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Abstract 

Since industrial devices create power dissipation in the form of heat created as 

a by-product, which can have a negative effect on their performance, certain 

temperature limit constraints are required for almost all these applications to work 

within suitable conditions. That is, these engineering devices might fail in some way 

if these limitations are surpassed by overheating. In all the related industries, 

inexorable increases in power densities are driving innovation in heat exchange 

techniques. Furthermore, electronic devices are becoming smaller at the same time 

as their thermal power generation increases. Thus, heat sinks can be applied for 

cooling critical components in many important applications ranging from aero-

engines and nuclear reactors to computers, data centre server racks and other 

microelectronic devices.  

The most common cooling technique for heat dissipation for thermal control of 

electronics is air cooling. Reduced cost, simplicity of design, the easy availability of 

air, and increased reliability are the main benefits of this cooling method. Heat sinks 

with a fan/blower are commonly used for air-cooled devices as a forced convection 

heat transfer. An amount of heat is dissipated from the heat source to environmental 

air utilising a heat sink as a heat exchanger, which is a vital practice employed in air-

cooling systems. This transfer mechanism is easy, simple and leads to reduced cost 

and increased reliability, and pinned heat sinks are more beneficial than plate fin heat 

sinks. 

The main interest of this study is to investigate the benefits of using perforated, 

slotted, and notched pinned heat sinks with different configurations to reduce CPU 

temperature and fan power consumption to overcome the pressure drop and 

maximise a heat transfer rate through the heat sink. An experimental heat sink with 

multiple perforations is designed and fabricated, and parameter studies of the effect 

of this perforated pin fin design on heat transfer and pressure drops across the heat 

sinks are undertaken, to compare it to solid pinned heat sinks without perforations. 

Experimental data is found to agree well with predictions from a CFD model for the 

conjugate heat transfer and turbulent airflow model into the cooling air stream. The 

validated CFD model is used to carry out a parametric study of the influence of the 

number and positioning of circular perforations, and slotted/notched pinned heat 

sinks. Then, the multi-objective optimum pinned heat sink designs are tested to 

obtain CPU temperature and fan power consumption as lowest as possible through 

the heat sink. In addition, the limitations in application of pinned heat sinks based on 

the pin density and applied heat flux are reported for active air-cooling electronic 

systems.  

An overview of the findings indicates that the CPU temperature, the fan power 

consumption, and the heat transfer rate in terms of Nusselt number are enhanced 

with the number of pin perforations and slotted/notched pinned heat sinks, while the 

locations of the pin perforations are much less influential. These benefits arise due to 

not only the increased surface area but also to the heat transfer enhancement near the 

perforations through the formation of localised air jets. Finally, the perforated heat 

sinks will be lighter in weight compared with solid pinned heat sinks. 
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d Diameter of perforations (m) 
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F The view factor 
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area (W/m2.oC) 
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Pin, out Inlet and outlet pressure of heat sink, respectively (Pa) 
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Tw Bottom surface of heat sink temperature (K) 
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3SP Triple Square Perforated Pinned Heat Sink Model 

  

3EP Triple Elliptic Perforated Pinned Heat Sink Model 
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1 Chapter One: Introduction 

1.1 Motivation 

Education, business, transportation, social media and the sectors economic 

have become very dependent on Information and Communication Technology (ICT), 

to which end, ICT has become the most important source of information and data in 

our society (Zeadally et al., 2012). Thus, data centres, which are essentially digital 

factories, have become a vital part of ICT processing, management, storage and 

exchange of data and information (Pan et al., 2008). A data centre consists of four 

main parts: power equipment such as power distribution units and batteries, cooling 

equipment (chillers and computer room air-conditioning (CRAC) units), IT 

equipment (servers, storage and network), and miscellaneous component loads 

(lighting and fire protection systems) (Dai et al., 2014). Electronic component 

systems that arrange processing, storing and transmission of data is the main part of 

the data centre, according to Shah et al. (2008) and Greenberg et al. (2006), all of 

which and create a large amount of heat, which must be removed from the ICT 

components at a rate sufficient to avoid serious overheating problems and system 

failures (Sahin et al., 2005). More than 30% of the heat removal costs of a typical 

data centre is used in IT equipment and cooling equipment. Thus, an important part 

of a server is the heat sink that is set over the CPU (Dai et al., 2014), as shown in 

Figure 1.1.  

The thermal effect can cause failure of mechanisms in electronic component 

devices, due to metal migration, void formation, and inter-metallic growth. Actually, 

one of the common factors that control the reliability of electronic products is the 

maximum temperature limitation of these devices. For each 10oC increase above the 

critical operating temperature (~85°C) of high-power electronics, the rate of these 

failures almost doubles (Gurrum et al., 2004). Therefore, electronics thermal 

management is of crucial significance, as is reflected in the market (Mostafavi, 

2012). Another important factor is the cost increase of thermal management 

products, which went from nearly $7.5 billion in 2010 to $8 billion in 2011, and is 

predicted reach $10.9 billion by 2016; the annual rate of increase is 6.4%. Fans and 
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heat sinks (HSs) as thermal management hardware components take an 84% share of 

the total market. However, software, interface materials, and substrates as the other 

main cooling products account for between 4% and 6% of the market (BCC 

Research, 2014). 

Many researchers have therefore been studying the thermal and fluid flow 

through heat sinks, but there is still a lack of information about heat sinks, especially 

for perforated heat sinks. This fact has motivated the exploring of the design 

optimisation and analysis of thermal airflow through perforated pinned heat sinks 

(PPHSs) for electronics cooling systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Room data centre 

Inside the server 

Pinned heat sink (PHS) 

Power equipment 

Cooling equipment 

IT equipment 

Miscellaneous 

components 

Figure 1.1: Data centre infrastructure (Tripplite, 2012), server (DeepInIt, 2013), 

and pinned heat sink (Alutronic, 2015) 
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1.2 Introduction to Heat Sink Technology 

Finned heat sinks are classified into two main types: plate fin heat sinks 

(PFHSs) and pin heat sinks or pinned heat sinks (PHSs), as shown in Figure 1.2. 

Such heat sinks are manufactured and produced by several companies, both large 

and small, such as Airedale in the UK, Raypak in the USA, to name of few. A set of 

base tube materials that have high thermal conductivity, such as copper and 

aluminium, can be employed to manufacture heat sinks depending on their cost and 

ease of manufacturing. In recent years, the technology relating to heat sinks designed 

for cooling electronics has become widespread and familiar, since their initial cost is 

low, and they are simple to install, and have a reliable manufacturing process 

(Chingulpitak, 2015).  

Fin morphology has an important function in manufacturing and heat transfer 

characteristics. Cylindrical, rectangular, square, elliptic, and conical or semi-conical 

are the widespread uniform pin fins geometries. In addition, pins offer a practical 

means of achieving a large heat transfer area without excessive primary surface area 

and act as turbulence promoters, thus further enhancing heat transfer rates by 

breaking up the thermal boundary layer for many applications, such as cooling 

electronic devices, including processes that use gas or liquid coolants (Denpong, 

2001; Zhou & Catton, 2011; Naphon et al., 2009; Brigham & Van Fossen, 1984). 

Therefore, it seems that it is a suitable time to employ this technology in traditional 

heat sinks and in industrial applications as well. 

In general, pin fin layouts are made up of a network of solid pins mounted 

directly on the heat sink surface. Either a staggered or an in-line arrangement is 

usually configured for arrays of pins with the working fluid flowing parallel or 

perpendicular to the pin axes. 

1.3 Importance of Electronics Cooling  

In many engineering applications, the power dissipation creates heat as a by-

product, which may cause system failures in these devices due to serious 

overheating. This is mainly due to the certain temperature limits that are required for 

almost all applications to work within suitable conditions. Currently, as electronic 

devices decrease in size, their thermal power losses increase (Mostafavi, 2012). 
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Additionally, the forced convection of heat sinks covers a wide range of industrial 

applications in order to overcome the damaging effects of overheating or burning. 

Hence, it is very important to consider the cooling system for electronic components.  

The main industrial applications of heat sinks are cooling of tiny electronic 

components, electronic boards and components, the central processing unit (CPU) of 

personal computers and data centres,  internal combustion (IC) engine cooling (fins 

in a car radiator), gas turbine blade coolant path, sophisticated electronic chips, 

electrical appliances (computer power supplies, substation transformers, etc.), the 

aerospace industry, and cooling of fuel elements in nuclear reactors (Prashanta, 

1998; Sahin & Demir, 2008a; Sahin & Demir, 2008b; Amol & Farkade, 2013; Sara 

et al., 2000; Sara et al., 2001).  

Plate and pin fins are commonly used for cooling the CPUs of a personal 

computer and electronic components devices (Dempong, 2001; Kim & Kim, 2009; 

Yakut et al., 2006a; Zhang et al., 2005; Yakut et al., 2006b; Naphon & Knonseur, 

2009); Naphon & Wiriyasart, 2009; Naphon & Wonwises, 2010; Naphon, 2011; 

Konsue, 2012; Diani et al. (2013), integrated circuit chips in electronic equipment, 

compact heat exchangers, and cooling of advanced gas turbine blades (Jonsson & 

Moshfegh, 2001; Yang et al., 2007; Jeng & Tzeng, 2007; Sahin et al., 2005).   

According to the author’s knowledge, the fin perforations might play an 

important role in the thermal airflow through heat sinks; in other words, the cooling 

performance will enhance and the pressure drop will reduce. It is possible those heat 

sinks are useful for cooling electronic applications and for IC engine cooling such as 

substation transformers, computer power supply, and fins in a car radiator 

(Prashanta, 1998, Sahin & Demir, 2008a; Sahin & Demir, 2008b; Amol & Farkade, 

2013; Sara et al., 2000; & Sara et al., 2001).  

1.4 Liquid and Air Cooling of Data Centres 

Generally, electronic systems in data centres are cooled by liquid or air 

(Anandan & Ramaligam, 2008).  

Liquid cooling such as water, nanofluids, polymers, and dielectric liquid 

(Hydrofluoroethers, HFE) can be used to cool the heat sinks and servers of racks in 

data centres. Direct contact liquid cooling techniques, such as immersing servers into 
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dielectric liquid (Tuma, 2010; Almaneea, 2014) may be used. Ramifications of 

immersion on data centre cooling and energy performance can be found in Chi et al 

(2014). Another technique to cool data centres is indirect contact liquid cooling via 

bringing the cooled liquid to heat sinks on the top of the chips or alternatively to the rack 

or into the server as a heat exchanger on the front or rear of the rack (Villa, 2006). The 

main advantages of this method are the heat transfer rate enhancement is greater than 

that of the air-cooling method since the thermal conductivity and thermal capacity of 

liquids are superior to those of air. In addition, dielectric liquids act as electrical 

insulators without any electrical discharge (Naidu & Kamaraju, 2009; Alkasmoul, 

2015). However, the main disadvantages of the pressure drop and pumping power of 

liquids is higher compared with that of air because the viscosity and density of 

liquids are larger than those of air.  Furthermore, liquid cooling are risk of the liquid 

leaking, which may damage the server’s electronic components, resulting in data 

centre loss; the risk of condensation forming, which may lead to a failure in the 

system; the high cost of maintenance and installation; and an increase in 

infrastructure such as pipe work, leak detection, and installation of insulation (Villa, 

2006; Naidu & Kamaraju, 2009).  

Due to all the above disadvantages of liquid cooling, the most common method 

of heat dissipation for thermal control of electronics is air cooling. Reduced cost, the 

availability of air, and the simplicity of design are the main benefits of this cooling 

method. As an example of an active air-cooled device, heat sinks with a fan or 

blower are commonly employed. An amount of heat is dissipated from the heat 

source to environmental air utilising a heat sink as a heat exchanger, which is a vital 

practice employed in air-cooling systems. This transfer mechanism is easy, simple 

and leads to reduced cost (McMillin, 2007). However, the heat transfer rate of the 

air-cooling method is lower than that of the liquid cooling, as indicated previously.  

In this technique, the heat transfer rate of the heat sink can be augmented, 

either by increasing the fan speed or the surface temperature of the heat sink. As the 

fan speed increases, however, the fan’s reliability reduces and it consumes a lot more 

power and the noise level increases to undesirable levels, particularly for the office 

or home consumer. Increasing the temperature is also unacceptable because it 

reduces the reliability of the central processing units (CPUs) and that leads to earlier 
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chip short circuit (McMillin, 2007). Hence, increasing fan speed and increasing the 

temperature are not a favoured approach. 

Therefore, these challenges need to be addressed by inventing an effective air 

cooling solution that has direct influences on the reliability, power, and performance 

of electronic devices. In this study, active air-cooling of perforated pinned heat sinks 

(PPHSs) is investigated as a new technique (see sections 6.3 & 6.4.1) to cool central 

processing units (CPUs), enhance heat transfer rate, and reduce fan power 

consumption. 

Due to the importance of the fin heat sink applications, which impact on the 

forced heat transfer and fluid flow enhancement (and they have many serious 

applications, especially to cool electronic devices such as large scale datacom 

equipment and PC desktops), it is important to conduct a literature review that relates 

to this interesting subject. In this chapter, many previous studies, both numerical and 

experimental works, are reported, split into six groups based on the type of fins: 

solid plate fins (A), solid pins (B), compact plate-pins (C), perforated plate (D), 

perforated pins (E), and perforated folded fins (F) heat sinks, as shown in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 

E F 

Figure 1.2: Different types of fins: (A) solid plate fins, (B) solid pins, (C) compact 

plate-pins, (D) perforated plate, (E) perforated pins, and (F) perforated folded 

fin heat sinks 
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1.5 Solid Plate Fin Heat Sinks (SPFHSs) 

The most widely used heat sink designs in industrial applications are those 

based on rectangular plate fin heat sinks (PFHSs), Figure 1.2A, due to their simple 

structure and ease of manufacture. These have been widely studied, and several 

researchers have used experimental and numerical methods to remove the intrinsic 

limitation that the air flow through parallel heat sink channels is smooth, thus 

limiting the achievable heat transfer rate.  

In this section, the reviewed literature can be categorised into two types of 

work: experimental and numerical studies on solid plate fin heat sinks.  

1.5.1 Experimental Studies 

Plate fins as a flat plate, based on the literature reviews, single and multiple 

cross-cut plate fins (strip fins) have been investigated by many experimental works 

to study the effects of several parameters on the heat transfer and turbulent flow of 

solid fin heat sinks. Such parameters are the height, width, number of fins, the 

streamwise and spanwise distance between fins, and the type of material used in the 

fin heat sink. Air and water are both used as a coolant in these studies.  

It is indicated that the thermal resistance (see section 2.5.6) of single cross-cut 

fin heat sinks is lower than that of the multiple cross-cut fins, plate fins, and square 

pin fin heat sinks. This may be because the total wetted surface of the cross-cut fins 

(see section 2.5.5) is larger than that of other types of fins, in addition to the spacing 

between fins being suitable for airflow to pass through easily that leads to demolish 

the growth of the boundary layer over the heat sink. Thus, it would be beneficial to 

study the optimum thermal and airflow performance of cross-cut fins.  

Air Cooling 

Air is used as a coolant in the next three studies: Kim & Kim (2009), Didarul 

et al. (2007), and Naphon & Khonseur (2009). The effects of cross-cut fins are used 

for cooling electronic device applications are examined by Kim & Kim (2009). The 

findings show that the thermal resistance of single cross-cut heat sinks outperforms 

on the multiple cross-cut heat sinks. In addition, the comparison of the thermal 

resistance of these heat sinks with pin and plate fin heat sinks indicates that the 
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cross-cut heat sinks offer less thermal resistance than plate fin HSs and square pin 

HSs by 5–18% and 14–16%, respectively. 

 Generally, if the dimensionless fan power (x-axis of Figure 1.3) is tiny and the 

dimensionless heat sink size (y-axis of Figure 1.3) is large, an optimized plate fin 

heat sink is recommended. However, the optimum pinned heat sink is suggested as 

the dimensionless fan power is large and the dimensionless size of the heat sink is 

tiny. The area in between the optimized plate fin and optimized pinned heat sinks is 

represented the optimized cross-cut heat sinks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Didarul et al. (2007) indicated the effects of the direction of the short 

rectangular plate fin, Figure 1.4, on the heat transfer rate and flow inside a duct for 

turbulent airflow. The characteristic considered in this study was that the directions 

of the fins were co-angular and zigzag, Figure 1.5. They observed that the optimum 

improvement of local heat transfer coefficient (hx) is at 20o angle. In addition, the 

average heat transfer coefficient (have) is largest for the zigzag fin model and it is 

four times more than that without fins. However, the friction factor of the zigzag 

model is larger than that for the co-angular pattern. These fins are utilised to cool the 

trailing edge region and the internal passage of turbine blades. 

Figure 1.3: Contour map of the thermal ratio for optimised plate, pin, and 

cross-cut FHSs (Kim & Kim, 2009)   
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The effect of the channel height and the width of the microchannel were 

investigated by Naphon & Khonseur (2009) with laminar airflow. They found that 

the heat sink temperature decreases and Nusselt number (see section 2.5.5) increases 

with increasing the channel height decreasing channel width. In addition, the shape 

and the size of rough irregularities on the microchannel surface will influence the 

pressure drop.  

Liquid Cooling 

Zhang et al (2005) reported that liquids can be utilised to cool electronic 

system packages for two sizes of chip at 12×12mm and 10×10mm using micro-

rectangular plate fins with de-ionised water as a coolant. In general, the experimental 

data indicates that pressure drop increases while chip temperature and thermal 

resistance decreases with increasing flow rate for both chip sizes. For the 10×10mm 

chip, however, the overall thermal resistance is higher than that of the 12×12mm 

chip.   

Figure 1.4: Test section and direction of short rectangular plate fins  

(Didarul et al., 2007) 

Figure 1.5: Short rectangular fins: (a) co-angular pattern, (b) zigzag pattern 

(Didarul et al., 2007) 
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1.5.2 Numerical Studies 

Heat sinks that are used in the cooling of electronic devices, microchips, and 

other systems consider the optimum design for fin array geometry. Heat transfer and 

turbulent fluid flow have been presented numerically using solid plate fin heat sinks. 

The governing equations Navier-Stokes and energy equations with k-ε turbulence 

models are chosen by most of the researchers via employing the finite volume 

method. The next papers in this section deal with this topic. The numerical and 

experimental data are consistent in that the strip fins have achieved the smallest 

thermal resistance.  

The optimum design of parallel flat plate fin HSs was studied by Arularasan 

and Velraj (2008) with a turbulent airflow. The findings indicate that the optimum 

plate fin heat sink design based on the base temperature, thermal resistance, and 

pressure drop is found at the specific parameters of the fin height, fin thickness, pitch 

of the fin and the base height.  

The Taguchi method is used to predict the optimum cooling design of parallel 

plate fin HSs used in desktop PC CPUs by Ko-Ta (2005). It is indicated that two 

design parameters have an important effects on the cooling performance of this heat 

sink: the air speed and the fin flake gap. The lowest value of the base temperature is 

decreased by 8oC and the temperature reduction is nearly 15%.  

Velayati & Yaghoubi (2005) studied the effect of different fin blockage ratios 

(D/W= fins thickness/fins spacing) and Reynolds numbers on the turbulent flow and 

heat transfer characteristics of plate fin heat sinks. They found that the D/W and 

Reynolds highly influence the separation flow, reattachment over the plate surface, 

and the recirculation downstream of the plate. Thus, the Nu increases and the friction 

factor decreases when both these parameters, D/W and Re, are increased. In addition, 

fin efficiency (qwith fins/qwithout fins) enhances when D/W and Re are decreased.    

The optimum design of different fin heat sinks was theoretically investigated 

by Ndao et al. (2009) by using water and the dielectric liquid, HFE-7000. The heat 

sink models are micro-plate channel, in-line and staggered circular pin HS, strip fin 

HS, single and multiple impinging jet, shown in Figure 1.6. These heat sinks are 

applied in electronic devices and chips. This optimisation is carried out in two steps: 

simultaneous minimisation of the total thermal resistance (Rth,T, based on the total 
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wetted surface area) and the pumping power consumption for each of these heat 

sinks. The data indicates that the strip fins HS has the lowest thermal resistance of 

the cooling devices, followed by the staggered and in-line circular pin HSs. 

Furthermore, the micro-plate HS offers the lowest thermal resistance at relatively 

very low pumping power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 Solid Pinned Heat Sinks (SPHSs) 

Although many optimisation reports have investigated plate fin heat sinks, see 

e.g. Chiang (2005) and other previous studies such as Velayati & Yaghoubi (2005), 

Arularasan and Velraj (2008), they cannot remove the intrinsic limitation that stops 

air flowing through the heat sink channels is smooth, due to the parallel plate 

arrangement, leading to the development of a boundary layer and limiting the 

achievable heat transfer rates. Pinned heat sinks (PHSs), as shown in Figure 1.2B, 

can be an effective alternative to plate fin HSs since they have the advantage of 

hindering the development of the thermal boundary layer on smooth surfaces that is 

responsible for limiting the heat transfer rates in plate fin designs (Zhou & Catton, 

Figure 1.6: Different heat sink models: (A) micro-plate channel (B) circular pins 

(C) offset strip fins (D) jet impingement cooling (Ndao et al., 2009) 
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2011). Pinned heat sinks play important role as turbulence promoters lead to enhance 

heat transfer rates by disrupting boundary layer with greater pressure drop compared 

with plated fin heat sinks (Jonsson & Moshfegh, 2001)  

The major difference between plate fins and pin heat sinks is that the pressure 

drop and heat transfer rate of pinned HSs are higher than those of plate fin HSs. In 

addition, the thermal resistance and the average temperature of pinned HSs are lower 

compared to plate fin HSs. In the next studies, by Jonsson & Moshfegh (2001) and 

Yang et al. (2007), various cross-sections of pins, such as square, circular, 

hexagonal, diamond and elliptic, are investigated with air and water coolants. 

1.6.1 Experimental Studies 

It can be observed that several parameters are considered in these studies in 

order to report the effects of a parameter studies on the heat transfer and turbulent 

flow through solid pinned heat sinks. These parameters are: cross-section of pin fin 

shape, which can be circular; square; elliptic; diamond; hexagonal pin in in-line and 

staggered arrangements; the height, width and number of fins; pin heat sink material; 

and the streamwise and spanwise distance between pins. Air, water, and nanofluids 

(coolants seeded with nano sized particles) are utilised as a coolant in these 

experimental works.  

Air Cooling 

Vanfossen & Brigham (1984), Tanda (2001), Jeng & Tzeng (2007), Jonsson & 

Moshfegh (2001), Yang et al. (2007), and Sahin et al. (2005) have all studied air 

cooling. The important outcomes illustrate that the circular and elliptic pin shapes 

have the higher heat transfer rate enhancement and lower thermal resistance. 

Additionally, the pin density, which means the increasing number of pin fins, leads 

to improvement the heat transfer rate while the pressure drop through solid pinned 

heat sinks increases. Commonly, the staggered pin array achieves a higher heat 

transfer rate and pressure drop compared with the in-line array. 

To explain the effect of the in-line and staggered pin arrangements on the heat 

transfer rate and pressure drop through PHSs, Tanda (2001) and Jeng & Tzeng 

(2007) investigated this subject. Tanda (2001) studied diamond-shaped element pins, 

which are useful for engineering applications such as electronic devices, compact 

heat exchangers, and in cooling of advanced gas turbine blades, whilst Jeng & Tzeng 
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(2007) examined square PHSs. Both studies indicated that the Nusselt number and 

pressure drop of PHSs in the staggered array is the largest. Furthermore, Jeng & 

Tzeng (2007) compared square pins with open article of circular pin fins and explain 

that the pressure drop and Nusselt number of square pins and circular pins for both 

in-line and staggered arrays depend on the spacing pins values and Reynolds 

number. Generally, the staggered square pin arrangements have larger pressure drops 

than the circular and square pins with in-line array arrangements. 

In the next two articles, Jonsson & Moshfegh (2001) and Yang et al. (2007), 

pin heat sinks are used for turbine blade and electronic device cooling. The pins’ 

shapes affect the heat transfer and pressure drop in in-line and staggered arrays, as 

explained below.  

Jonsson & Moshfegh (2001) investigated the different configurations of fins: 

plate fins, strip fins, square pin, and circular pin, in in-line and staggered arrays, all 

of which influence the Nusselt number and pressure drop. It is identified that Nusselt 

number and pressure drop depend on the height and thickness (diameter) of the pins 

and the distance between them, as well as the height and width of the wind tunnel. In 

addition, the lowest pressure drop is observed at the plate fins due to their fin length. 

Furthermore, the circular PHSs have a lower pressure drop than that of the square 

PHSs.  

The effects of the shape and density of PHSs with in-line and staggered 

arrangements on heat transfer and pressure drop are reported by Yang et al. (2007). 

The cross-section pins are circular, elliptic, square, and flat plate rectangular fins. 

The experimental data imply that the highest average heat transfer coefficient occurs 

at the staggered arrangement of the circular PHS. Furthermore, the thermal 

resistance based on the projected area is smallest at the circular pins in-line, Figure 

1.7. For staggered arrays, however, the lowest pressure drop is at the elliptic pin, and 

this pin has a slightly higher performance than that of the circular pin. In general, the 

average heat transfer coefficient and pressure drop increase with increasing pin 

density. 

Sahin et al. (2005) investigated the effects of geometric parameters of the HS 

fins, as shown in Figure 1.8, on Nusselt number and friction factor. This kind of heat 

sink is utilised for electronic cooling equipment. They explained that the optimum 

design for the slices fin is obtained at 15mm fin width; 15o angle of attack; 100mm 



- 14 - 

 

fin height; 20mm spanwise distance between fins; 15mm streamwise separation 

between fins; 20mm streamwise separation between slices; 20mm spanwise distance 

between slices; and 4m/s fluid velocity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following two studies, Yakut et al. (2006a, 2006b), the results of using 

hexagonal pin fins for cooling the CPU of a personal computer and electronic 

component devices are reported. They have used the Taguchi optimisation design 

method to explain the influence of the height, width of the hexagonal fins, and 

spacing between fins on the thermal resistance and pressure drop (Yakut et al., 

2006a) and on the Nusselt number and friction factor (Yakut et al., 2006b). 

Commonly, it can be observed that the pin height is the most effective parameter on 

Figure 1.7: Heat transfer coefficient and pressure drop with inlet velocity for   

plate fin and pin fin in (a) in-line array and (b) staggered array  

(Yang et al., 2007) 

Figure 1.8: Fin heat sink slices: (a) spanwise (c) streamwise distance between 

the fins, (e) spanwise (f) streamwise distance between slices (Sahin et al., 

2005) 

 



- 15 - 

 

Nu and thermal resistance while pin width is the most effective parameter on ΔP and 

friction factor. 

Liquid Cooling 

Liquids such as water and Nanofluids can also be utilised to cool electronic 

system packages. The heat transfer rates increase and the thermal resistances 

decrease once TiO2 nanofluid coolant is used, in comparison with water-cooling for 

the same heat sink and under the same boundary conditions such as same applied 

heat flux, concentration of nanofluid, and inlet mass flow rate and temperature 

(Naphon & Nakharintr, 2013). In this literature, it is possible to utilise the jet cooling 

method to cool the CPU of a personal computer (PC) and enhance the CPU 

temperature. Heat transfer rate and CPU temperature enhance with increasing mass 

flow rate and when decreasing both nozzle diameter and channel width. 

Naphon & colleagues (2010, 2011, and 2013) have produced three important 

papers relating to mini-pin heat sinks using laminar water and nanofluid flow as a 

coolant to cool the CPU of a PC. In the first two papers (2010 and 2011) employed a 

jet flow techniques (parallel flow method) while their other one Naphon & 

Wongwises (2013) used the traditional cross-flow method. Generally, the authors 

found that the nanofluid achieve a significant enhancement in heat transfer rate and 

Nusselt number while the pressure drop is higher compared with air- and water-

cooling.  

 Naphon & Wongwises (2010) investigated the jet impingement heat transfer 

by utilising mini-rectangular pin heat sinks, which are constructed from copper, to 

cool the CPU of a PC. This study used de-ionised water as a coolant and the PC was 

examined with no load and with full load operating conditions. They indicated that 

CPU temperature reduces when the channel width and the nozzle diameter decrease. 

Furthermore, the largest CPU temperature drops and energy consumption increases 

take place when the CPU is working under full load conditions. Naphon & 

Wongwises (2011) reported the jet nanofluid effect on cooling the CPU by utilising 

mini-channel HSs, Figure 1.9. TiO2 particles were used as nanofluid coolant. Using 

the jet nanofluid lowered the average temperatures of the CPU by nearly 3% and 

6.25% than those of the jet water and the conventional cooling system, respectively. 

As a result, the Nusselt number for the jet nanofluid is higher than that for the two 

other techniques, jet water and conventional water cooling system, Figure 1.10. 
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Maybe the nanofluid can capture and transfer more heat since their thermal 

conductivity and thermal capacity are higher. 

Naphon & Nakharintr (2013) studied the effect of the channel height on the 

heat transfer rate of mini-rectangular fin heat sinks with nanofluid (TiO2) as a 

laminar flow. In this study, heat transfer rate and Nusselt number enhance with 

increasing channel height. Comparing the results with water indicate that the heat 

transfer rate and Nusselt number of the nanofluid are higher than those of the water. 

