EXCLAIM framework: a
monitoring and analysis
framework to support
self-governance in Cloud
Application Platforms

A thesis submitted to The University of Sheffield for the degree of Doctor of
Philosophy

Rustem Dautov

Department of Computer Science / South-East European Research Centre

June 2016

Acknowledgements

My warmest words of gratitude go to my academic supervisors - Iraklis Paraskakis
and Mike Stannett — without whom this work would never have been completed.

I would also like to thank South-East European Research Centre and CITY
College Computer Science Department for offering me the opportunity to pursue
the PhD degree, and all the nice people working there for their warm support
during my PhD studies.

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7-PEOPLE-2010-ITN) under grant ag-
reement N°264840.

ii

Abstract

The Platform-as-a-Service segment of Cloud Computing has been steadily grow-
ing over the past several years, with more and more software developers opting for
cloud platforms as convenient ecosystems for developing, deploying, testing and
maintaining their software. Such cloud platforms also play an important role in
delivering an easily-accessible Internet of Services. They provide rich support for
software development, and, following the principles of Service-Oriented Comput-
ing, offer their subscribers a wide selection of pre-existing, reliable and reusable
basic services, available through a common platform marketplace and ready to be
seamlessly integrated into users” applications. Such cloud ecosystems are becom-
ing increasingly dynamic and complex, and one of the major challenges faced by
cloud providers is to develop appropriate scalable and extensible mechanisms for
governance and control based on run-time monitoring and analysis of (extreme
amounts of) raw heterogeneous data.

In this thesis we address this important research question — how can we sup-
port self-governance in cloud platforms delivering the Internet of Services in
the presence of large amounts of heterogeneous and rapidly changing data?
To address this research question and demonstrate our approach, we have created
the Extensible Cloud Monitoring and Analysis (EXCLAIM) framework for service-
based cloud platforms. The main idea underpinning our approach is to encode
monitored heterogeneous data using Semantic Web languages, which then en-
ables us to integrate these semantically enriched observation streams with static
ontological knowledge and to apply intelligent reasoning. This has allowed us
to create an extensible, modular, and declaratively defined architecture for per-
forming run-time data monitoring and analysis with a view to detecting critical
situations within cloud platforms.

By addressing the main research question, our approach contributes to the
domain of Cloud Computing, and in particular to the area of autonomic and self-
managing capabilities of service-based cloud platforms. Our main contributions
include the approach itself, which allows monitoring and analysing heterogeneous
data in an extensible and scalable manner, the prototype of the EXCLAIM frame-
work, and the Cloud Sensor Ontology. Our research also contributes to the state of
the art in Software Engineering by demonstrating how existing techniques from
several fields (i.e., Autonomic Computing, Service-Oriented Computing, Stream
Processing, Semantic Sensor Web, and Big Data) can be combined in a novel way
to create an extensible, scalable, modular, and declaratively defined monitoring

and analysis solution.

Contents

Introduction

1.1 Motivation: Lack of self-governance in Cloud Application Platforms
1.2 Towards the solution: the EXCLAIM framework
1.3 Aimofthethesis
1.4 Contributions of thethesis

1.5 Thesisoutline e

Background theory and related technologies

Background theory: Cloud Computing and Autonomic Computing

2.1 Context of the research work: Internet of Services, Cloud Comput-
ing and Cloud Application Platforms
21.1 Cloud computing as an extension of Service-Oriented Com-

puting

21

2.1.2 Cloud Application Platforms delivering the Internet of Services 25

2.1.3 Survey of Cloud Application Platforms
2.2 Autonomic Computing L.
221 MAPE-K referencemodel
222 Levels of autonomicity
223 Self-managementinclouds

23 SUMMATYo

27

Related technologies: Big Data processing and the Semantic Sensor Web 45

3.1 BigDataprocessing,
3.1.1 Processing streaming BigData
3.1.2 An existing solution: IBM InfoSphere Streams
32 SemanticSensorWeb oo L
3.2.1 Semantic Web and the Semantic Web stack
322 SSNontology

iii

46

iv Contents
3.23 RDF stream processing 63
33 Summary 65
I State of the art and our approach to address the gaps 66
4 State of the art in cloud platform self-governance 68
41 Overview of the [aaS and SaaS self-management 68
42 PaaS: State of the art in data monitoring and analysis in service-
based cloud platforms 70
4.3 Identifying gaps in the state-of-the-art research 78
44 Summary 82
5 Conceptual architecture of the EXCLAIM framework 84
5.1 Interpretation of Cloud Application Platforms as Sensor Networks . 84
5.1.1 Drawing parallels between sensor networks and cloud appli-
cation platforms oL L oo 87
5.2 Conceptual architecture of the EXCLAIM framework 89
5.3 Enhancements to the main conceptual design 92
53.1 Modularity and self-containment. 93
5.3.2 Criticality levels, criticality dependencies and application pro-
filing 94
54 Summary e 97
6 Implementation details of the EXCLAIM framework 98
6.1 Overview of technical details 98
6.2 Implementationdetails 103
6.2.1 Triplificationenegine L. 103
6.2.2 RDF streaming and C-SPARQL querying engine 106
6.2.3 OWL/SWRL reasoning engine 107
6.3 Cloud Sensor Ontology 109
6.3.1 Design process and methodology 109
6.3.2 Upper level of the Cloud Sensor Ontology 112
6.3.3 Lower level of the Cloud Sensor Ontology: Heroku-specific
concepts 115
6.3.4 SWRL policies and linked extensions 117
6.4 Opportunities and requirements for cross-platform deployment of
the EXCLAIM framework 118

6.5 Summary 120

Contents v
7 Proof of concept: monitoring and analysis of Heroku add-on services
with the EXCLAIM framework 121
7.1 Case study: Destinator — an application for sharing destinations on
Facebook 122
7.2 Demonstrating monitoring and analysis capabilities 128
7.2.1 Cloud Application Platform provider’s perspective 128
7.2.2 Cloud Application Platform consumer’s perspective 132
7.3 Deployment on IBM Streams 137
7.3.1 Stream parallelisation 138
74 Experimentalresults 141
74.1 Experimentalsetup. 141
742 Conducting the experiments with the initial deployment . . . 143
74.3 Conducting experiments with the IBM Streams deployment . 144
75 Summary 145
III Evaluation, discussion, and conclusion 147
8 Evaluation and discussion 149
8.1 Evaluating performance, scalability, and extensibility 149
8.1.1 Performance of the EXCLAIM framework 150
8.1.2 Scalability of the EXCLAIM framework 152
8.1.3 Extensibility of the EXCLAIM framework. 153
8.2 Potential benefits of the proposed approach 154
8.3 Potential limitations of the proposed approach 161
84 Summary 166
9 Conclusion 167
9.1 Discussing contributions oo 0 Lo oL 168
92 Furtherwork. 171
93 Researcher’sview 176
Acronyms 178
References 183
A List of the author’s publications 196
B Cloud Sensor Ontology 200
C Survey of Cloud Application Platforms 202

vi Contents

D Survey of the state of the art 207

List of Figures

2.1
2.2
23

24

3.1
3.2
3.3
34

51

52
5.3
54

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

7.2

CAPs offer a range of basic add-on services accessible via APIs. . . .
IBM’s MAPE-K reference model for autonomic control loops.
Traditional multi-component enterprise software architecture and

service-oriented architecture. 0 L0

Clouds follow the SOC model by gathering IT services in one place.

Data stream and a window operator.
Sensor network. e e
Semantic Web stack.

A bird’s-eye view on the SSN ontology.

Applications are deployed on a CAP and coupled with the plat-

form’s add-on services. Lo Lo L L
Schematic of a 'sensor-enabled” CAP.
Conceptual architecture of the EXCLAIM framework.

An application is dependent on several add-on services.

Management console of the EXCLAIM framework.
Sensorclass
Property class.
ContextObjectclass.
Situationclass. L oo
Heroku-specific concepts belonging to the Sensor class.
Heroku-specific concepts belonging to the Property class.
ContextObjectclass.

Situation class.

Destinator — a Heroku-based application for sharing destinations on
Facebook.. e

Architecture of the Destinator application.

vii

28
33

viii List of Figures
7.3 Parallel architecture with the main RDF stream split into five sepa-

rate sub-streams.o Lo 139

74 Detection times under the default configuration. 143
7.5 Detection times (100 registered C-SPARQL queries, window step

100 ms, window size 1 min). 144

7.6 Detection times on IBM Streams (21 registered C-SPARQL queries). 145

7.7 Detection times on IBM Streams (100 registered C-SPARQL queries). 146

B.1 Cloud Sensor Ontology used for the Destinator use case. 201

List of Tables

2.1

6.1

6.2

7.1

7.2

C1

D.1

Levels of autonomic behaviour. 38

Third-party JARs and their role in the implementation of the EX-
CLAIM framework. e 99
Main features of the EXCLAIM framework accessed via the man-
agementconsole. L L o Lo 102

Five add-on services connected to Destinator, and their monitored

aspects. 125
Parameters affecting the performance of the framework. 142
Survey of Cloud Application Platforms. 204

Survey of the state of the art in monitoring and analysis of service-
based cloud platforms. o L 212

X

Listings

3.1
3.2
3.3
34
6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
7.1

7.2

7.3

7.4

7.5

7.6

Example of the RDF/XML serialisation. 59
Example of the N3/Turtle serialisation. 59
Example of a SPARQL query. 60
Example of aSWRLrule. 61
SQL query snippet. o 104

IronWorker API function to get the number of tasks in the queue. . 104

Sample client code to fetch the number of tasks to be executed by

the IronWorker service. 104
A single raw value is represented using four RDF triples. 105
Declaring and initialising a RabbitMQ service queue. 105
Sending a string message to the RabbitMQ queue. 106
Initialising the C-SPARQL engine and registering a stream. 106
Registering a listener with the C-SAPRQL stream. 107
Loading and initiating the CSO. 108
Adding new individual assertions to the CSO. 108
Querying the reasoner whether there are critical instances. 108

RDF triples on the stream indicate database space, occupied by an

individual service. 0 L 129
A C-SPARQL query fetching the current value of the disk space
utilisation by the HerokuPostgres service. 130

New SWRL rule detecting situations when the overall database size
dedicated to the HerokuPostgres service (shared by five different
applications) is critical. oo L L 131
A critical situation is detected only when there does not exist an
additonal server.. Lo 131
RDF triples on the stream indicate an increase in the number of
client connections to the PostgreSQL service from 12 to 15 connec-
tions with no backup process running.. 133

Detecting number of client connections at the critical level. 134

LISTINGS xi

7.7 Detecting number of client connections at the moderate level. 134
7.8 Detecting number of client connections at the minor level. 135
7.9 The CSO is populated with RDF triples representing a critical situ-
ation. 135
7.10 Only one of the three SWRL rules, determining whether an ob-
served situation is indeed critical or not, is added to the TBox of
the knowledgebase. 136

7.11 Generic rules apply to all sub-classes of the class DatabaseService. . 137

Chapter 1

Introduction

During the last decade, cloud computing has passed a long way from a term
mainly known to Information Technology (IT) professionals and computer scien-
tists to a buzzword, widely-known and recognisable by ordinary users. Indeed,
cloud technologies, to a greater or lesser extent, are nowadays involved in almost
every area of our daily life and economy — ubiquitous cloud services are rapidly
transforming the way we do business, maintain our health, educate and entertain
ourselves (Dautov et al., 2014b). Ever-increasing numbers of ordinary users are
using mobile cloud apps and storing their data in cloud-based storage, while in-
dustries are anticipating more and more economic benefits from migrating and
running IT tasks in cloud environments. This paradigm shift from traditional,
in-house computation and storage to remote virtualised cloud ecosystems would
not be possible without the recent advances in computing, networking, software,
hardware and mobile technologies. Technological achievements in these domains
go hand in hand with cloud computing to support and facilitate its increasing
popularity and adoption.

In particular, the Platform-as-a-Service (PaaS) segment of cloud computing has
been exhibiting steady growth over the past several years, with an ever-increasing
number of software developers opting for cloud platforms as convenient ecosys-
tems for their applications throughout the whole software lifecycle. IDC,! a major
global research and advisory company, reported 46.2% growth in the public PaaS
market in 2012 and predicts that by 2017 it will keep increasing by 30% annually,
to reach a turnover of $14 billion (Mahowald et al., 2013). Such rapid growth
and the success of the PaaS segment can be explained by the promising business
opportunities offered to enterprises. With this cloud computing delivery model,

the target audience — typically, software developers — is offered an appealing en-

http://www.idc.com/

http://www.idc.com/

vironment and tooling support for developing, testing, deploying, and maintain-
ing their software on a remote virtualised platform, paying for computational
resources only when they are really needed, without the requirement to own or
manage the underlying hardware infrastructure and Operating System (OS). In
these circumstances, a platform offered as a service typically consists of a Virtual
Machine (VM) with an OS, execution environment, simple data storage, and de-
velopment tools, running on a shared multi-tenant physical server. Following the
principles of Service-Oriented Computing (SOC) (Wei and Blake, 2010), a subset
of such cloud platforms also offer their subscribers a selection of pre-existing and
reusable services, which can be seamlessly integrated into users” applications and
thus allow developers to concentrate on their immediate business tasks and ex-
empt them from ‘re-inventing the wheel’. Such basic services, for example, may
include data storage, queue messaging, searching, E-mail and SMS, logging and caching,
among others.! The emergence of SOC in the early 2000s (Curbera et al., 2002,
Huhns and Singh, 2005, Papazoglou et al., 2003, Ross and Westerman, 2004, Roy
and Ramanujan, 2001) opened new business opportunities for enterprises who
migrated their IT systems from traditional monolithic approaches towards highly
modular and re-usable service-based architectures. This allowed organisations to
develop distributed software systems in a short period of time by dynamically
assembling basic services supplied by multiple service providers and hosted on
different hosting platforms (Wei and Blake, 2010). As a result, instead of spending
their effort and time on indirect routine tasks, such as re-implementing already
existing components (e.g., an authentication mechanism for a web site), or migrat-
ing and configuring a legacy database, with just a few mouse clicks developers
have the capacity to easily integrate an existing service into their applications,
thereby accessing a tested, optimised and reliable solution from an experienced
vendor, typically through a transparent and easy-to-understand pricing scheme.
Usually, cloud platforms offer such basic add-on services through a central mar-
ketplace, where platform and third-party services can be accessed. Accordingly,
cloud platform customers only have to choose a convenient option from an (ever-
growing) selection of existing authentication and data storage solutions.> Cloud
platforms providing basic services discoverable and accessible via a service mar-
ketplace are nowadays seen as a one of the main contributing factors to delivering
reliable Internet of Services (I0S). Given this essential and distinctive from other
Paa$S solutions characteristic, which allows software developers to concentrate on

their immediate business-oriented tasks, we refer to this subset of PaaS offerings

Heroku, for example, provides over 150 add-ons (http://addons.heroku.com/).
2In this case, customers will only have to move their data to the cloud, which is still much
simpler than building up a whole database server in the cloud from scratch.

http://addons.heroku.com/

Chapter 1. Introduction 3

as Cloud Application Platforms (CAPs) to highlight their application-centric and

business-oriented nature.

1.1 Motivation: Lack of self-governance in Cloud Applica-

tion Platforms

Attractive from the business perspective, the model offered by CAPs, however, is
not a ‘silver bullet’, whether for enterprises willing to see their software up and
running in the clouds, or CAP providers seeking to offer better service and thus at-
tract more customers. With the increasing flexibility and reduced time-to-market,
come emerging challenges as to how the available cyberspace resources and ser-
vices should be properly managed (Dautov et al., 2014b). This flexible model for
application development, in which software systems are assembled from existing
components in a manner similar to a Lego® construction set, generates complex
interrelationships between services and user applications, and eventually leads to
a situation where CAP providers have to cope with the ever-growing complexity
of entangled cloud environments and face new challenges as to how such systems
should be governed, maintained and secured.

Platform (self-)governance is becoming of utmost importance, as cloud plat-
forms compete, striving to deliver an even wider selection of services and ac-
commodate even more user applications. It follows that in order to maintain the
stable and balanced performance of the CAP and deployed applications, providers
should be able to exercise control over all potentially critical activities associated
with i) the run-time execution of services and applications, ii) the introduction of
new services and applications, and iii) the modification of existing ones (Kourtesis
et al., 2012). However, with the on-going paradigm shift towards cloud comput-
ing in general and its PaaS segment in particular, the complexity of tomorrow’s
service-based cloud environments is expected to outgrow our capacity to man-
age them in a manual manner (Brazier et al., 2009, Dautov et al., 2013). Today’s
CAPs (e.g., Google App Engine,! Windows Azure,> and Heroku®) already host
numerous services, ranging from simple operations to complicated business logic,
all ready to be integrated into an ever-expanding range of service compositions.
However, they do not offer support for user-customised monitoring and problem
detection to facilitate automated governance and management of the resulting

service-based systems as part of their offering (Wei and Blake, 2010). In the era

11’1ttp ://appengine.google.com/
2http ://www.windowsazure.com/
Shttp://www.heroku.com/

http://appengine.google.com/
http://www.windowsazure.com/
http://www.heroku.com/

4 1.1. Motivation: Lack of self-governance in Cloud Application Platforms

of the IoS, when applications are increasingly dependent on third-party solutions
offered as services, a failure of an external component at one point may lead to
malfunctioning of a whole cloud-based application system, without the hosting
platform noticing it. Presently, CAPs are incapable of detecting and reacting to
such situations (Dautov et al., 2012) — e.g., they cannot understand whether a
response from a service is correct or not, substitute a malfunctioning or under-
performing service with another, or balance resource consumption accordingly.

The existing limitations make it necessary for software engineers to remain
involved in the application life cycle after it has been deployed to the cloud en-
vironment. That is, they have to monitor application at run-time, detect potential
critical situations, and apply adaptations, which need to be performed manually
by rewriting the application/platform programming code, recompiling, redeploy-
ing the application or restarting the platform. To some extent, this challenge is
analogous to the problem faced in the 1920s, when increased telephone usage led
to the introduction of the automatic branch exchanges so as a substitute for the
insufficient manual labour of human operators (Huebscher and McCann, 2008).
As we explore in more detail below, a similar goal is pursued by the Autonomic
Computing research, which aims at minimising human involvement in complex
computing systems. By bringing together many fields of IT (e.g., Control Theory,
Agent Theory, Software Engineering, Information and Data Management, etc.)
(Huebscher and McCann, 2008), Autonomic Computing serves to create systems
that are capable of self-management (that is, autonomic systems) — a key feature
of complex and dynamic computing systems, including cloud ecosystems.

The sample scenario described above, albeit it already represents a specific and
pressing gap to be addressed by Heroku, is intended to highlight and bring to the
reader’s attention the general systematic lack of scalable control and governance
capabilities within CAPs. Providing customers with more visibility into service
resource consumption is important, but reflects only a single dimension of the
envisaged governance and control mechanisms in CAPs. There can be identified

three key stake-holders involved in the CAP governance process:

¢ The CAP provider, who is interested in executing constant control over plat-
form resources provisioned to consumers. In particular, the provider needs
to ensure that the amount of virtualised abstracted resources provisioned
to add-on services and user applications never exceeds the actual physical

amount of underlying hardware infrastructure.

e The CAP consumer, who wants to be aware of the current amount of re-

sources utilised by his software. The consumer also needs to be notified

Chapter 1. Introduction 5

whenever his resource consumption is approaching critical levels.

¢ The third-party service provider, who offers his add-on services through
the platform marketplace. His role in the governance process is to notify
the CAP providers and consumers of how his respective services have to be
monitored and treated.

There are two main aspects which have to be taken into consideration. Firstly,
CAPs are complex systems, which span across all three levels of cloud comput-
ing (i.e., Infrastructure-as-a-Service (IaaS), PaaS, and Software-as-a-Service (SaaS)),
and, therefore, governance activities are not only limited to services and resources
at the platform level. For example, they may also include the monitoring of infras-
tructure resources or performing higher-level business analytics to support Busi-
ness Process Management (BPM). Secondly, CAPs are highly dynamic systems
and are expected to change on a daily basis (e.g., new user applications deployed,
new services added). Given this, the challenge of the CAP governance is also as-
sociated with creating an extensible and scalable architecture, which would allow
adapting to emerging requirements in a seamless and transparent manner. In this
context, extensibility can be defined as the ability of a system to be extended with
new functionality (or to modify existing functionality) with minimum effect on
the system’s internal structure and data flow. Typically, extensibility entails that
recompiling or changing the original source code is unnecessary when changing
the system’s behavior. An extensible architecture is usually achieved by apply-
ing modularity principles — that is, by breaking down a ‘monolithic” application
into multiple loosely-coupled components — and using declarative programming
languages, which allow for seamless modification of indivudual components with-
out interfering with the rest of the system. As for scalability, in the context of the
present research it is defined as the ability of a system to handle a growing amount
of work, or its potential to accommodate that growth, while maintaining a stable
level of service (Bondi, 2000).

Accordingly, effectively managing CAPs inevitably means that resources will
need to become increasingly autonomous and capable of managing themselves
with minimum human involvement — that is, self-managing (Dautov et al., 2014b).
The autonomic behaviour of a computer system is typically achieved through im-
plementing closed control loops whose main principle is to iteratively observe
the system’s surrounding environment and context, and then react accordingly
if needed, without manual intervention. One of the main reference models for

implementing such closed adaptation loops is the Monitor-Analyse-Plan-Execute-

6 1.2. Towards the solution: the EXCLAIM framework

Knowledge (MAPE-K) model from IBM! (Kephart et al., 2007). It consists of four
steps — Monitor, Analyse, Plan, Execute — and a unifying Knowledge component
which conceptually represents all the information needed to perform these four
activities.

In this regard, data monitoring and timely problem detection in the context
of complex service-based environments can be seen as a multi-faceted challenge,

which involves the following key aspects:
¢ Volume: potentially extreme scale of data created, processed and stored
* Velocity: on-the-fly processing of streaming data

* Variety: data is generated by multiple heterogeneous sources, and comes in

many different forms and formats
¢ Veracity: data is often uncertain, flawed, or rapidly changing

Enabling CAPs with autonomic behaviour means constantly monitoring the
current state of the CAP ecosystem, as the monitoring process can be seen as an
entry point for the whole adaptation process — observations obtained at this stage
act as a trigger for potential adaptations; at a later stage they are fed to the analysis
and planning components, which, in their turn, diagnose potential problems and
suggest relevant adaptations to be applied to the system. Such monitoring and
analysis activities, for example, include measuring resources currently available
to customers, identifying bottlenecks and breakdowns, checking for Service Level
Agreement (SLA) violations, etc. Consequently, if a service fails to meet expected
requirements, the CAP provider needs to detect and diagnose this situation as
quickly as possible, and to take necessary steps to provide seamless hand-overs

from one service to another.

1.2 Towards the solution: the EXCLAIM framework

Deployed applications and dependant services (which are monitored subjects in
this context, and whose operational behaviour has to be observed and interpreted)
can be seen as self-contained entities, which form complex interrelationships and

constantly generate raw data to be monitored and analysed by the CAP providers.

! Another example of a reference model for creating closed adaptation loops is Collect — Analyze
— Decide — Act (CADA) (Dobson et al., 2006), which is similar to MAPE-K in the general principle of
collecting, interpreting and acting upon data. Unlike CADA, however, the MAPE-K model explicitly
has Knowledge as its key component. As explained in Chapters 2.2 and 5, the knowledge base is of
paramount importance in the context of this research work, and, therefore, MAPE-K was chosen as
our main point of reference.

Chapter 1. Introduction 7

Indeed, with the ever-increasing number of offered services and deployed appli-
cations,! CAPs are coming to resemble complex sensor network graphs where
nodes are deployed applications and services, and edges are the dependencies be-
tween them. This allows us to draw parallels between CAPs and sensor networks.
Looking at CAPs from this perspective allows building on the work carried out
by the Sensor Web research community in the context of dynamic monitoring and
analysis of continuously flowing streams of data. In particular, their Sensor Web
Enablement (SWE) initiative (Botts et al., 2008) focuses on enabling an interopera-
ble usage of discoverable and accessible sensor resources. In other words, it aims
at enabling timely integration of separate heterogeneous sensor networks into the
single global information infrastructure — a very similar goal to our own, which
we aim to address by creating an Extensible Cloud Monitoring and Analysis (EX-
CLAIM) framework for service-based cloud environments.

While challenges associated with timely processing of sensor data have been
relatively successfully tackled by the advances in networking and hardware tech-
nologies (Liang et al., 2005, Akyildiz et al., 2002b,a), the challenge of properly
handling data representation and semantics of sensor descriptions and sensor ob-
servations is still pressing. In the presence of multiple organisations for standard-
isation, as well as various sensor hardware and software vendors, overcoming the
resulting heterogeneity remains one of the major concerns for the SWE initiative
(Botts et al., 2008). An analogous problem exists in CAPs, where deployed ap-
plications and services, provided by different independent software vendors, are
characterised with high degrees of diversity and heterogeneity.

This lack of a unified data representation has been addressed in the context
the Semantic Sensor Web (SSW) — a promising combination of two research areas,
the Semantic Web and the Sensor Web (Sheth et al., 2008). Using the Semantic
Web technology stack to represent data in a uniform and homogeneous manner,
it provides enhanced meaning for sensor descriptions and observations so as to
facilitate situation awareness along with support for timely, dynamic stream pro-
cessing (Dautov et al., 2014a). Given our interpretation of CAPs as distributed
networks of logical sensors and applying the SSW approach to this domain, we
aim to represent highly-heterogeneous data of CAPs in a uniform manner, and,
at the same time, facilitate interoperability, human-readability and, most impor-
tantly, formal analysis of the semantically-annotated data streams.

Another important aspect of this Sensor Web-inspired approach is the oppor-
tunity to address the Big Data challenge associated with processing vast amounts
of raw data within CAPs. Sensor networks are characterised by extreme amounts

Heroku, for example, reports over 1.5 million deployed applications (Harris, 2012).

8 1.2. Towards the solution: the EXCLAIM framework

of streaming data, and existing solutions aim at processing avalanches of sensor
readings with minimum delay in a dynamic and scalable manner. The SSW com-
munity has addressed the issue of prompt stream processing by introducing so-
called continuous query languages for semantically-annotated data streams. These
query engines extend the functionality of the query language for static semantic
datasets with support for temporal and sequential operators — that is, support for
streaming, real-time data. As a result, massive amounts of constantly updated sen-
sor information are not permanently stored, but rather processed in a dynamic,
in-memory fashion so as to achieve faster execution and eliminate the unneces-
sary burden of storing this big data. It is worth mentioning, however, that existing
stream processing solutions, as yet immature and not well optimised, often tend
to suffer from the scalability issue, and therefore can be even further enhanced by
applying two fundamental principles of Big Data processing — data partitioning
and parallel processing (Dean and Ghemawat, 2008, Chaiken et al., 2008) — which
enable processing sub-streams of sensor observations in parallel, and thus achieve
faster execution.!

Following the MAPE-K model for implementing closed adaptation loops and
treating CAPs as networks of logical software sensors, we created a proof-of-
concept prototype and validated it with a Heroku case study. When implementing
the prototype, we re-used existing techniques from the SSW domain:

* Web Ontology Language (OWL) to develop a common architectural model

of the managed CAP environment;
* Resource Description Framework (RDF) to represent semantic data streams;
* RDF stream processing techniques to query the streaming data;

¢ Formal reasoning capabilities of OWL and Semantic Web Rule Language
(SWRL) to analyse and detect potentially critical situations.

Case study results show that we are able to successfully detect critical situations
within Heroku when running relatively small-scale experiments. However, the sit-
uation gets worse when the workload (i.e., amount of streamed data to be analysed
by the framework) increases, as the framework faces the scalability issue, associ-
ated with i) a single-threaded, pipelined approach to data stream processing, and
ii) low scalability of formal reasoning in general. To address this challenge as well,
we have deployed the framework on top of IBM InfoSphere Streams — a part of

Each of the background theories and related technologies, relevant to this research work, are
described in details in corresponding chapters of this thesis.

Chapter 1. Introduction 9

IBM’s solution stack for Big Data processing, which focuses specifically on dy-
namic streaming data. This deployment allowed us to split the main data stream
with monitored values into several sub-streams and process them in a parallel
and scalable manner. Experimental results also indicate noticeable improvements

in processing time with the IBM Streams deployment.

1.3 Aim of the thesis

With the presented thesis, we aim to address the outlined challenges by raising
and answering the main research question — how can we support self-governance
in cloud platforms delivering the Internet of Services in the presence of large
amounts of heterogeneous and rapidly changing data? effectively, answering this

main question requires addressing several sub-questions:

* What are the key challenges to be addressed? Answering this question re-
quires through classification of the problem domain of service-based cloud
platforms, and identification of the main existing challenges and require-
ments for the future solution. This has to be done in a comprehensive man-
ner from several perspectives — that is, it is important to identify key stake-
holders and their respective roles in the process of platform governance. As
a result, addressing these issues is expected to outline techniques, which can

be potentially re-used and applied.

e How should cloud software and add-on services be treated to enable data
collection and analysis? It is important to understand what kind of data is
expected to be monitored, whether it can be collected in a non-intrusive man-
ner, and, if not, how to minimise potential intrusions to application source

code.

* How to engineer the resulting software framework, addressing identified
challenges? This refers to designing and implementing the framework fol-
lowing the established software engineering practices, including support for
scalability, extensibility, and performance. This also includes addressing the
volume, velocity, variety and veracity of data generated and collected within
CAPs.

¢ How to model the internal architecture of the monitored cloud environ-
ment? This involves understanding requirements for a suitable modeling
language, finding the right language, and, finally, thoroughly and precisely

modeling the cloud platform ecosystem.

10 1.4. Contributions of the thesis

* How to enable a fine-grained, differentiated, and user-customised approach
to data collection and monitoring? This requires designing and implement-
ing the monitoring in such a manner, that the involved parties (i.e., the CAP
provider, the CAP consumer, and the third-party add-on provider) are given

an opportunity to participate in the process of cloud platform governance.

By addressing these research questions, the presented work contributes to the
domain of Cloud Computing, and in particular to the area of autonomic and self-
managing capabilities of service-based cloud platforms. It also contributes to the
state of the art in Software Engineering by demonstrating how existing techniques
from several fields (i.e., Autonomic Computing, Stream Processing, SSW, and Big
Data processing) can be combined in a novel way to create an extensible, scalable,

modular, and declaratively defined monitoring and analysis framework.

1.4 Contributions of the thesis

1. Novel concept of software self-containment: this concept relies on inter-
preting software elements as logical sensors, and cloud platforms as dis-
tributed networks of such sensors, and allows for individual software sen-
sors to be equipped with respective self-governance knowledge (e.g., self-
diagnosis and self-adaptation policies) to enable decoupled, modular and
distributed organisation of the knowledge base. As opposed to computa-
tionally expensive reasoning over a potentially heavy-weight, ‘monolithic’
knowledge base, with such organisation, it is possible to limit analysis ac-
tivities to a specific set of policies related to a particular scenario, and thus
minimise the amount of unnecessary computations. This contribution is ex-
plained in Section 5.3.1.

2. The overall approach to data monitoring and analysis to support self-
governance in service-based cloud platforms: the approach involved a con-
siderable amount of preliminary research work — that is, it relies on thorough
analysis of the problem, classification of existing challenges, and identifica-
tion of suitable techniques to be utilised in this respect. The approach itself
demonstrates capabilities for declarative definition of knowledge, extensibil-
ity, modularity, and scalability. Based on the concept of interpreting software
services as sensor networks, we devised a new approach to implement mon-
itoring and analysis capabilities. The proposed approach is a combination
of several technologies and research domains — namely, Cloud Computing,

SSW, Stream Processing, Big Data Processing, and Software Engineering —

Chapter 1. Introduction 11

and potentially can be re-used and applied to other problem domains related
to processing large amounts of heterogeneous data. Please refer to Chapter
5 for further details.

3. Conceptual design of the EXCLAIM framework: the conceptual design of
the proposed EXCLAIM framework may serve as a reference model to im-
plement similar frameworks using other components and technologies. As
explained in further detail below, certain components of the EXCLAIM im-
plementation could be seamlessly replaced by other existing alternatives,
whereas the overall conceptual architecture of the framework would remain

the same. The conceptual design is explained in Section 5.2.

4. Two-tier Cloud Sensor Ontology: the upper tier of this ontology models
a cloud platform environment in a generic manner, and therefore can be
extended appropriately to model a particular cloud platform. The lower
level models the specifics of Heroku and can also be potentially re-used or
extended in various applications dealing with this CAP. More details on the
ontology can be found in Section 6.3.

5. Novel concepts of service criticality and application profiling: these con-
cepts allow for a more fine-grained approach to monitoring and analysing
individual software elements within cloud platforms, and also enable more
optimised utilisation of available resources by triggering analysis activities
only when they are really required. Please refer to Section 5.3.2 for further
details.

1.5 Thesis outline

Chapter 2 — Background theory: Cloud Computing and Autonomic Computing
is two-fold. First, it explains the main context of the presented research
effort, namely — CAPs, which are cloud platforms characterised with an
extensive support for software development by offering a rich selection of
reusable basic services. In the presence of large amounts of heterogeneous
data collected from services and applications, CAPs require increased ca-
pabilities for self-governance. Accordingly, the second part of the chapter
explains the main principles of autonomic computing, which serves to un-
derpin our proposed approach to support self-governance in service-based
cloud platforms. The chapter briefs the reader on the fundamentals of auto-

nomic computing, and summarises levels of self-management in computing

12 1.5. Thesis outline

systems. The chapter also introduces the MAPE-K reference model for cre-
ating autonomic systems, which will act as the main reference model to

implement our proposed framework.

Chapter 3 — Related technologies: Big Data processing and the Semantic Sen-
sor Web introduces the notion of Big Data, which poses novel research chal-
lenges associated with how ever-increasing volumes of constantly generated
heterogeneous data have to be efficiently handled. The chapter summarises
the main challenges associated with Big Data processing, known as the ‘four
Vs’ of Big Data — Volume, Velocity, Variety and Veracity, and introduces the
concept of Stream Processing for performing run-time analysis over stream-
ing data. Next, the chapter proceeds with the Semantic Sensor Web, which is
a combination of the Semantic Web and the Sensor Web research areas, serv-
ing to overcome data and format heterogeneity currently present in sensor
networks. The chapter concludes with an overview of existing technologies
— namely, the Semantic Sensor Network (SSN) ontology and corresponding
stream processing engines — which are successfully utilised by the commu-
nity, and which have been used in our own research as well.

Chapter 4 — State of the art in cloud platform self-governance provides a com-
prehensive view on the current state of the art in the domain of monitoring
and analysis of service-based cloud platforms. To better understand exist-
ing challenges and state of the art in self-governance at the PaaS level, the
chapter first provides an overview of self-managing capabilities at the IaaS
and SaaS levels of cloud computing. It then summarises the existing body of
relevant research efforts and clusters them into five main groups. This clus-
tering is intended to provide a better understanding of existing solutions and
approaches. By clustering relevant approaches we also conducted a critical
analysis of the state of the art, distilled several observations and identified
research gaps to be addressed by our own research work.

Chapter 5 — Conceptual architecture of the EXCLAIM framework outlines main
characteristics of data monitoring and analysis within service-based cloud
platforms from the Information Management point of view, and introduces
a novel concept of treating CAPs as software sensor networks. Based on this
novel interpretation, it then presents a conceptual design of our EXCLAIM
framework, which consists of three main elements. The chapter also ex-
plains additional enhancements to the main design, which serve to improve
the framework in terms of its modularity and capabilities for declarative
definition of the knowledge base.

Chapter 1. Introduction 13

Chapter 6 —Implementation details of the EXCLAIM framework provides lower-
level implementation details of the framework architecture. First, it explains
the three main components of the framework responsible for data triplifi-
cation, querying and reasoning. Then, the chapter proceeds with an expla-
nation of a two-tier ontology and a set of linked policy extensions, which
constitute the knowledge base of the framework. The chapter also briefs
the reader on the actions, which need to be taken in order to deploy the

framework on a different CAP and start using it.

Chapter 7 — Proof of concept: monitoring and analysis of Heroku add-on ser-
vices with the EXCLAIM framework combines the material from the two
previous chapters and demonstrates how the framework functions based on
a case study. The case study is intended to demonstrate the framework’s
performance, scalability and extensibility (i.e., declarative definition of the
knowledge base and modularity). The chapter measures the performance
of the framework under various workloads. Finally, it also describes how
the scalability issue was addressed using an existing Big data processing
solution, and presents updated experimental results.

Chapter 8 — Evaluation and discussion first evaluates the presented approach
with respect to its performance, scalability and extensibility. Then, it also
summarises and discusses potential benefits and shortcomings associated

with our approach.

Chapter 9 — Conclusion summarises the whole thesis with an overview of main
research contributions and answers to the research questions raised in the
introduction. The chapter also outlines several directions for further work,
and concluder with the author’s view on the presented work - the latter

contains personal evaluation and impression from the conducted research.

Part 1

Background theory and related
technologies

14

15

In order for the reader to understand the value and contribution of the presented
research work, we first start with an in-depth explanation of the context of the
research work (see Chapter 2). In our work, we are focussing on a subset of
cloud platforms, which are characterised with rich support for rapid application
development. Such platforms, which we call Cloud Application Platforms, host a
service marketplace — a collection of generic reusable add-on services, which can
be easily accessed and integrated into customers’ cloud-hosted software systems.
By hereby contributing to reliable and easily-accessible Internet of Services, such
platforms are, however, becoming increasingly complex, tangled and unstable,
and calling for novel mechanisms for self-governance and control. This, accord-
ingly, became the main motivation behind the presented research work — as it will
be explained in more details below, service-based cloud platforms have to be equ-
ipped with mechanisms for self-governance, which would rely on an extensible

and scalable capabilities for data monitoring and analysis.

Notions of self-governance and self-management stem from the research area
of Autonomic Computing (see Section 2.2), which aims at bringing involvement
of human operators in complex computer system to its minimum. In order to
support self-management, an autonomic system relies on a constant process of
assessing the surrounding context, interpreting monitored information and acting
upon these observations if needed. Similarly, in order to support self-governance
in cloud platforms, our approach implements the MAPE-K reference model as its
fundamental underpinning. Conceptually, the whole self-management cycle can
be split into four interconnected steps — namely, Monitoring, Analysis, Planning
and Execution. These four activities share a common Knowledge base, which
is the central component of the self-adaptation model, and, consequently, of our
approach as well.

Aiming at developing a monitoring and analysis framework for such complex
and dynamic environments as cloud platforms, we cannot avoid facing the chal-
lenge of processing large amounts of rapidly changing heterogeneous data — or,
simply put, the Big Data challenge. Accordingly, in Section 3.1, we provide an
overview of this relatively novel research area, paying special attention to the state
of the art in processing streaming data. Stream processing differs from the tradi-
tional static approaches in that it handles data in memory, without permanently
storing it on hard disk. In the context of the presented research work, stream
processing capabilities are expected to help us in achieving timely and prompt

detection of potential problems.

16

However, the streaming approach on its own is not sufficient to effectively
analyse highly-heterogeneous data, present in service-based cloud environments.
Variety of monitored subjects (i.e., add-on services, deployed applications, plat-
form components) dictates the need for a uniform and semantically-enriched data
representation of collected values. Stream processing over semantically-annotated
data has been the focus of the Semantic Sensor Web research, whose main goal is
to overcome existing heterogeneity in sensor networks by introducing a common
semantic vocabulary of terms and developing appropriate technologies for pro-
cessing semantic data streams. To a certain extent, the experience and techniques
from this novel research area can be applied to other stream processing domains,
where key challenge is to overcome data heterogeneity with a common semantic
vocabulary. In Section 3.2, we provide a detailed overview of these concepts, and
explain how we can benefit from the Semantic Sensor Web research.

After reading Part I of the document, the reader is expected to be familiar
with all necessary information to proceed to Part II, which will first provide an
overview of the state of the art in the considered research direction, and then pro-
ceed with the actual description of our approach and the EXCLAIM framework.

Chapter 2

Background theory: Cloud
Computing and Autonomic
Computing

This chapter starts with explaining concepts of services, SOC and IoS, which un-
derpin the motivation and rationale behind transforming the way modern IT is
provisioned into a model, where users can access computing resources remotely
in a transparent, flexible, pay-per-use manner. One of the main examples, demon-
strating benefits of migrating from traditional, in-premises software to remote,
virtualised, service-based model are, undoubtedly, clouds. The chapter introduces
the notion of Cloud Computing, as well as existing classifications of delivery and
deployment models. Special attention is paid to the PaaS segment, and, more
specifically, to CAPs — a subclass of PaaS offerings, which follow the SOC princi-
ples by not just providing cloud computing utilities as a service, but additionally
offer software developers a range of already existing, re-usable and remotely ac-
cessible basic services. By listing and explaining main benefits of this attractive
cloud model, we also bring to the reader’s attention the existing challenge of in-
sufficient capabilities for self-governance, caused by the ever-growing complexity
and ‘dynamicity” of CAPs.

This challenge can be addressed by applying principles of Autonomic Comput-
ing, and the second part of the chapter familiarises the reader with this research
area, which sets its goal to decrease the role of human administrators in run-time
operation of complex computing systems. The chapter briefly introduces the his-
tory of autonomic computing, and lists main characteristics an autonomic system
typically demonstrates. Also, as explained below, we employ the fundamental
reference model for implementing autonomic systems, known as MAPE-K, as a

17

2.1. Context of the research work: Internet of Services, Cloud Computing and
18 Cloud Application Platforms

baseline for our work. Understanding this model in detail is important to follow
the further explanation of the EXCLAIM framework, which is a partial imple-
mentation of the MAPE-K loop. Also, to position our work within the scope
of the existing technological and research efforts aiming at creating autonomic
systems, we present and explain 5 levels of autonomic behaviour of computing
systems. The chapter concludes with an overview of autonomic features currently
present in cloud computing in general and CAPs in particular — this is expected to
demonstrate the need for more intensive research efforts to be put into exploring

autonomic capabilities at the PaaS level.

2.1 Context of the research work: Internet of Services, Cloud

Computing and Cloud Application Platforms

In the last 30 years software development experienced several paradigm shifts —
after Object-Oriented Computing (OOC) in the 80s (Rumbaugh et al., 1991) and
component-based software engineering in the 90s (Heineman and Council, 2001),
we are now witnessing how the Service-Oriented Architectures (SOAs) are trans-
forming modern IT. It is an evolutionary approach to building distributed software
systems in a loosely-coupled and technology- agnostic manner. It builds upon and
further extends the principles, successfully introduced and adopted in OOC and
component-based software development, such as self-description, explicit encap-
sulation, and run-time functionality loading (Microsoft Corporation, 2015).

The fundamental building block of SOA is a service. Broadly speaking, ser-
vices can be defined as reusable software components, remotely accessible in a
loosely-coupled and technology-agnostic manner via a standard well-defined in-
terface (Wei and Blake, 2010). They are designed to perform simple, granular
functions with limited knowledge of how other components of a larger SOA sys-
tem are implemented and communicate. Accordingly, SOA is a design pattern
based on a simple, yet efficient principle — applications provide distinct pieces of
their software functionality as services to other applications via an established and
standardised protocol. The main idea of SOA is to rapidly assemble distributed
software systems from existing services in such a way that they can be easily mod-
ified if needed. By abstracting the implementation details and only exposing their
Application Programming Interfaces (APIs), various heterogeneous services can
be integrated into Service-based Application (SBA) systems, which do not depend
on the underlying implementation — they are independent of any vendor, product
or technology.

Correct implementation of the SOA principles leads to a whole new paradigm

Chapter 2. Background theory: Cloud Computing and Autonomic Computing9

in computing — SOC. In SOC, software systems are organised and operate in such
a way that various pieces of distributed computing capabilities may be under con-
trol of different ownership domains (MacKenzie et al., 2006). One of the biggest
benefits of such an organisation is its agility — business processes implemented in a
service-based, loosely-coupled fashion are much easier to change and evolve com-
pared with ‘monolithic” applications, constrained with underlying technologies,
which require much more time to be adjusted if/when needed (Microsoft Corpo-
ration, 2015). Furthermore, this modular, service-based approach to implementing
software systems paved the way for applying a similar approach to breaking down
heavy-weight ‘monolithic” applications within a single enterprise. This architec-
ture, which has become known as microservice architecture (Newman, 2015), im-
plies that enterprise-level software has to be designed and implemented as a suite
of small independent services communicating through lightweight mechanisms —
typically with HyperText Transfer Protocol (HTTP) calls (Lewis and Fowler, 2015).
The microservice architecture differs from the traditional component-based ap-
proach to software engineering, where software libraries are imported into the
application, in that it is more loosely-coupled and technology-agnostic. Internal
implementation of individual microservices is hidden, and the communication be-
tween the services takes place by means of lightweight network communication
and standard and stable APIs. Another difference of this novel approach is that
microservices are implemented around business capabilities, as opposed to con-
ventional way of breaking down applications into functional (i.e., technological)
layers — data storage, server-side logic, user interface, etc. — and, accordingly, em-
ploying dedicated development teams. In the latter case, a change to, for example,
the database layer may affect other layers and requires participation of all rele-
vant teams so as to implement required changes. In contrast, a cross-functional
microservice is a broad-stack implementation, which involves various engineer-
ing skills. In these circumstances, changes to microservices are made locally by
a team responsible for a particular microservice, and do not affect the rest of the

enterprise’s development staff.

These promising opportunities of SOC are becoming even more attractive to-
day, when many organisations are trying to cope with rapidly changing mar-
ket requirements, such as evolving customer needs and new business processes
with minimum expenditures (Wei and Blake, 2010). Consequently, competitive-
ness requires that companies continually modify their IT systems by creating new
systems and retiring old solutions in a relatively short period of time. These re-
quirements have been successfully addressed by SOC — the loosely-coupled nature

of the underlying IT resulted in loosely-coupled and easily modifiable business

2.1. Context of the research work: Internet of Services, Cloud Computing and
20 Cloud Application Platforms

processes. SOC allowed enterprises to reduce the need to develop new software
components each time a new business process arises, but rather use services as
basic blocks to construct rapid, low-cost, yet secure and reliable applications (Wei
and Blake, 2010). It is important to understand that services are designed and
implemented to remain static and stable, whereas the configuration of SBAs — that
is, the way services are connected and interact with each other — is supposed to
change and evolve. It means, that in an occasion when emerging business needs
dictate new requirements to the supporting enterprise IT systems, it should not
lead to serious, effort-intensive manual changes to the software source code. For
example, let us consider a case when an SBA relying on a third-party e-mail mes-
saging service, needs to perform an additional anti-spam check whenever an email
is sent/received. In these circumstances, the SOC principles suggest that either a)
an additional third-party service, responsible for anti-malware inspections, should
be integrated into the system and all the email traffic should be routed through
it,! or b) the enterprise should simply replace the existing e-mail service with a
more advanced alternative, which has built-in anti-spam support.? In both cases,
no massive source code modifications are required. In this sense, services can be
seen as ‘black boxes” which only expose to the outer world their description and
interfaces so as to enable users to discover them and access their functionality re-
spectively. They are stable and rather static entities, and in order to achieve this,
services rely on well-defined, standardised and technology-independent interfaces
and self-description formalisms, which allow configuring them to be integrated
into SBAs.

The ever-increasing conversion of the modern IT into service orientation, as
well as the emergence of the so-called Web 2.0 (Schroth and Janner, 2007), which
is a term to describe a recent tendency to design and implement interactive and
collaborative Web sites enabled with rich support for social networking, paved
the way for the emergence of the IoS (Buxmann et al., 2009). Supported with ad-
vances in the networking and mobile technologies making the Internet more and
more ubiquitous (Bechmann and Lomborg, 2014), the IoS is a concept which de-
scribes the organisation of the future IT, where any resources needed for software
applications are available online in the form of discoverable and easily accessi-
ble services. These resources include not just software assets, but additionally
development tools and infrastructure to deploy and run this software, including
servers, storage and networking support. Taken together, such a multi-level ser-

IMailCleaner, for example, offers a range of such services to enterprises, governments, Internet
Service Providers (ISPs) and educational institutions (http://www.mailcleaner.net/).

2A classic example of an e-mailing service with built-in support for all kinds of malware detec-
tion is Google Mail (https://mail.google.com/).

http://www.mailcleaner.net/)
https://mail.google.com/

Chapter 2. Background theory: Cloud Computing and Autonomic Computing1

vice provisioning model nowadays has become known as Cloud Computing.

21.1 Cloud computing as an extension of Service-Oriented Computing

SOC’s benefits were attracting more and more enterprises seeking to implement
their software systems following the SOA principles — that is, by minimising effort
on implementing own software assets from scratch, but rather to re-use already
existing resources via Internet. This attractive model has paved the way for Cloud
Computing which has revolutionised the way enterprises and ordinary users can
access computing, storage and networking resources nowadays. With its emer-
gence, traditional computing has transformed into a service-based model, where
resources are commoditised and delivered over a network, just like traditional
utilities, such as water or gas (Buyya et al., 2013).

Even though we have been experiencing this revolutionary paradigm shift to
cloud computing only in the last 10 year, the concept itself is not novel, and was
first introduced back in the 60s by McCarthy (Abelson, 1999, Parkhill, 1966). How-
ever, it was not until recent advances in networking, hardware, mobile and virtual-
isation technologies in the last three decades (Armbrust et al., 2010) that eventually
fulfilled this prophetic vision. In the 80s, IBM started releasing into mass produc-
tion affordable personal computers available to ordinary users for home usage.
This paradigm shift from huge industrial and academic mainframe machines to
compact personal computers was also supported by Microsoft, who offered oper-
ating systems to make PCs even more ubiquitous and usable both at home and at
work.

Then, in the 90s, the networking technology was eventually developed enough
to provide sufficient bandwidth to support the emergence of the Internet and
make it available to the masses (Mohamed, 2015). The Internet, together with new
software interoperability standards, finally allowed enterprises to interconnect all
their computers and opened many business opportunities to monetize this new
computing paradigm. With the rise of commercial networking, enterprises started
looking for novel mechanisms and service models for delivering their solutions
and resources to end users via the Internet. In 1999, Salesforce.com! started deliv-
ering enterprise-class software through websites and became one of the pioneers in
this field. Sales automation software offered by Salesforce.com could be accessed
by customers via the Internet, and companies could purchase these services on a
cost-effective and on-demand basis.

Next step was taken in 2002, when Amazon joined this trend and introduced

lhttp://www.salesforce.com/

http://www.salesforce.com/

2.1. Context of the research work: Internet of Services, Cloud Computing and
22 Cloud Application Platforms

its Amazon Web Services (AWS) — a cloud platform, which allowed users to access
storage and computation resources, as well as some basic applications. In 2006,
they went even further with the Elastic Compute Cloud (EC2), which offered an
entire infrastructure to be delivered as a service to software developers — they
could rent space to store and run their own applications in the cloud. It was
2009 when the cloud computing finally reached a stable level of maturity, and the
cloud computing market was shaped with the main industry influencers getting
on-board - IT giants like Google, Microsoft, IBM and Oracle were delivering their
technological solutions to businesses and average users in the form of simple,
accessible, on-demand cloud services.

As a result, cloud computing today “represents a concept of remote on-demand
provisioning of pooled computing resources which are made available over a net-
work, in a dynamic and scalable fashion, and whose consumption is metered to
enable usage-based billing” (Kourtesis, 2011). Customers, ranging from individual
users to entire organisations, need to pay cloud providers only when they access
computing, storage or networking services. Additionally, they do not need to in-
vest heavily in these potentially complex and expensive assets upfront, and then
own and manage them in their premises, but instead always have them at their
disposal and easily accessible via the Internet, and, consequently, reduce expenses
on hiring a dedicated team of IT professionals.

Even though there exist several definitions of the term cloud computing, pro-
posed in academic literature, with each placing emphasis on different aspects of
the concept (Armbrust et al., 2010, Vaquero et al., 2008), the most intuitively com-
prehensive and widely adopted definition comes from National Institute of Stan-
dards and Technology (NIST) (Mell and Grance, 2009):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.”

To provide an even more comprehensive explanation of what a cloud service is,
this definition should be extended with a list of key characteristics a cloud service
is expected to exhibit. Accordingly, NIST has distilled the following 5 essential

features of a cloud computing service:

¢ On-demand self-service means that a user, subscribed to a cloud solution,
should be provisioned with computing resources when needed automati-
cally, without human interaction.

Chapter 2. Background theory: Cloud Computing and Autonomic Computing3

¢ Broad network access refers to the fact that all the cloud resources are ac-
cessible remotely over the Internet via standard interfaces and protocols.

* Resource pooling — thanks to recent advances in the area of virtualisa-
tion techniques, cloud resources are typically provisioned to customers in
a multi-tenant and transparent manner. The former means that virtual com-
puting resources belonging to different users (i.e., tenants) are hosted on a
single physical server,! and the latter refers to the fact that these tenants are
isolated from and unaware of each other. Moreover, they are also unaware of
the exact geophysical location of their virtualised cloud resources, which can

migrate from one physical host to another according to consumer demand.

