionally been thought to be the dominant force, and in most situa-

tions this is the case. However, there are situations where higher-level selection pressure

can play a significant role in shaping evolutionary adaptation and we feel that the Flask

model may be one of these. As a precursor to examining higher-level selection in the full

Flask model, we are here concerned with demonstrating the possibility of a response to

selection at the level of the flask community.

12.3 Method

Here we seek to demonstrate in the Flask model a similar community-level response to

selection to that observed in Swenson’s pond-water ecosystems [162]. We apply a sim-

ilar experimental method to Swenson et al, where flask ecosystems are selected for the

composition of their abiotic environment in a manner analogous to the selection for pH in

Swenson’s experiment.

Conceptually, the Flask model is set up as described in the previous chapter, with

some simplifications. The flasks are assumed to be isolated from each other and selec-

tion is performed artificially, in order to avoid any complications arising from the migra-

tion/colonisation/invasion model of community selection. Individual flasks are modelled

as described except that there is no feedback from the abiotic environment to microbe

growth; again this is done to reduce the complexity of the model and allow us to clearly

observe the phenomenon of interest, which is a response to selection.

The model simulates the growth and evolution of microbial communities suspended in

a liquid medium. This medium is held in flasks supplied with continuous chemical fluxes.

Individual microbes grow and reproduce dependent on food supply, and the ecological

interaction between them leads to the formation of food websin each flask. Mutation

may occur during reproduction, allowing the genesis of new microbial strains.
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The composition of the liquid medium in each flask determinesthe environment of

the microbes. Some of the chemicals present may be consumed as food by the microbial

population and converted to biomass, while others are non-consumable and form part of

the abiotic environment. In addition it is assumed that the liquid medium has properties

such as temperature, pH, salinity, etc., and that these can be affected by microbial ac-

tivity. We will refer to these non-consumable chemicals andphysical properties of the

flask environment collectively as ‘abiotic factors’ for ease of discussion; while chemical

nutrients are also abiotic we feel that their role as the subjects of metabolism justifies this

notational convenience. The effect of the microbes on abiotic factors is modelled here as

a side-effect of metabolism, with a genetically specified effect caused by each microbe

for every unit of biomass created.

The composition of the abiotic environment resulting from the interaction of the input

and output fluxes with the collective actions of the microbial population forms a ‘phe-

notypic’ ecosystem trait that is used as the basis for selection. Offspring ecosystems are

formed by innoculating sterile flasks with seed populationssampled from the most suc-

cessful ecosystems in the previous generation. The response to selection is measured

as the change over time in the distance of the environmental state variables from some

pre-specified ideal ratio.

The experimental method is inspired by the method of Swensonet al [162, 163]. We

wish to replicate the results of theirin vitro experiments in ourin silico experiments, in

order to show that a response to artificial ecosystem-level selection can occur in the Flask

model. If such a response can be shown, it implies that there is sufficient heritability

between parent and offspring communities for the occurrence of the community-level

selection necessary for the evolution of environmental regulation.

12.3.1 Flasks

Each flask contains a neutral liquid matrix in which is suspended a microbial population.

There is a flow of liquid through the flask. The inflow brings with it steady influxes of

chemicals and steady inputs to abiotic factors, while the outflow removes a fixed propor-

tion of stored chemicals and a steady output from abiotic factors. Flasks are well-mixed,

so that in the absence of perturbation the composition of each flask will reach a steady

state equilibrium. Each microbe both consumes and excreteschemical nutrients, and also

has an effect on the levels of the abiotic factors.

The state of the flask is therefore a vectorV of lengthM +N, whereM is the number

of chemical nutrients andN is the number of abiotic factors. The update toV at each

timestep is given by Equation 12.1, whereFin is the influx vector,Fout is the outflux
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vector, andE is the net effect onV of the microbial population.

∆V = Fin +E−Fout (12.1)

The environmental state vectorV can be subdivided into separate vectors for the con-

sumable chemicals and abiotic factors, so thatV = (X,Y) = (x1, ...,xM,y1, ...,yN) where

X andY are the consumable and abiotic parts respectively.

12.3.2 Microbes

Microbes are modelled as simple bacterial organisms that consume and excrete chemical

nutrients in a genetically specified ratio. Each microbe also has a genetically specified

effect on each abiotic factor as a by-product of metabolism.Each microbe can therefore

be represented by a vector(B,λ ,µ,α) whereλ = (λ1, ...,λM) represents the consumption

ratio, µ = (µ1, ...,µM) the excretion ratio, andα = (α1, ...αN) the effect on the abiotic

environment. Clearly∑M
i λ = 1 and∑M

i µ = 1 hold since all materials consumed and

excreted must be accounted for; there is no such constraint on α since the effect of the

microbe on the abiotic environmental factors does not necessarily involve mass transfer

and is thus treated generally.B is the current biomass of the microbe and is a variable,

whereasλ , µ andα are genetically fixed for the lifetime of the individual.

12.3.2.1 Genotype

The genotype for a microbe is an array with 2M + N loci taking values in the range

[−1.00,1.00]. There are two loci for each chemical nutrient, specifying what proportion

of the microbe’s total consumption and excretion is constituted by that chemical. TheM

loci for consumption are linearly mapped to the range[0.00,1.00] and normalised, to give

the ratio in which chemicals are consumed; excretion ratiosare found similarly. For ex-

ample, ifM = 3 and the consumption loci of the genotype are(−0.4,0.7,0.1), this would

map to(0.3,0.85,0.55) and give a normalised consumption ratio ofλ = (0.18,0.5,0.32).

There areN loci for effects on abiotic environmental factors, which map directly to the

effect the microbe has on each factor for every unit of biomass created.

12.3.2.2 Metabolism

At each timestep, each microbe will try to consume up toCmax units of food in the con-

sumption ratio determined by its genotype. If sufficient of each nutrient is present to

satisfy this demand, the food is consumed and converted to biomass with a standard effi-

ciency ofθ , with the waste being excreted (i.e., 10 units of food consumed with efficiency
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of 0.6 makes 6 units of biomass and 4 units of excreta). The excreta is returned to the en-

vironment in the ratio determined by the microbe’s genotype.

Each microbe incurs a biomass decrement ofγ units at each timestep for the cost of

living, assumed to be lost to the environment by heat loss or similar irreversible process.

The update equation for the biomass of the microbe is thus given by Equation 12.2.

∆B = θCact− γ (12.2)

whereCact is the actual number of nutrient units consumed, which may beless thanCmax

if nutrients are scarce.

If an insufficient amount of a chemical nutrient is availableto satisfy a microbe’s

consumption demand, the number of food units the microbe will try to consume is scaled

down (possibly to zero) so that the demand can be satisfied. The ratio in which nutrients

are consumed is always held fixed, so that the lack of a single nutrient can be a limiting

factor to consumption. The limiting factor means that the actual amount of food consumed

Cact is given by Equation 12.3 below.

Cact = min(Cmax,
x1

λ1
, ...,

xM

λM
) (12.3)

wherexi is the amount of nutrienti present in the flask andλi is the proportion of con-

sumption constituted by this nutrient. The amount of each nutrient removed from the

environment is by a microbe is given by the vectorE− below, while the amount returned

to the environment as excreta is given by the vectorE+.

E− = (λ1Cact, ...,λMCact) (12.4)

E+ = (µ1Cact, ...,µMCact) (12.5)

For example, if the consumption and excretion ratios areλ = (0.18,0.5,0.32) andµ =

(0.3,0.14,0.56) respectively, andθ = 0.6 the microbe will consume an amount of nutri-

ents given by the vectorE− = (1.8,5,3.2), gain 6 units of biomass, and excrete waste

nutrient amounts ofE+ = (1.2,0.56,2.24). If only 2 units of the second nutrient are

available, the amount consumed from the environment will beE− = (0.72,2,1.28), the

microbe will gain 2.4 units of biomass, and the amount excreted to the environment will

beE+ = (0.48,0.224,0.896).

Microbe metabolism has a side-effect impact on the flask environment. For every unit

of biomass created, the microbe will alter the level of each abiotic factor by the amount

specified in its genotype, which may be positive or negative.The effect of the microbe’s
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metabolism on the abiotic environment is thus(α1Cact, ...,αNCact). For example, ifN = 2

andα = (0.2,−0.5), the microbe above that created 6 units of biomass would havean

effect on the abiotic factors of(1.2,−3).

In the experiments reported here parameter settings wereCmax = 10, θ = 0.6 and

γ = 1, for all microbes.

12.3.2.3 Guilds and species

Given that microbes reproduce asexually, the normal usage of a species being a group of

individuals capable of breeding with each other does not apply here, but for convenience

we will refer to a microbe species as a group of individuals that share the same consump-

tion and excretion ratios and have the same effect on the abiotic factors. Note that the

normalisation process in the genotype-to-phenotype mapping means that a species can

contain individuals with different genotypes.

Microbes can be grouped according to their functional effect on the environment.

Through metabolism, every microbe has a (possibly negligible) effect on the amounts of

different chemicals present in the environment. Ignoring the size of this effect and looking

only at the sign of the effect (i.e., classifying effects as positive, negative or neutral), we

can partition the microbial population into functionalguildsfor descriptive purposes.

The concept of an ecological guild was originally defined by Root as “...a group of

species that exploit the same class of environmental resources in a similar way. This term

groups together species, without regard to taxonomic position, that overlap significantly

in their niche requirements” ( [143], p.335). The concept has also been adopted by Volk,

who defines biochemical guilds as groups of species linked bya similar effect on the

environment, such as nitrogen fixers or oxygen producers [176], and also by Downing

[55], who uses a similar definition.

Here we adapt the definition slightly so that a functional guild is made up of microbes

that have a similar effect on the environment, e.g., a guild might contain all microbes who

are net consumers of chemical A, net producers of chemical B,and increase the level of

abiotic factor C. The guild classification allows some of the functional structure of the

ecosystem to be elucidated. There are 3M+N different functional guilds possible in the

Flask model.

12.3.2.4 Reproduction

Microbes are initialised with a biomass randomly drawn froma uniform distribution on

the range[60,110]. If they are successful and increase their biomass to 120, they repro-

duce asexually by splitting. The child microbe gets a copy ofthe parent genotype and the
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biomass of the parent is split equally between parent and child. The genotype of the child

is subject to mutation, with a 0.05 probability of mutation at each allele. Mutation of an

allele occurs by randomly selecting a new value from the range [−1.00,1.00].

12.3.2.5 Death

Unsuccessful microbes will not get enough food to grow and may reduce in biomass due

to the cost of living. If the biomass of a microbe falls below 50 the microbe will die.

In addition to this, a microbe may randomly selected to die with a probability of 0.002

per individual at each timestep. This is included as a loose implementation of death by

natural causes and serves to promote selection and competition between microbes. When

a microbe dies its remaining biomass is returned to the environment as chemical nutrients

in equal amounts, i.e.,BM units for each chemical.

12.3.3 Update scheme

The microbial population is updated sequentially in randomorder to avoid artefacts. At

each timestep, each flask is updated in the following order:

1. Add chemical influx

2. While some microbes are not updated:

(a) Randomly select a microbe from the population

(b) Do microbe metabolism

i. Consume nutrients

ii. Update biomass

iii. Excrete waste

iv. Calculate effect on abiotic factors

(c) Test for microbe death (starvation or natural causes)

(d) Test for reproduction

3. Remove chemical outflux

12.3.4 Artificial selection experiments

There is no true concept of an ecosystem generation, but for convenience we will define

a flask generation as a fixed period in which the flask ecology develops followed by a
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selection event. Selection events occur periodically at fixed intervals, with the duration

of a generation defined as the length of the between-selection interval. The length of this

period was varied in different runs, and will be given where appropriate below.

