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Abstract 

Grid computing is diverse and heterogeneous in nature, spanning across multiple 

domains where resources are not owned or managed by a single administration. This 

brings about many challenges to Grid resource management and exposes the user to 

the Grid middleware complexities.   Thus this research develops a user-centric 

resource broker that insulates the users from the Grid complexities, alleviating them 

from the burden of having to know the various mechanisms of the Grid middleware. 

The broker is based on the SNAP (Service Negotiation and Acquisition Protocol) 

framework and focuses on applications that require resources on demand. 

    It is important for applications that require resources on demand to reserve the 

necessary resources within the minimum time possible.  Thus the work in this thesis 

has developed a three-phase commit protocol which enhances the traditional two-

phase commit protocol.  Performance evaluation has been carried out to evaluate the 

SNAP-based resource broker using the traditional two-phase commit protocol and 

the newly developed three-phase commit protocol.   The evaluation has been 

conducted on a local Grid test-bed, a distributed Grid infrastructure (the White Rose 

Grid) and through mathematical modelling and simulation.  Throughout the 

evaluation, the SNAP-based resource broker using the three-phase commit protocol 

provides a significant performance enhancement, over the use of the traditional two-

phase commit protocol, in terms of the time taken between submission (to the 

broker) of user requirements and the job beginning execution.   
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Chapter 1  

Introduction 

1.1 Research Motivation  

Grid computing is diverse and heterogeneous in nature, spanning across multiple 

domains where resources are not owned or managed by a single administration.  

This brings about many challenges to Grid resource management [1] such as site 

autonomy, heterogeneous substrate, and policy extensibility.  The Globus [2, 3] 

middleware toolkit addresses these issues by providing services to assist users in the 

utilisation of Grid resources.  However users are still exposed to the Grid 

middleware complexities and there is a substantial burden for the users to have 

extensive knowledge of the various Grid middleware components in order to be able 

to utilise Grid resources.  This ranges from querying the information providers, 

selecting suitable resources for the user’s job, forming the appropriate RSL 

(Resource Specification Language), submitting the user’s job to the resources and 

initiating the execution.   

    A central component in Grid computing is resource brokering, insulating the user 

from the Grid middleware complexities, by performing the task of mapping the 

user’s job requirements to resources that can meet these requirements. This can 

include searching multiple administrative domains to use a single resource or 

scheduling a single job to use multiple resources at a single site or multiple sites.  As 

discussed in [4] resource brokering can be classified in two categories: system-

centric and user-centric.  A system-centric broker allocates resources based on 

parameters that enhance system utilisation and throughput.  Conversely a user-

centric broker such as Nimrod-G [5] adheres to the user requirements, and utility of 

computation is enhanced compared with system utilisation.  A key goal of Grid 

computing is to deliver utility of computation as defined by the users’ requirements, 

thus Grid resource brokers are focused on providing user-centric services.      
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    The Grid also needs to cater for multiple users from different sites, who may 

potentially be interested in the same resource, without each other's knowledge of 

their existence or interests [6-8].  These users could potentially be competing for the 

same resources which could possibly affect the execution start time of a job, as some 

resources that have been previously selected for use could be taken by others.  Thus 

it is important to secure resources prior to run time especially for applications that 

are time critical and require resources on demand such as those used by DAME [9] 

(Distributed Aircraft Maintenance Environment), where it is essential that jobs start 

execution with minimal delay.   

1.2 Research Context 

A user-centric resource broker needs to cater for the user’s requirements, ensuring 

appropriate resources are selected that have the capability to meet the user’s 

requirements.  A framework that fits well for this form of brokering is SNAP [10] 

(Service Negotiation and Acquisition Protocol) as it is inspired by the requirement, 

in a Grid environment, to reconcile the needs of the users with those of the resource 

providers.  The user’s job requirements are examined and resource providers that 

can support such requirements are identified to cater for the job execution. A Service 

Level Agreement (SLA) is established to ensure that the user’s job will be 

performed under the specified resource requirements. The use of an SLA ensures 

that the user knows what the resources can be expected to deliver without requiring 

any detailed knowledge of local resource provider policies, which the resource 

provider may not be willing to share.  

   A user’s job may require multiple resources, owned by different providers and 

using a single SLA across multiple sites may not be possible. SNAP addresses this 

problem by co-ordinating resource management through the use of a three-tiered 

framework each encapsulating an SLA.  In the first layer, namely Task Service 

Level Agreement (TSLA), the user’s resource requirements are ascertained.  This 

forms the basis of the job’s requirement and propagates through to the next two 

layers.  The second is the Resource Service Level Agreement (RSLA) which 

discovers, selects and nominates the appropriate resources for the job as well as 

ensures the user has the credentials to use the resources.  The third is the Binding 
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Service Level Agreement (BSLA) which associates the job to the resources for 

execution. 

   Thus the SNAP framework is used in this research for the development of a user-

centric resource broker that handles jobs which require resources on demand.  The 

broker also uses a three-phase commit protocol, which provides an enhancement 

over the traditional two-phase commit protocol in terms of the time taken between 

submission (to the broker) of user requirements and the job beginning execution.   

   This thesis will evaluate the three-phase commit protocol against the conventional 

two-phase commit protocol.  This will be evaluated through the use of a Grid test-

bed, the White Rose Grid (WRG) [11] and through mathematical modelling and 

simulation.   

1.3 Aims and Objectives 

The aim of this research is to study resource brokering in the context of 

computational Grids.  This is to insulate the users from the middleware 

complexities, alleviating them from the burden of having to know the various 

mechanisms of the Grid middleware. The research applies the DAME XTO (eXtract 

Tracked Orders) application as an exemplar for the need to secure resources on 

demand.  The purpose of the DAME project is to design and implement a prototype 

system to facilitate the diagnoses and maintenance of aircraft engines through Grid 

computing.  This is motivated by the need to reduce the cost of unexpected and 

unplanned maintenance of aircraft engines by processing and diagnosing the 

problems as they occur, which is why there is a need to secure resources on demand. 

 

With this in mind the objectives of this thesis are: 

 

• The design of a user-centric resource broker architecture to insulate the 

user from the Grid middleware complexities and to support job 

submission that requires resources on demand.  The current brokering 

systems have been tailored to adapt to the Grid as they were originally 

designed to serve other infrastructures, thus suffering from legacy 

problems. Alternatively they provide limited insulation to the Grid 
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middleware and require the user to have considerable knowledge of the 

Grid.   

• The development of a three-phase commit protocol to reserve resources 

on demand.  This will be evaluated by comparing it to the traditional 

two-phase approach through the use of a Grid test-bed to investigate its 

performance enhancement. Then through a distributed Grid 

infrastructure, the White Rose Grid (WRG), to validate the performance, 

verifying it still maintains its enhancement over the traditional approach 

in a distributed environment.  Finally through the use of mathematical 

modelling and simulation to allow for a larger parameter space and 

traffic conditions other than those studied through the Grid test-bed and 

the WRG. 

1.4 Major Contributions 

The major contributions of this thesis include: 

 

• The design and development of a three-phase commit protocol to submit 

jobs that require resources on demand.  Traditional advanced reservation 

such as that supported by MAUI [12] cannot cater for such application 

requirements due to the prior time that it requires to schedule the 

reservation. The three-phase commit protocol uses probes that provide 

rapid updates of the resource’s status, allowing decision making services 

to adjust swiftly to the changes.  This also provides an enhancement over 

the conventional approach of gathering resource information and 

reducing the likelihood of an oscillation situation occurring between a 

broker and the information providers. 

• The design and development of a user-centric resource broker 

architecture that uses the SNAP framework.  This provides a modular 

layered structure to handle user requirements, and find, select and submit 

jobs.  The broker insulates the user from the Grid middleware 

complexities and ensures jobs are submitted to the appropriate resources 

for execution. This is done within the SNAP framework by ascertaining 
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the user’s requirements through a user interface, dynamically gathering 

resource information, co-allocating a user’s job, securing the resources 

and submitting the job on the user’s behalf. 

• The proposal of the use of a Knowledge Bank (KB), a data repository 

that stores static information of resources as attributes which provide a 

description of their characteristics.  This helps in many ways such as 

supporting automated resource discovery.  It facilitates brokers to filter 

out all resources that can handle a job’s needs prior to contacting their 

information provider avoiding unnecessary processing of resource 

contacts.  Also it alleviates the user from the burden of having to keep a 

log file of the resources with their associated descriptions.  An analogy of 

the KB is a telephone directory where the information stored directs to a 

particular service that can cater for a user’s needs. 

• A performance evaluation of the three-phase commit protocol compared 

to the traditional two-phase commit protocol.  This study is undertaken 

through the use of a Grid test-bed. 

• The deployment of a SNAP-base resource broker using the three-phase 

commit protocol onto a distributed Grid infrastructure (WRG).  This 

subsequently allowed for the validation of the performance study carried 

out on the Grid test-bed. 

• The performance evaluation through the use of mathematical modelling 

and simulation, complementing the previous study undertaken through 

the Grid test-bed and the WRG.  This allowed for a wider parameter 

space and traffic conditions to be considered. 
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1.5 Thesis Overview 

The previous sections have given an introduction to the work presented in this 

thesis, below summarises how it is organised. 

    Chapter 2 surveys the background and related work on all major research issues 

covered in this thesis.  First, it describes the challenges in Grid resource 

management, why it differs from distributed systems and the de facto middleware 

technology used in the Grid, namely Globus.  It then outlines major projects that 

utilise the Grid which leads to the discussion of DAME and its requirements.  This is 

then followed by a survey of Grid resource brokers with their architectures.  A 

review of Grid information providers is provided and finally an overview of the 

major Grid approaches used to securing resources is presented. 

    Chapter 3 begins by describing the process of submitting a job directly to a local 

scheduler and then through the Grid.  This is to highlight the complex process a user 

would endure when submitting a job through the Grid and the need for a Grid 

resource broker to insulate a user from such problems.  Then before the discussion 

of the SNAP-based (Service Negotiation and Acquisition Protocol) Grid resource 

brokers architecture, an overview of Grid Service Level Agreements (SLAs) will be 

presented as well as SNAP. This is followed by a scenario that highlights the 

necessity to secure resources on the Grid, motivating the need for the three-phase 

commit protocol. 

     Chapter 4 begins by providing an overview of the objectives and the experiments  

carried out on both the Grid test-bed and the WRG.  The chapter then describes the 

Grid test-bed with the experimental results and discussion.  This is followed with the 

WRG description and its experimental results and discussion.  The chapter then 

provides an overall evaluation of both the Grid test-bed and the WRG experiments, 

which shows that the three-phase commit SNAP broker outperforms the simple 

SNAP broker (a version that uses the traditional two-phase protocol). 

    Chapter 5 further evaluates the simple SNAP broker compared to the three-phase 

commit SNAP broker, through mathematical modelling and simulation.  This 

approach allows for wider traffic conditions to be used than that used in chapter 4.  

The experiments also show that the three-phase commit SNAP broker still 

outperforms the simple SNAP broker.   

    Chapter 6 concludes the thesis and outlines some future work. 
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Chapter 2 

Background and Related Work  

This research focuses on computational Grid resource management and resource 

brokering to insulate the user from the Grid middleware complexities.  It also looks 

into reserving resources prior to submitting application jobs that require resources 

on demand.  This chapter provides the background and research efforts in this field.  

Section 2.1 discusses Grid resource management, the challenges and the 

technologies used in the Grid.  Section 2.2 outlines various Grid projects as well  

describing the Distributed Aircraft Maintenance Environment (DAME) project [9].  

Section 2.3 reviews existing resource brokers.  An overview of resource information 

providers is given in section 2.4.  Section 2.5 reviews resource reservation and 

finally Section 2.6 summarises the chapter.    

2.1 Grid Resource Management  

Grid resource management differs from the traditional distributed systems [4, 13, 

14] where resources on these systems are centralised, follow a common fabric 

management policy and are usually homogeneous, serving under a single 

administration domain.  Distributed systems are also designed under the assumption 

that their administrators have complete control over the resources.  Further the 

administrator can implement the mechanisms and policies necessary for effective 

use of the resources in order to maximise their utilisation and throughput [4].  

However computational Grids, by nature, are a collection of global resources which 

are decentralised and loosely coupled [14, 15].  They span across multiple 

administrative domains and geographical boundaries with no absolute central full 

control of the resources.  This introduces several challenges [1, 16] that underlay the 

construction of computational Grids, which are listed below: 

  

• Site autonomy, this refers to the fact that resources are heterogeneous, 

typically owned and managed by different organisations in different 
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administration domains.  Further, each site is likely to have a different 

infrastructure, operating system, local resource management system 

(local scheduler) and its own user policies.  Note that local resource 

management systems and local schedulers are used interchangeably to 

mean the same thing.   

• Heterogeneous substrate, this is related to site autonomy, referring to the 

fact that different sites may use different local scheduling systems such 

as LSF (Load Sharing Facility) [17], PBS (Portable Batch System) [18] 

and SGE (Sun Grid Engine) [19].  However even when the same system 

is used at different sites, local configurations made by the administrator 

to suit their domain needs often lead to a significant difference in their 

functionality. 

• Policy extensibility, as resources on the Grid are drawn from a wide 

range of domains, each with its own requirements and configurations.  A 

Grid resource management system should support regular developments 

of new domain-specific management structures.  For example it should 

not restrain sites to a particular scheduler or installation settings. 

• Co-allocation, many Grid applications have resource requirements such 

that a single site may not be able to cater for their needs or the 

application can only be satisfied by using resources simultaneously at 

several sites.  With site autonomy and resources decentralised on the 

Grid, there is a need for a mechanism that is able to gather information 

from candidate sites.  Then must decide where to submit application jobs 

(to multiple resources if necessary) and possibly secure the resources 

before the submission.   

 

    There are also other issues relating to Grid resource management.  For example a 

user would possibly have to compete against other candidates for the resources, with 

limited or stale information as explained by the scenario in Section 3.4.1.  Further 

the Grid is focused on the user’s requirements [4] which is perhaps the most 

important difference to distributed systems where they strive to maximise utilisation 

and throughput. 
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2.1.1 Distributed Resource Management Approaches  

Conventional distributed resource management systems can be broadly classified 

into two categories: 

 

• Network Batch Queueing Systems (NBQS).  These systems focus on 

managing a set of network resources, such as local clusters or high 

performance computers. 

• Wide Area Scheduling Systems (WASS).  These systems handle 

resource management over several sites. They also serve as a module for 

mapping application jobs to resources and scheduling their execution at 

different local resource domains. 

 

    Both NBQS and WASS systems lack the full necessities to facilitate global 

resource management such as that needed in the Grid as will be discussed in the 

following two sub-sections. 

2.1.1.1 Network Batch Queueing Systems 

There are many NBQS such as PBS, LSF, SGE and LoadLeveler [20], which 

generally handle user submitted jobs by assigning resources from a network pool of 

computers.  A user can either explicitly characterise his/her job, through the use of a 

descriptive control language, supplied by the NBQS or implicitly by selecting a 

queue to which a request is submitted for processing.   

    These systems are typically designed for a single administrative domain making 

them autonomous to a single site.  They also suffer from heterogeneous substrate 

problems due to the fact that they assume they are the only resource management 

system in operation.  Further co-allocation is not usually provided in these systems. 

    Overall NBQS alone do not provide a complete solution to Grid resource 

management.  However these systems will necessarily be part of a local resource 

management solution and a Grid resource management architecture should be able 

to interface to these systems.    
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2.1.1.2 Wide Area Scheduling Systems  

WASS systems usually cross over several sites and are diverse in the methods they 

adopt to handle resource management compared to NBQS.  In order to provide a 

prospective overview of how they operate, three popular systems are discussed 

namely Gallop [21], Legion [22, 23] and Condor [24-26]. 

    Gallop [21] supports parallel applications.  It allocates and schedules jobs defined 

by a static task graph [27] onto a network of computational resources.  Resource 

allocation is based on two main components, a Scheduling Manager (SM) and a 

Local Scheduler (LS), which both run at each domain site, as shown in Figure 2.1.  

The SM co-ordinates and runs wide area scheduling algorithms which interface to 

other SMs at different sites and to their own LS.  The LS is responsible for 

managing the local site resources transparently to enable the SM to perform its 

scheduling.  Further the LS is made of two parts, one for interfacing to the SM and 

the other to a site specific managing system such as the ones mentioned in section 

2.1.1.1 e.g. PBS, LSF, etc.     

    In Gallop resource selection is performed by attempting to minimise the execution 

time of the task graph as predicted by a performance model for the application and 

the prospective resources.  However due to the minimisation procedure and the cost 

model being fixed there is no support for policy extensibility.  Further the system is 

designed primarily for parallel applications, which is a limitation as the Grid is 

designed to support a wide range of applications.   

 

Figure 2.1: The Gallop scheduling components. 

 

    Legion [22, 23] is an object-based system designed to harness hosts across 

multiple sites which are tied together through a high-speed link.  Resource 

management is performed through two specialised objects, an application-specific 

Scheduler and a resource-specific Enactor that negotiate with one another to make 
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allocation decisions.  Further it supports a range of applications such as parallel 

applications and parameter sweep studies. 

    Legion ensures that local policies of participating sites are respected, by allowing 

the final authority over the use of a resource to be in place with the resource itself. 

However it assumes that network resources and protocols currently in use will not 

change.  Legion also does not support co-allocation.  Further it is written in Mentat 

Programming Language (MPL), thus it is necessary to have MPL on each platform 

before Legion can be installed. 

    Condor [24-26] is designed to support high-throughput computation by taking 

advantage of idle compute resources and allocating those resources to an application 

job.  A predominant feature of Condor is the utilisation of resources that otherwise 

would be idle.  However resources are de-allocated and released once their owner 

begins to use them, which is supported by checkpointing that is incorporated into 

Condor. 

    Condor provides an extensible resource description language called Classified 

Advertisements (ClassAds), which allows for both the application job to be 

described in terms of its requirements and for a resource to describe its capabilities.  

The matching of application jobs to resources is performed by a matchmaker that 

uses the ClassAds to facilitate how resource management takes place.  ClassAds are 

further discussed in Section 2.4.2.  However Condor does not interface with existing 

local resource managers and does not provide support for co-allocation [1].   

    The above review of the current WASS systems shows a wide range of resource 

management approaches, with each system targeted to serve a particular purpose.  

Gallop is designed to facilitate parallel applications.  Legion supports a range of 

application but suffers from policy extensibility. Condor utilises idle resources but 

assumes it is the only resource manager and does not interface with local resource 

management systems.  Overall there is not a single system that provides a solution to 

all the challenges outlined in Section 2.1. 

 

 



 

 12 

2.1.2 Hierarchical Components of Grid Resource 

Management  

Before discussing the technologies of Grid resource management in the next section 

(Section 2.1.3), it is important to describe the components that integrate the Grid, 

which also serve to aid resource management.  The components are constructed 

through hierarchical layers [13, 28, 29] described below and show in Figure 2.2: 

 

• Grid Fabric:  This layer comprises of two levels, a network of physical 

resources and local resource management mechanisms.  The network of 

physical resources consists of all resources geographically distributed 

across the globe, with shared access mediated by the Grid.  The resources 

could be computers such as PCs, clusters, High Performance Computers 

(HPC) or storage devices and even scientific instruments such as 

telescopes.  The local resource management mechanism encapsulates 

operating systems (such as UNIX or Windows), system libraries and 

application kernels.  This also includes resource management systems 

such as SGE, LSF and PBS and internet protocols such as TCP 

(Transmission Internet Protocol) and UDP (User Datagram Protocol).  

The latter level is used by its above preceding layers as a gateway to the 

physical resources.  The resource management systems are the 

predominant central point of access in the fabric level as they usually 

govern the resources.   

• Core Grid Middleware:   This is a layer of software that masks 

heterogeneity and provides transparency from the underlying details such 

as communication protocols.  It is concerned with providing a building 

block for the construction of software components that can work with 

one another in a distributed Grid environment.  This layer contains the 

core services that facilitate the operability of the Grid and helps to couple 

the (remote) resources to the Grid users.  The main services include: 

 Security service [30-32], to authenticate and authorise users.  This is 

to ensure interaction between the user and the resources takes place 
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without hindering the integrity of individual systems or the 

environment as a whole.   

 Information service [33, 34] (which is further discussed in section 

2.3), is a vital part to enable resource discovery due to the dynamic 

nature of the Grid, where resource status frequently changes.  This 

service facilitates the planning and decision making of where to 

submit jobs.  It provides the mechanisms for registering and 

obtaining information about the resources and their status. 

Applications and Portals

Scientific Engineering Collaboration Problem Solving Simulation….

Grid Applications

Applications and Portals

Language Compiler Libraries Debugging Monitor Web tools….

User Level 

Middleware

Resource Management, Selection and Aggregation (BROKERS)

Distributed Resource Coupling Services

Communication Security Information Resource Management Data transfer and access….

Core Middleware

Local Resource Management Mechanisms 

Operating System Logical Scheduler Libraries & App Kemels TCP/UDP….

Fabric

Network Resources across Organisation

Computers Network Storage Systems Scientific Instruments….Data Sources

 

Figure  2.2: The Grid Hierarchy layer (Adapted from [29]). 

 

 Data transfer service [35, 36], most Grid applications would need to 

transfer data to the remote site(s).  This is a more predominant factor 

for applications such as high-energy physics and bioinformatics 

where they require intensive transfer of and access to large amounts 

of data.  This requirement is supported by Grid File Transfer Protocol 

(GridFTP) [37] to accommodate for their need.   
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 Resource management service [38, 39] (which is further discussed in 

section 2.1.3), is an important and integral part of this layer and the 

Grid infrastructure as a whole.  It provides transparency and assists 

the interaction and communication between a wide range of local 

resource managements systems, which are the gateway to the Grid 

resources. This service also supports submission, execution and 

monitoring of job progress.   

• User Level Middleware:  These are high level services that include 

application development environments and programming tools.  These 

tools are used to develop procedures and resource brokers that insulate 

the users from the Grid middleware complexities, alleviating the user 

from the burden of having to know how to operate the various Grid 

middleware components.  This layer also holds the responsibility to 

manage and schedule computation across global resources.  

• Grid Application:  These are applications that use the Grid, which range 

from scientific, engineering, and astrophysics just to name a few.   

    Having described the hierarchical layers of the Grid infrastructure, it is also 

important to define basic terminologies that have a broad meaning [40] in the Grid 

paradigm:   

• Resources:  A resource is an entity that is utilised to help solve problems 

and can be used over a period of time either explicitly by an individual or 

inclusively by a number of users.  Resources are diverse as stated earlier, 

range from CPU, storage, memory to scientific instruments and are 

usually governed by a local resource management system.  However for 

the purpose of this research, local resource management queues that are 

associated with individual CPUs would be used as core resources.  

Further the CPU(s) should be mutually exclusive to a queue and not be 

used in conjunction with other queues.  This is to ensure that application 

jobs execute securely at the resources without exposing their 

computational process to other third party users.  This is due to the fact 

that applications such as Distributed Aircraft Maintenance Environment 
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(DAME) [9] hold sensitive data which require their jobs to run on 

resources without others using them simultaneously. 

• Scheduling:  This is an extensive topic [41, 42] which centres on 

mapping jobs to resources over time.  There are many different 

scheduling algorithms with different characteristic properties.  These 

properties are affiliated to performance criteria [43] that include: 

 CPU utilisation: This is the percentage of time that the processor is 

busy. 

 Throughput:  Maximising the number of processes completed per 

unit of time. 

 Turnaround time: This is the interval time between the submission of 

a job and its completion including the actual execution time, plus the 

time spent waiting for the resource. 

 Waiting time:  The total time a job spends waiting in the pending 

queue.  

Well-known scheduling algorithms are First-Come First-Serve, Round-Robin and 

Shortest-Job-First just to name a few [44].  However some critical application jobs 

such as those used in DAME are not tolerant to delay.  Further it is difficult to 

anticipate when resources will be needed as these applications require resources on 

demand.  The scheduling method adopted for this research is to locate resources 

(queues) that are available at the current time of request.  Ideally the resources 

located should not have jobs waiting in the pending queue, if they have then they 

should not be considered.  This is to allow the submitted job to begin executing on 

arrival.  Once the job begins execution on a resource it should be able to put a lock 

on to it until it has completed.    

