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ABSTRACT 

Particle attrition in manufacturing plants handling particulate solids could cause 

processing as well as environmental problems, and lead to the degradation of 

product quality.  Spray-dried powders are particularly prone to attrition because of 

their porous and often weak structure. In this thesis the mechanisms by which 

attrition takes place are addressed, taking account of particle size and structure and 

the portfolio of mechanical stresses.  The evolution of structure during the spray 

drying process cannot be easily controlled but plays a pivotal role in defining 

particle strength.  Spray-dried burkeite particles are a good example and have been 

used as a model porous powder to investigate the effect of structure on their 

strength and breakage propensity.  The dominant prevailing stresses for such 

particles in a process plant are caused by collision. Therefore, the particles are 

subjected to well-defined stresses due to impact, and the change in the particle size 

distribution is determined by particle size analysis based on sieving.  It is found 

that impact breakage of burkeite is affected by the structure, and some unexpected 

trends for breakage are observed; for a given impact velocity some smaller particle 

sizes break to a greater extent as compared with larger particles.  This is attributed 

to uncontrollable variations of porosity (and hence particle envelope density) as a 

function of size.  To study the effect of porosity on attrition of such particles, 

structure visualisation and analysis have been carried out by Scanning Electron 

Microscopy (SEM) and X-ray microtomography (XRT).   SEM images show three 

levels of structure in a single particle of spray-dried burkeite.  Based on the XRT 

results, the particle envelope density increases as particle size increases, and the 
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variation of envelope density influences the impact breakage.  Once the relevant 

values of the envelope density are taken into account, then the trend of impact 

breakage data becomes unified, and the material mechanical properties of the 

particles can be inferred from the breakage results.  The breakage of these particles 

has also been studied using the Scirocco disperser of Malvern Mastersizer 2000, as 

it is widely available, in contrast to the single particle impact rig.  In this device, 

particles of different sizes accelerate to different velocities, and break to different 

extents.  It is found that the shift in the specific surface area of different sizes of 

spray-dried burkeite particles can be related to the dimensionless group 

representing the breakage propensity, using the estimated impact velocity by CFD 

simulation.  Following the successful outcome of this work, the approach was 

extended to determination of breakability of three other crystalline materials, 

aspirin, sucrose and 𝛼–lactose monohydrate.  The outcome indicates that the 

Scirocco disperser can be used as an assessment method for grindability testing of 

materials.  The slope of the line obtained from the graph relating the shift in the 

specific surface area of the particles, reflecting breakage, to the particle size and 

density and impact velocity correlates well with that obtained from single particle 

impact testing.  Therefore this method can be used to assess the grindability of the 

powders provided the impact velocity is first determined.  

To elucidate the role of structure and interparticle bond strength, DEM simulation 

has been used to explore the effect of structure (porosity) on impact breakage of 

agglomerates, and to provide a better understanding of the effects of various 

parameters on agglomerate breakage.  The effects of impact velocity, surface 
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energy, impact angle and porosity on agglomerate breakage have been analysed.  It 

has been found that depending on the level of surface energy, there are different 

patterns of impact breakage. More porous agglomerates undergo a higher extent of 

breakage compared to the low porosity agglomerates.  This is also the case when 

the breakage of agglomerates with low surface energy is compared to those with 

high surface energy. The agglomerate impact at normal target also results in higher 

breakage level compared to the impacting at inclined surfaces.  This approach has 

great potential to be predictive of the effect of structure on the impact strength of 

agglomerates. 
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CHAPTER 1 INTRODUCTION 

For manufacturing plants handling particulate solids, it is important to understand 

particle attrition, as it is one of the most common problems they might face. Attrition 

can have a major impact on powder quality, safety, reliability and economic 

implications. Attrition in manufacturing plants commonly occurs in pneumatic 

conveying lines by particles sliding on the walls and impacting at bends (Frye and 

Peukert, 2004; Frye and Peukert, 2005; H. Kalman, 2000; Salman et al., 2002; T et al., 

2003; Chapelle et al., 2004), inside rotating drums, where particles may experience 

bulk shear deformation and impact, depending on the flow regime and drum fill (Grant 

and Kalman, 2001), in fluidised beds (Boerefijn et al., 2000; Bentham et al., 2004), and 

in filling and discharge from storage units and moving beds (Couroyer et al., 1999; 

Ghadiri et al., 2000).  

In this work, the powders of study are produced by spray-drying. Such powders are 

particularly prone to attrition because of their porous structure. It is well known that the 

operating conditions of the spray drying towers can have a significant effect on the 

powder mechanical strength and friability. Powders moving through the plant can 

experience different types of stresses, causing undesirable attrition (Ahmadian and 

Ghadiri, 2007). However, the breakage of spray-dried particles and the effect of 

formulation on the evolved structure and strength are not fully understood. In order to 

evaluate the attrition propensity of powders under laboratory conditions a portfolio of 

stresses, simulating plant conditions, should be applied.  
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The present work addresses the changes in particle size distribution (PSD) of spray-

dried burkeite particles, which are chosen as a model material, subjected to well-

defined stresses due to impact. The breakage of the particles under different levels of 

impact stresses is studied and analysed. Due to spray-drying operating conditions, there 

is variation of porosity as a function of size, which in fact causes envelope density 

changes with particle sizes. Use of different visualisation methods such as Scanning 

Electron Microscopy (SEM) and X-ray microtomography (XRT) is made to investigate 

the envelope density variation as a function of size.  

Recently, the use of DEM simulation has also become very popular, as it provides a fast 

method to explore the effects of different parameters on strength of the particles. The 

DEM simulation of porous agglomerates is carried out to understand the effects of 

porosity, impact angle, interface energy and impact velocity on the impact breakage of 

agglomerates.  

The results of simulation along with the experimental work provide a broader 

understanding of breakage behaviour of particles. The achievements of this work will 

also help related industries to avoid the conditions which result in undesirable particle 

attrition, e.g. designing pneumatic conveying lines, cyclones and other items of 

equipment, where particles experience mechanical stress by impact. Therefore, by 

improvement in their design of units of operations, the possible problems arising from 

particle attrition can be reduced. 
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1.1 Background 

Laundry detergent powders undergo notable attrition in manufacturing plants.  It is well 

known that the operating conditions of the spray drying process and subsequent powder 

transportation have a major impact on the powder characteristics.  It is, therefore, 

highly desirable to quantify the attrition propensity of detergent powders by applying a 

portfolio of stresses which simulate plant conditions.  Ahmadian (2008) specified the 

range of impact velocities and shear stresses prevailing in a ‘generic’ manufacturing 

plant. Segovia-Torres (2012) started her PhD research programme on analysis of the 

extent of attrition of laundry detergent powders produced with different levels of 

porosity, subjected to the simulated stress conditions at the University of Leeds.  She 

subjected the powder samples to impact and bulk shear deformations and quantified the 

extent of breakage, observing surprising data trends.  

For impact testing, in some cases small particles broke to a larger extent as compared to 

large particles, and some samples with high ‘nominal’ porosity broke less than the ones 

with a lower porosity. Segovia-Torres (2012) also carried out some attrition testing in a 

shear cell and observed that in some cases shear deformations led to particle growth 

due to agglomeration, instead of size reduction. 

In view of Segovia-Torres’s work on laundry detergent powder posing difficulties due 

to complexity of the formulation and uncertainty in porosity across the particle size 

distributions, it was suggested that further work should be focussed on a simpler model 

system, such as burkeite, with more control on the porosity of the powder in the 

manufacturing process, and so began this PhD study on attrition of spray-dried powders 
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with the main focus on spray-dried burkeite particles. The same difficulties were faced, 

i.e. the small particles break to the higher extent compared to the large particles at some 

impact velocities. It was found that the impact breakage was affected by the structure, 

which caused some unexpected trends in particle breakage. To explain these trends, the 

structure of the spray-dried powders needs to be analysed. For this purpose, a 

visualisation study using X-ray microtomography and structure analysis was deemed to 

be needed. 

1.2 Objectives and Structure of the Thesis 

The overall objective of this project is to gain a detailed understanding of the impact 

breakage of spray-dried burkeite particles, and also the influence of the structure on the 

impact breakage of agglomerates, from both qualitative and quantitative points of view. 

For this purpose, a combination of experimental work and numerical simulation is used. 

The schematic diagram of the project plan is shown in Figure 1-1. 
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Figure 1-1. Schematic diagram of the project plan 

A more detailed description of the contents of each chapter is outlined below:  

Chapter 2 A comprehensive review of the literature dealing with the particle 

attrition, failure modes and patterns of breakage is presented first. The breakage 

analysis for each pattern of breakage is described afterwards. A literature review on 

agglomerates, their breakage and modes of failure is then given. Understanding of 

breakage of porous agglomerates and spray-dried particles will then be presented. 

Finally, a review of computer simulation of agglomerates and their breakage is given.  

Chapter 3 In this chapter, the selected material for the experimental part of the 

work is described. Different tests used for material characterisation, as well as sample 

preparation are also presented. 
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Chapter 4 As part of material characterisation, envelope density of different sizes 

of the particles needs to be quantified. Various methods are used to measure the 

envelope density of the particles as a function of size. In this chapter, a full description 

is given for each measurement technique. The results are then compared, and 

justifications of the selected method to carry out the work are given. 

Chapter 5 In this chapter, particle breakage of spray-dried burkeite particles is 

investigated using the single particle impact rig. The breakage of the particles is 

analysed depending on their patterns of breakage. The impact breakage results along 

with the envelope density of the particles are used to estimate the mechanical properties 

of the material. 

Chapter 6 In continuation of the previous chapter, the impact breakage of 

particles is studied using the Scirocco disperser of the Malvern Mastersizer 2000, as 

compared to single particle impact rig test, as it is widely available. The method is then 

applied to other crystalline structure materials. A good match is obtained between slope 

of the line obtained from Scirocco testing and that of the single particle impact testing. 

The results show that the Scirocco disperse can also be used as a grindability test 

method to assess the grindability of different materials. 

Chapter 7 This chapter begins with an introduction to the numerical simulation 

technique used in this work. Different steps used to generate an agglomerate as well as 

the bonding model are then described. The impact breakage of agglomerates under 

different impact conditions is presented. The effects of porosity, impact angle, impact 

velocity and surface energy on the breakage results are also shown. 
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Chapter 8 In this chapter,  general conclusions of the work are given. Some ideas 

are also presented as a future plan to continue this research. 
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, several pieces of work on particle breakage are reviewed. Different 

concepts such as mode of failure and patterns of breakage are described. Some models 

used for breakage analysis are shown. A part of the chapter is focused on agglomerate 

breakage. DEM simulation has been used by many researchers to provide a better 

understanding of influential parameters on agglomerate breakage. 

2.1 Attrition 

Understanding particle breakage is a key factor in order to improve product quality in 

manufacturing plants handling particulate solids. Breakage has a major impact on 

powder quality and on a number of process operation features, such as reliability, 

safety, environmental impacts as well as economic implications. Powders moving 

through plants can experience different types of stresses, most commonly impact and 

shear stresses, causing undesirable attrition. The properties of particulate solids may 

change as a result of attrition, such as size distribution, shape, surface area and bulk 

density. These could have significant influence on product attributes. Bemrose and 

Bridgwater (1987) have studied the factors which affect particle attrition such as 

material properties, environmental and contact conditions. Density, Young’s modulus, 

hardness, fracture toughness, porosity, shape, size and surface roughness are examples 

of material properties that influence particle attrition. Temperature, humidity, fluid 

pressure and fluid viscosity are some environmental conditions which can affect the 

attrition of the particles. Contact conditions depend on the particles examined 

individually or as bulk. The contact conditions such as contact area, angle, friction and 
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contact force can be considered for a single particle, and shear stress, shear strain, bed 

height and consolidation stress for bulk of materials. 

Particle breakage has been investigated extensively in the literature; nevertheless the 

definition of various terms used to describe the particle breakage is often misleading. 

There are different terms used to describe particle breakage, such as attrition, wear, 

chipping and fragmentation. Attrition refers to any unintential breakage of particulate 

solids (Bemrose and Bridgwater, 1987). Any surface damage of the particles which can 

be caused by erosion (by impacting a surface with a velocity) or abrasion (by sliding 

against the surface) is called wear. Shipway and Hutchings (1993b) reviewed the wear 

mechanisms. Chipping is caused by sub-surface lateral cracks initiating and developing 

during unloading, leading to removal of a small volume from a particle surface. The 

size of the chips removed is significantly smaller than the initial size of the particle 

(Ghadiri and Zhang, 2002). If the particles split into several smaller parts (by 

propagation of radial and median cracks), it is referred to as fragmentation. During 

fragmentation, a small amount of debris may also be produced (Ghadiri and Zhang, 

2002).  

Common places where attrition occurs are: in the pneumatic conveying lines by 

particles sliding on the walls and impacting at bends  (Frye and Peukert, 2004); inside a 

rotating drums where particles may experience bulk shear deformation and impact 

depending on the flow regime and drum fill (Grant and Kalman, 2001); and in fluidised 

beds, where Boerefijn et al. (2000) and Bentham et al. (2004) have studied the attrition 

of particles in the jetting region (the work of Boerefijn et al. (2000) was focused  on the 

high jet velocities in the distributor region causing intense inter-particle collisions). 
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Particle breakage might occur by impact, compression and sliding depending on the 

stressing conditions, material properties and environmental conditions during discharge 

from the bin by producing a network of strong contact forces.  

Breakage of granules and agglomerates is not extensively classified by the definition of 

particle failure described above. Granules may undergo damage by other mechanisms 

such as disintegration. An extensive review on agglomerate breakage has been reported 

by Reynolds et al. (2005) and characterisation of granule strength by Bika et al. (2001). 

The classification of agglomerate failure is discussed further in section 2.5.  

2.2 Modes of Breakage 

Applying a stress to a particle could result in deformation, which is initially elastic 

(non-permanent) and could be followed by plastic (permanent) deformation (Thornton 

and Ning, 1998) and initiation and propagation of cracks. The type of cracks is 

dependent on the mode of failure, which is categorised as brittle, semi-brittle and 

ductile. A particle failing in a brittle failure mode experiences extensive elastic 

deformation, but limited plastic deformation before failure due to crack propagation. 

Conversely, in the case of ductile mode of failure, the material experiences extensive 

plastic deformation. This may lead to failure by rupture (ductile tearing) rather than 

crack propagation. For the semi-brittle failure mode, the material experiences extensive 

elastic and plastic deformations, which cause crack propagation that is initiated from 

the plastic contact zone (Ghadiri and Zhang, 2002). 
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2.2.1 Brittle Mode of Failure 

A material with the brittle mode of failure is naturally strong, but its strength depends 

on the pre-existing internal and surface flaws.  Shipway and Hutchings (1993 a, b) 

found that for the contact deformation with a low compliance (stiff) the internal tensile 

stresses are larger than the circumferential tensile hoop stresses; hence the internal 

tensile stress causes crack propagation. In contrast, in contact deformation with a high 

compliance (soft material), the circumferential tensile stresses are high as compared 

with the internal tensile stresses, which lead to the formation of orange-segment 

fragments ( Shipway and Hutchings, 1993a, 1993b). However, a predictive analysis of 

breakage is difficult as information on the size and number density of flaws in the 

particles is not generally available. 

Brittle failure has been observed by Arbiter et al. (1969) for sand-cement, Salman and 

Gorham (2000) for soda-lime glass sphere, Rumpf and Schönert (1972) and Schönert 

(2004) for glass, Papadopoulos (1998) for porous silica, Wu et al. (2004) for plaster 

particles, Subero-Couroyer et al. (2005) and Antonyuk et al. (2005) for γ-alumina 

beads. 

2.2.2 Semi-Brittle Mode of Failure 

In this mode of failure, the brittle fracture occurs at the boundaries of a plastically 

deformed zone. Chipping and wear are the results of the lateral crack propagation, 

whilst radial and median vent cracks are responsible for fragmentation (Ghadiri and 

Zhang, 2002). The stress field in this failure mode is very different compared with the 

elastic deformation. The plastic zone is under hydrostatic pressure causing tensile 
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circumferential hoop stresses at the boundary of plastic region leading to the formation 

of radial and median vent cracks during the loading cycle (Lawn and Wilshaw, 1975). 

During the unloading process, the elastically deformed region relaxes and the residual 

energy forms tensile stresses along the plastic boundary. Sub-surface lateral cracks are 

commonly formed as a result of the tensile stress (Hagan and Swain, 2001).  In semi-

brittle failure mode, cracks are initiated from the plastic zone, and hence the pre-

existing flaws may not affect the failure, and hence the pattern of crack propagation is 

associated with local plastic deformation (Evans and Wilshaw, 1976). Radial, median 

and lateral cracks are shown schematically in Figure 2-1. 

 

 

 

Semi-brittle mode of failure has been observed by Zhang and Ghadiri (2002) for 

sodium chloride and potassium chloride, Papadopoulos (1998), Salman et al. (2003), 

Gorham et al. (2003) and Chaudhri (2004) for impact breakage of polymethyl 

methacrylate (PMMA) spheres and Antonyuk et al. (2006) for a synthetic zeolite. 

2.2.3 Ductile Mode of Failure 

Figure 2-1. Illustration of radial (A G Evans and Wilshaw, 1976), median and lateral cracks 

(Salman et al., 2004) 
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This mode of failure occurs through substantial plastic deformation of the material. 

Metals and some soft materials such as some polymers are mostly damaged under this 

mode of failure. Material properties and the method of loading are two important 

factors which affect the process of particle failure. The two dominant mechanisms of 

material removal in this failure mode are ploughing and cutting which are shown in 

Figure 2-2 (Briscoe, 1992). 

 

 

For ductile mode of failure, Antonyuk et al. (2005) observed dominant plastic 

deformation for sodium benzoate granules. The ductile failure mode for the impact of 

weak agglomerates, made of lactose powders was reported by Ning et al. (1997). The 

agglomerates underwent extensive plastic deformation and clusters were detached from 

the plastic zone. The same approach has been observed by Samimi et al. (2003), who 

tested soft detergent based agglomerates using quasi-static, single and bulk particle 

compression. They observed microscopic ductile behaviour for the agglomerate having 

Figure 2-2. Material flaw during a ductile failure (Briscoe, 1992) 
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a binder, due to the elongation and rupture of the binder ligaments within the crack 

opening. (Meenan et al., 1997). Yu et al. (2004, 2003) also carried out research on the 

ductile deformation of ceramics. 

2.3 Pattern of Breakage 

The most common causes of particle attrition are chipping and fragmentation. Sub-

surface lateral cracks are responsible for the chipping, and as they extend, the removal 

of small chips from the particle occurs. There is a minimum force required to plastically 

deform the particle and bring the onset of chipping. Beyond a threshold force, radial 

cracks will extend further towards the centre of the particle and cause fragmentation 

(Hare et al., 2009). 

In order to analyse the breakage results, it is important to identify different patterns of 

breakage, e.g. chipping, fragmentation and disintegration. Papadopoulos (1998) studied 

the changing trend of the size distribution curve with impact velocity based on the work 

of Schumann (1940). Using this approach the breakage patterns can be separated based 

on the trend of the curves obtained by plotting the cumulative percentage undersize as a 

function of normalised size. The breakage patterns are classified into chipping, 

fragmentation and disintegration depending on the shape of the curves as shown in 

Figure 2-3.  
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Definitions of the size of debris and mother particles are not straight forward, as the 

chips tend to have very irregular shapes and so their sieve size is not easily defined. The 

same applies to the size of the mother particles. However, a common approach to assess 

the fraction of debris generated through chipping is to consider a cut-off sieve size 

above which only mother particles are expected, and below which the particles are 

considered as debris. This cut-off size is typically taken as two sieve size cut below the 

lower size of the feed particles (Ahmadian and Ghadiri, 2007; Kwan et al., 2004).  

In quantifying the particle breakage, there are some material losses due to manual 

handling, which causes uncertainty in analysing the extent of breakage. Ghadiri and 

Zhang (2002) defined limits of breakage based on whether the lost material could be 

attributed to the mother particles or to debris. In the former case the extent of breakage 

is defined by 𝑅−, and in the latter case it is defined by 𝑅+. 𝑅∗ is defined based on the 

collected materials, i.e. ignoring the losses. 

Figure 2-3. Patterns of breakage (Papadopoulos, 1998)  
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𝑅− =
𝑚𝑑𝑒

𝑚𝑓
× 100%                                                                                                Eq. (2-1) 

𝑅+ =
𝑚𝑓−𝑚𝑚

𝑚𝑓
× 100%                                                                                          Eq. (2-2) 

𝑅∗ =
𝑚𝑑𝑒

𝑚𝑚+𝑚𝑑𝑒
× 100%   Eq. (2-3) 

where 𝑚𝑑𝑒, 𝑚𝑓 and 𝑚𝑚 are the mass of debris, feed and mother particles, respectively. 

2.3.1 Brittle Mode of Failure 

Due to lack of information on the size and position of flaws in a particle, a deterministic 

analysis of particle breakage for the brittle mode of failure is difficult. Thus to 

characterise the breakage in this failure mode, the empirical determination of the 

crushing strength would be the only way. For this mode of failure, Weibull analysis 

could be used to fit the experimental observations (Weibull, 1951). It gives the 

probability of breakage (𝑆) as a function of the applied stress (𝜎𝐴). These fitting 

parameters, 𝑧, 𝜎𝑠   and 𝑚 represent flaw density, a characteristic strength and a measure 

of the spread of strength, respectively (Weichert, 1988).  

𝑆 = 1 − exp [−𝑧(
𝜎𝐴

𝜎𝑠
) 𝑚]                 Eq. (2-4) 

The Weibull equation has been modified by Vogel and Peukert (2003) to describe the 

impact breakage.  

𝑆 = 1 − exp [−𝑓𝑀𝑎𝑡𝐷(𝑊𝑘 − 𝑊𝑘,𝑚𝑖𝑛)]                                                                 Eq. (2-5) 

The parameters 𝑓𝑀𝑎𝑡  and 𝑊𝑘,𝑚𝑖𝑛 are two fitting parameters in this equation and reflect 

the material properties and the minimum kinetic energy which causes breakage, 
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respectively. 𝐷 is the particle size and 𝑊𝑘 denotes single particle mass specific impact 

energy. 𝑓𝑀𝑎𝑡 represents the resistance to breakage of the particle against the applied 

load 𝑊𝑘 (Vogel and Peukert, 2005). Similar work has also been done by (Salman et al., 

1995), who related the fraction of unbroken particles to the impact velocity by the use 

of Weibull analysis. 

2.3.2 Semi-Brittle Mode of Failure 

The most important mechanical properties for the semi-brittle failure mode are 

hardness, Young’s modulus and fracture toughness. ‘Hard’ materials undergo less 

plastic deformation compared with ‘soft’ materials, but store greater residual strain 

energy; therefore they have more tendencies to generate lateral cracks than the soft 

materials. For the semi-brittle materials, chipping occurs by sub-surface lateral cracks, 

and fragmentation by radial and median vent cracks (Ghadiri and Zhang, 2002). 

Chipping and fragmentation are analysed further below.  

2.3.2.1 Plastic Deformation – Chipping Transition 

Transitions of plastic deformation to chipping and chipping to fragmentation play an 

important role in understanding of particles breakage. Considering the role of different 

types of cracks is important as well. The critical transition velocity for plastic 

deformation-chipping is given below, which indicates that the critical transition 

velocity is proportional to the inverse of the square of particle size (Ghadiri, 1997). 

𝑉𝑐ℎ ∝ (
𝐾𝑐

𝐻
)4 𝐸

𝐻1/2
𝜌−1/2𝐷−2                                                                                    Eq. (2-6) 
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where 𝑉𝑐ℎ is the transition velocity from plastic deformation to chipping, 𝐻 and 𝐾𝑐 are 

hardness and fracture toughness, respectively. E is Young’s modulus, 𝜌 is the envelope 

density and 𝐷 is a volume-based characteristic particle size. 

2.3.2.2 Chipping 

The formation of sub-surface lateral cracks due to surface damage is one of the 

important processes of material removal. This process is generally referred to as 

chipping. Ghadiri and Zhang (2002) proposed a model for the calculation of the volume 

of debris formed as a result of impact damage based on the depth and length of the 

lateral cracks. The volume fraction of debris is defined as the ratio of volume of chips 

to the volume of original particles. The calculation of this volume fraction leads to a 

dimensionless group, which describes the attrition propensity due to chipping, 𝜂: 

𝜂 =
𝜌𝑉2𝐷𝐻

𝐾𝑐
2                                                   Eq. (2-7) 

where 𝐷 is a linear dimension of the particle, 𝑉 is the impact velocity and 𝜌 is the 

particle density. Toughness, 𝐾𝑐, and hardness, 𝐻, of the particles affect the 

characteristics of lateral cracks.  

There are other models, reported in the literature, used to analyse the particle breakage 

under indentation by chipping. Evans and Wilshaw (1976) analysed the material 

removal rate expected from lateral fracture, and showed that the chipping volume is 

proportional to a group of parameters as shown below: 

𝜂 =
𝜌𝐷𝑉

12
5⁄

𝐾𝑐

3
2⁄

𝐻
1

2⁄
        Eq. (2-8) 
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However, this expression is not dimensionless. The above-mentioned model is 

developed for low impact velocities and quasi-static single particles. Bika et al. (2001) 

compared the above model with the model of (Ghadiri and Zhang, 1992), and showed 

that the work of Ghadiri and Zhang (1992) shows different dependency of 𝜂 on impact 

velocity, hardness and fracture toughness compared to the presented model by Eq. (2-8) 

(Bika et al., 2001; Ghadiri and Zhang, 2002). 

Gahn and Mersmann (1997) analysed the fractional loss of the material under impact. 

They used the energy balance approach assuming the kinetic energy from impact 

transformed into plastic work. Based on this model, 

𝜂 =
2

3

𝐻
2

3⁄ 𝐾𝑟𝑊𝑚

4
3⁄

𝐺𝛤𝑓
          Eq. (2-9) 

where 𝐾𝑟 is the fracture efficiency, 𝐺 is the shear modulus, 𝛤𝑓 is the fracture surface 

energy and 𝑊𝑚 is the kinetic energy from impact. It is assumed that a cone-shaped 

particle impacts to the target, and the volume of the fragment is equal to the removed 

volume from the cone. 