In addition, the thermal resistance of the heat sink with the nanofluid is lower than 

that of the water. However, the pressure drop of both nanofluid and water is 

approximately the same in this study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.10: Variation of the Nusselt number with mass flow rate for 

different cooling methods (Naphon & Wongwises, 2011) 

Figure 1.9: Jet impingement heat sink unit for cooling the CPU of a PC 

(Naphon & Wongwises, 2010) 
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1.6.2 Numerical Studies 

In this part, the literature review discusses the enhancement of heat transfer 

with laminar and turbulent fluid flow for solid fin heat sinks numerically by using 

different fin shapes. Turbulent flow is in common use while laminar flow is 

specifically utilised according to the application’s requirements. Several kinds of 

commercial CFD software program are utilised to solve the governing equations, 

Navier-Stokes and energy equations with k-ε and k-ω turbulence models, which are 

chosen by most researchers via employing the finite volume and the finite elements 

methods.  

The main conclusions indicate that the circular pinned heat sinks have a larger 

Nusselt number and lower friction factor than most other types of fin heat sinks such 

as plate fins, strip plate fins, elliptic pins, and square pins in in-line and staggered 

arrays under laminar airflow. The elliptic and circular pins, however, have the lowest 

pressure drop therefore requiring lower pumping power values under laminar flow 

conditions.  

Air Cooling  

In the next two works, by Ramesha & Madhusudan (2012) and Soodphakdee 

et al. (2001), laminar airflow and heat transfer characteristics are numerically 

reported.  

Ramesha & Madhusudan (2012) investigated the effect of pin heat sink profile 

on the laminar forced convection heat transfer. These pin fins, which are useful for 

electronic cooling applications, are square twisted with various attack angles of 

airflow direction, as shown in Figure 1.11. The outcomes indicate that the twisted 

pins enhance the heat transfer rate of the heat sink especially at 30o, 45o, and 60o 

twisted angles by comparing the performance of a straight pin fin heat sink at 0o 

twisted. In addition, the pressure drop of the twisted pins at 30o and 45o improves 

and is nearly similar to the straight pins. 

The effect of cross-section fins on laminar forced convection heat transfer and 

pressure drop has been investigated by Soodphakdee et al. (2001). The shapes of 

these cross sections are plate fins, circular, elliptic, and square pins in in-line and 

staggered arrays, as shown in Figure 1.12, and these fins can be applied in integrated 

circuit chips. The findings explain that elliptic fins have the highest heat transfer 
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Figure 1.13: Heat transfer coefficient versus pressure drop of various fin 

geometries (Soodphakdee et al., 2001) 

coefficient at lower pressure drop and pumping power values. At larger pressure 

drop and pumping power values, however, the circular pin fins possess the highest 

heat transfer coefficient, as shown in Figure 1.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Straight and twisted pin heat sinks (Ramesha & Madhusudan, 2012) 

Figure 1.12: Different types of fin heat sinks (Soodphakdee et al., 2001) 
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Mohan & Govindarajan (2010) reported the optimum forced convection heat 

transfer and temperature distribution through two kinds of heat sink: plate fins and 

pins HSs, which are adequate for the CPUs of desktop computers. They found that 

the CPU temperature of the heat sink decreases when the base plate thickness and 

thickness of the fin increase. If copper is selected as the base plate material rather 

than aluminium, the thermal resistance of the heat sink reduces as expected, while 

the heat sink will be more expensive and heavier compared with when using 

aluminium. Thus, this study demonstrated the practical compromise that has to be 

struck between a low thermal resistance when using copper as the base plate 

material, which is costlier and heavier, and a higher thermal resistance for 

aluminium, which is cheaper and lighter. 

Liquid Cooling  

The following researchers, Naphon et al. (2009 and 2011) and Mohan & 

Govindarajan (2010) have used numerical methods to study turbulent flow and heat 

transfer in heat sinks. 

Naphon et al. (2009 and 2011) report on two experiments using forced heat 

transfer and turbulent fluid flow for mini-square PHS. The first one studied variable 

channel width, which is used for the CPU of a PC, and a de-ionised water coolant 

was used to explain the flow structure and behaviour of the working fluid. The 

findings explain that the flow pattern, pressure and temperature distribution are not 

uniform over the mini-heat sink. That is because all these results depend on liquid 

velocity, which is non-uniform through heat sinks. In addition, the direction and 

distribution of velocity at the entrance region of the mini-heat sink is dependent on 

the liquid flow pattern at the inlet plenum (Naphon et al., 2009). The second work 

studied the effect of the outlet port position on jet impingement heat transfer and 

fluid flow of two models, A and B, which  have four different outlet port positions 

(Naphon et al., 2011), Figure 1.14, for the same mini-square fin heat sink as in the 

last report. The numerical results showed that the flow velocity and the temperature 

distribution of coolant fluid through the second design (B) are uniformly better than 

in the first model (A). This means that both heat transfer rate and the overall 

performance of the second model (B) are higher than that in the first model (A). 

Thus, the uniformity of temperature distribution has an important effect on the 

thermal performance of the mini-heat sink.  
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Based on the previous literature review, the main advantages and 

disadvantages of the plate fin heat sinks and pinned heat sinks are shown in Table 

1.1 

 

 

 

 

 

 

 

 

 

Table 1.1: The comparison between the plate fin heat sinks and pinned heat 

sinks  

Plate fin heat sinks (PFHSs) Pinned heat sinks (PHSs) 

The most widely used in industrial applications 

Air, water and Nanofluids are used to cool different engineering devices 

Simple structure and ease of manufacture 
Relatively complex structure and 

manufacture 

Parallel plate fins only 

Different type of pin configurations: 

circular, square, elliptic, strip in in-line and 

staggered arrays  

The intrinsic limitation that the air flow 

through parallel heat sink channels that is 

smooth 

Act as turbulence promoters lead to break 

up a boundary layer 

The development of a boundary layer easily 
Hindering the development of a boundary 

layer 

Limiting the achievable heat transfer rate Enhancement heat transfer rates 

Lower pressure drop and fan power Greater pressure drop and fan power  

Higher the base average temperature Lower the base average temperature 

Higher thermal resistance to some extent Lower thermal resistance to some extent  

 

Figure 1.14: Schematic diagram of the different cross sections of model A and 

model B (Naphon et al., 2009) 
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1.7 Plate-Pin Fin Heat Sinks (PPFHSs) or Compact Heat Sinks 

(CHSs) 

Plate-pin fin heat sinks are a kind of compact heat sinks (CHSs), as shown in 

Figure 1.15B and C, and have been reported on only in relation to turbulent airflow. 

Compact heat sinks (CHSs) consist of some pins among plate fins in in-line and 

staggered arrangements. As more pins are present among the plate fins, the boundary 

layer growth through the heat sink is inhibited because the pins act as obstructions. 

The benefits of compact heat sinks are reduction of the CPU temperature and 

thermal resistance and enhancement of the Nusselt number, compared with plate fins 

and pin HSs. However, these pins will impede airflow, which leads to a pressure 

drop, and fan power for compact heat sinks is huge in comparison with other plate 

fins and pin HSs.  

In the next literature surveys, all types of compact heat sinks (CHSs) are 

applied to cool electronic components under a turbulent airflow. 

Yu et al. (2003, 2004, and 2005) conducted numerical and experimental 

investigations into the thermal airflow through plate-circular pin fin heat sinks 

(PCPFHSs), which consist of some circular pin fins among plate fins. The results 

indicate that the thermal resistance of the PCPFHS is nearly 30% smaller than that of 

the plate fin heat sink (PFHS). However, the pressure drop of the PCPFHS is much 

higher than that of the PFHS. The performance profit factor (Q/Pfan) of the PCPFHS 

is about 20% higher than that of the PFHS. 

Yang & Peng (2009a and 2009b) produced two papers relating to the compact 

heat sink. Thermal characteristics and pressure drop of the plate-circular pin fin heat 

sink (PCPFHS) in in-line and staggered arrangements are considered with a mixed-

height design of pins, as shown in Table 1.2. The results indicate that the Nusselt 

number enhancement of the PCPFHS is over 30% superior to that of the plate fin 

heat sink (PFHS). However, the pressure drop of the PCPFHS is nearly 110% higher 

than that of the PFHS. For the in-line arrays design, the profit factor is higher than 

for the staggered arrays model. The profit factor of Type-3 is the highest while the 

largest Nu is for Type-4 (Yang & Peng, 2009a). Yang & Peng’s (2009b) second 

report deals with the effects of pin shape and arrangement on the thermal and 

hydraulic characteristics of compact heat sinks utilising circular and square pin fins 
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between plate fins. These compact heat sinks are called the plate-circular pin fin heat 

sink (PCPFHS) and the plate-square pin fin heat sink (PSPFHS), as shown in Figure 

1.15. The findings show that the profit factor of the PCPFHS outperforms the 

PSPFHS by approximately 7%. In addition, the thermal resistance and pressure drop 

of the PCPFHS are about 10% and 90% respectively smaller than those of the 

PSPFHS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kumar & Bartaria (2013) assessed the thermal characteristics and pressure 

drop of the plate-elliptic pin fin heat sink (PEPFHS), which means some elliptic pins 

distribute between plate fins in an in-line arrangement with three different minor 

radiuses of elliptic pins. The results indicate that the thermal resistance and the 

Nusselt number of the PEPFHS enhance as the minor radiuses of the elliptic pins 

increase. Furthermore, the Nusselt number of the PEPFHS is higher than that of the 

plate pin (PFHS) while the pressure drop of the PFHS is lower than that of the 

PEPFHS.  

Figure 1.15: Compact heat sinks: (a) plate-fin heat sink, (b) plate-circular pin 

heat sink, and (c) plate-square heat sink (Yang and Peng, 2009) 

Table 1.2: The practical examples of the heat sinks dimensions 

(Yang and Peng, 2009) 
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The results of using more different plate-pin fin heat sink models with various 

cross-section types of pin-fin, square, circular, elliptic, NACA 0050 profile, and 

dropform are by reported Zhou & Catton (2011) to enhance thermal and hydraulic 

characteristics of this kind of heat sink. The numerical data, which are obtained from 

the k-ω turbulent model as provided in ANSYS CFX-12.1 program, illustrated that 

PPFHSs improve the Nusselt number by up to 85% while a maximum pressure drop 

of 525% is reached in comparison with plate fin heat sinks (PFHSs), as shown in 

Figures 1.16 and 1.17. 

Yuan et al. (2012) investigated the thermal hydraulic characteristics of the 

compact plate-circular pin fin heat sink (PCPFHS) in in-line and staggered 

arrangements to find its potential application in the CPU of a PC. Heat sink 

dimensions and boundary conditions are similar to the previous papers (Yang & 

Peng, 2009a and 2009b) with mixed pins; the diameter design of the PPFHS is 

shown in Table 1.3. They proposed that all these PCPFHS models achieve the 

cooling requirement of a desktop PC CPU at less than 60W as a heating power and 

with a maximum temperature of 85oC. The pressure drop over PPFHSs increases 

while the thermal resistance and the profit factor will significantly decrease as pin 

diameter and air velocity increase.  However, the effects of pin distance and pin 

array of this compact HS were less remarkable. 

Table 1.3: Different pin diameter combinations for four types of PPFHS  

(Yuan et al., 2012) 
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1.8 Perforated Fin Heat Sinks (PFHSs) 

The main reason for interest in this subject is that forced convection fins have 

various applications, from cooling of tiny electronic components to cooling of fuel 

elements in nuclear reactors. Furthermore, according to the author's knowledge and 

the next literature reviews in this section, the fin perforations play an important role 

by way of improving the thermal and flow characteristics of heat sinks and vanishing 

the vortexes and boundary layers behind solid plate fins and pin heat sinks. In 

addition, devices with these perforated fins will be lighter in weight and material will 

Figure 1.17: Streamlined patterns at Uc=10m/s, in the plane z=8 mm  

(Zhou & Catton, 2011) 

Figure 1.16: Nusselt numbers of compact heat sinks with 

variation in air velocity (Zhou & Catton, 2011) 
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also be saved in their design (Yaghoubi et al., 2009). Only air is used as a coolant in 

the following works.  

The numerical studies calculated NuT based on total wetted surface area of the 

perforated fins is lower than that of solid fins heat sink. Hence, we recommend 

determining the projected Nusselt number (NuP), based on surface area of only the 

heat sink base, L×W: where L, and W are length and width of the heat sink, 

respectively, as this may be a more effective measure of cooling capacity for a given 

heat sink size. The CPU temperature should not exceed the reference critical 

temperature of 85oC (Gurrum et al., 2004; Yuan et al., 2012). Furthermore, it should 

be considered to minimise CPU temperature and fan power consumption in order to 

select the optimum heat sink design.  

1.9 Perforated Plate Fin Heat Sinks 

Either perforation can be along the length of the plate fins as a small channel 

(frontal perforations) Figure 1.18A, or on the side of the plate fins as lateral 

perforations, Figure 1.18B. They are able to enhance thermal airflow of these heat 

sinks compared to the equivalent solid fin heat sinks.  

 

 

 

 

  

 

 

1.9.1 Plate Fins with Lateral Perforations 

The first section deals with several experimental reports on lateral circular 

perforated plate fin heat sinks. The main conclusion is that the Nusselt number and 

friction factor of perforated plate fins are larger than those of the solid fins. For 

instance, Dhanawade et al. (2010, 2014, and 2014) have produced three studies on 

lateral perforation PFHSs. The first one investigates the effect of lateral circular 

Figure 1.18: (A) Frontal and (B) lateral perforated flat plate heat sinks 

(Yaghoubi et al., 2009; Shaeri & Yaghoubi, 2009) 

A B 
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perforated plate fins on forced convection heat transfer (Dhanawade & Dhanawade, 

2010), and found that, at low applied heat flux levels up to 14000W/m2, the Nusselt 

number for the 12mm perforation diameter is larger than that for the 10mm 

perforation diameter. However, at high heat flux levels up to 20000W/m2, the largest 

Nusselt number is for the 10mm perforation diameter.  

Ganorkar & Kriplani (2012) produced another study explaining the effect of 

the lateral circular perforated plate fins on the heat transfer rate. This kind of HS is 

used to cool electronic applications and in IC engine cooling such as substation 

transformer, computer power supply, and fins in a car radiator. The effects of the 

lateral perforated plate fins’ shape on forced convection heat transfer and friction 

factor (f) are investigated in another report by Dhanawade et al. (2014). Evidently, 

the data point out that the Nu and f of the perforated fins are higher compared to 

solid fins and they increase with increases in the perforations’ diameter. The 

effectiveness of the square perforated fins, 
𝑄𝑝𝑒𝑟𝑓𝑜𝑟𝑎𝑡𝑒𝑑 𝑓𝑖𝑛𝑠−𝑄𝑠𝑜𝑙𝑖𝑑 𝑓𝑖𝑛𝑠

𝑄𝑠𝑜𝑙𝑖𝑑 𝑓𝑖𝑛𝑠
, is nearly the 

same as that of the circular perforated fins, while, with respect to the friction factor, 

the circular perforated fins have the lowest value. Dhanawade et al. (2014) have 

developed their previous work utilising the Taguchi design experimental method for 

optimum design of the thermal performance of circular lateral perforated PFHSs. 

They found that the most vital parameters are Re, perforation porosity, and then fin 

thickness, respectively. The highest level of effectiveness for the perforated fins is 

nearly 19%, noted at Re=87000, 0.22 porosity, and 5mm of fin thickness. The 

findings show agreement with the results of Ganorkar & Kriplani (2012).  

According to numerical studies, several factors such as average friction factor, 

Nusselt number based on the total wetted surface area (NuT), and fin weight reduce 

as increasing the number of perforations. However, the percentage of heat transfer 

enhancement or fin effectiveness (ɛ=qwith fins/qwithout fins) decreases incrementally with 

the number of perforations up to eight holes and then this enhancement increases as 

the perforations rise up to 50 holes, according to work by Yaghoubi et al. (2009) and 

Shaeri, et al. (2009). They investigated thermal and airflow characteristics of square 

lateral perforated PFHSs at variable porosity under laminar and turbulent airflow. 

Under the laminar flow conditions, the perforated fins effectiveness is nearly the 

same value as that of the solid fins, even though the perforations have increased in 



- 27 - 

 

number, whereas, for the turbulent flow, heat transfer rate increases when increasing 

the number of perforations.  

1.9.2 Plate Fins with Longitudinal (Frontal) Perforations  

The thermal and hydraulic characteristics of perforated plate fin HSs have only 

been numerically reported with laminar and turbulent airflow; there is no 

experimental work. Either k-ε standard or RNG models are utilised in the following 

literature to solve the governing equations. Similarly to lateral perforation plate fins, 

total drag (friction and pressure drag), Nusselt number based on the total wetted 

surface area (NuT) and the weight of the fins reduce as the number of these 

longitudinal perforations along the length of the plate fins increases. Fin 

effectiveness is enhanced via these perforations, which alleviate the recirculation 

zones that are behind the plate fins for both laminar and turbulent airflow. For 

example, Shaeri & colleagues (2009 and 2012) have presented work related to the 

perforated PFHSs in the presence of laminar and turbulent airflow.  

The laminar flow and heat transfer characteristics have been numerically 

investigated by the following researchers. 

The effects of the number of perforations with variable porosity on the heat 

transfer rate and laminar airflow have been investigated by Shaeri & Yaghoubi 

(2009). Numerical data explain that the average friction coefficient, pressure drop, 

average Nusselt number (NuT) and the weight of the fins decrease, but the 

effectiveness of the perforated fins increases when the number of perforations 

increases. Perforated plate fins reduce the shape and the size of recirculation zones 

(wakes) behind these fins compared with solid fins. The effects of size and number 

of perforations of a flat plate of the same porosity on thermal performance and 

laminar airflow have been studied by Shaeri & Jen (2012). The outcomes illustrate 

that the total drag, friction and pressure drag stay nearly constant for all kinds of 

perforated and solid fins because the airflow has a low velocity inside those 

perforations. Conversely, the thermal entrance length (the distance of thermal 

boundary layer inside the perforations) is smaller with a larger number of 

perforations than with a smaller number perforations, by which means the heat 

transfer rate of fins with a smaller number of perforations (larger perforation sizes) 

improves by approximately 80% compared with solid fins. 
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The following researchers report turbulent airflow and heat transfer 

characteristics numerically. 

Shaeri & Yaghoubi (2009) have reported the influence of perforations with a 

variable porosity in perforated plate fins on the heat transfer rate and turbulent 

airflow. The results indicate that the rising number of perforations influences: the 

size of the wakes that form behind the fin; the length of the recirculation zone around 

the lateral surfaces of the fin; total drag; skin friction coefficient; and the weight of 

the fins decreases. Fin effectiveness of perforated fins with three perforations is 

almost 65% higher than that of the solid fin. On the other hand, Shaeri & Jen (2012) 

report the effects of size and number of perforations for the same porosity on thermal 

performance and level of turbulent fluid flow. The results prove that the friction drag 

of the perforated fins is higher but the pressure drag and the total drag of the 

perforated fins are smaller than those of the solid fins. Furthermore, fin effectiveness 

increases with increasing number of perforations; in other words, heat transfer rate 

enhances with decreases in perforation size at constant porosity.  

1.9.3 Effect of Differently Shaped Perforations 

Concerning the shape of the perforations along the plate fins, Ismail et al. 

(2013 and 2014) have only numerically demonstrated this with laminar and turbulent 

airflow.  

The effects of circular and square perforations along the plate fins on the 

thermal and turbulent airflow performance have been considered by Ismail et al. 

(2013). The results show that the heat transfer rate of the perforated fins is nearly the 

same for both the circular and square perforations, while the pressure drop is lower 

for the circular perforated fins. In addition, as the number of perforations increases 

from two to three, fin effectiveness is almost the same but pressure drop decreases. 

Ismail et al. (2013 and 2014) have developed this study via considering more 

perforation shapes in an investigation into the effects of perforation shapes on the 

thermal and hydraulic performance under laminar and turbulent airflow. Circular, 

square, triangular, and hexagonal perforation shapes have the same surface area, as 

shown in Figure 1.19. Commonly, the results are the same for both laminar and 

turbulent airflow. The hexagonal and circular perforations have higher heat transfer 

performance enhancement (HTPE) and lower pressure drag coefficient than the other 
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perforations, Figure 1.20. In addition, the maximum Nusselt number, NuT, still 

occurs for the solid plate fins. 

According to the shapes of the fins with lateral perforations, Ismail et al. 

(2014) have demonstrated the effects of number and shape of lateral perforations, 

circular, square, triangular, and hexagonal, on the turbulent airflow and heat transfer. 

RANS-based modified k-ω turbulent flow has been considered. They indicate that 

the shapes of the perforations have a significant role in enhancing the cooling and 

hydraulic performance. Hexagonal perforated fins, however, have the largest 

effectiveness and heat transfer performance enhancement (HTPE) of the perforated 

fins. As indicated earlier, solid fins have the maximum Nusselt number, NuT, and the 

largest friction coefficient and this decreases with increasing in the number of 

perforations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19: Different sorts of perforated FHSs: circular, square, hexagonal, 

and triangular (Ismail et al., 2013) 

Figure 1.20: Nusselt number and fin effectivity variations for different 

types of fin (Ismail, 2013) 
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Figure 1.21: The test section of perforated blocks/ribs with different views  

(Sara et al., 2001) 

1.9.4 Perforated Ribs and Blocks as Fins 

The experimental testing of the other types of perforated blocks as fin heat 

sinks, ribs or baffles towards the flow direction is investigated in this section. These 

perforations have differently shaped perforations. For instance, turbulent forced 

convection heat transfer and friction loss of a single baffle that has perforations in 

different positions, of different sizes, and with inclined orientations inside the 

rectangular channel have been investigated by Dutta and Dutta (1998). The results 

point out that both local and average Nusselt numbers increase when increasing the 

angle of baffle orientation and baffle size, and with a decreasing number of circular 

perforations. With regard to the position of the baffle, when it is located at the start 

from the heat source, the Nusselt number is higher than that of the baffle, which is 

placed far away of the heat source. Furthermore, friction factor ratio decreases as the 

angle of baffle decreases and circular perforation density increases. 

Sara et al. (2000 and 2001) have produced two works related to solid and 

perforated blocks, which are used in many practical applications. These works are 

focused on the thermal performance efficiency (η=ha/hs, where ha and hs are the 

convective heat transfer coefficient with and without blocks, respectively) of these 

perforated block types with turbulent airflow, Figure 1.21. The results show that the 

performance efficiency and Nusselt number of the perforated blocks are greater than 

the solid blocks and they increase by nearly 30%-60% as increasing the perforation 

inclination angle, perforation open-area ratio, and perforation diameter. Additionally, 

friction factor and pressure drop of the perforated blocks are lower than those of the 

solid ones. Therefore, the gained energy performance of the perforated blocks 

compared to the solid blocks is up to nearly 77% due to the enhanced Nusselt 

number and the reduced pressure drop of the perforated blocks.  
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With respect to numerical reports of perforated ribs as fins, it is indicated that 

the numerical data are in agreement with the previous experimental reports. For 

example, Khoshnevis et al. (2009a) studied the effects of circular perforated ribs 

with various attack angles towards the flow direction on the thermal airflow of heat 

sinks inside a rectangular channel. However, the effects of two kinds of perforation, 

circular and slotted perforated ribs shown in Figure 1.22, were reported in another 

study by Khoshnevis et al. (2009b). The Nusselt number enhances as the perforation 

inclination angles, perforation diameter and perforation open-area ratio increase. 

Furthermore, pressure drop reduces with increasing perforation diameter and open-

area ratio, but it is not affected by perforation inclination angles. Generally, the 

Nusselt number and pressure drop of the perforated ribs are slightly enhanced 

compared to slotted ribs with the same open-area ratio.  

 

 

 

 

 

 

 

1.10 Perforated Folded Fin Heat Sinks (PFFHSs) 

The thermal resistance of several triangular folded fin heat sinks is investigated 

by Jia et al. (2003, 2004 and 2007). The fin types are: extruded plate fin (a model), 

slit folded fin (b model), perforated folded fin (c model), and perforated slit folded 

fin (d model), as shown in Figure 1.23, and they are tested for the same boundary 

conditions such as applied heat flux, inlet air velocities and inlet air temperature. The 

experimental results indicated that the thermal resistance of the new triangular folded 

fins design (b, c, and d models) is superior to that of the traditional plate fins (a 

model). The most effective for application in high-powered electronic devices are the 

slit folded fin (b model) and/or perforated slit folded fin (d model) heat sink models. 

The thermal resistance of the slit folded fin (b model) and the perforated slit folded 

Figure 1.22: The angle of perforations and slots in rectangular blocks towards 

flow directions (Khoshnevis et al., 2009b) 
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fin (d model) is nearly 18% and 20% respectively less than that of conventional plate 

fin heat sinks (a model) at a fixed fan power. In addition, the cooling performance of 

these heat sinks depends remarkably on the increasing fin height, number of slits for 

the perforated slit folded fin, decreasing fin pitch, and Reynolds number.  

 

 

 

 

 

 

 

 

 

 

1.11 Perforated Pinned Heat Sinks (PPHSs) 

Relatively few studies have considered the effect of perforations on the heat 

transfer and pressure drop of perforated pinned heat sinks (PPHSs), shown in Figure 

1.24 which is investigated experimentally in the following literature survey, rather 

than through numerical reports. It is indicated that pin perforations offer considerable 

benefits by enabling the heat transfer to be improved while at the same time reducing 

both the pressure drop across the heat sink and the fan power required to pump the 

air through it. In addition, reduction in the weight of the pinned heat sink can be 

obtained via these perforations. These perforated PHSs can be classified into two 

types, single and multiple perforations. 

1.11.1 Single Perforated Pinned HSs  

PHSs with only one perforation are called single perforated PHSs. The effects 

of square and circular cross-section perforated pinned heat sinks in an in-line array 

have been reported by Sahin & Demir (2008a and 2008b), while Amol & Farkade 

(2013) considered the effect of a staggered arrangement of circular cross-section 

Figure 1.23: Different designs of folded fin heat sinks: a) Extruded plate fin, (b) 

Slit folded fin, (c) Perforated folded fin, (d) Perforated slit (Jia et al., 2003) 



- 33 - 

 

perforated pinned heat sinks. The various parameters with Reynolds number, such as 

turbulent airflow, clearance ratio (C/H) and inter-fin spacing ratio (streamwise 

distance) in the flow direction, were studied in these three reports to investigate the 

Nusselt number and pressure drop of perforated pinned HSs where C is the distance 

from the tip of the pins to the upper surface of the wind tunnel, and H is the height of 

the pins. In addition, this perforation is just a single circular perforation located near 

the bottom of the fin. These studies have found consistently that a single perforation 

leads to an enhancement of Nusselt number and a reduction in pressure drop 

compared to the equivalent solid pin system, as shown in Figure 1.25. For example, 

Sahin & Demir (2008a) have found that the enhancement efficiencies of square 

cross-section perforated pinned heat sinks vary between 1.1 and 1.9, while the 

enhancement efficiencies of circular cross-section perforated pinned heat sinks are 

the highest, varying from 1.4 to 2.6 depending on the inter-fin spacing ratio and 

clearance ratio (Sahin & Demir, 2008b). In addition, the projected Nusselt number, 

NuP, is enhanced and the friction factor increases when reducing both clearance ratio 

(C/H) and streamwise distance. 

It can be concluded that the main outcomes of this design are that localised jet 

flows through the perforations increase local heat transfer by alleviating the 

recirculation zones that form behind solid pins, and increasing shear-induced mixing 

leads to enhance thermal airflow and reduce pressure drop through perforated pinned 

heat sinks. To select the optimum design, the Taguchi experimental design method 

design is used in these studies utilising the ANOVA-TM software package to 

evaluate the effect of each parameter on the optimisation criterion. The trade-offs 

among goals are considered and the optimum design occurs as pin height and pitch 

are 50mm and 3.417, respectively at Re=42000 (Sahin & Demir, 2008). 

As indicated in the previous three reports, the perforated pinned heat sinks can 

be used for large heat exchange applications because the dimensions of the heat sink 

are 250×250mm, which is large, and the aspect ratio of height to diameter, H/d, is 

greater than four (Vanfossen & Brigham, 1984). However, it is difficult to apply this 

size of perforated PHSs for cooling electronics systems due to restrictions in the size 

of these systems. Thus, a mini-perforated pinned heat sink design is required to 

enhance heat transfer rate and at same time reduce fan power consumption to drive 

air through PHSs, and that leads to the desirable benefit of reducing the CPU 
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temperatures of the heat sink in the case of a fixed heat sink size, which is our goal 

in this study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.11.2 Multiple Perforated Pinned HSs  

Based on the literature review and our knowledge, the combination of 

experimental and numerical studies relating to the benefits of single and multiple 

perforated pinned heat sinks for electronic cooling applications has not yet been 

reported. Hence, illustrating the comprehensive thermal airflow of this kind of heat 

sink has motivated a full study of the benefits of multiple perforated PHSs, as shown 

in previous Figure 1.2E and 1.27. 