2.1.3 Grid Resource Management Technology 

The Globus toolkit [2, 3] has been developed by the Argonne National Laboratory 

[45] to support computational Grids.  It has become the de facto toolkit for Grid 

resource management and is being used by many major global Grid development 
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teams including  UK e-Science projects [46].  Since its first release it has undergone 

many evolutionary refinements, for example in Globus 2 it did not support Internet 

technologies.  Globus 3 supported “Grid Services”, which are an extension of Web 

Services [47], using XML (Extensible Markup Language) and SOAP (Simple 

Object Access Protocol) to provide greater flexibility in the use of the Grid over the 

Internet.  However Grid services tackled the limitation of stateless and non-transient 

problems that Web services did not address by introducing factories and instance 

models [48].  In Globus 4 the term Grid services became deprecated as Web services 

introduced the WSRF (Web Service Resource Framework).  This introduction 

aligned with the functionality of the Open Grid Service Architecture (OGSA) 

principles [49] and addressed the Web services limitations outlined above. It is also 

important to state all Globus versions are based on essential core services which are 

listed in Table 2.1, with version 2.4 being the most stable release to date.  The latter 

is the one used by this research and production Grids such as the White Rose Grid 

(WRG) [11]. 

    Globus provides a software infrastructure that enables applications to handle 

distributed heterogeneous computational resources as a single virtual machine, 

despite the geographical distribution of both resources and users.  It is necessary for 

computational Grids to support a wide variety of applications and programming 

paradigms.  Consequently rather than providing a uniform programming model such 

as object-oriented which is used in Legion, Globus provides well-defined interfaces 

(APIs) to allow developers of specific tools or applications to select and use services 

to meet their needs.  Globus is constructed within a layered architecture in which 

high-level services are built upon essential low-level local services.  The architecture 

is shown in Figure 2.3, which is that of Figure 2.2 but with the Globus services in 

place (headed core middleware).  

    The most predominant service in relation to this research and Grid resource 

management as a whole is the Grid Resource Allocation Manager (GRAM) [3].  It 

resides on top of local resource manager systems, proving the mechanisms to 

communicate between these systems and external Grid entities such as applications 

or brokers.  This is enabled through the use of standard APIs that provide the 

transparency to allow for the expression of resource allocation to a wide range of 

local resource management systems.  This alleviates individual sites from being 

constrained in their choice of the local resource management systems.    
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    The principal components of GRAM are the Gatekeeper and the Job Manager, 

which are shown in Figure 2.4.  The Gatekeeper is the first point of contact with the 

local resources.  It is responsible for authenticating and authorising a Grid user 

through the use of the Grid Security Infrastructure (GSI) [30], which handles the 

issue of site autonomy.  The authentication is based on the user’s Grid credential and 

an access control list contained in a configuration file called the grid-mapfile.  This 

file (which is located at the local site) is also used to map the user’s Grid identity to 

a local account, translating the user’s Grid credential into a local credential.  Once 

the authentication process is complete, the Gatekeeper starts up the Job Manager 

which handles the resource request. 

Applications and Portals
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Applications and Portals

Java MPI-G C++ PVM Java Cog Kit….

Resource Management, Selection and Aggregation (BROKERS)

Distributed Resource Coupling Services
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SGE Condor TCP JVM

LSF PBS

UDP

Linux Irix Solaris

Local 

Services

Grid Applications

User Level 

Middleware

Core Middleware

Fabric

 

Figure  2.3: The Grid hierarchy with Globus services (Adapted from [29]). 

    

    The Job Manager is responsible for creating the actual process requested by the 

user in order to use the resources.  The user’s request is composed in a Resource 

Specification Language (RSL).  The RSL is parsed by the Job Manager and 

translated into a syntax understood by the local resource management system before 

a process for resource allocation is submitted to it.    
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Figure  2.4: The GRAM Components. 

 

    Once this procedure is complete the Job Manager is also responsible for 

monitoring and notifying the user of the transition state for the created process 

ranging from pending, active to done.  It also executes the control operation such as 

process termination if requested by the user.  The Job Manager terminates, once the 

job for which it is responsible has ended.   

    GRAM also allows for co-allocation as it is only responsible for its set of 

resources and is therefore independent from other GRAMs.  This paves the way for 

multiple resources from different sites to be co-ordinated and used simultaneously.   

    Overall the Globus toolkit addresses the underlying Grid constraints listed in 

section 2.1.  Site autonomy is handled by the GSI which authenticates the user to 

ensure he/she is entitled to use the resources in a particular domain.  Heterogeneous 

substrates, policy extensibility and co-allocation are supported by GRAM as it is 

independent from the underlying local resource management systems.  This allows 

for multiple simultaneous job submissions while at the same time providing 

consistent transparency to these systems.    

 

Table  2.1: The core services in the Globus toolkit 

Service  Name 

Security Globus Security Infrastructure (GSI) [30] 

Resource management Grid Resource Allocation Manager (GRAM) [3] 

Information provider Monitoring and Discovery System (MDS) [33, 34, 50] 

Data transfer Grid File Transfer Protocol (GFTP) [37] 

1 
2 

3 

4 

5 

6 
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2.2 Grid Projects  

Grid technology is being used in many areas of research and there are currently 

numerous projects that are using the technology.  An overview of some projects is 

provided below based on geographical regions, which can be broadly categorised 

into International, European, U.S.A Asia-Pacific and UK based: 

  

International Grid projects  

• International virtual data Grid Laboratory (iVDGL) [51] is a global Data 

Grid that will aid experiments in physics and astronomy.  Its computing, 

storage and networking resources in the US, Europe, Asia and South 

America provide a unique laboratory that will test and validate Grid 

technology at the international and global scale.  Sits in Europe and the US 

will be linked by a multi-gigabit per second transatlantic link funded by the 

European Data Trans-Atlantic Grid (DataTAG) [52], 

 

• IBM IntraGrid [53] is aimed to bring together IBM R&D (Research and 

Development) projects from around the world.  The organisational aim is to 

provide the flexibility to integrate the company from end-to-end to respond 

with speed to any customer demand, market opportunities or external threats.  

Through the development and management of the IntraGrid, IBM’s goal has 

been to gain valuable, first –hand experience in building and operating a true 

commercial computational Grid. 

 

European Grid projects 

• European Union (EU) DataGrid [54], aims to create and apply an 

operational Grid for applications in high energy physics, environmental 

science and bioinformatics. 

 

• European Grid Solar Observations (EGSO) [55], this is a project that will 

lay the foundation of a virtual solar observatory.  The EGSO addresses the 

problems of combining heterogeneous data from scattered archives of space 

and ground-base observation into a single virtual dataset.  The project will 

also create catalogues of solar features and observation data to enable 
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innovative searching and provide visualisation tools for user-friendly data 

browsing. 

• CrossGrid [56], this project will develop techniques for large scale Grid 

enabling simulation and visualisations that require response in real time. 

US Grid Projects 

• Grid Physics Network (GriPhyN) [57], this is a project that involves 

physicists and informational technology researchers who plan to implement 

the first Petabyte-scale computational environments for data intensive 

science.  The project is driven by unprecedented requirements for 

geographically dispersed extractions of complex scientific information from 

very large collections of measured data.   

 

• Earth System Grid (ESG) [58], the goal of this project is to address the 

formidable challenges associated with enabling analysis of, and knowledge 

development from global earth system models.  This will be achieved 

through a combination of Grid technologies and emerging community 

technologies, providing a seamless and powerful environment that enables 

the next generation of climate research.  

• Fusion Collaboratory [59], the goal of the project is to advance scientific 

understanding and innovation in magnetic fusion research.  This will be 

achieved by enabling more efficient use of existing experimental facilities 

and more effective integration of experiments, theory and modelling. 

• Information Power Grid (IPG) [60], this is a high-performance computing 

and data Grid built primarily for use by NASA (National Aeronautics and 

Space Administration) scientists and engineers. 

Asia Pasific Grid projects 

• Asia Pasific Bioinformatics Network (APBioNet) [61], the project focuses on 

the promotion of bioinformatics in the Asia Pasific.  Its mission has been to 

pioneer the growth and development of bioinformatics awareness, training 

and education. 
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• Grid Datafarm [62], this project is a petascale data-intensive computational 

project initiated in Japan.  The project is a collaboration amongst the 

University of Tokyo and Tokyo Institute of technology as well as other 

industrial partners.   

 

UK Grid projects 

• AstroGrid [63] aims to build a Grid infrastructure that will allow a Virtual 

Observatory, unifying interfaces to astronomy databases and providing 

remote access, as well as assimilation of data. 

 

• CombeChem [64] supports combinational synthesis of new compounds by 

combining structure and property data sources into Grid-based information 

and knowledge sharing environments.   

• Reality Grid [65] enables the realistic modelling of complex condensed 

matter systems at the molecular levels. 

• Distributed Aircraft Maintenance Environment (DAME) [9], was a Grid-

based demonstrator that built distributed diagnostics system for aircraft 

engines. 

 

    The above list shows the diversity for which the Grid technology is being used 

geographically.  At the University of Leeds the DAME project is being developed as 

is described in the next section (Section 2.2.1). 

2.2.1 Distributed Aircraft Maintenance Environment 

(DAME) Project 

DAME is a project funded by the UK e-Science [46] program for research and 

development towards Grid technologies.  It is a joint project between the 

Universities of Leeds, York, Sheffield and Oxford, and Rolls Royce and Data 

Systems & Solutions as industrial partners.  Its purpose is to design and implement a 

system to facilitate the diagnosis and maintenance of aircraft engines through the use 
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of Grid computing.  This is motivated by the need to reduce costs of unexpected and 

unplanned maintenance of aircraft engines. 

    One of the key components of this project is the vibration data analysis 

application eXtract Tracked Order (XTO), others include pattern matching and CBR 

(Case Based Reasoning).  The XTO studies at Leeds analyse the engine data 

recorded by an on-engine QUICK system [66] during a flight.  This recorded data is 

stored in a file system and consists of a single control file and a number of binary 

files that are all in the Rolls-Royce proprietary ZMOD format [67].  The binary files 

contain the recorded data for periods of 101 seconds and the number of these files 

depends on the duration of the flight.  The control file is a plain text file that 

describes the order in which these binary files should be processed by the XTO 

analysis application.  

    The process of analysing the engine data is listed below: 

1) When an aircraft lands in an airport the data is downloaded and read. 

2) If no irregularity is detected the aircraft is allowed to continue with its 

journey and the process is ended.  Otherwise if an abnormality is detected it 

is flagged and marked in the data set. 

3) A search through the historical data is initiated to identify the cause of the 

abnormality and measures are taken to rectify the problem.  However if this 

fails the fourth procedure is executed.     

4) The system operator launches a feature analysis session, which uses the XTO 

application.   

5) A diagnosis is made based on the feature detection by this analysis. 

 

    The fourth and fifth procedures are where DAME is heavily involved, developing 

methods and approaches to support these tasks through the use of the Grid.  This is 

to accommodate the large number of aircraft that land at airports across the globe.  

The Grid facilitates the diagnosis and analysis through its capabilities to spread the 

computational processes over the geographical distributed resources that it supports. 

    The need to rapidly diagnose engine data is essential otherwise the aircraft is 

deemed out of commission and would in turn have a heavy financial burden on the 
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aircraft operator.  Thus not knowing when such abnormalities will occur in a flight, 

it is important to be able to secure resources on demand.  Further, due to the data 

being sensitive it is also important for the execution to take place on resources that 

are devoted to single jobs and do not execute third party jobs simultaneously to 

avoid snooping.  Hence this research uses XTO as an exemplar application, used 

over the Grid with these criteria. 

2.3 Grid Resource Brokering  

In order to utilise the Grid a user must have the ability to interact with the Grid 

middleware such as the one predominately used in the Grid community, namely 

Globus.  However Globus provides fundamental service components to enable job 

submissions, which require the user to have extensive knowledge on how to access 

and operate these components.  

    Submitting a job to the Grid is a long and tedious task, which involves in essence 

the ability to query the information providers, interpret the information returned, 

filter the appropriate resources that meet the job requirements and select a set of 

resources for that job.  This is then followed by writing a suitable RSL script for the 

job to be executed at the selected resources, submitting the job, transferring any 

necessary files and initiating the execution.  What is needed is a resource broker that 

insulates the user from the Grid middleware complexities and submits jobs to the 

appropriate resources for execution.  This is to alleviate the user from the burden of 

having to know the various mechanisms of the Grid middleware.   

    A resource broker should perform the task of mapping application job 

requirements to resource(s) that can meet those requirements. Specifically, 

brokering is defined as the process of making scheduling decisions involving 

resources over multiple administrative domains [68]. This can include searching 

multiple administrative domains to use a single resource or scheduling a single job 

to use multiple resources at a single site or multiple sites. A Grid broker must be 

capable of making resource selection decisions in an environment where it has no 

control over the resources, the resources are distributed, and information about these 

resources is often limited or stale.     

    As discussed in [4], resource brokers can be classified into two categories: 

system-centric and user-centric. A system-centric broker allocates resources based 
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on parameters that enhance system utilisation and throughput. Conversely, in a user-

centric broker, resource allocation adheres to the user requirements and utility of 

computation is enhanced compared with system utilisation.  Hence user-centric 

brokering ensures the user’s utility takes precedence over system utilisation and 

throughput.    

    A key goal of Grid computing is to deliver utility of computation, as defined by 

the users’ requirements, which is why broadly speaking Grid resource brokers are 

user-centric orientated.  Thus this section will discuss the most commonly used and 

well-known computational resource brokers with their architectures, describing their 

mechanisms and abilities. 

2.3.1 Nimrod/G 

Nimrod/G [5, 69], whose architecture is shown in Figure 2.5, has been developed by 

Monash University, Australia.  It is a system based on the concept of computational 

economy and is designed to run parametric applications on the Grid.  The broker 

requires a user to create a task farm (plan) through the use of its declarative 

parametric modelling language before a job is passed to the parametric engine.  The 

parametric engine interacts with the scheduler to retrieve resource availability, while 

the scheduler discovers resource load through the Grid discovery service which uses 

the Monitoring and Directory Service [33, 34, 50].  Once the parametric engine has 

confirmed the availability of the user’s resource selection, the information is 

forwarded to the dispatcher to initiate a job wrapper that begins the task of 

submitting the job to the resource(s).   

 

    

  

 

Figure 2.5: The Nimrod/G architecture. 
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However Nimrod/G does not provide automated resource discovery, a list of 

resources in the form of Globus Gatekeeper contact strings needs to be set up 

manually by the user before brokering, hence exposing the user to the Grid 

middleware complexities.  Further Nimrod/G relies on the Globus information 

service (MDS), which does not offer dynamic resource information such as the local 

resource managers’ queues.  This is an entity that is needed in order to ensure the 

resources would be able to fulfil the job requirement as they are systems that usually 

govern the resource.    

2.3.2. EZ Broker 

The EZ broker [70, 71], with its system stack shown in Figure 2.6, is being 

developed by University of Houston.  The broker has two core elements: a client 

component and a server system.  The client component comprises of a policy engine 

and a Graphical User Interface (GUI).  The policy engine is a framework that 

promotes policy-based authentication and access control to Grid resources.  It 

ensures before contacting the resources that user has access rights for their 

utilisation.  The GUI component has been written in the Java programming language 

and is intuitive with little training required to operate it.  It is used to allow the user 

to provide a description of the resource requirements that are needed by the 

application. 

    The server system comprises of a register and an information provider.  The 

register is designed to act as an index server providing information about hosts that 

have registered with the EZ broker.  The information provider retrieves both static 

and dynamic information from the Grid resources.   

 

Figure 2.6: The EZ system stack [70]. 
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    The EZ system stack (Figure 2.6) shows the interaction of the EZ broker with the 

Globus toolkit.  This is achieved through the use of the CoG Kit [72] to attain 

services such as security (GSI) and resource management (GRAM).   

    At present the EZ broker project is a work in progress.  It has been proposed to 

support a wide range of Grid applications.  However this would be a long process as 

there is a broad category of Grid applications each with different requirements and 

needs.  Further brokers should be built with specialised abilities, to provide services 

to a set of application categories as stated in [73].     

2.3.3 Condor-G 

Condor-G [74] is a system that allows the user to perform Grid job management 

operations through the command line aided by the Globus toolkit.  The management 

operations that it supports are listed below: 

• Submitting jobs to Grid resources, including their input/output files and 

any arguments needed to initiate the jobs execution. 

• Querying a job’s status or cancelling the job. 

• The user is informed of job termination or errors that occur during 

execution via an email. 

• It stores a log that provides a history of the job’s execution stages. 

    As shown in Figure 2.7 Condor-G has a Scheduler that responds to the user’s 

request to submit jobs.  It does this by creating a GridManager daemon at the job 

submission machine to handle and manage those jobs.  One GridManager daemon 

handles all jobs for a single user and terminates once all jobs are complete.  Each 

GridManager contacts the modified GRAM that has been configured to support 

Condor-G at the execution site.  This results in the creation of a Globus JobManager 

daemon, after passing the authentication process by the Gatekeeper.    

    The JobManager daemon at the execution site connects directly to the 

GridManager at the submission machine using the Global Access Secondary Storage 

(GASS) [75].  This is to transfer the job’s executable and standard input, output and 

any error files.  The JobManager then submits the job to the local site’s resource 

management system. Updates on the job’s status are sent by the JobManager back to 
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the GridManager, which then updates the Scheduler.  All the states for the job are 

stored in the Scheduler’s Persistence Job Queue to keep a history log.   
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Figure  2.7: Condor-G mechanism for executing a job on the Grid [74]. 

 

   Condor-G is built on Condor, which inherits the constraint of not supporting co-

allocation.  The matchmaking mechanism and checkpointing provided by Condor is 

not incorporated into Condor-G.  More importantly the user is exposed to the Grid 

middleware complexities by having to query the information providers manually and 

needing to write the appropriate RSL for the job to be executed at suitable resources.  

Further file transfer is mainly based on the Globus GASS service, which is designed 

for small lightweight data transfer.  For large file transfer the user would need to 

stage the necessary file using Grid File Transfer Protocol (GridFTP) [37].   

2.3.4 Grid Resource Broker 

The Grid Resource Broker (GRB) [76] with its architecture shown in Figure 2.8, has 

been developed by the University of Lecce (Italy).  It is mainly based on a portal 

that is designed to bridge the gap between users and the Grid through the use of the 

Globus toolkit.  The services that it provides are listed below: 
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• User profile management, this provides storage for users to add or remove 

resources that they are entitled to use on the Grid.  It stores both the resource 

name and the contact string for that resource. 

• Information service, allows the user to query the MDS, discovering 

resources that match the job requirement and to find out the state of the 

resources.  It also supports the use of the Network Weather Service (NWS) 

[77, 78] to provide more dynamic information than that provided by the 

MDS. 

• Job submission, it allows for both interactive and batch job submission on 

the basis that the user specifies the location where the output file should be 

streamed. 

• Job tracking, batch job submissions are easily tracked and the user is 

informed of the different states from pending, active to done or failed. 

• File transfer, it supports transferring files or directories using multiple 

parallel streams leveraging on the Globus GridFTP service. 

 

    Overall the services provided by the GRB are those supported by the Globus 

toolkit.  It simplifies the user’s interaction with these services through its portal by 

having the user fill in a predefined list of attributes describing what is required by 

the invoked service.  However it does not provide automated resource discovery, 

decision-making is left to the user and resources are not secured before job 

submission.  Further, during its resource discovery it does not supply local resource 

management queue information, which is rudimentary when submitting jobs to the 

host queue. 

  

 

Figure 2.8: The GRB architecture. 
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2.3.5 AppLeS 

The AppLeS [79-81] (Application Level Scheduler) project has been developed by 

the University of California, San Diego.  It primarily focuses on developing 

scheduling agents for individual applications enabling them to adapt to resource 

change during execution.  The AppLeS agents use both static and dynamic 

information while selecting a viable set of resources for the applications.  The 

individual steps followed by AppLeS agents are depicted in Figure 2.9 and 

described below: 

 

Figure  2.9:  The steps that are taken during the AppLeS scheduler. 

 

1) Resource Discovery – The AppLeS agents discover the resources which are 

potentially useful to the application.  This is accomplished by taking a list of 

user’s logins and contacting the resources for their availability. 

2) Resource Selection – The agents identify and select resource sets from 

among the possible resource combinations.  

3) Schedule Generation – Given a list of resource sets, the AppLeS agents 

apply a performance model to determine a set of candidate schedules for the 

application on the potential targets.  The Network Weather Service (NWS) 

[77, 78] that dynamically monitors the changes in performance of the 

resources over a set period is also used at this stage. 

4) Schedule Selection – Given a set of candidate schedules the agents choose 

the best overall schedule. 

5) Application Execution – The best schedule is deployed by the AppLeS 

agents on the target resources.   
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6) Schedule Adaptation – The AppLeS agents are able to account for change 

in resource availability by looping back to step 1.  

    The development of an AppLeS compliant application involves the joint 

collaboration between disciplinary researchers and members of the AppLeS project 

team.  During the collaboration the application scientists provide an original 

distributed application code.  The AppLeS researchers then work with these 

scientists to modify the application so that it can dynamically be scheduled by the 

AppLeS scheduler agents.  However this process involves the integration of AppLeS 

agents (that are software components) in which the application code and the agents 

are combined and not easily separated.  In particular, it is difficult to adapt an 

existing AppLeS application so that it can be used for other applications to make 

them AppLeS enabled.  Thus the AppLeS team have developed templates that 

embody common characteristics from similar AppLeS-enabled applications.  

However the AppLeS enabled application integrates an adaptive scheduler agent in 

the application to form a new self-scheduling adaptive application.  An AppLeS 

template is a software framework developed so that application components can 

easily be inserted in modular form into the template to create a new self-scheduled 

application.   

    Overall AppLeS mainly focuses on scheduling applications onto resources and 

adapting to the resources changes, with resource reservation not fully exploited.  It 

uses two scheduling engineering strategies [79] namely 1) embed scheduling logic 

in the application and 2) embed application-specific information in the scheduler 

through the use of a template.  In either case such scheduling strategies are time 

consuming to build and are not easily re-targeted for other non-similar applications.  

AppLeS also uses the NWS during its scheduling process which provides a short 

term prediction of the resource performance.  Since the prediction is based on a 

short term (for example a five minute period) it may work well when the application 

size is small.  However for large applications a NWS based schedule may become 

unsatisfactory due to the low quality of prediction.  Further the NWS itself 

consumes resource power over long periods of time which can change (intrude 

upon) the conditions it is attempting to forecast [81].     
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2.4 Resource Information Providers 

Information providers are an integral part of the Grid infrastructure due to its diverse 

scope and dynamic nature.  Resources on the Grid fluctuate as their utilisation and 

availability continuously change.  When a client or a broker enters the process of 

resource selection the information providers are firstly queried.  This is to discover 

the current state of the resources to determine where to submit a job.  Lack of 

information can severely hinder job execution start time, which is why information 

providers have a vital role in the Grid.  In this section an overview of a range of 

information providers will be discussed, describing how they operate.   

2.4.1 A4 – Agile Architecture and Autonomous 

Agents 

A4 [82] is an homogeneous agent based hierarchical approach to resource discovery 

developed by the University of Warwick.  The mechanism adopted is based on a 

single component, an agent, which is used to compose the entire system.  Each agent 

has the same set of functionalities in being able to send requests and provide 

information services.   

    In Figure 2.10 the hierarchical structure of A4 is shown with different terms used 

to differentiate the level of the agents in the hierarchy.  The term broker in this 

context is an agent that heads the whole hierarchy.  A co-ordinator is an agent that 

heads a sub-hierarchy and a leaf node is actually denoted as an agent in this 

description.   

 

Figure 2.10:  The A4 hierarchical structure [82]. 
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    When an agent requests a service it will first check its own knowledge to see if it 

is already aware of the service.  If it has the required service information it can 

contact the target agent directly.  Otherwise it will look to its local agents or ask its 

upper agents until the service information is found.  The agent can then connect 

directly to the target and directly request the service.  

    The main data type for advertisement and discovery is the Agent Capability Table 

(ACT) and its basic structure consists of two parts, an agent identity and service 

information.  The process of the service advertisement and discovery corresponds to 

the maintenance and the look up of the ACTs. 

    The A4 hierarchy is scalable, however service discovery could be a long process 

especially if the request traverses through many other agents, which is time critical 

for applications that require resources on demand.  However this has been addressed 

by the A4 project through the use of two kinds of ACTs a local (L_ACT) and global 

(G_ACT).  Every agent has one L_ACT which stores information about other agents 

registered with it.  The G_ACT is a copy of its upper agent’s L_ACT.  Thus an 

agent can have more information of services which allows it to contact them directly 

without submitting the request to the upper agent.  However this creates additional 

data maintenance workload.  Further, Grid resources’ status can alter frequently 

which would also require the agents to correspond to the changes.  This could be a 

strain on the system to populate all the concerned agents with the new information.   

2.4.2 Classified Advertisements (ClassAds) 

ClassAds [8, 83] are part of Condor, a descriptive language for advertising and 

acquiring resources.  They are generated in the form of property lists constructed as 

attributes that are used to structure a description.  ClassAds have a framework that is 

based on matchmaking, where entities, a resource provider or a resource requester 

(consumer), advertise their characteristics and needs through the use of ClassAds.  

The advertising process is shown in Figure 2.11 and is explained below:   

 

1) The provider and consumer send their ClassAds description to the      

Matchmaker. 