2.3.2.3 Chipping-Fragmentation Transition 

Considering impact damage, the threshold velocity of fragmentation is a function of 

hardness, density, fracture toughness and the size of the plastic zone in the semi-brittle 

failure mode. It is observed that the dependence of the critical transition velocity 𝑉𝑓𝑟 on 

the particle size 𝐷 is similar to that of plastic deformation-chipping (Ghadiri, 1997). 

𝑉𝑓𝑟 ∝ (
𝐾𝑐

𝐻
)4𝐻1/2𝜌−1/2𝐷−2            Eq. (2-10) 
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where 𝑉𝑓𝑟 is the transition velocity from chipping to fragmentation. 

2.3.2.4 Fragmentation 

Formation of fragments occurs when the radial and median cracks are extended to the 

full length of the particles, leading to the loss of integrity of the structure. However, 

there is no theory which can relate the product size distribution to the material 

properties and stress conditions in a predictive way. Ghadiri and Zhang (2002) 

proposed a relationship to estimate the force for fracture of a sphere of diameter 𝐷 

based on indentation fracture. The fragmentation force (𝐹𝑓𝑟) for crack extension is 

given by: 

𝐹𝑓𝑟 ∝ 𝐾𝑐
4/3

𝐷4/3𝐻−1/3                                                                                        Eq. (2-11) 

Salman et al. (1995) proposed an empirical model to quantify the probability of 

breakage by counting the number of unbroken particles after impact testing. In this 

model the number of unbroken particles (𝑁𝑢) is described as a function of impact 

velocity (𝑉) using a two-parameter cumulative Weibull distribution (𝐾1 𝑎𝑛𝑑 𝑏), as 

given by Eq. (2-12): 

𝑁𝑢 = 100 exp [− [
𝑉

𝐾1
]

𝑏

]                        Eq. (2-12) 

where 𝐾1 is considered as a parameter representing the average strength of a given 

particle size under a specific loading condition, as it is related to the velocity at which 

the probability of damage is 36.8% or 100
𝑒⁄  . The parameter 𝑏 is considered as 
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Weibull modulus and is linked to the slope of the curve, and it represents a distribution 

of strengths for the population of particles. 

It should be noted that both equations above have a lower limit of particle size validity. 

The limit comes from an ultimate particle size below which the particles cannot be 

fractured at all, and they can only undergo plastic deformation, irrespective of impact 

velocity. Kendall (1978), Puttick (1980) and Hagan (1981) developed some models for 

this limit. These models are based on the energy requirements for crack propagation.  

2.4 Particle Breakage Assessment 

There are a number of test methods to evaluate the breakage of the particles, whether 

singly or in bulk. Impact (Boerefijn et al., 1998; Subero and Ghadiri, 2001; Samimi et 

al., 2003; Samimi et al., 2004; Antonyuk, Khanal, J??rgen Tomas, et al., 2006; H 

Kalman, 2000), wear (Hutchings, 1993), side crushing (Beekman, 2000; Beekman et 

al., 2003; Adams et al., 1994; Cheong et al., 2005) and indentation (Elwazri et al., 

2009) are some of the test methods used for single particles. According to Ghadiri et al.  

(2000), these methods have relatively well-defined conditions and can be used to study 

the influence of stress field and materials properties on particle breakage; however, due 

to simplicity of these methods, they are not fully representative of industrial conditions.  

2.4.1 Single Particle Impact Testing 

The single particle impact test is a dynamic test method, in which the particles are 

accelerated and impacted to a normal or oblique target. This has been extensively used 

as a test method to study the breakage behaviour of particles under impact conditions 

by Salman et al. (2003, 1995) to study the breakage of fertiliser and alumina 
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agglomerates, respectively. Arbiter et al.  (1969) used free fall impact to study the 

breakage behaviour of sand-cement agglomerates. Breakage patterns of lactose 

agglomerates was investigated by Ning et al. (1997) and Boerefijn et al. (1998). Also 

materials such as sodium chloride crystals (Yuregir et al., 1986), sand (Lecoq et al., 

2003), and detergents (Samimi et al., 2004) have been tested in this way. Tomas et al. 

(1999) and Khanal et al. (2004) have used the approach for impact testing of large 

concrete balls. Ghadiri and co-workers have developed an impact tester to study the 

breakage of particles (Samimi et al., 2003; Yuregir et al., 1986).  

The oblique impact of granules has been investigated by Salman et al. (2003) and 

Samimi et al. (2004). Salman et al. (2003) found that the breakage decreases as the 

impact angle decreases from normal. However, Samimi et al. (2004) found that by 

decreasing the impact angle, the extent of breakage increased. The breakage of granules 

by oblique impact shows contrasting trends and still needs further investigation in order 

to be fully understood. 

Repeated impact testing has been used to investigate the effects of fatigue using 

different impact test devices (Beekman, 2000; Pitchumani et al., 2004). Particle 

breakage has been analysed by both quantitative and qualitative methods. Ning et al. 

(1997) have used single particle impact tests coupled with high speed video recording 

to observe initiation and propagation of cracks. 

2.5 Agglomerates 

Agglomerates are made of primary particles bonded together. The primary particles 

may be made of a single or different components, in the case of a mixture, the 
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agglomerate structure could contain the materials mixed randomly together, or it could 

be layered. A type of bonding is usually used in the agglomerates. All these 

possibilities show a great variation in structure, and so their breakage behaviour can be 

quite different from each other and from single particles too. As a consequence, this has 

led to much research to characterise the breakage of agglomerates, with the application 

of computer modelling in many cases.  

Despite the complexity of the breakage behaviour of the agglomerates, the 

agglomerated products have some advantages over their un-agglomerated constituents. 

They are less prone to segregation as the size and density in principle can be controlled. 

They can be formed from a range of components with different concentration. It is 

usually helpful in pharmaceutical industries for active ingredients where their dose size 

cannot be accurately controlled in any other ways. Another advantage is that 

agglomerates can be made to increase the solubility in liquids, as their porous structure 

allows liquid ingress and also the binders can be chosen in a way that they dissolve in 

the liquid (Mullier et al., 1991). 

2.5.1 Bonding in Agglomerates 

The binding mechanisms of agglomeration can be classified into solid bridges (such as 

partial melting, re-crystallisation during drying, etc), adhesion and cohesion forces, 

surface tension and capillary pressure (such as liquid bridges), attraction forces between 

solids (such as molecular forces, electric forces and magnetic forces) and interlocking 

bonds (Reynolds et al., 2005; Rumpf, 1958). 
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2.5.2 Agglomeration Process 

Agglomeration (or granulation) is referred to as the formation of larger entities from 

particulate solids by either sticking particles together due to short range physical forces 

between the particles or using binders or some materials to form a material bridge 

between the solid surfaces by adhere physically or chemically (Pietsch, 2008). 

Agglomeration (or granulation) can be achieved in a number of ways, such as in a high-

shear mixer, fluidised bed operation and spray-drying process (Huntington, 2004). 

However, there are other techniques to form an agglomerate. For instance, Ku et al. 

(2015) studied binderless agglomerate formation using auto-granulation of fine titania 

powder under vibration. Their approach was used to promote agglomerate growth by 

controlling the vibration conditions. Fine powders are poor in flowability and they have 

the affinity to agglomerate due to cohesion. The size of the agglomerates was analysed 

as a function of frequency and amplitude of the vibration. However, the maximum size 

of the agglomerates is affected by the balance between cohesive energy of the particles 

and the disruptive energy of the vibration. After forming different agglomerates at 

different vibration conditions, they analysed the internal structure of the agglomerates 

by providing a cross-section of them. They found that there is a core-rim microstructure 

for all the agglomerates regardless of their formation conditions. The results showed 

that the equilibrium size of the agglomerates increases as the vibrational intensity 

increases.  A higher power and energy of vibration would also give rise to formation of 

larger and stronger agglomerates.  

The agglomeration process using spray-drying is described in section 2.5.5. 
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2.5.3 Agglomerate Structure 

There is a direct relation between the structure of an agglomerate and the agglomeration 

process and parameters. Therefore, any change in the structure of the agglomerates is 

achieved by manipulating the agglomeration process. There is extensive work reported 

in the literature by Ennis et al. (1991), Gutsch et al. (1995), Keningley et al. (1997), 

Müller and Löffler (1996), Juslin and Yliruusi (1996), Litster et al. (1998) on the 

process of agglomerate growth and evolution of structure. At a basic level, the structure 

of the agglomerates is defined using general terms, such as porosity/ void fraction or its 

complimentary solid/ packing fraction (Rumpf, 1958; Karihaloo, 1979; Rice, 1996). 

These parameters can also be related to envelope density and co-ordination number of 

agglomerate (Smith et al., 1930; Manegold et al., 1931; Meissner et al., 1964). 

However, recently more analytic tools are available to study the structure of the 

agglomerates such as X-ray microtomography approach, through which a wide range of 

structural features such as distribution of pore size and its position can be determined. 

2.5.3.1 X-Ray Microtomography 

X-ray microtomography (XRT) is a technique to non-destructively characterise material 

microstructure in three dimensions at a micrometre level spatial resolution. This has 

been used to study the structure of the agglomerates due to its high resolution and 

ability to acquire the three-dimensional information (Fu et al., 2006).  XRT scans allow 

the user to visualise the internal and microstructural details of the agglomerates. 

Material atomic mass and the energy of X-ray affect the intensity values associated 

with different features of the scanned images (Eggermont et al., 1981; Stock, 1999), 

which by the quality of scan and differentiation between the materials can be affected. 
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Moreno-Atanasio et al. (2010) used the combination of X-ray microtomography and 

computer simulation for analysis of granular and porous materials. Rahmanian et al. 

(2009) has also reported characterisation of granule structure using XRT. Golchert et al. 

(2004) also used X-ray microtomography to characterise the structure of actual 

granules. They used DEM simulation to analyse the effect of agglomerate shape and 

structure on breakage patterns during compression.  For the first time, they studied the 

failure of the agglomerates with a wide size distribution of primary particles in a 

random structure. These all show the capability of XRT to provide more information on 

the structure of particles, leading to an understanding of the breakage behaviour of 

them. 

2.5.4 Porous Agglomerates 

Due to the complex structure of porous agglomerates, it is challenging to analyse their 

breakage behaviour by experimental work. In contrast, computational simulation has 

been found as a helpful tool, which provides a better understanding of the effects of 

different parameters on the breakage behaviour of porous agglomerates, and it is 

described in section 2.6.1.1. One of the good examples of porous agglomerate is spray-

dried powders such as milk, detergent and coffee powders. 

2.5.5 Spray-Dried Powders 

Spray-dried powders have an agglomerate structure. Spray-drying is the transformation 

of a feed material in a fluid or slurry state into a dried particulate form by spraying the 

feed into a hot drying gas(Masters, 1991). Different techniques are used in the spray-

drying process to achieve a desired product. The spray-drying system can be classified 
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into two main categories: co-current and counter-current. In a co-current spray-dryer 

the air moves in the same direction as the spray, with both usually entering at the top of 

the drying chamber and leaving through the bottom. In the counter-current spray-drying 

tower, the system operates with the spray and air moving in opposite directions. The 

latter is mainly used for manufacturing detergent powders. It is well known that the 

operating conditions of the spray drying towers such as slurry flow rate, air inlet 

temperature and atomizing pressure can have a significant effect on the powder 

mechanical strength, porosity and hence friability of the particles. The structure of the 

particles is also affected by operating conditions.  

Detergent washing powders are a good example of spray-dried powders. Conversion of 

detergent slurries to dry powders by spray drying is an important step in the production 

of detergent powders (Masters, 1991). In the past, the spray drying method using 

phosphate based materials (sodium triphosphate) was a common method in the 

production of builders of detergent powders. However, as they were not 

environmentally friendly materials, they have been replaced by zeolites, sodium 

carbonate and sodium sulphate salts (Meenan et al., 1997). Yangxin et al. (2008) listed 

six group of components which laundry detergent powders generally contain builders 

(used to remove calcium ions to soften water), surfactants, enzymes, fillers, bleaching 

agents and additives such as fabric softening clay and brighteners. The strength of the 

builder plays an important role in the strength of the detergent washing powders. These 

particles are particularly prone to attrition because of their porous and weak structure.  
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2.5.6 Morphological Changes during Spray-Drying 

Understanding the drying kinetics of single droplets with different sizes provides some 

information on phenomena associated with spray-drying operations such as the 

morphology of the particles. Most of the studies are based on the classical theories 

rather than experimental outcomes (Adhikari et al., 2000; Walton, 2000). The 

behaviour of the particles can be explained partially by heat and mass transfer theories, 

and some part of it through morphological changes of liquid single droplet to dried 

solid. Some design parameters, such as diameter and height of the chamber, might help 

to propose a link between drier design and product quality (Dolinsky, 2001; Ferrari et 

al., 1989; Hecht and King, 2000). Walton (2000) in his work showed that the 

morphology of final product is related to drying conditions.  

Drying conditions (such as temperature), size and geometry of the chamber and the 

atomising device are the factors which need to be taken into account before spray-

drying process. However some researchers consider the atomisation as the most critical 

step (Allen and Bakker, 1994; Furuta et al., 1994; Oakley, 1994). The overall quality of 

the operation can be determined by the size distribution of spray, size of the atomiser, 

particle trajectory and velocity inside the chamber (Chawla, 1994). Digital image 

analysis is used in evaluating the particle size, formation of crust, shrinkage 

phenomena, inflation, blow-up holes, etc. For this purpose, different methods such as 

stereo, light, scanning electron microscopy (SEM) and confocal microscopy can be 

used (Aguilera and Stanley, 1999; Kaláb et al., 1995). Stereo optical microscopy is a 

method used for three-dimensional visualisation at low resolution. Light microscopy is 

very similar to SEM, and both are used to assess morphological changes related to 
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drying. However, SEM provides a higher resolution, and is more appropriate to observe 

the structures with a greater depth. Confocal microscopy is used to obtain optical 

sectioning of the particle at different levels beneath the surface. 

(Alamilla-Beltra´n et al., 2005) showed that the size and shape variation of particles 

during drying depend on the moisture content of the materials as well as the operating 

temperature. Final products tend to have smaller particle sizes, when the drying is done 

at low temperatures, while for intermediate and high temperatures the final products are 

quite large (with around 100% inflation with respect to the initial atomised droplet). 

Formation of thick and irregular crust mainly occurs at low temperature (70-110°C). 

Understanding morphology-temperature relationship plays an important role on 

prediction of size distribution, moisture content, density and strength of the particles 

(Alamilla-Beltra´n et al., 2005). 

2.5.7 Mechanical Properties of Agglomerates 

The mechanical behaviour of agglomerates is of interest to different industries, as it is a 

critical issue for production and performance depending on the applications, i.e. 

dispersion, granulation, compaction and drying. Despite the importance of this topic, 

there are fewer studies on it compared to single particles. As mentioned before, 

agglomerates are assemblies of primary particles. One of the most important factors 

that makes the agglomerate characterisation complex is its porosity, which is a key 

structural feature. The main aim of mechanical testing of materials is to determine their 

strength. Strength appears a simple concept, but in practice it is very difficult to define 

and measure it. Here, the strength is defined as the stress at which a material begins to 

deform plastically, or in some cases it can develop macroscopic damage. The failure 
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point in fact depends on the distributed microstructure, i.e. porosity and cracks (Bika et 

al., 2001).  

The yield stress is one of the main measures of strength. There are different 

measurement techniques, and the results are highly dependent on the loading condition. 

Indentation probably is one of the most common methods for assessing the yield stress. 

Various types of indentors can be used depending on the application, such as Vickers 

(square base diamond pyramid), Brinell (sphere), Knoop (rhombohedral diamond 

pyramid), etc. A load is applied, and the indentor would slowly be penetrated into the 

surface of the specimen to a strain of typically 8-10 % (Bika et al., 2001). The applied 

load divided by the projected area of impression made by indentor on the surface of the 

particle multiplied by each indentor unique shape factor would give hardness number, 

𝐻. In principal, hardness is a function of elastic modulus, Poisson’s ratio and yield 

strength. The big advantage of this hardness measurement method is its simplicity, and 

it can easily be applied on the surface of the agglomerates. Indentation on the surface of 

the agglomerate can be easily done if the size of the indentor should be large enough 

compared to the characteristic size of the particles and pores. However, the issue of 

selectivity should be also considered, i.e. in case of polycrystalline structure 

agglomerates, the indentation might be done on one of the phases or at grain boundaries 

or on other microstructural features, giving rise to misleading measured values.  

The indentation method can also be used to measure Young’s modulus (Oliver and 

Pharr, 1992; Sneddon, 1965) and fracture toughness ( Evans and Wilshaw, 1976). The 

main issue is that it requires a smooth and pore-free surface in order to trace the radial 

crack propagation to calculate the fracture toughness. Overall, the results are strongly 
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dependent on the load, rate and environmental conditions, and the reported results are 

not an absolute value of Young’s modulus for the material. 

2.5.8 Modes of Agglomerate Breakage 

The modes of breakage for single particles have well been established; particles may 

fail through chipping or fragmentation.  However the definitions of these terms do not 

lend themselves well to the mechanisms of agglomerate failure; this is largely due to 

non-uniformity in granule structures; however, several classifications of breakage 

modes for agglomerates have been proposed. Subero and Ghadiri (2001) investigated 

breakage patterns of agglomerates of approximately 30 mm diameter, formed by glass 

ballotini bonded with bisphenol-based epoxy resin, the breakage patterns found were 

local damage, local damage and oblique fracture, local damage and diametrical 

fracture, and multiple fragmentation. Mishra and Thornton (2001) classified 

agglomerate breakage through the modes of fracture, fragmentation, disintegration, and 

total disintegration.  Using numerical simulations of orthogonal agglomerate impact 

with a wall, their work showed that at high velocities, denser agglomerates failed 

through fragmentation, whereas less dense agglomerates failed through disintegration. 

Intermediately packed agglomerates showed a shift from disintegration failure mode to 

fragmentation, when the number of contacts was increased (without changing solid 

fraction) beyond a threshold value. Reynolds et al. (2005) identified 12 different 

breakage patterns for solid, wet, and binderless granules. This highlights the variation 

in granule breakage, but also the need for a uniform breakage pattern classification 

procedure, such as that existing for single particles (i.e. chipping, disintegration, and 

fragmentation). 
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Due to the complexity of the agglomerates structure arising from many factors, such as 

primary particle size distribution, void fraction, density and inter-particle bond 

characteristics, a full breakage map of agglomerates is not yet established. However, 

the failure mode of agglomerates can macroscopically be covered by the three classical 

modes of failure. Boerefijn et al. (1998) observed the ductile mode of failure 

macroscopically in disintegration of weak agglomerates bonded by van der Waals 

forces. Subero and Ghadiri (2001) studied patterns of failure of large agglomerates of 

glass ballotini bonded together using a brittle glue. This is described in detail in the 

next section.  

2.5.9 Breakage Patterns of Agglomerates 

Subero and Ghadiri (2001) found several breakage patterns of agglomerate materials: 

localised damage on the contact point, fragmentation by propagation of various cracks 

into the agglomerate body or extensive disintegration. Overall, the agglomerates can 

break in different patterns depending on their properties and loading conditions, leading 

to various failure modes. This refers strictly to the macroscopic failure presented by the 

whole agglomerate, rather than the failure of individual interparticle bonds (Ning et al., 

1997; Subero, 2001b; Ge and Schmauder, 1995). In terms of the breakage of individual 

inter-particle bonds, two different forms of failure have been observed: internal 

(cohesive) and interfacial (adhesive). The internal breakage produces irregular surfaces 

due to crack jumping, whilst in the interfacial failure, clean and smooth fracture 

surfaces can be observed (Subero and Ghadiri, 2001). 

Agglomerate failure is sensitive to the structure and interparticle bond characteristics. 

Hence, the pattern and mode of failure are more complex than the continuum solid 
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particles. If the bond is stronger than the primary particles, it is likely that the cracks 

propagate through the primary particles themselves. However, the bond is commonly 

weaker than the particles and hence agglomerate failure is through bond breakage. This 

is the case under consideration below, reviewing the work in the literature. The work of 

Subero and Ghadiri (2001) showed the various patterns of breakage of agglomerates at 

both macro-scale level, i.e. agglomerate breakage, and micro-scale level, i.e. 

interparticle bond breakage. Agglomerates with well-defined bond properties and void 

distributions were prepared using die casting. This technique has a good control on the 

structure of the agglomerates, i.e. void number, void size and bond properties. 

As mentioned before, glass ballotini were used in this work as the constituent primary 

particles, and bisphenol-based epoxy resin as the bonding material. The particles were 

mixed with ammonium nitrate salt granules before moulding. After curing to produce 

strong bonds, the agglomerates were cooled for a while at room temperature, and then 

washed with water to dissolve the salt particles in water to produce large cavities in the 

structure. The agglomerates were then dried. Different number and size of the macro-

voids could be produced in this way providing agglomerates with different structures 

ready for impact testing.  

The observation of the shapes of fragments can help to elucidate the fracture pattern. 

Subero and Ghadiri (2001) reported two main types of breakage due to impact: 

localised and distributed damage. The localised damage was observed near the impact 

area. Generally, the zone around the impact point broke into very small fragments. In 

some cases for the high impact velocity, the debris generated flowed out of the impact 

zone.  
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In some occasions, clusters were also produced near the impact zone. The level of size 

reduction depended on the macro-void number/size. For the clusters with a high macro-

void number/size, a visible reduction of their dimension in the direction of impact was 

observed. For agglomerates containing macro-voids the impact zone was very weak, 

and disintegrated into very small fragments. In this case, the stresses cannot be 

propagated into the agglomerate to cause fracture.  

The second type of breakage is the fragmentation of agglomerates, which can be 

identified by large planar cracks, and the splitting of the agglomerate into a small 

number of relatively large clusters. In this pattern of breakage three types of cracks 

were observed: oblique, median and secondary cracks. On some occasions, both 

oblique and meridian cracks cause fragmentation and as a result of that multiple 

fragmentations can be observed.  

Subero and Ghadiri (2001) proposed that for the majority of the patterns of breakage of 

agglomerates, the semi-brittle mode of failure can be considered, because in their case 

the damage initiated from the impact zone and propagated into the body of the 

agglomerate, rather than any crack propagating. Different patterns of breakage are 

described schematically in Figure 2-4.  
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It is clear from the above that a multitude of cracking patterns prevails in breakage of 

agglomerates, depending on the impact velocity and macro-void size/number. The 

fragmentation pattern is more dominant, with increasing impact velocity and also the size of 

macro-voids. Therefore, both fragmentation and localised damage can be observed at high 

Figure 2-4. Schematic patterns of agglomerate breakage (Subero, 2001b) 
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velocities. A regime map of agglomerate breakage has been proposed by Subero and Ghadiri 

(2001) and this is reproduced as Figure 2-5 below. 

 

  

 

 

 

 

 

 

 

2.5.10 Breakage Analysis 

In order to analyse the breakage results of a bonded agglomerate, the concept of 

damage ratio can be used, which is defined as the number of broken interparticle bonds 

devided by the total number of bonds present in the agglomerate. It is a measure of 

extent of damage and is related to the Weber number, 𝑊𝑒, according to (Kafui and 

Thornton, 1993): 

𝑊𝑒 =
𝜌𝑉2𝐷

𝛤
                Eq. (2-13) 

Figure 2-5. The qualitative dependence of the observed pattern of breakage 

with the impact velocity and solid fraction (Subero and Ghadiri, 2001) 
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where 𝜌, 𝐷 and 𝛤 are the primary particle density, diameter and surface energy and 𝑉 is 

the impact velocity. The breakage propensity parameter given by Eq. (2-4), 𝜂, can be 

related  to Weber number, as 𝐾𝑐 can be related to the surface energy 𝛤 by the use of 

Linear Elastic Fracture Mechanics. For instance, 𝐾𝑐 = 2𝐸𝛤(1 − 𝑣2) for the case of 

plane strain (𝑣 is Poisson’s ratio), which follows: 

𝜂 ∝
𝜌𝑉2𝐷

𝛤
×

𝐻

𝐸
          Eq. (2-14) 

The form H/E is attributed to the elastic-plastic deformation characteristics of the 

agglomerate.  When the simulation results are interpreted in the form of fractional loss 

per impact, Thornton et al. (1995) reported that at low impact velocities, corresponding 

to the chipping regime, the fractional loss per impact varies linearly with the Weber 

number, which is in agreement with the model of Ghadiri and Zhang (2002). 

To model agglomerate breakage, Moreno-Atanasio and Ghadiri (2006) explored a 

simple case where the energy expended to break the bonds was linearly related to the 

incident kinetic energy.  Considering the work spent to break a bond, they found that 

the damage ratio, 𝛥, is given by: 

𝛥 ∝
𝜌𝑉2𝐷

𝛤
× (

𝐸𝐷

𝛤
)2 3⁄                                                                                             Eq. (2-15)                                                                        

Clearly the Weber number and other dimensionless groups such as ED/Γ influence the 

breakage of agglomerates, as demonstrated by the numerical simulations of Moreno-

Atanasio and Ghadiri (2006).  More extensive work is required to describe the breakage 

characteristics of agglomerates with binders of different failure properties.  



CHAPTER 2 LITERATURE REVIEW  

38 

 

2.5.11 Computer Simulation of Agglomerate Breakage 

There are different ways in which the strength of agglomerates has been defined. 

Rumpf (1962) defined the strength of agglomerates as the force needed to break all the 

interparticle contacts simultaneously. According to the work of Kendall (1988), the 

strength of agglomerates has been defined based on the resistance of crack propagation 

using the linear elastic fracture mechanics. 

Computational modelling and simulation have been extensively used to analyse the 

breakage behaviour of the agglomerates. The Distinct Element Method (DEM) is a 

numerical technique which is used for the investigation of the mechanics of granular 

materials. Kafui and Thornton (1993) used DEM to simulate two dimensional (2-D) 

particle motions in the impact breakage of agglomerates. Later, the three dimensional 

(3-D) particle motion of agglomerate breakage was simulated by Subero et al. (1999). 

One of the advantages of using DEM is its versatility. There is a possibility to change 

any material property without affecting the others. The other advantage of DEM is that 

the effect of impact on the number of broken interparticle contacts can be quantified.  

