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Abstract 

This thesis concerns the rational design of supramolecular metal-complexes and 

assemblies through combination of tripodal ligands and geometrically directing 

metallotectons. The aim of this work is to impart functionality into the resultant 

complexes, with a view towards applications exploiting the inherent luminescent 

emission of the systems.  

The metallotectons discussed in this thesis all derive from low-spin d6 metal centres, 

with incorporation of ancillary ligands designed to retain and modulate the resultant 

luminescent emission leading to high-fidelity control over the emissive outcome.  

Three families of complexes were synthesised; incorporating Re(I), Ru(II) and 

Ir(III) in combination with supporting ancillary ligands and a pair of bi-dentate 

bipyridine-appended cavitand ligands. The photophysical properties of these 

systems were investigated and rationalised with respect to both the structural motif 

of the cavitand ligands and the structure of the metallotecton.  

The Ir(III) family of complexes was expanded upon to give rise to both tri-metallic 

and mono-metallic systems, retaining vacant coordination sites. These vacant sites 

were subsequently exploited in the formation of heterometallic and heteronuclear 

assemblies employing secondary Ir(III) metallotectons and Ru(II) metallotectons 

respectively. This novel, modular approach allows for high-fidelity control over the 

emission properties and gives rise to a „function-driven‟ route towards metallo-

supramolecular design. 

The self-assembly of the aforementioned d6-metallotectons in combination with 

mono-dentate cavitand ligands was also investigated, leading to the formation of the 

first example of an ambi-dentate heteroleptic Re(I) metallocryptophane and a Ru(II)-

cornered metallo-cube. A family of novel luminescent Ir(III) metallocryptophanes 

were also formed, one of which was crystallographically elucidated. The emission 

colour was modulated between blue-green and intense yellow luminescence 

depending on the nature of the ligand, and with large internal cavities these cages 

possess potential in host-guest chemistry. 
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1 Chapter 1 

Introduction  

1.1  Overview 

This thesis contains work that combines targeted, rational design of metallo-

supramolecular complexes with a view towards a functional output, in this case, the 

emission of light. This chapter will introduce the fields of luminescent emission, the 

application of the resultant emissive complexes in a wider context, as well as the 

vast area of supramolecular chemistry and the subset of metallo-supramolecular 

assemblies, with a focus on the cyclotriveratrylene family of compounds. This 

research will be placed in the context of current literature, providing evidence for the 

relevance and significance to the aforementioned fields.  

1.2 Luminescence 

In the most fundamental terms, luminescence is the emission of light. The emission 

of light is usually induced through an external factor, such as absorption of a 

specific wavelength of light or the passing of an electric charge across the sample. 

These two processes are sometimes split into photoluminescence and 

electroluminescence, but both processes involve the excitation of an electron from 

the ground state into an excited state, and it is the subsequent relaxation of the 

excited state electron that is concomitant with the emission of a photon of light, in 

order to balance the energy of the system.  

Photoluminescence requires the use of a photon source, either a lamp or laser, to 

generate photons of a complementary wavelength to the energy level separations in 

a particular molecule. A photon is a quantised unit, thus depending on the 

wavelength applied it delivers a known quanta of energy to the system, and therefore 

the excitation wavelength is determined by energy levels of each complex.  
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Figure 1.1: Simplified schematic to show the basic premise of photoluminescence. 

As demonstrated in Figure 1.1, the absorption of a photon of light (1) induces the 

excitation of an electron in the ground state to its corresponding excited state (2). As 

that excited state electron relaxes back down to the lower energy ground state (3) the 

system must get rid of the excess energy through the emission of light (4), thus 

reforming the ground state (5). Due to vibrational relaxation, occurring in the 

excited state, and non-radiatative decay pathways, the energy of the emitted light 

will always be lower than that which was absorbed, this phenomena is known as the 

Stokes Shift.   

Electroluminescence is an analogous process, whereby an electric current is passed 

through the luminescent complex, leading the generation of „hole carriers‟, electron 

poor regions, and „electron carriers‟, electron rich regions.1,2 This is essentially a 

redox process, whereby simultaneous reduction and oxidation occur. When these 

two regions recombine, they re- form the ground state but also generate an exciton, 

which can be thought of as analogous to the excited state formed in 

photoluminescence. This exciton subsequently undergoes a similar relaxation 

process whereby it releases excess energy to return to the ground state through 

emission of light.  
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Figure 1.2: Simplified schematic to show the basic premise of 

electroluminescence. 

The energy gap of the excited and ground state electrons in the exciton can be 

thought of as analogous to the HOMO (highest-occupied-molecular-orbital)-LUMO 

(lowest-unoccupied-molecular-orbital) gap of the molecule, therefore judicious 

ligand design incorporating electron withdrawing/donating groups can lead to high-

fidelity control over the energy gap and thus the emission wavelength.  

 

           

Figure 1.3: (a) Simplified schematic depicting the HOMO-LUMO energy gap, (b) 

colour-coded chemical structure of a model iridium complex. 

Thus, if the locations of the HOMO and LUMO within the complex are known, or 

can be inferred from previous density functional theory (DFT) studies, then control 

over the emission wavelength is possible. The structure of the model iridium 

a) b) 
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complex [Ir(ppy)2(bpy)] is shown in Figure 1.3. Through extensive DFT studies and 

previous experimental evidence,3–9 the LUMO on this molecule is known to reside 

mainly on the bipyridine ligand, whilst the HOMO is mainly iridium with some 

phenylpyridine character. Therefore, by functionalising the phenylpyridine ligand 

with electron withdrawing groups, such as fluorine, the energy of the HOMO is 

lowered leading to a larger energy gap between the HOMO and LUMO, which in 

turn leads to a blue shift in emission. The converse is also true; if the bipyridine is 

functionalised with electron withdrawing groups, the energy of the LUMO is 

lowered and the emission red shifted.   

1.2.1 Phosphorescence 

Phosphorescence is a subset of luminescence, whereby the emission of light is 

delayed due to a series of energy level conversions occurring within the mo lecule 

before the final relaxation step.  

As shown in Figure 1.4, a simplified Jablonksi diagram, both fluorescence and 

phosphorescence are the emission of light due to an excited state electron relaxing to 

the ground state. However, fluorescence only involves the singlet energy levels; an 

electron is promoted to the excited singlet state (Sn) through absorption of a photon 

of light, this decays to the lowest excited singlet state (S1) through internal 

conversion (vibrational relaxation) before decaying back to the electronic ground 

state through fluorescent emission of light. The wavelength of the emitted light will 

be longer, due to the inverse relationship between wavelength and energy, as some 

of the absorbed energy is lost during internal conversion. Fluorescent lifetimes are 

usually of the order of nanoseconds due to the spin-allowed nature of the transitions 

resulting in emission.10,11  
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Figure 1.4: Simplified Jablonksi diagram, showing both fluorescence and 

phosphorescence processes. 

Phosphorescence, however, is a more convoluted process. An analogous absorption 

process occurs, promoting an electron to an excited singlet state which decays to the 

lowest excited singlet state through internal conversion. However, instead of 

undergoing fluorescence at that point, inter-system crossing can occur. ISC is 

formally spin-forbidden, as the spin selection rule states that transitions between 

states of a different multiplicity cannot occur. Nonetheless the presence of a heavy 

metal can often lead to strong spin-orbit coupling, as observed with late transition 

metal complexes discussed in this thesis. The coupling of spin and orbital angular 

momentum leads to mixing of the singlet and triplet states, therefore relaxing the 

spin-forbidden nature of the ISC transition. Once the electron has populated the 

excited triplet state it once again undergoes internal conversion to the lowest excited 

triplet state (T1) before relaxing to the electronic ground state, however, as this 

transition (S0T1) is also spin-forbidden, the lifetime of phosphorescent emission is 

often much longer than the corresponding fluorescent emission.12  

The focus of this thesis will be the phosphorescent properties of the low-spin d6 

metals; Re(I), Ru(II) and Ir(III). These metals, when supported by polypyridyl 

ligand scaffolds, are known to possess strong phosphorescent emission that has 

found applications in a wide range of fields.13–24  
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1.2.2 Applications 

As mentioned in the overview of this chapter, the aim of this project is to design a 

system that possesses a specific function. This function, the emission of light, has 

many end-use applications that as such dictate the type and specificity of emission 

required.  

Whilst there are numerous applications for phosphorescent metal-complexes, the 

main categories are bio-medical imaging,14,18,23,25–27 the formation of organic light 

emitting diodes (OLEDs)2,20,22,28–30 and light emitting electrochemical cells 

(LEECs)31–36 and dye-sensitised solar cells (DSSCs).3,37 

1.2.2.1 Biomedical Imaging 

Bio-medical imaging is a vast field in itself, encompassing positron emission 

tomography (PET), magnetic resonance imaging (MRI) and fluorescence 

microscopy, to name but a few. The most relevant to this body of work is clearly 

fluorescence microscopy, whereby cells and/or tissue samples are injected with a 

solution containing a luminescent emitter. This imaging agent is taken up by the 

cells and will localise in specific areas preferentially, after excitation by a precise 

wavelength the imaging agent will emit light, giving a visual representation of the 

cell itself. The localisation of the imaging agent can be controlled through targeted 

design of the chromophore, to give information about a particular area of 

interest.23,27,38  

Rhenium(I) systems containing polypyridyl ligand supports have been widely 

explored in this setting.25,39–42 The synthesis of systems of the form 

[Re(CO)3(N^N)]X, where N^N is any bis- imine bidentate ligand, and X− is any 

anion, from the rhenium pentacarbonyl halogen precursor is relatively facile. The 

latent bound anion can subsequently be exchanged for a functionalised pyridyl unit; 

this pyridyl is generally considered the driving force towards specific cell 

localisation.27 Judicious functionalisation of this unit can lead to targeted uptake; 

such as that exhibited by Lo et al whereby they appended a fructose moiety to target 

the mitochondria,40 or Coogan et al whereby they mimicked a thiol receptor to target 

cysteine residues also present in the mitochondria.38  
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Figure 1.5: Chemical structure (a) and confocal microscopy images of a fructose 

appended imaging agent, (b) MCF-7 breast cancer cells incubated with the 

agent shown in a, (c) a known mitochondrial imaging agent, (d) overlay of 

both imaging agents depicting co-localisation of the two imaging agents. 

{Reprinted with permission from Organometallics, 2013, 32 (18), pp 5098–

5102. Copyright 2013 American Chemical Society40}. 

There are also instances of iridium(III) polypyridyl complexes of the form 

[Ir(N^N)(C^N)2] being employed in con-focal cell imaging,18,43 with the Lo group 

once again providing many examples.14,18  

a) 

b) c) d) 
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Figure 1.6: Chemical structure (a) of Iridium(III) imaging agent, (b) HeLa cells 

incubated with the imaging agent shown in a, (c) a known mitochondrial 

imaging agent, (d) overlay of both imaging agents depicting co-localisation 

of the two imaging agents {Reprinted with permission from Inorg. Chem., 

2015, 54 (13), pp 6582–6593. Copyright 2013 American Chemical Society.14}. 

One of the advantages of employing the aforementioned low-spin d6 metal 

complexes as luminescent cell imaging agents, other than their relatively large 

Stokes Shifts, is the generally longer lifetimes seen when compared to organic 

fluorophores.12,14,23,25,44,45 This phenomenon means that time-gated collections can 

be performed, whereby any short- lived emission from endogenous fluorophores 

present in cells can be allowed to decay before the collection is begun. This leads to 

a more accurate representation of the localisation of the imaging agent.  

Whilst the application in biomedical imaging employing the complexes discussed in 

this thesis has not been explored, there is no reason why it could not be in the future. 

The tri-metallic nature of the emissive complexes synthesised herein, particularly 

the heteroleptic and heteronuclear systems, could lead to ratiometric probes, self-

calibrating the concentration of a particular target molecule or the imaging agent 

itself.  

1.2.2.2 OLEDs and LEECs 

Rather than exploiting the photoluminescence of these types of metal complexes, the 

electrochemical luminescence can also be harnessed.  

a) 

b) c) d) 
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Organic light emitting diode devices have been around for many years; however the 

incorporation of transition metal complexes as the emissive layer is a more recent 

development.  

Tang and VanSlyke developed one of the first OLED devices in 1987 containing a 

tris-chelated aluminium centre,46 whilst Burroughes developed the first OLED 

containing polymeric poly(p-phenylene vinylene) in 1990.47 It took 8 years before 

the incorporation of an emissive transition metal component, namely a platinium 

porphine,48 leading to a new series of OLEDs containing phosphorescent metal 

complexes as the emissive layer.49  

 

Figure 1.7: General schematic depicting the multitude of layers required for 

OLED fabrication. Adapted from reference 50. 

Despite the array of transition metal complexes that could potentially be 

incorporated into the OLED design, the fabrication of such devices is nowhere near 

facile. Many of the sublimation/deposition processes for the individual layers need 

to be performed under a rigorously controlled inert atmosphere or indeed a high-

vacuum environment. The difficulty in fabrication leads to high cost, which in turn 

limits the real-world applications. 

Light emitting electrochemical cells, on the other hand, have a much simpler 

construction, as shown in Figure 1.8.  
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Figure 1.8: General schematic depicting the set-up of LEEC formation. Adapted 

from reference 35. 

The emissive layer in LEECs is generally a positively charged transition metal 

complex, such that when an electric charge is applied, the counter-ions and metal 

centre are separated towards the appropriate cathode/anode. This design gives rise to 

easily accessible hole/electron carriers without the need for external 

transport/injection layers.  

LEECs were first reported by Pei et al. in 1995, whereby a highly conjugated 

fluorescent polymer was used as the emissive layer.51 Ionic transition metal complex 

containing LEECS, commonly referred to as iTMC-LEECs, were then subsequently 

reported by Lee et al. in 1996, when a ruthenium polypyridyl complex was 

employed.52 The ruthenium tris-chelate complex, containing three sulfonate-

appended phenanthroline ligands, was spun into a thin film before incorporation into 

the device. This marked the first example of combining the well-established field of 

transition metal luminescence into electroluminescent devices. Since that seminal 

example, many groups have reported LEECs formed from both ruthenium53 and 

iridium54 tris-chelate complexes, with a recent review highlighting almost 40 

iridium complexes that have been included in light-emitting electrochemical cells.55  

The sheer volume and variety of ionic iridium complexes employed in the formation 

of LEECs means that emission over a wide array of the colour spectrum can be 

achieved. For example, blue light emission can be achieved through employing bis-

imidazole type ligands as the N^N component,56 yellow emission employing 

difluorophenylpyridine and a spirobifluorene ligand system57 and red emission 

employing a tert-butyl appended phenylpyrazole and a biquinoline ligand 

combination.58  
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1.3 Supramolecular Chemistry 

Supramolecular chemistry is a vast field, with a wide range of potentially 

contentious definitions. The most commonly applied definition is that coined by the 

pioneer of the field, Jean-Marie Lehn when he described it as „chemistry beyond the 

molecule‟.59 Although, the precise definition of a „molecule‟ itself has recently been 

the subject of much contention, with the distinction between molecule, complex and 

supra-molecule being hotly debated, particularly with respect to mechanically inter-

locked species such as [n]-catenanes and rotaxanes.  

The generally accepted designation is an assembly held together through non-

covalent interactions; that is not covalently bound through the sharing of electrons. 

These non-covalent interactions can be categorised into sub-sections; electrostatic, 

Van Der Waals, π-effects, hydrogen bonds and the hydrophobic effect. These 

interactions lead to synergistic and complementary assembly and disassembly 

processes, whereby a complex mixture of sub-components can re-arrange into the 

most favourable thermodynamic product over time.59–62 This phenomenon is 

sometimes termed self-organisation or molecular recognition and can lead to the 

formation of enantiomerically pure structures from racemic precursors or the 

formation of two distinct assemblies through a parallel self-sorting process.63 The 

assembly-disassembly process can be exploited through the formation of dynamic 

combinatorial libraries (DCLs), whereby hundreds of potential assemblies form in 

solution rapidly, under kinetic control, and over time the stability of the resultant 

architectures governs the preferred thermodynamic product. This approach, relying 

on the energy levels of the dynamic system, can allow access to highly complex 

assemblies that could otherwise be unobtainable.  

1.3.1 Metallo-supramolecular Chemistry 

Metallo-supramolecular chemistry is a sub-set of supramolecular chemistry that 

exclusively deals with the formation of metal-containing assemblies. Over the years, 

there have been numerous examples of strikingly complex supramolecular 

assemblies formed through use of metal centres and carefully designed ligand 

systems.64–78 One of the main aspects of these metallo-systems is the idea of self-

repair; whereby the covalent bonds between metal and ligand-donor group are 
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sufficiently labile to fdacilitate self-correction, the breaking and reforming of bonds 

towards a favoured product.   

  

Figure 1.9: (a) Stoddart's Molecular Borromean rings,72 each mechanically 

interlocked ligand shown in a different colour, and (b) Leigh's Solomon 

Link,68 one ligand shown in orange to highlight the interlocked nature of the 

assembly. 

Examples of assemblies that can be accessed through self-assembly, but were 

previously difficult to access through classical step-wise organic synthesis are 

topologically complex architectures. Topological complexity is just one of the ways 

further complexity can be imbued to the resulting assemblies, whereby complex 

knots and mechanically interlocked molecules are formed, sometimes with a degree 

of templating. For example, both topologically complex assemblies, shown in Figure 

1.9, are formed through the self-assembly of zinc(II) cations and nitrogen donor 

ligand scaffolds. Stoddart‟s Borromean rings form through the concomitant 

formation of 12 imine bonds along with metal b inding events, whilst Leigh‟s 

Solomon link starts by forming a metal-bound interwoven grid array, then undergoes 

alkene metathesis to ring close the ligands, leading to a mechanically interlocked 

arrangement.  

Examples of the type of topological complexity that can be imparted through met-

directed self-assembly are shown in Figure 1.10.  

a) b) 
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Figure 1.10: Examples of topologically complex interlocked molecules with the 

topological name underneath.{Reprinted with permission of Chem. Rev., 

2011, 111 (9), pp 5434–5464. Copyright 2011, American Chemical Society} 

There have been numerous examples of topologically complex assemblies since the 

initial pioneering report by Sauvage of an interlocked catenane motif79 and the 

subsequent molecular trefoil knot; the general structure of both knots are shown in 

Figure 1.10.80 The Hopf Link, or Catenane, is the simplest of the topologically 

complex knots, whereby two rings are interlocked mechanically, with no chemical 

bonds holding the assembly together.  

Other examples include Borromean rings;72,77,81–83 where three distinct rings are 

interwoven, but no two rings are catenated. Solomon links;68,75,84 where two cyclic 

ligands are interwoven such that there are four crossing points, and the analogous 

cubes85 have also been synthesised by the groups of Leigh, Severin and Trabolsi. 

Further examples of catenanes74,84,86–97 and trefoil knots84,98 have also been formed. 

Many of these syntheses rely on either dynamic imine formation, to allow for self-

correction, or templation effects to pre-arrange the individual components. Sauvage 

employed the well-defined tetrahedral geometry of a Cu(I) salt to direct the 

formation of the first [2]-catenane, exploiting the orthogonal nature of two chelating 

phenanthroline ligands, from which the interlocked arrangement could be „closed‟. 

Whilst Stoddart has employed metal-directed templation effects, such as the 

chelation of metal ions,72 his group have also formed highly complex organic 

interlocked systems that exploit π-π stacking and electrostatic interactions of 

charged pyridinium units.88,99–101  

Apart from the aesthetic appeal of these complex, interwoven assemblies, they 

provide possible routes to molecular devices that could potentially mimic processes 

that occur in nature, such as cargo transport.60,102–104  

Trefoil Knot Pentafoil 

Knot 

Hopf Link 
[2]-Catenane 

Solomon 

Link 

Star of David 

Catenane 
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Figure 1.11: A series of Fe(II) tetrahedra from the Nitschke group, including (a) 

an Fe4L6 cage105 that stabilises P4 and (b-d) Fe4L4 face-capped tetrahedra 

that can encapsulate various guest molecules, with one ligand highlighted in 

orange.65,106 

The reversible nature of dynamic imine bond formation has been utilised extensively 

by the Nitschke group. By employing the in situ imine bond formation in 

conjunction with various iron salts, a whole library of tetrahedral cages have been 

formed, some of which are shown in Figure 1.11. Both linear linkers, Figure 1.11 

(a), and trigonal face-capping ligands, Figure 1.11 (b-d), have been utilised to form 

Fe4L6 and Fe4L4 assemblies.65,105–108 Through modulation of the ligand component, 

the size of the internal cavity of the cage can be controlled, thus leading to selective 

uptake of specific guests dependant on their size or shape.106,107,109,110 This approach 

leans towards “molecular container” design, whereby a guest, potentially a volatile 

or hazardous compound, can be contained within a cage structure.111–113 To build 

upon this, cages could be designed such that a specific reaction could occur within 

a) b) 

c) d) 
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through restriction of the size or shape of an intermediate, such as those designed by 

Fujita et al.,114 or even control the chirality of the product.115  

Of the discussed metallo-supramolecular assemblies, many are formed from labile 

transition metal salts, generally with non-coordinating anions. The lack of 

geometrically directing ligands pre-bound to the metal centre means that a greater 

variety of resultant structures are possible. A particularly common motif is square 

planar palladium(II) salts with N-donor ligands, leading to a host of open framework 

structures, cages and larger assemblies.85,90,116–127 By employing ambi-dentate N-

donor ligands with defined binding angles, the formation of predictable libraries of 

assemblies are possible. This iso-structural arrangement can be achieved through 

elongating the linker- ligand through use of a spacer group, or to favour a particular 

assembly through use of more sterically bulky ligand scaffolds.124,128   

However, in recent times there has been a concerted effort to move towards directed 

assembly; targeting specific structures by employing either rigid linker ligands or 

geometrically directing metallo-tectons, or in fact a combination of both. The use of 

metallo-tectons leads to more predictable outcomes with respect to self-assembly, 

and the ability to target a specific desired 3D structure.  

Two of the most common tectons towards geometrically targeted structures are the 

palladium ethylenediamine [Pd(en)]2+,94,116,129 and palladium bis-

diphenylphosphinopropane units,93,130 as shown in Figure 1.12. These cis-protected 

metallo-tectons provide strong geometric direction; with two of the cis-sites on the 

square-planar metal blocked by the chelating ligand, the only accessible binding 

sites that remain are the opposite cis-sites. This approach leads to metallo-

assemblies of a predictable geometry, simply through consideration of the angles in 

the linker- ligand and the angles of the available binding sites on the metal.  
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Figure 1.12: SCXRD structures of (a) a porphyrin-panelled trigonal prism131 and 

(b) Pd6L4 octahedron132 from the Fujita group, both directed by the Pd(en) 

tecton. Counter-ions removed for clarity. 

As evidenced in Figure 1.12, cis-protected palladium tectons can result in diverse 

3D structures dependant on the shape, binding angle and number of binding sites 

available at the ligand. The assembly in Figure 1.12 (a) describes a triangular prism, 

with three porphyrin „panels‟ describing the rectangular faces of the prism, and the 

Pd(II) centres describing the vertices.131 Whilst Figure 1.12 (b) displays an 

octahedral assembly where half of the faces are capped by the tripodal tri-

pyridyltriazine ligand and the six vertices are described by the Pd(II) centres.132  

The ability to design 3D structures through use of metallo-tectons is by no means 

restricted to square planar Pd(II); there are numerous examples of octahedral metals 

where one tripodal face has been capped to leave three orthogonal binding sites. As 

this thesis is concerned exclusively with low-spin d6 metal centres, a sub-set of 

directed assemblies that are highly pertinent are the metalla-rectangles and metalla-

cages formed through combination of face-capped “piano-stool” Ir(III), Rh(III) and 

Ru(II) metallotectons. 

a) b) 
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Figure 1.13: Cp*-capped metalla-assemblies, (a) Ir metalla-rectangle133 (b) Rh 

metalla-rectangle134 (c) Ir metalla-cage135 (d) Rh metalla-cage.135 Ir atoms 

are shown in green, Rh atoms in purple, one linking or face-capping ligand 

is highlighted in orange, one bidentate bridging ligand is highlighted in pink 

and a Cp* ligand is highlighted in cyan. Solvent and counterions removed 

for clarity. 

The types of assemblies as shown in Figure 1.13, are generally formed in a two-step 

procedure whereby two of the geometrically restricted metallotectons are bridged by 

a bidentate O,O-donor ligand; this “metallo-clip” provides two almost parallel 

binding sites onto which planar linking ligands can be bound. Directly analogous to 

the aforementioned Cp*-M(III) systems, assemblies containing the ruthenium p-

cymene metallotecton can also be formed.70,136–140 Metalla-assemblies of this type 

are not just visually attractive; they also possess promising anti-cancer activities, 

particularly examples from Therrien.137–139 The highly charged assemblies, one of 

which is displayed in Figure 1.14, (b), show good cell uptake and promising 

cytotoxicity towards cancerous cell lines. Another example from Dyson et al, 

formed from the tri-pyridyl triazine planar ligand, has been shown to encapsulate 

both Cisplatin and other platinium compounds, increasing their cytotoxicity towards 

ovarian cancer cell lines.137 

a) b) 

c) d) 
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Figure 1.14: Ruthenium cage assemblies (a) Chemical structure of Therrien’s 

pyridyl-porphyrin metalla-cage138, where L is a linking bridging oxalato 

ligand (b) ruthenium p-cymene capped metalla-cage136 (c) ruthenium thia-

crown capped Ru6L4 metalla-capsule.141 Ru atoms shown in fuscia, one p-

cymene highlighted in cyan, face-capping ligands shown in orange. Solvent 

and counter ions removed for clarity. 

Also shown in Figure 1.14, (c), is the ruthenium congenor of Fujita‟s Pd6L4 

octahedral assembly, directed through the use of tetra-thiacyclododecane. The Ru6L4 

capsule was shown to be a host for an adamantane-based guest, displaying a visual 

chromic shift upon inclusion of the guest.141  

Conversely there are much fewer Re(I), Ru(II) and Ir(III) supramolecular assemblies 

containing the emissive polypyridyl motif employed throughout this thesis, the 

general structure of that motif is shown in Figure 1.15.  

b) c) 

a) 
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Figure 1.15: Chemical structure of the emissive polypyridyl motif in combination 

with Re(I), Ru(II) and Ir(III) d6 metal centres. 

The above motif can be expanded upon through functionalisation at numerous 

positions, or even expansion to other N^N-donor groups such as pyridylpyrazoles or 

C^N groups such as N-heterocyclic carbenes.6,142–145 One method of exploiting the 

emissive polypyridyl motif in a supramolecular setting is to incorporate it into a 

metal organic framework (MOF). 

MOFs are a significant sub-set of metallosupramolecular chemistry; they consist of 

ridgid linker ligands and metal centres or clusters bound together into 1, 2 or 3 

dimensional assemblies. There are examples of iridium-containing MOFs that 

exploit the catalytic activity of bipyridine-bound iridium centres from the group of 

Wenbin Lin, whilst these systems do not contain the phenylpyridine ancillary 

ligands, they do exploit iridium centres in catalysis.146,147 The Lin group have also 

sysnthesised a phosphorescent MOF employing tris-cylcometallated iridium that is 

capable of sensing molecular oxygen through emission quenching,148 as well as 

incorporating emissive iridium coordination polymers into nano-particals for use in 

biomedical imaging.149  

There are examples of MOFs incorporating other emissive centres into their design; 

such as the [Ru(bpy)3]-Zn cluster MOF and [Ir(ppy)2(bpy)]-Zn cluster MOF shown 

in Figure 1.16.149,150  
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Figure 1.16: Emissive MOFs incorporating (a) Ruthenium centres149 and (b) 

Iridium centres.150 

Most often, these emissive MOFs incorporate a bidentate N^N ligand already 

bearing carboxylate groups, through which the zinc atoms or clusters can bind. The 

design of these systems allows for well-established MOF chemistry to be employed 

whilst also retaining the desired emission properties of the employed metallotectons. 

Retention of the photophysical emission leads to potential applications as solid-state 

sensors for small molecules and guests.  

Discrete examples of supramolecular systems employing emiss ive polypyridyl 

metallotectons are rarer still, with relevant examples shown in Figure 1.17. 

b) 

a) 
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Figure 1.17: (a) Ruthenium cryptate151 (b) Ir4(CN)4 tetramer,152 where 

Ir=[Ir(ppy)2] (c) Ru3L tri-nuclear assembly153 where Ru=[Ru(bpy)2], 

L=tri(bipyridyl)triazine (d) Ir3L where Ir=[Ir(ppy)2] L=tri[3-(2-

pyridyl)pyrazolylmethyl]-trimethylbenzene.154 All solvent and counter-ions 

removed for clarity. 

Figure 1.17 highlights a discrete ruthenium cryptate from the Fletcher group in (a), 

where one ligand provides all three tris-chelating sites for a single ruthenium 

centre.151 Baranoff et al, also report an iridium tetramer, Figure 1.17 (b), employing 

bridging ambidentate cyano/nitrile ligands in combination with an [Ir(ppy)2] 

metallotecton.152 Both of these examples exhibit bright luminescent emission. The 

ruthenium cryptate selectively binds nitrate anions and subsequently displays a 

concomitant decrease in luminescence emission intensity, whilst the iridium 

tetramer exhibits bright green emission with a noteworthy photoluminescent 

quantum yield.  

c) d) 

a) b) 
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The two tri-nuclear examples (c and d) depicted in Figure 1.17, are the most closely 

related complexes to the work presented in Chapters 3, 4 and 5 of this thesis. The 

synthesis of the tri-nuclear ruthenium species, containing the tris-4-(2,2′-bipyridine)-

1,3,5-triazine ligand, was extended to both the di- and mono-nuclear ruthenium 

complexes as well.153 All of the ruthenium complexes based upon this ligand were 

reported to show phosphorescent emission around the 700 nm region. Whilst the tri-

nuclear iridium system, based upon the tri[3-(2-pyridyl)pyrazolylmethyl]-

trimethylbenzene ligand scaffold, exhibits yellow luminescent emission around 

500 nm.154 However, direct comparisons cannot be drawn between the complexes 

discussed in Chapters 3 and 4 and the example above due to the pyridylpyrazole  

binding motif, as opposed to bipyridyl, displayed in Figure 1.17.  

Another subtly distinct group of assemblies are the macro-cyclic supramolecular 

assemblies involving emissive d6 metals. Macro-cyclic assemblies have been 

reported by the groups of Thomas,155–157 Hupp158 and Lees;159 of most relevance are 

the heteronuclear assemblies whereby one or more emissive metal centre is 

incorporated into the assembly in combination with either another emissive centre or 

a non-emissive transition metal acting as a geometric director.  

Metallomacrocycles can retain the luminescent emission of the fluorophore, 

although only the Re4Os4 example from Lees was emissive in acetonitrile solution. 

Through combination of a tri-dentate terpyridyl ligand also appended with a 4-

pyridyl binding site, Lees formed a series of [(Re)4(M)4] metalla-squares, where the 

second metal was either iron, ruthenium or osmium. The [M(tpy)2]2+ fragment was 

pre-formed and employed as a linear linker, however upon formation neither the 

iron or ruthenium assemblies displayed any identifiable emission.  
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Figure 1.18: (a) Chemical structure of emissive Re2Pd2 metalla-square,158 where 

Re=[Re(CO)3Cl] and Pd=[Pd(dppp)]2+ (b) Ru2M2 metallomacrocycle,155 

where Ru=[Ru(bpy)2]2+and M=[Pd(en)]2+ or [Re(CO)3Cl]. 

Hupp‟s Re2Pd2 square, Figure 1.18 (a), was found to retain the strong rhenium-based 

emission at around 625 nm, regardless of incorporation into the supramolecular 

assembly.158 The folded metallomacrocyles of Thomas et al, have been investigated 

thoroughly with regards to not only the intrinsic emission properties,155 but also as a 

host-guest sensor155,156 and in biologically relevant settings.157 The rhenium 

congener retains the 70° angle imparted by the bipyridine bite-angle, leading to a 

„folded- in‟ macrocyclic arrangement. Both the palladium and rhenium containing 

congeners gave remarkably similar phosphorescent emission profiles, 665 nm for 

the Re(I) and 670 nm for the Pd(II) analogue, supporting the conclusion that the 

majority of the observed emission is due to transitions associated with the ruthenium 

centre.  

a) 

b) 
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1.4 Cyclotriveratrylene 

The cyclotriveratrylene (CTV) family of ligands, namely cyclotricatechylene (CTC), 

cyclotriveratrylene (CTV) and cyclotriguaiacylene (CTG), represent a class of 

cavitands that possess a well-defined, hydrophobic cavity when in their “crown” 

form. 

 

Figure 1.19: Chemical structure of the tri-benzo cyclononatriene family of 

ligands, including the chiral cyclotriguaiacylene molecule. 

Due to the hexa-methoxy arrangement around the upper-rim, CTV itself is mainly 

restricted to use as a host for large, globular guests such as fullerenes and 

carboranes. These host-guest assemblies generally form through a „ball-and-socket‟ 

type interaction of a spherical guest with the bowl-shaped cavity.160,161   

CTC has been employed as a ligand scaffold for both tri-nuclear M3L systems162,163 

and in supramolecular self-assembly towards the formation of larger architectures, 

both metallo-164 and organic,165 as well as forming clathrate inclusion complexes in 

the solid state.166  
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Figure 1.20: (a) Cu4L4 CTC tetrahedron,164 face-capping sodium clusters removed 

for clarity (b) Pt3L redox-active tri-nuclear CTC complex,163 where 

Pt=[Pt(dppe)]. 

A common feature to most CTC complexes is de-protonation of the phenolic 

positions to provide a pair of chelating binding sites, as demonstrated in Figure 1.20. 

The platinum example, Figure 1.20 (b), was first reported in 1998 by Bohle and 

Stasko,162 but the interesting redox properties were not investigated until 2015 by 

Halcrow et al.163  

However, the most widely employed congener by far, in a supramolecular setting, is 

the chiral CTG ligand. Due to the alternating methoxy- hydroxyl arrangement 

around the upper rim, the molecule exhibits helical chirality, giving rise to the M and 

P isomers, as demonstrated in Figure 1.19. Tris-substitution of the hydroxyl groups 

through either halo-methyl or acid chloride appended groups leads to formation of 

ether or ester-linked ligand scaffolds.  

a) b) 
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Scheme 1.1: Formation of both ether- and ester-linked CTG ligand families. 

Generally, in the effort towards metallo-supramolecular assemblies, the R-group 

appended contains a metal-binding unit such as pyridyl,85,95,126,127,167–169 

carboxylate170 or N-oxide.171,172 There are, of course, many examples of organic 

CTG-containing molecules, such as organic cryptophanes;173–177 where two CTG 

cavitand ligands are covalently bound in a head-to-head fashion, as well as hemi-

cryptophanes;178–183 where a cavitand ligand is capped by another tripodal ligand 

motif. Organic cryptophanes were first synthesised in the 1980‟s by Collet et al, and 

the subsequent SCXRD data showed the inclusion of a tightly bound 

dichloromethane solvent guest.173,184 Hemi-cryptophanes have also found use in both 

catalysis, where a Zn(II) hemi-cryptophane enhanced the rate of reaction,178,181,185 

and as host-molecules for biologically relevant small molecules.182,186 

There are elegant examples of metallo-supramolecular assemblies derived from 

alternative CTG-type ligands that are not functionalised through the route described 

in Scheme 1.1. The ligands synthesised by Shinkai187 and Schaly,130 directly 

attached pyridyl units and nitrile appended CTG, have been employed in 

combination with the cis-protected palladium source [Pd(dppp)], lead to Pd3L2
 

metallocryptophane assemblies, as demonstrated in Scheme 1.2. 
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Scheme 1.2: Formation of palladium Pd3L2 metallocryptophane assemblies from 

Shinkai187 and Schaly.130 Where Pd=[Pd(dppp)][OTf]2. 

As highlighted in Figure 1.19, CTG-derived ligands are formed as racemic mixtures 

of M and P isomers, depending on the substitution position around the upper-rim of 

the bowl. Thus when combining these ligands to form metallocryptophanes there are 

two potential outcomes; chiral anti-cages comprised of two ligands of the same 

enantiomer, or the meso syn-cages, where one ligand of each enantiomer is included.  