2) The Matchmaker then invokes an algorithm by which matches are identified. 
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3) To perform the match, the Matchmaker evaluates the expressions in an       

environment that allows each ClassAd to access attributes of the other.  Once 

the matching phase is complete the Matchmaker notifies the two parties that 

were matched and sends them the details. 

4) The consumer then contacts the provider directly using a claiming protocol 

to establish a working relationship with the provider. 

Matchmaker 
Matching algorithm (2)

Entry 
(Provider)

Entry 
(Requester)

Advertisement (1)Advertisement (1)

Claiming (4)

Match 

notification (3)

Match 

notification (3)

 

Figure 2.11: The process involved in matching a resource provider to a 

resource requester through ClassAds [8]. 

 

    It is important to note that a match does not immediately grant the service to the 

consumer.  Rather the match is a mutual introduction to the advertising entities.  

Further the state of a resource may be continuously changing and there is a 

possibility that the Matchmaker establishes a relationship with a stale advertisement.  

Thus the consumer will still have to further verify the state of the resource before 

committing to it.   

      The ClassAds libraries are available as a separate stand-alone package for use in 

applications other than Condor.  Thus ClassAds are used in Grid projects such as the 

European Data Grid (EDG) [54].  However the EDG only employ ClassAds as a 

user job resource description language but use the Globus Monitoring and Discovery 

System [33, 34, 50] (MDS) to gather information about resources.   

    For time critical applications the Matchmaker framework may not be satisfactory 

as the consumer’s request is dependent on the Matchmaker.  The Matchmaker in 

turn is dependent on a resource provider to publish its information to it.  This could 

end up in the consumer’s request waiting indefinitely without knowing if there are 

any resources to handle the job. 
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2.4.3 Network Weather Service 

The Network Weather Service [77, 78] (NWS) is a system that periodically monitors 

and dynamically produces short-term resource forecasts based on historical 

performance measures.  It operates a set of performance sensors, mainly for CPU 

and network resources, from which it gathers readings of regular instantaneous 

status conditions.  It then uses numerical models to generate future forecasts of what 

the conditions will be for a given timeframe for those resources.   

    The NWS is built on four different component processes that enable it to provide 

the forecasts, which are listed below: 

 

• Persistent State process: stores and retrieves periodic performance 

measurements from a persistent storage for a particular resource. 

• Name Server process: creates a directory that provides information 

about the location of all hosts on the system and their associated 

persistent storage.  

• Sensor process: gathers periodic performance measures from a specified 

resource.  

• Forecaster process: generates a predicted performance value for a 

particular timeframe of a specified resource.  It accomplishes this by 

contacting the name server to learn the location of the persistent storage 

for the desired resource.  It then retrieves the information and applies 

time-series models to deliver forecast to the client. 

 

Figure  2.12: The NWS component shown across three workstations [77]. 
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    In Figure 2.12 the NWS processes are shown across three workstations.  The 

Name Server resides on only one host in the system.  The sensors monitor the 

performance of the network and processors which then store their measurements in 

the persistence state repository.  The forecast, which also resides on a single host on 

the system, acts as a proxy for clients who want to query the state of a resource over 

a period of time.   

    Overall the NWS provides predicted performance forecasts for mainly CPUs and 

networks resources.  However it does not provide the current state of a resource for 

applications that would like to schedule their jobs during that time of querying the 

resources.  Further, depending on the level of sampling the sensors carry out this can 

be intensive on the resource, consuming resource power and affecting the resource’s 

overall performance. 

2.4.4 Monitoring and Discovery System (MDS) 

The Monitoring and Discovery System [33, 34, 50], (MDS) formally known as 

Metacomputing Directory Service is part of the Globus toolkit and used to provide 

the Grid information service.   It bestows a standard mechanism for publishing, 

discovering and accessing information about the state of computational Grid 

resources.  It is decentralised and hierarchical in structure allowing it to be scalable.  

It also handles both static and dynamic data. 

    The MDS consists of three main components as shown in Figure 2.13.  An 

Information Provider (IP), Grid Resource Information Service (GRIS) and a Grid 

Index Information Service (GIIS).  The IP in this context represents an interface for 

any data collection service that gathers information about a particular aspect of a 

resource such as disk capacity, RAM memory or CPU load.  This information is 

then passed onto the GRIS that deposits and displays the information as entries.  The 

GRIS is a distributed information service than can answer queries about a particular 

resource by directing the query to the underlying IP.  Conversely a GIIS combines 

arbitrary GRIS services to offer a coherent system image that can be explored or 

searched by a Grid client.  It provides the mechanism for identifying resources of a 

particular interest.  For example it could list all the computational resources 

available within a particular research consortium.  A Grid client can access either the 

GRIS or GIIS directly depending on the type of retrieval information that is desired.  
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The Framework for both the GRIS and the GIIS is implemented based on standard 

APIs defined by the Lightweight Directory Access Protocol (LDAP) [50].   

 

 

Figure 2.13: MDS architecture. 

    

    The MDS can restrict access to certain users by using the Globus GSI to 

authenticate the authorisation of any queries.  It supports both cached information, 

which is usually out of date and non-cached information which retrieves resource 

information when queried.  It supports this facility by the attribute called Time-To-

Live (TTL) which is used in both the GRIS and GIIS.  A TTL of 0 indicates that 

resource information associated to this attribute cannot be cached.  A positive TTL 

value determines the amount of time that the information for a resource is allowed to 

be provided out of the cache before the information is updated.   

    The MDS is widely used in the Grid community such as in many e-Science 

projects and the brokering architectures mentioned in section 2.3.  However default 

installation provides limited dynamic information such as a lack of local resource 

management queueing details.  Nevertheless it allows for such information to be 

integrated into its system. 

2.5 Resource Reservation 

Resource reservation [84] is the process of securing resources prior to submitting a 

job to those resources.  This would guarantee the resources reserved for the job are 

available for utilisation when the job is ready for execution. 
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    To date resource reservation is still a developing area in the Grid with two well-

known systems namely Globus Architecture for Reservation and Allocation 

(GARA) [85, 86] and Maui [12], which are described in this section.  

 2.5.1 Globus Architecture for Reservation and 

Allocation (GARA)  

The Globus Architecture for Reservation and Allocation (GARA) [85, 86] is a 

system built on mechanisms provided by the Globus toolkit.  Specifically it uses the 

GSI (Globus Security Infrastructure) for its security and GRAM as part of its 

resource management [7].  It is a layered architecture that has a single unified 

interface to communicate with diverse underlying resources but has been shown to 

work for CPU and network bandwidth.  The interface is the same to reserve any type 

of resources, however GARA only allows for a single resource to be specified per 

description.  For example a client can make a reservation for CPU or network 

bandwidth, if both are needed the client needs to make two separate requests with 

two separate descriptions.  The reservation descriptions are made through the use of 

Globus RSLs. 

    The GARA architecture, illustrated in Figure 2.14, is made up of four layers.  The 

high-level layer is an interface for the user to describe the applications requirements 

and what resources are needed.  The GARA layer allows reservation requests to be 

described in a unified way and uses a data structure called a handler to communicate 

with local or remote LRAM (Local Reservation and Allocation Managers).  The 

LRAM incorporate GRAM facilities to authenticate and authorise users before 

reservation is allowed.  LRAM are also responsible for translating all incoming 

requests, so that they can be presented to the actual resource manager which 

provides the reservation.  The resource managers in the resource manager layer are 

responsible for enforcing the reservation by communicating with the lower level 

resources such as CPUs.  Even though GARA may seem ideal for reserving 

resources, as it supports both immediate and advance reservation, it depends on the 

local resource manager to support this facility.  Consequently not all local resource 

manager systems support reservation which is why GARA has become obsolete and 

out of commission. 
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Figure  2.14: The GARA framework (Adopted from [87]). 

 

2.5.2 Maui 

Maui [12] is an external local resource manager, meaning it works in conjunction 

with a site’s existing resource manager.  It operates with all major local resource 

managers such as SGE, PBS, LSF and LoadLeveler to extend their capabilities and 

enhance their scheduling effectiveness.   

    Maui has received much attention in the Grid due to advance reservation 

capabilities that it supports.  In general it allows a site to set aside a block of 

resources for various purposes such as cluster maintenance, special group projects or 

individual user jobs.  Reservation is made through the use of resource expressions 

which indicate both resource quantity and type conditions which must be met by 

resources to be considered for inclusion in the reservation.  The reservation can be 

configured to support revocable or irrevocable allocation.  With irrevocable 

reservation the resources will be available at the required time regardless of existing 

or future workloads.  However if revocable reservation is chosen the reservation 

would be released if a higher priority request arrives after the allocation.   

    Maui provides its services by exclusively controlling the site’s local resource 

managers as it controls and dominates the scheduling.  It only offers advance 

reservation and not immediate reservation.   
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2.6 Summary  

This chapter sets the context of the thesis by firstly presenting Grid resource 

management and how it differs from the traditional distributed systems.  It also 

looked at the de facto Grid resource management middleware toolkit namely Globus 

and the services it provides.  Then an overview of Grid projects was provided, this 

then led the DAME XTO application and a description into how aircraft engine data 

is analysed.  A survey of Grid resource brokers was discussed with their 

architectures and the facilities they support.  This was followed by an overview of a 

broad set of information providers describing how they operate and the type of 

information they support such as static, dynamic or a combination of both.  Finally 

the chapter ended with the two well-known resource reservation systems (GARA 

and Maui) and how they interact with the resources.  The chapter provides the 

necessary conceptual foundation of the whole thesis.   
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Chapter 3 

Grid Resource Broker Architecture 

using the Three-phase Commit 

Protocol  

In this chapter an overview of the process of submitting a job directly to a local 

scheduler (the common approach in distributed systems) and through the Grid will 

be discussed in Section 3.1  This is to highlight the need and importance for a Grid 

resource broker to insulate the user from the Grid middleware complexities.  It will 

then be followed by a review of current Service Level Agreements (SLA) on the 

Grid in Section 3.2, with a discussion of the SNAP (Service Negotiation and 

Acquisition Protocol) framework [10].  Section 3.3 will describe the SNAP-based 

Grid resource broker architecture with its components.  This is then followed by the 

need to secure resources in Section 3.4 describing the two-phase commit protocol, 

which will lead to an enhanced version namely the three-phase commit protocol that 

reserves resources on demand. Finally Section 3.5 summarises the chapter. 

3.1 Overview of Job Submission 

A description of the stages for submitting a simple batch job directly to a local 

scheduler (the common approach used in distributed systems) and the submission of 

the same job through the Grid will be explained in Section 3.1.1 and 3.1.2 

respectively.  This is to highlight the significance of the need for a resource broker 

and outline the processes it encapsulates to insulate the user from the Grid 

middleware complexities.   

    There are many types of Grid jobs ranging from parameterised, interactive, batch, 

and MPI (Message Passing Interface) just to name a few.  However for this research 

batch jobs are used, which are the type handled in the DAME (Distributed 

Maintenance Aircraft Engineering) project [9] as explained in Section 2.2.  This 
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research uses SGE 5.3 (Sun Grid Engine) [19] for its local scheduler and Globus 2.4 

[2, 3] as the Grid middleware toolkit.  A simple batch job that requires to be 

executed at a single queue associated to a CPU will be used to demonstrate the 

process of submission, firstly directly to SGE and then to the same queue through 

the Globus Grid middleware toolkit.  The batch job used in this example for 

simplicity and ease of explanation requires to run for a duration of one hour and 

calculates a list of factorial numbers.  The example will illustrate the differences in 

submitting a job and the importance of a Grid resource broker. 

3.1.1 Job Submission Directly to a Local 

Distributed Scheduler  

Submitting a batch job directly to a local distributed scheduler (in this case SGE) 

can be carried out by two different and simple methods.  However before these 

methods are explained in either case the user would have to describe his/her job 

through a SGE script.  The script usually consists of the run time duration, the 

directory location where the job’s executable files are stored and the location of any 

data the job depends on.  Further, in a distributed system the user is familiar with the 

architecture and its capabilities which simplify the process of job submission. 

    In the first method the user can submit his/her job directly to a selected queue of 

his/her choice for execution.  This is on the basis that the queue can handle the job 

which is determined by the execution run time duration stated in the job’s script.  

Before submitting the job the user can query the available queues to know their 

loads and decide upon a favourable choice. 

    The second method is to submit the job directly to the SGE scheduler.  In this 

method the job is sent to a spool area waiting for the SGE scheduling interval to 

allocate the job to a queue based on its description.   

3.1.2 The Process of Submitting a Grid Job 

The submission of the same batch job to a remote site on the Grid differs 

considerably from that explained in Section 3.1.1, even though the underlying 

system is the same i.e. the job would eventually be handled by the local scheduling 
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queue at the remote site.  However a Grid user would have to pass through several 

stages before being able to submit his job.  Further the user would have to know 

more information than just the queue load: such as storage capacity, architecture 

type, etc as the resources are governed by different administrators and have different 

specifications, which the user may not be familiar with.  Thus the submission of a 

Grid job for execution at a remote resource involves four main stages and these are 

described below: 

 

Stage 1:  Job requirements 

In this first stage a user needs to describe his/her job’s requirements such as 

the hardware platform operating system, number of CPUs with preference of 

type and speed, minimum RAM and disk space, etc.  Other issues include the 

execution start time and its duration, the location of both the executables and 

any data the job depends on.  This stage is pivotal as it will influence the 

following stages, determining where the job will eventually be submitted for 

execution. 

 

Stage 2:  Resource Discovery 

After the job requirement has been specified the first step in this stage is to 

identify a list of resources for which the user has the credentials for their 

utilisation.  This step filters out the implicit constraints; a job will not run at a 

resource if submitted without the user having the authorisation.  The most 

common solution is to keep a record of which resources a user is entitled to 

use; this is simply achieved by having a list of account names, resources and 

passwords written down in a log [68] and kept secure.  This method has 

problems as it requires the user to manually process the filtering of the 

resources that are appropriate for a job, which suffers from fault tolerance as 

the list can be long and it can be a tedious task.   

    The second step is eliminating the resources from the list generated in the 

previous step that do not meet the job’s minimum requirement constraints, 

specified in Stage 1.  This process is not extensively mentioned in the literature 

but has credible benefits. It enhances efficiency in avoiding unnecessary 

processing associated with contacting resources that do not have the ability to 

handle the job’s requirements.   
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    The final step in this stage is to contact the information providers associated 

with those resources that the user has the credentials to use and are able to 

meet the job’s minimum requirements.  The purpose of contacting the 

information providers is to query the current state of those resources and report 

back to the requester allowing for a decision to be made as to where to submit 

the job.  The predominant information provider that is commonly used in the 

Grid community, as mentioned in Section 2.4.5, is the MDS which provides 

both static and limited dynamic information and is also used as part of this 

research.   

 

Stage 3:  Resource Selection 

Once all the queries have reported back from the information providers, the 

first step in this stage is to extrapolate and interpret the data returned, which is 

usually in the form of a list of attributes with corresponding values.  The 

second step is to evaluate the states of the resources and generate a list from 

those resources that are capable of handling the execution of the job.  The third 

step is to co-allocate the job across a set of chosen resources which satisfy the 

job’s requirements (that is if more than one resource is needed).  At this point 

the information provider, for the nominated resource (as only one is required 

for this example), could be contacted to confirm its status has not changed 

before submitting the job.  However a further option to guarantee that the 

resource will remain available for the job even after confirmation is to reserve 

the resource prior to submission.   

 

Stage 4:  Job Submission 

Once a resource has been selected for the job and reserved if necessary, the 

first step in this stage is to transfer any data files and executables to the remote 

resource.  The second step is to submit an RSL (Resource Specification 

Language), which provides the details on how to execute the job, which queue 

to use and which will also initiate the execution. 

    Overall submitting a job through the Grid, the user needs to have extensive 

knowledge on how to operate the various Grid technologies.  This ranges from 

querying the information provider to the creation and submission of the RSL.  

Conversely submitting the same job directly to a local distributed scheduler, a 
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user only creates a script describing the job and either allocates it to a specific 

queue or allows the scheduler to handle the allocation. 

3.2 Grid Service Level Agreements 

Grid computing has relied on “best effort” as a guiding principle of operation [88].  

However users require some form of commitment and assurances on top of the 

allocated resources, which is sometimes referred to as Quality of Service.  

Commitments and assurances are implemented through the use of Service Level 

Agreements (SLAs) which ensures Grid applications’ job requirements are met.  

SLAs are  bilateral agreements which define a mutual understanding and establishes 

assurances, setting expectations and obligation relating to a service that a provider 

will supply a user [89].  Further, SLAs allow a service provider to differentiate itself 

from its competitors and will obligate it to achieve its promises to the user.  

According to the vision of the European Commission [90], SLA technology will be 

of central importance in building robust next generation Grids. 

    There have been a number of attempts at defining SLAs and management 

architectures for both Web and Grid management.  Architectures from Sahai et al 

[88], Leff et al [91] and Dinesh et al [92] concentrate on SLAs within commercial 

Grids. The service language used is that presented by Ludwig et al [93].  The Global 

Grid Forum (GGF) has defined WS-Agreements [94]; an agreement-based Grid 

service management specification designed to support Grid service based on the 

Open Grid Service Architecture (OGSA) [49].  Two other related works are 

automated SLA monitoring for Web services [95] and analysis of service level 

agreement for Web services [96].  Contract negotiation within distributed systems 

has been the subject of research where business-to-business (B2B) service 

guarantees are needed [97, 98].  The mapping of natural language contracts into 

models suitable for contract automation [99] exist but has not been applied to the 

Grid environment, neither has it been applied as SLAs.  An approach for formally 

modelling e-Commerce [100] exists at a higher level than the research by Ludwig et 

al [93].  Further the GGF Grid Resource Allocation Agreement Protocol (GRAAP) 

Working Group [101] is interested in SLA terms for resource reservation, but has 

not yet put forward any design for what these SLAs should look like.   
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    What is required is a modular framework primarily focusing on the Grid and 

supports end-to-end SLA management [102]. A framework has been proposed by 

the pioneering researchers of Grid technology at the Argonne National Laboratory 

[45].  The framework is referred to as SNAP (Service Negotiation and Acquisition 

Protocol) [10] which is used for this research and is explained in the following 

section (Section 3.2.1). 

3.2.1 Service Negotiation and Acquisition Protocol 

Sharing resources in Grids is complicated, in that it requires the ability to bridge the 

differing policy requirements of the resource owners, in order to create a consistent 

cross-organisational policy domain that delivers the necessary capability to the end 

user, while respecting the policy requirements of the resource owner.  Further 

complicating the management of Grid resources is the fact that Grid jobs often 

require the concurrent allocation of multiple resources.  This need for simultaneous 

resource usage necessitates a structured framework in which resources can be co-

ordinated across administrative domains. 

        Early work on resource management in networks and Grids has led to the 

development of a range of management abstractions and interfaces specialised to the 

different classes of entities that need to be managed. For example, integrated [103] 

and differentiated services [104] have been developed for networks, a Grid Resource 

Allocation Manager (GRAM) for computational resources [3] and Storage Resource 

Manager (SRM) functions for storage [105].  However, these domain-specific 

approaches become increasingly inappropriate as more sophisticated application, 

demand increased levels of control of the resources. 

    While common, interoperable mechanisms are a necessary basis for Grid resource 

management, addressing these issues of “plumbing” is not sufficient. Even with 

standardised interfaces, the fact that different organisations operate their resources 

under different policies is a significant impediment to being able to use Grid enabled 

resources.  The user needs to understand and effect resource behaviour, often 

requiring assurances or guarantees on the level and type of service being provided 

by the resources.  Conversely the resource owner wants to maintain local control and 

discretion over how the resource can be used.  Not only does the owner want to 

control usage policy, he/she often wants to restrict how much policy information is 
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exposed to the user.  A common means for reconciling these two competing 

demands is through the use of SLAs.  Thus there is a need for a management 

framework that can be applied to a range of resources and services in a uniform 

fashion, which supports mechanisms by which agreements between interested 

parties can be established and asserted through the use of SLAs to gain mutual 

understanding and assurances. 

    The Service Negotiation and Acquisition Protocol (SNAP) [10] framework 

addresses the issues covered above in this section.  Hence SNAP is motivated by the 

requirements in a Grid environment to reconcile the needs of the user with those of 

the resource providers through the use of SLA.  The user’s requirements are 

examined and resource providers that can support such requirements are identified.  

An agreement between the user and the provider is established to ensure that the 

user’s application job will be performed and the specified requirements met.  Note 

that the use of an SLA also ensures that the user knows what the resources can be 

expected to deliver without necessarily requiring any detailed knowledge of local 

resource provider policies, which the resource provider may not be willing to share.  

SNAP further addresses the issue that multiple resources owned by different 

providers may be required by a single application job and a single SLA across 

multiple sites may not be possible.  SNAP solves this problem by decomposing 

management functions into different types of SLAs that can be composed 

incrementally, allowing for co-ordinated management across the desired resources, 

which is achieved through a layered formation.  Also note that in this research a 

Grid resource broker (which is described in Section 3.2.2) is used within the SNAP 

framework with an architecture overview of the broker depicted in Figure 3.1.  The 

SNAP’s layered framework is described below: 

 

• The first layer is the Task Service Level Agreement (TSLA) in which a 

user provides a specification of his/her job requirements.  These 

requirements may include the architecture type, operating system and 

version, number of CPUs with their description (speed and version), 

RAM size and storage capacity.  The requirements are communicated to 

the broker for processing through an interface such as a Grid portal that 

forwards the user’s description to the second layer.  Hence the TSLA 

ascertains the user’s job requirements which will influence the 
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proceeding layers and dictate the type of resources chosen for the user’s 

application job.  

• The second layer is the Resource Service Level Agreement (RSLA).  

This relates to resource discovery, decision-making on the appropriate 

resources that have the capability to meet the job’s needs and ensuring 

the resources are available for utilisation.  This also includes 

acknowledging any policy restrictions such as the user’s privilege to use 

a resource, which is shown in Figure 3.1 by an arrow labelled “Policies” 

pointing to the broker.  

• The third layer is the Binding Service Level Agreement (BSLA), which 

associates the job to the resources and initiates the execution of the job at 

the resources. 

 

 

 

 

 

 

 

 

Figure  3.1:  An overview of the SNAP-based resource broker. 

 

    It is important to state that, in this research and in the SNAP framework, the term 

“negotiate” is used conceptually, without the use of recursively refining and 

bargaining on agreements.  Thus the method of acquiring and gaining resources for a 

job is conducted by finding resources that match the resource description attributes 

provided by the user with those that are advertised by a resource provider. This 

forms the basis for accepting or rejecting a resource during the selection process as 

to where to submit the job as well as any assurances specified by the provider, such 

as the job will not be interrupted during its execution.  An analogy to this form of 

acquiring resources is for example buying an electrical item such as a laptop.  The 

customer knows the type and specification of the laptop he/she would like to 
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purchase i.e. screen size and resolution, processor type and speed, graphics card 

memory, etc.  The customer would then explore what is on offer at the various stores 

and what type of warranty (assurance) is provided by the vendor such as one or two 

years on site service.  Having explored the various deals the customer would select 

the most favourable offer from one of the stores.  Conversely the other approach 

would be to have a custom built laptop, which would involve bargaining what 

features should be included.  In contrast it is inevitable that the latter would take 

longer than the previous approach to obtain the merchandise as it is not ready to 

purchase off the shelf.   

    Due to the nature of real time applications such as that in the DAME project it is 

necessary to obtain resources with minimum time and to avoid potentially 

unbounded periods of time where negotiation involves recursive refinement of 

agreements.   

    Additionally as shown in Figure 3.1, the architecture facilitates mechanisms to 

monitor the progress of jobs, which has been incorporated into the broker [106], in 

order to ensure agreements are honoured and not violated.  However this is out of 

the scope of this thesis.   

    Overall the SNAP framework is an appropriate method in the design and 

implementation of a user-centric resource broker, since it provides the means to 

acquire resources that meet the user’s job requirements through the decomposition 

of SLAs in a layered formation.  Further, SNAP can also be mapped onto a range of 

existing local resource managers, to deploy its beneficial capabilities without 

requiring wholesale replacement of existing infrastructures.   
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3.3 SNAP-based Grid Resource Broker 

Architecture 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure  3.2: A Grid resource broker architecture within the SNAP framework. 