* Rapid elasticity of cloud resources describes their capabilities to be (au-
tomatically) provisioned and released so as to enable scaling in and out
and meeting ever-changing, dynamic requirements. Even though virtualised
cloud resources of a particular cloud provider are constrained by the under-
lying physical infrastructure, from the consumer’s perspective, this aspect
of cloud computing creates an impression of seemingly infinite computing

utility.

* Measured service is an inevitable consequence of SOC, where users pay only
for the actual usage of a cloud service. It means, that a cloud offering is en-
abled with automatic monitoring, controlling and reporting tools to provide

metering and billing in a transparent, fair and flexible fashion.

Even though cloud computing is typically associated with remote access to
computing resources over the Internet,? for large enterprises consisting of multi-
ple departments it is also possible to build up their own cloud data centre within
their premises — this deployment model is known as “private cloud’. The motiva-
tion behind this decision might be two-fold. Firstly, provided that an enterprise
is large enough and its individual departments demand for elastic computational
and storage resources which will be fully utilised, it can bring certain economic
benefits when compared to expenditures needed for acquiring remote cloud ser-

vices from commercial providers. Secondly, often migration to cloud is hindered

INowadays, it is also possible to reserve a whole cloud server so as not to share it with
other tenants. For example, EC2 offers its subscribers so-called ‘dedicated instances” (http:
//aws.amazon.com/ec2/purchasing-options/dedicated-instances/).

2This is essentially where the term ‘cloud’ comes from — in conceptual diagrams, a cloud-like
shape was used to metaphorically denote the Internet in computer networks. This simplified repre-
sentation also implied that the specifics of the internal organisation of the Internet are not relevant
for the purposes of understanding the diagram. Similarly, nowadays end users are typically com-
pletely unaware of how and where a particular cloud service is actually deployed and operates.

http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

2.1. Context of the research work: Internet of Services, Cloud Computing and
24 Cloud Application Platforms

with privacy and security issues — enterprises are not willing to release sensitive
data beyond their private network perimeter. In such circumstances, it makes
sense to deploy a private cloud locally, on premises. In this case, all potentially
sensitive data is guaranteed to be stored and processed under the enterprise’s con-
trol. A hybrid solution also exists — with this deployment model, some parts of
the enterprise IT systems run on premises and the others — remotely in clouds.
This way, enterprises can run critical computations under control and at the same
time benefit from flexible pricing schemes by running less sensitive tasks in remote
cloud environments.

When it comes to pricing schemes for a particular cloud service, in the first
instance, it depends on the service model through which the resources are pro-
visioned to users. Traditionally, NIST distinguishes between the following three
service models (Mell and Grance, 2009):

* JaaS is a way of providing customers with on-demand access to processing,
storage, networking and other fundamental computing resources (which are
traditionally referred to as hardware) typically in the form of a virtual ma-
chine. IaaS users are then a required to install an OS and all necessary mid-
dleware and software so as to deploy, run and access arbitrary software over
the Internet. Usually, users only have access to the OS, storage and deployed
software, whereas management of the underlying hardware is beyond their
capabilities and remains the responsibility of the IaaS provider. With the IaaS
delivery model, cloud subscribers — usually companies who are attracted by
the opportunity to save on acquiring and maintaining potentially expen-
sive hardware — are charged for the consumption of the hardware resources.
Typical monitored metrics for metering and billing are number of reserved
computational instances and associated Central Processing Unit (CPU) and

memory utilisation, storage consumption, network bandwidth, etc.

¢ PaaS model provides a computing platform equipped with a technological
stack of solutions necessary to deploy and run users’ software without the
cost and complexity of buying, configuring and managing both the under-
lying hardware infrastructure and the computational platform. PaaS target
groups are typically software vendors, IT departments of enterprises, in-
dividual developers, etc. — all those who want to shift a significant share
of their concerns associated with developing, maintaining and provisioning
on-demand software to the PaaS provider’s end. This allows developers to
focus on the business functionality of their software (which possibly can be

provisioned as a SaaS offering), rather than spend their efforts on managing

Chapter 2. Background theory: Cloud Computing and Autonomic Computing5

the enabling cloud infrastructure and platform. The PaaS provider assumes
the responsibility to monitor and manage the usage of every application and
to allocate infrastructure resources as appropriate to meet ever-changing re-
quirements (Kourtesis, 2011). Charging in PaaS also relies on metering the
CPU and memory consumption, and additionally includes the consumption
of platform-level services available to the users — for example, messaging

queues or databases.

* Software as a Service (SaaS) is a delivery model in which customers’ soft-
ware deployed and running in the cloud environment is easily accessible
from various devices (PCs, laptops, smartphones, etc.) and clients (i.e., rich
and thin) in an on-demand manner. This delivery model is a move from the
established practice of making software applications available as-a-product
— that is, a distributed software product is installed and maintained by users
(Kourtesis, 2011). Instead, the SaaS model relies on a providing a multi-
tenant approach to software provisioning so as to facilitate having a single
and shared cloud-based application code base, which can serve multiple
customers. In these circumstances, customers” management capabilities are
limited to configuring application-specific settings and managing personal
business data; hardware infrastructure and platform resources, such as the
OS or the database, are beyond their control, and remain a concern of the
SaaS vendor (or a third-party PaaS provider in a case when cloud software
is deployed on a third-party cloud platform).

2.1.2 Cloud Application Platforms delivering the Internet of Services

In recent years with the continued growth of the PaaS segment, more and more
providers are offering software developers an extended set of functionalities and
support not just for hosting and executing software assets, but also for develop-
ing, deploying, testing and maintaining — that is, with a support for a complete
software life cycle. This typically includes Integrated Development Environment
(IDE) plug-ins for easier deployment to the cloud environment, as well as moni-
toring, logging and reporting tools. Gartner refers to such deployment model as
Application Platform-as-a-Service (aPaaS) and defines it as follows (Gartner, Inc.,
2015):

“Cloud service that offers development and deployment environments for ap-
plication services.”

This model, however, is not sufficient when an already existing application

(coupled with other on-premises software components) has to migrate to the

2.1. Context of the research work: Internet of Services, Cloud Computing and
26 Cloud Application Platforms

cloud, or implement specific features beyond the standard capabilities of the pro-
gramming framework (e.g., support for user authentication, e-mail notifications or
queue messaging). In these circumstances, software developers are forced to im-
plement these functional pieces of their application systems either by developing
them from scratch or by deploying existing solutions on the cloud along with the
main application. In either case, these components would only be accessed and
used by a particular application, and application owners would be responsible
for maintaining both the application and all the depending components. Though
this approach provides users with full control and visibility into all pieces of the
application system, it suffers from i) increased complexity associated with manag-
ing multiple components, ii) potentially low quality due to usage of custom-made
software components instead of existing, reliable and optimised ones, iii) redun-
dancy and excessive utilisation of storage resources due to the necessity to store
individual, often duplicated components of an isolated application system on a
cloud, and iv) relatively high time to market.

To address these shortcomings and to further facilitate the software develop-
ment process, PaaS providers started compiling and packaging standard, frequently-
used basic units of software functionality, repeatable across multiple applications,
into ready-to-use software components. Then, these components were commodi-
tised and offered through a ‘pay-per-use’ pricing model to cloud service sub-
scribers, who could integrate them in their applications in a relatively effortless
and declarative manner avoiding unnecessary source code modifications and te-
dious system configurations. For example, instead of deploying a separate queue
messaging server on the cloud, users were offered to subscribe to an already run-
ning, reliable and highly-scalable solution offered by the cloud platform service
marketplace. Similarly, instead of re-inventing the wheel and developing a po-
tentially complicated and sophisticated authentication mechanism (e.g., with a
support for Secure Shell (SSH) or database persistence), users could simply bind
their application logic with an existing cloud component and concentrate on their
immediate business-oriented tasks — that is, at a price of a small fee, save on the
human and time resources.

Such reusable integrated components, or simply services, are a natural con-
sequence of the SOC paradigm. Following the principles of SOC, PaaS providers
offer their subscribers a wide selection of pre-existing and reusable services, ready
to be seamlessly integrated into users” applications. These add-on services are typ-
ically provisioned to customers through a cloud service marketplace — a central
catalogue of platform services and third-party extensions. By gathering multiple
add-on services in one place and making them easily discoverable and accessible,

Chapter 2. Background theory: Cloud Computing and Autonomic Computing7

cloud platforms contribute to delivering a reliable IoS. By offering cloud services in
such a way that software assets are assembled from existing components just like
a Lego® construction set, such cloud platforms further reduce the human effort
and capital expenses associated with developing complex software systems. This
means that software developers — PaaS end users — can concentrate on their imme-
diate, domain-specific tasks, rather than expend effort on, for example, developing
their own authentication or e-billing mechanisms — instead, existing components
are offered, managed and maintained by the cloud platform. The integration of
users” applications with platform services usually takes place by means of APIs,
through which software developers can easily couple necessary services with their
applications and also perform further service management. To support rapid soft-
ware development, such cloud solutions not only provision customers with an op-
erating system and run-time environment, but additionally offer a complete sup-
porting environment to develop and deploy SBAs, including a marketplace with
a range of generic, reliable, composable and reusable services (Kourtesis et al.,
2012, Rymer and Ried, 2011) (as illustrated in Figure 2.1). most prominent and
commercially successful examples of such platforms include Google App Engine
(38 services offered), Microsoft Azure (20 built-in services and 35 third-party add-
ons offered), IBM Bluemix (61 services offered), and Heroku, the ‘richest” cloud
platform in terms of offered services, which comprises over 150 add-ons.

We call such cloud solutions as CAPs and, building on the Gartner’s definition

of aPaaS, provide the following definition:

“Cloud Application Platforms are a subset of PaaS offerings, which provide
users with development and deployment environments, including a range of

generic reusable software services.”

With this definition in mind, we have surveyed existing PaaS offerings to see
how many of them qualify for the category of CAPs, and therefore can be seen as
the targeted context of the research work presented in this thesis.

2.1.3 Survey of Cloud Application Platforms

The PaaS market is blooming — even though the main industry influencers like
Google, Amazon, Microsoft, Oracle, IBM and Salesforce.com have already occu-
pied the majority of the market (as of August 2015, their total market share is
67% (Finos, 2015)), new PaaS vendors still emerge trying to attract customers with
novel appealing features. Gartner forecasts that the PaaS market will grow from
$900M (in 2011) to $2.9B (in 2016) with aPaaS as the largest segment (Pettey and
van der Meulen, 2015).

2.1. Context of the research work: Internet of Services, Cloud Computing and
28 Cloud Application Platforms

Software-as-a-Service
Cloud Application Platforms

Service APIs
Cloud service marketplace

Development and deployment environments

Run-time execution environment: JRE, .NET, Rails
APIs, Web Server

Operating system

Infrastructure-as-a-Service

Figure 2.1: Besides an OS and run-time environment, CAPs offer a range of basic
add-on services accessible via APIs.

We attempted to survey the existing market of commercially available public
PaaS offerings aiming to identify the share of CAPs in the whole amount of ex-
isting solutions. It is worth mentioning that unambiguously classifying a cloud
platform as a PaaS or laaS offering is not so straightforward, as the difference
might often be very subtle, or the actual description of a particular cloud offering
is vague and misleading. For example, PagodaBox! exhibits all the characteris-
tics of PaaS, even though it describes itself as just a ‘hosting framework’. Same
applies to the distinction between SaaS and PaaS - for example, Zoho? is typ-
ically positioned as a SaaS cloud provider, offering its users customisable Cus-
tomer Relationship Management (CRM) and office software solutions as a cloud
service, known as Zoho Office Suite. However, it also delivers the Zoho Creator
platform, which can be classified as PaaS, because it allows creating new appli-
cations through drag-and-drop mechanism, and therefore was included in our
survey. Another point of consideration for us was whether to include ‘vertical’

Paa$ solutions — that is, cloud platforms which offer services to a very narrow and

https://pagodabox.com/
Zhttps://www.zoho.com/

https://pagodabox.com/
https://www.zoho.com/

Chapter 2. Background theory: Cloud Computing and Autonomic Computing9

specific domain. For example, Appistry! is a PaaS solution mainly focusing on the
biomedicine domain. We have decided not to include such cloud platforms due
to their limited usage. In our survey we also omitted open-source frameworks
for deploying cloud platforms on private or rented premises — these include, for
example, Apache Stratos,®> AppScale,® or OpenShift Origin.*

The main three aspects taken into consideration when classifying PaaS prod-
ucts as CAPs are:

1. Tooling support for software development process throughout the whole
lifecycle — that is, developing, testing, deploying, and maintenance. This
can include such features as IDE plugins for easier and faster deployment,
remote access to cloud servers via the File Transfer Protocol (FTP) and SSH,
Secure Sockets Layer (SSL) encryption for increased security, support for
software versioning (e.g., Subversion (SVN), Git, Mercurial), online manage-
ment and monitoring consoles for observing applications” health and perfor-
mance, etc. Another specific feature offered by some of the cloud platforms
(e.g., Caspio, webMethods AgileApps Cloud, Force.com and Zoho Creator)
is the possibility to create applications through the point-and-click interface,
which exempts software developers from manual coding and thus saves con-
siderable time resources. By simply dragging and dropping required com-

ponents users can create applications in minutes.

2. Support for multiple programming languages is another typical feature of
cloud platforms. Most of them support the most commonly adopted lan-
guages for Web development, including, PHP, Java, Ruby, Python, Node.js,
NET, Perl, Go, as well as an extensive range of software development frame-
works, such as Java Spring,5 CakePHP? PHP Zend,” or Ruby Sinatra.® Some
of the platforms, offering the point-and-click development model, are using
their own proprietary languages like Apex (Force.com) and Deluge Script
(Zoho Creator) to execute visually designed applications. Other platforms,
such as CatN, Cloudways, Fortrabbit, PagodaBox and Evia Cloud, speak
only one language — PHP, and essentially extend the traditional PHP hosting
with scalable cloud infrastructure.

1http://www.appistry.com/
2http://stratos.apache.org/
Shttp://www.appscale.com/
4https://www.openshift.com/products/origin
Shttps://spring.io/

6http://cakephp.org/
7http://framework.zend.com/
8http://www.sinatrarb.com/

http://www.appistry.com/
http://stratos.apache.org/
http://www.appscale.com/
https://www.openshift.com/products/origin
https://spring.io/
http://cakephp.org/
http://framework.zend.com/
http://www.sinatrarb.com/

30 2.2. Autonomic Computing

3. Presence of a service marketplace, through which basic software services,
provided by platform providers or third parties, can be integrated into users’
applications, is the primary criteria for us when identifying CAPs. CAPs
may use different terms to refer to basic services offered (e.g., add-ons, plug-
ins, features, extensions, apps, etc.), but the concept is still the same — CAPs
offer its customers a way of integrating existing units of software functional-

ity into applications through standard APIs and pay-per-use subscriptions.

As a result, in our survey we identified 24 different PaaS offerings, out of
which 18 can be classified as CAPs, which makes up 75% (the detailed survey can
be found in Appendix C). These numbers give us confidence that the problems,
raised and tackled by the presented research work, are relevant, and the solution
we are developing has the potential to be applied across a large number of cloud
platforms.

2.2 Autonomic Computing

Today’s IT has been steadily growing in size and complexity, and nowadays con-
sists of complex computing systems and operates in highly-heterogeneous dis-
tributed environments. With proliferation of mobile devices and advances in
cloud computing, networking, and virtualisation, modern computing systems
have reached the maturity level, which lies beyond humans” manual capacities
to maintain them at a stable and operational level. Indeed, effectively managing
the underlying infrastructure of modern computing systems requires from enter-
prises to exercise constant and timely control over hundreds of components and
thousands of tuning parameters (Muller, 2006) — this task, if addressed only by hu-
man operators in a manual manner, may be associated with unaffordable human
or time resources. While the cost of technology was constantly dropping, invest-
ing in skilled management and administration personnel was constantly rising
(IBM Corporation, 2005). Therefore, a logical and obvious decision in these cir-
cumstances was to offload these tasks from humans by automating routine man-
agement processes as much as possible.

To some extent, a similar solution was applied in the 1920s in telephony (Hueb-
scher and McCann, 2008) when automatic branch exchanges were introduced to
cope with the increased telephone usage and to replace human operators. To-
day, a similar goal is pursued by the Autonomic Computing research, which sets
its goal to minimise the role of human administrators in operation and manage-
ment of complex computing systems. First suggested by IBM (Horn, 2001) in

2001, the term of Autonomic Computing introduced a model for computer sys-

Chapter 2. Background theory: Cloud Computing and Autonomic Computing1

tems that are enabled to manage themselves with minimum human involvement.
Today, Autonomic Computing is a concept that brings together many fields of
IT (i.e., Control Theory, Agent Theory, Software Engineering, Information and
Data Management, etc.) with the purpose of creating computing systems capa-
ble of self-management. Accordingly, IBM compared complex computing systems
to the human body, which is able to regulate unconscious bodily functions such
as respiration, digestive functions, pupil adjustments, etc. by means of the au-
tonomous nervous system. From this perspective, computing systems should also
exhibit certain autonomic properties and be able to independently take care of the
regular maintenance and optimisation tasks, thus reducing the workload on the
system administrators (Huebscher and McCann, 2008). By constantly sensing the
surrounding context and responding to changes, autonomic technology can en-
able systems to perform a wide range of self-governance tasks, thus lessening the
burden on the IT staff to initiate and handle those tasks (IBM Corporation, 2005).
A possible way of enabling computing systems with self-managing capabil-
ities is through self-reflection. A self-reflective system uses a causally connected
self-representation — a model of its internal structure and its surrounding envi-
ronment — to support self-monitoring and self-adaptation activities (Blair et al.,
2004). In other words, such a system is self- and context-aware, which enables
it to perform run-time adaptations, so that applied changes dynamically reflect
on the state of the system (thus, possibly, triggering another adaptation cycle)
(Dautov et al., 2012). The rationale behind self-reflection is to equip comput-
ing systems, deployed in hostile and/or dynamically changing environment, with
sufficient knowledge to enable them with capabilities to react to various changes
in the surrounding context, based on that knowledge. Such scenarios are typically
characterised with a predominant role of time constraints — in these circumstances
the capability of a remote system to perform automatic adaptations at run-time
on its own, without the necessity to wait for a human operator, within a specific
time frame, is often of a great importance. The concept of self-reflection can be
summarised in the following characteristics! (Nami and Sharifi, 2007):

¢ Self-awareness of an autonomic system includes knowledge of its internal

structure, relationships between sub-components, available resources, etc.

¢ Context-awareness of an autonomic system is an ability to be aware of what

1Often in the literature researchers use their own terms to refer to the same concepts introduced
by Horn (e.g., self-tuning and self-assembly are similar to self-configuration). There are also research
works which present their own views on the autonomic systems, different from, yet inspired by
IBM'’s vision. In (Cavalcante et al., 2015), for example, self-awareness is used as an umbrella term
covering three properties: self-reflection, self-prediction, and self-adaptation. Throughout the rest
of this document we will be using the established terms as presented in this section.

32 2.2. Autonomic Computing

is happening in the surrounding execution environment through observation

and interpreting these observations.

* Openness refers to an ability of an autonomic system to operate in hetero-

geneous environments and be portable across multiple platforms.

¢ Anticipatory behaviour of an autonomic system means that it should be able
to estimate the amount of required resources in order to meet emerging user

requirements, in a transparent manner, keeping the complexity hidden.

Demonstrating these four characteristics for a self-reflective system would not
be possible without some sort of a self-representation knowledge repository, which
would provide all the necessary information to enable computing systems with
self-reflective features. To facilitate self-awareness and context-awareness, this
knowledge base has to be populated with information about the internal struc-
ture and organisation of the autonomic component, as well as its environment
and context and possible ways of perceiving them. To support openness, it has to
include information about how to connect and interact with other elements in var-
ious environments. Finally, to demonstrate anticipatory behaviour, it is important
to have an extensive set of policies and rules determining the ability of the system
to predict various changes. As explained in the next section, this self-reflective
knowledge component plays a key role in implementing closed feedback loops

when engineering autonomic systems.

2.2.1 MAPE-K reference model

IBM’s vision of Autonomic Computing is structured around a reference model for
autonomic control loops (Huebscher and McCann, 2008), known as the MAPE-K
(Monitor — Analyse — Plan — Execute — Knowledge) adaptation loop, and depicted
in Figure 2.2. Stemming from Agent Theory, the MAPE-K model can be seen as
an evolution of the generic model for intelligent agents proposed in (Russell et al.,
2010). According to this model, agents are enabled with sensors to perceive their
environment, and are able to execute certain corrective actions on the environment
based on the observed values. This continuous process of sensing and acting upon
sensed values clearly corresponds to the closed adaptation loop of the MAPE-K
model. Applying the model to the domain of self-management at the PaaS level,
we now consider each of its elements in more details.

Chapter 2. Background theory: Cloud Computing and Autonomic Computing3

AUTONOMIC ELEMENT

AUTONOMIC MANAGER

ANALYSE

MONITOR EXECUTE

SENSORS EFFECTORS

MANAGED ELEMENT

Figure 2.2: IBM’s MAPE-K reference model for autonomic control loops (Kephart
and Chess, 2003).

Managed element

Managed elements represent any software and hardware resources which are en-
hanced with autonomic behaviour by coupling with an autonomic manager. In
the context of clouds, the managed element may be a cloud platform as a whole, a
web server, a virtual machine, an operating system, etc. In the presented research
work, as explained in Chapters 5 and 6, primary managed elements include appli-
cations deployed on a CAP, and add-on services offered to users through the CAP
marketplace. Managed elements are equipped with sensors and effectors. The
former, also known as probes or gauges, are software or hardware components
responsible for collecting information about the managed elements. Sensors are
typically associated with metrics — certain characteristics of the managed element,
which need to be monitored (e.g., response time, memory utilisation, network
bandwidth, etc.). The latter are hardware or software components, whose re-
sponsibility is to propagate required adaptation actions to the managed element.
Depending on the scale, adaptations can be coarse-grained (e.g., completely sub-

stituting a malfunctioning Web service) or fine-grained (e.g., re-configuring that

34 2.2. Autonomic Computing

service to fix it).

Autonomic manager and knowledge

The autonomic manager is the core element of the MAPE-K model - essentially,
this where the whole MAPE-K functionality is encapsulated. This software com-
ponent, configured by human administrators to follow high-level goals, uses moni-
tored data received from sensors and internal (i.e., self-reflective) knowledge of the
system to analyse these observations, plan possible adaptation actions if needed,
and execute them to the managed element through effectors so as to achieve those
goals.

The internal self-reflective knowledge base of the system, shared between the
four MAPE-K components, may include any type of information required to per-
form the Monitor-Analyse-Plan-Execute (MAPE) activities. In the first instance, in
includes an architectural model of the managed element — a formal representation
of its internal organisation, subcomponents, and connections between them. An-
other important component is a set of diagnosis and adaptation rules — formally
defined policies, which serve to analyse critical situations and choosing a relevant
adaptation plan among existing alternatives. Among other things, the knowledge
base can also include historical observations, data logs, repositories of previously
detected critical situations and applied adaptation solutions, etc., which implies
that the knowledge base is not designed to be static (i.e., populated once by ad-
ministrators at design-time), but rather has to evolve dynamically over time by
accumulating new information at run-time. In connection with this, there is room
for applying certain techniques from Machine Learning research, and we describe
this possibility in more details in Section 9.2.

Monitoring

The monitoring component of the MAPE-K loop is responsible for gathering infor-
mation about the environment, which is relevant to the self-managing behaviour
of the system. In a broad sense, monitoring may be defined as the process of col-
lecting and reporting relevant information about the execution and evolution of a
computer system, and can be performed by various mechanisms! (Kazhamiakin,
Benbernou, Baresi, Plebani, Uhlig and Barais, 2010). These monitoring processes
typically target the collection of data concerning a specific artefact, the moni-
tored subject (Bratanis et al., 2012). In the context of CAPs, monitored subjects

In our research we focus on run-time monitoring. Related activities can also include such
techniques as post-mortem log analysis, data mining, and online or offline testing — the interested
reader is referred to (Kazhamiakin, Benbernou, Baresi, Plebani, Uhlig and Barais, 2010).

Chapter 2. Background theory: Cloud Computing and Autonomic Computing5

include platform components, deployed applications, service compositions, indi-
vidual services, etc., and monitoring properties can be the number of simultane-
ous client connections, data storage utilisation, number of tasks in a messaging
queue, CPU and memory utilisation, response times to user requests, I/O oper-
ations frequency, etc. Appropriate monitored data helps the autonomic manager
to recognise failures or sub-optimal performance of the managed element, and
execute appropriate changes to the system. The types of monitored properties,
and the sensors used, will often be application-specific, just as effectors used to
execute changes to the managed element are also application-specific (Huebscher
and McCann, 2008).

Two types of monitoring are usually identified in the literature:

¢ Passive monitoring, also known as non-intrusive, assumes that no changes
are made to the managed element. This kind of monitoring is typically tar-
geted at the context of the managed element, rather than the element itself.
For example, in order to monitor some metrics of a software component, in
Linux there are special commands (e.g., top or vmstat return CPU utilisa-
tion per process (Huebscher and McCann, 2008)). Linux also provides the
/proc directory, which contains runtime system information, such as cur-
rent CPU and memory utilisation levels for the whole system and for each
process individually, information about mounted devices, hardware config-
uration, etc. (Huebscher and McCann, 2008). Similar passive monitoring
tools exist for most operating systems. As we will further explain in more
details, in our use case, to collect information about database space occu-
pied by a table, we did not measure the size of that table per se, but rather
queried a special separate table, whose role in relational databases is to keep
live and up-to-date statistical data about the database. This is another exam-
ple of passive monitoring. The drawback of this approach, however, is that
often monitored information is not enough to unambiguously reason about

possible sources of problems in the system.

¢ Active monitoring assumes designing and implementing software in such a
way that it provides an API with some entry-points for capturing required
metrics and collecting monitored data. For example, to monitor response
time from an external web service, an application should provide an API
in order for the monitoring component to intercept the requests. This can
often be automated to some extent. For instance, using aspect-oriented pro-
gramming techniques allows “injecting” additional functionality into the pro-

gramme source code. Moreover, there are some tools for inserting probes

36 2.2. Autonomic Computing

into already compiled Java byte code (e.g., ProbeMeister!), which makes it
possible to actively monitor legacy systems. This type of monitoring is also
known as intrusive, as it inevitably implies making changes (i.e., intrusions)
to the managed element by instrumenting it with probes to facilitate inspec-
tion of its characteristics. As with code instrumentation, it is essential that
this is done with care, since the instrumentation can itself potentially affect
the subject’s performance, providing a flawed picture of its inherent capabil-
ities.

It is also important to consider who is responsible the monitoring process and
data collection. Typically there are two data collection methods (or a combination
of them) used (Bratanis et al., 2012). In polling mode, the autonomic manager is
responsible for querying the managed element and its sensors at regular intervals.
On contrary, in push mode it is the managed element’s responsibility to notify
the monitoring authority of any significant events or changes. In practice, imple-
menting monitoring as part of the self-management functionality may require a
deliberate and flexible combination of several approaches. In the context of CAPs,
on the one hand, it can be a condition of deployment that add-on services and
user applications must conform to a platform-specific API and expose some sort
of "hooks’, to which monitoring sensors will be attached, thus implementing an in-
trusive approach to data collection. This in turn can be seen as a potential security
threat, since such kind of hooks imply providing access to potentially sensitive
internal application data, which may be unacceptable as far as particularly sen-
sitive software systems and business data are concerned, and therefore a less or
non-intrusive approach would be preferred.

Moreover, a malfunctioning application or a service cannot be relied upon to
act according to their designed specification — that is, it is potentially risky to
assume that a report signalling its own failure will be pushed to the monitor
by the managed element. In these circumstances, it is important that a PaaS-
level autonomic manager implements ‘heart beat monitoring” and polls managed
elements at regular intervals to check whether they are still alive and active. On
the other hand, however, the SOC paradigm suggests software systems are often
combined in novel, emerging and unpredicted ways, which makes it impossible
to make the autonomic manager aware of all of the possible situations in advance.
In such circumstances, applications are also required to be able to push event
notifications to the autonomic manger, since it may not itself issue the necessary
requests.

As self-managing systems grow and the number of sensors increases, moni-

lhttp://www.objs.com/ProbeMeister/

http://www.objs.com/ProbeMeister/

Chapter 2. Background theory: Cloud Computing and Autonomic Computing}7

toring activities may result in a considerable performance overhead. That is, in
a system with thousands of probes constantly generating values, the monitoring
component may not be able to cope with this overwhelming amount of data. To
avoid ‘bottlenecks’, system architects have to distinguish between values which
are relevant to self-managing activities and so called ‘noise” — data, which can be
neglected. Another potential solution to this problem is performing high-level
monitoring first, and then, once an anomaly is localised, activate additional moni-
toring resources (Ehlers et al., 2011). With this approach, computational resources
are provisioned to the monitoring component on-demand, only when a problem

is detected, thus resulting in a higher efficiency and resource consumption.

Analysis

The analysis component’s main responsibility is to perform current situation as-
sessment and detect failures in the managed element. In its simplest form, the
analysis engine, based on Event-Condition-Action (ECA) rules, simply detects sit-
uations when a single monitored value is exceeding its threshold (e.g., CPU utilisa-
tion reaches 100%), and immediately sends this diagnosis to the planning compo-
nent. However, the problem determination may be a challenging task, especially
in a distributed environment when the monitored data is coming from multiple
remote sources. Based on the internal knowledge, the autonomic manager should
decide whether a particular combination of monitored values represents or may
lead to a failure.

In connection with this, techniques from the area of Complex Event Processing
(CEP) research (Margara and Cugola, 2011) proved to be helpful in the context of
data analysis and situation assessment. From CEP’s point of view, everything hap-
pening in the environment and changing the current state of affairs is an atomic
event. Sequences of atomic events build up complex events, which, in their turn,
may be part of an even more complex event, thus building event hierarchies. For
example, when CPU and memory utilisation levels of several VMs running on the
same physical machine reach 100% (i.e., atomic events) within a short period of
time, this indicates that the utilisation of the whole physical machine has reached
its limit (i.e., the complex event). In Chapters 5, 6 and 7 we will explain in more
details how CEP techniques were utilised in our own research work.

2.2.2 Levels of autonomicity

Modern IT still heavily depends on human operators, and the industry is still away

from pervasive implementation of the autonomic computing principles. However,

38 2.2. Autonomic Computing

ever-growing computing systems are getting more and more complex, and there
is a clear need for enabling them with autonomic behaviour and capabilities for
self-adaptation. The interest in autonomic computing is growing, and the industry
is taking an evolutionary approach to improving existing computing systems by
enabling them with self-managing capabilities (Ganek and Corbi, 2003). It means
that certain bits of computing systems are gradually replaced or enhanced by
autonomic components so as to eventually achieve fully autonomic behaviour. In
our work, we refer to the hierarchy of autonomic behaviour, proposed in (Ganek
and Corbi, 2003) and summarised in Table 2.1, which suggests 5 steps towards

fully autonomic behaviour.

Table 2.1: Levels of autonomic behaviour (modified from (Ganek and Corbi, 2003).

) Managed Predictive) Autonomic
Basic level Adaptive level
level level level
Driven by the
set of self-
management
System is able] .g
Heterogeneous | The whole ; ; policies, the
(o erform
Multiple inde- | data is col- | system is able dat p Ivsi system is able
ata analysis, .
R pendent com- | lected and | to monitor daptati Y to diagnose
= adaptation
-8 ponents gener- | synthesised in | and analyse P critical situa-
g , plan gener- |
S ate raw data | a single place | data, and sug- H d tions, choose
ation an
E to be collected, | by means | gest possible " (| an adaptation
execution o
o correlated and | of dedicated | adaptation plan from sev-
. the generated L
analysed. management actions to . eral existing
plan on its]
tools. operators. alternatives,
own.
and success-
fully apply
it.
) The role of
Extensive, the IT staff i
e staff is
highly-skilled .
® T staff s supervisory; IT staff focuses
%) IT staff needs minimum on enabling
i responsible IT staff ap- .
g o to analyse data number of | business
15 for initial col- proves and)
- . to generate | | human op- | needs, and is
=t lecting and initiates adapt- . .
= . . and execute . . erators is | only required
5 interpreting . ation actions .
< appropriate only required | to change self-
- data, and fur- . suggested by .
© . adaptation to monitor | management
2 ther planning the system . .
] . plan system perfor- | policies if
~ an execution .
. mance with | needed.
of adaptation
1 respect to a set
ans
P of SLAs

Chapter 2. Background theory: Cloud Computing and Autonomic Computing9

= The whole

2 . The whole

k] MAPE cycle is)

£) MAPE cycle is

g o implemented .

= Monitoring, implemented

9 o . (the system

S N/a Monitoring Analysis, and . (the systems

£ . operates with .

= Planning L operates with-

28 minimum

A out human

< human super- | .

s . involvement)

vision)

Increased No depen-
system aware- | Reduced de- | Minimum dency on
ness; im- | pendency on | dependency extensive IT
proved pro- | highly-skilled on exten- | staff; busi-

:E ductivity and | professionals; sive IT staff | ness policies

% N/a decreased decreased time | involvement; drive the IT

] time, required | required to ap- | increased busi- | management;
to apply | ply adaptation | ness agility, | increased
adaptation actions to the | flexibility and | business
actions to the | system resiliency agility and
system resiliency.

The basic level represents the starting point for most of the IT systems which
were not designed to be enabled with self-managing capabilities in the first
place. At this level, various heterogeneous system components indepen-
dently from each other generate raw data, which is then manually collected,
analysed and transformed into adaptation actions by IT professionals. Ac-
cordingly, all the management tasks, such as system configuration, optimisa-
tion, healing, protection, are performed manually. These challenges require
the IT staff to be highly experienced and skilled.

At the managed level, which is a first step towards full autonomicity, an
integrated approach to system monitoring is applied, and monitored data
coming from independent heterogeneous system components is gathered
in one place, providing human operators with a more holistic view on the
current state of the whole system. This reduces the time for operators to
collect and correlate data across the whole system.

At the predictive level, individual system components are able to monitor
themselves, analyse and assess situation and context, recognize patterns, and
suggest optimal configurations for human operators, who need to approve
and apply these changes.

At the adaptive level, the system, equipped with necessary self-reflective
knowledge and set of diagnosis and adaptation policies, is able to detect and

40 2.2. Autonomic Computing

diagnose potentially critical situations, and automatically take necessary ac-
tions to perform self-adaptations. The knowledge base, among other things,
also includes a set of Service Level Agreements (SLAs), which primarily
drive the operation of the system and its self-management. The involve-
ment of human operators at this level is minimal, and is only required for

supervision purposes.

¢ Finally, at the fully autonomic level, the system operation is solely gov-
erned by business policies and objectives, established by human adminis-
trators at design time. The IT staff can concentrate on immediate business-
related tasks, and is only required whenever there is a need to modify the
self-management policies (though altering business policies can also be per-

formed by non-IT professionals).

When applying the presented self-management hierarchy to the research work
presented in this thesis, we can classify it under the upper three levels — predic-
tive, adaptive and autonomic. Even though the EXCLAIM framework developed
within the context of this research work mainly focuses on the monitoring and
analysis activities of the MAPE-K cycle, it is expected to facilitate further planning
and adaptation processes to be performed i) manually — at the predictive level,
ii) automatically under minimum human operator supervision — at the adaptive
level, or iii) automatically without human involvement — at the fully autonomic
level. In Chapter 7 we describe our experience of enabling CAP application own-
ers with a capability to detect and diagnose situations when the resource utili-
sation is approaching its critical threshold. Furthermore, in Section 9.2 we also
discuss the potential of integrating the EXCLAIM framework with existing plan-
ning and execution mechanisms, thus aiming at creating an autonomic framework

fully implementing the MAPE-K functionality.

2.2.3 Self-management in clouds

To some extent, SOC addressed the problem of complexity in ever-growing and
expanding computing systems. As the number of individual components consti-
tuting enterprise systems was growing exponentially, their timely management
was becoming an increasingly challenging task. Figure 2.3 schematically illus-
trates this basic concept. With the traditional software architecture, enterprises,
existing in isolation from each other, need to develop their own components from
scratch and manage them afterwards. With the SOA approach, there is no need to
maintain redundant components — each of the enterprises is in charge of a single

software component, whereas the other components constituting their application

Chapter 2. Background theory: Cloud Computing and Autonomic Computingl

systems are provisioned by other enterprises as services. As this simple diagram
illustrates, at a small price of additionally managing network communication, the
SOC model allowed reducing software management efforts by a factor of N, where

N=4 is the number of enterprises and services constituting their SBAs.

Figure 2.3: Traditional multi-component enterprise software architecture and
service-oriented architecture.

With the continuing paradigm shift towards cloud computing, service-based
cloud environments are expected to become even more complex. The diagram
in Figure 2.4 schematically depicts how cloud computing follows the SOC model
and accumulates multiple IT services available to users in one place. By providing
a selection of IT resources offered as services to customers, on the one hand, they
exempt them from tedious and often unnecessary tasks of IT management. On
the other hand, however, the burden of IT management does not simply vanish —
it is now the cloud provider’s responsibility to maintain the required Quality of
Service (QoS) and meet SLAs.

Given the fact that the number of available cloud services is constantly grow-
ing, and their timely management is outgrowing cloud providers’ capacity to man-
age them in a responsive manual manner, we are running into a risk of ending up
in a situation where service-based cloud platforms become tangled, complex, and
unreliable environments. Both academia and industry are coming to realise this
problem and consequently putting considerable effort into finding potential so-
lutions to address it. Attempts to enable clouds with self-managing mechanisms
have mainly focussed on the infrastructure level. Mechanisms for distributing
the varying volumes and types of user requests across different computational in-

stances (load-balancing), or by reserving and releasing computational resources

42 2.2. Autonomic Computing

A

Figure 2.4: Clouds follow the SOC model by gathering IT services in one place.

on demand (elasticity) (Armbrust et al., 2010, Natis et al., 2009) are nowadays seen
as ‘must-have’ features of a cloud offering. In both cases, self-adaptation mecha-
nisms typically implement a closed control loop for self-adaptations, where main
monitoring metrics are CPU and memory utilisation of computational instances
(i.e., virtual machines), and network bandwidth. More specifically, to facilitate
load balancing, IaaS providers observe current resource consumption and take
necessary steps to move computational instances — that is, to spread users” work-
load — across multiple physical servers. By doing so, they aim at achieving even
workload distribution across their datacentres and avoiding situations when some
servers are overloaded with data storage and intensive computations, while others
stay idle. As for elasticity, laaS providers monitor customers’ resource utilisation
and are able to automatically take necessary steps to either scale down by shut-
ting down excessive instances associated with a particular customer, or scale up
by launching additional instances in response to reaching a critical level of re-
source utilisation. As a result, customers benefit from both types of activities —
they do not need to pay for idle instances (that is, for the resources they are not

actually using), and are also secured from their applications crashing due to the

Chapter 2. Background theory: Cloud Computing and Autonomic Computing3

shortage of resources. Both load balancing and elasticity are now seen as essential
characteristics of cloud computing (Mell and Grance, 2009).

In some cases, the process of adding/removing computational instances is
managed by the cloud platform in a completely automated way (e.g., in Open-
Shift, Google App Engine, or AWS Elastic Beanstalk). In other cases, application
developers are first expected to configure such capabilities by specifying critical
thresholds when resources have to be provisioned/de-provisioned. Other cloud
platforms only provide an API for performing such activities (e.g., CloudFoundry
or Heroku), and users are asked to monitor their resource utilisation and accord-
ingly apply changes programmatically. Third-party solutions have also proved
to be useful when automating the task of scaling applications up/down (e.g., a
commercial offering HireFire! for Heroku). Another relevant technique offered by
several platforms, including OpenShift and Heroku, is to idle inactive computa-
tional instances based on users’ recent activity to save cloud platform resources

and users’ money.

A basic technique employed by most of the existing cloud self-management
mechanisms is ‘heart beat monitoring” which relies on sending polling request
to the monitored components within certain time intervals to check if it is still
‘alive’ (that is, responding to these requests), and, if not, taking necessary steps
to restart it (for example, see Dead Man’s Snitch for Heroku.?) Self-management
behaviour of this kind is rather simple, and does not involve any sophisticated
analysis of what the underlying problem might be and how to solve it. Appli-
cations are treated as ‘black boxes” and usually, if they still do not operate after
several attempts to restart, they are fully stopped and further actions need to be
taken by users. To support more in-depth monitoring of deployed applications
and provide customers with visibility into resource utilisation and operation per-
formance, some cloud platform operators either offer built-in monitoring tools
(e.g., Amazon CloudWatch® or Google App Engine Dashboard) or employ exter-
nal monitoring frameworks* (e.g., New Relic® and Sensu®). Common monitored
metrics are CPU and memory utilisation, disk reads and writes, network traffic,
number of incoming requests, etc. However, such monitoring frameworks often
only deal with collecting and displaying data, and do not provide any means of

automatically recognising and fixing a problem once it appears — this task is left

https://www.hirefire.io/

2https ://elements.heroku.com/addons/deadmanssnitch/
Shttp://aws.amazon.com/cloudwatch/

4Please refer to Chapter 4 and Appendix C for a more detailed overview.
Shttp://newrelic.com/

Shttp://sensuapp.orqg/

https://www.hirefire.io/
https://elements.heroku.com/addons/deadmanssnitch/
http://aws.amazon.com/cloudwatch/
http://newrelic.com/
http://sensuapp.org/

44 2.3. Summary

to the administrators. In this sense, existing solutions for supporting autonomic
behaviour can only qualify for the managed level of self-management (please refer
to Table 2.1). In Chapter 4, we provide a more detailed and critical overview of
the existing solutions in the domain of autonomic cloud platforms and associated

data monitoring and analysis solutions.

2.3 Summary

In this chapter, we familiarised the reader with the cloud computing paradigm,
and its main underpinning concept — SOC. This explanation puts forward the mo-
tivation behind the presented research, and outlines its main context — namely,
CAPs and their add-on service marketplaces. To support relevance of our re-
search, the chapter also surveyed existing PaaS offerings and identified 75% of
CAPs among them. The challenge of insufficient capabilities for self-governance
is expected to be addressed by autonomic computing, which is also presented
in this chapter. The chapter provided a classification of self-managing comput-
ing systems with respect to the extent, to which they implement the autonomic
computing principles and minimise human involvement. It also explained the
MAPE-K reference model for implementing self-adaptations in computing sys-
tems. Understanding this model is important to follow the description of the
EXCLAIM framework, which was designed and implemented in the context of

this research work and is explained in Chapters 5, 6, and 7.

Chapter 3

Related technologies: Big Data
processing and the Semantic
Sensor Web

In the previous chapter we explained the notion of Autonomic Computing and
highlighted the role of an extensive knowledge base in implementing closed au-
tonomic loops in complex computing systems. Often, in the context of timely
data monitoring and analysis, to transform data into information, it is necessary
to process considerably large amounts of raw heterogeneous data, which may go
beyond traditional processing and storage capabilities. Accordingly, this chapter
introduces the notions of Big Data and existing processing and storage techniques
for coping with these extreme volumes of data. The chapter first defines Big Data
focussing on its main four aspects, known as the ‘four Vs’ — namely, Volume, Ve-
locity, Variety and Veracity. Then it continues with an overview of existing Big
Data storage and processing techniques. Given the fact that in the context of CAP
data monitoring and analysis, timely reaction to rapidly changing observations
is of paramount importance, a separate section is dedicated to explain how the
Velocity aspect of Big Data can be addressed. It explains the notions of ‘data in
motion” and stream processing, and introduces IBM InfoSphere Streams — a plat-
form specifically designed for handling Big Data in motion, which was utilised in
the presented research work, as explained in Chapter 7.

However, stream processing on its own cannot cope with data variety and het-
erogeneity. In scenarios, where data is represented using multiple formats and
syntaxes, querying streams becomes problematic. Until recently, the Sensor Web
had been one of such problem domains. To address this issue, the SSW commu-

nity introduced a shared semantic vocabulary of terms to represent heterogeneous

45

46 3.1. Big Data processing

data in a uniform way and developed appropriate technological solutions for han-
dling such semantically-annotated streaming data. There are certain similarities
between sensor networks and the domain of CAPs. By drawing parallels, we
expect to benefit from existing techniques in this research field with a goal to
overcome data heterogeneity (i.e., the Variety aspect of Big Data). Accordingly,
the second part of the chapter first introduces the domain of traditional physical
sensor networks, and then proceeds with an explanation of what benefits semantic
technologies can provide. We explain the concept of the SSW and its main ingre-
dients — namely, the Semantic Web technology stack, the SSN ontology, and RDF

stream processing — in more details.

3.1 Big Data processing

Recent advances in various fields of IT, including sensor and network technology,
social networking and cloud computing, have resulted in a situation, where the
world creates an overwhelming amount of raw data on a daily basis. These un-
precedented avalanches of data come from many sources — wired and wireless
sensory readings, mobile data, stock exchange trade information, dynamic con-
tent from social networks such as Twitter, Facebook and YouTube, scientific data,
and many others. According to IBM (IBM Corporation, 2015), the overall amount
of data generated by the world every day equals to 2.5 exabytes (EB),! whereas
in 2011 only, the total volume of data, created or copied, reached 1.8 zettabytes
(ZB),? and since then this number has increased by nearly 9 times (Gantz and
Reinsel, 2011). It is also predicted that by 2020 the world will generate 50 times
the amount of currently existing data. At the same time, IT staff needed to man-
age this data will only grow less than 1.5 times (Gantz and Reinsel, 2011). In these
circumstances, the scientific community urgently had to address multiple research
questions, which concern various aspects of handling these extreme amounts of
data, which have become known as Big Data. In the first instance, these research
questions arise from how Big Data has to be analysed, captured, searched, shared,
stored, transferred, secured, and visualised.

The term ‘Big Data’ itself was first coined in 1997 by Cox and Ellsworth (Cox
and Ellsworth, 1997) to refer to datasets of around 100 gygabyte (GB) in size.
What is now considered to be a norm and can easily be stored on a single Univer-
sal Serial Bus (USB) stick, at that time was large enough to make the storage and
computing requirements go beyond capabilities of traditional approaches existing

11 EB = 10'® bytes
21 ZB = 10?! bytes

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 47

at that time. Since then, the amounts of generated data have grown immensely,
and today the volume of a big dataset typically ranges from several terabytes
(TB)! to several EBs (Manyika et al., 2011) depending on the context — due to these
fuzzy and uncertain borders, there is still no common and precise understanding
of what Big Data is. Nevertheless, in this document we will be using the term
Big Data in a rather broad sense, and will define Big Data as “the datasets that
could not be perceived, acquired, managed, and processed by traditional IT and
software/hardware tools within a tolerable time” (Chen et al., 2014). The notion
of ‘traditional IT and software/hardware tools” typically includes conventional
Relational Database Management Systems (RDBMSs), whose forte is in storing
and querying data in the relational format — that is, as collections of related data
held in tables, consisting of rows and columns. However, the relational format
and structured nature are not necessary the case with Big Data, which is char-
acterised with its high heterogeneity and unstructured or semi-structured nature.
Strong points of RDBMSs become their limitation, which either make them com-
pletely inapplicable for Big Data scenarios or cancelled potential benefits, such as
fast querying or indexing, and resulted in situations where resources invested in
scaling up existing RDBMSs were disproportionate to the outcome. As RDBMSs
were becoming more and more demanding in terms of expensive hardware, in
order to cope with the increasing pressure of Big Data processing, the community
started exploring other options to address this challenge. In the next section of
this chapter, we will present a brief overview of the existing solutions.

Even though the Big Data hype started with its extreme size, which was the
primary reason for introducing novel technological solutions, nowadays the con-
cept of Big Data is multi-faceted and typically includes the following key features,
widely known as ‘the fours Vs’ of Big Data.

Volume: extreme scale of data created and stored

The volume aspect was (and still is) the primary concern of the Big Data consor-
tium. As of 2012, the world creates about 2.5 EB of raw data every day, and this
number is estimated to double approximately every 40 months (McAfee and Bryn-
jolfsson, 2012). By 2020, we are expected to exceed the threshold of 40 zettabytes
of information (Mellor, 2015). The main reasons for this data explosion lie in the
technological advances in many fields of the IT industry resulted in easily avail-
able, affordable and, as a result, ubiquitous hardware resources. Six of the world’s
7 billion people own at least one mobile phone, embedded microprocessors have

penetrated almost every aspect of humans’ life, networking technologies and the

11 TB = 10'2 bytes

48 3.1. Big Data processing

Internet made it possible for smart devices to be connected and accessed remotely
— these are just a few examples of factors contributing to the exponential growth
of created datasets.

Velocity: on-the-fly processing of streaming data

In addition to the extreme size of created data, the ubiquitous insertion of mobile
and embedded devices also affected the rate at which it is generated. Mobile
phones, sensor networks, social networks, embedded systems — all these emit data
every single second and thus contribute to the velocity aspect of Big Data. Even
though the Big Data revolution started from the volume aspect, more and more
applications focus on the speed of data creation and processing, seeing it as a key

to success in taking timely business decisions.

Variety: heterogeneous data is stored in many different forms and formats

Relational databases are not the only one way of storing data. Moreover, as
datasets grow in their size, the relational format discontinues being the primary
form of data storage. Indeed, in the era of Internet and social media, data takes the
form of video and audio clips, images, and texts. YouTube, for example, reports
300 hours of video being uploaded by users every minute (YouTube, LLC, 2015),
and this rate constantly grows. Similar things happen with Facebook, Twitter,
Google+ and other social media. Another contributing factor to the variety aspect
is the presence of numerous vendors and providers, and lack of standardisation
in many areas — for example, different sensor devices use different, often incom-
patible, data formats. Even the difference in human languages, used to express
simple text data, creates additional heterogeneity among distinct datasets.

Veracity: data is often uncertain, flawed, or rapidly changing

With current rates of data creation, it is becoming more and more difficult to
know which information is still accurate and valid, and which one is obsolete
and outdated. For instance, reacting to stock exchange fluctuations even with a
one-minute delay may lead to dramatic money losses. Same applies to, for exam-
ple, environmental sensor readings and Global Positioning System (GPS) signals,
whereas other data is less sensitive to timely, real-time reacting, but still have a
‘date of expiry” — a time limit, within which analysis results correctly reflect the
current situation and, therefore, are still valid. Trust is another dimension of the
veracity aspect, becoming particularly important with the development of the so-

called ‘wisdom of the crowds’. With the proliferation of social networks and Web

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 49

sites, such as Wikipedia,1 Yahoo! Answers,? or Quora,® where information heavily
depends on subjective, often biased human opinion, it can be expected to be less
trusted source of information.

Even when considered separately from the rest, each of the four aspects of Big
Data on its own represents a pressing challenge and deserves thorough investiga-
tions so as to create efficient solutions. When taken together, they become an even
more challenging task to be addressed both by the industry and the academia,
and demand for novel technological solutions to be applied in this respect.

3.1.1 Processing streaming Big Data

Even though technological advances in handling static data — or ‘data at rest’
- seem to be coping with the quantity of data (e.g., the MapReduce comput-
ing model (Dean and Ghemawat, 2008) or so-called NoSQL databases (Pokorny,
2013)), the problem may often appear artificial — it is not the vast amounts of static
data which have to be stored and processed in novel ways, it is the lack of effi-
cient, reliable and optimised solutions for processing data in motion, which forces
enterprises to permanently store their data on hard drive first and then process
them in a static manner (Wahner, 2015). Indeed, if we take a more precise look at
the data volumes generated by the world today, we will see that big data sources
feed data unceasingly in real time and the majority of the data is streaming by its
very nature — social network updates, stock exchange fluctuations, sensor read-
ings, purchase transaction records, mobile phone and GPS signals, live video and
audio content, etc. An increasing number of distributed applications are required
to process continuously streamed data from geographically distributed sources at
unpredictable rates to obtain timely responses to complex queries.

Raw data generated on a daily basis comes from everywhere — sensors net-
works, posts to social media sites, digital pictures and videos, purchase transac-
tion records, stock exchange fluctuations, to name a few. Even though existing
technologies seem to succeed in storing these overwhelming amounts of data, on-
the-fly processing of newly generated data is an inherently pressing task. If tack-
led by the traditional DBMSs, the task of processing continuously streamed data
from geographically distributed sources at unpredictable rates to obtain timely re-
sponses to complex queries, will be hindered by two main factors (Margara and
Cugola, 2011). Firstly, in relational databases data is supposed to be (persistently)
stored and indexed before it can be processed. Secondly, data is typically pro-

11’1ttps ://en.wikipedia.org/
2https ://answers.yahoo.com/
Shttps://www.quora.com/

https://en.wikipedia.org/
https://answers.yahoo.com/
https://www.quora.com/

50 3.1. Big Data processing

cessed only when explicitly queried by users (i.e., asynchronously with respect to
its arrival).