In Subero’s work (Subero, 2001a),  primary particles were generated randomly in a 

confined spherical space. Different physical properties such as density, size 

distribution, elastic modulus and Poisson’s ratio were assigned to the primary particles 

at the generation time. As in most cases the bond is weaker than the primary particles 

and agglomerate failure is through bond breakage, the primary particles were 

considered non-breakable. To bring the particles together and generate the agglomerate, 

a centripetal force field was applied. 
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To simulate agglomerates with a porous structure, macro-voids were generated in the 

agglomerates by removing the primary particles from random locations within the 

agglomerate. The macro-voids were produced after generating the agglomerates. The 

number and size of the macro-voids were varied to produce agglomerates with different 

structures. To evaluate the breakage of agglomerates by simulation, the generated 

agglomerates were impacted at different velocities. The damage mainly occurred at the 

impact site, and a number of particles were detached from the original agglomerates; 

however some damage, albeit insignificant, could be observed in the rest of the 

agglomerates as well. 

For the simple case of auto-adhesive primary particles, where the interparticle adhesion 

follows the JKR model (Johnson et al., 1971), extensive work has been reported in the 

literature based on the development of the Distinct Element Analysis of agglomerates 

by Thornton and his co-workers (Thornton et al., 1999; Thornton et al., 2004).  The 

effects of interface energy, impact angle and agglomerate morphology have been 

investigated by DEA by Subero et al. (1999), Moreno et al. (2003) and Golchert et al. 

(2004), respectively.  Kafui and Thornton (1993), Moreno-Atanasio and Ghadiri 

(2006b), Schubert et al. (2005), and Antonyuk et al. (2006) have simulated the impact 

damage of agglomerates on collision with a wall by the Distinct Element Method. DEM 

simulation has also been widely used to study the impact breakage of agglomerates 

(Ghadiri and Moreno-Atanasio, 2007; Thornton and Liu, 2004; Subero et al., 1999). 

The research results showed that interparticle properties as well as primary particles 

properties, such as size, Young’s modulus play important roles in agglomerate strength. 

Mechanistic models have also been used to relate the interface energy between the 
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particle to breakage behaviour of agglomerates (Moreno-Atanasio and Ghadiri, 2006; 

Thornton and Yin, 1991). 

In a recent work, Nguyen and Rasmuson (2015) studied the breakage and adhesion 

regime map for the normal impact of loose agglomerates with a spherical target (as 

shown in Figure 2-6). Their case study was dry powders for inhalation. The particles 

are first disintegrated and then adhered onto the carrier particles. The structure of these 

particles should be in a way that they are strong enough to survive during handling and 

loose enough to be dispersed for inhalation (Jones and Price, 2006; De Boer et al., 

2012). They made several agglomerates with different levels of interface energy 

between fines-fines 𝛤1−1, and also fines-carrier 𝛤1−2. The agglomerate was then 

impacted at a spherical target. The fragments produced due to impact were 

distinguished using a clustering algorithm (Daszykowski and Walczak, 2010), and the 

size of the clusters was normalised with the original size of the agglomerate. Different 

levels of interface energy would give rise to various packing densities. However in this 

study the agglomerates have the same packing density. 

In order to analyse the breakage results, they suggested that a combination of damage 

ratio, proposed by Moreno-Atanasio (2003), and the ratio of cohesion to adhesion 

strength make it feasible to relate the impact behaviour of agglomerates to particle 

properties. The damage ratio, 𝛥, has been described previously in section 2.6.10, and 

the ratio of  
𝛤1−1

𝛤1−2
 shows the cohesion strength to the adhesion strength. Plotting 𝛥 as a 

function of  
𝛤1−1

𝛤1−2
 would result in a map construct in which different regimes are shown 

based on the daughter fragments from the breakage event. 
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Figure 2-6. Simulated system; (a) before impact, (b) after impact, fines are attached on the carrier surface  

(Nguyen et al., 2015) 

Other pieces of research work on DEM simulation of agglomerate breakage 

investigated the effects of impact angle, agglomerate size, impact velocity and material 

properties on the fracture behaviour of agglomerates due impact, such as work of 

(Potapov and Campbell, 1996; Thornton et al., 1999; Samimi et al., 2004; Salman et al., 

2003; Antonyuk, Khanal, Jürgen Tomas, et al., 2006). The bonding model has been 

found to have a significant effect on the breakage behaviour of agglomerates (Metzger 

and Glasser, 2012). Morphology is another influential factor on agglomerate breakage, 

i.e. loose agglomerates behave differently compared to dense agglomerates (Subero, 

2001a). The effect of agglomerate shape has also been investigated using the DEM 

simulation of breakage of cylindrical, spherical and cubical agglomerates (Thornton 

and Liu, 2004). On the other hand, the shape of the primary particles can be influential 

on the agglomerate breakage results (Balakrishnan et al., 2010; Rong et al., 2013; Wolff 

et al., 2013). One of the most important factors affecting the agglomerate breakage is 

microstructural effects, such as porosity. Spettl et al. (2015) evaluated the mechanical 

behaviour of spherical bonded agglomerates, in which the microstructure is specified 

using a dense packing of spheres that are bonded together, with stochastic model-based 
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microstructure using DEM simulation. A stochastic simulation refers to a simulation in 

which the evolution of variables, that can be changed stochastically (randomly) with 

certain probabilities, is traced. The agglomerates were generated using two primary 

particle sizes with different mixing ratios. A very loose random packing density (~56%) 

was used. Bonds were applied to connect particles with a gap distance below a certain 

threshold (Dosta et al., 2013). The particle-particle and particle-wall interactions were 

described using the soft sphere contact model. The Hertz theory was used to calculate 

the normal component of force, and the model of Mindlin and Deresiewicz (1953) was 

used for the tangential component. The stochastic model was used to vary the ratios of 

primary particles to form different agglomerates. Special care was taken to obtain 

comparable agglomerate microstructures even for different mixing ratios, which was 

done by controlling the volume of bonds and primary particles. The total porosity and 

diameter of agglomerate is always the same, for all testing conditions. One of the 

agglomerates formed, using the above-mentioned conditions, is shown in Figure 2-7.  

 

Figure 2-7. Simulated agglomerates with yellow colour showing small primary particles, blue large primary 

particles, and grey the bonds (Spettl et al., 2015) 
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The agglomerates were then crushed by compression between two steel plates at 

constant speed. The load-displacement curves were plotted. The number of broken 

bonds and size of the fragments were also monitored to analyse the breakage results for 

different agglomerates, and to track the effects of bonds and primary particles on 

agglomerate strength. The results show that there is a linear relationship between 

number of broken bonds and the breakage energy, which is as expected. They also 

tracked the size of the first and second largest fragments produced after breakage. 

Surprisingly, there is no relation between size of the fragments and the mixing ratios 

(Spettl et al., 2015). 

The type of bonding used in the agglomeration system plays an important role in 

defining the strength of the particles. It is very critical to choose a realistic bonding 

model in the agglomerate simulation, in order to obtain more accurate and comparable 

results with experimental work.  

Brown et al. (2014) developed a new bonding contact model based on the Timoshenko 

beam theory, which considers shear, axial and bending behaviour of a bond. Use of a 

beam element is based on the assumption of linking the centre of the particles in a 

bonded contact (Schneider et al., 2010; André et al., 2012; Carmona et al., 2008; 

D’addetta et al., 2002). The newly developed boning model, which is referred to as the 

Timoshenko Beam Bond Model (TBBM), provides a more realistic representation of 

cemented granular materials. The failure of cementitious materials occurs through crack 

initiation and propagation. Therefore, reliability of DEM simulation for these materials 

is highly dependent on the contact laws acting on the bonds, and this model has the 

ability of bond breakage.  Another advantage of this bonding model is that it can 
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represent different deformable structures such as shells or frames, by which 

deformation of both particle and boundaries can be analysed using DEM simulation. 

The interaction of the spherical particles can occur at either bonded or non-bonded 

contacts. A non-bonded contact such as Hertz-Mindlin contact law is based on a spring-

dashpot arrangement (DEM-Solutions, 2015; Johnson, 1987). However, for a bonded 

contact model a virtual bond element is considered to exist between the particles kept 

by each other. In both cases, they resist shear and compressive forces. The difference is 

that the bonded contact type can also resist bending, twisting and tensile forces. For 

Timoshenko beam bond model, the bond is assumed as a rigid feature connecting the 

centres of each two particles, by which the bond has the same six degrees of freedom as 

particles. Although there are different parameters in this bonding model, such as bond 

Young’s modulus, Poisson’s ratio, compressive strength, tensile strength, shear strength 

and radius multiplier, which need to be defined, most of them can be kept constant, and 

a few need to be modified in order to produce concrete behaviour. This model is used to 

represent the elastic behaviour of a deformable structure for both particle and 

deformable boundaries using the same DEM simulation (Brown et al., 2014). 

Overall, making use of the right type of the bonding contact model leads to more 

realistic results produced by simulation. This in fact depends on the application of the 

simulated process. The JKR bonding model is used for simulating agglomerates formed 

by adhesive forces. Simulation of the auto-granulation process is a good application of 

using the JKR model (Ku et al., 2015; Johnson et al., 1971). On the other hand, the use 

of rigid bonds such as Timoshenko beam bond model is made to simulate cement-like 

structures with deformable boundaries (Brown et al., 2014).  
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Despite all of the work done on the analysis of the breakage behaviour of agglomerates, 

much still needs to be done to provide a better understanding of the underlying causes 

of variation in breakage behaviour of different agglomerates. Computer simulations by 

the Distinct Element Method have provided further insight into how agglomerates 

break under quasi-static and dynamic conditions. 

2.6 Concluding Remarks 

Attrition is a serious problem in manufacturing plants handling weak and friable 

powders. Surface damage and body fragmentation of such particles need to be fully 

understood in order to mitigate the extent of attrition, as it affects the quality of the 

product. Analysis of breakage behaviour of different materials is also useful for 

designing various units of operations such as cyclones, pneumatic lines and other items 

of equipment, where particles experience mechanical stresses.  

The mechanisms of attrition depend on the formation of various types of cracks, which 

in turn depend on the mode of failure, i.e. brittle, semi-brittle and ductile. There is some 

work reported in the literature for well-defined structures, such as crystalline solids. 

However, the information is sparse for spray-dried and agglomerated structures. The 

breakage of agglomerates has been the subject of several studies, where the effects of 

interparticle bond characteristics and structure have been investigated. Nevertheless, the 

prediction of the mode of failure of agglomerates is far more complex compared to 

continuous solid particles. 

The above issue becomes more challenging when it comes to porous agglomerates. 

Some of the known characterisation methods, such as nano-indentation, have some 
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limitation for such particles. Spray-dried powders are a good example of porous 

agglomerates. The structure of these particles can be affected by operating conditions. 

Therefore, it is essential to characterise the structural differences of such particles as a 

function of size. For this purpose, different methods, such as X-ray microtomography, 

have been found to be useful. Several pieces of work on breakage analysis of these 

particles have been reported in the literature showing the complexity of their breakage 

behaviour. 

The behaviour of agglomerates and non-agglomerated porous materials is affected by 

parameters such as density, agglomerate size, primary particle size, and interparticle 

bond strength. Although in reality characterisation of internal stresses in some cases is 

very complicated, the numerical simulation has been found as a powerful tool to 

provide a good knowledge on different factors affecting the failure of the agglomerates. 

However, it should be noted that using accurate parameters such as a proper bonding 

contact model is very critical in order to obtain more realistic results. There are 

different bonding models such as the JKR and Timoshanko beam bond model which 

can be used depending on the different applications. However, a better characterisation 

of bond failure is still needed to develop a contact model, which can then be used in 

simulations, and subsequently validated by experimental work. It in fact needs a more 

precise control of structure and interparticle bond properties in order to investigate their 

role in affecting the strength of complex structures and to help develop realistic models 

for simulations. 
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CHAPTER 3 MATERIALS AND 

CHARACTERISATION 

Powder characterisation is an essential step in the goal of understanding the behaviour 

of powders in different processes. Therefore, it is not a trivial task. In this chapter, a 

description of the materials used for the experimental work is provided. The purity and 

features of the materials have been tested using different methods such as Raman 

spectroscopy, Thermogravimetric Analysis (TGA) and Dynamic Vapour Sorption 

(DVS). The results show that burkeite is the only salt formed during spray-drying. 

Some information on the methods used for sample preparation and particle size 

distribution measurement are also described. 

3.1 Materials 

Synthetic detergent washing powders are most commonly produced by spray-drying, 

and conversion of detergent slurries to dry powders by spray drying is an important step 

in the production of detergent powders (Masters, 1991). Most of the detergent 

compositions contain detersive active ingredients. Such ingredients usually make the 

particles ‘sticky’, causing serious issues in their flowability. However, in order to 

eliminate this effect, a ‘bulking agent’ in the form of separate particles is usually added 

to the composition. Some examples of bulking agents are sulphates, zeolite, carbonates, 

clays and silicates.  Both carbonate and silicate affect the pH of the wash liquor, with a 

negative influence on cleaning performance. Clay can damage the fabrics by changing 

the colour or causing deposition on the fabrics. Sulphates have been found to be one of 

the best bulk agents, as it is pH neutral. However, because of its high bulk density it 
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easily sinks as it is added to the water, causing sedimentation. Hence using sulphate 

along with other components would be a good option (Tantawy and Martinez-Guzman, 

2014).  

Spray-dried burkeite particles are used in this work as a model material as they are a 

good example of a complex porous structure. They are highly porous and friable and 

hence prone to undergo attrition even under gentle handling. Burkeite is a co-crystal of 

sodium sulphate and sodium carbonate, and it has the general form 

Na4SO4(CO3)t(SO4)1-t. The particles of interest here have been produced at Procter and 

Gamble Technical Centre, Newcastle Innovation Centre (NIC), Longbenton, UK by 

spray-drying of a slurry of the mixture of the two salts.  Sodium carbonate and sodium 

sulphate were added to water in a proportion to produce a slurry of burkeite with some 

excess sodium sulphate. The slurry was then atomised in a spray drying tower to 

produce dried porous particles of burkeite. 

Generally, in spray-drying of detergent washing powders, as drying proceeds, a crust is 

formed and the crystals within the droplets form clusters. During the drying process, the 

surface of the particle becomes dry and the wet core shrinks inside the particle, and the 

spray-dried particle is formed (Meenan et al., 1997; Sano and Keey, 1982; Audu and 

Jeffreys, 1975). However, for spray-drying of burkeite particles at P&G, no clear 

procedure has been reported regarding drying, and the formation of the particles still 

needs to be understood. The hypothesis is that the outer layer is dried faster than the 

inner part of the particle. Based on the observation of Dr Dan Xu at P&G there are 

some crystals of burkeite (around 10-12 μm) in the tank, during slurry preparation. 
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Therefore, there is crystal growth inside each particle during drying of the droplet, 

which in fact results in formation of the clusters, as will be shown later on.  

The potential application of these particles is as additives to use them as carrier/ filler of 

surfactants for detergent washing powders; therefore it is critical to explore the strength 

of the particles under different levels of stresses. Scanning Electron Microscopy (SEM) 

of a single particle of spray-dried burkeite is shown in Figure 3-1. The particle has an 

agglomerate structure. As mentioned before, the outer layer of the particle is dried first. 

During the drying process of the inner part, there is a possibility that the water vapour 

escapes from the particle through holes formed on the surface, presumably by eruption. 

The holes on the surface of the particle are also observed in Figure 3-1.  

 

Figure 3-1. SEM image of a single particle of spray-dried burkeite 
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A higher magnification of the SEM image of the particles shows a kind of skin on some 

part of the particle surface, as shown in Figure 3-2. This type of skin exists on some of 

the particles, which could be formed during drying of the outer layer of the particle. 

Debris are also observed on the surface of the particles as shown in Figure 3-2. A single 

particle has been chosen from a container of the sample to be observed under SEM. 

However, due to the weak and friable structure of the particles, they can easily break 

even during handling and produce dust/ debris, which might stick to the surface of the 

other particles. 

 

Figure 3-2. SEM image of the surface of a spray-dried burkeite particle 

To see the internal structure, a single particle was mounted on an SEM stub using a 

speckle of glue. The particle was then cut with a sharp knife on a plane, exposing the 

internal structure. The SEM images with different magnifications are shown in Figures 

3-3 to 3-5. 
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Figure 3-4. Clusters inside a spray-dried burkeite particle 

Figure 3-3. Internal structure of a single particle of spray-dried burkeite 
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The SEM images clearly show three different levels of structure in a single particle of 

spray-dried burkeite. Each individual particle has an agglomerate structure, which is 

made of a number of clusters (Figure 3-3), and the gap between the clusters forms the 

porosity inside the particles.  Each cluster has several crystals stuck to each other 

(Figure 3-4), which has been shown in a higher magnification in Figure 3-5. The large 

feature observed in Figure 3-4 is undissolved sodium sulphate, which exists in some 

particles. 

As it shall be seen later, the clusters are loosely bonded together. The crystals forming 

each cluster are bonded together much more strongly. The study on analysis of the 

strength of the clusters and particles is shown in Chapter 5. 

Figure 3-5. Crystalline structure of the clusters 
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3.2 Material Characterisation 

Due to the nature of the spray-drying, the material properties which are porosity-

dependent would vary depending on the production conditions. Therefore the material 

properties reported in the literatures for spray-dried burkeite particles cannot be used in 

this work. However, different methods have been used to prove purity of the particles.  

The produced spray-dried burkeite particles are then tested using different methods 

such as Raman spectroscopy and Dynamic Vapour Sorption at P&G, NIC (UK) to 

assess if burkeite is the only salt formed in the process (Xu and Martin de Juan, 2014).  

3.2.1 Dynamic Vapour Sorption 

Dynamic Vapour Sorption (DVS) is a gravimetric technique to measure how much and 

how quickly a solvent can be absorbed by a sample (Mackin et al., 2002). The test was 

carried out by P&G after producing spray-dried burkeite particles by placing them into 

a container in the DVS device which is surrounded by a temperature controlled cabinet. 

Water was used as the vapour. All the experiments were done at 30°C. The results are 

shown in Figure 3-6, which indicates that burkeite particles do not absorb any moisture 

in the above-mentioned conditions. BP in Figure 3-6 refers to blown powder which has 

been used in comparison with burkeite. 
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Figure 3-6. DVS analysis of spray-dried burkeite particles 

3.2.2 Raman Spectroscopy 

Raman spectroscopy is a spectroscopic technique to identify samples molecular 

structure. The light used in this technique might be reflected, absorbed or scattered in 

some manner. The interaction of molecular vibrations with the laser light causes the 

energy of the laser photons to be shifted up or down (Smith and Dent, 2005). The 

Raman test has been done by Tara Aziz at P&G, NIC (UK) to characterise the produced 

spray-dried burkeite particles at their site. The results are shown in Figure 3-7. 

 

 

 

 

 

Figure 3-7. Raman spectroscopy test on spray-dried burkeite particles 
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The peaks are in agreement with the peaks of the reference burkeite, showing that the 

produced particles at P&G are pure burkeite. 

3.2.3 Thermal Gravimetric Analysis 

Thermal Gravimetric Analysis (TGA) was also used to check the moisture-content of 

the particles. The results are shown in Figure 3-8. 

 

Figure 3-8. TGA analysis of spray-dried burkeite particles 

Based on the results shown by TGA test, the spray-dried burkeite particles have been 

heated up to around 900°C, and the reported result does not show any excess water or 

hydrate form inside the particles. The observed peak at the beginning of the curve is 

due to some artefacts of the TGA device. However, the trend is still reliable. The trend 

shows a fairly straight line up to around 750°C, indicating no changes in the material. 

However, there is a mass loss as a function of temperature from 750°C to 900°C, 

showing decomposition of burkeite at this range of temperature.  
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3.2.4 Particle Density 

Based on the results of Raman spectroscopy, the material used in this work is pure 

burkeite. Therefore the skeleton (true) density of the particles is 2670 kg/m
3
, as 

reported in the literature (Anon, 2015). However, the spray-dried burkeite particles are 

porous. Therefore the envelope density of the particles needs to be evaluated. Due to 

the nature of spray-drying procedure, it is very challenging to control the envelope 

density of different particle sizes. Different operating conditions, such as air inlet 

temperature and slurry flow rate, might affect the structure of the particles. According 

to some observations reported by Dr Dan Xu at P&G, NIC (UK), there are some 

crystals (around 10-20 μm) already formed in the tank. Therefore, as the slurry is 

atomised in the tower, a number of the crystals might be in droplets, which can also 

affect the structure (density) of the particles. Hence it is critical to measure the envelope 

density of different particle sizes of spray-dried burkeite powder. Various measurement 

methods have been used for this purpose, and they are fully described inchapter 4. In 

order to study the structural differences as a function of size, it is important to use as 

narrow size distribution as possible. Therefore, a new design of experiments has been 

used to produce narrow size distribution of the particles. 

3.3 Sample Preparation 

It is critical to use a representative sample mass in order to produce statistically reliable 

results (Bash, 2015). Therefore, the first step of sample preparation is to split the 

sample into sub-samples with desired quantities. 
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3.3.1.1 Sample Splitting Method 

The spray-dried burkeite powders used in this work were produced by Procter and 

Gamble, NIC (UK) and provided in 15 kg batches. In order to obtain a representative 

sample for particle size distribution measurement, each batch had to be divided to small 

quantities, which were appropriate for sieving. Therefore sample splitting was carried 

out using a riffler (Retsch, UK). As the quantity of the initial batch is quite large, 

blending is needed after each splitting step to make sure that each split sample is 

representative of the original batch of the sample (John et al., 2009).  

Sample splitting of a large batch of burkeite starts with splitting the sample into two 

samples, and each split sample would be again split into two other sub-samples. The 

blending procedure now is done by combining two samples of each split category as 

shown in Figure 3-9.  
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Figure 3-9. Schematic diagram of splitting and blending procedure 
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The splitting and blending procedure were continued until obtaining a small sample, the 

splitting by itself would be then done to reach the quantity required for the experiment. 

Combination of splitting and blending assures the split sample to be totally 

representative of the main batch. 

3.3.2 Particle Size Distribution 

The spray-dried burkeite particles are highly porous and friable and hence prone to 

undergo attrition even under gentle handling. So handling of the particles for sieve 

analysis itself could give rise to attrition. Sieving was carried out by two different 

methods of sieving: mechanical sieving and hand (manual) sieving. British standard 

sieve sizes were used for both sieving methods. Mechanical sieving has been done for 

15 seconds, using an interval of 1 s and amplitude of 0.5 mm. Hand sieving was carried 

out based on the method described by Allen (1990). For this purpose the smallest 

aperture sieve should be placed on a catch pan. An appropriate quantity of sample 

would be placed on the mesh. The sieve should be slightly inclined approximately 45° 

to the horizontal. A cylindrical piece of wood (or the heel of the hand) is used to tap on 

the sieve. The sieve should be rotated 1/8 of a turn every 25 raps. The process is 

repeated until less than 0.2% of the original sample passes through the sieve. The 

residues would then be transferred to the larger sieve mesh opening. This method is 

repeated for a chosen range of sieve apertures and the subsequent residual weights 

collected. Hand sieving compared to mechanical sieving is very time consuming. 

However it provides a better control on sieving procedure when weak particles are 

used. The mass percentage and cumulative size distribution of the materials are shown 

in Table 3-1 and Figure 3-10, respectively, for both manual and mechanical sieving. 
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Table 3-1. Mass percentage of burkeite particles in different sieve cuts obtained from manual and 

mechanical sieving 

Particle size 

(μm) 

Mass percentage (%) 

obtained from hand sieving 

Mass percentage (%) obtained 

from mechanical sieving 

<125 11.10 

26.92 

125-150 3.28 

150-180 9.62 

180-212 8.65 

212-250 7.89 9.62 

250-300 8.52 9.76 

300-355 7.29 10.82 

355-425 7.77 9.87 

425-500 7.51 7.40 

500-600 10.48 9.33 

600-710 7.81 7.35 
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The comparison of results shows that the mass percentage of small particles resulting 

from hand sieving is more than the mechanical sieving, although the size distribution 

curves obtained from both methods almost overlap. Based on the above observation, it 

has been decided to use hand sieving as a main sieving method, as hand sieving gives 

more control on sieving procedure. A careless mechanical sieving by choosing a large 

Figure 3-10. Cumulative percentage undersize of burkeite particles by manual and mechanical sieving 
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quantity of sample mass will cause the mesh openings to be blinded, which will in fact 

result in a wrong measurement of size distribution. However, this is not an issue in 

manual sieving, as the sieves are frequently checked and brushed to avoid this problem.  

3.4 Near-Mesh Particles 

Near-mesh size particles have been prepared by sieving the particles and retrieving only 

those caught in the mesh opening of the sieve by gentle brushing (Figure 3-11). 

 

 

Different near-mesh particle sizes were prepared using the above method, and used for 

structural differences evaluation, as is described in the next chapter. 

3.5 Representative Sample Mass 

To produce statistically reliable results it is critical to use a representative sample mass 

(Bash, 2015). Error analysis has been done to explore the effect of sample mass on 

reliability and accuracy of the experiments outcomes such as envelope density 

measurement and impact breakage results. The standard error, SE, of different number 

of repeats is calculated using the Equation below. 

Figure 3-11. Near mesh size particle (Allen, 1990) 
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𝑆𝐸 =
𝜎

√𝑛
  Eq. (3-1) 

where 𝜎 is the standard deviation and 𝑛 is the number of repeats. 

Standard error is viewed as the standard deviation of the error in the sample mean with 

respect to the true mean. Standard error analysis has been carried out for all the 

experiments in this work to choose a minimum representative sample mass required to 

run the tests, and hence produce reliable results. 
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CHAPTER 4 ENVELOPE DENSITY 

In order to provide a better understanding of the effect of porosity and structure on the 

impact strength of the spray-dried burkeite particles, the structural differences (density 

variation) as a function of particle size needs to be evaluated. In this chapter, different 

methods of envelope density measurement of burkeite particles, such as GeoPyc 

(Micrometrics, USA), X-ray microtomography (XRT), mercury porosimetry, etc, have 

been described. Some other methods have also been used to measure the volume of the 

particles, such as G3 Morphologi, QICPIC (Sympatec, Germany) and near-mesh sizing, 

which will be then used to calculate their envelope density. The advantages and 

disadvantages of each method are investigated in this chapter. Most of the methods 

show variation of envelope density with size. Among all the methods, the envelope 

densities obtained from QICPIC and XRT seem to be more realistic, as they account for 

particle shape. 