Figure 1.24: (a) Perspective view of the heat exchanger and a single perforated  

pin configuration (b) Sectional view of heating unit and tested model 

assembly (Sahin & Demir, 2008b) 

Figure 1.25: Nusselt number and friction factor variations for single perforated 

pin fins (Sahin & Demir, 2008b) 
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The expected benefits of multiple pin perforations may enhance the heat 

transfer rate (increasing NuT and NuP) while reducing the fan power consumption, 

which is required to overcome the pressure drop across the heat sink. The 

minimisation of CPU temperature and thermal resistance are the other important 

factors for thermal management of systems containing electronic components, 

together with minimising the fan power consumption. The additional benefit of a 

reduction in the weight of the pinned heat sinks is important to reduce the cost and 

save material. 

The previous studies can be summarised by the flowchart illustrated in Figure 

1.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.26: Simple flowchart of literature review of different heat sink types 
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1.12 The Aims and Objectives of the Current Study 

According to the literature review, as indicated previously that many 

optimisation reports have investigated plate fin heat sinks, see e.g. Chiang (2005), 

but they cannot remove the intrinsic limitation that air flows, which is smooth 

through the heat sink channels. This is due to the parallel plate arrangement, limiting 

the achievable heat transfer rates. Pinned heat sinks (PHSs) can be an effective 

alternative to plate fin heat sinks since they have the advantage of hindering the 

development of the thermal boundary layer on smooth surfaces responsible for 

limiting the heat transfer rates in plate fin designs (Zhou & Catton, 2011). However, 

this the heat transfer enhancement of pinned heat sinks is always accompanied by a 

substantial increase in fan power losses (pressure drop). Hence, in most pinned HS 

applications, both the heat transfer and pressure drop characteristics should be 

considered. 

Based on the author’s knowledge, very few experimental studies have been 

reported; only three papers have examined the thermal airflow characteristics of a 

single circular perforation at the bottom of a pin fin HS (Sahin & Demir, 2008a; 

Sahin & Demir, 2008b; Amol & Farkade, 2013). The perforations are a useful air-

cooling technique to enhance the thermal airflow characteristics of the pinned heat 

sink. Furthermore, there exists neither numerical data with respect to the use of 

perforated pin fins nor combination of experimental and numerical works relating to 

notched and slotted pin fins for heat sink applications.  

As a result of that, the main aim of this study is a numerical and experimental 

investigation of different configurations of perforated, notched and slotted pinned 

heat sinks that are presented to enhance the heat transfer rate, reduce CPU 

temperature, and decrease the fan power to overcome the pressure drop through 

pinned HSs. Then, the optimum thermal airflow characteristics of PHSs design such 

as perforations dimensions are examined to obtain the lowest CPU temperature and 

fan power consumption through a heat sink. In addition, the application 

specifications of pinned heat sinks is reported for active air-cooling of electronic 

systems since, at a smaller scale, convective heat transfer to air as it flows over a 

network of fins is also the most common approach to cooling microelectronics due to 

its low cost, availability, relatively simple structure and easy manufacturing (Zhou & 
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Catton, 2001). Finally, the weight of these heat sinks will be lighter when using 

aluminium and perforations.  

The types of pin fin heat sinks that will be studied in this thesis are, as shown in 

Figure 1.27: 

1. Circular perforated pin fins are aligned in the direction of flow; the locations 

and number of holes can be changed as follows: single (1P), double (2P), 

triple (3P), and five perforations (5P).  

2. The shape of these perforations can be changed to square (3PS), and elliptic 

(3PE). 

3. Slotted pin fins (SPHSs) are aligned in the direction of flow, and the slot 

height can be 3S, 6S, and 10S with constant slot width. 

4. Notched pin fins (NPHSs) are arranged in the direction of flow, and the notch 

height can be 2.5N, 5N, and 7.5N with constant notch width. 

To reach the specified aims, this study is divided into five objective parts: 

1. To design, fabricate, and examine experimentally the thermal airflow 

characteristics of perforated and solid pin fin heat sinks to be used for active 

air-cooling of electronic systems. 

2. To investigate numerically the thermal airflow characteristics of solid and 

perforated pinned heat sink devices in order to validate the CFD approach 

against the experimental results. 

3. To investigate numerically the thermal airflow characteristics of various 

configurations of perforated, notched and slotted pinned heat sink devices to 

demonstrate how the thermal airflow characteristics of these models enhance 

pinned heat sinks compared with solid pin fins. 

4. The optimal variable design of perforated and notched pinned heat sink 

models are considered to achieve the multi-objective function that is 

represented to minimise CPU temperature and fan power consumption and 

select the optimum pinned heat sink design 

5. Lastly, to consider the limitations in the application of pinned heat sinks 

based on the pin density and the supplied heat flux for investigating the 

capability of these pinned heat sink designs to be used in the desktop PC 

CPU for waste heat dissipation. Furthermore, to evaluate the allowance level 

of applied heating power on these pinned heat sink models. 



- 38 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.27: Different types of pin fins heat sinks 
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Finally, the scope of the current work can be represented as shown in Figure 

1.28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: The fabrication steps, rig design, and apparatus of perforated & solid 

PHSs are described. In addition, measurement devices and test procedures to 

measure the significant characteristics for calculating thermal airflow 

characteristics of those pinned HSs are explained. 

Chapter 4: The main benefits of pressure drop, fan power, CPU temperature, & 

heat transfer rate from using the new perforated PHS with multiple perforations 

are investigated experimentally. 

 

Chapter 5: The numerical simulation details for the PHSs are described. For 

example, each of numerical solution procedures, boundary conditions, 

assumptions, and the airflow and thermal characteristics (pressure drop, fan 

power, Nusselt number, thermal resistance, and temperature base of heat sinks) 

are explained. 

Chapter 6: Evaluation of the thermal airflow characteristics of perforated heat 

sinks to discover how these pin fins designs can reduce the hot spots inside the 

heat sink and enhance airflow through it utilizing complementary experimental 

and numerical simulation models. The optimum perforated PHS designs are 

considered. 

Chapter 7: The predicted CFD simulation of slotted and notched PHSs are 

discovered in detail concerning their heat transfer and flow characteristics to 

ensure how these pin fins designs can reduce the hot zones inside the heat sink 

and enhance airflow through it compared with solid pin fins. The optimum 

notched pin designs are described. 

Chapter 8: In this section, the effects of pin density and applied heat flux are 

considered based on the values of pressure drop, fan power, Nusselt number, & 

CPU temperature of PHSs. 

Chapter 9: The main conclusions and recommendations are explained. 

 

Chapter 2: The principle concepts of convection heat transfer such as heat 

transfer mechanism, velocity and thermal boundary layer, boundary layer 

separation and hydraulic and thermal characteristics are explained. 

 

Figure 1.28: The scope of the present thesis work 
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2 Chapter Two: The Fundamental of Convection Heat 

Transfer 

2.1 Introduction  

In this chapter, the basic concepts of fluid flow and heat transfer are illustrated. 

The basic concepts are included the physical mechanism of convection heat transfer, 

the types of fluid flows, the velocity and thermal boundary layers, and the boundary 

layer separation. In addition, the hydraulic and the heat transfer characteristics of 

heat sink that are investigated in the current study. 

2.2 Physical mechanism of convection heat transfer  

Heat transfer through fluids (liquids or gases) can be by conduction or 

convection depending on the presence or absence of any bulk fluid motion. In the 

case of bulk fluid motion, heat transfer occurs by convection, as shown in Figure 2.1 

(a) and (b), while heat transfer occurs by conduction in the absence of bulk fluid 

motion, Figure 2.1 (c).  

In reality, convection heat transfer involves fluid motion and heat conduction. 

Heat moves from a hot surface to an adjacent cooler fluid layer by conduction, and 

then this heat transfers to the next cooler fluid layer by fluid motion, and so on. 

Thus, the rate of convection heat transfer is much higher than that of by conduction, 

(Cengel, 2006).  

 

 

 

 

 

 

 
Figure 2.1: Physical mechanism of heat transfer from hot surface to cool 

surrounding air by convection and conduction, (Cengel, 2006). 
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The convection heat transfer, by experience, depends on the fluid properties 

such as dynamic viscosity (µ), thermal conductivity (k), thermal capacity (Cp), and 

density (ρ) and the fluid velocity (U). Furthermore, it depends on the geometry, solid 

surface roughness and the type of fluid flow. Therefore, the heat transfer by 

convection is a complex mechanism, (Cengel, 2006). The rate of convection heat 

transfer increases with increasing temperature difference between a hot surface and a 

cold fluid. This rate can be defined by Newton’s law of cooling: 

Q̇conv = hAs(Ts − T∞)                     (2.1) 

which relates the average convective heat transfer coefficient (h), the heat transfer 

surface area (As), the surface temperature (Ts) and the ambient fluid temperature 

(T∞). 

2.3 The basic concept of fluid flow types 

Since convection heat transfer is accompanied with fluid mechanics, the 

common general categories of fluid flow are explained below to understand fluid 

flow behaviour that effects the enhancement of convection heat transfer, (Cengel, 

2006).       

2.3.1 Viscous and Inviscid Flow 

When the viscosity of a fluid is considered and its effects are significant due to 

an internal resistance of a fluid to flow, that is called viscous flow. However, 

inviscid flow is assumed no viscosity and its effects is very trivial in some flows and 

can be ignored.    

2.3.2 Internal and External Flow 

If a fluid is forced to flow inside a channel, duct and pipe and it is confined 

by a surface, this is called internal flow. However, external flow can be defined as 

when fluid is forced over or around an object and without restriction by adjacent 

surfaces of an object.  

2.3.3 Compressible and Incompressible Flow 

Certain gas flows involve substantial variations in the fluid density, and these 

are known as compressible flows. For example, high-speed aircraft, rocket motors 

and jet engines are relevant to compressible flow. Liquid densities are essentially 
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considered constant and thus classified as incompressible flow. Air flows are also 

commonly modelled as incompressible flow if the flow speed is sufficiently low. 

2.3.4  Laminar and Turbulent Flow 

If a fluid flows in parallel flow with smooth streamlines and orderly flow 

without interaction between the fluid flow layers, this is called laminar flow. For 

example, the flow with low speed and high viscosity such as oils. In contrast, 

turbulent flows involve chaotic fluctuations in the local fluid velocity, resulting in 

disruption between the fluid layers, and it is not an orderly flow. The process of a 

laminar fluid flow that is becoming fully turbulent flow is called transient fluid flow. 

Such flows occur at high speed and with low viscosity fluids such as air. 

2.3.5 Natural and Forced Flow 

Based on how the fluid moves, if a fluid is forced to flow inside or over a pipe 

by a fan or a pump that is classified as forced fluid flow or forced convection, as 

shown in Figure 2.1 (a). However, the buoyancy force effect is a response to a fluid 

motion where warmer fluid (lighter fluid) rises up and cooler fluid (denser) goes 

down; this is called natural convection (thermosiphon effect), as shown in Figure 2.1 

(b).  

2.3.6 Steady and Unsteady Fluid Flow 

Steady flow is the type of fluid flow in which the fluid characteristics 

(velocity, pressure, etc) at a point are independent of time. While, the unsteady flow 

is the type of fluid flow in which the fluid characteristics (velocity, pressure, etc.) at 

a point change with respect to time. 

2.4 The concept of boundary layers 

The concept of boundary layers is important to understand the convection heat 

transfer between a surface and a fluid flowing over it. Velocity and thermal boundary 

layers are described in this section. 

2.4.1 Velocity Boundary Layer (δu) 

Figure 2.2 shows the velocity boundary layer of fluid flowing over a flat plate. 

The x-axis represents the fluid flow direction over the surface of a flat plate from the 

leading edge of the plate, and the y- axis represents the normal flow direction from 
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the plate surface. The velocity of fluid (V) at the leading edge of the plate in x-

direction is uniform velocity. It can be imagined that the fluid consists of many 

adjacent fluid layers on top of each other. The velocity of the fluid particles in the 

first layer next to the surface plate is zero due to the no-slip condition. This layer 

then will affect the motion of the next adjacent fluid layer due to the friction force 

between the fluid particles of these two neighbouring layer at different velocities and 

this act to the fluid particles motion in the next layer, and so on until. The velocity 

reaches the free-stream velocity (u∞) at a certain distance from the surface of the 

plate. This distance is known as the boundary layer thickness (δu) and is defined as 

the distance at which u=0.99u∞. The velocity boundary layer (δu) involves four flow 

regions in which the fluid viscous: the fluid flow velocity is zero at the surface of flat 

plate. The laminar sublayer (viscous sublayer) is a very thin layer above the flat plate 

surface. The buffer layer is a layer just next the laminar sublayer and a flow begins 

to develop to turbulent flow. The third region is the turbulent layer. The free stream 

region is far away from the surface, where u=u∞, (Cengel, 2006).          

 

 

 

 

 

 

 

2.4.2 Thermal Boundary Layer (δth) 

Figure 2.3 shows the thermal boundary layer of cool fluid flowing at a specific 

uniform temperature (T∞) over a hot flat plate (Ts). The thermal boundary layer is 

similar to the velocity boundary layer and the former will develop due to the 

temperature difference between the fluid flow and the surface plate. The hot surface 

of the plate will achieve thermal equilibrium with the fluid layer, adjacent to the 

surface. The energy of the fluid particles will be exchanged with the particles of the 

adjoining fluid layer, and so on. The temperature gradients of the thermal boundary 

layer are represented by: 

Figure 2.2: The velocity boundary layer development on a flat plate surface, 

(Cengel, 2006). 
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   (𝑇𝑠 − 𝑇) = 0.99(𝑇𝑠 − 𝑇∞)                (2.2) 

The thickness of the thermal boundary layer increases with increasing distance 

from the leading edge in the flow direction, since the effects of heat transfer 

penetrate farther into the fluid flow. The relation between conditions and the 

convection heat transfer at any distance x from the leading edge are represented by 

applying Fourier’s law at the interface between the solid surface plate and the fluid 

layer as y=0:  

𝑘𝑓
𝑑𝑇𝑓

𝑑𝑦
|

𝑦=0
= 𝑘𝑠

𝑑𝑇𝑠

𝑑𝑦
|

𝑦=0
                       (2.3) 

where kf and ks are the thermal conductivity of fluid and solid flat plate, respectively, 

(Incropera, 2011). 

 

 

 

 

 

 

 

 

2.4.3 Boundary Layer Separation  

To understand the phenomenon of boundary layer separation, consideration 

fluid flow around a cylinder is very important for engineering applications. For 

example, shell-and-tube heat exchangers, bundle circular tubes heat exchangers, 

circular pinned heat sinks, etc.  

The upstream fluid velocity (V) around a cylinder and the free stream velocity 

(u∞) that depends on the distance (x) from the stagnation point are considered, as 

shown in Figure 2.4. The fluid velocity is equal to zero at the stagnation point (θ=0). 

As the fluid flow accelerates due to the favourable pressure gradient (du/dx > 0 as 

dp/dx < 0), the fluid flow reaches to the maximum value at dp/dx=0 and then it 

decelerates due to the adverse pressure gradient (du/dx < 0 as dp/dx > 0), as shown 

Figure 2.3: The thermal boundary layer development on an isothermal flat 

plate surface, (Incropera, 2011) 



- 45 - 

 

in Figure 2.5. The fluid velocity gradient becomes zero at the surface when the fluid 

flow decelerates, this point is called “separation point”. At this point, the momentum 

of fluid is not sufficient to overcome the pressure gradient and the continued fluid 

movement downstream is impossible. In addition, the oncoming fluid flow prevents 

flow back upstream. Thus, boundary layer separation must happen. This is the main 

reason the boundary layer separates from the surface and reversed flow and vortices 

are formed just behind the cylinder at the downstream region, (Incropera, 2011).                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Boundary layer separation on a cylinder and formations eddies in 

the downstream region, (Incropera, 2011)   

Figure 2.5: Velocity profile associated with pressure gradient and separation on 

a cylinder, (Incropera, 2011) 
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2.5 Hydraulic and Heat Transfer Characteristics 

Airflow and heat transfer characteristics including Reynolds Number, pressure 

drop, fan power, profit power factor, pressure drag coefficient, Nusselt number, 

thermal resistance, average temperature base case heat sinks (CPU temperature), 

temperature and velocity air distribution along pin fin heat sinks, are important 

parameters, to evaluate pinned heat sinks designs, which can be obtained from the 

ANSYS FLUENT post processing options. These factors are defined below.     

2.5.1 Reynolds Number (Re) 

Reynolds number is the ratio between inertial forces and viscous forces and is 

defined as: 



 hUD
Re                  (2.4) 

)(

).(
24

WH

WH

p

A
D c

h


                  (2.5) 

where U: the air inlet velocity, Dh: duct hydraulic diameter , ρ (kg/m3),and μ (kg/m.s) 

are the density and viscosity of air. In the present study, the inlet velocities are varied 

from 6.5m/s to 12m/s and the range of Reynolds numbers is 3500-6580. 

2.5.2 Pressure Drop (ΔP) 

Pressure drop (Pa) is defined as the difference in pressure between inlet and 

outlet airflow of test section (heat sink).  

inletoutlet PP P                     (2.6) 

where ∆P is the pressure drop over the heat sink, and Pinlet, outlet are inlet and outlet 

pressure of the airflow in the test section. 

2.5.3 Fan Power (Pfan) and Profit Power Factor (J) 

Fan power (W) is the required power to drive the air through the heat sink and 

can be evaluated as Sparrow et al. (1980) and Yuan et al. (2012) by:  

PUAP cfan                    (2.7) 

http://en.wikipedia.org/wiki/Viscous
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where Ac: cross sectional area of the flow passage of the heat sink =h.Sz.(N-1) (m2), 

h: pin fins height (m), Sz: spacing between pins (m), N: number of pins in a row. In 

this study, fan efficiency is assumed 100% (Yuan et al., 2012).  

The profit factor (dimensionless) is another factor to compare between heat sink 

designs (Yu et al., 2005) 

fanP

Q
J                      (2.8) 

where Q: the applied heating power on the base heat sink surface (W). 

2.5.4 Pressure Drag Coefficient (Pd)     

It is dimensionless and used for the drag or resistance quantity of an object 

against fluid flow and found as: 

 Pd= ∆P/0.5ρU2                       (2.9) 

2.5.5 Nusselt Number (Nu) 

The Nusselt number of the pin-fins array is the ratio between the heat transfer 

rates of convection and conduction. Previous researchers have calculated heat 

transfer coefficient based on either the projected, AP, or total, AT, surface area of the 

heat sink and these are related to one another via the relationship (Sara, 2003; Sahin 

& Demir, 2008):  
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where Qconv: power applied to the base (W), hT: the total heat transfer coefficient 

(W/K.m2), hP: the projected heat transfer coefficient (W/K.m2), AT: total surface area 

(m2), AP: projected surface area (m2)Ts: the upper surface of heat sink temperature 

(oC), Tin, out: inlet and outlet air temperature (oC). 

The Nusselt number (NuT) based on the total surface area of the pin-fins is: 

air

T
T

k

Lh
Nu

.
                 (2.12) 
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While the projected Nusselt number (Nup) based on the projected surface area of the 

pin fins is: 

air

P
P

k

Lh
Nu

.
                 (2.13) 

where L: length heat sink in flow direction (m), kair: is the thermal conductivity of air 

(W/K.m).  

2.5.6 Thermal Resistance (Rth) 

The thermal resistance (K/W) of the heat sinks Rth is an object or material 

resists to a heat flow through heat sink and it is defined by:  

𝑅𝑡ℎ = ∆𝑇/𝑄̇                (2.14) 

The temperature difference ∆T is defined as the difference between the average 

temperature on the base (Tcase) and the inlet air temperature (Tin) (Jonsson & 

Moshfegh, 2001). 

2.5.7 Porosity (Ø) 

The porosity of perforated pin fins has been calculated from the void volume 

of perforations divided by the volume of solid pin fin:- 

V
)(Porosity holeV
                  (2.15) 

where Vhole, is perforations, slots, and notches void volume, and V solid pin volume. 
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3 Chapter Three: Experimental Methods 

3.1 Introduction  

This chapter focuses on two important elements of the work:  

1. The description of the fabrication procedure of the heat sinks and the 

integration of these heat sinks into a measurement section.  

2. The equipment and test procedures to measure the significant characteristics 

such as the local (inlet and outlet) air temperatures; variation of the upper and 

lower heat sink surfaces temperatures; ambient air temperature: inlet and 

outlet local pressure differences (pressure drop); and inlet air velocities for 

calculating thermal and airflow characteristics of solid and perforated pin fins 

heat sinks. These heat sinks are designed, fabricated, and tested during this 

study.  

The main goal of the experimental work is an investigation into the benefits of 

pin fin perforations on the heat transfer and fan power in pinned heat sinks (PHSs) 

for cooling electronics packaging. Experimental data is presented, for the first time, 

on the benefits of using multiple perforations and the data used to validate a 

corresponding Computational Fluid Dynamics (CFD) model of the conjugate heat 

transfer problem in the Chapter 4. 

3.2 Experimental Objectives 

The principal objectives of the experimental work are: 

1. Design solid (0P) and novel perforated pinned heat sinks (3P). 

2. Fabricate the aluminium heat sinks. 

3. Experimentally determine the forced convection conjugate heat transfer and 

pressure drop for air flows over solid and perforated pin fin heat sinks. 
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3.3 Heat Sink and Test Section Descriptions 

Two types of aluminium heat sinks have been designed and fabricated; solid 

and perforated pinned heat sinks (Figure 3.1) that can be supplied with a heat load of 

approximately 24000W/m2 in line with Yuan et al. (2012) using a thin film heater. 

As follows Zhou & Catton (2011), the pin fins have a circular cross-section of 2mm 

and are spaced uniformly on the upper surface of an aluminium base plate of 

50mmx50mmx2mm. The height of these pin fins is 10mm located on an 8x8 array 

with a constant spacing between the streamwise and spanwise directions of 6.5mm. 

The perforated pin fins have three perforations of 1mm diameter. These perforations 

are aligned in the direction of the airflow and distributed up the length of the pins. 

Pin designs were studied with both 0 and 3 perforations with corresponding different 

porosity (ϕ=Vhole/Vpin) of 0, and 0.15 where Vhole, and Vpin are the perforations 

volume and pin volume, respectively. 
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Figure 3.1: (A) Plan view, and (B) solid pin fins side view, (C) Plan view, (D) 

perforated pin fins side view, and (E) 3D of the perforated pin fins heat 

sink being analysed 
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3.3.1 Heat Sink Fabrication 

The aluminium heat sink consists of two main parts; (I) the base plate (II) pin 

fins, as shown in Figure 3.2. The base plate of heat sink dimensions used in this 

study are 50mm x 50mm and 2mm thickness for both types of pin fins; under study. 

Each pin was cut from 2mm aluminium bar using a rivet cutter to a length of 12mm. 

Two heat sinks have been designed and fabricated from aluminium, the first 

one with solid pins (0P) and the second with perforated pins (3P). The fabrication of 

heat sinks formed from 64 pin fins in 8x8 in-line arrangement with a constant 

spacing between the pins in two directions; streamwise and spanwise of 6.5mm is 

two stages. The first description is about the production of perforated pin fins and the 

second stage describes the assembly into solid and perforated heat sinks. 

Manufacture of perforated pins: Sixty-four solid pins have been drilled with 

three perforations each of 1mm diameter with a constant centre to centre spacing 

between these perforations of 2.5mm in a vertical direction of a pin to produce the 

perforated pin fins (3P). To aid in the manufacture, a steel drilling guide was first 

constructed with 3×1mm guide holes, Figure 3.3. To manufacture a single pin, the 

aluminium bar was inserted until the end was flush with the guide outlet. Three holes 

were then drilled using the guide to ensure the spacing and alignment of these holes. 

Finally, the pins were cut to length using a rivet cutter.  

 

 

 

 

 

 

 

 

Figure 3.2: Aluminium base plate with solid and perforated pin fins 
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Figure 3.3: Drilling jig for producing perforated pin fins 

 

Forming the heat sinks: The second fabrication part is a manufacturing of solid 

and perforated heat sinks. Two base plates were prepared by drilling 64 holes of 

1.9mm diameter in which a pin fin can be inserted for each one through these holes. 

The holes at the bottom of the base plate are countersunk to a depth of 1.5mm with 

the widest diameter of 6mm, Figure 3.4. The main purpose of this is allowing the 

brazing alloy to flow more easily around the pin fins inside those holes. Besides, 

enlarging the soldering area gives a greater interaction between pin fins and the base 

plate of the heat sink from a thermal perspective, as shown in Figure 3.5. This 

minimises any resistance to heat transfer from the bottom of heat sink passes through 

pin fins to the surrounding air. The individual pins were brazed onto a square 

(50mm) base plate that was predrilled with a regular array of holes spaced on 6.5mm 

centres. During the brazing process, a Fibre based heat resistant mat, Figure 3.6, is 

used to hold and avoid any movement of the pin fins. After the brazing has been 

completed, the bottom surface of the heat sink is smoothed and polished with emery 

paper to avoid any extra material on the lower surface of the heat sink from the 

soldering process.  

With respect to the perforated pin fins, copper wires of 0.8mm diameter are 

passed through the holes of perforated pins prior to assembly to ensure all these 

perforations are aligned in the same direction of airflow as much as possible, as 

illustrated in Figure 3.6. These wires were removed before testing. 
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Figure 3.4: Inserting pin fins through holes of base plate with countersunk at 

the bottom of the heat sink 

 

 

 

 

 

Figure 3.5: Schematic drawing of soldering area at the base plate of heat sink 

 

 

  

 

 

 

 

 

 

Figure 3.6: Preparing aligned perforations of perforated pins in flow direction 
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The result of this work was two types of heat sink; solid and perforated pin fins 

heat sinks each pin having 2mm diameter and 10mm height with 64 pins in-line 

array (8x8) with a constant spacing between the streamwise and spanwise directions 

of 6.5mm, as shown in Figure 3.7. The new perforated pin fins have 3 circular 

perforations of 1mm diameter, distributed along each pin. This allows the effect of 0 

and 3 perforations to be studied. To assess the quality of the brazing process, a cross 

section was taken and imaged with a camera, as shown in Figure 3.8. In general, the 

brazing produced a strong joint, although some occlusions were seen as indicated on 

the Figure 3.8.  

 

 

 

 

 

 

 

 

Figure 3.7: Final design of (A) solid pin fins and (B) perforated pin fins heat 

sinks 
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Figure 3.8: Detection of pin fin soldering zones at the base of heat sinks 
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3.4 Rig Description 

The test rig is designed and manufactured to fulfil the requirements of the pin heat 

sink test system as summarised below. The experimental apparatus is shown in 

Figure 3.9 and consists of: 

1. Airflow channel (channel section).  

2. Heat sinks and test section descriptions. 

3. Heating and control sections. 

4. Measuring devices and traversing system.  

These parts are designed and manufactured with care and fastened using 

adhesive and some screws between composite parts of the test rig to prevent any air 

leakage between the connected sections during operation. 

3.4.1 Airflow Channel 

An experimental rig that is designed and fabricated consists of a closed 

rectangular channel with removable test section (heat sink). The heat sink sits tightly 

within the channel ensuring no flow over the top of the pins or around the side of the 

heat sink. This channel is constructed of clear Perspex of 8mm thickness and has a 

rectangular internal cross-section of 50mm width, 10mm height, and 370mm total 

length, as shown in Figure 3.10. The test section (heat sink) is located at the centre of 

the straight airflow channel, a distance of 110mm from the upstream entrance to the 

channel. This heat sink section is heated using an electrical thin film heater that is 

attached immediately below the heat sink. The important elements of the 

experimental approach include a miniature fan, a power supply, an anemometer with 

a hot wire, a digital manometer, digital thermometers and several thermocouples as 

explained below.  

The ambient air is driven over the heat sink at different velocities by an axial-

flow fan. The dimensions of the miniature fan (model San Ace 36: 9GV3612P3J03) 

are 36x36x28mm with the rate voltage at 12VDC and the turbulent airflow can be 

obtained easily by rotating this fan with maximum volumetric airflow 0.00708m3/s. 

The fan curve is shown in Figure 3.11. The fan is located at the inlet of the test 

section and the air motion created by the fan flows into the converging test section. 

The channel is equipped with tappings allowing the pressure drop across the heat 

sink to be measured using a digital manometer and insertion points allowing the 
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change in temperature of the air to be recorded via a digital thermometer. Metal 

meshes are positioned at a distance of 50mm on either side of the heat sink to 

minimise flow maldistribution and create uniform airflow profile over the heat sink. 

Air is discharged by the miniature fan into the mini airflow channel and passes 

through a flow straightener (metal meshes), test section and then discharged to the 

atmosphere. Figure 3.12 shows the final assembly rig design test with three views. 