 

As outlined in Section 3.1.2 the process of submitting a Grid job is a long and 

tedious task, requiring substantial knowledge in how the various mechanisms of the 
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adhere to the user’s resource requirements and to insulate the user from the Grid 

middleware complexities.  Further, it also serves to alleviate the user from the 

burden of having to know the various processes and intricacies of the Grid.  As yet 

there is no single broker system that fully caters for these aspects or the job 

submission stages outlined in Section 3.1.2, where the user can provide the job’s 

resource requirements and for the brokering system to handle the various stages of 

discovering, filtering, nominating and submitting the job to the resources without 

exposing the user to the Grid middleware.   
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    With the current brokering systems, such as those outlined in Section 2.3, the user 

needs to interact with the Grid middleware even after the job requirements are 

provided to the broker.  For example Nimrod/G [5, 69] requires a user to create a 

task farm (plan) through the use of its declarative parametric modelling language 

before a job is passed for processing.  Hence it does not provide automated resource 

discovery, a list of resources in the form of Globus Gatekeeper contact strings need 

to be set up manually by the user before brokering takes place.  This is also the case 

with the Grid Broker [76], in that it does not provide automated resource discovery.  

Furthermore in this system the decision making process is left to the user as to 

where to submit a job without the system verifying if the resources are available for 

use.  With Condor/G [74] again the user needs to query the information providers 

manually and needs to write the RSL for the job to be executed at the appropriate 

resources.  As for AppLeS [79-81]  in order for a user to submit a job using this 

system, the user’s job application source code needs to be modified and recompiled 

or filtered through a template (see Section 2.3.5 for further details) to be compliant 

with the AppLeS scheduling agents.  Once this time consuming process is complete, 

the user is still required to provide an input, stating a list of resources’ contact details 

that the user has the credentials to utilise, to enable the broker to query the 

resources’ status.   

   The broker architecture that has been developed in this research and is also used 

by the DAME (Distributed Maintenance Aircraft Engineering) project [9] is shown 

in Figure 3.2, which is a user-centric resource broker that is based on the SNAP 

framework and hence is given the name SNAP-based Grid resource broker.  The 

SNAP-based Grid resource broker differs from the current existing Grid resource 

brokering systems that have been mentioned in Section 2.3.  It is distinguished from 

the rest in that it insulates the user from the Gird middleware by automating the 

process from the point of receiving the user’s resource requirements right through to 

the submission for execution at the appropriate resources.   

    The SNAP-based Grid resource broker is used to submit DAME XTO (eXtract 

Tracked Order) applications.  The number of resources required by an XTO 

application job varies, as it corresponds to the amount of control files that need to be 

processed.  In the simple case scenario (which is used for illustration purposes and 

to simplify the understanding) 10 resources are required, with the resource 

specification listed in Table 3.1. 
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Specification Details 

Job Type XTO 

CPU type Intel 

Minimum CPU Speed 1.4 Ghz 

CPU count 10 

Minimum RAM 256 Mbytes 

Minimum storage capacity 2 Gbytes 

Operating system type Linux 

Operating system version 2.4 

Directory for the input files  “/home/cserv1_a/pg/mhh/XTO/Control10_files/” 

Start time Instantly (minimum time possible) 

Duration  60 minutes 

 

Table  3.1: The resource requirements for an XTO job application. 

 

    The resource requirements are provided to the broker through a portal [107], 

which is a web based user interface.  The interface as shown in Figure 3.2 denotes 

the TSLA part of the SNAP framework as it obtains the requirements for the job 

which will traverse through the architecture to ensure any resources acquired follow 

these criteria.  The remainder of the SNAP-base Grid broker architecture 

components are described in the following subsections (Sections 3.3.1 – 3.3.5).  

3.3.1 Knowledge Bank  

The second layer of the SNAP framework (RSLA) incorporates a Matchmaker, 

which is supplied with the job’s requirements in the form of attribute strings 

ascertained through the user interface.  The Matchmaker serves as a component that 

translates the user’s job requirements into a Structured Query Language (SQL) 

statement prior to contacting the Knowledge Bank (KB).  The KB is a data 

repository holding static information on each of the resourcea a user is entitled to 

access and is stored in a MySQL database [108].  The information returned to the 

Matchmaker after querying the KB is a list of resources that meet the user’s resource 

requirements and which the user is entitled to use. 
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    The information stored in the KB as attributes include the CPUs type and speed, 

the operating system, memory, storage capacity, etc.  The relationship tables that are 

used in the KB are shown in Appendix A.  Additional attributes are also used to 

keep a history of past performance behaviour of a resource.  Relating to the latter, 

resources are classified as low/high priority according to whether they meet a pre-

defined level of performance, at present it is based on reliability, i.e. the likelihood 

of a resource crashing during the execution of a job. For example if a resource often 

crashes, it is likely to be classified as low priority.   

    The KB is a significant component in the SNAP-based Grid broker architecture 

when compared to current brokering architectures such as those mentioned in 

Section 2.3, as it helps in several ways:  

 

• To facilitate the broker to filter out all resources that could handle the 

job’s requirements prior to contact, to enhance efficiency in avoiding 

unnecessary processing of resource contact. 

• To alleviate the user from the burden of keeping a log of the resources 

with their attributes and manually farming the task before contacting the 

broker such as the  case in Nimrod/G [5, 69]. 

• To facilitate the broker in supporting automated discovery of a resource’s 

dynamic status.  Currently this is not supported by any Grid resource 

brokers without the intervention of the user. 

• To store a history profile of past performance of resources, to enable the 

broker to differentiate and categorise resources into different levels. 

• Further an analogy to the KB is a telephone directory where information 

stored directs to a particular service that caters for a user’s requirements. 

    

 The KB is developed to support the concept of having such a component provide 

the benefits outlined above.   However more significantly it supports the RSLA in 

the SNAP framework to discover resources suitable for the user’s job requirements 

since there has been no mechanism proposed for this process, apart from the 

mundane manual method.    
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    Initially all records are manually entered into the KB by an operator, which is the 

case in most data repository systems [109].  Therefore there are issues of how the 

KB should be updated and how frequently, as well as what defines the value of the 

history profile attributes and what further attributes could be included to provide an 

enhanced description of the past performance of a resource.  All these issues are 

beyond the scope of this thesis as the KB was primarily developed to show its 

significance and to absorb its benefits.  However there are several suggestions how 

these issues can be addressed: 

 

• How the KB could be updated and how frequently:  The static 

information of Grid resources rarely changes.  For example the CPU 

speed, storage capacity, etc are usually upgraded after a year or longer.  

Updating the static attributes that specify the description of the resources 

in the KB could be achieved by requesting the information provider or its 

administrator to inform the KB when an upgrade does occur.  Another 

option could be when the Resource Gatherer (which is described in 

Section 3.3.3) queries the information provider to gain the resource’s 

current dynamic status, it may also update the KB of any changes it has 

detected concerning the resources static attributes.  Alternatively the KB 

could query all resources known to it periodically, for example once a 

week, during off peak times (e.g. overnight) to inspect whether there are 

any changes that need to be acknowledged.  Even though the changes in 

the static information of a resource occurs after a long period of time, 

when it actually occurs may be unknown, which is why the one week 

period has been suggested. 

• What defines the history profile attribute: The history profile attribute 

is designed with the thought of storing information concerning whether a 

resource is likely to crash during an execution of a job.  This will help 

determine if it is reliable.  At present the attribute called 

Mean_history_profile in Table A.3 (Appendix A) stores the mean values 

of either 1 or 0, where 1 represents reliable and 0 unfavourable.  The 

Mean_history_profile is derived from the attributes Num_crashed_jobs 

and Num_uncrashed_jobs (also shown in Table A.3), which store the 

frequency of the number of crashed and uncrashed jobs during execution 
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in these attributes respectively.  However this value is inputted when a 

resource is entered into the KB based on what is known about the 

resource from past experience.  The values in these three attributes are 

required to be updated after each job run for any given resource, as they 

will determine the reliability of the resource during run time. 

• Other possible history profile attributes:  There are a number of possible 

attributes that could be included into the KB.  This inevitably would 

assist the Decision maker (described in Section 3.3.4) to compose a 

better prediction and judgement of a resource in terms of its performance 

and behaviour.  The attributes that could be included are whether a job 

would be interrupted or suspended during execution, would a job 

complete on time and does a resource degrade in performance during run 

time. 

 

    The Condor’s Matchmaker [8, 83] described in Section 2.4.2, may seem to 

resemble the KB in performing a match between the user’s resource requirement and 

a resource description.  However the Condor Matchmaker differs as it depends on 

the resource provider to advertise its resource description through the use of 

ClassAds, before a match can take place between a resource and a user’s resource 

requirement (which also needs to be in the form of ClassAds).  This means the 

resource provider is inclined to support ClassAds and needs to generate a new 

advertisement when it next becomes unoccupied.  Further the Condor Matchmaker 

has no notion of a resource’s past history performance. 

3.3.2 Decision Maker 

Once the information is received by the Matchmaker from the KB, it is forwarded to 

the Decision Maker, which is also part of the RSLA.  The Decision Maker evaluates 

the information and categorises the potential resources into two categories by 

tagging them as either blue or white.  This corresponds to their significance, i.e. that 

some resources are reliable and valuable (blue) while others are acceptable (white).  

The tagging is based on their history profile and if the Mean_history_profile 

attribute is in favour of the resource it is tagged with blue otherwise with white.  An 



 

 55 

analogy to this labelling classification is in the network industry where differentiated 

services [104] are used to prioritise IP packets.   

    At present in the context of Grid resource brokering architectures there is no 

component that provides the functionality of the Decision Maker, pre-processing the 

resources into different categories.  This helps in many ways such as providing a 

prediction of the resources behaviour based on their categorisation. It also aids the 

Co-allocator (Section 3.3.4) to select the resources to accommodate for the job based 

on their categorisation. 

 3.3.3 Resource Gatherer  

The Resource Gatherer, which is also part of the RSLA, contacts the information 

providers on all the candidate resources passed to it by the Decision Maker 

(described in Section 3.3.2).  This is to query the information providers for each of 

the resources to gather dynamic information on their status.  The dynamic 

information that is gathered includes whether the resources are available or 

occupied, number of jobs in the pending queue and the load of the resource.   

    The Information Provider that is used in this research is the Monitoring and 

Discovery System (MDS) [33, 34, 50].  It has been chosen in comparison to those 

discussed in Section 2.4, as it is widely used in the Grid community, for example in 

many e-Science projects [46], the European Data Grid (EDG) [54], and it is also part 

of the Globus toolkit [2, 3] which is the predominant Grid middleware.   Further, it 

supplies both dynamic and static information in relation to the resources, it also 

facilitates the extension and inclusion of additional dynamic information which is 

provided by the default installation, such as the retrieval of local resource 

management queues.  The ClassAds [8, 83] resource discovery was not adopted, as 

it relies on several dependencies and can cause indefinite delay in forming a match 

between the user requirements and a resource as discussed in Section 2.4.2.  The 

Network Weather Service (NWS) [77, 78] focuses on disseminating performance 

predictions, based on recent events in relation to the time when it was queried and 

does not provide the current status of a resource (see Section 2.4.3 for further 

details).  Finally the A4 agent based hierarchical approach to resource discovery 

(discussed in Section 2.4.1) is scalable.  However a discovery could be a long 
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process especially if the request traverses through many other agents, which is time 

critical for applications that require resources on demand. 

3.3.4 Co-allocator  

It is often the case that a Grid application job requires multiple resources to be 

allocated simultaneously as with the DAME XTO (further examples are those 

mentioned in Section 2.2).  The multiple allocation is handled by a co-allocator [6] 

and its role is to select the most appropriate and available resources for the job.  The 

allocation of the resources may be performed immediately or in the future, 

depending on the need of the application job.  For example a real time application 

job such as DAME XTO requires resources on demand.  Conversely non critical 

time application jobs such as those for the Grid Particle Physics simulation [110], 

can be scheduled in advance as they are not bound to any time critical schedule. 

    Providing assurances for the execution start time of a job is attained through 

reservation and application jobs such as those for the Grid Particle Physics 

simulation simplify the process of co-allocation as it can be planned in advance.  

Further there are several mechanisms available that can help advance reservation 

and co-allocation namely GARA (Globus Architecture for Reservation and 

Allocation) [85, 86] and  Maui [12], even though they have their limitations as 

mentioned in Section 2.5.  However immediate reservation complicates the co-

allocation as the resources have to be secured on demand with limited time.  

Different forms for immediate co-allocation and reservation are listed below:  

 

• Acquire surplus resources than that required by the user’s job in case the 

reservation is unsuccessful on some resources. However the Grid is 

moving into an economically driven infrastructure [69, 111] where 

resources would be leased in exchange for money [112-114].  Adopting 

this approach would severely drain an organisation or an individual 

budget wastefully on resources that are not required by the job but have 

been reserved as an extra provision. 

• Secure at least N out of M requested resources [1] (where N is less than 

M) for the user’s job and then gradually assign more resources over time.  

This is adequate for non real time application jobs and where the 
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outcome of the job does not impact on subsequent procedures after its 

completion.  However this is not acceptable when all resources are 

needed in order for the job to begin execution.  For example in a 

visualisation application where both computational and rendering 

resources are required, the job cannot begin without the complete set of 

those resources requested.  Further, other application jobs like DAME 

require all resources to be available simultaneously and the outcome of 

the job is expected to be delivered under constraint time as it will have an 

impact on subsequent procedures.  

• Secure only the necessary and correct number of resources for the job.  

This would enable the simultaneous execution of the entire job and 

without wastefully using unnecessary resources.   Hence this is the 

approach adopted by this research. 

 

    The process of nominating resources during co-allocation is also part of the RSLA 

and is based on those resources that are unoccupied.  The Co-allocator first 

prioritises its selection by choosing resources that have a good history profile, which 

were tagged as blue by the Decision Maker.  If there are insufficient blue tagged 

resources to handle the job it moves on to the less prominent resources which were 

tagged as white until the correct number of resources have been reached for the job.  

Once it has selected the resources to handle the job it secures them for utilisation 

through the use of immediate reservation.  Note that the Co-allocator does not need 

to evaluate the resources based on whether they have the appropriate hardware 

specification to handle the application job’s requirements as this has already been 

dealt with by the KB prior to contacting the resources.   

    However in the worst case scenario where insufficient resources are available, the 

application job will not be able to run.  The user is informed of the situation and the 

broker responds based on the feedback from the user, for example the user could 

request the broker to wait until there are sufficient resources or to abort the task. 
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3.3.5 Dispatcher  

Once the resources are secured the final procedure, which is part of the BSLA is 

carried out by the Dispatcher, which binds the job to the resources.  The Dispatcher 

firstly generates the appropriate RSL (Resource Specification Language) for the 

nominated resources.  It then transfers any data files that the job depends on for it to 

be processing with any execution scripts.  This is then followed by the initiation of 

the job through the submission of the RSLs which in turn begins to run the 

application job.   

3.4 Securing Resources 

Local resource management systems are centralised and all resources are governed 

under a single administrator.  However the Grid needs to cater for multiple users 

from different sites, who may potentially be interested in the same resource, without 

each other's knowledge of their existence or interests [6, 7]. Thus, as indicated in 

Section 3.3.4, once resources have been nominated for utilisation, the Co-allocator 

then needs to secure the resources through immediate reservation.  This process is 

complicated on the Grid not only by the time constraints but also with the resources 

spread over several domains and the potential third party users who may be 

interested in the resources nominated by the broker.  The current approach adopted 

for resources on demand in the Grid is the two-phase commit protocol [115].  This 

protocol is not related to that which has the same name used for example in 

databases [116, 117].  The steps for the Grid two-phase commit protocol are 

explicitly described below: 

 

1) Identify resources appropriate for running the application job and secure 

(reserve) the chosen resources.  This is part of the RSLA in the SNAP 

framework. 

2) Submit the application job for execution.  This is part of the BSLA in the 

SNAP framework. 
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    In the remainder of the thesis a broker following this protocol, without the 

additional enhancements discussed in Section 3.4.2, is referred to as a simple SNAP 

broker. Section 3.4.1 outlines, by means of a scenario, the need for a more 

sophisticated approach that will lead to the description of the proposed three-phase 

commit protocol solution in Section 3.4.2. 

3.4.1 Motivating Scenario 

Once resources have been secured, the simple SNAP broker can transfer any 

necessary data and submit the job for execution. However, as the following scenario 

illustrates, difficulties can arise in successfully securing resources. 

    Having received a user’s request to run an application job and details of its 

requirements, a resource broker probes various sites that encompass resources, 

which could cater for the user’s request.  The contacted resources return their current 

status at varying intervals [118, 119], as they are distributed and independent from 

each other.  At the point of receiving a response from all providers, the broker 

moves into a state of co-allocating the job based on the information gathered.  

Before submission of the job, the resources must be reserved. However time has 

elapsed since their last confirmation and other candidates (unknown to the broker) 

may have committed to some or all the resources it decided to use. If this occurs 

prior to reservation, alternative resources must be identified to replace those which 

are no longer available and the co-allocation process must be revisited. This process 

could repeat itself and could lead into an oscillation between the broker and the 

resources without a successful job submission. Even if the job is eventually 

submitted successfully, such a scenario could significantly delay the execution start 

time. 

    Note: in order to avoid deadlock if some resources that have been nominated to 

host the job fail during reservation then all resources for that specific attempt are 

released [43].  This does not only avoid deadlock but in an economic model it allows 

the Co-allocator to reassess the available resources and plan according to the budget 

available to the user. 
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3.4.2 Three-phase Commit Protocol 

The key problem highlighted by the scenario above (Section 3.4.1), is that 

information obtained about resources from their information provider may be out of 

date by the time the Co-allocator makes a decision as to where the job should run 

and proceeds to attempt to reserve the chosen resources. This problem arises, since 

the broker does not know if the status of a resource changes until it re-contacts its 

information provider.  An efficient solution will be to receive a signal from each 

resource if its status changes rather than needing to contact the information provider 

on each chosen resource. 

    The proposed protocol follows the two-phases of the simple SNAP broker, 

indicated in Section 3.4.  However the first phase is separated into two parts, to 

enhance the current two-phase commit protocol and strengthen it through the use of 

probes.  The probes are software sensors to enable rapid update of changes in the 

status of the resources that are under consideration for utilisation by the broker.   

Hence the name three-phase commitment protocol, with its phases listed below:  

 

1) Identify resources appropriate for running the application job (RSLA) and 

simultaneously initiate probes to provide rapid updates of the resources 

status.  

2) Secure (reserve) the chosen resources (RSLA). 

3) Submit the application job for execution (BSLA). 

 

    Specifically, when the Resource Gatherer (Section 3.3.3) queries the information 

providers on candidate resources, it simultaneously transmits probes to the 

resources, thereby entering into the first phase of the commitment.  The purpose of 

the probes is to enable the broker to be kept updated while waiting for all queries to 

return at their various times. This helps to reduce the likelihood of the oscillation 

situation outlined earlier as it provides a constant view for the broker of the 

resources’ status.  This allows the broker to remain up-to-date while the information 

providers report back to the broker. The approach of having the information 
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providers broadcast resource status is more efficient than having the broker 

repeatedly contacting the information providers for updates after the initial contact.   

  The probes are created by spawning a thread that connects to a server which is 

associated with the resources that are governed by a scheduler (in this research the 

scheduler used is SGE).  Currently the information provider, Monitoring and 

Discovery System (MDS) [33, 34, 50], provides information on request and does not 

broadcast the information.  The server has been developed to enhance the current 

system by providing this facility.   The information which is broadcast is not 

sensitive as it is that which can be retrieved when querying the information provider 

anonymously.  The information disseminated serves the purpose of informing the 

broker if the resources have been taken or those that were occupied have become 

available. The broadcast of the information has a low (almost negligible) overhead 

as it is a minor modification to SGE i.e. using the signals generated by SGE prolog 

and epilog facilities indicating the start and end of a job respectively.  The prolog 

and epilog facilities are provided by most schedulers such as PBS and LSF.   

    Once all information provider queries have reported back to the broker and 

updates from the probes are acknowledged, the information is forwarded to the Co-

allocator, which executes the second phase of the commitment, by nominating 

resources to handle the job.  It then informs the probes associated with the nominees 

to request the resource’s information provider to evolve into the amber state.  On 

such a request the information provider would reserve the resources and display the 

amber state to present an indication to any candidate interested in its use that it has 

entered a transition phase.  This indicates to another user that though the resource is 

not active, it is unavailable.   

    Other active probes are not destroyed until after the final phase has been 

completed as this facilitates the flexibility to use them if the second phase fails on 

some resources.   

    Once the resources are secured through the use of immediate reservation during 

the amber state, the third and final phase is executed by the Dispatcher which 

upgrades the resource’s status from the amber to the red state during the submission 

of the job to the resources.  This phase binds the job to the resources and their 

information provider signals to any incoming client that the resources are active and 

have been committed.  Figure 3.3 shows the evolution of the resources from being 

categorised by the broker to the final commitment stage.  The protocol ensures other 
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candidates interested in the same resources are aware of the resource’s status 

through its colour coded system.  Hence the three-phase commit SNAP broker is 

expected to provide a performance enhancement over the simple SNAP broker in 

terms of the time interval between submission (to the broker) of user requirements 

and the job beginning execution, as it avoid having to re-contact the resources’ 

information provider after the initial contact as it uses the probes for updates. 

 

 

 

 

 

 

 

 

 

Figure  3.3: Resources are categorised by the broker as either blue or white 

depending on priority.  Resources are then asked to evolve into amber for them 

to be secured and then into the final commitment stage (red state). 

 

3.5 Summary 

The chapter begins by providing an overview of submitting a batch job directly to a 

local scheduler, the approach commonly used in distributed systems then through 

the Grid.  This outlines the difficulties and the extensive knowledge a user requires 

in order to submit a job through the Grid.  It also highlights the need for a Grid 

resource broker to insulate the user from the Grid middleware complexities.  This is 

followed by a review of current Grid SLAs (Service Level Agreements) that leads 

on to the discussion of the SNAP (Service Negotiation and Acquisition Protocol) 

framework.  The SNAP’s three layers are described, namely TSLA, (Task Service 

Level Agreement) RSLA (Resource Service Level Agreement) and BSLA (Binding 

Service Level Agreement).  The chapter also describes the SNAP-based Grid 

resource broker architecture with its various components including the use of the 

Knowledge Bank that helps to automate the contact of resources.  Then the need to 

secure resources is discussed, with the use of the two-phase commit protocol.  A 
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White tagged 
resources 

Resources in 
the amber state 

Resources in 
the red state  
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scenario to state the need for a more sophisticated approach is presented and the 

chapter ended with a description of the three-phase commit protocol. 
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Chapter 4 

Performance Evaluation of the Three-

phase Commit Protocol 

In this chapter a performance evaluation of the SNAP-based (Service Negotiation 

and Acquisition Protocol) Grid resource broker using the three-phase commit 

protocol compared to the simple SNAP broker (both described in Section 3.4) will 

be presented.  Section 4.1 provides an overview of the experiments and objectives 

for both the Grid test-bed and the White Rose Grid (WRG) environments.  Section 

4.2 will describe the Grid test-bed, the experimental design and performance results.  

Section 4.3 will follow the same structure as the previous section with the focus on 

the WRG.  This will also include a discussion of the challenges during the 

deployment for both brokers on the WRG.  Section 4.4 compares and evaluates the 

experiments carried out on both environments and finally Section 4.5 summarises 

the chapter. 

4.1 Overview of the Experiments and 

Objectives 

As discussed in Section 3.4.2, the three-phase commit SNAP broker is expected to 

provide a performance enhancement over the simple SNAP broker in terms of the 

time interval between submission (to the broker) of the user’s job requirements and 

the job beginning execution. In particular, the vision of resource status provided by 

the probes used in the three-phase commit protocol are expected to provide an 

enhancement by ensuring that decisions are made on the basis of up-to-date 

information. Specifically, the experiments involve a comparison of the performance 

of the three-phase commit SNAP broker, compared to the simple SNAP broker on 

two different environments, the Grid test-bed and then the White Rose Grid (WRG).  
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The experiments carried out on both environments are designed on the basis of two 

common objectives which are: 

 

• To show that the simple SNAP broker and the three-phase commit 

protocol have been successfully implemented. 

• To investigate the behaviour of the three-phase commit SNAP broker 

when scenarios occur in which a performance enhancement over the 

simple SNAP broker is expected.  

 

    The experiments were firstly carried out on a local Grid test-bed as it is an 

environment used for developing, testing and evaluation Grid technology research.  

These experiments were then carried out on the WRG, a large distributed Grid 

infrastructure to validate the results obtained on Grid test-bed.  The WRG 

infrastructure (which is further described in Section 4.3) spans across three 

administrative sites and holds true Grid attributes described in Section 2.1, such as 

site autonomy and a heterogeneous substrate.  Even though the same experiments 

were carried out on both environments the parameter boundaries differed due to the 

different infrastructure size.  This will be discussed when describing the experiments 

for each environment. Further the DAME (Distributed Aircraft Maintenance 

Environment) XTO (eXtract Tracked Order)  [9] jobs are used for all experiments 

and named user’s jobs throughout the chapter. 

4.2 Experiments on the Grid test-bed 

The experiments were performed on a Grid test-bed consisting of 10 machines.  