4.1 Introduction 

Envelope density is defined as the ratio of mass to volume of the particles including all 

the open and closed pores. Measurement of particle mass is straight forward. However 

that of particle volume can be difficult and different measurement methods could give 

different results. Thus the determination of envelope density is not straight forward as 

will be seen in the following sections. Based on the results of the previous work, there 

are structural differences as a function of size for spray-dried particles. Therefore, a 

good knowledge of envelope density is needed to understand the effect of structure 

(envelope density) on the strength of the particles.  
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4.2 Envelope Density Measurement Methods 

There are some known methods to measure the envelope density of the particles, such 

as GeoPyc (Micrometrics, USA) and mercury porosimetry. However, envelope density 

measurement of very weak and friable materials is a challenge. In order to explore the 

envelope density of spray-dried burkeite particles and its variation with size, different 

methods have been used, such as GeoPyc, X-ray microtomography, mercury 

porosimetry and volume-estimation methods. These methods are classified into two 

main categories, indirect and direct, and are fully described below. 

4.3 Indirect Measurement Methods 

Indirect measurement methods are referred to the methods by which parameters 

involved in envelope density are estimated rather than measured, and based on the 

estimated values, the envelope density is then calculated. Based on the definition of 

envelope density, estimating the volume of a known mass would result in an estimate of 

the envelope density. Therefore different techniques of estimating particle volume are 

evaluated in this section. 

4.3.1 Envelope Density Measurement Based On Volume Estimation 

According to the definition of envelope density, if the average volume of a particle can 

be estimated, it can be then used to calculate its envelope density, 𝜌𝑒. This requires the 

number of particles of a given mass to be known. 

𝜌𝑒 =
𝑀

𝑁×𝑉𝑝
    Eq. (4-1) 
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where 𝑁 is the number of particles for a given mass, 𝑀, and 𝑉𝑝 is the average volume of 

a single particle. 

The main challenge is to estimate the average volume of the particles. There are 

different methods to estimate the particle size by which the volume could be estimated, 

such as G3 Morphologi, QICPIC, etc. 

4.3.1.1 G3 Morphologi 

G3 Morphologi measures the projected features of the particles lying on their maximum 

plane of stability, using the technique of static image analysis. In order to measure the 

envelope density, the average mass and volume of a good number of particles need to 

be measured. The G3 can measure the number of particles easily, but particle volume of 

the particles can only be estimated. A measure of particle size is the projected-area 

diameter of the particles given by G3, from which the average volume can be 

estimated. Assuming a spherical shape for the particles, the envelope density 

measurement results are shown in Table 4-1. 
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Table 4-1. Density measurement results based on the projected-area measured diameter by G3 for different 

near mesh size particles 

Nominal 

Near-Mesh 

Particle 

Size (μm) 

Mass (g) 

Mean 

Diameter 

Obtained 

by G3 (μm) 

# Particles 

Envelope 

Density 

(kg/m
3
) 

500 0.1083 605 1022 916 

600 0.1091 637 757 1065 

850 0.1636 917 317 1278 

1000 0.2021 1193 220 1035 

The burkeite particles are nearly spherical in overall shape as they are produced by 

spray-drying, but with asperities. Nevertheless using the G3, and basing the calculation 

on the projected-area diameter, the particle volume is overestimated as the particles 

tend to lie on their maximum stable plane. Hence it is most likely that the envelope 

density is underestimated. Despite the shortcoming of the approach, there is a clear 

variation of the envelope density with size. 

Alternatively the envelope density calculations can be based on the volume calculated 

by the actual mesh size of the particles as shown in Table 4-2, as the particle shape is 

reasonably equiaxed.   
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Table 4-2. Density measurement results based on volume calculated by near-mesh size for different particle 

sizes 

Nominal 

Near-Mesh 

Particle Size 

(μm) 

Mass (g) Volume (m
3
) # Particles 

Envelope 

density (kg/m
3
) 

500 0.1083 6.54× 10−11 1022 1619 

600 0.1091 1.13× 10−10 757 1274 

850 0.1636 3.21× 10−10 317 1604 

1000 0.2021 5.23× 10−10 220 1756 

In this case a larger envelope density is obtained as compared to using G3 Morphologi 

for size analysis. The error is associated with assuming spherical shape and size based 

on the mesh opening size. Apart from the assumption on the shape of the particles, the 

main issue is that in both cases a very low sample mass has been used, as the G3 

measurement area has been designed for a low quantity of materials, and the time to 

give a measurement is very long, and running different number of repeats is time 

consuming. For such particles, there is a possibility of density variation even within a 

narrow size. Clearly, both methods show variations of the envelope density with size, 

and most likely describe the limits of the envelope density, with the actual value lying 

somewhere in between the two. The envelope density varies with size, but to what 

extent the near-mesh method gives a realistic estimate needs to be further ascertained. 

Therefore, it is interesting to find out how this method works for a material with known 

density and without any density variation as a function of size. A non-porous material is 

a good candidate, as in this case the envelope density and true density are the same. 
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Therefore quartz sand has been chosen to be tested using the near-mesh method. 

Sufficient quantities of 300 μm and 600 μm near-mesh particles have been prepared by 

manual sieving. As the particles are non-porous, therefore the envelope density and true 

density (2648 kg/m
3
) should be the same. Three repeats have been done on density 

measurement of quartz sand, and the results are shown in Table 4-3. The reported 

densities are averages of three repeats. 

Table 4-3. Envelope density measurement of quartz sand using volume estimation method by near-mesh 

sizes 

Nominal Near-Mesh 

Particle Size (μm) 
Mass (g) 

Envelope density 

(kg/m
3
) 

300 0.4 2708 

600 1.7 2656 

As the results show, volume estimation method using the near-mesh size of the 

particles works for quartz sand. Furthermore, there is no variation of density within 

different sizes of the particles; therefore even by using a low quantity sample mass of 

the material a good agreement can be reached between the measured value and the 

actual value of envelope density. It could also be that the sand particles are roughly 

equiaxed, i.e. they do not have consistently one dimension larger than the other one. 

However, for particles such as spray-dried burkeite, which there is density variation 

even within a narrow size of the particles, it is suggested to use a minimum 

representative sample mass for each measurement, as well as considering the shape 

factor to account for departure from spherical shape. 
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4.3.1.2 QICPIC 

The QICPIC (Sympatec, Germany) instrument is based on dynamic image analysis of 

particles. Particle projection is recorded whilst flowing in a view cell and analysed to 

determine various characteristic dimensions, e.g. equivalent circle projected-area 

diameter. Depending on the suspension medium and flow condition in the view cell, 

particles may present their projection either at random orientation or a preferred 

orientation. In some cases, different dispersion pressures can be applied to disperse the 

particles before size measurement step. However, for weak and friable materials such 

as spray-dried burkeite particles, the free-fall condition is used. In these measurements 

particle image is recorded under gravity at low velocity, so the orientation is random. 

Therefore, it gives the measure of mean diameter for non-spherical particles at random 

orientations. The schematic diagram of the QICPIC measurement device is shown in 

Figure 4-1. 
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The frame rate and feeder vibration rate are adjusted automatically by the device, which 

provides the best setting to capture most of the particles. However, the number of 

particles reported by QICPIC is not accurate, as there is a possibility of double-

counting or missing the particles during image capturing. Some images of 1000 μm 

near-mesh particles captured by QICPIC are shown in Figure 4-2. The characteristic 

dimension of the particles has been reported as EQPC, Feret, etc. EQPC is the diameter 

of a circle that has the same area as the projection area of the particles. Feret is not a 

diameter in its actual sense but the common basis of a group of sizes which is defined 

as the distance between two tangents to the contour of the particle in a well-defined 

orientation. Maximal and minimal Feret diameters are the largest and smallest distances 

found based on the above-mentioned approach after consideration of all possible 

orientations.  

Figure 4-1. Schematic diagram of the QICPIC (Sympatec, Germany) image analysis device 
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Aspect ratio has also been reported in Figure 4-2, which is a measure of particle shape, 

and is defined as the ratio of the minimum to the maximum Feret diameter. The values 

of aspect ratio clearly show that the assumption of spherical particles is not correct (the 

particles are assumed to be spherical if the aspect ratio is above 0.95). It hence explains 

the larger value obtained by sieve size approach compared to G3 Morphologi. 

The particle mean diameter (volume basis) at random orientations has now been 

estimated by QICPIC. However, as it was mentioned before, the number of the particles 

reported by QICPIC is not accurate. Therefore, a different method is used to estimate 

the number of particles, and calculate the envelope density of spray-dried burkeite. In 

order to count the number of particles for a given mass used in QICPIC, the particles 

are spread using a vibratory table, pictures are taken from the particles, and the number 

of particles are analysed using ImageJ software.  

Figure 4-2. Some images captured by QICPIC during analysis of 1000 μm 

particles 
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Figure 4-3. A picture of 850 μm particles spread by vibratory table 

In order to produce reliable results, it is critical to analyse a representative sample mass 

of the particles. Therefore error analysis was carried out to explore the effect of sample 

mass on envelope density results. For this purpose, the above approach has been 

followed on various sample quantities with different number of repeats, e.g. six repeats 

have been done using 1 g of 850 μm near-mesh burkeite particles. For each test, the 

number of particles has been measured using vibratory table. The envelope density has 

then been calculated. The standard deviation and standard error (using Eq. 3-1) of the 

envelope density measurements have been calculated for the first two repeats, then for 

the first three and so on. The same approach was then repeated using 2 g and 3 g of 

sample. The results of standard error analysis show that as the sample quantity 

increases, a smaller number of repeats are needed in order to get an acceptable standard 

deviation and standard error, which in fact shows the importance of representative 

sample mass on error associated with the obtained results. Comparison of standard 

errors of different number of repeats for different sample mass quantities shows that as 

the mass quantity increases the standard error and standard deviation decrease, although 

the envelope density values are very close between using 1 g and 3 g of sample. 
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Table 4-4. Error analysis on the effect of sample mass on envelope density of burkeite by estimating the 

mean diameter using QICPIC, and number of particles using vibratory table 
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850 1 
1.05 2482 1318 - - 

850 2 
1.04 2324 1394 53.63 37.92 

850 3 
1.01 2317 1366 38.31 22.12 

850 4 
1.09 2366 1396 36.14 18.07 

850 5 
1.01 2339 1347 32.74 14.64 

850 6 
1.04 2422 1342 30.64 12.51 

850 1 
2.09 4806 1355 - - 

850 2 
2.07 4683 1381 18.21 12.88 

850 3 
2.05 4761 1345 18.69 10.79 

850 1 
3.11 7123 1359 - - 

850 2 
3.12 7127 1362 2.08 1.47 

 

The final results of envelope density measurement by estimating the average volume of 

the particles using QICPIC and minimum representative sample mass (3 g of sample for 
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850 and 1000 μm particles, and 2 g of sample for 212, 250, 500 and 600 μm particles) 

are shown in Table 4-5. 

Table 4-5. Envelope density measurement results based on volume calculated by QICPIC for different near-

mesh particle sizes 
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1015 

Based on the results shown in Table 4-5, there appears to be no clear trend in envelope 

density changes as a function of size. Surprisingly, the envelope density of 500 μm and 

600 μm are very close. This is also the case for 250 μm and 850 μm particles. 
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4.4 Direct Measurement Methods 

GeoPyc, X-ray microtomography and mercury porosimetry are referred to as direct 

measurement methods of envelope density. 

4.4.1 GeoPyc 

The GeoPyc(Micromeritics, USA) follows a unique displacement measurement 

technique that uses a proprietary quasi-fluid medium composed of small (~ 50 μm) 

rigid spherical particles having a high degree of flowability, which is called DryFlo. 

The sample is placed in a bed of DryFlo, which is agitated and gently consolidated. The 

GeoPyc instrument collects the displacement data, performs the calculations, and 

displays or prints the results. The instrument also reports percentage porosity and 

specific pore volume when absolute density information (density excluding pore and 

small cavity volume) is entered. Near-mesh particle sizes of 500, 600, 850 and 1000 μm 

have been tested by GeoPyc, and each measurement test has been repeated three times, 

and the reported envelope density is the average value. The results are shown in Table 

4-6. 
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Table 4-6. Density measurement by GeoPyc for 500, 600, 850 and 1000 μm near-mesh burkeite particles 

Nominal 

Near-Mesh 

Particle Size 

(μm) 

Average 

Mass (g) 

Average 

Density 

(kg/m
3
) 

Standard 

Deviation 

Average 

Volume 

(mm
3
) 

500 0.0167 551 0.0622 30.3 

600 0.019 745 0.0263 25.4 

850 0.015 563 0.0389 26.6 

1000 0.0154 671 0.0979 23 

 

Observation of Scanning Electron Microscope (SEM) images of the burkeite particles 

before the test (Figure 3-1) shows that for some particles, parts of the surface layers 

have fallen off. Consequently the Dry Flo powders could go through those larger than 

50 μm openings, which adversely affect the results of the envelope density. However, it 

should give rise to larger estimated envelope density, while the opposite is observed in 

the reported results here. Moreover, GeoPyc is not a right measurement device for 

particles with a non-smooth surface and small irregularities on the surface, as the 

DryFlo particles are not able to cover all the irregularities of the surface, therefore the 

volume covered by DryFlo would be over-estimated, which leads to underestimating 

the envelope density of the particles. Furthermore, the quantity of the material used in 

GeoPyc is very low, therefore it is not recommended for envelope density measurement 

of particles with density variations even within a narrow size range, as the results would 

not be representative of the whole sample. Based on the manual of GeoPyc 
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(Micromeritics, USA), the particle size should exceed 2 mm for the best results 

(Analyzer, n.d.), which is not the case here. 

4.4.2 X-Ray Microtomography 

X-ray microtomography (XRT) is a powerful technique used to visualise the internal 

and microstructural details of the particles. It provides useful information on their shape 

and size. Due to its ability of visualisation and size measurement, it can be used to 

measure bulk density of a given mass of particles. Interstitial voidage (gaps between the 

particles) in a particle bed can also be measured using visualisation and image 

processing techniques. The acquired information can then be used to calculate the 

envelope density of the particles based on the equation below, 

𝜌𝑒 =
𝜌𝑏

(1−𝜀)
                              Eq. (4-2) 

where 𝜌𝑒 and 𝜌𝑏 are the envelope density of individual particles and the bulk density of 

the particle bed, respectively, and 𝜀 is the interstitial bed voidage, i.e. the fraction of 

bed volume occupied by gaps between the particles. 

In this work, X-ray microtomography was carried out using a Nanotom X-ray 

computed tomography instrument (GE Phoenix, Wunstorf, Germany). A bed of the 

spray-dried burkeite particles (around 0.5 g) was scanned using at a micrometre level 

spatial resolution. VGStudio software was then used for reconstruction of the images. 

The post-processing task was done using Avizo Fire software to obtain the particle 

volume. 
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As a very first attempt, a small mass of particles was scanned. The sample used for scan 

is shown in Figure 4-4. 

 

 

 

 

 

 

 

The resolution of the scan was 8 μm using a very small quantity of 850 μm particles. 

However, the quality of scan was poor (as shown in Figure 4-5). The ring artifacts 

observed in the scanned images are concentric rings superimposed on the tomographic 

slices due to non-uniformly calibrated detector elements as well as the presence of dead 

pixels on detector. 

Figure 4-4. Sample preparation for XRT scan using a very small quantity of 

sample 
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In order to obtain accurate results, reduction of the artefacts and noise is needed for the 

post-processing of the images. Applying a good filtration is a key point at this step, 

which takes a lot of time. 

Considering the importance of a representative sample mass on reliability and accuracy 

of the measurement results, a new attempt was made using a minimum representative 

sample mass (based on error analysis) for each scan, 2 g for small particle sizes (212, 

250, 500 and 600 μm) and 3 g for large particles (850 and 1000 μm) as shown in Figure 

4-6.  

 

 

 

Figure 4-5. First XRT scan on 850 μm burkeite particles (small sample mass), using 

Nanotom XRT machine at University of Leeds 
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The new scans were done at the University of Nottingham, using the same XRT 

machine, as the XRT machine at the University of Leeds was out of service. However, 

the quality of scans was better compared to those at Leeds, as the problem of the dead 

zones of the detector was not present. A slice of the scanned image for 850 μm particles 

is shown in Figure 4-7. 

 

 

 

 

 

 

 

Figure 4-6. Sample preparation for XRT scan (using 3 g of 850 μm near-mesh burkeite particles) 
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The resolutions of the scans obtained for 212 μm particles (using 2 g of sample) and 

1000 μm particles (using 3 g of sample) were 12 μm and 17 μm, respectively. In order 

to get a better resolution of the scan using a large quantity of the materials, a multiple-

scan can be taken of a bed of the material, and they can be merged together during 

reconstruction step. However, due to the time and cost of the scans, this approach has 

not been used here. The resolution level of the scan can cause some errors in the 

envelope density measurement results. The error arising from the resolution of the 

scans is reported later on in this section. 

Figure 4-7. XRT scan on 850 μm burkeite particles 

(representative sample mass), using XRT machine at 

University of Nottingham 
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The image processing analysis was carried out by calculating the volume of the bed. 

The information on the bed volume as well as mass of the sample was used to calculate 

the bulk density. A scan of the bed of particles is shown in Figure 4-8a. At the first step, 

the glass container has been removed from the scans, as shown in Figure 4-8b.  

 

Figure 4-8. (a) Scan of a bed of burkeite particles before removing the glass container; (b) scan of a bed of 

the particles after removing the glass container 

In order to calculate the interstitial voidage, the voidage inside the particles needs to be 

filled in the post-processing step. The approach has been shown in 2D in Figure 4-9, 

however the calculations are done in 3D. 
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The black colour in Figure 4-9a represents air in the system, and the light grey shows 

the particles. In Figure 4-9b the air inside the particles is removed (the blue colour 

shows the filled particles), and the interstitial voidage is calculated for the bed of 

particles. The envelope density of different sizes of the burkeite particles has been 

calculated using the above approach. Based on the envelope density, the average 

porosity of the particles is also calculated using Eq. (4-3).  

𝜌𝑒 = 𝜌𝑡(1 − 𝜀𝑝)       Eq. (4-3) 

where 𝜌𝑡 is true density of burkeite, 2673 kg/m3, and 𝜀𝑝 is the average porosity of each 

near-mesh size of spray-dried burkeite particles. The measured data are presented in 

Table 4-7. 

 

Figure 4-9. (a) A slice of the raw data of the bed scan for 850 μm particles; (b) A slice of the 

particles bed after filling the internal porosity of the particles 
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Table 4-7. Envelope density and internal porosity measurement using XRT 

Particle size 

(µm) 

Bulk density 

(kg/m
3
) 

Envelope 

Density 

(kg/m
3
) 

ɛp (%) 

212 803 899 65 

250 761 1077 58 

500 654 1181 54 

600 619 1273 50 

850 597 1382 46 

1000 565 1339 48 

 

Comparison of the envelope density measurement results for different particle sizes 

obtained from X-ray microtomography clearly shows that the envelope density changes 

with particle size, and mainly increases as the particle size is increased, except the 

largest particle size (1000 μm), where its value is even smaller than 850 μm particles. 

The 1000 μm particles are likely to have formed from the coalescence and 

agglomeration of smaller drying droplets. If we consider the increasing trend of density 

with particle size to also prevail for 1000 μm particles, then the difference between the 

expected value of density of 1000 μm particle and its actual measured value is slightly 

larger than the variations due to errors associated with the XRT analysis (2.4% for the 

latter). This implies there are real structural differences between particle sizes.  

4.4.3 Mercury Porosimetry 

Mercury porosimetry is a well-known method, widely used to measure the envelope 

density of the particles. However the minimum representative sample mass required for 
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testing is an important issue which needs to be considered. The sample quantity used in 

mercury porosimetre is in the sub-gram range, but this is only suitable for fine powders. 

For the particle size range of interest here, a much larger quantity will be required, e.g. 

around 2 g for 500 μm particle size. Therefore each measurement test uses insufficient 

material for it to be representative of the particles. Based on the mentioned reasons, the 

mercury porosimetry does not seem to be a suitable measurement method in this work. 

However, as P&G (NIC, UK) had a mercury porosimeter, they did a test on 300-425 

μm sieve cut of burkeite particles. Based on the mercury porosimetry results, the 

envelope density of this sieve cut has been estimated as 1700 kg/m3, and the curve 

reported by the device is shown in Figure 4-10. 

 

Figure 4-10. Mercury porosimetry results for 300-425 μm burkeite particles 

The reported result from mercury porosimetry differs notably from those obtained by 

other methods. This is unlikely to have arisen from the particle size distribution, 

because the XRT and QICPIC methods do not show such drastic variation with size. It 
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is therefore likely that other factors contributed to the difference, e.g. the issue of using 

minimum representative sample mass. 

4.5 Concluding Remarks  

The envelope density measurement results obtained from different methods such as 

GeoPyc, particle volume estimation methods and X-ray microtomography have been 

compared and shown in Table 4-8. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 ENVELOPE DENSITY  

88 

 

Table 4-8. Comparison of envelope density measurement results obtained by different methods for burkeite 

particles reported in kg/m3 for different near-mesh particle sizes  

 Direct Methods Indirect Methods 

Bominal 

Near-Mesh 

Particle Size 

(μm) 

GeoPyc XRT 
G3 

Morphologi 

Near-

Mesh 
QICPIC 

212 - 
899 

- - 1028 

250 - 
1077 

- - 1346 

500 552 
1181 

916 1619 1131 

600 747 
1273 

1065 1274 1134 

850 563 
1382 

1278 1604 1361 

1000 667 
1339 

1035 1756 1015 

GeoPyc is not a suitable method for envelope density measurement of spray-dried 

burkeite particles. The DryFlo particles cannot cover all the irregularities of the surface 

of the particles, therefore the volume of the particles is over-estimated, and in turn it 

causes underestimation of the envelope density of the particles. In using GeoPyc the 

difficulty of using the minimum representative sample mass is also an issue. This 



CHAPTER 4 ENVELOPE DENSITY  

89 

 

method works quite well for particles larger than 2 mm with smooth surfaces, without 

any density variation within a narrow size of the particles. 

X-ray microtomography is used to scan a bed of the particles (using a representative 

sample mass). This method provides the opportunity to visualise the three-dimensional 

view of the particles. The interstitial voidage of the bed is calculated by removing the 

glass container, filling the porosities inside the particles, and calculating the ratio of the 

air within the bed to the total volume of the particle bed. The only shortcoming of this 

method is the resolution of the scan when a large mass of particles is used, and hence 

the expected value can be different from the actual measured value. 

Use of different volume estimation methods is made in order to find a simple method to 

estimate the envelope density of the weak particles such as spray-dried burkeite. G3 

Morphologi measures the maximum projected-area diameter of the particles; therefore 

it is not a suitable measurement method for estimating particle volume of non-spherical 

particles. However, the advantage of using G3 is that the number of the particles for a 

given mass can be calculated and reported by the software. The disadvantage of this 

method is that in order to analyse a minimum representative sample mass of the 

particles, the measurement takes time and it is slow. Alternatively, the actual diameter 

of near-mesh particles based on the sieve size is used to estimate the average volume of 

the particles. The envelope density obtained by this method is larger than that obtained 

by G3 Morphologi. The near-mesh size, as obtained by sieving, actually represents the 

second largest size of the particles, thereby underestimating the particle volume. 

Therefore, the dynamic image analysis method has been used to measure the projected 

area equivalent circle diameter of the particles at random orientation, from which the 
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particle volume is estimated. This method is considered to be a more realistic 

representative of the mean diameter amongst other methods, i.e. G3 Morphologi and 

near-mesh techniques. However, as mentioned before, there is the possibility of double 

counting or missing the particles using QICPIC, therefore the number of the particles 

counted by the device is not accurate. Hence, another approach can be used here to give 

a better estimate of number of particles within a given sample mass. For this purpose 

the particles are spread on a sheet, using a vibratory table, and the number of particles 

is measured by the use of image analysis software. The acquired information on the 

number of particles using this approach with the average volume of the particles by 

QICPIC provides a simple method to estimate the envelope density of different particle 

sizes. 

Amongst all the measurement methods, volume estimation using QICPIC and XRT 

seem to be the most realistic methods, as they both consider the effect of particle shape. 

Comparison of these two methods shows agreement for envelope densities of 500 μm 

and 850 μm particles, although the trend of envelope density changes as a function of 

size is different between these two methods. The envelope density values obtained from 

XRT will be used in this work. 
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CHAPTER 5 IMPACT BREAKAGE 

In this chapter the impact strength of spray-dried burkeite particles under different 

impact conditions is studied. The breakage patterns are then identified for each impact 

condition, as a different type of analysis needs to be applied for each pattern of 

breakage. Explaining the breakage results requires some information on mode of failure 

of the particles. For this purpose, the particles are tested under quasi-static conditions to 

explore their failure under such conditions. The analyses are then carried out 

considering the structural variations (reflected by the envelope density differences), 

which provide a better understanding on impact breakage behaviour of the particles.  

5.1 Introduction 

Spray-dried burkeite particles in the manufacturing plants experience different impact 

stresses as they are going through different units of operation such as chutes, slide 

valves, pneumatic lines, etc. In order to study the impact attrition of spray-dried 

burkeite, the particles are subjected to different levels of impact stresses, and the 

change in particle size distribution is determined by particle size analysis based on 

sieving. However, different patterns of breakage need to be identified at different 

impact conditions, as a different analysis should be done for each pattern of breakage. 

For instance, particle failure through chipping is completely different to that of 

disintegration. A good knowledge of different modes of failure is needed to choose a 

right theory to describe the breakage results. The information on the structural 

differences as a function of size is used here to analyse the breakage behaviour of the 
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particles. The outcome of the analysis also provides some information on material 

mechanical properties of the particles. 

5.2 Impact Testing 

The single particle impact rig test used for the experiments is the modified design of the 

single particle impact apparatus originally developed by Yȕregir et al. (1987). The 

particles are fed from the top of the rig, and impacted to a flat rigid target at different 

impact velocities by changing the vacuum pressure. The impact velocity is measured by 

time of flight of particles passing by two photodiodes. The time is then used by the 

software in the PC to calculate the particle velocity (see Figure 5-1). 