For each evolutionary run a set of flux parameters was generated and held constant

across all flasks to give identical flask conditions throughout each run. At initialisation

a batch of flasks was instantiated with these parameters and then each was seeded with

a randomly generated population of 100 microbes. At each selection event, a new batch

of sterile flasks was seeded with 100 microbes randomly chosen (with replacement) from

the highest fitness flask at the end of the previous generation, so that the fittest ecosystem

provides the seed for all flasks for the next generation. Sampling was performed on the

microbial population at the end of the growth period, i.e., from the ecosystem in the

state it was in when its fitness was measured. A large number ofevolutionary runs were

performed with different flux parameters and the mean evolutionary response taken, in

order to avoid unintended bias from favourable or unfavourable initialisation.

The ‘phenotypic’ ecosystem trait used for selection was based on the levels of the

abiotic factors in the flask environment. An ideal vectorȲ of target levels for each abiotic

factor was pre-specified, with the deviation error of the state of a flask from the ideal

vector constituting its fitness score. The error is given by Equation 12.6 below. Both the

ideal vector and current state vector are normalised prior to calculation of error.

Error =

√

N

∑
i=1

(ȳi −yi)2 (12.6)

This fitness metric was chosen for similarity with Swenson etal’s selection for pH level

in their pond-water ecosystems [163], and also because it does not affect the relative

fitness of individual microbes within a flask ecosystem. For asingle flask the state of

the environment is a free parameter with respect to within-flask evolution, meaning that

any non-random variation in environmental composition canbe attributed to higher-level

selection between flask ecosystems.

12.4 Results

12.4.1 Ecosystem dynamics

First of all we briefly describe the ecological dynamics thatoccur within a flask ecosys-

tem. Figure 12.1 shows the guild structure of a typical ecosystem in a flask where

M = N = 2. This is a very simple scenario, chosen to aid understanding.

The shaded striations in Figure 12.1 represent the number ofindividuals belonging to
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Figure 12.1: Ecological dynamics of a single flask ecosystem. Shaded striations denote
size of different functional guilds, while the stacked height of the plot denotes the total
population size. The population grows quickly to a stable size. The distribution of in-
dividuals between different functional guilds is initially quite uniform, but by the end of
the simulation run several large guilds have developed, indicating the formation of a food
web.

different guilds. These quantities are stacked, so that thetotal height of the plot gives the

size of the whole microbial population. The flask is seeded att = 0 with 100 microbes

with randomly generated genotypes. These initially reproduce rapidly until the population

reaches its carrying capacity, so that the size of all the guilds increases steadily for the first

few hundred timesteps before levelling off.

As time passes, reproduction and mutation cause the emergence of new species (some-

times reflected in the appearance of new guilds). Ecologicalinteraction between individ-

uals means that certain species may do well and dominate at different times. The guild

structure reflects this, with new guilds emerging and growing, or shrinking and disappear-

ing. The distribution of individuals between guilds is muchless even at the end of the run,

with a few large guilds and many small guilds indicating the formation of a food web, as

compared to the more uniform early distribution resulting from the random initialisation.

12.4.2 Response to selection

Figure 12.2 shows the response of the flask ecosystems to artificial selection. The plots

show fitness increasing (i.e., error reducing) over generational time when ecosystems are

selected for minimal error in the levels of abiotic environmental factors. The data are

generated from runs whereM = N = 3 with a normalised ideal vector for abiotic factors

of Ȳ = (0.2,0.3,0.5); similar results to those presented here are obtained when these

parameters are varied but are omitted here for clarity. The duration of each ecosys-

tem generation in timesteps was varied, with runs performedfor all values in the set
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(b) 2000 timesteps (54 directed/ 52 random)
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(c) 5000 timesteps (59 directed/ 51 random)
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Figure 12.2: Mean fitness over generational time for ecosystem generations of different
durations. Solid lines are results for directed selection,dashed lines are results for random
selection. Numbers in brackets denote number of runs performed with directed and with
random selection; plot shows mean values over all runs. Divergence of the solid line from
the dashed line indicates a response to selection.
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Figure 12.3: Response to selection (difference between directed-selection fitness and
random-selection fitness) after 30 generations for ecosystem generations of different du-
rations. Response is reduced as the length of the period between selection events is in-
creased.

{1000,2000,5000,10000}. For comparison, a microbe will reproduce every 10 timesteps

if there are no food constraints, so all of these generation durations allow at least 100

microbial reproductive cycles. More than 50 separate runs were performed with each

different generation length, to give a reasonable data sample.

In each plot the response to selection for minimal environmental error is plotted

against a control group of runs where parent ecosystems werechosen at random from

the population of flasks. Random selection in the control runs allows us to see how the

system would behave in the absence of selection, and gives a baseline for comparison with

the directed selection runs. The mean fitness of all flasks in each generation is plotted to

show the trend of the whole population of flasks, rather than focusing on one (possibly

anomalous) individual flask. It is clearly apparent that in all cases there is a significant

response to directed selection, with error values falling steadily over generational time.

12.4.3 Time-dependence of the response to selection

It is apparent from Figure 12.2 that the response to selection is reduced as the length of

the generations is increased. This can be seen more clearly in Figure 12.3, which shows

the difference in mean fitness after 30 generations between the directed selection runs and

the random-selection control runs, plotted against the duration of each generation. The

reason for this inverse relationship between the response to selection and the duration

of each generation can be explained by consideration of the evolutionary and ecological

dynamics within each individual flask.

The processes of ecological competition and evolutionary change are continuous,

meaning that the ecosystems never reach equilibrium. Experiments (not shown here)
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have shown that the flask ecosystems do not reach an attractor(fixed-point, limit cycle or

chaotic) even when left to run for up to 5×105 timesteps. This does not mean that they

are without structure, as the functional guild distribution may remain broadly similar for

very long periods, but that the underlying genetic change inthe population is unceasing.

This continual change means that the microbial population moves steadily away from

its initial composition. So if a flask is seeded with a particular set of microbes, the similar-

ity of its species distribution to its initial state steadily decreases. In the current scenario,

there is ecological pressure for the maintenance of a stablefood web, but there is no con-

straint on the effect of the microbe population on the environment. Thus genetic drift can

erode the species distribution that was favourable to reducing the environmental error and

increasing fitness. Since the similarity of the sample population taken at the end of an

ecosystem generation to the initial seed population falls as the duration of the generation

increases, the erosive effect is greater with longer generations. This means that the like-

lihood of a fit ecosystem being maintained in the face of genetic drift long enough to be

passed on to the next generation decreases as the generationlength increases; heritability

is reduced by longer generations.

12.5 Discussion

We have presented an evolutionary simulation model in whichmicrobial ecosystems dis-

play a response to artificial selection on an ecosystem-level trait. This response is de-

creased when the duration of an ecosystem generation is increased, due to genetic drift in

the alleles governing the effects of microbes on the flask environment.

The collective effects of these environment-altering traits of individual microbes de-

termine the levels of abiotic environmental factors and form the ecosystem trait that is

selected for. Genetic drift in these alleles occurs becausealthough ecologies contain-

ing good sets of environment-altering genes are selected for at the ecosystem level, the

environment-altering alleles have no effect on the relative fitness of microbes within a

flask and so vary randomly during within-flask individual-level selection.

The longer the ecosystem generation, the greater the amountof genetic drift that oc-

curs. Since offspring ecosystems are seeded with samples taken from parent ecosystems

at the end of each generation, longer generations reduce heritability and reduce the adap-

tive response at the ecosystem level.

Our findings agree with those of Swenson et al (2000b) and alsosuggest a new ex-

periment that could be performed in the laboratory. The time-dependent nature of the

ecosystem-level response to selection could be explored using microbial ecosystems with

a similar experimental method to that described in [162,163].
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With reference to the Flask model, these experiments demonstrate the possibility of

heritability between parent and offspring flask communities. A sustained response to se-

lection was observed and this implies a non-trivial level ofheritability. The dependence of

the response to selection on the length of the period betweenselection events is an inter-

esting feature of the system, but should not cause any problems in the Flask scenario; in

the Flask model selection is an implicit function of migration, colonisation and invasion,

all of which are continuous processes.

12.6 Conclusion

In this chapter we set out to demonstrate heritability in theFlask model. In a simple imple-

mentation we have shown that a response to selection at the level of a flask ecosystem can

reliably be observed. A sustained response to selection implies a measure of heritability,

so our aim has been reached.

The next step in the development of the Flask model is to demonstrate that when feed-

back from the environment to microbial growth is present, a correlation exists between

the composition of the environment and the size of the microbial population in a flask.

Once this has been done, experiments can be performed on spatially structured arrays of

interconnected flasks, in order to test whether or not environmental regulation evolves by

multi-level selection.
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Discussion of Part IV

13.1 Overview

This chapter briefly summarises the main findings from Part IV, and tries to analyse the

main contribution of this work for Gaia theory and biology ingeneral. The methodology

used is critically reviewed, and the most promising directions for future work are outlined.

13.2 Summary of results

13.2.1 Chapter 9: Background

Part IV of this thesis is an investigation into the possibility of environmental regulation

by the evolving biota. The idea of environmental regulationis most commonly explored

under the mantle of Gaia theory, and the majority of the work presented in Part IV is in

this area. However, it is hoped that the generality of the models and theoretical arguments

discussed in Part IV is such the results achieved are not specific to the Earth system,

but will also allow useful insights to be gained concerning environmental regulation at a

variety of other scales.

The basis for Gaia theory is the observation that the feedback between organisms

and their environment works in both directions; the environment sets the conditions in

which organisms adapt and evolve, but organisms also have animpact on the physical

environment. The Gaia theory claims not only that this double feedback occurs, but that
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it leads to regulation of the environment by the biota, in conditions suitable for life.

The Gaia hypothesis was originally put forward by Lovelock and Margulis [124] and

stirred up significant debate in the literature, much of which centred around the compati-

bility of Gaia theory with Darwinian evolution. The big question raised by evolutionary

theory concerned how Gaian regulatory feedback loops couldbe created by selfish natural

selection.

The case against Gaia was begun by criticisms of teleology and vulnerability of a

global regulatory system to ‘cheaters’ [40,52], with the modern view well-put by Kirchner

[98]. Kirchner accepts the emergence of global feedback loops but feels that there is

no reason why such feedbacks should be regulatory; why shouldn’t anti-Gaian positive

feedbacks be formed? Kirchner also points out that the existence of a good fit between

organisms and their environment is easily explained by adaptation of organisms to their

environment, and that there is no need to posit any additional mechanisms.

Lenton [105] exemplifies the case in favour of Gaia, which is in part evidential (reg-

ulatory feedbacksmusthave evolved because the chances of life persisting on Earthas

long as it has without regulation are infinitesimally small)and in part theoretical (Daisy-

world shows that global regulation is not incompatible withselfish individual selection,

and cheaters would not disrupt regulation since it occurs asa by-product of organismic

activity).

The latter section of Chapter 9 describes the Daisyworld model [183], which was first

developed to refute claims of teleology, but has since been the subject to many expansions.

The Guild model [55] is also described, since it represents the only significant attempt in

the literature to move on from Daisyworld.

Finally, Chapter 9 put forward a list of research questions tobe addressed in the re-

mainder of Part IV. It was noted that in both Daisyworld and the Guild model, organisms

can create a local buffer against the environment and selfishadaptation always contributes

to global regulation; there is no possibility of locally advantageous mutations that would

destroy regulation. One aim for Part IV was therefore to develop a good understanding

of the conditions under which environmental regulation evolves in Daisyworld, and to

examine the consequences of relaxing the core assumptions of the model. A further aim

was to develop a new model based on different assumptions to Daisyworld, in order to

investigate the evolution of biotic regulation in a different scenario.