Each machine has a Pentium IV processor (1.2GHz) with 256MB RAM.  The 

operating system is Linux 2.4.  Globus 2.4 [2, 3] and Sun Grid Engine 5.3 (SGE) 

[19] are installed on all machines.  There is a Grid Resource Information Service 

(GRIS) associated with each of the machines. Communication occurs with a fast 

(100 Mbps) LAN network. This is acceptable, since network bandwidth and latency 

issues are not addressed in these experiments, although the possibility of varying 

information providers response times is considered.  The main attributes that affect 



 

 66 

the information provider response time are the number of concurrent users accessing 

the service and the load on the resources  [118, 119]. 

4.2.1 Grid test-bed Experimental Design 

The experiments carried out can be described in terms of two scenarios: 

 

Scenario 1:  The resources appropriate for the user’s job are taken and the 

broker must wait until they become free before submitting the user’s job. 

Scenario 2:  While the broker is in the process of making a decision as to 

where the user’s job should be submitted another third party job is submitted 

(see below for a more detailed description). 

 

    The first scenario provides a setting in which the effectiveness of the probes in 

providing a vision of the resources can be investigated. Specifically, the user’s job to 

be submitted requires 3 resources. Each of the two brokers (simple SNAP broker 

and the three-phase commit SNAP broker) is considered in turn. Each is given 

access to only 3 of the resources and on each of these a third party job is running for 

a fixed duration.  

    Two experiments are performed, based on this scenario. In the first experiment, 

the third party job submitted occupies all 3 resources and has a fixed duration of 30 

seconds, which is adequate time to ensure the resources are unavailable when their 

information provider is initially contacted by the brokers.  This job is submitted 

immediately before the broker is initiated to start. The information provider response 

time (i.e. the GRIS response time) is then varied between 10 and 90 seconds.  This is 

sufficient to ensure the two brokers can cope with the effects of a real environment 

such as the White Rose Grid (WRG) [11] which has a normal response time that can 

run up to 90 seconds.  Additionally, this time may vary considerably depending on, 

for example, the number of users concurrently accessing the same GRIS [118, 119] 

and the load on the machine. On the Grid test-bed the information provider response 

time is fairly stable at 8 seconds for the GRIS on each machine.  The default 

installation of the information provider was changed to ensure non cached 
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information is retrieved.  Using cached information would result in a quicker 

response time but consequently the information retrieved may be out of date.  

    The response time was varied by adding a variable delay into the code. The time 

taken between the broker beginning execution and the broker becoming aware that 

the resources are free is then recorded, in addition to the time taken before the user’s 

job begins execution and the number of information provider contacts made. 

    In the second experiment based on scenario 1, there is no artificial delay in the 

information provider response time. Instead, the duration for which the resources are 

unavailable, which was previously fixed at 30 seconds, is varied between 30 and 110 

seconds incrementing by 10 seconds at each interval.  This variation is sufficient to 

help investigate the effectiveness of the probes and the impact it has on the number 

of information provider contacts made by the brokers. 

    For the simple SNAP broker, as soon as the information providers inform the 

broker that the resources are free, the time is noted and stored. For the three-phase 

commit SNAP broker, the time is stored when a signal (generated by the probes) has 

been obtained from all three resources that they are free. 

    The experiment based on scenario 2 is used to investigate the three-phase commit 

SNAP broker’s performance when resources are initially free but their status 

changes during co-allocation, as before, the broker requires three resources. In this 

experiment the broker has access to all 10 resources. Note that if a resource is taken 

during co-allocation, the simple SNAP broker only becomes aware of this when it 

re-confirms with the resources before committing and reserving them.  In order to 

highlight the scenario whereby the broker is required to repeatedly contact the 

information provider and attempt to co-allocate the user’s job, additional third party 

jobs are submitted at time intervals chosen to coincide with each attempt at co-

allocation that the simple SNAP broker makes. Additionally, the resources taken are 

chosen to be the highest priority available so that there is always a conflict between 

third party jobs and the broker. This experiment is used to determine whether the 

vision of the resources that the probes provide in the three-phase commit protocol do 

indeed enable the broker to obtain fast enough updates to decrease the likelihood of 

oscillation between broker and resources.  

    Overall the two scenarios used for the experiments are chosen primarily to outline 

the benefit of the use of the probes in the three-phase commit protocol and to 

demonstrate their effectiveness compared to the simple approach.  Further, certain 
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factors such as the limited amount of resources and the time restrictions in using 

them narrowed the scope for more realistic scenarios to be evaluated.  However this 

has been addressed in chapter 5 through the use of mathematical modeling and 

simulation. 

4.2.2 Grid test-bed Experimental Results and 

Discussion for Scenario 1 

The results for the first experiment relating to scenario 1 on the Grid test-bed are 

shown in Figures 4.1, 4.2 and Table 4.1.  Figure 4.1 shows the time taken between 

the broker beginning execution and the broker becoming aware that the resources 

are free.  Figure 4.2 shows the time taken between the broker beginning execution 

and the user’s job beginning execution.  Finally Table 4.1 shows the number of 

contacts each broker made to the information provider to gather resource status 

updates.  All the results for this experiment are based on the function of the 

information provider response time. 

    The three-phase commit SNAP broker becomes aware that the status of the 

resources has changed much faster than the simple SNAP broker as a consequence 

of the use of probes (shown in Figure 4.1).  The three-phase commit SNAP broker 

compared to the simple SNAP broker gains a performance improvement of 26% 

when the information provider response time is 10 seconds and 50% when it is 90 

seconds (both percentages are calculated using equation 1).   

 

                            Percentage improvement  =   simple SNAP broker – three-phase commit SNAP broker * 100. 
                                                                                                    simple SNAP broker  

(1) 

 

Clearly this shows when the information provider response time increase so does the 

performance of the three-phase commit SNAP broker.  This is related to the probes 

used by the three-phase commit SNAP broker and not the traditional process of 

querying the information provider used by the simple SNAP broker.  Subsequently, 

the user’s job begins execution sooner when the three-phase commit SNAP broker is 

used (Figure 4.2) providing a performance improvement of 13% for 10 seconds and 

39% when it is 90 seconds (both percentages are calculated using equation 1).  

Usually, the longer the information provider response time, the longer it takes before 
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either broker is aware that the resources are free.  For the three-phase commit SNAP 

broker, there is only one contact with the information provider, as shown in Table 

4.1, and then the broker relies on the probes for its updates.  Hence increasing the 

response time has little effect until it exceeds the 30 second period for which the 

resources are taken.  For the simple SNAP broker, the effect is apparent even for 

quicker response times.  However, note that the time taken before this broker 

becomes aware of the change in resource status is shorter when the response time is 

40 seconds than when the response time is 30 seconds. This is due to the fact that 

when the response time is 30 seconds, the simple SNAP broker needs to contact the 

information provider three times before it is aware of the change in status, while if 

the response time is 40 seconds, only two contacts are required, as shown in Table 

4.1.  
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Figure 4.1: Time taken for broker to determine resources are free, as a function 

of information provider response time. 



 

 70 

0

20

40

60

80

100

120

140

160

180

200

220

240

10 20 30 40 50 60 70 80 90

Information provider response time (Sec)

J
o
b
 e
x
e
c
u
ti
o
n
 s
ta
rt
 t
im
e
 (
S
e
c
)

Simple SNAP Broker

Three-phase commit SNAP Broker

 

 

Figure  4.2: Time taken for the user’s job to begin execution, as a function of 

information provider response time.  

 

    There is a similarity in the performance trend for both Figure 4.1 and 4.2.  This is 

related to the fact that the difference between the two brokers is the timing when 

they become aware the resource’s status has changed.  Once they discover the 

resources are freed (Figure 4.1), they follow the same procedure in reserving and 

submitting the user’s job, hence both brokers incur the same cost of 42 seconds 

which is the total time for reservation and job submission to the resources. 

    As stated earlier the three-phase commit SNAP broker only needs to contact the 

information provider once and then relies on the probes for updates.  However the 

simple SNAP broker needs to make at least two contacts before it is aware the 

resources are free as shown in Table 4.1.  The number of contacts it makes to the 

information provider increases if the response time is less than the time duration in 

which the resources are occupied by the third party job.     

    The results for the second experiment relating to scenario 1 are shown in Figures 

4.3, 4.4 and 4.5.  The attributes evaluated in this experiment are similar to that of 

experiment 1 discussed above.  However the experiment differs in that it is based on 

the function of time for which the resources are unavailable.  Figure 4.3 shows the 

time taken until the broker became aware that the resources were free, Figure 4.4 

shows the time taken until the user’s job begins execution.   
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    Figure 4.5 shows the number of contacts each broker made to the information 

provider to gather resource status updates.  As before, the three-phase commit SNAP 

broker exhibits improved performance due to the use of probes.  It becomes aware 

the resources are free quicker than the simple SNAP broker by an average 

performance improvement of 22% (calculated by equation 2).   
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Where iSSB = Simple SNAP broker and iCSB3 = three commit SNAP 

broker. 

 

 

 

 

(2) 

Subsequently, the user’s job begins execution sooner when the three-phase commit 

SNAP broker is used providing an average performance improvement of 13% 

(calculated by equation 2)   

 

Information Provider 

Response time 

Simple SNAP Broker Three-phase commit 

SNAP Broker 

10 5 1 

20 3 1 

30 3 1 

40, 50, 60, 70, 80 and 90 2 1 

 

Table 4.1:   Number of contacts made by each broker to the information 

provider as a function of information provider response time. 

 

    Figure 4.3 is similar to Figure 4.4 in its performance trend, this is again related to 

the fact that both brokers incur the same cost for the reservation and the submission 

of a user’s job on the nominated resources, which is on average 42 seconds.  Further, 

the difference in time between the two brokers in Figures 4.3 and 4.4 is on average 

20 seconds.  This is related to the fact that the experiments are based on the function 

of time for which the resources are unavailable and not on the information provider 

response time as was the case for experiment 1 in scenario 1.  Hence the simple 

SNAP broker becomes aware the resources are released shortly after they become 

freed, despite this fact the three-phase SNAP broker still outperformed the simple 

SNAP broker, as it uses the probes.  

 

Average percentage performance improvement 
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Figure  4.3: Time taken for the broker to determine resources are free as a 

function of time for which resources are unavailable. 
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Figure 4.4: Time taken for user’s job to begin execution as a function of time 

for which resources are unavailable. 
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Figure 4.5: Number of contacts made by each broker to the information 

provider as a function of the time for which the resources are unavailable. 

   

 

  The number of contacts made to the information provider (shown in Figure 4.5) by 

the simple SNAP broker increases, as the time in which the resources are occupied 

by third party jobs increased.  However results in experiment 1 scenario 1 shown in 

Table 4.1, the number of contacts made to the information provider stabilised with 

only two contacts compared to experiment 2 scenario 1 (shown in Figure 4.5).  This 

is related to the fact that experiment 2 scenario 1 is based on the function of time for 

which the resources are unavailable. 

4.2.3 Grid test-bed Experimental Results and 

Discussion for Scenario 2 

The results of the experiment relating to scenario 2 on the Grid test-bed are shown in 

Figures 4.6 and 4.7 and are based on the function of number of additional third party 

jobs submitted while the broker is in the process of co-allocating the user’s job.  

Figure 4.6 shows that the three-phase commit SNAP broker takes just over 40 

seconds to submit and begin the execution of the user’s job, irrespective of the 

number of third party jobs submitted. Since the probes ensure rapid updates of the 
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status of the resources, the three-phase commit SNAP broker is aware that a 

resource has been taken very quickly after it occurs and consequently chooses an 

alternative resource. It successfully submits before any other resources are taken and 

provides a performance improvement of 36% when 1 resource is taken and 73% 

when 7 resources are taken (both percentages are calculated using equation 1) 

compared to the simple SNAP broker.  Clearly, the simple SNAP broker takes 

longer when more resources are taken, since it is unable to identify changes in 

resource status fast enough to successfully submit the job before more resources are 

taken.  
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Figure 4.6:  Time taken to begin the user’s job execution as a function of the 

number of additional jobs submitted. 

 

    Figure 4.7 shows the number of information provider contacts each broker makes 

before the user’s job is submitted.  The three-phase commit SNAP broker only 

makes the initial contact however for the simple SNAP broker the number of 

contacts to the information provider increases as the number of resources are taken.  

This is due to the fact that when it attempts to reserve the chosen resources before 

submission it is unsuccessful as some are taken.  Thus it needs to gather new 

information to find out which resources are still available as it is unable to know the 
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status of the other resources without having to re-contact their information provider.  

This consequently impacts on the start time of the user’s jobs as seen in Figure 4.6. 
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Figure 4.7:  Number of contacts made by each broker to the information 

provider as a function of additional jobs submitted. 

4.3 White Rose Grid Experiments  

The Grid test-bed is mainly used for development as well as testing and evaluating 

Grid technology research.  However it is a local environment which does not fully 

include Grid resource management issues such as site autonomy, heterogeneous 

substrate and, more importantly, the distribution of resources across different sites.  

The White Rose Grid (WRG) addresses these issues as it is a virtual organisation 

comprising of three universities: the Universities of` Leeds, York and Sheffield [11].  

Its purpose is to deliver stable well-managed services and to provide: 

 

• Cost effective resource management for high-end computing. 

• An infrastructure to support research projects which will benefit from 

access to powerful computing resources. 
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• Support for scientific communities. 

• A market assessment and outreach to industry. 

    The WRG is heterogeneous in terms of its underlying hardware and operating 

system.  Two large compute nodes are situated at Leeds (Maxima and Snowdon), 

one at York (Pascali) and another at Sheffield (Titania). These nodes are connected 

by a fast network and offer significant heterogeneous computational facilities. 

Figure 4.8 shows the architecture of the WRG and depicts all machines at the 

various sites. The specification of these compute nodes is described below:  

 

• Snowdon, a Beowulf 256 CPU running at 2.2GHz and 2.4Ghz Intel 

Xeon processors. 

• Maxima, Sun Fire 6800 server (20 Ultrasparc 3Cu, 44GB memory, 

100GB Storage), 5 Sun V880 servers and 2 TB storage. 

• Pascali, Sun Fire 6800 server (20 Ultrasparc 3 Cu, 44GB memory, 

100GB Storage), 1 Sun V880 server and 1TB storage. 

• Titania, 10 Sun Fire V880 Servers (8xUltrasparc Cu 900MHz, 32GB) 

and 2TB Storage. 

 

    Maxima, Pascali and Titania are built from a combination of large symmetric 

memory Sun servers and storage backup running on Solaris, whereas Snowdon 

comprises a Linux/Intel based computer cluster connected with Myricom Myrinet. 

The middleware infrastructure is enabled through the use of Globus 2.4, while Sun 

Grid Engine 5.3 (SGE) [19] handles the local job scheduling and is also configured 

to meet the needs of the users at each site.  The WRG is a production Grid and its 

resources are widely used by various projects such as DAME, Grid Visualisation 

Middleware (also called gViz) [120] and Modelling and Simulation for e-social 

Science (MoSeS) [121] just to name a few. Thus, for the purpose of the experiments, 

a resource from each of the four machines across the three sites on the WRG is 

provided.  This is acceptable as the objective of the experiments is to investigate 

whether the three-phase commit SNAP broker still provides its enhancement over 



 

 77 

the simple SNAP broker over a large distributed infrastructure in a real Grid 

environment. 

  

 

 

 

 

                      

 

 

 

 

Figure  4.8: The White Rose Grid Architecture [11]. 

4.3.1 White Rose Grid Deployment Challenges 

There were several challenges that had to be overcome in order  to deploy the three-

phase commit SNAP broker on the WRG, which the simple SNAP broker also 

incurred as it has identical features apart from the inclusion of the three-phase 

commit protocol.  The challenges can be broken down into two parts which are 

interrelated.  The first relates to the technologies in place and the second to the 

human collaboration across the three sites.  Both are discussed below respectively.  

    There are two main technologies used across the three sites namely the Grid 

middleware tool kit which is Globus 2.4 [2, 3] and the local resource management 

system which is Sun Grid Engine (SGE) 5.3 [19].  The modifications to the 

technologies are discussed in Appendix B.  However performing these modifications 

to cater for the deployment of the three-phase commit SNAP broker in relation to 

the Globus services is a consistent and a repetitive process across the three sites, as 

the technology is standard and all packages have the same structural location, 

whichever platform they are installed on, Linux or Solaris.  Conversely even though 

SGE 5.3 is the same version across the three sites the configuration of each version 

can be different.  This is related to the heterogeneous substrate mentioned in Section 

2.1 where each site’s administrator has different preferences in configuring the local 
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resource management systems.  Hence it requires the administrator from each site to 

provide their SGE site configuration and the queues set up.  Despite gaining this 

information it is still a tedious task to modify SGE, for example the directory 

location where certain services are located, as they are not consistent on each 

platform.  Overall to perform the necessary modifications to Globus it required a 

deep and intricate understanding of the technology; once this is gained the 

modifications are repeated similarly across the three sites as it is a standard and 

consistent technology.  However with SGE due to each site’s administrator 

preference of configurations and setup, a modification on one site would not 

necessarily mean the same procedural technique would be used on other sites. 

    The human collaboration between the various sites was the most difficult 

challenge of all, which was surprising as it was anticipated it would be the 

compatibility of the technologies such as their configuration that might be 

problematic.  However this was a beneficial experience with several 

recommendations for future collaboration on such a scale as the WRG.  The 

challenges encountered are listed below: 

 

• First deployment: This was the first type of deployment on the WRG 

that pushed the boundaries of the existing technologies and required them 

to be modified.  This complicated the deployment as there was no past 

wisdom that could be used.  Hence no documents were available to 

suggest favourable approaches in collaborating between the three sites. 

• Different administrators: Each of the three sites has its own 

administrator that maintains the site’s resources. Each administrator has 

various depths of understanding in how the Grid technologies operate 

and each have different working hours (some are full time while others 

are part time).  This slows the progress as some tasks are suspended until 

the administrator is on duty.  Further, a considerable amount of time was 

required to explain to the administrators the intricate details of the 

technologies to enable them to perform the tasks. 

• Permissions:  The WRG is a production Grid, used by several projects.  

The access permissions to sensitive files and programs are limited and 

require their modifications to be performed by the site’s administrator.  
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This is time consuming as you are dependent on the administrator to 

perform each modification.  Further not all tasks can be done at once as it 

is an incremental process that requires testing throughout.  If it is 

discovered during testing a feature does not fully operate, it must be 

relayed to the administrator for amendment and this could be a recursive 

process.  

• Distance: This is one of the major obstacles in the deployment as 

communication mainly occurs through e-mail and phone calls.  Ideally it 

would be preferable to be with the administrator at the site, as it helps to 

illustrate concepts through visual aid (diagrams) or execute commands 

and discuss the outcome.  However regular travelling to each site is 

costly and requires a lot of time and energy. 

• Different infrastructures:  Even though this has been mentioned as part 

of the technology challenges, the three sites’ administrators had to 

correspond with each other, to ensure the outcome of some modifications 

occurred correctly.  However as each site had different configurations, in 

particular SGE, the modifications made had to be further fine tuned at 

some sites due to their infrastructure.   

 

The recommendations for collaborating on such a scale as the WRG are listed 

below: 

  

• Ensure each site administrator’s technical background knowledge is 

known, preferably before the deployment of a broker.  This will help 

when explaining the reasoning behind the modifications to the 

technologies.   

• Find out which is the best form of communication, whether through e-

mail or phone.  It is usually the case that for those with a strong technical 

background an e-mail will be sufficient to request the modifications and 

for those without a telephone call is recommended as it helps to explain 

through verbal communication.  
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• One of the most important aspects to note when deploying a broker on 

different sites is that administrators maintain resources that are used by 

several projects and are highly sceptical to altering or modifying any 

existing setting.  It is strongly recommended that the modifications are 

shown to be fully operational on other similar scale resources.  Thus it is 

best to perform modifications on a test-bed (which is already the case at 

Leeds) then move to the production resources that are based at the local 

site (e.g. Snowdon and Maxima for the work in this thesis).  This is for 

several reasons: the individual who is deploying the broker is situated at 

the local site and is familiar with the administrator, he/she is on site to 

rectify any problems and is there to thoroughly test the modifications.  

This approach provides the administrators at other sites with the 

confidence to perform the requirement specified as it has already been 

shown to work on other similar scaled resources.   

• Having permissions access to sensitive files and programs runs the risk 

of compromising the security at the various sites, this is why the 

deployment occurred through the site’s administrator.  Hence without 

doubt it would be preferable to be with the administrator when the 

modifications take place.   However it would be time consuming to travel 

for each modification needed.  Therefore the approach taken is to write a 

list of instructions that needs to be carried out, send a copy to each 

administrator at the various site and arrange a convenient time to visit 

them to perform the major tasks. The small tasks can then be performed 

through e-mail or phone. 

4.3.2  White Rose Grid Experimental Design 

The issues of how well the three-phase commit SNAP broker performs compared to 

the simple version, over a large distributed Grid infrastructure such as the White 

Rose Grid (WRG) is the subject of the experiments described in this section.  As 

with the experiments on the Grid test-bed (Section 4.2) the WRG experiments will 

investigate whether the resource status provided by the probes used in the three-

phase commit protocol still provides an enhancement by ensuring that decisions are 

made on the basis of up-to-date information.  Hence the experimental design for the 
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WRG follows the two scenarios used in the Grid test-bed (Section 4.2.1) with the 

various parameter values increased to reflect the WRG environment. 

    In scenario 1 for both experiments the user’s job requires four resources from 

three sites, one from each of the WRG machines to investigate the effectiveness of 

the probes across the distributed three sites.  In scenario 2 the user’s job requires 

three resources, however in this experiment a combination of all the allocated WRG 

resources and eight Grid test-bed resources are used.  This is due to the nature of the 

experiment requiring more resources than the actual number required by the user’s 

job, as it investigates the performance when resources are initially free but their 

status changes during co-allocation.  Also the combination of the WRG and Grid 

test-bed resources is beneficial as it will ensure the brokers can cope with the two 

different scalable environments simultaneously. 

    In relation to the first experiment for scenario 1 the additional third party job that 

is submitted to make the resources unavailable has a fixed duration of 40 seconds.  

This job is submitted immediately before the broker is executed.  The information 

provider response time (i.e. the GRIS response time) is then varied between 30 

seconds and the maximum period before the Monitoring & Discovery System 

(MDS) [33, 34, 50] on the WRG times-out which is 360 seconds.  The value for 

each run in this experiment is incremented by 10 seconds for each interval.  On the 

WRG the information provider response time from all sites is fairly stable at 27 

seconds for the GRIS on average.  Hence this is why the third party job for this 

experiment has a length of 40 seconds, to ensure the resources are unavailable 

during the first contact each broker makes to the information provider.  In the 

second experiment based on scenario 1, there is no artificial delay in the information 

provider response time. Instead, the duration for which the resources are 

unavailable, which was previously fixed at 40 seconds, is varied between 40 and  the 

maximum time the broker will wait before it times-out if it does not find any 

available resources (which is 360 seconds).  Again the value for each run in this 

experiment is incremented by 10 seconds for each interval. 

    In the experiment based on scenario 2 the broker has access to 12 resources (from 

both the WRG and the Grid test-bed). This time the broker requires three resources 

and it prioritises the WRG resources from any of the three sites. As with the Grid 

test-bed this is to highlight the scenario whereby the broker is required to repeatedly 

contact the information provider and attempt to co-allocate the user’s job, additional 
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third party jobs are submitted at time intervals chosen to coincide with each attempt 

at co-allocation that the simple broker makes. Additionally, the resources taken are 

chosen to be the highest priority available so that there is always a conflict between 

the additional jobs and the broker. This experiment is used to determine whether the 

vision of the resources that the probes used in the three-phase commit protocol do 

indeed enable the broker to obtain fast enough updates to decrease the likelihood of 

oscillation between broker and resources. 

4.3.2.1 White Rose Grid Experimental Results and 

Discussion for Scenario 1 

The results for the first experiment on the WRG relating to scenario 1 are depicted 

in Figure 4.9 which shows the time taken between the broker beginning execution 

and the user’s job beginning execution as a function of the information provider 

response time.  Both brokers became aware the resources were freed on average 15 

seconds prior to that shown in Figure 4.9, for each time interval, as both brokers 

incur the same cost for reservation and submission of the user’s job to the resources.   