 

 

 

 

 

 

 

 

 

Figure 5-1. Single particle impact rig (Samimi et al., 2003) 
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Particles are collected after impact testing, and sieved by two sieve sizes below the 

lower feed size. The particles passing through this sieve are categorised as debris, and 

the rest of the particles as mother particles. The results are expressed in terms of the 

extent of breakage using the equation (2-7).  

5.2.1 Preliminary Impact Tests 

The preliminary tests were done on the first batch of spray-dried burkeite particles sent 

by P&G (NIC, UK) to University of Leeds. The quantity of the first batch was very 

small. Therefore, a small number of impact tests were done before receiving the main 

batch of the samples. Three different sieve sizes, 212-250 μm, 500-600 μm and 850-

1000 μm were prepared by manual sieving, and the experiments were carried out by 

impacting them at four different impact velocities: 4, 7, 10 and 13 m/s. The extent of 

breakage as a function of particle size is shown in Figure 5-2. The error bars shown in 

the graph are based on 𝑅− and 𝑅+, which indicate a small loss of debris from the 

collected mass. The mother particles were sufficiently large for all to be recovered from 

the collection chamber. 
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Figure 5-2. The extent of breakage, R*, as a function of impact velocity for different sieve size cuts 

As the results show, at 4 m/s impact velocity the extent of breakage corresponding to 

212-250 μm particles almost overlaps with 850-1000 μm particles, and at 7 m/s impact 

velocity the largest particle sizes (850-1000 μm) break less than 500-600 μm particles, 

which is in contradiction with the expected trend that large particles break to a greater 

extent than small particles. 

There could be different factors involved in causing the anomalies. The most important 

one is the minimum representative sample mass. As it has been shown in the previous 

chapter, the quantity of sample plays an important role in results of the experiments, 

particularly for the particles which there are structural variations even within a narrow 

size of them. Therefore an error analysis needs to be carried out to find the minimum 

sample mass required to produce statistically reliable results. Another factor, which can 

cause discrepancy, is the structural differences of the particles between the three sieve 

cuts. As shown in the previous chapter, the envelope density of the particles varies 
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between different particle sizes, which in this case the particle sizes should be chosen as 

narrow as possible in order to be able to study the impact breakage and structural 

differences as a function of size. Experimental error might also be involved in the 

observed anomalies. Therefore, a new set of tests was carried out by considering the 

mentioned issues. 

5.3 Representative Sample Mass 

It takes a lot of effort to prepare near-mesh particles, and hence the sample supply is 

limited. Therefore the minimum sample mass to obtain statistically reliable 

experimental results should be established. The sample preparation approach as 

presented in the previous chapter has been used here. Around 2 g of 500 μm burkeite 

particles are impacted at 8 m/s using the single particle impact rig. The extent of 

breakage has then been calculated. Five different repeats are done using the same 

conditions. The standard deviation and standard error have been calculated on a 

cumulative basis, i.e. for first two tests, first three tests, and so on. The sample mass has 

then been increased to 4 g, and two repeats have been done under the same impact 

conditions. The standard deviation and standard error have been calculated for these 

two repeats. Based on the reported results in Table 5-1, a larger sample quantity and 

number of repeats give rise to a lower standard error. The results of standard error 

analysis using 500 μm particles are shown in Table 5-1. 
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Table 5-1. Error analysis on representative sample mass for impact testing at 8 m/s using 500 μm particles 
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500 1 2.57 0.43 - - 

500 2 2.29 0.47 0.065 0.046 

500 3 2.26 0.49 0.055 0.031 

500 4 2.36 0.47 0.053 0.026 

500 5 2.14 0.47 0.048 0.021 

500 1 4.17 0.48 - - 

500 2 4.17 0.48 0.003 0.002 

Based on the error analysis results and considering the practicality of producing near-

mesh size particles, it was decided to use at least 2 g of sample for small particles (212, 

250, 500 and 600 μm), and 3 g of sample for large particles (850 and 1000 μm). The 

decision on minimum sample mass for large particle sizes was made based on the error 

analysis results reported in the previous chapter, which showed that at least 3 g of 

sample was needed for large particles. 

 

 

 



CHAPTER 5 IMPACT BREAKAGE  

97 

 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

R
*

 (
%

) 

Impact velocity (m/s) 

212 µm 250 µm 500 µm 600 µm 850 µm 1000 µm

5.4 Impact Testing Using Near-Mesh Size Particles 

New impact breakage tests were carried out for 212 μm, 250 μm, 500 μm, 600 μm, 850 

μm and 1000 μm of near mesh size particles by impacting the particles at 2, 3, 4, 6, 8, 

11, 14 and 18 m/s. The range of impact velocities has been chosen based on the PhD 

work of Ahmadian (2008), who showed that the range of the impact velocities in a 

generic detergent powder manufacturing plant is usually between 2 to 20 m/s. It should 

be noted that these new tests were done on the new batch of burkeite particles. These 

particles are weaker than the previous batch, and they easily break even at the lowest 

impact velocity. 

 

 

 

 

 

 

 

Large particles generally break to larger extents, but there are anomalies in the trends 

shown in Figure 5-3. Overall, the data points corresponding to the extent of breakage 

are very close, but nevertheless the same unexpected trend as observed in the 

Figure 5-3. Extent of breakage, R*, as a function of different impact velocities for near-mesh 

particles 
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preliminary impact testing prevails here; i.e. at 6 m/s the largest particles, 1000 µm, 

break less than the 600 µm and 850 µm particles. It is generally expected that the larger 

particles break to a greater extent than the smaller ones.  

However, using the term of extent of breakage, 𝑅∗, and the basis of its calculation are 

valid for the chipping regime. Therefore, in order to provide a more precise analysis, 

different patterns of breakage, chipping, fragmentation and disintegration, need to be 

separated first, and then studied separately. The procedure for identifying different 

patterns of breakage has been fully described in section 2-3.  

The particles after impact have also been observed using a Scanning Electron 

Microscope. As an example, the SEM images of an 850 μm particle after impact at 4 

m/s are shown in Figures 5-4 and 5-5. Figure 5-4 shows a small section of the surface 

of a single particle after impact testing, where the impact has presumably taken place. 

A flat surface is observed in this figure, which is considered to be the impacted area. In 

Figure 5-5, the damage can be seen on the surface of another particle, and a part of the 

surface layer has fallen off. Debris and small chips are observed inside the broken 

surface skin.  
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Figure 5-4. SEM image of possible impact zone after impacting 850 μm near-mesh particle at 4 m/s 

Figure 5-5. SEM image of the surface of impacted 850 μm near-mesh particle at 4 m/s 
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The particles are collected after impact to carry out the breakage analysis. The bulk 

density of the particles at different impact conditions has been measured to explore how 

the volume of the particles changes after breakage. It should be noted that bulk density 

is container dependent. Therefore in order to compare the results, the bulk density of all 

the particles after and before impact has been measured using the same container 

without any tapping. The results are shown in Figure 5-6. 

 

Figure 5-6. Bulk density variations of different near-mesh particle sizes at different impact conditions 

There is a significant reduction in bulk densities of different near-mesh particle sizes 

before impact. This behaviour is in agreement with what has been obtained by X-ray 

microtomography, as the particle size increases, the interstitial voidage between the 

particles also increases, which in fact leads to the lower bulk density and higher 

envelope density. However, the reason of increase in interstitial voidage values by 

increasing the particle sizes is not clear. As the impact velocity increases, the difference 
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between the bulk densities becomes smaller. This can be attributed to the breakage 

behaviour of the particles. Spray-dried burkeite particles consist of several crystal 

clusters with gaps in between them, resulting in different values of porosity for 

different particle sizes. However, as the particles break by impacting at different impact 

velocities, they disintegrate into these clusters (it will be fully described later). The 

structure of the particles collapses and now the bulk is mainly made of crystal clusters 

present within the particles. Therefore, the difference between the bulk densities at high 

impact velocities becomes less significant compared to those before impact, as there is 

a better packing between clusters than single particles and the clusters pack more 

densely than in the spray-dried particles.  

5.5 Patterns of Breakage 

In order to analyse the breakage data, it is critical to identify different patterns of 

breakage such as chipping, fragmentation and disintegration for different impact 

conditions. Papadopoulos (1998) studied the changing trend of the broken particles size 

distribution curve with impact velocity based on the work of Schumann (1940). The 

same approach was used here to identify different patterns of breakage for each near-

mesh size of burkeite particles and different impact velocities. According to 

Schumann’s presentation, the cumulative percentage undersize of broken particles is 

plotted as a function of normalised size, i.e. the size of the broken particles divided by 

the feed size. This is shown in Figure 5-7 for 212 μm near-mesh size feed particles. 
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Figure 5-7. Patterns of breakage for 212 μm particles 

The results show a gradual shift from chipping regime to fragmentation regime. If we 

consider the dominant patterns of breakage for 212 μm near-mesh particles, then the 

particle breakage in the range 2-8 m/s could be categorised as chipping and above that 

as fragmentation. Obviously, there should be a transition velocity, and in this case it is 

in the range 8-11 m/s. The transition velocity is inversely proportional to the square of 

particle size as shown by Eq. (2-10), so larger particles would undergo fragmentation at 

much lower velocity and this is described below.  

The patterns of particle breakage for 250 μm near-mesh size feed particles are shown in 

Figure 5-8. 
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Figure 5-8. Patterns of breakage for 250 μm particles 

Clearly, a gradual shift in particle size distribution is observed here indicating a 

transition from chipping to fragmentation as the impact velocity is increased, but as the 

feed particle size is larger, the transition occurs at a lower velocity range, in this case 

between 6-8 m/s. The fragmentation regime is observed for data obtained from 8-18 

m/s impact velocity. At 18 m/s full fragmentation occurs, giving almost a straight line, 

which shows the presence of broken particles in all size classes. 

The patterns of particle breakage for 500 μm near-mesh size feed particles are shown in 

Figure 5-9. 
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Figure 5-9. Patterns of breakage for 500 μm particles 

The results show a gradual shift from chipping to fragmentation and then from 

fragmentation to disintegration. However, considering the dominant patterns of 

breakage for this feed size particles, the particle breakage in the range 1-4 m/s could be 

categorised as chipping, 6-11 m/s as fragmentation, and above 14 m/s as disintegration. 

Therefore the transition velocity from chipping to fragmentation is between 4 to 6 m/s, 

and the transition velocity from fragmentation to disintegration is between 11 to 14 m/s. 

The patterns of particle breakage for 600 μm near-mesh feed sizes are shown in Figure 

5-10. 
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Figure 5-10. Patterns of breakage for 600 μm particles 

Transitions from both chipping to fragmentation and from fragmentation to 

disintegration occurs in the same velocity range as 500 μm near-mesh feed size 

particles, i.e. 4-6 m/s and 11-14 m/s, respectively. However, the exact transition 

velocity might be slightly different for 500 and 600 μm near-mesh particles. 
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The patterns of breakage for 850 μm near-mesh feed size particles are shown in Figure 

5-11. 

 

Figure 5-11. Patterns of breakage for 850 μm particles 

The results show a similar pattern as for the two smaller sizes. The particle breakage in 

the range 2-4 m/s could be categorised as chipping, 6-8 m/s as fragmentation, and 

above 11 m/s as disintegration. The transition velocities from chipping to fragmentation 

and from fragmentation to disintegration are in the range of 4-6 m/s and 8-11 m/s, 

respectively. 
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The dominant patterns of breakage for 1000 μm near-mesh feed size particles are 

shown in Figure 5-12.  

 

Figure 5-12. Patterns of breakage for 1000 μm particles  

Similar to the previous three particle size cases, a gradual shift in particle size 

distribution is observed here too. The transition velocity ranges from chipping to 

fragmentation and from fragmentation to disintegration for 1000 μm particles are as the 

same as those for 850 μm particles. However, the exact transition velocities might be 

different. Based on the results shown in Figure 5-12, the particle breakage in the range 

2-4 m/s is categorised as chipping, 6-8 m/s as fragmentation, and above 11 m/s as 

disintegration. 

Based on the above analyses, the transition velocities from chipping to fragmentation 

and from fragmentation to disintegration for different particle sizes have been 

summarised and are shown in Figures 5-13 and 5-14, respectively. 
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Figure 5-13. Transition velocity from chipping to fragmentation for different particle sizes of spray-dried 

burkeite 

 

Figure 5-14. Transition velocity from fragmentation to disintegration for different particle sizes of spray-

dried burkeite 

The results of Figure 5-13 are in agreement with Eq. (2-10), as they show that the 

transition velocities are inversely proportional to the square of particle size as well as 
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square root of envelope density. However, based on this equation the transition velocity 

is very sensitive to 𝐾𝑐 and 𝐻, i.e. transition velocity from chipping to fragmentation is a 

function of (
𝐾𝑐

𝐻⁄ )4, which has been assumed to be constant for different particle sizes. 

The calculated transition velocities in this work are based on this inadequate 

assumption, as there was not any information available on hardness and fracture 

toughness of different particle sizes of spray-dried burkeite. Based on Figure 5-13, as 

the particle sizes increase, the particles undergo fragmentation/ disintegration at lower 

velocities. Some of the results show the same transition velocity ranges for two 

different particle sizes, i.e. the chipping to fragmentation transition velocity of both 500 

μm and 600 μm near-mesh feed size particles is in the range of 4 to 6 m/s. This is most 

likely the consequence of variations in the structure reflected by the envelope density. 

Although, the transition velocity range is the same, the exact transition velocities for 

these two particle sizes might be different. 

The transition velocities from fragmentation to disintegration have been also plotted as 

a function of D
-2

 ρ
-0.5

, as shown in Figure 5-14. However, there is no reported equation 

for transition velocity from fragmentation to disintegration in the literature. 

The data corresponding to each pattern of breakage can now be separated. For example, 

for particle breakage in the chipping regime, the extent of breakage, 𝑅∗, is shown as a 

function of impact velocity for different particle sizes in Figure 5-15.  
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Figure 5-15. Extent of breakage, 𝑹∗
,  as a function of impact velocity for different particle sizes of burkeite 

for chipping regime 

Clearly 𝑅∗ increases with the impact velocity and particle size. However, a theory is 

needed to explain the breakage results, and it depends on the mode of failure. 

5.6 Mode of Failure of Spray-Dried Burkeite Particles 

 As described in the literature review chapter, it is not easy to define the mode of failure 

of agglomerates. Due to non-uniformity of the agglomerate structure, the definition of 

modes of failure does not lend themselves well to the mechanisms of agglomerate 

failure. Nevertheless, the failure mode of agglomerates can macroscopically be covered 

by the three classical modes of failure; semi-brittle, brittle and ductile failure mode, as 

described in section 2.6.8.  
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In order to explore the mode of failure of spray-dried burkeite particles, they were 

tested under quasi-static conditions. For this purpose, a Nano-Crush test device was 

used (Figure 5-16). The device is used for determining the crushing strength of a 

specimen, and it can be operated either based on load or depth of deformation. A single 

particle is placed on the disc under the tip of the indentor; the other settings would be 

controlled by using the Nano-Crush software. All the results reported by the software of 

the device correspond to loading curve, and with the setting of the current device the 

unloading curve is not shown as an output of the measurements. Therefore in order to 

obtain some information on the mode of failure, SEM images were taken after the tests.  

 

 

A good number of 850 μm near-mesh particles were tested using this device, by 

controlling the depth of deformation. The particles were placed in a way that they are 

completely stable before running the test. The tests were then carried out at two 

different conditions: (i) controlling the depth and stopping the test at a certain depth 

Figure 5-16. Nano-Crush test device 
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before failure of the particles, (ii) stopping the test after particle failure is observed. For 

each test, at least five repeats have been done in order to make the results more reliable. 

Scanning Electron Microscopy was used to observe the particles and any possible 

cracks. 

The first set of tests was done by controlling the depth of crushing at 40 μm. The load-

displacement curve is reported by the software as shown below: 

 

Figure 5-17. Nano-Crush test on 850 μm particles by controlling the depth at 40 μm 

The test was stopped at around 40 μm crushing depth before the particle completely 

failed. The SEM image of the above particle is shown in Figure 5-18. 
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Figure 5-18. SEM images with different magnifications of 850 μm particle after Nano-Crush test at 40 μm 

crushing depth 

Figure 5-18a is a top view of the particle. As observed in Figure 5-18b, there are cracks 

on the crushing zone, which is clearer in higher resolution SEM images, Figures 5-18c 

and 5-18d.  

The second test was done by stopping the test at 50 μm crushing depth. The typical 

load-displacement curve as well as SEM images of the tests at this condition are shown 

in Figures 5-19 and 5-20. 
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Figure 5-19. Nano-Crush test on 850 μm particles by controlling the depth at 50 μm 
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Figure 5-20. Different magnifications SEM images of 850 μm particle after Nano-Crush test at 50 μm 

crushing depth 

The top view of the particle has been shown in Figure 16a. In a higher magnification 

SEM image, Figure 5-20b, a flat surface is observed, which could possibly be the 

crushing zone. A crack is seen in higher magnification images, as shown in Figure 5-

20c and 5-20d. 

The second type of test is to stop the test after the particle has completely failed. The 

failure of the particle is clearly observed when there is a big jump in the load-

displacement curve. The tests have been done on 850 μm particles. Some examples of 

particle failure under this test condition are shown below. 
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In the first example, the particle failure occurs at depth of around 60 μm. The test is 

stopped as soon as the jump is observed in order to avoid the particle to be fully 

crushed. The load-displacement curve and SEM images of the particle are shown in 

Figures 5-21 and 5-22. 

 

Figure 5-21. Failure of the 850 μm particle by Nano-crush test at the crushing depth of 60 μm 
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Figure 5-22. SEM images of 850 μm near-mesh particle failure by Nano-Crush test at the 

crushing depth of around 60 μm 
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Based on the SEM images shown in Figure 5-22, a crack is observed in the middle of 

the particle, and presumably it has vertically gone all the way along the particle. 

However, due to existence of cavities and pores inside the particles, the direction of the 

crack is not clear. 

In the second example, the particle failed at a depth of around 100 μm. The results and 

SEM images are shown in Figures 5-23 and 5-24. 

 

Figure 5-23. Failure of the 850 μm near-mesh particle by Nano-crush test at the crushing depth of around 

100 μm 
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Figure 5-24. SEM images of 850 μm near-mesh particle failure by Nano-Crush test at the 

crushing depth of around 100 μm 
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In this case the particle has disintegrated into several pieces, as observed in Figure 5-

24a and 5-24b. 

Overall, the existence of pores and cavities inside the spray-dried burkeite particles 

makes any firm conclusion on the failure mode difficult. In some cases, the cavities 

inside the particles act as flaws, and the failure is more similar to brittle failure mode. 

However, this is not always the case, and flattening of the contact is also observed in 

some cases, where crack propagation is developed from the crushing zone. Based on 

the Nano-Crush tests and observed results, a clear mode of failure cannot be concluded 

for spray-dried burkeite particles. 

The analysis of both brittle and semi-brittle modes of failure has been described in 

section 2.2. Based on that information, the models of Ghadiri and Zhang (2002) and 

Vogel and Peukert (2003) both show the same trend in terms of dependency on particle 

velocity and size for the case where the extent of breakage is small. Therefore, 

regardless of the mode of failure of burkeite particles under impact, the breakage 

analysis can be carried out in terms of dependence on particle size and impact velocity.  

5.6.1 Chipping 

The analysis reported below is based on the semi-brittle mode of failure, therefore the 

model of Ghadiri and Zhang (2002) will be used. However, the breakage propensity 

parameter obtained in this way can also be considered as the material parameter of the 

model of Vogel and Peukert (2003), as both represent the slope of the line of the extent 

of breakage as a function of DV
2
 (see chapter 2). 
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According to the model of Ghadiri and Zhang (2002), the extent of breakage follows a 

square of velocity relationship. The extent of breakage is expressed as a function of V
2
 

to see if such a dependence holds, and is shown in Figure 5-25.  

 

Figure 5-25. Extent of breakage, R*, as a function of V2 for chipping regime 

A linear trend is clearly observed when the extent of breakage is plotted as a function of 

𝑉2 for each near-mesh feed particle size. However, the extent of breakage is also a 

function of particle size. Therefore, by considering both effects of particle size and 

impact velocity, the extent of breakage, 𝑅∗, for the chipping regime has been plotted as 

a function of 𝐷𝑉2, as shown in Figure 5-26.  
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Clearly some unification of the extent of breakage, 𝑅∗, as a function of 𝐷𝑉2 is achieved 

as expected. However, there is scatter in the data and this is likely to have arisen from 

differences in the structure of the particles amongst different particle sizes, i.e. the 

variations in the envelope density and mechanical properties, such as 𝐻 and 𝐾𝑐 

according to Eq. (2-6). Therefore the envelope density variations as a function of size 

(as reported in chapter 4) need to be used as part of the analysis. This is shown in 

Figure 5-27, where the extent of breakage is expressed as a function of 𝜌𝐷𝑉2. 

 

 

 

Figure 5-26. Extent of breakage, R*, as a function of DV2 for the data corresponding to the 

chipping regime 
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Clearly a much better unification than that shown in Figure 5-27 is obtained for a wide 

range of particle sizes and impact velocities by accounting for the actual envelope 

densities. The slope of the line is a lumped parameter representing the mechanical 

properties of the material, 𝐻
𝐾𝑐

2⁄  . Interestingly, considering the intercept of the fitted 

line with abscissa, there is a minimum impact velocity for a given particle size below 

which that there is no/ little breakage. The transition velocity from no breakage to 

chipping for different near-mesh particle sizes is shown in Table 5-2. 

 

 

 

 

Figure 5-27. Extent of breakage, R*, as a function of 𝝆𝑫𝑽 𝟐with the slope representing 𝜶𝑯/𝑲𝒄
𝟐, 

showing data unification 
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Table 5-2. Transition velocity from no-breakage to chipping for different near-mesh particle sizes 

Particle size (μm) 

Transition velocity from  

no breakage to chipping (m/s) 

212 
1.9 

250 
1.6 

500 
1.1 

600 
0.9 

850 
0.8 

1000 
0.7 

As described in the Literature Review Chapter, The transition velocity from no 

breakage to chipping is proportional to the inverse of the square of the particle size. 

Therefore, the transition velocities have also been plotted as a function of D
-2ρ-0.5

, as 

shown in Figure 5-28. The increasing trend of transition velocities by increasing the D
-

2ρ-0.5
 is in agreement with Eq (2-6). 
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Figure 5-28. Transition velocity from no-breakage to chipping as a function of D-2ρ-0.5 

 

This information is very useful for designing pneumatic conveying lines, cyclones and 

other items of equipment, where particles experience mechanical stress by impact. 

5.6.2 Fragmentation and Disintegration 

Full sieve analyses have been done on the data for fragmentation and disintegration 

regimes. The impact velocities corresponding to these two regimes have been identified 

using Schumann’s plot. The collected particles after impact testing have been sieved up 

to five sieve cuts below the feed size, and the mass fraction for each sieve has been 

determined. The results are shown in Figure 5-29. 
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smaller than 90 μm at 18 m/s, while at 11 m/s just 10% of the feed particles are broken 

to less than 90 μm. As will be shown later, the fraction less than 90 μm contains the 

individual clusters of crystals adhered to each other. These have a relatively narrow size 

distribution. 

 

Figure 5-29. Breakage analysis of 212 μm near-mesh particles for impact velocities corresponding to 

fragmentation and disintegration regimes 

The same trend as 212 μm near-mesh particles is observed for 250 μm particles (as 

shown in Figure 5-30). However the fractions of broken particles within 180-212 μm 

sieve cut are almost the same for all the impact velocities. 
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Figure 5-30. Breakage analysis of 250 μm near-mesh particles for impact velocities corresponding to 

fragmentation and disintegration 

The trend of the data corresponding to fragmentation and disintegration for impacting 

500 μm feed particles (as shown in Figure 5-31) seems to be different compared to the 

two previous near-mesh particles, 212 and 250 μm. The fraction of broken particles for 

the largest and smallest sieve cuts is as expected.  
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For 600 μm near-mesh feed particles, the impacted particles at 6 m/s and 8 m/s almost  

For 600 μm near-mesh feed particles, the impacted particles at 6 m/s and 8 m/s almost 

produce the same fraction of broken particles mass within the largest sieve cut. 

However, the fraction of broken particles for the smallest sice cut is as expected. 
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Figure 5-31. Breakage analysis of 500 μm near-mesh particles for impact velocities corresponding to fragmentation 

and disintegration 
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The same trend as the previous near-mesh feed particle size is observed for 850 μm 

particles. The highest fraction of broken particles within the largest sieve cut 

corresponds to the lowest impact velocity, however the opposite is observed for the 

smallest sieve cut, i.e. 80% of feed particles are broken to less then 355 μm after impact 

at 18 m/s, while this is around 24% for impacting at 6 m/s. 

The same expected trend as 850 μm particles is observed for the data corresponding to 

fragmentation and disintegration after impacting 1000 μm near-mesh particles as shown 

in Figure 5-34. 
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Figure 5-32. Breakage analysis of 600 μm near-mesh particles for impact velocities corresponding to 

fragmentation and disintegration 
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Sieve analysis can be carried out for smaller sieve sizes if the quantity of feed materials 

is large enough (at least 10 g), otherwise for a large number of sieves there is a risk of 

losing the particles when a small mass quantity is used. This information can be used to 

develop breakage function. Fragmentation and disintegration of spray-dried burkeite 

particles at different impact velocities produce plenty of fragments and fine particles 

depending on the impact velocity. As is shown in Figure 3-4, each spray-dried burkeite 

particle is made of clusters. When the particles go through the disintegration regime, 

they break down into these little clusters. Spray-dried burkeite particles are very weak 

and friable, and as the breakage results show, they can go under extensive breakage 

even at low impact velocities. However, it is not clear whether the clusters inside the 

particle are as weak as the particle itself or not. Hence, an experiment has been 
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Figure 5-34. Breakage analysis of 1000 μm near-mesh particles for impact velocities 

corresponding to fragmentation and disintegration 
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designed to explore the strength of the clusters within the particle, and it is described 

below. 