 

Figure 1.21: Enantiomeric description of metallocryptophane cages. M= any 

bridging metal, X= any metal-binding group. 

Figure 1.21 shows the possible enantiomeric combinations of a metallocryptophane 

assembly, the red and blue X-group indicates the chirality of that ligand. The chiral 

MM and PP arrangements are enantiomers of each other, whilst the meso form is 

achiral. 

Although the metallotecton employed and resultant structure achieved by both 

Shinkai and Schaly are similar, the enantiomeric result is different; Shinkai forms a 
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mixture of both anti- and syn-cages, whilst Schaly forms the anti-cages 

quantitatively and immediately. Shinkai did however find that adding an excess of 

the racemic ligand into the reaction drove the formation of the syn-cage. 

Whilst there are numerous examples of coordination-polymers prepared from 

functionalised CTG ligands, incorporating a myriad of metals, counter- ions and 

solvent systems,171,172,188–190 the current drive is towards predictable, targeted, 

discrete assemblies.169,191,192  

The largest discrete CTG assembly to date is the stella octangular; a palladium 

assembly containing eight ligands and six palladium centres, describing the shape of 

a stellated octahedron, Figure 1.22 (a).126 This structure was predicted due to the 

rigid ligand and well-defined square planar geometry of the Pd(II) metal pre-cursor; 

it is repeatable and reliable, and has been seen to form in a variety of solvents, from 

numerous „naked‟ palladium precursors in combination with 4-pyridyl containing 

ligands. The facile nature of formation has lead to in depth studies of both the 

chirality contained within the assembly127,191,192 and the host-guest properties.193  

  

Figure 1.22: SCXRD structures of (a) the stella octangular Pd6L8 assembly and 

(b) an NHC-directed Pd3L2 metallocryptophane, where Pd=[Pd(bis-NHC)]. 

In an effort to achieve a higher degree of control over the self-assembly process, 

geometrically directing metallotectons were employed by Hardie et al. in the form 

of a strongly cis-protected palladium source.169 An extended bis-N-heterocyclic 

ligand scaffold was utilised to not only favour cis-coordination, but also exploit π-π 

stacking to „lock‟ the M3L2 assembly into place.169  

Relative to the number of metallo-supramolecular assemblies with CTG based 

ligands, there are notably fewer discrete, tri-nuclear metal-complexes. One such 

a) b) 
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example is a [Pd(Cl2)]3L complex where PdCl2 has been employed in combination 

with the hexa-substituted 2-pyridyl ligand, to give rise to an inter-veratrole chelating 

system, as seen in Figure 1.23 (a).194 This hexa-pyridyl ligand also forms tri-nuclear 

complexes with Ag(I) and Cu(II), although these examples could not be elucidated 

crystallographically. Another hexa-substituted ligand system of interest is the 

hexakis(bipyridyl)-CTV system of Wytko, Figure 1.23 (b), whereby binding of 

different copper salts induced structural changes. When tetrahedral Cu(I) salts were 

employed a single isomer of the resultant Cu3L complex was observed to exist in 

solution, despite a variety of possible isomers resulting from both inter-veratrole and 

intra-veratrole binding; the conformation shown below.195 In addition to the 

possibility of inter- versus intra-veratrole binding, there are both Λ and Δ helical 

isomers possible as well.   

 

Figure 1.23: SCXRD structure of (a) [Pd(Cl)2]3L194 displaying inter-veratrole 

metal binding and the chemical structure of Wytko’s copper-binding 

hexakis(bipyridyl)-CTV195 displaying intra-veratrole metal binding. 

Tris-substituted CTV-type ligands have also been synthesised bearing alternative 

metal-binding groups to the common N-donor motif. A few examples of these are 

shown in Figure 1.24. Verboom exploited the mercury binding properties of the 

azobenzene unit to not only form the Hg(II) complex, but also to act as a 

colorimetric sensor for it‟s presence; when Hg(II) is present in solution, it binds to 

the azo unit and induces a colour change from yellow to red.196  

a) b) 
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Figure 1.24: Tris-substituted CTV-type ligands from Verboom,196 Atwood197 and 

Bohle.198 

Bohle and Stasko have functionalised a CTV core through appending a 

salicylaldimine group that can chelate a nickel(II) centre in addition to the catechol 

moiety on the upper-rim of the cavitand core.198 This methodology was found to be 

easily applied to a whole series of Schiff base ligands.  

In a different approach, Atwood et al, have appended three ferrocene-type units to 

the upper-rim of a CTG ligand to synthesise a host-molecule that can selectively 

extract perrhenate and pertechnetate anions from aqueous solution.197 The removal 

of pertechnetate anions from solution is an important ecological task given their 

presence in nuclear waste material, and the ability to selectively bind pertechnetate 

in the presence of other anions is a notable achievement.  

 

Figure 1.25: SCXRD structure of [Cu(Cl)2]3L and the self-inclusion ‘hand-shake’ 

motif exhibited. One ligand shown in green.199 

a) b) 
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Possibly the most similar previous example to the work presented herein, is the 

[Cu(Cl)2]3L complex depicted in Figure 1.25 (a), where the ligand utilised is an 

extended terpyridine CTG scaffold.199 This ligand provides a tri-dentate binding site 

for a copper(II) centre, whilst also exhibiting a „hand-shake‟ motif, Figure 1.25 (b), 

whereby one ligand arm acts as the guest for a second molecule of the complex, 

which in turn acts as the guest for the first molecule in a reciprocal fashion. 

However, this copper complex was formed under solvothermal conditions, and as 

such only solid-state analysis could be obtained.  

The solution-state stability and processability of the complexes discussed within this 

thesis mark them apart from the majority of the previously synthesised assemblies.  

1.5 Project Outline 

The primary aim of this research is to combine luminescent metal centres with the 

cyclotriveratrylene ligand scaffold. Previously, primarily kinetically labile metal 

centres have been employed in combination with the aforementioned 

cyclotriveratrylene family of ligands, employing supramolecular self-assembly and 

the ability of the labile metals to make and break bonds repeatedly towards a 

thermodynamically favourable outcome. Through rational design and consideration 

of both low-spin d6 metal binding geometries and ligand complexation angles, a 

library of emissive supramolecular complexes will be targeted, formed from a wide 

range of seemingly inert metal centres and easily functionalisable ancillary ligands 

from which to impart varying emissive outcomes, ideally with a high-degree of 

control. 

Initially a range of tri-metallic, discrete complexes are targeted with a view to 

understanding the relationship between emissive metallotecton and supramolecular 

scaffold. Once the properties of the tri-metallic systems are known, further 

investigation will concern means of colour tuning through careful and considered 

alteration of the three distinct metallotectons.  

The ability of emissive systems to be easily tuned with a high-degree of control over 

the resultant emission wavelength is still non-facile. This research is aiming to 

develop a novel, modular approach towards tuneable colour emission, which could 

be applied to an almost infinite range of metallotectons. Expansion of this approach 

can be achieved through investigation of homo-metallic systems; by incorporation of 
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diverse, pre-functionalised ancillary ligands into the coordination sphere of the same 

metal centre, or homo-nuclear approaches; through inclusion of metallotectons 

containing different metal centres into the same tri-metallic complex.  

Secondary aims of this project are concerned with the formation of self-assembled 

metallo-supramolecular assemblies, containing similar emissive metallotectons as 

geometrically directing metal sub-units. Through this work a range of hemi-

cryptophane, metallo-cryptophane and cubic supramolecular assemblies will be 

discussed. The incorporation of luminescent metallotectons could allow for the 

sensing of subtle host-guest interactions through examination of the resultant 

emission changes. 
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2 Chapter 2 

Synthesis of cyclotriguaiacylene derived ligands and the resultant 

rhenium(I) complexes 

2.1  Introduction 

Through appending a variety of functional groups to a cyclononatriene core, 

numerous ligands have previously been prepared. The functionality appended to 

these ligands includes; carboxylate groups,1,2 N-oxides,2,3 bipyridines4 and 

terpyridines,5 however by far the most common is pyridyl.6–11 In general, most of the 

prepared ligands were combined with a plethora of metal salts to give rise to self-

assembled metallo-structures. The resultant structures vary from the simplest, yet far 

from the most facile to prepare, M3L2 metallocryptophanes12–14 and their interlocked 

congeners, catenanes,4,8 through topological knots10 and rings15 to large, discrete 

stellated assemblies comprised of up to eight ligand molecules.9,11 The majority of 

these structures are the result of labile metal salts self-assembling with the desired 

ligand over the course of weeks, in contrast to the work presented herein which 

represents a shift towards more kinetically stable metal centres and a move away 

from self-assembly.  

This thesis looks solely at the combination of low-spin d6 metal ions in combination 

with cyclotriguaiacylene supramolecular building blocks. As discussed in the 

introductory chapter, low-spin d6 metals are some of the most stable, with a large 

Δoct, which makes them ideally suited for incorporation into functional materials and 

devices. The most notable and relevant subset of d6 containing complexes are those 

bound to bidentate polypyridyl ligands, as these systems are known to possess 

luminescent properties. The incorporation of a functional component, in this case 

luminescent metallotectons, leads to a more directed synthesis, targeting a specific, 

desired outcome. Rational design of ligand scaffolds and geometrical consideration 

towards the binding angles of metallotectons allow for a predictable route towards 

functional metal complexes.  

To provide a more complete encapsulation of any „internal‟ void space, and thus 

increase the likelihood of host-guest interactions, formation of cryptophane16–23 and 

hemi-cryptophane24–28 systems have often been employed. Through “capping” the 
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cavitand species, the distinction between peripheral association and internal host-

guest interactions between complex and guest is increased, and through judicial 

substitution or functionalisation the internal cavity can be made a more attractive 

prospect to specific potential guest molecules.16,29–31 

2.2 Ligand synthesis 

The basic scaffold motif upon which all of the discussed ligands are based is the 

tripodal cavitand cyclotriguaiacylene. This chiral molecule is formed in a well-

defined three-step procedure; protection of the phenolic alcohol on either vanillyl or 

iso-vanillyl alcohol, acid-catalysed cyclisation and subsequent de-protection of the 

phenol group to furnish a racemic mixture of M and P cyclotriguaiacylene, Scheme 

2.1.  

 

Scheme 2.1: Full synthetic route towards racemic M and P cyclotriguaiacylene. 

Either vanillyl alcohol or the isomeric form iso-vanillyl alcohol can be used in this 

synthesis, as when cyclised into the trimeric ligand motif the alternating methoxy-

allylether arrangement simply forms both isomers of the resultant cavitand. The 

protection of the phenolic group is essentially quantitative and the allylether alcohol 

can be formed on the tens-of-grams scale. The dry-melt approach to the cyclisation 

step furnishes P2 in ~40-50% yield; this is due to solidification of the product over 

the course of the reaction. Palladium catalysed de-protection of the allylic groups 

relies on the in situ formation of palladium tetrakis-triphenylphosphine to give P3 in 
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>70% yields. Cyclotriguaiacylene itself is always formed as a racemic mixture, and 

therefore all the subsequent ligands formed from P3 are also racemic.  

The tripodal cyclotriguaiacylene derived ligands employed in this thesis were 

synthesised by literature,32 or modified literature,4,11 procedures, except for the novel 

L2. The general procedure can be split into two categories; the synthetic route 

towards ether- linked ligands systems L1/L3 and the route towards ester- linked 

systems L2/L4.  

 

Scheme 2.2: General synthetic route towards L1-L4. 

The reaction of 4-methyl-2,2‟-bipyridine-4‟-carbonylchloride or iso-nicotinoyl 

chloride hydrochloride and cyclotriguaiacylene, in anhydrous THF in the presence 

of triethylamine base furnished pure L2 and L4 respectively in yields >80%.  

The bipyridyl components of both L1 and L2 were synthesised from the readily 

available 4, 4‟-dimethyl-2, 2‟-bipyridine. Selenium dioxide was employed to furnish 

4-methyl-4‟- formyl-2, 2‟-bipyridine, from which the hydroxmethyl appended L1 

precursor and the carboxylic acid appended L2 precursor can both be formed. The 

synthesised 2, 2‟-bipyridyl-4-methyl-4‟-carboxylic acid precursor was converted to 

the acyl chloride analogue through reaction with thionyl chloride and subsequently 

reacted in situ as described in Scheme 2.2.  
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The synthetic route towards L1 and L3 was modified slightly from literature 

procedures; previously forcing conditions of NaH base and anhydrous 

dimethylformamide solvent were employed under rigorously anaerobic conditions in 

order to obtain acceptable yields of pure product. The modified procedure requires 

only K2CO3 base, in conjunction with a catalytic amount of 18-crown-6, in hydrous 

acetone solvent. The bromomethyl-containing ligand arm, 4-methyl-2,2‟-bipyridine-

4‟-bromomethyl or 4-bromomethylpyridine hydrobromide, was added in a single 

portion and immediately gave a dark brown colour to the solution, however over a 

period of days the solution mixture bleached to leave a pale orange tinge. The 

remaining solvent was removed in vacuo, and the resultant residue extracted with 

chloroform before drying with MgSO4. The chloroform solution was then 

concentrated and the desired ligands isolated through precipitation with excess 

methanol and filtration. The ethereal L1 and L3 were reliably furnished in >75% 

yields, giving identical analytical characterisation as previously reported.4,11 

 

Figure 2.1: Interpreted 1H NMR spectrum of L1 in CDCl3 solvent. 

Precise proton assignments were based on 1H-1H COSY NMR spectra, where 

correlations between the H‟-bearing ring and the CH2 of the ethereal linking group 

can be seen, as well as correlations between the protons on the other pyridyl ring and 
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H aryl CH2 

Hendo Hexo 
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CH3 
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the protons on the methyl group in the 4 position. The diastereotopic endo and exo 

protons of the methylene bridge are also visible, and diagnostic of clean tri-

substituted ligand formation.  

 

Figure 2.2: Interpreted 1H NMR spectrum of L2 in d6-DMSO. 

Again, 1H-1H COSY NMR spectra, Figure 2.3, were used to assign the aromatic 

bipyridyl protons. L2 shows overlap of the exo proton peak with the peak belonging 

to the methoxy group; however the total integration of the broad peak amounts to the 

correct 4H.  
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Figure 2.3 : Interpreted 1H-1H COSY NMR spectrum of L2, with pertinent 

coupling highlighted. 

Coupling between the endo/exo methylene bridge protons can be seen, highlighted 

in the blue box, confirming the presence of the exo protons underneath the larger 

peak belonging to the protons of the methoxy group at 3.7 ppm. The coupling 

between the methyl protons in the 4 position of the bipyridine arm at 2.4 ppm, and 

the adjacent H3 and H5 are highlighted in the green box, allowing discrimination 

between protons on the two inequivalent pyridyl rings making up the bipyridyl 

moiety. The coupling between H5 and H3/H6, as highlighted in the orange box, 

confirms the presence of H5 underneath the peak assigned to the aryl CTG proton at 

7.3 ppm. The analogous coupling between H5‟ at 8.0 ppm and the overlapping 

H6‟/H3‟at 8.9 ppm is shown in the purple box, again confirming the presence of both 

peaks and the corresponding assignments.  

The novel ligand L2 was fully characterised, with the HR ESI-MS, Figure 2.4, 

displaying peaks at 997, 499 and 333 m/z, assigned to the mono-, bis- and tris-

protonated L2. The IR spectrum of L2 also exhibits a strong ester carbonyl stretch at 

~1750 cm-1, as well as strong C-O stretches at ~1170 and 1280 cm-1. 
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Figure 2.4 : Assigned HR ESI-MS of L2. 

The metal complexes resulting from L1 and L2 will be discussed in Chapters 2-5. 

The supramolecular assemblies formed from L3 and L4 will be discussed in 

Chapters 5-6. 

2.3 Rhenium(I) complexes of L1 and L2 

The initial reasoning behind the synthesis of L1 and L2 was to mimic the reactivity 

of conventional mono-nuclear bipyridine chemistry to form complexes with 

luminescent low-spin d6 metal centres. The first metal explored was rhenium(I) in 

the form of the rhenium pentacarbonyl bromide, which can be easily synthesised 

from the commercially available dirheniumdecacarbonyl.  
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Scheme 2.3: General synthetic route towards C1.1 and C2.1. 

Following generally analogous synthetic procedures to the mono-nuclear systems; 

namely suspending L1/L2 in toluene in the presence of 3.1 equivalents of rhenium 

pentacarbonyl bromide and heating to reflux for 12 hours, both C1.1 and C2.1 were 

furnished in >80% yields as bright yellow powders. C1.1 is soluble in a range of 

solvents, including acetonitrile, nitromethane and DMSO, whilst the more rigid C2.1 

is far less soluble, with DMSO being the main solvent employed throughout 

characterisation.  
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Figure 2.5: 1H NMR spectra of C1.1 in d3-MeCN (top) and C2.1 in d6-DMSO/d3-

MeCN (bottom). 

As evidenced in Figure 2.5 the 1H NMR spectra of the resultant complexes are 

relatively similar to those of the free ligands L1 and L2, however there is a degree 

of peak broadening due to the reduced rotation around the ether/ester linkage 

respectively. This broadening can be seen to a greater degree in C2.1 which bears 

the more rigid ester linking group between the cyclononatriene core and the 

bipyridyl arm. The precise proton assignments of C1.1 and C2.1 were determined 

through 2D 1H-1H COSY NMR spectroscopy (see ESI chapter S2), whereby 

coupling between protons adjacent to the methyl group and those adjacent to the 

methyl ether linking group can be distinguished.  
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Figure 2.6: Assigned 1H-1H COSY NMR spectrum o f C1.1. 

The 1H-1H COSY NMR spectrum of C1.1 is shown in Figure 2.6, where coupling 

between the endo/exo protons is highlighted in the blue box. The cross-peak 

highlighted in green corresponds to coupling between the methyl protons on the 

bipyridine arm at 2.5 ppm and the adjacent H3 peak at 8.2 ppm, thus allowing 

discrimination between the two pyridyl rings on the bipyridine arm. The cross-peak 

in purple shows the strong coupling between H5 at 7.4 ppm and H6 at 8.8 ppm, and 

to a lesser extent between H5 and H3 at 8.2 ppm. The analogous coupling between 

H5‟ at 7.6 ppm and H6‟at 8.9 ppm, and thus H5‟ and H3‟ at 8.4 ppm can been seen 

highlighted in orange.  
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Figure 2.7: HR ESI-MS of C1.1 (top) and C2.1 (bottom) showing the expected 

rhenium isotope pattern. 

Due to the strongly coordinated bromide counter- ions, both species did not ionise 

well, however assignable peaks could be located. The expected peak at 1925 m/z 

assigned to {[(Re(CO)3)3(Br)2]L1}+ was visible, however the main peak observed 

was assigned to {[(Re(CO)3)3(Br)2L1]+•DMSO} at 2003 m/z; C1.1 having lost one 

bromide counter- ion and gained one associated DMSO solvent molecule. There is 

also a clear H2O envelope; whereby a succession of water molecules are ionised 

along with C1.1. C2.1 can be seen at the expected molecular mass of 2045 m/z, 

however, once again this is due to the loss of one bromide anion and the gain of one 

molecule of DMSO solvent, {[(Re(CO)3)3(Br)2L2]+•DMSO}. The presence of a 

mass peak at the expected [M+H+] value is coincidental, due to the equivalent mass 

of one bromine atom and one DMSO molecule, isotope pattern analysis confirms the 

presence of only two bromine atoms in the molecular ion peak in each case.  
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The IR spectra of both species show the requisite strong C≡O stretches at 

2017/1883 cm-1 and 2029/1889 cm-1 respectively. Fac-tricarbonyl species possess 

highly characteristic IR stretches due to the geometrically locked facial arrangement 

around the metal centre.  

 

Scheme 2.4: Symmetric and un-symmetric stretches of C≡O ligands, with respect 

to their IR stretching bands, A) Symmetric B)/C) un-symmetric stretches. 

Scheme 2.4 shows the symmetric stretch, A), which is assigned to the higher 

frequency band at 2017 and 2029 cm-1 in C1.1 and C2.1 respectively, whereas the 

un-symmetric stretches B and C, which are often seen as broad overlapping bands, 

are assigned to the broad bands at 1883 and 1889 cm-1.33,34 The fundamental organic 

IR stretches are also exhibited by both C1.1 and C2.1, displaying C=C stretches at 

1616 and 1618 cm-1 and C-O stretches at 1180 and 1178 cm-1 respectively. C2.1 also 

displays an additional stretch at 1748 cm-1, assigned as the organic ester carbonyl. 

Microanalysis of both complexes confirmed purity. 

2.4 Photophysical properties of C1.1 and C2.1 

Despite the exceptionally similar molecular structure of C1.1 and C2.1, the 

photophysical properties are markedly different. Due to the low solubility of C2.1 in 

most common laboratory solvents, DMSO was used for all photophysical 

characterisation to allow for reliable comparison between both complexes without 

any undesired solvatochromic shifts.  

The UV-visible spectra of both complexes were first obtained, in DMSO. Both C1.1 

and C2.1 show high energy intra- ligand transitions, with smaller, broader shoulders 

at around 300 nm, tentatively ascribed to MLCT absorption. There is also significant 

absorption between 350-450 nm, although slightly more so in C1.1. 



  Chapter Two 

Page | 59  

 

 

Figure 2.8: Overlaid UV-Visible spectra of C1.1 and C2.1 in DMSO solution. 

2.4.1 Photophysical properties of C1.1 

 

 

Figure 2.9: Overlaid excitation and emission profiles of C1.1 in DMSO. 
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C1.1 possesses an emission maximum of 598 nm and an excitation maximum of 

451 nm. The emission profile is similar to many mono-nuclear Re(CO)3Br(N^N) 

systems in general appearance;35–39 the broad unstructured emission is characteristic 

of 3MLCT between the Re-dπ centre and the π*-cloud of the bis- imine ligand. The 

extent of the emission above 700 nm is noteworthy however, as any emission in this 

region is verging on infrared. Infrared emission is particularly favoured in 

biomedical applications due to the deep tissue penetration provided in combination 

with lower energy wavelengths being far less damaging to the surrounding cells.40 

The relatively low energy emission is concomitant with a decrease in excitation 

energy, again moving away from the necessity of using damaging UV light.  

The lifetime of C1.1 is remarkably long at 467 ns, which would make this complex 

ideal for any biomedical imaging applications in terms of time-gated image 

collection. There are many endogenous fluorophores present in human body, such as 

large conjugated organic molecules and DNA itself, therefore in confocal 

fluorescence microscopy the administered phosphorescent complex is excited and 

the image collection delayed by ~10 ns to allow any quickly decaying fluorescence 

to die out before the collection is initiated. A long luminescent lifetime such as C1.1 

is thus ideal for this application.41–44  
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2.4.2 Photophysical properties of C2.1 

 

Figure 2.10: Overlaid excitation and emission profiles of C2.1 in DMSO. 

C2.1 displays markedly different excitation and emission profiles to the ether 

congener C1.1, exhibiting dual bands in both excitation and emission. The emission 

maxima are situated at 533 and 650 nm, with the corresponding excitation maxima 

at 365 and 460 nm. This profile suggests two distinct but complementary processes 

are occurring at the same time, with the broad emission band at 650 nm most likely 

due to 3MLCT, analogous to that seen in C1.1. The MLCT emission displays a 

bathochromic shift with respect to C1.1, with the increased conjugation between 

metal and ligand due to the ester linkage probably playing a significant role.  

Despite the structural similarity to C1.1, C2.1 displays an average lifetime over 25 

times shorter at 19 ns. This is made up of two distinct lifetime components as 

measured through time resolved emission spectroscopy (TRES), one belonging to 

each emission band; the high energy band has a lifetime of 3 ns, whereas the lifetime 

of the lower energy band is 21 ns. Both of these lifetimes are much shorter than 

C1.1 (467 ns), and suggest that the ester linked complex must possess a pathway 

towards non-radiative decay, leading to the shorter lifetimes seen. Whilst the shorter 

lifetimes are less desirable from a time-gated standpoint, the bathochromic shift 

towards the infra-red region is extremely favourable.  
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2.4.3 Comparison of C1.1 and C2.1 

Regardless of the almost identical molecular structure of C1.1 and C1.2, the 

photophysics of the two systems are remarkably different. C2.1 is red-shifted with 

respect to both the excitation and emission, showing markedly different dual-

emission, whereas C1.1 shows single emission peaks with slight hypsochromic 

shifts. Whilst the high energy emission peak in C2.1 could be due to a highly 

emissive impurity in the solution, further work suggests that the two peaks are 

related, as by changing the excitation wavelength, the intensity of each peak can be 

favoured. This relationship suggests that the two emissive processes are occurring in 

the same complex, whereby different wavelength excitation preferentially favours 

one of the transitions.    

One of the most notable features of these two complexes is the level of susceptibility 

they display to relatively minor structural alterations; changing an ether linkage to 

an ester produces a Stokes shift of over 50 nm. This sensitivity suggests that further 

alterations, be it to the linking group between bipyridyl and cyclononatriene core or  

functionalisation on the bipyridine arm, could produce dramatic shifts in the 

resultant emission.  

2.5 Crystallographic analysis of L1 and C1.1 

2.5.1 Solid state structure of L1 

Single crystals of L1•[(EtO)2] were obtained through the diffusion of diethyl ether 

vapours into a solution of L1 in chloroform. The resultant needles were of poor 

quality and did not diffract to high angles. The structure was solved in the Pbna 

space group, giving the asymmetric unit (ASU) as one molecule of L1 and one 

molecule of diethyl ether anti-solvent. The ether solvent is well resolved due to its 

trapped position in this clathrate arrangement. The ligand molecules pack bowl- in-

bowl as alternating enantiomers to form racemic columns propagating through the 

crystal lattice. Each column is surrounded by four closest neighbours facing in the 

opposing direction.  
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Figure 2.11 shows the asymmetric unit of L1•[(Et)2O] looking down the 

crystallographic a axis. Whilst solution state data gives rise to C3 symmetry, the 

Figure 2.11: a) Labelled ASU of L1•[(Et)2O] anisotropic displacement parameters 

set at 30% b) clathrate structure of the trapped diethyl ether anti-solvent, 

shown in orange c) head-up/head-down arrangement of the ligand stacks. 

a) 

b) c) 
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SCXRD data shows that L1 does not present in a C3 symmetric space group in the 

solid state; each bipyridyl arm is twisted with respect to the cyclononatriene core by 

between 48 and 53°, leading to breakdown of the symmetry through the centre of the 

cavitand. The bipyridyl arm O6-C48-C49-C53 possesses a torsion angle of 53.5°, 

O2-C8-C9-C13 an angle of 50.9° and O4-C28-C29-C33 an angle of 48.9°. As 

expected, the two nitrogen atoms in each bipyridyl arm twist away from each other, 

to relieve any strain caused by the interactions of their lone pairs  

2.5.2 Solid state structure of C1.1 

X-ray quality crystals of C1.1•n[MeNO2] were achieved through the slow diffusion 

of diethyl ether vapours into a concentrated solution of C1.1 in nitromethane 

solvent. The structure solved in the     space group; trigonal space groups of this are 

not uncommon for these C3 symmetric ligand scaffolds.4,7,8,11,32,45–47 The asymmetric 

unit contains one third of each enantiomeric M3L unit and one nitromethane solvent 

molecule.  

 

Figure 2.12: ASU of C1.1, ellipsoids shown at 30% probability, nitromethane 

solvent excluded for clarity. 

As expected, the coordination environment around the rhenium centres is of 

octahedral geometry, displaying minor distortion from idealised angles due to the 
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restricted bite angle of the bipyridine ligand. The restriction of the bidentate ligand 

leads to bite angles of 74.8° (N4-Re2-N3) and 73.1° (N1-Re1-N2), giving a 

concomitant increase in N-Re-C bond angles of 102-103° around Re2 and 98° 

around Re1, due to the facial arrangement of C≡O ligands. The coordinated bromide 

anion completes the opposing facial arrangement in collaboration with the 

bipyridine moiety.  

The M enantiomer is that containing Re1, and thus the Re2 containing fragment 

belongs to the P enantiomer. The two enantiomers stack „bowl- in-bowl‟ as a 

racemic pair of molecules, however the distance between the two central benzene 

rings of the cyclononatriene core is 4.6 Å, and thus too long to suggest any π-π 

interactions. The three carbonyl ligands on the P enantiomer were refined 

isotropically as well as one on the M isomer. The two enantiomeric fragments are 

not crystallographically equivalent, with each isomer displaying a markedly 

different torsion angle through the methyl ether linkage; M (O2-C9-C12-C11 = 

11.5°) versus P (O7-C32-C35-C34 = 41.8°). The M isomer displays an almost planar 

torsion angle with respect to the benzene ring of the cavitand core, whilst the P 

isomer is strongly distorted, to allow the Re(CO)3Br unit to twist outwards away 

from the centre of the cavitand, presumably to relieve any steric stress between 

neighbouring carbonyl groups within the enantiomeric pair stack.  
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Re1-Br1 2.5974(19) Re2-Br2 2.587(2) 

Re1-N1 2.176(11) Re2-N3 2.170(13) 

Re1-N2 2.209(11) Re2-N4 2.221(14) 

Re1-C21 1.86(2) Re2-C44 1.87(3) 

Re1-C22 1.862(16) Re2-C45 1.74(3) 

Re1-C23 2.04(2) Re2-C46 1.90(3) 

N1-Re1-N2 73.4(5) N3-Re2-N4 74.9(5) 

O2-C9-C12-C11 11.5 O7-C32-C35-C34 41.8 

Table 2.1: Selected bond lengths (Å) and angles (°) from the crystal structure of 

C1.1. 

   

Figure 2.13: a) viewing the enantiomeric pair-stack looking down the 

crystallographic c axis b) the difference in the triangular pyramid described 

by each enantiomer. 

The inequivalence between the two M3L enantiomers can also be seen in the relative 

depths of the bowls described by the three metal centres and a centroid taken from 

the centre of the methylene bridge carbons.  

 

Enantiomer Bowl depth╪  Re-Re 

M 7.584 17.396 

P 4.105 20.781 

Table 2.2: selected inter-atomic and topological distances of C1.1 in Å, ╪ = 

measured from the centre of the triangle described by the three Re centres 

and the centre of the cyclononatriene core. 



  Chapter Two 

Page | 67  

 

The M isomer, shown by the pink triangular pyramid, has a much deeper bowl with 

an intra-metallic distance of 17.396 Å, compared to the P isomer describing a much 

shallower bowl, but correspondingly longer intra-metallic distances. The P 

enantiomer has thus been compressed in the c axis.  

The enantiomeric stack-pairs propagate out into alternating infinite up-down zigzag 

sheets. As demonstrated in Figure 2.14, the enantiomeric pairs tessellate together 

through stacking of complementary adjacent bipyridine arms in an MM-PP 

arrangement. However, at 4.2-4.9 Å apart the interaction cannot be called true π-π 

stacking. 

 

Figure 2.14: Packing structure of C1.1 showing the enantiomeric pairs, M and P 

shown in pink and purple respectively, with stacking interactions shown in 

cyan. 

This arrangement leads to layers of 2D zigzag sheets, however due to the ill- fitting 

nature of the separate sheets there is significant space between the layers leading to 

over 40% void space throughout the crystal lattice, as calculated through 

PLATON.48  

2.6 Towards heteroleptic ambidentate metallocryptophanes 

The rationale behind appending luminescent functionality to a supramolecular 

building block was first as a proof of principle exercise; that the presence of the 

central cavitand scaffold did not negatively impact the emission properties, and 

secondly in an effort towards a functional molecule; working as a luminescent 

sensor in a host-guest capacity. Whilst there are examples of large spherical guests, 

such as fullerenes,49 sitting in the open hydrophobic cavity, to provide more of a 

driving force for encapsulation a common method is to “cap” the open bowl to form 
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a hemi-cryptophane,22,24,27,31,50–52 cryptophane19,20,23,53,54 or metallocryptophane,12–14 

depending on the nature of the “cap”.  

It was envisaged that a tris-pyridyl donor based off of a central benzene ring could 

act as the appropriate capping ligand, as initial consideration of tris-(2-

aminoetheyl)amine suggested that the size discrepancy was too large to overcome. 

However, rather than attempt to form a hemi-cryptophane with a dissimilar tripodal 

ligand, L4 was employed to form a metallocryptophane due to the exact size match 

and ideal binding geometries presented.  

From analysis of the SCXRD data of both separate components, C1.1 and L4, the 

complementarity in size and binding geometries can clearly be seen.  

 

Figure 2.15: a) side-view of C1.1 highlighting the advantageous positions of the 

vacant coordination sites, Br atoms shown as spheres b) overlay of C1.1 

(teal) and L4 (green) highlighting the complementary structural motifs. 

a) 

b) 



  Chapter Two 

Page | 69  

 

Initially the coordinated bromide counter ion on C1.1 was removed through halide 

abstraction using silver triflate in situ, to generate intermediate C1.1B and then 

combined with a stoichiometric amount of L4 in non-coordinating nitromethane 

solvent. C1.1B was subjected to HR ESI-MS to confirm the removal of all three 

bromide counter- ions before use. 

 

Figure 2.16: HR ESI-MS of C1.1B to confirm formation, a) the sequential loss of 

bound MeCN ligands b) measured (top) and calculated (bottom) isotope 

pattern of the 3+ peak of C1.1B. 

Figure 2.16 shows the clean formation of C1.1B, with the only appreciable peak at 

629 m/z assignable to {[Re(CO)3(MeCN)]3L1}3+, the smaller peaks at 615 and 602 

m/z are due to sequential loss of previously coordinated acetonitrile. The distinctive 

isotope pattern of C1.1B can be seen inset in Figure 2.16, along with the predicted 

theoretical pattern.  

As shown in Figure 2.15, the positions of the coordinated bromide anions in C1.1, 

and thus the vacant coordination sites in C1.1B, are pre-organised into a beneficial 

arrangement for further binding. The exact size-match of L4, due to the 

cyclononatriene core, means both components are pre-arranged into complementary 

geometries favouring the formation of the first heteroleptic ambidentate 

metallocryptophane CC1.1 

a) 

b) 
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Scheme 2.5: Formation of heteroleptic metallocryptophane CC1.1. 

The use of non-coordinating solvent is required to drive the formation of the 

metallocryptophane, whereby the only by-product of assembly construction is 

displaced acetonitrile solvent.  
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Figure 2.17: HR ESI-MS of CC1.1, seen without non-coordinating triflate anions, 

M=[Re(CO)3], a) measured isotope pattern b) calculated isotope pattern for 

CC1.1, shown inset. 

The main m/z peak visible after twelve hours heating was attributed to the 3+ charge 

state of CC1.1, flying without the associated non-coordinated triflate counterions. 

There is some fragmentation into smaller assemblies, as it to be expected. The 

measured isotope pattern matches exactly with the calculated pattern, shown inset in 

Figure 2.17, supporting the conclusion that the heteroleptic cage CC1.1 has been 

formed.  

The formation of CC1.1 was followed by 1H NMR spectroscopy in d3-MeNO2, 

shown in Figure 2.18.  
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Figure 2.18: Stacked 1H NMR spectra following the formation of CC1.1 a) C1.1B 

b) after addition of a stoichiometric amount of L4 c) 4 hrs RT d) 6 hrs e) 

8hrs f) 10hrs g) 12hrs. 

The dynamic library of species formed immediately after the addition of L4 leads to 

a broad spectrum that gradually sharpens up to a degree over time, as the reaction 

progresses towards a major product. The most significant change observed, 

highlighted in the red box, is the gradual disappearance of the peak at 5.4 ppm 

belonging to the ethereal bridging protons. In C1.1B the flexibility and free-rotation 

of the bipyridine arm leads to a relatively sharp singlet. However, as the free-

rotation of that arm is restricted due to the formation of a cage species, the geometry 

becomes locked in place. The peak at 5.4 ppm initially broadens out, as the protons 

become more and more diastereotopic, and eventually broadens out to infinity. 