13.2.2 Chapter 10: Evolution in Daisyworld

Chapter 10 presents a simplified version of Daisyworld developed with the purpose of

studying the effects of Darwinian evolution in the Daisyworld scheme. The physics of the
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model are simplified (following Harvey [80]) in order to aid understanding of its dynam-

ics, while its implementation as an individual-based model(rather than the population-

based form of the original Daisyworld) allows easy inclusion of Darwinian evolution-

ary adaptation. This model was used to gain an understandingof the conditions under

which environmental regulation will evolve, and also to test the effects of relaxing the

core Daisyworld assumptions.

The simplified Daisyworld model consists of a toroidal cellular automata where each

location (or patch) can be bare or occupied by a daisy species. Bare patches have a neutral

albedo, while daisy species occupying a patch can raise or lower patch albedo by their

pigmentation. The albedo of a patch determines the amount ofheat it absorbs from solar

insolation, and since daisies grow best at a particular temperature, albedo affects growth.

The preferred growth temperature and albedo of a daisy species are subject to mutation

when daisies reproduce.

First of all it was demonstrated that the simplified model could replicate the behaviour

of the original Daisyworld model, where competition between the black and white daisy

species led to regulation of the global temperature in the face of steadily increasing solar

insolation. Known Daisyworld results involving evolutionary adaptation were also repli-

cated. In a series of experiments it was found that allowing daisy albedo alone to mutate

freely between the levels for black and for white daisies ledto improved regulation of

global temperature. However, allowing the preferred growth temperature to mutate freely

led to the collapse of regulation, as daisies simply evolvedto prefer the current ambient

temperature.

These experimental results suggested that regulation would evolve where there was

both a need to regulate (i.e., a constrained growth function) and an ability to regulate (i.e.,

variation in albedo). To test this hypothesis further experiments were performed in which

daisy albedo could mutate freely, but where mutation of preferred growth temperature

was restricted. The results achieved confirmed the hypothesis. When only two growth

temperatures were possible, regulation occurred first around the lower temperature, then

around the higher temperature, as solar insolation increased. When preferred growth

temperature was allowed to mutate freely, but at a much slower rate than mutation of

albedo, regulatory epochs occurred around different preferred growth temperatures.

Having shown the importance of constraints on evolutionaryadaptation for regulation

to occur, the next set of experiments looked at the effects ofrelaxing two key assumptions

of the Daisyworld model, which were the assumptions that daisies could create a local

patch temperature different from the global temperature, and that locally beneficial adap-

tations always contributed to global regulation. Both assumptions were found to be vital

for regulation to occur, with a failure of regulation if either assumption was relaxed.
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Chapter 10 concluded with the observation that all of the criteria for Daisyworld reg-

ulation could be met in the natural world, but that the creation of a local buffer against

the environment was likely to be problematic. It was also noted that the simplified Daisy-

world model that had been developed was more general than theoriginal Daisyworld

model, meaning that the results obtained might be applicable in a variety of different

scenarios and at a variety of scales.

13.2.3 Chapter 11: The Flask model

Chapter 11 describes a new and original model, the Flask model, which is intended to look

at the evolution of environmental regulation by the biota ina situation where some of the

key assumptions of the Daisyworld models are relaxed. Specifically, the Flask model will

be used to study whether or not biotic regulation can evolve when it is possible for selfish

individual adaptations to work against global regulation,and where individual organisms

cannot create a local buffer against the environment.

The Flask model consists of an array of flasks containing a liquid medium and sup-

plied with a constant flow of nutrients. Each flask contains a population of microbes,

which can grow, reproduce and mutate, so that stable food webs may be formed by eco-

logical and evolutionary interaction. Microbes have an effect on their abiotic environment,

and it is assumed that the abiotic environment has an effect on growth, so that a two-way

feedback exists between the microbial community and the abiotic environment in which

the community determines the composition of the abiotic environment and the abiotic

environment influences the rate of microbial growth.

There is limited migration between flasks, allowing the possibility of colonisation

or invasion of a neighbouring flask by a community. We would expect more populous

communities to be better colonisers, and since the effect ofa microbial community on

its abiotic environment will be key to its growth and population size, it is possible that

higher-level selection effects will lead to the evolution of communities that regulate their

environment around the optimal conditions for growth.

13.2.4 Chapter 12: Response to ecosystem selection in the Flask model

Chapter 12 presented a model designed to investigate the possibility that heritability could

exist between a ‘parent’ community and its colonist ‘offspring’. It was argued that if a

response to selection at the level of a flask community could be demonstrated, then this

would constitute proof of some degree of heritability. The aim of the chapter was to

implement a simple version of the Flask model and show that a response to selection

could be observed.
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Simulated flasks were prepared as in the Flask scheme described in Chapter 11, but

with the simplifying assumptions that all flasks were isolated from each other, and that

there was no feedback from the abiotic environment to microbial growth. The compo-

sition of the abiotic environment of a flask was used as a ‘phenotypic’ trait at the level

of the flask community, and a target composition vector was defined; the error between

the actual composition of a flask and this ideal was the fitnessmetric used for artificial

selection experiments on a population of flask communities.

It was found that a clear response to selection was observed,with the mean environ-

mental error in the population of flasks steadily reducing over generational time. A clear

deviation from the performance of a random-selection control group was observed. It was

also found that the response to selection was inversely proportional to the length of time

for which each flask community was allowed to develop betweenselection events.

The conclusion to Chapter 12 argued that since a response to selection at the level of

the flask community had been demonstrated, heritability must exist between parent and

offspring communities. The time dependent nature of this result was not thought to be a

problem for the Flask model, since in the Flask model migration and colonisation would

be a continuous process.

13.3 Implications for Gaia theory

The simplified Daisyworld model presented in Chapter 10 is a useful addition to the Gaia

literature because it simplifies the physics of the Daisyworld and allows the key features

of the model to be seen more clearly; a semi-realistic implementation of heat radiation

adds little to our understanding of the compatibility of individual selection and global

regulation, whereas a simple model of the mutation of preferred growth temperature can

teach us a lot. Using our simplified model we have gained an understanding of the cir-

cumstances under which we can expect to see regulation in theDaisyworld model. The

simplicity of our model makes it more general than the original Daisyworld, so our find-

ings should hold in more ‘realistic’ Daisyworld models and it is also possible that they

can be applied to other systems that share a similar form.

We found that regulation in Daisyworld will occur when thereis heritable variation

in daisy albedo and constraints on the adaptation of the preferred growth temperature.

Variable albedo allows the possibility of regulation, while constraints on adaptation of

growth temperature creates a need for regulation. This finding might guide field research

aimed at finding examples of real-world regulation that operates along similar principles

to Daisyworld. There are many constraints on evolutionary adaptation in nature, arising

from physical/chemical laws and from evolutionary canalisation. Real world ecologies
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where such constraints on adaptation are identified would begood places to look for

regulation.

Our examination of the impact of constraints on adaptation of preferred growth tem-

perature involved two results not previously reported in the Daisyworld literature. The

first of these is that when there are two possible growth functions with overlapping ranges

but distinct maxima, competitive exclusion effects are observed whereby biotic regula-

tion of the environment around one of the growth maxima precludes organisms with

metabolisms based on the other growth function from gaininga foothold in the envi-

ronment. The second new result is that when adaptation of preferred growth temperature

occurs without constraint, but very slowly in comparison toadaptation of albedo, regula-

tory epochs are observed in which the biota regulate around aparticular dominant growth

function for a period, before changing external conditionsmake that growth function un-

viable. In the general case this means that slow adaptation of a phenotypic trait affected by

the environment coupled with fast adaptation of a trait affecting the environment can lead

to short-term adaptationof the environment interspersed with infrequent adaptationto

the environment. Both of these results are novel in the Daisyworld literature, and suggest

possible new avenues for Gaian research.

Other significant new results concerning Daisyworld concern the effect of relaxing its

key assumptions. We found that if organisms were not able to create a local buffer against

the environment in which to improve their growing conditions, regulation broke down.

There was no individual selective advantage to adaptationsthat improved the environ-

ment, so although occasions could arise when serendipitouscircumstances led to the right

kind of daisy improving the environment and the population expanding rapidly, there was

no selective pressure to maintain this improvement and it was quckly eroded by genetic

drift. This finding shows that there is no way that individual-level selection can lead to

sustained global regulation unless there is some individual-level competitive advantage to

be gained by contributing to it, which lends support to criticism of Gaia hypotheses based

on individualsaltruistically contributing to regulation.

Also, if the effect of daisy albedo on the environment had no effect on growth so that

mutations of albedo were selectively neutral, regulation also broke down. This shows

that if the direct link between selfish adaptation and globalregulation is relaxed in the

Daisyworld model, then regulation fails. This finding echoes Kirchner’s comment that

there is no reason to expect biological feedbacks to the environment to be inherently

homeostatic.

It therefore seems that regulation in Daisyworld rests on the twin assumptions of a lo-

cal environmental buffer and of selfish adaptation contributing to the global good. These

are reasonable assumptions to make in many real world situations, but they are by no
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means universally true. Given the importance attached to the Daisyworld model in the

Gaia literature (notwithstanding the fact that the validity of Gaia theory does not rest on

the validity of the Daisyworld model) the importance of these assumptions for the occur-

rence of regulation in Daisyworld should be given greater recognition than is currently

the case.

However, as mentioned, the Gaia theory does not rest on Daisyworld, and in response

both to our findings concerning Daisyworld and to Volk’s callfor new Gaia models, we

have in this thesis begun to develop a new model, the Flask model. It is hard to judge the

implications of a model which has yet to be constructed, but the fact that the Flask model

is built on different assumptions than the Daisyworld modelmeans that it can provide

another test case for the evolution of environmental regulation and move the Gaia debate

forward.

The Flask model may appear to be swapping one controversial theory for another in

calling on multi-level selection to demonstrate the validity of the Gaia theory, and to some

extent this is true. Group selectionist explanations of global regulation have previously

been refuted, but we feel that recent support for the validity of multi-level selection in

certain circumstances suggests that such explanations, carefully constructed, are worthy

of further investigation.

13.4 Implications for biology

The stated aim of the investigation in Part IV of this thesis was to study the evolution

of environmental regulation by the biota, and although the large majority of the material

presented above is aimed at Gaia theory, this aim of generality still applies. It seems likely

that biotic environmental regulation can occur at a varietyof spatial and temporal scales,

and it would be beneficial if the results obtained above couldbe applied to ecosystems

other than the Earth system.

The evolutionary Daisyworld model presented in Chapter 10 ismade very general by

its simplification, as mentioned before. Thus it might be a good starting point for un-

derstanding environmental regulation in systems other than Gaia; if the assumptions it is

based on can be shown to hold in a candidate regulatory system, and the criteria identified

for regulation to occur are met, then useful insights might be gained by comparison of the

dynamics of the target system with those of the simplified Daisyworld model.

The Flask model can also be applied at a variety of scales. Itsconceptual design stems

from microbial activity in a liquid environment, but it might be adapted to model other

situations without much alteration to its structure; it is athought experiment more than a

model of a particular ecosystem.
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In addition, the Flask model can be used to address questionsother than those con-

cerning environmental regulation. Multi-level selectionis a supporting assumption of the

Flask model as described in Chapter 11, but it is in itself an issue of great theoretical

importance and one for which the basic formulation of the Flask model is well suited for

investigation. Experiments might include a more rigorous and thorough exploration of the

response to artificial selection presented in Chapter 12, or perhaps a study of whether or

not the spatial structure of the Flask model provides necessary and sufficient conditions

for multi-level selection to occur in a more natural form.