5.6.3 Impact Strength of Clusters 

The first step before carrying out the experiments is to produce enough quantity of 

clusters. For this purpose, a sufficient quantity of the burkeite particles was placed in a 

plastic bag, and rubbed by hand to break the particles. The broken particles were then 

sieved and the particles within 45-53 μm were separated, as they are roughly the same 

size as clusters based on SEM images taken from internal structure of burkeite (Figure 

3-3). The sieved particles were then observed under SEM to be compared with Figure 

3-4. Some SEM images of the clusters, produced using this approach, are shown in 

Figures 5-35 to 5-37. 

 

Figure 5-35. SEM image of clusters inside a spray-dried burkeite particle 
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Figure 5-37. SEM image of clusters within a spray-dried burkeite particle 

Figure 5-36. SEM image of clusters which the spray-dried burkeite particles are made of 
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The clusters were then impacted at four different impact velocities, 18, 30, 50 and 60 

m/s. It should be noted that single particle impact rig is better to be used for particles 

larger than 200 μm, as the sensor cannot measure the time of flight for very small 

particle sizes. However, the vacuum pressures required to provide the mentioned 

impact velocities for the particles in the 45-53 μm size range have been extrapolated 

using the information of larger sizes. The minimum impact velocity for these 

experiments was chosen to be equal to the maximum impact velocity used for 

impacting the spray-dried burkeite particles, as the clusters are expected to be stronger 

than the single particles. Some of the broken clusters are shown in Figure 5-38. These 

clusters have been collected after impact at 50 m/s, and observed by SEM. In a higher 

magnification, the broken clusters are shown in Figure 5-39, indicating that the clusters 

might break through breakage of the intercrystalline bonds. In some cases, the breakage 

of each individual crystal might result in breakage of the cluster, and hence producing 

debris, as shown in Figure 5-40. 
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Figure 5-39. Broken clusters after impact at 50 m/s 

 

Figure 5-38. Several broken clusters after impacting at 50 m/s 
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The impacted particles were then collected and the debris was separated using the sieve 

37.5 μm, which is two sieve sizes below the lower feed size. The broken particles did 

not seem to be cohesive. The extent of breakage was calculated and is shown in Figure 

5-38. Three repeats were done for each impact velocity. The error bars have not been 

shown in the graph, as they are smaller than the legends: the full data are given in Table 

5-3, instead. 

Figure 5-40. High magnification of the broken clusters after impacting at 50 m/s 
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Figure 5-41. Extent of breakage, R*, for impacting the clusters inside the spray-dried burkeite particles at 

different impact velocities 
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Table 5-3. Breakage data of impacting the clusters at different impact velocities 

Feed 

size 

(μm) 

Number  

of test 

R* (%) 

at 

18 m/s 

R* (%) 

at 

30 m/s 

R* (%) 

at 

50 m/s 

R* (%) 

at 

60 m/s 

45-53 1 11 22 34 42 

45-53 2 12 24 31 40 

45-53 3 11 23 34 41 

 

Average 

R* (%) 
11 23 33 41 

STDEV 0.006 0.010 0.018 0.010 

CV (%) 5.09 4.35 5.73 2.44 

 

The comparison of the extent of breakage of clusters at 18 m/s with the spray-dried 

particles at the same impact velocity shows that the clusters break less than the single 

particle. The extent of breakage for clusters at 18 m/s is around 11%. For large particles 

(850 μm) this is up to 95 %, and for small particles (212 μm) it is 40%. The low extent 

of breakage in the case of clusters as compared to the spray-dried burkeite particles 

could be attributed to either the size of the clusters (the small particle sizes are expected 

to undergo less breakage than large particle sizes) or the strength of the clusters.  

Considering the former, the extent of breakage for small spray-dried particles (i.e. the 

same size as clusters) can be extrapolated using the information from Figure 5-27. The 

extrapolation results show that for a particle with a size of around 50 μm, the extent of 
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breakage at 18 m/s should be around 50%. Clearly, what has been obtained for the 

clusters is much lower than that. Therefore, clusters are clearly stronger than individual 

particles. 

5.7 Concluding Remarks 

Impact attrition of spray-dried burkeite particles has been studied by applying different 

impact stresses typical of those prevailing in a manufacturing plant. Burkeite is very 

weak and friable; hence it is prone to breakage even at low impact velocities. The 

impact tests were carried out using a minimum representative sample mass, which has 

been identified and used for all the impact tests in order to produce reliable and 

accurate results. 

The impact tests indicate some structural differences for different particle sizes such as 

envelope density variations as a function of size, which are attributed to spray-drying 

processes and conditions. Therefore different measurement methods have been tested to 

explore the envelope density of different particle sizes. Among all the methods, the data 

from X-ray microtomography have been used as values for the envelope density of 

different particle sizes. XRT is one of the methods which takes account of shape of the 

particles, and hence it provides a better estimate of the average volume of the particles, 

which has a direct influence on the measured envelope density. The results show that 

the envelope density generally increases with particle size, although the underlying 

mechanism giving rise to these variations is unknown but it could be attributed to 

spray-drying processes. The measured values have been used to analyse the breakage 

data. 
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Different patterns of breakage have been identified for various impact conditions. The 

analysis gives information on the transition velocity ranges from chipping to 

fragmentation and from fragmentation to disintegration. It has been found that a good 

unification of breakage data may be obtained for the chipping regime using the 

measured envelope densities and the extent of breakage for the chipping regime. It also 

gives information about the transition velocity from no breakage to chipping, as well as 

material mechanical properties responsible for particle breakage.  

The data corresponding to fragmentation and disintegration regimes have been studied 

by full sieve analysis. However, due to using a low quantity sample mass, the sieving 

has been carried out down to five sieve cuts below the feed size. In the case of using a 

larger quantity of sample mass, the sieve analysis can be continued further down to 

provide some information on fraction of broken particles with small sizes. As the 

particles go through fragmentation and disintegration regimes, the agglomerates break 

down to crystalline structure clusters. The evaluation of the impact strength of these 

clusters shows that they are much stronger than the spray-dried particles. These clusters 

are made of crystals stuck to each other. Side crushing of the clusters showed that the 

intercrystalline bond is very strong. SEM observations show how they break. The 

clusters within the spray-dried parties are loosely bound to each other, rubbing an 

assembly together produces these clusters. In order to increase the inter-cluster bond 

strength, it is possible to add binders, which in fact will increase the strength of the 

spray-dried particles.  
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CHAPTER 6 PARTICLE BREAKAGE IN THE 

SCIROCCO DISPERSER 

The impact breakage results of spray-dried burkeite particles have been analysed using 

the single particle impact rig, as for the particle breakage that is sensitive to strain rate, 

impact testing is the most appropriate method. However, this rig is not a commercially 

available device. In contrast, dry powder dispersers, such as the Scirocco disperser of 

the Malvern Mastersizer 2000, are widely available, and can be used for this purpose, 

provided particle impact velocity is known. 

In this chapter, the breakage analysis of spray-dried burkeite particles as they go 

through the Scirocco disperser is reported. The same approach has also been applied to 

three other crystalline structures to explore how the method works for non-porous 

materials. Based on the results obtained, this method is suggested as a simple 

assessment method for grindability testing of different materials. 

6.1 Background 

Particle size analysis is one of the key procedures in various industries handling and/or 

producing products in particulate form, as it provides some information about 

consistency in process performance as well as product attributes. This can be done 

using different techniques. Currently, particle sizing by laser light diffraction is one of 

the most common methods. The size measurement can be done under either wet or dry 

dispersion condition. For the latter, different air pressures are used to disperse the 

particles using a Venturi eductor configuration, and a good example of this type of 
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disperser units is the Scirocco disperser used in the Malvern Mastersizer 2000. A 

schematic diagram of the Scirocco disperser is shown in Figure 6-1. 

Compressed Air 

Inlet

Powder Inlet

Dispersed 

Particles

1

2

3

 

Figure 6-1. Schematic diagram of the Scirocco disperser 

In the Scirocco disperser, a high pressure air is supplied to the air inlet (port 2), which 

results in a high velocity jet of air at the nozzle tip. The particles are slowly fed to the 

top inlet of the disperser (port 1) and get rapidly accelerated as they interact with the 

high velocity air jet stream. The dispersion of particles takes place as they impacts at 

the elbow. The dispersed particles exit from the outlet (port 3) and are presented to the 

laser light for laser diffraction measurements.  

As the particles are accelerated by an air jet, they are impacted on the container walls 

and L-bend. There are two different categories of particles; for fine and cohesive 

powders the dispersion/collision energy might be inadequate to properly disperse them 

and some clusters may survive. Calvert et al. (2009) have done a review of different 

dispersion methods used in the laser diffraction technique. Recently Calvert et al. 

(2013) investigated the dispersion of cohesive powders and related the dispersion 
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efficiency to the powder flowability as described by the cohesive powder flow function. 

In contrast, for weak and friable powders, the wall collisions may lead to undesirable 

particle breakage. In both cases the particle sizing is affected. 

There is no extensive work on the breakage of weak powders as a function of nozzle 

pressure using these dispersers in the literatures, although there is full awareness and 

concern about particle breakage during dispersion. Therefore breakage of spray-dried 

burkeite particles in the Scirocco disperser has been studied to provide some 

information on breakage of weak particles in these dispersers, and a better 

understanding of the breakage behaviour of burkeite particles. However, the length of 

the Scirocco disperser is not long enough for the particles to reach their terminate 

velocities. Therefore the impact velocity of different particle sizes in the elbow needs to 

be evaluated.  

Ali et al. (2015) in their work showed that CFD simulation can be used to calculate the 

impact velocity of the particles at the L-bend of the Scirocco disperser. They carried out 

three dimensional multiphase Computational Fluid Dynamic simulations of the 

Scirocco disperser and analysed the air flow field, following which particle trajectories 

and impact velocities were calculated using an Eulerian-Lagrangian approach. The 

calculated velocities were based on the first impact on the L-bend, and are used in this 

work, combined with the experimental work to analyse the breakage behaviour of the 

spray-dried burkeite particles in the Scirocco disperser. 
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6.2 Experimental Work Using the Scirocco Disperser 

Six near-mesh sizes were chosen to carry out the experimental work; 212, 250, 500, 

600, 850, 1000 µm. Each particle size was fed into the Scirocco disperser at a rate 

meeting the minimum obscuration requirement for particle size analysis by laser 

diffraction. A sensitivity analysis was carried out to find out the optimum vibratory 

feed rate as well as the minimum mass required to provide an adequate obscuration (4 

to 8 %). 

Five different dispersion air pressures were used to disperse the particles; 100, 150, 

200, 250 and 300 kPa (corresponding to 1, 1.5, 2, 2.5 and 3 barg). The size distribution 

was measured by laser diffraction method using Mastersizer 2000, and the specific 

surface area (SSA) of the dispersed and broken particles was calculated based on the 

particle size distribution and density of the particles, and reported by the software of 

Mastersizer 2000. However, a different method needs to be used in order to measure 

the SSA and size distribution of the feed particles, as the particles are weak and friable 

and in order to avoid the results being affected by particle breakage in the Scirocco 

disperser of Mastersizer 2000, a use of another device has been made. This was done 

using Spraytec laser diffraction analyser of Malvern. The measurements were done by 

gently pouring the particles under free-fall condition to measurement zone of the 

Spraytec. Under such condition almost no breakage takes place and hence the measured 

size distribution and SSA are attributed to the feed particles.  

The characteristic sizes d10, d50 and d90 of the PSD for the nozzle pressures used in this 

work are summarised in Table 6-1.  
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Table 6-1. The characteristics sizes d10, d50 and d90 of the particle size distribution of the feed particles 

(given by Spraytec) and of the broken particles (given by Mastersizer 2000) in µm for different nozzle 

pressures  

Size 

(µm) 
212  250  500  600  850  1000  

Pressure 

(kPa) 

d10 

 

d50 

 

d90 

 

d10 

 

d50 

 

d90 

 

d10 

 

d50 

 

d90 

 

d10 

 

d50 

 

d90 

 

d10 

 

d50 

 

d90 

 

d10 

 

d50 

 

d90 

 

Feed 180 228 288 215 282 374 385 530 718 440 584 757 464 628 801 527 1014 1105 

100 35 107 308 34 91 239 39 94 235 44 120 284 45 126 353 43 127 355 

150 30 94 269 30 91 270 39 88 205 43 93 239 43 105 309 44 110 316 

200 21 82 208 22 78 205 34 78 178 37 84 205 40 97 275 39 104 309 

250 17 79 203 21 74 179 29 75 158 34 79 178 33 88 236 38 95 275 

300 14 71 178 15 71 157 22 71 157 30 75 157 34 82 206 33 87 233 

 

Based on the results reported in the Table 6-1, there is a shift in the particle size 

distribution curves, as the nozzle pressure is increased, which indicates particle 

breakage. At high pressures, roughly similar debris sizes have been obtained for all the 

particle sizes. This is due to particle disintegration into constituting crystal clusters/ 

aggregates forming the spray-dried burkeite particles as shown in the previous chapter. 

At low nozzle pressures, the trend of the particle size distribution change is not 
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monotonous as the particles undergo fragmentation, and the size of the fragments 

depends on different factors such as feed size, impact velocity and structure of the 

particles. 

As an example, the size distributions of different particle sizes having passed through 

the Scirocco at the highest nozzle pressure (300 kPa) are shown in Figure 6-2. The rest 

of the data for all nozzle pressures are shown in the Appendix A (pages 215-220). 

 

Figure 6-2. Particle size distribution for different near-mesh particle sizes at 300 kPa nozzle pressure 

The size distribution of broken particles at 300 kPa is bimodal, with the first mode 

showing the size of the clusters as most particles are disintegrated into crystal clusters 

forming the particles. It can be clearly seen that for a given nozzle pressure, the small 

particles break to the higher extent than large particles, and produce more debris. 
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As previously mentioned, the impact velocities of the particles at various nozzle 

pressures were calculated by CFD simulation by Ali et al. (2015), who reported the 

impact velocities of spray-dried burkeite particles in the Scirocco disperser when 

different nozzle pressures were applied. The first impact in the elbow of the Scirocco 

disperser has been considered, for which the velocity is the highest, responsible for 

breakage. The impact velocity as a function of nozzle pressure for different particle 

sizes is shown in Figure 6-3. 

 

Figure 6-3. Impact velocity of burkeite particles as a function of nozzle pressure for density of 1200 kg/m3  

(Ali et al., 2015) 

As expected, by increasing the inlet pressure the impact velocity of the particles at the 

L-bend also increases. The simulation results show that for a constant nozzle pressure, 

smaller particles have higher impact velocities compared to the larger particles. The 

results shown in Figure 6-3 have been calculated based on the same envelope density 
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for all the particle sizes. However, it was previously shown that there was a variation in 

the envelope density of the particles as a function of size. Therefore the impact 

velocities used for breakage analysis are calculated based on the envelope density of 

each near-mesh size particle using CFD simulation by Ali et al. (2015).  

The specific surface area, SSA, of the feed particles as well as that of the broken 

particles are derived from the PSD and envelope density of the particles, given by 

Mastersizer 2000. The values as a function of nozzle pressure are given in Table 6-2. 

The SSA0 was measured by Spraytec. 
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Table 6-2. The SSA of the feed particles (SSA0) and broken particles for different near-mesh particle sizes at 

different nozzle gauge pressures 

 SSA (m2/kg) 

 
Pressure 

(kPa) 

212 

(µm) 

250 

(µm) 

500 

(µm) 

600 

(µm) 

850 

(µm) 

1000 

(µm) 

Spraytec Feed 29.76 20.19 9.91 8.30 5.27 4.68 

M
al

v
er

n
 M

as
te

rs
iz

er
 2

0
0
0

 

100 109.22 97.02 75.59 57.99 51.57 53.58 

150 138.31 114.88 85.35 74.08 60.37 61.21 

200 176.23 148.49 112.81 95.68 70.68 66.32 

250 197.31 157.28 128.35 109.55 94.13 83.57 

300 227.63 182.45 143.97 119.93 98.87 92.83 

 

Based on the results reported in Table 6-2, as the nozzle pressure is increased, the SSA 

of the particles increases due to breaking. 

The specific surface area of the particles reported by Malvern Mastersizer 2000 at 

different impact velocities is used to calculate the shift in the specific surface area, 

ΔSSA. This is normalised with respect to the initial specific surface area, SSA0 (relative 
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shift) and plotted as a function of impact velocity for the spray-dried burkeite particles 

as shown in Figure 6-4. 

 

Figure 6-4. Relative shift in the specific surface area of burkeite as a function of impact velocity in Scirocco 

disperser 

A family of curves is observed for spray-dried burkeite particles with clear trends for 

the effect of impact velocity and particle size. At a constant impact velocity, the larger 

particle sizes tend to break more than the smaller ones. 

As has been fully described in the previous chapter, it is assumed that the test material 

used here fails through the semi-brittle failure mode. Therefore, the same model is used 

as the one for analysis of single particle impact breakage results. The equation below is 

the model of Ghadiri and Zhang (2002) as given in Eq. (2-7), modified by adding 

subscripts to 𝑑 and 𝜌, which refer to feed material. 
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𝑅∗ = 𝛼𝜂 = 𝛼
𝜌𝑓𝑑𝑓,𝑣𝐻

𝐾𝑐
2 𝑉2 = 𝐶𝜌𝑓𝑑𝑓,𝑣𝑉2                                       Eq. (6-1) 

where 𝑑𝑓,𝑣 is a measure of feed particle size (on a volumetric basis), 𝜌𝑓 is the envelope 

density of feed particles. 

𝑅∗ is expressed on a gravimetric basis, but using Malvern Mastersizer 2000, the particle 

size distribution is characterised by laser diffraction and expressed on a volumetric 

basis. So it is necessary to relate the shift in particle size distribution to 𝑅∗. As the 

breakage process could produce a wide size distribution, it is more convenient to 

express 𝑅∗ in terms of the relative change in the specific surface area. Considering the 

definition of 𝑅∗, the mass fraction of debris can be expressed by Equation (6-2). 

𝑅∗ = 𝛼𝜂 =
𝑛𝑑𝜌𝑑(

𝜋

6
�̅�𝑑,𝑣

3 )

𝑛𝑓𝜌𝑓(
𝜋

6
�̅�𝑓,𝑣

3 )
    Eq. (6-2) 

where 𝜌𝑓 and 𝜌𝑑 are the density of feed particles and debris, respectively. 𝑛𝑓 and 𝑛𝑑 are 

the number of feed particles and debris, respectively. �̅�𝑓,𝑣 is the average size 

(volumetric basis) of the feed material, and �̅�𝑑,𝑣 is average size of the debris, which is 

calculated based on the particle size distribution after Scirocco testing, as qualitatively 

shown in Figure 6-5 and described below. The size distribution of the debris is obtained 

from the shaded area, from which the volume-weighted arithmetic mean size, �̅�𝑑,𝑣 , and 

the relative shift in the specific surface area (𝛥𝑆𝑆𝐴
𝑆𝑆𝐴0

⁄ ) are calculated. 
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Figure 6-5. Calculation of debris size distribution based on the distribution of feed and broken materials 

Conversion of Eq. (6-2) to the surface area basis requires �̅�𝑓,𝑣 and �̅�𝑑,𝑣 to be expressed 

in terms of the surface-area equivalent diameters. This can be done by the use of 

sphericity shape factor, 𝜓, defined as the ratio of the surface area of the volume-

equivalent sphere (𝜋𝑑𝑣
2) to the actual particle-surface area: 𝑛𝑑𝜋𝑑̅̅̅̅

𝑑,𝑣
2 = 𝜓𝑑𝑆𝑑 and 

𝑛𝑓𝜋�̅�𝑓,𝑣
2 = 𝜓𝑓𝑆𝑓 . Therefore: 

𝜌𝑑�̅�𝑑,𝑣

𝜌𝑓�̅�𝑓,𝑣
×

𝜓𝑑𝑆𝑑

𝜓𝑓𝑆𝑓
= 𝛼𝜂     Eq. (6-3) 

where 𝑆𝑑 and 𝑆𝑓 are the surface area of debris and feed material, respectively. 𝜓𝑑 and 

𝜓𝑓 are the sphericity shape factor of debris and feed particles, respectively. The ratio 

𝑆𝑑
𝑆𝑓

⁄  represents the relative shift in the surface area, i.e. 
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𝑆𝑑

𝑆𝑓
=

𝛥𝑆𝑆𝐴

𝑆𝑆𝐴0
                                                                                                              Eq. (6-4) 

where 𝛥𝑆𝑆𝐴 is specific surface area of debris and 𝑆𝑆𝐴0 is the specific surface area of 

the feed material. Therefore, by converting the extent of breakage (gravimetric basis) to 

the relative shift in the surface area: 

𝛼
𝜌𝑓�̅�𝑓,𝑣𝑉2𝐻

𝐾𝑐
2 ×

𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
×

𝜓𝑓

𝜓𝑑
=

𝛥𝑆𝑆𝐴

𝑆𝑆𝐴°
      Eq. (6-5) 

For simplicity, it is assumed that the feed materials and broken particles both have a 

similar shape factor. Therefore 
𝜓𝑓

𝜓𝑑
 is considered as unity, and Eq. (6-5) is converted to 

Equation 6-6 below 

𝛼𝜂 ×
𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
=

𝛥𝑆𝑆𝐴

𝑆𝑆𝐴°
            Eq. (6-6) 

The spray-dried burkeite particles are highly porous, due to the gap between the 

clusters. The debris and crystal clusters are formed as a matter of breakage. Therefore 

the envelope density of the debris is higher than that of spray-dried particles. The 

envelope density of the debris, 𝜌𝑑, has been estimated by extrapolation of the data 

using the measured density of different particle sizes by XRT and the average size of 

the debris. The results of the surface area ratio, as measured by laser diffraction in 

Mastersizer 2000, are now plotted as a function of 𝛼𝜂(
𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
) in Figure 6-6 for the 

chipping regime.  



CHAPTER 6 PARTICLE BREAKAGE IN THE SCIROCCO DISPERSER

  

153 

 

 

Figure 6-6. Relative change in the specific surface area as a function of 𝜶𝜼(
𝝆𝒇�̅�𝒇,𝒗

𝝆𝒅�̅�𝒅,𝒗
) 

By characterising the breakage propensity of the particles by single particle impact 

testing and evaluating their impact velocity by CFD, it is found that a remarkable 

unification of breakage data is obtained when the relative change in the surface area for 

different particle sizes is expressed as a function of the dimensionless group 

representing the breakage propensity, 𝜂, based on the impact velocity in the Scirocco. 

However, it remains to be seen how universal this approach can be by applying it to a 

wide range of materials.  If successful, it actually provides a very simple but powerful 

way to analyse the impact breakage propensity and, hence, grindability of particulate 

solids. This is addressed in the following section. 
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6.3 Grindability Assessment 

In the continuation of the above work, three crystalline organic solids (non-porous) 

were chosen to assess the Scirocco disperser as a grindability test method. The 

advantage of using this device is that it is widely available, and dispersed particles are 

presented to the laser light immediately for particle size measurement and analysis, 

hence reducing the time and effort required for measuring the size distribution of the 

impacted particles. 

For this purpose, crystals of aspirin, sucrose and α-lactose monohydrate (α-LM) were 

used as model test materials in view of their relevance to the pharmaceutical industry. 

In fact the interest in this work emanated from a pharmaceutical company that wished 

to adopt the above approach for grindability testing. So the experimental work of 

dispersion and sieving was carried out by the pharmaceutical company and the analysis 

presented below was carried out by the author. The same approach used for the spray-

dried burkeite particles is applied here. The narrow size distribution of the test particles 

was prepared using a combination of British Standard and DIN sieve sizes: 80-90 μm, 

112-125 μm, 160-180 μm and 224-250 μm for α-lactose monohydrate, 160-180 μm, 

224-250 μm, 400-425 μm and 600-630 μm for sucrose, and 224-250 μm, 400-425 μm 

and 600-630 μm for aspirin. Each sieve fraction was then fed into the Scirocco 

disperser at a rate meeting the minimum obscuration requirement for particle size 

analysis by laser diffraction. The experiments were carried out at eight different nozzle 

pressures, i.e. 50, 100, 150, 200, 250, 300, 350 and 400 kPa (corresponding to 0.5, 1, 

1.5, 2, 2.5, 3, 3.5 and 4 barg).  
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Using a very small mass quantity is one of the advantages of using the Scirocco 

disperser to evaluate the grindability of the particles, as the sample availability could be 

a critical issue (i.e. 1-2 g depending on the particle size). The particle size distribution 

after impact was measured using the Mastersizer 2000 and the specific surface area 

(SSA) of the particles was calculated using the surface mean diameter, d3,2. However, 

when fine and coarse particles are present in the dispersion, the Malvern Mastersizer 

2000 system sometimes  is not able to report the right size distribution, as will be 

shown below. This issue was with Malvern Instruments. Therefore a small correction 

was applied to a small number of the size distribution curves as described below and 

shown in Figure 6-7. The size distribution curve at the 0.1 barg (feed materials) has 

been taken as reference PSD. The rest of the distribution curves for higher nozzle 

pressures were then compared to the curve with the next lower pressure. For example, 

the data of dispersing feed particles with the size of 160-180 μm of sucrose have been 

checked using the above approach. The curve corresponding to 0.1 barg shows the size 

distribution of the feed particles. The next dispersion pressure is 0.5 barg. The size 

distribution curves for both 0.1 and 0.5 barg are shown in Figure 6-7. It is expected that 

the particles going through the Scirocco disperser at 0.5 barg are smaller than the feed 

particles or at most the same size (if they do not break). However, the size distribution 

curve at 0.5 barg shows a slightly larger volume fraction for particles in its tail end 

compared to feed particles. This problem might happen for the particle types which are 

aggregated, but it is not the case here. Therefore the data corresponding to 0.5 barg 

nozzle pressure have been corrected by changing the volume percentage of the particles 

in each bin class if needed. For this purpose, the volume percentage of 0.5 barg data in 

each top bin size moving down from the upper end is compared to that of 0.1 barg. If it 
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has a larger value compared to the feed size, the value is reduced to a lower value. 