 

 

 

 

 

 

 

 

 

 

 

 

1: Heat Sink 2: Mini Channel 3: Film Heater Resistance 4: Teflon Insulation 

5: Miniature Fan 6: Thermocouples  7: Digital Thermometers  8: Hot Wire 

9: Anemometer 10: Power Supplied 11: Pressure Taps  12: Digital Manometer 

Figure 3.9: Overall rig design and experimental measurements system 
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Figure 3.11: Typical performance fan curve (model San Ace 36: 

9GV3612P3J03) 

Figure 3.10: Schematic Drawing of Overall Experimental System 

 



- 59 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Final assembly of rig design with three views 
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3.4.2 Heating and Control Sections 

The heat sink is heated using an electrical heater (50x50x0.2mm) uniformly 

along at the lower surface of the heat sink to provide a uniform heat flux, Figure 

3.13. The electrical heater mimics the heat generation a CPU of a personal computer. 

A maximum allowed heat flux in this sort of CPU is 24000W/m2, Yuan et al. (2012) 

via the electrical power supplied (Aim-TTi EX354RD, EX-R Series).  

This electrical heater has been fabricated from two lengths of wire Nickel-

Chrome of 0.2mm that has been coiled around a mica sheet for obtaining uniform 

constant heat flux along the heater. The heater dimensions have the same base heat 

sink dimensions of 50mmx50mm with 0.2mm thickness to give a uniform heat flux. 

Thermally conductive Epoxy was used between the heat sink and the thin heater to 

avoid any electrical contact with thin heater resistance. The bottom and side surfaces 

of the heater are insulated with Fibreglass and Teflon as isolator layers to minimise 

the heat loss through these sides. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Installation of the heat sink with film heater into insulation 

container 
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3.4.3 Measurement Devices  

A Hot wire, thermocouples, and digital manometer are utilized in the present 

experiments to measure the local (inlet and outlet) air temperatures; variation of the 

upper and lower heat sink surfaces temperatures; ambient air temperature: inlet and 

outlet local pressure differences (pressure drop); and inlet air velocities. 

3.5 Experimental Measurements  

3.5.1 Hot Wire Anemometer 

The hot wire anemometer (HHF2005HW) is located at the inlet of the channel 

to measure inlet air velocity, Figure 3.9. The head of this device consist of a very 

thin wire that is connected between two supports for local air velocity (hot wire) and 

a second sensor is for the local air temperature. The resolution of device is 0.1m/s for 

0.2 to 20m/s inlet airflow velocity.         

3.5.2 Thermocouples  

Type K thermocouples of 0.2mm diameter are used to measure the top and 

bottom surface of the heat sink. The operating range of this type of sensor is from  

-75oC to 250oC with very fast thermal response measurements.  

The thermocouple at the back surface of the heat sink is fixed by an adhesive 

material and used to measure the temperature of the heat sink. In a real world 

application that is equivalent to CPU temperature (Tcase). The thermal resistance (Rth) 

of solid and perforated pin fin heat sinks is also calculated. The thermocouple at the 

upper surface of the heat sink is used to measure the mean temperature of the upper 

wall to determine the heat transfer coefficient, the heat transfer rate, and the Nusselt 

number. At the same time, other thermocouples are placed at the inlet and outlet of 

the mini channel to measure the local air inlet and outlet temperature to find the 

average bulk mean temperature (Tm). At this temperature (Tm), the values of the 

thermo-physical properties of the air are known from tabulated data of Cengel 

(2006).      
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3.1.1 Digital Manometer   

A digital manometer (2083P Digitron) is used in the experiments to measure 

pressure at a specific point or a differential pressure of airflow through the test 

section, heat sinks (Figure 3.9). Fan power and pressure drag coefficient are based on 

pressure drop that is measured via the digital manometer. Two pressure taps are 

located in front of and behind the test section to measure the airflow pressure drop 

(∆P) with 0.1% as full-scale accuracy reading. 

3.6 Experimental Procedure and Measurements 

Several experimental parameters are measured such as the temperature, 

velocity, and pressure drop to study the heat transfer and flow characteristics of solid 

and perforated pin fins heat sinks. For each heat sink, four ranges of inlet air velocity 

flow (6.5, 8, 10, and 12) m/s and constant heat flux (20000W/m2) are used. 

Furthermore, repeatability tests are conducted to detect the influence of any noise 

sources on the heat transfer and pressure drop. Thus, each experiment is repeated 

three times under the same conditions for both solid and perforated pin heat sinks. 

Figure 3.14 shows the repeatability tests of pressure drop and the CPU temperature 

with varying inlet air velocity. It is observed that the deviation of these measured 

values is less than 2% for both heat sinks models. Generally, 24 experimental runs 

(four different velocities for two types of heat sinks, each repeated three times) are 

carried out to ensure repeatability.  
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3.6.1 Experimental Procedure 

For a specified type of heat sink, the following procedure is applied for 

conducting the experiments, 

1. Check digital Manometer for the two taps and hot-wire anemometer at 

entrance test section have zero readings before an operation. 

2. Switch on the fan to pump the air through the mini test section. 

3. The power supplied (Voltage and Amp) is adjusted for the required input 

power to the film heater resistance and fan. 

4. To achieve a steady state condition, the temperature difference between the 

previous and the new reading is approximately zero. Thus, the system is left 

for 20mins, as shown in Figure 3.15. 

5. Finally, record the pressure drop, upper and lower surfaces temperature of the 

heat sink and supplied power after the test reaches a steady state condition.   

To check the repeatability, a set of tests were represented three times to ensure 

that the variation in the experimental measurements recorded for the same parameter 

and under the same conditions is small. 

During each experimental run, the following measurement readings are recorded: 

1. The local upper surface temperatures of heat sinks (Ts) are recorded via the 

outputs of thermocouples type K. 

2. The local lower surface temperatures of heat sinks (Tcase) are recorded via the 

outputs of thermocouples type K. 

3. The inlet and outlet air bulk temperatures (Tin, Tout) are the readings of two 

thermocouples at the entrance and the exit of the mini heat sink. 

4. The surrounding air temperature (Tair). 

5. The thermocouples readings are recorded after 20mins via the digital 

electronic thermometer the final set of steady state readings are then 

recorded. 

6. The pressure drop of the test section (∆P) is recorded using the digital 

manometer. 

7. The inlet air velocity (U) through the mini test channel is measured using a 

hot-wire anemometer. 

8. The inlet air velocity is confirmed every 5mins to be sure that this is constant 

during testing. 
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3.7 Experimental Data Analysis and Calculations  

The experimental data recorded for the temperature, pressure, current, and 

voltage are used for the following heat and fluid flow analyses and the experimental 

uncertainty analysis is considered, as shown in Appendix B. 

3.8 Hydraulic Characteristics Analysis 

An important quantity in the flow analysis of pin fins heat sinks is the pressure 

drop (∆P) along the test heating section in the direction of flow. The pressure drop is 

directly related to the power requirements of the pump to maintain the flow, (Cengel 

2006; and Incropera 2011) and the pressure drag coefficient. The pressure drop is 

measured to calculate the fan power, Pfan and pressure drag coefficient, Pd these 

parameters define the consumed energy for solid and perforated pin fin heat sinks 

and allow the assessment of designs from an energy consumption perspective, see 

section 2.5.2. The mechanical fan power (Pfan) and pressure drag coefficient (Pd) are 

defined in sections 2.5.3 and 2.5.4. 

3.9 Heat Transfer Analyses 

Heat transfer rate, Nusselt number, the average temperature of the base heat 

sinks, and the thermal resistance of heat sink are measured experimentally. These are 

defined below.     

3.1.2 Heat Transfer Rate 

The steady-state rate of heat transfer can be expressed as follows: 

lossesradelecconv QQQQ                    (3.1) 

where elecQ  refers to the total heat applied on the base of the heat sink and is 

calculated from the electrical potential (V) and electrical current (I):   

IVQelec 
                    (3.2) 

lossesrad QQ  ,  are the heat transfer rate from the heat sink by radiation and thermal 

losses, respectively. 
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The total steady-state rate of radiative heat transfer loss ( radQ ) from the test section 

is evaluated from Naik et al. (1987): 

 44

asTrad TTAFQ                      (3.3) 

For the typical condition of the view factor (F) that can be found for the effect of fins 

array geometry and emissivities between the fin material and the bounding 

environmental surfaces, the Stefan-Boltzmann constant (σ=5.67×10-8W/m2.k4), the 

total wetted surface area of pinned heat sin (AT), the upper surface temperature of the 

heat sink (Ts), and the surrounding air temperature (Ta) (Naik et al. 1987). The pin 

fins and base plate of the heat sink are made of highly polished aluminium to reduce 

their emissivities (ɛ=0.05) and the experimental data of the present work showed that 

radQ / elecQ 0.002. Therefore, radQ  is neglected in the results presented in the next 

chapter.   

The thermal losses ( lossesQ ) include the conductive and convective heat losses 

through the insulations and channel walls are given by: 

).(. awoveralllosses TTAUQ                   (3.4) 

where A is the heat sink base area, Uoverall is the heat transfer coefficient losses, ∆T is 

the temperature difference between the bottom surface of heat sink temperature (Tw) 

and the surrounding air temperature (Ta). These losses are minimised by ensuring 

that all the outer walls of the heat sink are well-insulated and thermocouple readings 

of the heat sink outer wall temperatures are close to the ambient temperatures that 

caused the thermal losses, which are estimated to be lossesQ / elecQ 0.02 and can 

therefore be neglected.  

Therefore, it can be assumed with some confidence that the last two terms of 

Eq. (3.1) may be ignored. 

The heat transfer rate from the heat sink by convection ( .convQ ) can be deduced as, 

Sara (2003): 
















 


2
. inout

sTTconv

TT
TAhQ                 (3.5) 

Hence, the average convective heat-transfer coefficient (hT) based on the total wetted 

surface area (AT) can also be expressed via: 
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               (3.6) 

where Ts is the upper surface of heat sink temperature, Tin and Tout are the average 

inlet and outlet air temperatures, respectively, and AT is the total surface area of the 

heat sink.  

According to previous researchers, the average heat transfer rate (have) has 

been calculated based on either the projected, AP, or total, AT, total wetted surface 

area of the heat sink and these are related to one another via the relationship 

hP=hT(AT/AP). Thus, these two areas can be related to each other by:  

Total wetted area = Projected area + Total surface area contribution from the pin 

fins 

For solid pin fins: 

)...(. HDNLWAT                (3.7) 

 

For perforated pin fins 
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           (3.8) 

where (W, L) are the width length of the base plate heat sink, (N) the total number of 

fins, (H) the height and (D) the diameter of the fins and (d) the diameter of the fin 

holes, and (n) the number of perforations, respectively. 

The Nusselt number (Nu) and thermal resistance (Rth) are determined as per 

sections 2.5.5 and 2.5.6. 

In all the experimental calculations, the values of the thermo-physical 

properties of the air are specified from Cengel (2006) using the average bulk mean 

temperature (Tm), which is: 

2/)( outinm TTT                  (3.9) 
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3.10  Summary 

In this chapter, the design and fabrication of two types of aluminium heat 

sinks, solid (0P) and perforated (3P) pinned heat sinks and the integration of these 

heat sinks into a test section are described. The measurement devices and test 

procedures to measure the significant characteristics for calculating the crucial 

thermal and airflow characteristics for solid and perforated pin fins heat sinks such 

as heat transfer rate, Nusselt number, CPU temperature, and thermal resistance are 

also described. The experimental uncertainty analysis is considered, as shown in 

Appendix B. 
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4 Chapter Four: Experimental Results  

4.1 Introduction  

 In this chapter, the main characteristics of using new perforated pin heat sinks 

with multiple perforations for cooling electronic components system are considered. 

Two experimental heat sinks were designed and fabricated, one with solid pins (0P) 

without perforations and another one with triple perforated (3P) pin heat sinks 

(Chapter 3), to appraise the effect of perforated pin fin design on the thermal airflow 

characteristics of those heat sinks, such as pressure drop, fan power, pressure drag 

coefficient, CPU temperature, thermal resistance, and the total and projected Nusselt 

number to be determined. The inlet velocities from 6.5m/s to 12m/s for the range of 

Reynolds numbers are 3500-6580 and the mini-duct hydraulic diameter with 8x8 in-

line pin array at constant longitudinal and transverse distance is 6.5mm.  

4.2 Hydraulic Characteristics 

The effect of the perforated pinned heat sink design (3P) on the airflow 

characteristics are compared with the solid pin fins (0P) in this section. The main 

characteristics of airflow are measured pressure drop (∆P), calculated fan power 

(Pfan), and pressure drag coefficient (Pd). 

Figures 4.1A and 4.1B show experimental measurements from the effect of 

perforations on the pressure drop, ΔP, across pinned heat sinks (PHSs) and the 

power required to overcome the pressure drop.  

Data are presented for the two models, the solid pin fins and the 3P once with 

three perforations. The pressure drop and fan power consumption data in Figures 

4.1A and 4.1B show that the perforations reduce ΔP and Pfan throughout the velocity 

range. The main reason for that is the dead thermal-flow regions created just behind 

the solid pin fins. In other words, those regions mean a hotter area and lower air 

movement relative to other regions for the same test section. This leads to the 

pressure drop and the fan power of the solid pin fin heat sinks increasing due to flow 

separation and air recirculation; evidence for this will be provided in Chapter 5, 
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where the numerical prediction will be presented. The perforations reduce the 

pressure drop and fan power of the heat sinks. This is because a part of the frontal 

area of the pins is removed, which allows an amount of airflow to pass through these 

perforations (Alam et al., 2014a). 

 In the experimental data, the pressure drop and fan power consumption seen 

with three perforations is typically around 7% smaller than that of the solid pin fins.  

  

 

 

 

 

 

 

 

 

Figure 4.1: Effect of pin perforations on (A) pressure drop and (B) fan power as 

a function of airflow speed 

 

Figure 4.2 shows the effect of the perforated pinned heat sink model (3P) on 

the pressure drag coefficient, Pd, for a range of inlet velocities from 6.5m/s to 12m/s 

at Re=3500-6580 and 8×8 in-line pins with longitudinal and transverse distance of 

6.5mm. 

Following previous authors, e.g. Ismail (2013) and Ismail et al. (2013), the 

drag force on the air due to heat sinks can be expressed in terms of a pressure drag 

coefficient. The pressure drag coefficient associated with the perforated pins is lower 

than that of the sold pins. For example, the Pd of the solid PHS is 1.33 while it is 

reduced to 1.27 when using the perforated PHS at 10m/s. Overall, the Pd of the 

perforated PHS is 7% lower than that of the solid pin fins model. The major reason 

for this is that the frontal area of the perforated pins (3P) is smaller than that of the 
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solid pins (0P) and so some airflow can easily pass through these perforations. 

Generally, these benefits increase with increasing air velocity.  

As a result of airflow parameter studies in this section, the amount of energy 

spent to achieve a certain flow is reduced due to perforations. Thus, the perforations 

are a useful technique for reducing fan power consumption. The second 

characteristic (fan power) that also must be met is the ability to remove heat; this is 

studied in the next section.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Effect of pin design and inlet air velocity on the pressure drag 

coefficient 
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4.3 Heat Transfer Characteristics 

The heat transfer characteristics such as the total and projected Nusselt 

number, NuT, NuP, the CPU temperature (Tcase), and thermal resistance (Rth) of the 3P 

pinned heat sink design (3P) are described and compared with those of the solid pin 

(0P) fins. 

4.3.1 Average Nusselt Number 

Since the overall design goal for PHSs is to achieve a high heat transfer rate at 

the minimum energy cost, Figure 4.3 presents the corresponding experimental 

measurements of the Nusselt number, based either on the total wetted surface area of 

PHS (NuT) or on the projected surface area (NuP), the base surface area of HS. The 

latter is perhaps a more effective measure of cooling capacity for a given PHS size.  

The data show that both NuT and NuP increase approximately linearly with the 

inlet air velocity and that the 3P pin fins design achieves a significant enhancement 

in heat transfer, with NuT and NuP typically 5% and 11% larger than that of the solid 

pin fins for experimental data, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Effect of inlet velocity on Nusselt number based on (A) total and (B) 

projected surface area 
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4.3.2 Thermal Management of PHSs 

A key issue in the thermal management of electronics packaging is to ensure 

that the CPU temperature, Tcase, for typical desktop computers is kept below the 

critical temperature of approximately 85oC (Gurrum et al., 2004; Yuan et al., 2012) 

at the minimum energy cost. The major aim of thermal management is to illustrate 

the benefits and thermal reliability of the perforated pinned heat sink design on the 

thermal management of a typical CPU. Figures 4.4 and 4.5 show the following 

experimental measurements: the average base plate temperature, Tcase, and thermal 

resistance, Rth, with fan power for 6.5m/s≤U≤12m/s, through a system of 8x8 pins, a 

pin pitch of 6.5mm.  

These figures confirm that the improved heat transfer with perforated pins 

leads to a desirable effect of reducing base plate temperatures and thermal resistance. 

For example, Tcase of the 3P model with three perforations reduces from 72oC to 

58oC while it only reduces from 77oC to 61oC for the solid pins (0P) with increasing 

fan power. This improved heat transfer from the perforated pins (3P) leads to 

significantly lower CPU temperatures for the same fan power input compared with 

the solid pins (0P). In the experimental data, the Tcase with three perforations is 

typically around 6% (nearly 5oC) smaller than for the solid pin fins. The potential 

sources of experimental errors are attributed to some practical considerations. One of 

the possible areas where errors could arise is around the additional thermal resistance 

as a result of the brazing process, see section 3.3.1. 

As a result of thermal and airflow parameter studies, the amount of energy that 

is spent by a fan which is used to cool the perforated pin fin heat sink (3P) with three 

perforations is less than that required for the solid pins model. Thus, the perforations 

are a useful technique for reducing fan power consumption and CPU temperature.  
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Figure 4.4: CPU temperature variation with fan power for 0P and 3P heat sinks 

 

 

 

 

 

 

 

 

 

 

 

 

The pin fin design can be optimised by maximising the heat transfer rate for a 

given fin weight or by minimising the weight for a specified heat transfer rate has 

been considered by Shaeri & Yagoubi (2009). For example, each perforation reduces 

the weight of the pin by 5%. Accordingly, the CPU temperature, heat transfer, 

pressure drop and fan power benefits of the pin with three perforations are achieved 

with the additional benefit of a 4% the total reduction in pinned heat sink weight. 
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4.4 Conclusion 

Heat transfer of the solid pinned heat sink (0P) is lower compared with that of 

the perforated pins (3P) because hot or dead regions are created behind those solid 

pin fins as a result of the flow separation and poor air recirculation at these hot 

zones. Thus, to avoid this problem, perforations could be added to accelerate flow 

and reduce the dead zones. These perforations substantially improve the heat transfer 

rate at the hot zones while at the same time reducing the pressure drop through the 

pinned heat sink and the fan power needed to pump the air through it as well, as 

detailed in Table 4.1. The perforations allow some of the airflow to pass through 

them and mix well with the primary flow to create a larger amount of mixing and 

turbulence, in addition to reducing PHS weight considerably. Furthermore, the 

enhanced heat transfer due to perforations leads to considerably reduced processor 

temperatures, a key goal of the thermal management of electronics. 

 

Table 4.1: The experimental enhancement of Nusselt number (Nu), fan power 

(Pfan), and CPU temperature (Tcase) of the 3P heat sink compared to the 

solid pinned heat sink   

                              Parametric Studies 

Heat Sink Design 
↑ AT 

Nusselt Number 
↓ Pfan  

(W) 

↓ Tcase 

(oC) 
↑ NuT ↑ NuP 

Experimental Perforated Pins with 

Three Perforations (3P) 
15% 5% 11% 7% 6% 
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5 Chapter Five: Numerical Methods 

5.1 Introduction 

In this chapter, the numerical methods for simulating thermal airflows through 

pinned heat sinks (PHSs) are described. The conjugate heat transfer model with 

turbulent airflow is used to simulate this kind of heat sinks via commercial ANSYS 

FLUENT 14.5 CFD code. Furthermore, each component of the numerical solutions, 

boundary conditions, assumptions, and airflow and thermal characteristics of pinned 

heat sinks calculations such as pressure drop, fan power, Nusselt number, thermal 

resistance, and temperature base of heat sinks are explained. Finally, the test 

numerical approaches such as domain verification and code validation of pinned HSs 

are investigated.   

5.2 Numerical Modelling Overview  

During recent decades, both in-house and commercial CFD codes have become 

ever more powerful. In addition, complex heat transfer and fluid flow problems can 

be solved using these method. CFD analyses consist of three important processes:  

1. Pre-processing: this is the first step where the geometry and grid mesh are 

generated, and the boundary conditions are set. 

2. Processing or Solver: in this step, the governing equations are solved. 

3. Post-processing: the final step includes a presentation the results, graphics, 

animations, plots, analyses and full reports that are created. 

5.3 Numerical Simulation   

CFD is now used to study the effect of pin perforations on the enhancement of 

heat transfer rate and reduction in pressure drop (Shaeri & Yaghoubi, 2009; Shaeri & 

Jen, 2012) the latter having a direct benefit on the associated power required to drive 

the cooling air through perforated plate heat sinks, which is given by the product of 

the flow rate and the pressure drop. ANSYS FLUENT-CFD software program is 

selected to investigate numerical analysis of the heat sink models.  



- 77 - 

 

This program uses the finite volume method (FVM) to solve the governing 

equations. The Navier-Stokes equations combined with the continuity equation and 

the energy equation in three dimensions are solved by FVM to show the dynamic 

airflow and heat transfer around the pinned heat sinks (PHSs). The continuity 

equation is satisfied using the Semi-Implicit Method for Pressure Linked Equations 

(SIMPLE). Second order upwind discrimination schemes are used in the calculations 

to reduce the numerical errors for the Navier-Stokes equations and the energy 

equation (Versteeg & Malalasekera, 2007).  

As mentioned earlier, each model consists of three parts: the entrance section is 

a first part as a smooth duct, which has enough length to provide a fully turbulent 

flow condition. The pinned heat sink (test section) that has 8 symmetric Aluminium 

pins follows the first region, as the second part. The final section is the exit one that 

comes after the test section and is long enough to prevent any feedback of boundary 

condition into the test section. Each those parts have the same cross-section at 

(6.5x10)mm. The air passes through all these three regions for different Reynolds 

number range. 

In the current numerical study, many heat sinks configurations are investigated 

and the optimum model giving the lowest pressure loss and the highest heat transfer 

(lowest CPU temperature) can be determined. These configurations are: circular 

perforated pin fins; slotted pin fins; notched pin fins heat sinks; as well as different 

types of perforations shape such as square, and elliptic perforations, Figure 1.27. 

5.4 Pre-processing (Mesh Generation) 

The set mesh volume elements are Tetrahedron Hyper cells and the type is Hex 

Core T-grid to generate grids for all the heat sink models, including the complex 

geometry of pinned heat sinks and the entrance and exit regions set as a Hexahedral 

mesh type due to a straight and simple shape of those regions (Seyf & Layeghi, 

2010; Nabati, 2008), as show in Figure 5.1. Both those types of mesh generation are 

suitable for pinned heat sinks to reduce the time to reach a converged solution, and 

save the memory of a computer (Chaube et al., 2006). After that, refining meshing 

step is important for some critical area such as no-slip walls condition, the spaces 

between the pins, perforations, slots, and notches zones that are included in those 
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pinned heat sinks to ensure appropriate convergent solution because of the high 

velocity and temperature supposed to be for heat sinks. Besides, the change of the 

temperature, the velocity, and the pressure drop through pin fins heat sink are very 

important in this study. Therefore, a large number of nodes are focused around 

curved pin surfaces, perforations, slots, notches that are created in the test section. 

Thus, the y+, which is the distance from a wall to the cell centres of the first grid 

layer nearest to the wall, has a value approximately equal to 1 or less than 1 for cells 

adjacent to these surfaces for SST k-ω turbulent model, as shown in Figure 5.2. 

Furthermore, this grid independence is always verified that will be discussed 

hereafter.  
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Figure 5.1: Mesh generation for pinned heat sink 
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Figure 5.2: y+ contour values for solid (0P), perforated (3P) and slotted (10S) 

pinned heat sinks 
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5.5 Numerical Solution (Processing)         

The thermal air flows are modelled as three-dimensional, steady state, 

turbulent airflow, with constant heat flux at the bottom of heat sinks and a k-ω SST 

model, following Zhou & Catton’s (2011) CFD study of solid pin fins, and is used to 

investigate airflow, pressure drop, and heat transfer through all PHSs models. 

5.5.1 Turbulent Airflow Model 

 Several previous studies have used the Reynolds-Averaged Navier-Stokes 

(RANS) equations to model turbulent flow through heat sinks successfully (Anandan 

& Ramaligam, 2008; Naphon & Klangchart, 2011). RANS models consider the 

turbulence fluctuation by splitting the velocity into a mean value plus fluctuation, 

then time averaging the terms of the Navier –Stokes equations. Thus, this method 

can be solved for the turbulent flow in the CFD methods and it is the most 

commonly used in practical application (Versteeg & Malalasekera, 2007). Time-

averaging the continuity, momentum and energy equations with variables 

decomposed into mean and fluctuating components leads to the Reynolds-Averaged 

Navier-Stokes (RANS) equations, namely: 
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density, U and 'U  the average and turbulent fluctuation velocity vectors 

respectively, P is the pressure, k turbulent kinetic energy and I  the unit tensor. The 

RANS equations are solved with the energy equation for the temperature field, T, 

with a power source 𝑄̇ Watts, as is illustrated previously, using the following 

equation 
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where Cp is the specific heat capacity of the air, Pr and ν are the Prandtl number and 
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kinematic viscosity of the air, respectively and the subscript t indicates their 

turbulent counterparts. 

Following Zhou & Catton (2011) and Leung & Probert (1989), the thermal 

airflow through the PHS is modelled using the k-ω SST model with automatic wall 

function treatment. The radiation heat transfer rate is neglected as explained 

previously in the experimental method Chapter 3. This model combines the accurate 

formulation of the k-ω model in the near-wall region with the free-stream 

independence of the k-ε one in the far field, and has been shown to predict highly 

separated flows accurately in a number of previous validation studies, see e.g. Zhou 

& Catton (2011), Anandan & Ramaligam (2008), Ndao et al. (2009), Shaeri & 

Yaghoubi (2009b), Chaube et al. (2006). 

The equations for the SST model are: 
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where the blending function F1 is defined by 
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the turbulent eddy viscosity is computed from 
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where S is the invariant measure of the strain rate and F2 is a second blending 

function defined by 
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To limit the build-up of turbulence in stagnation regions, a production limiter is used 

in the SST model. 
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The empirical constants turbulent model for this model are, Zhou & Catton (2011): 
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5.5.2 Conjugate Heat Transfer Model 

Heat sinks are simulated using a conjugate heat transfer model. The rate of 

heat conduction passes through solid material of pin fins heat sink is balanced with 

convection heat transfer from material of heat sink into moving air stream through a 

coupled boundary condition at the solid/fluid interface, (Kraus, 2002) as illustrated 

in Figure 5.3.  

The energy equations in the fluid and solid domains are given by: 
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where U is fluid (air) velocity; Tf and Ts are fluid and solid temperature, respectively; 

μT, PrT, kf and ks are the turbulent viscosity, the turbulent Prandtl number, the 

thermal conductivity of the fluid and solid, respectively. 

 

 

 

 

 

Figure 5.3: Conjugate heat transfer model of pin fin heat sink 
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5.5.3 Solver Settings 

A commercial finite volume method (FVM) based code is used which employs 

the SIMPLE method for the continuity equation in which the velocity components 

are first calculated from the Navier–Stokes equations using a guessed pressure field. 

The fully coupled momentum and energy equations are solved, using second order 

upwinding to reduce the numerical errors for the Navier-Stokes equations and the 

energy equation. Computation is started first by solving the continuity, momentum, k 

and ω equations to determine the airflow field and then the energy equation to find 

the thermal field in the computational domain. Following previous studies such as 

Zhou & Catton (2011) and Yuan et al (2012), the procedure continues until the sum 

of the residuals of continuity and momentum equations is less than 10-4 and for 

energy equation is taken smaller than 10-6 in each cell. 

The numerical data is considered at constant and variable thermodynamic air 

properties. For constant thermodynamic air properties, they are equal to those at the 

inlet temperature of 25oC. However, for variable air properties such as viscosity, 

density, thermal conductivity and specific heat capacity vary with temperature 

through the test section, as shown in Table 5.1. Thus, the air temperature variation 

inside the heat sink is significant to highlight the effect of air properties on thermal 

and airflow characteristics of pinned heat sinks when comparing with experimental 

results and it cannot be disregarded when temperature changes through heat sink. It 

can be chosen among different methods to compute the corrected air properties. A 

piecewise-linear interpolation method is selected to define the properties values 

(Yuan et al., 2012) that are considered in this study at several air temperatures based 

on the following function of temperature: 
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where 1≤ m≤ M and M is the number of segments. ANSYS FLUENT-CFD code will 

calculate the property values by linearly interpolating among the values defined. 
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Table 5.1: The variation of air properties with increasing air temperature, 

Cengel (2006) 

 

5.6 Boundary Conditions 

Fluid flow and heat transfer for problems require suitable boundary conditions 

(BCs). Therefore, in this study, the boundary conditions for the present problem are 

assumed below, as shown in Table 5.2 and Figure 5.4. 