Information Flow Processing (IFP) — a key research area addressing the issues
involved in processing streamed data — investigates potential solutions address-
ing these limitations of the traditional static approaches. IFP focuses on data flow
processing and timely reaction (Margara and Cugola, 2011). The former assumes
that data is not persisted, but rather continuously flowing and being processed in
memory, and the latter means that IFP systems aim to operate in real-time mode,
and time constraints are crucial for them. These two key features have led to
the emergence of a family of computer systems specifically designed to process
incoming data streams based on a set of pre-deployed processing rules. A data
stream consists of an unbounded sequence of values continuously appended and
annotated with a timestamp, usually indicating when it has been generated (Cal-
bimonte et al., 2012). Timestamps allow for stream processing solutions then to
order incoming tuples in a chronological order. Usually (but not necessarily) re-
cent tuples are more relevant and useful, because they represent a more up-to-date
situation, and therefore are more helpful in achieving near real-time operation.
Examples of data streams include environmental sensor readings, stock market
tickers, social media updates, etc.

Querying over data streams

To cope with the unbounded nature of streams and enable data processing, so-
called continuous query languages (Calbimonte et al., 2012) have been developed
to extend the conventional Structured Query Language (SQL) semantics with the
notion of windows. A window is a temporal operator, which uses tuple timestamps
to transform unbounded sequences of values into bounded ones, allowing the tra-
ditional relational operators to be then applied to the resulting collection of tuples.
This approach restricts querying to a specific window of concern, which consists
of a subset of most recent tuples, while older values are (usually) ignored (Barbi-
eri, Braga, Ceri, Della Valle and Grossniklaus, 2010). Windows can be specified in

terms of:

e number of elements (tuples), when a window consists of a number of latest
elements regardless of the arrival time, and

¢ time, when a window consists of all elements which have arrived during the

specified time frame! (in this case, the window can be potentially empty).

IThis division into tuple- and time-based windows is also referred to as physical and logical
extraction respectively (Barbieri et al., 2009).

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 51

Depending on how the window operator ‘moves” along the data stream, we can
distinguish between overlapping and non-overlapping windows. With the former
approach (also known as sliding), the transition between windows is smooth, such
that two neighbour windows may overlap with each other and same tuples may
appear in both of them. In the latter case, also known as tumbling, the transition
between windows is ‘discrete’, so that a tuple can appear only in at most one

window.

Window

Data stream

0000000000000 POee0O
000000000000 0900000
0000000000000 POOOOO
0000000000000900000
9000000000000 0Q@00000
0000000000000 900000
20000000000000900000
000000000000 0900000

Time

Figure 3.1: Continuous query languages address the problem of querying an un-
bounded data stream by focussing on a well-defined window of interest (excerpted
from (Dautov et al., 2014D)).

The concepts of unbounded data streams and windows are visualised in Figure
3.1. The multi-coloured circles represent tuples continuously arriving over time
and constituting a data stream, whereas the thick rectangular frame illustrates the
window operator applied to this unbounded sequence of tuples. As time passes
and new values are appended to the data stream, old values ‘fade away’ — they
are pushed out of the specified window, i.e., become no more relevant and may
be discarded (unless there is a need for storing historical data for later analysis).

Data stream management systems (DSMSs) — an evolution from traditional
static DBMSs — were specifically designed and developed to process streaming
data, which comes from different sources to produce new data streams as output
(Margara and Cugola, 2011). Examples of DSMSs include SQLstream,! STREAM,?
Aurora,® TelegraphCQ,* etc. These systems target transient, continuously updated
data and run standing (i.e., continuous) queries, which fetch updated results as

Thttp://www.sglstream.com/

2http ://infolab.stanford.edu/stream/
Shttp://cs.brown.edu/research/aurora/
nttp://telegraph.cs.berkeley.edu/telegraphcqg/v0.2/

http://www.sqlstream.com/
http://infolab.stanford.edu/stream/
http://cs.brown.edu/research/aurora/
http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/

52 3.1. Big Data processing

new data arrives. CEP goes beyond simple data querying aims to detect com-
plex event patterns, themselves consisting of simpler atomic events, within a data
stream (Margara and Cugola, 2011). Accordingly, from CEP’s point of view, con-
stantly arriving tuples can be seen as notifications of events happening in the
external world - e.g., a fire alarm signal, social status update, a stock exchange
update, etc. Accordingly, the focus of this perspective is on detecting occurrences
of particular patterns of (lower-level) events that represent higher-level events. A
standing query fetches results (i.e., notification of a complex event to the inter-
ested parties is sent) if and only if a corresponding pattern of lower-level events
is detected. For example, a common task addressed by CEP systems is detecting
situation patterns, where one atomic event happened after another. To achieve this
functionality, CEP systems also rely on tuple timestamps; they extend continuous
query languages with sequential operators, which allow specifying the chrono-
logical order of tuples or, simply put, whether one tuple arrives before or after

another in time.

3.1.2 An existing solution: IBM InfoSphere Streams

There are several technologies, both commercial (e.g., IBM InfoSphere Streams
(IBM Corporation, 2013) and Oracle Fast Data solutions (Oracle Corporation, 2015))
and open-source (e.g., Apache S4! or Storm?), which were specifically developed
to handle streaming data and process it in memory, without permanently storing
it on disk. They are designed to supports dynamic analysis of massive volumes
of incoming data to improve the speed of business insight and decision making.

Typical features include:

* A wide selection of pre-compiled operators, ranging from simple utility op-
erators (e.g., source, sink, filter, aggregate, split) to more complex ones, such
as Extensible Markup Language (XML) Parser or operators dealing with
database access.

* Support for task parallelisation: with various built-in operators responsible
for splitting, filtering and merging incoming data streams it is possible to
achieve highly parallelised behaviour of a Streams application.

* Support for scalability: configuring and provisioning of additional process-
ing components is possible to support parallel execution of data processing
tasks.

1http ://incubator.apache.org/s4/
Zhttp://storm.apache.org/

http://incubator.apache.org/s4/
http://storm.apache.org/

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 53

In the context of the presented research work we have employed IBM InfoS-
phere Streams (henceforth — IBM Streams). Streams consists of a programming
language Streams Programming Language (SPL), an IDE, and a runtime envi-
ronment that can execute SPL applications in stand-alone or distributed modes.
The Streams Studio IDE includes tools for creating visual representations of ap-
plications, consisting of operators and connecting streams, by means of the drag-
and-drop mechanism. Alternatively, users can also develop Streams applications
directly in SPL. The following are the main advantages of Streams:

¢ Apart from standard operators, Streams also supports custom operators,
which can be written in SPL, Java or C++. Thanks to this feature, it is pos-
sible to package the EXCLAIM framework as a separate Java Archive (JAR)
file and access it as an operator from within a Streams application.

¢ The feature-rich and user-friendly Streams IDE is based on Eclipse IDE,
which makes it intuitively easy to use for someone with experience of de-
veloping in Eclipse. In Streams IDE, provisioning of an additional analysis

component is just a matter of dragging and dropping it on the working area.

* Automated ‘zoo keeping’ is another positive feature of the Streams platform.
While in industrial and commercial scenarios, one might want to have more
control and visibility into how distributed computational nodes are coordi-
nated and managed, in our work we were looking for an easiest and quickest
way of running parallel task without much upfront configuration effort. In
the Streams platform, this process of configuring and managing computa-
tional nodes known as ‘zoo keeping’) is done automatically and transpar-
ently to the user. Whereas in open-source solutions, such as Apache Storm
or 54, this process has to be done manually.

¢ The last but not the least, being a commercial software offering, IBM Streams
is also available as a free Linux distribution for non-commercial research
use. This distribution has exactly the same set of features as the full-blown
commercial offering with the only difference that a distributed cluster of
nodes is simulated within a single virtual machine, as opposed to a physical
cluster in a data centre or in a cloud. Therefore, with certain assumptions it
can claimed that local experiments can be reproduced on a larger scale.

However, IBM Streams and other platforms for processing large amounts of
streaming data in a parallel manner should not be considered as a ‘silver bullet’,
which will immediately solve all the problems associated with Big Data process-
ing. They only provide an environment and a set of tools for implementing these

54 3.2. Semantic Sensor Web

tasks. It is up to the users, who are expected to design and develop correct frag-
mentation and processing algorithms for incoming data. We describe our own

experience of utlising IBM Streams in Chapter 7.

3.2 Semantic Sensor Web

One of the main problem domains, where solutions based on the principles of
stream processing have been successfully applied, is the domain of distributed
physical sensor networks, which also act as one of the main driving factors for
development of the stream processing technology. Sensor networks are spatially
distributed autonomous sensors, whose main goal is to monitor physical or envi-
ronmental conditions, such as temperature, humidity, sound, pressure, etc., and
to pass this monitored data through the wireless (or less often wired) network to
one or several central component responsible for further information processing
and storage. A sensor network (see Figure 3.2) includes multiple nodes, which
are either i) sensor nodes — physical devices carrying one or more sensors, or ii)
gateway nodes for transferring data to the central processing and storage location.
Each sensor node is typically equipped with an interface for transferring data over
the network (e.g., a radio transceiver with an internal antenna), a microcontroller
and an energy source (e.g., an embedded battery or a solar panel). Nodes and
sensors may vary in size, complexity and price. A sensor network consists of mul-
tiple nodes ranging from a few (e.g., a body-area network for monitoring human’s
health) to several hundreds and even thousands (e.g., an air pollution monitoring
system) assets.

Until recently, sensor networks could be regarded as relatively scattered and
isolated groups of sensor components, each based on its own proprietary stan-
dards and closed architectures, and serving its own individual purposes (Dautov
et al., 20144). Often, they were not discoverable and remotely accessible via the
Internet and the collected data was only accessible by the owner of a particular
network. In these circumstances, the usage of the sensor technology was lim-
ited. Firstly, the access to the network and its individual nodes was only possible
with the physical presence of an operator — that is, if something was wrong, the
operator had to go and manually inspect a malfunctioning node. Secondly, the
proprietary standards and closed architectures made it impossible for sensors and
sensory data to be accessed and reused by third parties. It often resulted in situa-
tions where multiple sensors of a similar type were installed in the same physical
location just because the already installed sensors could not be accessed by new-

comers.

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 55

b .
,° Terminal '~
L)

l" \‘

o LY
. Sensor node
. Gateway node

Figure 3.2: A sensor network consists of multiple sensor nodes and several gate-
way nodes, which transfer data to the central terminal (modified from (Dautov
et al., 2014aq)).

This situation started changing in the beginning of the 2000s with the launch
of active collaborative efforts by the Open Geospatial Consortium (OGC).! OGC
is an international industry consortium of more than 500 companies, government
agencies and academic institutions, who actively collaborate to develop publicly
available interface standards and their implementations, related to geospatial con-
tent and services, Geographic Information Systems (GISs), and associated data
processing and data sharing (Lupp, 2008). Standards developed by OGC aim at
bringing the spatial dimension to the Web, wireless and location-based services
and mainstream IT in general. The OGC standards enable technology developers
to design and create complex ‘geo-enabled” information services, accessible and
usable with a wide range of hardware and software assets.

Accordingly, one of the main directions for the OGC standardisation collabo-
ration is the domain of sensor networks, which has become known as the SWE?
initiative (Botts et al., 2008). SWE sets as its main goal the connection of scat-
tered and isolated sensor networks into a globally-accessed and open ecosystem
existing on top of the World Wide Web. The consortium members are specifying

interoperability interfaces and meta-data encodings that enable real-time integra-

1http ://www.opengeospatial.org/
2http://www.ogcnetwork.net/\gls{swe}/

http://www.opengeospatial.org/
http://www.ogcnetwork.net/\gls {swe}/

56 3.2. Semantic Sensor Web

tion of heterogeneous sensor networks into the single information infrastructure
— the Sensor Web. To fulfill this global vision, SWE develops standard encodings
and web services, to enable (Open Geospatial Consortium, Inc., 2015):

* online discovery of sensors, processes, and sensory data
* remote access to and tasking of sensors

* remote access to sensory static and streaming data

publish-subscribe capabilities to enable all kinds of notifications

* robust sensor systems and process descriptions

Accordingly, the Sensor Web can be seen as a collection of protocols and API,
coupled to and providing access to an interconnected network of Web-accessible

sensor networks and historical sensory data repositories.

From the Sensing Cloud to the Semantic Sensor Web

The concept of the Sensor Web goes hand in hand with the development of the
Internet of Things (IoT) (Atzori et al., 2010). The IoT is a relatively novel concept
whose basic underlying idea is the ubiquitous presence of a variety of digital ob-
jects — i.e., things — connected to the Web and remotely accessible via standard
protocols and interfaces. Examples of such objects include Radio Frequency Iden-
tification (RFID) tags, various sensors and actuators, mobile phones, cameras, etc.

The SWE community sets as its goal the creation of a similar architecture,
which has become known as the Sensing Cloud (Distefano et al., 2015) — a perva-
sive network of sensor devices, each connected to the Web and remotely accessible
by machines and humans. The correct implementation of the Sensing Cloud initia-
tive allows real-time access and browsing of the physical world through millions
of sensing devices, and thereby facilitates all kinds of situation assessment tasks.
Each sensor, constituting the Sensing Cloud, is uniquely identified with its Uni-
versal Resource Identifier (URI) and accessed by means of standard network pro-
tocols. Accordingly, its monitored data can be accessed as a simple Web page or
continuously streamed to create more complex real-time monitoring applications.

Apart from data privacy and security, which have been always identified among
the key factors preventing the implementation of the SWE and the Sensing Cloud
(Atzori et al., 2010), there are also other impediments. The number of sensors
around the globe is constantly growing, which results in avalanches of generated

sensory data. Such a rapid development of the sensor technology is intensifying

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 57

the existing problem of too much data and not enough knowledge. Accordingly,
one of the main challenges, which the SWE community has to face, is the ex-
isting heterogeneity in sensory data models, formats and representations. With
the introduction of standard formal schemes for describing individual sensors
and sensor networks, as well as associated sensory data models, the situation im-
proved. However, these standards, mainly syntactic, XML-based (see, for example,
the SensorML specification (Botts and Robin, 2014)), were suffering from low ex-
pressivity, insufficient interoperability and integration capabilities at the semantic
level. It meant that despite the same high-level standard methodologies used to
design various sensor networks and associated data models, the actual low-level
implementation details might have been different. For example, different sensor
networks might use different units of measurements or human languages to de-

scribe same concepts.

This situation naturally called for application of semantic technologies, which
would allow sensory data to be annotated with semantic metadata with a goal
to increase interoperability between distinct heterogeneous sensor networks, as
well as to provide contextual information essential for situation awareness. The
application of semantic technologies is based on a simple yet efficient principle —
by mapping between different syntactic metadata schemas in a structured way, the
Semantic Web techniques can tackle the problem of data integration and discovery

in the context of the Sensor Web.

This is where the expressive power and support for formal reasoning of the
Semantic Web technologies, and more specifically — ontologies, have proved to
be useful. Ontologies and other semantic technologies enabled sensor networks
with higher semantic interoperability and integration capabilities, as well as facil-
itated reasoning, classification and other types of automated assurance. Accord-
ingly, the marriage of the Sensor Web with the Semantic Web technologies has
become known as the SSW (Sheth et al., 2008). The main idea behind the SSW is
the annotation of sensor descriptions and sensor observations with Semantic Web
languages. These annotations serve to provide more meaningful and expressive
descriptions, advanced access and formal analysis of sensor data than SWE alone,
and act as a linking mechanism to bridge the gap between the primarily syntactic
XML-based metadata standards of the SWE and the RDF/OWL-based metadata
standards of the Semantic Web.

By carefully following the SWE standardisation guidelines for modelling sen-
sor networks, the SSW annotates sensory data with spatial, temporal, and the-
matic ontological metadata. A semantically-enhanced sensor network or simply

—an SSN - allows the network, its sensor nodes and associated sensory data to

58 3.2. Semantic Sensor Web

be organised, installed and managed, queried, understood and controlled through
high-level specifications (Compton et al., 2012). Ontologies for the sensor domain
provide a vocabulary for describing sensors, and allow classification of the capa-
bilities and measurements of sensors, provenance of measurements, and besides
that, also enable formal reasoning on sensor resources (Compton et al., 2009). As
a result, semantic annotations enable interoperability by connecting formerly scat-
tered and heterogeneous sensor resources into a common infrastructure, while
ontologies and rules serve to support analysis and reasoning over sensor data in
the SSW (Sheth et al., 2008).

At the core of the SSW approach lies the SSN ontology — an extensible semantic
vocabulary which aims at describing sensor-enabled domains in an abstract, yet
comprehensive manner. Before explaining the SSN ontology in more details, we
first brief the reader on the Semantic Web and its main enabling technologies
to help better understand the rest of this chapter, as well as the material to be
explained in Chapters 5 and 6.

3.2.1 Semantic Web and the Semantic Web stack

The Semantic Web, introduced by Berners-Lee (Berners-Lee et al., 2001) in 2001, is
the extension of the World Wide Web that enables people to share content beyond
the boundaries of applications and websites (Hitzler et al., 2009). This is typically
achieved through the inclusion of semantic content in web pages, which thereby
converts the existing Web, dominated by unstructured and semi-structured docu-
ments, into a web of meaningful machine-readable information. Accordingly, the
Semantic Web can be seen as a giant mesh of information linked up in such a way
as to be easily readable by machines, on a global scale. It can be understood as an
efficient way of representing data on the World Wide Web, or as a globally linked
database.

As shown in Figure 3.3, the Semantic Web is realised through the combination
of certain key technologies (Hitzler et al., 2009). These technologies from the bot-
tom of the stack up to the level of XML have been part of the Web standardised
technology stack even before the emergence of the Semantic Web, whereas the
upper, relatively new technologies — i.e., Terse RDF Triple Language (Turtle) and
Notation3 (N3), RDF, RDF Schema (RDEFS), SPARQL Protocol and RDF Query
Language (SPARQL), OWL, and SWRL - are intrinsic to the Semantic Web re-
search. All of these components have already been standardised by the World
Wide Web Consortium (W3C) and are widely applied in the development of Se-

mantic Web applications. Briefly, these standards and technologies are:

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor

Web

59

RDF stream querying:

C-SPARQL, EP-SPARQL, CQELS, SPARQLstream

Ontologies: OWL Rules: SWRL

Taxonomies: RDFS

Querying:
SPARQL

Data Representation and Interchange: RDF

Syntax: XML, Turtle, N3

Identifiers: URI Encoding: Unicode

Figure 3.3: Semantic Web stack.

RDF serves to represent information in the form of so-called ‘triples’, each
of which consists of a subject, a predicate, and an object, expressed as a Web
URI. RDF enables the representation of information about resources in the
form of graph — that is why the Semantic Web is sometimes called a Giant
Global Graph. As noted above, an RDF-based data model can be represented
in a variety of syntaxes (e.g., RDF/XML, N3, and Turtle). For example, the
following listing contains RDF serialisations for a simple statement, which
can be expressed with a natural language as ‘Sheffield is a city located in
England’. Accordingly, Listing 3.1 contains the RDF/XML serialisation, and
Listing 3.2 contains the N3/Turtle notation.

Listing 3.1: Example of the RDF/XML serialisation.

<rdf:\gls{rdf}
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
xmlns:pl="http://purl.org/ontology/places#">

<rdf:Description rdf:about="http://en.wikipedia.org/wiki/Sheffield">
<rdf:type>pl:City</rdf:type>
<pl:hasLocation>http://en.wikipedia.org/wiki/England<pl:hasLocation>
</rdf:Description>

</rdf:\gls{rdf}>

Listing 3.2: Example of the N3/Turtle serialisation.

@prefix rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns.

60

3.2. Semantic Sensor Web

@prefix pl: http://purl.org/ontology/places.
<http://en.wikipedia.org/wiki/Sheffield>

rdf:type pl:City;

pl:hasLocation https://en.wikipedia.org/wiki/England.

In our work in general and in this document, we have adopted the Turtle

notation for its relative compactness, simplicity and human-readability.

RDFEFS provides a basic schema language for RDF. For example, using RDFS
it is possible to create hierarchies of classes and properties — that is to create
simple, light-weight taxonomies, also known as RDF vocabularies, intended
to structure RDF resources. These resources can be saved in a special non-
relational database, called a triple store, and further queried with the special

query language SPARQL.

SPARQL is an RDF query language, which serves to query any RDF-based
data from triple stores, including statements involving RDFS and OWL. Its
syntax, mainly inspired by the established SQL, allows to define queries con-
sisting of triple patterns, conjunctions, disjunctions, and optional patterns.
SPARQL is considered to be one of the key technologies constituting the
Semantic Web stack, and to date, there exist multiple implementations of
it, written in many programming language. The following sample human-
readable query in Listing 3.3 demonstrates the syntax of SPARQL. The query
fetches all cities, located in England (e.g., Sheffield).

Listing 3.3: Example of a SPARQL query.

//define a shortcut prefix to save space and make

//the code more human-readable

PREFIX pl: http://purl.org/ontology/places

//query all cities from the triple repository...

SELECT ?city

//...which are located in England

WHERE {

?city a pl:City.

?city pl:hasLocation https://en.wikipedia.org/wiki/England.
}

OWL is a family of knowledge representation languages used to formally
define an ontology — “a formal, explicit specification of a shared conceptual-
isation” (Studer et al., 1998). Typically, an ontology is seen as a combination
of a terminology component (i.e., TBox) and an assertion component (i.e.,
ABox), which are used to describe two different types of statements in on-

tologies. The TBox contains definitions of classes and properties, whereas

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 61

the ABox contains definitions of instances of those classes. Together, the
TBox and the ABox constitute the knowledge base of an ontology. OWL ex-
tends RDFS by adding more advanced constructs to describe resources on
the Semantic Web. By means of OWL it is possible to explicitly and formally
define knowledge (i.e., concepts, relations, properties, instances, etc.) and
basic rules in order to reason about this knowledge. OWL allows stating ad-
ditional constraints, such as cardinality, restrictions of values, or characteris-
tics of properties such as transitivity. The OWL languages are characterised
by formal semantics — they are based on Description Logics (DLs) and thus
bring reasoning power to the Semantic Web. There exists a prominent visual
editor for designing OWL ontologies, called Protege,1 and several reasoners
written in multiple programming languages, such as Pellet,> FaCT++, and
HermiT.#

* SWRL extends OWL with even more expressivity, as it allows defining rules
in the form of implication between an antecedent (body) and consequent
(head). It means that whenever the conditions specified in the body of a rule
hold, then the conditions specified in the head must also hold. It is worth
noting, that fully compatible with OWL-DL, SWRL syntax is quite expres-
sive, which may have certain negative impacts on its decidability and com-
putability. Listing 3.4 contains a rule, expressed in a human-readable syntax,
and illustrates the functionality of SWRL. The following sample states that if

a city is located in England, then it is also located in the United Kingdom.

Listing 3.4: Example of a SWRL rule.

A

pl:City(2city) pl:hasLocation(?city, "http://en.wikipedia.org/wiki
/England") -> pl:hasLocation(?city, "https://en.wikipedia.org/

wiki/United_Kingdom")

Note that with OWL and SWRL, there is typically more than one way of
defining knowledge deducing facts. For example, this very same inference
achieved by reasoning over the SWRL rule, can be also achieved by defining
hasLocation as a transitive property between a city and England, and also
between England and the United Kingdom. Even though it is not explicitly
stated that a city is located in the United Kingdom, the reasoner will deduce
this based on the fact that England is located in the United Kingdom by
following the transitive property.

1http://protege.stanford.edu/
2https://github.com/complexible/pellet
3https://code.google.com/p/factplusplus/
4http://hermit-reasoner.com/

http://protege.stanford.edu/
https://github.com/complexible/pellet
https://code.google.com/p/factplusplus/
http://hermit-reasoner.com/

62 3.2. Semantic Sensor Web

3.2.2 SSN ontology

The collaborative efforts on applying semantic technologies to the Sensor Web,
supported by the W3C consortium and its SSN Incubator Group,! have resulted
in the development of the Semantic Sensor Networks (SSN) ontology — the core
ontological vocabulary for annotating sensor resources with semantic descriptions
so as to address the requirements of the SSW. The SSN ontology, consisting of
41 concepts and 39 object properties (Compton et al., 2012), can be used to model
individual sensor devices and whole networks, their environments, processes, and
sensor observations. The SSN ontology is encoded with OWL and is receiving
more and more attention even beyond the context of the Sensor Web research
(e.g., in (Schlenoff et al., 2013) authors explore how it can be extended to be used
in the manufacturing domain). Figure 3.4 provides a bird’s-eye view on the SSN
ontology and its main components.

Deployment T ~ _ deploymentProcesPart only System OperatingRestriction
N

L ' hasSubsystem only, some hasSurvivalRange only
’ LN [g R i -
[DeploymentRelatedProcess]4’ v N P SurvivalRange i
hasDeployment only AN SR - 1
Le-=-====i=c{===#% System [---=====---.___ ________ o —_O tingR: L
Deployment ae-pl-o;/e_d_s;s;s;m_o-n'\y e - - hasOperatingRange only REIRINORENGE
.

W

.
:deployedOnPlaﬁorm only 4 Process
1 1
| inDeployment only P Davica hasinput only
' i Bt
PlatformSite | " ZnPiatform only Device TI==- <| Process
L [- Iy
Platform [~ 3tachedSystem only Output hasOutput only, some

Data Skeleton

n
1!

1!

"

1!

i

!

,|

!

!

!

!

1!

I

1!

I

]

9 I

isProducedBy some implements some i
mme—mmtmm—m===-—co=3==—=M Sensor [-sII---=--=_____) Y
= -7 Swy o Semineee Sensing | i)
hasValue some__ SensorOutput P o _ %=~ “sensingMethodUsed only 1"
e - A :I
i

H

,|

H

||

H

,|

i

H

1

H

H

I

H

I

H

H

H

H

I

.
,“ detects only K - \
\ SensingDevice | . -~ * observes only
2 \
ObservationValue \ Sensorinput f===---=======—--C s AR
N isProxyFor only 7 ~

e il g, N
DN S JII-zs=s--=% Property
. P - P
1 . P . -
*\ rincludesEvent some P . isPropertyOf some

- T ’
- 15bservedProperty only /]
observationResult only'y 4y
Y observedBy only -7 I// | hasProperty only, some
¥z
Observation [-==%822=ZC o ______________ bossond
,’r featureOfinterest only T FeatureOfinterest
MeasuringCapabiiity I [Consigaitgioci
i -

hasMeasurementCapability only y forProperty only | -
_ .- A~1'inCondition only inCondition only
MeasurementCapability |-=====--44--------- >| Condition }‘ -------------- !
i

Figure 3.4: A bird’s-eye view on the SSN ontology (excerpted from (Compton
et al., 2012).

As it is seen from the diagram, the SSN ontology provides a generic high-
level framework and vocabulary of terms, covering different aspects of various
sensor-enabled scenarios, from actual sensor descriptions and their measuring ca-
pabilities to the deployment context and surrounding environment. Following the
principles of the Semantic Web and ontology engineering, it is explicitly designed
with an intention to be extended with low-level concepts to meet requirements of

lhttp://www.w3.0rg/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 63

specific sensor-enabled domains.

Special attention is also paid to modelling sensory data and observations. With
the support of the SSN ontology and its extensions, it is possible to create a seman-
tic extra-layer on top of the existing syntactic sensory data and map between het-
erogeneous sensory data formats and encodings. It means that sensor devices can
either i) send their observations in the form of RDF triples constructed from the
SSN classes and properties, or ii) embed semantic metadata into existing syntactic
data (e.g., semantic annotations within XML tags). It is also possible to introduce
certain hardware and software components responsible for data transformation
and mapping between the source format and SSN-enabled semantic annotations.
On the one hand, the integration of formerly-heterogeneous sensory data streams
by means of a common ontological vocabulary opens wide opportunities for in-
creased sensor interoperability and sensory data processing and analysis. On the
other hand, it requires additional efforts to be put into investigation of how such
semantically annotated RDF data streams should be properly queried and pro-
cessed in real time. The research area, which looks into this intersection of stream

processing and the Semantic Web, is known as the RDF Stream Processing.

3.2.3 RDF stream processing

The SWE aims at connecting existing heterogeneous sensors into a global Web-
based network. Together with other data streams becoming more and more com-
mon on the Web (e.g., stock exchange movements, social network updates, etc.),
the application of stream processing techniques to avalanches of streaming data
generated within the Web came as a natural fit. Among other challenges, this re-
quired novel ways of coping with the typical openness and heterogeneity of the
Web environment — in this context, the role of the Semantic Web languages has
become to facilitate data integration an ‘homogenisation’ in open environments,
and thus help to overcome these problems by using uniform machine-readable
descriptions to resolve heterogeneities across multiple data streams (Lanzanasto
et al., 2012). This in turn led to the emergence of the SSW, which imposes encod-
ing of sensor data in the form RDF triples and, accordingly, opens new opportu-
nities for performing dynamic reasoning tasks over RDF data streams to support
real-time situation assessment. RDF stream processing! research goes beyond the

1Originally, this research domain was known as Stream Reasoning, which was first coined and
promoted by Della Valle et al. (Della Valle et al., 2009). The term, however, is misleading — to date,
existing solutions for RDF stream querying do not provide support for formal reasoning to the same
extent as the existing querying technologies (i.e., SPARQL) for traditional, static RDF querying. For
this reason, in the rest of this document we will be using the term RDF stream processing, which
reflects the actual state of the art more precisely and accurately.

64 3.2. Semantic Sensor Web

existing stream processing and CEP approaches by aiming at enhancing the con-
tinuous querying with the run-time reasoning support — that is, with capabilities
to infer additional, implicit knowledge based on already given, explicitly stated
facts. Barbieri et al. (Barbieri, Braga, Ceri, Valle, Huang, Tresp, Rettinger and
Wermser, 2010) define it as “reasoning in real time on huge and possibly noisy
data streams, to support a large number of concurrent decision processes”.

As Semantic Web technologies are mainly based on DLs (Hitzler et al., 2009),
their application to data stream processing in turn also enabled formal reasoning
tasks over continuously and rapidly changing information flows. To date, there
exist several prominent RDF stream processing approaches developed by the SSW
community — C-SPARQL (Barbieri et al., 2009), CQELS (Le-Phuoc et al., 2011), EP-
SPARQL (Anicic et al., 2010), and SPARQLstream (Calbimonte et al., 2012) to name
a few.! All of them extend the conventional SPARQL syntax with a specific sup-
port for handling data streams, consisting of RDF triples. These continuous RDF
query languages aim at preserving the core value of stream processing, i.e., query-
ing streamed data in a timely, in-memory fashion, while providing the following
additional benefits (Lanzanasto et al., 2012):

* Support for formal reasoning: depending on the extent to which stream rea-
soning systems support reasoning, it is possible not only to detect patterns
of events (as CEP already does), but additionally to perform more sophisti-
cated and intelligent event detection by inferring implicit knowledge based
on pre-defined facts and rules (i.e., static background knowledge).

* Integration of streamed data with static background knowledge: with RDF
stream processing, it is possible to match streaming tuples against a static
background knowledge base (usually represented as an RDF data set). This
modular separation of concerns allows, for example, performing run-time,
dynamic data analysis and situation assessment with respect to previously

recorded historical observations.

* Support for expressive queries and complex schemas: ontologies (e.g., the
SSN ontology) serve as common vocabularies of terms for defining complex
expressive queries, where ontological classes and properties provide ‘build-
ing blocks” and may be used for defining standing queries.

* Support for temporal and sequential operators: to cope with the unlimited

continuous nature of data streams, RDF stream processing systems extend

IWe refer interested users to (Margara et al., 2014) for a detailed survey of existing RDF stream
processing approaches.

Chapter 3. Related technologies: Big Data processing and the Semantic Sensor
Web 65

established SPARQL logical and data operators to enable limiting an un-
bounded stream of RDF triples to a specific window, and also to detect RDF
events, which follow one after another chronologically.

In Figure 3.3, RDF stream processing is located at the very top of the stack.
The existing technologies are not yet standardised, but initial steps in this direc-
tion have already been taken — W3C RDF Stream Processing Community Group!
collaborates on integrating existing heterogeneous technologies into a common
standardised approach.

3.3 Summary

The chapter familiarised the reader with Big Data processing — a novel and still de-
veloping research area, which focuses on enabling scalable storage and processing
of large heterogeneous datasets. These capabilities are required to support timely
data monitoring and analysis in cloud platforms. The chapter first explained the
notion of Big Data and its four main aspects, known as the ‘four Vs’ — namely,
Volume, Velocity, Variety and Veracity. When talking about processing, we ex-
plicitly distinguished between static and streaming approaches. The latter enable
dynamic in-memory data processing and address the Velocity aspect of Big Data.

However, often there is also a requirement to address the Variety aspect, which
is beyond the capabilities of traditional stream processing approaches targeting at
purely syntactic data. To explain how data heterogeneity can be addressed, the
second part of the chapter exposed the reader to the SSW research. This relatively
novel research area is a combination of the Sensor Web with the Semantic Web
technologies, and stems from the requirement to bridge the gap between various
heterogeneous, primarily syntactic data formats for representing sensor resources.
To enable uniform data representation, advanced data access, and increased in-
teroperability, the SWE consortium employed and successfully applied existing
Semantic Web technologies. Main contribution of the resulting marriage, which
has become known as the SSW, are the SSN ontology — the primary vocabulary for
modelling sensors, sensor networks, data and other sensor-related resources — and
several approaches for run-time dynamic querying of streaming RDF data in the
context of SSW applications. As explained in Chapter 5, based on our interpreta-
tion of service-based cloud platforms as networks of distributed software sensors,
we apply existing solutions from the SSW research — namely, the SSN ontology
and RDF stream processing — to the domain of data monitoring and analysis with
a goal to overcome heterogeneity existing among individual sensors.

lhttps://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/

Part I1

State of the art and our approach
to address the gaps

66

67

Part II of this document can be split into two sub-parts. First, it surveys the
current state of the art in the relevant research area. The goal of this literature
survey is two-fold. Firstly, it is important to understand common established
practices and, potentially, re-use and build on the existing work. Secondly, this
literature survey serves to identify existing research and technological gaps in
the considered research domain, and accordingly position our own research work
with respect to the rest of the research work. Outlined gaps are useful in outlining
preliminary high-level functional properties for the future EXCLAIM framework,
which is described in details in the second sub-part.

Second, this part is dedicated to the actual description of our approach to
performing monitoring and analysis activities in the context of heterogeneous
service-based CAPs. It relies on the material presented so far — namely, back-
ground knowledge, related technologies and the state of the art survey. This part
of the thesis includes three chapters. Accordingly, in Chapter 5 we first present
a high-level conceptual overview of the EXCLAIM framework. Here, we present
and explain the fundamental underpinnings, which provide a basis for designing
and implementing the framework. Chapter 6 builds upon and further extends
the material presented in Chapter 5 with implementation details of the prototype
version of the framework. It also presents the Cloud Sensor Ontology (CSO) as
the core component of the framework, which is utilised in every step of the mon-
itoring and analysis process. Chapter 7 presents a case study, which serves to
conduct experimental evaluation of the framework. The experiments are intended
to demonstrate performance and scalability of the framework.

Chapter 4

State of the art in cloud platform
self-governance

The goal of this chapter is two-fold. We first introduce the state of the art in the
domain of data monitoring and analysis in service-based cloud environments, sys-
tematically classifying the overall body of research work, and providing the reader
with an understanding of existing techniques, tools and approaches. We then use
this classification to identify technological gaps in this existing research body and
position our own work with respectively. Accordingly, the identified gaps will
serve to outline fundamental requirements for the EXCLAIM framework and will

help to evaluate the framework’s benefits with respect to other approaches.

4.1 Overview of the [aaS and SaaS self-management

To date, advances in enabling clouds with autonomic behaviour have mainly been
made at the IaaS level!. Building on techniques developed by the grid and High
Performance Computing (HPC) computing communities, to support elasticity and
load-balancing, these existing approaches usually rely on collecting and interpret-
ing such data as CPU load, memory utilisation and network bandwidth to execute
necessary adaptation actions. Depending on diagnosis and adaptation policies,
such actions target various goals (e.g., increasing application performance, reduc-
ing cost and optimising energy consumption) and typically include replication and
resizing techniques (Galante and de Bona, 2012). The former refers to adding and
removing computational instances to meet ever-changing resource requirements,

whereas in the latter case resources are added or removed within a single compu-

For a survey of existing elasticity and load balancing techniques, the interested reader is re-
ferred to (Galante and de Bona, 2012).

68

Chapter 4. State of the art in cloud platform self-governance 69

tational instance. Load balancing techniques are often used in combination with
replication to spread workload evenly across available instances. Existing IaaS
self-adaptation solutions can be further classified into reactive or predictive ap-
proaches. The former are the most widely adopted solutions for resource manage-
ment in clouds and are commonly employed by many IaaS cloud providers. Their
main principle is to react to critical situations only after they have been detected —
that is, the monitoring and analysis mechanism aims at detecting patterns repre-
senting an already-happened event. The latter approaches use various heuristics
and machine learning techniques to predict workload and scale resources accord-
ingly so as to prevent a potentially critical situation from happening. In other
words, the monitoring and analysis mechanism aims at detecting observational

patterns which only represent ‘symptoms’, not the dangerous situation per se.

However, monitoring and analysis mechanisms, which would support more
sophisticated adaptation scenarios, such as modification of the actual structure
and/or behaviour of a deployed cloud application at run-time, are much more
difficult to automate, and at the moment are beyond the capabilities of common
cloud platforms. As an example, consider a situation when hundreds of applica-
tions deployed on a cloud platform are using the platform’s built-in notification
service (e.g., for e-mail notifications). At some point, this service crashes, affecting
the QoS of all the dependent applications and potentially the whole platform. A
possible solution in such circumstances would be the detection of such a situation
and suggesting a possible adaptation plan so as to switch to an external notifi-
cation service automatically and transparently to the users. Unfortunately, at the
moment there seem to be no self-management mechanisms of such a kind in the
PaaS segment of cloud computing. Even though much effort has been put into the
development of self-management mechanisms at the IaaS level, similar capabilities

for services at the PaaS level are as yet immature and not well theorised.

Even though various approaches have been described as targeting the PaaS
level, these typically do not act at the PaaS-level directly, but rely on lower level,
IaaS-related adaptation actions (Galante and de Bona, 2012). For example, having
detected high CPU and memory utilisation levels for a service-based cloud appli-
cation, a rather simplistic adaptation mechanism will simply allocate more hard-
ware resources, whereas the actual reason for this excessive resource consumption
was a malfunctioning add-on service. Therefore, in such circumstances a more in-
telligent adaptation solution would be to fix the single malfunctioning service by,
for example, reconfiguring or replacing it — that is, by monitoring and interpreting
data belonging to the PaaS level and applying adaptation at the platform, rather
than at the infrastructure level.

4.2. PaaS: State of the art in data monitoring and analysis in service-based
70 cloud platforms

Neither researchers nor platform providers have offered such solutions which
would allow hosted applications to modify their internal structure and/or be-
haviour at run-time by adapting to changing context (e.g., by replacing one service
with another). This task has instead been shifted to the SaaS level — that is, it has
been left to software developers — the target customers of the PaaS offerings — to
implement self-adaptation logic within specific applications. Application owners
are expected to instrument their applications with monitoring and analysis capa-
bilities so as to handle software interactions with platform add-on services and
circumnavigate possible critical situations.

In these circumstances, it is our belief that with the rapid growth of the PaaS
segment and wide adoption of CAPs, self-governance at this level of cloud com-
puting is equally important, and development of self-adaptation mechanisms is
essential in order to prevent service-based cloud platforms from dissolving into
‘tangled” and unreliable environments. To some extent, self-governance in service-
based cloud platforms is yet another aspect, which will enable them with an even
richer support for software development and delivery of a reliable IoS. We see the
PaaS segment as the place to implement self-governance in clouds - it has to build
upon already existing solutions for IaaS self-governance, and, at the same time,
exempt SaaS developers from implementing customised, application-specific logic
in their software themselves. In our view, it has to provide a holistic and cross-
layer solution to cloud self-management. In this light, with the presented research
work, we aim to investigate how to create such an extensible mechanism for data
monitoring and problem detection to support self-governance in service-based
cloud platforms.

4.2 PaaS: State of the art in data monitoring and analysis in

service-based cloud platforms

In this section we systematise the whole body of existing research efforts in the
area of data monitoring and analysis of service-based cloud platforms with respect
to a number of relevant and important criteria. These criteria include:

* Data collection and monitoring refers to how and from where monitored data
is collected. Accordingly, surveyed approaches may differ in sources of mon-
itored data (e.g., databases, text files, or JavaScript Object Notation (JSON)
and XML messages) and level sof monitoring (i.e., infrastructure, application

performance, service coordination, and business processes).

* Data analysis refers to the process of data interpretation after it was collected.

Chapter 4. State of the art in cloud platform self-governance 71

It defines to how timely (i.e., predictive, reactive, or ‘post-mortem’) and au-
tomated (i.e., manual, interactive, or automated) a particular analysis com-

ponent is.

* Framework architecture refers to design and implementation aspects of sur-
veyed approaches, and includes the following aspects: level of intrusiveness
(i.e., intrusive or non-intrusive), component distribution (i.e., distributed or
centralised architecture), language type (i.e., declarative or imperative lan-
guages), extensibility, adopted perspective (i.e., provider, consumer, or third-
party), and maturity level (i.e., research prototype or commercial offering).

The literature review has been conducted in a thorough systematic manner.
Combining key words (i.e., “‘cloud’, ‘service’, ‘PaaS’, ‘cloud platform’, ‘monitor-
ing’, ‘analysis’, ‘management’, ‘governance’, ‘adaptation’, etc.), we searched for
relevant papers on Google Scholar! — as a result, more than 200 papers have been
identified. Next, paper abstracts have been analysed to decide how relevant sur-
veyed papers are — approximately 50 papers remained at this stage. Finally, the
remaining papers were thoroughly read and evaluated, which also resulted in
identifying relevant authors and some additional papers, which were not included
in the original collection of papers.

To provide a brief, yet informative overview of the relevant research efforts, we
clustered the overall body of existing work into several groups and highlighted
their distinguishing features. We believe, this way we provide the reader with
sufficient knowledge of the current state of the art in the considered research
area. Detailed descriptions for each of the studied approaches, along with a full
explanation of the classification criteria, are summarised in Appendix D.

Accordingly, we identify five main clusters in the state-of-the-art research in
cloud platform self-governance. We now summarise them, highlighting the most
representative and relevant research works.

Cloud platform-native built-in monitoring solutions

These are already existing built-in solutions, developed and adopted by cloud
platforms themselves. Representative examples of such approaches include Ama-
zon CloudWatch?, Rackspace Cloud Monitoring® (formerly known as CloudKick),
and the recent Google App Engine Stackdriver Monitoring? .

1http ://scholar.google.com/

21’1ttps ://aws.amazon.com/cloudwatch/

3https ://www.rackspace.com/cloud/monitoring/
“https://cloud.google.com/monitoring/

http://scholar.google.com/
https://aws.amazon.com/cloudwatch/
https://www.rackspace.com/cloud/monitoring/
https://cloud.google.com/monitoring/

4.2. PaaS: State of the art in data monitoring and analysis in service-based
72 cloud platforms

Amazon CloudWatch (Amazon Web Services, Inc., 2015) is a generic monitor-
ing service, which is able to monitor the whole stack of AWS products, including
Elastic Beanstalk, and display it as charts and diagrams. It primarily targets mon-
itoring the infrastructure and application performance levels, which enables Elas-
tic Beanstalk to automatically monitor users” applications and environment status.
CloudWatch serves to monitor, manage, and publish various metrics, as well as
configure alarm actions based on collected data from metrics. The collected infor-
mation can assist customers in making operational and business decisions more
quickly and with greater confidence. One of the benefits of Amazon CloudWatch
is its support for user-defined extensions — these can be customised data metrics,
alarms and notifications. For example, customised alarms help to implement de-
cisions more easily by enabling users to send notifications or automatically make
changes to the resources being monitored, based on rules they define. By extend-
ing the core functionality, customers are enabled to tailor the behaviour of the
monitoring service to their personal requirements. Another advantage of Cloud-
Watch is a management console with a run-time dashboard, through which users

can get a real-time overview of all of their resources as well as alarms.

Rackspace Cloud Monitoring (Rackspace US, Inc., 2015) is a generic monitoring
service for the whole stack of Rackspace cloud offerings, which is able to moni-
tor standard infrastructure and application performance data metrics. The service
supports two types of monitoring activities — namely, remote monitoring, which
continually checks users” applications and platforms for external availability by
testing connectivity from regional zones deployed throughout globally distributed
data centers, and agent monitoring, which provides deeper insight into applica-
tion resources, including servers and database instances. Additionally, similar
to Amazon CloudWatch, Rackspace Monitoring allows users to define their own
customised extensions, such as alarms and notifications, to meet individual user

requirements.

Google App Engine provides the Stackdriver Monitoring service to enable its
clients with visibility into the performance, uptime, and overall health of cloud-
powered applications. Stackdriver (currently in Beta and offered as a free service)
collects metrics, events, and metadata from Google Cloud Platform, hosted up-
time probes, application instrumentation, and a variety of common application
components including Cassandra, Nginx, Apache Web Server, Elasticsearch, and
many others. Stackdriver ingests that data and generates insights via dashboards,
charts, and alerts. Stackdriver also support user-customisable alerting and inte-
gration with various project management and collaboration platforms, such as
Slack, PagerDuty, HipChat, and Campfire. One of the benefits of the Stackdriver

Chapter 4. State of the art in cloud platform self-governance 73

service is its support for hybrid and multi-cloud monitoring. At the moment, it
also natively supports monitoring of AWS resources and services.

In most cases, approaches belonging to this cluster of related work are com-
mercial and proprietary in their nature, with relatively little information avail-
able regarding design and implementation. Typically, such solutions provide an
infrastructure- and application performance-oriented monitoring, alerting and vi-
sualisation — that is, they can measure virtual machine run-time execution in terms
of CPU/memory utilisation, disk storage and network bandwidth. Arguably, pro-
prietary solutions, due to their close and native integration with respective cloud
platforms are expected to be effective, reliable, and easy to configure and use. Ad-
ditionally, they are typically free to use, as their price is already included in the

overall cloud service offering package.

Third-party monitoring frameworks

To a great extent, these solutions are similar to the previous cluster of cloud plat-
form built-in approaches. For example, NewRelic,! Nagios,‘2 and Datadog3 pro-
vide a stack of monitoring solutions for a wide range of cloud platforms, including
Heroku, MS Azure and AWS. On the other hand, there is Paraleap AzureWatch,*
which is specifically designed to handle data monitoring in MS Azure. Apart
from commercial offerings, we also identified a few open-source and academic

solutions — namely, MonaLLISA® and Zabbix®

http://newrelic.com/
2https://www.nagios.org/
Shttps://www.datadoghg.com/

4https ://www.paraleap.com/AzureWatch/
Shttp://monalisa.caltech.edu/monalisa.htm/
Shttp://www.zabbix.com/.

One difference of the surveyed third-party frameworks is that they are not necessarily designed
to work with a single cloud platform. Such a cross-platform applicability enables cloud customers
with a possibility of migrate their software from one cloud platform to another, while keeping the
existing monitoring service. This advantage, however, results in a potential negative side effect —
since third-party frameworks are not closely integrated with target cloud platforms (as opposed to
built-in solutions), they can only focus on the application performance level, and do not always
offer functionality to monitor the infrastructure level. In this sense, they remain ‘third parties” both
to cloud platform consumers and providers, who are not necessarily ready to share potentially
sensitive information concerning the infrastructure resources with external services. As a result,
third-party frameworks are typically oriented on data monitoring at the application performance
level and provide customers with insights into web site utilisation statistics, response times, event
logs, etc.

New Relic offers a whole stack of rich monitoring solutions, ranging from the level of data centre
infrastructure resources to the level of individual applications and databases. A New Relic agent
follows a non-intrusive approach to data collection and enables monitoring run-time application
performance. ‘Non-intrusiveness’, however, does not allow it to observe data at the level of service
composition, except for monitoring data storage service — New Relic provides a special agent for
these purposes.

http://newrelic.com/
https://www.nagios.org/
https://www.datadoghq.com/
https://www.paraleap.com/AzureWatch/
http://monalisa.caltech.edu/monalisa.htm/
http://www.zabbix.com/

4.2. PaaS: State of the art in data monitoring and analysis in service-based
74 cloud platforms

SOA solutions

These solutions, stemming from the SOC research, mainly target at the Service
Composition and Coordination level of SBAs. They are not necessarily designed
to address cloud platform-based SBAs, and even if they do, their primary focus
is on service orchestration, rather than underlying resource consumption. Typi-
cally, approaches belonging to this cluster rely on inspecting a Business Process
Execution Language (BPEL) definition of a Web service composition, which con-
tains certain metrics and constraints for the monitoring component to check. Such
constraints may include the order of service invocations, the format of exchanged

messages, acceptable response rates, etc.

Nagios is a stack of multi-purpose monitoring frameworks, which enable resource and application
performance monitoring based on an extensible architecture. It offers various monitoring services
such as monitoring of host resources (e.g., CPU/memory utilisation, response times, etc.), network
services and protocols (e.g., Simple Mail Transfer Protocol (SMTP), Transmission Control Protocol
(TCP), HTTP, etc.). In the context of monitoring cloud-hosted SBAs, Nagios can only be used to
monitor hardware resource consumption of individual applications and connected add-on services.

Paraleap AzureWatch is another third-party monitoring service, which supports monitoring MS
Azure-hosted applications, and provides support for data visualisation, logging and alerting. With
AzureWatch users can monitor resource consumption of Azure VMs and individual application
statistics (e.g., CPU utilisation, requests/sec, bandwidth, and disk space). Moreover, it supports
monitoring of MS Azure’s built-in native services, such as SQL Azure (e.g., database size, open
connections, or active queries) and Azure Service Bus, which is a messaging component in MS
Azure. AzureWatch does not offer any kind of built-in support for third-party add-on services
offered through the platform marketplace.

Heroku add-on services' (Librato, New Relic Application Performance Monitor, Hosted Graphite,
Pingdom, Still Alive, Blackfire.io, Dead Man’ Snitch, Vigil Monitoring Service, Rollbar, Sentry,
Bugsnag, RuntimeError, Honeybadger, Appsignal, Exceptiontrap, Airbrake Bug Tracker, Raygan.io,
Informant, RedisMonitor) offer a wide range of monitoring tools form simple ‘heart beat monitoring’
to more sophisticated support for analysing fine-grained performance data. All these monitoring
frameworks target at the application performance level, and do not offer support for monitoring
metrics related to service compositions.

Datadog? is an application performance monitoring framework, which can be integrated with a
range of cloud offerings, including Google App Engine and MS Azure. It can collect and aggregate
a wide range of application performance metrics and display them to the user. Similarly to other
third-party monitoring frameworks targeting at the application performance level, Datadog is not
equipped with tools for monitoring data concerning third-party add-on services.

Monitoring Agents in a Large Integrated Services Architecture (MonaLISA) (Newman et al., 2003,
Legrand et al., 2009) provides monitoring services to support control, optimisation, and manage-
ment tasks in large-scale highly-distributed grid and cloud systems. To achieve this goal, it relies
on a distributed network of agent-based services to support monitoring activities at several levels,
including infrastructure and application performance. Even though its primary scope of application
is grid computing, MonaLISA is also suitable for monitoring cloud environments at the infrastruc-
ture and application performance levels (but not at the level of service composition). An advantage
of this approach is its extensible architecture, which relies on using distributed agents and multiple
existing data collection mechanisms. As a result, MonaLISA is able to integrate new monitoring
components in an easy and seamless manner.

An open-source framework Zabbix is an enterprise open-source monitoring solution, primarily
focusing on networks and applications. It is build on a distributed architecture with a centralised
web administration. The stack of Zabbix monitoring solutions includes agent and agentless tools
for cloud service monitoring at the infrastructure and application performance levels.

Chapter 4. State of the art in cloud platform self-governance 75

Service Level Agreement Monitor (SALMon) (Ameller and Franch, 2008, Oriol
et al., 2009, Leijon et al., 2008) — even though not directly targeting the cloud plat-
form domain — aims at generic monitoring of heterogeneous web services, not just
Web Service Description Language (WSDL)-based ones, detecting SLA violations
and taking corresponding adaptive decisions. It fully implements the MAPE-K
loop and relies on a novel domain-specific language to express the analysis and
diagnosis policies. The SALmon domain-specific language serves to model the
environment and overcome heterogeneity in service descriptions, which makes
it relevant and applicable to our own problem domain. Moreover, the authors
employ a streaming approach (i.e., a data stream management system) to data
processing to achieve timely reactions. A potential limitation of the proposed ap-
proach, however, is that the authors focus only on the service composition level
and do not take underlying infrastructure resources and their consumption into
consideration.

The Web Service Level Agreement (WSLA) framework (Keller and Ludwig,
2003, Patel et al., 2009) serves to specify and monitor SLAs in SOA environments,
including clouds. It employs an XML-based domain-specific language to define
SLAs (i.e., resource- and business-related metrics) and constraints, which allows
for extending the framework to cover all three layers of cloud computing. The
resulting SLAs are then monitored and enforced by a dedicated enforcement com-
ponent called SLA Compliance Monitor, which is publicly available as part of
the IBM Web Services Toolkit. The declarative approach to defining SLAs en-
ables smooth and seamless modifications, which also increases the potential of the
framework to be extended.