    Further, for the simple SNAP broker the number of information provider contacts 

remained constant at two for 50 seconds and all remaining subsequent time 

intervals.  However three contacts are made for the 30 and 40 seconds as the first 

two occur while the resources are also still occupied, whereas for the three-phase 

commit SNAP broker only one contact to the information provider is recorded 

throughout the experiment.  The three-phase commit SNAP broker begins the 

execution of the user’s job much sooner than the simple SNAP broker as a 

consequence of the use of the probes.  The three-phase SNAP broker provides a 

performance improvement of 46% when the information provider response time is 

30 seconds and 49% when it is 360 seconds (both percentages are calculated using 

equation 1).   For the three-phase commit SNAP broker, there is only one contact 

with the information provider, hence increasing the response time has little effect 

until it exceeds the 40 second period for which the resources are taken. For the 

simple SNAP broker, the effect is apparent even for faster response times. However 

the time taken before this broker becomes aware of the change in resource status is 

shorter when the response time is 50 seconds than when the response time is 40 

seconds. This is due to the fact that when the response time is 40 seconds, the simple 

SNAP broker needs to contact the information provider three times before it is 
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aware of the change in status, while if the response time is 50 seconds, only two 

contacts are required. 
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Figure 4.9: Time taken for the user’s job to begin execution as a function of 

information provider response time. 

 

    The first set of results for the second experiment relating to scenario 1 on the 

WRG are shown in Figures 4.10 and 4.11.  Figure 4.10 shows the time taken until 

the user’s job begins execution, while Figure 4.11 shows the number of information 

provider contacts made by each broker. Both are given as a function of the time for 

which the resources are unavailable, with each run incrementing by 10 seconds 

during each interval.  As shown in Figure 4.10 the user’s job begins execution 

sooner when the three-phase commit SNAP broker is used providing an average 

performance improvement of 18% (this is calculated using equation 2).  As in 

experiment 1 scenario 1 both brokers became aware the resources were freed on 

average 15 seconds prior to that shown in Figure 4.10 for each time interval.  The 

user’s job execution start time using the simple SNAP broker is related to the broker 

repeatedly contacting the information provider to find out when the resources are 

released, which can be seen by looking at the performance trend for both Figures 

4.10 and 4.11. The performance trend of this experiment, regarding the time taken 

until the user’s job begins execution (Figure 4.10), is qualitatively different to the 
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results obtained on the Grid test-bed (Figure 4.3), does not show any similarities.  

The reason why the results are not monotonic for the simple SNAP broker on the 

WRG is interconnected to several factors which are as follows: 

 

• The third party job occupying the resources may vary slightly in their 

completion time as it is an attribute that cannot be controlled due to the 

various sites’ independent infrastructure.  

• The information provider associated to each resource across the three 

sites responds individually and on average within 27 seconds.  A miss in 

picking up the change in resources status would mean for it to be 

acknowledged during the next call.    

• Finally, in order for the simple SNAP broker to proceed in its submission 

of the user’s job it must receive a response from all information providers 

that the resource they contacted is unoccupied.  

 

    Combining the above three factors with the information provider being a 

dominant issue.  Further, the duration of the resources being occupied by third party 

jobs and the experiment runs incrementing by 10 seconds for each interval, 

influences the start time of the user’s job.  For example Figure 4.10 shows almost 

the same job execution start time of 200 seconds (with a discrepancy of 1 second) 

for three different consecutive times when the resources are freed (140, 150 and 160 

respectively).  This consecutiveness is repeated numerously throughout Figure 4.10.  

Thus two third party jobs with a 10 seconds duration gap between their completions 

can occur within the information provider response time.   

    However at times there can be a miss in picking up the completion of all third 

party jobs which would mean it is acknowledged the next time the information 

provider is invoked by the broker.  This is why there is the same job execution start 

time for three different consecutive times when the resources are freed.       

    The effect of the above three points combined with the incremental duration time 

of third party jobs occupying the resources can also be supported by further runs of 

this experiment, which have been carried out to further investigate the serration in 

Figure 4.10.  The additional runs have the third party jobs incrementally completing 
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every 20 and 30 seconds during each interval as shown in Figure 4.12 and 4.13 

respectively.  With the 20 seconds duration only one third party job can complete 

within the information provider response time.  However at times there can be a 

miss such as that shown in Figure 4.12, with the user’s job execution start time 

being 146 seconds for two different consecutive times when the resources are freed 

after 80 and 100 seconds. Further in Figure 4.13, where the third party jobs complete 

incrementally every 30 seconds for each time interval.  The majority of time there is 

no miss by the information provider in picking up that the resources are free, apart 

from the leap between 160 and 190 seconds when the resources were freed.  Hence 

the performance trend in Figure 4.13 is monotonic than Figure 4.10 and 4.12.  Note 

that the final value on the x axis is 340 seconds in Figure 4.13 as the next value 

would be 370 seconds which exceeds the brokers 360 second acceptance time before 

timing out. 
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Figure 4.10: The time taken for the user’s job to begin execution as a function 

of the time for which resources are unavailable, with an incremental duration 

of 10 seconds for each interval. 
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Figure  4.11: Number of contacts made by the broker to the information 

provider as a function of the time for which resources are unavailable, with an 

incremental duration of 10 seconds for each interval. 

 

        Figure 4.11 shows the number of information provider contacts made by each 

broker.  The three-phase commit SNAP broker makes one contact only and then 

subsequently the probes are used to provide an update of the resources’ status. On 

the other hand, the simple SNAP broker needs to repeatedly contact the information 

provider as it has no vision of the resources’ status without having to repeat this 

process until it reaches the stage when it becomes aware the resources are available. 
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Figure  4.12: The time taken for the user’s job to begin execution as a function 

of the time for which resources are unavailable, with an incremental duration 

of 20 seconds for each interval. 

 

4.3.2.2 White Rose Grid Experimental Results and 

Discussion for Scenario 2 

Figures 4.14 and 4.15 show the results for the experiment carried out on the WRG 

combined with the Grid test-bed resources, in relation to scenario 2.  Figure 4.14 

shows that the three-phase commit SNAP broker takes just over 50 seconds to 

submit and begin execution of the user’s job, irrespective of the number of other 

third party jobs submitted. Since the probes ensure rapid updates of the status of the 

resources, the three-phase commit SNAP broker is aware that a resource has been 

taken soon after it occurs (due to the use of the probes) and consequently chooses an 

alternative resource. It successfully submits the user’s job all to the WRG resources 

as it is able to adjust swiftly to changes in the status of the resources before any 

other resources are taken.  Further, the three-phase commit SNAP broker compared 

to the simple broker provides a performance of 21% when 1 resource is taken and 

91% when 7 resources are taken (both percentages are calculated using equation 1). 

Clearly the simple SNAP broker takes longer when more resources are taken, since 

it is unable to identify changes in resource status fast enough to successfully submit 
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the user’s job before more resources are taken.  Further, unlike the three-phase 

commit SNAP broker the simple SNAP broker is unable to submit the user’s job all 

to the WRG resources as the number of resources taken increases.  Hence when 0 or 

1 resource are taken, the simple SNAP broker is able to submit the user’s job all to 

the WRG resources, but when 2 and 3 resources are taken it combines both WRG 

and Grid test-bed resources.  Finally when 4 or more resources are taken it is only 

able to submit to the Grid test-bed.  This is a consequence of not having the probes 

to provide rapid updates of resource status changes. 
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Figure  4.13: The time taken for the user’s job to begin execution as a function 

of the time for which resources are unavailable, with an incremental duration 

of 30 seconds for each interval. 

 

    Figure 4.15 shows the number of information provider contacts each broker 

makes before the user’s job is submitted.  The three-phase commit SNAP broker 

only makes the initial contact, however for the simple SNAP broker the number of 

information provider contacts increases as the number of resources are taken.  This 

is due to the fact that when it attempts to reserve the chosen resources before 

submission it is unsuccessful as some are taken.  Thus it needs to gather new 

information to find out which resources are still available as it is unable to know the 
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status of the other resources without having to re-contact their information provider.  

This consequently impacts on the start time of the user’s jobs as seen in Figure 4.14.   
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Figure 4.14:  Time taken to begin job execution as a function of number of 

additional jobs submitted. 
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Figure 4.15: Number of contacts made by the broker to the information 

provider as a function of additional jobs submitted. 
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4.4 Overall Evaluation of the Experiments 

The experiments discussed in Sections 4.2.2 and 4.2.3 for the Grid test-bed and 

Sections 4.3.3 and 4.3.4 for the WRG have demonstrated that the three-phase 

commit SNAP broker has access to fast updates on the status of resources, enabling 

a performance enhancement in a number of specific scenarios.  The experiments 

illustrate the value of using the three-phase commit protocol. This has been achieved 

by considering specific scenarios, where the vision of resources provided by the use 

of probes enables faster submission of a user’s job than would otherwise be possible.  

    In both the Grid test-bed and the WRG the three-phase commit SNAP broker out-

performs the simple SNAP broker.  However on the WRG there is an increase in 

performance compared to the Grid test-bed.  The performance increase is related to 

the information provider response time on the WRG being over three times longer in 

comparison to that on the Grid test-bed.  Further, the three-phase commit SNAP 

broker gains its performance from the point when it receives the user’s job 

requirements until just before it submits the user’s job to the resources after 

reserving them.  Both the simple and the three-phase commit SNAP broker incur the 

same cost when submitting the user’s job to the resources after nominating and 

securing the resources.       

    The number of contacts made to the information provider by the simple SNAP 

broker is related to the information provider response time and the duration of the 

third party jobs, initially occupying the resources.  For example long third party job 

duration in relation to short information provider response time means a high 

number of contacts to the information provider by the simple SNAP broker.  

Conversely short third party job duration with long information provider response 

time means fewer contacts to the information provider by the simple SNAP broker.  

This can be seen in both experiments in scenario 1 and on both environments (WRG 

and the Grid test-bed).  A good example is shown in Figure 4.5, where the 

information provider response time remains constant throughout the experiment, 

however as the duration of third-party jobs occupying the resources during each 

interval increases so does the number of contacts made to the information provider.  

The reason behind this is that the simple SNAP broker needs to continuously contact 

the information provider until the resources are unoccupied, as it does not have the 

advantage of the probes used by the three-phase commit SNAP broker that provide a 
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constant vision of the resources’ status.  Further, the number of contacts made to the 

information provider is also influenced by not being able to swiftly adjust to the 

resources’ status.  Further, the number of contacts made to the information provider 

is also influenced by not being able to swiftly adjust to the resources’ status.  For 

example resources that were initially available when the simple SNAP broker 

contacted their information provider were then subsequently taken by third party 

jobs, while the broker is in the process of co-allocating the user’s job.  The effect of 

this has been demonstrated through the experiment in scenario 2 on both the Grid 

test-bed and the WRG as shown in Figures 4.7 and 4.15 respectively.  However the 

three-phase commit SNAP broker was not affected by the resources changing status 

during co-allocation as it uses the probes to provide rapid updates of the resource’s 

status changes and consequently is able to swiftly adjust and nominate resources still 

available.  This subsequently also affected the user’s job start time as shown in 

Figures 4.6 and 4.14 on the Grid test-bed and the WRG respectively. 

    Studies have also been carried out to investigate when the three-phase commit 

SNAP broker will exhibit lower performance than the simple SNAP broker.  In the 

worst-case scenario (unfavourable to the three-phase commit protocol) where 

resources required by the broker are idle and there is no competition for their use the 

three-phase commit SNAP broker will always perform just as well as the simple 

SNAP broker.  The simple SNAP broker will not outperform the three-phase 

commit SNAP broker as the protocol used by the latter broker follows the same 

procedure as the simple SNAP broker, explained in Section 3.4.2, with the first 

phase strengthened.  Further there is no overhead cost associated with setting up the 

probes since this occurs concurrently when initially contacting the Monitoring and 

Discovery System (MDS) [33, 34, 50]. 

    The three-phase commit SNAP broker is most effective in providing a significant 

performance enhancement over the simple SNAP broker under normal average 

traffic conditions, where there is a flow of requests for resources by other Grid users 

on the system.  This is related to the probes providing the broker with rapid updates 

of the resource status as they occur and not depending on the traditional approach 

used in the simple SNAP broker.  Further, as shown in Figure 4.1, 4.2 (both are 

testgrid results) and Figure 4.9 (WRG results) the three-phase commit SNAP broker 

still provides a significant performance enhancement over the simple SNAP broker 

when there is a delay in the information provider response time.  In fact the simple 
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SNAP broker suffers considerably when the information provider response time 

increases: again this is related to not having access to the probes.  However both the 

simple and the three-phase commit SNAP broker find it difficult to secure resources 

in circumstances where there is an extremely high volume of users competing for 

the same resource.  Nevertheless the three-phase commit SNAP broker still 

outperforms the simple broker as it will be updated immediately when resources are 

free, allowing the broker adjust swiftly and to make a decision on the  resources to 

reserve.  Hence the probes have a vital role in providing the three-phase SNAP 

broker the competitive advantage in knowing the status of resources.   

    It is important to note that although there is an associated overhead with non-

cached information obtained from the information provider, the three-phase commit 

protocol needs to query the latter only once. Unlike the simple SNAP broker, that 

does not have the advantage of the probes and consequently needs to repeatedly 

contact the information providers. This has not shown an impact on either of the 

environments infrastructure.  However if it was for a prolonged sustained period of 

time it would have a strain on the load of the information provider.  This is avoided 

by the three-phase commit SNAP broker as it uses the probes to gain its updates of 

the resources status. 

4.5 Summary 

The chapter begins by giving an overview of the experiments that are carried out on 

both environments, the Grid test-bed and on the White Rose Grid (WRG).  The 

experiments on both environments had the same objective, which is to investigate 

the behaviour of the three-phase commit SNAP broker when scenarios occur in 

which a performance enhancement over the simple SNAP broker is expected.  This 

was then followed by a description of the Grid test-bed, its experimental design and 

a discussion of its results.  The results show that the three-phase commit SNAP 

broker outperformed the simple version.  This was achieved by the aid of the probes 

used in the three-phase commit protocol that provided a rapid update of the state of 

the resources enabling the broker to adjust swiftly to the changes.   

    A description of the WRG was then given followed by the challenges encountered 

when deploying the simple and three-phase commit SNAP broker.  The deployment 

was beneficial as many collaboration techniques were gained, such as the 
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significance of ensuring a prototype version for any new protocol, that pushes the 

boundaries of existing technologies and requires their modification, should be 

demonstrated at least on a test-bed environment before its deployment on a 

production Grid.  This is to show hesitant administrators that maintain production 

resources with several projects depending on the infrastructure, the credibility of the 

protocol’s performability and reliability.  A description of the WRG experimental 

design with a discussion of its results was then presented.  The results again showed 

the three-phase commit SNAP broker outperformed the simpler version.  The 

chapter ended with an overall evaluation of the results on both environments.   

    The next stage in the research is to examine the performance of both the simple 

and the three-phase commit SNAP broker through mathematical modelling and 

simulation, which is shown in chapter 5.  This would allow for a wider number of 

resources and varying traffic conditions to be considered than that evaluated in this 

chapter due to the limitation of physical resources available for the experiments  

 



 

 94 

Chapter 5 

Performance Evaluation using 

Mathematical Modelling and 

Simulation of the Three-phase Commit 

Protocol 

Chapter 3 discussed a simple SNAP-based resource broker and a more sophisticated 

SNAP-based broker, following a three-phase commit protocol. Chapter 4 presented 

experimental results, taken from the Grid test-bed and the White Rose Grid (WRG) 

[11], showing the three-phase commit SNAP broker providing a performance 

enhancement over the simple SNAP broker, in terms of the time interval between 

submission (to the broker) of the user’s job requirements and the job beginning 

execution.  However the experiments were constrained by the number of physical 

resources available for the experiments, which also limited the type of traffic 

conditions used.  Thus the purpose of this chapter is to use simulation validated by 

mathematical modelling, to evaluate the performance of the SNAP resource brokers. 

This approach allows a wide range of possible traffic conditions to be considered. 

The traffic model on which the analysis is based is expressed using queueing theory 

[122]. 

    Simulation is defined as “the imitation of the operation of a real-world process or 

system over time” [123].  Mathematical modelling is defined as “an abstract model 

that uses mathematical language to describe the behaviour of a system” [124].  

Simulation is beneficial in many ways such as: 

 

• A real Grid infrastructure does not provide a repeatable and controllable 

environment for experimentation and evaluation of scheduling strategies, 

which simulation accommodates.  
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• Simulation is effective in working with very large hypothetical problems 

that would otherwise require involvement of a large number of active 

users, which is difficult to co-ordinate and construct on a real Grid 

environment for investigation purposes [125]. 

 

    This chapter is organised as follows.  Section 5.1 describes both the simple SNAP 

broker and the three-phase commit SNAP broker protocol as a list of sequences to 

aid the mathematical modelling expression and simulation development.  Section 5.2 

describes the traffic model in which different traffic conditions are used to evaluate 

the SNAP brokers.  The mathematical modelling is presented in Section 5.3 and is 

followed by the Simulation description in Section 5.4.  Section 5.5 presents the 

experimental results and discussion of those carried out with parameter values 

obtained from the Grid test-bed, followed by the same experiments with parameter 

values from the White Rose Grid.  This is to validate the overall performance of 

both SNAP brokers and verify the three-phase commit SNAP broker still maintains 

it enhancement over the simple SNAP broker with parameters from a large Grid 

environment.  Section 5.6 provides an overall evaluation of the experiments carried 

out in this chapter.  Section 5.7 ends the chapter with a summary. 

5.1 SNAP Brokers Protocol 

In Section 3.3 the SNAP-based Grid resources broker architecture is described and 

depicted in Figure 3.2.  The architecture forms the basis for both the simple and the 

three-phase commit SNAP broker protocols.  However to aid the mathematical 

modelling and simulation Figure 5.1 shows the SNAP-based Grid resource broker 

architecture components with numbers labelling the steps in the simple SNAP 

broker protocol which correspond to its protocol description listed below: 

 

1) Having received the user’s job requirements, the Matchmaker contacts the 

Knowledge Bank (KB), which returns the attributes for the resources the user 

has access to and that are capable of supporting the user’s job. 
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2) The Matchmaker forwards the information to the decision maker, which 

prioritises resources, tagging them blue and white, corresponding to “high 

priority” and “adequate” respectively. 

3) The Decision Maker passes this information onto the Resource Gatherer. 

4) The Resource Gatherer contacts the Monitoring and Discovery System 

(MDS) [33, 34, 50] (the GRIS (Grid Resource Information Service) on each 

resource) to obtain up-to-date dynamic information about ‘candidate’ 

resources. In this step, probes are set up. This only occurs the first time step 

4 is carried out. Probes do not need to be set up subsequently. These are only 

used in the simple SNAP broker, to support fast reservation of resources.  

5) The dynamic information about the resources is passed to the Co-allocator, 

which makes a decision as to where the job should run. If insufficient 

resources are available, the Co-allocator informs the Resource Gatherer and 

step 4 is repeated. Otherwise the Co-allocator reserves the chosen resources. 

If this is unsuccessful (e.g. because other third party users have taken one or 

more of the chosen resources), return to step 4.  

Knowledge 
Bank

Decision 
Maker

Resource 
Gatherer

Matchmaker

Co-coordinator

Dispatcher

MDS

Grid Resource

User requirements 
1

2

3

4

5 6

R R R RR

 

Figure 5.1: The SNAP-base Grid broker components and their interactions. 

 

    Once the resources have been reserved, the Dispatcher transfers any necessary 

data files that the user’s job relies on and submits the user’s job for execution, which 

is shown in step 6 in Figure 5.1.   
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    The three-phase commit SNAP broker works according to the following protocol, 

(first three steps are as above for the simple SNAP broker). 

 

4) The Resource Gatherer contacts the MDS (the GRIS on each resource) to 

obtain up-to-date dynamic information about ‘candidate’ resources. In this 

step, probes are set up. This only occurs the first time step 4 is carried out. 

Probes do not need to be set up subsequently. These probes listen for any 

changes in the status of resources. In addition they are used to support 

reservation. 

5) The dynamic information about the resources is passed to the Co-allocator. 

6) The Co-allocator makes a decision as to where the user’s job should run. If 

insufficient resources are available, the Co-allocator waits until the probes 

inform it that sufficient resources are available to support the user’s job. 

7) If any resources are taken by other third party users, the broker is made 

aware of this by the probes. If this occurs, step 6 is repeated. Otherwise the 

Co-allocator reserves the chosen resources. If this is unsuccessful, return to 

step 6.  

 

Once the resources are reserved, the Dispatcher (as with the simple SNAP broker) 

transfers any necessary files the user’s job depends on and submits the user’s job for 

execution.   

5.2 Traffic Model 

In order to model the behaviour of the SNAP-based resource brokers, a traffic 

model, which enables different realistic traffic conditions to be considered, is 

required. The approach taken here is based on queueing theory [122], there are other 

approaches such as Petri Nets [126].  However the queueing theory is the most 

appropriate choice for the traffic model as it is based on queues which is what is 

required for this work.  Initially a simple model was chosen, in order to enable a 

simple comparison between simulation and analytical results. This model is 

presented in Section 5.2.1. The model was then extended to enable evaluation of the 



 

 98 

SNAP-base resource brokers under more realistic traffic conditions than was 

possible with the simple model. The extended model is presented in Section 5.2.2. 

5.2.1 Simple Traffic Model 

It is assumed that each (single CPU) resource is a server and has a corresponding 

single-server queue, with no restrictions on its queue capacity, which is the case 

with local schedulers such as Sun Grid Engine (SGE) [19]. Jobs are independently 

submitted to each queue, with random inter-arrival and service times (i.e. each 

queue is an M/M/1 queue). The broker needs to reserve resources and submit jobs 

within this environment. The model is depicted in Figure 5.2.  The following 

parameters are used within this model: 

  

Number of Processors (Servers)  P  

Mean Service Time    sT  

Mean Arrival Rate   λ  

 

    Note that, with this model, the traffic on different resources does not display any 

correlation.  Hence many realistic scenarios are not encapsulated by this model (e.g. 

third party users submitting jobs that require more than 1 resource). This is 

addressed in the extended model, discussed in the following section. 

Other users

Other users

Other users

Queues Number of processors (P)

T
s

 

Figure  5.2:  Queueing system used in simple traffic model. 
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5.2.2 Extended Traffic Model 

In order to account for correlations between traffic on different resources, a multi-

server queue is introduced. As before (in the simple traffic model), each server has 

an associated queue. However, incoming third party jobs to the system enter a multi-

server queue. Each job has a service time (
sT ) and number of resources (R ) 

required associated with it. There are a number of possibilities regarding how jobs at 

the front of the multi-server queue are dealt with. For example: 

 

1) When a job is at the front of the multi-server queue, it is sent to local queues 

in a round-robin fashion, i.e. (for P resources) queue 1, queue 2, … queue P, 

queue 1… 

2) When a job is at the front of the multi-server queue, it is sent to local queues 

corresponding to randomly chosen resources. 

3) When a job is at the front of the multi-server queue, it is sent to local queues 

with the least number of jobs. 

4) When a job is at the front of the multi-server queue, it is sent to local queues 

with the least waiting time.  

 

    The jobs arriving in the multi-server queue have random inter-arrival and service 

times, while the number of resources required for a particular job is chosen at 

random from the set (1, 2, 4, 8, 16 and 32).  This is illustrated in Figure 5.3.  Only 

up to 32 resources has been allowed to be requested by any individual third party 

job, hence 25% of the systems resources, which is a high value for a single job on a 

multi-user system.  However these jobs are generated to create traffic flow into the 

system for the brokers to try to reserve resources under competing conditions by 

third-party users. 
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Figure  5.3: Queueing system used in extended traffic model. 

 

5.3 Mathematical Modelling 

This section presents a mathematical analysis, carried out in order to provide 

expressions that enable the performance of the SNAP based brokers to be evaluated.  

This mathematical modelling was undertaken collaboratively with other members of 

the Grid group at the University of Leeds, namely Dr Iain Gourlay and Dr Karim 

Djemame.  Specifically, expressions are obtained, enabling the average time taken 

(for each broker) between receiving a user’s job requirements and resources being 

reserved for the user’s job.  Note the time taken to submit the job once resources 

have been reserved is not included in the analysis, since it is not dependent on which 

of the protocols (discussed in Section 5.1) is used.  The performance evaluation is 

carried out using the simple traffic model, presented in Section 5.2.1. The results 

produced will enable the simulation and analytical results to be compared. If the 

results from these two approaches agree, this provides evidence to support the 

validity of further simulation results based on the extended traffic model, where the 

analytic approach would be impractical. 

    The following parameters are used in the analysis of the SNAP brokers. The 

parameters allow the SNAP brokers to be evaluated in various Grid environments 

such as the Grid test-bed and WRG as the steps referred to are those given in Section 

5.1, where the SNAP broker protocols are presented. 
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J: Number of resources required by the user’s job submitted. 

KBt :    The time taken for steps 1-3 of the broker protocols. 

mdst :    The time taken for step 4 of the broker protocols. 

dect :     The time taken by the Co-allocator to decide where the job should run. 

rest :     The time it takes to reserve resources.  

 

    Section 5.3.1 presents the analysis for the simple SNAP broker and the 

corresponding analysis for the three-phase commit SNAP broker is given in Section 

5.3.2. 