5.6.1 On the Pins     

The rejected heat conduction rate through the aluminium pins heat sink is 

balanced with the gained heat transfer convection into the moving air stream through 

a coupled boundary condition at the solid/fluid interface. In other words, each pin fin 

has two BCs: the one is a fluid surface that represents fluid flow and another one is a 

solid surface as a material of pin fin heat sink itself that is known as conjugate heat 

transfer.   

5.6.2 At the Bottom Wall of the Heat Sink 

A constant heat flux is applied at the bottom wall of the heat sink. No slip 

condition is applied so the velocity of fluid (air) is zero in all directions, 

Ux=Uy=Uz=0 due to a rigidity wall heat sink. 

5.6.3 At the Inlet Side 

The inlet air velocity is set to a series of values as Ux=6.5, 8, 10, and 12m/s 

and Uy=Uz=0, such as Yang & Peng (2009a), Yang & Peng (2009b), Kumar & 

Bartaria (2013), Zhou & Catton (2011). In addition, the inlet fluid temperature (Tin) 

is constant at 25oC. The turbulence intensity of the flow entering through the inlet 

Air temperature 

(oC) 

Dynamic  

Viscosity 

(kg/m.s) 

Density 

(kg/m3) 

Thermal  

Conductivity 

(W/m.K) 

Specific Heat  

(J/kg.K) 

15 1.802 × 105 1.225 0.02476 1007 

25 1.849 × 105 1.184 0.02551 1007 

45 1.941 × 105 1.109 0.02699 1007 

60 2.008 × 105 1.059 0.02808 1007 

80 2.096 × 105 0.9994 0.02953 1008 

100 2.181 × 105 0.9458 0.03095 1009 

120 2.264 × 105 0.8977 0.03235 1011 
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boundary is set to 5% (Zhou & Catton, 2011). The range of Reynolds number for 

heat sinks in the most industrial electronic applications cooling varies from 1300 to 

50000 (Ventola et al., 2014). Thus, Re is varied from 3500 to 6580 as a turbulent 

airflow in this study to reduce consumption fan power and the noise level to 

desirable levels, particularly in the office or home. 

5.6.4 At the Outlet Side 

The outlet boundary condition is set to pressure outflow to avoid the backflow 

and diverged solution. The gauge pressure is zero at this condition, Dewan et al. 

(2010), Zhou & Catton (2011), Ramesha & Madhusudan (2012), and Yuan et al. 

(2012). The turbulence intensity of the flow exiting through the outlet boundary is 

set to 5% as well, Zhou & Catton (2011). 

5.6.5 Right and Left Sides 

The right and left sides of the channel are a symmetric boundary condition 

result from the uniform airflow and symmetry in the fin arrays, Zhou & Catton 

(2011). Computations, therefore, are applied just for eight pin fins instead of the total 

array of pin fins to shrink the model domain and the number of nodes. This reduces 

the time to reach a converged solution, and saves computer memory. 

5.6.6 The Other Surface Walls  

All the other surfaces walls of computation domain are imposed as adiabatic 

surfaces with zero heat flux resulting in no heat transfer passed through those walls. 

A no slip condition is applied due to a rigidity of those wall that leads to a zero fluid 

velocity in all directions (Zhou & Catton, 2011): Ux=Uy=Uz=0 are set. 
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Figure 5.4: Schematic diagram of the flow domain used in the CFD analyses, 

showing eight perforated pin fins. 

 

Table 5.2: The boundary conditions of the conjugate heat transfer model 

Locations 
Fluid 

Conditions 

Thermal 

Conditions 
Locations 

Fluid 

Conditions 

Thermal 

Conditions 

Inlet 
U= (6.5-12) 

m/s 
T=25oC 

Bottom wall of 

heat sink 
U=0 Q=constant 

Right and left 

sides 

(symmetry) 

0
dy

du  0
dy

dT  outlet Pgage=0 0
dx

dT  

Top wall and 

other walls 
U=0 0

dz

dT  Pin heat sink U=0 dn

dT
k

dn

dT
k S

S
air

air .. 

 

5.7 Numerical Data Analysis (Post Processing) 

The main important characteristics of airflow and heat transfer are explained, 

to evaluate the hydraulic and thermal parameters of pinned heat sinks designs, which 

can be obtained from the ANSYS FLUENT post processing options. These factors 

are defined in section 2.5.     

 

Inlet 

Constant Heat Flux 

Outlet 

Perforated Pin Fins 

Symmetry right 

side surface  

Symmetry left 

side surface  

Adiabatic other walls 

Pinned Heat Sink 

(PHS) 
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5.8 Methods of Validation 

In order to validate the numerical results, mesh verification and other 

validation with the previous literature must be carried out. Therefore, the verification 

of the computational domain, grid independence test (GIT) and the previous 

validation studies of solid pins and single perforated pin fins heat sinks are 

investigated and explained in this section. 

5.8.1 Domain Verification 

The verification of the computational domain that is used in this study must 

also consider the entrance and exit regions. These regions should be sufficiently far 

from the pinned heat sink to ensure that the numerical results are independent of the 

boundary positions. For this reason, some tests have been carried out to determine a 

sufficient distances away from the test section.  

In this study, the Nusselt number (NuT), pressure drop (ΔP), and the CPU 

temperature (Tcase) are determined in a range of cases for inlet air velocities between 

6.5m/s and 12m/s. The distances of the entrance and exit zones to the heat sinks are 

as shown in Table 5.3 where L=50mm refers to the length of the heat sink (test 

section) in the flow direction. It can be noticed that the numerical solution is 

converged for those domains except in domain 1 since the backflow (reversed flow) 

will clearly happen at the outlet boundary of the heat sink due to its zero the exit 

length.  

Table 5.3 indicates that increasing in the length of entrance and exit regions 

beyond domain 3 (0.5L), the errors in the numerical data is less than 2% for each of 

the NuT, ΔP, and Tcase for 0P and 3P models for different inlet air velocities values 

(6.5m/s and 12m/s). Thus, the computational domains used from now on have 0.5L 

entrance and exit length (Domain 3) as a standard domain to save computer memory 

and computational time. 
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Table 5.3: The entrance and exit regions length of pin fins heat sinks 

 
Domain 

1 

Domain 

2 

Domain 

3 

Domain 

4 

Domain 

5 

Domain 

6 

Entrance Length 0L 0L 0.5L 1L 1.5L 2L 

Exit Length 0L 0.5L 0.5L 1L 1.5L 2L 

S
o

li
d

 P
in

s 
(0

P
)

 

U
=

 6
.5

m
/s

 

Nu 

S
o

lu
ti

o
n

 i
s 

n
o

t 
co

n
v

er
g

ed
 

279.95 276.28 277.28 277.69 277.39 

ΔP (Pa) 38.59 36.36 38.66 38.77 38.55 

Tcase (oC) 88.69 89.58 89.16 89.07 89.14 

U
=

 1
2

m
/s

 

Nu 384.34 380 382.2 380.38 381.66 

ΔP (Pa) 106 106.59 108 108.7 109 

Tcase (oC) 72.57 73.17 72.77 72.96 72.83 

P
er

fo
ra

te
d

 P
in

s 
(3

P
)

 

U
=

 6
.5

m
/s

 

Nu 305.16 299.4 300.39 300.63 300.79 

ΔP (Pa) 39.78 35.61 36 36.43 37.84 

Tcase (oC) 79.72 80.62 80.43 80.4 80.37 

U
=

 1
2

m
/s

 

Nu 423.3 415.63 416.46 416.65 416.93 

ΔP (Pa) 111.85 97.68 98.45 100.12 101.81 

Tcase (oC) 66.13 66.75 66.68 66.67 66.65 
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The effect of turbulence intensity boundary conditions is now investigated, as 

shown in Figure 5.5. Thus, the turbulence intensity for both inlet and outlet are set to 

2.5%, 5%, and 7.5% (Almoli, 2013). The pressure drop and temperature of the solid 

base with solid (0P) and perforated (3P) pinned heat sinks for different inlet air 

velocity are obtained. It is shown that the turbulent intensity at the inlet and outlet do 

not have any substantial effect on the results in these specific cases. Hence, the 

turbulence intensity is used from now on has 5% as a standard value (Zhou & 

Catton, 2011). 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Inlet air velocity versus the pressure drop and temperature case of 

HSs for different turbulence intensities  
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5.8.2 Grid Independent Tests (GIT) (Mesh Verification) 

Tetrahedron Hyper cells (Hex Core T-grid) are utilized for several various grid 

distributions to ensure that mesh independence is achieved and the numerical data is 

reliable and independent of grid density. Consequently, the CFD methodology is 

firstly verified by comparing predictions of Nusselt number, pressure drop, and the 

CPU temperature for the present solid pin (0P), and perforated pin fins 1A, 2A, 3P, 

and 5P heat sink models with the number of cells with air velocity at 6.5m/s and 

12m/s. Cases studies should be refined near the solid faces and near perforations to 

predict the accurately fluid flow and temperature distributions.  

In the case of solid pin fins (0P), the number of cells is from 98,104 to 171,059 

in various steps. It is determined that after 124,00 cells, increasing the number of 

cells leads to less than 3% of the average Nusselt number, pressure drop, and the 

CPU temperature as shown in Table 5.4. Thus, the number of cells 124,000 is taken 

as a standard for mesh independence.  

With respect to the perforated pin fins 1A, 2A, 3P, and 5P designs, the number 

of cells is varied from 102,000 to 233,000 with different levels, Table 5.4. Increasing 

the number of cells beyond 147,000 has typically a 3% change in all outlet 

parameters. Therefore, all results presented in this study have been obtained from 

147,000 cells.  

For the present slotted pin 3S, 6S, and 10S, and notched pin 2.5N, 5N, and 

7.5N fin heat sink models. The grid points should be densely distributed near the 

solid faces, slotted, and notched surfaces to predict accurately the fluid flow and 

temperature distribution.  

According to three slotted 3S, 6S, and 10S designs and three notched pins 

2.5N, 5N, and 7.5N models, the number of cells is from 93,000 to 180,000 in various 

steps. It is indicated that increasing the number of cells beyond 115,000 results in 

typically a 2% change in all outlet parameters. Thus, the number of grid points 

115,000 is chosen as a standard for mesh independence for slotted pins and 115,000 

is selected for notched pins as grid independence.   
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Table 5.4: Mesh validation of Solid and Perforated pinned heat sink designs 

 

 

Parametric 

Studies 

Solid Pins (0P) Triple Perforated Pins (3P)   Notched pins (5N)  

No. Cells 6.5m/s 12m/s No. Cells 6.5m/s 12m/s No. Cells 6.5m/s 12m/s 

Nu 

98104 253.15 348.23 113000 273.98 373.59 95008 253.83 336.7 

124092 262.1 360.1 123689 275.95 379.7 115100 262.21 348.71 

134035 263.49 362.31 161916 282.62 395.17 134112 267.34 358.78 

171059 268.13 367 202678 287.71 400 171112 271.15 365.72 

∆P (Pa) 

98104 35.28 107.18 113000 32.93 92.72 95008 26.47 78.8 

124092 35.22 104.09 123689 32.76 94 115100 26.15 77.4 

134035 35 103.8 161916 33.65 93.55 134112 26.03 77.72 

171059 35.74 103.67 202678 34.79 95.16 171112 26.71 77.36 

Tcase (oC) 

98104 82.66 67.43 113000 75.9 63 95008 80.47 67.4 

124092 81.06 66.22 123689 75.58 62.39 115100 78.76 65.84 

134035 81.18 66.31 161916 74.97 61.34 134112 78.34 65.16 

171059 80.24 65.6 202678 74.53 61.66 171112 77.55 64.2 
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5.8.3 Validation with Previous Studies 

In this study, to ensure the CFD approach is accurate and reliable, validations 

against four previous experimental and numerical studies are carried out at constant 

air properties because the most previous numerical works such as Zhou & Catton 

(2011) and Yuan et al (2012) have assumed that air properties is constant. 

Solid Pin Fins Heat Sinks 

The first validation of the numerical solutions is for the predicted Nusselt 

number and pressure drop across the solid pin fins heat sinks and compared with 

those of the numerical study of Zhou & Catton (2011). Figure 5.6 compares 

predictions of Nusselt number (NuT) and pressure drop (∆P) across the pin fins with 

various inlet air velocities from 6.5m/s to 12.2m/s. These both agree well with the 

prediction of Zhou & Catton (2011) with typical discrepancies in the predictions of 

NuT and ∆P of 3% and 4%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 5.6: Validation of Nusselt number (NuT) and pressure drop (ΔP) 

predictions with those of Zhou & Catton (2011) 
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The comparison of thermal resistance, Rth of solid pin fins heat sink between 

the present CFD study data with the experimental results of Jonsson & Moshfegh 

(2001) and the numerical data of Zhou & Catton (2011) are shown in Figure 5.7 for 

6.5m/s≤ Uin ≤10m/s. It found that the maximum deviation of thermal resistance of 

predicted CFD was less than 3% for both previous studies. 

 

 

 

 

 

 

 

 

 

Figure 5.7: Comparison of thermal resistance predictions with those CFD 

results of Zhou & Catton (2011), and experimental data of Jonsson & 

Moshfeg (2001) 

 

A further validation case is the pressure drop (ΔP) over the solid pin fins heat 

sink for experimental data of Yang et al (2007) and the current numerical results. 

Figure 5.8 indicates that the error percentage between predicted numerical results 

and the literature’s data with various inlet air velocities is less than 2%. It is clear 

that pressure drop measurement from the previous experimental study is in good 

agreement with those predicted by the CFD.  

An alternative approach of comparing the present simulation data with 

experimental results in terms of heat transfer is to compare the heat transfer 

coefficient (hT). The variation of heat transfer coefficient with inlet airflow for the 

present CFD model and experiment are given in Figure 5.8. The results of this figure 

show that the agreement is acceptable, with a typical error percentage of 5%. 
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Figure 5.8: Validation between the experimental data of Yang et al. (2007) and 

CFD analysis of heat transfer coefficient and pressure drop 

 

 Perforated Pin Fin Heat Sinks 

The predictions of the current CFD model are compared with the experimental 

data of Sahin & Demir (2008) for flow past a heat sink where the pin fins have a 

single perforation. Figure 5.9 compares CFD predictions of the ratio Nu/Nus with the 

previous experimental data, where Nus=0.077Re0.716 Pr1/3 is Sahin & Demir’s 

experimental correlation for heat transfer from a smooth surface without pins. Again, 

the agreement with the experimental data is generally good, with a maximum 

discrepancy of less than 7%. 
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Given the range of factors that affect experimental and numerical data for flow 

over heat sinks, the above validation cases confirm that the numerical approach 

agrees well with previous results. The errors between the predicted numerical study 

and those previous works are acceptable because of boundary conditions variances, 

numerical solutions (discretization error), the type of grid independence, and 

uncertainties in the experimental tests. Hence, the conjugate heat transfer approach 

in the present work can be used for analysis of this type of heat sink.   

5.9 CFD Validation with Present Experimental Results 

 In this section, complementary experimental and numerical simulation 

validation models are used to investigate the main benefits of using the novel 

perforated pinned heat sink with multiple perforations. The numerical data is 

considered at constant and variable physical air properties (i.e. as a function of 

temperature as indicated previously) to highlight the effect of air properties on the 

hydraulic and heat transfer characteristics of pinned heat sinks when comparing with 

experimental results. The inlet velocities are varied from 6.5m/s to 12m/s for the 

range of Reynolds number 3500-6580 based on the mini-duct hydraulic diameter, 

with 8x8 in-line pins array at constant longitudinal and transverse distance 6.5mm.  
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Figure 5.9: Comparison between CFD predictions of Nu/Nus with experimental 

data of Sahin & Demir (2008) for pin fins with a single perforation 
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5.9.1 Validation of Hydraulic Characteristics 

The main hydraulic characteristics of airflow are pressure drop (∆P), fan 

power (Pfan), and pressure drag coefficient (Pd) of 0P and 3P pinned heat sink design, 

Figure 3.1, that are validated with CFD commercial code as air properties are 

constant (Num.) and variable (Num. Variable). 

Figures 5.10 compares experimental measurements with numerical predictions 

into the effect of perforations on the pressure drop, ΔP, across pinned heat sinks 

(PHSs) and the power required to overcome the pressure drop.  

In the experimental data, the pressure drop with three perforations is typically 

around 7% smaller than that of solid pin fins, while for the numerical predictions this 

reduction is approximately 9%. For the solid and perforated pins, the average error in 

the pressure drop predicted using constant air properties are typically 9.2% and 10.5 

% respectively, whereas for predictions using variable air properties the error has 

been reduced by two thirds to around 2.9% and 3.8% for the solid and perforated 

pins respectively. Part of this may be due to the practical difficulties of fabricating 

PHSs with several perforations, when slight misalignment of the perforations with 

the dominant airflow direction and finite roughness of perforation surface can 

increase the pressure drop considerably. However, the numerical predictions at 

variable air properties are closer to the experimental pressure drop and within 5% 

error percentage. Since, in practical ways, the viscosity of air will increase with 

increasing air temperature that required higher pressure drop to push the air through 

the heat sink. It is indicated that the behaviour of fan power is the same of pressure 

drop. 
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Figure 5.11 shows the effect of the perforated pinned heat sinks model (3P) on 

the pressure drag coefficient for a range of inlet velocities from 6.5m/s to 12m/s at 

Re=3500-6580 and 8×8 in-line pins with longitudinal and transverse distance is 

6.5mm. The numerical results indicated Num. is constant ρ, cp, k, and μ; and Num. 

Variable is for ρ, cp, k, and μ as a function of temperature 

In line with the comparison between the pressure drag coefficient and air 

velocities, the pressure drag coefficient is larger within the experimental studies 

when compared with the numerical solution at constant air properties. Again, the 

numerical predictions at variable air properties are closer to the experimental 

pressure drag coefficient.  
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as a function of airflow speed 
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Figure 5.11: Effect of pin design and inlet air velocity on the pressure drag 

coefficient  

 

5.9.2 Validation of Heat Transfer Characteristics 

The experimental heat transfer characteristics such as the total and projected 

Nusselt number, NuT, NuP, respectively, the CPU temperature (Tcase), and thermal 

resistance (Rth) of 0P and 3P pinned heat sink design are validated with numerical 

data again at constant (Num.) and variable (Num. Variable) air properties. 

Average Nusselt Number 

Figure 5.12 presents the corresponding experimental measurements and 

numerical predictions of Nusselt number, based on either the total PHS wetted 

surface area (NuT) or on the projected surface area (NuP) equivalent to the base 

surface area of HS.  

The data shows that both NuT and NuP increase approximately linearly with the 

inlet air velocity and that the 3P pin fin design achieves a significant enhancement in 

heat transfer. The average error between the experimental and predicted values of Nu 

with constant air properties is 8.9% and 12.1% for 0P and 3P respectively, whereas 

for those with variable air properties, this discrepancy is reduced to 4.2% and 7.7% 

for 0P and 3P respectively. Since the viscosity of air increases with increasing air 

temperature this causes reducing heat transfer rate. In addition, the considerations 

mentioned above.  
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Thus, the NuT and NuP of numerical data at variable air properties are lower 

and closer to the experimental findings than that at constant air properties.  

  

 

 

 

 

 

 

 

 

 

 

 

Thermal Management  

 Figures 5.13 and 5.14 compare experimental measurements and numerical 

predictions from the conjugate heat transfer analysis for the average base plate 

temperature, Tcase and thermal resistance, Rth with fan power for 6.5m/s≤U≤12m/s, 

through a system of 8x8 pins a pin pitch of 6.5mm.  

As expected, the Tcase and Rth of experimental results are the highest. The heat 

transfer coefficient measured experimentally is lower than the predicted values from 

computation. For instance, in the experimental data the Tcase with three perforations 

is typically around 6% smaller than for solid pin fins, while for the numerical 

predictions at constant air properties this reduction is approximately 8%. The 

average error in the numerical predictions of Tcase with constant thermo-physical 

properties is around 2.8% and 5.2% for 0P and 3P heat sink models respectively, 

while with variable thermo-physical properties these average errors are 2.5% and 

5.1% for the 0P and 3P heat sink models, respectively. A further source of error is 

possibly around the additional thermal resistance as a result of the brazing process, 

where the brazing material does not completely fill the gap between the pin and the 

Figure 5.12: Effect of inlet velocity on Nusselt number based on (A) total and 

(B) projected surface area 
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base plate. Thus, some air gaps appear within soldering zones, as indicated 

previously in Figure 3.8, which causes greater thermal resistance for the 

experimental conditions. The predicted numerical data at variable air properties is 

slightly higher and closer to experimental results than for the constant air properties 

by approximately 1.5oC. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Comparison between experimental and numerical predictions of 

influence of fan power on Tcase 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Comparison between experimental and numerical predictions of 

influence of fan power on Rth 
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This demonstrates the thermo-fluid benefits obtained from the perforated 

pinned heat sinks, in comparison to the solid PHS, since the two objectives designs 

of heat sinks are achieved. The heat transfer of perforated pin (3P) enhances at 

constant fan power when compared with the solid pin (0P) due to elimination the 

dead thermal-flow zones just downstream the solid pin fins. It means CPU 

temperature reduces at the minimum energy cost pin perforations. 

5.10 Summary  

The numerical approach for solving airflow over heat sinks has been described 

and validated against previous results. Computational Fluid Dynamics (CFD) has 

been used to simulate the conjugate heat transfer and turbulent airflow through PHSs 

designs using ANSYS FLUENT 14.5 as the commercial code. Furthermore, the key 

characteristics for airflow over PHSs are also understood and the grid independence 

test (GIT) and validations are described. 

The numerical data of thermal and hydraulic characteristics is validated with 

the experimental results with the likely source of errors explained, Table 5.5, due to 

the practical difficulties of fabricating PHSs with several perforations, when slight 

misalignment of the perforations with the dominant airflow direction, and the effects 

of finite perforation surface roughness. A further source of error for the heat transfer 

measurements may be due to the additional thermal resistance because of the brazing 

process, where the brazing material did not completely fill the gap between the pins 

and the base plate. Thus, it may be that, in order to maximize the benefits from the 

perforations, care must be taken to ensure that they are aligned with the dominant 

flow direction and manufactured with a good-quality surface finish. Furthermore, the 

numerical data at variable air properties are closer to the experimental findings than 

that for constant air properties, Table 5.6.  

Since there is good agreement between the experimental measurements and 

predicted numerical data with variable air properties, the CFD conjugate heat 

transfer model is now used to report further a parametric study of the influence of the 

number, positioning of circular perforations, and other perforations shapes in the 

next chapters. 
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Table 5.5: The experimental and numerical enhancement of Nusselt number 

(Nu), fan power (Pfan), and CPU temperature (Tcase) of 3P heat sink design 

compared to solid pins (0P) 

 

 

 Table 5.6: The errors percentage between the experimental and numerical data 

at constant and variable air properties 

 

 

                             Parametric Studies 

                                                                    

Heat Sink Designs 

↑AT 

Nusselt Number 

↓ Pfan  

(W) 

↓ Tcase 

(oC) ↑ NuT ↑ NuP 

Numerical Perforated Pins with 

Three Perforations (3P) 
15% 

9% 24% 9% 8% 

Experimental Perforated Pins with 

Three Perforations (3P) 
5% 11% 7% 6% 

                 Parametric Studies 

                                                          

Heat Sink Designs 

NuT  Pfan (W) Tcase (oC) 

0P 3P 0P 3P 0P 3P 

Constant air properties 8.9% 12.1% 9.2% 10.5% 2.8% 5.2% 

Variable air properties 4.2% 7.7% 2.9% 3.8% 2.5% 5.1% 
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6 Chapter Six: Pinned Heat Sinks with Circular 

Perforation 

6.1 Introduction 

As the maximum discrepancy between the present experimental and simulation 

data is acceptable (Chapters 3 and 4), the validated CFD model procedure is utilised 

to perform parametric studies on perforated pinned heat sinks’ (PPHSs) effect on the 

cooling performance in relation to the number, and positioning of circular 

perforations with the variable physical air properties. 

In this chapter, solid pin fins (0P), and novel perforated pin fin HSs (1A, 1B, 

1C, 2A, 2B, 2C, 3P, and 5P, Figure 6.1) have been simulated as a conjugate heat 

transfer and turbulent airflow problem for electronic cooling systems. CFD solutions 

are carried out to investigate the thermal airflow characteristics of these heat sinks to 

ascertain how these pin fins can reduce the hot spots inside them and enhance 

airflow through them. In addition, the effect of the pins in in-line and staggered 

arrays and the effect of the shapes of the perforations are considered as well. 

6.2 Description of PHS Models 

Eight types of perforated pinned heat sinks (PPHSs) are compared with solid 

pin fins (0P), as shown in Figure 6.1. These perforations are aligned in the direction 

of flow and their location (upper, lower, and centre of the pin) and their number (0, 

1, 2, 3, and 5 perforations) vary, whilst their diameter is kept constant at 1mm. All 

these perforated pins have the same physical domain that consists of three parts: 

entrance section, test section (PHSs), and exit section. The pin fin heat sink 

symmetric section comprises eight rows in an in-line array perpendicular to the flow 

direction (cross flow) and each row has 8 pin fins. 
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Figure 6.1: Solid and perforated pinned heat sink models  

 

 

 

 

 

 

 

 

 

Figure 6.2: (A) Plan view and (B) Side view of the pin fin heat sink being 

analysed 
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The overall heat sink has a base of 50 mmx50mmx2mm with an 8x8 in-line 

array of 2mm diameter (D) and 10mm height pins (H) on a 6.5mm pitch in both 

directions (Sz, and Sx), Figure 6.2. The air flows past pin fins with 1mm diameter 

perforations. Different values of porosity are considered (ϕ=Vhole/V) at 0, 0.05, 0.1, 

0.15, and 0.25 for 0P, 1P, 2P, 3P, and 5P perforated pin heat sinks, where Vhole, and 

V are the perforation volume and solid pin volume, respectively. The entrance 

section is formed of a straight rectangular duct having 25mm (12.5D) as length, 

10mm (5D) as height and 6.5mm (3.25D) as the width, where D is pin fin diameter. 

This section is located in front of the test section to ensure a hydrodynamically, fully 

developed turbulent flow.  

The total surface area of these pinned heat sinks can be calculated as 

mentioned earlier in Chapter 2. Thus, the percentage of increase in this surface area 

regarding the solid pins (0P) is 5%, 10%, 15% and 25% for the perforated pins 1P, 

2P, 3P and 5P models, respectively.  

The thermal airflow through the perforated pinned heat sinks with thermal 

conductivity k=202W/m.K is analysed using CFD. The inlet air temperature is set to 

25oC and the inlet air velocity is varied between 6.5, 8, 10 and 12m/s, as per Yang & 

Peng (2009a), Yang & Peng (2009b), Kumar & Bartaria (2013), and Zhou & Catton 

(2011). This range of velocity leads to Reynolds numbers in the range 3500-6580 

based on a length scale given by the hydraulic diameter of the duct 

Dh=2H.W/(H+W), where H and W are the height and width of the duct in which the 

heat sink is located. 

6.3 Perforated Pins  

The need to reduce our usage of the world’s resources, combined with their 

actual reduction together with environmental considerations, makes it necessary to 

investigate ways of saving these resources and materials. Thus, there is clearly a 

need to develop heat sinks that use less energy, to achieve required rates of heat 

transfer (Sara et al., 2001). 

Recently, many methods have been suggested to enhance the thermal 

characteristics of engineering devices. As mentioned in Chapter 1, one of those 

methods is the active cooling technique using traditional fins that cause heat transfer 

rate enhancement at the expense of increasing pressure drop (fan power). In other 



- 106 - 

 

words, the energy consumed will increase due to the extra friction of the fins. In 

addition to the frictional energy loss, the external fan power should be taken into 

account and this consumption of power should be reduced (Sara et al., 2001). 

With respect to the literature review, the main problem of those traditional 

solid objects (fins, ribs, and blocks) is that dead thermal-flow zones (hot spot) will 

appear and develop in their wake, as shown in Figures 6.3A and 6.4A. In other 

words, airflow separation and low speed recirculating flow behind the solid objects 

are the main sources of poor cooling. This means that the heat transfer rates from 

their surfaces are not high enough, while the pressure drop is usually relatively high. 

Therefore, the thermo-flow characteristics of these solid objects are undesirable. 

Many attempts have been proposed to overcome these adverse effects, 

depending on changing the pattern of fluid flow and geometric conditions. One of 

these attempts to enhance heat transfer rates and reduce fan power is to allow the 

airflow path to pass through these solid fins via perforations, as shown in Figures 

6.3B, C and 6.4B, C. The perforated fins or the permeable fins will reduce the hot 

regions that usually appear behind solid fins by means of improving the fluid flow 

and demolishing vortexes zones, due to well-mixed fluid flow layers (Sara et al., 

2001).  