IaaS-oriented approaches

These are solutions claiming to be oriented on the PaaS segment of cloud comput-
ing, but in reality typically rely on monitoring data metrics at the levels of service
infrastructure and application performance.

Among the overall plethora of these approaches we want to focus on an ap-
proach by Nakamura et al. (2014), who propose utilising Semantic Web technolo-
gies (i.e., an OWL ontology and SWRL rules) to support self-management at the
infrastructure level. The authors devised an ontology-based architectural model
of a cloud data centre and delegated decision taking tasks to the SWRL reason-
ing engine. The proposed architecture also implements the MAPE-K reference
model with a goal to maintain established SLAs and optimise resource consump-
tion within an IaaS cloud. This idea of employing semantic technologies as an

underlying analysis component is relevant to our own work. The difference is that

4.2. PaaS: State of the art in data monitoring and analysis in service-based
76 cloud platforms

the authors are not considering the dynamic nature of the monitored data, and
not employing a streaming approach to data processing (e.g., RDF stream pro-
cessing). Also, the authors focus on the infrastructure level — an environment not
as dynamic and rapidly changing as CAPs — and, therefore, do not discuss oppor-

tunities of the ontological model for being easily and transparently modified.

Another relevant work worth presenting is the framework called Monitoring
Infrastructure using Streams on an Ultra-scalable, near-Real time Engine (MIS-
URE) (Smit et al., 2013), which builds the monitoring infrastructure on the stream
processing technology (i.e., S4 and Storm), thus making it even more relevant to
our own work. The proposed framework can be seen as middleware, which inte-
grates other existing infrastructure monitoring mechanisms (e.g., Ganglia, Simple
Network Management Protocol (SNMP), log files, Amazon CloudWatch), which
push monitored metricsfrom a wide range of heterogeneous cloud environments.
The authors demonstrate performance of the framework, resulting from the us-
age of a streaming approach to data processing. The authors also argue that the
proposed approach is extensible, as it follows a modular approach —i.e., custom
Java extensions can be integrated into the framework to address emerging require-

ments.

Meng and Liu (2013), Meng et al. (2012, 2009) suggest a cloud monitoring
framework offered as a service. In their paper, the authors consider an IaaS-
oriented scenario, but claim that this Monitoring-as-a-Service solution potentially
targets at all three levels of cloud computing. The approach primarily focuses on
the infrastructure level, and main benefits include lower monitoring cost, higher

scalability, and better multi-tenancy performance.

Katsaros et al. (2012, 2011) propose a cloud monitoring and self-adaptation
mechanism, which spans across different segments of the IaaS level and collects
monitoring data from application, virtual and physical infrastructure, and addi-
tionally considers the energy efficiency dimension. The authors also consider the
PaaS segment as a an application scope for their research. Main benefits of the pro-
posed approach include cross-level support for monitoring in the cloud paradigm,
use of XML configuration files to define the self-adaptation logic, and extensibility

of the proposed architecture.

JCatascopia Monitoring System (Trihinas et al., 2014) is an automated, multi-
layer, interoperable framework for monitoring and managing elastically adaptive
cloud services, developed by the University of Cyprus. It follows a non-intrusive
approach to data collection, and primarily focuses on the IaaS segment of cloud
computing. Additionally, it also offers the Probe API to implement customised
extensions and metrics.

Chapter 4. State of the art in cloud platform self-governance 77

The Cross-Layer Multi-Cloud Application Monitoring-as-a-Service (CLAMS)
framework (Alhamazani et al., 2015, 2014) represents and effort to create a mon-
itoring solution spanning across cloud computing layers and several platforms.
The proposed architecture can be deployed on several cloud platforms (e.g., the
authors validated it on AWS and MS Azure) and is capable of performing QoS
monitoring of application components. As far as the PaaS is concerned, the
CLAMS’s monitoring capabilities are limited to monitoring databases and appli-
cation containers.

Admittedly, performing data monitoring and analysis at the infrastructure
level is important, yet not enough for a truly PaaS-oriented monitoring solution.
Relevant approaches belonging to this cluster tend to neglect the internal organi-
sation and dependencies between add-on services within SBAs, treating them as
‘black boxes’.

Truly PaaS-oriented approaches

This is a cluster of self-management solutions for cloud platforms, which we find
most relevant to our own work. As opposed to laaS-oriented approaches, these
solutions focus specifically on the platform level and aim to provide a more holistic
view to enable self-governance of software systems, deployed on (service-based)
cloud platforms.

Breskovic et al. (2011) in their work focus on cloud markets — a subset of cloud
platforms which are used for deploying software markets. Their goal is to create
a cloud market platform, which “has the ability to change, adapt or even redesign
its anatomy and/or the underpinning infrastructure during runtime in order to
improve its performance”. To do so, the authors also rely on the MAPE-K loop
as a reference model and extend an existing data collection framework with cloud
market-relevant sensors, which provide necessary data for performing analysis.
The knowledge base includes a wide spectrum of rules and constraints, which are
based on metrics belonging to the domain of e-commerce, such as, for example,
price bids, number of active traders, cost of resource. Accordingly, based on these
metrics, the autonomic manager then applies appropriate changes to the system
to achieve predefined market goals. The authors, however, do not provide any
evidence of whether their approach is generic and has the potential to be applied
across a wide range of cloud platforms, not necessarily connected to the e-market
domain.

Brandic (2009) focuses on the platfrom level of cloud computing and explains
how cloud service SLAs can be described using novel domain-specific languages

in terms of execution time, price, security, privacy, etc. to enable autonomic be-

78 4.3. Identifying gaps in the state-of-the-art research

haviour of a service. Based on these self-descriptive definitions, the proposed
middleware platform is able to execute self-management within a cloud platform.
The approach follows the MAPE-K loop, and claims to be generic and applicable
to arbitrary cloud services — using an XML-based language facilitates framework
extensibility.

Boniface et al. (2010) focus on the PaaS level of cloud computing, aiming to
develop an automated QoS management architecture. In their paper, the authors
focus on a cloud platform hosting a wide range of multimedia applications, which
are monitored at various levels using the proposed software framework. The
proposed approach utilises several modeling techniques (e.g., neural networks,
Unified Modeling Language (UML), etc.) to detect potential SLA violations and
support QoS. The authors argue that other techniques can be integrated if needed,
thereby demonstrating the potential of the framework to be extended.

4.3 Identifying gaps in the state-of-the-art research

Having surveyed and clustered existing relevant work, we now attempt to share
our generic observations from the studied materials. With this, we provide the
reader with a critical view on the state of the art and identify existing gaps, which
we will further address with our own approach.

Having briefly systematised the overall body of research efforts in the domain
of monitoring and analysis of service-based cloud platforms, we now summarise
and critically evaluate surveyed approaches with a goal to identify existing re-
search and technological gaps in this domain. This will allow us to outline the
application scope for our own research and the proposed EXCLAIM framework.
While studying and classifying existing approaches, several observations were

made. We now discuss each observation in more detail.

Focus on the IaaS-level metrics monitoring

First of all, there seems to be a research and technological gap in self-management
mechanisms specifically targeting and operating at the PaaS level of cloud comput-
ing. Researchers tend to focus on the infrastructure level to enable scalability and
elasticity, where admittedly have reached considerable results. The service-based
level of PaaS, and particularly CAPs, is still under-explored.

There are approaches and solutions, which claim to be targeted at the platform
level of cloud computing, but in fact depend on monitoring and interpreting low-
level data, such as CPU/memory/disk utilisation and network bandwidth. In this

Chapter 4. State of the art in cloud platform self-governance 79

sense, they are not much different from the IaaS-level approaches dealing with re-
source elasticity and load balancing. Relying on universal and generic monitoring
metrics, such solutions, therefore, are not designed to capture and interpret data
related to the internal organisation and behaviour of deployed software. They
treat user applications as ‘black boxes” and can only measure its performance and
behaviour in terms of (virtualised) hardware resources. Accordingly, their usage
in the context of rich, service-based cloud platforms is limited, simply because
potential problems may arise from the structure and interaction of SBAs, not the
underlying hardware resources. For example, consider a worker process attached
to a messaging queue and processing incoming jobs. A crash of this worker ser-
vice will consequently lead to an overloaded messaging service. Obviously the
problem exists at the level of the service composition and interaction and has
to be solved by restarting or replacing the crashed worker service. Conversely,
IaaS solutions will simply detect excessive resource consumption by the messag-
ing queue, and will try to solve the problem by elastically provisioning additional
space for queueing messages — a potentially inappropriate and even harmful so-

lution in the given circumstances.

Existing approaches are isolated from each other

The third important observation is the existing isolation and heterogeneity of indi-
vidual surveyed approaches. Each of them tends to solve a very specific and con-
crete problem related to self-management in clouds. For example, some of them
focus on BPEL-defined Web service orchestrations; others try to predict workloads
to support load balancing; some others try to detect network intrusions in physical
and virtualised servers, etc. From this perspective, existing approaches are ‘ver-
tical’, since they explicitly focus on a specific problem at a specific layer of cloud
computing.

Even though the surveyed papers include sufficient explanation of how in-
dividual approaches are different from the rest, the papers hardly provide any
insight of how they can potentially build on the existing similarities and overlaps;
they do not suggest potential ways of how other relevant works can be re-used or
combined so as to create a more diverse and effective solution. Quite frequently an
existing laaS-oriented solution can efficiently detect excessive hardware resource
consumption, but cannot be extended so as to be able to detect problems at the
level of add-on services and SBAs. In other words, existing solutions seem to exist
in isolation from each other, which results in numerous approaches, which hardly
overlap.

Since they all aim at (and succeed in) solving existing research gaps, this might

80 4.3. Identifying gaps in the state-of-the-art research

be acceptable from the scientific point of view. From a more practical perspec-
tive, however, these approaches hardly contribute to creating effective holistic
self-governance capabilities within cloud platforms. Even though, when taken
separately, surveyed solutions have the capacity to bridge existing gaps in cloud
computing research and technology, there seem to be no mechanism, which would
enable integration of these isolated approaches into a common multi-dimensional

architecture.

In this light, we conclude that studied approaches are characterised with insuf-
ficient capabilities for extensibility. That is, possible modifications and enhance-
ments lead to recompiling the whole system, which is caused by ‘monolithic” (i.e.,
non-modular) implementations or usage of imperative programmng languages
(i.e., hard-coding). Being good at solving one aspect of self-governance in cloud
platforms, they are simply not designed to be extended so as to cover new emerg-
ing aspects.

Taken together, these considerations suggest that currently there is a need for a
truly comprehensive architecture, which would enable synergies via integration of
multiple approaches at various levels of cloud computing into a common frame-
work. This leads to a requirement of creating an extensible framework, which
would be capable of adjusting and configuringrespectively, so as to address emerg-
ing requirements if /when needed.

Analysis is typically not automated

Existing approaches targeting at run-time software performance tend to focus on
collecting, synthesising and displaying data, rather than on performing sophis-
ticated analysis over possible roots of a problem and planning corresponding
adaptation actions. They are able to visualise and display various metrics (e.g.,
application response rate, number of invocations, network bandwidth, and mem-
ory usage) in a rich and easy-to-understand manner, but leave up to the customer
to decide whether observed values may lead to a potentially critical situation. In
other words, the analysis is done by the end user in a completely manual manner
or in an interactive manner in situations, where customers are enabled to define
their own simple policies for alerting — e.g., notifying the application owner when-
ever there is an increasing number of incoming network requests. On the other
hand, there are several approaches, in which the analysis component is imple-
mented in an automated manner. These approaches, tend to suffer from another

shortcoming, as explained below.

Chapter 4. State of the art in cloud platform self-governance 81

Hard-wiring is present to a lesser or greater extent

Another observation from the conducted literature survey is the relatively wide
adoption of interpreted (i.e., compiled) programming languages to implement
self-management mechanism and analysis logic. To a lesser or greater extent, all
of the approaches use some form of a knowledge base, where governance-related
information is stored. Some approaches may rely on a rather hard-wired architec-
ture, where information (e.g., policy constraints) is declared straight in the pro-
gramming source code, and any modifications lead to software recompilations.
On contrary, a BPEL definition of a Web service composition can be seen as an
example of a knowledge base defined in a declarative manner. Despite the declar-
ative definition of the knowledge base and analysis policies per se, enforcement of
these policies still relies on hard coding of the required analysis logic to a lesser
or greater extent. Arguably, in rather static and slowly evolving systems, such
an approach might be sufficient. However, in more dynamic and rapidly chang-
ing service-based cloud platforms, frequent interruptions and code modifications
might be unacceptable.

In the absence of such mechanisms at the platform level - that is, when such
self-governance capabilities are not part of a PaaS offering — often, CAP providers
expect software developers to implement this functionality themselves. This might
result in rigid, hard-coded, task-specific and not-transferrable solutions. Clearly,
there is a need for a truly generic mechanism which would apply to any software
deployed on a CAP, irrespective of the business domain and underlying tech-
nology stack. Therefore, we claim that there seems to be a lack of truly loosely-
coupled and declaratively defined analysis components, which would enable more
flexible and rapid modifications of the self-governance mechanism in order to ad-
dress emerging policies.

These presented observations outline a list of functional properties our own
research approach has to demonstrate in order to fill the identified gaps and con-
tribute to the state of the art in monitoring and analysis in service-based cloud
platforms. In our view, the resulting solution has to operate on the PaaS level of
cloud computing, but also take into consideration the IaaS and SaaS dimension —
that is, to perform cross-layer monitoring and analysis activities within cloud plat-
forms. As a prerequisite to this, the envisaged solution has to be extensible — that
is, it has to be equipped with sufficient capabilities to adjust to emerging require-
ments if/when needed without major architectural modifications. For example,
whenever a new add-on service is on-boarded to the cloud service marketplace,
the self-governance mechanism has to be updated accordingly so as to integrate

respective analysis and diagnosis policies in a seamless and transparent manner.

82 4.4. Summary

This requirement, in turn, leads to employing a declarative, loosely-coupled ap-
proach to declaring the knowledge base and policies. This concerns not just the
definition of possible policies and constraints, but also employing a declarative ap-
proach to policy enforcement. In these circumstances, the analysis and planning
algorithms are expected to be as easily modifiable as possible, and the degree of
hard-wired coding has to be minimised. Extensibility also refers to the capacity
of the envisaged solution to integrate other existing approaches so as not to ‘re-
invent the wheel” given that an already existing, working and efficient solution for
an emerging problem already exists.

Besides these considerations, the envisaged self-governance solution has to
follow certain established practices for developing monitoring and analysis solu-
tions. Such a mechanism is expected to perform monitoring and analysis activities
in an automated and timely manner. Given the fact that applications and services
hosted on a CAP are typically treated by the CAP providers as ‘black boxes” with
only APIs exposed to the outer world, the resulting solution has to be decou-
pled from the monitored entities and execute as a separate process, preferably in
a dedicated execution space. The self-contained, proprietary nature of deployed
applications and platform services also requires the monitoring mechanism to be
designed and implemented in a non-intrusive manner. It has to rely either on the
already-provided API entry-points or the surrounding context of the monitored
entities, rather than instrument the monitored elements with additional intrusive
data collection code. Since the resulting self-management mechanism is expected
to be a part of the CAP, we assume that we adopt the CAP provider’s perspective
on the self-management activities with a goal to support stable operation of the
cloud platform and to meet established SLAs.

44 Summary

In this chapter, our goal was to familiarise the reader with the state of the art in
the research area of cloud self-governance in general, and data monitoring and
analysis in particular, in the context of service-based cloud platforms. By do-
ing so, we also outlined several research and technological gaps — that is, identi-
fied a scope for own proposed approach and listed initial high-level requirements
for the future EXCLAIM framework. Briefly, the approach should focus on the
service-based PaaS environments and employ a declarative language to define the
knowledge base, including the architectural model of the managed environment,
various policies and constraints, queries, etc. It also has to address the existing

heterogeneity among add-on services and deployed application existing in CAPs.

Chapter 4. State of the art in cloud platform self-governance 83

The resulting solution has to be decoupled from the monitored entities and oper-
ate asynchronously with them to avoid possible bottlenecks. Another requirement
is the near real-time operation, which will enable timely detection and reaction
to potentially critical situations. The last, but not the least is the requirement to
enable the framework with an extensible architecture which would enable it to
address emerging requirements.

These considerations helped us to devise a novel approach to performing mon-
itoring and analysis activities within CAPs. With these requirements at hand, we
first designed a conceptual architecture of the EXCLAIM framework, and then
implemented a prototype version to demonstrate viability of the proposed hy-
pothesis. In the next chapters, we will discuss our proposed approach in more
details.

Chapter 5

Conceptual architecture of the
EXCLAIM framework

The goal of this chapter is to present the conceptual design of the EXCLAIM
framework in a top-down manner. To do so, we first introduce a novel approach
to treating individual components of CAPs, such as deployed applications and
add-on services, as distributed logical software sensors, which can be potentially
connected into a network so as to enable collected data to be monitored and anal-
ysed in one central location. Then, based on this fundamental interpretation, we
outline a high-level conceptual architecture for the EXCLAIM framework. In do-
ing so, we follow a top-down approach — we first describe the design of the future
framework in a high-level and abstract manner, an then explain how it can be
combined with SSW techniques so as to implement the prototype solution of the
framework. The chapter also presents two enhancements to the core design of
the EXCLAIM framework, which are aimed to improve its certain aspects. Sec-
tion 5.3.1 explains how the core OWL ontology and the set of SWRL rules can
be broken into several parts, thereby facilitating more loosely-coupled, modular
structure, and what the benefits of doing so are. Section 5.3.2 introduces and ex-
plains the notion of criticality, which is a characteristic of platform add-on services,
defining the particular set of detection rules to be applied in the given context. The

higher the criticality, the more “sensitive” rules to be applied.

5.1 Interpretation of Cloud Application Platforms as Sen-

sor Networks

In Chapter 3.2 we explained the SSW research in general and the SSN ontology

in particular in the context of physical sensor networks, such as, for example,

84

Chapter 5. Conceptual architecture of the EXCLAIM framework 85

environmental monitoring systems. We also brought to the reader’s attention the
fact that the SSN ontology is a high-level and abstract vocabulary and is supposed
to be extended with lower-level, domain-specific concepts. Accordingly, in this
chapter, we will extend the traditional notion of sensors with the concept of logical
software sensors, which can also act as sources of raw heterogeneous data to be

monitored and analysed by a central component.

To introduce and explain this novel concept, let us first consider a hypothetical
scenario, in which an SBA is deployed on a CAP and is leveraging add-on services
provided by the platform. For example, Heroku, offers over 150 add-on services,
and has over 1 million deployed applications (Harris, 2012). We also assume that
deployed applications are typically coupled with one or more services. This claim
is based on the assumption that customers deliberately choose Heroku as the tar-
get cloud platform for their software due to the extensive selection of easy-to-use
add-on services, which facilitates rapid software development. That is, customers
want to save their time and effort by re-using existing platform services, and that
is why they deploy software on this cloud platform. Otherwise, they would not
choose Heroku as the target cloud platform. Accordingly, in the considered hypo-
thetical scenario, an e-commerce platform is running on Heroku and is supported
with several add-on services for data storage, authentication, e-payment, search,
notification, message queueing, etc. As this example suggests, the flexibility aris-
ing from the freedom to choose from a range of pre-existing services is appealing
from the software developer’s perspective — using just six services enabled to save

considerable financial, time and human resources.

From the platform provider’s point of view, however, offering this level of flex-
ibility comes at a price. With add-on services replicated across multiple computa-
tional instances, and coupled with more than one million deployed applications,
it becomes a challenging task to monitor the execution of the resulting CAP en-
vironment so as to detect failures and suboptimal behaviours. Maintaining the
whole ecosystem at an operational level — that is, satisfying SLAs between the
CAP provider and its consumers — is an inherently difficult challenge. A simpli-
fied diagram in Figure 5.1 schematically illustrates this situation when numerous
deployed applications are deployed on the CAP and using various add-on services

offered by the platform.

In the context of platform monitoring and maintenance, each of the elements
depicted in the diagram is essentially an emitter of raw data, which can be fur-
ther collected and analysed to enable CAP management tasks. For example, data
storage services can provide data about available disk space, message queuing

services can measure the throughput and utilisation of their channels and queues,

86 5.1. Interpretation of Cloud Application Platforms as Sensor Networks

Cloud Application Platform

Sevice Sarvice Service

Service Frmfl Service
Al
App ‘ PP App
CE CE |
i Service
Servics Service
i Service
SRV Service
4 G
SENE i Tvice i Service
G Service G Service
App App
Service Service
Service Service
Service Service

Figure 5.1: Applications are deployed on a CAP and coupled with the platform’s
add-on services.

and applications can provide statistics on the memory and CPU usage. The col-
lected data, when properly structured, processed and analysed, can, for example,
provide insights on how the resource consumption can be optimised. Accordingly,
from this perspective, each of the elements of the CAP ecosystem can be seen as
a software sensor node with several sensors attached to — in a manner, similar to
physical sensor nodes with environmental sensors attached to them. Adopting
this approach leads immediately to the idea that CAPs can be treated as sensor

networks, and corresponding solutions and techniques can be applied.

By extending the notion of sensors to include not just physical devices, but
anything that calculates or generates a data value — e.g., an application compo-
nent, a database, or an add-on service — we can think of a particular service as a
sensor and the whole platform as a network of such sensors. For example, we may
be interested in monitoring response times from a platform add-on service which
is connected to a user application (as illustrated in Figure 5.1). In this case, the
service acts as a sensor node with several sensors attached to it, with the differ-
ence that unlike the traditional sensors, they are logical entities, represented with
software functionality measuring and sending corresponding data values. Sim-
ply put, a sensor in our context is a piece of programming code, which measures

Chapter 5. Conceptual architecture of the EXCLAIM framework 87

certain aspects of the sensor node — that is, of an add-on service. As we have
seen in Chapter 3.2, sensor nodes may be equipped with one or more sensors.
Accordingly, the add-on service in our scenario can be equipped with several log-
ical sensors which measure, for example, its response time, number of incoming
requests, current price, to name a few.

To enable the network with a global view and visibility into current states of
its individual nodes, it is expected to have a central location, which would be re-
sponsible for data processing and storage. To do so, all these distributed software
sensors, residing within a CAP, have to be connected into a network with a central
processing location so as to enable them to transfer data for further analysis and
interpretation. We try to illustrate this concept of a sensor-enabled CAP in Figure
5.2. The sensor nodes — add-on services, applications, platform components — are
equipped with sensors, which are software components responsible for measur-
ing certain characteristics, and connected into a network. Following the sensor
network principles, values from a sub-network of monitored subjects may first go
through a routing node — a software component responsible for transporting the
values further to a central component and/or initial processing and aggregation
of incoming information. Depending on the purposes of monitoring the central
component may perform various functions, ranging from simple storage of moni-
tored values to sophisticated analysis of those values, problem detection, or even

execution of appropriate adaptation actions through a feedback mechanism.

5.1.1 Drawing parallels between sensor networks and cloud application
platforms

While sensor networks are typically regarded as networks of distributed physical
devices, which use sensors to monitor continually varying conditions at various
locations (Baryannis et al., 2013), there are clear similarities with our own problem
domain of data monitoring and analysis in service-based cloud environments. In
our research, to support platform governance and maintenance, we are also facing
the challenge of collecting heterogeneous data from multiple distributed sources
and consequent querying this collected information to detect potentially critical
situations. Accordingly, looking at CAPs from the Information Management point

of view, the commonalities can be summarised as follows:

* Volume: as in sensor networks, the amount of raw data generated by de-
ployed applications, components of the platform, users, services, etc. may
be exceeding capabilities of the platform to manage them in a responsive

and timely manner. Even if we do not take into consideration ‘noise” - i.e.,

88

5.1. Interpretation of Cloud Application Platforms as Sensor Networks

‘Sensor-enabled’ Cloud
Application Platform

L0

T
Monitor

K/

e 'F/i;’

Figure 5.2: Schematic of a "sensor-enabled” CAP.

information flows that are not immediately relevant for monitoring in the

given context — the remaining amount of data is still considerable.

Dynamism: in both sensor networks and service-based cloud platforms, var-
ious data sources are constantly generating raw values (which are then col-
lected, processed, stored, deleted, etc.) at an unpredictable rate. Various
platform components evolve, with new services being added and old ones

removed, making the whole managed system even more dynamic.

Heterogeneity: just as networked sensors can be attached to a wide range
of different devices, so cloud platform data can originate from a wide range
of distributed sources (applications, databases, user requests, services, etc.).
This information is inherently heterogeneous, both in terms of data represen-
tation (different formats, encodings, etc.) and data semantics. For example,
two completely separate applications from different domains with different
business logic may store logging data in XML files. In this case, the data is
homogeneous in its format — and potentially also in structure — but hetero-

geneous at the semantic level.

Distribution: the information provided by both physical sensors and cloud

platform components may come from various logically and physically dis-

Chapter 5. Conceptual architecture of the EXCLAIM framework 89

tributed sources. On the logical side, platform data may originate from
databases, file systems, running applications, add-on services, etc. and all
these components may be physically deployed on distinct virtual machines,
servers and even data centres.

Accordingly, these described similarities allow us to draw parallels between
CAPs and problem domains, for which solutions proposed by the Sensor Web
research community, based on sensor technology, have already been shown to be
effective. Consequently, by drawing such parallels, we can build on work carried
out by the Sensor Web community, and more specifically of the SSW community, in
the context of dynamic monitoring and analysis of continuously flowing streams
of heterogeneous data within CAPs. In the next sections of this chapter, we explain
how the presented ideas were taken into account so as to outline the conceptual
design of the future EXCLAIM framework.

5.2 Conceptual architecture of the EXCLAIM framework

In this section, we present the conceptual architecture of the EXCLAIM framework.
The architecture relies on the two main “pillars’, presented to the reader in Section
2.2.1, and in the previous Section 5.1:

1. Interpretation of CAPs as networks of distributed software sensors
2. MAPE-K reference model for implementing closed adaptation loops

Accordingly, based on these two ‘pillars’, we will now describe our approach
by sketching out a high-level conceptual architecture of the EXCLAIM framework
(see Figure 5.3). In order to support both self-awareness and context-awareness
of the managed CAP elements, we need to employ some kind of architectural
model, which would describe the internal organisation and adaptation-relevant
aspects of the cloud environment (e.g., platform components, services, available
resources, connections between them, etc.). For these purposes we propose us-
ing an OWL ontology, which will contain the required self-reflective knowledge
of the system. Inspired by the SSN ontology, such an architectural model, rep-
resented with OWL, will serve as a common vocabulary of terms, shared across
the whole EXCLAIM framework. Conceptually, we distinguish 3 main elements
of the framework: triplification engine, continuous SPARQL query engine and
OWL/SWRL reasoning engine. Accordingly, our ontological classes and proper-
ties will serve as building blocks for creating RDF streams, Continuous SPARQL
(C-SPARQL) queries and SWRL rules, used consequentially in each of these com-
ponents respectively.

90

5.2. Conceptual architecture of the EXCLAIM framework

EXECUTION PLANNING

Diagnosis

Raw data RDF triples Query results
Triplification Continuous query
engine engine
MONITORING ANALYSIS

w
=
o
=]
©
-
Q
@©
©
<C

OWL/SWRL

Apps/services reasoning engine

Data Information Knowledge

Figure 5.3: Conceptual architecture of the EXCLAIM framework (based on the
MAPE-K reference model).

1. The triplification engine is responsible for consuming and ‘homogenising’

the data generated by deployed applications, platform components, add-on
services, etc. That is, the main function of this is component is to transform
raw data into information by representing collected heterogeneous values
(e.g., JSON messages, SQL query results, and text files) using a single uni-
form format. Accordingly, the engine takes as input streams of unstructured
heterogeneous data, transfroms them into semi-strucutred RDF triples using
the ontological vocabulary, and generates streams of RDF triples. Using RDF
as a common format for representing streaming data, and OWL concepts as
subjects, predicates and objects of the RDF triples, allows us to benefit from
human-readability and extensive support of query languages.

. The next step of the information flow within our framework is the contin-

uous SPARQL query engine, which takes as input the flowing RDF data
streams generated by the triplification engine and evaluates pre-registered
continuous SPARQL queries against them, to support situation assessment.
In the first instance, situation assessment includes distinguishing between

Chapter 5. Conceptual architecture of the EXCLAIM framework 91

usual operational behaviour and critical situations by matching them against
critical condition patterns. The process of encoding patterns is iterative —
that is, new critical conditions have to be constantly added to ensure the
pattern base remains up to date. For example, the EXCLAIM administra-
tor (i.e., the CAP provider) and add-on service providers may need to add
corresponding queries for newly-added add-on services, or remove existing
ones. Depending on circumstances, existing queries and critical thresholds
also may need to be adjusted with respect to the current situation and sys-
tem workload.! We propose using one of the existing continuous SPARQL
languages to encode critical condition patterns. By registering an appropri-
ate SPARQL query against a data stream, we will be able to detect a critical
situation with a minimum delay — the continuous SPARQL engine will trig-
ger as soon as RDF triples on the stream match the WHERE clause of the
query?. To some extent, this step can be seen as a filtering stage, and the
outcome of this component is filtered information — a sub-set of RDF triples,
which represent potentially critical situations. The querying engine will only
trigger in response to potentially critical situations, and thereby will save
the static reasoning engine from processing numerous non-critical, ‘noisy’
tuples. ‘On-the-fly” processing of constantly flowing data, generated by hun-
dreds of sources, as well as employing one of the existing RDF streaming
engines, are expected to help us in achieving near real-time behaviour of the
EXCLAIM framework.

3. Once a potentially critical condition has been detected, a corresponding con-
firmation has to be generated (and appropriate adaptation actions can be
planned and executed) by the OWL/SWRL reasoning engine. This step
requires not just checking several simplistic ‘if-then’ statements, but rather
requires more complex and sophisticated reasoning over the possible rea-
sons for a problem, and identification of potential adaptation strategies. In
this respect, we envisage addressing this challenge (at least partially) with
SWRL rules, which provide a sufficient level of expressivity for defining
policies, and are expected to exempt us from the effort-intensive and po-

tentially error-prone task of implementing our own analysis engine from

!Machine learning techniques may be employed in this context to assist with maintaining the
list of critical condition patterns. More details on this can be found in Section 9.2.

2With SPARQL as an underlying query language, in the future it is also possible to benefit from
inference capabilities — that is, apart from just querying data, we may also be able to perform some
reasoning over RDF triples. The reasoning capabilities, yet immature, depend on the entailment
regime of the continuous SPARQL language to be selected, and respective tool support. For more
details, please refer to Section 8.3.

92

5.3. Enhancements to the main conceptual design

scratch. Accordingly, we will rely on the built-in reasoning capabilities of
OWL ontologies and SWRL rules, so that the routine of reasoning over a set
of possible alternatives is done by an existing, tested, and optimised mech-
anism. The outcome of this reasoning step is a confirmed occurrence of a

detected critical situation.

When defining detection policies with OWL and SWRL, we, as application

developers and platform administrators, may benefit from the following (Dautov

et al., 2012) (we will further discuss potential benefits of our proposed approach
in Chapter 8):

* Separation of concerns — with declaratively-defined ontologies and rules

separated from the actual platform/application programming code, it is eas-
ier to make changes to detection policies ‘on the fly” (i.e., without recompil-
ing, redeploying and restarting the platform/application) in a transparent

seamless manner.

Extensibility — separation of concerns, in turn, opens opportunities for cre-
ating an extensible and easily modifiable architecture for defining the know-
ledge base. To reflect emerging requirements in a timely manner, new con-
cepts can be easily added to the OWL ontology, and then respective SWRL
policies can be defined and added to the policy base. Same applies to the
reverse process — if needed, outdated definitions can be removed at any time

with minimum effort.

Increase in reuse, automation and reliability — once implemented and pub-
lished on the Web, an ontology is ready to be re-used by third parties, thus
saving ontology engineers from ‘reinventing the wheel’. Moreover, since the
reasoning process is automated and performed by a reasoning engine, it is
expected to be free of so-called "human factors” and therefore more reliable.

5.3 Enhancements to the main conceptual design

Having introduced the main conceptual design of the framework, we now explain

several additions to it. These additions are intended to improve certain aspects

of the EXCLAIM framework and aim at increasing its support for i) modular and

declarative definition of the knowledge base; and ii) flexible and fine-granular

monitoring of individual services and applications.

Chapter 5. Conceptual architecture of the EXCLAIM framework 93

5.3.1 Modularity and self-containment

One of the main goals of the presented research work is to enable a declarative
and loosely-coupled approach to defining and modifying detection policies. We
aimed at separating definition of policies from their actual enforcement. For this
reason, we followed the SSW approach, which enabled us to define the knowledge
base in a declarative manner by means of OWL ontologies and SWRL rules. How-
ever, as the resulting knowledge base is expected to grow in size and complexity,
it may result in a considerably heavy-weight ontology, and therefore will slow
down the reasoning process, which will try to infer the required information with
respect to all facts found in the OWL ontology and SWRL rules. Simply put, the
more ‘heavy-weight” and richer the knowledge base gets, the slower the reasoning
process becomes.

In these circumstances, application of the modularity principles might be of
potential benefit — that is, breaking down the whole knowledge base into multi-
ple parts, so that only necessary and relevant facts are taken into account when
performing reasoning activities, while the unnecessary bits are simply left aside
in the given reasoning context. Modularity, which is known to be one of the most
widely-spread approaches to address the ever-increasing complexity in computer
systems! (Baldwin and Clark, 2000, 2003), has the potential to become a key to
success. Using ontology engineering terminology, this means that the terminol-
ogy box (i.e., the TBox) of the ontology has to be minimised (Gruber, 1993). As
opposed to the axiomatic box (i.e., the ABox), which contains actual instances of
the TBox classes, the TBox declares classes and properties. Decidability and com-
putability characteristics of an ontology mainly depend on the TBox, and min-
imising the amount of statements in the TBox is typically expected to speed up
the reasoning process.

Another reason for employing the modular architecture is the necessity to en-
able third-party service providers with capabilities to modify detection policies. So
far, we assumed that CAP providers are responsible for maintaining governance-
related knowledge, which concerns not only the internal platform components,
but also third-party services, which are registered with the given CAP service
marketplace. In reality, however, this is not necessarily the case. Typically, third-
party service providers, having deployed their software on a cloud and exposing
the API to the users, take on the responsibility to maintain the software and asso-

ciated resources, and provide customers with required support. This means that

IFor example, SOA can also be seen as an example of the modular approach, which helps to
tackle the ever-growing complexity of modern enterprise systems by minimising the number of
system components and splitting them among interested parties.

94 5.3. Enhancements to the main conceptual design

CAP providers treat third-party services as ‘black boxes” and need not be aware
of their internal architecture and organisation. Accordingly, this may result in a
situation, where governance policies are incomplete, imprecise, or even invalid,
which in turn may lead to incorrect diagnoses, non-optimised resource consump-
tion, system failures, and, eventually, put platform stability at risk.

As a potential solution to this problem we are employing Linked Data prin-
ciples. The primary goal of Linked Data is to enable discovery and sharing of
semantically-enriched data over the Web using standardised technologies, such
as URIs and RDF (Bizer et al., 2009). By adding references and interlinking indi-
vidual datasets published on the Web, it unites them into a giant global graph.
In other words, Linked Data implies the ubiquitous re-use of existing distributed
data, which is exactly what we need in order to separate various pieces of adapt-
ation policies between CAP owners and third-party service providers.

Utilising Linked Data principles has the potential to create an extensible archi-
tecture where a cloud sensor network consists of independent self-contained sen-
sors (i.e., platform components and services), described by a two-tier distributed
set of interacting ontologies. To implement the described modular approach to the
definition of the knowledge base, we employ the following two-tier architecture:

1. Core OWL ontology, which contains all the necessary concepts, relations
and default SWRL rules needed to define the default governance-related
behaviours of platform components and services. It is expected to be a rather
static entity and stay under control of the platform administrators.

2. Linked SWRL extensions are a set of linked sets of SWRL rules developed
by third-party service providers and published on the Web. They specify
detection and adaptation policies for respective services registered with the
CAP marketplace. These extensions may either extend or overwrite the de-
fault behaviour specified in the core ontology. These extensions only apply
to individual services — that is, they are only added to the knowledge base,
whenever a respective service is involved in the given monitoring and anal-

ysis scenario.

5.3.2 Criticality levels, criticality dependencies and application profil-
ing

So far, we have thought of and described add-on services and user applications

coupled with them, in a rather abstract manner, without considering certain real-

world aspects and assumptions. We have been treating individual add-on services
and resulting SBAs as entities, equally deserving to be monitored and managed.

Chapter 5. Conceptual architecture of the EXCLAIM framework 95

In practice, however, it can often be the case that some services (and therefore — de-
pending applications) need more attention, whereas the others need it to a lesser
extent. In other words, we can distinguish and classify deployed applications with
respect to their criticalities. A criticality is a context-dependant qualitative char-
acteristic of add-on services, which determines which detection policies — strict or
loose — have to be applied in a particular case.

For example, imagine a service-based composition deployed on a CAP, which
actively uses messaging queues as a means of communication between applica-
tion subcomponents. Being heavily dependent on the messaging queue service,
the considered application cannot tolerate a situation where the service crashes
or underperforms — in such circumstances, it will simply stop functioning. Such
an application, therefore, can be classified as critical with respect to its messaging
queue service, and therefore, when identifying critical situations, critical thresh-
olds have to be defined as low as possible. On the other hand, the very same
application may be using an Short Message Service (SMS) notification service for
sending notifications to its users. This service, in the context of the given applica-
tion, is not that critical, because, for example, other ways of user notification exist.
It means that the application can tolerate a temporary outage of the SMS notifica-
tion service and still be functional. Accordingly, the SMS notification service in the
given scenario is not critical, and thereby loosest detection policies can be applied.

It should be noted that the notion of service criticalities is context-dependant
and only exists in association with criticalities of resulting service-based composi-
tions. One and the same service may be critical in the context of one service-based
application and non-critical in the context of another. Coming back to the previ-
ous example, the SMS notification functionality may lie at the core of a dedicated
online SMS sending service,! and the outage of the corresponding service, even
for a few minutes, may be lethal to such kind of SBAs.

Accordingly, to describe a service-based application in terms of criticalities of
the constituting services, we are introducing the concept of application profiling.
Essentially, an application profile is a key-value mapping, where key is a depend-
ing service, and value is a corresponding level of criticality for that service.

It is also possible that not only user applications are dependent on certain
services, but services themselves can be interdependent on each other (see Figure
5.4). Such a situation is quite common — for example, as explained in Chapter
6, a messaging service is used to send payload which is then to be persisted to a
database, provided by a data storage service. In the described scenario, messaging
queue and database services are dependent on each other. Accordingly, it is also

15ee, for example, http://www.afreesms.com/ .

http://www.afreesms.com/.

96 5.3. Enhancements to the main conceptual design

possible that these services might have been given different criticalities by the
user, which may result in potentially ambiguous and even dangerous situations.
To prevent them, we introduce the notion of criticality dependencies. Whenever
a dependency with such a criticality level mismatch is detected, we apply the

highest criticality level found among the dependent services.

. Service
Service

App

Service

Service

Service

Figure 5.4: An application is dependent on several add-on services, two of which
are also interdependent between each other.

In the context of the presented research work, the concepts of criticality and
application profiling are used to enable a more fine-grained control of the moni-
toring and analysis activities. By assigning low criticalities to services and SBAs
and applying respective policies, we are able to decide whether an observed situ-
ation represents a threat and therefore requires additional system resources to be
used so as to perform further planning and adaptation activities. In other words,
we enable the EXCLAIM framework with ‘filtering” capabilities, which can serve
to save computational resources — that is, by minimising the number of false posi-
tives (i.e., normal situations classified as critical due to low critical thresholds), we
avoid unnecessary further actions.

To conclude, it is needs to be noted that the concept of application profiling can

be seen as a communication channel between CAP consumers and CAP providers.
Consumers are not allowed to interfere with the back end of the EXCLAIM frame-

Chapter 5. Conceptual architecture of the EXCLAIM framework 97

work, including the knowledge base, but are essentially the ones who know the
best how critical their applications are. That is, they are aware of the internal struc-
ture and business logic of their applications, and therefore might want to make the
platform aware of what aspects of their software systems need to be cared after
more thoroughly. Accordingly, by submitting an application profile, they let the
platform know of how critical the software is. The platform, in its turn, will then
be able to treat deployed software and connected add-on services with more care
if needed, based on the submitted criticality profile.

54 Summary

The main goal of this chapter was to familiarise the reader with the conceptual
architecture of the EXCLAIM framework. This architecture is underpinned by
the two main concepts. The first influencing concept is the novel interpretation
of CAPs with their add-on services and deployed applications as distributed net-
works of logical software sensors. This analogy is based on the similarities be-
tween the problem domains, where solutions from the Sensor Web research area
proved to be useful, and the problem domain of CAP data monitoring and anal-
ysis. The second concept is the MAPE-K reference model for implementing self-
adaptation loops and creating autonomic systems. The design of the framework
primarily focuses on the Monitoring and Analysis components of the MAPE func-
tionality with a possibility to be extended or integrated with existing solutions so
as to achieve the complete MAPE-K functionality. Having introduced the design
of the framework and additional enhancements, the next chapter proceeds with
implementation details of the EXCLAIM framework.

Chapter 6

Implementation details of the
EXCLAIM framework

Having introduced the conceptual architecture of the EXCLAIM framework in the
previous chapter, we now continue with the top-down approach and discuss the
implementation details. We describe each of the main three components of the
framework — namely, the triplification engine, the continuous query engine and
the reasoning engine. In all three of these components, a key role belongs to the
ontological model, which provides a shared common vocabulary of terms to define
RDF triple streams, continuous SPARQL queries, and SWRL rules respectively.
Therefore, a dedicated section will explain the structure and the role of the CSO.
The concepts explained in this chapter, will be further extended in the next chapter,
which puts together the design and implementation details of the framework and

demonstrates how the framework functions based on a use case scenario.

6.1 Overview of technical details

The prototype version of the EXCLAIM framework is a Java project, which was
developed using Eclipse IDE with an installed Heroku plugin. This plugin facil-
itates the process of deploying and upgrading an application to Heroku directly
from within Eclipse, as opposed to the traditional command line-based way of
packaging and uploading applications on the CAP. All Heroku apps are required
to be enabled with the Maven! nature to support the application building process

and resolve library dependencies.

lApache Maven (https://maven.apache.org/)is a build automation tool primarily for Java
applications. It automates the process of software compiling and packaging based on a descriptions
of how software is supposed to be built, and its dependencies.

98

https://maven.apache.org/

Chapter 6. Implementation details of the EXCLAIM framework

99

As of April 2016, there are 11 packages, 43 classes, and 3,646 lines of code in

the EXCLAIM framework. Apart from the standard libraries, constituting the Java

Software Development Kit (SDK), several external libraries were used to imple-

ment the project. Table 6.1 summaries the most important of them.

Table 6.1: Third-party JARs and their role in the implementation of the EXCLAIM

framework.

Libraries and JARs ‘

Description

Usage

OWL-API!

The OWL API is a Java interface and
implementation for the OWL. The latest
version of the API is focused on OWL
2 which encompasses OWL-Lite, OWL-
DL and some elements of OWL-Full.
Main features of OWL API include:

e API for OWL 2 and an efficient
in-memory reference implemen-

tation
¢ RDF/XML parser and writer
¢ OWL/XML parser and writer

¢ OWL Functional Syntax parser
and writer

¢ Turtle parser and writer

® Support for integration with
reasoners such as DPellet and

FaCT++

® Support for black-box debugging

OWL API For manipulating
the CSO and SWRL rules. It
provided methods for creat-
ing, modifying, and deleting
entities in the CSO and linked
SWRL extensions.
that, thanks to its integra-

Besides

tion with the Pellet reasoner,
it supported all reasoning-
related activities within the
framework. OWL API also
took care of the importing
mechanism, which was neces-
sary to support the modular
architecture based on the core
CSO and multiple SWRL ex-
tensions.

Pellet?

Pellet is an open-source Java-based
OWL 2 reasoner. It can be used in
conjunction with the OWL API library.
It incorporates optimisations for nomi-
nals, conjunctive query answering, and

incremental reasoning.

The Pellet reasoner was used
to enable reasoning by the
OWL-API. While developing
the CSO with Protege, we
used Pellet as the underly-
ing reasoner to test the ontol-
ogy. Therefore, the same rea-
soner (even the same version)
was used in the framework, to
make sure the reasoning re-
sults are consistent with Pro-
tege.

1http ://owlapi.sourceforge.net/
Zhttps://github.com/complexible/pellet/

http://owlapi.sourceforge.net/
https://github.com/complexible/pellet/

100

6.1. Overview of technical details

C-SPARQL Ready-
to-Go Pack!

The ready-to-go pack is a Java library,
developed by the Polytechnic Univer-
sity of Milan on top of the Erlang
streaming engine, which contains an
implementation of the C-SPARQL RDF
processing engine. C-SPARQL queries
consider windows, i.e., the most recent
triples of such streams, observed while
data is continuously flowing.

We use the C-SPARQL en-
gine library to enable the
autonomic manager with ca-
pabilities to process RDF
C-SPARQL query-
ing is designed to be a filter-

streams.

ing step before the actual rea-
soning, which is quite com-
putationally demanding. In
other words, we cannot af-
ford launching the reasoning
process for every single triple
observed on the stream, but
have to minimise their num-
ber, thus running the reason-
ing process less frequently.

Apache Jena?

Apache Jena is an open source Seman-
tic Web framework for Java. It pro-
vides an API to extract data from and
write to RDF graphs. The graphs are
represented as an abstract ‘model’. A
model can be sourced with data from
files, databases, Universal Resource Lo-
cators (URLSs) or a combination of these.
A model can also be queried with
SPARQL. Jena also provides support for
OWL. The framework has various in-
ternal reasoners and the Pellet reasoner
can be set up to work with Jena. Jena
supports serialisation of RDF graphs to:

¢ a relational database
e RDF/XML
e Turtle

¢ Notation3

Apache Jena was used to han-
dle all RDF-related activities.
This library was also a fun-
damental dependency to en-
able proper functioning of the
OWL API library and the C-
SPARQL Ready-to-Go pack.

1https ://github.com/streamreasoning/C\gls{sparqgl}-ReadyToGoPack/
Zhttp://jena.apache.orqg/

https://github.com/streamreasoning/C\gls {sparql}-ReadyToGoPack/
http://jena.apache.org/

Chapter 6. Implementation details of the EXCLAIM framework 101

Gson!

Gson is a Java library that can be used
to convert Java objects into their JSON
representation. It can also be used to
convert a JSON string to an equivalent
Java object. Gson can work with ar-
bitrary Java objects including compiled
objects, which do not necessarily have
their source code available. Its main fea-
tures are:

e Provide simple toJson() and
fromJson() methods to convert
Java objects to JSON and vice-

versa

¢ Allow pre-existing unmodifiable
objects to be converted to/from
JSON

¢ Extensive support of Java gener-
ics

e Allow custom representations
for objects

® Support arbitrarily complex ob-
jects (with deep inheritance hi-
erarchies and extensive use of
generic types)

Among other existing alter-
natives for JSON serialisation,
the Gson library is known to
be most suitable for small-size
objects (Alin, 2015). This fea-
ture makes it a good choice
for handling relatively small
RDF triples and support the
process of exchanging data
within the EXCLAIM frame-
work. Primarily, Gson was
used to serialise triples when
exchanging data over Rab-
bitMQ queues.

RabbitMQ?

RabbitMQ is open source message
broker software that implements the
Advanced Messaging Queue Protocol
(AMQP). The RabbitMQ server is writ-
ten in the Erlang programming lan-
guage. Client libraries to interface with
the broker are available for all ma-
jor programming languages, including
Java.

RabbitMQ was used as the
main means of collecting
monitored values from soft-
ware sensors. Therefore, the
client library was used for
both sending RDF data from
the software sensors and re-
ceiving it by the EXCLAIM
framework.

The described Java technologies helped us build the prototype version of the

framework. Initially, it was a command-line tool, but at the later stage a graphical

user interface was added to make the application more user-friendly and easy-to-

use. The graphical interface is a simple management console accessed through the

Web browser (see Figure 6.1).

As it is seen from the screenshot, the functionality of the EXCLAIM frame-

lhttps://github.com/google/gson/
Zhttps://www.rabbitmg.com/

https://github.com/google/gson/
https://www.rabbitmq.com/

102 6.1. Overview of technical details

Rustem X

[Monitor x
€« C [localhost:8080/index

D
(]
n

The EXCLAIM framework
version 2.3
Rustem Dautov, SEERC

rdautov@seerc.org

Monitoring and analysis for Heroku services

Workers & Queueing v | MINOR v | Remove |
Add Criticality ‘
| Start menitering | | Stop monitoring ‘ | Refresh ontology

REGISTER STREAM
CriticalStream AS PREFIX rdf: <http://www.w3.org/1999/@2/22-rdf-syntax-ns#> PREFIX
csa: <http://seerc.org/ontology.owl#> CONSTRUCT { ?service rdf:type
cso:SendgridService . ?service cso:hasNumberOfEmailsCritical
"truetthttp: /fwww. w3 . org/ 2081/ XMLSchema$boolean” } FROM STREAM
<http://seerc.org/rdf/stream/> [RANGE 1m STEP 1@@ms] WHERE { P?service rdf:type
cso:SendgridService . ?service cso:hasNumberOfEmails ?size . ?size rdf:type
cso:NumberOfEmails . ?size cso:hasWalue ?v . FILTER { ?v >= 198) }

REGISTER STREAM

CriticalStream AS PREFIX rdf: <http://www.w3.0rg/1999/82/22-rdf-syntax-ns#> PREFIX
cso: <http://seerc.org/ontology.owl#> CONSTRUCT { ?service rdf:type
cso:HerokuPostgresService . ?service cso:hasDatabaseSizeMinor
"true http://www.w3.org/2081/XMLSchema#boolean™ } FROM STREAM
<http://seerc.org/rdf/stream/> [RANGE 1m STEP 1@@ms] WHERE { ?service rdf:type
cso:HerckuPostgresService . ?service cso:hasDatabaseSize ?size . ?size rdf:type

| cso:DatabaseSize . ?size csothasValue ?v . FILTER { ?v >= 4080000 &% ?v < 5000000) }

REGISTER STREAM y

I Refresh C-SPARQL queries l

Figure 6.1: Management console of the EXCLAIM framework.

work can be accessed via main 5 buttons. Table 6.2 summarises these functional

elements and describes their role within the framework.

Table 6.2: Main features of the EXCLAIM framework accessed via the manage-
ment console.

Feature ‘ Description

With this component, the user is enabled to profile applications to be
monitored. By specifying criticality levels for corresponding add-on
Add criticality services the monitored application is connected to, the user creates
an application profile, which is then parsed by the framework and

respective diagnosis and adaptation policies are applied.

Chapter 6. Implementation details of the EXCLAIM framework 103

L. With this button, the user can start the monitoring and analysis pro-
Start monitoring
cess.

. With this button, the user can stop the monitoring and analysis pro-
Start monitoring
cess.

With this button, the user can refresh the knowledge base of the EX-
CLAIM framework. One of the main goal of the research work pre-
sented in this document is to create a mechanism for declarative def-
Refresh ontology inition of policies. Respectively, it is possible to modify the core CSO
and linked SWRL extensions at run-time, and by clicking this but-
ton to make the framework reason over this newly-added knowledge
base.

With this button, the user can refresh C-SPARQL queries. Similar to
refreshing the ontology, this function was inspired by the declarative
approach to defining knowledge within the framework. Accordingly,
Refresh C-SPARQL | it is possible to modify the C-SPARQL queries at run-time and make
queries the framework transparently switch to using the new ones. The text
field in the management console, once the monitoring and analysis
process is started, returns the list of all C-SPARQL queries currently
constituting the knowledge base.

6.2 Implementation details

We now proceed with a detailed explanation of how the EXCLAIM framework
prototype was implemented. This explanation is aligned with the main compo-
nents of the conceptual architecture presented in the previous chapter and accom-
panied by several code snippets, which are intended to demonstrate how the key
functions are implemented within the framework.

6.2.1 Triplification enegine

The triplification engine is the initial step of the data flow within the EXCLAIM
framework, and is the main element through which managed applications and
services interact with the framework. Its main responsibility is to ‘extract’ raw
data from the managed elements and transform it into semantic RDF triples using
the CSO vocabulary.

Following the non-intrusive principle to data collection, this component re-
lies on already existing APIs provisioned by services to gather required metrics.
For example, in order to obtain the most recent view on the current utilisation
of an RDBMS service (e.g., occupied space, number of client connections, current

backup processes, etc.) it is necessary to run an SQL query on an auxiliary statis-

104 6.2. Implementation details

tics table! for system administration purposes, which contains run-time meta-data
about the database. The Postgres default rate for updating the statistical informa-
tion is 500 ms, and can also be configured to provide a more up-to-date view on
the current state of the database. Accordingly, the sampling rate of the EXCLAIM
framework for data extraction should be configured respectively so as to operate
in an optimised manner — that is, fast enough to provide actual data and at the
same time avoid redundant (and expensive) calls to the database.