Careful attention is needed, as by changing the data in each size class the data of other 

size classes are also changed. This procedure was then continued up to the mode size 

data point until the overlap disappearing. However, the issue after each correction is 

that the summation of the volume percentages is not 100 anymore. Therefore the data 

are re-scaled and plotted (as shown in the re-scale graph of Figure 6-7) to meet this 

condition. In the case of Figure 6-7, only these size classes needed to be corrected, and 

for other cases a similar number prevailed. The new 𝑑3,2 was then calculated based on 

re-scaled data, and was used to determine the SSA of the particles. As mentioned 

before, the above problem is observed for a small number of the results of sucrose and 

α-lactose monohydrate, where the extent of breakage was so small that the PSD 

consisted mainly of the mother particles and some dust. 

 

Figure 6-7. Correction of size distribution data for some of the reported results, e.g. 160-180 μm feed size of 

sucrose 

In the next step after calculating the corrected value of SSA for different particle sizes, 

the relative change in the specific surface area due to particle breakage needs to be 
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calculated, for which  the specific surface area of the feed (SSAo) is required. These 

crystalline materials are stronger than the spray-dried burkeite particles, therefore the 

SSAo was taken to be the SSA obtained at the lowest possible pressure applied to the 

nozzle for each sieve fraction, which is 10 kPa (0.1 barg), thus assuming that no 

breakage took place at this pressure.  

The particle size distributions of aspirin, sucrose and α-lactose monohydrate particles 

for the feed size of 224-250 μm, having passed through the Scirocco at different nozzle 

pressures, are shown in Figures 6-8 to 6-10 as typical examples. The rest of the data for 

all sieve fractions are shown in the Appendix A. 

 

Figure 6-8. Relative shift in size distribution of 224-250 μm of aspirin at different nozzle pressures 
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The data for 50 kPa (0.5 barg) almost overlap with 10 kPa (0.1 barg), without much 

breakage. The formation of debris first appears at 100 kPa (1 barg), which leads to a 

bimodal particle size distribution. As the nozzle pressure increases, the average size of 

debris decreases. The higher air pressures give rise to larger impact velocities in the 

Scirocco disperser, shifting the particle size distributions to the left. 

 

Figure 6-9. Relative shift in size distribution of 224-250 μm of sucrose at different nozzle pressures 
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diameter of debris produced during the tests decreases as the nozzle pressure increases. 

Comparing Figures 6-8 and 6-9 shows that for the same nozzle pressure and feed size 

of materials, aspirin particles tend to break more than sucrose particles. 

 

Figure 6-10. Relative shift in size distribution of 224-250 μm of α-lactose monohydrate at different nozzle 

pressures 

For lactose, 50 kPa (0.5 barg) almost overlaps with 10 kPa (0.1 barg), i.e. almost no 

breakage. A slight shift in particle size distribution to the left and formation of 

fragments are observed for 100 kPa (1 barg). The formation of debris occurs at higher 

pressures (150 kPa), compared to the two other test materials. More debris with smaller 

sizes is produced when the nozzle pressure is increased. Comparison of Figures 6-8 to 

6-10 shows that, at a constant nozzle pressure, aspirin breaks more than sucrose, and 

sucrose breaks more than lactose for a given particle size. 
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The same approach has been used here to calculate the impact velocity of the particles 

in the elbow. The specific surface area of the particles reported by the Malvern 

Mastersizer 2000 at different impact velocities is used to calculate the shift in the 

specific surface area, ΔSSA, and the relative shift in the specific surface area of the 

particles is plotted as a function of impact velocity for the test materials, as shown in 

Figures 6-11 to 6-13. 

 

Figure 6-11. Relative shift in the specific surface area of aspirin as a function of impact velocity in Scirocco 

disperser 
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Figure 6-12. Relative shift in the specific surface area of sucrose as a function of impact velocity in Scirocco 

disperser 

 

Figure 6-13. Relative shift in the specific surface area of α-lactose monohydrate as a function of impact 

velocity in Scirocco disperser 
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Similar to spray-dried burkeite, a family of curves is observed for all the test materials 

with clear trends for the effect of impact velocity and particle size. At a constant impact 

velocity, the larger particle sizes have a larger relative shift of the specific surface area, 

which in fact shows that they break more than the smaller particles. 

The analysis of breakage results has been carried out using Eq. (6-5). The 

characterisation of the ratio of sphericity of feed material to debris requires extensive 

work and it has not been attempted here. In the first instance this is considered as a 

constant. Hence Eq. (6-5) can be presented as below: 

𝛽
𝜌𝑓�̅�𝑓,𝑣𝑉2𝐻

𝐾𝑐
2 ×

𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
=

𝛥𝑆𝑆𝐴

𝑆𝑆𝐴°
  Eq. (6-7) 

where 𝛽 is a new proportionality factor corresponding to 𝛼
𝜓𝑓

𝜓𝑑
. 

The relative shift in the specific surface area can now be plotted as a function of 

𝜌𝑓�̅�𝑓,𝑣𝑉2(
𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
) for all the three test materials, as shown in Figure 6-14. For crystalline 

solids, the envelope density is not expected to change as particles undergo size 

reduction, so 𝜌𝑑 = 𝜌𝑓. This was not the case for spray-dried burkeite particles. 



CHAPTER 6 PARTICLE BREAKAGE IN THE SCIROCCO DISPERSER

  

163 

 

 

Figure 6-14. Shift in the specific surface area of aspirin, sucrose and lactose particles as a function of 

ρf,ddf,vV
2 (df,v/dd,v) 

For each test material a good unification of breakage data is obtained for the particle 

sizes and inlet nozzle pressures tested. Moreover, the slope of the lines, 𝛽 𝐻 𝐾𝑐
2⁄ , 

reflects the ease with which the particles break in the Scirocco disperser, and is thus 

expected to correlate with similar data obtained by the single particle impact breakage 

method, provided interparticle interaction in the Scirocco disperser does not affect the 

rate of breakage. Furthermore, the intercept of each line gives the impact velocity for a 

given particle size below which the particles would not break. This provides a design 

rule for mitigating particle breakage in pneumatic conveying lines. 
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6.3.1 Single Particle Impact Breakage Parameter 

Experiments have been carried out by various research workers in the past in which 

𝛼𝐻 𝐾𝑐
2⁄  , the breakability index of Eq. (2-6) has been determined from the slope of the 

line of 𝑅∗ as a function of 𝜌𝑓�̅�𝑓,𝑣𝑉2(Ali et al., 2015). The material mechanical 

properties of aspirin, sucrose and α-lactose monohydrate have been obtained using the 

same approach. The most recent analysis is summarised in Table 6-3.  

Table 6-3. Material properties of aspirin, sucrose and α-lactose monohydrate 

Material Density (kg/m
3
) αH/Kc

2
 

Aspirin 1397 0.050 

Sucrose 1587 0.026 

α-LM 1520 0.017 

The slopes of the two lines of particle breakage obtained by Scirocco testing and from 

single particle impact testing, as given in Figure 6-14 and Table 6-1, should be 

correlated as they both reflect the impact damage. The larger they are, the easier the 

particles break. Therefore, the ratio of the slopes for the same set of materials should be 

comparable. This is shown in Table 6-4. 

 

 



CHAPTER 6 PARTICLE BREAKAGE IN THE SCIROCCO DISPERSER

  

165 

 

Table 6-4. The ratio of slopes for each two materials 

Material 

Ratio of slopes from  

single particle impact 

testing 

Ratio of slopes 

from Scirocco 

testing 

𝐴𝑠𝑝𝑖𝑟𝑖𝑛 𝑆𝑢𝑐𝑟𝑜𝑠𝑒⁄  1.9 2.0 

𝑆𝑢𝑐𝑟𝑜𝑠𝑒 𝐿𝑎𝑐𝑡𝑜𝑠𝑒⁄  1.5 1.5 

𝐴𝑠𝑝𝑖𝑟𝑖𝑛 𝐿𝑎𝑐𝑡𝑜𝑠𝑒⁄  2.9 3.0 

 

As the comparison shows, a very good match is observed between the ratio of 

mechanical properties obtained by the Scirocco disperser and by the single particle 

impact tester. The ratios show the relative ease of breakability of one material 

compared to another. For instance, the ratio of the slopes for sucrose to α-lactose 

monohydrate is 1.5, which shows that sucrose breaks 1.5 times easier than α-lactose 

monohydrate. This information can be used to evaluate the grindability of different 

materials. Considering that the mass required to be tested in the Scirocco is very low, 

the method is attractive for cases where the sample supply is scarce, e.g. new active 

pharmaceutical ingredients in the pharmaceutical industry. 
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6.4 Concluding Remarks 

Particles of different sizes accelerate to different velocities in the Scirocco disperser 

and break to different extents.  For spray-dried burkeite particles, even the lowest 

nozzle pressure causes notable particle breakage. By characterising the breakage 

propensity by single particle impact testing and evaluating the impact velocity by CFD, 

it is found that a remarkable unification of breakage data may be obtained when the 

relative change in the surface area for different particle sizes is expressed as a function 

of the dimensionless group representing the breakage propensity, η, based on the 

impact velocity in the Scirocco, obtained from the CFD simulations.  

Considering that the mass required to be tested in the Scirocco is very low, the method 

is attractive for cases where the sample supply is scarce, e.g. new active pharmaceutical 

ingredients in pharmaceutical industry.  Therefore an attempt was made using three 

crystalline structures (aspirin, sucrose and α-lactose monohydrate) to explore how 

universal this approach can be, and to evaluate the suitability of the Scirocco disperser 

as a grindability test device. The impact velocities of three test materials, i.e. aspirin, 

sucrose and α-lactose monohydrate, for a range of particle sizes have been calculated 

for eight nozzle pressures.  The impact velocity of particles increases almost linearly 

initially with increasing the nozzle pressure, but the rate of increase slows down at high 

pressures.  

The relative increase in the specific surface area of the particles with respect to the 

initial value following impact in the Scirocco disperser shows a linear dependence on 

𝜌𝑓�̅�𝑓,𝑣𝑉2(
𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
). The slope of the fitted line reflects particle breakage propensity and 
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correlates well with 𝛼 𝐻 𝐾𝑐
2⁄  obtained by single particle impact testing. Therefore, this 

method can be used to evaluate the grindability of powders and grains, provided the 

particle impact velocity is first determined. 
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CHAPTER 7 SIMULATION  

The characterisation of internal stresses in the case of complex structures, such as 

spray-dried burkeite particles, is not possible by experimental methods. In contrast, the 

numerical simulations by Distinct Element Method provide a basis for sensitivity 

analysis of factors affecting the strength and failure of agglomerates. 

In this chapter, DEM simulation is used to study the impact breakage of agglomerates 

and influential parameters on the agglomerate impact strength. DEM simulation has 

been found as a fairly fast method to provide a better understanding of the factors 

affecting the agglomerate breakage. Simulations have been carried out using EDEM 

software (DEM Solutions, Edinburgh, UK). The agglomerates with different structures 

are formed using interparticle bonding based on the JKR model, and impacted under 

various impact conditions.  

7.1 Introduction 

Agglomerates may be formed in various ways and their mechanical strength depends 

on many factors due to the degree of freedom afforded by the primary particle 

properties and their interactions. Weak agglomerates formed for example by spray-

drying are prone to attrition, which has adverse effects on product quality, ability to 

process, dust formation and explosion hazards. Therefore it is highly desirable to 

develop a predictive ability for agglomerate breakage. 

Agglomerate structure has a strong influence on its strength (Subero and Ghadiri, 

2001). The failure of the agglomerates under quasi-static and impact behaviour can be 
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completely different, and for the latter the effects of impact velocity and impact angle 

have not been fully understood yet. For some structures, the strength mainly depends on 

the normal component of the impact velocity, and for some others it also depends on 

the tangential component. However, the factors making the differences are not clearly 

known yet.  

The use of the Distinct Element Method (DEM) has become very common recently, as 

it provides a better understanding of the effects of different parameters on the impact 

strength of the agglomerates. Depending on the type of contact model used for bonding 

of the primary particles in the agglomerate, the strength of the bond or the contact 

forces might influence the agglomerate strength. In this work DEM simulation is used 

to analyse the effect of agglomerate structure on the impact strength of agglomerates. 

The agglomerates are made using elastic spheres bonded together using the Johnson-

Kendall-Roberts (JKR) model (Johnson et al., 1971). The particles with two different 

structures (levels of porosity) are impacted on different targets (with different impact 

angles) and at different impact velocities. The level of contact adhesive force is then 

changed to explore the effect of surface energy on impact strength of the agglomerates. 

This enables the underlying causes of variations in the impact angle and velocity to be 

clarified.  

7.2 Generation of Agglomerates 

In this section, different steps of agglomerate preparation are described. Details of the 

contact models, various parameters and material properties used in the simulation are 

given. The impact breakage analysis methods are also described. 
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7.2.1 Simulations of Agglomerates  

At the beginning of the simulation work, PFC
3D

 software (Itasca Consulting Group, 

USA) was used to generate the agglomerates. However, it turned out to be very slow 

for the number of particles used in the simulation, as the time-step which can be used in 

PFC
3D

 is very small and increasing the time step would result in the software crashing. 

Therefore the simulations were switched to and carried out using EDEM, which is 

much faster than PFC
3D

. The main advantage of using PFC
3D

 over EDEM is ease of 

control at the particle removing stage, whilst this becomes more complicated in EDEM 

software. However, EDEM is more user friendly compared to PFC
3D

, because of its 

Graphical User Interface (GUI). 

7.2.2 Time-Step Integration 

In a particulate system, there are a number of particles, which displace independently 

from one another and interact only at contact points. Movement of a particle in the 

system is affected by different parameters such as forces and torques originated from 

contacts with its immediate neighboring particles. However, disturbance propagation 

from particles far away from a specific particle can also affect its movement. In order to 

avoid this effect in DEM, the particle displacement is calculated after a very short time-

step. The time-step is chosen in a way that the disturbance is not propagated from each 

particle farther than its immediate neighbouring particles (Cundall and Strack, 1979).  

The speed of the disturbance wave is estimated using Rayleigh surface wave 

propagation, which uses physical properties of the particles. In order to prevent 

numerical instability and ensure realistic force transmission rates in an assembly, the 
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time chosen in the simulation must be smaller than the Rayleigh time, 𝑇𝑅, required for 

the stress wave to travel from the contact point to a point on the opposite side on the 

particle surface, which is described by Eq. (7-1), 

𝑇𝑅 =
𝜋𝑅(

𝜌

𝐺
)

1
2⁄

0.1631𝑣+0.8766
  Eq. (7-1) 

where 𝑅 and 𝜌 are the radius and density of the particle, 𝐺 is the shear modulus, and 𝑣 

is Poisson’s ratio of the particle. 

A fraction of the Rayleigh time-step is usually used in the simulations. For dense 

systems with a coordination number above 4, a typical time-step of 0.2𝑇𝑅 is used. For a 

lower coordination number, using 0.4𝑇𝑅 is appropriate. The critical time-step for an 

assembly with various material type particles is chosen based on the smallest one 

among those determined for different material properties (Ning and Ghadiri, 2006). The 

time-step chosen in this work is based on 0.2𝑇𝑅. 

7.2.3 Hertz Normal Contact Model 

The Hertz model is one of the most common contact models used in DEM (Hertz, 

1882)The normal contact force, 𝐹𝑛, between two perfectly elastic spheres in contact is 

calculated based on the equation below (Thornton and Ning, 1998; H.R. Hertz, 1882), 

𝐹𝑛 =
4

3
𝐸∗𝑅∗

1
2𝛿

3

2  Eq. (7-2) 

where 𝛿 is the normal overlap, 𝐸∗ and 𝑅∗ are the reduced Young’s modulus and 

reduced radius, and they are calculated based on equations 7-3 and 7-4, respectively. 
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𝐸∗ = (
1−𝑣1

2

𝐸1
+

1−𝑣2
2

𝐸2
)  Eq. (7-3) 

where 𝐸1 and 𝐸2 are Young’s moduli of the particles in contact, and 𝑣1 and 𝑣2 are 

Poisson’s ratio of the particles in contact. 

𝑅∗ = (
1

𝑅1
+

1

𝑅2
)−1  Eq. (7-4) 

where 𝑅1 and 𝑅2 are radii of the particles in contact.  

7.2.4 Hertz-Mindlin (no slip) Tangential Contact Model 

Based on the theory of Mindlin and Deresiewicz (1953), the Hertz-Mindlin contact 

model has been developed which is a nonlinear contact formulation (Cundall, 1989). 

This is a tangential model for perfectly elastic contacts proposed by Mindlin (1949), 

which does not consider the existing hysteresis effects in Mindlin and Deresiewicz 

(1953), and neglects the effects of micro-slip (Mindlin, 1949). The Hertz-Mindlin (no 

slip) contact model is used here at the beginning part of the simulations. However, 

when it comes to apply the contact bonding model, the Hertz model is replaced by the 

JKR model, as described below. 

7.3 JKR Elastic-Adhesion Normal Contact Model 

The Johnson-Kendall-Roberts (JKR) model is used to apply a contact adhesive force 

between the particles. The level of the adhesion force is varied by changing the surface 

energy of the particles. In the JKR theory, it is assumed that the attractive forces 

operate within the contact area and they are zero outside this region. The JKR model 

gives a larger contact area compared to the Hertz model due to adhesion, and there is an 
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outer annular region, which experiences tensile stresses (Thornton and Yin, 1991). The 

schematic diagram of the force-overlap response of the JKR model is shown in Figure 

7-1.  

 

 

 

 

 

 

Considering that Hertz and JKR analyses are valid for low impact velocities, where the 

stress transmission time through the particle is much shorter than the impact time, the 

following case is applicable. 

As the schematic shows, when two particles move towards each other and come into 

contact the force between them is reduced to 8/9 𝑓𝑐 (Thornton and Ning, 1998), where 

𝑓𝑐 refers to the pull-off force (it will be described later on). This is due to van der Waals 

attractive forces. The particles velocities are then reduced to zero; by then the loading 

stage is complete and the contact force reaches a maximum value. During the velocity 

reduction step, part of the kinetic energy is radiated into the substrate as elastic waves. 

The next stage is the recovery stage, in which the spheres move in the opposite 

Figure 7-1. Schematic force-overlap response of JKR model (Pasha, 2013) 
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directions. A part of the work used in the loading stage would be now recovered. The 

recovery stage is completed when the overlap, 𝛼𝑓, becomes zero; at this stage the 

particles are still adhered. The contact breaks at a negative overlap and at this point the 

contact force is 5/9 𝑓𝑐 (Ning, 1995). 

The maximum tensile force experienced by the contact is called the pull-off force. 

𝑓𝑐 =
3

2
𝜋𝑅∗𝛤                                                                                                          Eq. (7-5) 

where 𝛤 is the interface energy. 

7.3.1 Primary Particles 

As a first attempt, the primary particles were generated in a factory with cubical (box) 

geometry with a length of 20 mm. Six different types of primary particles were defined. 

All types have the same material properties; however, they vary in size and number. 

One of the limitations of EDEM software is that the particles cannot be removed based 

on their ID number unless a custom code is used. However, there is a possibility of 

removing the particles based on particle type. This now explains the reason for 

generating the primary particles of the same material as different particle types based 

on their sizes. The details of size and number of generated particles are shown in Table 

7-1. 
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Table 7-1. Size and number of generated primary particles 

Particle type A B C D E F 

Diameter of 

primary 

particle (μm) 

150 200 250 300 350 400 

Number of 

primary 

particles 

700 700 800 1000 600 500 

This work has been carried out to qualitatively study the effect of various parameters on 

impact strength of agglomerates. Therefore the material properties used for the 

simulations are not corresponding to spray-dried burkeite particles. The material 

properties used in the simulations are shown in Table 7-2 and 7-3. The shear modulus 

has been chosen to be small in order to speed up the simulation. 

Table 7-2. Material properties of primary particles used for the simulation 

Properties Primary particles Wall 

Poisson’s ratio 0.3 0.3 

Shear modulus 

(GPa) 
0.1 0.1 

Density (kg/m
3
) 2600 7800 
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Table 7-3. Particle-particle and particle-wall properties used in simulation 

Properties Particle - Particle Particle - Wall 

Coefficient of 

restitution 
0.3 0.4 

Coefficient of static 

friction 
0.35 0.35 

Coefficient of rolling 

friction 
0.01 0.01 

 

7.3.2 Forming an Agglomerate 

After generating the primary particles, a centripetal force is applied in order to bring all 

the particles together and form an agglomerate. The applied force depends on the size 

of the particles, as well as their distance from the centre. The force is calculated 

according to Newton’s second law of motion; hence a value is given to the acceleration. 

To start, 10 𝑚/𝑠2 is defined as the acceleration value. The higher the acceleration 

value, the faster the particles move towards the centre. The full code used for the body 

force contact model is shown in Appendix B (pages 221-223). 

7.3.3 Relaxation Step 

During the formation of agglomerates, there are some residual stresses in the 

agglomerate due to existing overlaps between some particles, which might contribute to 

a higher degree of failure when the particles are impacted. In order to minimise this 

effect, the residual stresses should be reduced as much as possible. 
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The relaxation step has been applied by gradually decreasing the acceleration used to 

calculate the forces. The contact number as a function of time is regularly monitored. 

When the contact number reaches a steady state level, the acceleration is reduced to 9 

𝑚/𝑠2, and the new body force is applied to the particles. This procedure is continued 

until the acceleration is at its lowest value, close to zero. At the last part of the 

relaxation step, the body force is fully removed to make sure no further change takes 

place in the structure, and the velocity of particles are set to zero. This part should not 

be run for so long, in order to avoid the agglomerate disintegration as there is no 

adhesion force applied yet, and the particles are kept together just because of the 

centripetal force. The formed agglomerate has a diameter of 4.6 mm. The unbalanced 

force at the end of the relaxation step is then compared to the initial value after 

agglomerate formation. The values are shown in Table 7-4. 

Table 7-4. Comparison of different parameters before and after relaxation step 

Condition Unbalanced force (N) 
Number of 

contacts 

After agglomerate 

formation 
4 × 10−4 10822 

After relaxation step 9 × 10−7 10821 

The comparison of the results shows that the unbalanced force within the system has 

been dropped by three orders of magnitude, while the number of contacts remained 

almost the same. The mentioned number of contacts would result in a coordination 

number of between 5-6 on average. 
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7.3.4 Adhesive Bonding Model 

On the conclusion of the stress relaxation step, the agglomerate formation is not yet 

complete and a bonding model needs to be applied to keep the particles together. 

Various types of bonding model with different specifications are available to be used 

such as the Hertz-Mindlin with bonding (DEM-Solutions, 2015), the JKR model 

(Johnson et al., 1971) and the Timoshenko Beam Bond model (Brown et al., 2014). For 

the first set of simulations, it is decided to use the JKR model. The principles of JKR 

theory have been described earlier. The level of the adhesion force is dependent on the 

surface energy defined in the model. Different levels of surface energy are used to 

produce agglomerates with different strengths, to explore its effect on the impact 

strength of agglomerates. The relation between surface energy and interface energy is 

defined based on the equation below. 

𝛤 = 𝛾1 + 𝛾2 − 𝛾12  Eq. (7-6) 

where 𝛾 is the surface energy, and subscripts indices 1 and 2 refer to type of the 

particles. 𝛾12 is an interaction term between both surfaces. 

If the materials of the two particles are the same, then 𝛾1 = 𝛾2 = 𝛾 , and the term 

corresponding to the interaction between two surfaces would be gone, therefore, 

 𝛤 = 2𝛾                 Eq. (7-7) 

This surface energy is then used to calculate the cohesive interparticle forces, according 

to the JKR model, as was shown in Eq. (5). Four different values of 0.5, 1, 3 and 5 

𝐽/𝑚2 are used in this work. After applying the JKR model and surface energies, the 
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agglomerate formation is complete. A final agglomerate formed using this approach 

after around 5 s is shown in Figure 7-2. The colour map is based on the volume of the 

primary particles. As mentioned before, the primary particles have been generated with 

a size distribution, and hence different volumes. Therefore, the primary particles with 

the same colour in Figure 7-2 have the same sizes.  

 

 

 

 

 

 

The formed agglomerate is referred to as the ‘reference agglomerate’ in this work, with 

a solid fraction of around 0.7. 

7.3.5 Effect of Factory Geometry 

As mentioned before, the primary particles are generated within a virtual space. By 

default, one of the three options can be used; box, cylinder and polygon. There is also 

the possibility to design other geometries and import them into the geometry options of 

EDEM. In order to explore the effect of factory geometry on the shape of the final 

simulated agglomerate, two different simulations were done under the same conditions. 

Figure 7-2. An agglomerate made by EDEM simulation 
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The only different parameter is the shape of the geometry used to generate the primary 

particles. One of the simulations has been carried out using a box as geometry, and the 

other one spherical space. Interestingly, there is a slight difference in the shape of the 

final agglomerate generated between using the two different geometry types, although 

all the particles are brought to the centre under the same condition. The final simulated 

agglomerates under these two conditions are shown in Figure 7-3. 

 

Figure 7-3. Agglomerates made with primary particles generated using two different geometries; (a) box; 

(b) sphere 

A better-shaped spherical agglomerate is obtained using a spherical geometry, as shown 

in Figure 7-3b. However, the number of contacts for both agglomerates is exactly the 

same, which is 10822. The results reported in the next sections are based on the 

agglomerate shown in Figure 7-3a. 
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7.3.6 Effect of Factory Size  

There is no specific rule to choose the size of the geometry in which the primary 

particles are generated. However, a reasonable size of the geometry must be chosen 

based on the size and number of the primary particles. If the geometry is too small, the 

space would not be large enough for generation of all the primary particles. In the 

opposite case, if the geometry size is too large, it takes too long to bring all the particles 

towards the centre and form an agglomerate. In this work, the geometry used for 

primary particles generation is a 20 mm-diameter sphere. 

7.4 Impact Strength of Agglomerates 

The impact breakage of simulated agglomerates is analysed under different conditions. 

The effects of impact velocity, interface energy, porosity and impact angle are studied 

in this section. The generated agglomerates with different levels of cohesive 

interparticle forces and different levels of porosity are impacted on both flat and 

inclined surfaces at different impact velocities (0.2, 0.5, 1, 5, 10 and 20 m/s) on a rigid 

target. The impact strength is then compared using the definition of damage ratio as 

described below. 