5.3.1 Simple SNAP Broker 

Step 5 (described in Section 5.1) takes  
resdec tt + .  It is assumed that 

 

                            )2()1( mdsmdsmds ttt +=  (3) 

 

    Here )1(mdst  is the time, for gathering resource information, during which any 

change to resource status (on any resource being contacted) will be picked up.  

While )2(mdst  is the time during which changes to status will not be identified as it is 

the time in which the status of the resource is being generated, prepared to be sent to 

the broker and received by the broker.  

    The total time the broker takes, from receiving user requirements until resources 

are reserved, in the absence of other traffic is, 

 

             ( )( )
resdecmdsKBsimple tttttrafficnotE +++= . (4) 

 

    Note that the above time does not account for the possibility that certain steps 

may need to be repeated. Referring to the broker protocol, for step 5, there is an 

overhead associated with the possibility that step 4 needs to be repeated due to 

insufficient resources being available the first time the MDS is contacted. Each time 

this is carried out, the time taken is ( )decmds tt + . Let the average time taken to 

complete this operation be ( )decmdstE / . Note that 
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                          ( ) ( )decmdsdecmds ttntE +=/ . (5) 

 

    Here, n  is the mean number of times that there are insufficient resources 

available when the MDS is contacted. This means that ( )decmds tt +  must be replaced 

by ( )decmdstE /  in equation (4). 

    There is an additional overhead associated with the possibility that a chosen 

resource is taken prior to successful reservation. In order to explain the effect of this 

overhead on equation (4), consider the following scenario. Suppose an event, A 

occurs, taking time AT . If the event fails, then it must be repeated until it succeeds. 

Let the probability that the event fails on a given trial be fP . In that case, the entire 

process takes an average time given by, 

                   ( ) ( ) ∑
∞

=

−−=
1

1
1

n

n

fAftotal nPTPtE  
(6) 

 

The summation in equation (6) is equal to ( )211 fP− . Hence, 

 

                             ( ) ( )f

A
total

P

T
tE

−
=
1

 
(7) 

 

    In the case under consideration, event A corresponds to contacting the MDS, 

making a decision as to where the job should run and reserving resources. The time 

taken ( AT ) is therefore ( )( )resdecmds ttE +/ . Failure is caused by one or more chosen 

resources being taken by third party users, prior to the completion of reservation. 

For the simple traffic model, the probability that a resource that is free at time 0t  is 

still free at time 1t  is 
( )01 tt

e
−−λ
 where λ is the mean arrival rate. Here the time interval 

t∆  involved ranges from after the )1(mdst , when the MDS is contacted, until 

reservation is successfully completed. Hence, 

 

                                resdecmds tttt ++=∆ )2(  (8) 
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    Hence, the probability that one of the J resources chosen to run the job is taken 

prior to successful reservation is given by, 

                                                                 tJ

fail eP ∆−−= λ1                             (9) 

 

    This leads to the following expression for the average time the simple SNAP 

broker takes from receiving the users’ requirements until resources are successfully 

reserved. 

 

                    ( ) ( )( )resdecmds

tJ

KBsimple ttEettE ++= ∆
/

λ  (10) 

5.3.2 Three-phase Commit Broker 

In the case of the three-phase commit SNAP broker, the MDS is contacted only 

once, since the probes are used to provide the broker with a vision of the resources. 

However, there is still an overhead associated with the possibility that other users 

could take resources prior to the successful completion of the decision as to where 

the job should run. Hence dect  is replaced with ( )
phasethreedectE −/ . In addition, once the 

broker makes a decision, it may fail to successfully reserve resources, if another user 

takes one or more of the chosen resources, during the time interval rest . Using the 

same reasoning as given above for the simple broker to calculate the effect of this 

overhead, leads to the following expression for the average time it takes the three-

phase commit broker to successfully reserve resources. 

 

      ( ) ( )( )
resphasethreedec

Jt

mdsKBphasethree ttEetttE res +++= −− /

λ
 (11) 

5.4 Simulation 

While there exists a large number of simulation languages (such as Parsec [127] and 

JiST [128]), simulation libraries (such as SimJava [129] and DSOL [130]) and 

application specific simulators (such as OMNeT++ [131]), there exists very few 

tools for simulating Grid computing environment.  The most notable ones are 

MicroGrid [132], Simgrid [133] and Gridsim [125], however these tools do not 

support scheduling performance evaluation nor the functionalities of the SNAP 
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resource brokers (in specific the three-phase commit protocol).  Therefore the 

discrete event simulation tool used in obtaining the results (shown in Section 5.5) 

has been developed from scratch. This tool, written in Java, adopts the process 

interaction approach to discrete-event simulation. The SNAP resource brokers’ 

objects (in the physical system) are represented by logical processes. Interactions 

among physical processes (events) are modelled by timestamped messages 

exchanged among the corresponding logical processes. The programs developed for 

the simulation are executed using the traditional sequential simulation protocol 

(Global Event List) [134]. 

    The objectives of the simulation experiments are twofold: 1) an observation of the 

behaviour of the broker in terms of time to reserve resources, and 2) a comparison 

between the analytical and simulation results. Specifically, the simulator can be used 

to consider a wide range of traffic conditions, using both the simple and extended 

traffic models presented in Section 5.2. Experiments using the simple model can be 

used to assess the validity of the results through comparison with the analytical 

results. Experiments can then be carried out, using the extended traffic model, 

enabling the effect of correlation of traffic across resources to be evaluated. In each 

case, the performance of the three-phase commit SNAP broker relative to the simple 

SNAP broker is of significant interest.  The simulation results are obtained over n 

runs (n being large
*
) i.e. the mean value of n runs by each SNAP broker for each 

point in the plots presented in Section 5.5.  This is to calculate the standard deviation 

as well as gain a 95% significant interval. 

5.5 Experiments and Results  

This section presents the experiments designed to study the behaviour of the SNAP 

brokers under a range of traffic conditions.  The approach taken is to compare 

analytic and simulation results, obtained using the simple traffic model. This is used 

to validate the results obtained using the simulator.  Further results will then be 

obtained through simulation using the extended traffic model.  Hence all 

performance evaluation comparison of the SNAP brokers will be based on the 

simulation results. 

 

*Up to 1000 runs 
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    All the experiments will firstly be carried out with parameters obtained from the 

Grid test-bed (its specification description is given in Section 4.2), then the same 

experiments will be carried out with values from the White Rose Grid (its 

specification description is given in Section 4.3).  This is to follow the same 

approach carried out in chapter 4, ensuring the three-phase commit SNAP broker 

still provides a performance enhancement over the simple SNAP broker in a large 

Grid environment, however with this chapter it investigates the broker using various 

traffic conditions.   

    In addition to the experiments discussed in this section, some preliminary tests 

were carried out to check the components of the simulator. A description of these 

and the results obtained can be found in Appendix C. 

5.5.1 Design of Experiment 1 

This experiment involved the SNAP brokers submitting a user’s job into the system 

using the simple traffic model, each broker is considered separately. The mean 

service time and mean inter-arrival time are 300 Sec and 350 Sec respectively.  

These values are acceptable as the purpose is to ensure traffic is generated on the 

system and also allow the opportunity for the SNAP brokers to attempt reserving 

resources i.e. the system is not over flooded with jobs, which is not the norm.  The 

total number of resources on the system is 128. It is assumed that all 128 resources 

are appropriate for the user’s job to be submitted by the SNAP brokers. Firstly, 

simulation is used to obtain values for ( )decmdstE /  and ( )
phasethreedectE −/  in the simple 

and three-phase commit SNAP brokers respectively for both the Grid test-bed and 

the WRG.  This avoids the need to derive the values through long mathematical 

expressions as they can be easily obtained through simulation.  The values are 

shown in Appendix D.   

    The average time each broker takes to submit the user’s job is measured as a 

function of number of resources (1, 2, 4, 8, 12 and 16) required by the user’s job.  

There are two aspects related to these values, the first is that the resources request do 

not exceed 16, the justification is that the next incremental value would be 32 (25% 

of the systems resources). However even though this value (32 resources) is allowed 

to be requested by third party jobs (see Section 5.2.2), it is not the norm for a single 

job to request such amounts on a multi-user system.  Further the SNAP brokers need 
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to reserve the resources simultaneously, unlike the third party jobs which do not and 

are generated to create traffic flow.  Hence such a request would incur a high 

waiting time as 25% of the systems resources are required under competing 

conditions.  The second aspect is the value 12 in the sequence of resources requested 

by the SNAP brokers, the reason for this is that there is a large gap between 8 and 16 

resources request, which is why the value is included.  

    The simulation and modelling results, for the simple and the three-phase commit 

SNAP brokers are then compared. If good agreement is obtained between simulation 

and modelling then this will support the validity of further results, obtained through 

simulation using the extended traffic model, for experiment 2 discussed below in 

Section 5.5.2. 

5.5.2 Design of Experiment 2 

This experiment is closely related to experiment 1, except that the extended traffic 

model is used in place of the simple traffic model. The mean inter-arrival time to the 

multi-server queue is: 

                                 
128

3501 R
=

λ
 

(12) 

 

    Here R  is the average number of resources required by third party jobs being 

submitted to the multi-server queue. In this case, since R is randomly chosen from 

the set (1, 2, 4, 8, 16 and 32), R is 10.5. The mean service time associated with these 

jobs is 300 seconds.   

    There are several options that can be used to allocate third party jobs at the front 

of the multi-server queue to the local queues as discussed in Section 5.2.2.  However 

not every option can be chosen for the evaluation of the simple SNAP broker 

compared to the three-phase commit SNAP broker, as it would be time consuming 

and the purpose of the experiments is to investigate if the three-phase commit SNAP 

broker still outperforms the simple SNAP broker under realistic traffic conditions.  

Thus two approaches have been chosen namely round-robin and random. The reason 

for choosing these two is that round-robin follows an orderly sequential approach in 

allocating resource for jobs.  Conversely the random approach does not follow an 

orderly sequence and is unpredictable in its resource allocation.  Thus this would 
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provide a good insight into how the SNAP brokers would cope in two different 

extreme traffic conditions.   

5.5.3 Experimental Results and Discussion based on 

the Grid test-bed Parameters 

The results and discussion for experiments 1 and 2 are presented in this section 

based on the Grid test-bed parameters which are those presented in [135], the 

parameters used are listed below:  

 

• Time taken to connect to Knowledge Bank (KB): 0.268 Sec. 

• Time taken to filter out resources appropriate for the user’s job and return 

the results to the broker: 0.017 Sec. 

• Time taken for the broker to prioritise resources and tag them blue and 

white, corresponding to “high priority” and “adequate” respectively:  

0.003 Sec. 

• Hence  tKB= 0.288 Sec. 

• Contacting the MDS takes 8 sec on average. Changes to resource status 

are picked up in the first 4 Sec. Hence, tmds(1) = tmds(2)  = 4 Sec. 

• The time taken to decide on where to submit the user’s job is 0.007 Sec. 

Hence, tdec =0.007 Sec. 

• Reservation takes 2.881 sec. Hence, tres = 2.881 Sec. 

 

    Figure 5.4 and Figures 5.5 show a comparison, for experiment 1, of the simulation 

results with the analytic results for both the simple SNAP broker and the three-phase 

commit SNAP broker respectively with the Grid test-bed parameters. The average 

time taken from receiving user requirements until resources are successfully 

reserved are plotted as a function of the number of resources required by the user’s 

job. The average inter-arrival time is 350 seconds and the average service time is 
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300 seconds. As can be seen from the Figures (Figures 5.4 and 5.5), the simulation 

and analytical results show good agreement with slight discrepancies.  This can be 

expected when comparing simulation to analysisl [123, 134], however most 

importantly the performance trend is the same. 
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Figure 5.4: Simulation compared to analytical results, showing the average 

time the simple SNAP broker takes to reserve resources, with the Grid test-bed 

parameters. The mean inter-arrival time and mean service time are 350 Sec 

and 300 Sec respectively. 
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Figure 5.5: Simulation compared to analytical results, showing the average 

time the three-phase commit SNAP broker takes to reserve resources, with the 

Grid test-bed parameters. The mean inter-arrival time and mean service time 

are 350 Sec and 300 Sec respectively. 
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    In Figures 5.6 and 5.7, the same results as shown in Figures 5.4 and 5.5 are used 

to compare the performance of simple SNAP broker and the three-phase commit 

SNAP broker. Both the simulation and the analytic results indicate that the three-

phase commit SNAP broker provides a performance enhancement, particularly as 

the number of resources increases to 8 or more.  Specifically the performance 

enhancement for 8, 12 and 16 resources is 14%, 19% and 36% respectively (the 

percentages are calculated using equation 1), resources below 8 carry a performance 

improvement of less than 4%.  This is to do with the fact that as the number of 

resources required by the brokers increases so does the probability that some of the 

selected resources will be taken by third party users before successfully reserving 

the resources.  Thus with the simple SNAP broker if it fails to secure a selected set it 

must incur the cost of re-contacting the MDS. However with the three-phase SNAP 

broker the probes provide updates of the resources’ status and the broker can adjust 

without having to incur the cost of re-contacting the MDS.  Another factor that will 

influence the chances of securing resources is the duration of the information 

provider response time, this effect will be highlighted by the results in the next 

section (Section 5.5.3) where the WRG parameters will be used (specifically, the 

MDS response time is higher on the WRG).   
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Figure 5.6. Analytical results showing the average time the simple SNAP 

broker takes in comparison to the average time the three-phase commit SNAP 

broker takes to reserve resources, with the Grid test-bed parameters. The mean 

inter-arrival time and mean service times are 350 Sec and 300 Sec respectively. 
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        The results for experiment 2 have been obtained, using the round-robin and 

random approaches to distribute third party jobs using the extended traffic model.  

Figures 5.8 and 5.9 show these results for round-robin and the random approach 

respectively, with the mean inter-arrival time given by equation (12) and the mean 

service time of 300 Seconds. The three-phase commit SNAP broker clearly 

outperforms the simple SNAP broker in both traffic conditions when the resources 

requested increase to 12 or more.  This is to do with the fact (indicated above for 

experiment 1) that as the number of resources requested by the brokers increase so 

does the probability some of the selected resources will be taken by third party users 

before successfully reserving the resources.  

    Overall both the simple and the three-phase commit SNAP broker perform well in 

a system that distributes third-party jobs using round-robin compared to the random 

approach.  This can be explained by the fact that the round-robin systematically runs 

through the list of resources and allocates the first set that are available to third-party 

users as they enter the system.  Further, the round-robin method does not revisit the 

same set of resources until it has fully progressed through the list and looped back.  

It is also important to note that all the resources in the experiments are set with equal 

priority and both brokers will nominate the first set of resources that are unoccupied 

in the list and attempt to reserve them.  Hence both the brokers and the round-robin 

traffic algorithm follow an orderly systematic approach to selecting resources.  

However the random approach is sporadic in its resource selection for third-party 

jobs.  Conversely both brokers follow the same procedure in selecting their 

resources as described above when discussing the round-robin approach.  

Consequently the brokers find it difficult to secure resources as the conflict between 

the brokers and third party jobs increases substantially.  This is due to the fact that 

the random algorithm does not follow any orderly approach and it disregards the fact 

of having visited a resource in its previous nomination.  Further, as a whole three-

phase commit SNAP broker outperforms the simple broker in either traffic 

conditions (round-robin or random), this is due to the use of the probes that provide 

raid updates of the resources status as they occur.  Further due to the random traffic 

condition both SNAP brokers incur a higher delay in reserving the resources 

compared the round-robin again this is related to the methods the two distribute the 

traffic.  Also note that the SNAP brokers take longer to reserve the resources for 

both round-robin and the random traffic model compared to the simple traffic model 



 

 111 

used in experiment 1.  This is related to the jobs submitted by third party users 

requiring more than one resource which are correlated across to different resources 

by the extended traffic model, while in the simple traffic model only one resource is 

required by each job. 

    The performance enhancement of the three-phase commit SNAP broker compared 

to the simple SNAP broker, based on the round-robin traffic condition for 12, and 16 

is 18% and 31% respectively (the percentages are calculated using equation 1), 

resources below 12 carry a performance improvement of less than 6%.  In regards to 

the random traffic condition the performance enhancement of the three-phase 

commit SNAP broker compared the simple SNAP broker for 12 and 16 resources is 

12% and 18% respectively, resources below 12 carry a performance improvement of 

less than 3%. 
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Figure 5.7: Simulation results showing the average time the simple SNAP 

broker takes in comparison to the average time the three-phase commit SNAP 

broker takes to reserve resources, with the Grid test-bed parameters. The mean 

inter-arrival time and mean service time are 350 Sec and 300 Sec respectively. 
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Figure 5.8:  Simulation results showing the average time the simple SNAP 

broker takes in comparison to the average time the three-phase commit SNAP 

broker take to reserve resources, with the Grid test-bed parameters, when the 

extended traffic model is used for round-robin resource selection.      
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Figure  5.9:  Simulation results showing the average time the simple and three-

phase commit SNAP brokers takes to reserve resources, with the Grid test-bed 

parameters, when the extended traffic model is used for random resource 

selection. 
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5.5.4 Experimental Results and Discussion based on 

the White Rose Grid Parameters 

The results and discussion for experiment 1 and 2 are presented in this section, 

which are based on the White Rose Grid (WRG) parameters.  The parameters are the 

same as those on the Grid test-bed apart from two which are: 

 

• Contacting the MDS takes 27 Sec on average. Changes to resource status 

are picked up in the first 17 Sec. Hence, tmds(1) = 17 Sec and  tmds(2)  = 10 

Sec. 

• Reservation takes 1.779 Sec. Hence, tres = 1.779 Sec. 

 

    Contacting the MDS on the WRG incurs a higher cost than on the Grid test-bed as 

it is a much larger infrastructure despite having higher speed CPUs.  However the 

reservation is purely directed at a resource (CPU) which is why it is quicker on the 

WRG than the Grid test-bed (due to the CPU speed).  The other parameter values are 

the same as the broker resided on the same machine for the experiments carried out 

on the Grid test-bed and the WRG. 

    Figure 5.10 and Figure 5.11 show a comparison, for experiment 1, of the 

simulation results and the analytic results for both the simple SNAP broker and the 

three-phase commit SNAP broker respectively, using the WRG parameters. The 

average time taken from receiving user requirements until resources are successfully 

reserved are plotted as a function of the number of resources required by the user’s 

job. The average inter-arrival time is 350 seconds and the average service time is 

300 seconds. As can be seen from the Figures (Figures 5.10 and 5.11), the 

simulation and analytical results show good agreement with slight discrepancies, as 

with the Grid test-bed (see Section 5.5.3). 
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Figure 5.10: Simulation compared to analytical results, showing the average 

time the simple SNAP broker takes to reserve resources, with the WRG 

parameters. The mean inter-arrival time and mean service times are 350 Sec 

and 300 Sec respectively. 
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Figure 5.11: Simulation compared to analytical results, showing the average 

time the three-phase commit SNAP broker takes to reserve resources, with the 

WRG parameters. The mean inter-arrival times and mean service times are 

350 Sec and 300 Sec respectively. 

 

  In Figures 5.12 and 5.13, the same results as shown in Figures 5.10 and 5.11 are 

used to compare the performance of simple SNAP broker and the three-phase 
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commit SNAP broker. Both the simulation and the analytic results indicate that the 

three-phase commit SNAP broker provides a significant performance enhancement, 

particularly as the number of resources increases to 4 or more.  The performance 

enhancement for 4, 8, 12 and 16 resources is 18%, 29%, 35% and 51% respectively 

(the percentages are calculated using equation 1), however resources below 4 carry a 

percentage improvement less than 8%.  This is to do with the fact (indicated in 

Section 5.5.3) that as the number of resources required by the brokers increases so 

does the probability some of the selected resources will be taken by third party users 

before successfully reserving the resources.  However in comparison to the same 

experiment carried out based on the Grid test-bed parameters, shown in Section 

5.5.3 the increase in performance by the three-phase commit SNAP broker is seen 

when fewer resources are requested based on the WRG parameters.  This is related 

to the increase in MDS response time on the WRG, hence the greater the response 

time the more likely resources will be taken by third party users. 
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Figure 5.12: Analytical results showing the average time the simple SNAP 

broker takes in comparison to the average time the three-phase commit SNAP 

broker takes to reserve resources, with the WRG parameters. The mean inter-

arrival time and mean service times are 350 Sec and 300 Sec respectively. 
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Figure 5.13: Simulation results showing the average time the simple SNAP 

broker takes compared the average time the three-phase commit broker takes 

to reserve resources, with the WRG parameters. The mean inter-arrival time 

and mean service times are 350 Sec and 300 Sec respectively. 
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    The results for experiment 2 based on the WRG parameters have been obtained 

using the round-robin and random approaches to distribute third party jobs with the 

extended traffic model, i.e. the approaches discussed in section 5.2.2. Figures 5.14 

and 5.15 show the results for the round-robin and the random approach respectively, 

with mean inter-arrival time given by equation (12) and mean service time of 300 

seconds. The three-phase commit SNAP broker outperforms the simple SNAP 

broker in both traffic conditions when the resources requested increase to 8 or more, 

again this is related to the increase of competition when more resources are required.  

The performance increase is seen when fewer resources are requested compared to 

the same experiments carried out based on the Grid test-bed (Section 5.5.3).  This is 

related (as with the case for experiment 1 based on the WRG parameters) to the 

increase in MDS response time. 

    The performance enhancement gained by the three-phase commit SNAP broker 

compared to the simple broker based on the round-robin traffic condition for 8, 12 

and 16 resources is 26%, 31% and 48% respectively  (the percentages are calculated 

using equation 1).  However below 8 resources it provides a performance less than 

7%.  In regards to the random traffic condition the performance enhancement the 

three-phase commit SNAP broker compared to the simple SNAP broker provides for 

8, 12 and 16 resources is 24%, 28% and 43% respectively  (the percentages are 

calculated using equation 1). However for resources below 8 it provides a 

performance less that 3%.  Further, unlike experiment 2 based on the Grid test-bed 

(where the y-axis differed for the round-robin traffic condition (Figure 5.8) and the 

random (Figure 5.9) i.e. 0 – 250 Sec (round-robin) and 0 – 600 Sec (random)), on 

the WRG the y-axis for the round-robin (Figure 5.14) and the random (Figure 5.15) 

are the same i.e. 0 - 900 Sec.  This is related to the increase in the MDS response 

time on the WRG.  Hence this shows when the MDS response time increases it 

becomes difficult for the simple SNAP broker to secure resources in either the 

round-robin or the random traffic conditions, while the three-phase commit SNAP 

broker is able to maintain its enhancement over the simple SNAP broker due to the 

use of the probes. 
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Figure 5.14:  Simulation results showing the average time the simple SNAP 

broker and three-phase commit SNAP broker takes to reserve resources, with 

the WRG parameters, when the extended traffic model is used for round-robin 

resource selection. 
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Figure  5.15:  Simulation results showing the average time the simple SNAP 

broker and three-phase commit SNAP broker takes to reserve resources, with 

the WRG parameters, when the extended traffic model is used for random 

resource selection. 
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5.5.5 Overall Evaluation of the Experiments  

The experiments carried out in this chapter using parameters from the Grid test-bed 

(Section 5.5.3) and from the WRG (Section 5.5.4), compared the three-phase 

commit SNAP broker to the simple SNAP broker using different traffic conditions, 

i.e. the simple traffic model and the extended traffic model which includes round-

robin and random selection.  This has shown that the three-phase commit SNAP 

broker outperforms the simple SNAP broker both in the simple and the extended 

traffic model. 

    The experimental results obtained based on the parameters from the WRG, shows 

the performance improvement gained by the three-phase commit SNAP broker is 

more significant than that gained with the parameters from the Grid test-bed.  This is 

for both the simple and the extended traffic model.  The performance increase is 

related to the information provider response being larger than that on the Grid test-

bed.  This is also the same reason for the performance improvement of the 

experiments in chapter 4 when comparing the results from Grid test-bed to that on 

the WRG.  Further, for both the Grid test-bed and the WRG the simple traffic model 

provides the highest performance increase followed by the extended traffic model 

with round-robin than by the random approach   This is when comparing the 

performance increase provided by the three-phase commit SNAP broker to the 

simple SNAP broker.  This is related to the fact that in the simple traffic model there 

is no correlation in the traffic.  However the performance decreases slightly for the 

round-robin comparing it to the simple traffic model this is related to the correlation 

in its job traffic.  As for the random it suffers for the same reason as the round robin 

in that is its jobs are correlated by the extended traffic model and further its job 

allocation is sporadic i.e. it does not follow an orderly sequence in resources 

allocation.   
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5.6 Summary 

In this chapter mathematical modelling and simulations were used to evaluate the 

performance of the simple SNAP broker compared to the hree-phase commit SNAP 

broker.  As the experiments carried out in chapter 4 were constrained to the number 

of physical resources available for the experiments, which also limited the type of 

traffic conditions used, using simulation (which was validated through mathematical 

modelling) allowed for the flexibility to investigate the SNAP broker under more 

realistic traffic conditions and with more resources than that used in chapter 4.   