Another point of note is the splitting of the previously equivalent pyridyl protons; in 

the L4 both ortho protons and both meta protons on the pyridyl ring are equivalent, 

displaying two doublets at 8.7 ppm and 8.1 ppm. However, in the final spectrum g), 

highlighted in the orange box, there are two sets of doublets, suggesting that the 

pyridyl ring can no longer freely rotate, leading to splitting of the pyridyl proton 

resonances.   
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This reaction was conducted on an NMR scale, and thus far attempts to crystallise 

the resultant heteroleptic ambidentate metallocryptophane have been unsuccessful.  

2.7 Conclusions and future direction 

The formation of C1.1 and C2.1 demonstrate the applicability of combining 

luminescent motifs with a supramolecular scaffold. The vast difference between the 

photophysical properties of the two complexes also reveals the sensitivity to 

structural changes that can be achieved through modulation of not only the basic 

ligand scaffold, but also through judicious functionalisation throughout the 

molecule. The degree of conjugation between the metal-binding bipyridine arm and 

the central cavitand has also been shown to have a profound effect on the 

luminescent lifetimes of the resultant complexes; the conjugated complex C2.1 

shows an average lifetime of just 19 ns, compared to the non-conjugated ether 

complex C1.1 possessing a lifetime of 467 ns, 25 times longer.  

The clear expansion of this work lead to the formation of the first heteroleptic 

ambidentate metallocryptophane CC1.1, by capping the acetonitrile adduct of C1.1, 

C1.1B with L4. The pre-organised nature of the two components and the exact size-

match leads to the facile formation of the head-to-head cage. Future work on this 

system could explore the host-guest properties of cage complex CC1.1 along with 

the photophysical attributes, as well as the combination of these two facets towards 

the development of a luminescent supramolecular sensor assembly.  
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2.8 Experimental 

2.8.1 General Considerations 

NMR spectra were recorded by automated procedures on Bruker Avance 500 or 

DPX 300 MHz NMR spectrometers. All deuterated solvents were purchased from 

commercial sources. All 1H and 13C spectra were referenced relative to the residual 

solvent peak. High resolution electrospray mass spectra (ESI-MS) were measured on 

a Bruker MaXis Impact spectrometer in either positive or negative ion mode. FT-IR 

spectra were recorded as solid phase samples on a Bruker ALPHA Platinum-ATR 

spectrometer. Samples for microanalysis were dried under vacuum before analysis  

and the elemental composition determined by Ms Tanya Marinko-Covell of the 

University of Leeds Microanalytical Service using a Carlo Erba elemental analyser 

MOD 1106 spectrometer. Steady state emission and excitation spectra were 

recorded on an Agilent Technologies Cary Eclipse. Time-resolved spectra were 

recorded on a PicoQuant FluoTime 300 exciting with an LDH-P-C-375 and decays 

analysed with the program FluoFit. A 0.4 mgmL-1 solution in aerated DMSO was 

made to 5 mL in a volumetric flask, the solution was then transferred to a quartz 

cuvette and the experiments run at ambient temperature. Photophysical studies were 

performed in DMSO (to ensure full dissolution of the solids). All chemicals were 

purchased from commercial sources and used as received. All ligands were 

synthesised as racemic mixtures and employed as such in complexation studies.  

 

Preparation of cyclotriguaiacylene (CTG):55  

Step 1: Synthesis of 4-methoxy-3-(propen-2-yl)-oxybenzyl alcohol P1 

 

Iso-vanillyl alcohol (30.0 g, 194 mmol), allyl bromide (20.3 mL, 233 mmol) and 

potassium carbonate (26.8 g, 194 mmol) were heated to reflux in acetone (60 mL) 

for 24 hrs under an Argon atmosphere. The solvent was removed in vacuo and the 

residue taken up in dichloromethane (2 x 200 mL), the organic layer was washed 

with H2O (100 mL) and brine (60 mL). The combined organic layers were then 
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dried over magnesium sulphate. Removal of the solvent in vacuo gave the product as 

an off white solid (33.87 g, 96.8%) that was used in the subsequent reaction.  1H 

NMR (300 MHz, CDCl3) δ 6.93 (s, 1H, H6), 6.85 (d, J = 0.9 Hz, 2H, H5/H2), 6.08 

(ddt, J = 17.2, 10.7, 5.4 Hz, 1H, CHCH2), 5.40 (dd, J = 17.3, 1.5 Hz, 1H, Htrans), 

5.28 (dd, J = 10.4, 1.3 Hz, 1H, Hcis), 4.66 – 4.52 (m, 4H, CH2OH/CH2O), 3.88 (s, 

3H, OMe). 13C{1H} NMR (75 MHz, CDCl3) δ 149.63, 147.58, 134.05, 133.38, 

119.37, 118.11, 113.37, 110.88, 70.01, 65.37, 55.98. TOF-MS ESI: m/z = 177.0916 

(M-OH) All data are consistent with the literature.55 

Step 2: Synthesis of tris(propen-2-yloxy)cyclotriguaiacylene P2 

 

4-methoxy-3-(propen-2-yl)-oxybenzyl alcohol (15 g, 77 mmol) was heated with 

stirring at 80°C. A catalytic amount of superphosphoric acid (spatula tip) was added 

and stirring was continued for 8 hrs, during which time the mixture turned beige and 

solidified. Sonication in methanol (200 mL) afforded a fine white solid that was 

collected by filtration, washed with further methanol and dried in vacuo to give the 

product as a white solid (7.72 g, 56.7%) 1H NMR (300 MHz, CDCl3) δ 6.85 (s, 1H, 

aryl CTG), 6.79 (s, 1H, aryl CTG), 6.06 (ddt, J = 17.3, 10.5, 5.2 Hz, 1H, CHCH2), 

5.37 (dq, J = 17.3, 1.6 Hz, 1H, , Htrans), 5.24 (dq, J = 10.5, 1.4 Hz, 1H, Hcis), 4.74 (d, 

J = 13.7 Hz, 1H, Hendo), 4.59 (qd, J = 3.4, 1.5 Hz, 2H, OCH2CH2), 3.84 (d, J = 3.4 

Hz, 3H, OMe), 3.51 (d, J = 13.9 Hz, 1H, Hexo). 13C{1H} NMR (126 MHz, CDCl3) δ 

148.37, 146.92, 133.90, 132.49, 131.91, 117.64, 115.77, 113.81, 70.37, 56.27, 36.68. 

TOF-MS ESI: m/z = 546.2858 (M+H2O) All data are consistent with the literature.55 

 

Step 3: Synthesis of cyclotriguaiacylene P3 
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Tris(propen-2-yloxy)cyclotriguaiacylene  (3 g, 5.47 mmol) and triphenyl phosphine 

(300 mg, 1.14 mmo) were refluxed under an Argon atmosphere for 2 hrs in dry THF 

(100 mL), diethylamine (29 mL) and H2O (25 mL). Palladium acetate (100 mg, 0.44 

mmol) was then added and the solution left to heat for 18 hrs. The solution was 

filtered hot, through celite, and the solvent removed. The resulting off-white solid 

was triturated in methanol, filtered and washed with ether to give the product as a 

fine white powder (1.68g, 75.7%) 1H NMR (300 MHz, CDCl3) δ 6.88 (s, 1H, aryl 

CTG), 6.79 (s, 1H, aryl CTG), 5.39 (s, 1H, OH), 4.71 (d, J = 13.7 Hz, 1H, Hendo), 

3.85 (s, 3H, OMe), 3.50 (d, J = 13.8 Hz, 1H, Hexo). 13C{1H} NMR (126 MHz, 

DMSO-d6) δ 145.94, 144.86, 132.56, 130.41, 116.77, 113.99, 55.97, 35.01. TOF-

MS ESI: m/z  = 426.1918 (M+H2O) All data are consistent with the literature.21 

 

Preparation of (±)-2,7,12-trimethoxy-3, 8, 13-tris(4-(4’-methyl-2, 2’-

bipyridyl)methyl)-10, 15-dihydro-5H-tribenzo[a, d, g]cyclononatriene (L1) 
 
 

 

 

L1 was prepared in accordance with a modified literature procedure, all data are 

consistent.4  

Under an inert atmosphere, potassium carbonate (1.10 g, 7.97 mmol), a catalytic 

amount of 18-crown-6 and a suspension of CTG (0.200 g, 0.490 mmol) were stirred 

at reflux in acetone (30 mL) for 30 minutes. 4-bromomethyl-4‟-methyl-2,2‟-

bipyridine (0.900 g, 3.43 mmol) was then added  to the deprotonated CTG solution 

and the mixture left to stir at reflux for 48 hours. After cooling the acetone was 

removed in vacuo, water (50 mL) added and the suspension extracted with 

dichloromethane (3 × 50 mL). The combined extracts were dried over magnesium 

sulphate and taken to dryness to give an oily substance that was triturated with 
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methanol to give an off-white solid (0.364 g, 77.7 %) 1H NMR (300 MHz, CDCl3) 

δ (ppm) 8.65 (d, J = 5.0 Hz, 1H, H6‟), 8.55 (d, J = 4.9 Hz, 1H, H6), 8.45 (s, 1H, H3‟), 

8.28 (s, 1H, H3), 7.43 (d, J = 4.7 Hz, 1H, H5‟), 7.18 (d, J = 4.6 Hz, 1H, H5), 6.80 (s, 

1H, aryl CTG), 6.65 (s, 1H, aryl CTG), 5.20 (s, 2H, OCH2), 4.67 (d, J = 13.7 Hz, 

1H, Hendo), 3.64 (s, 3H, OMe), 3.44 (d, J = 13.7 Hz, 1H, Hexo), 2.46 (s, 3H, Me) 

13C{1H} NMR (126 MHz, CDCl3) δ 156.50, 155.72, 149.75, 149.09, 148.72, 148.41, 

148.10, 146.70, 133.29, 131.69, 125.04, 122.16, 121.48, 118.58, 116.49, 113.76, 

70.44, 56.21, 36.59, 21.34 TOF-MS ESI: m/z = 977.4002 (M+Na+) Analysis for 

C60H54N6O6.•0.5(H2O) (% calculated, found) C (74.75, 74.60) H (5.75, 5.70) N 

(8.72, 8.70) 

 

Preparation of (±)-2,7,12-trimethoxy-3, 8, 13-tris(4-(4’-methyl-2, 2’-

bipyridyl)carboxy)-10, 15-dihydro-5H-tribenzo[a, d, g]cyclononatriene (L2) 

 

Cyclotriguaiacylene (0.369 g, 0.97 mmol) was dissolved in dry THF (60 mL) under 

a nitrogen atmosphere and cooled to -78°C. Triethylamine (2 mL) was added to the 

solution and stirred for 1 hour at -78°C.  4‟-methyl-2,2‟-bipyridine-4-carbonyl 

chloride (0.800 g, 0.76 mmol) was added to the reaction flask and the solution 

stirred for a further 2 hours at -78°C, then allowed to come to room temperature and 

stirred for a further 3 days. The solvent was then removed in vacuo to give a pale 

off-pink solid that was triturated with EtOH to give the title compound as an off-

white solid (0.655 g, 0.687 mmol, 76%). 1H NMR (300 MHz, DMSO) δ 9.02 (s, 1H, 

H6‟), 9.00 (s, 1H, H3‟), 8.64 (d, J = 4.8 Hz, 1H, H6), 8.35 (s, 1H, H3), 8.03 (d, J = 5.4 

Hz, 1H, H5‟), 7.68 (s, 1H, aryl CTG), 7.41 (s, 1H, aryl CTG), 7.39 (s, 1H, H5), 4.96 

(d, J = 13.8 Hz, 1H, Hendo), 3.79 (m, J = 9.1 Hz, 4H. Hexo/OMe), 2.49 (s, 3H, Me). 

13C{1H} NMR (126 MHz, DMSO-d6) δ (ppm) 163.04, 156.78, 153.88, 150.83, 

149.34, 149.19, 148.39, 138.97, 137.60, 137.17, 131.97, 125.62, 124.07, 123.07, 
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121.40, 119.57, 114.58, 56.29, 35.04, 20.71. TOF-MS ESI: m/z = 997.3569 (M+H+) 

Analysis for C60H48N6O9•2(H2O) (% calculated, found) C (69.76, 69.90) H (5.07, 

4.75) N (8.13, 7.80)  

 

Preparation of (±)-2,7,12-trimethoxy-3, 8, 13-tris(4-pyridylmethyloxy)-10, 15-

dihydro-5H-tribenzo[a, d, g]cyclononatriene (L3) 

 

 

L3 was prepared in accordance with a modified literature procedure,  all data are 

consistent.11 
 
Under an inert atmosphere, potassium carbonate (2.0 g, 14.5 mmol), a catalytic 

amount of 18-crown-6 and a suspension of CTG (0.200 g, 0.490 mmol) were stirred 

at reflux in acetone (150 mL) for 30 minutes. 4-bromomethylpyridine hydrobromide 

(0.500 g, 1.98 mmol) was then added to the deprotonated CTG solution and the 

mixture left to stir at reflux for 3 days. After cooling the acetone was removed in 

vacuo, water (50 mL) added and the suspension extracted with dichloromethane (3 × 

50 mL). The combined extracts were dried over magnesium sulphate and taken to 

dryness to give an oily substance that was triturated with methanol to give an off-

white solid (0.290 g, 87.5 %) 1H NMR (300 MHz, CDCl3) δ 8.60 (dd, J = 6.2, 2.8 

Hz, 2H, Ha), 7.34 (dd, J = 6.4, 2.6 Hz, 2H, Hb), 6.78 (s, 1H, aryl CTG), 6.67 (s, 1H, 

aryl CTG), 5.11 (s, 2H, CH2), 4.70 (d, J = 13.8 Hz, 1H, Hendo), 3.71 (s, 3H, OMe), 

3.46 (d, J = 13.8 Hz, 1H, Hexo). 13C{1H} NMR (126 MHz, CDCl3) δ 150.18, 148.77, 

146.82, 146.75, 133.40, 131.83, 121.38, 116.60, 113.97, 70.22, 56.30, 36.61. TOF-

MS ESI: m/z = 682.2911 (M+H+) 

 

Preparation of (±)-2,7,12-trimethoxy-3, 8, 13-tris(4-carboxypyridyl)-10, 15-

dihydro-5H-tribenzo[a, d, g]cyclononatriene (L4) 
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L4 was prepared in accordance with literature procedure, all data are consistent.7  

Cyclotriguaiacylene (0.300 g, 0.74 mmol) was dissolved in dry THF (50 mL) under 

a nitrogen atmosphere and cooled to -78°C. Triethylamine (2.5 mL) was added to 

the solution and stirred for 1 hour at -78°C.  Isonicotinoyl chloride hydrochloride 

(0.527 g, 2.96 mmol) was added to the reaction flask and the solution stirred for a 

further 2 hours at -78°C, then allowed to come to room temperature and stirred for a 

further 2 days. The solvent was then removed in vacuo to give an off- white solid 

that was triturated with MeOH to give the title compound as a white solid (0.461 g, 

86 %). 1H NMR (300 MHz, CD3NO2) δ 8.85 (dd, J = 6.1, 2.9 Hz, 2H, Ha), 7.99 (dd, 

J = 6.0, 2.8 Hz, 2H, Hb), 7.44 (s, 1H, aryl CTG), 7.26 (s, 1H, aryl CTG), 5.01 (d, J = 

13.8 Hz, 1H, Hendo), 3.92 – 3.76 (m, 4H, Hexo/OMe). 13C{1H} NMR (126 MHz, 

DMSO) δ 162.99, 151.02, 149.12, 138.87, 137.53, 135.86, 131.90, 123.99, 122.89, 

114.52, 56.25, 34.94. TOF-MS ESI: m/z = 724.2288 (M+H+) 

Preparation of complex [(Re(Br)(CO)3)3(tris(4-[4’-methyl-2, 2’-

bipyridyl]methyl)CTG)] (C1.1): 
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Re(CO)5Br (67.9 mg, 0.167 mmol) was added to L1 (50 mg, 0.05 mmol) in toluene 

(15 mL) and heated to reflux for 24 hours to form an orange solution and bright 

yellow precipitate. The precipitate was isolated through sinter filtration, and washed 

with cold toluene (15 mL) and diethyl ether (10mL) to give a crystalline yellow 

solid (101 mg, 96 %); 1H NMR (300 MHz, CD3CN) δ 8.95 (s, 1H, H6‟), 8.83 (s, 1H, 

H6), 8.42 (d, J = 5.3 Hz, 1H, H3‟), 8.21 (d, J = 11.0 Hz, 1H, H3), 7.61 (s, 1H, H5‟), 

7.43 (s, 1H, H5), 7.12 (s, 1H, aryl CTG), 7.02 (s, 1H, aryl CTG), 5.26 (s, 2H, OCH2), 

4.73 (d, J = 13.5 Hz, 1H, Hendo), 3.79 (d, J = 8.6 Hz, 3H, OMe), 3.56 (d, J = 13.6 Hz, 

1H, Hexo), 2.53 (d, J = 4.5 Hz, 3H, Me), 13C{1H} NMR (126 MHz, DMSO) δ 

197.50, 189.69, 155.41, 154.76, 153.19, 152.60, 152.43, 151.68, 148.22, 145.96, 

134.02, 132.23, 128.65, 125.56, 125.36, 125.01, 122.11, 117.22, 114.49, 69.37, 

56.19, 35.23, 21.06; TOF-MS ESI: m/z = 2003.0774 

{[(Re(CO)3)3(Br)2]L1}+•DMSO, calculated for 2003.0772; Analysis for 

C69H54Br3N6O15.2(H2O) (% calculated, found) C (40.59, 40.40) H (2.86, 2.80) N 

(4.12, 4.10); IR (solid state): ν max = 2017 (C≡O), 1883 (C≡O), 1616 (C=C), 1505, 

1487, 1416, 1273, 1180 (C-O), 1088, 1031, 973, 888, 826, 646. UV-visible 

absorption maxima (DMSO, nm) 293, 318, 368.  

 

 

 

Preparation of complex [(Re(Br)(CO)3)3(tris(4-[4’-methyl-2, 2’-bipyridoyl]) 

CTG)] (C2.1): 
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Re(CO)5Br (0.131g, 0.321 mmol) was added to L2 (0.100 g, 0.100 mmol) in toluene 

(15 mL) and heated to reflux for 24 hours to form an orange solution and bright 

yellow precipitate. The precipitate was removed through sinter filtration, and 

washed with cold toluene (15 mL) and diethyl ether (10mL) to give a crystalline 

yellow solid (193 mg, 94%); 1H NMR (300 MHz, DMSO-d6) δ (ppm) 9.30 (d, J = 

6.0 Hz, 1H, H6‟), 9.21 (s, 1H, H3‟), 8.97 (s, 1H, H3), 8.90 (d, J = 5.7 Hz, 1H, H6), 

8.26 (d, J = 5.6 Hz, 1H, H5‟), 7.66 (s, 1H, CTG aryl), 7.63 (d, J = 5.2 Hz, 1H, H5), 

7.37 (s, 1H, CTG aryl), 4.97 (d, J = 13.9 Hz, 1H, Hendo), 3.76 (s, 4H, OMe/Hexo), 

2.58 (s, 3H, Me); 13C{1H} NMR (126 MHz, DMSO) δ 197.28, 197.02, 189.08, 

161.42, 157.11, 154.52, 153.90, 152.62, 152.43, 149.00, 139.18, 138.95, 137.43, 

131.99, 128.93, 126.62, 126.00, 123.94, 123.29, 114.53, 56.28, 35.04, 20.72.; TOF-

MS ESI: m/z = 2045.0152 {[(Re(CO)3)3(Br)2]L2}+•DMSO, calculated for 

2045.0150; Analysis for C69H48Br3N6O16 (% calculated, found) C (40.48, 40.20) H 

(2.36, 2.60) N (4.10, 4.10); IR (solid state): ν max = 2020 (C≡O), 1889 (C≡O), 1748 

(OC=O) 1618 (C=C), 1505, 1409, 1324, 1302, 1251, 1232, 1205, 1176 (C-O), 1140, 

1101, 1070, 991, 895, 833, 767, 645. UV-visible absorption maxima (DMSO, nm) 

252, 290, 330, 377. 

 

 

Preparation of cage [C1.1B(L4)] (CC1.1): 

C1.1 (0.020 g, 0.009 mmol) was dissolved in MeCN (5 mL) in the presence of 

AgOTf (0.008 g, 0.032 mmol) in the absence of light. The resultant solution was 

heated to 60°C for 12 hours then allowed to cool. The solution was filtered through a 

pad of Celtite to removed AgBr and concentrated in vacuo to ~1 mL, diethyl ether 

was added to precipitate a pale yellow powder (C1.1B) in approximately 

quantitative yield. {TOF-MS ESI: m/z = 629.4369 (M-3(OTf-))} A stoichiometric 

amount of C1.1B was dissolved immediately in combination with L4 (0.0062 g, 

0.008 mmol) in d3-nitromethane (0.5 mL), and the resultant solution heated to 50°C 

for 24 hours. The formation of CC1.1 was followed by 1H NMR and HR ESI-MS 

over time. TOF-MS ESI: m/z = 829.8133{(Re(CO)3)3(L1)(L4)}3+, calculated for 

829.8175. 
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2.8.2  X-ray crystallography 

Crystals were mounted under inert oil on a MiTeGen tip and flash frozen to 100(1) 

K using an OxfordCryosystems low temperature device. X-ray diffraction data were 

collected using Cu-K radiation (λ= 1.54184 Å) or Mo-K radiation (λ = 0.71073 Å) 

using an Agilent Supernova dual-source diffractometer with Atlas S2 CCD detector 

and fine-focus sealed tube generator. Data were corrected for Lorenztian and 

polarization effects and absorption corrections were applied using multi-scan 

methods. The structures were solved by direct methods using SHELXS-97 and 

refined by full-matrix on F2 using SHELXL-97.56 Unless otherwise specified, all 

non-hydrogen atoms were refined as anisotropic, and hydrogen positions were 

included at geometrically estimated positions. Crystals of L1∙(Et2O) were of poor 

quality, with poor internal consistency (Rint = 0.1955) and only exhibited weak 

diffraction, with no diffraction at high angles. Attempts to grow higher quality 

crystals were not successful. For complex C1.1∙n(CH3NO2) solvent CH3NO2 and 

some CO ligands were refined isotropically and one C=O bond length restrained. 

The crystal lattice contained significant void space that could not be meaningfully 

modelled as solvent. The SQUEEZE routine of PLATON was therefore employed.48 
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Compound L1∙(Et2O) C1.1∙n(CH3NO2) 

Formula 
C64H64N6O7 C141H117Br6N15O36

Re6 

Mr 1029.21 4194.16 

Crystal color and shape Colorless, plate Yellow, polyhedral 

Crystal size (mm)  0.20 x 0.10 x 0.01 0.10 x 0.10 x 0.20 

Crystal system 

Orthorhombic Trigonal 

(hexagonal axes) 

Space group Pbna R-3 

a (Å) 9.308(2) 29.1454(12) 

b (Å) 34.568(10) 29.1454(12) 

c (Å) 33.811(9) 42.570(3) 

α (0) 90 90 

β (0) 90 90 

γ (0) 90 120 

V (Å3) 10879(5) 31317(3) 

Z 8 6 

ρcalc (g.cm-3) 1.257 1.334 

θ range (0) 4.68 – 45.0 3.65-58.99 

No. data collected 23412 16678 

No. unique data 4392 9929 

Rint 0.1955 0.0382 

No. obs. Data (I > 2σ(I)) 2045 6101 

No. parameters 704 553 

No. restraints 0 1 

R1 (obs data) 0.1251 0.0950 

wR2 (all data) 0.3706 0.2583 

S 1.003 1.458 

 

Photophysical studies 

UV-vis spectra were recorded on an Agilent Technologies Cary 60. Steady state 

emission and excitation spectra were recorded on an Agilent Technologies Cary 

Eclipse. Time-resolved spectra were recorded on a PicoQuant FluoTime 300 

exciting with an LDH-P-C-375 and decays analysed with the program FluoFit. A 0.4 

mgmL-1 solution in aerated DMSO was made to 5 mL in a volumetric flask, the 

solution was then transferred to a quartz cuvette and the experiments run at ambient 

temperature. Photophysical studies were performed in DMSO (to ensure full 
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dissolution of the solids). The lifetime of the complex is defined as the time at which 

the emission intensity has dropped to e-1 times the initial intensity I0. To calculate 

this value the dark counts must be taken into account, as the intensity of the 

emission does not drop to 0, but plateaus at ~2000 a.u. The data must be normalised 

to reflect the baseline dark count. Therefore the average dark count value is 

subtracted from all recorded intensities to give an I0 of 8000 a.u. As stated, Iτ = I0 x 

e-1, leading to an Iτ value of 2943 a.u., which corresponds to a τ value of 0.467 μs, or 

467 ns for C1.1 and a two component lifetime of 3 ns and 23 ns for complex C2.1 as 

confirmed by TRES measurements and analysis with FluoroFit.  
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3 Chapter 3 

Tri- and mono- homometallic iridium complexes of CTG-type 

ligands 

3.1  Introduction 

Light emitting complexes are of great interest throughout chemistry, with potential 

applications in organic light emitting diode (OLED) and light emitting 

electrochemical cell (LEEC) systems,1–4 in luminescent biomedical imaging5–7 and 

as sensors for drugs and explosives.8 There is a wealth of experimental research into 

the emission properties of both [Ir(C^N)3] and [Ir(C^N)2(L^X)]+ iridium containing 

species, both into the resultant effect of altering the C^N cyclometallating ligand and 

the L^X ligand, which can be any combination of nitrogen, oxygen and sulphur 

containing bidentate ligand.1,3,6–20 Typical nomenclature when referring to iridium 

complexes dictates that homoleptic denotes an iridium centre bound to three 

identical cyclometallating ligands, whereas heteroleptic refers to and iridium centre 

bound to two cylometallating ligands and one chelating ligand, i.e intra-metallic 

similarity descriptor. 

 

Figure 3.1 : Nomenclature relating to iridium complexes in the literature and in 

this work. 
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In this thesis, due to the tripodal nature of the ligand, and thus the presence of more 

than one iridium centre, the nomenclature adopted refers to both intra- and inter-

metallic similarity. This work refers to the relative similarity of the ancillary 

cyclometallating ligands on distinct iridium centres, commonly referred to as a 

metallotecton, within the same metallo-complex i.e. inter-metallic similarity. Hence, 

homo-metallic in the title of this chapter refers to complexes where the same iridium 

metallotecton is bound to the cyclotriguaiacylene ligand multiple times. Whereas in 

Chapter 4, mixed systems are formed through the use of both phenylpyridine-

containing and di- fluorophenylpyridine-containing metallotectons, leading to 

hetero-metallic metallo-complexes. All of the complexes discussed are heteroleptic, 

as two ancillary phenylpyridine ligands, and the bipyridine arm of the tripodal 

cavitand ligands are bound to the iridium centre.  

This work will look exclusively at cationic iridium complexes baring various C^N 

cylometallating phenylpyridine ligands, and N^N chelating bipyridine ligands which 

are all part of larger tripodal cyclotriguaiacylene ligand scaffolds.  

3.2 Preparation of homo tri-metallic iridium species 

Although ubiquitous in the field of light-emitting devices, a common method for the 

preparation of bis-cyclometallated iridium species of the form [Ir(C^N)2(N^N)]X, is 

through the reaction of a μ-chlorobridged iridium dimer and two equivalents of an 

N^N chelating ligand, as seen in Scheme 3.1.9,13,15,16,18,21 

 

Scheme 3.1: The general route to formation of [Ir(C^N)2(N^N)] species. 

In combination with the tripodal bipyridine ligands L1 and L2 discussed in the 

previous chapters, the above general route was applied in an effort to form homo tri-

metallic iridium complexes C1.2 and C2.2. In this case, the phrase „homometallic’ is 
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used in reference to similarity of the ancillary ligands around each discrete metal 

centre, in so much as each of the three distinct iridium centres in the subsequent 

complexes are structurally equivalent.  

The formation of these species was initially explored employing high-boiling point 

solvents, such as diglyme and ethoxyethanol in an effort to drive the reaction 

towards the desired homo tri-metallic products, C1.2 and C2.2. However, during 

reaction at elevated temperatures the bipyridine arm can be cleaved from the central 

tribenzo[a, d, g]cyclononatriene core, leading to irreversible degradation of the 

ligands.  

To preclude the observed breakdown of the ligands, a milder synthetic route was 

investigated. The route is adapted from recent procedures,10 employing a 

DCM/MeOH solvent mixture and prolonged reaction times of up to five days, 

described in Scheme 3.2.  
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Scheme 3.2: Formation of C1.2 and C2.2, homo tri-metallic iridium species. 

The status of the reaction, and thus the formation of the desired product, can easily 

be followed by use of HR ESI-MS, with the distinctive iridium isotope pattern being 

diagnostic of complex formation. 

The resultant species C1.2 and C2.2 are seen at 818 and 832 m/z respectively as the 

+3 cation, Figure 3.2, without their non-coordinated chloride, or subsequently 

hexafluorophosphate, anions. Once the reaction has gone to completion, the latent 

chloride anions are exchanged for hexafluorophosphate anions through precipitation 



  Chapter Three 

Page | 93  

 

of C1.2 and C2.2 with a saturated aqueous solution of ammonium 

hexafluorophosphate. 

 

 

Figure 3.2: Expanded HR-ESI-MS of C1.2 (top) and C2.2 (bottom) with the 

isotope pattern of the 3+ peak and corresponding calculated spectrum of the 

M3+peak, inset. 

As evidenced in Figure 3.2, C1.2 and C2.2 can be formed cleanly through this mild 

synthetic route, with negligible side-products and no ligand degradation observed.  

The three iridium centres in these systems, C1.2 and C2.2, are structurally 

equivalent, giving rise to the „homometallic‟ systems; however they are not 

chemically equivalent as there are a number of diastereomers. As discussed in 

Chapter 2, cyclotriguaiacylene ligands are always formed as a racemic mixture of M 

and P enantiomers, thus L1 and L2 are present throughout as a mixture of 
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enantiomers. Furthermore, due to the tris-chelate nature of the ligand binding motif 

around the iridium centres, there are also Δ and Λ helical isomers present. The 

combination of these factors leads to a complex mixture of isomers in solution, 

exacerbated by the chirality around each bipyridine arm being  independent of the 

other binding sites within the same complex, thus both Δ and Λ isomers can exist in 

the same complex. There are eight unique permutations that can arise from the 

combination of ligand and metal chirality, as shown in Figure 3.3.  
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Figure 3.3: Possible stereoisomers of C1.2/C2.2; the M isomer shown in red and 

the P isomer in blue, with octahedral chirality represented by the curved arrows. 

This assortment of stereoisomers could be simplified somewhat through chiral 

resolution of either the cyclotriguaiacylene ligands,22–24 or the metal precursor.13,25,26 

However, chiral resolution of this ligand system is not facile; all previous attempts 

in the Hardie group to separate the M and P isomers of cyclotriguaiacylene ligands 

employing chiral HPLC facilities available at the UoL, have failed to isolate either 
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enantiomer cleanly. An additional obstacle to resolving the ligand enantiomers is the 

presence of the saddle conformation of the central cyclononatriene core. All ligands 

synthesised from CTG will adopt the lower-energy crown conformation, but the 

existence of the saddle form gives rise to a potential route to enantiomeric inter-

conversion, as evidenced in Scheme 3.3. 

 

 

Scheme 3.3: Potential inter-conversion cycle for all cyclotriguaiacylene ligands. 

Starting from the crown conformation of the P isomer, the saddle form can be 

accessed through an outwards flexing motion of two of the substituted benzene 

rings, the opposite M enantiomer can then be formed through the same flexing 

outwards of the remaining benzene ring to re- form the crown conformation. This 

effect will clearly be dependent on the substituent groups around the upper-rim of 
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the cavitand, thus ligands containing more sterically demanding groups will possess 

a higher inter-conversion barrier, whereas cyclotriveratrylene, the hexa-methoxy 

variant, has an isomerisation half- life of one day at room temperature.27 Therefore, 

due to the relatively long reactions times, as well as the slightly elevated temperature 

the reaction is run at, chiral resolution of L1 and L2 is not a suitable approach in this 

instance. 

The complexity induced through the stereoisomer contributions lead to complicated, 

but reproducible, 1H NMR spectra, as discussed in more detail in section 3.4. As 

such, mass spectrometry was the main method employed to follow the formation of 

homo tri-metallic C1.2 and C2.2. 

3.3 Preparation of mono-metallic iridium species 

Despite the success and ease of formation of the homo tri-metallic complexes, the 

aim of this work was to provide ‘proof-of-principle’ that the tripodal ligand system 

herein could afford a suitable and stable ligand scaffold for the iridium complexes 

without impeding the desired photophysical properties. To build on and expand 

upon the functional output of this system, an effort towards the mono-metallic 

analogues was undertaken. Formation of a mono-metallic iridium system gives rise 

to two vacant coordination sites on the remaining bipyridine arms, and therefore 

gives a potential route to heterometallic or heteronuclear complexes.  

Initial attempts to form the mono-metallic species employing the previously utilised 

μ-chlorobridged iridium dimer, as depicted in Scheme 3.4, all lead to over-

metallation of the ligand binding sites, regardless of the high-dilution conditions and 

drop-wise addition employed. It is surmised that the very fact that the metal 

precursor is dimeric is the cause of this over-metallation, as when the bridging 

chloro- ligands are dissociated to enable binding to one bipyridine arm, the 

remaining iridium counterpart is also „activated‟ towards ligand binding, whilst 

being in close proximity to a second bipyridine arm on the same ligand molecule. 

Thus, even if high-dilution conditions are rigorously implemented in the bulk 

solution, the local concentration on an individual molecular level around the discrete 

ligand arms is much higher. A monomeric metallotecton was therefore synthesised 

to overcome this obstacle and the resultant synthetic route shown in Scheme 3.4. 
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Scheme 3.4: Formation routes to homo tri-metallic C1.2 and C2.2 and their 

mono-metallic congeners C1.3 and C2.3. 

Formation of the monomeric iridium precursor is facile, and proceeds in acetonitrile 

solvent in the presence of halide abstracting agent silver hexafluorophosphate. 

Gentle heating of the system gives rise to the acetonitrile adduct, already bearing a 

hexafluorophosphate anion. Reaction of the iridium monomer with an appropriate 

amount of L1 or L2 in a DCM:MeOH (9:1) solvent mixture, again employing high-

dilution and drop-wise addition, furnished complexes C1.3 and C2.3 respectively in 

good yields. Through use of 0.9 equivalents of iridium precursor, the probability of 
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over-metallation is further decreased, and the only other species present in solution 

would be excess ligand, which can easily be removed through the drastic differences 

in solubility between uncomplexed, free ligand and any metallated species.  

The formation of both mono-metallic species, C1.3 and C2.3, can also be followed 

by in situ qualitative monitoring of the emission properties. The organic ligands L1 

and L2 show negligible visible emission when excited at 405 nm, as does the 

monomeric iridium precursor. The mono-metallic products, however, both possess a 

bis-cyclometallated, N^N chelated iridium centre and are therefore emissive under 

the conditions described above. Consequently, formation of the desired product, 

C1.3 or C2.3, can be qualitatively followed through the bright yellow or orange 

emission respectively, Figure 3.4.  

 

Figure 3.4: In situ emission of mono-metallic C1.3 (left) and C2.3 (right) with 

excitation at 405 nm. 

Although only qualitative in nature, the difference “by-eye” of the emitted colour 

from the in situ emission demonstrates the versatility of this system, as seemingly 

minor structural alterations can lead to dramatic shifts in emission wavelength.  

Homo tri-metallic C1.2 and C2.2 can of course also be formed through use of the 

monomeric precursor, reducing the required reaction time to only twelve hours, and 

allowing the reaction to proceed at room temperature when the correct 

stoichiometries are implemented. This approach leads to marginal increase in the 

achieved yields, presumably due to the negated need for an anion exchange step. 

The HR ESI-MS for C1.3 and C2.3, Figure 3.5, show the clean formation of the 

desired mono-metallic species, with the M+ peak of the cationic complex observed at 

1455 and 1487 m/z respectively. 
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Figure 3.5: Expanded HR-ESI-MS of mono-metallic C1.3 (top) and C2.3 (bottom) 

with the isotope pattern of the 1+ peak and corresponding calculated 

spectrum of the M+ peak, inset. 