7.4.1 Damage Ratio 

The concept of damage ratio has been used here to quantify the level of agglomerate 

breakage. This concept was proposed by Kafui and Thornton (1993) and Thornton et al. 

(1996) for the first time. The damage ratio is defined as the ratio of number of broken 

contacts during impact to the initial number of contacts. 
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It should be noted that one of the problems of using the JKR model in EDEM 

simulation is that after impacting the particles the cohesive force still exists. Therefore, 

there is a possibility of re-adhesion of broken bonds, which will clearly affect the 

obtained value for damage ratio. However, in order to minimise the effect of this issue 

in the reported results, the reported damage ratios in this work are calculated based on 

the data obtained after impact, and before any possible re-adhesion. 

7.4.2 Effect of Surface Energy on Agglomerate Impact Strength 

As mentioned before, four different levels of surface energy are used to bond the 

contacts; 0.5, 1, 3 and 5 𝐽/𝑚2. The agglomerates are then impacted on a flat surface at 

six different impact velocities. The breakage ratio as a function of impact velocity for 

all the agglomerates is reported in Figure 7-4.  

 

 

 

 

 

 

 

 

Figure 7-4. Damage ratio as a function of impact velocity for agglomerates with different cohesive 

interparticle forces 
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For a given surface energy, as the impact velocity is increased, the damage ratio 

increases. At a given impact velocity, the agglomerate with a lower surface energy 

breaks to a larger extent compared to the one with higher surface energy, which is as 

expected. However, two different trends are clearly observed, which are attributed to 

the pattern of breakage. Further analysis is presented in Section 7.6. 

7.4.3 Effect of Impact Angle on Agglomerate Impact Strength 

To explore the effect of impact angle on the extent of breakage, the agglomerates have 

been impacted at 60° and 90°. The impact angle is defined as the angle between 

agglomerate moving direction and the surface of the impact target, and is schematically 

shown in Figure 7-5.   

 

 

Figure 7-5. Schematic of different 

impact angles 
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As an example, the damage ratio as a function of impact velocity is shown in Figure 7-6 

for impacting the agglomerate with 3 J/m
2
 surface energy at these two angles. 

 

Figure 7-6. Damage ratio as a function of impact velocity for the same agglomerates (surface energy of 3 

J/m2) at different impact angles 

Normal impacting of the agglomerates at the same impact velocity results in more 

breakage compared to impacting of the same agglomerate at the inclined surface with 

the same impact velocity. The same case is observed for other surface energies such as 

0.5 J/m
2
 and 1 J/m

2
, as shown in Figures 7-7 and 7-8, respectively. 
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Figure 7-7. Damage ratio as a function of impact velocity for the same agglomerates (surface energy of 0.5 

J/m2) at different impact angles 

Figure 7-8. Damage ratio as a function of impact velocity for the same agglomerates (surface energy of 1 

J/m2) at different impact angles 

For both surface energies of 0.5 J/m
2
 and 1 J/m

2
, impacting the agglomerates at normal 

target would result in more breakage compared to the inclined one. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

D
a
m

a
g

e 
R

a
ti

o
 (

-)
 

Impact Velocity (m/s) 

Impact Angle (60°) Impact Angle (90°)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

D
a

m
a

g
e
 R

a
ti

o
 (

-)
 

Impact Velocity (m/s) 

Impact Angle (60°) Impact Angle (90°)



CHAPTER 7 SIMULATION  

186 

 

The same comparison has been done considering the normal component of the impact 

velocity to explore the most influential component of the impact velocity on impact 

strength of the agglomerates, and it is shown in Figure 7-9. 

 

 

Normal impacts cause more damage as compared to inclined ones. However, if the If 

the normal velocity component of the inclined impact is taken into account, then the 

data overlap, indicating that the agglomerate breakage is mainly dependent on the 

normal component. The same analysis has been carried out on the data corresponding 

to the 0.5 J/m
2
 and 1 J/m

2
 surface energies. The results are shown in Figures 7-10 and 

7-11, respectively. 
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Figure 7-9. Damage ratio as a function of impact velocity for normal component of impact velocity, 

impacting the same agglomerates (surface energy of 3 J/m2) at different impact angles 
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Figure 7-10. Damage ratio as a function of impact velocity for normal component of impact velocity, 

impacting the same agglomerates (surface energy of 0.5 J/m2) at different impact angles 

Figure 7-11. Damage ratio as a function of impact velocity for normal component of impact velocity, 

impacting the same agglomerates (surface energy of 1 J/m2) at different impact angles 

 

Both Figures 7-10 and 7-11 show the data overlap at low impact velocities, indicating 

that the agglomerate breakage is mainly dependent on the normal component. However, 
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it is not the case for high impact velocities, showing that the tangential component is 

mainly causing breakage. 

These results could vary based on the method used to form an agglomerate, i.e. the type 

of the bonding model used to keep the primary particles together might affect the 

results.  

7.4.4 Effect of Porosity on Agglomerate Impact Strength 

To make a porous agglomerate, some of the primary particles are removed from the 

structure. As mentioned before, the formed agglomerated has 30% porosity. At the start 

of the simulation work, the size and number of primary particles were chosen in a way 

that deleting a class or combination of particle classes could result in producing a 

defined porosity, e.g. by removing the particle types B and E, which are 30% of total 

particles, the porosity of the agglomerate is further increased. Therefore, the total 

porosity after removing the types B and E of the primary particles would increase to 

51%. The two agglomerates (reference and 51% porosity) with a very low surface 

energy (0.5 𝐽/𝑚2) have been impacted under the same impact conditions, and the 

damage ratio as a function of impact velocity has been compared for both cases, as 

shown in Figure 7-12.  
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Figure 7-12. Damage ratio as a function of impact velocity for two agglomerates with different levels of 

porosity and surface energy of 0.5 J/m2 

At low impact velocities (0.2 and 0.5 m/s), the two agglomerates break to almost the 

same extent. This is also the case at the high impact velocity of 10 m/s, as both particles 

are fully disintegrated and hence the damage ratio of 1 is obtained. For other impact 

velocities, the agglomerate with a higher porosity level breaks slightly more than the 

other agglomerate. However, a larger difference was expected to be observed. The 

same comparison has been carried out on the agglomerates with 3 𝐽/𝑚2 surface energy, 

and the results are shown in Figure 7-13. 
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Figure 7-13. Damage ratio as a function of impact velocity for two agglomerates with different levels of 

porosity and surface energy of 3 J/m2 

Based on the results shown in Figures 7-12 and 7-13, the agglomerates with two 

different porosity levels break to almost the same extent at low impact velocities. 

However, as the impact velocity is increased, the difference between the damage ratios 

for the two cases becomes larger to the extent that a significant difference is observed at 

10 m/s impact velocity.  

According to the simulation results, the difference between damage ratios of impacted 

agglomerates with different porosity levels is clearer for the agglomerates with higher 

surface energies. However, for very weak agglomerates with loose bonding the 

difference is not that significant. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12

D
a
m

a
g

e 
R

a
ti

o
 (

-)
 

Impact Velocity (m/s) 

Reference Agglomerate (30% Porosity) 51% Porosity



CHAPTER 7 SIMULATION  

191 

 

7.5 Analysis of Impact Results 

In previous sections, damage ratio was analysed as a function of impact velocity. 

However, the breakage of contacts can also be related to Weber Number (We). 

Previously Kafui and Thornton (1993) used this approach to analyse the agglomerate 

breakage. Weber number is defined based on the equation below, 

𝑊𝑒 =
𝜌𝐷𝑉2

𝛤
    Eq. (7-8) 

where 𝐷 and  𝜌 are particle diameter and density of the particles, respectively. 𝑉 is the 

impact velocity. 

However, the modified version of the Weber number (We') is more accurate (Thornton 

et al., 1996), as it considers the velocity below which there is no breakage (𝑉0). 

𝑊𝑒′ =
𝜌𝐷(𝑉−𝑉0)2

𝛤
  Eq. (7-9) 

Moreno-Atanasio and Ghadiri (2006b) did an extensive piece of work on impact 

breakage of spherical agglomerates using DEM simulation. Based on their model, the 

number of broken contacts is proportional to the incident kinetic energy, and by using 

an energy balance between the work required to break interparticle contacts and 

incident kinetic energy, the relationship between damage ratio (𝛥) and the surface 

energy is presented as below, 

𝛥 ∝ 𝑊𝑒′(
𝐸𝐷

𝛤
)

2
3⁄                                                                                                 Eq. (7-10) 
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where 𝐸 is the primary particle elastic modulus. Therefore, the analysis has been 

carried out using Eq. (7-10) to explore the dependency of damage ratio on the surface 

energy, as shown in Figure 7-14. 

 

Figure 7-14. Damage ratio as a function of 𝛤-5/3 for agglomerates with different surface energies 

Based on Moreno’s model (Moreno-Atanasio and Ghadiri, 2006), a unification was 

expected when the damage ratio is plotted as a Weber-dependant group. However, this 

is not the case. The trend observed in Figure 7-14 is similar to that obtained from 

Figure 7-4. In both Figures, there are two clear trends, each trend being attributed to a 

different pattern of breakage. Based on the observation of the agglomerates after 

impact, impacting the agglomerates with low surface energies (0.5 and 1 𝐽/𝑚2) would 

result in fragmentation and disintegration, whilst for agglomerates with high surface 

energies (3 and 5 𝐽/𝑚2) the damage is localised and chipping is the main pattern of 

breakage for these range of velocities. As an example, the force distribution after 
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impact at 0.5 m/s shown in Figure 7-15 for agglomerates with 0.5 and 3  𝐽/𝑚2 surface 

energy. 

 

Figure 7-15. Side view of force distribution after impacting at 0.5 m/s for agglomerates with (a): 0.5 J/m2; 

(b) 3 J/m2 

The force distributions are exported after impact at 0.5 m/s. Figures 7.15a and 7.15b 

show the side views of agglomerates with the surface energy of 0.5 𝐽/𝑚2 and 1 𝐽/𝑚2, 

respectively. However, both of them have been exported at 0.01 s after impact, and the 

difference in the time shown in the Figure is due to the time taken for agglomerate 

generation and applying surface energy at previous steps before impact. The 

disintegration of the agglomerate with 0.5 𝐽/𝑚2 surface energy is clearly seen, as the 

bottom part of the agglomerate (close to the impact zone) is completely deformed. The 

force has been also propagated within the agglomerate and reached to the top part, as 

shown in Figure 7-15a, causing breakage of the contacts. A different scenario is 

observed in Figure 7-15b for 3 𝐽/𝑚2 surface energy. There is no clear deformation at 

the impact zone (bottom part of the agglomerate), and the force distribution is different 

compared to Figure 7-15a. 
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Based on these observations, it is not expected to achieve unification of breakage data 

in Figure 7-14, as there are different patterns of breakage. For tested agglomerates by 

Moreno, all of them failed through the same pattern of breakage, therefore unification 

was obtained as the damage ratio plotted as a function of ′(
𝐸𝐷

𝛤
)

2
3⁄  . 

Considering the definition of 𝑊𝑒 Number, it is also expected that the damage ratio 

follows a square of velocity relationship. Therefore the damage ratio has been plotted 

as a function of 𝑉2 to see if such a dependency holds. The results are shown in Figure 

7-16. 

 

Figure 7-16. Damage ratio as a function of V2 for agglomerates with different surface energies 

Based on the results, a linear relationship is only observed for impact results of high 

surface energy agglomerates, but there is no such a dependency for the low surface 

energy case. 
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7.6 Concluding Remarks 

The structure of the agglomerates significantly affects properties such as strength. The 

impact simulation of different agglomerates has been carried out using EDEM 

simulation to explore the effects of impact velocity, impact angle, surface energy and 

porosity on the impact breakage of agglomerates. The agglomerates are bonded using 

the JKR model, using different levels of surface energy. 

The concepts of damage ratio and Weber Number have been used to analyse the 

breakage results. Impacting the agglomerates with different surface energies for a range 

of impact velocities shows two different trends of breakage, which are attributed to 

different patterns of breakage. The agglomerates with high surface energies (3 and 5 

𝐽/𝑚2) undergo less breakage compared to the agglomerates with low surface energies 

(0.5 and 1 𝐽/𝑚2). The damage ratio is a function of 𝑉2 for the high surface energies. 

Based on the simulation results in this work, impacting the agglomerates at a flat 

surface would results in a larger number of broken contacts compared to impact at 

inclined surfaces. It has been found that the agglomerate failure is mainly dependent on 

the normal component of the impact velocity for the agglomerates used in this work.  

Two different levels of porosity have been used to explore the effect of porosity on the 

impact strength of agglomerates; the reference agglomerate with the void fraction of 0.3 

and the more porous agglomerate by removing 30% of primary particles to increase the 

porosity level to 51%. Generally, more porous agglomerates break to a higher extent 

compared to the agglomerates with a lower porosity. However, the difference is clearer 

for the agglomerates with a high surface energy. 
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The damage ratio has also been analysed using a Weber-related group. It has been 

shown that the breakage results are classified into different categories based on the 

pattern of breakage. The force distribution in the impacted agglomerates shows that the 

agglomerates with a low surface energy are deformed even at low impact velocities. 

The force is then propagated in to the agglomerate and reaches to the top surface of the 

agglomerate, causing more broken number of contacts, and hence disintegration. 

However, for agglomerates with a high surface energy, this is not the case, and only a 

small number of broken contacts are observed at the impact zone. 

More studies are still needed to fully understand the breakage behaviour of 

agglomerates under impact. This work can be expanded by using more conditions, e.g. 

more porosity and surface energy levels, to provide more information on the 

dependency of the agglomerate strength on different parameters.  
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CHAPTER 8 OVERALL CONCLUSIONS AND 

FUTURE WORK 

8.1 Conclusions 

Understanding the breakage behaviour of particles is important for manufacturing 

plants handling particulate solids, particularly for weak and friable materials such as 

spray-dried powders. A combination of experimental and simulation work has been 

carried out in this study to understand the breakage of spray-dried burkeite particles, 

which have an agglomerate structure. 

A comprehensive literature review has been undertaken on different topics such as 

mode of failure, test methods, patterns of breakage, agglomerates, computer simulation 

of agglomerates, etc. The breakage behaviour of single particles and agglomerates has 

been analysed. It has been found that the agglomerate breakage behaviour is more 

complex than single particles. Different pieces of work with the main aim of 

understanding the agglomerate breakage have been reviewed. DEM simulation has 

been found to be a fast method to explore the effects of different parameters of the 

agglomerate breakage. 

In this work, spray-dried burkeite particles have been subjected to different levels of 

impact stresses using a single particle impact rig. Various patterns of breakage have 

been identified at each impact condition, and the breakage results have been analysed 

based on their patterns of breakage. The impact breakage results show that the burkeite 

particles are very weak, as they go through extensive breakage even at low impact 
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velocities. However, the clusters inside each single particle have been separated and 

subjected to different levels of impact stresses. The comparison of the impact breakage 

results obtained from impacting of the spray-dried burkeite particles and clusters shows 

that the clusters break less than the single particles. Therefore, clusters are clearly 

stronger than single particles. 

It has been found that there are structural differences (envelope density variation) as a 

function of size; therefore different methods have been used to evaluate the envelope 

density of different particle sizes. Among all the methods described, X-ray 

microtomography has been chosen for the envelope density measurement method in 

this work. Using the obtained values of envelope density for different particle sizes 

along with the impact breakage results, the mechanical properties of the test materials 

have been estimated. 

The single particle impact rig is not a commercially available device, so the Scirocco 

disperser of the Malvern Mastersizer 2000 has been used as an impact test device. 

Particles of different sizes accelerate to different velocities in the Scirocco disperser 

and break to different extents. Therefore, the impact velocities of different particle sizes 

in the Scirocco disperser have been obtained by CFD simulation by Ali et al. (2015). 

The same analysis as single particle impact testing has then been carried out by plotting 

the shift in specific surface area of the particles as a function of breakage propensity 

group. It has been found that a good unification is obtained by taking into account the 

impact velocity of different particle sizes in the Scirocco disperser. 

The same approach has also been applied to three crystalline materials: aspirin, sucrose 

and 𝛼-lactose monohydrate. Considering the mass required to be tested in the Scirocco, 
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it could be an attractive method where the quantity is an issue, e.g. pharmaceutical 

industries. The particles have been passed through the Scirocco disperser, and different 

sizes accelerate differently, and hence break to different extents. The relative increase 

in the specific surface area of the particles with respect to the initial value following 

impact in the Scirocco disperser shows a linear dependence on 𝜌𝑓�̅�𝑓,𝑣𝑉2(
𝜌𝑓�̅�𝑓,𝑣

𝜌𝑑�̅�𝑑,𝑣
). The 

slope of the fitted line reflects particle breakage propensity and correlates well with 

𝛼 𝐻 𝐾𝑐
2⁄  obtained by single particle impact testing. Therefore this method can be used 

to evaluate the grindability of powders and grains, provided the particle impact velocity 

is first determined. 

DEM simulations have been carried out to obtain a better understanding of breakage of 

porous agglomerates. It has been found that the geometry in which the primary particles 

are generated has an effect on the final shape of the produced agglomerate, i.e. the 

cubical geometry would not result in a perfect spherical agglomerate, while in order to 

improve the spherical shape of the agglomerates a spherical geometry can be used. 

However, the total number of contacts would remain the same for both spherical and 

cubical geometries. The JKR model has been used to apply adhesive forces to make the 

primary particles sticky and form the agglomerates. There are some advantages with the 

JKR model, i.e. the problem of re-adhesion after agglomerate failure. More porous 

agglomerates have been produced by removing some of the primary particles. In 

EDEM, the removal of the particles is achieved based on the particle type and it is not 

easy to remove the particles based on their ID number. The agglomerates with two 

levels of porosities are then impacted at both normal and inclined impact targets for a 

range of impact velocities. The results show the effects of porosity, impact velocity, 
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impact target and surface energy on the impact breakage results of agglomerates. 

Plotting of the damage ratio as a function of Weber Number clearly shows two different 

trends for the impact results of the agglomerates with different interface energies. 

Based on observations, the agglomerates with interface energies of 0.5 𝐽/𝑚2 and 1 

𝐽/𝑚2 undergo chipping and agglomerates with interface energies of 3 𝐽/𝑚2 and 5 

𝐽/𝑚2 undergo disintegration after impacting at the range of 0.2 𝑚/𝑠 to 20 𝑚/𝑠, which 

are in agreement with two observed trends.  

The results obtained from this work provide a better understanding of the breakage of 

weak and porous agglomerates such as spray-dried burkeite particles. The information 

can also be used by related industries to improve their designs to avoid undesirable 

breakage under the studied conditions.  

8.2 Future Work 

A number of interesting lines of research work can be followed based on the work 

presented in this thesis. Much still needs to be done to understand the breakage of 

agglomerates. There are a number of improvements on the present work rather than 

new lines of research. In this respect, the data on fragmentation and disintegration 

patterns of breakage need to be improved by undertaking a full sieve analysis and 

obtaining the mass fraction of particles for all the size cuts below the feed size. It 

requires using a larger mass quantity for impact testing than that used in this work, in 

order to provide enough materials and avoid any mass loss during full sieve analysis. 

The particles are then impacted for a range of impact velocities. A full sieve analysis is 

used, the mass fraction in each sieve cut is measured and the data corresponding to 
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fragmentation and disintegration regimes are separated using Schuhman’s graph 

(Schumann, 1940). The obtained information will then lead to develop breakage 

function. 

Spray-dried burkeite particles are made from a number of clusters with a crystalline 

structure. The particles which undergo fragmentation and disintegration after impact, 

are disintegrated into the clusters, as they are loosely stuck to each other. However, 

clusters are much stronger than the particles based on the impact breakage results. 

Therefore, the strength of the particles can be improved by adding polymeric binders. 

However, it requires an extensive study to investigate where the binders will end up. 

This approach would be useful if the binders forge between the clusters. 

The structure of spray-dried burkeite particles can be explored in more detailed studies. 

Information on porosity distribution as a function of particle size can be quite useful to 

understand the structural differences of particles as a function of size.  

DEM simulations of impact breakage of agglomerates have been carried out by a good 

number of researchers. However, there is still a significant difference between 

simulation and experimental results. In order to make the simulation results closer to 

reality, the use of a realistic contact model is needed. This requires a better 

characterisation of bond failure. Hapgood’s work (Hapgood, 2015), a collaborative 

project between Monash University and University of Leeds, provides for the first time 

an opportunity to precisely control the structure and interparticle bond properties in 

order to investigate their role in affecting the strength of complex structures and to help 

develop realistic models for simulations. A rigorous comparison with experimental 

work then needs to be undertaken to validate the results. In this project, the 
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agglomerates are produced by 3D printing. Different types of bonds, with different 

mechanical properties and thicknesses, are used to bond the primary particles together. 

The failure of the agglomerates is then tested under both quasi-static and dynamic 

conditions. The obtained information is used to develop a bonding model. The 

simulation results using the new contact model would be then compared to the 

experimental results to validate the bonding contact model. 

In an ongoing project, a different bonding model is being used to bond the primary 

particles together to form the agglomerates. The breakage results would then be 

compared to those from the JKR model. The other issue is the distribution of porosities 

in the agglomerates. At the moment, the porosities have been made by randomly 

deleting the primary particles. However, in a more precise way the particles can be 

removed based on the porosity distribution of the actual agglomerates. Therefore, the 

results would be more comparable with the experimental work. 
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Appendix A 

 

Figure a 1. Particle size distribution for different near-mesh particle sizes of burkeite at 100 kPa nozzle 

pressure 

 

Figure a 2. Particle size distribution for different near-mesh particle sizes of burkeite at 150 kPa nozzle 

pressure 
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Figure a 3. Particle size distribution for different near-mesh particle sizes of burkeite at 200 kPa nozzle 

pressure 

 

 

 

 

 

 

Figure a 4. Particle size distribution for different near-mesh particle sizes of burkeite at 250 kPa nozzle 

pressure 
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Figure a 5. Shift in size distribution of 400-425 μm of aspirin at different nozzle air pressures 

 

Figure a6: Shift in size distribution of 600-630 μm of aspirin at different nozzle air pressures 
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Figure a7: Shift in size distribution of 160-180 μm of sucrose at different nozzle air pressures 

 

Figure a8: Shift in size distribution of 400-425 μm of sucrose at different nozzle air pressures 
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Figure a9: Shift in size distribution of 600-630 μm of sucrose at different nozzle air pressures 

 

Figure a10: Shift in size distribution of 80-90 μm of α-lactose monohydrate at different nozzle air pressures 
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Figure a12: Shift in size distribution of 160-180 μm of α-lactose monohydrate at different nozzle air 

pressures 
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Figure a11: Shift in size distribution of 112-125 μm of α-lactose monohydrate at different nozzle air pressures 
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Appendix B 

 

Body Force 

 

 
#include "strs_body_force.h" 
#include "Helpers.h" 
#include <fstream> 
 
 
using namespace NApiPbf; 
using namespace NApi; 
using namespace NApiCore; 
using namespace std; 
 
 
 
strs_body_force::strs_body_force() 
{ 
 ; 
} 
 
 
 
strs_body_force::~strs_body_force() 
{ 
 ; 
} 
 
void strs_body_force::getPreferenceFileName(char 
prefFileName[NApi::FILE_PATH_MAX_LENGTH]) 
{ 
 ; 
} 
 
bool strs_body_force::isThreadSafe() 
{ 
 return true; 
} 
 
bool strs_body_force::usesCustomProperties() 
{ 
 return false; 
} 
 
bool strs_body_force::setup(NApiCore::IApiManager_1_0& apiManager, 
                               const char                 prefFile[]) 
{ 
 
 return true; 
} 
 
bool strs_body_force::starting(NApiCore::IApiManager_1_0& apiManager) 



Appendix B  

222 

 

{ 
 return true; 
} 
 
void strs_body_force::stopping(NApiCore::IApiManager_1_0& apiManager) 
{ 
 ; 
} 
 
 
ECalculateResult strs_body_force::externalForce( 
                                               double       time, 
                                               double       timestep, 
                                               int          id, 
                                               const char   type[], 
                                               double       mass, 
                                               double       volume, 
                                               double       posX, 
                                               double       posY, 
                                               double       posZ, 
                                               double       velX, 
                                               double       velY, 
                                               double       velZ, 
                                               double       angVelX, 
                                               double       angVelY, 
                                               double       angVelZ, 
                                               double       charge, 
                                               const double orientation[9], 
                                               
NApiCore::ICustomPropertyDataApi_1_0* particlePropData, 
                                               
NApiCore::ICustomPropertyDataApi_1_0* simulationPropData, 
                                               double&      calculatedForceX, 
                                               double&      calculatedForceY, 
                                               double&      calculatedForceZ, 
                                               double&      calculatedTorqueX, 
                                               double&      calculatedTorqueY, 
                                               double&      calculatedTorqueZ) 
{ 
 /**********************************Stress 
Calculations******************************************/ 
 double accel = 10; 
  
 double C_x = 0.0; 
 double C_y = 0.0; 
 double C_z = 0.0; 
  
 double AC_x = C_x - posX; 
 double AC_y = C_y - posY; 
 double AC_z = C_z - posZ; 
  
 double mag_AC = sqrt( (AC_x * AC_x) + (AC_y * AC_y) + (AC_z * AC_z) ); 
  
 double norm_x = AC_x / mag_AC; 
 double norm_y = AC_y / mag_AC; 
 double norm_z = AC_z / mag_AC; 
  
 calculatedForceX = mass * accel * norm_x; 
 calculatedForceY = mass * accel * norm_y; 
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 calculatedForceZ = mass * accel * norm_z;  
  
 /******************************************************************************
************/ 
 
 return eSuccess; 
 
} 
 
 
unsigned int strs_body_force::getNumberOfRequiredProperties( 
                                     const NApi::EPluginPropertyCategory 
category) 
{ 
 return 0; 
} 
 
bool strs_body_force::getDetailsForProperty( 
                             unsigned int                    propertyIndex, 
                             NApi::EPluginPropertyCategory   category, 
                             char                            
name[NApi::CUSTOM_PROP_MAX_NAME_LENGTH], 
                             NApi::EPluginPropertyDataTypes& dataType, 
                             unsigned int&                   numberOfElements, 
                             NApi::EPluginPropertyUnitTypes& unitType) 
{ 
 return false; 
} 

 

 

 

 

 

 

 

 