  The chapter begins by presenting the SNAP-base Grid resource broker architecture 

components showing the sequence taken in the simple SNAP broker protocol.  This 

is followed with a description in the format of a sequence of steps for both the 

simple SNAP broker and the three-phase commit SNAP broker protocol, to aid the 

development of the mathematical modelling and simulation.  The chapter then 

describes both the simple and extended traffic models that are used to generate 

traffic conditions both SNAP brokers would be evaluated under.  This is then 

followed with a description of the mathematical model of both the simple SNAP 

broker and the three-phase commit SNAP broker.  A description of the simulation 

tool is then provided, which was developed specifically for the experiments in this 

chapter.  The chapter then presents the experiment and performance results, firstly 

for parameters obtained from the Grid test-bed then with the parameters from the 

WRG (White Rose Grid). Both sets of experiments show the three-phase commit 

SNAP broker outperformed the simple SNAP broker, with a performance increase 

for the experiments based on the WRG parameters compared to those based on the 

Grid test-bed.  This is related to the increase in the information provider response 

time on the WRG.  Further as the information provider is high (such as that on the 

WRG) and the resource request is high (in the case for the experiment in this chapter 

it was 16) the simple SNAP broker finds it difficult in the simple traffic model and 

the extended which included round-robin and random to secure resources which is 

why there is a significant performance enhancement for the three-phase commit 

SNAP broker in all traffic conditions.  Additionally both the simulation and 

analytical show good agreement for the simple traffic model which provided the 

foundation to evaluate the three-phase commit SNAP broker to the simple SNAP 

broker based on simulation to obtain the results for the extended traffic model. 
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Chapter 6 

Conclusion and Future Work 

6.1 Summary 

The research in this thesis presents the development of a user-centric resource 

broker that is based on the SNAP framework. The work shows the performance 

evaluation of the SNAP-based resource broker using the traditional two-phase 

commit protocol (referred as the simple SNAP broker within the thesis) compared to 

the proposed and developed three-phase commit protocol (referred to as the three-

phase commit SNAP broker within the thesis).  The performance evaluation has 

been carried out on a Grid test-bed, the White Rose Grid (WRG) and through 

mathematical modelling and simulation, with the results showing, in all evaluations, 

that the three-phase commit SNAP broker outperforms the simple SNAP broker.   

    Chapter 2 begins by reviewing Grid resource management and the attributes that 

differentiate it from traditional distributed systems, which are site autonomy, 

heterogeneous substrate, policy extensibility and co-allocation.  This is followed 

with a discussion of the two broad categories of distributed resource management 

approaches namely Network Batch Queuing Systems (NBQS) and Wide Area 

Scheduling Systems (WASS).  This showed that both NBQS and WASS did not 

have the full necessities to facilitate Grid resource management.  NBQS are 

typically designed for a single administration domain making them autonomous to a 

single site.  Conversely WASS usually crosses over several sites with each system in 

this category targeting to serve a particular purpose.  For example Condor [24-26] is 

designed to support high-throughput computation by taking advantage of idle 

compute resources while Gallop [21] is designed to facilitate parallel application.  

Overall there is not a single NBQS or WASS that provides a solution to all Grid 

resource management attributes.  Before describing the Grid resource management 

toolkit namely Globus [2, 3], the components (which are constructed through 

hierarchical layers) that integrate the Grid infrastructure and also server to aid the 
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resource management are described.  The layers consisted of a Grid fabric, Grid 

middleware, user level middleware and a Grid application layer.   

    Globus the de facto Grid resource management toolkit that is being used by major 

global Grid development teams including the UK e-Science projects [46] is 

described.  The toolkit comprises of the Globus Security Infrastructure (GSI) [30], 

the Monitoring and Discovery System (MDS) [33, 34, 50] to provide information of 

the resources status, Grid File Transfer Protocol (GFTP) and more importantly Grid 

Resource Allocation Manager (GRAM) for resource management.  This followed by 

providing an example of major Grid projects which lead to the description of 

Distributed Aircraft Maintenance Environment (DAME) [9]  which has been used as 

an exemplar for this research due to the need for resources on demand. 

    A review of Grid resource brokers is then provided with a description of their 

main components, their architectures and limitations.  This then followed with a 

review of resource information providers which are an integral part of the Grid due 

to its divers scope and dynamic nature.  Finally Chapter 2 looked into the two well-

known resource reservation systems the Globus Architecture for Reservation and 

Allocation (GARA) and MAUI [12]. 

  Chapter 3 firstly provides an overview of the process of submitting a job to a local 

distributed resource management system compared to the same submission through 

the Grid middleware.  This was to provide an insight into the Grid middleware 

complexities and the need for a Grid resource broker to insulate the user from the 

difficulties.  This then followed with an overview of Grid Service Level Agreements 

and the Service Negotiation and Acquisition Protocol (SNAP) [10], before 

describing the developed SNAP-based Grid resource broker architecture.  The 

architecture’s components were then described individually.  This then followed 

with a scenario to highlighting the need to secure resources which consequently lead 

to the development of the three-phase commit protocol that was described in detail.   

    Chapter 4 presents empirical performance evaluation results from experiments 

carried out on a Grid test-bed which showed the three-phase commit SNAP broker 

outperformed the simple SNAP broker by up to 54% in certain scenarios.  The same 

experiments were then further carried out on the White Rose Grid (WRG) [11] 

which also showed that same effect with the three-phase commit SNAP broker 

providing a performance improvement of just below 75%. 
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    Chapter 5 further evaluated the SNAP brokers through mathematical modelling 

and simulation, this allowed a wider traffic condition to be considered than that used 

in chapter 4 due to the availability of physical resources for the experiments which 

also restricted the traffic conditions considered.  The experiments were firstly 

conducted with the parameters obtained from the Grid test-bed and then repeated 

with the parameters obtained from the WRG (this was to validate the results based 

on the Grid test-bed).  Again the three-phase commit SNAP broker outperformed the 

simple SNAP broker, both in the simple traffic model and the extended (which 

included round-robin and random) and in both parameter environments (Grid test-

bed and WRG).    Additionally both the simulation and modelling show good 

agreement for the simple traffic model which provided the foundation to evaluate 

the three-phase commit SNAP broker to the simple SNAP broker based on 

simulation to for  the extended traffic model.  

 

6.2 Contributions 

The contributions of the research work in this thesis is summarised in the following 

points: 

 

• The design and development of the three-phase commit protocol that 

secures resources on demand, which follows the traditional two-phase 

commit protocol.  However the first phase is separated into two parts to 

enhance the current two-phase commit protocol and strengthen it through 

the use of probes.  The probes provide rapid update of the resource 

status, allowing a broker to adjust swiftly to the changes which are 

highlighted through a scenario in Section 3.4.1.   

• The development of a SNAP-based Grid resource broker that insulates a 

user from the Grid middleware complexities.  The broker ascertains the 

user’s job requirements through a user interface, filters out the 

appropriate resources that have the capability for the user’s job through 

the use of a Knowledge Bank (KB).  It prioritises the resources based on 

their past performance and then contacts the resources information 
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provider to gain their dynamic status.  It then nominates a set of 

resources and secures them through the three-phase commit protocol 

before submitting the user’s job for execution. The SNAP resource 

broker differs from current broker system as with the current systems the 

user needs to interact with and is exposed to the Grid middleware 

complexities, even after the job requirements are provided to the broker.  

For example with Nimrod/G [5, 69] it requires a user to create a task 

farm (plan) through the use of its declarative parametric modelling 

language before a job is passed for processing.  Hence it does not provide 

automated resource discovery, a list of resources in the form of Globus 

Gatekeeper contact strings need to be set up manually by the user before 

brokering takes place.  This is also the case with the Grid Broker [76], in 

that it does not provide automated resource discovery.  Furthermore in 

the Grid Broker system the decision making process is left to the user as 

to where to submit a job without the system verifying if the resources are 

available for use.  With Condor/G [74] again the user needs to query the 

information providers manually and needs to write the Resource 

Specification Language (RSL) for the job to be executed at the 

appropriate resources.  As for AppLeS [79-81]  in order for a user to 

submit a job using this system, the user’s job application source code 

needs to be modified and recompiled or filtered through into a template 

to be compliant with the Apples scheduling agents.  Once this time 

consuming process is complete, the user is still required to provide an 

input, stating a list of resources contact details that the user has the 

credentials to utilise, to enable the broker to query the resources status.  

Further most importantly in comparison to other brokering systems the 

SNAP broker ensures the resources are reserved prior to the user’s job 

submission which is done through the use of the three-phase commit 

protocol.  Existing brokering currently do not support reservation to 

secure resources prior to the user’s job submission.  This is to ensure 

other third party users unknown to the broker do not utilise the broker’s 

nominated resources, while it is in the process of submitting the user’s 

job, which will delay the execution start time of the user’s job as it will 

be placed in the pending queue.  
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• The proposal and use of a Knowledge Bank (KB), a data repository that 

stores static information of resources as attributes which provides a 

description of their characteristics.  This helps in many ways such as 

supporting automated resource discovery.  It facilitates the SNAP brokers 

(both the simple and the three-phase commit version) to filter out all 

resources that can handle a job’s requirements prior to contacting the 

resource’s information provider, avoiding unnecessary processing of 

resource contacts.  Also it alleviates the user from the burden of having 

to keep a log file of the resources with their associated descriptions that 

they are entitled to use.  Further in addition to keeping a description of 

the resource specification, additional attributes are also used to keep a 

history of past behaviour performance of a resource.  Relating to the 

latter, resources are classified as low/high priority according to whether 

they meet a pre-defined level of performance, at present it is based on 

reliability, i.e. the likelihood of a resource crashing during the execution 

of a job. For example if a resource often crashes, it is likely to be 

classified as low priority.   

• Empirical performance evaluation of the simple SNAP broker compared 

to the three-phase commit SNAP broker on a local Grid test-bed.  The 

evaluation showed that the three-phase commit SNAP broker 

outperformed the simple SNAP broker and in certain scenarios with an 

enhancement improvement of 54%.   

• The deployment of both the simple SNAP broker and the three-phase 

commit SNAP broker onto the WRG.  The deployment was challenging 

from two aspects, the technical, which mainly suffered from site 

autonomy and heterogeneous substrate.  The second was human 

collaboration which was related to geographical distance and the fact it 

was the first type of deployment on the WRG, which required to push the 

boundaries of the existing technologies by modifying existing settings, 

enhancing existing services and adding a new protocol (three-phase 

commit protocol).  The deployment could only be achieved by close 

collaboration and Co-operation of the various site’s administrators. 

Further despite the technical and collaboration challenges encountered 
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the deployment shows that the three-phase commit SNAP broker works 

on a real distributed Grid infrastructure. 

• Empirical performance evaluation of the simple SNAP broker compared 

to the three-phase commit SNAP broker on a real distributed Grid 

infrastructure, the WRG.  This is to validate the experiments carried out 

on the local Grid test-bed.  Again the three-phase commit SNAP broker 

outperformed the simple SNAP broker, the increase in performance 

compared to the Grid test-bed is related to the increase in information 

provider response time.  Further the simple SNAP broker will not 

outperform the three-phase commit SNAP broker as the protocol used by 

the latter broker follows the same procedure as the simple SNAP broker. 

The WRG experiments also validated to show that there is no overhead 

cost associated with setting up the probes since this occurs concurrently 

when initially contacting the Monitoring and Discovery System (MDS) 

[33, 34, 50, 136].  It is also important to note that the use of the three-

phase commit protocol is scalable compared to repeatedly contacting the 

information providers which is the case in the simple SNAP broker.  This 

is due to the fact that the three-phase commit only makes the initial 

contact to the information providers and then uses the probes for updates. 

• Mathematical modelling and simulation of both the simple SNAP and the 

three-phase commit SNAP broker.  This evaluates the SNAP brokers 

under a wider traffic conditions than that possible on the Grid test-bed 

and the WRG.  With the experiments carried out on the Grid test-bed and 

the WRG, the three-phase commit SNAP broker outperformed the simple 

SNAP broker. 

6.3 Future Work 

There are many ways to further extend the work presented in this thesis.  The most 

appealing ones are listed below: 

 

• In the thesis the use of a Knowledge Bank (KB) was proposed and used 

within the SNAP broker architecture to mainly aid automated resources 
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discovery and to alleviate the user from having to keep a log file of the 

resources he/she is entitled use.  The KB could be enhanced by including 

attributes that characterise a resource based on its past performance such 

as the likelihood of it crashing during job execution or its performance 

degradation.  This would enhance the Decision Maker component in the 

SNAP broker architecture to better prioritise the resources as more 

information is know about the resources.  

• The option to leave the experiments running on the WRG for a week or 

even longer to assess the performance of the three-phase commit protocol 

under real Grid conditions was explored.  However this option was not 

practical as the WRG is a production Grid with several projects and with 

many users that use its resources.  Further, the experiments that were 

carried out on the WRG and presented in this thesis had to be authorised 

by the directors of the three sites.  This was related to the nature of the 

three-phase commit protocol requiring certain technologies to be 

modified such as those discussed in Appendix B, which meant a limited 

time was given to complete the experiments.  Hence experiments that 

would run under real Grid conditions would require a large number of 

resources (only a limited amount was provided for the experiment) and 

time.  This consequently would hinder the progress of projects that have 

a contract in using the resources and which also fund the maintenance of 

the infrastructure. 

• After the deployment of the three-phase commit protocol on the WRG 

and the completion of the experiment that clearly shows the performance 

gain in the use of the three-phase commit protocol compared to the 

simple approach, the option of installing the protocol on all resources on 

the WRG was investigated.  However it was concluded that it is not 

viable as the man power and the technical knowledge would not be 

available for long term maintenance since the protocol was part of the 

research carried out for this thesis.   

• The three-phase commit protocol has been developed to reserve Grid 

resources on demand.  However this protocol can be used in other fields 
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such as online train booking systems or other reservation systems.  This 

should be explored and investigated. 

• The performance evaluation of the SNAP brokers through mathematical 

modelling and simulation is performed using the average information 

provider response time.  However additional experiments could be 

carried out using random information provider response time within the 

boundaries of the average response time.  This would help to provide a 

better realistic environment setting than that used in the current work.  

Other queueing strategies in the extended traffic model could be 

investigated such as when jobs are sent to local queues with the least 

number of jobs or to local queues with the least waiting time.  Further 

other modelling tools such as Petri Nets [126] could be used to study the 

system’s bottlenecks. 

• It would be ideal to evaluate the SNAP brokers on a global scale that 

crosses over many continents and uses several hundred resources.  This is 

beneficial in two ways: 1) It would provide an even better comparison of 

the of the three-phase commit SNAP broker compared to the simple 

SNAP broker than that shown in chapter 4 and 5 due, to the geographical 

distance and quantity of resources.  2) Despite the latency issue that 

would arise when comparing the SNAP brokers over many continents, 

the three-phase commit will still outperform the simple SNAP broker.  

This is related to the fact that the simple SNAP broker has to repeatedly 

contact the information providers for updates of resources status.  This 

will generate a high volume of traffic due to the number of resources 

evaluated and will also slow its decision making process as it needs to 

wait for all information providers to reply which can be long as seen 

when comparing the Grid test-bed to that of the WRG. Thus with the 

evaluation crossing over several contestants it would mean an even 

longer delay than that on the WRG.  In regards to the three-phase commit 

SNAP broker it only needs to contact the information providers once 

then it relies on the probes to provide any resources status updates, 

further this will create less traffic than having to repeatedly contact the 

information provider as with the case in the simple SNAP broker.  
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Appendix A 

The tables shown below (Tables A.1 – A.3.) are those used in the Knowledge Bank 

(KB).  Table A.1 stores user’s information such as the login details and password, 

Table A.2 lists which resources a user is entitled to access while Table A.3 stores the 

resources specification.   

 

Users(UserName, Sign_in_id, Sign_in_password) 

 

CREATE TABLE Users   

               (UserName                CHAR(50) NOT NULL 

                 Sign_in_ID CHAR(20) NOT NULL 

                 Sign_in_password CHAR(20) NOT NULL 

                 PRIMARY KEY (Sign_in_ID))  

   

Table  A.1: User’s information details. 

 

Accounts(Sign_in_id, Resource_name) 

 

CREATE TABLE Accounts   

                 (Sign_in_ID  CHAR(20) NOT NULL 

                  Resource_name CHAR(20) NOT NULL 

                   PRIMARY KEY (Sign_in_ID, Resource_name))  

   

Table A.2 Storing a user’s identification and the resource names entitled to it. 
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Resource (Resource_name, Host_name, Site_address, CPU_count, CPU_speed, 

CPU_version, RAM_total, Storage_capacity, OS_type, OS_version,  

Num_crashed_jobs, Num_uncrashed_jobs, Mean_history_profile) 

 

CREATE TABLE Resource   

                 (Resource_name CHAR(20) NOT NULL 

                  Host_name CHAR(20) NOT NULL 

                  Site_address CHAR(20) NOT NULL 

                  CPU_count INTEGER NOT NULL 

                  CPU_speed INTEGER NOT NULL 

                  CPU_version INTEGER NOT NULL 

                  RAM_total INTEGER NOT NULL 

                  Storage_capacity INTEGER NOT NULL 

                  OS_type   CHAR(20) NOT NULL 

                  OS_version CHAR(10) NOT NULL 

                  Num_crashed_jobs INTEGER NOT NULL 

                  Num_uncrashed_jobs INTEGER NOT NULL 

                  Mean_history_profile INTEGER NOT NULL 

                   PRIMARY KEY (Resource_name))  

   

Table A.3 Store the resources details.  The acronym OS represents Operating 

System. The attribute OS_version uses a character type as the version could 

include more than one decimal point i.e. 2.2.1 
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Appendix B 

 

The Monitoring and Discovery System (MDS) [33, 34, 50] is used for the broker’s 

architecture to gather dynamic information, which is extended from the default 

installation.  Specifically, the MDS is deriving information from the local resource 

manager, Sun Grid Engine (SGE) [19].  An attribute is added to each GRIS (Grid 

Resource Information Service) to indicate the different transitions the resources 

evolve into, from normal, amber to the red state. The Time-To-Live (TTL) for each 

information provider is set to zero so that any query would retrieve fresh 

information and not cached information, which could be out of date. 

    The MDS provides information on request, which does not facilitate the broadcast 

or streaming of information regarding the changes of resources’ status. This facility 

is necessary to enable active probes working on behalf of the broker to be kept 

updated.  A solution to this is to create a server that acts as an interface to SGE, 

which enables the streaming of resources changes through a port associated to the 

server.  When a job starts or completes the information is broadcast to anyone 

listening on that port. This is supported by the in-built function of SGEs, Prolog and 

Epilog, which inform the server when a job has started and ended respectively and is 

secure as only information that can be obtained during anonymously querying the 

information provider is broadcast. 

    Netscape Directory Software Development Kit 4.0 [137] is used to query the 

GRIS on each resource. Taking this approach is more efficient than having to search 

the GIIS (Grid Index Information Service) hierarchy, which could have resources 

that may not be able to cater for the task requirements. Note that the broker typically 

does not want information about every resource, since the KB has been used to 

identify only resources that are capable of supporting the application. Hence this 

approach helps to avoid unnecessary processing. 

    The KB is developed using MySQL [108] to store static data and relevant 

information associated with the users and the resources. JDBC-ODBC (Java 

Database Connectivity – Open Database Connectivity) is used for the 

communication between the broker and the KB.  Globus 2.4 [2, 3] and CoGkit 1.1a 
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[72] are used for the security and the binding of the resource with the task. They also 

support GridFTP [37] and the generation of the RSL (Resource Specification 

Language) to initiate the execution.  GRAM (Grid Resource Allocation Manager) 

[3] is recompiled and installed after the poling service was modified for updates 

from every 20 seconds (which is the default installation value) to 1 second.  This 

ensures the various stages of a job process from Pending, Active to Done are 

recorded by the broker as they occur.  

    The user interface was developed in the form of a Grid portal built on Web 

technologies namely XML, and HTML and Java Servlets to transfer the user inputs 

to the broker for processing. 
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Appendix C 

 

The following experiments are carried out to ensure that the basic traffic and broker 

models have been implemented correctly in the simulation. These were carried out 

prior to the experiments described in chapter 5. The traffic model referred to in 

relation to the preliminary tests is the simple traffic model. 

 

Test 1 

Consider a single resource. The mean service time is fixed at 30 sec. The mean 

inter-arrival time ( 1−λ ) is varied between 35 and 300 sec. Values for the following 

parameters will be obtained using both modelling and simulation: 

 

1) Mean number of items in the queue. 

2) Mean time spent by an item in the queue. 

 

In this test (and those that follow) the simulation is run enough times to give 95% 

confidence in the results.  If analytical and simulation results agree, then this gives 

confidence that the queueing model is being applied correctly in both. 

 

Test 2 

Assume there is no other traffic entering the system (i.e. the inter-arrival rate is 0). 

The time taken (from the point when user requirements are received) to submit a job 

will be obtained through both analytical and simulation approaches and the results 

compared. Note that the number of resources the job requires does not affect these 

results.  If analytical and simulation results agree, then this gives confidence that the 

model describing the working of the broker is being applied correctly in both. 
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Test 3 

This is the first experiment to address the integration between the traffic model and 

the broker model. The mean service time is fixed at 30 sec. The mean inter-arrival 

time ( 1−λ ) for every resource is fixed at 35 sec. The total number of resources is 

fixed at 128 and the number of resources required by the job being submitted by the 

broker (J) is varied between 1 and 100. Results for modelling and simulation are 

compared. 

 

Results for Test 1 

The first question (mean number of items in the queue) is addressed using the 

following expression. 

                                                   WN q λ= , (13) 

  

 

where qN is the mean number of items in the queue and W is the mean waiting time 

in the queue. The mean waiting time is obtained using (note ρ = Ts / Tλ), 
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Eliminating ρ from these expressions leads to 
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and 
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Here 1−= λλT  is the mean inter-arrival time. 

Figures C.1 and C.2 show both the modelling and simulation results for mean 

number of items in the queue and mean queue waiting time (both as a function of 

mean inter-arrival time) respectively. 
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Figure C.1 Comparison between analytical and simulation for mean number of 

items in the queue as a function of mean inter-arrival time. 
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Figure C.2 Comparison between analytical and simulation for mean queue 

waiting time as a function of mean inter-arrival time. 

 

Results for Test 2 

When no other traffic is in the system, the analysis indicates that, 

                                       
( ) stE simple 176.11=

 
(47) 

This is given by equation (4). 

For the three-phase commit protocol, 

                                      
( ) stE phasethree 176.11=−  

(58) 

This is given by letting 0=λ and replacing 
( )

phasethreedectE −/  with dect
 in equation 

(11). As expected, the results are the same for both brokers. 

These agree exactly with the times obtained in the simulation. 
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Results for Test 3 

The following expression can be used to determine the probability ( NRP ) that not 

enough resources are available to support the job on initial contact with the 

Monitoring and Directory System (MDS ) [33, 34, 50] .  
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(69) 

Here sTλρ =  is the server utilisation. 

The value of NRP  can then be estimated through simulation by running it many times 

for a given value of J and determining the frequency with which enough resources 

are free.   Figure C.3 shows the results for both analytical and simulation.  
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Figure  C.3 Comparison between simulation and analytical for the probability 

that insufficient resources are available when the MDS is first contacted, as a 

function of number of resources requested (P=128). 
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Appendix D 

Table D.1 shows the values for ( )decmdstE /
 and ( )

phasethreedectE −/  obtained through 

summation with the Grid test-bed parameters.  Table D.2 is the same table but the 

value obtained through the White Rose Grid (WRG) [11] parameters.  The values in 

Table D.1 and D.2 are used to aid the mathematical modelling as discussed in 

Section 5.5.1 

Resources 

required by 

the broker ( )decmdstE /  

 

 

( )
phasethreedectE −/  

1 8.191161 0.007 

2 8.431371 0.007 

4 8.719623 0.007 

8 9.664449 0.015041 

12 14.1804 3.075493 

16 68.39579 42.30818 

Table D.1: Show the values obtained through simulation based on the Grid test-

bed parameters for ( )decmdstE / and ( )
phasethreedectE −/ . 

 

Resources 

required by 

the broker ( )decmdstE /  

 

 

( )
phasethreedectE −/  

1 27.007 0.007 

2 27.007 0.007 

4 27.007 0.007 

8 27.11503 0.015041 

12 30.40988 3.075493 

16 80.804949 42.30818 

Table D.2: Show the values obtained through simulation based on the WRG 

parameters for ( )decmdstE / and ( )
phasethreedectE −/ . 
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