Although both C1.3 and C2.3 are commonly detected as the naked cation, without 

the associated hexafluorophosphate anion, the availability of the basic nitrogen 

donors on the vacant bipyridine arms gives a route to further protonation in the gas 

phase. Thus, C1.3 can be observed as [(1.3)], [(1.3)•H+] and [(1.3)•2(H+)] at 1455, 

728 and 485 m/z respectively. 
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Figure 3.6: Expanded HR ESI-MS of mono-metallic C1.3 showing the variety of 

protonated species observed in the gas phase. 

This phenomenon also occurs with C2.3 although not as cleanly, and is thus 

observed as [(2.3)], [(2.3)•H+] and [(2.3)•2(H+)] at 1497, 749 and 499 m/z 

respectively, as shown in Figure 3.7.  

 

 

Figure 3.7 : Expanded HR-ESI MS of mono-metallic C2.3 showing the variety of 

protonated species observed in the gas phase. 
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3.4 Spectroscopic analysis of tri- and mono-metallic iridium 

complexes 

The synthesis of all the previously discussed tri- and mono-metallic iridium 

complexes heavily relies on the use of high resolution mass spectrometry, to follow 

reaction progress and to ascertain when a reaction has gone to completion. The 

stability of these types of species is evidenced through the negligible degree of 

fragmentation observed, even throughout the ESI process, negating the need for 

specialist direct- injection techniques, and allowing for standard pre-programmed 

ESI methods to be implemented with ease. This is particularly advantageous as the 

1H NMR spectra of both the tri- and mono-metallic species are complicated. The 

complex enantiomeric mixtures of both ligand and metallotecton have previously 

been discussed in relation to the tri-metallic C1.2 and C2.2, and although simplified 

in enantiomeric terms C1.3 and C2.3 show more complex spectra due to both vacant 

and metal-bound bipyridine arms existing in the same molecule. 

 

Figure 3.8: Stacked spectra exemplifying the complex 1H NMR spectra recorded 

for a) L1 in d-CHCl3 b) tri-metallic C1.2 in d2-DCM c) mono-metallic C1.3 

in d2-DCM. 
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The 1H NMR spectrum of L1 in deuterated chloroform solvent, spectrum a) in 

Figure 3.8, demonstrates the C3 symmetry of the free, un-complexed ligand, as one 

set of sharp peaks corresponding to the protons on all three equivalent bipyridine 

arms is observed.  

 

Figure 3.9: Structure of L1, with the methyl ether protons highlighted in red and 

the C3 axis shown in blue. 

The signal at 5.2 ppm corresponds to the two equivalent methylene protons on the 

methyl ether linking group between the cyclononatriene core and the bipyridine arm, 

shown in red in Figure 3.9. Due to free rotation on the NMR timescale they appear 

as a sharp singlet in the spectrum of L1. The observed spectrum of tri-metallic C1.2, 

by comparison, possesses noticeably broader peaks, due to the increase in steric bulk 

around each ligand arm, leading to more hindered rotation. This is mos t clearly 

evidenced through broadening of the previously discussed methyl ether peak at 

5 ppm; the aforementioned sharp singlet starts to split into two, becoming pseudo-

diastereomeric, as the chemical environment of the two protons represented therein 

becomes distinct. 
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Figure 3.10: Expanded 1H NMR spectrum of C1.2 in CD3CN with the aromatic 

region expanded for clarity and the chemical structure relating to the proton 

assignments inset (only one metallated arm shown for clarity, and anions not 

shown). 

The precise assignments were derived from a 2D COSY NMR spectrum. The 

methyl, methoxy and endo/exo doublets are all seen at the expected chemical shifts 

of 2.5, 3.7, 3.5 and 4.6 ppm respectively. The previously sharp methylene CH2 

protons have become diasteromeric, displaying a roofed doublet at 5.2 ppm. Each of 

the resonances assigned to phenylpyridine-based protons has an integration of two, 

due to the two ancillary ligands bound to each iridium centre. The highest- field peak 

at 6.2 ppm is assigned to HH‟ on the phenylpyridine ligand, whilst the other 

phenylpyridine protons are assigned in green.  

The spectrum of mono-metallic C1.3 is thus even more complex. C1.3 possesses 

two free bipyridine arms, which appear as sharp, well resolved peaks in the 

spectrum, and one iridium-bound bipyridine arm giving rise to broader peaks.   
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Figure 3.11: Expanded structure of mono-metallic C1.3 to demonstrate the 

inequivalence of the bound and un-bound bipyridine arms. 

Again, this inequivalence is demonstrated through the splitting of the peak 

belonging to the methyl ether protons at 5.2 ppm; displaying a sharp singlet assigned 

to the four protons bound to the free-bipyridine arms (shown in red, Figure 3.11), 

and a smaller, broader peak assigned to the two protons on the methyl ether bridge 

of the bipyridine arm bound to the lone iridium centre (shown in blue, Figure 3.11). 

Binding of one ligand arm to the iridium metallotecton also generates inequivalence 

between protons on different bipyridine arms.  
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Figure 3.12: Expanded 1H NMR spectrum of C2.2 in CD3CN with the aromatic 

region expanded for clarity and the chemical structure relating to the proton 

assignments inset (only one metallated arm shown for clarity). 

Again, COSY NMR was employed to assign the complex aromatic region, as shown 

in Figure 3.12. The methyl, methoxy and endo/exo doublets are all seen at the 

expected chemical shifts. Once again, the highest field aromatic resonance, at 

6.7 ppm, is assigned to HH‟ of the phenylpyridine ancillary ligand. The 

phenylpyridine protons are assigned in green, whilst those belonging to the aromatic 

ligand scaffold are assigned in red. As with C1.2, the aromatic region of C2.2 can be 

rationalised through consideration of the total peak integrals; those peaks assigned to 

protons on the ligand scaffold should integrate to one proton, whilst those on the 

ancillary ligand should integrate to two protons each. The complex multiplet around 

7 ppm thus integrates to seven protons, assigned to two from each of HF‟ and HG‟, 

two aryl protons from the ligand scaffold and H5‟ from the bipyridine arm, totalling 

seven protons.  

The equivalent complexity is seen in the spectra of L2, tri-metallic C2.2 and mono-

metallic C2.3. 

HH‟ 

HF‟/HG‟/2

Haryl/H5‟ 

H5 
HC‟/HD

‟ 

HB‟/HE‟

/H6 

H6‟/ HA‟ H3‟       H3 

Hendo 

OMe

/Hexo 

CH3 

+ 



  Chapter Three 

Page | 107  

 

 

Figure 3.13: Stacked spectra exemplifying the complex 1H NMR spectra recorded 

for a) L2 in d6-DMSO b) tri-metallic C2.2 in d2-DCM c) mono-metallic C2.3 

in d2-DCM. 

The 1H NMR spectrum of L2 was recorded in dueterated dimethyl sulphoxide 

solvent, due to the very low solubility of the ligand. Once again, the C3 symmetry of 

the free ligand is evidenced through one set of sharp peaks belonging to the aromatic 

protons on the equivalent bipyridine arms. The resonance assigned to the exo-proton 

on the central methylene-bridge is hidden under the resonance of the methoxy 

group, and therefore seen as a shoulder at 3.7 ppm. Analogous to C1.2, C2.2 

displays slightly broadened peaks due to the increased steric bulk around the 

bipyridine arm. The 1H NMR spectrum of mono-metallic C2.3 is essentially a 

superposition of spectra a and b, possessing sharp peaks assignable to the protons on 

the unbound bipyridine arms, and broader peaks of the metal-bound arm.  

3.5 Photophysical properties of tri- and mono-metallic Ir species 

The photophysical spectra were run at the University of St Andrews by PhD student 

Diego Rota Martir in collaboration with the group of Dr Eli Zysman-Colman. The 

photophysical properties of both tri-metallic species C1.2 and C2.2, and mono-
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metallic species C1.3 and C2.3, were investigated in deaerated acetonitrile solvent, 

at 298 K.  The complexes were also incorporated into poly(methyl methacrylate) 

(PMMA) doped thin-films at 5 wt %. 

 

Figure 3.14: Overlaid emission spectra for C1.2 and C1.3 recorded in deaerated 

acetonitrile. 

The two complexes, both tri- and mono-metallic C1.2 and C1.3, comprised of the 

ether- linked L1, both show very similar emission profiles. Tri-metallic C1.2 

possesses a λmax when excited at 360 nm of 615 nm that trails off in a traditional 

bell-shaped curve. Mono-metallic C1.3 shows a similar λmax of 601 nm, displaying a 

hypsochromic shift to higher-energy than C1.2 by just 14 nm. The mono-nuclear 

analogue, [Ir(ppy)2(dmb)]+ where dmb=dimethylbipyridine, possess a λmax of 

580 nm in analogous deareated acetonitrile.28 Thus, the emission profiles of the tri- 

and mono-metallic systems both show a slight bathochromic shift by ~20-30 nm. 

Analysis of the resultant emission lifetimes associated with C1.2 and C1.3, 

presented in Table 3.1, indicates similar values for the emission peaks, of 586 and 

530 ns respectively, displaying a significant improvement to the reported value of 

310 ns for the mono-nuclear system.  
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Figure 3.15: Overlaid emission spectra of C2.2 and C2.3 recorded in deaerated 

acetonitrile. 

Conversely, ester- linked systems tri- and mono-metallic C2.2 and C2.3, display 

markedly different emission profiles, both in regards to each other and to C1.2-3. As 

is evidenced in Figure 3.15, the emission profiles of C2.2 and mono-metallic C2.3 

include two distinct emission peaks, comprising of one peak centred on 560 nm, and 

another peak at lower energy, around 680 nm. 

Tri-metallic C2.2 possesses a strong high energy emission peak (λem) at 563 nm, 

blue shifted from the analogous single emission of C1.2. Nonetheless, emission of 

C2.2 “by-eye” is substantially red-shifted; this is due to the significant proportion of 

light emitted above ~650 nm. The second λem at 686 nm dominates the observed 

emission, with the ratio of high-energy emission (HEE) to low-energy emission 

(LEE) approximately 0.79:1. Mono-metallic C2.3 also shows dual-emission, 

however the peaks are less distinct, with the high energy peak (λem 566 nm) 

appearing almost as a shoulder to the lower energy peak at 686 nm. The ratio of 

emission intensities, HEE:LEE, is 0.7:1, whereby the LEE peak dominates the 

emission intensity.  

The observed dual-emission of C2.2 and C2.3, and conversely the lack of dual 

emission seen in C1.2 and C1.3, is attributed to the increased conjugation within the 

L2 ligand scaffold. The presence of the ester linking group between central 
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cyclononatriene core and bipyridine arm gives rise to a potential conjugation route, 

allowing for a fully conjugated ligand motif, one that is not possible with the 

analogous L1. Thus, it follows that organic-type ligand-centred or intra- ligand 

transitions are responsible for the HEE peaks, whereas the more familiar triplet 

metal-to- ligand charge-transfer, 3MLCT, is responsible for the LEE peaks. Previous 

examples have shown that highly conjugated systems, such as those containing 

extended phenanthroline and phenylbenzoquinoline analogues as both N^N and 

cyclometallating ligands, display similar dual emission, in this case in the near IR 

region.29 Whilst the precise contributions to the HOMO/LUMO levels from the two 

chelating and cyclometallating ligands are reasonably complex, the result is an 

emission profile showing clear dual-emission and a strong bathochromic shift with 

respect to less conjugated analogues.   

Complex  λem (nm)b  ФPL (%)c  te (ns)d  

1.2  615  9.8  586  

1.3  601  14.4  530  

2.2  563 (0.79), 686 

(1)  

1.4  20 (0.07), 558 

(0.93)  

2.3  566 (0.7), 686 

(1)  

1.0  22 (0.82), 498 

(0.18)  

Table 3.1: Emission maxima, quantum yield and lifetime analysis of C1.2-3 and 

C2.2-3 in deaerated acetonitrile solution. 

Lifetime analysis of the distinct emission peaks substantiates this assignment. 

Emission peaks at 563 and 566 nm in C2.2 and C2.3 respectively, possess lifetimes 

of just 20 and 22 ns, indicative of short-lived organic-based transitions, whereas the 

lower-energy peaks at 686 nm show much longer lifetimes of 558 and 498 ns, 

suggesting a longer- lived phosphorescence process is responsible. Relative intensity 

values are shown in brackets, both with regards to the emission maxima and the 

lifetimes. The lifetime of tri-metallic C2.2 is dominated by the 686 nm emission 

peak, giving rise to a lifetime of 558 ns that accounts for 93% of the overall lifetime. 

Conversely, the lifetime of mono-metallic C2.3 is dominated by the ligand-based 
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566 nm peak, giving rise to a short 22 ns lifetime that accounts for 82% of the 

overall lifetime. This disparity can be rationalised through consideration of the 

molecular structure; tri-metallic C2.2 contains three times as many iridium centres 

as C2.3, therefore it follows that the resultant lifetime would be more heavily 

dominated by iridium-based MLCT emission. The inverse effect can also be 

recognised as the lifetime attributable to C2.3, containing two un-bound ligand 

arms, is dominated by emission from ligand-centred peaks, with the lower-energy 

686 nm peak only responsible for 18% of the overall lifetime.  

The resultant photoluminescent quantum yield, ΦPL, of the four complexes also 

demonstrates the distinction between the two ligand sub-sets. Both complexes 

containing L1 display photoluminescent quantum yields (PLQY) larger than the L2 

analogues by a factor of ten. This suggests that the decisive factor in determining the 

emission efficiency is the ligand scaffold itself, and not the degree of metallation. 

Accordingly, there must be a route towards non-radiative decay present in L2 that is 

not present in L1, leading to the observed quenching of the PLQY.  

Figure 3.16: Dark-room image revealing the contrast in emission properties 

between L1 and L2 containing complexes. 

1.2 1.3

B 

2.2 2.3 
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The improved PLQY of mono-metallic C1.3 versus tri-metallic C1.2 can be 

speculatively rationalised through consideration of the concentration of 

chromophores. C1.3 contains just one emissive centre, whereas C1.2 contains three 

chromophore units, held in close proximity to each other, thus giving rise to 

potential energy transfer mechanisms which may be non-radiative, therefore leading 

to the observed decrease in PLQY. Conversely, the opposite is true for tri-metallic 

C2.2 versus C2.3; the mono-metallic C2.3 displays a smaller PLQY. However, this 

may be due in part to the previously mentioned quenching effect of L2 itself, since 

mono-metallic C2.3 can be thought of as containing more ligand character than tri-

metallic C2.2.  

The photophysics of all four complexes were also investigated when incorporated 

into doped PMMA thin films at 5 weight %. The rationale behind this is to examine 

the photophysics where collisional and vibrational quenching is less of a factor; this 

is achieved through constrainment in an inert matrix.  

 

Figure 3.17: Overlaid emission spectra of C1.2, 2.2, 1.3 and 2.3 when 

incorporated into a doped PMMA thin-film. 

As evidenced above in Figure 3.17, the λmax for all four complexes are blue-shifted 

to higher energy, regardless of the ligand employed. This can rationalised by 

consideration of the vibrational energy of the emissive transitions; when a complex 

is incorporated into a thin- film it is essentially restrained and thus experiences less 
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vibrational quenching. If less energy is lost through vibrations, then more energy 

remains to be emitted, leading to the higher energy emission observed in the PMMA 

films. 

 

Complex  λem (nm)  ФPL (%)  te (ns)  

1.2  565  17.7  194 (0.6), 960 

(0.6)  

1.3  566  26.4  376 (0.26), 

1210 (0.74)  

2.2  625  13.9  248 (0.35), 

1003 (0.65)  

2.3  601  21.3  291 (0.21), 

1032 (0.79)  

Table 3.2: Emission maxima, quantum yield and lifetime analysis of C1.2-3 and 

C2.2-3 in PMMA doped thin-films. 

The general trends observed for both mono- and tri-metallic iridium complexes are; 

significant blue-shifts in emission peak, larger PLQY and much longer lifetimes or 

lifetime components. Again, the longer lifetimes can be explained through 

incarceration of the complex in an inert medium which retards vibrational and non-

radiative emission.  
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Figure 3.18 : Dark-room images of C1.2, 1.3, 2.2 and 2.3. Emission in deaerated 

acetonitrile solution is shown (top) for comparision, emission in PMMA 

doped thin-films shown underneath. [λex=360 nm]. 

The visible blue-shift from acetonitrile solution to PMMA thin-film can be seen in 

Figure 3.18, particularly for complexes C1.2 and C1.3. Whilst the greatly increased 

PLQY is most obvious in the dark-room images of complexes C2.2 and C2.3; where 

in solution there is barely any visible emission, whilst under irradiation from the 

same source, there is significant emission from the PMMA thin films.     

3.6 Conclusions and further direction  

A novel route to homo tri-metallic iridium systems C1.2 and C2.2 has been 

reported, ultimately utilising a more reactive iridium monomer as a precursor to 

shorten reaction times and allow the reaction to proceed at ambient temperatures. 

The mono-metallic congeners C1.3 and C2.3 have also been synthesised employing 

high-dilution conditions to preclude over-metallation.  

The remarkably clean formation of all systems was extensively followed by HR 

ESI-MS, due to the distinctive iridium isotope pattern and owing to the complex 1H 

NMR spectra obtained.  

Photophysical analysis leads to some interesting conclusions about the relative 

importance of ligand structure versus degree of metallation. There is a clear divide 

between complexes derived from L1 as opposed to L2; those formed from L2 show 

dual-emission from both ligand-centred and 3MLCT transitions, whereas L1-based 

complexes exhibit a singular emission peak with PLQYs improved by a factor of 

ten.  

C1.2 C1.3 C2.2 C2.3 
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When the complexes are incorporated into PMMA doped thin-films the emission is 

blue-shifted, and the both the PLQY and lifetimes improved. This is most likely due 

to decreased vibrational quenching in the PMMA matrix. Incorporation into a thin 

film also lead to significant improvements in the photophysical properties of the 

ester- linked C2.2 and C2.3. 

The reliable formation of mono-metallic C1.3 and C2.3 opens the avenue of 

exploration towards heteroleptic complexes; whereby sequential addition of varied 

iridium metallotectons could lead to formation of complexes where the iridium 

centres bear distinct ancillary ligands. The functionality already present on the 

ancillary phenylpyridine ligands bound to the iridium metallotecton can be modified 

with ease, and thus pertinent combinations can be incorporated into a single 

complex in order to tune the resultant photophysics.1,4,21,28,30–32 

The vacant binding sites on mono-metallic C1.3 and C2.3 by no means have to be 

subsequently reacted with the same metal; heteronuclear complexes are also a 

possibility, leading to an even wider range of potential photophysical properties.  
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3.7 Experimental 

3.7.1 Synthesis 

 

Preparation of complex [(Ir(III)(2-phenylpyridine)2)3(tris(4-[4’-methyl-2, 2’-

bipyridyl]methyl)CTG)].3(PF6
-) (C1.2): 

[Ir(ppy)2(Cl)]2 (0.084 g, 0.078 mmol) and (±)-L1 (0.050 g, 0.052 mmol) were 

combined in a mixture of DCM/MeOH (10:1) (9 mL total) and heated to 40°C. The 

reaction was followed by MS, and heating was continued until the main peak seen 

was the [Ir(ppy)2]3(L1)3+ cationic complex. The reaction mixture was taken to 

dryness in vacuo and redissolved in MeCN (5 mL), halide exchange was 

accomplished by addition of an aqueous solution of NH4PF6. The soluble PF6
- salt 

did not precipitate and the MeCN was removed in vacuo, leaving an aqueous residue 

that was extracted with DCM, dried over MgSO4 and concentrated to ~1 mL in 

vacuo. Diethyl ether was added to the solution to give the title product as a bright 

yellow powder (0.130 g, 88%); 1H NMR (300 MHz, CD3CN) δ 8.52 (s, 1H), 8.30 (s, 

1H), 8.00 (d, J = 6.6 Hz, 2H), 7.91 (d, J = 3.2 Hz, 1H), 7.78 (d, J = 5.5 Hz, 5H), 7.56 

(d, J = 5.5 Hz, 2H), 7.50 (s, 1H), 7.30 (d, J = 5.3 Hz, 1H), 7.10 (s, 1H), 6.99 (t, J = 

7.7 Hz, 5H), 6.88 (t, J = 7.0 Hz, 2H), 6.25 (t, J = 6.6 Hz, 2H), 5.22 (d, J = 3.1 Hz, 

2H), 4.72 (d, J = 13.7 Hz, 1H), 3.70 (s, 3H), 3.53 (d, J = 13.6 Hz, 1H), 2.47 (s, 3H); 

13C{1H} NMR (75 MHz, CD3CN) δ 168.43, 156.99, 156.15, 152.95, 151.96, 151.47, 

151.41, 151.30, 150.88, 150.03, 150.00, 149.46, 147.06, 145.02, 144.96, 139.42, 

134.81, 132.94, 132.54, 132.46, 131.31, 130.11, 126.93, 126.89, 126.31, 125.84, 

124.36, 123.43, 123.10, 123.04, 120.79, 118.26, 114.94, 70.13, 56.78, 36.25, 21.44; 

TOF-MS ESI: m/z = 818.9015 (M3+); Analysis for C126H102F18Ir3N12O6P3 (% 

calculated, found) C (52.33, 52.40) H (3.56, 3.60) N (5.81, 5.70); Infrared Analysis 
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(FT-IR, cm-1) 556, 737, 756, 835, 1031, 1144, 1267, 1421, 1477, 1508, 1607 (s), 

3044 (b) 
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Preparation of complex [(Ir(III)(2-phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-

bipyridyl]methyl)CTG)].(PF6
-) (C1.3): 

 

[Ir(ppy)2(MeCN)2].PF6 (0.035 g, 0.048 mmol) in DCM (100 mL) was added 

dropwise over a period of 1 hour to a stirring solution of (±)-L1 (0.046 g, 

0.048 mmol) in a mixture of DCM/MeOH (10:1) (100 mL total) at room 

temperature. Over time, after addition of the pale yellow iridium precursor solution 

to the colourless ligand solution, the reaction mixture became bright yellow and was 

analysed by MS, stirring was continued until the main peak seen was the 

[Ir(ppy)2](L1)+ cationic complex. The reaction mixture was taken to dryness in 

vacuo, re-dissolved in MeCN then filtered through celite to remove any unreacted 

L1. The MeCN solution was removed in vacuo, the complex re-dissolved in DCM 

and diethyl ether was added to the solution to give the title product as a bright 

yellow powder (0.063 g, 82.8%) 1H NMR (300 MHz, CD2Cl2) δ 8.69 – 8.55 (m, 

1H), 8.49 (dd, J = 9.6, 5.3 Hz, 1H), 8.32 (dd, J = 15.3, 5.7 Hz, 1H), 7.94 (d, J = 7.6 

Hz, 1H), 7.83 (d, J = 5.6 Hz, 1H), 7.75 (dd, J = 12.6, 7.1 Hz, 1H), 7.51 (t, J = 5.6 

Hz, 1H), 7.38 (d, J = 5.7 Hz, 1H), 7.24 (d, J = 5.4 Hz, 1H), 7.16 (d, J = 6.5 Hz, 1H), 

7.12 – 6.91 (m, 2H), 6.88 (d, J = 2.7 Hz, 1H), 6.79 – 6.67 (m, 1H), 6.32 (d, J = 7.5 

Hz, 1H), 5.15 (d, J = 3.0 Hz, 1H), 4.72 (dd, J = 14.0, 8.6 Hz, 1H), 3.91 – 3.74 (m, 

1H), 3.67 (dd, J = 12.8, 2.6 Hz, 2H), 3.50 (dd, J = 14.0, 5.1 Hz, 1H), 2.58 (s, 1H), 

2.44 (s, 2H); 13C{1H} NMR (126 MHz, DMSO) δ 166.70, 166.61, 155.23, 154.63, 

154.58, 151.37, 150.28, 149.12, 148.89, 148.78, 148.64, 147.86, 147.73, 147.53, 

145.74, 143.63, 143.57, 138.50, 138.45, 132.74, 131.79, 131.69, 130.86, 130.01, 

129.18, 124.85, 123.66, 122.02, 121.53, 121.10, 119.80, 118.11, 115.39, 113.81, 

68.64, 55.88, 55.65, 34.95, 20.71, 20.53.; TOF-MS ESI: m/z = 1455.5051 (M+); 

Analysis for C82H70F6IrN8O6P. (% calculated, found) C (61.53, 58.65) H (4.41, 4.30) 



  Chapter Three 

Page | 119  

 

N (7.00, 6.70); Infrared Analysis (FT-IR, cm-1) 556, 737, 756, 839, 1031, 1144, 

1266, 1422, 1477, 1508, 1606 (s), 3052 (b) 
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Preparation of complex [(Ir(III)(2-phenylpyridine)2)3(tris(4-[4’-methyl-2, 2’-

bipyridyl]carboxy)CTG)].3(PF6
-) (C2.2): 

 

[Ir(ppy)2(Cl)]2 (0.080 g, 0.074 mmol) and (±)-L2 (0.050 g, 0.050 mmol) were 

combined in a mixture of DCM/MeOH (10:1) (9 mL total) and heated to 40°C. The 

reaction was followed by MS, and heating was continued until the main peak seen 

was the [Ir(ppy)2]3(L2)3+ cationic complex. The reaction mixture was taken to 

dryness in vacuo and re-dissolved in MeCN (5 mL), halide exchange was 

accomplished by addition of an aqueous solution of NH4PF6. The soluble PF6
- salt 

did not precipitate and the MeCN was removed in vacuo, leaving an aqueous residue 

that was extracted with DCM, dried over MgSO4 and concentrated to ~1 mL in 

vacuo. Diethyl ether was added to the solution to give the title product as a bright 

orange powder (0.092 g, 62%) 1H NMR (300 MHz, DMSO-d6) δ 9.29 (d, J = 5.3 

Hz, 1H), 9.06 (d, J = 5.5 Hz, 1H), 8.24 (dd, J = 18.3, 7.7 Hz), 8.12 (d, J = 5.8 Hz), 

7.94 (t, J = 8.4 Hz), 7.78 (dd, J = 12.3, 5.8 Hz), 7.71 (d, J = 5.7 Hz), 7.59 (dd, J = 

12.0, 5.4 Hz), 7.51 (s, 1H), 7.32 – 7.21 (m), 7.20 – 7.09 (m), 7.03 (t, J = 7.2 Hz), 

6.91 (t, J = 7.1 Hz), 6.18 (dd, J = 12.4, 7.5 Hz) [8.24-6.18, m, 26H], 4.94 (d, J = 

14.4 Hz, 0H), 3.72 (d, J = 18.9 Hz, 3H), 2.54 (s, 6H); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ 166.95, 166.72, 161.69, 157.32, 154.31, 152.05, 151.59, 151.57, 

151.50, 150.32, 150.25, 150.22, 149.27, 149.19, 149.17, 149.08, 149.04, 143.98, 

143.80, 139.00, 138.98, 138.94, 138.36, 137.52, 131.26, 131.08, 130.45, 126.71, 

125.25, 125.23, 124.29, 124.09, 124.04, 122.55, 120.20, 56.31, 55.03, 30.81, 20.83; 

TOF-MS ESI: m/z = 832.8768 (M3+); Analysis for C126H96F18Ir3N12O9P3 (% 

calculated, found) C (51.58, 48.73) H (3.30, 3.13) N (5.73, 5.55); Infrared Analysis 

(FT-IR, cm-1) 556, 738, 756, 837, 1031, 1138, 1177, 1250, 1417, 1478, 1608, 1750 

(s), 3050 (b) 
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Preparation of complex [(Ir(III)(2-phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-

bipyridyl]carboxy)CTG)].(PF6
-) (C2.3):  

 

[Ir(ppy)2(MeCN)2].PF6 (0.036 g, 0.050 mmol) in DCM (100 mL) was added 

dropwise over a period of 1 hour to a stirring solution of (±)-L2 (0.050 g, 

0.050 mmol) in a mixture of DCM/MeOH (10:1) (100 mL total) at room 

temperature. Over time, after addition of the pale yellow iridium precursor solution 

to the colourless ligand solution, the reaction mixture became bright orange and was 

analysed by MS, stirring was continued until the main peak seen was the Ir(L2)+ 

cationic complex. The reaction mixture was taken to dryness in vacuo, re-dissolved 

in MeCN then filtered through celite to remove any unreacted L2. The MeCN 

solution was removed in vacuo, the complex re-dissolved in DCM and diethyl ether 

was added to the solution to give the title product as a pale orange powder (0.062 g, 

75%) 1H NMR (300 MHz, CD2Cl2) δ 9.02 (d, J = 4.1 Hz, 1H), 8.84 (d, J = 5.6 Hz, 

1H), 8.54 (d, J = 4.6 Hz, 1H), 8.38 (s, 1H), 8.30 (s, 1H), 8.22 (d, J = 6.7 Hz, 1H), 

8.12 – 7.90 (m, 2H), 7.88 (d, J = 6.0 Hz, 1H), 7.77 (dd, J = 17.2, 8.1 Hz, 2H), 7.52 

(dd, J = 9.4, 5.8 Hz, 1H), 7.42 – 7.19 (m, 2H), 7.14 – 6.88 (m, 3H), 6.32 (t, J = 7.8 

Hz, 1H), 4.89 (d, J = 14.8 Hz, 1H), 3.78 (t, J = 10.1 Hz, 4H), 2.60 (s, 1H), 2.48 (s, 

2H); 13C{1H} NMR (126 MHz, CD2Cl2) δ 168.28, 168.08, 164.10, 164.05, 162.02, 

158.10, 157.64, 155.36, 155.08, 152.91, 152.31, 150.77, 150.63, 150.53, 150.14, 

149.59, 149.16, 144.28, 144.17, 139.89, 139.57, 139.11, 138.90, 138.51, 138.34, 

132.54, 132.30, 132.16, 132.04, 131.41, 131.28, 130.15, 128.38, 126.40, 125.84, 

125.55, 125.45, 124.55, 124.46, 124.08, 123.99, 123.56, 123.48, 122.49, 121.26, 

120.44, 114.85, 114.69, 56.81, 56.77, 36.94, 36.81, 21.86, 21.55.; TOF-MS ESI: m/z 

= 1497.4428 (M+); Analysis for C82H64F6IrN8O9P (% calculated, found) C (59.96, 

57.80) H (3.93, 3.70) N (6.82, 6.35); Infrared Analysis (FT-IR, cm-1) 557, 755, 840, 

1031, 1138, 1178, 1237, 1418, 1478, 1608, 1747 (s), 3028 (b) 
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3.7.2 Photophysical studies 

All samples were prepared at the University of St Andrews by Diego Rota Martir, in 

HPLC grade acetonitrile with varying concentrations in the order of 10 -4 - 10-6 M. 

Absorption spectra were recorded at room temperature using a Shimadzu UV-1800 

double beam spectrophotometer. Molar absorptivity determination was verified by 

linear least-squares fit of values obtained from at least four independent solutions at 

varying concentrations with absorbance ranging from 6.05 × 10–5 to 2.07 × 10–5 M.  

The sample solutions for the emission spectra were prepared in HPLC-grade MeCN 

and degassed via freeze-pump-thaw cycles using a quartz cuvette designed in-house. 

Steady-state emission and excitation spectra and time-resolved emission spectra 

were recorded at 298 K using an Edinburgh Instruments F980. All samples for 

steady-state measurements were excited at 360 nm, while samples for time-resolved 

measurements were excited at 378 nm using a PDL 800-D pulsed diode laser. 

Emission quantum yields were determined using the optically dilute method.33 A 

stock solution with absorbance of ca. 0.5 was prepared and then four dilutions were 

prepared with dilution factors between 2 and 20 to obtain solutions with absorbances 

of ca. 0.095 0.065, 0.05 and 0.018, respectively. The Beer-Lambert law was found 

to be linear at the concentrations of these solutions. The emission spectra were then 

measured after the solutions were rigorously degassed via three freeze-pump-thaw 

cycles prior to spectrum acquisition. For each sample, linearity between absorption 

and emission intensity was verified through linear regression analysis and additional 

measurements were acquired until the Pearson regression factor (R2) for the linear fit 

of the data set surpassed 0.9. Individual relative quantum yield values were 

calculated for each solution and the values reported represent the slope value. The 

equation Φs = Φr (Ar/As)(Is/Ir)(ns/nr)
2 was used to calculate the relative quantum yield 

of each of the sample, where Φr is the absolute quantum yield of the reference, n is 

the refractive index of the solvent, A is the absorbance at the excitation wavelength, 

and I is the integrated area under the corrected emission curve. The subscripts s and r 

refer to the sample and reference, respectively. A solution of quinine sulfate in 0.5 

M H2SO4 (Φr = 54.6%) was used as external references.34  

PMMA doped films were prepared by spin coating the samples from a solution of 2-

methoxyethanol (HPLC grade) containing 5 % w/w of the desired sample. Steady-
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state emission and excitation spectra and time-resolved emission spectra of both 

powders and doped films were recorded at 298 K using an Edinburgh Instruments 

F980. Solid-state PLQY measurements of thin films were performed in an 

integrating sphere under a nitrogen purge in a Hamamatsu C9920-02 luminescence 

measurement system.35 
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4 Chapter 4 

Hetero Tri-metallic iridium complexes of CTG-type ligands 

4.1  Introduction 

In the previous chapter, the synthesis and photophysical behaviour of a series of 

homometallic iridium complexes were discussed, this chapter will look at their 

heterometallic congeners. In this case, heterometallic refers to the ancillary 

cyclometallating ligands bound to structurally distinct iridium centres, i.e. different 

metallotectons have been employed in the same complex.  

Chapter Three highlighted the marked difference in emission properties of iridium 

complexes resulting from L1 versus L2, whilst the differences between the mono- 

and tri-metallic species were much less pronounced. This chapter will look at fine-

tuning the resultant emission through different combinations of metallotecton. By 

fine-tuning the emission, or even predicting the emission colour, the complexes 

become a much more attractive option in the effort towards functional devices, i.e. 

the formation of OLEDs or LEECs.1–8  

The three metal binding sites on the ligand scaffold can be thought of as distinct 

centres, thus the emission wavelength of a mono-nuclear analogue is likely to show 

strong similarities to the emission of bound ligand arm. Due to the wealth of 

previous research on mono-nuclear iridium systems, the resultant emission 

wavelength of the tri-metallic systems can be reasonably predicted.1,5,9,10 With this 

in mind, it may be possibile to selectively metallate with a pre-chosen combination 

of metallotectons to give a desired resultant emission colour. Whilst there has been a 

significant amount of research into colour tuning the emission o f mono-nuclear 

iridium systems, such that a high degree of control over the resultant emission 

properties is now possible, the disadvantage of this approach is the singular emission 

wavelength.3,6,7,10–16 When a mono-nuclear system is tuned to give rise to a desired 

energy gap, that energy gap gives rise to a specific wavelength emission, thus some 

emission colours are still out of reach due to their combinatorial nature. One of the 

most highly desired emission colours, with respect to real-world applicability, is 

white light. White light emitting devices can be employed in both domestic and 

commercial lighting situations, with the current drive towards replacing traditional 
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incandescent light bulbs. However „white‟ light is not a singular emission 

wavelength, it is the result of over-reaching emission from many wavelengths 

combined together to appear white. The easiest way to visualise this is through use 

of a chromaticity chart, adapted from the Commission Internationale de L‟Eclairage.  

 

Figure 4.1: CIE chart highlighting the white-light containing central area.17 

Emission that appears white to the human eye is simply emission to some degree 

covering the whole spectrum, hence the central positioning of true white-light in 

Figure 4.1. Therefore a multi-metallic, multi-emission system is ideally suited 

towards tailoring emission in the direction of white light. This could be achieved 

through a judicious choice of complementary metallotectons, through consideration 

of their individual emission properties and how they might relate to one another. 

Whilst there has been considerable research into the formation and emission 

properties of mono-nuclear systems, much less has been explored in relation to 

multi-nuclear systems. There are examples of chloro-, alkynyl or tetraacetylethane 

linked dimers where the peripheral ancillary ligands have been rationally 

functionalised.18–20 However, multi-nuclear systems mainly consist of a linear 

bridging ligand linking two identical metal sites,21,22 whereas this chapter is 

concerned with the synthesis of multi-nuclear heteroleptic iridium systems. 