As a result, the main target of this study is to design and select the perforated 

pin fin heat sinks that will yield the maximum enhancement to the thermal 

characteristics with the minimum energy consumption. 
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Figure 6.3: Plan views of hotspot zones through (A) solid 0P, (B) perforated 3P 

and (C) slotted 10S pinned heat sinks at Re=5393 
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Figure 6.4: Plan views of airflow field through (A) solid 0P, (B) perforated 3P 

and (C) slotted 10S pinned heat sinks at Re=5393 
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6.4 Hydraulic Characteristics  

Since the nature of the airflow passing through pin heat sinks is expected to 

enhance the thermal-hydraulic characteristics of these heat sinks, the airflow 

characteristics are explained first. The airflow behaviour, pressure drop (∆P), fan 

power (Pfan), profit power factor (J), and pressure drag coefficient of perforated 

pinned (PPHSs) are explained and discussed in this section and compared with the 

solid PHS model.  

6.4.1 Airflow Behaviour 

The effects of heat sink models on airflow behaviour are presented in Figure 

6.5 for the inlet air velocity 10m/s at Reynolds number = 5393 and 8x8 in-line array 

pins with streamwise and spanwise distances of 6.5mm. 

The recirculation zones (vortices) behind the perforated pin fins will shrink 

compared with the solid pin fins due to effect of perforations. These vortices can be 

obvious behind the solid pin, while they are trivial in the case of perforated pin fins 

because the airflow passing through the perforations reduces the size of the vortices 

and the airflow path resembles a jet fluid flow. In addition, the size of the vortices 

will reduce more with increases in the number of perforations. Hence, the formed 

recirculation zones (wakes) are reduced in size in the case of perforated pin fin heat 

sinks. With regard to the solid pin fin heat sinks, however, the airflow separates from 

the frontal surface area of this pin.  
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Figure 6.5: Comparison between predicted flow field in PFHSs with solid pin 

fins and for designs 2A and 2C with two perforations 
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6.4.2 Pressure Drop, Fan Power, Profit Power Factor, and Pressure Drag 

Coefficient 

Figure 6.6 shows the effect of heat sink designs on the pressure drop (∆P), fan 

power (Pfan), and profit power factor (J) for a range of Reynolds numbers from 3500 

to 6580 relying on the inlet air velocities (6.5-12)m/s and 8x8 in-line array pins with 

longitudinal and transverse distances of 6.5mm. 

The pressure drop over the perforated pins is lower compared with the solid 

pins (without perforations). The remarkable point here is that the solid pins’ narrow 

airflow path is due to them being impermeable, which leads to more recirculation 

zones and airflow separation behind them. However, in the new designs, the airflow 

path will widen and will be a straighter flow leading to less separation behind the 

pins due to pin permeability. Therefore, the pressure drop and flow resistance of the 

perforated pins are less than for the solid pins, and that is in agreement with the 

findings of Yang et al. (2010). 

For each of the pin designs (0P, 1A, 2A, 3P, and 5P) given, as shown in Figure 

6.6, it is clear that the pressure drop reduces for pins that have more perforations 

since the amount of air passing through these perforations will be larger with 

increasing numbers of perforations. The pressure drop reductions of the 3P model 

with 3 perforations and 5P model with 5 perforations are approximately 9% and 

14%, respectively, lower than that of the solid pin case.   

The fan power pattern according to Figure 6.6 is similar to that for the pressure 

drop. This means that the amount of energy spent on a fan which is used to cool new 

heat sinks is lower than that for traditional solid pins at a given air velocity. 

However, the behaviour of the profit power factor is opposite to the pressure drop 

pattern, since this factor includes the amount of consumed fan power against the 

amount of heat applied at the heat sink base. The profit factor of perforated pins is 

the highest compared with the solid one. In addition, it increases as the number of 

perforations increases.  

Commonly, as air velocity (Reynolds number) increases, the pressure drop and 

fan power increase as a result of the shear forces induced by increasing the Reynolds 

number, while the profit factor decreases. 
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Figure 6.6: Effect of pin perforations and inlet velocity on pressure drop, fan 

power, and profit factor 
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The contour plots predict the variations in the local pressure through solid 

(0P), perforated (3P) and slotted (10S) pinned heat sinks within the airflow domain, 

as shown in Figure 6.7. The maximum local pressure is at the leading edge of heat 

sink and then it reduces gradually along the airflow direction in both cases to reach 

the minimum value at the end of heat sink due to the presence of pins (obstructions). 

The perforated 3P and slotted 10S pins show lower pressure penalty than the 

baseline case (0P) along the airflow direction due to perforations. These perforations 

allow a part of airflow to pass through them with less resistance to airflow compared 

to solid pins (0P). In the 0P case, local pressure varies between approximately 211Pa 

and –95.5Pa, whereas for the perforated pins 3P and 10S the corresponding local 

pressure varies from approximately 174Pa to –91Pa, and from 103Pa to –69Pa, 

respectively. The local pressure on the pins is also significantly lower, as indicated 

by the greater preponderance of blue regions on the perforated pins. Thus, the 

minimum local pressure is for slotted 10S pins due to its large perforations along 

pins.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.7: Plan views of pressure contour through solid 0P, perforated 3P and slotted 

10S pinned heat sinks at Re=5393 
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Figure 6.8 shows the effect of the perforated pinned heat sink models on the 

pressure drag coefficient for a range of inlet velocities from 6.5m/s to 12m/s at 

Re=3500-6580. 

  The pattern of Pd shows the same behaviour for all perforated pin models. 

This coefficient is formed due to the resistance of pin fins to airflow path and is 

associated with a particular frontal surface area. With respect to the perforated pins, 

the pressure drag coefficient is the lowest and its value decreases with the addition of 

more perforations. The main reason for this is that the frontal surface area of the 

perforated pins is smaller than that of the solid pins (Ismail, 2013). In addition, the 

airflow passing through these perforations will be easier as there will be less 

resistance to airflow as the number of perforations increases. Accordingly, the 

pressure drag coefficient decreases as frontal area reduces with the presence of more 

perforations. 

Overall, this factor decreases with increases in the inlet air velocity (Reynolds 

number) because the kinetic energy increases more than the pressure drop does.  

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Variation of pressure drag coefficient with inlet air velocity for solid 

and different perforated pinned heat sink designs 
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6.4.3 Effect on Power Consumption 

With regard to the fan power, energy that is consumed by the fan operation can 

be saved by reducing the pressure drop via the perforations. The reductions in fan 

power consumption are approximately 9% and 14% for the 3P model and 5P model 

PHSs, respectively, which is lower than that for the solid pin case. Thus, the profit 

factor of the 3P model and 5P model will increase by nearly 10% and 16%, 

respectively, compared to that for the solid pins. It is clear that these two factors, fan 

power and profit factor, have an opposite trend; in other words, as the fan power 

increases, the profit factor decreases. The solid pins require higher fan power 

consumption to overcome the pressure drop through the heat sinks compared with 

the perforated pins. This is because of the perforations, which enable air to easily 

pass through the perforated pin fins compared with the solid pin fins. In addition, 

when the number of perforations is increased, the fan power diminishes while the 

profit factor increases at a given air velocity. 

Consequently, the first aim of this study, reducing the fan power (pressure 

drop) is achieved by using the perforated pinned heat sinks. 

6.5 Heat Transfer Characteristics 

The most important thermal characteristics of pinned heat sinks are illuminated 

and discussed in the following sections.  

6.5.1 Average Nusselt Number 

Figure 6.9 illustrates the effect of each of the given perforated pin designs on 

the Nusselt number for a range of Reynolds numbers from 3500 to 6580 relying on 

the inlet air velocities (6.5-12)m/s and 8×8 in-line pins with longitudinal distance of 

6.5mm. 

For the perforated pin fins, it is clear from Figure 6.9 that the highest 

percentage increase of NuT compared to the benchmark solid pin case is 11% when 

increasing the total surface area by 25% for pinned heat sink design 5P with 5 

perforations.  

Airflow separates from the surface of the solid pin heat sink and then dead-

flow zones are generated behind these solid pins. Hence, the temperature is higher in 
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those zones and the NuT is lower for the solid pin fin compared with the perforated 

pins. In order to overcome the thermal dead zones, the perforations reduce the size of 

the high-temperature zones behind the solid pins. These perforations resemble a jet 

fluid flow, mixing fluid layers at the rear of the pin, and flow separation from the 

surface will be delayed because the airflow may not be strong enough to cause it. 

The improved heat transfer with perforations is due to the combined effects of 

increased surface area and localised enhancement near the perforations through the 

formation of localised air jets, as shown in Figure 6.5, and that is consistent with the 

finding of Sara et al. (2001), which attributed improved heat transfer with perforated 

rectangular blocks. As the number of perforations increases, the fluid mixing through 

the pin heat sink also increases, which leads to the pin temperature decreasing due to 

the multi-jet air and the NuT increases. 

The results of the CFD simulation show that the NuT number is enhanced for 

higher air velocities (with increasing Reynolds number) for all pin fin heat sink 

designs due to the increases in the convective heat transfer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Effect of inlet velocity on NuT for the nine pin designs shown in 

Figure 6.1 
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Figure 6.10 shows the effect of the number of perforations and the total surface 

area (AT) on the NuT number at U=10m/s, and shows clearly that the heat transfer 

rate increases monotonically with the number of perforations at a given air velocity. 

 

 

 

 

 

 

Figure 6.10: Effect of number of perforations on Nusselt number at 10m/s for 

the five pin designs 

 

6.5.2 Thermal Management of PHSs  

Figure 6.11 shows a more detailed investigation into the effect of pin fin 

perforations on the relationship between fan power and heat sink temperature (Tcase) 

and the thermal resistance (Rth) through a system of 8×8 in-line pins separated 

longitudinally by a distance of 6.5mm for all perforated pin fin heat sink models. 

For each of the pin designs (0P, 1A, 2A, 3P, and 5P) given, Figure 6.11 shows 

that the CPU temperature (Tcase) and the thermal resistance (Rth) of the perforated 

pinned heat sinks are lower than those of the solid pin fins at a given fan power. In 

addition, these benefits increase as the number of perforations increases. For 

example, the enhancement in Tcase for the 5P model is nearly 10% compared with the 

solid pins. In addition, the perforated pins exhibit more gradually reduced Tcase with 

increasing inlet air velocity. It is from 73oC to 61oC for the 5P model with five 

perforations while from 81oC to 66oC for the solid pins. This confirms that the 

improved heat transfer rates of the perforated fins lead to the desirable effects of 

reducing both CPU temperature and thermal resistance of the heat sink. More 

generally, Tcase and Rth reduce as the number of pin perforations increases at a 

constant pressure drop or fan power.  
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Figure 6.11: Effect of pin design and fan power on Tcase and Rth 

 

Figure 6.12 compares the surface temperature distribution of the solid pin heat 

sink (0P design) with those obtained on the pin fin with five perforations (5P) at 

Re=5393 (10m/s). In the former case, temperatures on the base plate vary between 

approximately 58.5oC and 71oC, whereas for the perforated pins the corresponding 

temperatures vary between approximately 49.5oC and 65.5oC. The temperatures on 

the pins are also significantly cooler, as indicated by the greater preponderance of 

blue regions on the perforated pins. This is because inlet airflow has more capacity 

to transfer heat along the heat sink due to its relative coolness, while the airflow 

temperature increases as it passes through the heat sink. Thus, the minimum 

temperature of the pins is at the tip of the first pin fins and the maximum temperature 

is at the bottom of the last pin fins.  

Subsequently, the second aim of this study, reducing the CPU temperature by 

increasing the heat transfer rate, is achieved using the perforated pinned heat sinks 

(PPHSs). Since in an actual system, the two aims of the minimum Tcase (maximum 

heat transfer rate) at the minimum fan power (less energy cost) are achieved for the 

5P heat sink model in this study.  
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Figure 6.12: Temperature distribution through pinned heat sinks: 0P, 3P, and 

5P models at Re=5393 

6.6 Effect of Perforation Position  

The effect of the position of the perforations is now investigated to obtain the 

optimum perforated pinned heat sink design based on pressure drop (ΔP), Nusselt 

number (NuT), and the CPU temperature (Tcase).  

For the cases with two perforations (2P) and three perforations (3P), the 

positions of the perforations do not have more influence on the pressure drop of the 

perforated pinned heat sink models. The 3P perforated pin models have the same 

lowest value of pressure drop, virtually 9% lower than that of the solid pin model 

(0P). Figure 6.13 shows the pressure drop variation over the pinned heat sinks when 

varying the perforations position in the 3P model at different inlet airflow values 

(6.5-12)m/s.  
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Figure 6.13: Effect of perforation positions on the pressure drop through heat 

sinks 

 

The position of the perforations is far less influential on the NuT enhancement. 

The NuT of the perforated pin (2B) and (2C) models are slightly higher (typically up 

to 2% larger) than those for the perforated pin (2A) design, Figure 6.14. The CFD 

results indicate that this may be due to the larger air speeds through the perforations 

in cases 2B and 2C compared with case 2A, Figure 6.5. In addition, the conductive 

heat transfer of the 2A pin model may decreases, leading to reduction in the NuT due 

to removing part of the pin material from the bottom of these pins. 
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for the nine pin designs shown in Figure 6.1 

240

260

280

300

320

340

360

380

400

6 7 8 9 10 11 12 13
U (m/s)

N
u

T

0P
1A
1B
1C
2A
2B
2C
3P
5P



- 121 - 

 

The vertical position of the three perforations model (3P) as shown in Figure 

6.15, however, can enhance the overall characteristics to some extent. Figure 6.16 

explains the effect of the position of the three perforations model (3P) on the Nusselt 

number with variation in the Reynolds number (3500-6580). The NuT of the 

perforated pin 3P-SEP model is nearly 2% larger than that of the other perforated pin 

designs. Since the distribution of perforations is uniform along the 3P-SEP pins 

model, the formation of localised air jets through the perforations is uniform along 

the pins, which enhances the convective heat transfer of the 3P-SEP pinned heat 

sinks. In the perforated pin 3P-LOW model that has perforations at the lower part of 

the pins, the NuT is lower compared to the other 3P models because of the decrease 

in vertical conductive heat transfer due to removing part of the material at the bottom 

of these pins.  

 

 

 

 

Figure 6.15: Different vertical positions of the three perforations model (3P) 
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Figure 6.17 explains the effect of the position of the three perforations (3P) 

model on the CPU temperature with variation in the fan power. It is indicated that all 

3P models have the lowest CPU temperature, except the 3P-LOW model. This is 

because, again, the conductive heat transfer is weak at the bottom of the 3P-LOW 

pin model due to the perforations.  

It can be concluded that the pinned heat sink with the optimum overall 

performance is the perforated pin 3P-SEP (standard design), as shown in Figure 

6.16, which was previously tested experimentally.  

 

 

 

 

 

 

 

 

 

 

 

 

From an existing heat sink, wire Electrical Discharge Machining can be used 

to directly cut into the circular perforations. This would also retain the high thermal 

conductivity between the pins and the base plate of a heat sink cast from a single 

block. The effect of the horizontal position of the three perforations models (3P) on 

the Nusselt number and pressure drop is considered in the current study. The 

positions of these perforations are shifted from the centre of the pin (0% moving 

percentage) to the outside of the pin (100% moving percentage) with respect to the 

centre solid pin (0P), as shown in Figure 6.18. 
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Figure 6.18: Horizontal movement percentage of perforations from the centre 

(0%) to the outside of the pins (100%) 

 

Figures 6.19 and 6.20 show the variation of pressure drop and Nusselt number 

with different horizontal positions of the three perforations and inlet airflow at 

10m/s. It is pointed out that, when the perforations are moved from the centre to the 

outside of the pin fin, the NuT diminishes while the pressure drop will increase. The 

pressure drop of those perforated pins will increase as the perforations are moved to 

the outside, owing to reducing the pins’ porosity and increasing the airflow blockage 

passing over them. In addition, the maximum Nusselt number and minimum pressure 

drop are for perforations positioned at the centre of the pins in the 3P model. 

Although the moving percentage is 5.5%, 25%, 50%, and 75% caused an increase in 

surface area of the pins, the NuT of the pinned heat sink models reduces due to 

reduction of localised air jets near the perforations 

This indicates that two important reasons resulted in enhancement of the 

overall characteristics’ benefits. These benefits arise due to not only the increased 

surface area but also heat transfer enhancement near perforations through the 

formation of localised air jets. 
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Figure 6.19: Pressure drop trend with different perforation positions of the 3P 

heat sink model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Comparisons of NuT with the three perforations in different 

positions 
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6.7 Effect of Pin Fins Arrangement 

In this section, the effects of pin fins in in-line and staggered arrangement on 

fan power (Pfan) and CPU temperature (Tcase) are described in detail for solid (0P) 

and perforated (3P) pinned heat sink designs. A total of 64 pin fins (8x8) separated 

longitudinally and transversely by a constant distance of 6.5mm in in-line and 

staggered arrays are tested for both models, heat sinks (0P) and (3P) models, with 

variation, whether to the inlet airflow (6.5-12)m/s or Reynolds number (3500-6580). 

Figure 6.21 shows the pressure drop behaviour for both in-line and staggered 

arrays of the solid (0P) and perforated (3P) pinned heat sink models. It is found that 

the pressure drop of the staggered array is approximately 30% higher than the in-line 

array for both models. The main reason for this is that the staggered arrangement 

will increase the flow blockage in the airflow direction while the airflow relatively 

smoothly passes over the in-line array pinned heat sink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Effects of pin array on pressure drop with variation in Reynolds 

number for solid (0P) and perforated (3P) pinned HS models 
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With respect to thermal management, Figure 6.22 illustrates the effect of pin 

fins alignment on the CPU temperature of heat sinks with fan power for both solid 

and perforated pin fins. The staggered array for both solid (0P) and perforated (3P) 

models shows the lowest CPU temperature. The CPU temperature of the staggered 

array is approximately 10% and 12% lower with a high-fan power for both 0P and 

3P heat sink designs, respectively, compared with the in-line pin array. This is 

because the staggered arrangement breaks down the thermal boundary layer and 

increases intermixing of airflow layers, with more surface heat transfer area in 

contact with the cooling air. 

 

 

 

 

 

 

 

 

 

 

Figure 6.22: Effects of pin array on Tcase and Pfan for solid (0P) and perforated 

(3P) pinned heat sink models 

 

CFD predicts that the staggered pinned heat sinks for both solid and perforated 

pins provides lower Tcase with higher fan power consumption than that of the in-line 

array under the same boundary conditions. These thermal and airflow characteristics 
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considered improved heat transfer with different solid pin fin configurations at an in-

line and staggered arrangement. 
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6.8 Effect of Square and Elliptic Perforation Shapes 

Since perforated pin fins have been shown to enhance the thermofluid 

characteristics of heat sinks, the effect of perforation shape is now considered. The 

primary goal is to investigate the effect of square, elliptic and circular perforation 

configurations, as shown in Figure 6.23, on the cooling performance in electronic 

devices. Each pin has three perforations and the hydraulic diameter of each 

perforation is nearly 1mm, aligned in the direction of flow. Thus, the porosity is 

considered with different values (ϕ=Vhole/V) at 0.15, 0.19, and 0.22 for circular, 

square, and elliptic perforations, respectively, where Vhole is the perforation volume 

and V is the solid pin volume. Hence, the percentage of increasing the total wetted 

surface area with respect to the solid pins (0P) is 15%, 18%, and 17% for the circular 

perforated (3CP), square perforated (3SP), and elliptic perforated (3EP) pinned heat 

sinks, respectively. 

 

 

 

 

 

 

 

 

The effects of perforation shape in a given PHS on thermal airflow 

characteristics as pressure drop (ΔP), Nusselt number (NuT), and CPU temperature 

(Tcase) with various inlet air velocity (6.5-12)m/s are considered for 8×8 pins with a 

constant pin spacing of 6.5mm in either direction.   

With respect to ΔP of these heat sinks, Figure 6.24, the elliptic perforated pins 

(3EP) have the lowest pressure drop and fan power, nearly 12%, compared with the 

equivalent solid pinned heat sink (0P) model, while the pressure drop reduction for 

square and circular perforations are 7% and 9%, respectively. This is because the 

void volume of the elliptic perforations is larger compared with the other perforation 

3PC- Circular Holes 3PS- Square Holes 

h= 1mm,  

w= 1mm 

3PE- Elliptic Holes 

h= 1.5mm, 

w= 1mm 

d= 1mm 

 

Figure 6.23: Circular, square, and elliptic perforated pinned heat sink models  



- 128 - 

 

configurations. This induces airflow to pass through the elliptic perforated pin fins, 

as it can do so easily and with less obstruction compared with the other perforated 

pin fins.  

 

 

 

 

  

 

 

 

 

 

Figure 6.24: Effect of perforation shape on the pressure drop with various inlet 

air velocities 

 

Figure 6.25 shows the effect of perforation shape on the Nusselt number (NuT) 

with various Reynolds numbers (3500-6580) and 8×8 pins at the constant 

longitudinal distance of 6.5mm.   

The predicted data illustrates that the NuT of the perforated pin fins provides 

the maximum value. The NuT for the pins with circular perforations (3CP) is 

typically 9% superior to that of the other perforated pins. Furthermore, the square 

and elliptic perforation shapes have the same NuT enhancement percentage, 

approximately 4%, compared with the solid pins (0P) model. It may be that the 

major cause for this is that the circular perforations have the maximum mean jet-

local air velocity through those perforations compared with other perforation shapes, 

as shown in Figure 6.27. 
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Figure 6.26 shows that the Tcase of the perforated pin fins are smaller than those 

of the solid pin fins at a given airflow. The data shows that the lowest Tcase is 

typically 8% for the circular (3CP) model and 5% for both square (3SP) and elliptic 

(3EP) perforated pinned heat sinks compared to the solid pins system.  

The principal cause for this relates to the effects of two parameters on the 

enhancement heat transfer rate: the mean jet-local air velocity through perforations 

(Ux) and total heat transfer surface area (AT). Although the heat transfer surface area 

of the perforated pins increases for all pinned heat sink designs, jet-local air velocity 

through the perforations still plays an important role in enhancing the heat transfer 

rate. The maximum mean jet-local air velocity through the perforations of the 

perforated pins is for the circular perforations, as shown in Figure 6.27. In other 

words, cool air goes through circular perforations faster than through the other 

perforation shapes, so removing more heat created by CPU running. Thus, the 

circular perforated pins, 3CP model, have the lowest values of Tcase. 

 

 

 

 

Figure 6.25: Variation of total Nusselt number for solid and different 
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Figure 6.27: Variation in mean local air velocity through different perforation 

shapes of each pin  

 

Figure 6.28 shows the comparison between the surface temperature distribution 
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the circular perforations (3CP), 52.5oC to 67oC for the square perforations (3SP), and 

53oC to 67oC for the elliptic perforations (3EP), as shown in Figure 6.28. This 

indicates that the heat transfer rate of the circular perforated pin fins (3CP) is the 

largest, as explained previously (Figure 6.27) that the maximum mean jet-local air 

velocity through the perforations of the perforated pins is for circular perforations. 

Thus, the temperatures on the pins are also significantly cooler: the lower 

temperature is at the tip of the first pin fins and the highest temperature is at the 

bottom of the last pin fins.  

Consequently, the two aims of this study are achieved. The heat transfer rate is 

enhanced with less power consumption to drive air through the pin fins and that 

leads to the desirable benefits of reducing the CPU temperatures of the heat sink in 

the case of a fixed heat sink size. 

Commonly, a compromise needs to be made between choosing either the 

elliptic perforated pins, 3EP, which provide the smallest pressure drop and fan 

power, or the circular perforated pins, 3CP, which have lowest CPU temperature and 

highest Nusselt number. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28: Temperature distribution through perforated pinned heat sinks: 

0P, 3CP, 3SP, and 3EP models at Re=5393 
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6.9 Optimum Design of the Perforated Pinned Heat Sink (1P) 

PHSs are designed to maintain the processors below critical temperatures for 

minimal fan power consumption input into the system. Recently, there have been a 

number of previous studies dealing with the optimum heat sink designs with solid 

plates and pins. For example, the multi-objective Genetic Algorithms was used to 

optimise plate fin geometries for total heat transfer and annual costs (Najafi et al., 

2011). The pin density, pin size and air flow direction in PHSs were optimised by 

Shaukatullah et al. (1996), while Soodphakdee et al. (2001) optimised for the cross-

sectional shape of solid pins heat sinks. This part deals with the optimisation of 

single perforated pins, 1P, as a function of perforation diameter, d, and perforation 

location, y, for PHSs with an 8x8 array of pins and a constant pin spacing of 6.5mm 

in either direction. The multi-objective optimisation problem studied here is to 

minimise Tcase and Pfan for 0.5mm≤ d ≤1mm and 2mm≤ y ≤8mm for a constant air 

inlet velocity, Uair= 8m/s, since the above results may indicate that minimising Tcase 

and minimising Pfan is in conflict with one another. Hence, the optimisation problem 

it can be defined as follows:  

Objective function: minimise Tcase & Pfan 

Subject to: 0.5mm ≤ d ≤ 1mm 

       2 mm ≤ y ≤ 8mm 

Following a number of recent, successful optimisation studies, see e.g. Khatir 

et al. (2015), the response surface functions are built using the Moving Least Squares 

(MLS) method from a set of known values at specified Design of Experiments (DoE) 

points. The latter are obtained using an Optimal Latin Hypercube approach, that uses 

a permutation genetic algorithm to achieve a uniform points spread within the design 

space (Narayanan et al., 2007). In the present study, it is found that 30 DoE points 

are sufficient to provide accurate response surface functions for both Tcase and Pfan. 

These 30 points are divided into 20 building points that are used to determine the 

response surface and 10 validation points that are utilised to validate the response 

surface, as shown in Figure 6.29. This approach distributes the two design variables 

in the spacing design uniformly within the lower and upper limits of each variable.  
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The multi-objective function of CPU temperature and fan power of the pinned 

heat sink in terms of the design variables perforation diameter, d (mm) and the 

position of single perforations, y (mm) of the (1P) heat sink model are illuminated in 

Figures 6.30 and 6.31. The ten model validation points are used to optimise a 

closeness of fit parameter and the optimised MLS method has given very good 

agreement with merged DoE (R2 value of 0.982 for DoEm for Tcase and Pfan). The 

optimum values of Tcase and Pfan are on the design variable boundaries. This means 

that the design variables, perforation diameter (d) and the height of perforation (y) 

have an insignificant effect on the objective functions, Tcase and Pfan; it is less than 

1.5%. Therefore, a Pareto front does not required to find in this case, as will be 

explained in the next chapter, as a constrained optimisation design for the design 

variables of the single perforated pinned heat sink (1P) model. It is easy to find that a 

perforation diameter of 1mm for any perforation position is the optimum design for 

the single perforated pinned heat sink (1P) model to provide the lowest Tcase and Pfan 

at 68.4oC and 0.2W, respectively, as inlet air velocity of 8m/s (Re=4315).  

 

 

 

 

Figure 6.29: Distribution of design points in design variable space for the 

perforation diameter, d (mm) and the position of single perforations, y (mm) 
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Figure 6.30: Response surface function of CPU temperature (Tcase) of the single 

perforated pinned heat sink (1P) model 

 

 

 

 

 

 

 

 

 

 

Figure 6.31: Response surface function of fan power (Pfan) of the single 

perforated pinned heat sink (1P) model 
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6.10 Conclusions 

According to the predicted CFD data, perforated PHSs enhance thermal 

airflow characteristics compared to the equivalent solid PHSs. These benefits 

increase as the number of perforations increase. Evidently, pressure drop decreases 

monotonically and Nusselt number increases monotonically when increasing the 

number of perforations. For a given Reynolds number, the 5P pin fin design provides 

the peak heat transfer rate and the lowest pressure drop and fan power requirement. 

Thus, this cooling technique, using the perforated pins, can be regarded as an 

effective cooling method because it reduces processor temperatures and fan power, 

which is a key goal of the thermal management of electronics, as detailed in Table 

6.1. CFD analysis indicates that the improvement in heat transfer is due to the 

combined effects of enhanced heat transfer near the perforations through the 

formation of localised air jets and increased total surface area (AT).  

Based on the pin arrangement, the staggered pinned heat sinks for both solid 

and perforated pins provide a lower CPU temperature than that of the in-line array, 

while more fan power is required to overcome the pressure drop through these pins 

compared with the in-line arrangement under the same boundary conditions, as 

shown in Table 6.2. 

Regarding the perforation shape, it is shown that a compromise is needed 

between the choice of either the elliptic perforated pins, 3EP, which provide the 

smallest amount of pressure drop and fan power, or the circular perforated pins, 3CP, 

which have the lowest CPU temperature and the highest Nusselt number, Table 6.3.  