Finally, because the Flask model is loosely based on microbial communities inhab-

iting flasks, it also offers the intriguing possibility of making predictions that might be

tested with laboratory experiments using real microbes. The similarity of the results from

simulation presented in Chapter 12 to those of Swenson et al working with pond-water

and soil communities [162, 163] suggest that this might be a useful line of study. For

example, it would be interesting to see if the time-dependent nature of the response to

ecosystem selection in simulation is a property shared by real microbial communities.

The possibility of real world testing of hypotheses generated from the Flask model is one

area where it may offer an advantage over the less directly testable results generated in

Daisyworld.

13.5 Review and future work

The main area where more work is required is in developing theFlask model. The lack of

time and space to provide a more concrete development of the Flask model in this thesis

is a major regret. However, despite the cartoon nature of theFlask model as described,

and while accepting fully that the model will inevitably be subject to myriad refinements

and corrections, we feel that its inclusion here is justified. The inclusion of the Flask

model adds balance to Part IV of the thesis. Chapters 9 and 10 point to a direction in

which Gaian modelling might usefully move forward, while the limited presentation of

the Flask model in Chapters 11 and 12 gives a taste of what such ajourney might bring.

Future work will focus on developing the Flask model. The assumptions and sub-

hypotheses described in Section 11.6 in Chapter 11 will be examined in turn. The demon-

stration of heritability and response to artificial ecosystem selection that was presented in

Chapter 12 will be extended and better analysed. Further modelling work will be required

to demonstrate a correlation between the population size ofa community and its effect

on its abiotic environment, and to show that the spatial structure of the Flask model can

give rise to multi-level selection dynamics. A literature search will be necessary to com-

pile further evidence for the existence of universally preferred growth conditions, and this
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might be complemented with modelling to investigate the implications of multiple coex-

isting sets of preferred environmental conditions. Only when these components of the

Flask model are studied and understood can any principled testing of the overarching hy-

pothesis concerning the evolution of environmental regulation by the biota be performed.

13.6 Conclusions

Part IV of this thesis has considered the evolution of environmental regulation by the

biota. A simplified version of the Daisyworld model was used to gain a good understand-

ing of when regulation can be expected to evolve in the Daisyworld scenario. The effect

of relaxing the main assumptions of Daisyworld was also studied, and it was found that

regulation collapses when some of these modelling assumptions are removed. The Flask

model was suggested as a system that relaxes the assumptionsof Daisyworld but in which

environmental regulation might be expected to evolve by multi-level selection. Finally,

Part IV presented the first steps towards constructing the Flask model, and demonstrated

that at least one of its component hypotheses holds.

The contributions of this body of work for Gaia theory and forbiology in general have

been outlined above, along with known weaknesses of the material presented, and a plan

for future work. This concludes the study of environmental regulation by the biota in this

thesis. In Part V we will examine biotic regulation of the environment in the context of

homeostatic adaptive networks.
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Chapter 14

Towards a general theory of

homeostatic adaptive systems

14.1 Overview

The aim of Part V is to try and draw the various threads of research in the thesis to-

gether and reach some coherent conclusions concerning homeostatic adaptive networks.

In Part I we introduced the concept of homeostasis as an organising principle, and in

Part II we described an example system, the Homeostat. Part III was a study of homeo-

static plasticity in neural networks, while Part IV examined environmental regulation by

the biota. In Part V we return to the central theme of homeostatic adaptive networks and

analyse each of the systems presented in this thesis in this context. The aim is to see how

well the Homeostat, neural homeostasis, and biotic environmental regulation fit into our

definitions of homeostasis and homeostatic adaptation, andto try to identify properties

common to all homeostatic adaptive systems.

The next section gives a brief recapitulation of the definitions of different kinds of

homeostatic adaptation that we originally gave in Chapter 1.These definitions are then

applied to our case study systems in subsequent sections. This is followed by some dis-

cussion of commonalities between the case study systems andgeneral conclusions con-

cerning homeostatic adaptation.
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14.2 Definitions

In Chapter 1 we defined a homeostatic system as one where the essential variables were

maintained in a target range by the action of a regulatory mechanism, where they would

otherwise have moved outside the target range due to external forcing. In Figure 1.4 we

gave a schematic of this organisation.

We then defined homeostatic adaptation as changes in system behaviour that maintain

homeostasis in essential variables against some perturbation. Elastic homeostatic pertur-

bation is where these changes are not persistent, i.e., the system returns to its original

state after perturbation. Plastic homeostatic adaptationrefers to the case where changes

are persistent, i.e., where the system remains in a changed state after the perturbation is

removed.

We then noted that it is possible for multiple homeostatic feedback loops to oper-

ate simultaneously in the same system (Figure 1.5) and that second order homeostasis

is possible where homeostatic regulation acts to change theparameters of a first order

homeostatic regulator (Figure 1.6).

14.3 Case study 1: The Homeostat

The original Homeostat was an electromechanical device consisting of 4 units intercon-

nected by circuits with variable parameters. Each unit had amagnet mounted on its upper

surface. The angular deviation of each magnet was determined by an electrical field that

varied as a function of the input current received by the unit, modified by the parameters of

a set of potentiometers and commutators. If the angular deviation of a magnet passed out-

side the range[−45o,45o] a uniselector randomly chose new values for the potentiometer

and commutator parameters, so that the system was only stable when all magnets were

inside the target range.

External perturbations to the Homeostat come in the form of externally induced dis-

placements of one or several of the magnets on the four units.The target variables of the

system are the angular deviations of the magnets. Some perturbations to a magnet will

act on the underlying circuitry so that the system falls to a new attractor with all magnets

in bounds, and homeostasis is maintained. Some other perturbations will lead to system

instability with some magnets out of bounds, i.e., a loss of homeostasis. The latter case

will activate the uniselector to choose new values for the potentiometer/commutator set-

tings of the affected unit, which may alter the properties ofthe circuit so that all magnets

are returned to their target ranges and homeostasis is restored.

The simulated Homeostat presented in Chapter 2 behaves similarly to the original
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Figure 14.1:The original Homeostat is a first order plastic homeostatic adaptive system. Fixed circuitry
and external perturbations combine with the current uniselector settings to determine the angular deviations
of the magnet mounted on each unit. If a magnet is outside the target range, a new uniselector setting for
that unit is chosen at random.

Homeostat. Here the target variables are the activation values for each unit, which are

determined by the network structure, connection strengths, and unit transfer function pa-

rameters. Perturbations come in the form of external input signals to each unit. Some per-

turbations can be accommodated by the simulated Homeostat without any loss of home-

ostasis, but others cause activation of one or more units to go out of bounds, triggering

the random generation of new connection strengths and transfer function parameters for

non-homeostatic units.

Applying our definitions to both the original and simulated Homeostats, we see that

they are both first order homeostatic adaptive systems. Theyboth display plastic homeo-

static adaptation, and there are different homeostatic feedback loops regulating each unit

so that the whole 4-unit system has multiple interacting homeostatic subsystems. The

simulated Homeostat also has two different regulatory mechanisms active on the same

target variable, which are the two mechanisms for reassigning connection strengths and

transfer function parameters. We can therefore draw the diagrams of causal effect shown

in Figures 14.1 and 14.2.

It is interesting to note that the decision of where to draw the boundary between the

reacting part of the system and the environment seems very arbitrary. External perturba-

tions are clearly part of the environment, and the current uniselector setting is clearly part

of the reacting part, but other parts are harder to ascribe toone or the other. For example,

the fixed circuitry of the Homeostat part of the environment or a part of the reacting part?

Here we will adopt the principle that the reacting part consists of those parts of the system

that determine the type of behaviour the system produces, and that the environment con-

sists of everything between the reacting part and the essential variables. This refinement
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Figure 14.2: The simulated Homeostat is a first order plastic homeostaticadaptive system with two
homeostatic feedbacks. Network topology, update equations and external inputs combine to determine the
activation of each node. If activation of a node is out of bounds, adaptive mechanisms randomly reassign
transfer function parameters and afferent connection strengths for that node.

of the definition treats the environment as a black box which converts the current state

of the reacting part into a set of values for the essential variables. Hence the reacting

part in the original Homeostat is the uniselector, and the environment consists of all the

fixed circuitry and any external perturbations. In the simulated Homeostat, the reacting

part is the current set of connection strengths and transferfunction parameters, while the

environment is the fixed set of network update algorithms andany external inputs.

14.4 Case study 2: Homeostatic plasticity in neural net-

works

We applied homeostatic plasticity to continuous-time recurrent neural networks (CTRNNs)

in the form of two different mechanisms that were activated when neural firing rate was

too high or too low. These mechanisms were local (in that theyacted on the parameters

of the non-homeostatic node) and directed (in that they always changed parameters in the

correct way to move firing rate towards its target range). Thesynaptic scaling mechanism

caused a linear scaling of afferent connection weights to a neuron so that input caused

more or less excitation, while the adaptive bias mechanism changed the bias term so that

the neuron was inherently more or less excitable. Both synaptic scaling and adaptive bias

were effective in acting on node parameters so that extreme firing rates were counteracted

and firing rate homeostasis maintained.

The target variables in this system are the firing rates of thenodes, with a target range
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Figure 14.3:Homeostatic feedback loops in homeostatic plastic CTRNNs.Homeostatic plastic CTRNNs
are first order plastic homeostatic adaptive systems with two regulatory mechanisms: synaptic scaling and
an adaptive bias term. The current set of connection weightsand bias terms combines with the network
topology and update equations to determine the firing rates of the nodes in the network. If the firing rate of
a node is too high, afferent connection weights are scaled down and the bias is increased, reducing the firing
response. If firing rate is too low, weights are scaled up and bias reduced, making the node more likely to
fire.

(e.g. [0.3,0.7]) that is a subset of the full range[0,1] permitted by the sigmoidal form

of the CTRNN transfer function. Perturbations to a CTRNN take the form of external

input signals applied to the nodes. After initialisation, there is a transient period in which

homeostatic plasticity acts on network weights and bias terms so that the activity of each

neuron is brought inside the target range. After this transient, most input signals will

not cause activity to go out of bounds and there is no parameter change during normal

operation. However, certain input signals will lead to patterns of activation where neural

activity goes out of bounds, at which point the homeostatic plastic mechanisms will act

so that activity is returned to the target range.

From our definitions, we can state that a homeostatic plasticCTRNN is a first order

homeostatic adaptive system and that it displays plastic adaptation. There are multiple

homeostatic subsystems regulating the activity of each of the nodes. Synaptic scaling

and adaptive bias are two alternative types of regulatory mechanism acting on the same

variables with the same target range. A diagram of causal effect for a network with both

mechanisms active is shown in Figure 14.3. Again the division between environment and

reacting part seems somewhat arbitrary, but following the principle that we applied to the

Homeostat we assign the current set of network weights and bias terms to be the reacting

part and the set of network update equations and external inputs to be the environment.

The complexity of biological neuronal networks compared toCTRNNs makes it hard

to draw any conclusions concerning the nature of homeostatic plasticity in biological
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nervous systems from our results in this thesis, but a similar scheme to that shown in

Figure 14.3 might apply.

14.5 Case study 3: Homeostatic regulation of the envi-

ronment by the biota

Since the different models (Daisyworld and Flask) that are described in this thesis are

different in nature from each other and from the Earth systemthat inspired them, each

will be treated separately.

14.5.1 Daisyworld

Several versions of the Daisyworld model were examined, which were variations on a

basic scheme where daisies compete for living space on a toroidal landscape. Each patch

contains a single daisy species or bare earth, and its resulting albedo affects the amount

of solar heat radiation it reflects and hence its local temperature. Daisies may colonise

bare neighbouring patches, with the possibility of mutation of daisy albedo and/or pre-

ferred growth temperature during this reproductive process. Ecological competition and

evolution result in regulation of global temperature.