Conversely, there are examples of these types of linear bridging ligands being 

employed in the formation of heteronuclear complexes, whereby multiple metal 
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centres are combined with other luminescent metals such as ruthenium, osmium, 

rhenium and platinum.23–30  

4.2 Preparation of hetero tri-metallic iridium complexes 

In the previous chapter, the synthesis, characterisation and photophysical properties 

of both tri- and mono- homometallic iridium complexes were discussed. This 

chapter will further build on the mono-metallic analogues, providing secondary 

functionalisation at the previously vacant bipyridine binding sites. The ability to 

form a mono-metallic system, with these vacant binding sites, leads to the possibility 

of additional synthetic modification; i.e. sequentially binding further metallotectons 

with a variety of functionalised phenylpyridine auxiliary ligands. The versatility of 

this modular approach allows fine tuning of the resultant photophysics. Therefore, as 

shown in Figure 4.2, there is a general scheme to alter the resultant emission 

wavelength, either through a hypso- or bathochromic shift, through judicious 

choices of electron withdrawing or electron donating groups on the phenylpyridine 

ancillary ligands or on the N^N ligand scaffold.  

 

 

Figure 4.2: Generic HOMO-LUMO energy gap scheme related to the colour 

coded general [Ir(C^N)2(N^N]) structure. 

To provide a diagnostic shift in emission, a heavily fluorinated phenylpyridine 

ancillary ligand was employed in formation of the secondary metallotecton. The 

electron withdrawing nature of the multi- fluorine moiety leads to a stabilisation of 

the associated energy level, and a blue-shift in emission, known through extensive 

previous density functional theory (DFT) calculations to make up the majority of the 

highest-occupied-molecular-orbital (HOMO) level.10,16,31 Conversely, fluorination of 
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the N^N ligand and/or synergistic substitution of the phenylpyridine ligand with 

electron donating moieties should lead to a noticeable red-shift in emission.  

 

Scheme 4.1: Two-step route of heterometallic iridium complexes C1.4 and C2.4. 

The post-synthetic secondary and/or tertiary metallation steps are relatively facile, 

proceeding at room temperature in dichloromethane solvent when charged with the 

appropriate amount of secondary metallotecton, as exemplified in Scheme 4.1. The 

initial secondary metallotecton trialled in this modular approach was decorated with 

a heavily fluorinated phenylpyridine auxiliary ligand, 2,4-difluorophenyl-2-pyridine 

(dfppy), represented by the blue circle. By taking previously discussed mono-

metallic C1.3 and C2.3, and further metallating with the fluorinated metallotecton, 

heterometallic species C1.4 and C2.4 were formed, and given the designation (●●●) 

as a visual representation of the metallotectons contained within. The formation of 

these two complexes, C1.4 and C2.4, proceeded at room temperature in DCM 

solvent with no need to exclude air or moisture from the reaction system. The 

progress of the reaction was followed mainly through HR ESI-MS, as discussed 

previously in Chapter Three; the three iridium isotope pattern is diagnostic of 
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complex formation. Complete formation was found to take approximately 12 hours, 

until the main peaks visible in the HR-MS were assigned to the tri-cationic C1.4 and 

C2.4 respectively. A precise 2:1 stoichiometry of [Ir(dfppy)2(MeCN)2]•PF6
 

metallotecton to ligand was employed leading to high isolated yields of between 85 

and 95%, with complex yet reproducible 1H NMR spectra, discussed in detail in 

Section 4.3.2., and strong C-F IR stretches around 1250 cm-1. 

However, this two-step approach whereby a mono-metallic system is further 

metallated is not confined to C1/2.3, the mono-metallic species employed as the 

vehicle for heterometallic complex formation can contain whichever iridium 

metallotecton is required. Hence the analogous species C1.5 and C2.5 (●●●) were 

synthesised by first forming the mono-metallic system using the fluorinated 

[Ir(dfppy)2(MeCN)2]•PF6
 metallotecton, and further metallating with the original un-

substituted metallotecton [Ir(ppy)2(MeCN)2]•PF6, as shown in Scheme 4.2.  

 

Scheme 4.2: Two-step, in situ formation of heterometallic iridium complexes C1.5 

and C2.5. 
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In this instance the mono-metallic, fluorinated congeners C1.5a and C2.5a were not 

isolated, their formation was confirmed through HR ESI-MS and they were 

subsequently reacted on with the secondary metallotecton in situ.  

Prolonged reaction of the fluorinated [Ir(dfppy)2(MeCN)2]•PF6
 metallotecton with 

both L1 and L2 resulted in degradation and decomposition of the ligands. Evidence 

of bipyridine arm cleavage was observed, more so with the ester-linked L2, leading 

to concomitant over-metallation of the remaining metal-binding sites, thus the 

reaction required a careful balance of purity against yield. 0.85-0.9 equivalents of 

[Ir(dfppy)2(MeCN)2]•PF6
  was employed to ensure no over-metallation was 

observed, however regardless of the resultant HR-MS the reaction was not left for 

more than 12 hours in solution, as after that point decomposition was seen to occur. 

The DCM solvent was removed in vacuo, and the residue re-dissolved in minimal 

acetonitrile then filtered through celite to remove any un-reacted ligand. This 

process gave rise to better purity of mono-metallic C1.4a and C1.5a, but also a 

slight decrease in yield.  

As the target of this chapter was to form hetero tri-metallic complexes, the isolation 

of C1.4a and C1.5a was not a priority.  

4.3 Spectroscopic analysis of heterometallic systems 

4.3.1 High-resolution mass spectrometric analysis of heterometallic 

iridium complexes 

The foremost method of analysis of the heterometallic systems was once again high 

resolution mass spectrometry, as the three- iridium isotope pattern is diagnostic of 

complex formation.  

Mono-metallic C1.3 displayed a distinctive molecular ion peak at 1455 m/z, thus the 

progress of the reaction towards C1.4 (●●●) can be followed through HR-MS as the 

major product tends towards the molecular ion peak of C1.4 at 866 m/z. 



  Chapter Four 

Page | 130  

 

 

Figure 4.3: HR ESI-MS of C1.4 showing the 3+ molecular ion peak at 866 m/z, 

the measured a) and calculated b) isotope pattern of the 3+ peak of C1.4 is 

shown inset. 

As demonstrated in Figure 4.3, formation of heterometallic C1.4 is relatively clean, 

with the molecular ion peak at 866.8737 m/z assigned to 

{[Ir(ppy)2][Ir(dfppy)2]2L1}3+, observed without any associated hexafluorophosphate 

anions. The only other notable peaks belong to C1.4 having lost successive fluorine 

atoms at 860.8674, 854.8800 and 842.8848 m/z, assigned to loss of 1, 2 and 4 

fluorine atoms respectively. The measured isotope pattern for the 3+ peak is an exact 

match for the calculated pattern, shown inset in Figure 4.3. 

 

Figure 4.4: HR ESI-MS of C2.4 showing the 3+ molecular ion peak at 880 m/z, 

the measured a) and calculated b) isotope pattern of the 3+ peak of C2.4 is 

shown inset. 
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The HR-MS of C2.4 (●●●) is directly analogous to C1.4, in that the 3+ molecular 

ion peak at 880.8553 m/z is assigned to {[Ir(ppy)2][Ir(dfppy)2]2L2}3+, once again 

observed without any associated hexafluorophosphate anions. Peaks seen at 

874.8569, 868.8580 and 856.5318 m/z are assigned to sequential loss of 1, 2 and 4 

fluorine atoms during the ionisation process. The measured and calculated isotope 

patterns for C2.4 are essentially super-imposable.  

The construction of C1.5 and C2.5 (●●●) proceed via the formation of C1.5a and 

C2.5a, the mono-metallic fluorinated congeners of C1.3 and C2.3. As shown in 

Scheme 4.2, C1.5a and C2.5a were not isolated, the formation of the desired 

intermediate was confirmed through HR-MS and further reactions carried out in situ.  

 

Figure 4.5: HR-MS of C1.5a (top) and C2.5a (bottom) displaying the 1+ 

molecular ion peak at 1527 and 1569 respectively, as well as the 2+ and 3+ 

charge states of the desired complexes. The measured isotope pattern a) and 

calculated pattern b) are shown inset on both spectra. 
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Figure 4.5 clearly demonstrates the applicability of this modular approach, as the 

formation of C1.5a and C2.5a proceeds in an analogous fashion to C1.3 and C2.3. 

Through use of 0.9 equivalents of [Ir(dfppy)2(MeCN)2]•PF6
 metallotecton, the 

likelihood of over-metallation is decreased and removal of any excess ligand 

precursor is facile due to the vastly differing solubilities of free ligand versus 

metallated products. The characteristic iridium isotope pattern can be seen in each 

expanded 1+ peak, inset in Figure 4.5.  

Dichloromethane solutions of C1.5a and C2.5a were subsequently charged with two 

equivalents of the original un-substituted phenylpyridine iridium metallotecton, 

[Ir(ppy)2(MeCN)2]•PF6, and allowed to stir at room temperature for 12 hours. The 

formation of C1.5 and C2.5 (●●●) were again followed by use of HR-MS to 

confirm the presence of the desired product.  

 

Figure 4.6: HR ESI-MS of C1.5 showing the 3+ molecular ion peak at 842 m/z, 

the measured a) and calculated b) isotope pattern of the 3+ peak of C1.5 is 

shown inset. 

The 3+ molecular ion peak at 842.8821 m/z in Figure 4.6 is assigned as 

{[Ir(ppy)2]2[Ir(dfppy)2]L1}3+, observed without the associated hexafluorophosphate 

anions. Multiple mass peaks adjacent to the molecular ion peak are due sequential 

loss of fluorine atoms, analogous to C1.4. The observed isotope pattern of C1.5 

matches the calculated pattern exactly, displaying the characteristic three iridium 

roofing. 
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Figure 4.7: HR ESI-MS of C2.5 showing the 3+ molecular ion peak at 856 m/z, 

the measured a) and calculated b) isotope pattern of the 3+ peak of C2.5 is 

shown inset. 

The 3+ molecular ion peak observed at 856.8657 m/z is assigned to 

{[Ir(ppy)2]2[Ir(dfppy)2]L2}3+ without any associated anions. As is the case with all 

of the fluorinated heterometallic species, sequential loss of fluorine atoms during the 

ionisation process is observed, giving rise to less intense mass peaks adjacent to the 

molecular ion peak. The characteristic three iridium isotope pattern is again seen in 

both the measured and calculated patterns.  

4.3.2 
1
H NMR analysis of heterometallic iridium species 

Analysis of the resultant 1H NMR spectra of the heterometallic complexes is 

convoluted, as expected. The differences between the spectra observed for the two 

pairs of complexes, for example C1.4 and C1.5, are almost negligible. That is to say 

both complexes formed from L1 have the [Ir(ppy)2]+ metallotecton and the 

[Ir(dfppy)2]+ metallotecton, it is just the relative ratios present that induces any 

observable change. The positions of the proton resonances in the spectrum of C1.4 

are almost identical to C1.5, as the protons are experiencing the same environment 

in each complex. The relative integrations of the peaks however, do change.  
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Figure 4.8: Chemical structure and nomenclature of both iridium metallotectons 

employed in the formation of C1.4, C2.4, C1.5 and C2.5. 

 

Figure 4.9: Stacked 1H NMR spectra of C1.4 and C1.5 in CD3CN, displaying 

almost identical peak positions, but differing peak integrals. 

The heterometallic systems contain 28 distinct aromatic proton environments, 

leading to many overlapping and co-incident peaks in the 1H NMR spectra. This 

made definitive assignments particularly problematic. However, some of the ligand 

protons could be assigned and through comparison with the spectra of both 

metallotectons individually, some of the diagnostic tecton protons could also be 

assigned. The protons closest to the cyclometallated carbon on both tectons, HH and 

HH‟, appear most up-field, both in the 1H spectra of the tectons themselves and in the 

spectra of the complexes.  

The total aromatic integrations are 68 and 71 protons for C1.4 and C1.5 respectively 

compared to the theoretical values of 64 and 68 when compared to the integration of 
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the single diagnostic endo proton of the CTG core (multiplied by three to get an 

integral value for the whole system, not just a symmetric third of a molecule). These 

values are slightly higher than the theoretical values due to the difficulty in 

measuring each overlapping integral accurately. However, the relative ratios support 

the presence of an additional 4 protons per [Ir(ppy)2] centre compared to an 

[Ir(dfppy)2] centre.   

The most obvious demonstration of the difference in integrals is highlighted in the 

navy box in Figure 4.9. The resonance at 6.2 ppm is assigned to HH‟ on the un-

substituted metallotecton, described by the green circle, whilst the peak at 5.7 ppm is 

assigned to HH on the fluorinated tecton, described by the blue circle. In C1.4 (●●●), 

which contains one „green‟ tecton and two „blue‟ tectons, the relative integration 

between the two peaks is approximately 1:2. In the spectrum of C1.5 (●●●) 

however, the ratio of the two tectons is reversed, the resonance at 6.2 ppm possesses 

a larger integral than the peak at 5.7 ppm, corresponding to two „green‟ and one 

„blue‟ tectons.  

 

Figure 4.10: Stacked 1H NMR spectra of C2.4 and C2.5 in CD3CN, displaying 

almost identical peak positions, but differing peak integrals. 

As with the heterometallic complexes resulting from L1, C2.4 and C2.5 show 

analogous switching of the integral ratios. In C2.4 (●●●) the proton resonance at 
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6.2 ppm, again assigned to HH‟, equates to approximately half the integration of the 

peak at 5.7 ppm, assigned to HH, whereas conversely in C2.5 (●●●) the integration 

of the 6.2 ppm peak is roughly twice that of the 5.7 ppm peak. The relative ratio of 

these two peaks consequently corroborates the clean formation of desired 

complexes. Therefore, whilst the proton NMR data is suitably complex, the peak 

positions and integrals all support the assignments proposed. An added complexity 

that was briefly discussed in Chapter Three was the presence of both Δ and Λ 

isomers of all iridium tris-chelated centres, once again the chirality of each iridium 

centre is independent of the other isomers in the system.  

4.4 Photophysical analysis of heterometallic fluorinated systems 

Photophysical studies were undertaken at the University of St Andrews by PhD 

student Diego Rota Martir of the Zysman-Colman group. 

 

Figure 4.11: Overlaid emission spectra of C1.4 (●●●) and C1.5 (●●●) recorded in 

deaerated acetonitrile solution. 

The emission profiles of C1.4 and C1.5 are remarkably similar; this is to be 

expected as only the ratio of the two metallotectons is changing, inverting from 1:2 

to 2:1. C1.4 is slightly blue-shifted with respect to C1.5 due to the incorporation of 

more fluorinated ancillary ligands, which in turn stabilise the LUMO leading to a 
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larger HOMO-LUMO gap and thus bluer emission. Whilst the λmax for C1.4 is 

574 nm, the corresponding λmax for C1.5 is 596 nm; therefore the effect of additional 

electron-withdrawing fluorine atoms on the ancillary ligand can be visualised, if 

only subtly.  

The PLQY of both complexes are similar, 5.5 versus 4.3 %, with the more heavily 

fluorinated C1.4 showing a slight improvement on C1.5. The lifetimes of the two 

complexes both show bi-exponential, two-component lifetimes comprised of a 

shorter (~270 ns) and a longer (>1000 ns) component. However, the relative 

weighting of the two components is inverted; in C1.4 the longer component 

dominates whilst in C1.5 the shorter component is more heavily weighted. C1.4 

consists of a 267 ns and a 1252 ns element in a 32:68 percentage ratio, therefore the 

1252 ns component strongly dominates the lifetime. Whilst in C1.5, which consists 

of a 285 ns and a 1090 ns component, the shorter lifetime dominates in a 70:30 

percentage ratio. The inversion of the lifetime weighting could suggest that the 

longer lifetime component is due in some part to the fluorinated metallotecton; as 

the ratio of tectons inverts from 1:2 to 2:1 the ratio of lifetime weighting inverts 

from 1:2.1 to 2.3:1, almost exactly mirroring the tecton ratio.  

The lifetimes of the mono- and tri-nuclear homometallic iridium complexes 

discussed in Chapter Three, C1.2 and C1.3, both possessed lifetimes around 550 ns, 

thus the shorter lifetime component (~270 ns) is not directly attributable to the non-

fluorinated metallotecton unit. However, the two distinct metallotecton units 

incorporated into a single complex do not give rise to dual emission; therefore some 

form of energy transfer (ET) must be occurring within the complexes.  
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Figure 4.12: Overlaid emission spectra of C2.4 (●●●) and C2.5 (●●●) recorded in 

deaerated acetonitrile solution. 

The heterometallic complexes resulting from L2 are even more similar to each other 

than C1.4 and C1.5. The λmax of C2.4 is 608 nm compared to a λmax of 611 nm for 

C2.5. The main difference between C2.4 and C2.5 is the tail-off of emission above 

650 nm; C2.4, containing two fluorinated metallotectons, tails-off quicker whilst 

C2.5, containing one fluorinated tecton, tails-off much slower leading to a higher 

relative proportion of emission above 650 nm. However, the fluorinated species are 

dramatically blue-shifted compared to both the mono- and tri-nuclear homometallic 

systems, which displayed λmax of 686 nm. The fluorinated C2.4 and C2.5 also show 

a single, broad emission peak, compared to the dual-emission observed for the 

homometallic analogues. The lack of dual emission suggests that the transition 

responsible for the short- lived ligand-centric peak observed around 560 nm in the 

homometallic species is not present, or non-radiative in the heterometallic 

congeners. The single emission peak observed for C2.4 and C2.5 is indicative of 

some form of energy transfer; as if no energy transfer was occurring, two distinct 

emission peaks should be identifiable, one assignable to the un-substituted 

metallotecton and one assignable to the fluorinated tecton.  
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The PLQYs measured for C2.4 (●●●) and C2.5 (●●●) are both approximately 

doubled compared to the homometallic C2.2 and C2.3, with QYs of 2.6 and 2.0 % 

respectively versus 1.4 and 1.0 % for the homometallic species.  

The lifetimes of the fluorinated species are also bi-exponential, comprised of two 

components; though they are more evenly weighted than the complexes derived 

from L1, with relative weightings of 55:45 for C2.4 and 48:52 for C2.5. The 

percentage weightings of the lifetime components are however, inverted upon 

inversion of the tecton ratio.  

Complex  λem (nm)b  ФPL (%)c te (ns)d 

1.4  574  5.5  267 (32), 1252 

(68) 

1.5  596  4.3  285 (70), 1090 

(30) 

2.4  608  2.6  178 (55), 417 

(45) 

2.5  611  2.0  60 (48), 233 

(52) 

Table 4.1: Emission maxima, quantum yield and lifetime analysis of C1.4-5 and 

C2.4-5 in deaerated acetonitrile solution. 

Table 4.1 summarises the photophysical data of all the fluorinated heterometallic 

complexes, highlighting the bi-exponential lifetimes of all complexes and the 

relatively similar emission maxima across the board.  

When compared to the model complex of [Ir(dFppy)2(dmb)]+, where 

dmb=dimethylbipyridine, all of the fluorinated complexes discussed in this chapter 

are red-shifted. The λmax of the model complex is 522 nm in acetonitrile solution,14 

suggesting that the presence of both the ether- and ester-linked ligands stabilise the 

LUMO compared to simple dimethylbipyridine.  
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Figure 4.13: Dark-room images of fluorinated C1.4-5 and C2.4-5 in acetonitrile 

solution, with the homometallic C1.2-3 and C2.2-3 shown for comparison. 

The dark-room images in Figure 4.13 most clearly demonstrate both the difference 

in emission wavelength, and also the relative PLQY. C1.4 and C1.5 are noticeably 

blue-shifted compared to C1.2 and C1.3 above, with the most fluorinated complex, 

C1.4, emitting light of a visibly greener colour than the homometallic systems.  

The complexes derived from L2 show a marked difference upon the incorporation of 

the fluorinated tecton, with a visible increase in PLQY.  

Once again the photophysical properties of the fluorinated complexes were also 

investigated when incorporated into doped thin- films of PMMA.  

C1.2 C1.3 C2.2 C2.3 

C1.4 C1.5 C2.4 C2.5 
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Figure 4.14: Overlaid emission spectra of C1.4, 1.5, 2.4 and 2.5 incorporated into 

a PMMA doped thin-film. 

The emission of the heterometallic complexes is blue-shifted through incorporation 

into the inert matrix of the PMMA doped film, except for C2.5 (●●●) which shows 

a minute red-shift of 4 nm compared to the acetonitrile solution-state measurements. 

C1.4 and C1.5 demonstrate blue-shifts of 21 and 33 nm respectively versus the 

solution-state measurements, whilst C2.4 is shifted by just 14 nm. However, the 

PMMA thin-film emission maxima are much closer to those of the homometallic 

complexes than the solution-state data; λem of 565 and 566 nm were recorded for the 

homo tri- and mono-nuclear C1.2 and C1.3 respectively, therefore C1.5 (●●●) 

shows just a 2 nm blue-shift through the incorporation of one fluorinated 

metallotecton. C1.4 (●●●) shows a blue-shift of just ~10 nm through incorporation 

of two fluorinated metallotectons, thus suggesting that the fine-tuning of ancillary 

ligands has less effect on emission when the complex is confined to a thin-film.  

The PLQYs though are much improved through use of the PMMA thin-film 

approach, with QYs of the complexes of L1 improved by a factor of 4 whilst the 

complexes derived from L2 showed QYs improved by a factor of 8 versus the 

acetonitrile solution data.  
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Complex  λem (nm)b  ФPL (%)c  te (ns)d 

1.4  554  23.2 400 (30), 1254 

(70) 

1.5  563  17.6 381 (29), 1143 

(71) 

2.4  594  21.6 305 (44), 958 

(66) 

2.5  615  15.7 252 (46), 989 

(62) 

Table 4.2: Emission maxima, quantum yield and lifetime analysis of C1.4-5 and 

C2.4-5 in PMMA doped thin-films. 

The lifetimes are again bi-exponential, L1 derived complexes show lifetimes around 

400 ns and 1100 ns, whilst L2 derived complexes display lifetimes of around 270 ns 

and 960 ns. The percentage weighting of each component in these examples is 

exclusively dominated by the longer lifetime component.  

 

Figure 4.15: Dark-room images of C1.4, 1.5, 2.4 and 2.5 incorporated in PMMA 

doped thin-films. 

Figure 4.15 demonstrates the visual difference that 60 nm makes to the emission 

colour, as C1.4 (●●●) is noticeably greener than C2.5 (●●●) in the PMMA film.  

4.5 Conclusions and further direction 

Four heterometallic iridium complexes have been synthesised in good yields, and 

the photophysical properties of these systems investigated. The carefully modulated  

phosphorescent emission belies the remarkable structural similarities.  

The photophysical emission of the most heavily fluorinated species, C1.4 and C2.4, 

show the highest degree of hypsochromic shift, within their ligand sub-set. This 

discovery shows that electronic trends relevant to the [Ir(ppy)2(N^N)]+ model 

complex are applicable to this ligand scaffold. The increased degree of fluorination 

C1.4 C1.5 C2.4 C2.5 
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on the ancillary ligand gives rise to a stronger electron-withdrawing effect, thus a 

more stabilised HOMO, thereby increasing the HOMO-LUMO energy gap and blue-

shifting the emission wavelength. The single, broad, unstructured emission peak 

observed for the heterometallic species suggests some form of ET is occurring 

within the complexes. Further investigation into the precise nature of this is 

underway, including comparisons of the emission properties of statistical mixtures 

of homometallic complexes analogous to the ratio of each tecton in the mixed-tecton 

systems. For example, a 1:2 ratio of C1.2 and a tri-nuclear homo-fluorinated 

analogue should have the same ratio of each of the previously discussed 

metallotectons as C1.4, therefore the emission profiles could be compared in the 

absence of any intra-complex ET.  

The incorporation of a fluorinated tecton has improved the lifetimes compared to the 

homometallic species discussed in Chapter Three, with the heterometallic complexes 

formed from L1 displaying lifetimes in the μs regime in both solution and solid-

state, whilst complexes derived from L2 posses lifetimes approaching the μs 

timescale in the solid-state. 

This chapter therefore demonstrate that heterometallic species of the form ABB, 

where A is the primary metallotecton and B is the secondary metallotecton, can be 

reliably synthesised in a modular fashion. This approach gives a high degree of 

control over the resultant emission, allowing for fine-tuning and directed, rational 

synthesis towards a particular emission wavelength.  

Through this two-tecton approach, if only five metallotectons were synthesised, with 

individual emission wavelengths covering the majority of the spectrum, twenty five 

resultant complexes could be formed, all with slightly different resultant emission 

properties, as shown in Figure 4.16.  

 

Figure 4.16: Generic scheme for the synthesis of ABB type emissive systems. 



  Chapter Four 

Page | 144  

 

Thus, small-scale screening with an effort towards a specific emission wavelength 

becomes a possibility, particularly due to the diagnostic HR-MS peaks and isotope 

patterns of the resultant heterometallic complexes. Therefore, small-scale reactions 

combining different ratios of metallotectons could be performed, formation of the 

desired complex confirmed and the resultant reaction solution subjected to in situ 

photophysical excitation. Any favourable combinations of tecton could then be 

synthesised on a larger scale and fully characterised, in the knowledge that the 

resultant photophysics would be of the desired form.  

The use of two structurally distinct iridium centres also opens the door to emission 

colours previously inaccessible, through complementary combinations of emission 

wavelengths. Although the complexes discussed in this chapter display ET, if the 

transfer mechanisms can be understood then the degree of ET could potentially be 

modulated through structural modification. Thus, if targeting the challenging goal of 

white-light emission, complementary combinations of metallotectons could be 

chosen that together appear white to the human eye.  
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4.6 Experimental 

4.6.1 Synthesis 

Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)2(Ir(III)(2-

phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-bipyridyl]methyl)CTG)].(PF6) (C1.4): 

 

 

[Ir(dFppy)2(MeCN)2].PF6 (0.020 g, 0.025 mmol) was dissolved in DCM (10 mL) 

and added to a stirred solution of C1.3 (0.020 g, 0.0125 mmol) in DCM (10 mL) in 

the absence of light. The mixture was stirred at room temperature for 12 hrs until 

HR-MS analysis showed full conversion to the {[Ir(ppy)2][Ir(dfppy)2]2(L1)}3+ 

species, C1.4. The DCM was removed in vacuo, and the residue re-dissolved in 

minimal DCM then diethyl ether was added to the solution to give the title product 

as a bright yellow powder (0. 032 g, 86.4%) 1H NMR (300 MHz, CD2Cl2) δ 8.68 (d, 

J = 11.2 Hz, 1H), 8.36 (dd, J = 27.8, 9.5 Hz, 1H), 7.94 (d, J = 7.1 Hz, 1H), 7.90 – 

7.69 (m, 1H), 7.66 (d, J = 5.3 Hz, 1H), 7.62 – 7.37 (m, 1H), 7.27 (dd, J = 18.7, 4.9 

Hz, 1H), 7.01 (ddd, J = 29.5, 13.9, 6.0 Hz, 2H), 6.60 (t, J = 10.5 Hz, 1H), 6.32 (d, J 

= 7.3 Hz, 1H), 5.76 (d, J = 8.2 Hz, 1H), 5.33 (s, 1H), 4.73 (d, J = 13.8 Hz, 1H), 3.83 

(s, 1H), 3.60 (d, J = 13.4 Hz, 1H), 2.60 (d, J = 7.6 Hz, 1H); 13C{1H} NMR (126 

MHz, CD3CN) δ 191.60, 168.62, 164.89, 163.60, 161.44, 153.82, 153.11, 151.93, 

151.55, 151.36, 150.53, 150.14, 147.31, 145.12, 140.74, 140.58, 139.57, 132.70, 

132.63, 131.46, 130.88, 130.52, 130.27, 129.04, 128.26, 127.25, 127.05, 126.73, 

126.46, 125.99, 124.96, 124.72, 124.50, 124.04, 123.58, 123.23, 120.94, 119.05, 

115.17, 114.90, 114.82, 100.00, 99.78, 99.56, 70.24, 56.98, 36.42, 21.60; TOF-MS 

ESI: m/z =  866.8737 (M3+); Analysis for C126H94F26Ir3N12O6P3 (% calculated, 
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found) C (49.85, 48.35) H (3.12, 3.10) N (5.54, 5.30); Infrared Analysis (FT-IR, cm-

1) 556, 737, 756, 837, 1030, 1145, 1267, 1405, 1426, 1478, 1509, 1603 (s), 3066 (b) 

 

Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)(tris(4-[4’-

methyl-2, 2’-bipyridyl]methyl)CTG)].(PF6) (C1.5a): 

 

[Ir(dFppy)2(MeCN)2].PF6 (0.036 g, 0.045 mmol) in DCM (100 mL) was added 

dropwise over a period of 3 hours to a stirring solution of (±)-L1 (0.050 g, 

0.052 mmol) in a mixture of DCM/MeOH (10:1) (150 mL total) at room 

temperature. Over time, after addition of the pale yellow-green iridium precursor 

solution to the colourless ligand solution, the reaction mixture became bright yellow 

and was analysed by HR-MS, stirring was continued until the main peak seen was 

the {[Ir(dFppy)2](L1)}+ cationic complex, C1.5a. The reaction mixture was taken to 

dryness in vacuo, re-dissolved in MeCN then filtered through celite to remove any 

un-reacted L1. The MeCN solution was removed in vacuo and the resultant residue 

re-dissolved in DCM and employed in the next step TOF-MS ESI: m/z = 1527.4680 

(M+)  
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Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)(Ir(III)(2-

phenylpyridine)2)2(tris(4-[4’-methyl-2, 2’-bipyridyl]methyl)CTG)].(PF6) (C1.5): 

 

[Ir(ppy)2(MeCN)2].PF6 (0.026 g, 0.035 mmol) was dissolved in DCM (5 mL) and 

added to a stirred solution of C1.5a (0.030 g, 0.017 mmol) in DCM (10 mL) in the 

absence of light. The mixture was stirred at room temperature for 12 hrs until HR-

MS analysis showed full conversion to the {[Ir(ppy)2]2[Ir(dfppy)2](L1)}3+ species, 

C1.5. The DCM was removed in vacuo, and the residue re-dissolved in minimal 

DCM then diethyl ether was added to the solution to give the title product as a bright 

yellow powder (0.038 g, 71%) 1H NMR (300 MHz, CD3CN) δ 8.55 (s, 1H), 8.32 (d, 

J = 8.0 Hz, 2H), 8.03 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 5.8 Hz, 1H), 7.91 – 7.71 (m, 

4H), 7.58 (dd, J = 16.2, 11.3 Hz, 3H), 7.35 (dd, J = 11.4, 5.8 Hz, 1H), 7.13 (s, 1H), 

7.03 (dd, J = 15.6, 7.1 Hz, 4H), 6.90 (dd, J = 8.2, 6.5 Hz, 1H), 6.69 (dd, J = 20.5, 

10.7 Hz, 1H), 6.28 (t, J = 6.4 Hz, 1H), 5.74 (t, J = 6.8 Hz, 1H), 5.25 (t, J = 4.6 Hz, 

2H), 4.75 (d, J = 13.7 Hz, 1H), 3.74 (d, J = 1.4 Hz, 3H), 3.56 (d, J = 14.0 Hz, 1H), 

2.57 – 2.42 (m, 3H); 13C{1H} NMR (126 MHz, CD3CN) δ 168.45, 157.01, 156.17, 

153.69, 152.98, 151.48, 151.42, 151.31, 151.22, 150.90, 150.42, 150.39, 150.04, 

150.00, 149.50, 147.11, 145.04, 140.44, 139.43, 132.56, 132.48, 131.32, 130.12, 

126.91, 126.32, 125.85, 124.82, 124.37, 123.44, 120.80, 114.99, 99.63, 70.16, 56.82, 

36.27, 21.44; TOF-MS ESI: m/z = 842. 8821 (M+); Analysis for 

C126H98F22Ir3N12O6P3 (% calculated, found) C (51.06, 50.89) H (3.33, 3.46) N (5.67, 

5.59); Infrared Analysis (FT-IR, cm-1) 556, 737, 756, 835, 1031, 1145, 1267, 1405, 

1424, 1478, 1509, 1605 (s), 3044 (b) 

 



  Chapter Four 

Page | 148  

 

Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)2(Ir(III)(2-

phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-bipyridyl]carboxy)CTG)].(PF6) (C2.4): 

 

[Ir(dFppy)2(MeCN)2].PF6 (0.019 g, 0.023 mmol) was dissolved in DCM (10 mL) 

and added to a stirred solution of C2.3 (0.02 g, 0.012 mmol) in DCM (10 mL) in the 

absence of light. The mixture was stirred at room temperature for 12 hrs until HR-

MS analysis showed full conversion to the {[Ir(ppy)2][Ir(dfppy)2]2(L2)}3+ species, 

C2.4. The DCM solution was concentrated in vacuo, and diethyl ether was added to 

the solution to give the title product as a pale orange powder (0. 035 g, 94.5%) 1H 

NMR (300 MHz, CD2Cl2) δ 9.04 (d, J = 11.2 Hz, 1H), 8.40 (d, J = 11.2 Hz, 1H), 

8.32 (d, J = 9.7 Hz, 1H), 8.20 (t, J = 5.9 Hz, 1H), 8.07 (dd, J = 18.4, 6.8 Hz, 1H), 

7.95 (d, J = 9.0 Hz, 1H), 7.90 – 7.63 (m, 1H), 7.63 – 7.44 (m, 1H), 7.42 – 7.18 (m, 

1H), 7.19 – 6.85 (m, 2H), 6.72 – 6.46 (m, 1H), 6.32 (t, J = 7.7 Hz, 1H), 5.75 (td, J = 

8.3, 2.2 Hz, 1H), 4.87 (d, J = 13.7 Hz, 1H), 3.76 (d, J = 12.0 Hz, 1H), 2.61 (d, J = 

7.1 Hz, 1H); 13C{1H} NMR (126 MHz, CD3CN) δ 168.26, 164.83, 163.43, 162.91, 

162.77, 161.39, 155.49, 153.96, 153.31, 151.23, 150.53, 150.19, 145.11, 144.87, 

140.62, 140.56, 140.35, 139.62, 138.89, 132.58, 132.40, 131.38, 130.79, 130.65, 

130.55, 128.70, 127.39, 127.24, 127.09, 125.88, 125.01, 124.87, 124.79, 124.52, 

123.66, 120.91, 115.28, 114.71, 114.56, 105.95, 100.06, 99.83, 56.95, 36.22, 21.31; 

TOF-MS ESI: m/z = 880.8553 (M3+); Analysis for C126H89F25Ir3N12O9P3 (% 

calculated, found) C (49.46, 49.09) H (2.93, 3.06) N (5.48, 5.39); Infrared Analysis 

(FT-IR, cm-1) 556, 755, 836, 1031, 1139, 1166, 1248, 1407, 1478, 1603, 1751 (s), 

3084 (b) 
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Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)(tris(4-[4’-

methyl-2, 2’-bipyridyl]carboxy)CTG)].(PF6) (C2.5a):  

 

[Ir(dFppy)2(MeCN)2].PF6 (0.036 g, 0.045 mmol) in DCM (100 mL) was added 

dropwise over a period of 3 hours to a stirring solution of (±)-L2 (0.050 g, 

0.050 mmol) in a mixture of DCM/MeOH (10:1) (150 mL total) at room 

temperature. Over time, after addition of the pale yellow-green iridium precursor 

solution to the colourless ligand solution, the reaction mixture became pale orange 

and was analysed by HR-MS, stirring was continued until the main peak seen was 

the {[Ir(dfppy)2](L2)}+ cationic complex, C2.5a. The reaction mixture was taken to 

dryness in vacuo, re-dissolved in MeCN then filtered through celite to remove any 

un-reacted L2. The MeCN solution was removed in vacuo and the resultant residue 

re-dissolved in DCM and employed in the next step TOF-MS ESI: m/z = 1569.4034 

(M+)  

Preparation of complex [(Ir(III)(2-(2,4-difluorophenyl)pyridine)2)(Ir(III)(2-

phenylpyridine)2)2(tris(4-[4’-methyl-2, 2’-bipyridyl]carboxy)CTG)].(PF6) 

(C2.5): 
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[Ir(ppy)2(MeCN)2].PF6 (0.0129 g, 0.017 mmol) was dissolved in DCM (5 mL) and 

added to a stirred solution of C2.5a (0.015 g, 0.008 mmol) in DCM (10 mL) in the 

absence of light. The mixture was stirred at room temperature for 12 hrs until HR-

MS analysis showed full conversion to the {[Ir(ppy)2]2[Ir(dfppy)2](L2)}3+ species, 

C2.5. The DCM was removed in vacuo, and the residue re-dissolved in minimal 

DCM, then diethyl ether was added to the solution to give the title product as a pale 

orange powder (0.020 g, 76%) 1H NMR (300 MHz, CD3CN) δ 9.06 (s, 1H), 8.56 (s, 

1H), 8.33 (d, J = 7.7 Hz, 1H), 8.21 (d, J = 5.0 Hz, 1H), 8.05 (t, J = 11.8 Hz, 2H), 

7.84 (dd, J = 15.8, 7.1 Hz, 3H), 7.72 – 7.52 (m, 1H), 7.39 (s, 1H), 7.15 (s, 1H), 7.12 

– 6.97 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.83 – 6.57 (m, 1H), 6.28 (dd, J = 13.0, 7.7 

Hz, 1H), 5.74 (dd, J = 13.9, 8.6 Hz, 1H), 4.90 (d, J = 13.8 Hz, 1H), 3.76 (d, J = 13.4 

Hz, 3H), 2.54 (s, 2H); 13C{1H} NMR (126 MHz, CD3CN) δ 168.39, 168.26, 164.64, 

162.91, 158.54, 155.50, 153.98, 153.30, 152.91, 150.91, 150.50, 150.18, 145.09, 

144.85, 140.61, 140.32, 139.61, 138.89, 132.57, 132.39, 131.39, 130.54, 128.55, 

127.09, 125.88, 124.88, 124.51, 123.66, 120.91, 118.26, 115.27, 113.92, 56.95, 

36.22, 21.30; TOF-MS ESI: m/z = 856.8657 (M3+); Analysis for 

C126H92F22Ir3N12O9P3 (% calculated, found) C (50.35, 47.99) H (3.09, 3.26) N (5.59, 

5.45); Infrared Analysis (FT-IR, cm-1) 557, 755, 839, 1031, 1139, 1176, 1248, 1410, 

1478, 1606, 1751 (s), 3040 (b) 

 

4.6.2 Photophysical studies 

All samples were prepared at the University of St Andrews by Diego Rota Martir, in 

HPLC grade acetonitrile with varying concentrations in the order of 10-4 - 10-6 M. 