The optimum design of the single perforated PHSs (1P) was investigated for 

two design variables: diameter of perforations (d, mm) and the locations of single 

perforations (y, mm). It was found that these design variables do not have a 

significant effect on the objective functions, Tcase and Pfan; it is less than 1.5%. 
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Table 6.1: The enhancement of Nusselt number (Nu), and fan power (Pfan) of 

each 3P and 5P design compared with solid (0P) pins HSs 

                                                Parametric Studies 

Heat Sink Designs 
↑ AT ↑ NuT ↓ Pfan  

(W) 

↓ Tcase 

(oC) 

Perforated Pins with Three Perforations (3P) 15% 9% 9% 8% 

Perforated Pins with Five Perforations (5P) 25% 11% 14% 10% 

 

Table 6.2: The reduction of CPU temperature (Tcase), and the increasing fan 

power (Pfan) of staggered array compared with in-line array for solid (0P) and 

perforated (3P) pins HSs 

                                             Parametric Studies 

Heat Sink Designs 

↑ Pfan  

(W) 

↓ Tcase 

(oC) 

Staggered array of solid Pins (0P)  30% 10% 

Staggered array of perforated Pins (3P)  30% 12% 

 

Table 6.3: Enhancement of Nusselt number (Nu), fan power (Pfan), and CPU 

temperature (Tcase) of different perforations shapes  

                                Parametric Studies 

Heat Sink Designs 
TA↑  TNu↑  

 fanP ↓ 

(W) 
case T↓ 

C)o( 

Circular Perforated Pins (3CP) 15% 9% 9% 8% 

Square Perforated Pins (3SP) 18% 4% 7% 5% 

Elliptic Perforated Pins (3EP) 17% 4% 12% 5% 



-137 - 
 

7 Chapter Seven: The Benefits of Slotted and Notched 

PHSs 

7.1 Introduction 

This chapter further investigates the effects of different configurations of 

rectangular perforated pinned heat sinks on conjugate heat transfer and turbulent 

airflow. The two designs tested are slotted PHS (3S, 6S, 10S) designs with 

rectangular perforations removed from the centre of the pin (henceforth referred to as 

slotted pins, SPHSs) and notched PHS (2.5N, 5N, 7.5N) designs with rectangular 

notches removed from the top of the pin (notched pins, NPHSs), as shown in Figure 

7.1. The CFD predictions of thermal airflows over those new heat sink designs are 

examined in detail in relation to heat transfer and airflow characteristics.  

The main goal is to understand the airflow and thermal characteristics of these 

new heat sink designs to discover how these pin fin models can reduce the hot spots 

through the heat sink and enhance airflow along it compared with solid pin fins (0P). 

In addition, the optimum new PHSs design is considered to reduce the processor 

temperature for minimal fan power consumption input into the system.   

7.2 Description of PHS Models  

Six types of pinned heat sinks are examined for conjugate heat transfer and 

turbulent airflow, as shown in Figure 7.1. Three pin designs with rectangular 

perforations removed from the centre of the pin as slotted pins, SPHSs, and three 

with rectangular notches removed from the top of the pin as notched pins, NPHSs, 

are compared with baseline cases with solid pins and pins with circular perforations 

based on thermal airflows past PHSs as considered in previous chapters. Slotted and 

notched PHSs with 8×8 in-line arrangement of these pins are analysed 

comprehensively under the same computational domain and boundary conditions as 

previously mentioned. The pinned heat sink section comprises eight rows in the in-

line array perpendicular to the flow direction (cross flow), as shown in Figure 7.2. 
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Generally, the heat sink layout has a base of 50mmx50mmx2mm with an 8x8 

array of 2mm diameter (D) and 10mm height pins (H) on a 6.5mm pitch in both 

directions (Sx, Sz), as seen in Figure 7.2. Air flows past through the slots and notches 

of these pin fins. The slot height (h) is changed at 3mm (3S), 6mm (6S), and 10mm 

(10S) but the slot width (w) is kept constant at 1mm. The porosity is considered with 

different values (ϕ=Vhole/V) where Vhole is the slot and the notch volume and V is 

solid pin volume, respectively. Hence, the porosity of these slotted pin fins is 0.185, 

0.370, and 0.617 for the S3, S6, and S10 designs, respectively. With respect to the 

notched pin fins, the height of the notch (h) is varied at 2.5mm (2.5N), 5mm (5N), 

and 7.5mm (7.5N) whilst the notch width (w) is kept constant at 1mm. Thus, the 

porosity of these notched pins is 0.154, 0.308, 0.562, for N2.5, N5, N7.5 models, 

respectively.   

Total wetted area (AT) = Projected area + Total surface area contribution from the 

pin fins 

For solid pin fins: 

)( DHNWLAT                          (7.1) 

For slotted pin fins: 

)]2()2()2()[( hwwDhDDHNWLAT                 (7.2) 

For notched pin fins: 

)]2()2()[( whDhDHNWLAT                  (7.3) 

where (W, L) are the width and length of the base plate heat sink (50x50) mm, (N) 

the total number of fins (64 pins), (H) the height and (D) the diameter of the pins, 

which are 10mm and 2mm, respectively, (h) the height of the slot or notch, and (w) 

the width of the slot or notch (1mm). Therefore, the percentage of increase in the 

total surface area with respect to solid pins (0P) is 10%, 16%, and 20% for the 

slotted pins 3S, 6S, and 10S, respectively, while, for the notched pins 2.5N, 5N, and 

7.5N, it is 5%, 10%, 15%, respectively. 
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Figure 7.1: Slotted and notched pinned heat sink designs  
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Figure 7.2: (A) Plan view and Side view (B) 3D of the notched pinned heat 

sink being analysed 
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7.3 Open Slotted and Notched Area  

The behaviour of the airflow passing through the pin fin heat sinks is described 

firstly. The effects of the new heat sink models on airflow are presented in Figure 7.3 

for inlet air velocity 10m/s at Reynolds number =5393 and 8 pins with a longitudinal 

distance of 6.5mm. 

As mentioned earlier, in the perforated pins section (Chapter 6), the dead 

thermal-flow zones will appear and develop just in the wake of solid objects such as 

fins, ribs, and blocks. The airflow separates from the surface of these objects and the 

speed of recirculating flow behind solid objects is low, (see section 6.3, as shown in 

Figure 6.3A and Figure 6.4A). This causes the heat transfer rate from these zones to 

reduce and the pressure drop through these solid objects will usually be high. Thus, 

to avoid this adverse effect, many attempts have been proposed depending on 

changing the fluid flow pattern and geometric conditions (Sara et al., 2001). One of 

these attempts to enhance thermal and fluid flow characteristics is allowing the flow 

to pass through the solid fins by replacing them with slotted or notched fins. The 

slotted or notched pin fins will reduce the hot spots that typically occur behind solid 

fins by means of improving the airflow and vanishing vortexes zones, resulting in a 

well-mixed layer of fluid flow, (see section 6.3, as shown in Figure 6.3B, C and 

Figure 7.4B, C). Hence, the thermal characteristics and pressure drop characteristics 

are enhanced in this case (Sara et al., 2001).   

Consequently, a detailed investigation of the thermal and hydraulic 

characteristics of slotted and notched PHSs is now presented.  
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7.4 Hydraulic Characteristics 

The air fluid flow behaviour, pressure drop (∆P), fan power (Pfan), profit power 

factor (J), and pressure drag coefficient of the slotted and notched pin fins HSs are 

discussed in this section. 

7.4.1 Airflow Behaviour  

Enhancement of thermal characteristics and reduction in the fan power of heat 

sinks are affected by airflow behaviour across pin fin heat sinks. Thus, it is important 

to discuss this parameter study in this work first (Sara et al., 2001). The effects of the 

new heat sink models on airflow behaviour are shown in Figure7.3 for the air inlet 

velocity 10m/s at Reynolds number (5393). 

Similarly to the perforated pin fin heat sinks, the recirculation zones behind the 

slotted and notched pin fins will gradually reduce in size with the expansion of the 

open slotted and notched area (increase the height of the slot and notch), as shown in 

Figure 7.3. These vortices can be seen behind the solid pin heat sink (0P) model 

while they will be less significant in the slotted and notched pin fins cases. The main 

reason for this is that the airflow passing through the open slotted and notched area is 

straighter and so the vortex zones will be reduced. Hence, the recirculation zones 

(wakes) are eliminated for the slotted and notched pin fin heat sinks, while the 

airflow attacks and interacts with the frontal surface area of the solid pin and so air 

separation will occur.   
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Figure 7.3 Comparison between predicted flow field in PFHSs with solid pin 

fins 0P and for designs 3S and 10S 
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7.4.2 Pressure Drop, Fan Power, Profit Power Factor, and Pressure Drag 

Coefficient 

Figures 7.4, 7.5, and 7.6 illustrate the effects of the slotted and notched pin fin 

heat sink designs on the pressure drop, fan power, and profit power factor for a range 

of Reynolds numbers (3500-6580) with the inlet air velocities ranging from 6.5m/s 

to 12m/s. 

It can be seen from these figures that the pressure drop of the slotted and 

notched pins is smaller than that of the benchmark PHS. The main cause of this is 

that the airflow path across the solid pins is narrow and wavy, which results in more 

recirculation zones and greater separation of airflow behind the solid pins, as 

indicated previously. In the case of the new designs, however, these rectangular 

perforations enhance the mixing of fluid at the rear of the pin, and flow separation 

from the surface will be delayed. Thus, there is less pressure drop and flow 

resistance for the slotted and notched pins than for the solid pins (Yang et al., 2010). 

For slotted (3S, 6S, 10S) and notched (2.5N, 5N, 7.5N) pin heat sinks, Figures 

7.4 and 7.5, the pressure drop and fan power reduction is monotonically higher when 

increasing the height of the slot or notch due to these rectangular perforations. The 

highest reduction is nearly 40% for the 10S slotted pin model and approximately 

33% for the 7.5N notched pin in relation to the solid pin fin (0P) model. 

Figure 7.5 shows that the reduction in fan power has the same pattern of 

pressure drop and they increase as the Reynolds number increases. This indicates 

that the slotted and notched pin fins will save more energy that is consumed via the 

fan than will the solid fins.         

As indicated previously, the profit power factor compares the amount of 

consumed fan power against the applied amount of heat flux at the heat sink base. 

The profit factor of the slotted and notched pins is highest compared with the solid 

one, Figure 7.6. 

For more information about local pressure drop along pinned heat sinks, see 

section 6.4.2. 
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Figure 7.4 Effect of (A) slotted and (B) notched pins on pressure drop with 

variation in airflow speed 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Effect of (A) slotted and (B) notched pins on fan power as a function 

of airflow speed 
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The effects of the slotted and notched pin fin heat sink models on the pressure 

drag coefficient are shown in Figure 7.7 for a range of inlet velocities between 

6.5m/s and 12m/s at Re=3500-6580 and 8 pins with a longitudinal distance of 

6.5mm.  

  The pressure drag coefficient of these six pinned heat sink models is smaller 

than that of the solid pins as well as its value decreases as the open area expands (the 

height of the slot or notch increases). As mentioned earlier, the frontal area of the 

slotted and notched pins is smaller than that of the solid pins, which means that part 

of the airflow passes through this open area easily, as the open area is larger and so 

has less resistance to airflow, and that is in agreement with the findings of Ismail 

(2013). Therefore, the pressure drag coefficient decreases as the open area expands 

when the slot and notch height are increased. 

Generally, the ratio of pressure drop and kinetic energy is defined as the 

pressure drag coefficient. This factor decreases when the inlet air velocity (Reynolds 

number) is increased due to increasing the kinetic energy more than increasing the 

pressure drop due to the open slotted and notched area. 

 

 

Figure 7.6: Comparisons of the profit factors with different heat sinks (A) slotted 

and (B) notched pins 
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Figure 7.7: Variation in pressure drag coefficient of slotted (A) and notched (B) 

pins with different Re 

 

7.4.3 Effect on Power Consumption 

As mentioned previously, the fan power factor plays a vital role in minimising 

the power consumption, which increases the profit factor of PHSs. The reduction in 

power consumption of the slotted and notched pins is higher than that of the solid 

pins (0P), as shown in Figure 7.5. Additionally, the fan power consumption reduces 

with expansions in the slot and notch areas and leads to the profit factor increaseings 

at a given air velocity. For example, the reduction in power consumption is 

approximately 15.5%, 30% and 40% for slotted pins 3S, 6S, and 10S respectively, 

and nearly 13.5%, 24.5% and 33% for notched pins 2.5N, 5N, and 7.5N respectively. 

The profit factor increases by approximately 18.5%, 40.5% and 66.5% for slotted 

pins 3S, 6S, and 10S respectively, and by nearly 16%, 33% and 49.5% for notched 

pins 2.5N, 5N, and 7.5N respectively, as seen in Figure 7.6.  

Subsequently, the first aim of the current study in reducing the fan power 

consumption (pressure drop) is achieved by using the slotted and notched PHSs. 
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7.5 Heat Transfer Characteristics 

Some important thermal characteristics such as the Nusselt number and the 

base heat sink temperature (Tcase) are explained and discussed in the following sub-

sections.  

7.5.1 Average Nusselt Number 

Figures 7.8A and 7.8B indicate the effect of each of the given slotted and 

notched pin designs on the total NuT and projected NuP for a range of inlet velocities 

from 6.5m/s to 12m/s (Re = 3500-6580) and 8 pins with streamwise and spanwise 

distances of 6.5mm. 

For the slotted and notched pin fin heat sinks, it can be observed from Figure 

7.8A that the solid pin fin has a slightly higher NuT than those of slotted and notched 

pin fins. When the height of the slot or notch increases, increasing the open area, the 

NuT number decreases. The maximum percentage increase in NuT of the solid pin 

does not exceed 2% compared with the other pin fin designs. The main reason for 

this is that some of the airflow passes inside the open area and the local mean 

velocity through this open area decreases with increases to the height of the slot or 

notch, as shown in Figure 7.9 (local mean velocity). This local mean air velocity 

through the slots and notches may be not strong enough to accelerate the airflow 

over the slot or notch areas, which results in weakening the flow turbulence and flow 

mixing (Alam et al., 2014). Secondly, the NuT of the slotted and notched pinned heat 

sinks have decreased slightly, which means that the increase in heat transfer is 

proportionately slightly less than the increase in the total wetted surface area in the 

heat sink due to the perforations. These findings are consistent with the recent 

conclusions of Shaeri & Yaghoubi (2009a). In addition, for heat conduction along 

pin fins, the reduction in the cross-sectional area along the pins when increasing the 

height of the slot or notch results in reduction to the heat transfer conduction rate of 

these pins and to the Nusselt number (NuT).  

However, as shown in Figure 7.8B, the projected Nusselt number (NuP) of 

each of the slotted and notched pinned heat sinks will increase compared with the 

solid pin (0P) model. For instance, the Nup enhancement reaches approximately 8%, 

14.5%, and 17% for the 3S, 6S, and 10S slotted pins, respectively, while it is nearly 

5%, 8%, and 12% for the 2.5N, 5N and 7.5N notched pins, respectively. Thereby, 
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NuP may be a more effective measure of a heat sink’s cooling capacity for a given 

PHS size compared with NuT. It can be observed that the enhancement in the 

projected Nusselt number, NuP, of the slotted pinned heat sinks is twice that of the 

notched pins, except for the 10S and 7.5N models. This means that the amount of 

heat removed from the heat sinks increases with these new pin designs because NuP 

is based on a constant projected surface area, which demonstrates that perforations 

significantly improve the magnitude of the heat transfer.  

Regarding to the above results, the Nusselt number might not represent the 

actual heat transfer rate from heat sink. The main reason for this is that the 

calculation of the Nusselt number depends on the heat transfer coefficient (h) and the 

characteristic length (X) and each of these parameters are found in different 

procedure. For example, the heat transfer coefficient (h) are found based on either 

the total wetted surface area (AT) of heat sink or the projected surface area (AP). In 

addition, the characteristic length (X) might represent either the length of heat sink in 

direction of flow (L), the pin diameter (d), or the duct hydraulic diameter (Dh). Thus, 

it is required another thermal parameter to evaluate the thermal performance of heat 

sinks that might be the CPU temperature, which is discussed in the next section.        

Collectively, Figures 7.4, 6.5 and 6.8B show that the pressure drop and fan 

power decrease monotonically and NuP increases monotonically with increases to the 

slotted and notched perforation area (the height of slot and notch).  
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Figure 7.8: Effect of slotted and notched pinned heat sinks on Nusselt number 

based on (A) total (B) projected surface area 
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Figure 7.9: Variation in the mean local air velocity through (A) slotted and (B) 

notched pins 

 

7.5.2 Thermal Management of PHSs  

Figure 7.10 shows an example of a conjugate heat transfer analysis which 

predicts the average base plate temperature Tcase with fan power as inlet air velocity 

is varied from 6.5m/s to 12m/s through a system of 8 pins separated longitudinally 

by a distance of 6.5mm for all new models – slotted (SPHSs) and notched (NPHSs) 

pinned heat sinks. 

Figure 7.10 illustrates that the slotted and notched pin fins have smaller Tcase 

and fan power than that of the solid pin fins (0P), except that the Tcase of the 10S 

slotted pin model is slightly hotter than that of 0P solid pin model. This may be 

because the number of slotted pins (10S) has been doubled, from 64 to 128 pins, by 

making them thinner by reducing their diameter to half the diameter of the solid pin 

fins (0P), leading to reductions in the conductive heat transfer rate through them. 

Thereby, the 10S model requires more airflow to help to lower the CPU temperature 
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than does the solid pin (0P) model. It can be noticed that the lowest Tcase are nearly 

4oC for slotted the 6S pin fins with h=6mm and notched 7.5N pin fins with h=7.5mm 

both with notch and slot width w=1mm at a given fan power.  

 

 

     

 

 

 

 

 

 

 

 

 

Figure 7.11 compares the surface temperature distribution of the solid pin heat 

sink (0P design) with those obtained on the slotted and notched pin fins. The 

maximum temperature is at the fin base and it reduces to the fin tip. It can be 

observed that the drop in temperature of these new pin fin designs is less significant 

with changes to the height of the slot or notch. The maximum temperature drop from 

the fin base to the fin top increases by increasing the height of the notch from 2.5mm 

to 7.5mm and by increasing the slot height from 3mm to h=6mm.  

The CPU temperatures of the solid pins vary between approximately 58.5oC 

and 71oC. In terms of the new heat sink designs, however, in the slotted pin 3S, 6S, 

and 10S models the corresponding temperatures change between roughly 57.5oC –

70oC, 54.5oC –70oC, and 54oC –72oC, respectively. In the notched pin 2.5N, 5N, and 

7.5N designs the temperature distributions vary from nearly 58oC –70oC, 57.5oC –

70oC, and 55.5oC –70oC, respectively.  

 

Figure 7.10: Effect of (A) slotted and (B) notched pins on Tcase and fan power 
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According to the predicted CFD data, the first and second aims of the current 

study, that is, slightly enhancing the CPU temperature (by nearly 2%) and producing 

valuable reductions in the fan power of the slotted and notched PHSs, are achieved. 

This means that the heat transfer rate increases at a given fan power (pressure drop) 

using these heat sinks, which is one of the usual active cooling techniques. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Temperature distribution through pinned heat sinks: 0P, 6S, 10S, 

and 7.5N models at Re=5393 

7.6 Optimum Design of the Notched Pinned Heat Sink 

As indicated previously, PHSs are designed to maintain the processors below 

critical temperatures for minimal energy input into the system. This section focuses 

on the optimisation of notched pins as a function of notch height, h, and width, w, for 

PHSs with an 8x8 array of pins with a constant pin spacing of 6.5mm in either 

direction. The multi-objective optimisation problem studied here is to minimise Tcase 

and Pfan for 2.5mm≤ h ≤10mm and 0.5mm≤ w ≤1.5mm for a constant air inlet 

velocity, Uair= 8m/s (Re=4315). Since the above results have shown that minimising 

Tcase and minimising Pfan leads to conflict between them, the goal is to construct a 

Pareto front of non-dominated solutions, from which an appropriate compromise 

design can be chosen.  
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Thus, the optimisation problem can be defined as follows: 

Objective function: minimise Tcase & Pfan 

Subject to: 2.5 mm ≤ h ≤ 10mm 

       0.5 mm ≤ w ≤ 1.5mm 

Again, an Optimal Latin Hypercube approach uses a permutation genetic 

algorithm to achieve a uniform spread of points within the design space (Narayanan 

et al., 2007). This approach distributes the two design variables in the spacing design 

uniformly within the lower and upper limits of each variable, as shown in Figure 

7.12. 

 

 

 

 

 

 

 

 

 

 

Figures 7.13 and 7.14 show the response surface function of CPU temperature 

and fan power of the notched PHS regarding the design variables height (h) and 

width (w) of the notch at inlet air velocity 8m/s. The optimised response surface 

function demonstrates that the Tcase and Pfan minima occur on the domain boundaries. 

Pfan is reduced by increasing the notch area through increases to both h and w, 

whereas the Tcase response surface function further highlights the importance of 

localised air jets through the perforation. Tcase is reduced by increasing h and 

decreasing the notch width, w. The optimised MLS method has given very good 

agreement with merged DoEm: R2 =0.938 for Tcase and Pfan.  
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Figure 7.12: Distribution of design points in the design variable space for the 

height, h (mm) and the width, w (mm) of the notch 
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Figure 7.13: Response surface function of CPU temperature (Tcase) of the 

notched pinned heat sink model 

 

 

 

  

 

 

 

 

 

 

 

Figure 7.14: Response surface function of fan power (Pfan) of the notched 

pinned heat sink model 

 

 



-155 - 
 

The Pareto front is obtained by using the Tcase response surface function to 

determine the design points (h, w) at which Tcase is a specified value and then using 

the Pfan response surface function to determine which of these design points has the 

smallest fan power. The resultant Pareto front is shown in Figure 7.15, where the 

brown triangles compare numerical predictions of Tcase and Pfan against the Pareto 

front values obtained from the response surface function. These are generally in very 

good agreement, with typical discrepancies of less than 2%. 

The Pareto curve shows the compromise options that are available between a 

low Tcase and a low Pfan. In the cases considered, the minimum Pfan that can be 

experienced while ensuring Tcase is below the reference critical temperature of 85oC 

is approximately 0.06W, and this has to be increased by 30% (to 0.078W) and 60% 

(to 0.096W) to ensure Tcase remain below 75oC and 70oC, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: Pareto curve of Tcase and Pfan for an 8x8 PHs with notched pins, 

with an inlet air speed of 8m/s 
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Figure 7.16 shows plan views of the flow fields for the points on the Pareto 

curve with Tcase=86.3oC and Pfan=0.0592W, with h=10mm and w=1.35mm as a wide 

notch pin model, and Tcase=70oC and Pfan=0.0934W, with h=10mm and w=0.8mm as 

a narrow notch pin model; airflow is from right to left in both cases. The former case 

corresponds to the low pressure drop case where air flows rapidly through the notch 

(with a maximum speed of approximately 12.0m/s compared to the inlet air speed of 

8m/s) and with minimal separation around the pins. The latter case, with the smaller 

notch width w=0.8mm, causes a larger increase in air speed through the notch (up to 

a maximum of approximately 13.3m/s) which leads to more effective convective 

heat transfer at the cost of greater levels of separation and pressure drop across the 

pins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Narrow Notch Pin Model: h=10mm, w=0.8mm 

Wide Notch Pin Model: h=10mm, w=1.35mm 
Minimal separation level around 

the pins 

Greater separation level  

Velocity  

(m/s) 

Figure 7.16 Plan views of flow field through notch perforations for a wide 

notch with Tcase=86.3oC and Pfan=0.0592W and a narrow notch with 

Tcase=70oC and Pfan=0.0934W  
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The surface temperature distribution for the wide and narrow notch pin models 

are shown in Figure 7.17. It is clear that the maximum temperature is for the wide 

notch pin model compared to the narrow notch pin model that has lowest 

temperature distribution. It can be observed that the drop in temperature of the 

notched PHS design is significant with changes to the width of notch. The CPU 

temperatures of the wide notch pin model vary between approximately 58oC and 

88oC with low fan power consumption while the narrow notch pin model the 

corresponding temperatures change between roughly 54oC–71.5oC with high fan 

power consumption required. Table 7.1 shows the comparing between the predicted 

Tcase and Pfan from MLS with simulated Tcase and Pfan from CFD with very well 

agreement.  

 

 

 

 

 

 

 

 

 

 

 

Table 7.1: Compare between Tcase and Pfan of predicted MLS and simulated CFD 

Design Variable Multi-Objective Function 

h 

(mm) 

w  

(mm) 

Predicted 

MLS  

Tcase (oC) 

Simulated 

CFD   

Tcase (oC) 

Error 

% 

Predicted 

MLS    

Pfan (W) 

Simulated 

CFD     

Pfan (W) 

Error 

% 

10 1.35 
86.3 85 1.5 0.0596 0.0592 0.67 

Wide Notch Pin 

10 0.8 
70 70 00.0 0.0934 0.0951 1.78 

Narrow Notch Pin 

Narrow Notch Pins Model: h=10mm, w=0.8mm 

Wide Notch Pins Model: h=10mm, w=1.35mm Tin= 25oC 

 

Figure 7.17 : The optimum temperature distribution of the wide and the 

narrow notch pin models with an inlet air speed of 8m/s 
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7.7 Comparison between Circular Perforated Pins, Rectangular 

Slotted, and Notched PHSs 

Table 7.2 illustrates the comparison between the Nusselt number (NuT, NuP), 

fan power (Pfan), and CPU temperature (Tcase) for the circular perforated, slotted, and 

notched PHSs compared to the equivalent solid pin HSs.  

Despite increasing surface area of the slotted and notched pin designs, heat 

transfer rate (in terms of NuT and NuP) and CPU temperature of the multiple circular 

perforated PHS models show the greatest enhancement. This means that the benefits 

arise due to not only the increased surface area but also to the heat transfer 

enhancement near the perforations through the formation of localised air jets. 

However, the fan power consumption required for the slotted and notched pins is 

smaller than that for the multiple circular perforated PHSs because the porosity of 

the slotted and notched pins is larger compared with that of the circular perforated 

pins, which enables air to flow easily across the pins.  

It can be concluded that a compromise has to be struck between the choice of 

perforations. Since the larger enhancements in heat transfer with multiple circular 

perforations come at the price of both significantly increased power consumption 

and, perhaps most importantly, a much more complex manufacturing process, while 

the slotted and notched PHSs are more practical and bring about a greater reduction 

in fan power consumption. 
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Table 7.2: Comparison of Nusselt number, fan power (Pfan), and CPU 

Temperature (Tcase) between perforated, slotted, and notched PHSs 

                        Parametric Studies 

 

Heat Sink Designs 

↑ AT 

Nusselt Number 

↓ Pfan  

(W) 

↓ Tcase 

(oC) 
↑ NuT ↑ NuP 

C
ir

cu
la

r 
P

P
H

S
s 

Perforated Pins with One  

Perforation (1CP) 
5% 1.7% 5% 2% 2% 

Perforated Pins with Two  

Perforations (2CP) 
10% 5% 14.5% 6% 5% 

Perforated Pins with Three  

Perforations (3CP) 
15% 9% 24% 9% 8% 

Perforated Pins with Five  

Perforations (5P) 
25% 11% 36% 14% 10% 

S
P

H
S

s 

Slotted Pins (3S) 10% -1% 8% 15.5% 2% 

Slotted Pins (6S) 16% 0% 14.5% 30% 2% 

Slotted Pins (10S) 20% -1% 17% 40% 0% 

N
P

H
S

s 

Notched Pins (2.5N) 5% 0% 5% 13.5% 1% 

Notched Pins (5N) 10% -1% 8% 24.5% 2% 

Notched Pins (7.5N) 15% 0% 12% 33% 2% 

 

7.8 Weight Reduction of Heat Sinks 

Figure 7.18 illustrates the percentage weight reduction of all pinned heat sink 

designs. The weight of these pins decreases with increases in the number of 

perforations or the open slotted and notched area, which leads to saving material in 

manufacturing the pin fins and lighter assembly as well. Furthermore, the cost and 

energy of the force required to drive the air by fan power will reduce significantly. 

According to Shaeri (2009b), the two optimal outcomes for pin fin design are to 

maximise the heat transfer rate for any given fin weight or minimise the weight for a 

required heat transfer rate. Another advantage of this weight reduction is associated 

with heat transfer enhancement for the perforated pinned heat sink designs according 

to the numerical data. However, the cost manufacturing process of perforated pinned 

heat sinks is higher compared to that solid pined heat sink.  
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The total weight reduction of the pins considered here has been calculated 

utilising the following equations and the values are shown in Figure 7.18:  

𝑉𝑇 = 𝑉𝐵𝑎𝑠𝑒 + 𝑉𝑃𝑖𝑛𝑠                         (6.4)           

𝑊𝑇 = 𝜌𝐴𝑙  × 𝑉𝑇                                                           (6.5) 

where VT is the total volume of PHS, VBase is the volume of base PHS, VPins is the 

total volume of pins, WT is the total weight of PHS, and the density of aluminium 

𝜌𝐴𝑙 = 2700 Kg/m3. 

In the case of the perforated, slotted, and notched pins, the highest percentage 

of reduction in pin weight is seen in the 5P model with 5 perforations, 10S at 10mm 

slot height, and 7.5N with 7.5mm notch height at 7%, 14%, and 18%, respectively. 

In terms of different types of perforation shape, the percentage total weight 

reduction is approximately 5% for both square perforated pin fins (3SP) and elliptic 

perforated pin fins (3EP). Therefore, by using these types of pinned heat sink, both 

aims of pin fin optimisation are achieved, particularly by increasing the number of 

perforations.  
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Figure 7.18: The percentage total weight reduction of PHSs 
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7.9 Conclusions 

Airflow past a heat sink with arrays of slotted (SPHSs) and notched (NPHSs) 

pins has been solved numerically, and the solution method has explored the thermal 

and hydraulic characteristics of these heat sinks compared with the benchmark solid 

pin fin (0P) model. Slotted and notched pins may offer a more practical means of 

manufacturing perforated PHSs: either wire Electrical Discharge Machining could be 

used to directly cut into the slots/notches, or a series of thin cutting discs mounted on 

a common shaft could be used with support to the pins provided through a jig. This 

would also retain the high thermal conductivity between the pin and the base plate of 

a heat sink cast from a single block. 