Since some versions of the Daisyworld did not display any regulatory properties, they

are not candidate homeostatic adaptive systems. Here we will look only at the Daisyworld

scenarios where homeostatic regulation of global temperature was observed. The target

variable of the Daisyworld system is always global temperature, with perturbation taking

the form of a steadily increasing level of solar luminosity.

14.5.1.1 Two-species Daisyworld

The behaviour of the Daisyworld system in this scenario is shown in Figure 10.2 and

described in Chapter 10. When the Daisyworld is configured withpure black and pure

white daisy species only, with no mutation, regulation occurs because of a shifting balance

between the sizes of the black and white daisy populations. This balances arises as a result

of competition between the daisy species for living space, and interaction between daisies

and their environment.

The two-species Daisyworld is a first order homeostatic adaptive system, but in this

case the adaptation is elastic. Regulation is achieved by a balance between two species

that are always present in the world; it is the relative sizesof their populations that de-

termine temperature. Population sizes tend assymptotically to fixed values for any given
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Figure 14.4:The two-species Daisyworld is a first order elastic homeostatic adaptive system. If global
temperature is higher than the optimum level for growth, white daisies are have a higher growth rate than
black daisies; vice versa when global temperature is lower than the optimum. Ecological dynamics deter-
mine the population sizes of the black and white daisy species, which in turn combine with solar forcing
to determine the global temperature. Differences in growthrate affect the ecological dynamics, leading to
temperature regulation.

level of external forcing, so in the limit the state of the system is determined entirely by

current conditions. Therefore any changes in population sizes caused by a change in ex-

ternal forcing will persist only as long as that level of forcing continues, and changes are

reversible. The system displays elastic homeostatic adaptation since changes in response

to a change in forcing do not persist.

We can draw the diagram of causal effects for the two-speciesDaisyworld that is

shown in Figure 14.4. A deviation in temperature away from the optimal level for daisy

growth creates an advantage for one species over the other that is expressed as a higher

growth rate for the species most suited to the current temperature. Daisy ecology alters

the balance of population sizes, which in turn moves the global temperature towards the

optimal level.

14.5.1.2 Evolutionary Daisyworld

Short-term regulation occurs in the evolutionary Daisyworld scenario (see Figures 10.3,

10.6, 10.7 and 10.10, and discussion in Chapter 10) in a similar way to the two-species

model. Ecological interaction and competition between different daisy species results in

a balance of population sizes that gives a global mean albedosufficient to move global
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Figure 14.5:The evolutionary Daisyworld is a second order homeostatic adaptive system. Ecological in-
teractions form a first order elastic homeostatic adaptive mechanism which can regulate small perturbations
to global temperature. Larger perturbations create an opportunity for new species to enter the world and
contribute to regulation. Evolutionary adaptation thus forms a second order plastic homeostatic adaptive
mechanism that acts on the parameters of the first order ecological mechanism.

temperature to the optimum for growth.

In the two-species model there are only pure black and pure white daisy species,

meaning that while it is possible to regulate the global temperature, the local growing

conditions for each daisy species is often non-optimal and the combined population size

rarely reaches carrying capacity (see Figure 10.2 in Chapter10). In the evolutionary

Daisyworld, mutation continually adds new daisy species tothe daisy ecology, meaning

that there is usually some variant that can create optimal local conditions for growth, with

the global benefit of also regulating the global temperature. This means that the popula-

tion size often reaches carrying capacity in the evolutionary Daisyworld when regulation

occurs (e.g., Figure 10.3).

Regulation against small perturbations is performed by ecological interaction, since

for a small change in external forcing it is possible for changes in population sizes of

existing species to maintain the global temperature at the optimal level. This creates a

homeostatic adaptive system where the regulatory mechanism is purely ecological. Evo-

lutionary change does not play a part in regulation against very small perturbations, since

at a fixed level of solar luminosity there will typically be a small number of dominant

species which are well suited to current conditions and competitive exclusion prevents

other species from gaining a foothold in the world.

However, if solar luminosity changes beyond a certain point, the current set of daisy

species is unable to keep global temperature at the optimum for growth by purely ecolog-
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ical means and homeostasis is lost. The current species are no longer so well suited to the

conditions and become less competitive, creating an opportunity for new daisy species.

New species are being constantly created by mutation, and ifa variant occurs that is well

matched to the current conditions it will rapidly multiply.Since such a species would nec-

essarily have an effect that brought global temperature towards the optimum for growth,

this will restore homeostasis.

The ecological regulatory mechanism is a form of elastic homeostatic adaptation for

the same reasons that the two-species Daisyworld model was;changes in population sizes

do not persist. The evolutionary regulatory mechanism, however, is a plastic homeo-

static adaptive mechanism, since changes in the species composition of the Daisyworld

are persistent until over-written by further evolutionarychange. Changes in species com-

position also display hysteresis, since the current species composition depends not only

on the current conditions but also on the recent history of the system. Also, since the

evolutionary mechanism changes the species which constitute the ecological mechanism,

the evolutionary Daisyworld displays second order homeostasis. The evolutionary home-

ostatic mechanism acts on the parameters of the ecological mechanism when the eco-

logical mechanism alone is unable to regulate the global temperature. The evolutionary

Daisyworld thus fits the scheme shown in Figure 14.5.

This homeostatic adaptive system becomes a homeorhetic adaptive system in the sit-

uation where regulation occurs but where there is variety inthe preferred temperature for

growth, i.e., when there are two possible growth functions (Figures 10.7, 10.8 and 10.9) or

when preferred growth temperature adapts more slowly than albedo (Figure 10.10). Here

regulation at any particular point in time occurs around a single growth function (with a

single preferred temperature), since it is easier to use albedo to regulate temperature than

to adapt the growth function to current conditions. The target of regulation may change

however, if a change in external forcing occurs that is largeenough to make the current

target growth function un-competitive. At this point therewill be a rapid switch to a new

growth function and regulation around a new preferred growth temperature.

The homeorhetic adaptive system will display short periodsof homeostatic adaptation

around each preferred temperature, which over longer timescales gives a stepped progres-

sion in global temperature (as seen in Figures 10.7, 10.8, 10.9 and 10.10). This process is

classified as homeorhetic adaptation because the set point around which regulation occurs

is subject to change.
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14.5.2 Flask model

The Flask model consists of an array of flasks, each containing a microbial community

and receiving a steady chemical flux. The effect of the microbial community on the

abiotic environment of a flask determines the growth rate of the microbes, creating a bi-

directional feedback between the biota and their environment. Multi-level selection en-

abled by the spatial structure of the model may lead to the evolution of flask communities

that regulate their environment to the optimal conditions for microbial growth.

It has yet to be demonstrated that the Flask model displays homeostasis, and for this

reason we are unable to analyse it as a homeostatic adaptive system, but the Flask model

as described contains the necessary ingredients for homeostatic adaptation. The essential

variables of the Flask system are the vectors specifying thecomposition of the abiotic

environments in each flask, and there are are target ranges for these defined by the ranges

within which microbes can grow and reproduce. There are a variety of adaptive mecha-

nisms in the model, which include ecological dynamics within and between flasks, and

selection pressure at the individual level and at the level of the flask community. Pertur-

bations to the essential variables come from within the Flask world in the form of genetic

drift at the individual level within flasks, and from the invasion and colonisation dynamics

between flasks.

However, any further speculation on the Flask world as a homeostatic adaptive system

would be pure conjecture and we will stop at this affirmation of the necessaryconditions

for homeostatic adaptation within the Flask model. Furtheranalysis can be performed

only when the Flask conditions have also been shown to besufficientfor homeostatic

adaptation to occur.

14.5.3 The Earth system

Both Daisyworld and the Flask model are intended at some level to be models of how

environmental homeostasis might be maintained by the biotain a manner consistent with

evolutionary theory. However, by necessity and design bothmodels are hugely simpli-

fied in comparison to the real Earth system, and this means that much caution must be

exercised in seeking to draw conclusions from these models concerning the dynamics

of the biosphere. Nonetheless, with this caveat in place, itcan be argued that if Daisy-

world and/or the Flask model are good models of the Earth system at some level, and

are demonstrated to be homeostatic adaptive systems, then we should have the courage

of our convictions and hypothesise that the Earth system also is a homeostatic adaptive

system. It is certainly an adaptive system, by virtue of being the home for almost all

known adaptive systems, but whether or not it can be shown to be homeostatic is an open
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question.

14.6 Discussion

Having considered our case studies as homeostatic adaptivesystems, we now try to build

from these examples and make general observations concerning homeostatic adaptation.

In this section we look at some aspects of homeostatic adaptive systems that allow them

to be differentiated and defined; our discussion here applies similarly to homeorhetic

adaptive systems.

14.6.1 Classification of perturbations

Perturbations to a homeostatic adaptive system can be grouped into two categories: those

that cause a loss of homeostasis, and those that do not. A lossof homeostasis will trigger a

response in the regulator, which will affect the behaviour of the reacting part. This change

in behaviour may or may not result in the recovery of homeostasis, meaning that the class

of perturbations that cause a loss of homeostasis can be sub-divided into those perturba-

tions which cause a temporary loss of homeostasis that is later recovered by the action of

the regulator, and those which cause a loss of homeostasis which is unrecoverable.

Let Q be the set of distinct parameter sets for the reacting part ofa homeostatic adap-

tive system. Then for every parameterisationq∈Q there is a setPq of perturbations which

do not cause a loss of homeostasis when the reacting part is configured with that param-

eterisation. With a setP of all possible perturbations, we can now define distinct subsets

PI , PII andPIII that contain different sorts of perturbation.PI is the set that contains all

perturbations to the system that never cause a loss of homeostasis,PII is the set of all

perturbations that cause loss of homeostasis for some (but not all) parameterisations of

the reacting part, andPIII is the set of perturbations that the system can therefore never

adapt to since they cause loss of homeostasis for all parameterisations inQ. These sets

are defined as follows:

P = PI ∪PII ∪PIII

PI =
⋂

q∈Q

Pq

PII =
⋃

q∈Q

Pq−
⋂

q∈Q

Pq

PIII = {PI ∪PII }
c =

⋂

q∈Q

Pc
q
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For example, in the Homeostat some displacements of a magnetwill be PI perturbations

that do not cause any units to lose homeostasis. Other perturbations will cause the magnets

of one or more units to go outside the target range. If a uniselector setting is subsequently

found such that circuit dynamics return all magnets to theirtarget ranges, the perturbation

is aPII perturbation. If there is no setting of the uniselector which will bring all magnets

back in bounds, the perturbation is aPIII perturbation. A further example of aPIII pertur-

bation is one that leads to a fundamental disruption to the system, such as a blow from

a sledgehammer. This kind of perturbation is outside the normal operating conditions of

the Homeostat, and there is no feature of the Homeostat’s machinery that can adapt to it.

14.6.2 Requisite variety

The variety of different parameterisations to the reactingpart that the regulator can effect

is key to homeostatic adaptation. The set of possible parameterisations of the reacting part

determines the possible ways in which it can interact with the environment. The variety

of parameterisations can be seen as the variety of modes of interaction with the world.