The following SQL snippet, for example, fetches the current values for the
occupied space (i.e., SIZE) and the number of established client connections (i.e.,
COUNT) to the database destinator_db belonging to the user destinator_user.

Listing 6.1: SQL query snippet.

SELECT pg_database_size (’destinator_db’) AS SIZE, COUNT (x) AS COUNT FROM

pg_stat_activity a WHERE a.usename=’destinator_user’

Other services, such as IronWorker service, expose its run-time meta-data via
a RESTful management API, accessible by the client libraries. For example, to get
the current number of jobs in the IronWorker queue waiting to be processed as an
array of JSON objects, it is necessary to invoke a corresponding API function (see
Listings 6.2 and 6.3).

Listing 6.2: IronWorker API function to get the number of tasks in the queue.

public List<TaskEntity> getTasks (Map<String, Object> options) throws \gls
{api}Exception {

JsonObject tasks = api.tasksList (options);

List<TaskEntity> tasksList = new ArrayList<TaskEntity>();

for (JsonElement task : tasks.get ("tasks").getAsJsonArray()) {

tasksList.add (gson.fromJson (task, TaskEntity.class));

}

return tasksList;

}

Listing 6.3: Sample client code to fetch the number of tasks to be executed by the
IronWorker service.

options = new HashMap<String, Object>();

options.put ("running", 1);

tasks = IronWorkerManager.getClient ().getTasks (options);

Similar standard mechanisms for extracting data metrics exist for all the other
add-on services, provided by the cloud platform marketplaces (including Heroku,).

n Postgres Database Management System (DBMS), this table is called pg_stat_activity.
Similar tables exist in the majority of other relational databases.

Chapter 6. Implementation details of the EXCLAIM framework 105

An important benefit of the data extraction used by the EXCLAIM framework is
that there is no intrusion to the source code of the monitored services and appli-
cations. The framework only requires user credentials to get access to individual
instances of services — an acceptable requirement given that the EXCLAIM frame-
work is assumed to be part of the cloud platform and act as a trusted entity for
the consumers.

Once the raw data is extracted, it then needs to be uniformly represented using
the CSO ‘building blocks’. At the moment, this is mainly a manual process, which
involves mapping between the source raw data and target semantically-annotated
triples.!

It needs to be explained that a single raw value is represented with multiple
RDF triples, which form an RDF graph. Depending on the requirements, addi-
tional RDF triples serve to provide a more unambiguous and context-aware infor-
mation to the EXCLAIM framework. For example, Listing 6.4 below demonstrates
how the number of current client connections to the PostgreSQL service (i.e., the
service postgres—service-06 has 12 client connections) is translated into the

RDF representation to be further processed by the EXCLAIM framework.

Listing 6.4: A single raw value is represented using four RDF triples.

cso:postgres—service-06 rdf:type cso: HerokuPostgresService

cso:postgres-service—-10 cso:hasNumberOfConnections cso:number-of-
connections—-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "12"""xsd:int

Accordingly, the newly-generated RDF triples are serialised into string objects
and sent to the messaging queue, from where they are picked up by the EXCLAIM
framework, de-serialised into RDF triples and processed by the C-SPARQL query
engine. In the current version of the EXCLAIM framework, Heroku’s RabbitMQ
messaging service is being used to facilitate information transfer between data
connectors and the core EXCLAIM framework. Using RabbitMQ'’s client API the
process of configuring a message queue (see Listing 6.5) and sending a message
(see Listing 6.6) can be accomplished in several lines of code.

Listing 6.5: Declaring and initialising a RabbitMQ service queue.

String uri = "amgp://guest:guest@localhost";

ConnectionFactory factory = new ConnectionFactory(uri);

IThere are already existing tools for converting data stored in relational databases into the RDF
representation, using special mapping languages (e.g., RDB to RDF Mapping Language (R2RML)
— http://www.w3.0rg/TR/r2rml/), which may simplify the triplification process as far as re-
lational data storage services are concerned. Similarly, analogous techniques can be envisaged for
RDF triplification of JSON, XML and other formats.

http://www.w3.org/TR/r2rml/

106 6.2. Implementation details

Connection connection = factory.newConnection();
Channel rabbitMgTaskChannel = connection.createChannel ();

rabbitMgTaskChannel.queueDeclare ("exclaim_gqueue");

Listing 6.6: Sending a string message to the RabbitMQ queue.

String message = "cso:number-of-connections-122 cso:hasValue '12’'""
xsd:int"

rabbitMgTaskChannel.basicPublish ("exclaim_queue", null, message.getBytes
0

Please note that individual ‘connectors’ responsible for raw data extraction
and RDF transformation can be configured to function at various sampling rates.
Finding the right sampling rate may depend on various criteria, such as the update
rate of the source raw data (e.g., table pg_stat_activity), amount of available
computational resources to execute frequent data extraction and transformation,
tolerance of the managed services and applications to potential delays, etc.

Also, as it is seen from the listings above, only the last RDF triple actually con-
tains the actual value of client connections, whereas the other three triples serve
to describe the semantic context of that value and do not change that frequently.
In these circumstances, we can distinguish between truly dynamic and relatively
static values, and sending both types of triples at the same rate may result in an
increased amount of redundant data being sent over the network. Both issues —
namely, optimisation of the RDF sampling rates and minimisation of redundant
data sent over the network are seen as potential directions for future research and

are further discussed in Chapter 8.

6.2.2 RDF streaming and C-SPARQL querying engine

The next step of the EXCLAIM data flow is the C-SPARQL query engine, which
is responsible for detecting potentially critical situations and passing them further
to the OWL/SWRL reasoning engine for analysis. Picking up messages from the
monitoring queue is performed using the listener class provided by the RabbitMQ
client library. The listener is registered with the queue and is responsible for de-
serialising incoming string messages into RDF triple objects and pushing them
further to the C-SPARQL streaming engine. An instance of the C-SPARQL engine
is configured as shown in Listing 6.7 below.

Listing 6.7: Initialising the C-SPARQL engine and registering a stream.

CsparglEngine engine = new CsparglEngineImpl ();

engine.initialize();

Chapter 6. Implementation details of the EXCLAIM framework 107

CsparglStream csparglStream = new CsparglStream("http://seerc.org/rdf/
stream/");

engine.registerStream(csparglStream);

final Thread thread = new Thread(csparglStream);

thread.start () ;

In order for the C-SPARQL engine to function, it is required to initiate a data
stream and register a standing C-SPARQL query against this data stream, as il-
lustrated in Listing 6.8. Using the WHERE clause, the standing C-SPARQL queries
serve to fetch potentially critical values from the incoming data stream. From this
perspective, they can be seen as a filtering element — that is, their main respon-
sibility is to let ‘noisy” data pass through, while only critical triples are detected
and passed on to the OWL/SWRL reasoning engine. Once the query is registered
against the stream, the associated listener (i.e., st reamFormatter) will start trig-
gering every time RDF triples observed on the stream within the specified window
frame satisfy the WHERE condition.

Listing 6.8: Registering a listener with the C-SAPRQL stream.

RDFStreamFormatter streamFormatter = new RDFStreamFormatter (
"http://seerc.org/rdf/stream/");

engine.registerStream(criticalStreamFormatter);

String query = "REGISTER_QUERY query, SELECT_?s_7?p_?0_FROM STREAM <http://
seerc.org/rdf/stream/>_ [RANGE_1m_STEP _1s] WHERE_{?s_?p_?0}";

CsparglQueryResultProxy proxy = engine.registerQuery (query);

proxy.addObserver (streamFormatter) ;

6.2.3 OWL/SWRL reasoning engine

The RDF triples fetched by the C-SPARQL queries are then dynamically added
to the ABox of the CSO, and the reasoning process is initialised. Depending on
the set of registered SWRL rules, the newly-populated individuals may be classi-
fied as critical situations, thereby calling for a corresponding reactive action. As
explained in the next chapter, same individuals may be classified as critical (i.e.,
belonging to the class CriticalSituation) or not, depending on the current
level of service criticality. The following three listings below illustrate i) how an
ontology is loaded and initiated within the EXCLAIM framework (see Listing 6.9),
ii) how new potentially critical instances are added (see Listing 6.10) and, finally,
iii) how the Pellet reasoner, when queried, can infer if there are any instances of
the class CriticalSituation (see Listing 6.11).

108 6.2. Implementation details

Listing 6.9: Loading and initiating the CSO.

OWLOntologyManager oManager = OWLManager.createOWLOntologyManager () ;

OWLOntologyIRIMapper iriMapper = new SimpleIRIMapper (IRI.create ("http://
seerc.org/ontology.owl"), IRI.create (ONTOLOGY_BASE_URL));

manager.addIRIMapper (iriMapper) ;

iriMapper = new SimpleIRIMapper (IRI.create ("http://seerc.org/postgres—
rules.owl"), IRI.create ("https://www.dropbox.com/s/8gb2eb6ike29c30/
postgres—-rules.owl?dl=1"));

manager.addIRIMapper (iriMapper) ;

OWLOntology ontology = oManager.loadOntologyFromOntologyDocument (IRI.
create (RULES_BASE_URL)) ;

OWLReasonerFactory reasonerFactory = PelletReasonerFactory.getInstance();

OWLReasoner reasoner = reasonerFactory.createReasoner (ontology, new

SimpleConfiguration());

Listing 6.10: Adding new individual assertions to the CSO.

OWLDataFactory factory = oManager.getOWLDataFactory();
PrefixOWLOntologyFormat pm = (PrefixOWLOntologyFormat) oManager.
getOntologyFormat (ontology) ;
OWLObjectProperty objProperty = oManager.getObjectProperty (pred);
if (null != objProperty) {
// Add object property assertion axiom
OWLIndividual object = oManager.getIndividual (ob7j);
oManager.addObjectPropertyAssertion (individual, objProperty,
object);
} else {
// Add data property assertion axiom
OWLDataProperty dataProperty = oManager.getDataProperty (pred);
if (null != dataProperty) {

oManager.addDataPropertyAssertion (individual, dataProperty, obj);

Listing 6.11: Querying the reasoner whether there are critical instances.

Set<Node<OWLNamedIndividual>> nodes = oManager.getClassInstances ("
CriticalSituation", false);
if (null != nodes) {

LOGGER.warn (nodes.size() + " _CRITICAL_SITUATIONS _DETECTED_");
for (Node<OWLNamedIndividual> node : nodes) {

Set<OWLClassAssertionAxiom> parents = oManager.
getSuperclass (node.getRepresentativeElement ());
StringBuilder sb = new StringBuilder("__..." + node.

toString() + "_:");

—

Iterator<OWLClassAssertionAxiom> iter = parents.iterator

()
while (iter.hasNext ()) {

Chapter 6. Implementation details of the EXCLAIM framework 109

OWLClassAssertionAxiom axiom = iter.next ();
sb.append (" " + axiom.getClassExpression() .
toString());
}
LOGGER.warn (sb.toString());

Listing 6.11 also contains a place-holder, which can be used to trigger certain
actions upon detection of critical situations. Currently, it simply prints out a warn-
ing message in the console, but any kind of user notification and response mecha-
nism can be hooked up at this point. The EXCLAIM framework is seen as part of
the larger MAPE-K functionality, which will enable complete self-managing func-
tionality. Accordingly, corresponding planning and execution components will be
notified of detected critical situations here as well.

6.3 Cloud Sensor Ontology

Representing the central Knowledge element of the MAPE-K reference model (see
Figure 2.2), the CSO is also the core component of the EXCLAIM framework.
Its vocabulary of terms is accessed and used at every step of the information
processing workflow within the framework. Therefore, we dedicate a separate
section with a goal to explain the CSO and its role in the monitoring and analysis

process.

6.3.1 Design process and methodology

The CSO was developed using Protege IDE, which is nowadays the de facto editor
for engineering OWL ontologies (Jain and Singh, 2013, Tudorache et al., 2008). It
is a free, open-source, feature-rich ontology editing environment with full support
for OWL 2, and integration of several Description Logic (DL) reasoners like Her-
miT and Pellet. The IDE serves to create and edit one or more ontologies in a sin-
gle workspace via a customisable user interface (i.e., users can arrange instruments
and panels according to their individual preferences). Supported refactoring op-
erations include ontology merging, moving axioms between ontologies, renaming
of multiple entities, and many others. Visualisation tools allow for interactive nav-

igation through ontological class hierarchies (both explicit and inferred).! It also

IFor example, class diagrams included later in this section were generated by the built-in tools
of Protege.

110 6.3. Cloud Sensor Ontology

supports debugging features — e.g., advanced explanation support aids in tracking
down inconsistencies.

The principles underpinning the design and implementation of the CSO re-
flected existing best practices and recommendations as to how sensor-enabled do-
mains should be modelled and structured; apart from the SSN ontology, which
was the main point of reference and inspiration in our research, other important
influencers were OntoSensor (Russomanno et al., 2005) and Ontonym (Stevenson
et al., 2009). Moreover, when developing the CSO, we also relied on established on-
tology engineering principles (Gruber, 1995, Uschold and Gruninger, 1996), such
as clarity, coherence, consistency, extensibility and adoption of naming conven-
tions. The following aspects of the CSO developmnt process can be highlighted in
this respect:

* The ontology design process has been a thorough and iterative process. To
ensure that the resulting ontology adequately represents the cloud platfrom
environment, it is essential that multiple target CAPs were investigated, so as
to extract generic commonalities between them. More specifically, the overall
duration of the ontology design process is approximately three years. At the
initial stage of the prototype development, the EXCLAIM target cloud plat-
form was VMWare CloudFoundry, and some experiments were conducted
with Red Hat OpenShift, IBM Bluemix, and MS Azure, and the latest tar-
get platform has become Heroku. By identifying commonalities between
these platforms it was possible to devise the upper level of the CSO, which
is expected to represent common concepts of CAPs in a generic platform-

independent manner.

* Ontologies are known to be shared and agreed between multiple people
(Gruber, 1993), thus minimising the amount of potential bias caused by an
individual’s personal commitments. Accordingly, several researchers have
contributed their knowledge to discussions leading to the development of
the CSO. In this respect, the CSO can be seen as a result of collaborative
efforts of researchers from South-East European Research Centre (SEERC),
CITY College Computer Science Department, The Department of Computer
Science of the University of Sheffield, and the ‘/RELATE ITN’ ! consortium.

When shifting focus from the conventional physical sensor devices of the Sen-
sor Web domain to the ‘logical software sensors’ of CAPs, many of the concepts de-
fined in existing sensor ontologies become irrelevant and may be omitted. Mainly,

lnttp://www.relate—itn.eu

http://www.relate-itn.eu

Chapter 6. Implementation details of the EXCLAIM framework 111

these are the concepts related to the physical placement and environment of sen-
sor devices. Additionally, since existing ontologies primarily target sensor obser-
vations, they do not include concepts related to situation assessment and adapta-
tions, and this was another challenge for us when developing the CSO.

As we have previously explained, the EXCLAIM framework is envisaged to
be part of the target cloud platform and act on its behalf when collecting metrics
from the applications and services. Below, we explain how and why various stake-
holders can access the CSO.

¢ CAP provider is the primary stake-holder responsible for maintaining and
further developing the ontology (i.e., mainly — its lower level). The provider
is expected to update the lower ontology with newly-added entities (i.e., ser-
vices, applications, and platform components) and remove outdated entities
concepts. This so-called ‘zoo keeping’ is not expected to be associated with

frequent changes, as the core CSO is seen as a relatively static vocabulary.

* Third-party service providers are responsible for their respective linked ex-
tensions (as explained in Section 5.3.1). They are not allowed to interfere
with the core ontology, but rather should design and maintain policies con-
cerning their provisioned add-on services by extending the core CSO. Fre-
quency of changes to linked extensions may vary, but typically is not ex-
pected to be high.

* CAP consumers are not expected to directly interfere with the ontology,
which always remains at the back end of the EXCLAIM framework. As
it frequently happens in the cloud paradigm, users are typically unaware
of what happens behind the scenes — they only interact with the front-end
Graphical User Interface (GUI) of the framework, and are unaware of specific

detail its internals.

Logically, CSO can be divided into an upper (i.e., platform-independent) and
a lower (i.e., platform-specific) levels. The former contains high-level concepts
which are potentially reusable across multiple CAPs, whereas the latter contains
domain-specific knowledge, such as actual cloud service names and their proper-

1 is concerned,

ties. Accordingly, as far as the principle of ontology completeness
the upper-level CSO is seen as a rather static and complete model, whereas the

lower level is expected to be more dynamic — that is, it is supposed to be extended

1Ontology completeness refers to an adopted and established practice to model a particular
domain as completely as possible. Primarily, it refers to the ‘horizontal” completeness — that is, in-
cluding all possible concepts at the same hierarchical level, as opposed to the ‘vertical’ completeness,
which refers to focussing on a single branch of an ontology.

112 6.3. Cloud Sensor Ontology

and adjusted to capture concepts relevant to a specific CAP, its add-on services

and internal organisation.

6.3.2 Upper level of the Cloud Sensor Ontology

The upper ontology includes 4 classes: Sensor, Property, Situation, and
ContextObject, which have been identified as common across multiple CAPs:

* Sensor (see Figure 6.2) — this is the main class used to describe sensors
within CAPs - that is, entities, which are expected to generate data for later
monitoring and analysing. These concepts represent common elements of
service-based cloud environments, are present in all surveyed CAPs. Instan-
tiations of this class are used by triplification connectors to construct RDF
streams. We can identify the following sensor entities, generic across vari-
ous CAPs:

- Service represents platform add-on services — main elemnts to be
monitored in the context of the EXCLAIM framework.

— User represents the CAP user, whose behaviour needs to be observed

to perform data analysis.

- Application represents user software deployed on the CAP and cou-

pled with add-on services.

- Component represents internal elements of services, applications or
CAPs themselves.

Service J l User } { Application ‘ [Component

Figure 6.2: Sensor class is used to model entities whose certain aspects have to
be measured and monitored.

* Property (see Figure 6.3) — this class describes various metrics of software
sensors to be observed and interpreted by the EXCLAIM framework. Similar
to the Sensor class, Property instances serve to construct RDF triples by

Chapter 6. Implementation details of the EXCLAIM framework 113

triplification connectors, which follow the intuitively comprehensible ‘Sen-
sor — Observes — Property’ pattern adopted by the SSN, OntoSensor and
Ontonym ontologies. This pattern facilitates conciseness and enables defin-
ing the upper concepts (i.e., Sensor, hasProperty, and Property) first,
and then extending them with required subclasses and sub-properties, thus
avoiding redundancy and repetitions. We can identify the following sensor

properties, generic across various CAPs and add-on services:

- Time represents an exact point of time, when an event occured.

- Duration represents a certain amount of time between two events —
e.g., between the moment when a process started and the moment when
it terminated.

- Size represents a measurable amount of resources (e.g., size of a data
base)

— Number represents a countable amount of resources (e.g., number of
client connections to a service).

— BooleanProperty indicates whether a particular sensor entity has a
certain feature or not — that is, a boolean value (e.g., a messaging queue

is backed up).

The Property class is related to Sensor through the hasProperty ob-
ject property, which is further sub-classed into hasTime, hasDuration,

hasSize, hasNumber, and hasBooleanProperty.

Property
: | :

{ Time } { Number } { Size] [Duration J { Feature

Figure 6.3: Property class represents characteristics of sensors which have to be
measured and monitored.

* ContextObject (see Figure 6.4) — this class serves to model all other entities
within CAPs, which represent the context of the managed element. Instances
of this class never appear on RDF streams (i.e., are not used by triplification
connectors), but are used to construct the static part of the analysis compo-
nent — that is, SWRL policies and C-SPARQL queries (whenever there is a

114 6.3. Cloud Sensor Ontology

need to match streaming data with static data, which may also be defined
using the ContextObject class). Accordingly, ContextObject instances
are primarily used by the C-SPARQL and OWL/SWRL engines, but may
also act as sensors in their own right.! We can identify the following context

objects, generic across various CAPs:
- PlatformObject represents an entity belonging to the cloud platform
itself.
- UserObject represents an entity belonging to the CAP user.

- ApplicationObject represents an entity belonging to software de-
ployed on the cloud platform.

- ServiceObject represents an entity belonging to add-on services.

|
[ContextObject]

/ / ‘\\
PlatformObject ‘ / : ‘

[UserObject } ‘ ApplicationObje

ServiceObject

ct

Figure 6.4: ContextObject class contains elements required to define the static
knowledge.

* Situation (see Figure 6.5) — this class is intended to be used only by the
OWL/SWRL reasoning engine to distinguish between ordinary (albeit poten-
tially critical) situations and situations, which are indeed critical and require
certain responsive actions to be taken. Accordingly two main sub-clases con-
stitute this class: We can identify the following context objects, generic across

various CAPs:

- OrdinarySituation represents a situation, when collected observa-

tions are not critical and do not require responsive actions.

1OWL allows multiple inheretence, and thereby individuals may belong to ContextObject
and Sensor classes.

Chapter 6. Implementation details of the EXCLAIM framework 115

- CriticalSituation represents a situation, which may threat the sta-
bility of the system or individual deployed applications, and thereofre
has to be reported and acted upon.

|

Situation

CriticalSituati OrdinarySituati
on on

Figure 6.5: Situation class is used to classify currently observed situation and
confirm that a potentially critical situation is indeed critical.

The described classes collectively constitute the upper-level CSO, which is sup-
posed to be fairly static. Nevertheless, we also expect occasional changes and
modifications — e.g., introduction of a cluster of add-on services by multiple CAPs.
For example, nowadays there is an increasing demand for various IT services re-
lated to the emerging IoT, and CAPs are likely to start offering such services in
the near future. As a result, a corresponding class will need to be added to the
CSO by the CAP providers.

6.3.3 Lower level of the Cloud Sensor Ontology: Heroku-specific con-
cepts

The lower level of the CSO represents platform-specific aspects of the target cloud
environment, which are intrinsic to a particular CAP. In the context of the present
research work we focus on Heroku, and this section briefs the reader on some of
the add-on services offered by the Heroku marketplace — this material will help
to understand the next chapter, where we present a case study focusing on the
Heroku platform.

Please note, here we provide deliberately simplified class diagrams, which
only include concepts relevant to the use case scenario to be explained in the next
chapter. For the full diagram of the CSO, including the upper and lower levels,
please refer to Appendix B.

* The Sensor class (see Figure 6.6) is extended with HerokuService, He—

rokuDatabaseService, and HerokuPostgresService. These classes

116 6.3. Cloud Sensor Ontology

represent Heroku’s all add-on services, storage services, and the PostgreSQL
storage service respectively. The Component also includes classes Plat-
formComponent and DatabaseServer.

PlatformCompone { HerokuService]
nt
|

[DatabaseServer] HerokuDatabaseS
ervice

HerokuPostgresS
ervice

Figure 6.6: Heroku-specific concepts belonging to the Sensor class.

¢ The Property class (see Figure 6.7) is extended with the properties Number-
OfConnections and DatabaseSize.

Y Y
(@ poeommrs |
lons

T

NumberOfConnect ‘ ’ NumberOfConnect ’ | NumberOfConnect | ‘ TotalDatabaseSi ‘

ionsMinor ionsModerate ionsCritical ze

TotalDatabaseSi
zeCritical

Figure 6.7: Heroku-specific concepts belonging to the Property class.

* The ContextObject class (see Figure 6.8) is extended with the Database-
Server class, which is used to define the static background knowledge of
the SWRL reasoner, as explained in the next Chapter.

Chapter 6. Implementation details of the EXCLAIM framework 117

ContextObject

|
\ PlatformObject]
I

Y

{ DatabaseServer ‘

Figure 6.8: ContextObject class contains elements required to define the static
knowledge.

¢ The situation class (see Figure 6.9) is extended with two critical situations
—ie., TotalDatabaseSizeCritical and NumberOfConnectionsCriti-

cal, which serve to classify observations as critical.

I
CriticalSituati OrdinarySituati
on on
TotalDatabaseSi NumberOfConnect
zeCritical ionsCritical

Figure 6.9: Situation class is used to classify currently observed situation and
confirm that a potentially critical situation is indeed critical.

6.3.4 SWRL policies and linked extensions

Besides the core CSO, the knowledge base of the EXCLAIM framework is equ-
ipped with SWRL detection policies, which determine whether particular (poten-
tially critical) observations represent an indeed critical situation. These policies
typically concern individual add-on services, and are expected to be developed

and maintained by service providers themselves. This separation of concerns be-

6.4. Opportunities and requirements for cross-platform deployment of the
118 EXCLAIM framework

tween the CAP provider and third-party service providers is achieved by apply-
ing Linked Data principles and breaking down the set of policies into multiple
distributed extensions deployed on the Web.

Typically, every linked policy is represented with three different SWRL rules,
which correspond to the criticality level applied by the application owner, when
profiling and deploying software on a CAP. That is, after the application has been
deployed on the platform, the framework is able to parse the associated profile to
decide which policies have to be applied in the current circumstances. This allows
the framework to load only those SWRL rules, which are required in the given
context, and avoid unnecessary invocations of the reasoner for a much larger set
of rules.

Such a modular approach is underpinned by the core feature of Linked Data
— unique identification of resources on the Web, which enables importing of dis-
tributed Web documents at run-time by crawling their URIs.

6.4 Opportunities and requirements for cross-platform de-
ployment of the EXCLAIM framework

The EXCLAIM framework is designed and implemented to be re-usable and appli-
cable across a wide range of service-based cloud platforms. As outlined in Chapter
2.2, among the whole PaaS market we have identified 24 CAPs, which are seen as a
potential application scope for our proposed EXCLAIM framework. Therefore, the
design principles underpinning the implementation of the EXCLAIM framework
are based on the idea of making the framework as much platform-independent
as possible, thus minimising (and, ideally, completely eliminating) the amount of
code modifications, associated with the process of deploying the framework.

To support this claim of cross-platform applicability of the EXCLAIM frame-
work we now describe and discuss the main steps required to be taken to deploy
the framework on a new cloud platform. We remind the reader that in describing
the EXCLAIM framework we take the perspective of the cloud platform provider
and therefore assume being granted access to the standard metrics of the provi-
sioned add-on services via API end-points.

One of the main advantages of the EXCLAIM framework is its non-intrusive
approach to data collection. It targets at collecting data by means of already exist-
ing probes, and therefore does not require intrusive code modifications. It means
that as long as the left side of the MAPE loop (Monitoring and Analysis) is con-
cerned, EXCLAIM users (i.e., CAP providers) are exempted from a potentially

effort-intensive routine of ‘inserting” probes into the source code. Rather, the data

Chapter 6. Implementation details of the EXCLAIM framework 119

is extracted and collected using standard metrics across add-on services belonging
to users” applications — access to these metrics is provisioned via the management
API of particular add-on services.

What needs to be implemented, however, are the connectors — software com-
ponents responsible for the triplification of the extracted raw values. At its cur-
rent state, the EXCLAIM framework relies on hand-coded mappings between the
raw data and its RDF representation using the CSO vocabulary. However, this
challenge can be minimised — that is, the triplification connectors currently imple-
mented for Heroku can be potentially re-used for similar add-on services existing
in the target CAP. Furthermore, as the collection of already implemented connec-
tors will grow, covering more and more CAPs and services, the task of implement-
ing a connector will be replaced by the trivial task of picking the right connector
from the already existing ones. To a certain extent, this process can be automated
such that the CAP provider will only need to declaratively map between add-on
service raw data value and the corresponding CSO terms.

Another software element of the current version of the EXCLAIM framework
prototype, which might need to be changed, concerns the messaging queue com-
ponent. At its current version, the framework uses the RabbitMQ add-on provi-
sioned by the Heroku marketplace, it will still be able to use these queues even
after it has been deployed on a new CAP. However, using a local messaging ser-
vice is expected to minimise the unnecessary network latency, which might occur
due to using an external (relatively remote) service. Accordingly, the target CAP
provider might want to change the respective URLs pointing to a particular Rab-
bitMQ host server.!

As far as the knowledge base (i.e., the CSO and SWRL rules) of the EXCLAIM
framework is concerned in the context of cross-platform deployment, there are
certain changes which need to be made. As we have previously seen, the CSO
implements a two-tier architecture — i.e., the upper-level ontology is platform-
independent and models the common generic features of CAPs, whereas the
lower-level ontology further extends it with platform-specific concepts of a par-
ticular CAP. For example, the current version of the lower-level CSO describes the
Heroku ecosystem.

Accordingly, the cross-platform deployment of the EXCLAIM framework only
requires introducing changes to this lower level of the CSO so as to reflect the
environment of the target CAP. In particular, the specific concepts belonging to the
target CAP and describing its internal organisation (e.g., existing add-on services

Please note again that no code modification is required, as the RabbitMQ client library is
expected to work with any messaging queue service implementing the AMQP.

120 6.5. Summary

and applications, their properties, CAP components, context objects, etc.) have
to be added. Consequently, newly-added ontological classes and properties will
enable definition of RDF streams, C-SPARQL queries, and SWRL policies.

To sum up, the cross-platform deployment of the EXCLAIM framework is seen
as a relatively straight-forward task, not involving considerable modifications and
adjustments. The main challenge in these circumstances is to correctly capture
the specific details of the target CAP and model them in the lower-level CSO, and
further extend the knowledge base with corresponding RDF streams, C-SPARQL
queries and SWRL policies. Based on these newly-added terms it is also required
to implement corresponding triplification connectors, which would translate raw
data to the RDF format.

6.5 Summary

In this chapter, we explained the actual implementation details of the EXCLAIM
framework. The chapter builds upon the material of Chapter 5, and briefs the
reader on technical aspects of the framework, which are also required to under-
stand the case study and experiments to be descibed in the next chapter. More
specifically, the chapter explained how the main three components of the frame-
work — namely, the triplification engine, the C-SPARQL querying engine, and the
OWL/SWRL reasoning engine — are implemented and utilise the CSO. A separate
section is dedicated to the CSO, which describes its main concepts, constituting
its upper and lower levels. In the next chapter, we will explain in more detail how
the CSO is actually used within the CSO by demonstrating a case study focusing
on the Heroku add-on services.

Chapter 7

Proof of concept: monitoring and

analysis of Heroku add-on
services with the EXCLAIM
framework

This chapter considers a case study, which involves a Heroku-based application,
which is coupled with 5 add-on services offered by this platform marketplace.
The use case scenario s descibed from two perspectives of the key stake-holders
- namely, the platfrom provider and the consumer. With the use case scenario
explained, we will be able to describe each of the main three components of the
framework — namely, the triplification, querying and reasoning engines. In all
three of these components, a key role belongs to the CSO model, which provides
vocabulary to define RDF triple streams, continuous SPARQL queries, and SWRL
rules respectively. Accordingly, the use case demonstrates how raw data is first
transformed into RDF, then queried with C-SPARQL queries, and eventually anal-
ysed by the OWL/SWRL reasoning engine.

To demonstrate the potential of the framework to scale, we also include a de-
scription of using an existing Big Data processing platform — i.e., IBM Streams —
to create a parallelised deployment of the framework. The chapter presents exper-
imental results of the framework performance with respect to the presented case
study.

121

7.1. Case study: Destinator — an application for sharing destinations on
122 Facebook

7.1 Case study: Destinator — an application for sharing des-

tinations on Facebook

To describe the case, we first need to familiarise the reader with a cloud-hosted
application, which served to conduct the case study and will help to understand
how the EXCLAIM framework functions. The presented use case scenario will
enable us to demonstrate the viability of the whole presented approach, run real-
life experiments and benchmark the performance of the EXCLAIM framework.

[Destinator x

€« - € [Ylocalhost:5000 adwyy @ =

destinator.

Share your destinations!

Add your destination

FROM Thessaloniki 1
T0 Shefield 1
DATE | ADD L

Your destinations

st N v o
ju] TO

USER FROM DATE
114 Rustsm Dautov Zakenograd, Russis Zel?odolsk, Tetarstan, Russia Nov 1, 2014 12:00:00 AM
113 Rustem Dautov Berlin, Germany Alabama, New York Nov 26, 2014 12:00:00 AM
112 Rustem Dautov London, United Kingdom Istanbul, Turkey Jan 31, 2015 12:00:00 AM
111 Rustsm Daure: Chelsea, Newham, United Rub?(Bsrcslons) Nov 27, 2014 12:00:00 AM

Kingdem ()

110 Rustem Dautov Moscaw, Russia Lisbon, Portugal Nov 21, 2014 12:00:00 AM
109 Rustem Dautov Thessalon?i Kharkoy, Ukraine Nov 21, 2014 12:00:00 AM
108 Rustsm Daucov Mescow, Russia Rome, Tealy Nov 7, 2014 12:00:00 AM
107 Rustem Dautov Kizv Kharkov, Ukraine Nov 26, 2014 12:00:00 AM
106 Rustsm Dautov Kz Kharkov, Ukraine Nov 6, 2014 12:00:00 AM
105 Rustem Dautov Kharkov, Ukrzine Thessalon?i Nov 1, 2014 12:00:00 AM

Shewing 1 to 10 of 22 entries | 12 3 Nem Last

Search for other people’s destinations

and | SEARCH I

Existing destinations

T — - p——

] USER FROM TO DATE
No data available in table

Shawing 0 to 0 of 0 entries ‘ | ‘

destinator.

CONTACT INFO

Phone: +30 6945069303

Figure 7.1: Destinator — a Heroku-based application for sharing destinations on
Facebook.

For the requirements of this research work, we developed a Heroku applica-

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 123

tion for Facebook called Destinator! (see Figure 7.1). Facebook users can access
the application as a Facebook canvas application? or directly on Heroku®. The
idea behind it is simple — from time to time, different people ask through their so-
cial networks if someone is travelling from City A to City B in the next few days,
weeks, or months. Typically, this happens when they want to send some personal
items or documents, which they cannot post otherwise for various reasons. Post-
ing such requests in social networks is, however, not very efficient, mainly because
the chances to find someone travelling to the required destinations on the required
dates among the limited audience of friends are not that high. Accordingly, the
idea of Destinator is to let users a) share their destinations (i.e., where from, where
to, and when), and b) search for people who might be travelling somewhere soon.
For example, someone urgently needs to send documents to a friend of him/her
from Thessaloniki to Athens tomorrow, but cannot travel him /herself, so he/she
needs to search for someone else who is taking this trip tomorrow and has already
shared this trip with Destinator. The application will search for people travelling
from Thessaloniki to Athens, apply filtering based on the specified time frame
and eventually fetch the list of potential travellers to the user. An attractive fea-
ture of Destinator is its ability to ‘crawl” the so-called “social graph” — a graph-like
structure used to represent social connections within Facebook — in order to sort
the result set of potential travellers with respect to the degree of social connection
to the user. In other words, immediate friends will be displayed first, friends of
friends will be displayed second, friends of friends of friends will be displayed
third, and so on. This feature serves to help the user to approach a potential
traveller when asking to deliver an item for him/her — that is, the user can, for
example, ask his/her friend to approach the potential traveller on his/her behalf.

When implementing this application, one of the goals was to fully utilise the
potential of Heroku and its add-on service marketplace. Our intention was to use
existing services to save time and effort as much as possible. As a result, Destinator
is connected with 5 add-on services provided by the Heroku marketplace (see
Figure 7.2).

One of the main functionalities of Destinator is the ability to save and store
users’ destinations. The list of destinations is provided by Facebook API and dis-

played to the user as a drop-down list, after he/she types in first three characters

IEven though Destinator was developed and deployed from scratch in less than a month by
efforts of just one software developer, it is nevertheless a publicly-available, working application
and has the potential to be further enhanced and commercially exploited. The case study based on
this application and presented in this chapter meets our requirements of evaluating the viability of
the presented approach, as well as benchmarking its performance.

2https ://apps.facebook.com/209625285911924/

Shttp://destinator.herokuapp.com/

https://apps.facebook.com/209625285911924/
http://destinator.herokuapp.com/

7.1. Case study: Destinator — an application for sharing destinations on
124 Facebook

«&» PostgreSQL database for storing users' Y

> destinations. Monitored metrics - number of H
simulateneous client connections, storage

capacity (rows or MB) '

PostgreSQL — H

<> PostgreSQL Backup service for the main
PostgeSQL dat?base. Monitored metrics -
boolean value if a backup process is currently '
running H
' Postgres Backup

Facebook ' CACHE

App HerllfTame ' MemCached service for storing search results
H —> (returned by the Facebook Search API).
Destinator Monitored metrics - memeory size (in MB) '

User H
Browser : MemCached

N

LogEntries for logging all activities taking place
within the application. Monitored metrics - size '
of the alerts sent to the user (via email or SMS)

H LogEntries

IronWorker service for persisting destinations to

the DB via message queue. Monitored metrics -

number of concurrent tasks, number of '

~ 1 scheduled jobs, total worker hours.
< ronWorker

v

Figure 7.2: Architecture of the Destinator application.

of a place he will be travelling to/from. Accordingly, every time the user starts
typing a destination name, a request is sent to Facebook API, which then replies
with a list of destinations in JSON format. To minimise the number of network
calls to Facebook API, we integrated a caching mechanism provided by Heroku’s
MemCached add-on service. It stores search results in the form of key-value string
entries, where key is a search sequence, and value is a respective JSON response
from Facebook API with a list of destinations, whose names start with the given
search sequence. As a result, every time the user types in a new search string, Des-
tinator first checks its local cache storage. In case the local cache storage does not
contain this key yet, the request is forwarded to Facebook API, and the response
is added to the local cache.

After users choose outbound and inbound destinations and a travelling date,
this information is persisted to the PostgreSQL, which is one of the several enter-
prise-level storage services offered by Heroku. To avoid multiple simultaneous
connections to the database, the storage functionality is decoupled from the main
application by means of a messaging queue and worker processes attached to it.
Destinator generates a payload with information about the destination (where to,
where from, when, user metadata, etc.) and sends this task to the IronWorker
messaging queue service. Worker processes then pick up incoming messages and

persist data to the PostgreSQL service. Thus, persistence is done in a non-blocking

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 125

manner, and is not a bottleneck of the application. The PostgreSQL service is also
coupled with the PGBackups service, which serves to back up all the data in the
database on a daily basis.

The last but not the least connected add-on is the LogEntries service for log-
ging. Since logging is nowadays recognised as an integral part of any industrial
application, it was important to have this functionality so as to facilitate debug-
ging, testing and notification routines.

Table 7.1 below summarises the above-mentioned Heroku add-on services. As
it is seen from the table, each of the services is associated with certain measured
metrics. These metrics represent resource quotas, which are provisioned to the
user based on the subscription plan, and their consumption is measured by Her-
oku. For example, the PostgreSQL data storage service offers 14 subscription
plans ranging from a completely free account (which is typically supposed to be
used for trial and experimenting purposes) to a most expensive, full-blown sub-
scription (targeted at creating large scale, enterprise-level application systems).
Accordingly, under the free plan users can store up to 10,000 rows in the database,
retain up to 2 backups, and establish up to 20 simultaneous client connections,
whereas under the most expensive subscription plan users are provisioned with
up to 1 TB of disk space and 120 GB of Random-Access Memory (RAM), up to 50
stored backups and up to 500 simultaneous client connections. Essentially, these
subscription plans and associated resource constraints can be seen as SLAs be-
tween service subscribers and providers — for a given price paid by the customers,
service providers are obliged to provide them with a corresponding service value.
Similar pricing schemes and SLAs exist for all other add-on services offered by
Heroku. Most of these metrics can be ‘sensed” using standard APIs and entry

points, and do not need instrumenting the source code.

Table 7.1: Five add-on services connected to Destinator, and their monitored as-
pects.

Monitored aspects and
Add-on service respective threshold Sensing mechanism

values

7.1. Case study: Destinator — an application for sharing destinations on

126

Facebook

Heroku PostgreSQL1 is an SQL
database service run by Heroku that is
provisioned and managed as an add-
on. Heroku PostgreSQL is accessible
from any language with a PostgreSQL
driver including all languages and
frameworks supported by Heroku:
Java, Ruby, Python, Scala, Play, Node.js
and Clojure. In addition to a variety of
management commands available via
the Heroku Command Line Interface
(CLI), Heroku PostgreSQL features a
web dashboard, the ability to create dat-
aclips and several additional services
on top of a fully managed database
service.

Number of simultaneous
client connections (up to
20) & storage capacity
(up to 10,000 rows)

The
ceived by

data can be re-
running
an SQL query on
table
pg_stat_activity,

an auxiliary

which contains real time
statistical ~ information
about the PostgreSQL
database, including the
current number of client
total

storage utilisation of the

connections and

database.

PGBackups® is Heroku’s database
backup solution for the PostgreSQL
database. It can capture and restore
backups from users’ Heroku Post-
greSQL databases for an application,
import data from an existing database
backup, and export backups for off-site

storage.

Boolean value indicating
whether the backup pro-
cess is currently running
& number of backups
(up to 2 daily backups)

This data can be ob-
tained by filtering the
SQL query

regarding the

results
cur-
rent number of client
connections to the
The filtering
is based on the field
application_name.
PGBackup
tions are marked with

database.

connec-

‘pgbackups’.

IronWorker®> is a massively scalable
task queue service that makes it easy to
offload front end tasks, run background
jobs, and process many tasks at once. It
can also function as a cron-in-the-cloud
service, running tasks on a pre-defined
schedule.

Number of concurrent
tasks (up to 5 tasks)
& number of scheduled
jobs (up to 5 jobs) & to-
tal worker time (up to 10
worker hours)

This data can be ob-
tained by executing a
method provided by
the IronWorker
library.

client

1https ://addons.heroku.com/heroku-postgresql/
thtps ://addons.heroku.com/pgbackups/
3https ://addons.heroku.com/iron_worker/

https://addons.heroku.com/heroku-postgresql/
https://addons.heroku.com/pgbackups/
https://addons.heroku.com/iron_worker/

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework

127

Memcached Cloud! is a fully-managed
service for running Memcached in a
reliable and fail-safe manner. Users’
datasets are constantly replicated, so if
a node fails, an auto-switchover mech-
anism guarantees data is served with-
Memcached Cloud

provides various data persistence op-

out interruption.

tions, as well as remote backups for
A Mem-
cached bucket is created in seconds and

disaster recovery purposes.

from that moment on, all operations
are fully-automated. The service com-
pletely frees developers from dealing
with nodes, clusters, server lists, scal-
ing and failure recovery, while guaran-
teeing no data loss.

Storage capacity (up to
30 megabyte (MB))

This data can be ob-
tained by executing a
method provided by
the Memcached
library.

client

Logentries2 is a simple, intelligent, in-
tuitive and powerful solution for log
management with out-of-the-box built-
in Heroku specific alerting. Logentries
presents log events from Heroku ap-
plications through an easy-to-use Web
GUI and integrates directly with ap-
plication performance monitoring tools

Total size of email alerts
and notifications sent to
users (up to 5 GB per
month)

This data can be ob-
tained by executing a
method provided by the
Logentries client library.

like New Relic.
fers powerful graphic dashboard sup-

Logentries also of-

port for quick and easy visual represen-
tation of logged data.

Heroku itself measures and bills its customers for using add-on services. How-
ever, customers are not notified in advance when the resource consumption is
reaching ‘danger levels’ — for example, too many simultaneous client connections
to the PostgreSQL service. This can result in further connection requests being un-
expectedly rejected. Accordingly, our goal in this case study was to equip services
with sensing capabilities, so that we, as application providers, can be notified in
advance whenever a critical threshold is approaching, and thereby be enabled to
take appropriate pre-emptive actions — for example, by closing down low-priority
idle connections or by automatically upgrading the Heroku subscription plan.

https://addons.heroku.com/memcachedcloud
2https://addons.heroku.com/logentries/

https://addons.heroku.com/memcachedcloud
https://addons.heroku.com/logentries/

128 7.2. Demonstrating monitoring and analysis capabilities

7.2 Demonstrating monitoring and analysis capabilities

Having introduced and explained Destinator — the target Heroku-based appli-
cation to be monitored by the EXCLAIM framework — we now proceed with a
case study, aiming to demonstrate the viability of the approach and to showcase
multi-faceted advantages of the proposed approach. The demonstration is struc-
tured around the two main roles (i.e., perspectives) concerned with monitoring

and management of service-based applications deployed on the cloud platform.

7.2.1 Cloud Application Platform provider’s perspective

Primarily, the EXCLAIM framework is intended to support and enhance the CAP
provider’s capabilities for platform governance, and therefore the provider is seen
as the main stakeholder. We have already raised several issues the CAP provider
might be concerned with. Among other things, one of the key challenges in the
presence of numerous virtual tenants simultaneously accessing a common shared
pool of cloud resources is to ensure that the amount of the underlying physical
resources is sufficient. This underpins stable and undisrupted operation of the
cloud services.

Given the motivation of the provider to minimise the amount of idle physical
resources (for economic and ecological reasons), it is typically expected that phys-
ical servers are turned on and off dynamically in response to the ever-changing
demands of the cloud platform consumers. In these circumstances, it is crucial for
the cloud provider to be provisioned with a most recent overview of the overall
resource consumption resulting from resource consumption of individual tenants.

More specifically, let us focus on Heroku’s PostgreSQL data storage service,
used by Destinator. When subscribing to this service, each subscriber is allocated
a personal virtual space on a physical database server. Heroku aims at reduc-
ing operational costs by minimising the total number of physical database server
instances running at the same time. This is typically achieved by increasing the
‘tenant density’ (i.e., number of virtual tenants on each of the physical servers),
and, following the principle of elasticity, launching additional database servers
only in case the existing capacity is not enough. Accordingly, the CAP provider
needs to measure disk space utilisation of individual virtual tenants with respect
to the total available physical space in order to launch additional server if needed
or ‘merge’ several already running, but idle servers.

First, the framework needs to measure disk space utilised by an individual
instance of the PostgreSQL service couple with Destinator. The next step is to
sum up the collected individual values to get an overall occupied amount of Post-

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 129

greSQL disk space by Destinator. Finally, this value needs to be evaluated against
the rest of the disk space occupied by other instances of PostgreSQL connected
with other applications (i.e., not Destinator) on Heroku. Thus, the framework will
be in a position to decide whether there is still enough space for the PostgreSQL
service or not.

Below, we illustrate how this kind of use case scenarios is handled by the EX-
CLAIM framework to support cloud platform self-governance. The explanation
is aligned with the three main steps, through which raw collected data is trans-
formed as it passes through the EXCLAIM framework.

Triplification

The code snippet below (Listing 7.1) represents a stream, associated with the
particular user instance of Destinator, to which all related RDF triples are sent.
The snippet demonstrates how the disk space occupied by a PostgreSQL instance
postgres-service-10 changes with the time from 7,000 rows to 9,000 rows.

Listing 7.1: RDF triples on the stream indicate database space, occupied by an
individual service.

cso:postgres—service-10 rdf:type cso: HerokuPostgresService
cso:postgres—-service-10 cso:hasDatabaseSize cso:database-size-122
cso:database-size-122 rdf:type cso:DatabaseSize

cso:database-size-122 cso:hasValue "7000""xsd:int

cso:postgres—service-10 rdf:type cso: HerokuPostgresService
cso:postgres-service-10 cso:hasDatabaseSize cso:database-size-122
cso:database-size-122 rdf:type cso:DatabaseSize

cso:database-size-122 cso:hasValue "7500""xsd:int

cso:postgres—service-10 rdf:type cso: HerokuPostgresService
cso:postgres—-service-10 cso:hasDatabaseSize cso:database-size-122
cso:database-size-122 rdf:type cso:DatabaseSize

cso:database-size-122 cso:hasValue "8000""xsd:int

cso:postgres—service-10 rdf:type cso: HerokuPostgresService
cso:postgres—-service-10 cso:hasDatabaseSize cso:database-size-122
cso:database-size-122 rdf:type cso:DatabaseSize

cso:database-size-122 cso:hasValue "8500""xsd:int

cso:postgres—-service-10 rdf:type cso: HerokuPostgresService
cso:postgres—service—-10 cso:hasDatabaseSize cso:database-size-122
cso:database-size-122 rdf:type cso:DatabaseSize

cso:database-size-122 cso:hasValue "9000""xsd:int

130 7.2. Demonstrating monitoring and analysis capabilities

C-SPARQL querying

The next step is extract triples representing disk space occupation from the RDF
stream. This task can be achieved by registering the following C-SPARQL query
(Listing 7.2). The query only fetches real values, which are greater than zero,
thus filtering out values coming from applications, which are staying idle, and
thereofre should not be taken into consideration. The resuts of the query are sent
forward to CriticalStream, which serves to deliver potentially critical triples
to the OWL/SWRL reasoning engine.

Listing 7.2: A C-SPARQL query fetching the current value of the disk space utili-
sation by the HerokuPostgres service.

REGISTER STREAM CriticalStream
AS PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
PREFIX cso: <http://seerc.org/ontology.owl#>
CONSTRUCT { 7?service rdf:type cso:HerokuPostgresService .
?service cso:hasDatabaseSize ?size .
?size rdf:type cso:DatabaseSize .
?size cso:hasValue ?value }
FROM STREAM <http://seerc.org/rdf/destinator-stream/> [RANGE 1lm STEP 1s]
WHERE { ?service rdf:type cso:HerokuPostgresService .
?service cso:hasDatabaseSize ?size .
?size rdf:type cso:DatabaseSize .
?size cso:hasValue ?value .
?value > 0 }
AGGREGATE { (?totalvalue, SUM, {?value})
FILTER (?totalvalue > 1000000) }

OWL/SWRL reasoning

At the previous step, we assumed that all instances of Destinator (and therefore all
instances of the HerokuPostgres service associated with it) send its measured val-
ues to a dedicated data stream (i.e., in the examples above —http://seerc.org/-
rdf/destinator-stream/). In these circumstances, an individual C-SPARQL
query registered with this stream can only process values coming from this par-
ticular application and is incapable of providing a more global view on the overall
disk space consumption by the HerokuPostgres service connected to other Heroku
applications. In these circumstances, it is important to gather information coming
from various data streams in one place, and see if the overall utilisation is still
within limits. The SWRL reasoning engine is intended to play the role of such
a central component. In this sense, it is akin to a central component of a sensor

network, which collects data coming from distributed sources.

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 131

All values appearing on CriticalStream are added to the CSO by the EX-
CLAIM framework, and the reasoning process is initiated. Listing 7.3 depicts
an SWRL policy which sums up the total amount of disk space occupied (for
demonstration purposes we assume the presence of only five applications using

the HerokuPostgres service).!

Listing 7.3: New SWRL rule detecting situations when the overall database size
dedicated to the HerokuPostgres service (shared by five different applications) is
critical.

A

HerokuPostgresService (?serl) ~ HerokuPostgresService (?ser2)

N

HerokuPostgresService (?ser3) » HerokuPostgresService (?serd)

A

HerokuPostgresService (?ser5)

A

DatabaseSize (?sizel) ~ DatabaseSize(?size2) ~ DatabaseSize(?size3)

A

DatabaseSize (?sized) ~ DatabaseSize (?sizeb)

A

hasDatabasSize (?serl, ?sizel) ~ hasDatabasSize (?serl, ?sizel)

N

hasDatabasSize (?serl, ?sizel) ~ hasDatabasSize (?serl, ?sizel)

hasDatabasSize (?serl, ?sizel) *

hasValue (?sizel, ?v1l) »~ hasValue(?size2, ?v2) ”~ hasValue(?size3, ?v3)
hasValue (?sized4, ?v4) ”~ hasValue(?size5, ?v5) *

swrlb:greaterThan (1000000000, op:numeric-add(?vl, ?v2, ?v3, ?v4, ?v5)) —>

A~

CriticalTotalDatabaseSize (?serl) » CriticalTotalDatabaseSize (?ser2)

CriticalTotalDatabaseSize (?ser3) » CriticalTotalDatabaseSize (?serd)

CriticalTotalDatabaseSize (?serb)

With SWRL it is also possible to combine dynamic values coming from the
monitoring stream with a more static facts. We can modify the previous SWRL
example with an assumption that the total amount of disk space occupied by
HerokuPostgres services being greater than the dangerous threshold is only criti-
cal if there are no additional physical servers available to the CAP provider. Other-
wise, it would be possible to elastically provision extra storage using the additional
server. To represent this kind of policy with SWRL we assume the presence of a
ContextObject instance PhysicalServer in the CSO - this instance does not
come from the monitored stream, but is part of the background static knowledge.
Accordingly, the modified SWRL rules is depicted in Listing 7.4.

Listing 7.4: A critical situation is detected only when there does not exist an addi-

tonal server.

N

HerokuPostgresService (?serl) ” HerokuPostgresService (?ser?2)

A

HerokuPostgresService (?ser3) ”~ HerokuPostgresService (?serd)

A

HerokuPostgresService (?ser))

IPlease note how we make use of the SWRL built-in operators op:numeric-add and
swrlb:greaterThan, which are used to calculate a sum of several values and check if it is greater
than some other value respectively. The number 1,000,000,000 indicatively represents a dangerous
threshold for the HerokuPostgres service.