Generally, the CFD data shows that, in relation to the fan power (pressure 

drop) of the heat sinks, the new pinned heat sink designs require a smaller amount of 

fan power compared with the solid pins. The slotted (10S) pin model has the lowest 

fan power of 40%. The solid PHS has a NuT slightly higher than those of slotted and 

notched pins while the NuP of the new pinned heat sinks is the largest. The 

maximum percentage increase in NuP is nearly 17% for 10S model compared with 

the other pin designs. The Tcase of the slotted and notched pins is slightly (2%) lower 

than that of the solid pin model, as detailed in Table 7.3. The perforations etched into 

the top of the pins, notched pins, may offer a more practical means of manufacturing 

perforated PHSs, as indicated previously.  

The optimum design of the notched PHS has been investigated for two design 

variables: the height (h, mm) and width (w, mm) of the notch. The main goal of this 

study was to reduce both CPU temperature and fan power of the pinned heat sinks. 

The formal optimisation study has demonstrated the practical compromise that has to 

be struck between low processor temperatures (modelled in terms of the variable, 

Tcase) and the fan power needed to achieve the required rate of cooling. Thus, the 

minimum Pfan that can be experienced while ensuring Tcase is below the reference 

critical temperature of 85oC is approximately 0.06W, and this has to be increased by 

30% (to 0.078W) and 60% (to 0.096W) to ensure Tcase remains below 75oC and 

70oC, respectively. 
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The new pinned heat sink SPHS and NPHS models are superior to the solid 

PHS because they require less fan power to push air over the pin heat sinks and there 

is an acceptable reduction in thermal resistance while, as discussed earlier, they 

require more preparation in their manufacture. 

 

Table 7.3: Enhancement of Nusselt number (Nu), fan power (Pfan), and CPU 

temperature (Tcase) of slotted and notched pinned heat sinks 

 

 

 

 

 

 

                        Parametric Studies 

 

Heat Sink Designs 

↑ AT 

Nusselt Number 

 fanP↓  

(W) 
case T↓ 

C)o( ↑ NuT ↑ NuP 

S
P

H
S

s
 

Slotted Pins (3S) 10% 10% -1% 8% 15.5% 

Slotted Pins (6S) 16% 16% 0% 14.5% 30% 

Slotted Pins (10S) 20% 20% -1% 17% 40% 

N
P

H
S

s
 

Notched Pins (2.5N) 5% 5% 0% 5% 13.5% 

Notched Pins (5N) 10% 10% -1% 8% 24.5% 

Notched Pins (7.5N) 15% 15% 0% 12% 33% 
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8 Chapter Eight: Effect of Pin Density and Applied Heat 

Flux 

8.1 Introduction 

After an indication that the new pinned heat sinks, perforated and notched 

PHSs, have a lower CPU temperature and fan power for active air-cooling of 

electronic systems, the reliable performance of high-power density electronics for 

PHSs is another important consideration for efficient cooling design strategies. 

Essentially, the thermal effects cause some failure of the mechanisms in devices 

containing electronic components, such as void formation, metal migration, and 

inter-metallic growth. For each 10oC increase above the operating temperature of 

high-power electronics, the rate of these failures almost doubles (Gurrum et al., 

2004). Thus, thermal management of electronics is of crucial significance to the 

industry market. 

This chapter considers two key parameters for the performance of pinned heat 

sinks: density distribution of the pin fins and heating power applied at the sink base. 

This consideration specifically relates to the CPU temperature value in addition to 

the Nusselt number, NuT, NuP, and pressure drop (∆P). The main purpose for this is 

to investigate the application reliability (capability) of these pinned heat sink designs 

in the desktop PC UPS for waste heat dissipation. In addition, the study also wishes 

to estimate the allowable level of applied heating power on these new pinned heat 

sink designs. 

8.2 Effect of Pin Density Distribution 

The effects of the distance between pins (Sx, pin columns) on the pressure drop 

(∆P), heat transfer rate (NuT, NuP), and CPU temperature (Tcase) are explained in 

detail in this section for the in-line array solid (0P), perforated (3P), and notched 

(7.5N) pinned heat sinks to obtain the optimum distribution of pin density on pinned 

heat sinks.  



- 165 - 

 

According to previous researchers such as Sahin & Demir (2008), the flow 

blockage increases as the distance between pins (Sy, pins rows) decreases, leading to 

increases in the pressure drop (fan power) along the heat sink as well. Thus, the pin 

spacing (Sx, pin columns) is only considered at 15mm, 9mm, 6.5mm, and 4.5mm 

while the pin spacing (Sy, pin rows) is not reported in this study and its value is 

constant at 6.5mm, Figure 8.1. In other words, there will be models with 4, 6, 8 and 

11 pin columns in the stream flow direction and each transverse column that is 

perpendicular to the airflow direction has 8 pin fins only for solid (0P), perforated 

(3P), and notched (7.5N) pin heat sink models. 
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Figure 8.1: Schematic of different heat sink geometries in in-line arrangement for 

top and side views 
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The variations in pressure drop with the number of columns and different 

Reynolds numbers for solid (0P, left), perforated (3P, right), and notched (7.5N) 

pinned heat sink models are illustrated in Figure 8.2.  

As expected, the pressure drop of the heat sink (ΔP) increases with increasing 

numbers of pins and Reynolds number as well. In all cases, halving the number of 

columns from 8 to 4 would reduce the pressure drop by approximately 35%. 

Commonly, the lowest pressure drop value is for the notched pins (7.5N) and then 

the perforated pins (3P), compared with that of solid pins (0P), due to the 

perforations. When increasing the Reynolds number from 3500 to 4315, the pressure 

drop gradually increases while, when the Reynolds number increases up to 6580, the 

pressure drop sharply increases. The pressure drop of the solid pins sharply increases 

when the columns are increased in number from 8 to 11 compared with the 3P and 

7.5N pin models. This is because the presence of more solid pins (decreasing pin 

spacing) in addition to increasing air viscosity due to increasing air temperature 

through the heat sink, leads to increasing the blockage of the airflow passing over the 

solid pins. 
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Figure 8.2: Variation of pressure drop with the number of columns and 

different Reynolds numbers for solid (0P), perforated (3P), and notched 

(7.5N) PHS designs 
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The dependence of total (NuT) and projected Nusselt number (NuP) on the 

number of columns and Reynolds number for both solid (0P), perforated (3P), and 

notched (7.5N) pinned heat sink models is shown in Figures 8.3 and 8.4.  

The CFD data of the solid pinned heat sink (0P) indicates that the total Nusselt 

number (NuT) gradually increases when increasing the number of columns from 4 to 

8 (nearly 11% larger), as shown in Figure 8.3. For additional pin columns from more 

than 8 columns up to 11 columns, however, the NuT increase remains almost 

constant because the total surface area will increase with the presence of more pin 

columns, leading to decreases the heat transfer coefficient as indicated previously. In 

terms of the notched pins (7.5N), the pattern of NuT with a different number of 

columns is similar to that of the solid pins (0P) and the NuT reaches a maximum 

value for the 8 pin columns nearly 10% higher than that of the 4 pin columns. 

However, the optimum total Nusselt number value of the 3P model is for the 6 pin 

columns, typically 4% higher than for the 4 pin columns. Conversely, it seems that 

the Nusselt number remarkably decreases when increasing the pin columns up to 11, 

as seen in Figure 8.3. This is because, with more perforated pin or notched pin 

columns, the total surface area will increase to higher than that of the solid pins, 

resulting in a remarkable decrease in the heat transfer coefficient.  

On the other hand, the variations of projected Nusselt number (NuP) with the 

different number of columns and Reynolds number for solid (0P, left), perforated 

(3P, right), and notched (7.5N) pinned heat sink designs gave different results, as 

presented in Figure 8.4.  

The projected Nusselt number, NuP, of the solid, perforated, and notched 

pinned heat sinks will enhance as the number of pin columns increases. The 

enhancement reaches approximately 50% as pin density doubles from 4 to 8 columns 

for all cases. It means that the amount of heat removed from the heat sinks will 

increase with the presence of more pin material due to moving the amount of heat 

through the base of the heat sink to the pins and then into the surrounding air.  

Generally, the total and projected Nusselt number of the perforated pins (3P) is 

superior compared with the solid (0P) and notched (7.5N) pins, as well as this value 

increases when increasing the Reynolds number for the pinned heat sink designs.  
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Figure 8.3: Effect of the number of columns on the Nusselt number and the 

Reynolds number for solid (0P), perforated (3P), and notched (7.5N) PHSs 
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Figure 8.4: Variation in pressure drop with the number of columns and 

different Reynolds number for solid (0P), perforated (3P), and notched 

(7.5N) PHS designs 
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Figure 8.5 shows the effect of the number of pin columns on the CPU 

temperature with variations in the Reynolds number for solid (0P, left), perforated 

(3P, right), and notched (7.5N) pinned heat sink models. It is indicated that the CPU 

temperature of the perforated pins is lower than those of the other pin designs due to 

the perforations.  

The reliability of these pin fin heat sink designs in a desktop PC CPU should 

be considered in relation to the minimum number of pin columns in order to obtain 

the cheapest cost and simplify fabrication of the heat sinks. Hence, the most 

important thermal parameter in practical applications of heat sinks is to keep the 

CPU temperature at less than the critical temperature (~85oC). Figure 8.5 indicates 

that the maximum allowed temperature of a PC CPU is as a red line at 85oC with 

different pin density (Yuan et al., 2012; Yu et al., 2005). 

This temperature value drops as the Reynolds number increases and with the 

presence of more pin material resulting from the increased convection and 

conduction heat transfer via the amount of heat moving through the heat sink base to 

the pins and then being transferred to airflow passing over the pins, causing a drop in 

CPU temperature. At the lowest given Reynolds number (3500), it is recommended 

that the number of pin columns should be no lower than 8 columns for the solid (0P) 

and notched (7.5N) pins, while 6 pin columns is enough for the perforated pins (3P) 

to cool the PC CPU. With the highest given Reynolds number (6580), however, it is 

recommended to use the 4 pin columns for PC CPU cooling for the perforated 

pinned heat sink model (3P) while no fewer than 5 columns are required for both the 

solid (0P) and the notched (7.5N) pins to keep the CPU temperature lower than 

85oC.  
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Figure 8.5: Effect of the number of columns on the CPU temperature and the 

Reynolds number for solid (0P), perforated (3P), and notched (7.5N) 

pinned heat sink models 
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Focussing on the practical outcomes of the cooling, reducing the heat sink 

temperature for a given fan power input with pin density is shown in Figure 8.6. 

Results are plotted with respect to a critical reference temperature of 85oC as a red 

line. The results show that, as heat transfer rate from the CPU increases, convection 

and conduction heat transfer increases, resulting from the higher pin densities. It 

means that the CPU can be cooled below the critical temperature for a significantly 

lower fan power input with greater pin density. For example, the Tcase reduces by 

approximately 30~35% as the number of pins increases from 4 to 11 pin columns.   

At a given fan power, the lowest base plate temperature Tcase is for the 11 pin 

columns compared with the other heat sinks. This is because the column with the 

smallest number of pins requires more airflow passing over the pins to remove a 

certain amount of heat, while less airflow is required to cool columns with a denser 

number of pins due to the increased conduction and convection heat transfer 

(presence of more pin material) for the CPU to be significantly cooler. The 

perforated pins (3P) exhibit smaller Tcase than the solid and notched pins, while the 

notched pin (7.5N) model consumes less fan power than the solid and perforated 

pinned heat sinks due to the large notched area.  

For the solid and notched pins, a fan power of 0.1W enables the CPU 

temperature to be maintained below 73oC when 11 columns of pins are used 

whereas, for 4 columns, the CPU temperature of 100oC is well above the critical 

CPU temperature. Using columns of the 3P perforated pin model reduces the CPU 

temperature yet further, for a given fan power input, and even makes the adoption of 

4 columns of perforated pins viable for fan power inputs above 0.15W.  

Generally, the CPU temperature reduces and the heat transfer rate enhances 

as pin density increases, while the pressure drop increases.  
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Figure 8.6: Effect of the number of columns on the CPU temperature and fan 

power of solid (0P), perforated (3P), and notched (7.5N) pinned heat sink 

models 
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8.3 Effect of Applied Heat Flux   

Since modern CPUs have dynamically changing voltages, leading to variations 

in heating power 𝑄 ̇, at the base of a PHS. This section of the numerical investigation 

considers the supplied heating power that is selected based on the real working 

conditions of the PC CPU (Yuan et al., 2012), to estimate the allowable level of 

applied heating power on these new pinned heat sink models. Thus, the heating 

power applied at the base of the pin fin heat sinks is considered 10, 20, 40, 60, 70, 

80, and 90W typical of heating generated by PCs (Yuan et al., 2012). In other words, 

the heat flux employed on the solid (0P), notched (7.5N) and perforated (3P) pin heat 

sink models is 0.4, 0.8, 2.4, 2.8, 3.2, 3.6W/cm2, respectively. Figures 8.7, 8.8, 8.9 

and 7.10 illustrate the variation of pressure drop (ΔP) and CPU temperature (Tcase) 

with different applied heat flux on the pinned heat sink bases. 

According to the heating power at 10W, the effect of air temperature inside the 

flow passage on the variation in air properties is small and can be ignored. The air 

properties, however, will be affected by this temperature inside a test section as the 

heat flux increases above 20W. Thermodynamic properties of air such as density, 

thermal conductivity and other properties vary with temperature through the heat 

sink. Thus, the air temperature variation inside the heat sink is significant to the 

analysis and it cannot be disregarded when increasing the applied heat flux (Yuan et 

al., 2012). It can be chosen among different methods to compute the corrected air 

properties. As indicated previously, ANSYS FLUENT-CFD code will calculate the 

property values by piecewise-linear interpolation method among the values defined 

at several air temperatures. 

The variation of the pressure drop along heat sinks with different applied heat 

flux and inlet air velocities from 6.5 to 12 m/s is illustrated for the solid (0P), Figure 

8.7, perforated (3P), Figure 8.8, and notched (7.5N), Figure 8.9, PHSs with (A) 

constant air properties and (B) variable air properties. Generally, the pressure drop of 

these heat sinks will increase as the supplied heating power increases from 10W to 

90W, considering the variable air properties, while the change of pressure drop is 

unremarkable when the air properties are constant. The main reason for this is that 

the air viscosity will increase due to the increase in air temperature that results from 

increasing the supplied heating by 800% with variable air properties. Therefore, 
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higher air viscosity results in more fan power being required to push the air through 

the heat sink (test section). It can be seen that this pressure drop increases slightly – 

by nearly 4% for the solid (0P) design while it is approximately 6% and 8% for 

notched (7.5N) and perforated (3P) heat sinks, respectively – when the applied heat 

flux increases from 10W to 90W. This indicates that the heat transfer rate from the 

3P model is higher than that of the 7.5N and solid (0P) designs, meaning that the 

temperature of the airflow passing through the 3P and 7.5N models is higher 

compared with that of the solid (0P) design. These findings are consistent with the 

recent conclusions of Yuan et al. (2012), which attributed improved heat transfer to 

plate-pin heat sinks to illustrate the effect of increasing applied heat flux on the 

pressure drop through a compact heat sink.  

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Variation in pressure drop through perforated pins (3P) with 

different applied heat flux and inlet air velocities (A) constant and (B) 

variable air properties 
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Figure 8.8: Variation in pressure drop through perforated pins (3P) with 

different applied heat flux and inlet air velocities (A) constant and (B) 

variable air properties 
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Figure 8.9: Variation in pressure drop through notched pins (7.5P) with 

different applied heat flux and inlet air velocities (A) constant and (B) 

variable air properties 
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Commonly, an applied heat flux of 60W is recommended since the peak CPU 

temperature is still under the required maximum temperature at the lowest inlet air 

velocity for all pinned heat sink cases, as shown in Figure 8.10 and that is in 

agreement with the findings of Yaun et al. (2012). 
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8.4 Conclusion  

Results indicate that, with higher pin density, the CPU temperature of the 

pinned heat sinks reduces while the fan power (pressure drop) increases through the 

heat sinks. In all cases (0P, 7.5N, and 3P models), halving the pin density from 8 to 4 

pins reduces the pressure drop by roughly 35%. The projected Nusselt number (NuP) 

increases up to 50% as the pin density doubles from 4 to 8 columns. However, the 

total Nusselt number (NuT) is slightly enhanced with greater pin density, from 4 to 8 

columns for solid and notched pins and from 4 to 6 columns for perforated pins, 

whereas no further enhancement is seen when increasing the number of pins up to 

11.  

In terms of the possibility of heating power to the desktop PC CPU for waste 

heat dissipation, the CPU temperature and the fan power increase when increasing 

the supplied heating power from 10W to 90W. For example, the pressure drop of the 

solid (0P) increases by nearly 4% while it is almost 6% and 8% for the 7.5N and 3P 

pin models, respectively, when increasing supplied heat flux.  

Generally, under the same conditions, the heat dissipation performance will be 

enhanced with more pin columns while the pressure drop will increase. Furthermore, 

the perforated PHS (3P) has the lowest CPU temperature and largest NuT, NuP while 

the notched PHS (7.5) has the lowest pressure drop to satisfy the electronic cooling 

applications at these conditions of pin density and applied heating power.  
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9 Chapter Nine: Conclusions and Recommendations 

9.1 Main Conclusions 

The main conclusions of this study can be divided into three parts: perforated 

pinned HSs, slotted and notched pinned HSs, and the practical limitations with 

optimised pinned heat sink design. Collectively, the PHSs with perforations provide 

an effective cooling technique to enhance the thermal hydraulic characteristics of 

heat sinks by improved airflow mixing and increasing of the surface heat transfer 

area with less fan power required. 

9.1.1 Perforated PHSs  

The following major conclusions for the perforated pinned HSs have been 

determined from the present study: 

1. The thermal airflow characteristics experimental data of the perforated (3P) 

PHS model are improved compared with the solid (0P) PHS. The Nusselt 

number of 3P model is higher while the pressure drop, fan power and CPU 

temperature are lower than that of 0P model. 

2. The maximum deviation between the experimental and numerical results 

with constant air properties is acceptable within 10-15% for solid (0P) and 

perforated (3P) models, given the practical difficulties of fabricating PHSs 

with several perforations, when slight misalignment of the perforations with 

the dominant airflow direction and finite perforation surface roughness may 

occur. A further source of error for the heat transfer measurements may be 

due to the additional thermal resistance because of the brazing process, where 

the brazing material did not completely fill the gap between the pins and the 

base plate.  

3. Numerical results with variable air properties are closer to the experimental 

results, within 5-10% for the solid (0P) and perforated (3P) models. Since the 

air viscosity will increase with increasing air temperatures, more pressure 

drop is required to push the air through the heat sink. 
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4. The Nusselt number of the perforated PHSs increases with the presence of 

more perforations, up to the maximum NuT and NuP values for the 3P model 

with 3 perforations and the 5P model with 5 perforations, respectively, 

compared with the solid (0P) PHS.   

5. The pressure drop and pressure drag coefficient reduce with increasing 

numbers of perforations. Thus, the fan power consumption is reduced for the 

perforated PHSs compared with the solid PHS design.   

6. The average CPU temperature (Tcase) of the perforated PHSs is lower than 

that of the solid PHS (0P) design.   

7. To maximise the benefits from the perforations, care must be taken to ensure 

that they are aligned with the dominant flow direction and manufactured with 

a good-quality surface finish. 

8. The change of perforations vertically for the 2P and 3P PHS models only has 

minor influence on the heat transfer enhancement. Since the perforations are 

uniformly distributed along the pins, the formation of localised air jets 

through perforations is also uniform along the pins. In addition, the 

conductive heat transfer for the perforations at the bottom of the pins may be 

not enough to augment the Nusselt number due to removing a part of the pin 

material at the bottom of these pins. 

9. When the perforations are moved from the centre to the outside of the pin fin 

(horizontal perforations movement), the Nusselt number reduces while the 

pressure drop increases. This may be due to vanishing the localised air jets 

near the perforations and reducing the porosity of the pins and increasing the 

blockage to the airflow passing over them. 

10. Staggered arrangements for both the solid and perforated PHSs have the 

lowest CPU temperature compared to the in-line arrangement under the same 

boundary conditions, while the staggered pin array has the largest pressure 

drop. 

11. The different configurations of perforations shapes show a compromise 

between the choices of either the elliptic perforated pins, 3EP, which provide 

the smallest amount of pressure drop and fan power, or the circular 

perforated pins, 3CP, which have the lowest CPU temperature and highest 

Nusselt number. 
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12. The optimum design of the singular perforated PHS (1P), the perforation 

diameter (d) and the height of perforation (y) have an insignificant effect on 

the objective functions, Tcase and Pfan.  

9.1.2 Slotted and Notched PHSs 

In the case of the rectangular perforations, slotted, SPHSs, and notched, 

NPHSs, the following conclusions can be drawn from this study: 

1. The perforations etched into the top of the pins, slotted pins, may offer a 

more practical means of manufacturing perforated PHSs. For example, either 

wire Electrical Discharge Machining could be used to directly cut into the 

notches, or a series of thin cutting discs mounted on a common shaft could be 

used with support to the pins provided through a jig. This would also retain 

the high thermal conductivity between the pin and the plate of a heat sink cast 

from a single block. 

2. The Nusselt number might not represent the actual heat transfer rate from 

heat sink. Because the calculation of the Nusselt number depends on the heat 

transfer coefficient (h) and the characteristic length (X) and each of these 

parameters are found in different procedure. Hence, it is required another 

thermal parameter to evaluate the thermal performance of heat sinks that 

might be the CPU temperature. 

3. The solid PHS (0P) design has NuT slightly higher than those of the slotted 

and notched pins, while the NuP of the new SPHSs and NPHSs is the largest. 

The maximum percentage of increase is seen in NuP for the slotted (10S) 

model compared with the other pin fin designs. 

4. Nusselt number based on the projected surface area of a PHS, NuP, may be a 

more effective measure of a heat sink’s cooling capacity for a given PHS size 

compared with Nusselt number based on the total wetted surface area of a 

PHS, NuT. 

5. The average CPU temperature (Tcase) of the slotted and notched pins is 

slightly lower than for the solid pin model.  

6. With respect to the fan power or pressure drop, the SPHS and NPHS designs 

use a smaller amount of fan power compared with the solid pins. The slotted 

(10S) pin model uses the lowest fan power. This results in the fan power 
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consumption of the SPHSs and NPHSs being smaller than that of the solid 

(0P) PHS model. 

7. The optimum design of the notched perforations has demonstrated the 

practical compromise that has to be struck between a low processor 

temperature (Tcase) and the fan power needed to achieve the required rate of 

cooling.  

8. The Pareto curve shows the minimum Pfan that can be experienced while 

ensuring that Tcase should be below the reference critical temperature of 85oC. 

9.1.3 Pin Density and Applied Heat Flux  

General conclusions regarding the application limitations of PHSs have been 

discovered from the present study: 

1. In terms of pin density, the projected Nusselt number (NuP) increases up to 

50% as pin density doubles from 4 to 8 columns for all models. However, 

halving the pin number from 8 to 4 pins would reduce pressure drop by 

roughly 35%. 

2. The CPU temperature reduces and the NuP enhances as pin density increases 

while the fan power increases.    

3. With respect to the possibility of heating power applied on the desktop PC 

CPU for waste heat dissipation, the CPU temperature and the fan power 

increase when increasing the supplied heating power from 10W to 90W.  

4. The comparison between the circular perforated pins, rectangular slotted and 

notched pins highlights that a compromise needs to be struck between the 

choice of perforations since the larger enhancements in heat transfer with 

multiple circular perforations come at the price of both a significantly 

increased power consumption and, perhaps most importantly, a much more 

complex manufacturing process. 

5. The total weight of these pins decreases when increasing the number of 

perforations or the open slotted and notched area; this results in saving 

material when manufacturing the pin fins and lighter assembly as well. 

Furthermore, the cost and energy of the force required to drive the air fan 

(fan power) will reduce remarkably.  
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Generally, at the same conditions of pin density and applied heating power, the 

perforated pinned heat sink (3P, 5P) models have the largest NuT, NuP and lowest 

Tcase. If the fan power and pressure drop are considered, however, the notched PHSs 

are superior to those of the perforated PHSs. That is because the porosity of the 

notched pins is larger when compared with the perforated pins, leading to increasing 

the airflow passing across the pins. In addition, the notched pins are much more 

practical. 

Finally, this study provides a mechanism for designing the optimal 

perforations for specific heat transfer, fan power consumption and heat sink weight 

requirements. 
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9.2 Recommendations for Future Works 

The following points are suggested for future studies: 

1. The investigation of unsteady flow effects (e.g. vortex shedding) could be 

proposed as a future consideration. 

2. Perforated heat sink models such as perforated pinned HS, perforated strip 

fins HS, perforated plate fin HS, perforated folded fin HS and on lateral 

perforation plate fins HS can be experimentally and numerically investigated 

using water, Nanofluids, and polymers liquid as a coolant for forced and 

natural convection heat transfer and fluid flow. 

3. The thermal and airflow characteristics of perforated strip fins heat sink can 

be experimentally and numerically conducted for forced and natural 

convection heat transfer and fluid flow.      

4. It is recommended that the experimental and numerical investigation of 

natural convection heat transfer and fluid flow should be studied for 

perforated pinned heat sink models. 

5. The perforations can be employed for other types of fins, such as square pins, 

elliptic pins, and compact plate-pin heat sinks to study the thermo-fluid 

characteristics using air, water, Nanofluids, and polymer liquid as a coolant 

for forced and natural convection heat transfer and fluid flow. 

6. The perforations might be employed for other applications that require 

remove amount of heat such as solar collectors, PV panels, turbine blades etc.   

7. Investigate the effect of noise and vibration of high level of inlet fluid on 

thermal and hydraulic characteristics of solid and perforated heat sinks. 
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Appendix A: Drawing of Experimental Rig Design 

The parts of experimental rig design such duct and test sections are illustrated 

as drawing figures in this appendix. All dimensions in mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

Figure A 1: Insulation Teflon plate views 
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Figure A 2: Other plate of duct views 
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Figure A 3: Top Plate of duct views 
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Figure A 4: Side plate of duct views 
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Figure A 5: Solid pinned heat sinks (0P) model views 
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Figure A 6: Perforated pinned heat sinks (3P) model views 
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Figure A 7: Final rig design assembly with three views 
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Appendix B: Experimental Uncertainty Analysis 

By following Holman J. P. (2011) and McClinctock, (1988), errors in 

experimental testing can be generally classified into two groups: precision errors 

(random errors) and bias errors. Precision errors are discovered via a lack of 

repeatability in the experimental measurement output and can be reduced by 

generating multiple results and averaging them. Main sources of the bias errors are 

calibration errors, an accuracy of measurements devices. Thus, it is often difficult to 

detect these errors to the experimenter and reduce them. The experimental errors can 

be given within a certain range of uncertainty. The uncertainty range of experimental 

test (Un) that is associated with experimental parameters results (ψ) as a function of 

other measured variables (A, B, C,….., Z) are found in this section with utilised 

accepted errors analysis,  
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The uncertainties of each of the sensors and instruments in the experiment are 

evaluated. The effect of these uncertainties on the values of convective heat transfer 

coefficient, Nusselt number, thermal resistance, pressure drop, fan power, and 

pressure drag coefficient is then. 

Therefore, the uncertainty of heat transfer characteristics can be expressed as: 

Heat transfer rate; 
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For solid pin fins   
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For perforated pin fins 
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Where, the uncertainty of thermocouples (UnT), voltage (UnV) and current (UnI) of 

power supplied (Aim-TTi EX354RD, EX-R Series) are ±0.5oC, ±0.003V, and 

±0.006Amps, respectively. The number of pin fins (N) is 64.  

The uncertainty of Nusselt number; 
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Thermal resistance uncertainty; 
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The uncertainty of airflow characteristics such as; pressure drop, fan power, and 

pressure drag coefficient can be expressed as: 

Pressure drop; 
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The uncertainty of fan power; 

P. U.A= P cfan   
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 where, (n) is number of pins rows and the uncertainty of air velocity (UnU) is ±0.1 
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The uncertainty of pressure drag coefficient  

Pd= ∆P/0.5ρ.U2 
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As a result of that, the minimum and maximum uncertainties of the thermal and the 

airflow relevant parameters such: heat transfer coefficient, Nusselt number, thermal 

resistance, fan power, and pressure drop coefficient are illustrated in Table B.1.  

Table B.0.1: Uncertainties of Experimental Parameters Studies 

Parameters Uncertainty  Parameters Uncertainty  Parameters Uncertainty  

have ± 2.5% Rth ± 2% Pd ± 2% 

Nu ± 2.5% ∆P ± 2% T ± 0.5oC 

 

 

 