Absorption spectra were recorded at room temperature using a Shimadzu UV-1800 

double beam spectrophotometer. Molar absorptivity determination was verified by 

linear least-squares fit of values obtained from at least four independent solutions at 

varying concentrations with absorbance ranging from 6.05 × 10–5 to 2.07 × 10–5 M.  

The sample solutions for the emission spectra were prepared in HPLC-grade MeCN 

and degassed via freeze-pump-thaw cycles using a quartz cuvette designed in-house. 

Steady-state emission and excitation spectra and time-resolved emission spectra 

were recorded at 298 K using an Edinburgh Instruments F980. All samples for 

steady-state measurements were excited at 360 nm, while samples for time-resolved 
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measurements were excited at 378 nm using a PDL 800-D pulsed diode laser. 

Emission quantum yields were determined using the optically dilute method.32 A 

stock solution with absorbance of ca. 0.5 was prepared and then four dilutions were 

prepared with dilution factors between 2 and 20 to obtain solutions with absorbances 

of ca. 0.095 0.065, 0.05 and 0.018, respectively. The Beer-Lambert law was found 

to be linear at the concentrations of these solutions. The emission spectra were then 

measured after the solutions were rigorously degassed via three freeze-pump-thaw 

cycles prior to spectrum acquisition. For each sample, linearity between absorption 

and emission intensity was verified through linear regression analysis and additional 

measurements were acquired until the Pearson regression factor (R2) for the linear fit 

of the data set surpassed 0.9. Individual relative quantum yield values were 

calculated for each solution and the values reported represent the slope value. The 

equation Φs = Φr (Ar/As)(Is/Ir)(ns/nr)
2 was used to calculate the relative quantum yield 

of each of the sample, where Φr is the absolute quantum yield of the reference, n is 

the refractive index of the solvent, A is the absorbance at the excitation wavelength, 

and I is the integrated area under the corrected emission curve. The subscripts s and 

r refer to the sample and reference, respectively. A solution of quinine sulfate in 0.5 

M H2SO4 (Φr = 54.6%) was used as external references.33  

PMMA doped films were prepared by spin coating the samples from a solution of 2-

methoxyethanol (HPLC grade) containing 5 % w/w of the desired sample. Steady-

state emission and excitation spectra and time-resolved emission spectra of both 

powders and doped films were recorded at 298 K using an Edinburgh Instruments 

F980. Solid-state PLQY measurements of thin films were performed in an 

integrating sphere under a nitrogen purge in a Hamamatsu C9920-02 luminescence 

measurement system.34 
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5 Chapter 5 

Heteronuclear ruthenium-iridium complexes and ruthenium 

containing supramolecular assemblies 

5.1  Introduction 

Ruthenium(II) polypyridine complexes, or indeed ruthenium systems of the form 

{[Ru(N^N)3]2X}, possess interesting photophysical properties. A wealth of research 

into many facets of their emission has been undertaken. These types of system have 

found applications in not only luminescent biomedical imaging, but combinatorial 

theranostic approaches too, due to their oxygen sensitive emission response.1,2 The 

oxygen- induced quenching of emission has been used to directly image hypoxic 

cells, a common signifier of cell death. Ruthenium polypyridyl complexes have also 

found application in anti-cancer and anti-microbial settings.3–5 In addition to the 

polypyridyl-type complexes, ruthenium-arene systems have also found applications 

as anti-cancer agents.6–9 The face-capped ruthenium systems have also been 

incorporated into metallo-supramolecular assemblies to combine the anti-cancer 

activity of the ruthenium unit with potential drug delivery applications as well.6,10   

Aside from the biomedical application of ruthenium emission properties, the 

fabrication of light emitting electrochemical cells has also been a considerable area 

of research.11–13 There are examples of ruthenium polypyridyls as the emissive layer 

in electroluminescent devices as far back as 1996, and the same modulation of 

emission that has previously been discussed in relation to the [Ir(C^N)2(N^N)]+ 

systems can be achieved within a ruthenium polypyridyl motif.14 

There are examples of multi-metallic heteronuclear systems, notably a ruthenium-

iridium system where the separate and successive emission of each component can 

be cycled through.15 There are also examples of Ir(III)-Ru(II) heteronuclear species 

with varying Ir:Ru ratios that display emission dominated by the ruthenium centre.16 

5.2 Preparation of tri-metallic ruthenium complexes 

The synthesis of both homo- and hetero- tri-metallic iridium complexes were 

previously discussed in Chapters Three and Four. This chapter will concern the 
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analogous tri-ruthenium species, and subsequently moving on towards heteronuclear 

systems. 

The ubiquitous ruthenium metallotecton, cis-bis(2,2‟-bipyridine)dichlororuthenium, 

was employed as the ruthenium source in combination with L1 and L2 to furnish tri-

metallic, tris-chelated ruthenium complexes C1.6 and C2.6, as shown in Scheme 

5.1. An almost identical synthetic procedure was employed as in Chapter two, 

whereby the ruthenium starting material was combined with L1 or L2 in a 9:1 

mixture of chlorinated solvent to methanol. The temperature was elevated s lightly 

compared to the iridium analogues, due to the more tightly bound terminally 

coordinated chloride anions, as opposed to the bridging chlorides in the iridium 

dimer, therefore chloroform was substituted for the lower boiling DCM solvent.  

Generally, tris-chelate complexes of the form [Ru(bpy)2(N^N)] have been prepared 

through reaction of the previously mentioned cis-bis(2,2‟-bpy)dichlororuthenium 

with an N^N ligand in alcohol/water solvent mixtures.17–21 The aqueous alcoholic 

solvents employed help solubilise the metal precursor, however in this case L1 and 

L2 are particularly insoluble in alcoholic solvents; in fact the ligands are purified 

through precipitation with methanol solvent, accordingly, a modified procedure was 

implemented.22 The ruthenium metal precursor was dissolved in a minimum amount 

of methanol, whilst the ligands were dissolved in an excess of chlorinated solvent. 

The two solutions were combined slowly with vigorous stirring and the resultant 

dark purple solution was heated to just below reflux. Over time the dark purple 

solution lightened to a blood-red colour, indicative of Ru(bpy)3, during this time the 

reaction was followed and analysed through HR ESI-MS.  
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Scheme 5.1: General synthetic route towards tri-metallic C1.6 and C2.6. 

The complete formation of C1.6 and C2.6 took between 3-5 days at ~40°C, after 

which time the latent chloride anions were exchanged for hexafluorophosphate 

through addition of excess saturated ammonium hexafluorophosphate solution. The 

tri-metallic, hexa-cationic complexes are remarkably soluble; as such only partial 

precipitation of the hexafluorophosphate salts was observed. Therefore, the 

remaining solvent was removed in vacuo to leave a bright orange reside that was 
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dissolved in dichloromethane and washed with water to removed any excess 

inorganic salts. The resultant dark orange dichloromethane solution was dried 

through use of magnesium sulphate and concentrated, before addition of excess 

diethyl ether to furnish the desired products as bright orange powders. The isolatable 

yields were between 70-85%, showing no evidence of the mono- or di-metallic 

species. 

Alternatively, C1.6 and C2.6 can be formed in 24 hours with the addition of a halide 

abstracting agent, in this case silver nitrate.23 An analogous procedure was 

employed; dissolution of the ligand in dichloromethane solvent and the metal 

precursor in methanol solvent, however a third solution of two equivalents of silver 

nitrate in methanol was also prepared. Two separate dropping funnels were charged 

with the two methanolic solutions and added drop-wise over the course of one hour 

to a vigorously stirred solution of ligand. Once addition of the methanolic solutions 

was complete, the resultant solution was heated to reflux for 24 hours in the absence 

of light. After which time the solution was filtered, whilst still hot, through a pad of 

Celite and the anions once again exchanged for hexafluorophosphate.  

Whilst the second method is advantageous in terms of the time required for the 

reaction to go to completion, the reaction is not as easily followed through HR-MS. 

Employing the first method, the reaction can be monitored regularly until the only 

product observed is the desired tri-metallic species, whereas use of a halide 

abstracting agent can lead to by-products consisting of un-reacted metallic starting 

material, leading to the necessity of column chromatography.   

5.2.1 Spectroscopic analysis of ruthenium complexes 

Whilst the previously discussed iridium complexes C1.1-4 and C2.1-4 all gave 

remarkably clean mass spectra, with the only notable peaks belonging to the 3+ tri-

cationic complexes, the ruthenium analogues are markedly different in their 

behaviour.  
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Figure 5.1 : HR ESI-MS of C1.6 showing not only the 6+ molecular ion peak, but 

also other notable charge states, with a) the measured isotope pattern of the 

6+ peak and b) the claulated pattern for the 6+ peak of C1.6 shown inset. 

At first glance the HR ESI-MS of C1.6 looks rather complicated, as evidenced in 

Figure 5.1, suggesting a complex mixture of products, partially substituted metal 

complexes and by-products. However once full analysis of the available counter-

ions was considered, all of the observed charge states and charge state envelopes can 

be attributed to the desired tri-metallic C1.6. The expected molecular ion peak 

observed at 365.9546 m/z is attributable to the naked 6+ complex 

{[Ru(bpy)2]3L1}6+, observed without any non-coordinated hexafluorophosphate 

anions, calculated for 365.9233 m/z. The pair of 5+ peaks can be assigned to the 

mono-deprotonated complex {([Ru(bpy)2]3L1)•(−H+)}5+ at 439.1650 m/z, and the 

mono-hexafluorophosphate associated complex {([Ru(bpy)2]3L1)•(PF6
−)}5+ at 

468.1695 m/z. Correspondingly the 4+ peaks belong to the doubly-deprotonated 

species {([Ru(bpy)2]3L1)•(−2H+)}4+ at 548.7262, the mono-deprotonated mono-

hexafluorophosphate associated species {([Ru(bpy)2]3L1)•(−H+)•(PF6
−)}4+ at 

585.2281 and the doubly-hexafluorophosphate associated species 

{([Ru(bpy)2]3L1)•(2PF6
−)}4+ at 621.7325. The calculated theoretical isotope pattern 

of the 6+ charge state matches exactly with the observed pattern, displaying a 

diagnostic three-ruthenium roofed pyramid.  
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Figure 5.2 : HR ESI-MS of C2.6 showing not only the 6+ molecular ion peak, but 

also other notable charge states, with a) the measured isotope pattern of the 

6+ peak and b) the claulated pattern for the 6+ peak of C2.6 shown inset. 

A comparable mass spectrum was observed for C2.6, displaying charge state 

envelopes for both the 5+ and 4+ species, as shown in Figure 5.2. However, as a 

point of note, the above HR ESI-MS was recorded from a sample of C2.6 formed 

through the silver nitrate method mentioned in Section 5.2 before the anion 

exchange step, and therefore contains an excess of nitrate anions.  

The 6+ peak at 372.9123 m/z can be attributed to the naked 6+ cation 

{([Ru(bpy)2]3L2)}6+ without the associated nitrate anions, calculated for 372.9127 

m/z. Once again, the pair of 5+ peaks at 447.4937 and 460.0927 m/z are assigned to 

{([Ru(bpy)2]3L2)•(−H+)}5+ and {([Ru(bpy)2]3L2)•(NO3
−)}5+ respectively. The 4+ 

charge envelope is assigned to {([Ru(bpy)2]3L2)•(−2H+)}4+ at 559.1163,  

{([Ru(bpy)2]3L2)•(−H+)•(NO3
−)}4+ at 574.6130 and {([Ru(bpy)2]3L2)•(2NO3

−)}4+ at 

590.6131 m/z. The expected distinctive three-ruthenium isotope pattern can again be 

seen in the expanded view of the 6+ peak, matching the predicted pattern exactly.  
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Figure 5.3: Assigned 1H NMR spectrum of C1.6 in CD3CN, with an expanded 

view of the aromatic region and molecular structure shown inset (only one 

metallated arm is shown for clarity). 

C1.6 exhibits C3 symmetry in the solution state, hence the 1H NMR spectrum is 

assigned to only one third of the complex. Whilst displaying complexity similar to 

the previously discussed iridium complexes, the proton NMR is simplified 

somewhat due to the symmetry of the 2,2‟-bipyridine ancillary ligands; each pyridyl 

ring is magnetically equivalent on an NMR timescale, leading to just four distinct 

environments for all sixteen ancillary bipyridine protons. As shown in Figure 5.3, 

the protons of the methyl group of the bipyridine arm are observed as a sharp singlet 

at 2.5 ppm, as expected. The characteristic endo/exo doublets of the methylene 

bridge can be seen at 4.8 and 3.6 ppm respectively. Interestingly, the CH2 of the 

bridging ethyl linkage is split into a roofed double-doublet at 5.2 ppm, becoming 

pseudo-diastereotopic due to the restricted rotation around the ether linking group. 

The aromatic region is noticeably complex; with eight one-proton aromatic 

resonances assigned to the bipyridine and aryl protons of the ligand, and four four-

proton resonances assigned to the ancillary bipyridine ligand. Many of the peaks 

overlap with each other, but the precise assignments were once again ascertained 

from 1H-1H COSY NMR spectrum.   
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Figure 5.4: 1H NMR spectrum of C2.6 in CD3CN, with an expanded view of the 

aromatic region and molecular structure shown inset (only one metallated 

arm is shown for clarity). 

C2.6 displays a sharp singlet at 2.5 ppm belonging to the methyl protons on the 

bipyridine arm, whilst also showing a peak at 3.7 ppm assigned to both the exo 

proton and the methoxy protons overlapping, as seen in Figure 5.4. As is the case 

with C1.6, C2.6 displays a complex aromatic region comprised of eight one-proton 

resonances assigned to the ligand scaffold and four four-proton resonances 

belonging to the ancillary bipyridine ligand.  

5.2.2 Photophysical analysis of ruthenium complexes  

The initial photophysical studies, presented herein, were undertaken at the 

University of Leeds, performed by the author in acetonitrile solution at 293 K. 

Further, more extensive photophysical investigations are projected to be performed 

at the University of St Andrews in collaboration with the Zysman-Colman Group. 
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Figure 5.5 : Overlaid emission spectra for C1.6 and C2.6 recorded in acetonitrile 

solution. 

Figure 5.5 contains the emission spectra of both the ether- linked C1.6 and ester-

linked C2.6, both spectra resulting from an excitation wavelength of 450 nm. The 

blue trace represents C1.6 and displays a λmax of 616 nm, whilst the red trace 

represents C2.6 and shows a λmax of 667 nm. Therefore, as in all the previous 

directly analogous complexes, the ester- linked congener displays a bathochromic 

shift with respect to the ether- linked complex. In this case, C2.6 is red-shifted by 

over 50 nm towards the infra red region of the spectrum.  

One point of note that differentiates the ruthenium complexes from the previously 

discussed rhenium and iridium congeners is the lack of dual-emission seen in the 

ester- linked species. In the rhenium complex discussed in Chapter 2, C2.1, and the 

iridium complexes discussed in Chapter 3, C2.2 and C2.3, a higher-energy emission 

band was observed between 530-600 nm, as well as the lower energy, longer 

lifetime emission assigned to the desired 3MLCT. The conversely shorter lifetimes 

of the higher-energy peak suggest more ligand, organic-based character to the 

transition. Thus, it could be that excitation at 450 nm does not promote the ligand-

based transition that previously gave rise to the dual-emission observed. However, 

further photophysical studies, including lifetime analysis and more in depth probing 
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of the resultant emission would be required to conclude with any degree of certainty 

the exact transitions occurring within the ruthenium complexes discussed here.  

The archetypal [Ru(bpy)3]2+ system displays a λmax of between 608 and 620 nm in 

deaerated acetonitrile solution,23,24 thus C1.6 is almost exactly analogous whereas 

C2.6 is red-shifted compared to the mono-nuclear analogue. This work goes to show 

the validity and scope of the bipyridyl-CTG ligand scaffold, as L1 and L2 can be 

combined with rhenium, iridium and ruthenium to furnish a library of emissive 

complexes that with further ligand engineering could provide emission wavelengths 

covering a wide range of the colour spectrum.  

5.3 Preparation of heteronuclear ruthenium-iridium complexes 

As was the case with the tri-metallic iridium complexes C1.2 and C2.2, the rational 

design behind the synthesis of C1.6 and C2.6 was to prove the viability of 

appending bulky luminescent ruthenium centres to this particular ligand scaffold. 

Once again, the cyclononatriene core does not impede the photophysical properties 

of tri-metallic complexes, which display strong phosphorescence with emission red-

shifted towards the lower energy end of the spectrum. The success of this  

partnership has been demonstrated in section 5.2.2. However, after establishing the 

favourable emission properties of C1.6 and C2.6, the consequent objective was to 

incorporate ruthenium centres into a mixed-metal heteronuclear system. This 

approach was envisaged to yield a higher degree of discriminatory control over the 

resultant emission. A modular synthesis was employed, similar to the synthesis of 

C1.4-5 and C2.4-5, whereby each ligand was mono-substituted and the residual 

binding sites substituted in a secondary reaction.  

The initial combination was of the previously discussed mono-iridium C1.3 and 

C2.3, further bound to secondary ruthenium centres. As noted in the synthesis of 

both tri-metallic iridium and ruthenium species, the iridium reaction proceeds at 

room temperature in an almost self-assembling fashion, whereas the ruthenium 

reaction requires slightly more forcing conditions, with temperatures of ~50°C 

required, thus the mono-iridium C1.3 and C2.3 were chosen as the initial building 

blocks As a secondary consideration, the previously employed cis-bis-(2,2‟-

bipyridine)dichlororuthenium metal precursor was transformed to the bis-

acetonitrile adduct in the presence of silver hexafluorophosphate, to removed any 
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potential need for a halide abstracting agent in the second step of the heteronuclear 

reaction.  

Combination of a 2:1 stoichiometric ratio of mono- iridium complex and ruthenium 

acetonitrile adduct in dichloromethane solvent furnished both C1.7 and C2.7 in 

good yields, as shown in Scheme 5.2. A few drops of methanol solvent were added 

to the reaction mixture to ensure complete dissolution of both components. Once 

again, the progress of the reaction towards the desired product was followed through 

HR ESI-MS, eventually leading to a complex yet assignable mass spectrometry 

pattern.  



  Chapter Five 

Page | 166  

 

 

Scheme 5.2 : Modular synthesis of heteronuclear C1.7 and C2.7 from mono-

iridium precursors C1.3 and C2.3, key shown at the bottom; red circles 

representing ruthenium centres and green circles representing iridium 

centres. 

Both constituents already bore hexafluorophosphate anions, negating the need for 

any anion exchange step. The crude reaction mixture was simply taken to dryness in 

vacuo and re-dissolved in the minimal amount of acetonitrile solvent before the 

desired product was precipitated as an orange powder through addition of excess 

diethyl ether. 
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5.3.1 Spectroscopic analysis of heteronuclear complexes 

As with the majority of metal complexes contained herein, mass spectrometry was 

an invaluable tool for not only following and ascertaining the progress of reactions, 

but also as an indication of final purity and/or the presence of any un-desired by-

products owing to the generally complex 1H NMR spectra recorded.  

C1.7 presents a HR ESI-MS similar to those previously discussed ruthenium-

containing mass spectra, in that de-protonation occurs, as well as association with 

various anions that are present in the ionisation matrix.  

 

Figure 5.6: HR ESI-MS of C1.7 showing not only the 5+ molecular ion peak, but 

also the 4+and 3+ charge state envelopes, the measured and calculated 

isotope patterns of C1.7 are shown inset. 

The naked 5+ complex can be seen at 456.7173 m/z, assigned to 

{([Ru(bpy)2]2[Ir(ppy)2]L1)}5+ observed without any associated anions, the 

theoretical m/z being 456.7180. The 4+ charge envelope contains peaks at 570.1450, 

592.6591 and 607.1380 m/z, assigned to {([Ru(bpy)2]2[Ir(ppy)2]L1)•(−H+)}4+, 

{([Ru(bpy)2]2[Ir(ppy)2]L1)•(BF4
−)}4+ and {([Ru(bpy)2]2[Ir(ppy)2]L1)•(PF6

−)}4+. The 

presence of tetrafluoroborate anions in the mass spectrum is simply due to residual 

anions present in the spectrometer, and is therefore an artefact of the technique. The 

3+ charge state envelope displays peaks at 760.5242, 789.8766, 809.1829, 838.2016 

and 857.8466 m/z, all assignable to various combinations of anions and de-

protonated species. The 760 peak is assigned to the doubly-deprotonated 

{([Ru(bpy)2]2[Ir(ppy)2]L1)•(−2H+)}3+, with the subsequent peaks assigned to 

{([Ru(bpy)2]2[Ir(ppy)2]L1)•(−H+)•(BF4
−)}3+, 
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{([Ru(bpy)2]2[Ir(ppy)2]L1)•(−H+)•(PF6
−)}3+, 

{([Ru(bpy)2]2[Ir(ppy)2]L1)•(BF4
−)•(PF6

−)}3+ and 

{([Ru(bpy)2]2[Ir(ppy)2]L1)•(2PF6
−)}3+ in varying degrees of intensity. Therefore all 

the peaks of notable intensity observable in the HR ESI-MS can be assigned to the 

desired C1.7. 

 

 

Figure 5.7: HR ESI-MS of C2.7 showing not only the 5+ molecular ion peak, but 

also the 4+and 3+ charge state envelopes, the measured and calculated 

isotope patterns of C2.7 are shown inset. 

Again, an analogous mass spectrum was obtained for C2.7, displaying the 5+ 

molecular ion peak and charge state envelopes for the 4+ and 3+ peaks. The 

molecular ion peak at 465.1048 m/z is assigned as {([Ru(bpy)2]2[Ir(ppy)2]L2)}5+, 

calculated for 456.1056. The measured and calculated isotope patterns for the 5+ 

peaks can be seen in Figure 5.7, where the distinctive weighted-pyramid shape can 

be seen in both. The 4+ charge envelope displays peaks at 581.1295, 603.1437 and 

617.8715 m/z, corresponding to {([Ru(bpy)2]2[Ir(ppy)2]L2)•(−H+)}4+, 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(BF4
−)}4+ and {([Ru(bpy)2]2[Ir(ppy)2]L2)•(PF6

−)}4+ 

species. The 3+ charge envelope contains a multitude of peaks at 774.1687, 

790.1703, 803.8511, 819.1938, 838.1644 and 852.5138 m/z, assigned to; 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(−2H+)}3+, 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(−H+)•(COO−)}3+, 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(−H+)•(BF4
−)}3+, 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(BF4
−)•(COO−)}3+, 

{([Ru(bpy)2]2[Ir(ppy)2]L2)•(PF6
−)•(COO−)}3+ and 
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{([Ru(bpy)2]2[Ir(ppy)2]L2)•(BF4
−)•(PF6

−)}3+
 respectively. Both the formate and 

tetrafluoroborate anions are artefacts of the spectrometer and are included in the 

resultant spectrum due to the ionisation matrix employed. Despite the surfeit of 

anions present, all notable peaks can be assigned to variants of C2.7, suggesting full 

substitution of all three bipyridine arms in the expected 2:1 ratio of Ru:Ir.  

 

Figure 5.8: Chemical structure of heteronuclear C1.7 and C2.7, with proton 

assignments referred to throughout the NMR discussion. The third 

bipyridine arm on each ligand, bound to a second ruthenium centre, is 

removed for clarity, as are the five counter ions. 

The nomenclature used in discussion of the 1H NMR spectra of C1.7 and C2.7 is 

shown in Figure 5.8. The second ruthenium-bound bipyridine arm is removed for 

clarity. Therefore, through consideration of relative integrals, the protons on the 

bipyridine ancillary ligand should integrate to 8, versus an integration of 2 for 

protons on the phenylpyridine ancillary, all referenced back to integrals of 3 for 

equivalent protons on the ligand scaffold, however, some of the protons assigned to 

the bipyridine arms are split due to the effect of binding to different metals.  

As expected, the 1H NMR spectra of both heteronuclear complexes are convoluted, 

however when compared to both tri-metallic homonuclear analogues, strong 

similarities appear.  
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Figure 5.9: Overlay of 1H NMR spectra in CD3CN of (a) tris-ruthenium C1.6, (b) 

tris-iridium C1.2 and (c) heteronuclear C1.7 , showing the simialrity between 

the homonuclear and heteronuclear analogues. 

In Figure 5.9 the topmost blue trace (a) shows the 1H NMR spectrum of the tri-

metallic ruthenium C1.6, the middle green trace (b) shows the spectrum of the homo 

tri-metallic iridium C1.2 and the bottom red trace (c) shows the spectrum of the 

resultant heteronuclear C1.7. As evidenced, the spectrum of the heteronuclear C1.7 

is almost a perfect superposition of the two previously mentioned homonuclear 

complexes, displaying both the triplet at ~6.2 ppm assigned to HH‟ on the iridium 

phenylpyridine ancillary ligand (highlighted in orange) and the four four-proton 

peaks assigned to the four protons HA-HD on the ruthenium bipyridine ancillary 

(highlighted with red triangles).  

a) 

b) 

c) 
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Figure 5.10: Overlay of 1H NMR spectra in CD3CN of (a) tris-ruthenium C2.6, (b) 

tris-iridiumC2.2  and (c) heteronuclear C2.7, showing the simialrity between 

the homonuclear and heteronuclear analogues. 

The spectrum of C2.7 also shows strong similarities to both homonuclear analogues. 

The resonance assigned to HH‟ on the ancillary phenylpyridine ligand is again 

highlighted in orange, present in both C2.2 and C2.7. All four HA-HD resonances 

belonging to the bipyridine ancillary ligand are highlighted with red triangles. The 

methyl and methoxy resonances at 2.5 and 3.7 ppm broaden slightly with respect to 

the homonuclear analogues, most likely due to slight differences in the precise peak 

position depending on the metal centre that each ligand arm is bound to.  

5.4 Towards the preparation of ruthenium containing 

supramolecular assemblies 

In supramolecular chemistry there are numerous examples of ruthenium containing 

assemblies, particularly self-assembled squares and cubic structures.6,7,25–27 Many of 

these systems employ face-capping ligands to give the ubiquitous „piano-stool‟ 

arrangement around the octahedral ruthenium centre, leaving three vacant 

coordination sites at well defined angles. One approach commonly seen is a two-

a) 

b) 

c) 
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component „metallo-clip‟ method, whereby the geometrically locked metal centre is 

first bound to a linear bridging ligand, then subsequently bound to a second linking 

ligand, either linear or a planar multi-topic ligand.9,25,28–31 Two of the most common 

face-capping ligands are aromatic arene and p-cymene fragments, formed from the 

familiar chloro-bridged dimeric species. In this work in an effort towards 

supramolecular assemblies, the latent chloride ions were removed and replaced with 

acetonitrile solvent molecules in the presence of silver hexafluorophosphate, as 

shown in Scheme 5.3.  

 

Scheme 5.3: Synthesis of 'piano stool' acetonitrile ruthenium precursor.  

The aim of this work was to target a supramolecular cube; where four of the eight 

corners were described by the tripodal ligand L4 and the remaining four corners by 

the tripodal ruthenium metallotecton.  

 

Figure 5.11: Targeted cubic supramolecular structure CC4.1, topmost arene ring 

removed for clarity, and a colour coded schematic showing which ligands 

and metal centres describe which vertices of the cube. 
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The tripodal nature of the ligand and the half-sandwich biding motif of the metal are 

complementary in geometry, describing the eight vertices of a compact cube. A 

stoichiometric ratio of L4 and acetonitrile-activated ruthenium precursor, 

[Ru(arene)(MeCN)3]•2PF6, were dissolved in dueterated nitromethane solvent and 

the self-assembly of CC4.1 followed over time by 1H NMR spectroscopy with 

gentle heating.  

 

Figure 5.12: Timecourse 1H NMR study of the formatiuon of CC4.1 and 

subsequent decomposition over time a) initial mixture of L4 and 

metallotecton b) after 4 hrs c) 12 hrs d) 1 week e) 3 weeks in solution. 

As Figure 5.12 shows, the 1H NMR spectrum resulting from the initial mixture of 

components is extremely sharp; the resonances marked with an orange circle are due 

to the protons on the arene ring on the ruthenium metallotecton (~6.3 ppm) and the 

coordinated acetonitrile ligands (~2.5 ppm). All other peaks in spectrum a) are 

assignable to L4. After 4 hours heating at 45°C spectrum b) was obtained, this 

shows the formation of a larger species, evident from the broadening of all the 

ligand based peaks, suggesting a more rigid, larger species that cannot rotate as 

freely on an NMR timescale. The almost total loss of the coordinated acetonitrile 

peak, highlighted in pink, also supports the formation of a supramolecular species 

whereby the pyridyl moiety of L4 has displaced the coordinated acetonitrile ligands 

a) 

b) 

c) 

d) 

e) 
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on the metallotecton. The broadening out of the resonance assigned to the arene 

protons, highlighted in blue, also suggests formation of a larger species, as even 

though the η6-[arene-ruthenium] bond would not be restricted, the rotation of the 

assembly as a whole would be.  

 

Figure 5.13: Interpreted partial 2D NOESY NMR spectrum of CC4.1 in d3-

MeNO2 solvent, nOe couplings between arene protons and ortho/meta-

pyridyl protons highlighted, chemical structure and nOe couplings of CC4.1 

shown inset. 

The observed nOe coupling between protons on the arene ring at 6.4 ppm and the 

ortho/meta-pyridyl protons at 9.0 and 8.2 ppm, as highlighted in Figure 5.13, 

suggest close through-space association of the metallotecton and L4, providing 

supporting evidence for the formation of CC4.1.  

After 12 hours heating at 45°C, as seen in Figure 5.12, there is no remaining 

metallo-starting material, as evidenced through the lack of proton resonances at 6.3 

and 2.5 ppm, however a further investigation into the stability and potential self-

sorting behaviour of the cage was also undertaken. Supramolecular assemblies of 

CTV-type ligands have been seen to display a degree of self-sorting in solution over 

time, usually with respect to the enantiomers contained within the assembly or the 

chirality of the assembly as a whole, leading to re-sharpening of the previously 



  Chapter Five 

Page | 175  

 

broad peaks as a major isomer is formed.32–35 However, upon investigation of any 

self-sorting processes occurring within CC4.1, decomposition was seen to occur. 

This is most acutely highlighted through the appearance of a peak at ~7.3 ppm, 

assigned to free benzene in nitromethane solvent, emphasized in the green box in 

Figure 5.12. With the loss of the main geometrically directing ligand, there is no 

driving force towards retention of the cubic structure.  

As CC4.1 was seen to decompose in solution over time, an alternative approach 

towards an analogous cubic structure was undertaken. The second approach 

employed a different face-capping ligand, one that has previously showed no 

evidence of displacement over time, 1,4,7-trithiacyclononane.  

 

Scheme 5.4: Formation of the second ruthenium ‘piano-stool’ complex employed 

as a geometrically directing metallotecton. 

There are many previous examples of mono-nuclear complexes containing this 

ruthenium tecton, formed from pyridine-containing moieties.36–38 The first and 

seminal example of a supramolecular cube containing the 

[([9]aneS3)Ru(DMSO)Cl2] came from Thomas et al, whereby the aforementioned 

metallotecton was reacted with 4,4‟-bipyridine in nitromethane solvent to furnish the 

self-sorted, self-assembled cube after one month.39 In addition to the mono-nuclear 

systems, Fujita has prepared analogues of his cis-protected Pd assemblies cornered 

by a comparable ruthenium tecton, simply the 12-membered thia-ring analogue.26 

This Ru6L4 assembly displayed a guest- induced chromic shift from yellow to orange 

upon encapsulation of the guest molecule.  

In this case, the resultant metallotecton [([9]aneS3)Ru(DMSO)Cl2] was combined 

with L4 in deuterated nitromethane solvent; however a pale yellow precipitate was 

formed immediately upon mixing. It was surmised that the bound chloride anions 

would be slower to displace than the coordinated DMSO solvent, and therefore a 

polymeric structure was probably formed upon mixing, rather than the metallotecton 

providing the desired facial arrangement of binding sites. Consequently, the bound 

halide anions were removed through use of silver tetrafluoroborate in the presence 
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of non-coordinating nitromethane solvent to furnish the activated bis-

tetrafluoroborate salt. The activated adduct was subsequently combined in situ with 

L4 and the formation of CC4.2 followed by 1H NMR spectroscopy.  

 

Figure 5.14: Timecourse 1H NMR study of the formatiuon of CC4.2 from a) L4 

b)immediately after mixing c)4 hrs at 65°C d) 8 hrs e) 24 hrs f) 48 hrs g) 5 

days heating. 

The initial combination of activated ruthenium tecton and L4, spectrum b in Figure 

5.14, gives rise to a slight shift in peak position, and the formation of a smaller set of 

peaks adjacent to the previous aromatic peaks. Another point of note is the 

appearance of a peak at 2.5 ppm, highlighted by the arrow in Figure 5.14, 

characteristic of free dimethyl sulphoxide, suggesting that the bound DMSO ligand 

on the metallotecton has been displaced by the pyridyl N-donor on L4. As 

previously seen by Thomas et al,39 the 1H NMR spectrum observed is initially sharp 

but complex, and over time, with further heating, simplifies. The same effect can be 

seen in Figure 5.14 whereby the sharp spectrum of a) gradually broadens into 

spectrum e) over 24 hours at 65°C. The proton resonance assigned to the ortho-

pyridyl protons of L4, seen at ~8.7 ppm in spectrum a), split into two peaks at 8.8 

and 9.0 ppm, whilst the meta-pyridyl proton peak, previously at 7.9 ppm, splits into 

a broad overlapping peak centred at 8.1 and 8.15 ppm. The integrals of all peaks in 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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spectrum g) are congruent with an L4:metallotecton ratio of 1:1, supporting the 

formation of a cubic assembly. Both split-peaks assigned to the ortho- and meta-

pyridyl protons equate to two, whilst the broad aryl-CTG protons resonances at 7.46 

and 7.26 ppm both integrate to one. The endo methylene-bridge resonance equates 

to one proton, whilst the broad multiplet between 2.5-3.2 ppm, assigned to the 

protons on the thia-crown tecton, integrates to 4 protons. Whilst the spectrum does 

simplify over time, it is still more complex than the final 1H NMR spectrum 

observed by Thomas et al, this could be due to incomplete assembly of the cubic 

structure, or a chirality effect; as L4 is present as both M and P isomers and thus the 

resultant supramolecular assembly may undergo further self-sorting towards a single 

enantiomeric product. 