132 7.2. Demonstrating monitoring and analysis capabilities

A

DatabaseSize (?sizel) ~ DatabaseSize(?size2) ~ DatabaseSize(?size3)

A

DatabaseSize (?sized) ~ DatabaseSize(?sizeb)

S

hasDatabasSize (?serl, ?sizel) ~ hasDatabasSize (?serl, ?sizel)

A

hasDatabasSize (?serl, ?sizel) ”~ hasDatabasSize (?serl, ?sizel)

N

hasDatabasSize (?serl, ?sizel)

A

hasValue (?sizel, ?v1l) »~ hasValue(?size2, ?v2) ~ hasValue(?size3, ?v3)
hasValue (?sized4, ?v4) ~ hasValue(?size5, ?v5) *
swrlb:greaterThan (1000000000, op:numeric-add(?vl, °?v2, ?v3, ?v4, ?v5)) *

A

DatabaseServer (?dbs) exists (?dbs, false) ->

A

CriticalTotalDatabaseSize (?serl) » CriticalTotalDatabaseSize (?ser2)

CriticalTotalDatabaseSize (?ser3) ~ CriticalTotalDatabaseSize (?serd)

CriticalTotalDatabaseSize (?serb)

7.2.2 Cloud Application Platform consumer’s perspective

The second part of the case study is intended to demonstrate the consumer’s
perspective on the monitoring process and how CAP users can benefit from using
the EXCLAIM framework.

With several samples, we will illustrate how the framework is able to detect an
excessive number of client connections to Heroku’s PostgreSQL database service.

Heroku's pricing model offers customers a range of subscription plans, each
associated with certain service levels —i.e., amount of metered and billed resources
available to the user. In particular, a typical metric relating to data storage services
is the number of simultaneous client connections. However, customers are not
currently notified in advance when the number of active connections is reaching
‘danger levels’, and this can result in further connection requests being unexpect-
edly rejected. Accordingly, our goal in this case study was to equip data storage
services with sensing capabilities, so that application providers can be notified in
advance whenever a threshold is approaching, allowing them to take appropriate
pre-emptive actions — for example, by closing down low-priority connections or
by automatically upgrading their subscription plan.

Using our framework, we manually annotated sensory data (in this case, the
current pool of client connections and the current state of the database backup
process) with semantic descriptions defined in the CSO to generate a homoge-
neous data representation, and then streamed these RDF values to the C-SPARQL
querying engine.! The maximum number of client connections for the initial sub-
scription plan is limited to 20, and our goal was to detect situations when this
number increases and approaches the danger level.

ITo extract these metrics from the PostgreSQL service we relied on standard mechanisms offered
by this database. See Table 7.1 for details of how this can be done.

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 133

Services and SBAs can be classified with respect to their criticality level (i.e.,
minor, moderate, and critical). Destinator, being a data-intensive application heav-
ily depending on the underlying data storage service PostgreSQL, is therefore can
be classified as critical in terms of its data storage service, and corresponding di-
agnosis policies have to be applied in this respect. Accordingly, as the critical level
threshold we defined the value of database client connections to be 15 — it means
that the EXCLAIM framework has to be particularly sensitive to Destinator, and
detect potential critical situations well before the number of connections reaches
20 so as to notify the customer in advance and ensure application stability.

The following RDF stream in Listing 7.5 represents a situation when the num-
ber of client connections increased from 12 to 15, and no backup process is running
— this is important because the backup process establishes two client connections
to the database, but typically lasts for less than a minute, and therefore should not
be considered as a threat.

Listing 7.5: RDF triples on the stream indicate an increase in the number of client
connections to the PostgreSQL service from 12 to 15 connections with no backup

process running.

cso:postgres—service-10 rdf:type cso: HerokuPostgresService

cso:postgres—-service—-10 cso:hasNumberOfConnections cso:number-of-
connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "12""xsd:int

cso:postgres-service-10 rdf:type cso: HerokuPostgresService

cso:postgres-service-10 cso:hasNumberOfConnections cso:number-of-
connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "13"""xsd:int

cso:postgres-service—-10 rdf:type cso: HerokuPostgresService

cso:postgres-service-10 cso:hasNumberOfConnections cso:number-of-
connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "14"""xsd:int

cso:backup-service-8 rdf:type cso:BackupService
cso:backup-service-8 cso:accesses cso:postgres—-service-10

cso:backup-service-8 cso:isActive "false"""xsd:boolean

cso:postgres-service—-10 rdf:type cso: HerokuPostgresService
cso:postgres-service-10 cso:hasNumberOfConnections cso:number-of-
connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

134 7.2. Demonstrating monitoring and analysis capabilities

cso:number-of-connections-122 cso:hasValue "15"""xsd:int

In order to assess the current situation and detect violations we registered a
set of standing C-SPARQL queries, which are evaluated 10 times per second (i.e.,
queries are evaluated every 100 ms). Listings 7.6, 7.7, and 7.8 represent the critical-
level, moderate-level and minor-level criticality queries respectively. It needs to
be noted that these three queries represent the previously-explained concept of
application profiling (see Section 5.3) — that is, when users deploy their software,
they can specify how sensitive they are in terms of particular add-on services. Such
an application profile allows the framework to apply a differentiated approach to
problem detection — i.e., in some circumstances a potentially critical situation can
be tolerated, whereas in some others (more sensitive) occasions it has to be treated
carefully.

As it is seen from the listings, the conditions specified in the WHERE clauses are
mutually exclusive, which means that only one query will trigger at a time. The
WHERE clause specifies the actual danger threshold for the PostgreSQL service’s
client connections, and in the considered scenario it will trigger whenever the
number of client connections during the previous minute reaches the threshold
of 15 at least once, provided there is no backup process running — that is, there
are indeed 15 connected clients, and there is a potential threat to the application
stability.

Listing 7.6: Detecting number of client connections at the critical level.

REGISTER STREAM CriticalStream
AS PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX cso: <http://seerc.org/ontology.owl#>
CONSTRUCT { 7?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnectionsCritical
"true”“http://www.w3.0rg/2001/XMLSchema#boolean™ }
FROM STREAM <http://seerc.org/rdf/stream/> [RANGE 1lm STEP 100ms]
WHERE { ?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnections ?numConn
?numConn rdf:type cso:NumberOfConnections
?numConn cso:hasValue ?v
?bservice rdf:type cso:BackupService
?bservice cso:accesses ?service
?bservice cso:isActive "false"“http://www.w3.0rg/2001/XMLSchema#
boolean"
FILTER (?v >= 15 && ?2v < 17) }

Listing 7.7: Detecting number of client connections at the moderate level.

REGISTER STREAM CriticalStream

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 135

AS PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX cso: <http://seerc.org/ontology.owl#>
CONSTRUCT { 7?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnectionsModerate
"true”"http://www.w3.0rg/2001/XMLSchema#boolean" }
FROM STREAM <http://seerc.org/rdf/stream/> [RANGE 1lm STEP 100ms]
WHERE { ?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnections ?numConn
?numConn rdf:type cso:NumberOfConnections
?numConn cso:hasValue ?v .?bservice rdf:type cso:BackupService
?bservice cso:accesses ?service
?bservice cso:isActive "false”“http://www.w3.0rg/2001/XMLSchema#
boolean"

FILTER (?v >= 17 && 2v < 19) }

Listing 7.8: Detecting number of client connections at the minor level.

REGISTER STREAM CriticalStream
AS PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX cso: <http://seerc.org/ontology.owl#>
CONSTRUCT { ?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnectionsMinor
"true®"http://www.w3.0rg/2001/XMLSchema#boolean" }
FROM STREAM <http://seerc.org/rdf/stream/> [RANGE 1lm STEP 100ms]
WHERE { ?service rdf:type cso:HerokuPostgresService
?service cso:hasNumberOfConnections ?numConn
?numConn rdf:type cso:NumberOfConnections
?numConn cso:hasValue ?v
?bservice rdf:type cso:BackupService
?bservice cso:accesses ?service
?bservice cso:isActive "false”*http://www.w3.0rg/2001/XMLSchema#
boolean"
FILTER (?v >= 19) }

The REGISTER and CONSTRUCT clauses of the presented C-SPARQL queries
serve to define a new RDF stream called CriticalStream, which only contains
critical observations. Once any new triples appear on the stream, they are imme-
diately added to the ABox of the CSO - that is, the ontology is populated with
respective RDF triples. In our scenario, the CSO is populated with the following
two triples defined in Listing 7.9:

Listing 7.9: The CSO is populated with RDF triples representing a critical situation.

cso:postgres—-service-10 rdf:type cso: HerokuPostgresService
cso:postgres-service-10 cso:hasNumberOfConnectionsCritical "true"”"http:
//www.w3.0rg/2001/XMLSchema#boolean

136 7.2. Demonstrating monitoring and analysis capabilities

After they have been added to the ontology, the reasoning process is initiated.
It is the most computationally-intensive part of the monitoring and analysis pro-
cedure, and we support this process by minimising the TBox of the CSO, and thus
minimising the number of logical axioms with respect to which the reasoner eval-
uates the newly-added triples. Listing 7.10 contains SWRL rules, which can be
potentially applied in this respect so as to classify the observed situation as critical

or not.

Listing 7.10: Only one of the three SWRL rules, determining whether an observed
situation is indeed critical or not, is added to the TBox of the knowledge base.

HerokuPostgresService (?s), hasNumberOfConnectionsMinor (?s, true) ->
CriticalNumberOfConnections (?s)

HerokuPostgresService (?s), hasNumberOfConnectionsModerate (?s, true) ->
CriticalNumberOfConnections (?s)

HerokuPostgresService (?s), hasNumberOfConnectionsCritical (?s, true) ->

CriticalNumberOfConnections (?s)

This is where the two framework enhancements, described in Sections 5.3.1
and 5.3.2, again come into play. Since we classified Destinator as a data-intensive
application demanding for critical-level policies to be applied, the knowledge base
(i.e., the TBox) only includes the third SWRL rule from Listing 7.10. This rule is
uploaded dynamically at run-time from a remote location (where it is maintained
by the respective service provider) by following its URI and importing the fetched
document into memory of the reasoning engine, as prescibed by the Linked Data
principles. As a result, the monitored HerokuPostgresService instance is eval-
uated against a limited, yet targeted policies, and classified as belonging to the
CriticalNumberOfClientConnections class.

The last step in this analysis process is to see if there are any instances of the
class CriticalSituation. Asitisillustrated in Figure 6.5, the class Critical-
NumberOfClientConnections is a subclass of the class CriticalSituation,
and the reasoner, resolving this subclass dependency, marks HerokuPostgres-
Service as a critical situation. As a result, the EXCLAIM framework notifies the
user of a detected critical situation.

It is worth noting that application profiling and enforcing of different-level
policies only takes place at the very last step of OWL/SWRL reasoning. The C-
SPARQL queries might have detected all three cases, when the number of client
connections is gradually increasing from minor to moderate, and, eventually, to
critical level (i.e., from 12 to 19, thus satisfying the WHERE conditions of all three
queries in Listings 7.6, 7.7, and 7.8), and corresponding RDF triples are sent to the
critical stream. However, as long as there are no SWRL rules added to the know-

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 137

ledge base, these values will not be marked as critical situations by the reasoner,
which will only rely on the default, core ontology when resolving dependencies.
To justify the use of SWRL as a language for defining policies, we now demon-
strate how its reasoning support can benefit the detection process. Listing 7.10
contains rules, which can only apply to a single database service available through
Heroku marketplace — that is, HerokuPostgres. As indicated by Figure 8.8, it is a
child of a higher-level class DatabaseService together with several other ser-
vices. Accordingly, it is possible to rewrite the policies to make them more generic
and applicable across all database services. By doing so, we benefit from SWRL’s
capabilities to resolve sub-class relationships, and minimise the amount of redun-

dant policies. Listing 7.11 contains these generic rules:

Listing 7.11: Generic rules apply to all sub-classes of the class DatabaseService.

DatabaseService (?s), hasNumberOfConnectionsMinor (?s, true) ->
CriticalNumberOfConnections (?s)

DatabaseService (?s), hasNumberOfConnectionsModerate (?s, true) ->
CriticalNumberOfConnections (?s)

DatabaseService (?s), hasNumberOfConnectionsCritical(?s, true) ->

CriticalNumberOfConnections (?s)

7.3 Deployment on IBM Streams

RDF stream processing in general and one of its existing implementations (i.e.,
C-SPARQL) in particular, at their current state suffer from performance and scala-
bility issues — two aspects which can make our EXCLAIM framework potentially
incapable of monitoring and analysing large data volumes within CAPs, given the
fact that with our framework we aim to address real-world enterprise-level CAPs,
which can potentially generate thousands and even millions of RDF triples per
second. In our view, these amounts are large enough to be considered as Big Data
not only because of the volume aspect, but also because of the existing velocity,
variety and veracity of these datasets.

In these circumstances, a possible solution to overcome the problem is to par-
allelise processing tasks across several instances of the framework by fragmenting
incoming data streams into sub-streams, so that each instance only deals with a
separate subset of incoming values. To demonstrate this and prove out concepts,
we required an existing infrastructure, which would allow us to implement such
a parallel deployment with least possible refactoring and reconfiguration efforts.
Given this, we were motivated to utilise an existing technological solution from the

Big Data processing domain, which would exhibit the following characteristics:

138 7.3. Deployment on IBM Streams

Minimal effort to integrate with our framework

Support for processing streamed data

Support for data stream fragmentation and task parallelisation

Enough capacity to address the Big Data challenges of CAPs

As a result, among other alternatives IBM Streams was chosen as the target
platform to implement a parallelised deployment of the EXCLAIM framework.
Detailed description of this platform for processing streaming Big Data can be
found in Section 3.1.1.

In the rest of this chapter, we will demonstrate and explain the parallelised
deployment of the framework on top of the IBM Streams with the same use case
scenario, which was presented in the previous chapter. We first explain the frag-
mentation logic, which we applied to partition RDF data on the stream, and then
continue with a number of experiments. To a great extent, these experiments
are similar to the ones explained in the previous chapter, and primarily serve to
demonstrate an increase in performance when running the parallel deployment of
the framework as opposed to the initial, pipelined deployment.

We also want to bring to the reader’s attention that the primary goal of demon-
strating the IBM Streams deployment is to show that the emerging Big Data issue
can be successfully addressed, and to do so, the EXCLAIM framework has the
capacity to be accordingly extended and integrated with existing solutions. Even
though the experimental results show an increase in performance, our goal here
is not to design and implement a novel efficient algorithm for data stream frag-
mentation and parallel processing. Rather, our intention is to demonstrate that it
is possible in principle.

7.3.1 Stream parallelisation

So far, we focused on one particular service connected to the user’s application
- namely, the PostgreSQL data storage service. To demonstrate the potential of
applying Big Data parallelisation techniques, we will take into account all five
add-on services Destinator is connected to.

For the sake of demonstrating the benefits, we will apply a simple fragmen-
tation logic, based on separating the main stream with RDF triples coming from
different add-on services into several sub-streams, so that each of them only con-
tains RDF triples originating from one particular service. Then, we will launch
several identical instances of the EXCLAIM framework and attach them to the

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 139

resulting sub-streams. Eventually, we aimed at creating a distributed architec-
ture with several replicated frameworks, each of which would only deal with data
coming from a single add-on service.

With IBM Streams, which allows developing custom Java operators, we had to
implement three main operators, which are depicted in the screenshot below (see
Figure 7.3).

[| n n
E<CLAIM _Framework_on_IBEM_Streams =
Exclaim_1
Exclaim_2
SplitterOp
n SourceOp E@ Exclaim_3 n
Split
Exclaim_4
Exclaim_5
[| | |

Figure 7.3: Parallel architecture with the main RDF stream split into five separate
sub-streams, each of which is processed independently by several instances of the
EXCLAIM framework.

* SourceOp: this operator acts as an entry point for RDF triples to be pro-
cessed by the EXCLAIM framework. It is a data source operator, which
picks up monitored RDF triples from the RabbitMQ monitoring queue, and

then forwards them to the splitter operator.

* SplitterOp: this operator is responsible for the actual fragmentation of in-
coming data. Depending on the add-on service generating monitored values,
the splitter directs data to a corresponding output port. Since in the consid-
ered case study, Destinator is coupled with 5 add-on services, the splitter

has 5 respective output ports.

140

7.3. Deployment on IBM Streams

* Exclaim_{1-5}: this operator is essentially a Java wrapper for the EX-

CLAIM framework. Since it is called and executed from within the Streams
platform, it does not have a GUI and a management console; therefore, all
the configurable parameters are predefined. In the considered use case, there
exist 5 identical instances of the Exclaim operator, each of which is attached
to one of the output ports of the splitter. Thus, we achieve an architecture,
in which each instance of the EXCLAIM framework (i.e., Exclaim_{1-5})
only deals with RDF triples belonging to a particular add-on service. Simply
put, we minimise the number of incoming triples on each sub-stream, and

thus achieve better performance.

To a certain extent, the splitter operator performs routing and filtering func-

tions, and thus can be seen as an implementation of a routing node, existing in

physical sensor networks. Such an intermediate node in the context of the EX-

CLAIM framework is responsible for:

¢ transferring monitored values from physical (e.g., server, data centre), vir-

tual (e.g., application container, virtual machine), or logical (e.g., application
system, database) components of the monitored platform to a corresponding

processing location;

performing initial processing of the incoming values — that is, by filtering and
aggregating monitored values it is possible to offload some of the computa-
tional tasks from the central monitoring component (which otherwise may
become a bottleneck of the whole system), and make the whole framework

more scalable.

Unlike static data fragmentation, where the set of values is finite, partitioning

of streamed data, due to its unbounded nature and unpredictable rate, is asso-

ciated with a risk of splitting semantically connected RDF triples into separate

streams, which in turn may result in incorrect deductions. For example, in our

case, by splitting the main RDF stream with respect to the source of the monitored

data, we deliberately broke existing links between the PostgreSQL service and its

backup service PGBackups. Since respective triples are handled in isolation from

each other, it is now impossible to detect situations when some of the established

client connections are actually connections established during a temporary, short-

lasting back-up process. Therefore, careful design of the fragmentation logic is

crucial in order to confirm that no valuable data is misplaced or lost.

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 141

7.4 Experimental results

In this section, we will evaluate the presented approach and the described use case
scenario with a number of experiments aiming at demonstrating the performance
of the framework with respect to several configurable parameters. When running
the experiments, we employ the following approach — we first run the default
configuration, which is a configuration under which we expect the EXCLAIM
framework to operate normally. Then, we will simulate an increasing workload
by tuning certain configurable parameters to see how the framework performance
changes. Table 7.2 summarises parameters, which may affect the performance of
the framework. In our conducted experiments, we have used two configurable
parameters — namely, the number of registered C-SPARQL queries and the triple

generation rate (i.e., the number of triples generated per second).

7.4.1 Experimental setup

It is worth explaining that to achieve an intensive triple generation rate and feed
the EXCLAIM framework with hundreds and thousands of triples per second we
relied on simulation techniques. More specifically, to achieve a generation rate
of 1,000 RDF triples per second, we would need several hundreds of Destinator
instances accessed and used by users simultaneously. Unfortunately, Destinator
is not at that advanced stage yet, so we had to simulate this workload. To do so,
we first recorded 1,000,000 RDF triples, collected during the usual operation of a
single Destinator instance running on Heroku, in a log file. Then, the simulator
was configured to ‘replay’ these recorded values at a required rate — that is, we
were able to stream monitored data at the rates of 1, 10, 100, 1,000, 5,000 and 10,000
triples per second respectively. Arguably, simulated experimental data might not
completely and accurately reflect the actual behaviour of a simulated system in
general; nevertheless, in this particular context of the presented case study, the
general shape of the curve on the graphs is more important than absolute values,

and therefore we assume the simulation error to be non-significant.

142

7.4. Experimental results

Table 7.2: Parameters affecting the performance of the framework.

Configurable parameter
and its range

Description

Window size (from 1

ms)

The size of the window operator in the C-SPARQL queries. A larger
window size typically(but not necessarily) results in more values to be
queried. In certain applications, it may be important to keep all values
arrived over the last hour or day to detect patterns. As demonstrated
by our experiments, the ‘wider’ the window, the more RDF triples the
C-SPARQL engine has to keep in memory and the slower it performs.

Window step (from 1
ms)

The step of the window indicates how often the window operator
has to ‘tumble’. If the window step is larger than the window size,
then there will not be overlaps between to neighbour consecutive win-
dows. This parameter does not directly affect the performance of the
EXCLAIM framework.

Triple generation
rate (from 1 to 10,000
triples/sec)

The rate, at which RDF triples are generated and sent to the moni-
toring messaging queue, from which they are then picked up the EX-
CLAIM framework. As demonstrated by our experiments, the higher
the generation rate, the more loaded the framework gets (i.e., each
window, defined in terms of time unit is more ‘dense’), and the slower

its performance becomes.

Number of registered C-
SPARQL queries (from

1 query)

This parameter defines how many queries RDF triples on the stream
have to be evaluated. The more registered C-SPARQL queries, the
longer it takes to check data with respect to each of them and, accord-
ingly, the slower the performance becomes.

CPU (2 configurations:
Laptop Lenovo S540:
Intel® Core™ i7-4500U
Processor 2.00GHz-
2.60GHz & Desktop
Personal Computer
(PQ): Intel® Core™ i5-
2310 2.90GHz-3.10GHz)

We have used two CPU configurations to achieve consistent, reprodu-
cable and more precise results. In general, a more powerful processor
enables faster execution of the framework.

Memory (from 256 MB)

In the first instance, more memory allows to keep more RDF triples
to support RDF stream processing, and avoid ‘out of memory” excep-
tions.

Richness of the know-
ledge base (from 1 ax-

iom)

This parameter affects the ‘static” part of reasoning. In the first place,
richness of the knowledge base means the number of axioms in the
TBox.

Number of critical situ-
ations at a time (from 1

instance)

This parameter also concerns the ‘static’ part of reasoning. The num-
ber of critical situations detected at a time — that is, the number of
triples detected by the C-SPARQL engine and sent to the OWL/SWRL
reasoner — corresponds to the ABox of the ontology.

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 143

7.4.2 Conducting the experiments with the initial deployment

The default experimental setup was the following: we registered 21 C-SPARQL
queries, defined the window step as 100 ms (i.e., it is evaluated 10 times per
second), the window size as 1 minute. We run this setup on two machines (i.e.,
the PC and the laptop) with a goal to measure detection time — time between
the moment when the last RDF triple, representing a complex critical pattern,
was generated and the moment, when this critical situation was detected by the
framework. We simulated the workload on the framework by increasing the triple
generation rate. Figure 7.4 illustrates the curve of increasing detection time with

respect to increasing workload.

Detection time (default configuration)

12

10

—
(=]
Q 8
[%]
“—
Q
e 6
=
=
L -
i
(&]
w _ —
2 i T i}
8 1
-2
1 10 100 1000 5000 10000
— P 0.426 0.459 0.903 1.031 2.957 6.838
— | APTOP 0.572 0.882 1.076 1372 3.791 8.559

Triple generation rate (triples/sec)

Figure 7.4: Detection times under the default configuration.

In the second part of the experiment, we increased the number of registered
C-SPARQL queries. With the increased number of queries, we aimed at reflecting
on the existing heterogeneity of monitored instances present on CAPs, each of
which requires individual queries to be applied. Accordingly, the framework has
to evaluate incoming values against a larger set of queries, which inevitably affects
its performance. Figure 7.5 illustrates increased detection time with 100 registered
C-SPARQL queries.

Detailed discussion of the obtained performance results is presented in Sec-

144 7.4. Experimental results

Detection time (100 C-SPARQL queries)

20
£
o b
Q@
c 10
E
c]
) 5
= T
g I E— !
O 0
()

-5

1 10 100 1000 5000

e, P C 1.162 2.199 2.169 2.974 11.14
— | APTOP 0.595 2.361 3.117 9.948 14.096

Triple generation rate (triples/sec)

Figure 7.5: Detection times (100 registered C-SPARQL queries, window step 100
ms, window size 1 min).

tion 8.1. Nevertheless, we can conclude with the following observation — as the
workload is increasing, the framework is facing considerable challenges, which
stem from the volume, velocity and variety of collected data. Scalability of the
framework is challenged by the emerging Big Data, and appropriate actions have
to be taken to address this issue.

7.4.3 Conducting experiments with the IBM Streams deployment

In this section we provide the reader with experimental results obtained from run-
ning a parallel deployment of the EXCLAIM framework and splitting the main
RDF stream into five separate sub-streams. The goal in these experiments, sim-
ilarly to the experiments explained in the previous chapter, was to detect an in-
creasing number of client connections to the database service. The only difference
here was that we did not take into account a potential presence of the backup
process. The reason for this was the requirement to process RDF streams coming
from different services separately, and therefore it was impossible for triples from
the PostgreSQL and PGBackups services to appear on the same sub-stream.
Then, similarly to the initial experiments, we increased the number of C-
SPARQL queries registered with the framework. With an increase in the number of
registered queries, the advantages of the parallelised deployment are clearer. The

experimental results indicate improvements in the framework performance. The

Chapter 7. Proof of concept: monitoring and analysis of Heroku add-on
services with the EXCLAIM framework 145

Detection time (IBM Streams - default configuration)

10

o
] 8
2
1] 6
E
—t
c 4
0
+ 2
Q
g I i)
w 0
3 : E
-2
1 10 100 1000 5000 10000
P 0.558 0.586 0921 0.824 2.369 5771
e | APTOP 0.613 0.716 0.849 1.082 2.899 7.642

Triple generation rate (triples/sec)

Figure 7.6: Detection times on IBM Streams (21 registered C-SPARQL queries).

graphs (see Figures 7.6 and 7.7) demonstrate a noticeable drop in detection time.
The fragmentation logic on the IBM Streams deployment was rather simplistic.
In practice, however, fragmentation algorithms may be somewhat more sophisti-
cated and intelligent. Therefore, we may conclude with the following statement —
IBM Streams has the potential to address the scalability issues faced by the frame-
work through splitting data streams and applying parallel processing to resulting

sub-streams.

7.5 Summary

In this chapter, we demonstrated how the EXCLAIM framework operates by pre-
senting a case study. This case study focuses on the Destinator application, which
was deployed on Heroku and connected with 5 add-on services offered by the
platform marketplace. The main goal of the considered use case scenario was
to demonstrate the analysis capabilities of the framework from perspectives of
the two main stake-holders —i.e., the CAP provider and the CAP consumer. Addi-
tionally, using code snippets, the chapter demonstrated how the main components
function, and how monitored data is first transformed and then flows within the
framework. The performance of the framework was also evaluated with respect
to configurable parameters — namely, the number of registered C-SPARQL queries
and triple generation rate. By tuning these parameters and increasing the work-

load on the framework, we observed a considerable drop in the framework’s per-

146 7.5. Summary

Detection time (IBM Streams - 100 C-SPARQL queries)

12

o 10
@
@
o 8
£ 6
4
5 4
2
3 2
< 1 T T T
=) 0 l

2

1 10 100 1000 5000

e PC 0.576 1.032 1.499 1.905 6.691
——LAPTOP 0521 1.137 2.031 2.677 8.147

Triple generation rate (triples/sec)

Figure 7.7: Detection times on IBM Streams (100 registered C-SPARQL queries).

formance. This drop, caused by the overwhelming amount of triples which have
to be simultaneously processed, led us to investigation of Big Data processing
techniques to be applied in this respect. The potential of the framework to scale
was demonstrated by deploying it on top of the IBM Streams. This integration
enabled us to parallelise the main RDF and evaluate the incoming triples by five
separate instances of the EXCLAIM framework independently, thereby improving
problem detection time. In the next chapter, we will evaluate and discuss the ob-
tained experimental results, and compare the framework with existing approaches

in terms of its performance, scalability, and extensibility.

Part II1

Evaluation, discussion, and
conclusion

147

148

The last part of this thesis summarises all the material, which has been de-
scribed so far, in a more structured manner. Chapter 8 evaluates the approach
against the current state of the art with respect to performance, scalability, and
extensibility. The chapter also brings together explicitly the potential benefits and
limitations of our proposed approach, and finally outlines several areas for fur-
ther work. Chapter 9 concludes the whole thesis with an overall summary of the
presented ideas. It evaluates the accomplishment of the issues raised in the intro-
duction, summarises our main contributions, and outlines potential directions for

further research.

Chapter 8

Evaluation and discussion

In this chapter we summarise the main aspects of the presented research in a more
structured manner. First, we evaluate and discus our approach (i.e., performance,
scalability, and extensibility) with respect to the state of the art. Next, we list
potential benefits of the proposed approach so as to explain why each particular
feature of the approach is of benefit — that is, how and what problem it solves.
Then, we continue with potential limitations of the approach, which are listed and

summarised in a similar manner.

8.1 Evaluating performance, scalability, and extensibility

Before evaluating and discussing our own approach, we first brief the reader on
the current state of enabling data monitoring and self-management in service-
based cloud environments — that is, what tools are offered by CAP providers and
what actions consumers are required to take in this respect.

The topic of self-governance in service-based cloud platforms is relatively novel,
and, as we have seen in the literature survey, neither CAP providers not third-
party researchers offer targeted solutions. The current baseline is the following —
CAP consumers (typically, software developers) are required to implement their
own analysis and problem detection components themselves to suit requirements
of their individual applications. They are offered a wide range of existing com-
mercial (i.e., offered by the cloud platform itself or third parties) and open-source
monitoring frameworks to collect data metrics at the infrastructure, service com-
position, and application performance levels. These frameworks are, however,
disparate and heterogeneous, and need to be properly integrated together. Ad-
ditionally, they only offer basic data aggregation tools, which cause software de-

velopers to implement a dedicated analysis engine from scratch. This is typically

149

150 8.1. Evaluating performance, scalability, and extensibility

achieved by hard-coding policies and enforcement mechanisms within the appli-
cation source code, resulting in application-specific, non-extensible, non-scalable,
and hardly reusable components.

The EXCLAIM framework has the potential to change this situation by intro-
ducing an approach, which demonstrate considerable performance results, scal-
ability and extensibility. These three criteria are taken into consideration, when
evaluating and discussing the potential of the EXCLAIM framework to address
the challenge of problem detection in the context of CAPs with respect to the state
of the art in the considered domain.

8.1.1 Performance of the EXCLAIM framework

It has to be noted that the challenge of evaluating and comparing performance
of various approaches against each other can only be conducted using a common
benchmark — that is, compared approaches have to run in the same conditions
against the same data sets. This, however, is not feasible in the case of the EX-
CLAIM framework, which currently offers monitoring support, which is the only
one of its kind to a certain extent.

Nevertheless, it is still possible to evaluate the performance of the framework
based on the experimental results, presented in Chapter 7. From the diagrams (see
Figures 7.4 and 7.5) it follows that the framework starts facing considerable diffi-
culties when processing incoming RDF triples typically after the triple generation
rate exceeds 100. On average, at the rate above 1,000 triples generated per sec-
ond, detection time reaches values, which might be unacceptable as far as timely
reaction in the context of mission- and time-critical applications is concerned.

To provide a deeper understanding of what computational workload the EX-
CLAIM framework has to handle, we now estimate the amount of data being
processed by the framework. The size of a serialised RDF triple being sent over
the network from the monitored entities in the form of a JSON string, ranges from
200 to 250 bytes. We take 225 bytes as an average value, which means we validated
the framework against the rate of 2.15 MB of incoming data per second (under the
most intensive setup — 10,000 triples per second). The C-SPARQL engine was con-
figured to keep in memory the most recent window of values arrived in the last
60 seconds and initiate query evaluation every second. This in turn means that
every single second situation assessment had to be performed against a data set
of 128.75 MB. Moreover, with this speed, the amount of data passing through the
framework per hour and per day equals to 7.54 GB and 181.05 GB respectively.

To compare, Google App Engine reports on the following activity in their data

centre (Hellerstein, 2010, Di et al., 2013). A computation cluster consisting of

Chapter 8. Evaluation and discussion 151

nearly 12,500 nodes is monitored to provide run-time statistics on the current
state of the system. The sampling rate is 5 minutes, monitored metrics are CPU
and memory utilisation, disk space, and disk time fraction, and each sample is
stored in the Comma-Separated Value (CSV) format and occupies approximately
26 MB of disk space. Arguably, the sampling rate and the set of infrastructure-
level metrics seem relatively easy to handle. At the platfrom level, however, the
situation is more challenging. For example, Cronycle,1 a Heroku-based content
curation application, processes 30 GBs of images and videos, follows 127,000 twit-
ter accounts looking for new content, and stores 240,000 articles on an average day.

Applauze,?

another Heroku-based app for event discovery and ticketing, reports
130,000 client sessions on a daily basis. Similarly, Forever Living3 — a health and
wellness products company — runs its e-commerce platform on Heroku to enable
real-time operation in over 150 countries; it reports 86 million rows of stored data
with 5 million rows of data processed daily. All these data-intensive activities are
backed up with Heroku’s add-on services, which in this context also act as Big
Data generators in their own right, and whose run-time operation can potentially
be monitored and analysed by treating individual services and applications as

software sensors.

The presented statistical data is intended to demonstrate that the presented
use case arguably can be compared to real-wrold cloud workload. Furthermore, it
has to be noted that the case study was only focusing on a single add-on service of
a single application — that is, in reality the volume and the pace of monitored data,
generated by thousands of deployed applications coupled with numerous add-on
services, may be considerably higher. Also, some scenarios may require window
operators to keep a somewhat higher number of most recent values (e.g., arrived
within the last ten minutes, not just one). Given the extreme heterogeneity and
large number of entities to be potentially monitored, the number of corresponding
C-SPARQL queries and SWRL rules will grow accordingly, and, as a consequence,
the reaction time will increase. Arguably, these presented factors are sufficient to
draw the following conclusion — scalability of the approach is challenged by the
Big Data problem, associated with volume, velocity and variety of data generated
within CAPs, and requires corrective actions to be taken.

11’1ttps ://www.heroku.com/customers/cronycle/
2https ://www.heroku.com/customers/applauze/
Shttps://www.heroku.com/customers/foreverliving/

https://www.heroku.com/customers/cronycle/
https://www.heroku.com/customers/applauze/
https://www.heroku.com/customers/foreverliving/

152 8.1. Evaluating performance, scalability, and extensibility

8.1.2 Scalability of the EXCLAIM framework

Chapter 7 explained how the EXCLAIM framework can benefit from applying an
existing Big Data processing solution. In particular, it demonstrated the potential
of the IBM Streams platform to underpin a parallelised deployment of the frame-
work, where the main RDF stream is fragmented into several sub-streams, which
are then processed in parallel.

The parallel deployment on IBM Streams was then benchmarked against the
same data sets as in the initial (i.e., non-parallel) deployment, thus enabling us to
evaluate the two settings. Similar to the initial setting, the number of C-SPARQL
queries registered with the framework increased, and performance dropped. This
drop, however, is considerably less, as demonstrated by the diagrams in Figures
7.6 and 7.7. According to the obtained results, same critical situations are detected
up to two times faster when running five parallel sub-streams, as opposed to the
single-stream processing mode.

Arguably, the described increase in the framework performance is situation-
specific, and may vary from one scenario to another. Potentially, there may be
situations, where stream fragmentation will not bring noticeable results, or will
even make things worse by applying unnecessary fragmentation and splitting
semantically-connected triples into separate streams, thereby missing a potentially
critical situation.

In the considered example, the fragmentation logic on the IBM Streams de-
ployment was rather simplistic —i.e., a special splitting operator is responsible for
routing incoming RDF triples to a dedicated sub-stream depending on based on
which add-on service they are coming from. In practice, however, fragmentation
algorithms may be somewhat more sophisticated and intelligent. Therefore, we
may conclude that IBM Streams has the potential to address the scalability issues
faced by the framework through splitting data streams and applying parallel pro-
cessing to resulting sub-streams — this process, however, has to be taken with care
and dedicated fragmentation logic has to be thoroughly designed and applied.

When comparing performance and scalability of the framework against exist-
ing approaches, there are two aspects, which need to be taken into consideration:

¢ The EXCLAIM framework addresses the challenge of service monitoring and
problem detection in service-based cloud environments — a challenge, which
has not been extensively addressed by the state-of-the-art approaches. So
far, few approaches focus on the PaaS segment of cloud computing, and
even fewer approaches focus on service-based compositions deployed on
CAPs. In these circumstances, comparing the EXCLAIM approach with the

Chapter 8. Evaluation and discussion 153

state of the art with respect to performance and scalability seems infeasi-
ble. Despite the fact that the framework doe snot scale ‘out of the box’, we
demonstrated how improved scalability can be achieved by using the IBM

Streams platform.

* It also needs to be noted that performance and scalability have not been seen
as the primary goal of the presented EXCLAIM framework. Admittedly,
there are existing and highly-optimised solutions (e.g., third-party solution
Nagios and New Relic, or cloud-native solutions Amazon Cloud Watch and
Stackdriver Monitoring), which can offer considerably faster mechanisms
for data collection and aggregation. These existing approaches, however, do
not offer solutions for data analysis, which remains the responsibility of the
cloud consumer. One of the main benefits of the EXCLAIM framework is
the automated analysis support, which enables timely detection of critical
situations. The framework offers a built-in analysis component, responsible
for problem detection — a feature, which is currently beyond the capabilities
of the other existing approaches for data monitoring in the context of cloud
platforms.

8.1.3 Extensibility of the EXCLAIM framework

Extensibility of the EXCLAIM framework refers to its ability to extend its function-
ality in a seamless and transparent manner so as to be used in new emerging cir-
cumstances. This assumes adding new (or extending existing) functionality with
minimum interference with and influence on the usual operation of the frame-
work. Extensibility of the EXCLAIM framework is underpinned by the two main
features — namely, a declaratively defined knowledge base and modular architec-

ture.

Declarative approach to defining the knowledge base

The declarative approach serves to separate the knowledge base (i.e., an architec-
tural model, queries and policies) from the programming source code, responsible
for querying potentially critical situations and enforcing respective detection poli-
cies. With such an approach, it is typically only necessary to modify the know-
ledge base, while avoiding changing and re-compiling the source code. In partic-
ular, in order to adjust the framework to a new emerging scenario, it is required
to add corresponding CSO concepts, C-SPARQL queries, and SWRL rules, and re-

use already existing ‘triplification” connectors. As opposed to the state-of-the-art

154 8.2. Potential benefits of the proposed approach

approaches (e.g., cloud-native and third-party monitoring solutions), which typi-
cally rely on hard-coding analysis logic, the declarative approach employed by the
EXCLAIM framework can be seen as a considerable benefit, which enables it to

operate with minimum interruptions caused by potential modifications.

Modularity

In the context of the presented framework, the topic of modularuty is two-fold.
First, the modularity principles have been applied when separating the main pro-
gramming code from the knowledge base. Such a sepration of concerns noticeable
simplifies modification of the knowledge base (even if it was not for the declara-
tive definition). Nevertheless, separation of concerns is a common practice, and is
typically achieved by all the relevant approaches employing declaratave domain-
specific languages.

Second, modularisation has been applied to implementing the knowldge base
per se as a set of linked elements. It makes it possible to extend the knowledge
base (and, therefore, functionality of the framework) by third parties, who are re-
sponsible for a dedicated part of the detection policies. By applying the Linked
Data principles and breaking down the knowledge base into multiple connected
components, it is possible to delegate maintenance tasks to the respective respon-
sible parties. As a result, third-party add-on providers, who are expected to be
more familiar with potential critical situations concerning their offered services,
can modify their respective linked extensions transparently to the CAP provider
and consumers. Such a distributed modular structure has not been implemented
or even discussed by existing approaches, and admittedly contributes to the over-
all extensibility of the EXCLAIM framework.

8.2 DPotential benefits of the proposed approach

This section lists and summarises potential benefits demonstrated by the described
EXCLAIM approach.

Separation of concerns and declarative definition of knowledge

One of the main motivating factors and goals of the research work described in

this thesis was the creation of a mechanism, which would:

* separate the definition of knowledge concerning diagnosis and adaptation
policies, an architectural model, queries, etc., from the actual enforcement of

these policies; and

Chapter 8. Evaluation and discussion 155

¢ allow the definition of the knowledge base in a declarative, loosely coupled

manner.

The first requirement on its own can be simply addressed with traditional,
component-based programming techniques. That is, one can capture knowledge
at the level of the programming source code in a separate component (e.g., a class,
library, etc.). The second requirement, however, calls for applying more sophis-
ticated techniques for policy definition. The SSW technology stack and primar-
ily RDF, OWL and SWRL successfully addressed this requirement, and provided
us with the possibility to declaratively define the knowledge base, and, as a re-
sult, modify it if needed dynamically during run-time, without recompiling and
restarting the whole application system. In other words, with ontologies and rules
separated from the platform/application programming code, it is easier to make
changes to adaptation policies ‘on the fly” and to maintain the whole framework
in a stable, operational state.

With employing the SSW stack as an instrument for defining the knowledge
base, comes a positive side effect. As we saw above, the Semantic Web research tar-
gets at making information on the Web to be both human- and machine-readable,
with languages which are characterised by an easy-to-understand syntax, as well
as the visual editor Protege for effortless and straight-forward knowledge engi-
neering. OWL ontologies are known to be used in a wide range of scientific
domains (for example, see (Rubin et al., 2008) for an overview of biomedical on-
tologies), which are not necessarily closely connected to computer science, and
allows even for non-professional programmers (i.e., domain specialists) to be in-
volved in ontology engineering. Similar benefits are expected in the context of
our own work — that is, development of diagnosis and adaptation policies (at least
partially) can be undertaken by non-technical domain specialists.

In-memory stream processing

Another primary goal of the EXCLAIM framework was to enable timely, run-time
processing of data and minimise the delay between the moment when data is gen-
erated and the moment when it is processed. As opposed to static approaches,
which assume permanent storage of data on a hard drive and its further process-
ing, we employed a streaming approach, whose fundamental characteristic is the
ability to process data in memory, and thus avoid unnecessary and rather expen-
sive hard disk access operations.

It is worth noting that the static approach, although associated with higher

reaction times, might also prove to be useful in situations, where the amount of

156 8.2. Potential benefits of the proposed approach

historical data to be taken into account when performing analysis is considerably
large. Existing technological constraints make it impossible (or at least impractical)
to keep in memory data monitored over the previous several hours or even days.
For such kind of scenarios, it is much more convenient to record all the data
first and then perform post-mortem analysis over this single large dataset. In
contrast, in situations where the analysis process only depends on the very recent
observations, captured within last seconds and minutes, the in-memory stream
processing is a key to success.

As we demonstrated with the case study, we managed to achieve timely execu-
tion of the framework, such that the time required to detect and react to a critical
situation is measured in seconds — a time frame, which, we believe, is affordable
so as to plan and apply all necessary reactive actions.

Increased opportunities for reuse

One of the main characteristics of ontologies is their public openness and extensi-
bility. Once implemented and published on the Web, ontologies can be imported
and immediately re-used or extended with necessary domain-specific concepts by
any third party. This reduces time and effort to develop an ontology from scratch,
and exempts ontology engineers from ‘reinventing the wheel’.

Publishing the CSO and experimental datasets on the Web, and linking them
with other existing ontologies (i.e., primarily with the SSN ontology) may con-
tribute to the development of the Linked Open Data (LOD) — a global giant data
set published on the Web, in which individual elements are linked with each other

by means of URIs. We further discuss this in Section 9.2.

Increased automation and reliability

Policy enforcement mechanisms already exist in the form of automated reasoners,
and the EXCLAIM framework aims to build on these capabilities. By employing
the SSW stack, we relied on the built-in reasoning capabilities of OWL and SWRL.
Since the reasoning process is automated and performed by a reasoning engine
(e.g., Pellet), it is expected to be free from so-called human factors” and more
reliable (assuming the correctness and validity of ontologies and rules).

To develop the EXCLAIM framework, we used an existing Java implementation
of the Pellet reasoner, which required from us adding just several lines of code,
responsible for initialisation of the library and the CSO, and actual invocation of
the reasoner returning instances of detected critical situations (if any). The whole
analysis routine was solely handled by the reasoner based on the CSO and SWRL

Chapter 8. Evaluation and discussion 157

rules in a transparent manner. Conversely, consider a situation when the diagno-
sis and adaptation logic is hard-coded in the programming code with numerous
if-then and switch-case operators. As the knowledge base grows in size
and complexity, accurate and prompt maintenance of such a tangled definition
becomes a pressing concern. Arguably, a complicated and extensive knowledge
base, defined with OWL ontologies and SWRL rules, may also be associated with

certain difficulties so as to how to maintain it.

Extensible architecture

Existing sensor networks typically comprise a vast number of sensing devices
spread over a large area (e.g., traffic sensors distributed across a city-wide road
network) and have the capacity to be easily extended (as modern cities continue
to grow in size, more and more sensors are being deployed to support their asso-
ciated traffic surveillance needs). Once new sensors are connected to the existing
network, they are ready to report on the current situation. A similar extensi-
ble architecture was introduced with our EXCLAIM framework. Thanks to the
decoupled architecture for collecting monitored data, new software sensors can
be seamlessly integrated into the framework and start sending sensory observa-
tions to the main monitoring channel. With the help of declarative definitions, the
knowledge base can also be easily extended to cover newly-added components in
a transparent and non-blocking manner. The same applies to the reverse process —
once old services are retired and do not need to be monitored and analysed any-
more, the corresponding policies can be seamlessly removed from the knowledge
base so as not to overload the reasoning processes.

More specifically, the extensible architecture paves the way for creating a com-
prehensive EXCLAIM framework, which would incorporate all add-on services
and applications of the cloud ecosystem. Throughout this document we have
specifically focused on monitoring and analysis at the PaaS segment and in CAPs.
However, it can be potentially extended and applied to the IaaS and SaaS lev-
els as well. That is, it is possible to monitor CPU/memory utilisation and net-
work bandwidth utilisation by equipping the underlying infrastructure with ap-
propriate software sensors and integrating them into the EXCLAIM framework.
Similarly, embedding application-specific sensors at the software level can help

perform monitoring and analysis activities in terms of business goals.

158 8.2. Potential benefits of the proposed approach

Non-intrusive monitoring

A considerable advantage of the proposed EXCLAIM framework is the non-intru-
sive approach to data collection. The framework relies on already existing APIs
provided by add-on services to collect metrics. Typically, there are also already-
existing client libraries, which enable interaction with an add-in service and may
also serve to extract relevant data.

As demonstrated by the Destinator case study, we relied on service APIs to
collect raw data from the application and add-on services, which did not involve
explicit changes to the source code. Based on the assumption that the EXCLAIM
framework is an integral part of the CAP and acts as a trusted entity, we assumed
to posses user credentials to collect monitored data emitted by the a particular
instance of an add-on service associated with the current user. In other words, the
EXCLAIM framework is assumed to be equipped with sufficient access rights to
platform components, services and applications.

‘Non-intrusiveness’, however, does not apply to the requirement to implement
service connectors — software components responsible for translating raw data
formats into the semantically-enriched RDF representation. These connectors need
to be implemented from scratch (at least in the beginning, and can be re-used

afterwards).

Existing solutions and best practices

Treating a CAP as a sensor network allowed us to re-use existing solutions, devel-
oped and validated by the Semantic Sensor Web community, in the context of data
monitoring and analysis of streaming heterogeneous sensor data. This enabled
to perform situation assessment by providing meaning for sensor observations
(Sheth et al., 2008), by expressing sensor values in the form of RDF triples, thus
providing more meaningful descriptions and enhanced access to sensory data.
Moreover, this extra layer helped to bridge “the gap between the primarily syntac-
tic XML-based meta-data standards of the SWE and the RDF/OWL-based meta-
data standards of the Semantic Web” (Sheth et al., 2008). The advantage of this
approach is that semantically-enriched sensor data helps to homogenise various
data representation formats existing in the SWE and also facilitates more intelli-
gent analysis of observed sensor values by applying formal reasoning.

The interpretation of CAPs as sensor networks, however, does not restrict one
from using other existing solutions besides the SSW techniques. For example,
for modelling purposes, one might employ the more light-weight SensorML vo-

cabulary to model a software sensor network without support for semantic inter-

Chapter 8. Evaluation and discussion 159

operability. Given that semantic annotations and the RDF format may result in
undesired overheads in terms of network transportation, using SensorML might

be more appropriate as far as network latency is concerned.

Conceptual architecture and platform independence

The conceptual architecture of the EXCLAIM framework (and the even more ab-
stract interpretation of CAPs as sensor networks) can act as a high-level conceptual
model for creating monitoring frameworks, which is independent of the underly-
ing technology and implementation. In other words, the model does not constrain
how sensors are designed and implemented, and how communications between
sensors and the monitoring components takes place — depending on the context
and technical requirements, it may be performed via a publish-subscribe mecha-
nism, an enterprise messaging bus, via the Simple Object Access Protocol (SOAP)
and Representational State Transfer (REST) protocols, etc. Our framework also
does not constrain the underlying platform and programming languages — Java,

Net, Ruby, etc., are all equally acceptable.

Application profiling

Having introduced the notion of service and application criticalities, we enabled
a more fine-grained and flexible approach to treat CAP entities during the moni-
toring and analysis process. Service criticalities define the overall criticality of an
application deployed on the CAP and coupled with the corresponding services.
We refer to this resulting overall application criticality as an application profile,
which determines a set of diagnosis and adaptation policies to be applied in the
given analysis context.

With application profiling, it is possible to modify criticalities of individual
services if needed. For example, it is possible to classify an application as a data-
intensive one, which therefore calls for special attention and treatment to respec-
tive data storage service it is connected with. It means, that the thresholds, which
actually represent danger levels (e.g., critical number of simultaneous client con-
nections), have to be lowered so as to detect a potentially critical situation as early
as possible, and possibly take certain preventive actions.

Self-containment and modularity

In the research work presented in this thesis, we were motivated to enable declar-
ative and loosely-coupled mechanism for defining and modifying diagnosis and

adaptation policies. We aimed at separating definition of policies from their actual

160 8.2. Potential benefits of the proposed approach

enforcement. For this reason, we followed the SSW approach, which enabled us to
define the knowledge base in a declarative manner by means of OWL ontologies
and SWRL rules. However, as the resulting knowledge base is growing in size and
complexity, it may result in a considerably heavy-weight ontology, and therefore

can slow down the reasoning process.

To address this challenge, we applied principles of modularity, which are
known to be effective in overcoming complexity in modern information systems
(Baldwin and Clark, 2000). By breaking down the whole knowledge base into
several parts, we enabled the reasoning mechanism to pick only the necessary
elements of the knowledge base so as to avoid keeping the whole heavy-weight
ontology in the memory when performing reasoning activities. To some extent, a
similar principle is implemented in various online maps and navigator software —
at a given moment users are typically expected to work with a specific sub-set of
available maps (e.g., a map of city or a country), rather than with the whole col-
lection. Accordingly, in order to increase performance and network bandwidth,

software usually load and keep in memory only this specific sub-set.

It is worth noting that at its extreme, the ontological knowledge base can be
potentially broken into hundreds of linked parts, where each sub-set holds only
a single logical statement. In this case, potential benefits are outweighed by the
requirement to ‘crawl’ all the references and assemble all these distributed broken
chunks into a single ontology. Therefore, partitioning has to be balanced, and this
process has to be handled with care.

Another reason for employing the modular architecture was the necessity to
enable third-party service providers with capabilities to modify diagnosis and ad-
aptation policies. Since CAP administrators may not be in a position to define
the diagnosis and adaptation logic, which concerns third-party services regis-
tered with the CAP marketplace, this responsibility has to be shifted to service
providers. From the CAP provider’s point of view, third-party services are seen
self- and context-aware ‘black boxes’. From this perspective, they become self-
contained entities, which are equipped with sensing capabilities and self-reflective
knowledge — that is, services themselves are aware of the potential critical situa-
tions they may face, as well as the diagnosis and adaptation rules to be applied
in this respect. As a result, CAP providers are exempted from additional respon-
sibility of maintaining the policy base — a job, at which they are not necessarily
competent — and, on the other hand, these policies, defined by respective service
providers, are more accurate and prompt. Moreover, further elaborating on the
benefit of having an extensible architecture, with the knowledge base, defined in

a modular fashion, the process of adding/removing software sensors from the

Chapter 8. Evaluation and discussion 161

sensor network becomes even more transparent and less interruptive.

In this context, we have utilised Linked Data principles to create a two-tier on-
tological architecture, consisting of the core ontology (i.e., the CSO) and multiple
linked extensions to it. The primary goal of Linked Data is to enable discovery
and sharing of semantically-enriched data over the Web using standardised tech-
nologies, such as URIs and RDF (Bizer et al., 2009). This enabled us to separate
various pieces of adaptation policies between CAP owners and third-party service
providers.

The main benefits of Linked (Open) Data are that it is sharable, extensible,
and easily re-usable. In the context of a distributed ontological framework for

self-governance policies, we can also distill the following additional benefits:

¢ Linked extensions are distributed and easily accessible over the Web by
means of URIs and/or SPARQL endpoints. In this sense, software services
become ’self-contained” as they inform the EXCLAIM framework about their
diagnosis policies by providing a link to the corresponding set of rules. The
EXCLAIM framework does not need be aware of them in advance, but can
access them at run-time using Linked Data principles and ‘crawling’ pro-
vided URIs.