The number and types of perturbations a homeostatic adaptive system can adapt to is

determined by the variety of parameterisations to the reacting part, and by the effect of

different perturbations on the essential variables for each parameter set. Each parameter-

isationq∈ Q will generate an associated set of responses to perturbation in the reacting

part. Some of these responses will lead to a homeostatic outcome, while others will lead

to a non-homeostatic outcome. Every parameter setq∈ Q for the reacting part therefore

has an associated setPq of perturbations for which homeostasis is maintained, and acom-

plementary set of perturbationsPc
q of perturbations that cause a loss of homeostasis. The

process of homeostatic adaptation can be thought of as selecting a suitable parameter setq

from Q so that homeostasis is maintained in the current conditions, i.e., so that the current

perturbation is a member ofPq.

We can illustrate this concept with a simple example system.Suppose a homeostatic

adaptive system exists that is subjected to a small discreteset of perturbationsP, and has

a reacting part which produces discrete responses that change dependent on its parameter-

isation from a setQ. Let P = {p1, p2, p3, p4, p5} andQ = {q1,q2,q3}. Each parameter

set inQ has a set of possible outcomes associated with the differentperturbations inP.

We can tabulate this scheme as shown in Table 14.1.

Looking at Table 14.1 we can see that the sets of perturbations which do not cause

a loss of homeostasis for each parameter set arePq1 = {p1, p2, p3}, Pq2 = {p1, p2, p4}

andPq3 = {p2, p3, p4}. We can also use the table to derive the set of perturbations which

never cause a loss of homeostasis asPI = {p2}, the set of perturbations which cause a loss
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q1 q2 q3
p1 O O X
p2 O O O
p3 O X O
p4 X O O
p5 X X X

Table 14.1:Outcomes resulting from perturbationsp for different parameter setsq for the reacting part
in an example homeostatic adaptive system.O denotes homeostatic outcome,X denotes non-homeostatic
outcome. Perturbationp2 never causes a loss of homeostasis, while perturbationp5 always causes a loss of
homeostasis. Perturbationsp1, p3 andp4 all cause a loss of homeostasis with some parameter sets butnot
with others; the system can adapt to these perturbations if they cause a loss of homeostasis.

of homeostasis with some (but not all) parameter sets asPII = {p1, p3, p4}, and the set of

perturbations which always cause a loss of homeostasis asPIII = {p5}. We can observe

that these sets accord with the rules for the membership ofPI , PII andPIII that were stated

above in Section 14.6.1.

Successful maintenance of homeostasis in a homeostatic system depends on sufficient

variety in the responses of the regulator, in accordance with Ashby’s Law of Requisite Va-

riety [6]. For every perturbation, the interaction of the reacting part with its environment

and the perturbation will determine the values of the essential variables. For homeosta-

sis to be maintained against a perturbation there must be a mode of interaction for the

reacting part which leads to a homeostatic outcome for that perturbation. The variety of

modes of interaction is determined by the variety of responses of the regulatory effector

mechanism, so that variety in the response of the effector determines the variety of pertur-

bations that can be adapted to. The example given above uses discrete perturbations and

responses, but the same principle applies equally to homeostatic mechanisms involving

continuously varying perturbations and responses.

14.6.3 Relation between first and second order systems

Second order homeostasis acts on the parameters to a first order homeostatic regulator,

which in turn acts on the parameters of the reacting part of a homeostatic system. This

means that the variety of perturbations which a second ordersystem can adapt to depends

not only on the variety of responses in the first order regulator, but also on the variety in

the second order regulator.

We can illustrate this concept with another simple example system. Retaining our

notation from the previous section, suppose a second order homeostatic adaptive system

exists that is subject to a set of perturbationsP. Let the reacting part responses depend

on the its parameter setq, which is selected from the set of possibilitiesQ by the first
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(a) First order regulator parameteri-
sation Q1

q11 q12 q13
p1 O O X
p2 X X X
p3 O X O
p4 X X X

(b) First order regulator pa-
rameterisation Q2

q21 q22
p1 X X
p2 X O
p3 O X
p4 X X

Table 14.2:Outcomes resulting from perturbationsp for different parameter setsq for the reacting part
in an example second order homeostatic adaptive system.O denotes homeostatic outcome,X denotes non-
homeostatic outcome. There is one table of outcomes for eachof the first order regulator parameter sets
Q1 andQ2. Perturbationsp1, p2 andp3 can be adapted to by the combined effects of the first and second
order regulators, since there is an entry in at least one of the tables that gives a homeostatic outcome for
these perturbations. The system can never adapt to perturbation p4, since neither parameterisationQ1 or
Q2 allows the first order regulator to adapt to this perturbation.

order regulator. Furthermore, let the setQ be selected by the second order regulator from

another setR of parameterisations to the first order regulator. LetP = {p1, p2, p3, p4},

R= {Q1,Q2}, Q1 = {q11,q12,q13} andQ2 = {q21,q22}. We can tabulate this scheme

as shown in Table 14.2.

Looking at Table 14.2 we can see that the sets of perturbations which can be adapted to

by the first order regulator in each of its parameterisationsQ1 andQ2 arePQ1 = {p1, p3}

andPQ2 = {p2, p3} respectively. We can see from the table that for the whole system, all

of the perturbations cause a loss of homeostasis in at least one of Q1 or Q2, soPI = /0,

the empty set. The set of perturbations that cause a temporary loss of homeostasis but

can be adapted to isPII = {p1, p2, p3} since there is a response in at least one ofQ1 or

Q2 that gives a homeostatic outcome for these perturbations.Table 14.2 also givesPIII =

{p4} since there is no response in eitherQ1 or Q2 that gives a homeostatic outcome for

perturbationp4. We can observe that these sets accord with the rules for themembership

of PI , PII andPIII that were stated above in Section 14.6.1.

Homeostatic adaptation in the second order homeostatic adaptive system involves the

selection of an appropriate reacting part response by the first order regulator, which may

in turn require a change of first order parameter set by the second order regulator. In our

example, the first order regulator cannot adapt to perturbation p2 when in parameterisa-

tion Q1 since none ofq11,q12,q13 gives a homeostatic outcome top2. In this situation,

the second order regulator would re-parameterise the first order regulator with parame-

terisationQ2, allowing the first order regulator to chooseq22, which gives a homeostatic

outcome.
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14.6.4 Parameter selection mechanism

It is not sufficient only forQ to contain a parameter set that leads to the recovery of home-

ostasis, since there must also be a mechanism for selecting that value. In the Homeostat

this mechanism is random selection, whereas in the homeostatic plastic neural networks

parameters are changed according to a continuous directed mechanism. In the Daisy-

world models, population size changes according to a growthequation, while evolution-

ary change occurs as random mutations.

Different mechanisms for changing the parameters of the reacting part will have dif-

ferent implications for adaptation. Random selection of new values is likely to be slow

but has the advantage that it will eventually find a suitable parameter set if one exists. Di-

rected mechanisms are likely to be quicker, but have a disadvantage in that they may make

certain parameter sets inaccessible at certain times, reducing the scope for adaptation.

14.6.5 Organisation death and essential variables

Ashby’s definition of essential variables considers them asthe variables related to sur-

vival; if homeostasis is lost in an essential variable then the system cannot be said to

survive in its original state. In the Homeostat, the essential variables are defined as the

angular deviations of the magnets, with a target range of±45o. However, there is no

concept of survival in the Homeostat, since the Homeostat cannot die. This raises the

question of what the essential variables in the Homeostat really signify.

If the system is defined as having certain essential variables and then a perturbation

causes a loss of homeostasis in these essential variables, then the system so defined ceases

to exist. In the case of the Homeostat, the system that ‘dies’when this occurs is a particu-

lar form of organisation; it is the Homeostat with its current uniselector settings. A loss of

homeostasis triggers a ‘death of organisation’, but the homeostatic adaptive mechanism

immediately causes the ‘birth’ of a new form of organisation.

The physical form of the Homeostat can be seen as the substrate in which a succession

of different organisations are created and then destroyed.Each form of organisation (each

instantiation of the reacting part with a particular set of parameters) survives until such

a time as a perturbation causes a loss of homeostasis in essential variables (pushes a

magnet out of bounds), at which point a new form is created. These forms may survive

only fleetingly, for instance if a new form is created which does not restore homeostasis.

Figure 14.6 shows organisation death and succession as a schematic diagram.

The idea of organisation death resulting from a loss of homeostasis in a plastic homeo-

static adaptive system is general, and does not apply just tothe Homeostat. The Homeostat

was chosen as an illustrative example because of the clear distinction between different
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Figure 14.6:Organisation death and succession in the Homeostat. Different Homeostat organisations
(different parameterisations) are arbitrarily compressed to a single dimension, as are different perturba-
tions. Each circle represents the creation of a new organisation by the choosing of a new uniselector setting.
This organisation persists for a time shown by the attached horizontal line. The vertical lines represent
perturbations to the Homeostat, which sometimes cause a loss of homeostasis (short vertical tail to horizon-
tals line). A loss of homeostasis represents ‘organisationdeath’ and is succeeded by a new organisation.
Organisations can be short-lived or long-lived depending on the perturbations they experience.

forms that results from its discrete step-changes in parameters, but the concept also ap-

plies to continuous parameter changes.

14.6.6 Learning as second order homeostasis

Organisms are homeostatic adaptive systems. The concept ofhomeostasis was originally

developed to describe the set of processes by which living things regulated their internal

environment so that they continued in a living form. At the start of this thesis, in Chapter 1,

we looked briefly at physiological homeostatic mechanisms for temperature and blood

glucose regulation, which by our definition are elastic homeostatic adaptive systems.

The active behaviour of an organism can contribute to the maintenance of homeostasis.

Animals, birds, fish, insects and various micro-organisms all interact purposefully with

their environment in order to satisfy needs such as hunger orthirst, i.e., to regulate certain

internal variables. We can consider a fixed pattern of behaviour as a first order elastic

homeostatic adaptive system.

Some kinds of organism, such as mammals and birds, can also modify their pattern

of interaction with the environment by learning. These organisms make long term and

persistent changes to the way they behave, in addition to theshort term changes that

occur as they attend to different needs. Learning can be seenas the process by which the

organisation of the animal changes from a non-adaptive to anadaptive state. This process

involves successive changes in organisation, each involving the ‘death’ of one form of

behaviour and the ‘birth’ of another. Each change is caused by a loss of homeostasis in
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one or more of the essential variables associated with the behaviour-producing part, but

this does not imply a loss of homeostasis in the essential variables associated with life.

Through separation of the essential variables of the behaviour-producing subsystem from

the essential variables of life, an animal may learn by a process of plastic homeostatic

adaptation, without dying in the attempt.

Since the behaviour-producing subsystem of an animal is implicated in homeostatic

regulation of essential variables related to the survival of the organism as a living sys-

tem, and since learning acts on the parameters of the behaviour-producing subsystem,

learning is a form of second order plastic homeostatic adaptation (cf. Ashby [7] and Di

Paolo [46, 48]). The essential variables that are involved in the learning mechanisms can

be the same as those which determine the overall survival of the organism, since the nec-

essary separation between a loss of homeostasis triggeringlearning and a loss of home-

ostasis meaning death can be achieved by making the homeostatic range for the essential

variables for the learning mechanism wider than that for survival.

14.6.7 Evolution as second order homeostasis

Here we argue that in a similar way to how learning can be viewed as a form of home-

ostatic adaptation [7, 46, 48], evolution can also be seen asa special case of homeostatic

adaptation. The survival of an organism depends on the maintenance of homeostasis in the

variables essential for life; failure to do so means death. The physiology and behaviour

of the organism can be seen as a system for maintaining homeostasis in the face of per-

turbations that are either generated internally (such as hunger, thirst or old age) or come

from the external environment (such as extreme conditions or predation). The organism

(and its form of organisation) will survive as long as it can accommodate perturbations

without losing homeostasis. This view of an organism as a first order homeostatic adap-

tive system implies a view of evolution as a second order adaptive mechanism acting on

the parameters of the first order regulator.