 Strong evidence supporting the formation of a cubic structure is also found in the 

1H-1H NOESY NMR spectrum, see Figure 5.15.  

 

Figure 5.15: Interpreted 2D 1H-1H NOESY spectrum of CC4.2 in d3-MeNO2 

solvent, nOe couplings between thia-crown protons and ortho/meta-pyridyl 

protons highlighted, partial crystal structure of the mono-nuclear analogue 

shown inset,39 highlighting the nOe couplings in green seen in CC4.2. 

The proton resonance between 2.5-3.5 ppm, belonging to the thia-crown moiety of 

the ruthenium metallotecton, can be seen to couple to both the ortho- and meta-



  Chapter Five 

Page | 178  

 

pyridyl protons on L4, highlighted in the red box in Figure 5.15. Strong through-

space coupling can also be seen between the methoxy proton resonance at 3.8 ppm 

and the aromatic aryl-CTG protons at 7.4 and 7.2 ppm, as well as the ortho- and 

meta-pyridyl protons at 8.9 and 8.0 ppm. The endo methylene bridge protons at 

4.9 ppm can also be seen to couple to the aryl-CTG protons. Importantly, the peak at 

2.5 ppm, assigned to free dimethyl sulphoxide, does not couple to the thia-crown 

moiety, supporting the assertion that it is no longer bound to the metallotecton. 

The HR-MS however, is less clear. A number of high charge, high mass peaks were 

observed, but no peaks assignable to the intact Ru4(L4)4 structure could be identified 

through the MS techniques available to the author. This suggests tha t a larger 

assembly was formed, but fragments during the ionisation process.  

5.5 Conclusions and further directions 

In this chapter, tri-metallic ruthenium complexes C1.6 and C2.6 were formed in 

good yields, and through the use of silver hexafluorophosphate, in just 24 hours. The 

photophysics of these systems show strong phosphorescent emission towards the 

near IR region. Once again, the difference between the ether and ester linked 

complexes is significant, allowing access to emission wavelengths over 50 nm apart. 

Importantly, the incorporation of ruthenium centres onto the cyclononatriene 

scaffold in L1 and L2 does not impede the emission, and provides a platform for the 

synthesis of heteronuclear systems C1.7 and C2.7. The analysis of which shows 

complex yet clean HR ESI-MS data and a reproducibly convoluted 1H NMR spectra. 

The relatively facile synthesis of heteronuclear complexes opens the door towards a 

highly tuneable system with respect to the resultant emission properties. There is the 

potential to incorporate rational design into the combination of metal centres and the 

precise structural nature of the supporting ancillary ligands bound to them, allowing 

for a diverse range of emission wavelengths, with the possibility to design energy 

transfer systems through judicious choice of metallotectons.  

Whilst further photophysical investigations will be performed, the initial results are 

encouraging and reiterate the trend previously observed in that the L2 containing 

systems are always red-shifted compared to the L1 based congeners. Therefore, 

future efforts to tune the emission wavelength towards specific, desired colours 
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could be based not only on a considered choice of metal or ancillary ligand, but also 

the cyclononatriene ligand scaffold itself.  

Although synthetically more challenging, there is also potential to target not just 

hetero bi-metallic systems, but also tri-metallic complexes, through careful 

stoichiometric control. This modular approach to complex colour tuning, could lead 

to a vast library of emissive complexes whereby the emission properties could be 

tuned to an end-users‟ specific needs.  

An effort towards incorporating kinetically inert metal centres into supramolecular 

assemblies has also been trialled. Evidence for the synthesis of two distinct 

ruthenium containing M4L4 cubes has been obtained, although the SCXRD 

structures are yet to be obtained, the solution state data supports evidence of their 

formation. Whilst the ruthenium-arene cubic structure, CC4.1, displayed evidence 

of degradation over time, the tri-thiacyclononane analogue, CC4.2, showed a higher 

degree of stability. Further work on these systems could go towards obtaining their 

solid state structures and investigating their host-guest abilities.  
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5.6 Experimental 

5.6.1 Synthesis 

Preparation of complex [(Ru(II)(2, 2’-bipyridine)2)3(tris(4-[4’-methyl-2, 2’-

bipyridyl]methyl)CTG)].6(PF6) (C1.6): 

 

[Ru(bipy)2(Cl)2] (0.081 g, 0.156 mmol) and (±)-L1 (0.050 g, 0.052 mmol) were 

combined in a mixture of CHCl3/MeOH (10:1) (25 mL total) and heated to 55°C. 

The reaction was followed by MS, and heating was continued until the main peak 

seen was the [Ru(bipy)2]3(L1)6+ cationic complex, C1.6 The reaction mixture was 

taken to dryness in vacuo and re-dissolved in MeCN (10 mL), halide exchange was 

accomplished by addition of an aqueous solution of NH4PF6. The soluble PF6 salt 

did not precipitate and the MeCN was removed in vacuo, leaving an aqueous residue 

that was extracted with DCM, dried over MgSO4 and concentrated to ~1 mL in 

vacuo. Diethyl ether was added to the solution to give the title product as a bright 

orange powder (0.136 g, 85%) TOF-MS ESI: m/z = 366.0923 (M6+) 1H NMR (500 

MHz, CD3CN) δ 8.53 (s, 1H, H3‟), 8.49 (dd, J = 8.3, 4.2 Hz, 4H, Ha), 8.34 (s, 1H, 

H3), 8.05 (q, J = 7.7 Hz, 4H, Hb), 7.73 (tt, J = 11.0, 5.3 Hz, 5H, H5‟/Hd), 7.55 (d, J = 

5.7 Hz, 1H, H6‟), 7.44 (d, J = 1.8 Hz, 1H, H6), 7.43 – 7.33 (m, 4H, Hc), 7.25 (d, J = 

5.4 Hz, 1H, H5), 7.14 (d, J = 2.4 Hz, 1H, Haryl), 7.05 (dd, J = 5.0, 2.0 Hz, 1H, Haryl), 

5.32 – 5.13 (m, 2H, CH2), 4.77 (d, J = 13.7 Hz, 1H, Hendo), 3.78 (t, J = 3.7 Hz, 3H, 

OMe), 3.57 (d, J = 13.8 Hz, 1H, Hexo), 2.53 (s, 3H, CH3); 13C{1H} NMR (126 MHz, 

CD3CN) δ 158.03, 157.96, 157.19, 152.66, 152.53, 151.85, 151.55, 149.49, 147.15, 

138.68, 134.78, 133.00, 129.50, 128.53, 128.47, 126.29, 126.08, 125.22, 122.87, 

117.79, 115.00, 70.00, 56.83, 36.34, 21.28., Analysis for C120H102F36N18O6P6Ru3 (% 
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calculated, found) C (47.02, 45.47) H (3.35, 3.32) N (8.23, 7.94), Infrared Analysis 

(FT-IR, cm-1) 556, 729, 833, 1027, 1089, 1145, 1160, 1242, 1446, 1603 (s), 3084 (b) 

 

 

Preparation of complex [(Ru(II)(2, 2’-bipyridine)2)2(Ir(III)(2-

phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-bipyridyl]methyl)CTG)].5(PF6) (C1.7): 

 

[Ru(bipy)2(MeCN)2]•(2PF6) (0.029 g, 0.036 mmol) and C1.3 (0.030 g, 0.018 mmol) 

were combined in a mixture of CHCl3 (10 mL) and a few drops of MeOH and 

heated to 55°C. The reaction was followed by MS, and heating was continued until 

the main peak seen was the [Ru(bipy)2]3[Ir(ppy)2](L1)5+ cationic complex, 

approximately 3 days. The reaction mixture was taken to dryness in vacuo and re-

dissolved in MeCN (10 mL), diethyl ether was added to the solution to give the title 

product as a bright orange powder (0.042 g, 75%) TOF-MS ESI: m/z = 456.7173 

(M5+) 1H NMR (300 MHz, CD3CN) δ 8.64 – 8.44 (m, 3.4H, HA/H3‟), 8.37 (s, 1H, 

H3), 8.06 (s, 3.5H, HB/HA‟), 7.97 (d, J = 8.7 Hz, 0.5H, H6‟(Ir)), 7.89 – 7.69 (m, 5.5H, 

HD/HB‟/HD‟/H6(Ir)/H6‟(Ru)), 7.59 (dd, J = 13.8, 5.8 Hz, 2H, HF‟/H6(Ru)), 7.42 (d, J = 6.3 

Hz, 3.6H, HC/H5‟(Ru)), 7.27 (d, J = 5.5 Hz, 0.6H, H5), 7.16 (s, 1H, Haryl), 7.06 (d, J = 

7.2 Hz, 2.4H, HC‟/HE‟/Haryl), 6.94 (d, J = 5.8 Hz, 1H, HG‟), 6.30 (t, J = 6.2 Hz, 0.8H, 

HH‟), 5.24 (d, J = 9.8 Hz, 2H, CH2), 4.79 (d, J = 14.4 Hz, 1H, Hendo), 3.78 (d, J = 

18.5 Hz, 3H, OMe), 3.59 (d, J = 13.2 Hz, 1H, Hexo), 2.55 (s, 3H, Me). 13C{1H} 

NMR (126 MHz, CD3CN) δ 168.43, 158.00, 157.93, 157.17, 154.24, 153.08, 

152.67, 152.62, 152.49, 151.83, 151.52, 151.46, 150.03, 139.43, 139.29, 138.91, 

138.66, 134.74, 132.99, 132.54, 132.46, 131.30, 130.11, 129.47, 128.50, 128.44, 

127.66, 126.33, 126.06, 125.83, 125.20, 124.83, 124.50, 124.36, 123.42, 123.09, 
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122.85, 120.79, 117.39, 66.23, 56.79, 36.30, 21.45, 21.25 . Infrared Analysis (FT-IR, 

cm-1) 556, 729, 833, 1027, 1089, 1145, 1160, 1242, 1446, 1603 (s), 3084 (b) 

 

Preparation of complex [(Ru(II)(2, 2’-bipyridine)2)3(tris(4-[4’-methyl-2, 2’-

bipyridyl]carboxy)CTG)].6(PF6) (C2.6): 

 

[Ru(bipy)2(Cl)2] (0.144 g, 0.297 mmol) and (±)-L2 (0.100 g, 0.100 mmol) were 

combined in a mixture of CHCl3/MeOH (10:1) (50 mL total) and heated to 55°C. 

The reaction was followed by MS, and heating was continued until the main peak 

seen was the [Ru(bipy)2]3(L2)6+ cationic complex, C2.6. The reaction mixture was 

taken to dryness in vacuo and re-dissolved in MeCN (10 mL), halide exchange was 

accomplished by addition of an aqueous solution of NH4PF6. The soluble PF6 salt 

did not precipitate and the MeCN was removed in vacuo, leaving an aqueous residue 

that was extracted with DCM, dried over MgSO4 and concentrated to ~1 mL in 

vacuo. Diethyl ether was added to the solution to give the title product as a dark 

orange powder (0.222 g, 71.1%) TOF-MS ESI: m/z = 372.9122 (M6+) 1H NMR (300 

MHz, CD3CN) δ 9.01 (s, 1H, H6‟), 8.51 (d, J = 7.5 Hz, 5H, H3/Ha), 8.20 – 7.95 (m, 

5H, Hb/H3‟), 7.88 (s, 1H, H5‟), 7.85 – 7.64 (m, 4H, Hd), 7.57 (d, J = 5.4 Hz, 1H, H6), 

7.49 – 7.33 (m, 5H, Hc/Haryl), 7.29 (d, J = 5.1 Hz, 1H, H5), 7.16 (s, 1H, Haryl), 4.91 

(d, J = 13.4 Hz, 1H, Hendo), 3.75 (s, 4H, Hexo/OMe), 2.54 (s, 3H, CH3). 13C{1H} 

NMR (126 MHz, CD3CN) δ 163.02, 159.76, 157.94, 157.83, 157.63, 156.62, 

154.12, 152.75, 152.51, 151.83, 150.54, 140.26, 138.98, 129.91, 128.66, 128.54, 

127.08, 126.84, 125.33, 124.12, 117.60, 115.27, 56.94, 36.27, 21.14., Analysis for 

C120H96F36N18O9P6Ru3. (% calculated, found) C (46.39, 46.22) H (3.11, 3.23) N 

(8.11, 7.85) Infrared Analysis (FT-IR, cm-1) 556, 730, 761, 834, 1023, 1104, 1140, 

1246, 1446, 1604, 1747 (s), 3082 (b) 
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Preparation of complex [(Ru(II)(2, 2’-bipyridine)2)2(Ir(III)(2-

phenylpyridine)2)(tris(4-[4’-methyl-2, 2’-bipyridyl]carboxy)CTG)].5(PF6) 

(C2.7): 

 

[Ru(bipy)2(MeCN)2]•(2PF6) (0.0124 g, 0.015 mmol) and C2.3 (0.013 g, 

0.008 mmol) were combined in a mixture of CHCl3 (10 mL) and a few drops of 

MeOH and heated to 55°C. The reaction was followed by MS, and heating was 

continued until the main peak seen was the [Ru(bipy)2]3[Ir(ppy)2](L2)5+ cationic 

complex, approximately 3 days. The reaction mixture was taken to dryness in vacuo 

and re-dissolved in MeCN (10 mL), diethyl ether was added to the solution to give 

the title product as a bright orange powder (0.017 g, 70%) TOF-MS ESI: m/z = 

465.1048 (M5+) 1H NMR (300 MHz, CD3CN) δ 9.17 – 8.83 (m, 1H, H3'(Ir)/H6'(Ru)), 

8.67 – 8.43 (m, 4H, HA/H3(Ru)), 8.43 – 8.17 (m, 1H, H3'(Ir)/H6'(Ir)), 8.04 (d, J = 20.8 

Hz, 4H, HA'/HB/H3'(Ru)), 7.83 (dt, J = 18.0, 8.4 Hz, 4H, HE'/HB'/H5'(Ru)), 7.76 – 7.64 

(m, 3H, HD/HD'), 7.64 – 7.54 (m, 2H, HC'/H6(Ru)), 7.41 (d, J = 10.9 Hz, 4H, 

HC/H5'(Ir)), 7.35 – 7.23 (m, 1H, H5), 7.16 (s, 1H, Haryl), 7.05 (d, J = 7.4 Hz, 1.8H, 

HF'/Haryl), 7.00 – 6.82 (m, 0.6H, HG'), 6.28 (dd, J = 13.3, 7.5 Hz, 0.6H, HH'), 4.90 (d, 

J = 13.7 Hz, 1H, Hendo), 3.75 (s, 4H, Hexo/OMe), 2.54 (s, 3H, Me). 13C{1H} NMR 

(75 MHz, DMSO) δ 166.81, 166.58, 161.57, 158.45, 157.53, 157.20, 156.63, 

154.19, 153.16, 151.95, 151.71, 151.34, 150.21, 149.09, 143.86, 143.68, 139.18, 

138.87, 138.58, 138.16, 137.42, 132.03, 130.97, 130.33, 127.96, 127.85, 127.19, 

126.38, 125.12, 124.51, 124.25, 123.93, 122.44, 120.07, 114.56, 56.19, 35.05, 20.72. 

Infrared Analysis (FT-IR, cm-1) 556, 730, 761, 834, 1023, 1104, 1140, 1246, 1446, 

1604, 1747 (s), 3082 (b) 

Preparation of complex [(Ru(II)(arene)4(L4)].8(PF6
-) (CC4.1): 
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[Ru(arene)(MeCN)3]•2PF6
−  (0.0026 g, 0.005 mmol) and L4 (0.0040 g, 0.005 mmol) 

were dissolved in d3-MeNO2 (0.5 mL) and heated to 45°C. The formation of CC4.1 

was followed by 1H NMR spectroscopy, with continued heating.  

Preparation of assembly [(Ru(II)([9]aneS3)4)(L4)].8(BF4
-) (CC4.2): 

[([9]aneS3)Ru(DMSO)Cl2] (0.020 g, 0.046 mmol) was dissolved in d3-MeNO2 

(2 mL) and AgBF4 (0.019 g, 0.097 mmol) added in the absence of light. The 

solution was heated to 45°C for 12 hours before filtration through celite, to which 

L4 (0.033 g, 0.046 mmol) was added. The solution was heated to 65°C and 1H NMR 

spectra taken at various time intervals.  

5.6.2 Photophysical studies 

The photophysical studies on the tri-metallic homonuclear ruthenium complexes 

C1.6 and C2.6 were performed at the University of Leeds on a Jobin-Yvon Spex 

Fluorolog-3 Fluorimeter at 293 K. The samples were dissolved in acetonitrile to 

make up a 0.2 mM solution and run immediately.  
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6 Chapter 6 

Luminescent metallocryptophanes 

6.1  Introduction 

The idea of employing geometrically directing metallotectons is by no means a new 

one, with numerous examples of large supramolecular cages and polyhedral 

assemblies formed through combination of a geometrically restricted metal centre 

and corresponding ligands.1–12 Prime examples are the tetrahedral cages of the 

Nitschke group, formed through the concomitant self-assembly of aldehyde and 

amine appended units to form an imine containing ligand in situ, and octahedral 

iron(II) sources.13–16 The resultant tetrahedral cages have been employed in guest 

uptake, to stabilise white phosphorus and in pH dependant guest release. Another 

frequently used family of metallotectons employed in the self-assembly of 

supramolecular architectures are the ubiquitous cis-protected palladium sources; 

palladium ethylenediamine and bis-diphenylphosphine being some of the most 

common. These types of Pd sources provide a reliable and robust 90° angle due to 

the cis-protection of two of the square planar binding sites.6,7,17–20 

Whilst use of a geometrically restricted metallotecton goes some way to direct the 

formation of preferred architecture, combination with a rigid ligand is also 

advisable. Some of the seminal work in this respect comes out of the Fujita group, 

particularly a series of large supramolecular spheres, formed from rigid 4-pyridyl 

containing ligands that can be elongated through the incorporation of additional 

benzene rings, thus increasing the internal void space of the resultant spheres 

accordingly.21,22  

A “panelling” approach has also been employed by various groups, utilising 

appended porphyrin23,24 and tripyridyltriazine ligands as 2D square or triangular 

panels, thus „sealing off‟ the internal void space of resultant structures to move away 

from the more open framework type assemblies to truly encapsulated interior spaces.  

However, the work presented herein relates to the cyclotriguaiacylene ligand 

scaffold, and therefore the subset of metallocages called metallocryptophanes; a 

„head-to-head‟ assembly of two CTG ligands bound through three linking metal 

centres. Whilst organically linked cryptophanes and their host-guest properties have 
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been extensively investigated,25–28 their metallo- analogues are much rarer.29–34 The 

first example of which was Shinkai‟s initial palladium-based metallocryptophane,32 

employing the cis-protecting diphenylphosphino ligand. However, when less 

geometrically restricted metal centres are employed the formation of 

metallocryptophanes is often concomitant with the formation of a [2]-catenane 

system,30,31 whereby two distinct metallocryptophanes are mechanically interlinked. 

Whilst this occurrence is interesting from a topological standpoint, in order to fully 

exploit any internal void-space for applications such as catalysis and gas separations, 

the formation of interpenetrated structures is undesirable. In order to direct the 

formation of a single, independent metallocryptophane, strongly cis-protecting, 

bulky bis-NHC containing palladium metallotectons have been employed by 

Henkelis et al, and the resulting metallocryptophanes show evidence of gas sorption 

and iodine uptake.33 

 

Figure 6.1: SCXRD structure of Ag3L2 [2]-catenane30 and Pd3L2 NHC-containing 

metallocryptophane.33 

The metallocages discussed in this chapter all contain iridium(III) as the metal 

centre, unusually baring phenylpyridine ancillary ligands, the same metallotecton as 

discussed in Chapters 2 and 3.  

Most iridium supramolecular assemblies employ face-capping cylcopentadienyl-

type ligands to direct the formation of metallarectangles or open framework 

assemblies from two or more ligand subsets.35,36 This method generally relies on a 

two-component approach, whereby bidentate ligands are pre-bound to the iridium-

Cp* centre to form a „metallo-clip‟, the pre-metallated scaffolds are then further 
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reacted with N-donor bridging ligands to form the supramolecular assembly. The 

synthesis of metallarectangles can therefore be expanded through use of trigonal N-

donor ligands, such as tris-pyridyltriazine, in the place of linear N-donors to form 

more complex architectures. 

In fact, there are only a handful of examples that make use of the luminescent 

iridium(III) bis-phenylpyridine metallotecton in the formation of metallocages and 

capsules,37,38 and none in combination with two pyridyl-containing ligands. Previous 

examples from Lusby38 and Baranoff37 both employ flexible nitrile ligands or 

ambidentate cyano/nitrile ligand motifs, as shown in Figure 6.2.  

 

 

Figure 6.2: SCXRD structures of Baranoff's tetramer37 and Lusby's M6L4 

capsule38 and Chandrasekhar’s M2L2 dimer39, all containing the Ir(ppy)2 

metallotecton. 

Previously, only smaller M2L2 dimeric species have been formed with bridging 

pyridyl ligands,39 Figure 6.2, with the caveat that the multi-topic ligand system must 

be flexible enough to allow torsion angles between the two pyridyl ligands of around 

40°. Therefore it follows that successful attempts to form supramolecular assemblies 
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employing rigid, planar ligand systems, such as tris-pyridyltriazine that cannot 

accommodate such a distortion, have yet to be demonstrated.38 

6.2 Preparation of homocage metallocryptophanes 

There are many examples of cis-protected square planar metals, particularly Pd(II), 

being employed in supramolecular self-assembly, therefore a bis-phenylpyridine 

iridium metallotecton should act in a comparable manner. To ensure the desired cis-

coordination sites and promote the formation of a discrete metallocryptophane, the 

ubiquitous [Ir(ppy)2Cl]2 dimer was transformed to the analogous bis-acetonitrile 

monomeric species, [Ir(ppy)2(MeCN)2]•(X), where X is either the 

hexafluorophosphate or tetrafluoroborate anion, Scheme 6.1.  

 

Scheme 6.1: Formation of the iridium metallotecton employed throughout this 

chapter, where X is either BF4 or PF6. 

The reaction of three equivalents of metallotecton, either the tetrafluoroborate or 

hexafluorophosphate analogue, along with two equivalents of L3 or L4 in 

nitromethane solvent, gives rise to rapid formation of the homocage M3L2 

metallocryptophanes {CC3.1(3X)} and {CC4.3(3X)}.  
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Figure 6.3: General scheme for the formation of M3L2 cryptophanes, where 

M=[Ir(ppy)2]+. 

As evidenced in Figure 6.3, there are a number of potential stereoisomers possible 

due to the Λ and Δ isomers of the octahedral iridium metallotecton and the helically 

chiral M and P isomers of the tripodal ligands L3 and L4. When two of the tripodal 

ligands come together in a „head-to-head‟ fashion, the resultant cage could either be 

chiral or of the meso form. The non-chiral meso cage would thus be composed of 

one ligand of each isomer, and is termed syn-(MP). The chiral cage could be either 

anti-(MM) or anti-(PP), whereby two ligands of the same enantiomer come together. 

This supramolecular chirality, in combination with the octahedral chirality of the 

tecton, gives rise to twelve potential stereoisomers; syn-(MP), anti-(MM) or anti-
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(PP) all in combination with ΛΛΛ, ΛΛΔ, ΛΔΔ or ΔΔΔ octahedral isomers of the 

metallotecton.  

6.2.1 Spectroscopic analysis of metallocryptophanes 

HR ESI-MS of the crude reaction mixture, Figure 6.4 and Figure 6.5, after 12 hours 

stirring at room temperature shows remarkably clear evidence of cryptophane 

formation, with the main peak at 955 or 983 m/z assigned to {CC3.1}3+ or 

{CC4.3}3+ respectively. Some fragmentation in the gas phase is observed, with 

peaks assigned to ML and M2L seen in varying intensities.  

 

Figure 6.4: HR ESI-MS of M3L2 assembly CC3.1, along with fragmentation 

products, M3L2 peak shown inset a) measured b) calculated isotope pattern, 

where M=[Ir(ppy)2]+. [PF6
− salt employed]. 
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Figure 6.5: HR ESI-MS of M3L2 assembly CC4.3, along with fragmentation 

products, M3L2 peaks shown inset a) measured b) calculated isotope pattern, 

where M=[Ir(ppy)2]+. [PF6
− salt employed]. 

The rapid and facile formation of the metallocage suggests an almost self-assembly 

like process, despite the relative inertness of the low-spin d6 iridium metallotecton. 

The lability of the bound acetonitrile ligands on the iridium tecton, due in part to the 

trans-labilising effect of the C,C-cis-N,N-trans arrangement of the two 

phenylpyridine ligands, promotes the formation of a supramolecular architecture. 

The robust nature of the resultant cage is also evidenced through bulk precipitation 

of the intact assembly by addition of excess diethyl ether anti-solvent, to give a 

bright yellow powder that can subsequently be re-dissolved to give identical NMR 

and MS data as the reaction mixture.  

1H NMR studies following the formation of both metallocage complexes CC3.13+ 

and CC4.33+ were performed in d3-MeNO2, and show considerable broadening of 

the peaks immediately after addition of the metallotecton, suggesting dynamic 

formation of a much larger species in solution, as shown in Figure 6.7.  



  Chapter Six 

Page | 194  

 

 

Figure 6.6: Structure of the iridium metallotecton (M) employed in formation of 

M3L2 metallocryptophanes, with 1H NMR proton assignments shown. 

The broad spectrum does sharpen to a degree over time, as self-assembly towards an 

M3L2 species occurs; there will also be some degree of self-sorting towards 

homochiral cages. As already commented, the bulk precipitated assembly can 

subsequently be re-dissolved to give a broad 1H NMR spectrum that is almost 

indistinguishable from spectrum d), samples utilising this pre-formed approach also 

sharpen slightly over time. 

 

Figure 6.7: 1H NMR timecourse experiment following the formation of 

[CC3.1•3(PF6)] a) L3 b) metallotecton c) immediately after mixing d) 2hrs 

RT e) 12hrs RT f) 24hrs RT g) 48hrs RT h) 1 week RT. 
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Salient points of note are the significant broadening of the previously sharp CH2 

ether bridge singlet at 5.2 ppm in spectrum a) towards a complex multiplet as the 

free rotation around that bond becomes sterically hindered due to binding the 

iridium centre. The two protons closest to the iridium centre on the phenylpyridine, 

HA‟ (~9.2 ppm) and HH‟ (~6.2 ppm) are also dramatically shifted, with HA‟ shifting 

upfield and conversely HH‟ shifting downfield, to both become contained within the 

aromatic envelope of peaks. Both of these shifts are strongly indicative of 

complexation between the two units.  

 

Figure 6.8: 1H NMR timecourse experiment following the formation of 

[CC4.3•3(PF6)] a) metallotecton b) L4 c) immediately after mixing d) 2hrs 

RT e) 12hrs RT f) 1 week RT. 

Analogous to CC3.1, CC4.3 shows shifting of HA‟ and HH‟ towards the centre of the 

aromatic envelope once again showing no evidence of uncomplexed starting 

material.  

Diffusion-Ordered (DOSY) NMR spectroscopy of CC4.3 also supports the 

formation of one larger species in solution, as demonstrated in Figure 6.9. All peaks 

present in the spectrum, barring those assigned to residual so lvent and water 

contaminant, diffuse with one diffusion coefficient, highlighted in the red box 

below. The diffusion coefficient of CC4.3 recorded in deuterated nitromethane was 
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3.56x10-10 m2s-1. Diffusion coefficients can be rationalised with respect to 

hydrodynamic radii through implementation of the Stokes-Einstein equation.  

  
   

    
 

Equation 1.1: Stokes-Einstein equation, where r= hydrodynamic radius (m), kb= 

Boltzmann’s constant (J K-1), T=Temperature (K), η=viscosity (Pa s-1) 

D=diffusion coefficient (m2s-1). 

However, a serious caveat to this equation is the required spherical nature of the 

compound being studied; the more a compound deviates from perfectly spherical; 

the less valid the Stokes-Einstein equation becomes. In relation to the 

metallocryptophanes under discussion, whilst symmetrical in nature, they are not 

spherical, thus the hydrodynamic radii obtained through the equation cannot be 

considered wholly accurate.  

Implementing Equation 1.1 on the diffusion coefficient of CC4.3, a hydrodynamic 

radius of 9.73 Å is obtained. Whilst this may seem smaller than expected, this value 

falls between the 7-12 Å range measured from the centre of the cage to the 

periphery, determined from the SCXRD data.  

 

Figure 6.9: DOSY NMR spectrum of [CC4.3•3(PF6)] in d3-MeNO2, showing a Dc 

of 3.56x10-10 m2s-1. 

A comparative L4 ligand spectrum was also recorded, under the same conditions, 

and gave a diffusion coefficient of 5.2x10-10 m2s-1. 
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Figure 6.10: DOSY NMR spectrum of L4 in d3-MeNO2, showing a DL of 5.2x10-

10 m2s-1. 

Therefore, the relative ratio of complex to ligand, DC:DL, is 0.68. Previous work, 

both within the Hardie group and externally, has examined the range of DC:DL ratios 

obtained from supramolecular assemblies of various sizes in DOSY NMR.40–42 This 

has lead to a more accurate description of non-spherical diffusion coefficients of 

supramolecular assemblies, when related back to the ligand precursor, with a ratio of 

0.72-0.75 generally accepted for a dimeric structure.  

However, a previously reported M3L2 metallocryptophane assembly containing 

extended palladium bis-NHC metallotectons gave a diffusion ratio of 0.54.33 This 

however, can be rationalised through consideration of their use of a large 

metallotecton „unit‟ as the metal source, rather than the naked metal (Ag) ions 

previously examined in M3L2 DOSY analysis, thereby adding proportionally more 

„bulk‟ to the assembly.40 Therefore, the ratio obtained for CC4.3 of 0.68 is within a 

reasonable range for a dimeric M3L2 species, as the metallotecton employed is 

smaller than the previous palladium bis-NHC, but larger than a simple silver ion.  

6.2.2 Crystallographic analysis of metallocryptophane CC4.3  

The more rigid metallocryptophane {(CC4.3)•3(BF4)} crystallised as yellow 

hexagonal plates through the diffusion of diethyl ether vapours into a nitromethane 
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solution of pre-formed cage and their structure was determined through x-ray 

diffraction techniques.  

 

Figure 6.11: Visible appearance of crystals of CC4.3•3(BF4
−). 

The crystals were weakly diffracting and their structure was solved in the space 

group P21/n to give the asymmetric unit as two whole metallocryptophanes. The 

weakly diffracting nature of the crystals is likely due to the presence of disordered 

tetrafluoroborate anions, none of which could be located in the difference map 

during structure refinement, as well as more disordered nitromethane solvent 

molecules. As previously mentioned, no precaution was taken to favour a particular 

enantiomer with respect to the octahedral iridium centre or the tripodal ligands, thus 

it was possible to form a complex mixture of isomeric cages. In reality however, as 

in many complex supramolecular systems,20,43,44 self-sorting of isomers occurs, in 

both modes of isomerisation upon crystallisation  

Enantiomeric self-sorting, or an induced seeding effect, upon crystallisation gives 

rise to both of the possible anti-cryptophanes, with each chiral metallocryptophane 

containing only one iridium enantiomer, thus out of the twelve possible products 

only the MM-ΛΛΛ and PP-ΔΔΔ configurations are seen. These assignments are 

deduced from the SCXRD data, whereby the unit cell consists of two 

metallocryptophanes, one of each enantiomer described above. Self-sorting 

processes are usually split into either narcissistic or social categories, whereby 

ligands of one type will associate solely with themselves, or with other ligand 

components in the assembly library, respectively.44–47 However, the root of the 

phrase narcissistic self-sorting is in the Greek god Narcissus, who fell in love with 

his own reflection, which by the very definition would be his mirror image and 
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consequently the opposite enantiomer.48 Therefore, with respect to the self-sorting of 

[CC4.3•3(BF4)], the term enantiomeric, or chiral, self-sorting is used.  

 

  

Figure 6.12: Racemic route to chiral metallocryptophanes MM-ΛΛΛ and PP-

ΔΔΔ, both isomers are determined from the SCXRD data.  

The two metallocryptophane enantiomers in the unit cell are crystallographically 

inequivalent, with the MM-cage exhibiting a bowl-centroid to bowl-centroid 

distance of 15.341 Å whereas the PP-cage shows a slightly longer distance of 

15.673 Å. However, the P21/n space group is centrosymmetric, thus the two 

crystallographically distinct cages appear as both homochiral enantiomers 

throughout the crystal lattice. Thus the compressed cage, which appears in the unit 

cell as the MM enantiomer is Cage Type I, whilst the slightly elongated cage 

represented in the unit cell by the PP enantiomer is Cage Type II.  
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Figure 6.13: The view down the centre of the cavitand for the two Cage Types in 

the unit cell, a) Cage Type I as the MM-ΛΛΛ enantiomer and b) cage Type 

II as the PP-ΔΔΔ enantiomer, the topmost ligand is highlighted in teal (M) 

and pink (P) respectively.  

Chiral, anti-cryptophanes were formed from two ligands of the same enantiomer in a 

head-to-head fashion. As shown in Figure 6.13, when two ligands of the same 

chirality are combined in a head-up-head-down fashion, the resultant cryptophane 

displays a staggered arrangement of the central ligand scaffold when viewed down 

the centre of the capsule. The off-set between the two ligands is 60°, leading to the 

staggered arrangement seen above. The chirality around the iridium centre is also 

displayed in this view; whereby the MM cage is comprised of the Λ enantiomer and 

the PP cage the Δ enantiomer. This view also helps to illustrate the torsion angles of 

the pyridyl binding moieties with respect to idealised octahedral geometry around 

the iridium metal centre. The ability of the N-donor ligand to twist to accommodate 

this distortion is thought to be vital, as shown in Figure 6.14.  

a) b) 
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Figure 6.14: Torsion angle of the pyridyl ligands in a mono-nuclear 

[Ir(ppy)2(py)2] complex,49 in Chandrasekhar's dimer39 and from the SCXRD 

data of CC4.3, all showing the torsion of the pyridyl ligand with respect to 

idealised octahedral geometry. 

The capacity of the pyridyl ligand to twist from idealised octahedral geometry is a 

fundamental factor in the formation of any complex of the form [Ir(ppy)2(py)2]+, but 

even more so if the structure is supramolecular in nature, requiring self-assembly 

conditions. If the formation relies on self-assembly then any ligand that cannot 

accommodate the above distortion is unlikely to result in a stable, isolatable 

assembly.  

The 4-formyl pyridine containing mono-nuclear structure,49 displayed in Figure 6.14 

as complex a), possesses an average torsion angle of 36.9°, whilst complex b), a 

partial representation of Chandrasekhar‟s dimeric structure,39 shows an average 

torsion angle of 38.0°. Complex c) is a partial view of [CC4.3•3(BF4)], displaying 

two pyridyl arms and one iridium metallotecton for clarity. The average torsion 

angle, calculated from an average of all pyridyl- iridium bonds within the SCXRD 

data of [CC4.3•3(BF4)], was 38.04°. This is congruent with the values measured 

from both mono- and di-nuclear iridium-pyridyl species. The required torsion of the 

pyridyl moiety is thought to be due to sterics between the two pyridyl ligands; if 

there was no distortion the ortho-protons on the pyridyl moieties would clash, either 

leading to no reaction or an unstable product.  

a) b) c) 
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Distance  Cage Type I (Å) Cage Type II (Å) 

Ir-Ir  17.856 17.383 

Ir-Ir  17.872 17.836 

Ir-Ir  16.691 16.677 

Average Ir-Ir  17.473 17.299 

H 7.696 7.852 

h 14.794 14.919 

h 15.795 14.512 

h 14.808 15.512 

Average h 15.132 14.981 

Volume of Cage (Å3) 678.27 678.29 

Table 6.1: Schematic of triangular based pyramid and the distances used to 

calculate the cage volume, along with relevant inter-atomic bond distances 

from the SCXRD data of [CC4.3•3(BF4)]. 