* Linked extensions are easily modifiable. Since third-party service providers
have full control over their segment of policies, they can seamlessly adjust
them so as to reflect ongoing changes.

¢ Linked extensions are potentially re-usable across multiple CAPs. Indeed, it
is quite common for third-party service providers to offer their services on
several CAPs. For example, the messaging queue service Cloud AMQP! is
offered on 10 different CAPs (including AWS, Heroku, Google Cloud Plat-
form, etc.). Accordingly, under certain assumptions one and the same policy

definition can be re-used across all of those CAPs.
8.3 Potential limitations of the proposed approach
Having listed the main benefits of the present research work, we also have to

summarise associated limitations, as our approach is not a ‘silver bullet’, and still

may suffer from certain issues.

1http ://www.cloudamgp.com/

http://www.cloudamqp.com/

162 8.3. Potential limitations of the proposed approach

Need for unified data representation

The domain of data monitoring and analysis within CAPs is characterised by an
extreme heterogeneity of the data sources generating data. This data may come
from various physical (e.g., data centres and servers) and logical locations (e.g.,
log files, databases, SQL queries). This data may also come in non-structured
(e.g., text file), semi-structured (e.g., data expressed in JSON or XML formats)
or structured forms (e.g., relational databases). There also exists what we call a
semantic heterogeneity — that is, difference in data representation at the semantic
level, when various applications, for example, use different terms and names when

storing data in the same database (i.e., in the same structured format).

All these call for a unified way of representing data so as to enable its pro-
cessing in one central location, based on a coherent knowledge base. The same
challenges exist in the domain of the Sensor Web (that is why the whole SWE
initiative was launched), and effective solutions came from the domain of the Se-
mantic Web, which offered rich and expressive ontological vocabularies to describe
sensors and model sensory data, and the RDF format for unified data represen-
tation. Accordingly, in our own problem domain we applied the same technique
— heterogeneous sensory values, generated by various software sensors, were ex-
pressed using the CSO vocabulary in the form of RDF triples and streamed to one

central processing component.

A negative side effect of employing such an additional meta-description lan-
guage for heterogeneous values is the increased computational overhead, associ-
ated with excessive data serialisation. Every time a serialised string object, rep-
resenting an RDF triple, is sent over the network, it has to be first marshalled
into textual form, and then un-marshalled back into the RDF object. Besides that,
values converted into RDF representation (on average 225 bytes per RDF triple
in a serialised JSON format) may occupy more space compared with the source

format.

To a certain extent, this shortcoming stems from the problem domain itself,
rather than our approach. The existing heterogeneity requires employing an ad-
ditional uniform representation data format. Unless we wanted to create individ-
ual monitoring and analysis components for every single type and format of data
present within the CAP, we had no other option than to introduce a single, unified

vocabulary — an OWL ontology.

Chapter 8. Evaluation and discussion 163

RDF stream processing is not standardised yet

As we explained it in Section 3.2.3, the RDF stream processing research is still in
its infancy and only making its first steps towards being a fully-standardised part
of the Semantic Web technology stack. Currently, there exist several disjoint ap-
proaches to processing streams of RDF triples, which may share the same general
idea, but differ in operational syntax and semantics of the query languages they
are using. As a result, existing RDF stream processing implementations, propri-
etary and often platform-dependent, are hardly compatible with each other. For
example, while experimenting with the prototype version of the EXCLAIM frame-
work, we attempted to employ another RDF stream reasoning engine to see how
easy it can be plugged in to replace the C-SPARQL implementation. Our exper-
iments showed that this process is not straightforward and requires considerable
efforts to: i) refactor the programming code; and ii) rewrite the query set itself to
align it with the new syntax.

Nevertheless, the standardisation process was launched with the support of
W3C RDF Stream Processing Community Group, which was established and is
being run by the main active contributors in the respective research area. We
can reasonably hope for truly standardised RDF stream data models and query

languages in the near future.

Immature reasoning support in RDF stream processing

This shortcoming stems from the previous one, and is a result of the immature
state of the RDF stream processing research in general. It is worth noting that
formal reasoning is not a vital, fundamental feature of an RDF steam processing
engine, whose primary function is to extract individual triples and complex pat-
terns from an RDF stream. However, the whole research area and the term Stream
Reasoning coined by Della Valle et al. (2009) were initially expected to provide
support for formal reasoning to the same extent as the traditional static approach
does it. In particular, with SPARQL it is possible to query over inferred, implicit
knowledge — for example, it is possible to resolve subclass dependencies when
querying. These optimistic plans, however, have not come true yet (this is why the
whole research area should be called RDF stream processing, rather than Stream
Reasoning), and to date, existing RDF stream processing engines only support
querying over explicitly defined RDF triples on a stream (albeit the W3C RDF
Stream Processing Community Group is actively working in this direction).
Eventually, stream reasoning engines are expected to reach a level of maturity,
where all reasoning tasks associated with problem detection in the context of the

164 8.3. Potential limitations of the proposed approach

EXCLAIM framework will be performed at the streaming step. Thereby, the static
reasoning component will not be required at all. However, at the moment the
existing expressivity of RDF stream processing is not enough to adequately repre-
sent diagnosis and adaptation policies with continuous SPARQL (i.e., C-SPARQL
in our case) queries, and we had to extend the framework with the traditional,
static reasoning mechanism based on OWL ontologies and SWRL rules. This, in

turn, led to the next limitation associated with our approach.

Performance issues associated with formal reasoning

Stream reasoning research is still in its infancy, and the performance of dynamic
reasoning over a data stream is an issue. Expressivity of a query language is
known to be inversely related to its performance (Lanzanasto et al., 2012) — the
more expressive queries are, the longer it takes to execute them. This affects both
the scalability of stream reasoning systems, and the actuality and accuracy of the
results obtained.

At the moment, the research community is putting its main efforts into in-
tegrating existing, disjoint approaches and developing a uniform and standard-
ised approach to RDF stream processing. There seem to be individual successful
achievements in this direction — for example, the CQELS continuous query engine
demonstrates an advantage in query execution and performance, compared to C-
SPARQL and EP-SPARQL (Le-Phuoc et al., 2011). These individual benefits, how-
ever, will need to be revisited, once a uniform, integrated approach is developed.
The community will have to address a number of issues in this respect, including
advanced reasoning support and performance issues, such as query optimisation,

caching, and parallel query execution, etc.

To a lesser extent, this limitation also applies to the traditional, static reasoning
over OWL ontologies. Formal reasoning based on DLs is known to be non-linearly
scalable (Urbani, 2010). It means that in the presence of multiple SWRL rules, as
well as the densely populated TBox and ABox of the CSO, the reasoning process
will start facing performance problems. In this light, the role of the C-SPARQL
engine is crucial — it performs initial filtering on incoming sensory data, so that
the OWL/SWRL reasoner is not overloaded with an overwhelming amount of
RDF instances.

Chapter 8. Evaluation and discussion 165

Requirement to design a complicated algorithm for splitting the main stream
into sub-streams

As opposed to simple stream processing approaches, which aim at detecting indi-
vidual tuples on a data stream, CEP approaches, including RDF stream processing,
rely on detecting patterns of events — that is, a combination of tuples, which have
to be extracted and considered together, as a whole. Moreover, in order for con-
tinuous queries to trigger and extract a pattern of events, it is often required that
individual evets not just appear on a stream within the specified time window, but
appear in a certain chronological order as well. We refer to such patterns, which
also include the chronological dimension of individual events, as sequences.

In this light, splitting the main RDF stream into several sub-streams is not a
straightforward task — it may lead to situations in which various tuples, represent-
ing a complex pattern when taken together, may be separated from each other.
As a result, respective queries will never trigger, and will fail to detect a critical
situation. Therefore, the splitting algorithm has to be designed and implemented
with care.

For example, in the use case scenario deployed on IBM Streams, as we de-
scribed it in Chapter 7, we implemented the fragmentation logic in a rather sim-
plistic manner. RDF triples were routed to a corresponding instance of EXCLAIM
framework with respect to a Heroku add-on service, which generated them. Ac-
cordingly, five instances of the EXCLAIM framework were independently pro-
cessing RDF triples from PostgreSQL, PGBackups, Logentries, IronWorker, and
Memcached services. Even though the experimental evaluation demonstrated an
increase in performance — that is, it took less time for the framework to detect a
critical situation — we were unable to handle situations, where observations from
more than one add-on service would help us identify a potentially dangerous
pattern. In particular, by isolating data emitted by the PostgeSQL and PGBackups
add-ons, we were unable to understand whether a critical number of simultaneous
client connections to the database was indeed caused by an increase in number of
clients trying to access it, or it was simply a short-lasting backup process estab-
lishing two connections during the backup procedure. It is obvious that a more

sophisticated splitting algorithm is needed so as to address this kind of situations.

Portability issues of the prototype

A major challenge posed by the ideas presented in this research work is that imple-
menting a monitoring and analysis mechanism based on this high-level abstrac-
tion is not straightforward. It is not possible to provide truly generic guidelines

166 8.4. Summary

as to how to implement the monitoring functionality, because implementation
depends on the characteristics of a particular CAP (its architecture, supported
programming languages, frameworks, execution environments, etc.). For exam-
ple, our own work in this direction (described in (Dautov et al., 2013)) suggested
that an early prototype of the EXCLAIM framework, implemented in Java Spring
and deployed on VMWare’s Cloud Foundry,' was portable to another cloud plat-
form with considerable amount of time and efforts, due to its tight dependence
on Cloud Foundry’s built-in message queueing service RabbitMQ? as a means of

transporting monitored values within the EXCLAIM framework.

8.4 Summary

This chapter discussed the presented EXCLAIM approach and compared it against
the state of the art in the domain of data monitoring and analysing of service-based
cloud systems with respect to the main three criteria — namely, performance, scal-
ability, and extensibility. The chapter also summarised and discussed its potential

benefits and shortcomings in a structured manner.

1http ://www.cloudfoundry.com/
Zhttp://www.rabbitmg.com/

http://www.cloudfoundry.com/
http://www.rabbitmq.com/

Chapter 9
Conclusion

In the presented research work we raised the issue of the cloud platform gov-
ernance, which is becoming of utmost importance, as cloud platforms compete,
striving to deliver even wider selection of services and accommodate even more
user applications. It is our belief that by offering rich, but increasingly com-
plex tools for software development, cloud platform providers also ought to offer
proper management and problem detection support for these tools. Similar to
the IaaS level, where infrastructure resources are elastically provisioned and sys-
tem outages are transparently handled, the PaaS level also has to include such
self-management capabilities as part of their offering. In the first instance, such
self-governance capabilities are expected to enable platform providers with more
control over their constantly growing software ecosystems to support platform
stability and optimal resource consumption. Furthermore, these capabilities are
intended to exempt CAP customers from implementing this functionality them-
selves, and provide more visibility into how platform-hosted SBAs behave and
perform. In this light, in the introductory chapter of this thesis we raised several
research questions we aimed to address.

We answered these research questions with our proposed EXCLAIM frame-
work for service-based cloud platforms. The main idea of the proposed approach
is to encode monitored heterogeneous data using Semantic Web languages, which
then enables to integrate these semantically-enriched observation streams with
static ontological knowledge and to apply intelligent reasoning. The EXCLAIM
framework follows the established MAPE-K reference model for self-adaptations,
and a fundamental underpinning of this approach is the interpretation of service-
based cloud platforms as distributed networks of ‘software sensors” — that is, ser-
vices, deployed applications, platform components, etc., which continually emit

raw heterogeneous data to be monitored and analysed to support run-time situ-

167

168 9.1. Discussing contributions

ation assessment. This enabled us to apply existing solutions developed by the
SSW community, which combines ideas from two research areas, the Semantic
Web and the Sensor Web. This novel combination facilitates situation awareness
through providing enhanced meaning for sensor observations. In particular, we
were inspired by the SSN approach to express heterogeneous sensor values in
terms of RDF triples using a common ontological vocabulary, and have created
our own CSO to act as the core element of the EXCLAIM framework. The CSO
is used to support both self- and context-awareness of the managed elements by
describing the governance-relevant aspects of the managed cloud environment.
By addressing the research questions, our approach contributes to the domain
of cloud self-governance, and in particular to the area of data monitoring and anal-
ysis on service-based cloud platforms. Main contributions include the presented
approach itself, which allows monitoring and analysing heterogeneous data in an
extensible, declarative, modular and scalable manner, the conceptual design of the
EXCLAIM framework, the CSO, and novel concepts of service self-containment,
service criticality, and application profiling. Our research also contributes to the
state of the art in Software Engineering by demonstrating how existing techniques
from several fields (i.e., Autonomic Computing, SOC, Stream Processing, SSW,
and Big Data) can be combined in a novel way to create an extensible, scalable,

modular, and declaratively defined monitoring and analysis solution.

9.1 Discussing contributions

We now summarise the main research contributions associated with the presented
EXCLAIM approach. These are our findings, which have not been previously
explored and discussed by the researchers, and can be potentially re-used by the

wider research community should there be such a need.

1. Novel concept of software self-containment: this concept relies on inter-
preting software elements as logical sensors, and cloud platforms as dis-
tributed networks of such sensors, and allows for individual software sen-
sors to be equipped with respective self-governance knowledge (e.g., self-
diagnosis and self-adaptation policies) to enable decoupled, modular and
distributed organisation of the knowledge base. Based on this interpreta-
tion, it becomes possible to design and implement monitoring frameworks
in such a way that individual monitored objects act as independent, self-
aware entities, which can be seamlessly integrated into an existing network

of similar objects. As opposed to computationally expensive reasoning over a

Chapter 9. Conclusion 169

potentially heavy-weight, ‘monolithic” knowledge base, with such organisa-
tion, it is possible to limit analysis activities to a specific set of policies which
only concern a specific scenario at hand, and thus minimise the amount of

unnecessary computations and data transfers.

2. The overall approach to data monitoring and analysis to support self-
governance in service-based cloud platforms: in the first instance, this
contribution relies on through preliminary work, carried out before the EX-
CLAIM framework could be developed. This work refers to examining and
analysing the problem domain of service-based cloud platforms — some-
thing, which has not been previously done by the research community, as
there is little evidence of efforts in enabling any kind of autonomic behaviour
at the level of CAPs. In the context of the presented work, we classified ex-
isting problems from several perspectives (i.e., the CAP provider, the CAP
consumer, and the third-party service provider), their roles in the governance
process, and identified challenges associated with each of these perspectives.
Having classified the problem domain, we also distilled a list of functional
requirements, which in turn helped to identify exiting techniques and so-
lutions which could be potentially re-used in the context of our work so as
not to ‘re-invent the wheel’. As a result, based on the existing similarities
between problem domains, we were able to apply the SSW techniques. The
proposed approach demonstrates capabilities for extensibility and scalabil-
ity, as well as acceptable performance results. It can be seen as a combination
of several technologies and research domains — namely, Cloud Computing,
SSW, Stream Processing, Big Data processing, and Software Engineering —
and potentially can be re-used and applied to other domains, where prob-
lems and challenges are similar to the ones identified in the context of CAPs.

3. Conceptual design of the EXCLAIM framework: apart from the general
approach to data monitoring and analysis in CAPs, the conceptual design
of the proposed EXCLAIM framework is seen as a research contribution, as
it may serve as a reference model to implement similar frameworks using
other components and technologies. That is, it acts a high-level generic ar-
chitecture, where individual components can be implemented using various
technologies. For example, as explained, there exist several competing tech-
nologies for RDF stream processing, each of which has its own advantages
and therefore can be used to implement the streaming part of the frame-
work. The conceptual design of the framework follows a modular architec-

ture, which makes it possible to re-implement individual components in a

170

9.1. Discussing contributions

seamless manner with minimum interference to other components. More-
over, it is even possible to take the current version of the EXCLAIM frame-
work and adjust it to another problem domain by replacing the knowledge
base (i.e., the core ontology, C-SPARQL queries, SWRL rules) and software

connectors.

Two-tier Cloud Sensor Ontology: the CSO acts as the core element of the
underlying knowledge base, used throughout the whole process of data
monitoring and analysis within the EXCLAIM framework. the upper tier
of this ontology models cloud platform environments in a high-level generic
manner — i.e., concepts belonging to this tier are expected to be applicable
across a wide range of CAPs. This claim is supported by our own experi-
ence of engineering the ontology — multiple CAPs have been examined so
as to identify commonalities among them, which constitute the upper tier
of the ontology. As a result, the upper ontology can be extended appropri-
ately to model a particular cloud platform (as it might be required by other
researchers). In these circumstances, the lower tier of the ontology, which
models the Heroku ecosystem, can be seen as an example of how the upper
tier is supposed to be extended and used. Additionally, the lower tier can be
potentially re-used as it is right now (or with minimum additions), should
there be a suitable situation.

Novel concepts of service criticality and application profiling: these con-
cepts serve to support a fine-grained, differentiated, and user-customised
approach to data collection and monitoring. As there are three main roles
involved in the process of platform governance, it was important to con-
sider all three perspectives when designing the EXCLAIM framework, such
that the involved parties (i.e., the CAP provider, the CAP consumer, and
the third-party add-on provider) are given an opportunity to participate in
the process of cloud platform governance. As a result, we introduced the
concepts of service criticality and application profiling, which can be seen
as a communication channel between CAP consumers, CAP providers, and
third-party add-on providers. Consumers are not allowed to interfere with
the back end of the EXCLAIM framework, including the knowledge base,
but are essentially the ones who know the best how critical their applica-
tions are. That is, they are aware of the internal structure and business
logic of their applications, and therefore might want to make the platform
aware of what aspects of their software systems need to be cared after more
thoroughly. Accordingly, by submitting an application profile, they let the

Chapter 9. Conclusion 171

platform know of how critical their software is. To each of the criticality level
there exists a corresponding set of policies, submitted to the CAP provider
by third-party service providers, who are more familiar and aware of po-
tential danger levels of their respective services. As a result, the cloud plat-
form is now able to treat deployed software and connected add-on services
more carefully if needed, based on the criticality profile submitted by the
consumers and associated linked sets of policies submitted by the service
providers. Such a differentiated, flexible and fine-grained approach to mon-
itoring and analysing individual software elements within cloud platforms
also facilitates more optimised utilisation of available resources by triggering
analysis activities only when they are really required — that is, if an applica-
tion is not profiled as critical, there is no urgent requirement to monitor its

activity.

9.2 Further work

In this section, we outline several directions for future research. To avoid trivial
and negligible (mainly implementation-related) details, we include only the most

significant directions for further work.

Reducing redundancy in RDF streams and optimising sampling rates

As explained in Chapter 6, there is a considerable amount of redundant RDF
triples, which are sent over the network to the EXCLAIM framework. More specifi-
cally, every sensor reading consisting of several RDF triples includes only one truly
meaningful triple, which represents an actual quantitative value, whereas the rest
only provide the semantic context of that value. That is, they describe what kind
of value is that, to what service they belong, etc. These triples are fairly static —i.e.,
do not change as frequently as the ‘meaningful” triple — and repeatedly sending
same triples results in unnecessary network overheads.

A potential solution to address this issue is to distinguish between truly dy-
namic, ‘meaningful” triples and static triples, describing the context of the mea-
surements. The latter, therefore, can be added to the static background data set of
the continuous query engine (e.g., C-SPARQL supports this feature) or the SWRL
reasoner. To do so, it is possible to assign a dedicated stream, which would send
and update the background data set with these fairly static triples at a much
slower rate (e.g., once in an hour), thus considerably minimising the amount of

triples sent to the main operational streams, as the ratio between ‘meaningful” and

172 9.2. Further work

static triples in a single reading might get significantly low, as demonstrated by
the examples in 6.2.

In connection with this, it is also important to consider the optimal rate for
sampling and sending data to the EXCLAIM framework so as to avoid network

overheads. There are several factors which need to be taken into account:

* RDF generation rate has to be lower than (or equal to) the data sampling
frequency of the underlying software sensors. Otherwise, duplicate redun-
dant values will be streamed for monitoring. For example, Heroku Postgres
updates its statistical information up to 2 times per second, and the RDF

generation rate has to be adjusted accordingly.

e It is also important to consider the behaviour of add-on services — that is,
how dynamically they update their state. For example, database records are
expected to be updated frequently, and therefore associated metrics (i.e., oc-
cupied disk space and number of connections) are supposed to be polled at
a corresponding rate. On the other, a backup service is a one-off process,
which might be executed on an hourly, daily or weekly basis — in these cir-
cumstances, polling the backup service every second whether it is currently

running or not hardly makes sense.

¢ The third factor is the application profile, submitted by the CAP provider.
Software may be classified in terms of its add-on service criticalities, which
defines how sensitively the EXCLAIM framework has to treat particular ap-
plications and associated add-on services. Accordingly, this can also be taken
into account when deciding on a specific sampling and RDF generation rate
— more critical services require more frequent and up-to-date monitoring

results, and vice versa.

These factors suggest that data sampling and RDF generation may vary and are
specific to individual services. As a first step towards addressing this issue, we
suggest surveying target services and identifying individual rates. Then, it will
be possible to cluster them and set default rates for all services belonging to a

particular cluster.

Semantic stream fragmentation

Detecting complex patterns of events is expected to be performed over a single
stream. The situation changes when, for whatever reason, data is spread across
several sub-streams, so that each of them provides a partial view on the over-
all situation. In the context of the research work, as we described in Chapter 7,

Chapter 9. Conclusion 173

we fragmented the main RDF data stream into five sub-streams to achieve higher
performance on individual sub-streams. However, analysing such partial obser-
vations may lead to flawed and inaccurate interpretations, and therefore has to be
handled with care.

Accordingly, a potential direction for further research is the investigation of
splitting and fragmentation algorithms for data streams. It is important to un-
derstand what the (semantic) links between individual tuples are, and whether
these links can be ‘broken’ safely. In this light, applying principles of the semantic
distance (Cross, 2004) may be of potential benefit. Briefly, based on the semantic
distance (also known as semantic relatedness), we may decide whether two individ-
ual tuples have to be routed to the same sub-stream, or can tolerate being split
into separate sub-streams.

Integration with existing planning and execution mechanisms

In Chapter 2.2, we introduced to the reader the notion of the MAPE-K loop for
implementing self-adaptive systems as an underlying model for implementing
our own EXCLAIM framework. In our work, however, we only focussed on the
left-hand side of the loop — that is, on the monitoring and analysis components.
To fully achieve autonomic functionality, it is necessary that the framework is
integrated with convenient planning and execution components.

In this respect, a possibility of applying approaches, developed by the author’s
fellow researchers at SEERC, can be investigated. In particular, the EXCLAIM
framework can be extended with the work of Bratanis (2012). Its main focus is on
creating a self-management mechanism for service-based environments at multi-
ple levels —i.e., hardware infrastructure, service composition and business process
management. Such a cross-level mechanism would avoid managing service com-
positions at different levels in isolation, but rather would aim at more holistic,
comprehensive management of service compositions. For example, when identi-
fying a lack of hardware resources (i.e., at the infrastructure level), the planning
mechanism would consider possible adaptation solutions to be applied at all three
levels, not just the bottom one. Accordingly, analysis results obtained by the EX-
CLAIM framework would provide a diagnosis, based on which further cross-level
planning and execution could potentially take place.

Another example of possible integration of the framework with a planning
component comes from the author’s collaboration in the context of the ‘/RELATE
ITN’ project, which sets as its goal engineering and provisioning of service-based
cloud applications. Accordingly, work of Chatziprimou et al. (2013) investigates

how utilisation of cloud resources can be optimised with respect to multiple cri-

174 9.2. Further work

teria. Such a multi-criteria optimisation is planned based on certain heuristics to
achieve best possible results in the given context. In spite of being mainly laaS-
oriented, these planning capabilities can also be potentially applied to the PaaS

segment and be integrated into our own EXCLAIM framework.

Machine learning techniques to be employed

As CAP environments are getting more and more complex, and extreme volumes
of data are being generated at unpredictable rates, timely and prompt modifi-
cation of the knowledge base becomes a major concern. Application of various
Big Data analytics techniques to the domain of cloud monitoring and analysis
came as a natural fit. These techniques, however, mainly addressed the volume
and velocity of monitored data and can hardly help to cope with the variety and
unpredictability of generated data.

When describing our approach, we relied on the assumption that the know-
ledge base is manually populated by the platform administrator and third-party
service providers either at design-time or at run-time by updating the declaratively
defined set of policies, so as to meet emerging requirements. In these circum-
stances, introduction of new policies or modification of existing ones implies pres-
ence of a human administrator. This requirement affects the overall capabilities
of the framework to detect critical situations in a timely fashion, and contradicts
with the very concept of autonomic computing.

This consideration suggests that the process of knowledge base maintenance
can be potentially automated. In this light, application of various machine learn-
ing techniques has the potential to address this challenge [144]. With the help
of machine learning, it would be possible to enable the knowledge base with self-
training capabilities, so that new policies would be added and existing ones would
be modified with respect to changing observations. The process of training a ma-
chine is typically two-step. First step — the supervised learning — involves training
the system to predict values using various algorithms, and then matching pre-
dicted values with the actual results. This is an iterative process, which typically
requires a lot of sample data to achieve a more precise model. Then, at the second
step, the trained system is able to predict values (and keep on training). Ideally,
the goal is to develop a self-training analysis engine which would be capable of
adapting its knowledge base (i.e., C-SPARQL queries) to the changing context. In
its simplest form, the self-training analysis component, based on historical obser-
vations, would accordingly adjust critical thresholds for particular SLA metrics, so

as to make them more accurate and up-to-date.

Chapter 9. Conclusion 175

Publishing results on-line as Linked Data

The original motivation behind employing the Semantic Web stack in the context
of the presented research work was two-fold. First, we needed to move away from
rigid, hard-wired definition of the knowledge base and associated diagnosis poli-
cies, and use a flexible, extensible, and platform-independent way of expressing
knowledge. As a result, the EXCLAIM framework offers CAP providers an op-
portunity to define policies in a declarative and human-readable manner by using
the underlying CSO as a common vocabulary of terms.

However, with this approach, CAP providers are expected to be responsible
for maintaining the collection of policies, which concerns not only the internal
platform components and native services, but also third-party add-on services,
which are registered with the CAP marketplace. This, however, is typically not
the case. CAP providers are not necessarily aware of the internal organisation of
a third-party service and their behaviour; they treat them as black boxes and are
not in a position to handle their adaptive behaviour. In these circumstances, third-
party add-on providers, having registered and offered their software services in
the cloud marketplace, are also expected to be responsible for customer support
as far as their add-on services are concerned. It means that some parts of the
knowledge base have to be delegated to reliable third parties registered with the
CAP.

To address this challenge, we have utilised Linked Data principles to create
a two-tier ontological architecture, consisting of the core ontology (i.e., the CSO)
and multiple linked extensions to it, which are intended to contain self-governance
policies, applicable to individual services and components. The primary goal of
Linked Data is to enable discovery and sharing of semantically-enriched data over
the Web using standardised technologies, such as URIs and RDF (Bizer et al,,
2009). Accordingly, in the context of the EXCLAIM framework, we applied same
principles to split the inherently heavy-weight monolithic ontological knowledge
base into multiple linked pieces.

It is worth noting that Linked Data primarily refers to publishing RDF datasets
(or ‘instance data’), rather than to OWL, RDFS and SWRL vocabularies.! In this
light, to benefit from application of Linked Data principles even further — that is,
to support data integration and discovery — one of the future steps is to publish
historical sensor data, collected by the EXCLAIM framework, as homogenised
RDF triples in public online repositories. Indeed, we are already logging RDF

INevertheless, there is ongoing research aimed specifically at linking, sharing and re-using the
underlying schemas, not just the datasets themselves. See Linked Open Vocabularies (http://
lov.okfn.org/dataset/lov/) for a representative example of this research initiative.

http://lov.okfn.org/dataset/lov/
http://lov.okfn.org/dataset/lov/

176 9.3. Researcher’s view

data for the purposes of “‘post-mortem” analysis, performance testing, and pattern
identification. As we expect the EXCLAIM framework to mature and develop,
publishing this information as Linked Data will provide researchers with access
to real-world performance measurements, and has the potential, for example, to

facilitate comparison between different CAPs.

9.3 Researcher’s view

To conclude the thesis, we are providing the author’s personal view and impres-
sions from the conducted research, obtained results and further opportunities. The
PhD research turned out to be a challenging and exciting period, which involved
several pivot points, at which the research had to change its initial direction before
the final version of the thesis was submitted.

The initial idea was to employ ontologies as a way of modeling cloud infras-
tructures and rules to express diagnosis policies. At that point, the project was
solely associated with static reasoning. However, as it proceeded the requirement
for a streaming approach became more and more apparent. As a result, the SSW-
inspired solution has been chosen as the primary direction for further research.
Feeling enthusiastic about this new promising idea, there was an ambitious at-
tempt to create a software framework, which would fully implement the MAPE-K
loop — that is, including the Planning and Execution steps. At this point, the
context and the application scope for the conducted research also became clear —
instead of focusing on cloud computing at all three levels — i.e., IaaS, PaaS, and
SaaS — the was a clear gap of insufficient governance capabilities specifically in
the context of CAPs. As a result, the idea was to develop a completely autonomic
framework for self-adaptations in CAPs. Soon it became clear that each of the
MAPE-K activities is worth a PhD research in its own right, and admittedly it
would be better to focus on a single specific step within the MAPE-K cycle instead
of ending up being ‘everywhere and nowhere’. As a result, the research explic-
itly focused on the monitoring activities with support for problem detection — this
seemed to be most challenging, interesting and promising direction. Additionally,
this is where the SSW techniques were expected to bring most benefits. Essentially,
this is when the approach finally crystallised and remained unchanged until the
thesis submission date.

It is worth noting that conceptually the EXCLAIM approach is not limited
to the domain of cloud platforms, and has the potential to be applied to other
problem domains where timely processing and interpretation of dynamically gen-
erated heterogeneous data is required — one of such domains is, undoubtedly, the

Chapter 9. Conclusion 177

emerging IoT. At the moment, the author is exploring potential possibilities of
applying the existing work and experience accumulated during the PhD studies
to this trending domain, and feeling enthusiastic about initial findings.

Acronyms

AMQP Advanced Messaging Queue Protocol. 102, 120
aPaaS Application Platform-as-a-Service. 25, 27

API Application Programming Interface. 18, 19, 27, 30, 35, 36, 43, 56, 77, 83, 94,
100, 101, 104-106, 119, 120, 124-126, 159, 206, 212

AWS Amazon Web Services. 22,43, 72,73, 77, 162, 208, 213

BPEL Business Process Execution Language. 75, 80, 82

BPM Business Process Management. 5

C-SPARQL Continuous SPARQL. 90, 101, 104, 106-108, 114, 115, 121, 122, 131,
133, 135-138, 142-146, 151-154, 164, 165, 171, 172, 175, 193, 194

CADA Collect — Analyze — Decide — Act. 6

CAP Cloud Application Platform. 3-13, 17, 18, 27-30, 33, 34, 36, 40, 4446, 67,
70, 76,79, 82-88, 90, 92, 94-99, 111-116, 119-121, 129, 132, 133, 138, 139, 144,
146, 150-153, 155, 158-163, 166, 168, 170-173, 175-177, 193-195, 198, 199, 204

CEP Complex Event Processing. 37, 52, 64, 165

CLAMS Cross-Layer Multi-Cloud Application Monitoring-as-a-Service. 77, 78,
213

CLI Command Line Interface. 127

CPU Central Processing Unit. 24, 25, 35, 37, 42, 43, 68, 69, 73, 74, 79, 87, 143, 152,
158, 204, 209

CRM Customer Relationship Management. 28

CSO Cloud Sensor Ontology. 67, 99, 100, 104, 106, 108, 110-112, 116, 118, 120-122,
132, 133, 136, 137, 154, 157, 162, 163, 165, 169, 171, 176, 193, 194

178

Acronyms 179

CSV Comma-Separated Value. 152

DBMS Database Management System. 105
DL Description Logic. 110, 165

DNS Domain Name System. 199

EB exabyte. 46, 47
EC2 Elastic Compute Cloud. 22, 23

ECA Event-Condition-Action. 37
FTP File Transfer Protocol. 29, 198

GB gygabyte. 46, 126, 128, 151, 152
GIS Geographic Information System. 55
GPS Global Positioning System. 48, 49

GUI Graphical User Interface. 112, 128, 141

HPC High Performance Computing. 68

HTTP HyperText Transfer Protocol. 19, 74, 209

IaaS Infrastructure-as-a-Service. 5, 24, 28, 42, 68-70, 76-80, 82, 158, 168, 177, 211,
212

IDE Integrated Development Environment. 25, 29, 53, 99, 110, 198
IFP Information Flow Processing. 50

IoS Internet of Services. 2, 4, 17, 20, 27, 70

IoT Internet of Things. 56, 116, 178

ISP Internet Service Provider. 20

IT Information Technology. 1, 4, 17-20, 22, 24, 30, 31, 3741, 46, 47, 55, 116

JAR Java Archive. 53

JSON JavaScript Object Notation. 70, 91, 102, 105, 106, 125, 151, 163, 206

180 Acronyms

KPI Key Performance Indicator. 204
LOD Linked Open Data. 157

MAPE Monitor-Analyse-Plan-Execute. 34, 39, 98, 119

MAPE-K Monitor-Analyse-Plan-Execute-Knowledge. 5, 6, 8, 12, 15, 17, 18, 32, 34,
40, 44, 75,76, 78,90, 98, 110, 168, 174, 177, 210, 212, 213

MB megabyte. 128, 143, 151, 152

MISURE Monitoring Infrastructure using Streams on an Ultra-scalable, near-Real
time Engine. 76, 212

MonaLISA Monitoring Agents in a Large Integrated Services Architecture. 75,
209

N3 Notation3. 58, 59

NIST National Institute of Standards and Technology. 22, 24

OGC Open Geospatial Consortium. 55
OO0C Object-Oriented Computing. 18
OS Operating System. 2, 24, 25, 204

OWL Web Ontology Language. 8, 57, 58, 60-62, 76, 85, 90-95, 100, 101, 107, 108,
110, 115, 121, 122, 131, 137, 143, 156-160, 163-165, 176, 195

PaaS Platform-as-a-Service. 1-3, 5, 12, 17, 18, 24-30, 32, 36, 44, 69-71, 76, 77, 79,
82, 83,119, 153, 168, 177, 211-213

PC Personal Computer. 143, 144
QoS Quality of Service. 41, 69, 77, 79, 213, 214

R2RML RDB to RDF Mapping Language. 106
RAM Random-Access Memory. 126
RDBMS Relational Database Management System. 47, 104

RDF Resource Description Framework. 8, 46, 57-60, 63-65, 76, 90-92, 95, 99-102,
104, 106-108, 113, 114, 120-122, 130, 131, 133, 134, 136-145, 147, 151, 153, 156,
159, 162-166, 169, 170, 172-174, 176, 193, 194

Acronyms 181

RDFS RDF Schema. 58, 60, 61, 176
REST Representational State Transfer. 160

RFID Radio Frequency Identification. 56

SaaS Software-as-a-Service. 5, 24, 25, 28, 70, 82, 158, 177, 211, 212

SALMon Service Level Agreement Monitor. 75, 210

SBA Service-based Application. 18, 20, 74, 75, 78, 80, 86, 9597, 134, 168, 204
SDK Software Development Kit. 100

SEERC South-East European Research Centre. 111, 174

SFTP Secure File Transfer Protocol. 199

SLA Service Level Agreement. 6, 41, 75, 76, 78, 79, 83, 126, 175, 206, 210-214
SMS Short Message Service. 96

SMTP Simple Mail Transfer Protocol. 74, 209

SNMP Simple Network Management Protocol. 77

SOA Service-Oriented Architecture. 18, 21, 40, 76, 94, 210, 211

SOAP Simple Object Access Protocol. 160

SOC Service-Oriented Computing. 2, 17, 19-21, 23, 26, 36, 40, 41, 44, 75, 169

SPARQL SPARQL Protocol and RDF Query Language. 58, 60, 6365, 90-92, 99,
101, 122, 162, 164

SPL Streams Programming Language. 53

SQL Structured Query Language. 50, 60, 91, 104, 105, 127, 163

SSH Secure Shell. 26, 29, 199

SSL Secure Sockets Layer. 29, 199

SSN Semantic Sensor Network. 12, 46, 57, 58, 62-65, 85, 86, 90, 111, 114, 157, 169

SSW Semantic Sensor Web. 7, 8, 10, 45, 46, 57, 58, 62-65, 85, 90, 94, 156, 157, 159,
160, 169, 170, 177, 195

SVN Subversion. 29, 198

182 Acronyms

SWE Sensor Web Enablement. 7, 55-57, 63, 65, 159, 163

SWRL Semantic Web Rule Language. 8, 58, 61, 76, 85, 90, 92-95, 99, 100, 104, 107,
108, 114, 115, 117-122, 131, 132, 137, 138, 143, 152, 154, 156-158, 161, 164,
165, 171, 172, 176, 193-195, 212

TB terabyte. 47, 126
TCP Transmission Control Protocol. 74, 209

Turtle Terse RDF Triple Language. 58-60

UML Unified Modeling Language. 79, 214
URI Universal Resource Identifier. 56, 59, 95, 119, 137, 162, 176
URL Universal Resource Locator. 101

USB Universal Serial Bus. 46
VM Virtual Machine. 2, 37, 74

W3C World Wide Web Consortium. 58, 62, 65, 164
WSDL Web Service Description Language. 75

WSLA Web Service Level Agreement. 76, 211

XML Extensible Markup Language. 52, 57-59, 63, 70, 76-78, 89, 100, 101, 106, 159,
163, 206, 210, 211

ZB zettabyte. 46

References

Abelson, H. (1999), Architects of the information society: Thirty-five years of the labora-
tory for computer science at MIT, MIT Press.

Akyildiz, I., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (20024), ‘A survey on
sensor networks’, IEEE Communications Magazine 40(8), 102-114.

Akyildiz, 1., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002b), “Wireless
sensor networks: a survey’, Computer Networks 38(4), 393—-422.

Alhamazani, K., Ranjan, R., Jayaraman, P. P., Mitra, K., Liu, C., Rabhi, E A,
Georgakopoulos, D. and Wang, L. (2015), ‘Cross-layer multi-cloud real-time
application QoS monitoring and benchmarking as-a-service framework’, CoRR
abs/1502.00206.

URL: http://arxiv.org/abs/1502.00206

Alhamazani, K., Ranjan, R., Mitra, K., Jayaraman, P, Huang, Z., Wang, L. and
Rabhi, F. (2014), CLAMS: Cross-layer Multi-cloud Application Monitoring-as-a-
Service Framework, in ‘2014 IEEE International Conference on Services Com-
puting (SCC)’, pp. 283-290.

Alin, C. M. (2015), “Top 7 Open-Source JSON-Binding Providers Available Today’.
Accessed on 20/04/2016.
URL: http:/fwww.developer.com/lang/jscript/top-7-open-source-json-binding-
providers-available-today.html/

Amazon Web Services, Inc. (2015), ‘Developer Guide — Amazon CloudWatch’. Ac-
cessed on 20/04/2016.
URL: http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

Ameller, D. and Franch, X. (2008), Service level agreement monitor (SALMon),
in ‘Composition-Based Software Systems, 2008. ICCBSS 2008. Seventh Interna-
tional Conference on’, pp. 224-227.

183

184 References

Anicic, D., Rudolph, S., Fodor, P. and Stojanovic, N. (2010), ‘Stream reasoning and
complex event processing in ETALIS’, Semantic Web .

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A. and Stoica, I. (2010), ‘A view of cloud computing’,
Communications of the ACM 53(4), 50-58.

Atzori, L., lera, A. and Morabito, G. (2010), ‘The Internet of Things: A survey’,
Computer Networks 54(15), 2787-2805.

Baldwin, C. Y. and Clark, K. B. (2000), Design rules: The power of modularity, Vol. 1,
MIT press.

Baldwin, C. Y. and Clark, K. B. (2003), ‘Managing in an age of modularity’, Man-
aging in the Modular Age: Architectures, Networks, and Organizations 149.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E. and Grossniklaus, M. (2009), C-
SPARQL: SPARQL for continuous querying, in ‘Proceedings of the 18th interna-
tional conference on World wide web’, WWW ‘09, ACM, New York, NY, USA,
pp- 1061-1062.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E. and Grossniklaus, M. (2010), Stream
Reasoning: Where We Got So Far, in ‘Proceedings of the 4th International Work-

shop on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic
(NeFoRS)'.

Barbieri, D., Braga, D., Ceri, S., Valle, E., Huang, Y., Tresp, V., Rettinger, A. and
Wermser, H. (2010), ‘Deductive and Inductive Stream Reasoning for Semantic
Social Media Analytics’, Intelligent Systems, IEEE 25(6), 32 —41.

Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D. and Zeginis, C. (2013), Lifecycle Management of Service-based Ap-
plications on Multi-clouds: A Research Roadmap, in ‘Proceedings of the 2013
International Workshop on Multi-cloud Applications and Federated Clouds’,
MultiCloud 13, ACM, New York, NY, USA, pp. 13-20.

Bechmann, A. and Lomborg, S. (2014), The Ubiquitous Internet: User and Industry
Perspectives, Vol. 25, Routledge.

Benbernou, S., Hacid, L., Kazhamiakin, R., Kecskemeti, G., Poizat, J. L., Silvestri,
E, Uhlig, M. and Wetzstein, B. (2008), ‘State of the art report, gap analysis of
knowledge on principles, techniques and methodologies for monitoring and
adaptation of SBAs’, S-Cube Deliverable PO. [RA-1.2 1.

References 185

Berners-Lee, T., Hendler, J., Lassila, O. et al. (2001), “The semantic web’, Scientific
american 284(5), 28-37.

Bizer, C., Heath, T. and Berners-Lee, T. (2009), ‘Linked data — the story so far’,
International journal on semantic web and information systems 5(3), 1-22.

Blair, G., Coulson, G. and Grace, P. (2004), Research directions in reflective middle-
ware: the Lancaster experience, in ‘Proceedings of the 3rd workshop on Adap-
tive and reflective middleware’, ARM '04, ACM, New York, NY, USA, pp. 262—
267.

Bondi, A. B. (2000), Characteristics of scalability and their impact on performance,
in ‘Proceedings of the 2nd international workshop on Software and perfor-
mance’, ACM, pp. 195-203.

Boniface, M., Nasser, B., Papay, J., Phillips, S., Servin, A., Yang, X., Zlatev, Z,,
Gogouvitis, S., Katsaros, G., Konstanteli, K., Kousiouris, G., Menychtas, A. and
Kyriazis, D. (2010), Platform-as-a-Service Architecture for Real-Time Quality
of Service Management in Clouds, in 2010 Fifth International Conference on
Internet and Web Applications and Services (ICIW)’, pp. 155-160.

Botts, M., Percivall, G., Reed, C. and Davidson, J. (2008), ‘OGC® sensor web en-
ablement: Overview and high level architecture’, GeoSensor networks pp. 175-
190.

Botts, M. and Robin, A. (2014), ‘OGC® SensorML: Model and XML Encoding
Standard’.

Brandic, I. (2009), Towards Self-Manageable Cloud Services, in ‘Computer Soft-
ware and Applications Conference, 2009. COMPSAC ’'09. 33rd Annual IEEE
International’, Vol. 2, pp. 128-133.

Bratanis, K. (2012), “Towards engineering multi-layer monitoring and adaptation
of service-based applications’, Dept. Comp. Sci., Univ. Sheffield, UK, Tech. Rep.
CS-12-04 .

Bratanis, K., Dranidis, D. and Simons, A. J. H. (2012), The Challenge of Engi-
neering Multi-Layer Monitoring & Adaptation in Service-Based Applications,
in ‘Proceedings of the 7th Annual South East European Doctoral Student Con-
ference’, pp. 497-503.

Brazier, F.,, Kephart, J., Van Dyke Parunak, H. and Huhns, M. (2009), ‘Agents and
Service-Oriented Computing for Autonomic Computing: A Research Agenda’,
IEEE Internet Computing 13(3), 82 —87.

186 References

Breskovic, 1., Haas, C., Caton, S. and Brandic, I. (2011), Towards Self-Awareness in
Cloud Markets: A Monitoring Methodology, in ‘2011 Ninth IEEE International
Conference on Dependable, Autonomic and Secure Computing (DASC)’, pp. 81
-88.

Buxmann, P, Hess, T. and Ruggaber, R. (2009), ‘Internet of Services’, Business &
Information Systems Engineering 1(5), 341-342.

Buyya, R., Vecchiola, C. and Selvi, S. T. (2013), Mastering cloud computing: founda-

tions and applications programming, Newnes.

Calbimonte, J.-P, Jeung, H., Corcho, O. and Aberer, K. (2012), “Enabling Query
Technologies for the Semantic Sensor Web’, International Journal On Semantic
Web and Information Systems .

Cavalcante, E., Batista, T., Bencomo, N. and Sawyer, P. (2015), Revisiting Goal-
Oriented Models for Self-Aware Systems-of-Systems, in ‘Autonomic Computing
(ICAC), 2015 IEEE International Conference on’, IEEE, pp. 231-234.

Chaiken, R., Jenkins, B., Larson, P.-\., Ramsey, B., Shakib, D., Weaver, S. and Zhou,
J. (2008), ‘'SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets’,
Proc. VLDB Endow. 1(2), 1265-1276.

Chatziprimou, K., Lano, K. and Zschaler, S. (2013), Runtime Infrastructure Opti-
misation in Cloud IaaS Structures, in ‘2013 IEEE 5th International Conference
on Cloud Computing Technology and Science (CloudCom)’, Vol. 1, pp. 687-692.

Chen, M., Mao, S. and Liu, Y. (2014), ‘Big Data: A Survey’, Mobile networks and
applications 19(2), 171-209.

Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,
Kelsey, W. D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A.,
Page, K., Passant, A., Sheth, A. and Taylor, K. (2012), “The SSN ontology of the
W3C semantic sensor network incubator group’, Web Semantics: Science, Services
and Agents on the World Wide Web 17, 25-32.

Compton, M., Henson, C. A., Neuhaus, H., Lefort, L. and Sheth, A. P. (2009), A
Survey of the Semantic Specification of Sensors., in ‘SSN’, pp. 17-32.

Cox, M. and Ellsworth, D. (1997), Application-controlled demand paging for out-
of-core visualization, in ‘Proceedings of the 8th conference on Visualization'97’,
IEEE Computer Society Press.

References 187

Cross, V. (2004), Fuzzy semantic distance measures between ontological concepts,
in ‘2004 IEEE Annual Meeting of the Fuzzy Information Processing NAFIPS'04.’,
Vol. 2, pp. 635-640 Vol.2.

Curbera, F, Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.
(2002), “Unraveling the Web Services Web: An Introduction to SOAP, WSDL,
and UDDY’, IEEE Internet Computing 6(2), 86-93.

Dautov, R., Paraskakis, I. and Kourtesis, D. (2012), An ontology-driven approach
to self-management in cloud application platforms, in ‘Proceedings of the 7th
South East European Doctoral Student Conference (DSC 2012)’, Thessaloniki,
Greece, pp. 539-550.

Dautov, R., Paraskakis, I., Kourtesis, D. and Stannett, M. (2013), Addressing Self-
Management in Cloud Platforms: a Semantic Sensor Web Approach, in ‘Pro-
ceedings of the International Workshop on Hot Topics in Cloud Services (Hot-
TopiCS 2013)’, Prague, Czech Republic.

Dautov, R., Paraskakis, I. and Stannett, M. (20144), ‘Towards a Framework for

Monitoring Cloud Application Platforms as Sensor Networks’, Cluster Comput-
ing .
Dautov, R., Paraskakis, I. and Stannett, M. (2014b), ‘Utilising stream reasoning

techniques to underpin an autonomous framework for cloud application plat-
forms’, Journal of Cloud Computing 3(1), 1-12.

Dean, J. and Ghemawat, S. (2008), ‘MapReduce: Simplified Data Processing on
Large Clusters’, Commun. ACM 51(1), 107-113.

Delgado, N., Gates, A. Q. and Roach, S. (2004), ‘A taxonomy and catalog of run-
time software-fault monitoring tools’, IEEE Transactions on Software Engineering
30(12), 859-872.

Della Valle, E., Ceri, S., Barbieri, D., Braga, D. and Campi, A. (2009), A First
Step Towards Stream Reasoning, in J. Domingue, D. Fensel and P. Traverso, eds,
‘Future Internet’, Vol. 5468 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, pp. 72-81.

Di, S., Kondo, D. and Cappello, E. (2013), Characterizing cloud applications on
a Google data center, in ‘Parallel Processing (ICPP), 2013 42nd International
Conference on’, IEEE, pp. 468—-473.

Distefano, S., Merlino, G. and Puliafito, A. (2015), ‘A utility paradigm for IoT: The
sensing Cloud’, Pervasive and Mobile Computing 20, 127-144.

188 References

Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F, Schmidt, N. and Zambonelli, F. (2006), ‘A survey of autonomic
communications’, ACM Transactions on Autonomous and Adaptive Systems (TAAS)
1(2), 223-259.

Ehlers, J., van Hoorn, A., Waller, J. and Hasselbring, W. (2011), Self-adaptive
software system monitoring for performance anomaly localization, in ‘Proceed-
ings of the 8th ACM international conference on Autonomic computing’, ACM,
pp- 197-200.

Finos, R. (2015), ‘Public Cloud Market Shares 2014 and 2015’. Accessed on
20/04/2016.
URL: http://wikibon.com/public-cloud-market-shares-2014-and-2015/

Galante, G. and de Bona, L. (2012), A Survey on Cloud Computing Elasticity,
in 2012 IEEE Fifth International Conference on Utility and Cloud Computing
(UCQ)’, pp. 263-270.

Ganek, A. G. and Corbi, T. A. (2003), “The dawning of the autonomic computing
era’, IBM Systems Journal 42(1), 5-18.

Gantz, J. and Reinsel, D. (2011), “Extracting value from chaos’, IDC iView 1142, 1—-
12.

Gartner, Inc. (2015), “APaaS — Application Platform as a Service’. Accessed on
20/04/2016.
URL: http://www.gartner.com/it-glossary/application-platform-as-a-service-apaas/

Gruber, T. R. (1993), “A translation approach to portable ontology specifications’,
Knowl. Acquis. 5(2), 199-220.

Gruber, T. R. (1995), “Toward principles for the design of ontologies used for know-
ledge sharing’, International journal of human computer studies pp. 907-928.

Harris, D. (2012), ‘Heroku boss: 1.5M apps, many not in Ruby’. Accessed on
20/04/2016.
URL: https://gigaom.com/2012/05/04/heroku-boss-1-5m-apps-many-not-in-ruby/

Heineman, G. and Council, W. (2001), Component-Based Software Engineering:
Putting the Pieces Together, Addison-Wesley.

Hellerstein, J. L. (2010), ‘Google Cluster Data’. Accessed on 20/04/2016.
URL: http://googleresearch.blogspot.com/2010/01/google-cluster-data.html/

References 189

Hitzler, P., Krotzsch, M. and Rudolph, S. (2009), Foundations of Semantic Web Tech-
nologies, CRC Press.

Horn, P. (2001), ‘Autonomic Computing: IBM’s Perspective on the State of Infor-
mation Technology’, Computing Systems 15(Jan), 1-40.

Huebscher, M. C. and McCann, J. A. (2008), ‘A survey of autonomic computing —
degrees, models, and applications’, ACM Comput. Surv 40(3), 1-28.

Huhns, M. and Singh, M. (2005), ‘Service-oriented computing: key concepts and
principles’, IEEE Internet Computing 9(1), 75-81.

IBM Corporation (2005), ‘IBM Paves the Way for Mainstream Adoption of Auto-
nomic Computing’. Accessed on 20/04/2016.
URL: https://fwww-03.ibm.com/press/us/en/pressrelease/7623.wss/

IBM Corporation (2013), ‘IBM developerWorks : IBM InfoSphere Streams’. Ac-
cessed on 20/04/2016.
URL: http://www.ibm.com/developerworks/bigdata/streams/

IBM Corporation (2015), ‘Four Vs of Big Data’. Accessed on 20/04/2016.
URL: http://www.ibmbigdatahub.com/infographic/four-vs-big-data/

Jain, V. and Singh, M. (2013), ‘Ontology Development and Query Retrieval using
Protege Tool’, International Journal of Intelligent Systems and Applications 5(9), 67—
75.

Katsaros, G., Gallizo, G., Kiibert, R., Wang, T., Fito, J. O. and Henriksson, D. (2011),
A multi-level architecture for collecting and managing monitoring information
in cloud environments., in “"CLOSER’, pp. 232-239.

Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis, D., Menychtas, A. and
Varvarigou, T. (2012), ‘A Self-adaptive hierarchical monitoring mechanism for
Clouds’, Journal of Systems and Software 85(5), 1029-1041.

Kazhamiakin, R., Benbernou, S., Baresi, L., Plebani, P.,, Uhlig, M. and Barais, O.
(2010), Adaptation of Service-Based Systems, in M. P. Papazoglou, K. Pohl,
M. Parkin and A. Metzger, eds, ‘Service Research Challenges and Solutions
for the Future Internet’, number 6500 in ‘Lecture Notes in Computer Science’,
Springer Berlin Heidelberg.