Here the organism is seen as a homeostatic system with a fixed organisation deter-

mined by its genetic code. Lifetime learning is seen as a partof the homeostatic organisa-

tion, since it does not alter the genetic code. Reproductionof an organism also reproduces

its genetic code and hence its organisation, i.e., the mode of an organism’s interaction with

the world is reproduced in its offspring, along with its physical form. Mutation and re-

combination play the role of mechanisms for altering the parameters of the organisation

from generation to generation. Some forms of organisation will be better at withstanding

perturbations than others and will therefore survive longer. Also, some forms of organ-

isation will be better than others at reproducing themselves. We would expect forms of
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organisation that are good at surviving and good at reproducing to proliferate.

Selection pressure takes the role of the second order homeostatic adaptive mechanism,

allowing variations of the first order regulator that maintain homeostasis to prosper and

removing variants that do not. Reproduction adds new individuals to the population and

(by mutation) suggests new variants of the first order system. Implicitly, this considers

a population as a vehicle for perpetuating a certain kind of homeostatic organisation and

adapting that organisation to changes in the environment. These changes (which may be

due to environmental or coevolutionary change) are experienced as new kinds of pertur-

bation to the first order homeostatic system, which will cause some of the variants of the

organisation to fail but allow others to maintain homeostasis and continue.

Tracing any lineage through evolutionary history gives a single-strand progression that

looks very similar to the progression of the Homeostat shownin Figure 14.6. The process

of evolutionary adaptation can be seen as a process of improving the organisation of the

homeostatic system so that it can accommodate a greater range of perturbations from

the environment. If we make the assumption that a lineage of successive organisational

forms can be seen as repeated instantiations of different parameterisations of the same

underlying structure, we have a process of temporally extended homeostatic adaptation.

The homeostatic adaptor is not an identifiable physical entity (like the uniselector in the

Homeostat) but it instead an iterative process of variationand selection.

The view of evolution described above can be likened to the process by which the

Homeostat deals with perturbations, but one in which many ‘Homeostats’ adapt in par-

allel. Where the Homeostat is a substrate in which different forms of organisation are

serially created and destroyed, a population is a subtrate that allows many forms of a cer-

tain kind of organisation to adapt in parallel. The evolution of the population is similar to

a parallelised version of the trial-and-error adaptation of the Homeostat.

14.7 Conclusion

In this chapter we have considered the case study systems presented in this thesis as home-

ostatic adaptive systems. We have found that both the original Homeostat and the simu-

lated Homeostat are first order plastic homeostatic adaptive systems, as are homeostatic

plastic CTRNNs. The two-species Daisyworld model is a first order elastic homeostatic

adaptive system. The evolutionary Daisyworld model is a second order homeostatic adap-

tive system, in which evolutionary adaptation performs plastic adaptation on the elastic

first order ecological regulatory mechanism. More speculatively, we have suggested that

the Flask model and the Earth system contain the necessary components to be homeo-

static adaptive systems, but pointed out that these systemshave yet to be shown to display
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homeostasis.

In the latter section of the chapter we have looked at homeostatic adaptive systems

more generally. It was noted homeostatic adaptation is a process of selecting an appropri-

ate parameterisation for the reacting part so that the current perturbation does not disturb

homeostasis, and that the variety in both the reacting part and the regulatory mechanism

determine which perturbations can be adapted to and which cannot. The interpretation of

essential variables in terms of system survival was discussed, and we argued that home-

ostatic adaptation involves ‘organisation death’ triggered by loss of homeostasis in the

target variables. This view led to a way of thinking about biological learning and evolu-

tion as forms of second order homeostatic adaptation.

The stated intention of this chapter (and the thesis as a whole) was to work towards a

‘general theory of homeostatic adaptive systems’. Here we have presented a framework

for categorising different kinds of homeostatic adaptive system, which we have applied

to the case study systems covered in the earlier parts of the thesis. However, the question

remains of whether we have made any progress towards constructing a unified theory. We

have proposed a method of characterising homeostatic adaptive systems that allows us to

construct a taxonomy of the different forms that homeostatic adaptation can take, and this

is a valuable first step in the construction of a grander theory. However, good theories

make predictions, and the framework for characterisation of homeostatic systems that we

have proposed cannot be said to have any predictive power; for this reason we feel that

we have fallen short of creating a general theory.

The utility of considering certain kinds of systems as homeostatic adaptive systems

lies in the way it can guide our exploration of their behaviour. Where we observe con-

stancy in the face of perturbation, we should look for regulation and homeostasis. Where

we see homeostasis, we should look for homeostatic adaptation. If we can ascribe dif-

ferent parts of an observed system to different roles in the homeostatic adaptive system

framework, we can move forward to a better understanding of system behaviour.
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Conclusion

15.1 Overview

In this final chapter we briefly summarise the material of Parts I to V, before drawing

some final conclusions from the thesis as a whole.

15.2 Part I: Introduction

Chapter 1 began with an anecdote about different ways of regulating temperature in the

home, which led into a statement of the main theme of this thesis: homeostatic adaptive

networks. The concept of homeostasis was introduced with a brief history of the idea

and a few examples of homeostasis from physiology, ecology and genetics. The idea of

homeostasis as an organising principle that could play a major role in the determination

of system behaviour was then discussed. A contrast was made between the traditional

‘adjective’ view of homeostasis and the ‘verb’ viewpoint argued for in this thesis. Here

we treat homeostasis as a dynamic process shaping system development.

Different forms of homeostatic adaptation were identified:elastic homeostatic adap-

tation (where the system returns to its original state afteradapting to perturbation), and

plastic homeostatic adaptation (where the changes made during adaptation are persistent).

After this informal discussion, some more rigorous definitions were given for homeosta-

sis, elastic and plastic homeostatic adaptation. More complex schemes were described,

such as systems with multiple homeostatic feedbacks, or systems with second order home-
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ostatic adaptive mechanisms. These definitions were illustrated with examples from a toy

model of a minimal homeostatic system.

The research aims of the thesis were then identified. These were the study of three

homeostatic systems as case studies, followed by an abstraction of key properties from the

case studies to build a general theory of plastic homeostatic adaptation. The three case

study systems were briefly introduced: the Homeostat, homeostatic plasticity in neural

networks, and environmental regulation by the biota. The intention was stated to study

each system as an independent piece of research, before attempting to compare and con-

trast the different systems in the final section of the thesis.

Part I concluded with a few comments on simulation modellingmethodology and a

plan of the thesis layout.

15.3 Part II: The Homeostat

The first case study system was the Homeostat. The original Homeostat was an elec-

tromechanical device constructed by Ashby in the 1950s to demonstrate the principle of

ultrastability. Ashby wanted to explain learning and adaptation in mammals, and sug-

gested a theory where the target of learning was homeostasisof essential variables related

to survival. Such a system could be created if the system was ultrastable to begin with; if

its stability required all essential variables to be in homeostasis and exploratory parameter

changes were triggered when homeostasis failed.

In Chapter 2, we developed a simulated Homeostat that was different to the original

Homeostat in mechanism, but which operated along similar principles. The simulated

Homeostat consisted of a number of units connected in a fullyconnected network ar-

chitecture, with the activation of each unit determined by input from the other units and

itself. If activation went outside a prescribed range, random change was triggered in af-

ferent connection strengths and transfer function parameters. The simulated Homeostat

was ultrastable, reliably converging to stability with allnodes in bounds. We showed that

the time taken for convergence to stability after initialisation varied inversely with the

number of units and with the tightness of the target range foractivation. We also showed

that the simulated Homeostat could adapt to perturbations in the form of external inputs

to the units and that it could be used for simple control tasks.
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15.4 Part III: Homeostatic plasticity in neural networks

Part III of the thesis described the development and application of homeostatic plastic

mechanisms in neural networks for robot control. The aims were to improve evolutionary

and neural robotics methodology by determining the properties of this novel mechanism,

and if possible to gain insight into the role of neural homeostasis in biological nervous

systems.

Chapter 3 gave the necessary background for this study. Evolutionary and neural

robotics were introduced, with particular emphasis on continuous-time recurrent neu-

ral networks (CTRNNs) for robot control. Some issues with theevolutionary design of

CTRNN controllers were discussed, in particular the problemof node saturation. Node

saturation occurs when the range of input to a neuron is either too high or too low, lead-

ing to hyper-excitation or quiescence respectively. Node saturation means that much of

CTRNN-space contains inert and unresponsive networks that are not suitable for use as

controllers.

Chapter 3 also gives a brief overview of homeostatic plasticity in biological nervous

systems. Homeostatic plasticity has recently been identified as an important mechanism

in the brain, and involves the regulation of neural activityby a variety of mechanisms.

The overall functional effects of homeostatic plasticity are uncertain, but it is thought to

play a role in counter-balancing the positive feedbacks associated with Hebbian learning.

Prior to the work presented in this thesis there have been fewattempts to incorporate

homeostatic mechanisms into artificial neural networks, with those that exist either being

based around Ashbyan homeostatic adaptation or being flawedin their execution. There

is thus a useful contribution to be made by a principled studyof the effects of biologically

inspired homeostatic plastic mechanisms in artificial neural networks.

In Chapter 4 we developed homeostatic plastic mechanisms foruse in CTRNNs. First

of all, we identified the generic properties of the biological homeostatic plastic mecha-

nisms most suited for implementation in CTRNNs. Then we derived simple mathemati-

cal forms for two different plasticity rules, one which implemented synaptic scaling and

another based on an adaptive bias term. These rules were applied to neuron parameters

when firing activity was too high or too low.

The utility of these mechanisms for preventing node saturation was explored in Chap-

ter 5. The nature of the constraints imposed on the CTRNN by theinclusion of home-

ostatic plasticity was explored analytically, before somesimple experiments were per-

formed to demonstrate that homeostatic plasticity will always move a CTRNN away from

saturation and towards a non-saturated constraint-satisfying region of parameter space

(though external perturbations and initialisation conditions might prevent this region from
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being reached).

The effects of homeostatic plasticity on network behaviourwere examined in Chap-

ter 6, which looked for effects at the levels of node, networkand agent. It was found

that homeostatic plasticity makes nodes and networks more sensitive to input, and allows

signals to propagate much further through a network. At the agent level this makes the

coupling between agent and environment much stronger, which was demonstrated using

a simple simulated photo-sensitive agent. Homeostatic plasticity also makes networks

more likely to display oscillatory dynamics.

It was noted in Chapter 6 that adding homeostatic plasticity to a CTRNN makes a qual-

itative change to the dynamics of the system. While homeostatic plasticity used purely

as a developmental mechanism (i.e., applied for a period andthen switched off) has the

effects described in the preceding paragraph, leaving the homeostatic plastic mechanisms

active adds new properties to the network. Slow oscillations are possible in a single node

(when the plasticity is unable to find a stable attractor withactivation in bounds and con-

tinually overshoots), and a new slower timescale is added tonetwork dynamics.

Chapter 7 studied the utility of homeostatic plasticity for improving the evolvability of

CTRNNs for robot control. A series of experiments was performed to test whether the ap-

plication of homeostatic plasticity to CTRNNs would lead to more rapid or more reliable

evolution of good robot controllers. A test platform was developed in which a simulated

agent oriented its movement using an array of distance sensors in order to successfully

catch a falling object or discriminate between different shapes. CTRNN controllers were

evolved with homeostatic plasticity used either as a developmental mechanism, or as a

continually active mechanism. Results were compared to theperformance of standard

non-plastic CTRNN controllers.