Table 6.1 clearly demonstrates the differences in inter-atomic distances exhibited by 

each crystallographically distinct type of cage, however these differences are the 

result of compression of elongation in various directions, hence the almost identical 

overall volume calculated.  
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Figure 6.15: Packing diagram looking down the crystallographic a axis (a) b axis, 

shown in space-filling mode (b) and the b axis in wire-frame mode(c), to 

show the tessellation of cryptophane units and the enclosed void space 

within the cryptophane assemblies. 

a) 

b) 

c) 
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The PP- enantiomer is shown in pink and the MM- enantiomer shown in teal. The 

packing structures, as shown in Figure 6.15, show 2D sheets of each enantiomer of 

metallocryptophane, clearly seen looking down the crystallographic a axis, where 

the enantiomerically pure sheets are off-set slightly with respect to each other. With 

regards to the Cage types, each enantiomeric layer displays alternating 1D chains of 

Cage Type I and II. The cryptophane units in the individual layers are relatively 

tightly packed, as seen in the space-filling model, with only small channels visible 

through the crystal lattice. The alternating 2D sheets of each single enantiomer form 

an ABAB arrangement, whereby the sheets of the same enantiomer overlay perfectly. 

The tessellation between the two sheets is shown in the crystallographic b axis, 

whereby the off-set seen in the a axis allows the pyramidal shape of the assemblies 

to slot together. Through consideration of the wire-frame view of the b axis, the 

enclosed void space within the cryptophane units can be more clearly seen. Whilst 

the cryptophane units may fit together tightly, leading to low extrinsic void space, 

there are significant cavities within each individual capsule, leading to high levels of 

intrinsic void space. However, as none of the counter- ions could be located, the 

apparent „void space‟ will contain both BF4
− anions and further disordered solvent 

molecules. 

The extensive internal void space can be quantified through the SQUEEZE50 routine 

of PLATON, whereby the total void space was established to be 22017 Å3
. The total 

cell volume is 43182 Å3, thus the void space accounts for over 50% of the total cell 

volume, going some way to explain the weakly diffracting nature of the crystals.  
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Figure 6.16: Complementary nature of the phenylpyridine and ligand cavity 

angles of CC4.3, along with the inter-molecular H-π bonding seen between 

phenylpyridine moieties (a), extended view along the crystallographic c axis 

showing the packing of alternating enantiopure sheets. 

The angle created by the central cyclononatriene core fits into the space described 

by the phenylpyridine- iridium-pyridyl angle, as demonstrated through a) in Figure 

6.16. The two closest units of the same enantiomer experience H-π bonding, 

highlighted in Figure 6.16 by the dashed purple bond. The π-cloud of a 

a) 

b) 
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phenylpyridine ligand on one cage is 2.5 Å away from HC‟ on the adjacent 

cryptophane unit, with HC‟ pointing directly into the centre of the phenyl ring. The 

H-bonding effect can be seen proliferated throughout the crystal lattice in Figure 

6.16, image b), whereby the interlocking nature of the 2D sheets is obvious, as well 

as the alternating arrangement of enantiopure sheets. The combination of H-bonding 

and complementary angles provided by both the ligand scaffold and the 

metallotecton give rise to the tightly packed sheets of metallocryptophane units.  

6.3 Speciation studies of homo- and hetero-cage 

metallocryptophanes 

The chiral self-sorting of CC4.3 upon crystallisation demonstrates a high level of 

discrimination; forming homochiral cryptophanes with regards to both the ligand 

component as well as the metallotecton, that the ability of the system to self-sort in 

solution was thus investigated. Both the enantiomeric, chiral self-sorting of the 

homocage metallocryptophanes and the ligand self-sorting of the hetero/homocage 

mixture were investigated.  

A speciation study was undertaken to ascertain the discriminatory self-sorting 

behaviour of the ligands whilst the cages self-assemble in solution. Three 

equivalents of the tetrafluoroborate metallotecton and one equivalent each of L3 and 

L4 were combined in nitromethane solvent and stirred at RT. HR ESI-MS was 

employed to follow not only the self-assembly of the previously discussed 

homocage cryptophanes, but also the ligand speciation contained within the M3L2 

cages.  

As shown in Figure 6.17, taken 8 hours after mixing, both homo- and heterocage 

cryptophane assemblies form in solution; the resultant mass spectrum shows a 

statistical mixture of all three possible metallocryptophanes. The homo/hetero cage 

solution was left stirring for a period of weeks, with no evidence of self-sorting of 

the reaction mixture over time or indeed any preferential combination of ligands, 

suggesting that the two possible metallocryptophanes, homo- and hetero-, must be of 

similar energies.  



  Chapter Six 

Page | 207  

 

 

Figure 6.17: HR ESI-MS of heterocage formation from L3, L4 and the Ir 

metallotecton, where M=[Ir(ppy)2]+. [BF4
−

 salt employed]. 

The behaviour seen in Figure 6.17 suggests that the initial formation of the cage 

species is non-discriminatory, as evidenced through the statistical formation of 

homo cages CC3.1 and CC4.3, as well as the hetero cage CC3.2 containing three 

iridium centres and one equivalent each of L3 and L4. 

However, if one equivalent of each bulk precipitated cage CC3.1 and CC4.3 are 

combined in MeNO2 solvent, the homo cages stay mostly intact. Initially, barely any 

ligand scrambling to form heterocage CC3.2 can be seen through HR ESI-MS, 

suggesting that the initial formation of the cages is non-discriminatory, but once 

formed the stability and robustness of the M3L2 assembly in solution, in non-

coordinating solvents, strongly disfavours the dissociation-association mechanism 

required to form hetero CC3.2 in solution.  

The cage mixtures were followed by HR ESI-MS over a period of weeks, and only 

after ~4 weeks did any appreciable peak assignable to the heterocage 

metallocryptophane begin to appear. The time-course HR ESI-MS is shown below 

in Figure 6.18.  
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Figure 6.18: HR ESI-MS of CC3.1 and CC4.3 combined in MeNO2 after 24hrs 

(top) 4 weeks (middle) and 6 weeks (bottom). [BF4
−

 salt employed]. 
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Continuing to follow the speciation by HR-MS, further self-sorting was observed, 

however only over a period of months. The solution eventually formed a statistical 

mixture of both the homo and hetero cages, similar to that seen in the previous 

speciation study of the formation of the cages in Figure 6.17.  

 

Figure 6.19: Chemical structures of the structurally analogous ligands employed 

in palladium containing supramolecular assemblies, pL451 (top) and the two 

nitrile-containing ligands employed in the formation of pd-

metallocryptophanes.34 

This eventual self-sorting is in contrast to previously reported palladium 

supramolecular assemblies formed in combination with this ligand type.51 The 

combination of eight equivalents of L4 or the direct propyloxy analogue, pL4 

shown in Figure 6.19, with six equivalents of palladium(II) tetrafluoroborate gave 

rise to a stella octangula52–54 type structure of the form Pd6L8, where L = L4 or pL4. 

In this case a heteroleptic assembly could be formed through combination of starting 

palladium metal salt and ligand components to form [Pd6(L4)8-n(pL4)n]12+, in an 

analogous fashion to the non-discriminatory behaviour seen in the formation of 

heterocage CC3.2 in Figure 6.17. However, when pre-formed homoleptic Pd6L8 

assemblies were combined in DMSO solvent no evidence of ligand scrambling or 

inter-conversion to the heteroleptic assembly was seen, even over a period of six 

months. The co-existing mixture of homo cages was therefore heated to 60°C for 

over 12 hours, and still no evidence of ligand scrambling was observed.  
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More recently Schaly et al. described the formation of a palladium 

metallocryptophane,34 along with the platinum congener, formed from a nitrile 

functionalised CTG ligand and a cis-protected palladium source of the form 

[M(dppp)][OTf]2, where M = Pt, Pd, dppp = 1,3-bisdiphenylphosphinopropane. The 

tripodal nitrile ligand was formed both bearing a methoxy group adjacent to the 

nitrile and just a proton, shown in Figure 6.19. When three equivalents of 

[M(dppp)][OTf]2 and one equivalent of each ligand were combined in deuterated 

tetrachloroethane the two homoleptic metallocryptophanes were exclusively formed, 

with no evidence observed for the heterocage in the 1H NMR spectra.  

In the wider context, Stang has repeatedly shown the formation of exclusively 

homoleptic assemblies through considered use of deuterated ligand precursors, as 

well as the subsequent formation of heteroleptic assemblies through ligand 

scrambling over time, or in the presence of aqueous solvent.55,56 Whilst work from 

Schmittel shows that the formation of a heteroleptic assembly is preferred over the 

two homoleptic congeners.57 It was shown that the combination of two metals, Cu(I) 

and Zn(II), with four distinct ligands lead overwhelmingly to the formation of two 

heteroleptic species, despite the possibility to form over 20 homo- and heteroleptic 

assemblies. Schmittel has also demonstrated formation of homoleptic Cu(I) 

complexes that do not undergo ligand scrambling, however this was through the use 

of sterically demanding substrates.58 

Nitschke has also shown the formation of an exclusively heteroleptic iron(II) 

assembly, formed from two similar but distinct N^N chelating ligands and 

subsequently locked into place to form a [3]-catenane.59 

Therefore, despite the relative inertness of the low-spin iridium(III) metal centre 

employed in the formation of metallocryptophanes CC3.1 and CC4.3, the resultant 

cages are more dynamic in solution than the previously reported palladium systems. 

However, the slow exchange seen in the ligand scrambling experiments and the non-

discriminatory formation of the metallocryptophane units has been previously 

observed.  

To further examine the solution-state speciation and enantiomeric self-sorting 

processes a number of single crystals of CC4.3 were re-dissolved in deuterated 

nitromethane solvent, thus looking at the chirality of the resultant species rather than 

the type of ligand. The single crystals of CC4.3, as discussed in section 6.2.2, have 
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already been seen to self-sort into enantiomerically pure cage complexes, meaning 

that upon dissolution the resultant 1H NMR spectrum should display sharper, more 

well-defined proton resonances due to the presence of only homochiral cages. The 

resultant spectrum is relatively weak, with the presence of a significant amount of 

diethyl ether due to the inherent presence of the anti-solvent throughout the crystal 

lattice.  

 

Figure 6.20: Stacked 1H NMR spectra of a) CC4.3 6 hours after the separate 

components were mixed b) CC4.3 2 months after the components were 

mixed, showing a significant degree of self-sorting c) CC4.3 6 months after 

the components were mixed, showing a slightly further degree of self-sorting 

d) single crystals of CC4.3 re-dissolved in deuterated nitromethane. 

In Figure 6.20, the topmost 1H NMR spectrum (a) shows the formation of CC4.3 six 

hours after the two components (M & L, where M=[Ir(ppy)2]•(PF6) and L=L4) were 

combined together in deuterated nitromethane, the resultant spectrum has broadened 

with respect to the two starting components, but shows no evidence of self-sorting, 

displayed through broad, unstructured peaks. The broadness of the observed peaks is 

likely due to a dynamic library of species and isomers present in solution at the time 

the spectrum was recorded.  

The green trace (b) represents an NMR sample of CC4.3•3(PF6) formed in 

deuterated nitromethane and left to equilibrate for 2 months; some o f the broadness 

a) 

c) 

b) 

d) 
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is still apparent, however most of the aromatic peaks have sharpened up 

significantly, up to the point that the multiplet nature of some peaks is now evident. 

Further self-sorting of the cages towards homochiral products occur over a 6 month 

period, shown in trace (c), although to a lesser degree than over the initial 2 month 

period.  

The bottom trace (d) is the result of re-dissolving the isolated single crystals of 

CC4.3•3(BF4), displaying much sharper peaks than spectrum (a). Spectrum (d) is 

known to be of an enantiomerically self-sorted assortment of cages, and thus the 

proton resonances observed are much sharper and well-defined than both other 

spectra. However, when comparing spectra (b/c) and (d) there are similarities; many 

of the sharpest peaks are coincident, with spectrum (b) displaying additional broader 

peaks as well. This suggests that after a period of approximately 2 months, there has 

been significant enantiomeric self-sorting of CC4.3, with the remaining broader 

peaks not visible in spectrum (d) due to incomplete self-sorting or self-assembly. 

After 6 months the recorded 1H NMR spectrum is essentially super- imposable with 

the re-dissolved crystals, as evidenced in Figure 6.21. The two remaining peaks not 

visible in the spectrum of the re-dissolved crystals could be due to a slight 

stoichiometric miss-match or the presence of a minute amount of the syn- isomer in 

solution. 

 

Figure 6.21: Overlaid 1H NMR spectra of CC4.3 after 6 months self-sorting, 

shown in red, and the re-dissolved enantiomerically self-sorted crystals of 

CC4.3, shown in navy. 

The previously reported palladium metallocryptophanes all show immediate self-

sorting, under certain conditions. The example from Hardie et al, immediately forms 

the syn meso-cryptophane when a naphthylated Pd(NHC) metallotecton is 

employed.33 This is in accordance with the example from Shinkai et al; where a 

slight excess of ligand furnishes exclusively the syn meso-cage once again.32 
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Conversely the recent example from Schaly forms the chiral anti-cryptophane, 

however the self-sorted cage still forms immediately upon mixing.34  

Consequently, it follows that the discriminatory self-sorting observed in the SCXRD 

data is a phenomenon of crystallisation, and by no means precludes the existence of 

other stereoisomers in solution. However, over a significant time period, up to 6 

months, the preference of the system towards a homochiral arrangement can be 

observed, tending towards completeness.  

Previous work by Cooper et al, on a library of imine- linked covalent organic cages 

employed DFT calculations in an effort to explain experimental trends seen in the 

SCXRD data of a series of tetrahedral imine cages.60–62 They found that seemingly 

small structural alterations could lead to the opposite effect in cage packing, with 

some systems forming exclusively homochiral packing structures, whilst slightly 

altered analogues form exclusively heterochiral arrays. This work shows how 

complex the crystallisation process for supramolecular assemblies is, with a myriad 

of inter-and intra-molecular forces acting upon the molecules along with effects of 

templating, seeding and self-sorting. 

6.4 Photophysical properties of metallocryptophanes 

The photophysical studies were performed at the University of St Andrews by Diego 

Rota Martir of the Zysman-Colman research group. 

The photophysical properties of both cages were studied in non-coordinating DCM 

solvent, to prevent any breakdown of the cages back to their constituent parts during 

investigation. Solution state photoluminescence spectra were obtained, as well as 

solid state powder emission and doped film spectra, to give a more comprehensive 

overview of the photophysics and to relate any spectral changes to changes in 

vibrational quenching due to solution/solid state interactions.  
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6.4.1 Photophysical properties of CC3.1 

 

Figure 6.22: Absorption and Emission profiles of CC3.1 in DCM solution, doped 

thin-film and powder form. 

The emission of CC3.1 is remarkably similar, independent of the method used to 

analyse it; that is the solution state emission in DCM, the solid state powder 

emission and the emission when incorporated into a doped thin- film, are all almost 

coincidental. The λmax in all cases is between 510-520 nm. The rationale behind 

exploring the solid state emission is to ascribe any alterations in emission to 

potential vibrational/collisional quenching experienced by the cage in solution. In 

the solid state, the individual molecules are in a more stationary environment, 

reducing vibrational quenching. However conversely, there is no additional stability 

imparted to the assembly due to any complementary interactions between solvent 

and cage components. The similarities of the solution, powder and thin-film 

emissions, suggests that the major contributor of CC3.1 is ligand-based, as ligand-

based emission would be less effected by vibrational quenching.  
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6.4.2 Photophysical properties of CC4.3 

Figure 6.23: Absorption and Emission profiles of CC4.3 in DCM solution, doped 

thin-film and powder form. 

In contrast to CC3.1, CC4.3 shows markedly different emission depending on the 

method employed. In a doped thin-film, the emission is most similar to CC3.1, 

suggesting again that in this form the emission is mainly due to ligand-based 

transitions. In DCM solution, the emission of CC4.3 experiences a bathochromic 

shift of over 100 nm with respect to the doped film; this shift in conjunction with the 

broad unstructured emission suggests that in solution the emission is more 3MLCT 

in character. The excited state of CC4.3 must therefore have been stabilised to an 

extent in order to induce the observed red-shift in emission.  

6.4.3 Comparison of the photophysics of CC3.1 and CC4.3 

The contrast between the emission properties of CC3.1 and CC4.3 is most clearly 

demonstrated through the dark-room images.  
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Figure 6.24: Dark-room images of CC3.1 and CC4.3 in DCM solution after 

irradiation with 360 nm light. 

Solution state data shows the largest disparity between the two cages; the ether-

linked CC3.1 displays cyan emission, resulting from an emission maximum on the 

border between blue and green light at 505 nm, whilst CC4.3 shows bright yellow 

emission resulting from an emission maximum at 587 nm. Figure 6.24 also gives an 

indication of the relative brightness of the two cages; the same intensity excitation 

wavelength was employed in both instances, and yet CC3.1 exhibits much brighter 

emission than that of CC4.3.  

 

 

 

Figure 6.25: Solid-state emission of CC3.1 and CC4.3 in doped thin-film (top) and 

powder form (bottom). 
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The emission properties of the cages when doped into thin-films are remarkably 

similar, as evidenced above. The emission maximum of CC3.1 and CC4.3 are both 

approximately 510 nm, giving rise to the similar cyan colour seen in Figure 6.25. In 

powder form, however, the differences arise once again. CC3.1 shows an emission 

maximum at 511 nm, displaying a hypsochromic shift of over 100 nm with respect 

to CC4.3, which has a maximum at 632 nm.  

6.5 Expanding the complexity  

The formation of a pair of novel, discrete and luminescent metallocryptophanes 

derived from what are the simplest cyclotriguaiacylene based ligands, opens the 

door to investigating the formation of metallocryptophanes with more complex 

ligand systems. A previous family of metallocryptophanes, those formed through 

coordination of a Pd(bis-NHC) source and L4,33 were expanded upon through 

elongation of the ligand in both directions, vertical (4-phenylpyridine appended) and 

horizontal (4-quinolyl appended), but retaining the 4-pyridyl binding angle. 

 

Scheme 6.2: Increasing complexity and/or steric bulk of 4-pyridyl ligands 

employed in metallocryptophane formation. 

Currently within the group, there is a concerted effort towards structurally dynamic 

capsules and assemblies, particularly focussing on cis/trans isomerisation and the 

resultant geometric changes of the azobenzene group. Another PhD student in the 

group, Sam Oldknow, has produced a library of cyclotriguaiacylene ligands 

appended with pyridyl binding moieties whilst also incorporating the azobenzene 

functional group. The synthesis and characterisation of these ligands will not be 

discussed in this thesis, just the collaborative effort towards dynamic 

metallocryptophane cages.  

The most remarkable point to come of this collaboration was the relative ease of 

formation of the M3L2 cryptophane cage with L6, as there are no previous examples 
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of the iridium bis-phenylpyridine tecton binding to any 3-pyridyl motif. Previous 

attempts to form a metallocryptophane motif through use of the 3-pyridyl analogue 

of L4 were unsuccessful and no evidence of M3L2 assemblies or supramolecular 

assemblies of any size could be seen. It was, however, envisaged that the additional 

flexibility afforded through the azo group could circumvent any steric issues 

preventing the formation of the desired product.  

 

Figure 6.26: Structure of the ligand employed in unsuccessful M3L2 attempts, L6 

and the resultant M3L2 assembly CC6.1. 
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The synthesis of the dynamic, luminescent metallocryptophane CC6.1 is analogous 

to the smaller, simpler cages CC3.1 and CC4.3. Appropriate amounts of azobenzene 

containing L6 and metallotecton were combined in nitromethane solvent at room 

temperature. After 12 hours stirring, the main peak visible through HR ESI-MS was 

assigned to the triply charged metallocryptophane, Figure 6.27. As with the 

previously discussed cages, there is some fragmentation into smaller species.  

 

Figure 6.27: HR ESI-MS of M3L2 assembly CC6.1, along with fragmentation 

products, M3L2 peak shown inset a) measured b) calculated isotope pattern 

for the 3+ peak of CC6.1, where M=[Ir(ppy)2]+and L=L6. 

The formation of CC6.1 was found to occur on an accelerated timescale when 

compared to the smaller, more rigid metallocryptophanes CC3.1 and CC4.3. This is 

thought to be due to the additional flexibility imparted to the ligand scaffold through 

incorporation of the azobenzene units and extending the ligand arm, thus allowing 

more torsion and therefore greater ease of formation.  

As for to the initial cages, the formation of CC6.1 was followed by 1H NMR in d3-

MeNO2 solvent. Both components were dissolved in the minimum amount of 

deuterated nitromethane and combined, as seen in Figure 6.28. The accelerated 

formation of the cryptophane cage can also be seen in the proton NMR spectrum 

recorded just 10 minutes after mixing the two components.  
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Figure 6.28: 1H NMR spectra depicting a) metallotecton b) L6 and c) 10 minutes 

after combining the two components. 

As Figure 6.28 shows, similar to the formation of the previous metallocryptophanes, 

the most notable peak shift once again belongs to HH‟, the proton adjacent to the 

cyclometallated carbon on the phenylpyridine ancillary ligand. In the metallotecton 

HH‟ is found at 6.2 ppm, upon binding to the azobenzene containing L6 the peak is 

shifted to 6.5 ppm. The resultant spectrum, c), of the assembled metallocryptophane 

is noticeably shaper than those of the smaller cages, most likely due to the additional 

flexibility imparted through the more dynamic ligand, thus allowing more rotational 

freedom on a NMR timescale.  

This reactivity is not restricted to just L6, a variety of pyridyl-containing 

azobenzene-linked ligands have been trialled in the formation of M3L2 

metallocryptophanes, all show analogous data with regards to 1H NMR and HR ESI-

MS supporting the formation of cryptophane cages. The ability of these luminescent, 

structurally-dynamic cages to undergo photo-isomerisation is currently under 

investigation. 
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6.6 Conclusions and future direction 

A predictable and rational route towards luminescent metallocryptophanes was 

established, based upon known ligand and metallotecton binding geometries and a 

complementary design process. The facile room temperature synthesis furnished two 

novel metallocryptophane complexes, CC3.1 and CC4.3, possessing interesting 

photophysical properties. The aforementioned supramolecular cages are, as far as 

the author is aware, the first examples of iridium metallocryptophanes and one of 

only a handful of examples of supramolecular assemblies incorporating the iridium 

phenylpyridine metallotecton.  

The absolute structure of CC4.3 was elucidated crystallographically to reveal a 

doubly enantiomerically self-sorted structure, giving rise to both chiral anti-

cryptophanes MM-ΛΛΛ and PP-ΔΔΔ. The asymmetric unit contains both 

metallocryptophane enantiomers in full, with each cage possess ing an internal void 

space of ~675 Å3 denoting only the second example of rationally designed, 

chemically robust metallocryptophane cages that show no evidence of catenation or 

interpenetration.  

High solubility of the resultant cages allowed for in depth solution-based 

investigations into not only the self-assembly of the homo cages, but also the 

heterocage analogue. The formation of the cages was found to be non-

discriminatory, with both homo- and hetero- cages formed upon mixing of the two 

components. The high stability of the cages was demonstrated through ligand 

scrambling experiments, whereby the inter-conversion of both pre-formed homo 

cages to the heterocage analogue was seen to occur over a period of six weeks.  

The enantiomeric self-sorting of the cages was exemplified through NMR 

comparison of the re-dissolved single crystals, known to be enantiomerically sorted, 

and the in situ formed cage, allowed to self sort over time. This study revealed that 

the self-sorting process takes up to 6 months to occur in solution, as 1H NMR 

analysis shows almost complete self-sorting of isomers after this time.  

A collaborative effort also resulted in the formation of the first structurally-dynamic 

azobenzene-containing metallocryptophane CC6.1. This work will be continued and 

expanded upon by current PhD student Sam Oldknow.  

Further work could expand upon the potential host-guest chemistry of this 

metallocryptophane family, exploiting the inherent luminescent emission for sensing 
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purposes. The incorporation of a structurally dynamic unit in the azobenzene 

derivative also leads on to potential cargo delivery systems whereby guests could be 

selectively released through a change in geometry and therefore cage window 

size/orientation.  
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6.7 Experimental 

6.7.1 Synthesis 

Preparation of {[Ir(ppy)2]3(L3)2}•3(BF4) (CC3.1) 

[Ir(ppy)2(MeCN)2]•BF4 (0.036 g, 0.054 mmol) and (±)-L3 (0.025 g, 0.037 mmol) 

were combined in nitromethane solvent (5 mL) and stirred for 12 hours at room 

temperature. Following HRMS analysis, the main peak visible was the 

{M3(L3)2}3+cation, with smaller peaks assignable as both {M2(L3)}2+ and 

{M(L3)}1+, presumed to be fragmentation products of the M3L2 metallocryptophane. 

The remaining solution was concentrated in vacuo and diethyl ether was added to 

the solution to give the title product, CC3.1 as a bright yellow powder (0.056 g, 

97%) TOF-MS ESI: m/z = 955.2853 [M3(L3)2]3+ (where M=[Ir(ppy)2]), 841.7365 

[M2(L3)]2+, 1182.3779 [M(L3)]+. 

1H NMR studies were carried out in d3-MeNO2, [Ir(ppy)2(MeCN)2]•BF4 and L3 

were dissolved in dueterated nitromethane, and the individual spectra recorded for 

comparison. The two solutions were mixed together and an immediate colour 

change was observed, from the green of the iridium metallotecton solution to bright 

yellow. Immediate broadening of the resultant spectra was observed, indicating 

coordination and formation of a larger species. 1H NMR (300 MHz, CD3NO2) δ 8.58 

(bm, J = 27.4 Hz, 3H, HA‟/Hortho), 8.04 (bm, 2H, HC‟/HD‟), 7.59 (bm, J = 48.9 Hz, 

4H, HE‟/HB‟/Hmeta), 7.05 (bm, J = 48.4 Hz, 4H, HF‟/HG‟/2xHaryl), 6.50 (bs, 1H, HH‟), 

5.39 – 4.89 (m, 2H, CH2), 4.81 (bs, 1H, Hendo), 3.99 – 3.36 (bm, 4H, Hexo/OMe).  

Preparation of {[Ir(ppy)2]3(L4)2}•3(BF4) (CC4.3) 

[Ir(ppy)2(MeCN)2]•BF4 (0.036 g, 0.054 mmol) and (±)-L4 (0.025 g, 0.035 mmol) 

were combined in nitromethane solvent (5 mL) and stirred for 12 hours at room 

temperature. Following HRMS analysis, the main peak visible was the 

{M3(L4)2}3+cation, with smaller peaks assignable as both {M2(L4)}2+ and 

{M2(L4)2}2+, presumed to be fragmentation products of the M3L2 

metallocryptophane. The remaining solution was concentrated in vacuo and diethyl 

ether was added to the solution to give the title product, CC4.3 as a bright yellow 

powder (0.050 g, 90%) TOF-MS ESI: m/z = 983.1120 [M3(L4)2]3+ (where 

M=[Ir(ppy)2]), 862.3934 [M2(L4)]2+, 1224.5712 [M2(L4)2]2+.  
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1H NMR studies were carried out in d3-MeNO2, [Ir(ppy)2(MeCN)2]•BF4 and L4 

were dissolved in dueterated nitromethane, and the individual spectrum recorded for 

comparison. The two solutions were mixed together and an immediate colour 

change was observed, from the green of the iridium metallotecton solution to bright 

yellow. Immediate broadening of the resultant spectra was observed, indicating 

coordination and formation of a larger species. 1H NMR (300 MHz, CD3NO2) δ 9.12 

– 8.54 (bm, 3H, HA‟/Hortho), 8.05 (bd, J = 15.5 Hz, 4H, HC‟/HD‟/Hmeta), 7.88 – 7.67 

(bm, 1H, HE‟), 7.62 – 7.10 (bm, 3H, HB‟/2xHaryl), 7.09 – 6.72 (bm, 2H, HF‟/HG‟), 

6.54 (bs, 1H, HH‟), 4.97 (d, J = 15.3 Hz, 1H, Hendo), 3.80 (bd, J = 14.4, 10.2 Hz, 4H, 

Hexo/OMe).  

Preparation of {[Ir(ppy)2]3(L6)2}•3(PF6) (CC6.1) 

[Ir(ppy)2(MeCN)2]•PF6 (0.025 g, 0.034 mmol) and (±)-L6 (0.024 g, 0.023 mmol) 

were combined in nitromethane solvent (5 mL) and stirred for 12 hours at room 

temperature. Following HRMS analysis, the main peak visible was the 

{M3(L6)2}3+cation, with smaller peaks assignable as both {M2(L6)}2+ and 

{M2(L6)2}2+, presumed to be fragmentation products of the M3L2 

metallocryptophane. The remaining solution was concentrated in vacuo and diethyl 

ether was added to the solution to give the title product, CC6.1 as a bright orange 

powder (0.034 g, 73%) TOF-MS ESI: m/z = 1191.3197 [M3(L6)2]3+ (where 

M=[Ir(ppy)2]), 1018.7619 [M2(L3)]2+, 1536.4312 [M2(L3)2]2+. 

1H NMR studies were carried out in d3-MeNO2, [Ir(ppy)2(MeCN)2]•PF6 and L6 were 

dissolved in dueterated nitromethane, and the individual spectrum recorded for 

comparison. The two solutions were mixed together and a slight colour change was 

observed, from the green of the iridium metallotecton and the dark orange of the 

ligand solution to bright orange. Immediate broadening of the resultant spectra was 

observed, indicating coordination and formation of a larger species. 1H NMR (300 

MHz, CD3NO2) δ 9.48 – 9.12 (bm, 1H, HA‟), 9.04 – 8.81 (bm, 2H, H2/H4), 8.51 – 

8.16 (bm, 3H, Hortho/H6), 8.18 – 7.86 (bm, 4H, Hmeta/HC‟/HD‟), 7.70 (bs, 2H, HE‟/H5), 

7.48 (bd, J = 22.2 Hz, 2H, Haryl, HB‟), 7.27 (bs, 1H, Haryl), 7.01 (bd, J = 9.1 Hz, 2H, 

HF‟/HG‟), 6.59 (bs, 1H, HH‟), 5.03 (bd, J = 9.1 Hz, 1H, Hendo), 3.83 (bd, J = 5.2 Hz, 

4H, Hexo/OMe).  
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6.7.2 X-ray crystallography 

Crystals were mounted under inert oil on a MiTeGen tip and flash frozen to 100(1) 

K using an OxfordCryosystems low temperature device. X-ray diffraction data were 

collected using Cu-K radiation (λ= 1.54184 Å) using an Agilent Supernova dual-

source diffractometer with Atlas S2 CCD detector and fine-focus sealed tube 

generator. Data were corrected for Lorenztian and polarization effects and 

absorption corrections were applied using multi-scan methods. The structures were 

solved by direct methods using SHELXS-97 and refined by full-matrix on F2 using 

SHELXL-97.63  

Crystals were very poorly diffracting due to high levels of solvation and disordered 

counter-anions. Most high angle data was unobserved. While the cage framework 

and some solvent nitromethane positions were located in the difference map and 

included in the refinement, the BF4
− counter-anions were not located and the true 

degree of solvation is likely to be significantly higher than was determined 

crystallographically. Counter-anions were included in the molecular formula, but not 

missing solvent. The large void spaces and diffuse nature of residual electron 

density meant that the SQUEEZE50 routine of PLATON was employed. Fifteen of 

the phenyl or pyridyl groups were refined with rigid body constraints. Only the Ir 

and ordered parts of the CTG-type ligands were refined anisotropically and global 

restraints were employed on anisotropic displacing parameters. One isonicotinoyl 

group was refined as being disordered across two positions, each at 0.5 occupancy. 

Two phenyl-pyridyl groups and one isonicotinoyl groups were each refined with a 

group isotropic displacement parameter. Nine inter-atomic distances (for Ir-C/N or 

C-C bonds of phenyl-pyridines) were restrained to be chemically reasonable.  
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Compound CC4.3•n(BF4) 

Empirical formula C305H243N29O46F24B6Ir6 

Formula weight 6724.34 

Temperature/K 100.15 

Crystal system monoclinic 

Space group P21/n 

a (Å) 24.1556(6) 

b (Å) 38.3982(8) 

c (Å) 48.0129(11) 

α (°) 90.00 

β (°) 104.151(3) 

γ (°) 90.00 

Volume (Å3) 43182.1(17) 

Z 4 

ρcalc (gcm-3) 1.034 

Μ (mm-1) 4.013 

F(000) 13408.0 

Crystal size (mm3) 0.2 × 0.2 × 0.2 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.14 to 103.04 

Index ranges -21 ≤ h ≤ 24, -38 ≤ k ≤ 35, -48 ≤ l ≤ 41 

Reflections collected 73142 

Independent reflections 39064 [Rint = 0.0468, Rsigma = 0.0656] 

Data/restraints/parameters 39064/599/1943 

Goodness-of-fit on F2  1.090 

Final R indexes [I>=2σ (I)] R1 = 0.1191, wR2 = 0.3191 

Final R indexes [all data] R1 = 0.1407, wR2 = 0.3357 

Largest diff. peak/hole / e Å-3 6.48/-2.25 

 

6.7.3 Photophysical Studies 

All samples were prepared at the University of St Andrews by Diego Rota Martir, in 

HPLC grade DCM with varying concentrations in the order of 10-4 - 10-6 M. 

Absorption spectra were recorded at room temperature using a Shimadzu UV-1800 

double beam spectrophotometer. Molar absorptivity determination was verified by 

linear least-squares fit of values obtained from at least four independent solutions at 

varying concentrations with absorbance ranging from 6.05 × 10–5 to 2.07 × 10–5 M.  

The sample solutions for the emission spectra were prepared in HPLC-grade DCM 

and degassed via freeze-pump-thaw cycles using a quartz cuvette designed in-house. 
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Steady-state emission and excitation spectra and time-resolved emission spectra 

were recorded at 298 K using an Edinburgh Instruments F980. All samples for 

steady-state measurements were excited at 360 nm, while samples for time-resolved 

measurements were excited at 378 nm using a PDL 800-D pulsed diode laser. 

Emission quantum yields were determined using the optically dilute method.64 A 

stock solution with absorbance of ca. 0.5 was prepared and then four dilutions were 

prepared with dilution factors between 2 and 20 to obtain solutions with absorbances 

of ca. 0.095 0.065, 0.05 and 0.018, respectively. The Beer-Lambert law was found 

to be linear at the concentrations of these solutions. The emission spectra were then 

measured after the solutions were rigorously degassed via three freeze-pump-thaw 

cycles prior to spectrum acquisition. For each sample, linearity between absorption 

and emission intensity was verified through linear regression analysis and additional 

measurements were acquired until the Pearson regression factor (R2) for the linear fit 

of the data set surpassed 0.9. Individual relative quantum yield values were 

calculated for each solution and the values reported represent the slope value. The 

equation Φs = Φr (Ar/As)(Is/Ir)(ns/nr)
2 was used to calculate the relative quantum yield 

of each of the sample, where Φr is the absolute quantum yield of the reference, n is 

the refractive index of the solvent, A is the absorbance at the excitation wavelength, 

and I is the integrated area under the corrected emission curve. The subscripts s and 

r refer to the sample and reference, respectively. A solution of quinine sulfate in 0.5 

M H2SO4 (Φr = 54.6%) was used as external references.65  

PMMA doped films were prepared by spin coating the samples from a solution of 2-

methoxyethanol (HPLC grade) containing 5 % w/w of the desired sample. Steady-

state emission and excitation spectra and time-resolved emission spectra of both 

powders and doped films were recorded at 298 K using an Edinburgh Instruments 

F980. Solid-state PLQY measurements of thin films were performed in an 

integrating sphere under a nitrogen purge in a Hamamatsu C9920-02 luminescence 

measurement system.66 
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