Kazhamiakin, R., Pistore, M. and Zengin, A. (2010), Cross-Layer Adaptation
and Monitoring of Service-Based Applications, in A. Dan, F. Gittler and

190 References

F. Toumani, eds, ‘Service-Oriented Computing. ICSOC /ServiceWave 2009 Work-
shops’, number 6275 in ‘Lecture Notes in Computer Science’, Springer Berlin
Heidelberg, pp. 325-334.

Keller, A. and Ludwig, H. (2003), “‘The WSLA framework: Specifying and moni-
toring service level agreements for web services’, Journal of Network and Systems
Management 11(1), 57-81.

Kephart, J. and Chess, D. (2003), ‘The vision of autonomic computing’, Computer
36(1), 41- 50.

Kephart, J., Chess, D., Boutilier, C., Das, R. and Walsh, W. (2007), ‘An architectural
blueprint for autonomic computing’, IEEE Internet Computing 18(21).

Kourtesis, D. (2011), Towards an Ontology-driven Governance Framework for
Cloud Application Platforms, SEERC Technical Reports, South-East European
Research Centre (SEERC), Thessaloniki, Greece.

Kourtesis, D., Bratanis, K., Bibikas, D. and Paraskakis, I. (2012), Software co-
development in the era of cloud application platforms and ecosystems: The case
of cast, in L. Camarinha-Matos, L. Xu and H. Afsarmanesh, eds, ‘Collaborative
Networks in the Internet of Services’, Vol. 380 of IFIP Advances in Information and
Communication Technology, Springer Berlin Heidelberg, pp. 196-204.

Lanzanasto, N., Komazec, S. and Toma, I. (2012), ‘Reasoning over real time data
streams’, ENVISION Deliverable D4.8.

Le-Phuoc, D., Dao-Tran, M., Parreira, J. X. and Hauswirth, M. (2011), A native and
adaptive approach for unified processing of linked streams and linked data, in

‘Proceedings of the 10th international conference on The semantic web - Volume
Part I’, ISWC’11, Springer-Verlag, Berlin, Heidelberg, pp. 370-388.

Legrand, I., Newman, H., Voicu, R., Cirstoiu, C., Grigoras, C., Dobre, C., Muraru,
A., Costan, A., Dediu, M. and Stratan, C. (2009), ‘MonALISA: An agent based,
dynamic service system to monitor, control and optimize distributed systems’,
Computer Physics Communications 180(12), 2472-2498.

Leijon, V., Wallin, S. and Ehnmark, J. (2008), SALmon — A Service Modeling Lan-
guage and Monitoring Engine, in ‘IEEE International Symposium on Service-
Oriented System Engineering SOSE’08’, IEEE, pp. 202-207.

Lewis, J. and Fowler, M. (2015), “‘Microservices’. Accessed on 20/04/2016.

URL: http://martinfowler.com/articles/microservices.html/

References 191

Liang, S. H., Croitoru, A. and Tao, C. V. (2005), ‘A distributed geospatial infras-
tructure for Sensor Web’, Computers & Geosciences 31(2), 221-231.

Lupp, M. (2008), Open Geospatial Consortium, in ‘Encyclopedia of GIS’, Springer
US, pp. 815-815.

MacKenzie, C. M., Laskey, K., McCabe, F. and Brown, P. F. (2006), Reference model
for service oriented architecture 1.0, Technical report, OASIS Open.

Mahbub, K. and Spanoudakis, G. (2004), A Framework for Requirements Moni-
toring of Service Based Systems, in ‘Proceedings of the 2nd International Con-
ference on Service Oriented Computing ICSOC’04’, ACM, New York, NY, USA,
pp. 84-93.

Mahowald, R. P, Olofson, C. W,, Ballou, M.-C., Fleming, M. and Hilwa, A. (2013),
Worldwide Competitive Public Platform as a Service 20132017 Forecast, Tech-
nical Report 243315, IDC.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and By-
ers, A. H. (2011), Big data: The next frontier for innovation, competition, and
productivity., Technical report, McKinsey Global Institute.

Marconi, A., Bucchiarone, A., Bratanis, K., Brogi, A., Camara, J., Dranidis, D.,
Giese, H., Kazhamiakin, R., De Lemos, R., Marquezan, C. C. et al. (2012), Re-
search challenges on multi-layer and mixed-initiative monitoring and adapt-
ation for service-based systems, in ‘Proceedings of the First International Work-
shop on European Software Services and Systems Research: Results and Chal-
lenges’, IEEE Press, pp. 40—46.

Margara, A. and Cugola, G. (2011), Processing flows of information: from data
stream to complex event processing, in ‘Proceedings of the 5th ACM interna-
tional conference on Distributed event-based system DEBS"11’, ACM, New York,
NY, USA, pp. 359-360.

Margara, A., Urbani, J., van Harmelen, F. and Bal, H. (2014), ‘Streaming the Web:
Reasoning over dynamic data’, Web Semantics: Science, Services and Agents on the
World Wide Web 25, 24-44.

McAfee, A. and Brynjolfsson, E. (2012), ‘Big data: the management revolution’,
Harvard business review 90(10), 60-66.

Mell, P. and Grance, T. (2009), “The NIST definition of cloud computing’, National
Institute of Standards and Technology 53(6), 50.

192 References

Mellor, C. (2015), ‘Are you ready for the 40-zettabyte year?’. Accessed on
20/04/2016.
URL: http:/fwww.theregister.co.uk/2012/12/10/idc_zettabyte_fest/

Meng, S., Iyengar, A. K., Rouvellou, 1., Liu, L., Lee, K., Palanisamy, B. and Tang,
Y. (2012), Reliable State Monitoring in Cloud Datacenters, in ‘2012 IEEE 5th
International Conference on Cloud Computing (CLOUDY)’, pp. 951-958.

Meng, S., Kashyap, S. R., Venkatramani, C. and Liu, L. (2009), Remo: Resource-
aware application state monitoring for large-scale distributed systems, in “29th
IEEE International Conference on Distributed Computing Systems ICDCS’09’,
IEEE, pp. 248-255.

Meng, S. and Liu, L. (2013), ‘Enhanced Monitoring-as-a-Service for Effective Cloud
Management’, IEEE Transactions on Computers 62(9), 1705-1720.

Microsoft Corporation (2015), ‘Service Oriented Architecture (SOA)’. Accessed on
20/04/2016.
URL: https://msdn.microsoft.com/en-us/library/bb833022.aspx/

Mohamed, A. (2015), ‘A history of cloud computing’. Accessed on 20/04/2016.
URL: http:/fwww.computerweekly.com/feature/A-history-of-cloud-computing/

Mueller, C., Oriol, M., Rodriguez, M., Franch, X., Marco, J., Resinas, M. and others
(2012), SALMonADA: A platform for monitoring and explaining violations of
WS-agreement-compliant documents, in ‘Proceedings of the 4th International
Workshop on Principles of Engineering Service-Oriented Systems’, IEEE Press,
pp. 43-49.

Muller, H. (2006), Bits of History, Challenges for the Future and Autonomic Com-
puting Technology, in “13th Working Conference on Reverse Engineering, 2006.
WCRE "06’, pp. 9-18.

Nakamura, L., Estrella, J., Santana, R., Santana, M. and Reiff-Marganiec, S. (2014),
A semantic approach for efficient and customized management of iaas re-

sources, in ‘2014 10th International Conference on Network and Service Man-
agement (CNSM)’, pp. 360-363.

Nami, M. and Sharifi, M. (2007), ‘A survey of autonomic computing systems’,
Intelligent Information Processing 111 pp. 101-110.

Natis, Y. V., Knipp, E., Valdes, R., Cearley, D. W. and Sholler, D. (2009), Who's
Who in Application Platforms for Cloud Computing: The Cloud Specialists,

Technical report, Gartner Research.

References 193

Newman, H., Legrand, I., Galvez, P., Voicu, R. and Cirstoiu, C. (2003), ‘Monalisa :
A distributed monitoring service architecture’, CoRR ¢s.DC/0306096.
URL: http://arxiv.org/abs/cs. DC/0306096

Newman, S. (2015), Building Microservices, O’'Reilly Media.

Open Geospatial Consortium, Inc. (2015), ‘Sensor Web Enablement’. Accessed on
20/04/2016.
URL: http://www.ogcnetwork.net/SWE/

Oracle Corporation (2015), ‘Fast Data Solutions’. Accessed on 20/04/2016.
URL: http://www.oracle.com/us/solutions/fastdata/index.html/

Oriol, M., Marco, J., Franch, X. and Ameller, D. (2009), Monitoring adaptable SOA
systems using SALMon, in “Workshop on Service Monitoring, Adaptation and
Beyond'.

Papazoglou, M., Pohl, K., Parkin, M., Metzger, A., Kazhamiakin, R., Benbernou, S.,
Baresi, L., Plebani, P., Uhlig, M. and Barais, O. (2010), Service Research Challenges
and Solutions for the Future Internet, Vol. 6500 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg.

Papazoglou, M., Traverso, P., Dustdar, S. and Leymann, F. (2003), ‘Service-oriented
computing’, Communications of the ACM 46, 25-28.

Parkhill, D. F. (1966), The challenge of the computer utility, Vol. 2, Addison-Wesley
Publishing Company.

Patel, P, Ranabahu, A. and Sheth, A. (2009), Service level agreement in cloud
computing, in ‘OOPSLA Cloud Computing workshop’.

Pettey, C. and van der Meulen, R. (2015), ‘Gartner Says Worldwide Platform as a
Service Revenue Is on Pace to Reach $1.2 Billion’. Accessed on 20/04/2016.
URL: http://www.gartner.com/newsroom/id/2242415/

Pokorny, J. (2013), ‘NoSQL databases: a step to database scalability in web envi-

ronment’, International Journal of Web Information Systems 9(1), 69-82.

Rackspace US, Inc. (2015), “Cloud Monitoring — Server, App & Website Monitoring
by Rackspace’. Accessed on 20/04/2016.
URL: http://www.rackspace.com/cloud/monitoring/

Ross, J. and Westerman, G. (2004), ‘Preparing for utility computing: The role of IT

architecture and relationship management’, IBM Systems Journal 43(1), 5-19.

194 References

Roy, J. and Ramanujan, A. (2001), ‘Understanding Web services’, IT Professional
3(6), 69-73.

Rubin, D. L., Shah, N. H. and Noy, N. E. (2008), ‘Biomedical ontologies: a func-
tional perspective’, Briefings in Bioinformatics 9(1), 75-90.

Rumbaugh, J., Eddy, E, Lorensen, W., Blaha, M. and Premerlani, W. (1991), “Object-
oriented modeling and design’. Accessed on 20/04/2016.

Russell, S., Norvig, P. and Davis, E. (2010), Artificial intelligence: a modern approach,
Prentice Hall — Upper Saddle River, NJ.

Russomanno, D., Kothari, C. and Thomas, O. (2005), Building a Sensor Ontology:
A Practical Approach Leveraging ISO and OGC Models, in “The 2005 Interna-
tional Conference on Artificial Intelligence’, Press, pp. 637-643.

Rymer, J. R. and Ried, S. (2011), The Forrester Wave™: Platform-As-A-Service For
Vendor Strategy Professionals, Q2 2011, Technical report, Forrester.

Salehie, M. and Tahvildari, L. (2009), ‘Self-adaptive software: Landscape and re-
search challenges’, ACM Transactions on Autonomous and Adaptive Systems (TAAS)
4(2), 14.

Schlenoff, C., Hong, T., Liu, C., Eastman, R. and Foufou, S. (2013), A literature
review of sensor ontologies for manufacturing applications, in “2013 IEEE Inter-
national Symposium on Robotic and Sensors Environments (ROSE)’, pp. 96-101.

Schroth, C. and Janner, T. (2007), “Web 2.0 and SOA: Converging Concepts En-
abling the Internet of Services’, IT Professional 9(3), 36—41.

Sheth, A., Henson, C. and Sahoo, S. S. (2008), ‘Semantic sensor web’, Internet
Computing, IEEE 12(4), 78-83.

Smit, M., Simmons, B. and Litoiu, M. (2013), ‘Distributed, application-level mon-
itoring for heterogeneous clouds using stream processing’, Future Generation
Computer Systems 29(8), 2103-2114.

Spanoudakis, G. and Mahbub, K. (2006), ‘Non-intrusive monitoring of
service-based systems’, International Journal of Cooperative Information Systems
15(03), 325-358.

Stevenson, G., Knox, S., Dobson, S. and Nixon, P. (2009), Ontonym: a collection
of upper ontologies for developing pervasive systems, in ‘Proceedings of the 1st
Workshop on Context, Information and Ontologies’, ACM.

References 195

Studer, R., Benjamins, V. and Fensel, D. (1998), ‘Knowledge engineering: Principles
and methods’, Data & Knowledge Engineering 25(1-2), 161-197.

Trihinas, D., Pallis, G. and Dikaiakos, M. (2014), JCatascopia: monitoring elasti-
cally adaptive applications in the cloud, in “14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid 2014)’, IEEE, pp. 226—
235.

Tudorache, T., Noy, N. E, Tu, S. and Musen, M. A. (2008), Supporting Collaborative
Ontology Development in Protege, in A. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. Finin and K. Thirunarayan, eds, ‘The Semantic Web - ISWC
2008, number 5318 in ‘Lecture Notes in Computer Science’, Springer Berlin
Heidelberg, pp. 17-32.

Urbani, J. (2010), Scalable and parallel reasoning in the Semantic Web, in ‘The
Semantic Web: Research and Applications’, Springer, pp. 488-492.

Uschold, M. and Gruninger, M. (1996), ‘Ontologies: Principles, methods and ap-
plications’, The knowledge engineering review 11(02), 93-136.

Vaquero, L. M., Rodero-Merino, L., Caceres,]. and Lindner, M. (2008), ‘A break in
the clouds: towards a cloud definition’, ACM SIGCOMM Computer Communica-
tion Review 39(1), 50-55.

Wihner, K. (2015), ‘Real-Time Stream Processing as Game Changer in a Big Data
World with Hadoop and Data Warehouse’. Accessed on 20/04/2016.
URL: http://www.infoq.com/articles/stream-processing-hadoop/

Wei, Y. and Blake, M. (2010), ‘Service-Oriented Computing and Cloud Computing:
Challenges and Opportunities’, IEEE Internet Computing 14(6), 72-75.

YouTube, LLC (2015), “YouTube statistics’. Accessed on 20/04/2016.

Appendix A

List of the author’s publications

¢ R. Dautov, I. Paraskakis, and M. Stannett. Utilising Stream Reasoning Tech-
niques to Create a Self-Adaptation Framework for Cloud Environments. In
Proceedings of Sheffield University Engineering Symposium (SUSE 2015), 2015.

Summary: This is an extended abstract, which contains a high-level overview
of the EXCLAIM approach. It introduces the motivation behind the research,
and briefly describes the EXCLAIM framework in two pages.

¢ R. Dautov, I. Paraskakis, M. Stannett. A monitoring and analysis frame-
work to support self-management in cloud application platforms (Poster).
In Sheffield University Engineering Symposium (SUSE 2015), 2015.

Summary: This is a poster submission, which contains a high-level overview
of the EXCLAIM approach. It introduces the motivation behind the research,
and briefly describes the EXCLAIM framework in two pages.

¢ K. Hamadache, P. Zerva, A. Polyviou, V. Simko, R. Dautov, F. Gonidis, and
I. Paez Anaya. Cost in the Cloud Rationalisation and Research Trails. In

Proceedings of Second International Conference on Advanced Cloud and Big Data
(CBD 2014), 2014.

Summary: This is a joint paper, written in collaboration with ‘RELATE’ fel-
lows. It is a position paper, which discusses possible ways of optimising en-
ergy consumption in cloud data centres using novel non-trivial approaches.
For example, to benefit from night-time electricity tariffs, it might be possi-
ble to send computations across the globe to a location, which is currently
night time. Same approach may be applied to executing cloud computations
in locations, where it is currently winter, thereby saving expenses on cool-
ing. The paper is not directly relevant to the PhD research presented in this
thesis.

196

Chapter A. List of the author’s publications 197

e R. Dautov, I. Paraskakis, M. Stannett. An Autonomic Semantic Framework
for Cloud Application Platforms (Poster). In 5th International Conference on
Knowledge Engineering and the Semantic Web (KESW 2014), 2014.

Summary: This is a poster submission, which describes how the Semantic
Web technologies have been applied in the context of the EXCLAIM frame-
work. It highlights the role of the CSO and explains how it was used to
define RDF streams, C-SPARQL queries, and SWRL policies.

¢ R. Dautov, I. Paraskakis, and M. Stannett. Cloud Sensor Ontology and
Linked Data to Support Autonomicity in Cloud Application Platforms. In
Knowledge Engineering and the Semantic Web (KESW 2014), 2014. — Best paper
award.

Summary: This paper focuses on the CSO, which is used in the context of
developing a monitoring and analysis framework for cloud platforms. First,
the paper introduces the context of service-based cloud environments, and
proceeds with the motivation for applying Semantic Web techniques. Then
the paper describes individual classes and explains how they represent the
cloud context. The paper received one of the three best paper awards.

¢ R. Dautov, I. Paraskakis, M. Stannett. Big Data Solutions for Cloud Applica-
tion Platforms. In Proceedings of the 9th Annual South East European Doctoral
Student Conference (DSC 2014), 2014.

Summary: This is a short paper, which introduces the challenge of pro-
cessing extreme amounts of data in the context of CAPs when performing
data monitoring and analysis. As a potential solution to overcome this prob-
lem, the paper presents IBM InfoSphere Streams and explains how it can
be utilised to enable parallel processing of multiple data streams so as to

achieve better performance.

e R. Dautov, I. Paraskakis, and M. Stannett. Towards a framework for mon-
itoring cloud application platforms as sensor networks. Cluster Computing,
17(4):1203-1213, 2014.

Summary: This is an extended version of a workshop submission, which
elaborates on the novel interpretation of CAPs as networks of distributed
software sensors. To justify this interpretation, the paper draws parallels be-
tween existing challenges associated with data monitoring in service-based

cloud environments and physical sensor networks.

¢ R. Dautov, I. Paraskakis, and M. Stannett. Utilising Semantic Web technolo-

gies and Stream Reasoning to create an autonomic framework for cloud ap-

198

plication platforms (Poster). In Doctoral Consortium of the 8th International
Conference on Web Reasoning and Rule Systems (RR2014), 2014.

Summary: This is a poster submission, which describes how the Semantic
Web technologies have been applied in the context of the EXCLAIM frame-
work. It highlights the role of the CSO and explains how it was used to
define RDF streams, C-SPARQL queries, and SWRL policies. The poster also
focuses on RDF stream processing technology as a way of processing data in

a dynamic and timely manner.

R. Dautov, 1. Paraskakis, and M. Stannett. Utilising stream reasoning tech-
niques to underpin an autonomous framework for cloud application plat-
forms. Journal of Cloud Computing, 3(1):1-12, 2014.

Summary: This is an extended version of a workshop submission, which dis-
cusses the potential of the Semantic Web stack to be applied to create a data
monitoring framework for CAPs. The paper presents the architecture of the
EXCLAIM framework, and highlights the role of the RDF stream processing
in enabling on-the-fly data processing and overcoming data heterogeneity.

R. Dautov, I. Paraskakis, and M. Stannett. Utilising Stream Reasoning Tech-
niques to Create a Self-Adaptation Framework for Cloud Environments. In
Proceedings of 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing (UCC), 2013.

Summary: This paper introduces the emerging domain of stream reasoning
(i.e., RDF stream processing) and explains how an existing implementation
C-SPARQL was used to create an early version of the EXCLAIM framework
to enable data monitoring and analysis in CAPs. An extended version of this

paper was invited to be submitted to the Journal of Cloud Computing.

R. Dautov, M. Stannett, and I. Paraskakis. On the role of stream reasoning
in run-time monitoring and analysis in autonomic systems. In Proceedings of
the 8th South East European Doctoral Student Conference (DSC 2013), 2013.

Summary: This is a short paper, which discusses the potential of the emerg-
ing stream reasoning research to address the challenge of monitoring and
analysis in complex heterogeneous systems, such as CAPs. The paper ar-
gues that by applying stream reasoning techniques it is possible to address
the heterogeneity and dynamic nature of monitored data.

R. Dautov and I. Paraskakis. A vision for monitoring cloud application plat-
forms as sensor networks. In Proceedings of the 2013 ACM Cloud and Auto-

nomic Computing Conference, 2013.

Chapter A. List of the author’s publications 199

Summary: This paper introduces the novel concept of treating CAPs as net-
works of distributed software sensors. The paper draws parallels between
the problem domain of sensor networks and service-based cloud platforms,
and argues that existing solutions can be re-used. An extended version of

this paper was invited to be submitted to the Cluster Computing journal.

¢ R. Dautov, I. Paraskakis, D. Kourtesis, and M. Stannett. Addressing Self-
Management in Cloud Platforms: a Semantic Sensor Web Approach. In Pro-
ceedings of the International Workshop on Hot Topics in Cloud Services (HotTopiCS
2013), 2013.

Summary: In this paper, the idea of re-using techniques from the SSW do-
main were proposed for the first time. The paper presents an early con-
ceptual design of the EXCLAIM framework and explains how various SSW

components can be used to implement elements of the framework.

* R. Dautov. An ontology-driven approach to self-management in cloud appli-
cation platforms (Poster). In 9th Summer School on Ontology Engineering and
the Semantic Web (SSSW’12), 2012. — Best poster award.

Summary: This is a poster submission, which briefs on the potential of OWL
ontologies to be used to define self-adaptation policies in complex cloud
environments. The poster received one of the three best poster awards.

¢ R. Dautov, I. Paraskakis, and D. Kourtesis. An ontology-driven approach
to self-management in cloud application platforms. In Proceedings of the 7th
South East European Doctoral Student Conference (DSC 2012), 2012. — Best paper

award.

Summary: This paper introduced the idea of using OWL ontologies and
SWRL rules to be utilised to define self-adaptation policies in the context
of cloud platforms, and distills benefits of doing so — namely, separation of
concerns, declarative definition, human-readability, and increased opportu-
nities for reliability, reuse and automation. It also introduces the notion of
CAPs as the main context of the presented research. The paper received one
of the three best paper awards.

Appendix B

Cloud Sensor Ontology

200

Chapter B. Cloud Sensor Ontology 201

HerokuBackupService)47 PGBackupService

J» NumberOfConnectionsCriticalLevel ‘

NumberOfConnections

Size
—
HerokuDatahaseService %7‘ HerokuPostgresService
DatabaseSize ‘ ‘

TotalDatahaseSize

ApplicationObject
UserObiect (”

‘ ServiceObject

,—‘ TotalDatabaseSizeCritical ‘
(— PlatformObject] !

—— Application
- PlatformComponent
Situation DatabaseServer

HerokuSenvice @
e ”
CriticalSituation J-
N -
U

L OrdinarySituation

—‘ NurnberOfConnectionsMinorLevel ‘

NumberOfConnectionsModerateLevel

Thing ¢

NumberOfConnectionsCritical

Figure B.1: Cloud Sensor Ontology used for the Destinator use case.

Appendix C

Survey of Cloud Application
Platforms

In this appendix we are presenting a brief survey of existing cloud platform offer-
ings (as of April 2016), which were examined with a goal to identify CAPs among
them. Thus, we stress on the importance and relevance of the research question
being addressed in this thesis, and, at the same, identify a potential application
scope for our research.

Primary criteria for classifying a particular Paa$S offering as a CAP were the
presence of a cloud service marketplace and support for multiple programming
languages and frameworks. When surveying cloud platforms, we also looked at
the support for the software development process — that is, what tools and services
they offer so as to enable faster software development and shorter time to market.
In this light, the typical set of offered features includes the following:

* Web management console for accessing, deploying, managing, and control-
ling applications via a Web browser

* APIs for accessing, deploying, managing, and controlling applications pro-
gramatically

* built-in data storage solutions
* software versioning (SVN, Git, Mercurial, Team Foundation, etc.)
¢ file transfers over the FTP connection

¢ IDE development plugins (e.g., for Eclipse IDE or Visual Studio) and Soft-
ware Development Kits, which enable deploying applications straight from
the IDE

202

Chapter C. Survey of Cloud Application Platforms 203

¢ encryption and access management (e.g., SSL, SSH, Secure File Transfer Pro-
tocol (SFTP)) when connecting to the cloud platform

¢ simple application health monitoring and notification mechanisms, etc.

More sophisticated features also include support for Domain Name System (DNS)
and email hosting, CRON job scheduling, ‘point-and-click” interface for creating
applications in a Web browser, etc. It is worth noting that the emergence and
development of CAPs and cloud service marketplaces opens new opportunities
for providing even richer support for software developers. Accordingly, even if
some of the described features are not part of a PaaS offering initially (i.e., these
features are not ‘natively” supported), nevertheless, they might be offered to users
as third-party services through the service marketplace.

Table C.1: Survey of Cloud Application Platforms.

p . Service Hosti
rogrammin ostin
PaaS offering & & market- Data storage) 8 CAP
languages infrastructure
place
.) Java, Ruby, PHP,)
Anynines (http://www.anynines.com, founded . . PostgreSQL, MySQL, Private OpenStack
. . Python, Node.js, 7 services . . Yes
in April 2013) Go MongoDB, Redis infrastructure
, Python, ClearDB, C , AWS (US, E ,
Appfog (https://www.appfog.com, founded in Java, Python 19 ear ompose (. Hrope
Node, PHP, Ruby ElephantSQL MongoDB and and Asia) and Yes
August 2010) add-ons . .
(+ 10 frameworks) Redis CenturyLink Cloud
Microsoft SQL Server,
AppHarbor (https://appharbor.com, founded 36
. NET MySQL, MongoDB, AWS Yes
in September 2010) add-ons .
RavenDB, Redis
. Amazon RDS, Amazon
AWS Elastic Beanstalk (https: Java, .NET, PHP,
) . DynamoDB, Amazon
//aws.amazon.com/elasticbeanstalk, Node js, Python, N/a . AWS No
. SimpleDB, MS SQL Server,
founded in January 2011) Ruby, and Go .
Oracle, IBM DB2, Informix
Caspio (http://www.caspio.com, founded in PHP, ASP and 13 éxten— MS SOL Server N/a Yes
2000) ASPX sions
CatN (https://catn.com) PHP N/a MySQL Private infrastructure No
cloudControl Java, Python, 38 MySQL, PostgreSQL, AWS Y.
es
(https://www.cloudcontrol.com) Node, PHP, Ruby add-ons MongoDB
Pivotal Cloud Foundry Java, Ruby, Python, .
. .) 13 MySQL, Redis, Cassandra, VMware, AWS,
(http://pivotal.io/platform, founded in Go, PHP or . . Yes
. . services MongoDB, Neo4j Openstack
April 2011) Node.js

¥0c

http://www.anynines.com
https://www.appfog.com
https://appharbor.com
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
http://www.caspio.com
https://catn.com
https://www.cloudcontrol.com
http://pivotal.io/platform

AWS, DigitalOcean

Cloudways (http://www.cloudways.com) PHP 9 add-ons MySQL and Google Compute Yes
Engine
Java, Python, 11 MySQL, PostgreSQL Google Comput
, Postgre , oogle Compute
dotCloud (https://www.dotcloud.com) Node, PHP, Ruby,) Y 5 . &] p Yes
services MongoDB, Redis Engine
Perl, Opa
Fortrabbit (http://www.fortrabbit.com,
. PHP N/a MySQL AWS No
founded in January 2013)
Google App Engine .
. . Java, Python, Go, 36 App Engine Datastore, Google Compute
(https://appengine.google.com, founded in . Yes
) PHP features Google Cloud SQL (MySQL) Engine
April 2008)
Engine Yard (https: . i d. , 64 PostgreSQL, MySQL,
ngine Yard (nttps //vaw engineyard. com PHP, Ruby, Node.js ostgre Q Y Q AWS, MS Azure Yes
founded in 2006) add-ons MongoDB, Riak, SpacialDB
Ruby, Node.js, MySQL, PostgreSQL,
Heroku (https://www.heroku.com, founded in by, Nodes 160 ySQL, PostgreSQ
Python, Java, and MongoDB, CouchDB (+ 12 AWS Yes
2007) add-ons
PHP data storage add-ons)
IBM Bluemix (http: Ruby, Node.js, 8 Microsoft SQL Server,
//www.ibm.com/cloud-computing/bluemix/, Python, Java, Go, . MySQL, MongoDB, Redis, IBM SoftLayer Cloud Yes
Vi
founded in June 2014) PHP services PostgreSQL
, PHP, Python, MariaDB, MySQL,
Jelastic (https://jelastic.com, founded in Java . yHhon ana ySQ AWS, Google
Node.js, Ruby, N/a PostgreSQL, MongoDB,) No
2010) Compute Engine
NET CouchDB
bMethods AgileA Cloud
webiiethods Agriefpps tiou Java N/a MySQL N/a No

(http://www.agileappscloud.com)

surrojje[d uonediiddy pnop) jo £saing) 1xdey)

<0¢

http://www.cloudways.com
https://www.dotcloud.com
http://www.fortrabbit.com
https://appengine.google.com
https://www.engineyard.com
https://www.heroku.com
http://www.ibm.com/cloud-computing/bluemix/
http://www.ibm.com/cloud-computing/bluemix/
https://jelastic.com
http://www.agileappscloud.com

55 appli-
cation
Microsoft Windows Azure .NET, Java, services
(https://azure.microsoft.com, founded in Node.js, PHP, (+216 MS SQL Server, Oracle DB MS Azure Yes
February 2010) Python, Ruby third
party data
services)
Red Hat OpenShift , Ruby, PHP,
ed Hat Tpens , Java, Ruby 29 MySQL, PostgreSQL,
(https://www.openshift.com, founded in May Node.js, Python AWS Yes
add-ons MongoDB, MS SQL Server
2011) and Perl
200+
OutSystems Platform mobile .
. PostgreSQL, MySQL, AWS, private
(http://www.outsystems.com/platform, Java, NET services . . Yes
. MongoDB, Redis infrastructure
founded in 2001) and con-
nectors
Pagodabox (https: dabox.io/, founded MySQL, PostgreSQL,
agodabox (}_)S //pagedabox.io/, founde PHP N/a ySQ ostgreSQ Private infrastructure No
in October 2010) MongoDB
Evia Cloud (http: 1bit. , founded i
via Cloud (ntep:/ {’ngl) + - com fornded PHP 9 add-ons MySQL, MongoDB Private infrastructure Yes
2500+
commu-
. . Salesforce.com
Force.com (http://force.com, founded in 2005) Apex nity apps N/a i Yes
) infrastructure
in AppEx-
change
Zoho Creator
(https://www.zoho.com/creator, founded in Deluge Script N/a N/a N/a No

2005)

90¢

https://azure.microsoft.com
https://www.openshift.com
http://www.outsystems.com/platform
https://pagodabox.io/
http://relbit.com
http://force.com
https://www.zoho.com/creator

Appendix D

Survey of the state of the art

A literature survey on monitoring and analysis in service-based cloud environ-
ments has identified a wide spectrum of existing approaches and tools, which
distinguish between one another by a number of important characteristics. In or-
der to provide a holistic, comprehensive, and integrated view on the existing body
of research work, we will first present and describe main criteria, with respect to
which we surveyed the literature. These criteria were distilled from several exist-
ing taxonomies, and are a result of thorough consideration and study of the state
of the art in the considered problem domain. Namely, in our research, we relied

on the following taxonomies for software monitoring and analysis:

* Adaptation taxonomy devised within the S-Cube project! (Kazhamiakin,
Benbernou, Baresi, Plebani, Uhlig and Barais, 2010), which was developed to
address the domain of monitoring and adaptation of SBAs

¢ Taxonomy of run-time software-fault monitoring tools by Delgado et al.
(2004)

* Taxonomy of software self-adaptation by Salehie and Tahvildari (2009).

It has to be explained that the range of classification criteria, which could
also be potentially included in this survey, is somewhat wider. Our goal is to
provide a global, systematic and integrated view on the current state of the art,
which inevitably requires omitting minor details. When distilling the classification
criteria, we tried to consider them in connection with the problem domain of
cloud, self-governance, data monitoring and analysis, as opposed to looking at
them only from a generic software monitoring perspective. Next, we describe the
main classification criteria, which will help us to systematise the existing body of

lhttp://www.s-cube-network.eu/

207

http://www.s-cube-network.eu/

208

research work, outline existing research and technological gaps, and, accordingly,

position our own work respectively.

Data collection and monitoring

These criteria are mainly related to how and from where monitored data is col-

lected. Accordingly, it includes the following criteria:

Level of monitoring within CAPs SBAs deployed and running on a CAP span

across four conceptual layers. Each of these layers provides its individual
perspective on the execution of the deployed applications. This four-tier
architecture consists of Service Infrastructure (SI), Application Performance
(AP), Service Composition and Coordination (SCC), and Business Process
Management (BPM) abstraction layers (Papazoglou et al., 2010). Accord-
ingly, the SI monitoring targets at detecting failures in the underlying hard-
ware (e.g., network, CPU, memory, etc.) and software (e.g., OS, virtuali-
sation layer, etc.) infrastructures. The AP monitoring collects data about
software performance at run-time — e.g., number of invocations, response
rates, amount of inbound/outbound traffic, number of execution threads,
etc. The SCC monitoring aims at detecting software failures due to violation
of functional and non-functional constraints, resulting from interactions be-
tween individual services in complex service-based applications (Benbernou
et al., 2008). This is particularly important in the context of CAPs, which are
characterised with multiple add-on services, which are widely used to cre-
ate complex service-based compositions. The BPM monitoring concentrates
on business performance of SBAs in terms of Key Performance Indicators
(KPIs) and checks the conformance with respect to a set of business policies.
In recent years, more comprehensive approaches aiming at multi-layer mon-
itoring of SBAs have been attracting a lot of attention as well (Kazhamiakin,
Pistore and Zengin, 2010, Marconi et al., 2012).

Source of collected data Sources, which generate data for monitoring, comprise

both monitored software deployed on a cloud platform and its operational
context, which may include, for example, the execution environment, operat-
ing system, depending services and applications. Some forms of monitoring

data sources include logs, events, messages, databases etc.

Chapter D. Survey of the state of the art 209

Data analysis

These criteria describe the process of data interpretation after it was collected.
Among other things, analysis activities may include detecting critical situations,
identifying adaptation requirements, choosing appropriate adaptation strategies,
etc. We identify two main criteria in this respect:

Timeliness With respect to this criterion, monitoring mechanisms can be classi-
fied into proactive and reactive approaches. Proactive approaches aim at
predicting potential failures of the monitored application before they occur,
while reactive approaches detect failures after they have already happened.
The latter type also includes techniques such as post-mortem analysis - i.e.,
offline interpretation of monitored values long after they have been observed.

Level of automation We can distinguish between three main forms of analysis
with respect to the level of automation. To certain extent, this classification
correlates with classification of degrees of self-management in computing
systems, summarised in Table 2.1. Completely automated analysis is per-
formed, based on a set of predefined rules without human intervention. The
interactive analysis allows for human operators to supervise the process and
take certain decisions. In the manual analysis there is no automation, and in-
terpretation of observed values and problem diagnosis are solely performed
by human operators, who are responsible for defining further adaptation

requirements and choosing appropriate adaptation strategies.

Architecture details

These criteria describe design and implementation aspects of existing approaches,
and include the following six:

Intrusiveness Depending on the usage of the data collection process, it can be
either intrusive or non-intrusive. As opposed to the non-intrusive approach,
in order to increase the visibility into the execution of cloud-hosted soft-
ware, the intrusive approach assumes instrumenting monitored applications
or their execution environment with probes — software components respon-

sible for collecting and transferring monitored data.

Component distribution We can identify two main categories of existing tools
for monitoring and analysis in service-based cloud environments. A cen-

tralised architecture assumes that all the monitoring and analysis mecha-

210

nisms are implemented within a single central unit. A decentralised archi-
tecture implies having several independent units for data processing and
storage, which may even be deployed on separate execution platforms. Such
approaches often rely on replication techniques, which help to avoid pos-
sible bottlenecks and failures, but might not provide a global view on the
managed cloud environment.

Language type The knowledge base of a self-governance mechanism may include,

for example, an architectural model of the managed environment, monitor-
ing properties, diagnosis policies, constraints, assertions, etc. Here we dis-
tinguish between two main types of languages, which serve to specify and
capture this knowledge — imperative and declarative approaches. The former
refers to explicitly defining all the knowledge directly in the programming
source code, and is known for its relative simplicity and faster execution at
a price of rigidness (i.e., source code modifications lead to software recom-
pilation, redeployment and restart). The latter approach, on the other hand,
employs certain formalisms to declaratively define knowledge and decouple
it from the actual programming code. With the declarative approach, pol-
icy definition is decoupled from the actual policy enforcement. Declarative
definitions range from simple text file definitions (e.g., XML, JSON, etc.) to
more sophisticated formalisms, such as various types of algebra, automata,
and logic.

Extensibility This feature reflects how easy and transparently to the user new

emerging metrics, aspects and policies can be integrated into (or removed
from) the monitoring and analysis mechanism. Admittedly, it is not easy
and straight-forward do decide if a particular approach is extensible enough
or not. Potentially, we can argue that approaches using declarative languages
to define the knowledge base are more likely to be classified as extensible, as
opposed to imperative languages (e.g., Java or C). We also classify a partic-
ular approach as extensible, if authors discuss potential ways of extending
their solutions to capture new metrics via, for example, an API, even it re-

quires some hard-coding.

Perspective Various stakeholders can be concerned with governance processes,

and three main perspectives can be identified in this respect (Bratanis, 2012).
The customer perspective mainly concerns external monitoring, which aims
at checking if cloud service providers deliver what has been agreed on in
SLAs, since it is the main point of interest for a customer. The provider
perspective concerns monitoring processes with the purpose of checking if

Chapter D. Survey of the state of the art 211

cloud-hosted software satisfies specific requirements — for example, if service
response times are within allowed limits, or resources are properly shared
between several applications. A monitoring and analysis process can also
be performed by a third party, which provides an independent view on the

managed cloud ecosystem.

Maturity level This criteria indicates the current development stage of a particu-
lar cloud self-governance tool and the overall maturity of a corresponding
approach (Delgado et al., 2004). Typically, we can distinguish between two
types — research prototypes and already established tools available for public

use either as a commercial or a freeware product.

Table D.1: Survey of the state of the art in monitoring and analysis of service-based cloud platforms.

Monitoring Analysis Architecture
T F . o 5
H : g £ : H % z § P
Approach H § g E § E g‘) E @ g
£ g E = £ a g kS & g
= - =
k]
=]
1. Platform-native built-in monitoring solutions
Amazon CloudWatch is a generic monitoring ser-
vice, which is able to monitor the whole stack of Infrastructure |y Customi c
. . . metrics, ustomi- -
AWS products, including Elastic Beanstalk, and | s ar softwaré oD | Reactive | Nomo N/a N/a | sablealerting | Customer el
. . . erformance d loggi t
display it as charts and diagrams. It also allows P metrics (AP) e logging prode
defining user alerts and notifications.
Rackspace CloudKick is a generic monitoring ser-
vice for the whole stack of Rackspace cloud of-
ferings, which is able to monitoring standard Infrastructure |5 onared RS Commer.
infrastructure-oriented metrics. At its current | siar software interaive Reactive intromve N/a N/a and logging: | Customer cial
o, . o performance te Aalgt € trusive user-defined product
state, it is rather simplistic, but allows user to metrics (AP) exjension
define their own customised extensions to meet
individual user requirements.
Google App Engine Dashboard is a simple mon-
itoring solution offered by Google to provide Softvare .
. . . Wi ommer-
users with information about the current status | siar performance Manual, | Reactive aNon- N/a N/a N/a Customer ol

of their deployed applications and network statis-
tics.

2. Third-party monitoring frameworks

[4%4

Nagios is a stack of multi-purpose monitoring
frameworks, which enable resource and appli-
cation performance monitoring based on an ex-
tensible architecture. It offers various monitor-
ing services such as monitoring of host resources
(e.g., CPU/memory utilisation, response times,
etc.), network services and protocols (e.g., SMTP,
TCP, HTTP, etc.).

SI, AP

Infrastructure
metrics,
software

performance

metrics

‘Manual,
interactive

Reactive

. Non-
intrusive

Distributed

C (back
end), PHP
(front end)

N/a

Customer

Commer-
cial
product

New Relic offers a whole stack of rich monitoring
solutions, ranging from the level of data centre
infrastructure resources to the level of individual
applications and databases. A New Relic agent
follows a non-intrusive approach to data collec-
tion and enables monitoring run-time application
performance.

SI, AP

Infrastructure
metrics,
software
performance
metrics

‘Manual,
interactive

Reactive

. Non-
intrusive

Distributed

C (back
end), PHP
(front end)

N/a

Customer

Commer-
cial
product

Zabbix (http://www.zabbix.com/) is an en-
terprise open-source monitoring solution, pri-
marily focusing on networks and applications. It
is build on a distributed architecture with a cen-
tralised web administration.

SI, AP

Infrastructure
metrics

Manual,
interactive

Reactive

Non-
intrusive

Distributed

C (back
end), PHP
(front end)

N/a

Customer

Commer-
cial
product

MonaLISA (Newman et al., 2003, Legrand et al.,
2009) aims to provide monitoring services to
support control, optimisation, and management
tasks in large-scale highly-distributed cloud sys-
tems. It primarily focuses on collecting data at
the infrastructure level.

SI, AP

Infrastructure
metrics

‘Manual,
interactive

Reactive

Non-
intrusive

Distributed

Java, C

N/a

Provider

Research
prototype

Paraleap AzureWatch is a third-party monitor-
ing service, which supports monitoring Azure-
hosted applications, and offers support for data
visualisation, logging and alerting.

SI, AP

Infrastructure
metrics,
software
performance
metrics

. Manuql/
interactive

. Non-
intrusive

N/a

Centralised

N/a

Customi-
sable alerting
and logging

Customer

Commer-
cial
product

}e 3} Jo dje)s 3Yy) Jo Adaing ‘(q 1ddey)

1 4

http://www.zabbix.com/

Heroku add-on services (Librato, New Relic
APM, Hosted Graphite, Pingdom, Still Alive,
Blackfire.io, Dead Man’ Snitch, Vigil Monitor-
ing Service, Rollbar, Sentry, Bugsnag, RuntimeEr-
ror, Honeybadger, Appsignal, Exceptiontrap, Air-
brake Bug Tracker, Raygan.io, Informant, Redis-
Monitor) offer a wide range of monitoring tools
form simple ‘heart beat monitoring” to more so-
phisticated support for analysing fine-grained
performance data.

SI, AP

Software
performance
metrics,
infrastructure
metrics

Manual,

interactive,

automated

Reactive

. Non-
intrusive

Centralised

N/a

Customisable
alerting and

logging

Customer

Commer-
cial
product

Datadog (https://www.datadoghqg.com/) is an
application performance monitroing framework,
which can be integrated with a range of cloud
offerings (including Google App Engine and MS
Azure). It can collect, aggregate, and visualise a
wide range of AP metrics.

AP

Software
performance
metrics

Manual,
interactive

Reactive

Non-
intrusive

Centralised

N/a

Customisable
alerting and

logging

Customer

Commer-
cial
product

3. SOA solutions

SALMon (Ameller and Franch, 2008, Oriol et al.,
2009, Leijon et al., 2008, Mueller et al., 2012, Mah-
bub and Spanoudakis, 2004, Spanoudakis and
Mahbub, 2006) aims at generic monitoring of
heterogeneous web services, detecting SLA vi-
olations and taking corresponding adaptive de-
cisions. It fully implements the MAPE-K loop
and relies on a novel domain-specific language
to express the analysis and diagnosis policies.
The SALMon domain-specific language serves
to model the environment and overcome het-
erogeneity in service descriptions, which makes
it relevant and applicable to the PaaS domain.
SALMon utilises a streaming approach to data
processing to achieve timely reactions.

AP, SCC

SLAs in service
compositions

Manual,
interactive

Reactive

Non-
intrusive

Distributed

XML-
based
domain
specific
language

N/a

Provider

Research
prototype

1444

The WSLA framework (Keller and Ludwig, 2003,
Patel et al., 2009) is able to specify and moni-
tor SLAs in SOA environments, including clouds.

XML- Can be
It employs an XML-based domain-specific lan- | scc | SAsinservice | Manwal | geacive | Nore | Centralised igfi‘?g“g Txf.ﬁzc‘_ﬁffi:‘; Provider | Research
guage to define SLAs and constraints, which al- language | metrics
lows for extending the framework to cover all
three layers of cloud computing.

4. JaaS-oriented approaches

Meng and Liu (2013), Meng et al. (2012, 2009)
suggest a cloud monitoring framework offered
as a service. In their paper, the authors con-
sider an laaS-oriented scenario, but claim that Infrastructure Can be
this Monitoring-as-a-Service solution potentially | s ar s"(gféfz‘zfﬁé Manual | peive | Nov | Contratisea | Jaimples | BCERAR | pyvider Research
targets at all three levels of cloud computing. P metrics shadjevels
Main benefits of the proposed approach include
lower monitoring cost, higher scalability, and bet-
ter multitenancy performance
Katsaros et al. (2012, 2011) propose a cloud mon-
itoring and self-adaptation mechanism, which
spans across different levels of the IaaS level and Infrastructure
collects monitoring data from application, vir- . pottware | Non. _— potentially . Researeh
tual and physical infrastructure, and additionally | ™ et enersy nteractive eactive | jrridive entralise N/a ex&"el{?ggsm rovider | o\ Glotype

considers the energy efficiency dimension. The
authors also consider the PaaS segment as a an
application scope for their research.

metrics

}e 3} Jo dje)s 3Yy) Jo Adaing ‘(q 1ddey)

] X4

Nakamura et al. (2014) propose utilising Seman-
tic Web technologies to support self-management
at the IaaS level. The authors made created an
ontology-based architectural model of a cloud
data centre and delegate decision taking tasks to
the SWRL reasoning engine. The proposed archi-
tecture implements the MAPE-K reference model
with a goal to maintain established SLAs and op-
timise cloud resource consumption.

SI

Infrastructure
metrics

Interactive,
automated

Reactive

. Non-
intrusive

Centralised

Semantic
Web

languages

N/a

Provider

Research
prototype

MISURE framework (Smit et al., 2013) builds
the monitoring infrastructure on the stream pro-
cessing technology (54 and Storm). It is inte-
grated with other existing infrastructure mon-
itoring mechanisms to collect relevant metrics
across a wide range of heterogeneous cloud en-
vironments. It follows a modular approach, so
that custom extensions can be integrated into the
framework.

SI, AP

Infrastructure
metrics,
software

performance

Interactive,
automated

Reactive

. Non-
intrusive

Centralised

Java

Custom
extensions
can be
plugged into
the
framework
to support
data
collection at
various
levels

Provider

Research
prototype

JCatascopia (Trihinas et al.,, 2014) is an auto-
mated, multi-layer, interoperable framework for
monitoring and managing elastic cloud environ-
ments. It primarily focuses on the IaaS segment
of cloud computing, but also offers the Probe API
to implement customisable extensions and met-
rics.

SI, AP

Infrastructure
metrics,
software
performance
metrics

Interactive,
automated

Reactive

Non-
intrusive by
defult, but
can be
extended
with probes

Distributed

Java

Can be
extended to
cover the
Paa$S and
SaasS levels

Provider,
customer

Research
prototype

91¢C

The CLAMS framework (Alhamazani et al., 2015,
2014) represents and effort to create a monitoring
solution spanning across cloud computing layers
and several platforms. The proposed architecture
can be deployed on several cloud platforms (e.g.,
the authors validated it on AWS and MS Azure)
and is capable of performing QoS monitoring of
application components. As far as the PaaS is
concerned, the CLAMS’s monitoring capabilities
are limited to monitoring databases and applica-
tion containers.

SI, AP

Infrastructure
metrics,
software
performance
metrics

. Manuql/
interactive

Reactive

. Non-
intrusive

Distributed
(ina
multi-cloud
environ-
ment)

Java

N/a

Provider,
customer

Research
prototype

5. Truly PaaS-oriented approaches

Brandic (2009) focuses on the platfrom level of
cloud computing and describe how cloud ser-
vices can be described using novel domain-
specific languages, which focus on autonomic
behaviour of a service. Based on these self-
descriptive definitions, the proposed middle-
ware platform is able to execute self-management
within a cloud platform. The approach follows
the MAPE-K loop, and claims to be applicable to
arbitrary cloud services.

SI, AP,
SCC

SLA metrics

Automated

Reactive

. Non-
intrusive

Centralised

Declarative

Can be
potentially
extended to

cover a
wider range

of cloud
service self-

management
aspects.

Provider

Research
prototype

Breskovic et al. (2011) focus on cloud markets — a
subset of cloud platforms which are used for de-
ploying software markets. Their goal is to create
a cloud market, which “has the ability to change,
adapt or even redesign its anatomy and/or the
underpinning infrastructure during runtime in
order to improve its performance”. To do so, the
authors extend an existing data collection frame-
work with cloud market-relevant sensors, which
provide necessary data for performing analysis.

SI, AP,
BPM

SLA metrics,
cloud market
metrics

Automated

Reactive

Intrusive

Centralised

Declarative

N/a

Provider

Research
prototype

}e 3} Jo dje)s 3Yy) Jo Adaing ‘(q 1ddey)

yAY4

Boniface et al. (2010) focus on the glspaas level
of cloud computing, aiming at developing an au-
tomated QoS management architecture. In their
paper, the authors focus on a cloud platform
hosting a wide range of multimedia applications,
which are monitored at various levels using the
proposed software framework. The proposed ap-
proach utilises several modeling techniques (e.g.,
neural networks, UML, etc.) to detect potential
SLA violations and support QoS.

SI, AP,
BPM

SLA metrics

Automated

Reactive

Intrusive

Centralised

UML,
Artificial
Neural
Networks

N/a

Provider

Research
prototype

81¢

Chapter D. Survey of the state of the art 219

	Introduction
	Motivation: Lack of self-governance in Cloud Application Platforms
	Towards the solution: the EXCLAIM framework
	Aim of the thesis
	Contributions of the thesis
	Thesis outline

	I Background theory and related technologies
	Background theory: Cloud Computing and Autonomic Computing
	Context of the research work: Internet of Services, Cloud Computing and Cloud Application Platforms
	Cloud computing as an extension of Service-Oriented Computing
	Cloud Application Platforms delivering the Internet of Services
	Survey of Cloud Application Platforms

	Autonomic Computing
	MAPE-K reference model
	Levels of autonomicity
	Self-management in clouds

	Summary

	Related technologies: Big Data processing and the Semantic Sensor Web
	Big Data processing
	Processing streaming Big Data
	An existing solution: IBM InfoSphere Streams

	Semantic Sensor Web
	Semantic Web and the Semantic Web stack
	SSN ontology
	RDF stream processing

	Summary

	II State of the art and our approach to address the gaps
	State of the art in cloud platform self-governance
	Overview of the IaaS and SaaS self-management
	PaaS: State of the art in data monitoring and analysis in service-based cloud platforms
	Identifying gaps in the state-of-the-art research
	Summary

	Conceptual architecture of the EXCLAIM framework
	Interpretation of Cloud Application Platforms as Sensor Networks
	Drawing parallels between sensor networks and cloud application platforms

	Conceptual architecture of the EXCLAIM framework
	Enhancements to the main conceptual design
	Modularity and self-containment
	Criticality levels, criticality dependencies and application profiling

	Summary

	Implementation details of the EXCLAIM framework
	Overview of technical details
	Implementation details
	Triplification enegine
	RDF streaming and C-SPARQL querying engine
	OWL/SWRL reasoning engine

	Cloud Sensor Ontology
	Design process and methodology
	Upper level of the Cloud Sensor Ontology
	Lower level of the Cloud Sensor Ontology: Heroku-specific concepts
	SWRL policies and linked extensions

	Opportunities and requirements for cross-platform deployment of the EXCLAIM framework
	Summary

	Proof of concept: monitoring and analysis of Heroku add-on services with the EXCLAIM framework
	Case study: Destinator – an application for sharing destinations on Facebook
	Demonstrating monitoring and analysis capabilities
	Cloud Application Platform provider's perspective
	Cloud Application Platform consumer's perspective

	Deployment on IBM Streams
	Stream parallelisation

	Experimental results
	Experimental setup
	Conducting the experiments with the initial deployment
	Conducting experiments with the IBM Streams deployment

	Summary

	III Evaluation, discussion, and conclusion
	Evaluation and discussion
	Evaluating performance, scalability, and extensibility
	Performance of the EXCLAIM framework
	Scalability of the EXCLAIM framework
	Extensibility of the EXCLAIM framework

	Potential benefits of the proposed approach
	Potential limitations of the proposed approach
	Summary

	Conclusion
	Discussing contributions
	Further work
	Researcher's view

	Acronyms
	References
	List of the author's publications
	Cloud Sensor Ontology
	Survey of Cloud Application Platforms
	Survey of the state of the art