The results of the evolutionary experiments were inconclusive. When homeostatic

plasticity was used purely as a developmental mechanism, a big improvement was ob-

served in the speed of evolution of good controllers for one of the tasks, and a lesser im-

provement on the other task. When the plasticity was left active, the speed and consistency

of evolution were improved, but there was a reduction in the ultimate level of performance

achieved. A comparison with the evolutionary performance of centre-crossing CTRNN

controllers suggested that the improvement offered by homeostatic plasticity stemmed

largely from its ability to move networks towards the behaviour-rich region of parameter

space around the centre-crossing condition.

The mixed set of results suggested that more evolutionary trials were needed to con-

clusively establish the utility of homeostatic plasticityfor improving evolvability. The

properties of increased sensitivity, improved signal propagation, and increased likelihood

of oscillation, are often thought to be useful in adaptive behaviour, making the incon-
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clusive nature of the evolvability results puzzling. It wasconcluded that the static task

environment in the evolvability trials performed had favoured the non-plastic CTRNNs

over the networks with plasticity, and that homeostatic plasticity might be most useful in

situations were the environment or task parameters were subject to perturbation. Plastic

networks offer a greater optimisation challenge than non-plastic networks due to the in-

creased complexity of their dynamics. The static task environment used for the evolvabil-

ity testing did not call for online adaptation and thus non-plastic controllers were easier

to evolve. However, since homeostatic plasticity activelymaintains network sensitivity

and signal propagation during the network lifetime, it might be very useful for allowing a

robot to operate in a variety of different environments or maintaining function in the face

of perturbations, situations where traditional non-plastic networks would fail.

The implications of this work for neuroscience were also discussed in Chapter 8. It

was acknowledged that the neural and plastic models used here are highly abstracted

from their biological inspiration, so that extreme cautionmust be used when trying to

draw conclusions from these simulations concerning biological nervous systems. With

these caveats acknowledged, it was then argued that our findings support the view in neu-

roscience that homeostatic plasticity could play a role in counter-balancing the effects of

Hebbian learning. However, it was also suggested that the results presented here contra-

dict the view in neuroscience that homeostatic plasticity has a stabilising effect on network

dynamics. Some neuroscientists suggest that the regulation of activity at individual nodes

will also stabilise activity at the network level, but our results suggest the opposite; when

the activity of individual nodes is regulated by homeostatic plasticity, network dynamics

actually become less stable. Since homeostatic plasticityprevents node saturation, each

node is made more sensitive to input and is forced to be activein network dynamics,

making the network more likely to propagate signals and display oscillations, and raising

overall levels of correlated activity.

15.5 Part IV: Homeostatic regulation of the environment

by the biota

Part IV of the thesis is a study of homeostatic regulation of the environment by the biota.

It is largely centred on Gaia theory, the idea that life regulates the biosphere to conditions

suitable for life, but it is intended that more general implications should be drawn.

Chapter 9 presents a review of Gaia theory, from its inceptionas the controversial

Gaia hypothesis, through to its current status as a valid topic for scientific research. Gaia

theory rests on the existence of two-way feedback between the biota and its physical envi-
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ronment, and states that the collective effect of individual-level selection for environment-

altering traits is global regulation. The main area of controversy over Gaia theory con-

cerns its compatibility with Darwinian evolution. Supporters claim that the continued ex-

istence of a habitable environment on Earth in the face of perturbations (such as changes

in solar luminosity and asteroid impacts) is strong evidence for the presence of regulatory

feedbacks between life and its environment. They also claimthat global regulation can

emerge from individual-level selection without any need for conscious control. Critics of

the Gaia theory claim that it would be vulnerable to ‘cheaters’, that destabilising feed-

backs are just as likely to occur as regulatory ones, and thatthe continued presence of life

on Earth is nothing more than a criterion for the evolution ofsentient observers.

Chapter 9 moves on to describe the Daisyworld model, giving details of the origi-

nal model and describing the various extensions to it that have apppeared in the literature

since then. Daisyworld displays regulation of global temperature through ecological com-

petition between black and white daisy species, in the face of increasing solar insolation.

The Guild model is also described, which is based on similar assumptions to Daisyworld,

but includes the formation of regulating ecologies.

Chapter 9 finishes with a statement of the research aims for Part IV, which are defined

as gaining a full understanding of the conditions under which regulation will evolve in

Daisyworld and developing the Flask model, a new model whichrelaxes the assumptions

of Daisyworld and allows for the evolution of environmentalregulation by multi-level

selection in microbial communities.

A simplified Daisyworld model is developed in Chapter 10, in which the physics is

stripped down and an individual-based approach is used to facilitate the easy inclusion of

Darwinian evolution. The simplified Daisyworld model is first used to replicate known

results from more conventional Daisyworld models, such as ecological regulation of tem-

perature by competition between black and white daisies, and the failure of regulation

when the preferred temperature for growth is allowed to mutate freely. Next the model is

used to explore the importance of contraints on adaptation for the evolution of regulation.

The main finding is that constraints on adaptation of growth temperature are essential for

regulation to occur. If there are no constraints on adaptation of preferred growth tem-

perature, daisies simply evolve to prefer the current ambient temperature and do not use

albedo to moderate their local environment. When two possible preferred growth tem-

peratures coexist, competitive exclusion leads to regulation around one of them. When

adaptation of growth function is unconstrained in range, but occurs much more slowly

than adaptation of albedo, regulatory epochs occur in whichcompetitive exclusion causes

regulation around a particular growth temperature until itis made non-viable by changes

in external forcing.
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We also found that regulation fails when two of the core assumptions of the Daisy-

world model are relaxed. If daisies cannot create a local buffer against the environment,

or if selfish adaptations are permitted to have a non-regulatory environmental impact, reg-

ulation of global temperature does not occur. These assumptions also apply to the Guild

model, and it is argued that a new model is needed to study the possibility of environmen-

tal regulation in an evolving ecosystem where these assumptions do not hold.

The Flask model is introduced in Chapter 11 in the form of a sketch of its logical

structure and the assumptions it is based on. The Flask modelconsists of microbial com-

munities inhabiting an array of flasks, each of which is supplied with a flow of nutrients.

Competition, reproduction, and mutation of microbes allowsthe possible formation of sta-

ble ecologies in each flask. Microbes have an effect on their abiotic environment, which

in turn has an effect on growth, creating a double feedback between a flask community

and its environment. Limited migration between flasks allows for colonisation of neigh-

bouring flasks by successful microbial communities, and this allows the possibility of

higher-level selection on the interaction between a community and its environment. The

main hypothesis of the Flask model is that multi-level selection (enabled by the spatial

structure of the Flask world) can select for communities that improve their environment;

the global effect of this will be environmental regulation.

The assumptions that the Flask model is based on are discussed at the end of Chap-

ter 11, and in Chapter 12 some experimental modelling work is described that seeks to

establish the validity of one of these assumptions. An experiment is described in which

flask communities are artificially selected for the composition of their abiotic environ-

ment. Over time, a significant response to selection is observed, demonstrating that heri-

tability can exist between a parent flask community and its colonist offspring. The size of

the response to selection is inversely proportional to the amount of time for which each

flask community is allowed to develop before selection occurs.

The implications of the results presented in Part IV are discussed in Chapter 13. It is

argued that the simplified Daisyworld model is useful because it allows clear understand-

ing of the necessary conditions for regulation to occur, andalso because its simplicity

makes it more general than the original Daisyworld model. The new results concerning

competitive exclusion and regulatory epochs are also novelto the Daisyworld literature,

as is the recognition of the fundamental importance of the Daisyworld assumptions of a

local buffer and selfish adaptation contributing to global regulation.

It is suggested that the Flask model can have a significant contribution to the Gaia

debate if it is developed to fruition, but that in its currentstatus as a thought experiment

its main contribution to Gaia theory is in the hypothesis it embodies. It is also possible that

the Flask model can be useful for studying multi-level selection in evolutionary theory,
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particularly as its basis in microbial ecology means that itcreates hypotheses testable by

laboratory experiments with real microbial communities.

15.6 PartV: Discussion

In Chapter 14 we drew together the different strands of research presented in the thesis and

analysed each case study system in terms of homeostatic adaptation. We found that both

the original and simulated Homeostats studied in Part II were first order plastic home-

ostatic adaptive systems, as were the homeostatic plastic CTRNNs studied in Part III.

The models of environmental regulation by the biota we studied in Part IV had different

properties. The two-species Daisyworld model was a first order elastic homeostatic adap-

tive system, while the evolutionary Daisyworld was a secondorder homeostatic adaptive

system with both plastic and elastic adaptive mechanisms. The evolutionary Daisyworld

could also be a homeorhetic adaptive system in the cases where multiple targets for regu-

lation existed. The Flask model and Earth system were observed to contain the necessary

components to be homeostatic adaptive systems, but it was noted that these systems have

yet to be shown to be homeostatic.

The latter section of Chapter 14 considered some properties that are general to all

homeostatic adaptive systems. Homeostatic adaptation wasdescribed as the process of

selecting an appropriate response to perturbation so that homeostasis is maintained. Va-

riety of response in both the reacting part and the regulatorwas identified as important

for regulation, since this variety determines which perturbations can be adapted to. Some

discussion of different classes of perturbation was given,noting that some perturbations

never cause loss of homeostasis, while some perturbations always cause loss of homeosta-

sis. The relationship between first and second order homeostasis was examined, before

some discussion of the concept of ‘organisation death’, where a loss of homeostasis in a

plastic homeostatic adaptive system means that the system will cease to exist in its current

form of organisation. This led to some speculation that learning and evolution could be

viewed as second order homeostatic adaptive systems.

The remainder of Part V consists of the summary of the thesis that is given in this

chapter.

15.7 Conclusion

The aim of the thesis was to study homeostatic adaptive networks through the study of

three case studies. This aim has been met; we have looked at the Homeostat, homeostatic
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plasticity in neural networks, and environmental regulation by the biota, and drawn some

general conclusions concerning homeostatic adaptation.

Of the case studies, the most important contributions are made in the studies of home-

ostatic plasticity in neural networks and environmental regulation by the biota. The work

on the Homeostat is valid, and useful as a didactic tool to explain some of the concepts

of homeostatic adaptation, but breaks little new scientificground. In contrast, the imple-

mentation in artificial neural networks of homeostatic plastic mechanisms based on those

found in biology is a novel contribution to the literature. The results from this section

should be of interest to the evolutionary robotics community, and suggest new avenues

for future research. Likewise, the work presented in simplifying and extending the Daisy-

world is a useful contribution to the Gaia theory literature, and the development of the

Flask model is an original contribution that may hope to answer the call for new models

in the Gaian debate.

In hindsight, the wide remit of the thesis (i.e., the study ofhomeostatic adaptive net-

works) has been both liberating and problematic. While the topic of homeostasis allows

for study of a variety of interesting systems, it has been difficult to study each of these

systems in sufficient depth to do useful research without sacrificing the overall aim. Other

homeostatic systems might have been studied in place of those chosen here, or a greater

number of systems might have been studied in less detail. We hope to have struck a bal-

ance between the depth of research into each case study and the breadth of different case

studies chosen, so that useful results were achieved from each individual piece of work

as well as from the thesis as a whole. A major regret is that theFlask model could not

be developed fully here, but as mentioned previously, time and space constraints did not

allow this to be done.

Concerning the central theme of homeostatic adaptive networks, we do not pretend

to have discovered any new phenomena or created a new theory.Instead we hope to

have highlighted the significance of homeostatic adaptation as an organising principle

in biology (and in other systems) and to have gone some way towards clarifying the

different forms homeostatic adaptation can take. The utility of this work, as with most

cybernetic research, lies less in the new theories and techniques it produces than in the

way of thinking it puts forward. The view of systems as homeostatic adaptive networks is

useful in the way it can aid understanding and suggest directions for future research.
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